Science.gov

Sample records for ac driving current

  1. Effective variable switching point predictive current control for ac low-voltage drives

    NASA Astrophysics Data System (ADS)

    Stolze, Peter; Karamanakos, Petros; Kennel, Ralph; Manias, Stefanos; Endisch, Christian

    2015-07-01

    This paper presents an effective model predictive current control scheme for induction machines driven by a three-level neutral point clamped inverter, called variable switching point predictive current control. Despite the fact that direct, enumeration-based model predictive control (MPC) strategies are very popular in the field of power electronics due to their numerous advantages such as design simplicity and straightforward implementation procedure, they carry two major drawbacks. These are the increased computational effort and the high ripples on the controlled variables, resulting in a limited applicability of such methods. The high ripples occur because in direct MPC algorithms the actuating variable can only be changed at the beginning of a sampling interval. A possible remedy for this would be to change the applied control input within the sampling interval, and thus to apply it for a shorter time than one sample. However, since such a solution would lead to an additional overhead which is crucial especially for multilevel inverters, a heuristic preselection of the optimal control action is adopted to keep the computational complexity at bay. Experimental results are provided to verify the potential advantages of the proposed strategy.

  2. Modeling and damping of high-frequency leakage currents in PWM inverter-fed AC motor drive systems

    SciTech Connect

    Ogasawara, Satoshi; Akagi, Hirofumi

    1995-12-31

    This paper presents an equivalent circuit for high-frequency leakage currents in PWM inverter-fed ac motors, which forms a series resonant circuit. The analysis based on the equivalent circuit leads to such a conclusion that the connection of a conventional common-mode choke or reactor in series between the ac terminals of a PWM inverter and those of an ac motor is not effective to reduce the rms and average values of the leakage current, but effective to reduce the peak value. Furthermore, this paper proposes a common-mode transformer which is different in damping principle from the conventional common-mode choke. It is shown theoretically and experimentally that the common-mode transformer is able to reduce the rms value of the leakage current to 25%, where the core used in the common-mode transformer is smaller than that of the conventional common-mode choke.

  3. System and method for determining stator winding resistance in an AC motor using motor drives

    DOEpatents

    Lu, Bin; Habetler, Thomas G; Zhang, Pinjia

    2013-02-26

    A system and method for determining the stator winding resistance of AC motors is provided. The system includes an AC motor drive having an input connectable to an AC source and an output connectable to an input terminal of an AC motor, a pulse width modulation (PWM) converter having switches therein to control current flow and terminal voltages in the AC motor, and a control system connected to the PWM converter. The control system generates a command signal to cause the PWM converter to control an output of the AC motor drive corresponding to an input to the AC motor, selectively generates a modified command signal to cause the PWM converter to inject a DC signal into the output of the AC motor drive, and determines a stator winding resistance of the AC motor based on the DC signal of at least one of the voltage and current.

  4. Designing LC filters for AC-motor drives

    SciTech Connect

    Gath, P.A.; Lucas, M.

    1995-12-31

    This paper presents practical design guidelines for designing LC filters for AC-motor drive applications. A DC choke and an electrolytic capacitor bank on the DC bus filter the voltage and the current ripples and improve the input power factor. Capacitor and choke values are derived to optimize overall filter performance. Costs associated with the respective component values can then be obtained to analyze cost trade-offs between selected values. Helpful hints are also given.

  5. Anomalous - viscosity current drive

    DOEpatents

    Stix, Thomas H.; Ono, Masayuki

    1988-01-01

    An apparatus and method for maintaining a steady-state current in a toroidal magnetically confined plasma. An electric current is generated in an edge region at or near the outermost good magnetic surface of the toroidal plasma. The edge current is generated in a direction parallel to the flow of current in the main plasma and such that its current density is greater than the average density of the main plasma current. The current flow in the edge region is maintained in a direction parallel to the main current for a period of one or two of its characteristic decay times. Current from the edge region will penetrate radially into the plasma and augment the main plasma current through the mechanism of anomalous viscosity. In another aspect of the invention, current flow driven between a cathode and an anode is used to establish a start-up plasma current. The plasma-current channel is magnetically detached from the electrodes, leaving a plasma magnetically insulated from contact with any material obstructions including the cathode and anode.

  6. Voltage controller/current limiter for ac

    NASA Technical Reports Server (NTRS)

    Wu, T. T.

    1980-01-01

    Circuit protects ac power systems for overload failures, limits power surge and short-circuit currents to 150 percent of steady state level, regulates ac output voltage, and soft starts loads. Limiter generates dc error signal in response to line fluctuations and dumps power when overload is reached. Device is inserted between ac source and load.

  7. Anomalous-viscosity current drive

    DOEpatents

    Stix, T.H.; Ono, M.

    1986-04-25

    The present invention relates to a method and apparatus for maintaining a steady-state current for magnetically confining the plasma in a toroidal magnetic confinement device using anomalous viscosity current drive. A second aspect of this invention relates to an apparatus and method for the start-up of a magnetically confined toroidal plasma.

  8. An AC drive system for a battery driven moped

    SciTech Connect

    Nandi, S.; Saha, S.; Sharon, M.; Sundersingh, V.P.

    1995-12-31

    A petrol driven moped is converted to an electric one by replacing the petrol engine by a three phase 1.5 HR, AC squirrel cage induction motor drive system. The motor voltage rating selected is 200 V to keep the DC boost voltage level to a reasonable value.f the power source used is a high energy density, 24 V, 110 Ah, Ni-Zn battery. A modified indirect current controlled step-up chopper as well as a standard push-pull DC-DC boost converter is studied for the boost scheme. A simple three phase quasi-square wave inverter is designed along with suitable protection for driving the motor. Successful trial test of the system has been conducted at the laboratory.

  9. Measurement of coupling resonance driving terms with the AC dipole

    SciTech Connect

    Miyamoto, R.

    2010-10-01

    Resonance driving terms for linear coupled betatron motion in a synchrotron ring can be determined from corresponding spectral lines of an excited coherent beam motion. An AC dipole is one of instruments to excite such a motion. When a coherent motion is excited with an AC dipole, measured Courant-Snyder parameters and betatron phase advance have apparent modulations, as if there is an additional quadrupole field at the location of the AC dipole. Hence, measurements of these parameters using the AC dipole require a proper interpretation of observed quantities. The situation is similar in measurements of resonance driving terms using the AC dipole. In this note, we derive an expression of coupled betatron motion excited with two AC dipoles in presence of skew quadrupole fields, discuss an impact of this quadrupole like effect of the AC dipole on a measurement of coupling resonance driving terms, and present an analytical method to determine the coupling resonance driving terms from quantities observed using the AC dipole.

  10. Sequential control by speed drive for ac motor

    NASA Astrophysics Data System (ADS)

    Barsoum, Nader

    2012-11-01

    The speed drive for ac motor is widely used in the industrial field to allow direct control for the speed and torque without any feedback from the motor shaft. By using the ABB ACS800 speed drive unit, the speed and torque can be controlled using sequential control method. Sequential control is one of the application control method provided in the ABB ACS800 Drive, where a set of events or action performed in a particular order one after the other to control the speed and torque of the ac motor. It was claimed that sequential control method is using the preset seven constant speeds being provided in ABB ACS800 drive to control the speed and torque in a continuous and sequential manner. The characteristics and features of controlling the speed and torque using sequential control method can be investigated by observing the graphs and curves plotted which are obtained from the practical result. Sequential control can run either in the Direct Torque Control (DTC) or Scalar motor control mode. By using sequential control method, the ABB ACS800 drive can be programmed to run the motor automatically according to the time setting of the seven preset constant speeds. Besides, the intention of this project is to generate a new form of the experimental set up.

  11. Scalar control on speed drive for ac motor

    NASA Astrophysics Data System (ADS)

    Barsoum, Nader

    2012-11-01

    This paper aims to investigate the performance of ABB ACS800 variable speed drive operating under Scalar Control mode, and eventually develop a set of experimental procedures for undergraduate laboratory purposes. Scalar Control is the most widespread form of ac drive, for its low cost and simplicity especially implemented in the open loop mode. Scalar control is achieved by controlling the stator voltage and frequency, thus maintaining the motor's air-gap flux at a constant value. To illustrate the control method, the ac drive is configured according to the wiring diagram in the firmware manual that the drive control location can be both local and external. The drive is selected to operate under Factory application macro, whereby either ordinary speed control applications or constant speeds applications may be used. Under ordinary speed control, frequency reference signals are provided to the drive through the analogue input AI1. The drive will operate at the given frequency reference value throughout the operation regardless of any changes in the load. The torque speed curve moves along the speed axis with no changes to the shape as the supply frequencies changes. On the other hand, the drive allows three preset constant speed through digital inputs DI5 and DI6. The drive operate at a constant speed value over a time period, and only switch from one constant speed to another constant speed by triggering the two input switches. Scalar control is most suitable for applications not required high precision, such as blowers, fans and pumps.

  12. Current Drive in Recombining Plasma

    SciTech Connect

    P.F. Schmit and N.J. Fisch

    2012-05-15

    The Langevin equations describing the average collisional dynamics of suprathermal particles in nonstationary plasma remarkably admit an exact analytical solution in the case of recombining plasma. The current density produced by arbitrary particle fluxes is derived including the effect of charge recombination. Since recombination has the effect of lowering the charge density of the plasma, thus reducing the charged particle collisional frequencies, the evolution of the current density can be modified substantially compared to plasma with fixed charge density. The current drive efficiency is derived and optimized for discrete and continuous pulses of current, leading to the discovery of a nonzero "residual" current density that persists indefinitely under certain conditions, a feature not present in stationary plasmas.

  13. Current drive by helicon waves

    SciTech Connect

    Paul, Manash Kumar; Bora, Dhiraj

    2009-01-01

    Helicity in the dynamo field components of helicon wave is examined during the novel study of wave induced helicity current drive. Strong poloidal asymmetry in the wave magnetic field components is observed during helicon discharges formed in a toroidal vacuum chamber of small aspect ratio. High frequency regime is chosen to increase the phase velocity of helicon waves which in turn minimizes the resonant wave-particle interactions and enhances the contribution of the nonresonant current drive mechanisms. Owing to the strong poloidal asymmetry in the wave magnetic field structures, plasma current is driven mostly by the dynamo-electric-field, which arise due to the wave helicity injection by helicon waves. Small, yet finite contribution from the suppressed wave-particle resonance cannot be ruled out in the operational regime examined. A brief discussion on the parametric dependence of plasma current along with numerical estimations of nonresonant components is presented. A close agreement between the numerical estimation and measured plasma current magnitude is obtained during the present investigation.

  14. Power Electronic Transformer based Three-Phase PWM AC Drives

    NASA Astrophysics Data System (ADS)

    Basu, Kaushik

    A Transformer is used to provide galvanic isolation and to connect systems at different voltage levels. It is one of the largest and most expensive component in most of the high voltage and high power systems. Its size is inversely proportional to the operating frequency. The central idea behind a power electronic transformer (PET) also known as solid state transformer is to reduce the size of the transformer by increasing the frequency. Power electronic converters are used to change the frequency of operation. Steady reduction in the cost of the semiconductor switches and the advent of advanced magnetic materials with very low loss density and high saturation flux density implies economic viability and feasibility of a design with high power density. Application of PET is in generation of power from renewable energy sources, especially wind and solar. Other important application include grid tied inverters, UPS e.t.c. In this thesis non-resonant, single stage, bi-directional PET is considered. The main objective of this converter is to generate adjustable speed and magnitude pulse width modulated (PWM) ac waveforms from an ac or dc grid with a high frequency ac link. The windings of a high frequency transformer contains leakage inductance. Any switching transition of the power electronic converter connecting the inductive load and the transformer requires commutation of leakage energy. Commutation by passive means results in power loss, decrease in the frequency of operation, distortion in the output voltage waveform, reduction in reliability and power density. In this work a source based partially loss-less commutation of leakage energy has been proposed. This technique also results in partial soft-switching. A series of converters with novel PWM strategies have been proposed to minimize the frequency of leakage inductance commutation. These PETs achieve most of the important features of modern PWM ac drives including 1) Input power factor correction, 2) Common

  15. Alternating-Current Motor Drive for Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Rippel, W. E.

    1982-01-01

    New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.

  16. Comparison of the Unique Mobility and DOE-developed ac electric drive systems

    SciTech Connect

    Cole, G.H.

    1993-01-01

    A comparison was made between the most recent DOE-developed AC electric vehicle drive systems and that which is independently under development by Unique Mobility of Golden, Colorado. The DOE-developed AC systems compared in this study are the Single-Shaft Electric Propulsion System (ETX-II) developed by Ford Motor Company and the General Electric Company under contract number DE-AC07-85NV10418, the Dual-Shaft Electric Propulsion (DSEP) System developed by Eaton Corporation under contract number DOE-AC08-84NV-10366, and the anticipated results of the Modular Electric Vehicle (MEV) system currently being developed by Ford and General Electric under contract number DE-AC07-90ID13019. The Unique Mobility brushless DC electric vehicle drive system represents their latest electric drive technology and is being developed in cooperation with BMW Technik Gmbh of Germany. Comparisons of specific volume, specific weight, efficiency and expected vehicle performance are made of the different systems based upon measured system performance data where available. One conclusion presented is that the Unique Mobility drive system under development with BMW appears to provide comparable performance to the AC systems studied.

  17. Steady State Tokamak Equilibria without Current Drive

    SciTech Connect

    Shaing, K.C.; Aydemir, A.Y.; Lin-Liu, Y.R.; Miller, R.L.

    1997-11-01

    Steady state tokamak equilibria without current drive are found. This is made possible by including the potato bootstrap current close to the magnetic axis. Tokamaks with this class of equilibria do not need seed current or current drive, and are intrinsically steady state. {copyright} {ital 1997} {ital The American Physical Society}

  18. Bootstrapped tokamak with oscillating field current drive

    SciTech Connect

    Weening, R.H. )

    1993-07-01

    A magnetic helicity conserving mean-field Ohm's law is used to study bootstrapped tokamaks with oscillating field current drive. The Ohm's law leads to the conclusion that the tokamak bootstrap effect can convert the largely alternating current of oscillating field current drive into a direct toroidal plasma current. This plasma current rectification is due to the intrinsically nonlinear nature of the tokamak bootstrap effect, and suggests that it may be possible to maintain the toroidal current of a tokamak reactor by supplementing the bootstrap current with oscillating field current drive. Steady-state tokamak fusion reactors operating with oscillating field current drive could provide an alternative to tokamak reactors operating with external current drive.

  19. Oscillatory nonhmic current drive for maintaining a plasma current

    DOEpatents

    Fisch, Nathaniel J.

    1986-01-01

    Apparatus and method of the invention maintain a plasma current with an oscillatory nonohmic current drive. Each cycle of operation has a generation period in which current driving energy is applied to the plasma, and a relaxation period in which current driving energy is removed. Plasma parameters, such as plasma temperature or plasma average ionic charge state, are modified during the generation period so as to oscillate plasma resistivity in synchronism with the application of current driving energy. The invention improves overall current drive efficiencies.

  20. Oscillatory nonohomic current drive for maintaining a plasma current

    DOEpatents

    Fisch, N.J.

    1984-01-01

    Apparatus and methods are described for maintaining a plasma current with an oscillatory nonohmic current drive. Each cycle of operation has a generation period in which current driving energy is applied to the plasma, and a relaxation period in which current driving energy is removed. Plasma parameters, such as plasma temperature or plasma average ionic charge state, are modified during the generation period so as to oscillate plasma resistivity in synchronism with the application of current driving energy. The invention improves overall current drive efficiencies.

  1. A driving scheme to reduce AC LED flicker

    NASA Astrophysics Data System (ADS)

    Tan, Jianchuan; Narendran, Nadarajah

    2013-09-01

    Light flicker is a common but unwelcome phenomenon in conventional lighting applications. In solid-state lighting, driving or dimming methods also give rise to light flicker. AC LED products in today's marketplace suffer from flicker, which stems from the arrangement of the micro-LEDs and the driving method. Research has shown that light flicker can be a health hazard to humans. Several solutions have been proposed to reduce light flicker in solid-state lighting applications; however, most have drawbacks in terms of power and other performance. This paper proposes a circuit design to reduce light flicker from AC LEDs while maintaining a normal power factor and high power efficiency. The circuit is composed of one resistive branch and one capacitive branch, and each branch drives a load which is made up of high-voltage LEDs. Percent flicker, power factor, and power efficiency were selected as three metrics, and their benchmarks were set to evaluate the performance of this circuit. Phase shift between the two branches was selected as a factor that could determine the circuit performance. The variations of percent flicker, power factor, and power efficiency as a function of phase shift were identified by theoretical analysis and were verified by experiments. The experimental results show that an optimal solution can be achieved for this circuit design at proper phase shift, where the benchmarks of the three metrics are reached.

  2. A PWM transistor inverter for an ac electric vehicle drive

    NASA Technical Reports Server (NTRS)

    Slicker, J. M.

    1981-01-01

    A prototype system consisting of closely integrated motor, inverter, and transaxle has been built in order to demonstrate the feasibility of a three-phase ac transistorized inverter for electric vehicle applications. The microprocessor-controlled inverter employs monolithic power transistors to drive an oil-cooled, three-phase induction traction motor at a peak output power of 30 kW from a 144 V battery pack. Transistor safe switching requirements are discussed, and a circuit is presented for recovering trapped snubber inductor energy at transistor turn-off.

  3. On the evolution of ac machines for spindle drive applications

    SciTech Connect

    Fratta, A.; Vagati, A.; Villata, F. )

    1992-10-01

    In the field of ac spindle drives, the induction motor is widely adopted. Synchronous solutions (reluctance, interior permanent magnets) are often suggested to overcome some drawbacks of the induction motor. This paper compares the different options by considering the machine torque-density and the inverter power size needed for a given constant-power speed range. It is shown that an axially laminated reluctance motor gives more torque density than the induction motor but nearly requires the same inverter size. By adding a proper quantity of permanent magnets, the inverter size can be greatly reduced. A comprehensive discussion is made on this subject, aiming to point out a design solution that is 'optimal' for the whole drive.

  4. Proposal of Current Control Method for High-Speed AC Motor System

    NASA Astrophysics Data System (ADS)

    Furutani, Shinichi; Satake, Akira

    In this paper, current control method for High-Speed AC Motor System is proposed. In High-Speed driving operation, Current controller tends to lose stability because of dead time caused by computational delay and Electromagnetic coupling included AC Motor Model. The Main purpose of the proposed method is reduction of dead time on current controller. Proposed method based model predictive control and optimizing of start timing. The Effectiveness of proposed method is confirmed by simulation results.

  5. Microwave heating and current drive in tokamaks

    SciTech Connect

    Cohen, B.I.; Cohen, R.H.; Kerbel, G.D.; Logan, B.G.; Matsuda, Y.; McCoy, M.G.; Nevins, W.M.; Rognlien, T.D.; Smith, G.R.; Harvey, R.W.; Kritz, A.H.; Bonoli, P.T.; Porkolab, M.

    1988-08-23

    The use of powerful microwave sources provide unique opportunities for novel and efficient heating and current-drive schemes in the electron-cyclotron and lower-hybrid ranges of frequencies. Free- electron lasers and relativistic klystrons are new sources that have a number of technical advantages over conventional, lower-intensity sources; their use can lead to improved current-drive efficiencies and better penetration into a reactor-grade plasma in specific cases. This paper reports on modeling of absorption and current drive, in intense-pulse and quasilinear regimes, and on analysis of parametric instabilities and self-focusing. 16 refs., 2 figs.

  6. New Technique of AC drive in Tokamak using Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Matteucci, Jackson; Zolfaghari, Ali

    2013-10-01

    This study investigates a new technique of capturing the rotational energy of alternating permanent magnets in order to inductively drive an alternating current in tokamak devices. The use of rotational motion bypasses many of the pitfalls seen in typical inductive and non-inductive current drives. Three specific designs are presented and assessed in the following criteria: the profile of the current generated, the RMS loop voltage generated as compared to the RMS power required to maintain it, the system's feasibility from an engineering perspective. All of the analysis has been done under ideal E&M conditions using the Maxwell 3D program. Preliminary results indicate that it is possible to produce an over 99% purely toroidal current with a RMS d Φ/dt of over 150 Tm2/s, driven by 20 MW or less of rotational power. The proposed mechanism demonstrates several key advantages including an efficient mechanical drive system, the generation of pure toroidal currents, and the potential for a quasi-steady state fusion reactor. The following quantities are presented for various driving frequencies and magnet strengths: plasma current generated, loop voltage, torque and power required. This project has been supported by DOE Funding under the SULI program.

  7. Evaluation of semiconductor devices for Electric and Hybrid Vehicle (EHV) ac-drive applications, volume 1

    NASA Technical Reports Server (NTRS)

    Lee, F. C.; Chen, D. Y.; Jovanovic, M.; Hopkins, D. C.

    1985-01-01

    The results of evaluation of power semiconductor devices for electric hybrid vehicle ac drive applications are summarized. Three types of power devices are evaluated in the effort: high power bipolar or Darlington transistors, power MOSFETs, and asymmetric silicon control rectifiers (ASCR). The Bipolar transistors, including discrete device and Darlington devices, range from 100 A to 400 A and from 400 V to 900 V. These devices are currently used as key switching elements inverters for ac motor drive applications. Power MOSFETs, on the other hand, are much smaller in current rating. For the 400 V device, the current rating is limited to 25 A. For the main drive of an electric vehicle, device paralleling is normally needed to achieve practical power level. For other electric vehicle (EV) related applications such as battery charger circuit, however, MOSFET is advantageous to other devices because of drive circuit simplicity and high frequency capability. Asymmetrical SCR is basically a SCR device and needs commutation circuit for turn off. However, the device poses several advantages, i.e., low conduction drop and low cost.

  8. Sensor-less pseudo-sinusoidal drive for a permanent-magnet brushless ac motor

    NASA Astrophysics Data System (ADS)

    Liu, Li-Hsiang; Chern, Tzuen-Lih; Pan, Ping-Lung; Huang, Tsung-Mou; Tsay, Der-Min; Kuang, Jao-Hwa

    2012-04-01

    The precise rotor-position information is required for a permanent-magnet brushless ac motor (BLACM) drive. In the conventional sinusoidal drive method, either an encoder or a resolver is usually employed. For position sensor-less vector control schemes, the rotor flux estimation and torque components are obtained by complicated coordinate transformations. These computational intensive methods are susceptible to current distortions and parameter variations. To simplify the method complexity, this work presents a sensor-less pseudo-sinusoidal drive scheme with speed control for a three-phase BLACM. Based on the sinusoidal drive scheme, a floating period of each phase current is inserted for back electromotive force detection. The zero-crossing point is determined directly by the proposed scheme, and the rotor magnetic position and rotor speed can be estimated simultaneously. Several experiments for various active angle periods are undertaken. Furthermore, a current feedback control is included to minimize and compensate the torque fluctuation. The experimental results show that the proposed method has a competitive performance compared with the conventional drive manners for BLACM. The proposed scheme is straightforward, bringing the benefits of sensor-less drive and negating the need for coordinate transformations in the operating process.

  9. ITER equilibrium with bootstrap currents, lower hybrid current drive and fast wave current drive

    SciTech Connect

    Ehst, D.A.

    1989-03-01

    A current drive system is proposed for the technology phase of ITER which relies on rf power and bootstrap currents. The rf/bootstrap system permits operation at high safety factor, and we consider the axial value to be q/sub a/ approx. = 1.9, which minimizes the need for seed current near the magnetic axis. Lower hybrid power (/approximately/30 MW) provides current density near the surface, ICRF (/approximately/65 MHz, /approximately/30 MW) fast waves generate current near the axis, and high frequency fast waves (/approximately/250 MHz, /approximately/74 MW) supply the remaining current density. The system is not yet optimized but appears to offer great flexibility (ion heating for ignition, current rampup, etc.) with relatively inexpensive and well developed technology. 29 refs., 16 figs., 1 tab.

  10. Comparison of a synergetic battery pack drive system to a pulse width modulated AC induction motor drive for an electric vehicle

    SciTech Connect

    Davis, A.; Salameh, Z.M.; Eaves, S.S.

    1999-06-01

    A new battery configuration technique and accompanying control circuitry, termed a Synergetic Battery Pack (SBP), is designed to work with Lithium batteries, and can be used as both an inverter for an electric vehicle AC induction motor drive and as a battery charger. In this paper, the performance of a Synergetic Battery Pack during motor drive operation is compared via computer simulation with a conventional motor drive which uses sinusoidal pulse width modulation (SPWM) to determine its effectiveness as a motor drive. The study showed that the drive efficiency was compatible with the conventional system, and offered a significant advantage in the lower frequency operating ranges. The voltage total harmonic distortion (THD) of the SBP was significantly lower than the PWM drive output, but the current THD was slightly higher due to the shape of the harmonic spectrum. In conclusion, the SBP is an effective alternative to a conventional drive, but the real advantage lies in its battery management capabilities and charger operation.

  11. Input current shaped ac-to-dc converters

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Input current shaping techniques for ac-to-dc converters were investigated. Input frequencies much higher than normal, up to 20 kHz were emphasized. Several methods of shaping the input current waveform in ac-to-dc converters were reviewed. The simplest method is the LC filter following the rectifier. The next simplest method is the resistor emulation approach in which the inductor size is determined by the converter switching frequency and not by the line input frequency. Other methods require complicated switch drive algorithms to construct the input current waveshape. For a high-frequency line input, on the order of 20 kHz, the simple LC cannot be discarded so peremptorily, since the inductor size can be compared with that for the resistor emulation method. In fact, since a dc regulator will normally be required after the filter anyway, the total component count is almost the same as for the resistor emulation method, in which the filter is effectively incorporated into the regulator.

  12. Dynamic modeling of lower hybrid current drive

    SciTech Connect

    Ignat, D.W.; Valeo, E.J.; Jardin, S.C.

    1993-10-01

    A computational model of lower hybrid current drive in the presence of an electric field is described and some results are given. Details of geometry, plasma profiles and circuit equations are treated carefully. Two-dimensional velocity space effects are approximated in a one-dimensional Fokker-Planck treatment.

  13. Heating and current drive systems for TPX

    SciTech Connect

    Swain, D.; Goranson, P.; Halle, A. von; Bernabei, S.; Greenough, N.

    1994-05-24

    The heating and current drive (H and CD) system proposed for the TPX tokamak will consist of ion cyclotron, neutral beam, and lower hybrid systems. It will have 17.5 MW of installed H and CD power initially, and can be upgraded to 45 MW. It will be used to explore advanced confinement and fully current-driven plasma regimes with pulse lengths of up to 1,000 s.

  14. Efficiency optimal control for AC drives with PWM inverters

    SciTech Connect

    Zach, F.C.; Ertl, H.

    1985-07-01

    For electrical drives using pulsewidth modulation (PWM) inverters and ac motors, methods for efficiency optimal control (EOC) have been developed. They are based on the most complete motor models, including such features as rotor skin effect. Furthermore, new solutions for selected harmonic elimination (SHE) are given. These new solutions come close to EOC. Also, it has been found that EOC solutions (although basically load-dependent as opposed to SHE) do not vary much with the motor used or the motor model applied. Even using a simple R-L series circuit as motor model does not change the solutions much. It is found that using the solutions gained from such a simple model is not more than two points off the real optimum based on a very complete motor model. (For this definition, the absolute harmonic loss minimum is given as zero points, the overall maximum as 100 points with a linear scale in between.) Therefore, one can use one EOC solution for all motors with sufficient accuracy, or, as second best solution, the new form of SHE. Therefore, the EOC solution can be judged load-independent. The implementation by microprocessor-based systems is as easy for other PWM methods. EOC for three and five switching angles per quarter period is discussed, as well as the new solutions for SHE for up to nine angles.

  15. Equilibrium evolution in oscillating-field current-drive experiments

    SciTech Connect

    McCollam, K. J.; Anderson, J. K.; Blair, A. P.; Craig, D.; Den Hartog, D. J.; Ebrahimi, F.; O'Connell, R.; Reusch, J. A.; Sarff, J. S.; Stephens, H. D.; Stone, D. R.; Brower, D. L.; Deng, B. H.; Ding, W. X.

    2010-08-15

    Oscillating-field current drive (OFCD) is a proposed method of steady-state toroidal plasma sustainment in which ac poloidal and toroidal loop voltages are applied to produce a dc plasma current. OFCD is added to standard, inductively sustained reversed-field pinch plasmas in the Madison Symmetric Torus [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)]. Equilibrium profiles and fluctuations during a single cycle are measured and analyzed for different relative phases between the two OFCD voltages and for OFCD off. For OFCD phases leading to the most added plasma current, the measured energy confinement is slightly better than that for OFCD off. By contrast, the phase of the maximum OFCD helicity-injection rate also has the maximum decay rate, which is ascribed to transport losses during discrete magnetic-fluctuation events induced by OFCD. Resistive-magnetohydrodynamic simulations of the experiments reproduce the observed phase dependence of the added current.

  16. Equilibrium evolution in oscillating-field current-drive experiments

    NASA Astrophysics Data System (ADS)

    McCollam, K. J.; Anderson, J. K.; Blair, A. P.; Craig, D.; Den Hartog, D. J.; Ebrahimi, F.; O'Connell, R.; Reusch, J. A.; Sarff, J. S.; Stephens, H. D.; Stone, D. R.; Brower, D. L.; Deng, B. H.; Ding, W. X.

    2010-08-01

    Oscillating-field current drive (OFCD) is a proposed method of steady-state toroidal plasma sustainment in which ac poloidal and toroidal loop voltages are applied to produce a dc plasma current. OFCD is added to standard, inductively sustained reversed-field pinch plasmas in the Madison Symmetric Torus [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)]. Equilibrium profiles and fluctuations during a single cycle are measured and analyzed for different relative phases between the two OFCD voltages and for OFCD off. For OFCD phases leading to the most added plasma current, the measured energy confinement is slightly better than that for OFCD off. By contrast, the phase of the maximum OFCD helicity-injection rate also has the maximum decay rate, which is ascribed to transport losses during discrete magnetic-fluctuation events induced by OFCD. Resistive-magnetohydrodynamic simulations of the experiments reproduce the observed phase dependence of the added current.

  17. Calculation of rf current drive in tokamaks

    NASA Astrophysics Data System (ADS)

    Peysson, Y.; Decker, J.

    2008-11-01

    The toroidal plasma current is a key parameter for controlling MHD stability and fusion performances in tokamaks. Among the various methods for driving current, rf waves are a flexible and powerful tool. Therefore, their role in the design and optimization of advanced scenarios is considerable. The universal ray-tracing code C3PO coupled with the fully implicit linearized 3-D bounce-averaged relativistic electron Fokker-Planck solver LUKE is an illustration of the present day effort for performing fast and realistic calculations of the rf driven plasma current. The versatility of this tool is highlighted by simulations concerning the lower hybrid and electron cyclotron waves.

  18. Fast wave current drive in DEMO

    SciTech Connect

    Lerche, E.; Van Eestera, D.; Messiaen, A.; Collaboration: EFDA-PPPT Contributors

    2014-02-12

    The ability to non-inductively drive a large fraction of the toroidal plasma current in magnetically confined plasmas is an essential requirement for steady state fusion reactors such as DEMO. Besides neutral beam injection (NBI), electron-cyclotron resonance heating (ECRH) and lower hybrid wave heating (LH), ion-cyclotron resonance heating (ICRH) is a promising candidate to drive current, in particular at the high temperatures expected in fusion plasmas. In this paper, the current drive (CD) efficiencies calculated with coupled ICRF wave / CD numerical codes for the DEMO-1 design case (R{sub 0}=9m, B{sub 0}=6.8T, a{sub p}=2.25m) [1] are presented. It will be shown that although promising CD efficiencies can be obtained in the usual ICRF frequency domain (20-100MHz) by shifting the dominant ion-cyclotron absorption layers to the high-field side, operation at higher frequencies (100-300MHz) has a stronger CD potential, provided the parasitic RF power absorption of the alpha particles can be minimized.

  19. Lower Hybrid Heating and Current Drive

    NASA Astrophysics Data System (ADS)

    Fu, Xiangrong; Horton, Wendell; Peysson, Yves; Decker, Joan

    2012-10-01

    Lower hybrid current drive (LHCD) is the most robust and efficient method of driving the tokamak current with external radio frequency waves in steady-state tokamak operation. The electron distribution functions in the LHCD experiments contain substantial parallel thermal fluxes with radial gradients that are greater than those in the current and temperature profiles. We re-examine the growth rates of the electron temperature gradient (ETG) modes in these plasmas based on an analytic model for electron distribution function with three temperatures T, T|F, and T|B. The stability and turbulent transport is also analyzed using the electron distribution functions computed with a combined ray tracing/Fokker Planck code (DELPHINE C3P/LUKE). Electron Landau damping is reduced compared to its value in a Maxwell distribution. These potential instability drives are controlled by the magnetic sheared induced electron Landau damping that becomes strong as the fluctuations propagate into regions of large parallel wavenumber away from the mode rational surfaces. The feedback of the ETG turbulence on the propagation of the penetration of RF fields that shape the electron distribution function feeding the ETG growth rate make the problem a complex dynamical system.

  20. Fuzzy based power factor improvement strategy for a multiple connected AC-DC converter fed drive

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, N.; Muthiah, Ramaswamy

    2012-01-01

    The main focus of this paper is to design a Fuzzy based control algorithm to realize an improvement in the input power factor of a multiple connected AC-DC converter fed drive system. It incorporates the role of fuzzy inference principles to generate appropriate PWM pulses for the power switches at the second stage of the power module. The philosophy is developed, with a view to reshape the input current phasor and enables it to align with the supply voltage wave in the perspective of improving the input power factor. The closed loop scheme evaluated using MATLAB based simulation exhibits an enhancement in supply power factor over a range of operating loads in addition to illustrating the speed regulating capability of the drive.

  1. Current Sensor Fault Reconstruction for PMSM Drives

    PubMed Central

    Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; He, Jing; Huang, Yi-Shan

    2016-01-01

    This paper deals with a current sensor fault reconstruction algorithm for the torque closed-loop drive system of an interior PMSM. First, sensor faults are equated to actuator ones by a new introduced state variable. Then, in αβ coordinates, based on the motor model with active flux linkage, a current observer is constructed with a specific sliding mode equivalent control methodology to eliminate the effects of unknown disturbances, and the phase current sensor faults are reconstructed by means of an adaptive method. Finally, an αβ axis current fault processing module is designed based on the reconstructed value. The feasibility and effectiveness of the proposed method are verified by simulation and experimental tests on the RT-LAB platform. PMID:26840317

  2. Current Sensor Fault Reconstruction for PMSM Drives.

    PubMed

    Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; He, Jing; Huang, Yi-Shan

    2016-01-01

    This paper deals with a current sensor fault reconstruction algorithm for the torque closed-loop drive system of an interior PMSM. First, sensor faults are equated to actuator ones by a new introduced state variable. Then, in αβ coordinates, based on the motor model with active flux linkage, a current observer is constructed with a specific sliding mode equivalent control methodology to eliminate the effects of unknown disturbances, and the phase current sensor faults are reconstructed by means of an adaptive method. Finally, an αβ axis current fault processing module is designed based on the reconstructed value. The feasibility and effectiveness of the proposed method are verified by simulation and experimental tests on the RT-LAB platform. PMID:26840317

  3. Shapiro steps for skyrmion motion on a washboard potential with longitudinal and transverse ac drives

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Reichhardt, C. J. Olson

    2015-12-01

    We numerically study the behavior of two-dimensional skyrmions in the presence of a quasi-one-dimensional sinusoidal substrate under the influence of externally applied dc and ac drives. In the overdamped limit, when both dc and ac drives are aligned in the longitudinal direction parallel to the direction of the substrate modulation, the velocity-force curves exhibit classic Shapiro step features when the frequency of the ac drive matches the washboard frequency that is dynamically generated by the motion of the skyrmions over the substrate, similar to previous observations in superconducting vortex systems. In the case of skyrmions, the additional contribution to the skyrmion motion from a nondissipative Magnus force shifts the location of the locking steps to higher dc drives, and we find that the skyrmions move at an angle with respect to the direction of the dc drive. For a longitudinal dc drive and a perpendicular or transverse ac drive, the overdamped system exhibits no Shapiro steps; however, when a finite Magnus force is present, we find pronounced transverse Shapiro steps along with complex two-dimensional periodic orbits of the skyrmions in the phase-locked regimes. Both the longitudinal and transverse ac drives produce locking steps whose widths oscillate with increasing ac drive amplitude. We examine the role of collective skyrmion interactions and find that additional fractional locking steps occur for both longitudinal and transverse ac drives. At higher skyrmion densities, the system undergoes a series of dynamical order-disorder transitions, with the skyrmions forming a moving solid on the phase locking steps and a fluctuating dynamical liquid in regimes between the steps.

  4. Comparison of AC drives for electric vehicles -- A report on experts` opinion survey

    SciTech Connect

    Chang, L.

    1994-08-01

    It is recognized that wide applications of electric vehicles (EVs) will bring tremendous social, economical and ecological benefits. With the growing interests in electric vehicles, much effort is demanded for the development of efficient, reliable and economical AC drives` for EV propulsion purpose. Both induction motor (IM) drives and permanent magnet brushless DC motor (BDCM) drives have been applied to EVs. Switched reluctance motor (SRM) drives have been proposed as an alternative for EV propulsion. In order to assess the suitability of IM, BDCM and SRM drives for EV applications and to provide a technical support for the development and selection of future EV propulsion systems, the existing EV AC propulsion drives were compared, and a survey of experts` opinions was conducted. Comparison of the three AC drives was made on a relative and a quantitative basis using the survey questionnaires. According to the majority of the experts, induction motor drives are best suited for EV propulsion purpose, due to their low cost, high reliability, high speed, established converter and manufacturing technology, low torque ripple/noise and absence of position sensors. BDCM drives feature compactness, low weight and high efficiency and therefore provide an alternative for EV propulsion. The experts regard insulated gate bipolar transistors (IGBTs) as the most suited power semiconductor devices for AC drive converters at the present stage. 7 refs.

  5. RF current drive and plasma fluctuations

    NASA Astrophysics Data System (ADS)

    Peysson, Yves; Decker, Joan; Morini, L.; Coda, S.

    2011-12-01

    The role played by electron density fluctuations near the plasma edge on rf current drive in tokamaks is assessed quantitatively. For this purpose, a general framework for incorporating density fluctuations in existing modelling tools has been developed. It is valid when rf power absorption takes place far from the fluctuating region of the plasma. The ray-tracing formalism is modified in order to take into account time-dependent perturbations of the density, while the Fokker-Planck solver remains unchanged. The evolution of the electron distribution function in time and space under the competing effects of collisions and quasilinear diffusion by rf waves is determined consistently with the time scale of fluctuations described as a statistical process. Using the ray-tracing code C3PO and the 3D linearized relativistic bounce-averaged Fokker-Planck solver LUKE, the effect of electron density fluctuations on the current driven by the lower hybrid (LH) and the electron cyclotron (EC) waves is estimated quantitatively. A thin fluctuating layer characterized by electron drift wave turbulence at the plasma edge is considered. The effect of fluctuations on the LH wave propagation is equivalent to a random scattering process with a broadening of the poloidal mode spectrum proportional to the level of the perturbation. However, in the multipass regime, the LH current density profile remains sensitive to the ray chaotic behaviour, which is not averaged by fluctuations. The effect of large amplitude fluctuations on the EC driven current is found to be similar to an anomalous radial transport of the fast electrons. The resulting lower current drive efficiency and broader current profile are in better agreement with experimental observations. Finally, applied to the ITER ELMy H-mode regime, the model predicts a significant broadening of the EC driven current density profile with the fluctuation level, which can make the stabilization of neoclassical tearing mode potentially

  6. TOKAMAK EQUILIBRIA WITH CENTRAL CURRENT HOLES AND NEGATIVE CURRENT DRIVE

    SciTech Connect

    CHU, M.S.; PARKS, P.B.

    2002-06-01

    OAK B202 TOKAMAK EQUILIBRIA WITH CENTRAL CURRENT HOLES AND NEGATIVE CURRENT DRIVE. Several tokamak experiments have reported the development of a central region with vanishing currents (the current hole). Straightforward application of results from the work of Greene, Johnson and Weimer [Phys. Fluids, 3, 67 (1971)] on tokamak equilibrium to these plasmas leads to apparent singularities in several physical quantities including the Shafranov shift and casts doubts on the existence of this type of equilibria. In this paper, the above quoted equilibrium theory is re-examined and extended to include equilibria with a current hole. It is shown that singularities can be circumvented and that equilibria with a central current hole do satisfy the magnetohydrodynamic equilibrium condition with regular behavior for all the physical quantities and do not lead to infinitely large Shafranov shifts. Isolated equilibria with negative current in the central region could exist. But equilibria with negative currents in general do not have neighboring equilibria and thus cannot have experimental realization, i.e. no negative currents can be driven in the central region.

  7. ac driving amplitude dependent systematic error in scanning Kelvin probe microscope measurements: Detection and correction

    SciTech Connect

    Wu Yan; Shannon, Mark A.

    2006-04-15

    The dependence of the contact potential difference (CPD) reading on the ac driving amplitude in scanning Kelvin probe microscope (SKPM) hinders researchers from quantifying true material properties. We show theoretically and demonstrate experimentally that an ac driving amplitude dependence in the SKPM measurement can come from a systematic error, and it is common for all tip sample systems as long as there is a nonzero tracking error in the feedback control loop of the instrument. We further propose a methodology to detect and to correct the ac driving amplitude dependent systematic error in SKPM measurements. The true contact potential difference can be found by applying a linear regression to the measured CPD versus one over ac driving amplitude data. Two scenarios are studied: (a) when the surface being scanned by SKPM is not semiconducting and there is an ac driving amplitude dependent systematic error; (b) when a semiconductor surface is probed and asymmetric band bending occurs when the systematic error is present. Experiments are conducted using a commercial SKPM and CPD measurement results of two systems: platinum-iridium/gap/gold and platinum-iridium/gap/thermal oxide/silicon are discussed.

  8. Modelling ac ripple currents in HTS coated conductors

    NASA Astrophysics Data System (ADS)

    Xu, Zhihan; Grilli, Francesco

    2015-10-01

    Dc transmission using high temperature superconducting (HTS) coated conductors (CCs) offers a promising solution to the globally growing demand for effective, reliable and economic transmission of green energy up to the gigawatt level over very long distances. The credible estimation of the losses and thereby the heat dissipation involved, where ac ripples (introduced in rectification/ac-dc conversion) are viewed as a potential source of notable contribution, is highly essential for the rational design of practical HTS dc transmission cables and corresponding cryogenic systems to fulfil this demand. Here we report a targeted modelling study into the ac losses in a HTS CC subject to dc and ac ripple currents simultaneously, by solving Maxwell’s equations using the finite element method (FEM) in the commercial software package COMSOL. It is observed that the instantaneous loss exhibits only one peak per cycle in the HTS CC subject to sinusoidal ripples, given that the amplitude of the ac ripples is smaller than approximately 20% of that of the dc current. This is a distinct contrast to the usual observation of two peaks per cycle in a HTS CC subject to ac currents only. The unique mechanism is also revealed, which is directly associated with the finding that, around any local minima of the applied ac ripples, the critical state of -J c is never reached at the edges of the HTS CC, as it should be according to the Bean model. When running further into the longer term, it is discovered that the ac ripple loss of the HTS CC in full-wave rectification decays monotonically, at a speed which is found to be insensitive to the frequency of the applied ripples within our targeted situations, to a relatively low level of approximately 1.38 × 10-4 W m-1 in around 1.7 s. Comparison between this level and other typical loss contributions in a HTS dc cable implies that ac ripple currents in HTS CCs should only be considered as a minor source of dissipation in superconducting dc

  9. Progress on advanced dc and ac induction drives for electric vehicles

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1982-01-01

    Progress is reported in the development of complete electric vehicle propulsion systems, and the results of tests on the Road Load Simulator of two such systems representative of advanced dc and ac drive technology are presented. One is the system used in the DOE's ETV-1 integrated test vehicle which consists of a shunt wound dc traction motor under microprocessor control using a transistorized controller. The motor drives the vehicle through a fixed ratio transmission. The second system uses an ac induction motor controlled by transistorized pulse width modulated inverter which drives through a two speed automatically shifted transmission. The inverter and transmission both operate under the control of a microprocessor. The characteristics of these systems are also compared with the propulsion system technology available in vehicles being manufactured at the inception of the DOE program and with an advanced, highly integrated propulsion system upon which technology development was recently initiated.

  10. Electron cyclotron current drive in DIII-D

    SciTech Connect

    Luce, T.C.; Lin-Liu, Y.R.; Lohr, J.M.; Petty, C.C.; Politzer, P.A.; Prater, R.; Harvey, R.W.; Giruzzi, G.; Rice, B.W.

    1999-05-01

    Clear measurements of the localized current density driven by electron cyclotron waves have been made on the DIII-D tokamak. Direct evidence of the current drive is seen on the internal magnetic field measurements by motional Stark effect spectroscopy. Comparison with theoretical calculations in the collisionless limit shows the experimental current drive exceeds the predictions by a substantial amount for currents driven near the half radius. In all cases the experimental current density profile is broader than the predicted one.

  11. Measurements of AC Losses and Current Distribution in Superconducting Cables

    SciTech Connect

    Nguyen, Doan A; Ashworth, Stephen P; Duckworth, Robert C; Carter, Bill; Fleshler, Steven

    2011-01-01

    This paper presents our new experimental facility and techniques to measure ac loss and current distribution between the layers for High Temperature Superconducting (HTS) cables. The facility is powered with a 45 kVA three-phase power supply which can provide three-phase currents up to 5 kA per phase via high current transformers. The system is suitable for measurements at any frequency between 20 and 500 Hz to better understand the ac loss mechanisms in HTS cables. In this paper, we will report techniques and results for ac loss measurements carried out on several HTS cables with and without an HTS shielding layer. For cables without a shielding layer, care must be taken to control the effect of the magnetic fields from return currents on loss measurements. The waveform of the axial magnetic field was also measured by a small pick-up coil placed inside a two-layer cable. The temporal current distribution between the layers can be calculated from the waveform of the axial field.

  12. Requirements for neutral beam current drive in tokamaks

    SciTech Connect

    Dory, R.A.

    1988-01-01

    This paper contains viewgraphs on the use of neutral beam current drive in future tokamaks. Current profiles, slowing down distributions, beam destabilization of alfven waves and plasma parameters are some items covered in this paper. (DWL)

  13. Leakage current and commutation losses reduction in electric drives for Hybrid Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Miliani, El Hadj

    2014-06-01

    Nowadays, leakage current and inverter losses, produced by adjustable-speed AC drive systems become one of the main interested subject for researchers on Electric Vehicle (EV) and Hybrid Electric Vehicle (HEV) technology. The continuous advancements in solid state device engineering have considerably minimized the switching transients for power switches but the high dv/dt and high switching frequency have caused many adverse effects such as shaft voltage, bearing current, leakage current and electromagnetic interference (EMI). The major objective of this paper is to investigate and suppress of the adverse effects of a PWM inverter feeding AC motor in EV and HEV. A technique to simultaneously reduce the leakage current and the switching losses is presented in this paper. Based on a discontinuous space vector pulse width modulation (DSVPWM) and a modular switches gate resistance, inverter losses and leakage current are reduced. Algorithms are presented and implemented on a DSP controller and experimental results are presented.

  14. Theory of current-drive in plasmas

    SciTech Connect

    Fisch, N.J.

    1986-12-01

    The continuous operation of a tokamak fusion reactor requires, among other things, a means of providing continuous toroidal current. Such operation is preferred to the conventional pulsed operation, where the plasma current is induced by a time-varying magnetic field. A variety of methods has been proposed to provide continuous current, including methods which utilize particle beams or radio frequency waves in any of several frequency regimes. Currents as large as half a mega-amp have now been produced in the laboratory by such means, and experimentation in these techniques has now involved major tokamak facilities worldwide.

  15. Electron heating and current drive by mode converted slow waves

    SciTech Connect

    Majeski, R.; Phillips, C.K.; Wilson, J.R.

    1994-08-01

    An approach to obtaining efficient single pass mode conversion at high parallel wavenumber from the fast magnetosonic wave to the slow ion Bernstein wave, in a two ion species tokamak plasma, is described. The intent is to produce localized electron heating or current drive via the mode converted slow wave. In particular, this technique can be adapted to off-axis current drive for current profile control. Modelling for the case of deuterium-tritium plasmas in TFTR is presented.

  16. AC-DC converter with an improved input current waveform

    SciTech Connect

    Yuvarajan, S.; Weng, D.F.; Chen, M.S.

    1995-12-31

    The paper proposes a new control scheme for an ac-dc converter that will reduce the total harmonic distortion in the input current while operating at an improved power factor. The circuit uses a diode rectifier whose output is varied by a boost regulator with a second-harmonic injected PWM. An approximate analysis shows that the addition of a second harmonic component in the PWM helps to reduce the third harmonic in the input current. The design parameters are obtained using digital simulation. The results obtained on an experimental converter are compared with the ones obtained from a conventional scheme.

  17. A.C. motors for high-performance drives: A design-based comparison

    SciTech Connect

    Vagati, A.; Fratta, A.; Franceschini, G.; Rosso, P.M.

    1995-12-31

    Three AC motors are compared, for application in high-performance controlled drives: induction, brushless and synchronous reluctance motors. Their design is optimized, under common design assumptions. Then, the given stall-torques are compared to each other. In addition, the quadrature reactances are compared, as affecting overload and flux-weakening performances. Last, applicative considerations are given, thus defining the most suitable solution for each field.

  18. Sensorless optimal sinusoidal brushless direct current for hard disk drives

    NASA Astrophysics Data System (ADS)

    Soh, C. S.; Bi, C.

    2009-04-01

    Initiated by the availability of digital signal processors and emergence of new applications, market demands for permanent magnet synchronous motors have been surging. As its back-emf is sinusoidal, the drive current should also be sinusoidal for reducing the torque ripple. However, in applications like hard disk drives, brushless direct current (BLDC) drive is adopted instead of sinusoidal drive for simplification. The adoption, however, comes at the expense of increased harmonics, losses, torque pulsations, and acoustics. In this paper, we propose a sensorless optimal sinusoidal BLDC drive. First and foremost, the derivation for an optimal sinusoidal drive is presented, and a power angle control scheme is proposed to achieve an optimal sinusoidal BLDC. The scheme maintains linear relationship between the motor speed and drive voltage. In an attempt to execute the sensorless drive, an innovative power angle measurement scheme is devised, which takes advantage of the freewheeling diodes and measures the power angle through the detection of diode voltage drops. The objectives as laid out will be presented and discussed in this paper, supported by derivations, simulations, and experimental results. The proposed scheme is straightforward, brings about the benefits of sensorless sinusoidal drive, negates the need for current sensors by utilizing the freewheeling diodes, and does not incur additional cost.

  19. Design single-motor AC drive for energy savings in centrifugal applications

    SciTech Connect

    Not Available

    1982-06-01

    This article is an evaluation of a single- motor with AC drive that saves energy with increased efficiency and reliability in a wide variety of pump, fan, compressor, and other centrifugal applications. Drives deliver adjustable speed for adjustable flow and will satisfy a number of particular objectives. A principal benefit of the drive is its efficiency. The drives also offer regenerative capability without modification, built-in memory for first-fault indication, and easy troubleshooting with comprehensive self-diagnostics. The drive controls flow in centrifugal applications by adjusting the pumps or fan speed. This provides energy savings over conventional flow control systems. Slip devices, also used to produce variable speed in centrifugal equipment, vary the ''slip'' between the constant-speed motor shaft and the pump or fan shaft. The speed which is not transmitted is dissipated as heat within the slip device itself. The drives are available from stock (100-250 hp) for immediate energy savings on both new and retrofit spplications, with a number of standard features: a remote operator control station provides start-stop and speed selection; acceleration/deceleration are separately adjustable over a range of 2.5 to 35 seconds with 5- to 70-second range available using simple jumper selection; and a coast-to-rest is also available using simple jumper selection. The drive can be operated automatically from an ungrounded 4-20 mA process control signal.

  20. Plasma heating and current drive using intense, pulsed microwaves

    SciTech Connect

    Cohen, B.I.; Cohen, R.H.; Nevins, W.M.; Rognlien, T.D.; Bonoli, P.T.; Porkolab, M.

    1988-01-01

    The use of powerful new microwave sources, e.g., free-electron lasers and relativistic gyrotrons, provide unique opportunities for novel heating and current-drive schemes in the electron-cyclotron and lower-hybrid ranges of frequencies. These high-power, pulsed sources have a number of technical advantages over conventional, low-intensity sources; and their use can lead to improved current-drive efficiencies and better penetration into a reactor-grade plasma in specific cases. The Microwave Tokamak Experiment at Lawrence Livermore National Laboratory will provide a test for some of these new heating and current-drive schemes. This paper reports theoretical progress both in modeling absorption and current drive for intense pulses and in analyzing some of the possible complications that may arise, e.g., parametric instabilities and nonlinear self-focusing. 22 refs., 9 figs., 1 tab.

  1. Fast Wave Current Drive in JET ITB-Plasma

    SciTech Connect

    Hellsten, T.; Laxaaback, M.; Bergkvist, T.; Johnson, T.; Brzozowski, J.; Rachlew, E.; Tennfors, E.; Mantsinen, M.; Matthews, G.; Tala, T.; Meo, F.; Nguyen, F.; Eriksson, L.-G.; Joffrin, E.; Noterdaeme, J.-M.; Petty, C.C.; Eester, D. van

    2005-09-26

    Fast wave current drive has been performed in JET plasmas with internal transport barriers, ITBs, and strongly reversed magnetic shear. Although the current drive efficiency of the power absorbed on the electrons is fairly high, only small effects are seen in the central current density. The main reasons are the parasitic absorption of RF power, the strongly inductive nature of the plasma and the interplay between the fast wave driven current and bootstrap current. The direct electron heating in the FWCD experiments is found to be strongly degraded compared to that with the dipole phasing.

  2. Electron cyclotron current drive in DIII-D

    SciTech Connect

    Luce, T. C.; Lin-Liu, Y. R.; Harvey, R. W.; Giruzzi, G.; Lohr, J. M.; Petty, C. C.; Politzer, P. A.; Prater, R.; Rice, B. W.

    1999-09-20

    Clear measurements of the localized current density driven by electron cyclotron waves have been made on the DIII-D tokamak. Direct evidence of the current drive is seen on the internal magnetic field measurements by motional Stark effect spectroscopy. Comparison with theoretical calculations in the collisionless limit shows the experimental current drive exceeds the predictions by a substantial amount for currents driven near the half radius. In all cases the experimental current density profile is broader than the predicted one. (c) 1999 American Institute of Physics.

  3. Fast wave current drive: Experimental status and reactor prospects

    SciTech Connect

    Ehst, D.A.

    1988-03-01

    The fast wave is one of the two possible wave polarizations which propagate according to the basic theory of cold plasmas. It is distinguished from the other (slow wave) branch by having an electric field vector which is mainly orthogonal to the confining magnetic field of the plasma. The plasma and fast wave qualitatively assume different behavior depending on the frequency range of the launched wave. The high frequency fast wave (HFFW), with a frequency (..omega..2..pi.. )approximately) GHz) much higher than the ion cyclotron frequency (..cap omega../sub i/), suffers electron Landau damping and drives current by supplying parallel momentum to superthermal electrons in a fashion similar to lower hybrid (slow wave) current drive. In the simple theory the HFFW should be superior to the slow wave and can propagate to very high density and temperature without impediment. Experiments, however, have not conclusively shown that HFFW current drive can be achieved at densities above the slow wave current drive limit, possibly due to conversion of the launched fast waves into slow waves by density fluctuations. Alternatively, the low frequency fast wave (LFFW), with frequencies ()approxreverse arrowlt) 100 MHz) only a few times the ion cyclotron frequency, is damped by electron Landau damping and, in a hot plasma ()approxreverse arrowgt) 10 keV), by electron transit time magnetic pumping; current drive is achieved by pushing superthermal electrons, and efficiency is prediocted to be slightly better than for lower hybrid current drive. Most significantly, the slow wave does not propagate in high density plasma when ..omega.. )approximately) ..cap omega../sub i/, so parasitic coupling to the slow wave can be avoided, and no density and temperture limitations are foreseen. Experiments with fast wve current drive invariably find current drive efficiency as good as obtained in lower hybrid experiments at comparable, low temperatures. 45 refs., 4 figs., 1 tab

  4. Key Aspects of EBW Heating and Current Drive in Tokamaks

    NASA Astrophysics Data System (ADS)

    Urban, Jakub; Decker, Joan; Preinhaelter, Josef; Taylor, Gary; Vahala, Linda; Vahala, George

    2010-11-01

    Electron Bernstein wave (EBW) heating and current drive is modeled by coupled mode conversion, ray-tracing (AMR) and Fokker-Planck (LUKE) codes. Deposition and current drive profiles are determined for EBW with various injection parameters under realistic spherical tokamak conditions. There parameters are varied to investigate the robustness of the applied scenarios. The importance of relativistic corrections to EBW absorption is considered. The differences between various relativistic models are explored.

  5. General Linear Rf-Current Drive Calculation in Toroidal Plasma

    NASA Astrophysics Data System (ADS)

    Smirnov, A. P.; Harvey, R. W.; Prater, R.

    2009-04-01

    A new general linear calculation of RF current drive has been implemented in the GENRAY all-frequencies RF ray tracing code. This is referred to as the ADJ-QL package, and is based on the Karney, et al. [1] relativistic Green function calculator, ADJ, generalized to non-circular plasmas in toroidal geometry, and coupled with full, bounce-averaged momentum-space RF quasilinear flux [2] expressions calculated at each point along the RF ray trajectories. This approach includes momentum conservation, polarization effects and the influence of trapped electrons. It is assumed that the electron distribution function remains close to a relativistic Maxwellian function. Within the bounds of these assumptions, small banana width, toroidal geometry and low collisionality, the calculation is applicable for all-frequencies RF electron current drive including electron cyclotron, lower hybrid, fast waves and electron Bernstein waves. GENRAY ADJ-QL calculations of the relativistic momentum-conserving current drive have been applied in several cases: benchmarking of electron cyclotron current drive in ITER against other code results; and electron Bernstein and high harmonic fast wave current drive in NSTX. The impacts of momentum conservation on the current drive are also shown for these cases.

  6. Input-current shaped ac to dc converters

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The problem of achieving near unity power factor while supplying power to a dc load from a single phase ac source of power is examined. Power processors for this application must perform three functions: input current shaping, energy storage, and output voltage regulation. The methods available for performing each of these three functions are reviewed. Input current shaping methods are either active or passive, with the active methods divided into buck-like and boost-like techniques. In addition to large reactances, energy storage methods include resonant filters, active filters, and active storage schemes. Fast voltage regulation can be achieved by post regulation or by supplementing the current shaping topology with an extra switch. Some indications of which methods are best suited for particular applications concludes the discussion.

  7. Neutral Beam Current Drive in Spheromak plasma and plasma stability

    NASA Astrophysics Data System (ADS)

    Pearlstein, L. D.; Jayakumar, R. J.; Hudson, B.; Hill, D. N.; Lodestro, L. L.; McLean, H. S.; Fowler, T. K.; Casper, T. A.

    2007-11-01

    A key question for the Sustained Spheromak Physics Experiment (SSPX) is understanding how spheromaks can be sustained by other current drive tools such as neutral beam current drive. Another question is whether the present relationship between current and maximum spheromak magnetic field (plasma beta) is related to Alcator-like ohmic confinement limit or is a stability limit. Using the code CORSICA, the fraction of neutral beam current drive that can be achieved has been calculated for different injection angles with a fixed equilibrium. It is seen that relaxing the equilibrium with this drive simply drives the core safety factor to low values. Other equilibria where the NBI may give aligned current drive are being explored. Free-boundary equilibria calculations are underway to see what hyper-resistivity model gives the observed sustained SSPX performance and include that in the NBI calculations. Work performed under the auspices of the US DOE by University of California Lawrence Livermore National Laboratory under contract W-7405-ENG-48.

  8. Instabilities across the isotropic conductivity point in a nematic phenyl benzoate under AC driving.

    PubMed

    Kumar, Pramoda; Patil, Shivaram N; Hiremath, Uma S; Krishnamurthy, K S

    2007-08-01

    We characterize the sequence of bifurcations generated by ac fields in a nematic layer held between unidirectionally rubbed ITO electrodes. The material, which possesses a negative dielectric anisotropy epsilona and an inversion temperature for electrical conductivity anisotropy sigmaa, exhibits a monostable tilted alignment near TIN, the isotropic-nematic point. On cooling, an anchoring transition to the homeotropic configuration occurs close to the underlying smectic phase. The field experiments are performed for (i) negative sigmaa and homeotropic alignment, and (ii) weakly positive sigmaa and nearly homeotropic alignment. Under ac driving, the Freedericksz transition is followed by bifurcation into various patterned states. Among them are the striped states that seem to belong to the dielectric regime and localized hybrid instabilities. Very significantly, the patterned instabilities are not excited by dc fields, indicating their possible gradient flexoelectric origin. The Carr-Helfrich mechanism-based theories that take account of flexoelectric terms can explain the observed electroconvective effects only in part. PMID:17616118

  9. Calculations of lower hybrid current drive in ITER

    NASA Astrophysics Data System (ADS)

    Decker, J.; Peysson, Y.; Hillairet, J.; Artaud, J.-F.; Basiuk, V.; Becoulet, A.; Ekedahl, A.; Goniche, M.; Hoang, G. T.; Imbeaux, F.; Ram, A. K.; Schneider, M.

    2011-07-01

    A detailed study of lower hybrid current drive (LHCD) in ITER is provided, focusing on the wave propagation and current drive mechanisms. A combination of ray-tracing and Fokker-Planck calculations are presented for various plasma scenarios, wave frequency and polarization. The dependence of the driven current and the location of power deposition upon the coupled wave spectrum is systematically determined, in order to set objectives for the antenna design. The respective effects of finite-power levels, magnetic trapping, and detailed antenna spectra are accounted for and quantitatively estimated. The sensitivity of LHCD to density and temperature profiles is calculated. From the simulation results, an optimum value for the parallel index of refraction is proposed as a compromise between efficiency and robustness with respect to those profile variations. The corresponding current drive efficiency is found to be similar for the two frequencies generally considered for ITER, f = 3.7 GHz and f = 5.0 GHz.

  10. Fast wave current drive in DIII-D

    SciTech Connect

    Petty, C.C.; Callis, R.W.; Chiu, S.C.; deGrassie, J.S.; Forest, C.B.; Freeman, R.L.; Gohil, P.; Harvey, R.W.; Ikezi, H.; Lin-Liu, Y.-R.

    1995-02-01

    The non-inductive current drive from fast Alfven waves launched by a directional four-element antenna was measured in the DIII-D tokamak. The fast wave frequency (60 MHz) was eight times the deuterium cyclotron frequency at the plasma center. An array of rf pickup loops at several locations around the torus was used to verify the directivity of the four-element antenna. Complete non-inductive current drive was achieved using a combination of fast wave current drive (FWCD) and electron cyclotron current drive (ECCD) in discharges for which the total plasma current was inductively ramped down from 400 to 170 kA. For discharges with steady plasma current, up to 110 kA of FWCD was inferred from an analysis of the loop voltage, with a maximum non-inductive current (FWCD, ECCD, and bootstrap) of 195 out of 310 kA. The FWCD efficiency increased linearly with central electron temperature. For low current discharges, the FWCD efficiency was degraded due to incomplete fast wave damping. The experimental FWCD was found to agree with predictions from the CURRAY ray-tracing code only when a parasitic loss of 4% per pass was included in the modeling along with multiple pass damping.

  11. An adaptive fuzzy controller for permanent-magnet AC servo drives

    SciTech Connect

    Le-Huy, H.

    1995-12-31

    This paper presents a theoretical study on a model-reference adaptive fuzzy logic controller for vector-controlled permanent-magnet ac servo drives. In the proposed system, fuzzy logic is used to implement the direct controller as well as the adaptation mechanism. The operation of the direct fuzzy controller and the fuzzy logic based adaptation mechanism is studied. The control performance of the adaptive fuzzy controller is evaluated by simulation for various operating conditions. The results are compared with that provided by a non-adaptive fuzzy controller. The implementation of proposed adaptive fuzzy controller is discussed.

  12. Current drive experiments in the Helicity Injected Torus - II

    NASA Astrophysics Data System (ADS)

    Hamp, W. T.; Redd, A. J.; Jarboe, T. R.; Nelson, B. A.; O'Neill, R. G.; Raman, R.; Sieck, P. E.; Smith, R. J.; Mueller, D.

    2006-10-01

    The HIT-II spherical torus (ST) device has demonstrated four toroidal plasma current drive configurations to form and sustain a tokamak: 1) inductive (ohmic) current drive, 2) coaxial helicity injection (CHI) current drive, 3) CHI initiated plasmas with ohmic sustainment (CHI+OH), and 4) ohmically initiated plasmas with CHI edge current drive (OH+ECD). CHI discharges with a sufficiently high ratio of injector current to toroidal field current form a closed flux core, and amplify the injector poloidal flux through magnetic reconnection. CHI+OH plasmas are more robust than unassisted ohmic discharges, with a wider operating space and more efficient use of the transformer Volt-seconds. Finally, edge CHI can enhance the plasma current of an ohmic discharge without significantly degrading the quality of the discharge. Results will be presented for each HIT-II operating regime, including empirical performance scalings, applicable parametric operating spaces, and requirements to produce these discharges. Thomson scattering measurements and EFIT simulations are used to evaluate confinement in several representative plasmas. Finally, we outline extensions to the HIT-II CHI studies that could be performed with NSTX, SUNIST, or other ST devices.

  13. Eddy Current Rail Inspection Using AC Bridge Techniques

    PubMed Central

    Liu, Ze; Koffman, Andrew D; Waltrip, Bryan C; Wang, Yicheng

    2013-01-01

    AC bridge techniques commonly used for precision impedance measurements have been adapted to develop an eddy current sensor for rail defect detection. By using two detection coils instead of just one as in a conventional sensor, we can balance out the large baseline signals corresponding to a normal rail. We have significantly enhanced the detection sensitivity of the eddy current method by detecting and demodulating the differential signal of the two coils induced by rail defects, using a digital lock-in amplifier algorithm. We have also explored compensating for the lift-off effect of the eddy current sensor due to vibrations by using the summing signal of the detection coils to measure the lift-off distance. The dominant component of the summing signal is a constant resulting from direct coupling from the excitation coil, which can be experimentally determined. The remainder of the summing signal, which decreases as the lift-off distance increases, is induced by the secondary eddy current. This dependence on the lift-off distance is used to calibrate the differential signal, allowing for a more accurate characterization of the defects. Simulated experiments on a sample rail have been performed using a computer controlled X-Y moving table with the X-axis mimicking the train’s motion and the Y-axis mimicking the train’s vibrational bumping. Experimental results demonstrate the effectiveness of the new detection method. PMID:26401427

  14. Eddy Current Rail Inspection Using AC Bridge Techniques.

    PubMed

    Liu, Ze; Koffman, Andrew D; Waltrip, Bryan C; Wang, Yicheng

    2013-01-01

    AC bridge techniques commonly used for precision impedance measurements have been adapted to develop an eddy current sensor for rail defect detection. By using two detection coils instead of just one as in a conventional sensor, we can balance out the large baseline signals corresponding to a normal rail. We have significantly enhanced the detection sensitivity of the eddy current method by detecting and demodulating the differential signal of the two coils induced by rail defects, using a digital lock-in amplifier algorithm. We have also explored compensating for the lift-off effect of the eddy current sensor due to vibrations by using the summing signal of the detection coils to measure the lift-off distance. The dominant component of the summing signal is a constant resulting from direct coupling from the excitation coil, which can be experimentally determined. The remainder of the summing signal, which decreases as the lift-off distance increases, is induced by the secondary eddy current. This dependence on the lift-off distance is used to calibrate the differential signal, allowing for a more accurate characterization of the defects. Simulated experiments on a sample rail have been performed using a computer controlled X-Y moving table with the X-axis mimicking the train's motion and the Y-axis mimicking the train's vibrational bumping. Experimental results demonstrate the effectiveness of the new detection method. PMID:26401427

  15. Electron cyclotron current drive efficiency in general tokamak geometry

    SciTech Connect

    Lin-Liu, Y. R.; Chan, V. S.; Prater, R.

    2003-01-01

    Green's-function techniques are used to calculate electron cyclotron current drive (ECCD) efficiency in general tokamak geometry in the low-collisionality regime. Fully relativistic electron dynamics is employed in the theoretical formulation. The high-velocity collision model is used to model Coulomb collisions and a simplified quasi-linear rf diffusion operator describes wave-particle interactions. The approximate analytic solutions which are benchmarked with a widely used ECCD model, facilitate time-dependent simulations of tokamak operational scenarios using the non-inductive current drive of electron cyclotron waves.

  16. Numerical modeling of lower hybrid heating and current drive

    SciTech Connect

    Valeo, E.J.; Eder, D.C.

    1986-03-01

    The generation of currents in toroidal plasma by application of waves in the lower hybrid frequency range involves the interplay of several physical phenomena which include: wave propagation in toroidal geometry, absorption via wave-particle resonances, the quasilinear generation of strongly nonequilibrium electron and ion distribution functions, and the self-consistent evolution of the current density in such a nonequilibrium plasma. We describe a code, LHMOD, which we have developed to treat these aspects of current drive and heating in tokamaks. We present results obtained by applying the code to a computation of current ramp-up and to an investigation of the possible importance of minority hydrogen absorption in a deuterium plasma as the ''density limit'' to current drive is approached.

  17. MHD simulation of RF current drive in MST

    SciTech Connect

    Hendries, E. R.; Anderson, J. K.; Forest, C. B.; Reusch, J. A.; Seltzman, A. H.; Sovinec, C. R.; Diem, S.; Harvey, R. W.

    2014-02-12

    Auxiliary heating and current drive using RF waves such as the electron Bernstein wave (EBW) promises to advance the performance of the reversed field pinch (RFP). In previous computational work [1], a hypothetical edge-localized current drive is shown to suppress the tearing activity which governs the macroscopic transport properties of the RFP. The ideal conditions for tearing stabilization include a reduced toroidal induction, and precise width and radial position of the Gaussian-shaped external current drive. In support of the EBW experiment on the Madison Symmetric Torus, an integrated modeling scheme now incorporates ray tracing and Fokker-Plank predictions of auxiliary current into single fluid MHD. Simulations at low Lundquist number (S ∼ 10{sup 4}) generally agree with the previous work; significantly more burdensome simulations at MST-like Lundquist number (S ∼ 3×10{sup 6}) show unexpected results. The effect on nonlinearly saturated current profile by a particular RF-driven external force decreases in magnitude and widens considerably as the Lundquist number increases toward experimental values. Simulations reproduce the periodic current profile relaxation events observed in experiment (sawteeth) in the absence of current profile control. Reduction of the tearing mode amplitudes is still observable; however, reduction is limited to periods between the large bursts of magnetic activity at each sawtooth. The sawtoothing pattern persists with up to 10 MW of externally applied RF power. Periods with prolonged low tearing amplitude are predicted with a combination of external current drive and a reduced toroidal loop voltage, consistent with previous conclusions. Finally, the resistivity profile is observed to have a strong effect on the optimal externally driven current profile for mode stabilization.

  18. 53. Drive shaft, motors, eddie currents, brakes, and differential gears ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. Drive shaft, motors, eddie currents, brakes, and differential gears in south machinery room (interior of both machinery rooms is identical). Facing east. - Henry Ford Bridge, Spanning Cerritos Channel, Los Angeles-Long Beach Harbor, Los Angeles, Los Angeles County, CA

  19. Flux averaged current drive efficiency of electron Bernstein waves

    NASA Astrophysics Data System (ADS)

    McGregor, D. E.; Cairns, R. A.; Lashmore Davies, C. N.; O'Brien, M. R.

    2008-01-01

    Electron Bernstein waves are of interest for heating and current drive in spherical tokamaks where the central region of the plasma is not accessible to the ordinary and extraordinary modes. In this paper we adapt an analytical theory of current drive in toroidal geometry developed by Lin-Liu et al (2003 Phys. Plasmas 10 4064) to this system. This involves taking account of the fact that the ratio of the Larmor radius to the perpendicular wavelength is not, in general, small for the Bernstein waves and also including the effects of a non-circular plasma cross section. By comparing the results with those of a full Fokker-Planck code, we demonstrate that the analytical method can yield a good approximation to the current drive efficiency in most regimes of practical interest. Since it is much less computationally demanding than using a Fokker-Planck code we suggest that it could be a useful tool for analysing experiments on Bernstein mode current drive in spherical tokamaks.

  20. Numerical Modeling of HHFW Heating and Current Drive on NSTX

    NASA Astrophysics Data System (ADS)

    Phillips, C. K.; Bell, R. E.; Hosea, J. C.; Leblanc, B. P.; Taylor, G.; Valeo, E. J.; Wilson, J. R.; Berry, L. A.; Jaeger, E. F.; Ryan, P. M.; Wilgen, J. B.; Bonoli, P. T.; Wright, J. C.; Harvey, R. W.; Yuh, H. Y.

    2008-11-01

    High harmonic fast wave (HHFW) heating and current drive, at frequencies up to 15 times the fundamental deuterium cyclotron frequency, are being studied on NSTX. Recent experiments indicate that the core heating efficiency depends strongly on the antenna phasing and plasma conditions [1], and improves significantly at higher toroidal magnetic fields. Wave propagation, absorption and current drive characteristics for L-mode and H-mode NSTX discharges have been analyzed using both ray tracing and full wave models. Simulations obtained with the AORSA and TORIC full codes agree reasonably well with Motional Stark Effect measurements of the driven current, and indicate the importance of trapping effects on the driven current profile. Collisional damping effects on the wave absorption, particularly in edge regions, will be considered. [1] J. C. Hosea, et al, Phys. Plasmas 15, 056104 (2008).

  1. Electric Circuit Model Suitable for Common Mode Current Paths Distributing in the Motor Drive System

    NASA Astrophysics Data System (ADS)

    Mutoh, Nobuyoshi; Ogata, Mitsukatsu; Harashima, Fumio

    Experimental date are used to analyze conducted EMI noises which are produced in a motor drive system with power converters comprised of a converter and an inverter. The processes are investigated in which common mode noises (voltages and currents) are strongly influenced by voltage fluctuations occurring due to switching operations. It is found that the common mode currents are resonance currents which appear in series resonance circuits distributed in the motor drive system. The circuits have various kinds of resonance frequencies related to voltage fluctuations produced by switching operations and micro-surge voltages generated at the terminal of machines such as an ac rector or a motor. Thus, parameters of the distributed series resonance circuits are estimated using the transient waveforms obtained by separating the common mode current into waves analyzed by the FFT method. It is proved through simulations and experiments that the proposed circuit models closely represent actual electric circuits for common mode current paths distributed in the motor drive system.

  2. Electric machine and current source inverter drive system

    DOEpatents

    Hsu, John S

    2014-06-24

    A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.

  3. Frequency Domain Analysis of Beat-Less Control Method for Converter-Inverter Driving Systems Applied to AC Electric Cars

    NASA Astrophysics Data System (ADS)

    Kimura, Akira

    In inverter-converter driving systems for AC electric cars, the DC input voltage of an inverter contains a ripple component with a frequency that is twice as high as the line voltage frequency, because of a single-phase converter. The ripple component of the inverter input voltage causes pulsations on torques and currents of driving motors. To decrease the pulsations, a beat-less control method, which modifies a slip frequency depending on the ripple component, is applied to the inverter control. In the present paper, the beat-less control method was analyzed in the frequency domain. In the first step of the analysis, transfer functions, which revealed the relationship among the ripple component of the inverter input voltage, the slip frequency, the motor torque pulsation and the current pulsation, were derived with a synchronous rotating model of induction motors. An analysis model of the beat-less control method was then constructed using the transfer functions. The optimal setting of the control method was obtained according to the analysis model. The transfer functions and the analysis model were verified through simulations.

  4. Development of a computer algorithm for the analysis of variable-frequency AC drives: Case studies included

    NASA Technical Reports Server (NTRS)

    Kankam, M. David; Benjamin, Owen

    1991-01-01

    The development of computer software for performance prediction and analysis of voltage-fed, variable-frequency AC drives for space power applications is discussed. The AC drives discussed include the pulse width modulated inverter (PWMI), a six-step inverter and the pulse density modulated inverter (PDMI), each individually connected to a wound-rotor induction motor. Various d-q transformation models of the induction motor are incorporated for user-selection of the most applicable model for the intended purpose. Simulation results of selected AC drives correlate satisfactorily with published results. Future additions to the algorithm are indicated. These improvements should enhance the applicability of the computer program to the design and analysis of space power systems.

  5. Bearing currents and their relationship to PWM drives

    SciTech Connect

    Busse, D.; Erdman, J.; Kerkman, J.; Schlegel, D.; Skibinski, G.

    1997-03-01

    This paper examines ac motor shaft voltages and the resulting bearing currents when operated under pulse width modulation (PWM) voltage source inverters. The paper reviews the mechanical and electrical characteristics of the bearings and motor in relation to shaft voltages and bearing currents. A brief review of previous work is addressed, including the system model and experimental results. The theory of electric discharge machining (EDM) is presented, including component calculations of the system elements. The effect of system elements on shaft voltages and bearing currents are evaluated experimentally and the results compared to theory. A design calculation is proposed that provides the relative potential for EDM. Finally, the paper will present quantitative results on one solution to the shaft voltage and bearing current problem.

  6. Current drive at plasma densities required for thermonuclear reactors.

    PubMed

    Cesario, R; Amicucci, L; Cardinali, A; Castaldo, C; Marinucci, M; Panaccione, L; Santini, F; Tudisco, O; Apicella, M L; Calabrò, G; Cianfarani, C; Frigione, D; Galli, A; Mazzitelli, G; Mazzotta, C; Pericoli, V; Schettini, G; Tuccillo, A A

    2010-01-01

    Progress in thermonuclear fusion energy research based on deuterium plasmas magnetically confined in toroidal tokamak devices requires the development of efficient current drive methods. Previous experiments have shown that plasma current can be driven effectively by externally launched radio frequency power coupled to lower hybrid plasma waves. However, at the high plasma densities required for fusion power plants, the coupled radio frequency power does not penetrate into the plasma core, possibly because of strong wave interactions with the plasma edge. Here we show experiments performed on FTU (Frascati Tokamak Upgrade) based on theoretical predictions that nonlinear interactions diminish when the peripheral plasma electron temperature is high, allowing significant wave penetration at high density. The results show that the coupled radio frequency power can penetrate into high-density plasmas due to weaker plasma edge effects, thus extending the effective range of lower hybrid current drive towards the domain relevant for fusion reactors. PMID:20975718

  7. Current-Drive Efficiency in a Degenerate Plasma

    SciTech Connect

    S. Son and N.J. Fisch

    2005-11-01

    a degenerate plasma, the rates of electron processes are much smaller than the classical model would predict, affecting the efficiencies of current generation by external non-inductive means, such as by electromagnetic radiation or intense ion beams. For electron-based mechanisms, the current-drive efficiency is higher than the classical prediction by more than a factor of 6 in a degenerate hydrogen plasma, mainly because the electron-electron collisions do not quickly slow down fast electrons. Moreover, electrons much faster than thermal speeds are more readily excited without exciting thermal electrons. In ion-based mechanisms of current drive, the efficiency is likewise enhanced due to the degeneracy effects, since the electron stopping power on slow ion beams is significantly reduced.

  8. PHYSICS OF ELCTRON CYCLOTRON CURRENT DRIVE ON DIII-D

    SciTech Connect

    PETTY,CC; PRATER,R; LUCE,TC; ELLIS,RA; HARVEY,RW; KINSEY,JE; LAO,LL; LOHR,J; MAKOWSKI,MA

    2002-09-01

    OAK A271 PHYSICS OF ELCTRON CYCLOTRON CURRENT DRIVE ON DIII-D. Recent experiments on the DIII-D tokamak have focused on determining the effect of trapped particles on the electron cyclotron current drive (ECCD) efficiency. The measured ECCD efficiency increases as the deposition location is moved towards the inboard midplane or towards smaller minor radius for both co and counter injection. The measured ECCD efficiency also increases with increasing electron density and/or temperature. The experimental ECCD is compared to both the linear theory (Toray-GA) as well as a quasilinear Fokker-Planck model (CQL3D). The experimental ECCD is found to be in better agreement with the more complete Fokker-Planck calculation, especially for cases of high rf power density and/or loop voltage. The narrow width of the measured ECCD profile is consistent with only low levels of radial transport for the current carrying electrons.

  9. Mode conversion heating and current drive experiments in TFTR

    SciTech Connect

    Majeski, R.; Rogers, J.H.; Batha, S.H.; Budny, R.; Fredrickson, E.; Grek, B.; Hill, K.; Hosea, J.C.; LeBlanc, B.; Levinton, F.; Murakami, M.; Phillips, C.K.; Ramsey, A.T.; Schilling, G.; Taylor, G.; Wilson, J.R.; Zarnstorff, M.C.

    1996-01-01

    The first experimental demonstration that mode conversion from the fast magnetosonic wave to an ion Bernstein wave can efficiently heat electrons and drive current with low field side antennas in a tokamak plasma is reported. Up to 130 kA of current was noninductively driven, on and off axis, and the resultant current profiles were measured in the Tokamak Fusion Test Reactor. In heating experiments, 10 keV peak electron temperatures were produced with 3.3 MW of radio-frequency heating power. {copyright} {ital 1996 The American Physical Society.}

  10. An Imposed Dynamo Current Drive Experiment: Demonstration of Confinement

    NASA Astrophysics Data System (ADS)

    Jarboe, Thomas; Hansen, Chris; Hossack, Aaron; Marklin, George; Morgan, Kyle; Nelson, Brian; Sutherland, Derek; Victor, Brian

    2014-10-01

    An experiment for studying and developing the efficient sustainment of a spheromak with sufficient confinement (current-drive power heats the plasma to its stability β-limit) and in the keV temperature range is discussed. A high- β spheromak sustained by imposed dynamo current drive (IDCD) is justified because: previous transient experiments showed sufficient confinement in the keV range with no external toroidal field coil; recent results on HIT-SI show sustainment with sufficient confinement at low temperature; the potential of IDCD of solving other fusion issues; a very attractive reactor concept; and the general need for efficient current drive in magnetic fusion. The design of a 0.55 m minor radius machine with the required density control, wall loading, and neutral shielding for a 2 s pulse is presented. Peak temperatures of 1 keV and toroidal currents of 1.35 MA and 16% wall-normalized plasma beta are envisioned. The experiment is large enough to address the key issues yet small enough for rapid modification and for extended MHD modeling of startup and code validation.

  11. Collisional current drive in two interpenetrating plasma jets

    SciTech Connect

    Ryutov, D. D.; Kugland, N. L.; Park, H.-S.; Pollaine, S. M.; Remington, B. A.; Ross, J. S.

    2011-10-15

    The magnetic field generation in two interpenetrating, weakly collisional plasma streams produced by intense lasers is considered. The generation mechanism is very similar to the neutral beam injection current drive in toroidal fusion devices, with the differences related to the absence of the initial magnetic field, short interaction time, and different geometry. Spatial and temporal characteristics of the magnetic field produced in two counterstreaming jets are evaluated; it is shown that the magnetic field of order of 1 T can be generated for modest jet parameters. Conditions under which this mechanism dominates that of the ''Biermann battery'' are discussed. Other settings where the mechanism of the collisional current drive can be important for the generation of seed magnetic fields include astrophysics and interiors of hohlraums.

  12. PHYSICS OF ELECTRON CYCLOTRON CURRENT DRIVE ON DIII-D

    SciTech Connect

    PETTY,CC; PRATER,R; LUCE,TC; ELLIS,RA; HARVEY,RW; KINSEY,JE; LAO,LL; LOHR,J; MAKOWSKI,MA

    2002-11-01

    OAK A271 PHYSICS OF ELECTRON CYCLOTRON CURRENT DRIVE ON DIII-D. Recent experiments on the DIII-D tokamak have focused on determining the effect of trapped particles on the electron cyclotron current drive (ECCD) efficiency. The measured ECCD efficiency increases as the deposition location is moved towards the inboard midplane or towards smaller minor radius for both co and counter injection. The measured ECCD efficiency also increases with increasing electron density and/or temperature. The experimental ECCD is compared to both the linear theory (Toray-GA) as well as a quasilinear Fokker-Planck model (CQL3D). The experimental ECCD is found to be in better agreement with the more complete Fokker-Planck calculation, especially for cases of high rf power density and/or loop voltage.

  13. Electron cyclotron current drive experiments on DIII-D

    SciTech Connect

    James, R.A. ); Giruzzi, G.; Gentile, B. de; Rodriguez, L. ); Fyaretdinov, A.; Gorelov, Yu.; Trukhin, V. ); Harvey, R.; Lohr, J.; Luce, T.C.; Matsuda, K.; Politzer, P.; Prater, R.; Snider, R. (General Atomics, San Di

    1990-05-01

    Electron Cyclotron Current Drive (ECCD) experiments on the DIII-D tokamak have been performed using 60 GHz waves launched from the high field side of the torus. Preliminary analysis indicates rf driven currents between 50 and 100 kA in discharges with total plasma currents between 200 and 500 kA. These are the first ECCD experiments with strong first pass absorption, localized deposition of the rf power, and {tau}{sub E} much longer than the slowing-down time of the rf generated current carriers. The experimentally measured profiles for T{sub e}, {eta}{sub e} and Z{sub eff} are used as input for a 1D transport code and a multiply-ray, 3D ray tracing code. Comparisons with theory and assessment of the influence of the residual electric field, using a Fokker-Planck code, are in progress. The ECH power levels were between 1 and 1.5 MW with pulse lengths of about 500 msec. ECCD experiments worldwide are motivated by issues relating to the physics and technical advantages of the use of high frequency rf waves to drive localized currents. ECCD is accomplished by preferentially heating electrons moving in one toroidal direction, reducing their collisionality and thereby producing a non-inductively driven toroidal current. 6 refs., 4 figs.

  14. Current drive for stability of thermonuclear plasma reactor

    NASA Astrophysics Data System (ADS)

    Amicucci, L.; Cardinali, A.; Castaldo, C.; Cesario, R.; Galli, A.; Panaccione, L.; Paoletti, F.; Schettini, G.; Spigler, R.; Tuccillo, A.

    2016-01-01

    To produce in a thermonuclear fusion reactor based on the tokamak concept a sufficiently high fusion gain together stability necessary for operations represent a major challenge, which depends on the capability of driving non-inductive current in the hydrogen plasma. This request should be satisfied by radio-frequency (RF) power suitable for producing the lower hybrid current drive (LHCD) effect, recently demonstrated successfully occurring also at reactor-graded high plasma densities. An LHCD-based tool should be in principle capable of tailoring the plasma current density in the outer radial half of plasma column, where other methods are much less effective, in order to ensure operations in the presence of unpredictably changes of the plasma pressure profiles. In the presence of too high electron temperatures even at the periphery of the plasma column, as envisaged in DEMO reactor, the penetration of the coupled RF power into the plasma core was believed for long time problematic and, only recently, numerical modelling results based on standard plasma wave theory, have shown that this problem should be solved by using suitable parameter of the antenna power spectrum. We show here further information on the new understanding of the RF power deposition profile dependence on antenna parameters, which supports the conclusion that current can be actively driven over a broad layer of the outer radial half of plasma column, thus enabling current profile control necessary for the stability of a reactor.

  15. Effects of MHD instabilities on neutral beam current drive

    SciTech Connect

    Podestà, M.; Gorelenkova, M.; Darrow, D. S.; Fredrickson, E. D.; Gerhardt, S. P.; White, R. B.

    2015-04-17

    One of the primary tools foreseen for heating, current drive (CD) and q-profile control in future fusion reactors such as ITER and a Fusion Nuclear Science Facility is the neutral beam injection (NBI). However, fast ions from NBI may also provide the drive for energetic particle-driven instabilities (e.g. Alfvénic modes (AEs)), which in turn redistribute fast ions in both space and energy, thus hampering the control capabilities and overall efficiency of NB-driven current. Based on experiments on the NSTX tokamak (M. Ono et al 2000 Nucl. Fusion 40 557), the effects of AEs and other low-frequency magneto-hydrodynamic instabilities on NB-CD efficiency are investigated. When looking at the new fast ion transport model, which accounts for particle transport in phase space as required for resonant AE perturbations, is utilized to obtain consistent simulations of NB-CD through the tokamak transport code TRANSP. It is found that instabilities do indeed reduce the NB-driven current density over most of the plasma radius by up to ~50%. Moreover, the details of the current profile evolution are sensitive to the specific model used to mimic the interaction between NB ions and instabilities. Finally, implications for fast ion transport modeling in integrated tokamak simulations are briefly discussed.

  16. Effects of MHD instabilities on neutral beam current drive

    DOE PAGESBeta

    Podestà, M.; Gorelenkova, M.; Darrow, D. S.; Fredrickson, E. D.; Gerhardt, S. P.; White, R. B.

    2015-04-17

    One of the primary tools foreseen for heating, current drive (CD) and q-profile control in future fusion reactors such as ITER and a Fusion Nuclear Science Facility is the neutral beam injection (NBI). However, fast ions from NBI may also provide the drive for energetic particle-driven instabilities (e.g. Alfvénic modes (AEs)), which in turn redistribute fast ions in both space and energy, thus hampering the control capabilities and overall efficiency of NB-driven current. Based on experiments on the NSTX tokamak (M. Ono et al 2000 Nucl. Fusion 40 557), the effects of AEs and other low-frequency magneto-hydrodynamic instabilities on NB-CDmore » efficiency are investigated. When looking at the new fast ion transport model, which accounts for particle transport in phase space as required for resonant AE perturbations, is utilized to obtain consistent simulations of NB-CD through the tokamak transport code TRANSP. It is found that instabilities do indeed reduce the NB-driven current density over most of the plasma radius by up to ~50%. Moreover, the details of the current profile evolution are sensitive to the specific model used to mimic the interaction between NB ions and instabilities. Finally, implications for fast ion transport modeling in integrated tokamak simulations are briefly discussed.« less

  17. Penetration of lower hybrid current drive waves in tokamaks

    SciTech Connect

    Horton, W.; Goniche, M.; Peysson, Y.; Decker, J.; Ekedahl, A.; Litaudon, X.

    2013-11-15

    Lower hybrid (LH) ray propagation in toroidal plasma is shown to be controlled by combination of the azimuthal spectrum launched by the antenna, the poloidal variation of the magnetic field, and the scattering of the waves by the drift wave fluctuations. The width of the poloidal and radial radio frequency wave spectrum increases rapidly as the rays penetrate into higher density and scatter from the drift waves. The electron temperature gradient (ETG) spectrum is particularly effective in scattering the LH waves due to its comparable wavelengths and phase velocities. ETG turbulence is also driven by the radial gradient of the electron current profile giving rise to an anomalous viscosity spreading the LH driven plasma currents. The LH wave scattering is derived from a Fokker-Planck equation for the distribution of the ray trajectories with diffusivities derived from the drift wave fluctuations. The condition for chaotic diffusion for the rays is derived. The evolution of the poloidal and radial mode number spectrum of the lower hybrid waves are both on the antenna spectrum and the spectrum of the drift waves. Antennas launching higher poloidal mode number spectra drive off-axis current density profiles producing negative central shear [RS] plasmas with improved thermal confinement from ETG transport. Core plasma current drive requires antennas with low azimuthal mode spectra peaked at m = 0 azimuthal mode numbers.

  18. High frequency fast wave current drive for DEMO

    SciTech Connect

    Koch, R.; Lerche, E.; Van Eester, D.

    2011-12-23

    A steady-state tokamak reactor (SSTR) requires a high efficiency current drive system, from plug to driven mega-amps. RF systems working in the ion-cyclotron range of frequencies (ICRF) have high efficiency from plug to antenna but a limited current drive (CD) efficiency and centrally peaked CD profiles. The latter feature is not adequate for a SSTR where the current should be sufficiently broad to keep the central safety factor (possibly significantly) above 1. In addition, the fact that the fast wave (FW) is evanescent at the edge limits coupling, requiring high voltage operation, which makes the system dependent on plasma edge properties and prone to arcing, reducing its reliability. A possible way to overcome these weaknesses is to operate at higher frequency (10 times or more the cyclotron frequency). The advantages are: (1) The coupling can be much better (waves propagate in vacuum) if the parallel refractive index n{sub ||} is kept below one, (2) The FW group velocity tends to align to the magnetic field, so the power circumnavigates the magnetic axis and can drive off-axis current, (3) Due to the latter property, n{sub ||} can be upshifted along the wave propagation path, allowing low n{sub ||} launch (hence good coupling, large CD efficiency) with ultimately good electron absorption (which requires higher n{sub ||}. Note however that the n{sub ||} upshift is a self-organized feature, that electron absorption is in competition with {alpha}-particle absorption and that uncoupling of the FW from the lower hybrid resonance at the edge requires n{sub ||} slightly above one. The latter possibly counterproductive features might complicate the picture. The different aspects of this potentially attractive off-axis FWCD scheme are discussed.

  19. Shape of the Hanle curve in spin-transport structures in the presence of an ac drive

    NASA Astrophysics Data System (ADS)

    Roundy, R. C.; Prestgard, M. C.; Tiwari, A.; Raikh, M. E.

    2014-11-01

    Resistance between two ferromagnetic electrodes coupled to a normal channel depends on their relative magnetizations. The spin-dependent component, R , of the resistance changes with magnetic field, B , normal to the directions of magnetizations. In the field of spin transport, this change, R (B ) , originating from the Larmour spin precession, is called the Hanle curve. We demonstrate that the shape of the Hanle curve evolves upon application of an ac drive and study this evolution theoretically as a function of the amplitude, B1, and frequency, ω , of the drive. If the distance between the electrodes, L , is smaller than the spin-diffusion length, λs, the prime effect of a weak circular-polarized drive is the shift of the center of the curve to the value of B for which the Larmour frequency, ωL, is ˜B12/ω . Magnetic resonance at ωL˜ω manifests itself in the derivative, d/R d B . For large L ≫λs the ac drive affects the Hanle curve if the drive amplitude exceeds the spin-relaxation rate, τs-1, i.e., at B1τs≳1 . The prime effect of the drive is the elimination of a minimum in R (B ) . A linearly polarized drive has a fundamentally different effect on the Hanle curve, affecting not its shape but rather its width.

  20. An anomalous current drive mechanism in low collisionality plasmas

    NASA Astrophysics Data System (ADS)

    McDevitt, Chris; Tang, Xianzhu; Guo, Zehua

    2013-10-01

    Steady state tokamak operation requires non-inductive current drive, of which the neoclassical bootstrap current is the most economic option. Here we report a novel mechanism through which a bootstrap current may be driven even in a collisionless plasma. In analogy with the neoclassical mechanism, in which the collisional equilibrium established between trapped and passing electrons produces a steady state current, we show that resonant scattering of electrons by drift wave microturbulence provides an additional means of determining the equilibrium between trapped and passing electrons. The resulting collisionless equilibrium is shown to produce a mean current whose magnitude scales with the thermodynamic forces. Employing a linearized Fokker-Planck collision operator, the plasma current in the presence of both collisions and resonant electron scattering is computed as a function of collisionality. It is found that while the volume integrated electron current is only modestly affected by the turbulent fluctuations, the radial distribution of electron current is significantly modified in low collisionality plasmas. This work was supported by DOE OFES.

  1. Review of Japanese results on heating and current drive

    NASA Astrophysics Data System (ADS)

    Watari, T.

    1992-10-01

    This article discusses Japanese contributions in the fields of plasma heating and current drive and, together with other reviews presented at this conference, will serve as a reference for future investigations. The Japanese fusion community has several tokamaks: JAERI (STA) has JT-60 and JFT-2M. TRIAM-1M (Kyushu University), WT-3 (Kyoto University), and JIPP T-2 U (National Institute for Fusion Science (NIFS)) belong to the Ministry of Education (MOE). A lot of contributions were made by these devices in heating and current drive in the various frequency ranges: electron cyclotron (EC) frequency range, lower hybrid (LH) frequency range, and ion cyclotron (IC) frequency range. This paper only deals with tokamak results: results on LHCD are described in section 1; ECH is described in section 2; results of high power ICRF heating are given in section 3; IBWH is described in section 4; and finally, FWCD is covered in section 5. Because the Matrix of different machine and different frequency range gives an intractable list of results, sampling will be made in describing the progress, i.e., JT-60 for LHCD, WT-3 for ECH/CD, JIPP T-2 U for IBWH, and JT-60 for higher harmonic ICRF heating. Special attention is given to the investigation of fast wave current drive which has some history in Japan. Results from JIPP T-2 U, JFT-2M, HT-2, and JT-60 are summarized. Aside from the tokamak, MOE has an alternative magnetic fusion program centered around CHS and HELIOTORON-E (Kyoto University). The LHD (Large Helical Device) is a machine under construction in the new site of NIFS. Gamma-10 (Tsukuba University) and HIEI (Kyoto University) are tandem mirror type open end systems. Due to the allotted space, works in this field will not be covered in this review. It should also be noted that there are a lot of contributions in theory which continued to support experiments very strongly through this decade.

  2. Fluid equations in the presence of electron cyclotron current drive

    SciTech Connect

    Jenkins, Thomas G.; Kruger, Scott E.

    2012-12-15

    Two-fluid equations, which include the physics imparted by an externally applied radiofrequency source near electron cyclotron resonance, are derived in their extended magnetohydrodynamic forms using the formalism of Hegna and Callen [Phys. Plasmas 16, 112501 (2009)]. The equations are compatible with the closed fluid/drift-kinetic model developed by Ramos [Phys. Plasmas 17, 082502 (2010); 18, 102506 (2011)] for fusion-relevant regimes with low collisionality and slow dynamics, and they facilitate the development of advanced computational models for electron cyclotron current drive-induced suppression of neoclassical tearing modes.

  3. Lower hybrid heating and current drive on PLT

    SciTech Connect

    Stevens, J.E.; Bernabei, S.; Bitter, M.

    1983-03-01

    800 MHz lower hybrid waves have been launched into PLT with a six waveguide coupler. Recent improvements have allowed powers up to 400 kW to be launched with good coupling (R approx. 10 to 25%). Experiments at low density (anti n/sub e/ < 7 x 10/sup 12/ cm/sup -3/, i.e., ..omega../..omega../sub LH/ > 2) have demonstrated current drive and plasma heating. Experiments at higher densities have produced hot-ion tails, but so far have shown inefficient body heating. To date, only a limited parameters space has been investigated at high power.

  4. A transputer-based adaptive speed controller for AC induction motor drives with load torque estimation

    SciTech Connect

    Tsai, M.F.; Tzou, Y.Y.

    1997-03-01

    In this paper, the authors design and implement an adaptive speed controller that can estimate load torque for ac induction motor drives employing a transputer-based parallel processing technique. The adaptive speed controller, which precedes the field-oriented control loop, consists of a two-degree-of-freedom controller and a feedforward load-torque compensator. The two-degree-of-freedom controller is designed by a pole-placement technique with polynomial manipulations. Its parameters are adjusted adaptively in terms of estimated model parameters. Estimating the model parameters entails a second-order least-squares estimator with constant trace to avoid estimator windup. The design of the feedforward compensator is based on an estimated load-torque model. Estimating the load torque entails a first-order least-squares estimator with variable forgetting factor and covariance resetting, the purposes of which are to detect any slow or sudden changes of torque disturbance, respectively. The resulting adaptive controller is implemented in parallel by IMS T800-20 transputers. Experimental results demonstrate the robustness of the proposed control method in contending with varying load and torque disturbance.

  5. Spectral Effects on Fast Wave Core Heating and Current Drive

    SciTech Connect

    C.K. Phillips, R.E. Bell, L.A. Berry, P.T. Bonoli, R.W. Harvey, J.C. Hosea, E.F. Jaeger, B.P. LeBlanc, P.M. Ryan, G. Taylor, E.J. Valeo, J.R. Wilson, J.C. Wright, H. Yuh, and the NSTX Team

    2009-05-11

    Recent results obtained with high harmonic fast wave (HHFW) heating and current drive (CD) on NSTX strongly support the hypothesis that the onset of perpendicular fast wave propagation right at or very near the launcher is a primary cause for a reduction in core heating efficiency at long wavelengths that is also observed in ICRF heating experiments in numerous tokamaks. A dramatic increase in core heating efficiency was first achieved in NSTX L-mode helium majority plasmas when the onset for perpendicular wave propagation was moved away from the antenna and nearby vessel structures. Efficient core heating in deuterium majority L mode and H mode discharges, in which the edge density is typically higher than in comparable helium majority plasmas, was then accomplished by reducing the edge density in front of the launcher with lithium conditioning and avoiding operational points prone to instabilities. These results indicate that careful tailoring of the edge density profiles in ITER should be considered to limit rf power losses to the antenna and plasma facing materials. Finally, in plasmas with reduced rf power losses in the edge regions, the first direct measurements of high harmonic fast wave current drive were obtained with the motional Stark effect (MSE) diagnostic. The location and radial dependence of HHFW CD measured by MSE are in reasonable agreement with predictions from both full wave and ray tracing simulations.

  6. Recent experimental results of KSTAR RF heating and current drive

    SciTech Connect

    Wang, S. J. Kim, J.; Jeong, J. H.; Kim, H. J.; Joung, M.; Bae, Y. S.; Kwak, J. G.

    2015-12-10

    The overview of KSTAR activities on ICRH, LHCD and ECH/CD including the last experimental results and future plan aiming for long-pulse high-beta plasma will be presented. Recently we achieved reasonable coupling of ICRF power to H-mode plasma through several efforts to increase system reliability. Power balance will be discussed on this experiment. LHCD is still struggling in the low power regime. Review of antenna spectrum for the higher coupling in H-mode plasma will be tried. ECH/CD provides 41 sec, 0.8 MW of heating power to support high-performance long-pulse discharge. Also, 170 GHz ECH system is integrated with the Plasma Control System (PCS) for the feedback controlling of NTM. Status and plan of ECH/CD will be discussed. Finally, helicon current drive is being prepared for the next stage of KSTAR operation. The hardware preparation and the calculation results of helicon current drive in KSTAR plasma will be discussed.

  7. Recent experimental results of KSTAR RF heating and current drive

    NASA Astrophysics Data System (ADS)

    Wang, S. J.; Kim, J.; Jeong, J. H.; Kim, H. J.; Joung, M.; Bae, Y. S.; Kwak, J. G.

    2015-12-01

    The overview of KSTAR activities on ICRH, LHCD and ECH/CD including the last experimental results and future plan aiming for long-pulse high-beta plasma will be presented. Recently we achieved reasonable coupling of ICRF power to H-mode plasma through several efforts to increase system reliability. Power balance will be discussed on this experiment. LHCD is still struggling in the low power regime. Review of antenna spectrum for the higher coupling in H-mode plasma will be tried. ECH/CD provides 41 sec, 0.8 MW of heating power to support high-performance long-pulse discharge. Also, 170 GHz ECH system is integrated with the Plasma Control System (PCS) for the feedback controlling of NTM. Status and plan of ECH/CD will be discussed. Finally, helicon current drive is being prepared for the next stage of KSTAR operation. The hardware preparation and the calculation results of helicon current drive in KSTAR plasma will be discussed.

  8. Technology of fast-wave current drive antennas

    SciTech Connect

    Hoffman, D.J.; Baity, F.W.; Goulding, R.H.; Haste, G.R.; Ryan, P.M.; Taylor, D.J.; Swain, D.W.; Mayberry, M.J.; Yugo, J.J.; General Atomics, San Diego, CA; Oak Ridge National Lab., TN )

    1989-01-01

    The design of fast-wave current drive (FWCD) antennas combines the usual antenna considerations (e.g., the plasma/antenna interface, disruptions, high currents and voltages, and thermal loads) with new requirements for spectral shaping and phase control. The internal configuration of the antenna array has a profound effect on the spectrum and the ability to control phasing. This paper elaborates on these considerations, as epitomized by a proof-of-principle (POP) experiment designed for the DIII-D tokamak. The extension of FWCD for machines such as the International Thermonuclear Engineering Reactor (ITER) will require combining ideas implemented in the POP experiment with reactor-relevant antenna concepts, such as the folded waveguide. 6 refs., 8 figs.

  9. Concurrent Electroencephalography Recording During Transcranial Alternating Current Stimulation (tACS)

    PubMed Central

    Fehér, Kristoffer D.; Morishima, Yosuke

    2016-01-01

    Oscillatory brain activities are considered to reflect the basis of rhythmic changes in transmission efficacy across brain networks and are assumed to integrate cognitive neural processes. Transcranial alternating current stimulation (tACS) holds the promise to elucidate the causal link between specific frequencies of oscillatory brain activity and cognitive processes. Simultaneous electroencephalography (EEG) recording during tACS would offer an opportunity to directly explore immediate neurophysiological effects of tACS. However, it is not trivial to measure EEG signals during tACS, as tACS creates a huge artifact in EEG data. Here we explain how to set up concurrent tACS-EEG experiments. Two necessary considerations for successful EEG recording while applying tACS are highlighted. First, bridging of the tACS and EEG electrodes via leaking EEG gel immediately saturates the EEG amplifier. To avoid bridging via gel, the viscosity of the EEG gel is the most important parameter. The EEG gel must be viscous to avoid bridging, but at the same time sufficiently fluid to create contact between the tACS electrode and the scalp. Second, due to the large amplitude of the tACS artifact, it is important to consider using an EEG system with a high resolution analog-to-digital (A/D) converter. In particular, the magnitude of the tACS artifact can exceed 100 mV at the vicinity of a stimulation electrode when 1 mA tACS is applied. The resolution of the A/D converter is of importance to measure good quality EEG data from the vicinity of the stimulation site. By following these guidelines for the procedures and technical considerations, successful concurrent EEG recording during tACS will be realized. PMID:26862814

  10. Concurrent Electroencephalography Recording During Transcranial Alternating Current Stimulation (tACS).

    PubMed

    Fehér, Kristoffer D; Morishima, Yosuke

    2016-01-01

    Oscillatory brain activities are considered to reflect the basis of rhythmic changes in transmission efficacy across brain networks and are assumed to integrate cognitive neural processes. Transcranial alternating current stimulation (tACS) holds the promise to elucidate the causal link between specific frequencies of oscillatory brain activity and cognitive processes. Simultaneous electroencephalography (EEG) recording during tACS would offer an opportunity to directly explore immediate neurophysiological effects of tACS. However, it is not trivial to measure EEG signals during tACS, as tACS creates a huge artifact in EEG data. Here we explain how to set up concurrent tACS-EEG experiments. Two necessary considerations for successful EEG recording while applying tACS are highlighted. First, bridging of the tACS and EEG electrodes via leaking EEG gel immediately saturates the EEG amplifier. To avoid bridging via gel, the viscosity of the EEG gel is the most important parameter. The EEG gel must be viscous to avoid bridging, but at the same time sufficiently fluid to create contact between the tACS electrode and the scalp. Second, due to the large amplitude of the tACS artifact, it is important to consider using an EEG system with a high resolution analog-to-digital (A/D) converter. In particular, the magnitude of the tACS artifact can exceed 100 mV at the vicinity of a stimulation electrode when 1 mA tACS is applied. The resolution of the A/D converter is of importance to measure good quality EEG data from the vicinity of the stimulation site. By following these guidelines for the procedures and technical considerations, successful concurrent EEG recording during tACS will be realized. PMID:26862814

  11. Optimized calculation of the synergy conditions between electron cyclotron current drive and lower hybrid current drive on EAST

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Bo-Jiang, Ding; Y, Peysson; J, Decker; Miao-Hui, Li; Xin-Jun, Zhang; Xiao-Jie, Wang; Lei, Zhang

    2016-01-01

    The optimized synergy conditions between electron cyclotron current drive (ECCD) and lower hybrid current drive (LHCD) with normal parameters of the EAST tokamak are studied by using the C3PO/LUKE code based on the understanding of the synergy mechanisms so as to obtain a higher synergistic current and provide theoretical reference for the synergistic effect in the EAST experiment. The dependences of the synergistic effect on the parameters of two waves (lower hybrid wave (LHW) and electron cyclotron wave (ECW)), including the radial position of the power deposition, the power value of the LH and EC waves, and the parallel refractive indices of the LHW (N∥) are presented and discussed. Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant Nos. 2011GB102000, 2012GB103000, and 2013GB106001), the National Natural Science Foundation of China (Grant Nos. 11175206 and 11305211), the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics (Grant No. 11261140328), and the Fundamental Research Funds for the Central Universities of China (Grant No. JZ2015HGBZ0472).

  12. Current profile modification with electron cyclotron current drive in the DIII-D tokamak

    SciTech Connect

    Luce, T.C.; Lin-Liu, Y.R.; Lohr, J.M.

    1998-11-01

    Proof-of-principle experiments on the suitability of electron cyclotron current drive (ECCD) for active current profile control are reported. Experiments with second harmonic extraordinary mode absorption at power levels near 1 MW have demonstrated ability to modify the current profile. This modification is manifested in changes in the internal inductance and the time at which sawteeth appear. Measurements of the local current density and internal loop voltage using high resolution motional Stark effect spectroscopy to half of the minor radius in discharges with localized deposition clearly demonstrate localized off-axis ECCD at the predicted location. Comparison with theory indicates the detrimental effect of trapped electrons on the current drive efficiency is less than predicted. Modification of the theory for finite collisionality is the leading candidate to explain the observations.

  13. Analysis of current driving capability of pentacene TFTs for OLEDs

    NASA Astrophysics Data System (ADS)

    Ryu, Gi Seong; Byun, Hyun Sook; Xu, Yong Xian; Pyo, Kyung Soo; Choe, Ki Beom; Song, Chung Kun

    2005-01-01

    The flexible display and the application of Roll-To-Roll process is difficult because high temperature process of a-Si;H TFT and poly-Si TFT limited the use of plastic substrate. We proposed AMOLED using Pentacene TFT (OTFT) to fabricate flexible display. The first stage for OTFT application to OLED, we analyzed OTFT as driving device of OLED. The process performed on glass and plastic (PET) substrate that is coated ITO and PVP is used for gate insulator. The field effect mobility of the fabricated OTFT is 0.1~0.3cm2/V"sec and Ion/Ioff current ratio is 103~105. OLED is fabricated with two stories structure of TPD and Alq3, and we can observe the light at 5V by the naked eye. The wavelength of observed lights is 530nm ~550nm. We can confirm the driving of OLED due to OTFT using Test panel and observe OLED control by gate voltage of OTFT. Also, we verify designed structure and process, and make a demonstration fabricating 64 by 64 backplane based on Test panel.

  14. Rotating magnetic quadrupole current drive for field-reversed configurations

    SciTech Connect

    Milroy, Richard D.; Guo, H.Y.

    2005-07-15

    In the translation, confinement, and sustainment experiment [A. L. Hoffman, H. Y. Guo, J. T. Slough, S. J. Tobin, L. S. Schrank, W. A. Reass, and G. A. Wurden, Fusion Sci. Technol. 41, 92 (2002)], field-reversed configurations (FRCs) are created and sustained using a rotating magnetic field (RMF). The RMF is usually in the form of a rotating dipole, which in vacuum penetrates uniformly to the axis of symmetry. However, plasma conditions in the FRC normally adjust so that the RMF only partially penetrates the plasma column. We have investigated the possibility of using a rotating quadrupole rather than a rotating dipole magnetic field. The vacuum field from a quadrupole is proportional to radius and cannot penetrate to the axis of symmetry; however, this is not a disadvantage if the current drive is confined to the outer region of the FRC. It was found that the quadrupole drive efficiency is comparable to that of a dipole, but the rotating dipole is more effective at stabilizing the n=2 rotational instability. A strong internal oscillation in B{sub {theta}} is often observed in FRCs sustained by a quadrupole field. The spectral content of the signals indicates that an internal n=1 magnetic structure forms and corotates with the electrons. Similar but much lower amplitude structures can form when a rotating dipole is employed (edge-driven mode)

  15. Integrated Plasma Simulation of Lower Hybrid Current Drive in Tokamaks

    NASA Astrophysics Data System (ADS)

    Bonoli, P. T.; Wright, J. C.; Harvey, R. W.; Batchelor, D. B.; Berry, L. A.; Kessel, C. E.; Jardin, S. C.

    2012-03-01

    It has been shown in Alcator C-Mod that the onset time for sawteeth can be delayed significantly (up to 0.5 s) relative to ohmically heated plasmas, through the injection of off-axis LH current drive power [1]. We are simulating these experiments using the Integrated Plasma Simulator (IPS) [2], where the driven LH current density profiles are computed using a ray tracing component (GENRAY) and Fokker Planck code (CQL3D) [3] that are run in a tightly coupled time advance. The background plasma is evolved using the TSC transport code with the Porcelli sawtooth model [4]. Predictions of the driven LH current profiles will be compared with simpler ``reduced'' models for LHCD such as the LSC code which is implemented in TSC and which is also invoked within the IPS. [4pt] [1] C. E. Kessel et al, Bull. of the Am. Phys. Soc. 53, Poster PP6.00074 (2008). [0pt] [2] D. Batchelor et al, Journal of Physics: Conf. Series 125, 012039 (2008). [0pt] [3] R. W. Harvey and M. G. McCoy, Proc. of the IAEA Tech. Comm. Meeting on Simulation and Modeling of Therm. Plasmas, Montreal, Canada (1992). [0pt] [4] S. C. Jardin et al, J. Comp. Phys. 66, 481 (1986).

  16. Roebel assembled coated conductor cables (RACC): Ac-Losses and current carrying potential

    NASA Astrophysics Data System (ADS)

    Frank, A.; Heller, R.; Goldacker, W.; Kling, A.; Schmidt, C.

    2008-02-01

    Low ac-loss HTS cables for transport currents well above 1 kA are required for application in transformers and generators and are taken into consideration for future generations of fusion reactor coils. Coated conductors (CC) are suitable candidates for high field application at an operation temperature in the range 50-77 K. Ac-field applications require cables with low ac-losses and hence twisting of the individual strands. We solved this problem using the Roebel technique. Short lengths of Roebel bar cables were prepared from industrial DyBCO and YBCO-CC. Meander shaped tapes of 4 or 5 mm width with twist pitches of 123 or 127 mm were cut from the 10 or 12 mm wide CC tapes using a specially designed tool. Eleven or twelve of these strands were assembled to a cable. The electrical and mechanical connection of the tapes was achieved using a silver powder filled conductive epoxy resin. Ac-losses of a short sample in an external ac-field were measured as a function of frequency and field amplitude as well as the coupling current decay time constant. We discuss the results in terms of available theories and compare measured time constants in transverse field with measured coupling losses. Finally the potential of this cable type for ac-use is discussed with respect to ac-losses and current carrying capability.

  17. Electron cyclotron current drive and current profile control in the DIII-D tokamak

    SciTech Connect

    Prater, R.; Luce, T.C.; Petty, C.C.

    1998-07-01

    Recent work in many tokamaks has indicated that optimization of the current profile is a key element needed to sustain modes of improved confinement and stability. Generation of localized current through application of electron cyclotron (EC) waves offers a means of accomplishing this. In addition to profile control, electron cyclotron current drive (ECCD) is useful for sustaining the bulk current in a steady state manner and for instability suppression. ECCD is particularly well suited for control of the current profile because the location of the driven current can be regulated by external means, through steering of the incident EC waves and setting the magnitude of the toroidal magnetic field. Under most conditions the location of the driven current is insensitive to the plasma parameters. Central ECCD has been studied in a number of tokamaks and found to have characteristics commensurate with theory as expressed through ray tracing and Fokker-Planck computer codes. The present experiments on DIII-D explore central current drive and are the first to test off-axis ECCD. These experiments are unique in using internal measurements of the magnetic field to determine the magnitude and profile of driven current.

  18. On Current Drive and Wave Induced Bootstrap Current in Toroidal Plasmas

    SciTech Connect

    Hellsten, T.; Johnson, T.

    2008-11-01

    A comprehensive treatment of wave-particle interactions in toroidal plasmas including collisional relaxation, applicable to heating or anomalous wave induced transport, has been obtained by using Monte Carlo operators satisfying quasi-neutrality. This approach enables a self-consistent treatment of wave-particle interactions applicable to the banana regime in the neoclassical theory. It allows an extension into a regime with large temperature and density gradients, losses and transport of particles by wave-particle interactions making the method applicable to transport barriers. It is found that at large gradients the relationship between radial electric field, parallel velocity, temperature and density gradient in the neoclassical theory is modified such that coefficient in front of the logarithmic ion temperature gradient, which in the standard neoclassical theory is small and counteracts the electric field caused by the density gradient, now changes sign and contributes to the built up of the radial electric field. The possibility to drive current by absorbing the waves on trapped particles has been studied and how the wave-particle interactions affect the bootstrap current. Two new current drive mechanisms are studied: current drive by wave induced bootstrap current and selective detrapping into passing orbits by directed waves.

  19. A survey of the current experimental database for lower hybrid current-drive and heating

    SciTech Connect

    Blackfield, D.T.

    1988-02-10

    The proposed ITER design may rely heavily on Lower Hybrid waves to provide heating, current drive, MHD stabilization through current profile modification and transformer recharging. This paper presents a detailed survey of recent LH experimental results from PLT, Alcator C, ASDEX, Petula-B, FT and JT-60. Current drive and heating efficiencies are given, as well as regimes where sawteeth and m = 1 and 2 oscillations are stabilized. In addition, in ASDEX and JT-60, LH waves in combination with neutral beams, (a possible ITER scenario) experiments are examined. Finally, the current drive efficiency for ITER is obtained by extrapolating from the LHCD database. Assuming 12 MW of LH power, approximately 4.5 to 5.6 MA of current could be driven in ITER. However, the high density (/ovr /n///sub e/ = 8 /times/ 10/sup 19/ m/sup /minus/3/) and high temperature (/ovr/T///sub e/ = 21 keV) will preclude wave penetration to the center. Assuming a narrow N/sub /parallel// spectrum (1.2 /approx lt/ N/sub /parallel// /approx lt/ 2) the LH waves should be absorbed within the outer half of the plasma. 43 refs., 18 figs., 10 tabs.

  20. Reduction of Common-Mode Conducted Noise Emissions in PWM Inverter-fed AC Motor Drive Systems using Optimized Passive EMI Filter

    NASA Astrophysics Data System (ADS)

    Jettanasen, C.; Ngaopitakkul, A.

    2010-10-01

    Conducted electromagnetic interference (EMI) generated by PWM inverter-fed induction motor drive systems, which are currently widely used in many industrial and/or avionic applications, causes severe parasitic current problems, especially at high frequencies (HF). These restrict power electronic drive's evolution. In order to reduce or minimize these EMI problems, several techniques can be applied. In this paper, insertion of an optimized passive EMI filter is proposed. This filter is optimized by taking into account real impedances of each part of a considered AC motor drive system contrarily to commercial EMI filters designed by considering internal impedance of disturbance source and load, equal to 50Ω. Employing the latter EMI filter would make EMI minimization less effective. The proposed EMI filter optimization is mainly dedicated to minimize common mode (CM) currents due to its most dominant effects in this kind of system. The efficiency of the proposed optimization method using two-port network approach is deduced by comparing the minimized CM current spectra to an applied normative level (ex. DO-160D in aeronautics).

  1. Lower Hybrid Current Drive Experiments in Alcator C-Mod

    SciTech Connect

    J.R. Wilson, S. Bernabei, P. Bonoli, A. Hubbard, R. Parker, A. Schmidt, G. Wallace, J. Wright, and the Alcator C-Mod Team

    2007-10-09

    A Lower Hybrid Current Drive (LHCD) system has been installed on the Alcator C-MOD tokamak at MIT. Twelve klystrons at 4.6 GHz feed a 4x22 waveguide array. This system was designed for maximum flexibility in the launched parallel wave-number spectrum. This flexibility allows tailoring of the lower hybrid deposition under a variety of plasma conditions. Power levels up to 900 kW have been injected into the tokomak. The parallel wave number has been varied over a wide range, n|| ~ 1.6–4. Driven currents have been inferred from magnetic measurements by extrapolating to zero loop voltage and by direct comparison to Fisch-Karney theory, yielding an efficiency of n20IR/P ~ 0.3. Modeling using the CQL3D code supports these efficiencies. Sawtooth oscillations vanish, accompanied with peaking of the electron temperature (Te0 rises from 2.8 to 3.8 keV). Central q is inferred to rise above unity from the collapse of the sawtooth inversion radius, indicating off-axis cd as expected. Measurements of non-thermal x-ray and electron cyclotron emission confirm the presence of a significant fast electron population that varies with phase and plasma density. The x-ray emission is observed to be radialy broader than that predicted by simple ray tracing codes. Possible explanations for this broader emission include fast electron diffusion or broader deposition than simple ray tracing predictions (perhaps due to diffractive effects).

  2. Modifications to the edge current profile with auxiliary edge current drive and improved confinement in a reversed-field pinch

    SciTech Connect

    Chapman, B.E.; Biewer, T.M.; Chattopadhyay, P.K.; Chiang, C.-S.; Craig, D.J.; Crocker, N.A.; Den Hartog, D.J.; Fiksel, G.; Fontana, P.W.; Prager, S.C.; Sarff, J.S.

    2000-09-01

    Auxiliary edge current drive is routinely applied in the Madison Symmetric Torus [R.N. Dexter, D. W. Kerst, T.W. Lovell et.al., Fusion Technol. 19, 131 (1991)] with the goal of modifying the parallel current profile to reduce current- driven magnetic fluctuations and the associated particle and energy transport. Provided by an inductive electric field, the current drive successfully reduces energy transport. First-time measurements of the modified edge current profile reveal that, relative to discharges without auxiliary current drive, the edge current density decreases. This decrease is explicable in terms of newly measured reductions in the dynamo (fluctuation-based) electric field and the electrical conductivity. Induced by the current drive, these two changes to the edge plasma play as much of a role in determining the resultant edge current profile as does the current drive itself.

  3. Modifications to the edge current profile with auxiliary edge current drive and improved confinement in a reversed-field pinch

    SciTech Connect

    Chapman, B. E.; Biewer, T. M.; Chattopadhyay, P. K.; Chiang, C.-S.; Craig, D. J.; Crocker, N. A.; Den Hartog, D. J.; Fiksel, G.; Fontana, P. W.; Prager, S. C.

    2000-09-01

    Auxiliary edge current drive is routinely applied in the Madison Symmetric Torus [R. N. Dexter, D. W. Kerst, T. W. Lovell et al., Fusion Technol. 19, 131 (1991)] with the goal of modifying the parallel current profile to reduce current-driven magnetic fluctuations and the associated particle and energy transport. Provided by an inductive electric field, the current drive successfully reduces fluctuations and transport. First-time measurements of the modified edge current profile reveal that, relative to discharges without auxiliary current drive, the edge current density decreases. This decrease is explicable in terms of newly measured reductions in the dynamo (fluctuation-based) electric field and the electrical conductivity. Induced by the current drive, these two changes to the edge plasma play as much of a role in determining the resultant edge current profile as does the current drive itself. (c) 2000 American Institute of Physics.

  4. Lower hybrid counter current drive for edge current density modification in DIII-D

    SciTech Connect

    Fenstermacher, M.E.; Nevins, W.M.; Porkolab, M.; Bonoli, P.T.; Harvey, R.W.

    1993-07-01

    Each of the Advanced Tokamak operating modes in DIII-D is thought to have a distinctive current density profile. So far these modes have only been achieved transiently through experiments which ramp the plasma current and shape. Extension of these modes to steady state requires non-inductive current profile control, e.g. with lower hybrid current drive (LHCD). Calculations of LHCD have been done for DIII-D using the ACCOME and CQL3D codes, showing that counter driven current at the plasma edge can cancel some of the undesirable edge bootstrap current and potentially extend the VH-mode. Results are presented for scenarios using 2.45 GHz LH waves launched from both the midplane and off-axis ports. The sensitivity of the results to injected power, n{sub e} and T{sub e}, and launched wave spectrum is also shown.

  5. Lower-hybrid counter current drive for edge current density modification in DIII-D

    SciTech Connect

    Fenstermacher, M.E.; Nevins, W.M. ); Porkolab, M.; Bonoli, P.T. ); Harvey, R.W. )

    1994-10-15

    Each of the Advanced Tokamak operating modes in DIII-D is thought to have a distinctive current density profile. So far these modes have only been achieved transiently through experiments which ramp the plasma current and shape. Extension of these modes to steady state requires non-inductive current profile control, e.g., with lower hybrid current drive (LHCD). Calculations of LHCD have been done for DIII-D using the ACCOME and CQL3D codes, showing that counter driven current at the plasma edge can cancel some of the undesirable edge bootstrap current and potentially extend the VH-mode. Results will be presented for scenarios using 2.45 GHz LH waves launched from both the midplane and off-axis ports. The sensitivity of the results to injected power, [ital n][sub [ital e

  6. Recent Results using a 28 GHz EBW Heating and Current Drive System on MAST

    NASA Astrophysics Data System (ADS)

    Bigelow, Tim; Caughman, John; Peng, Martin; Diem, Stephanie; Hawes, Julian; Gurl, Chris; Griffiths, Jonathan; Shevchenko, Vladimir; Finburg, Paul; Mailloux, Joelle; Taylor, Gary

    2013-10-01

    Improvements to a high power 28 GHz gyrotron system have been made to the MAST Electron Bernstein Wave (EBW) heating, start up, and current drive system in the past few years as collaborative research between ORNL and CCFE. Recent EBW heating and CD experiments on MAST have improved upon previous RF generated plasma current levels. The goals of the research were to extend the initial EBW CD study by increasing substantially the power level and pulse length of the gyrotron hardware and improve transmission line efficiency used in initial experiments. A dummy-load power level of up to 200 kW and a pulse length approaching 0.5 s has been achieved. Arcing, localized to the launcher box, has been observed to limit the launched power level to ~80 kW for up to 450 ms. Several days of high power plasma operation have been recently completed with good progress in increasing the previously attainable solenoid-free plasma current levels. Up to 75 kA of plasma current was achieved at this injected power level. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  7. A thermodynamical analysis of rf current drive with fast electrons

    NASA Astrophysics Data System (ADS)

    Bizarro, João P. S.

    2015-08-01

    The problem of rf current drive (CD) by pushing fast electrons with high-parallel-phase-velocity waves, such as lower-hybrid (LH) or electron-cyclotron (EC) waves, is revisited using the first and second laws, the former to retrieve the well-known one-dimensional (1D) steady-state CD efficiency, and the latter to calculate a lower bound for the rate of entropy production when approaching steady state. The laws of thermodynamics are written in a form that explicitly takes care of frictional dissipation and are thus applied to a population of fast electrons evolving under the influence of a dc electric field, rf waves, and collisions while in contact with a thermal, Maxwellian reservoir with a well-defined temperature. Besides the laws of macroscopic thermodynamics, there is recourse to basic elements of kinetic theory only, being assumed a residual dc electric field and a strong rf drive, capable of sustaining in the resonant region, where waves interact with electrons, a raised fast-electron tail distribution, which becomes an essentially flat plateau in the case of the 1D theory for LHCD. Within the 1D model, particularly suited for LHCD as it solely retains fast-electron dynamics in velocity space parallel to the ambient magnetic field, an H theorem for rf CD is also derived, which is written in different forms, and additional physics is recovered, such as the synergy between the dc and rf power sources, including the rf-induced hot conductivity, as well as the equation for electron-bulk heating. As much as possible 1D results are extended to 2D, to account for ECCD by also considering fast-electron velocity-space dynamics in the direction perpendicular to the magnetic field, which leads to a detailed discussion on how the definition of an rf-induced conductivity may depend on whether one works at constant rf current or power. Moreover, working out the collisional dissipated power and entropy-production rate written in terms of the fast-electron distribution, it

  8. A thermodynamical analysis of rf current drive with fast electrons

    SciTech Connect

    Bizarro, João P. S.

    2015-08-15

    The problem of rf current drive (CD) by pushing fast electrons with high-parallel-phase-velocity waves, such as lower-hybrid (LH) or electron-cyclotron (EC) waves, is revisited using the first and second laws, the former to retrieve the well-known one-dimensional (1D) steady-state CD efficiency, and the latter to calculate a lower bound for the rate of entropy production when approaching steady state. The laws of thermodynamics are written in a form that explicitly takes care of frictional dissipation and are thus applied to a population of fast electrons evolving under the influence of a dc electric field, rf waves, and collisions while in contact with a thermal, Maxwellian reservoir with a well-defined temperature. Besides the laws of macroscopic thermodynamics, there is recourse to basic elements of kinetic theory only, being assumed a residual dc electric field and a strong rf drive, capable of sustaining in the resonant region, where waves interact with electrons, a raised fast-electron tail distribution, which becomes an essentially flat plateau in the case of the 1D theory for LHCD. Within the 1D model, particularly suited for LHCD as it solely retains fast-electron dynamics in velocity space parallel to the ambient magnetic field, an H theorem for rf CD is also derived, which is written in different forms, and additional physics is recovered, such as the synergy between the dc and rf power sources, including the rf-induced hot conductivity, as well as the equation for electron-bulk heating. As much as possible 1D results are extended to 2D, to account for ECCD by also considering fast-electron velocity-space dynamics in the direction perpendicular to the magnetic field, which leads to a detailed discussion on how the definition of an rf-induced conductivity may depend on whether one works at constant rf current or power. Moreover, working out the collisional dissipated power and entropy-production rate written in terms of the fast-electron distribution, it

  9. Demodulation circuit for AC motor current spectral analysis

    DOEpatents

    Hendrix, Donald E.; Smith, Stephen F.

    1990-12-18

    A motor current analysis method for the remote, noninvasive inspection of electric motor-operated systems. Synchronous amplitude demodulation and phase demodulation circuits are used singly and in combination along with a frequency analyzer to produce improved spectral analysis of load-induced frequencies present in the electric current flowing in a motor-driven system.

  10. AC and DC transport currents in melt-grown YBCO

    SciTech Connect

    Yi, Z.; Ashworth, S.; Becluz, C.; Scurlock, R.G. )

    1991-03-01

    It has been suggested that the transport J{sub c} in multi-grain samples of bulk YBCO are limited by the intergrain links. This paper reports on preliminary measurements of intergrain currents. The intergrain critical currents in melt grown YBCO do not appear to be as sensitive to the precise crystallographic alignment of adjacent grains a has been reported for thin films. The measured critical current of similar grain boundaries varies widely, between 15000 A/cm{sup 2} and 200A/Cm{sub 2} for adjacent boundaries in the same sample.

  11. Current ramp-up with lower hybrid current drive in EAST

    SciTech Connect

    Ding, B. J.; Li, M. H.; Li, J. G.; Kong, E. H.; Zhang, L.; Wei, W.; Li, Y. C.; Wang, M.; Xu, H. D.; Gong, X. Z.; Shen, B.; Liu, F. K.; Shan, J. F.; Fisch, N. J.; Qin, H.; Wilson, J. R.; Collaboration: EAST Team

    2012-12-15

    More economical fusion reactors might be enabled through the cyclic operation of lower hybrid current drive. The first stage of cyclic operation would be to ramp up the plasma current with lower hybrid waves alone in low-density plasma. Such a current ramp-up was carried out successfully on the EAST tokamak. The plasma current was ramped up with a time-averaged rate of 18 kA/s with lower hybrid (LH) power. The average conversion efficiency P{sub el}/P{sub LH} was about 3%. Over a transient phase, faster ramp-up was obtained. These experiments feature a separate measurement of the L/R time at the time of current ramp up.

  12. New ac microammeter for leakage current measurement of biomedical equipment

    NASA Astrophysics Data System (ADS)

    Branca, F. P.; Del Prete, Z.; Marinozzi, F.

    1993-11-01

    A new inexpensive current probe for on-line leakage current measurement of biomedical devices in hospital environment is described. The prototype is designed to detect and measure leakage currents on the ground wire of the device's power cord so that its integrity can be monitored in real time. Realized with a sensing coil specially matched to a low-noise op amp, this probe adds only negligible impedance on the monitored ground lines. From this preliminary study about the device's metrological performances, a sensitivity of 10 nArms for a current range 1-500 μArms has emerged, together with a mean linearity error of 0.03% and a frequency response flat within 1% of gain from 50 to 2000 Hz.

  13. Spectral effects on fast wave core heating and current drive

    SciTech Connect

    Phillips, Cynthia; Bell, R. E.; Berry, Lee; Jaeger, Erwin Frederick; Ryan, Philip Michael; Wilgen, John B

    2009-01-01

    Recent results obtained with high harmonic fast wave (HHFW) heating and current drive (CD) on NSTX strongly support the hypothesis that the onset of perpendicular fast wave propagation right at or very near the launcher is a primary cause for a reduction in core heating efficiency at long wavelengths that is also observed in ICRF heating experiments in numerous tokamaks. A dramatic increase in core heating efficiency was first achieved in NSTX L-mode helium majority plasmas when the onset for perpendicular wave propagation was moved away from the antenna and nearby vessel structures. Efficient core heating in deuterium majority L-mode and H-mode discharges, in which the edge density is typically higher than in comparable helium majority plasmas, was then accomplished by reducing the edge density in front of the launcher with lithium conditioning and avoiding operational points prone to instabilities. These results indicate that careful tailoring of the edge density profiles in ITER should be considered to limit radio frequency (rf) power losses to the antenna and plasma facing materials. Finally, in plasmas with reduced rf power losses in the edge regions, the first direct measurements of HHFW CD were obtained with the motional Stark effect (MSE) diagnostic. The location and radial dependence of HHFW CD measured by MSE are in reasonable agreement with predictions from both full wave and ray tracing simulations.

  14. Fast electron transport in lower-hybrid current drive

    SciTech Connect

    Kupfer, K.; Bers, A.

    1991-01-01

    We generalize the quasilinear-Fokker-Planck formulation for lower-hybrid current drive to include the wave induced radial transport of fast electrons. Toroidal ray tracing shows that the wave fields in the plasma develop a large poloidal component associated with the upshift in k1l and the filling of the "spectral gap". These fields lead to an enhanced radial E x B drift of resonant electrons. Two types of radial flows are obtained: an outward convective flow driven by the asymmetry in the poloidal wave spectrum, and a diffusive flow proportional to the width of the poloidal spectrum. Simulations of Alcator C and JT60, show that the radial convection velocity has a broad maximum of nearly 1 m/sec and is independent of the amplitude of fields. In both cases, the radial diffusion is found to be highly localized near the magnetic axis. For JT60, the peak of the diffusion profile can be quite large, nearly 1 m2/sec.

  15. EBW Current Drive and Heating for Fusion/Fission Hybrids

    NASA Astrophysics Data System (ADS)

    Urban, Jakub; Preinhaelter, Josef; Vahala, George; Vahala, Linda; Decker, Joan; Ram, Abhay

    2011-10-01

    From the RF requirements for spherical tokamak and the need to reduce antenna exposure to neutron bombardment, EBW are an important source for both heating and current drive (CD). ICRF, LH, HHFW antennas are subject to significant neutron damage (as are NBI) because of their very large size and necessary proximity to the plasma. Recently Mahajan et. al. have studied other important uses of fusion neutrons - in particular their use in the efficient breeding of fission reactor fuel as well as in the ``rapid'' destruction of nuclear waste using their Compact High Power Density Fast Neutron Source (CFNS). For overdense plasmas the standard electromagnetic O- and X- mode experience cutoffs. EBW can propagate and be absorbed in such plasmas but its characteristics are strongly dependent on the plasma parameters with important variations in the parallel wave number. If the required temperatures in CFNS are around 35 KeV, then one will may need to revisit the electrostatic approximation and incorporate relativistic effects for EBW rays.

  16. Methods, systems and apparatus for controlling operation of two alternating current (AC) machines

    DOEpatents

    Gallegos-Lopez, Gabriel; Nagashima, James M.; Perisic, Milun; Hiti, Silva

    2012-02-14

    A system is provided for controlling two AC machines. The system comprises a DC input voltage source that provides a DC input voltage, a voltage boost command control module (VBCCM), a five-phase PWM inverter module coupled to the two AC machines, and a boost converter coupled to the inverter module and the DC input voltage source. The boost converter is designed to supply a new DC input voltage to the inverter module having a value that is greater than or equal to a value of the DC input voltage. The VBCCM generates a boost command signal (BCS) based on modulation indexes from the two AC machines. The BCS controls the boost converter such that the boost converter generates the new DC input voltage in response to the BCS. When the two AC machines require additional voltage that exceeds the DC input voltage required to meet a combined target mechanical power required by the two AC machines, the BCS controls the boost converter to drive the new DC input voltage generated by the boost converter to a value greater than the DC input voltage.

  17. Methods, systems and apparatus for controlling operation of two alternating current (AC) machines

    DOEpatents

    Gallegos-Lopez, Gabriel; Nagashima, James M.; Perisic, Milun; Hiti, Silva

    2012-06-05

    A system is provided for controlling two alternating current (AC) machines via a five-phase PWM inverter module. The system comprises a first control loop, a second control loop, and a current command adjustment module. The current command adjustment module operates in conjunction with the first control loop and the second control loop to continuously adjust current command signals that control the first AC machine and the second AC machine such that they share the input voltage available to them without compromising the target mechanical output power of either machine. This way, even when the phase voltage available to either one of the machines decreases, that machine outputs its target mechanical output power.

  18. The effects of theta transcranial alternating current stimulation (tACS) on fluid intelligence.

    PubMed

    Pahor, Anja; Jaušovec, Norbert

    2014-09-01

    The objective of the study was to explore the influence of transcranial alternating current stimulation (tACS) on resting brain activity and on measures of fluid intelligence. Theta tACS was applied to the left parietal and left frontal brain areas of healthy participants after which resting electroencephalogram (EEG) data was recorded. Following sham/active stimulation, the participants solved two tests of fluid intelligence while their EEG was recorded. The results showed that active theta tACS affected spectral power in theta and alpha frequency bands. In addition, active theta tACS improved performance on tests of fluid intelligence. This influence was more pronounced in the group of participants that received stimulation to the left parietal area than in the group of participants that received stimulation to the left frontal area. Left parietal tACS increased performance on the difficult test items of both tests (RAPM and PF&C) whereas left frontal tACS increased performance only on the easy test items of one test (RAPM). The observed behavioral tACS influences were also accompanied by changes in neuroelectric activity. The behavioral and neuroelectric data tentatively support the P-FIT neurobiological model of intelligence. PMID:24998643

  19. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOEpatents

    Konrad, C.E.; Boothe, R.W.

    1996-01-23

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements. 6 figs.

  20. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOEpatents

    Konrad, Charles E.; Boothe, Richard W.

    1994-01-01

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.

  1. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOEpatents

    Konrad, Charles E.; Boothe, Richard W.

    1996-01-01

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.

  2. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOEpatents

    Konrad, C.E.; Boothe, R.W.

    1994-02-15

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements. 6 figures.

  3. Targeting the neurophysiology of cognitive systems with transcranial alternating current stimulation (tACS)

    PubMed Central

    Fröhlich, Flavio; Sellers, Kristin K.; Cordle, Asa L.

    2015-01-01

    Cognitive impairment represents one of the most debilitating and most difficult symptom to treat of many psychiatric illnesses. Human neurophysiology studies have suggested specific pathologies of cortical network activity correlate with cognitive impairment. However, we lack (1) demonstration of causal relationships between specific network activity patterns and cognitive capabilities and (2) treatment modalities that directly target impaired network dynamics of cognition. Transcranial alternating current stimulation (tACS), a novel non-invasive brain stimulation approach, may provide a crucial tool to tackle these challenges. We here propose that tACS can be used to elucidate the causal role of cortical synchronization in cognition and, eventually, to enhance pathologically weakened synchrony that may underlie cognitive deficits. To accelerate such development of tACS as a treatment for cognitive deficits, we discuss studies on tACS and cognition (all performed in healthy participants) according to the Research Domain Criteria (RDoC) of the National Institute of Mental Health. PMID:25547149

  4. Lower hybrid current drive favoured by electron cyclotron radiofrequency heating

    SciTech Connect

    Cesario, R.; Cardinali, A.; Castaldo, C.; Marinucci, M.; Tuccillo, A. A.; Giruzzi, G.; Napoli, F.; Schettini, G.

    2014-02-12

    The important goal of adding to the bootstrap a fraction of non-inductive plasma current, which would be controlled for obtaining and optimizing steady-state profiles, can be reached by using the Current Drive produced by Lower Hybrid waves (LHCD). FTU (Frascati Tokamak Upgrade) experiments demonstrated, indeed, that LHCD is effective at reactor-graded high plasma density, and the LH spectral broadening is reduced, operating with higher electron temperature in the outer region of plasma column (T{sub e-periphery}). This method was obtained following the guidelines of theoretical predictions indicating that the broadening of launched spectrum produced by parametric instability (PI) should be reduced, and the LHCD effect at high density consequently enabled, under higher (T{sub e-periphery}). In FTU, the temperature increase in the outer plasma region was obtained by operating with reduced particle recycling, lithized walls and deep gas fuelling by means of fast pellet. Heating plasma periphery with electron cyclotron resonant waves (ECRH) will provide a further tool for achieving steady-state operations. New FTU experimental results are presented here, demonstrating that temperature effect at the plasma periphery, affecting LH penetration, occurs in a range of plasma parameters broader than in previous work. New information is also shown on the modelling assessing frequencies and growth rates of the PI coupled modes responsible of spectral broadening. Finally, we present the design of an experiment scheduled on FTU next campaign, where ECRH power is used to slightly increase the electron temperature in the outer plasma region of a high-density discharge aiming at restoring LHCD. Consequent to model results, by operating with a toroidal magnetic field of 6.3 T, useful for locating the electron cyclotron resonant layer at the periphery of the plasma column (r/a∼0.8, f{sub 0}=144 GHz), an increase of T{sub e} in the outer plasma (from 40 eV to 80 eV at r/a∼0.8) is

  5. Advances in modeling of lower hybrid current drive

    NASA Astrophysics Data System (ADS)

    Peysson, Y.; Decker, J.; Nilsson, E.; Artaud, J.-F.; Ekedahl, A.; Goniche, M.; Hillairet, J.; Ding, B.; Li, M.; Bonoli, P. T.; Shiraiwa, S.; Madi, M.

    2016-04-01

    First principle modeling of the lower hybrid (LH) current drive in tokamak plasmas is a longstanding activity, which is gradually gaining in accuracy thanks to quantitative comparisons with experimental observations. The ability to reproduce simulatenously the plasma current and the non-thermal bremsstrahlung radial profiles in the hard x-ray (HXR) photon energy range represents in this context a significant achievement. Though subject to limitations, ray tracing calculations are commonly used for describing wave propagation in conjunction with Fokker-Planck codes, as it can capture prominent features of the LH wave dynamics in a tokamak plasma-like toroidal refraction. This tool has been validated on several machines when the full absorption of the LH wave requires the transfer of a small fraction of power from the main lobes of the launched power spectrum to a tail at a higher parallel refractive index. Conversely, standard modeling based on toroidal refraction only becomes more challenging when the spectral gap is large, except if other physical mechanisms may dominate to bridge it, like parametric instabilities, as suggested for JET LH discharges (Cesario et al 2004 Phys. Rev. Lett. 92 175002), or fast fluctuations of the launched power spectrum or ‘tail’ LH model, as shown for Tore Supra (Decker et al 2014 Phys. Plasma 21 092504). The applicability of the heuristic ‘tail’ LH model is investigated for a broader range of plasma parameters as compared to the Tore Supra study and with different LH wave characteristics. Discrepancies and agreements between simulations and experiments depending upon the different models used are discussed. The existence of a ‘tail’ in the launched power spectrum significantly improves the agreement between modeling and experiments in plasma conditions for which the spectral gap is large in EAST and Alcator C-Mod tokamaks. For the Alcator C-Mod tokamak, the experimental evolution of the HXR profiles with density suggests

  6. Plasma Heating and Current Drive for Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Holtkamp, Norbert

    2010-02-01

    ITER (in Latin ``the way'') is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier one and thus release energy. In the fusion process two isotopes of hydrogen - deuterium and tritium - fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q >= 10 (input power 50 MW / output power 500 MW). In a Tokamak the definition of the functionalities and requirements for the Plasma Heating and Current Drive are relevant in the determination of the overall plant efficiency, the operation cost of the plant and the plant availability. This paper summarise these functionalities and requirements in perspective of the systems under construction in ITER. It discusses the further steps necessary to meet those requirements. Approximately one half of the total heating will be provided by two Neutral Beam injection systems at with energy of 1 MeV and a beam power of 16 MW into the plasma. For ITER specific test facility is being build in order to develop and test the Neutral Beam injectors. Remote handling maintenance scheme for the NB systems, critical during the nuclear phase of the project, will be developed. In addition the paper will give an overview over the general status of ITER. )

  7. The current status of the psychoanalytic theory of instinctual drives. I: Drive concept, classification, and development.

    PubMed

    Compton, A

    1983-07-01

    The evolution of Freud's theory of instinctual drives, with the accompanying models of a mental apparatus, is remarkable for its tenacious adherence to addressing the fundamental problems of human psychology, here phrased as the problems of body-mind-environment relationships. The concept of instinctual drives continues to be one of the most pervasive concepts of psychoanalysis, weathering considerable attack over the last several decades, although losing some clarity in the process. I have cited and discussed as basic issues of the concept of instinctual drives: the relationship of observational data and theoretical constructs in psychology; whether our construct of drives is or should be or can be purely psychological; the problem of conceptualizing the ontogenetic origin of mind; the issues of the "force-meaning conjunction" and the problem of psychic energy in psychoanalytic constructs; and the relation of our concept of instinctual drives to the concept of instincts in general. It seems that progress with these fundamental issues might be made by utilizing models that are more homologous with present knowledge in related fields than is Freud's reflex arc model of the nervous system, in order to build a better drive construct within the framework of psychoanalysis. The classification of instinctual drives remains a problem. Clinically, aggression seems to be a factor in conflict, very much like sexuality. Despite widespread acceptance of the idea of aggression as simply parallel to sexuality in all respects, there are major discrepancies. Perhaps aggression cannot be viewed as a drive after all; perhaps our drive construct needs to be modified to accommodate aggression. Certainly, controversy in this area has interfered with the production of good clinical studies which could begin to increase our understanding of aggression and its place in the human personality. The psychoanalytic theory of drive development has probably undergone less change in the last

  8. Modeling Results for 28 GHz Heating and Current Drive in the National Spherical Torus Experiment Upgrade (NSTX-U)

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Bertelli, N.; Ellis, R. A.; Gerhardt, S. P.; Harvey, R. W.; Hosea, J. C.; Poli, F.; Raman, R.; Smirnov, A. P.

    2013-10-01

    A megawatt-level, 28 GHz electron heating system is being planned to heat non-inductive (NI) start-up plasmas and to provide radially localized electron heating and current drive during H-mode discharges in NSTX-U. NSTX-U will operate at axial toroidal fields of up to 1 T and plasma currents, Ip, up to 2 MA. Development of fully NI plasmas is a critical long-term NSTX-U research goal that supports the design of a Fusion Nuclear Science Facility. 0.6 MW of 28 GHz electron cyclotron (EC) heating is predicted to increase the central electron temperature (Te(0)) of low density NI plasmas generated by Coaxial Helicity Injection (CHI) in NSTX-U from 10 eV to 400 eV in about 20 ms. The increased Te(0) will significantly reduce the plasma current decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. Eventually 28 GHz electron Bernstein wave (EBW) heating and current drive will be used during the Ip flat top in NSTX-U H-mode discharges when the plasma is overdense. This paper will present numerical RF simulation results for 28 GHz EC and EBW heating and current drive for NSTX-U discharges and a conceptual design for the 28 GHz heating system. Work supported by USDOE Contract No. DE-AC02-09CH11466.

  9. Transmission line component testing for the ITER Ion Cyclotron Heating and Current Drive System

    NASA Astrophysics Data System (ADS)

    Goulding, Richard; Bell, G. L.; Deibele, C. E.; McCarthy, M. P.; Rasmussen, D. A.; Swain, D. W.; Barber, G. C.; Barbier, C. N.; Cambell, I. H.; Moon, R. L.; Pesavento, P. V.; Fredd, E.; Greenough, N.; Kung, C.

    2014-10-01

    High power RF testing is underway to evaluate transmission line components for the ITER Ion Cyclotron Heating and Current Drive System. The transmission line has a characteristic impedance Z0 = 50 Ω and a nominal outer diameter of 305 mm. It is specified to carry up to 6 MW at VSWR = 1.5 for 3600 s pulses, with transient voltages up to 40 kV. The transmission line is actively cooled, with turbulent gas flow (N2) used to transfer heat from the inner to outer conductor, which is water cooled. High voltage and high current testing of components has been performed using resonant lines generating steady state voltages of 35 kV and transient voltages up to 60 kV. A resonant ring, which has operated with circulating power of 6 MW for 1 hr pulses, is being used to test high power, low VSWR operation. Components tested to date include gas barriers, straight sections of various lengths, and 90 degree elbows. Designs tested include gas barriers fabricated from quartz and aluminum nitride, and transmission lines with quartz and alumina inner conductor supports. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  10. The effect of 10 Hz transcranial alternating current stimulation (tACS) on corticomuscular coherence

    PubMed Central

    Wach, Claudia; Krause, Vanessa; Moliadze, Vera; Paulus, Walter; Schnitzler, Alfons; Pollok, Bettina

    2013-01-01

    Synchronous oscillatory activity at alpha (8–12 Hz), beta (13–30 Hz), and gamma (30–90 Hz) frequencies is assumed to play a key role for motor control. Corticomuscular coherence (CMC) represents an established measure of the pyramidal system's integrity. Transcranial alternating current stimulation (tACS) offers the possibility to modulate ongoing oscillatory activity. Behaviorally, 20 Hz tACS in healthy subjects has been shown to result in movement slowing. However, the neurophysiological changes underlying these effects are not entirely understood yet. The present study aimed at ascertaining the effects of tACS at 10 and 20 Hz in healthy subjects on CMC and local power of the primary sensorimotor cortex. Neuromagnetic activity was recorded during isometric contraction before and at two time points (2–10 min and 30–38 min) after tACS of the left primary motor cortex (M1), using a 306 channel whole head magnetoencephalography (MEG) system. Additionally, electromyography (EMG) of the right extensor digitorum communis (EDC) muscle was measured. TACS was applied at 10 and 20 Hz, respectively, for 10 min at 1 mA. Sham stimulation served as control condition. The data suggest that 10 Hz tACS significantly reduced low gamma band CMC during isometric contraction. This implies that tACS does not necessarily cause effects at stimulation frequency. Rather, the findings suggest cross-frequency interplay between alpha and low gamma band activity modulating functional interaction between motor cortex and muscle. PMID:24009573

  11. Low frequency RF current drive. Final report, January 1, 1988--May 31, 1997

    SciTech Connect

    Hershkowitz, N.

    1999-05-01

    This report starts with a summary of research done on the Phaedrus Tandom Mirror concept and how this research led to the design and construction of the Phaedrus-T Tokamak. Next it gives a more detailed description of the results from the last four years of research, which include the following areas: (1) first experimental demonstration of AWCD (Alfven Wave Current Drive); (2) current drive location and loop voltage response; (3) trapping and current drive efficiency; and (4) reflectometry.

  12. First results on fast wave current drive in advanced tokamak discharges in DIII-D

    SciTech Connect

    Prater, R.; Cary, W.P.; Baity, F.W.

    1995-07-01

    Initial experiments have been performed on the DIII-D tokamak on coupling, direct electron heating, and current drive by fast waves in advanced tokamak discharges. These experiments showed efficient central heating and current drive in agreement with theory in magnitude and profile. Extrapolating these results to temperature characteristic of a power plant (25 keV) gives current drive efficiency of about 0.3 MA/m{sup 2}.

  13. Fokker-Planck modeling of current penetration during electron cyclotron current drive

    SciTech Connect

    Merkulov, A.; Westerhof, E.; Schueller, F. C.

    2007-05-15

    The current penetration during electron cyclotron current drive (ECCD) on the resistive time scale is studied with a Fokker-Planck simulation, which includes a model for the magnetic diffusion that determines the parallel electric field evolution. The existence of the synergy between the inductive electric field and EC driven current complicates the process of the current penetration and invalidates the standard method of calculation in which Ohm's law is simply approximated by j-j{sub cd}={sigma}E. Here it is proposed to obtain at every time step a self-consistent approximation to the plasma resistivity from the Fokker-Planck code, which is then used in a concurrent calculation of the magnetic diffusion equation in order to obtain the inductive electric field at the next time step. A series of Fokker-Planck calculations including a self-consistent evolution of the inductive electric field has been performed. Both the ECCD power and the electron density have been varied, thus varying the well known nonlinearity parameter for ECCD P{sub rf}[MW/m{sup -3}]/n{sub e}{sup 2}[10{sup 19} m{sup -3}] [R. W. Harvey et al., Phys. Rev. Lett 62, 426 (1989)]. This parameter turns out also to be a good predictor of the synergetic effects. The results are then compared with the standard method of calculations of the current penetration using a transport code. At low values of the Harvey parameter, the standard method is in quantitative agreement with Fokker-Planck calculations. However, at high values of the Harvey parameter, synergy between ECCD and E{sub parallel} is found. In the case of cocurrent drive, this synergy leads to the generation of large amounts of nonthermal electrons and a concomitant increase of the electrical conductivity and current penetration time. In the case of countercurrent drive, the ECCD efficiency is suppressed by the synergy with E{sub parallel} while only a small amount of nonthermal electrons is produced.

  14. Numerical and theoretical evaluations of AC losses for single and infinite numbers of superconductor strips with direct and alternating transport currents in external AC magnetic field

    NASA Astrophysics Data System (ADS)

    Kajikawa, K.; Funaki, K.; Shikimachi, K.; Hirano, N.; Nagaya, S.

    2010-11-01

    AC losses in a superconductor strip are numerically evaluated by means of a finite element method formulated with a current vector potential. The expressions of AC losses in an infinite slab that corresponds to a simple model of infinitely stacked strips are also derived theoretically. It is assumed that the voltage-current characteristics of the superconductors are represented by Bean’s critical state model. The typical operation pattern of a Superconducting Magnetic Energy Storage (SMES) coil with direct and alternating transport currents in an external AC magnetic field is taken into account as the electromagnetic environment for both the single strip and the infinite slab. By using the obtained results of AC losses, the influences of the transport currents on the total losses are discussed quantitatively.

  15. Direct Detection of Pure ac Spin Current by X-Ray Pump-Probe Measurements.

    PubMed

    Li, J; Shelford, L R; Shafer, P; Tan, A; Deng, J X; Keatley, P S; Hwang, C; Arenholz, E; van der Laan, G; Hicken, R J; Qiu, Z Q

    2016-08-12

    Despite recent progress in spin-current research, the detection of spin current has mostly remained indirect. By synchronizing a microwave waveform with synchrotron x-ray pulses, we use the ferromagnetic resonance of the Py (Ni_{81}Fe_{19}) layer in a Py/Cu/Cu_{75}Mn_{25}/Cu/Co multilayer to pump a pure ac spin current into the Cu_{75}Mn_{25} and Co layers, and then directly probe the spin current within the Cu_{75}Mn_{25} layer and the spin dynamics of the Co layer by x-ray magnetic circular dichroism. This element-resolved pump-probe measurement unambiguously identifies the ac spin current in the Cu_{75}Mn_{25} layer. PMID:27563981

  16. Direct Detection of Pure ac Spin Current by X-Ray Pump-Probe Measurements

    NASA Astrophysics Data System (ADS)

    Li, J.; Shelford, L. R.; Shafer, P.; Tan, A.; Deng, J. X.; Keatley, P. S.; Hwang, C.; Arenholz, E.; van der Laan, G.; Hicken, R. J.; Qiu, Z. Q.

    2016-08-01

    Despite recent progress in spin-current research, the detection of spin current has mostly remained indirect. By synchronizing a microwave waveform with synchrotron x-ray pulses, we use the ferromagnetic resonance of the Py (Ni81Fe19 ) layer in a Py /Cu /Cu75Mn25/Cu /Co multilayer to pump a pure ac spin current into the Cu75Mn25 and Co layers, and then directly probe the spin current within the Cu75Mn25 layer and the spin dynamics of the Co layer by x-ray magnetic circular dichroism. This element-resolved pump-probe measurement unambiguously identifies the ac spin current in the Cu75Mn25 layer.

  17. Electron Cyclotron Current Drive by Radial Transport of Particles in the Continuous Current Tokamak

    NASA Astrophysics Data System (ADS)

    Park, Sanghyun

    In the Continuous Current Tokamak at the UCLA, electron cyclotron current drive (ECCD) experiments have been conducted in the absence of ohmic heating or any other power input. With X-band source of 30 kW lasting 1 mS launched from the high field side in X-mode, 240 A of plasma current has been generated at the neutral pressure corresponding to the critical density for the wave frequency. The Spitzer resistivity calculated from the L/R decay time of the current yielded an electron temperature of 100 eV. For the interest of mapping out radial profiles of wave and particle parameters, S-band sources at 2.45 GHz, 1.5 kW lasting 8 mS with duty cycle of 50% have been used for quasi-steady state current drive experiments. There are four launching structures; (1) Inside perpendicular, (2) Outside perpendicular, (3) Outside 60^circ, and (4) Outside -60^circ with respect to the toroidal magnetic field. It has been found that the four ways of microwaves give comparable results in plasma current driven. The plasma current measurements as a function of the radial location of the electron cyclotron resonance layer show a I_{rm p}~ -sin(pi r/a) where R_{res} = R_{0} + r for -a >=q r >=q O. The vertical field dependence has been shown to be I_{rm p}~ -x exp(-x^2) where x is a normalized vertical field for -inftycurrent is reversed as the applied vertical field is reversed for all four launch schemes. As a toroidal electric field is applied, the co(counter)-injection with cos^{-1}( k_0 cdot B_{t}) = +(-)60^circ give the same result in plasma current driven. The energy distribution of the current carrying electrons as determined by the biased, two-side Langmuir probe show that the current is carried by the bulk of the plasma electrons whose energy is comparable to the plasma electron temperature, and not by the high energy tail of the distribution as predicted by theories based on the Fokker-Planck equation. The vertical and toroidal field

  18. AC current distribution and losses in multifilamentary superconductors exposed to longitudinal magnetic field

    SciTech Connect

    Le Naour, S.; Lacaze, A.; Laumond, Y.; Estop, P.; Verhaege, T.

    1996-07-01

    The current distribution and also AC losses, in a multifilamentary superconductor carrying a transport current, are influenced by the self and the external magnetic field. By using the Maxwell equations, a model has been developed in order to calculate the temporal evolution of current distribution in a single wire exposed or not to external magnetic field. This model is based on the actual relationship of electrical field E with current density J and takes into account the twist pitch of the wire. AC losses are calculated by adding all local losses through the cross section. This paper presents calculations of the influence of the cable twist coupled with the longitudinal magnetic field, and also gives some ideas how to decrease losses.

  19. A Cost-Effective Energy-Recovering Sustain Driving Circuit for ac Plasma Display Panels

    NASA Astrophysics Data System (ADS)

    Lim, Jae Kwang; Tae, Heung-Sik; Choi, Byungcho; Kim, Seok Gi

    A new sustain driving circuit, featuring an energy-recovering function with simple structure and minimal component count, is proposed as a cost-effective solution for driving plasma display panels during the sustaining period. Compared with existing solutions, the proposed circuit reduces the number of semiconductor switches and reactive circuit components without compromising the circuit performance and gas-discharging characteristics. In addition, the proposed circuit utilizes the harness wire as an inductive circuit component, thereby further simplifying the circuit structure. The performance of the proposed circuit is confirmed with a 42-inch plasma display panel.

  20. Driving difficulties among military veterans: clinical needs and current intervention status.

    PubMed

    Possis, Elizabeth; Bui, Thao; Gavian, Margaret; Leskela, Jennie; Linardatos, Effie; Loughlin, Jennifer; Strom, Thad

    2014-06-01

    Military personnel deployed to Iraq and Afghanistan often develop mental health difficulties, which may manifest as problematic driving behavior. Veterans may be more likely to engage in risky driving and to subsequently be involved in motor vehicle accidents and fatalities. This article reviews literature on driving difficulties among military veterans and evaluates available research on the potential pathways that underlie risky driving behavior. Current interventions for problematic driving behaviors are considered, and the necessity of modifying these interventions to address the unique difficulties encountered by military veterans is highlighted. The review concludes with a discussion of clinical implications of these findings and identification of possible avenues for future research and intervention. PMID:24902130

  1. Eyes wide shut: Transcranial alternating current stimulation drives alpha rhythm in a state dependent manner.

    PubMed

    Ruhnau, Philipp; Neuling, Toralf; Fuscá, Marco; Herrmann, Christoph S; Demarchi, Gianpaolo; Weisz, Nathan

    2016-01-01

    Transcranial alternating current stimulation (tACS) is used to modulate brain oscillations to measure changes in cognitive function. It is only since recently that brain activity in human subjects during tACS can be investigated. The present study aims to investigate the phase relationship between the external tACS signal and concurrent brain activity. Subjects were stimulated with tACS at individual alpha frequency during eyes open and eyes closed resting states. Electrodes were placed at Cz and Oz, which should affect parieto-occipital areas most strongly. Source space magnetoencephalography (MEG) data were used to estimate phase coherence between tACS and brain activity. Phase coherence was significantly increased in areas in the occipital pole in eyes open resting state only. The lag between tACS and brain responses showed considerable inter-individual variability. In conclusion, tACS at individual alpha frequency entrains brain activity in visual cortices. Interestingly, this effect is state dependent and is clearly observed with eyes open but only to a lesser extent with eyes closed. PMID:27252047

  2. Eyes wide shut: Transcranial alternating current stimulation drives alpha rhythm in a state dependent manner

    PubMed Central

    Ruhnau, Philipp; Neuling, Toralf; Fuscá, Marco; Herrmann, Christoph S.; Demarchi, Gianpaolo; Weisz, Nathan

    2016-01-01

    Transcranial alternating current stimulation (tACS) is used to modulate brain oscillations to measure changes in cognitive function. It is only since recently that brain activity in human subjects during tACS can be investigated. The present study aims to investigate the phase relationship between the external tACS signal and concurrent brain activity. Subjects were stimulated with tACS at individual alpha frequency during eyes open and eyes closed resting states. Electrodes were placed at Cz and Oz, which should affect parieto-occipital areas most strongly. Source space magnetoencephalography (MEG) data were used to estimate phase coherence between tACS and brain activity. Phase coherence was significantly increased in areas in the occipital pole in eyes open resting state only. The lag between tACS and brain responses showed considerable inter-individual variability. In conclusion, tACS at individual alpha frequency entrains brain activity in visual cortices. Interestingly, this effect is state dependent and is clearly observed with eyes open but only to a lesser extent with eyes closed. PMID:27252047

  3. ELECTRON CYCLOTRON CURRENT DRIVE IN DIII-D: EXPERIMENT AND THEORY

    SciTech Connect

    PRATER,R; PETTY,CC; LUCE,TC; HARVEY,RW; CHOI,M; LAHAYE,RJ; LIN-LIU,Y-R; LOHR,J; MURAKAMI,M; WADE,MR; WONG,K-L

    2003-07-01

    A271 ELECTRON CYCLOTRON CURRENT DRIVE IN DIII-D: EXPERIMENT AND THEORY. Experiments on the DIII-D tokamak in which the measured off-axis electron cyclotron current drive has been compared systematically to theory over a broad range of parameters have shown that the Fokker-Planck code CQL3D provides an excellent model of the relevant current drive physics. This physics understanding has been critical in optimizing the application of ECCD to high performance discharges, supporting such applications as suppression of neoclassical tearing modes and control and sustainment of the current profile.

  4. Finite element analysis of current flowing patterns and AC loss in the multifilament strand

    NASA Astrophysics Data System (ADS)

    Ta, Wurui; Li, Yingxu; Gao, Yuanwen

    2013-12-01

    Intrinsic current flow and field distribution scheme under the imposed low current injection and the applied weak field is meaningful to interpret Ic degradation and AC loss in a strand that performs as a normal composite conductor. A 2D finite element (FE) transport model is built in COMSOL to identify the various transverse resistance components and reveal the interrelation among them. Then the transverse resistivity components are taken as the basic electrical components in a 3D composite strand model. The 3D model follows the realistic trajectories of twisted filaments in strand composite and experimental material properties. To address the potential/current map in the stationary transport, the FE model is thoroughly analyzed for the short-sample and long-sample strand, imposed by two in-plane steady current injections and a potential boundary condition at one strand end with the other end grounded, respectively. The results show that the short-sample longitudinal current is uniform with little resistivity loss, and flows from the positive source and converges to the negative one in the cross section with different paths and current proportions between filaments and matrix. However, for the long-sample, there is a serious reduction in electric potential along the strand axis and the currents mostly concentrate on filaments. The time-varying problem is also implemented by computing AC loss induced by a relatively far-away alternating line current. It is discussed where appropriate that the effect of the twist pitch and contact resistivity on the pattern and magnitude of the current flow and AC loss.

  5. An Annotated Bibliography of High-Voltage Direct-Current Transmission and Flexible AC Transmission (FACTS) Devices, 1991-1993.

    SciTech Connect

    Litzenberger, Wayne; Lava, Val

    1994-08-01

    References are contained for HVDC systems, converter stations and components, overhead transmission lines, cable transmission, system design and operations, simulation of high voltage direct current systems, high-voltage direct current installations, and flexible AC transmission system (FACTS).

  6. High performance control of a three-level IGBT inverter fed AC drive

    SciTech Connect

    Zhang, J.

    1995-12-31

    Three-level PWM inverters have been increasingly employed in industry and traction applications where high power and efficiency energy conversions are required. This paper presents a high performance control of a cage induction motor drive fed by a 100 Hp three-level IGBT inverter operating at a low switching frequency. A practical math model of the drive control system is established to aid in the control design to improve the system stability, dynamic performance and robustness over a wide speed range. The modeling and the simulation in Matlab/Simulink facilitate the self-tuning of the regulators in the multi-loop systems. The field oriented control and three-level space-vector modulation together with the drive protection and diagnostics are implemented in software based on a DSP TMS320C31. Experimental results based on the IGBT inverter prototype are given to verify the design and performance. Test results in motor common-mode voltage reduction and inverter neutral-point potential control re also briefly presented.

  7. Temporal behavior of the plasma current distribution in the ASDEX tokamak during lower-hybrid current drive

    SciTech Connect

    McCormick, K.; Soeldner, F.X.; Eckhartt, D.; Leuterer, F.; Murmann, H.; Derfler, H.; Eberhagen, A.; Gehre, O.; Gernhardt, J.; Gierke, G.v.; and others

    1987-02-02

    Measurements of the time evolution of the current-density distribution in ASDEX show that lower-hybrid current drive leads to broader profiles, whereby q increases from qapprox. <1 to q>1 in the plasma central region. Simultaneously, the electron temperature is observed to peak, thus demonstrating that the lower-hybrid--driven current distribution is decoupled from the classical conductivity profile.

  8. Switch contact device for interrupting high current, high voltage, AC and DC circuits

    DOEpatents

    Via, Lester C.; Witherspoon, F. Douglas; Ryan, John M.

    2005-01-04

    A high voltage switch contact structure capable of interrupting high voltage, high current AC and DC circuits. The contact structure confines the arc created when contacts open to the thin area between two insulating surfaces in intimate contact. This forces the arc into the shape of a thin sheet which loses heat energy far more rapidly than an arc column having a circular cross-section. These high heat losses require a dramatic increase in the voltage required to maintain the arc, thus extinguishing it when the required voltage exceeds the available voltage. The arc extinguishing process with this invention is not dependent on the occurrence of a current zero crossing and, consequently, is capable of rapidly interrupting both AC and DC circuits. The contact structure achieves its high performance without the use of sulfur hexafluoride.

  9. Novel current drive experiments on the CDX-U, HIT, and DIII-D Tokamaks

    SciTech Connect

    Ono, M.; Forest, C.B.; Hwang, Y.S.; Armstrong, R.J.; Choe, W.; Darrow, D.S.; Greene, G.; Jones, T. . Plasma Physics Lab.); Jarboe, T.R.; Martin, A.; Nelson, B.A.; Orvis, D.; Painter, C.; Zhou, L.; Rogers, J.A. ); Schaffer, M.J.; Hyatt, A.W.; Pinsker, R.I.; Staebler, G.M.; Stambaugh, R.D.; Strait, E.J.; Greene, K.L.; Leuer, J.A.; Lohr, J.

    1992-01-01

    Two types of novel, non-inductive current drive concepts for starting-up and maintaining tokamak discharges have been developed on the CDX-U, HIT, and DIII-D Tokamaks. On CDX-U, a new, non-inductive current drive technique utilizing fully internally generated pressure driven currents has been demonstrated. The measured current density profile shows a non-hollow profile which agrees with a modeling calculation including helicity conserving non-classical current transport providing the seed current''. Another current drive concept, dc-helicity injection, has been investigated on, CDX-U, HIT and DIII-D. This method utilizes injection of magnetic helicity via low energy electron currents, maintaining the plasma current through helicity conserving relaxiation. In these experiments, non-ohmic tokamak plasmas were formed and maintained in the tens of kA range.

  10. Novel current drive experiments on the CDX-U, HIT, and DIII-D Tokamaks

    SciTech Connect

    Ono, M.; Forest, C.B.; Hwang, Y.S.; Armstrong, R.J.; Choe, W.; Darrow, D.S.; Greene, G.; Jones, T.; Jarboe, T.R.; Martin, A.; Nelson, B.A.; Orvis, D.; Painter, C.; Zhou, L.; Rogers, J.A.; Schaffer, M.J.; Hyatt, A.W.; Pinsker, R.I.; Staebler, G.M.; Stambaugh, R.D.; Strait, E.J.; Greene, K.L.; Leuer, J.A.; Lohr, J.M.

    1992-10-01

    Two types of novel, non-inductive current drive concepts for starting-up and maintaining tokamak discharges have been developed on the CDX-U, HIT, and DIII-D Tokamaks. On CDX-U, a new, non-inductive current drive technique utilizing fully internally generated pressure driven currents has been demonstrated. The measured current density profile shows a non-hollow profile which agrees with a modeling calculation including helicity conserving non-classical current transport providing the ``seed current``. Another current drive concept, dc-helicity injection, has been investigated on, CDX-U, HIT and DIII-D. This method utilizes injection of magnetic helicity via low energy electron currents, maintaining the plasma current through helicity conserving relaxiation. In these experiments, non-ohmic tokamak plasmas were formed and maintained in the tens of kA range.

  11. Observation of Lower-Hybrid Current Drive at High Densities in the Alcator C Tokamak

    NASA Astrophysics Data System (ADS)

    Porkolab, M.; Schuss, J. J.; Lloyd, B.; Takase, Y.; Texter, S.; Bonoli, P.; Fiore, C.; Gandy, R.; Gwinn, D.; Lipschultz, B.; Marmar, E.; Pappas, D.; Parker, R.; Pribyl, P.

    1984-07-01

    A quasi-steady-state lower-hybrid current-drive operation is demonstrated in the Alcator C tokamak at densities up to n―e~=1×1014 cm-3. The current-drive efficiency is measured experimentally over a wide range of densities and magnetic fields. The radial distribution of high-energy x rays indicates that the current-carrying electrons peak near the plasma axis.

  12. Lower hybrid current drive in the PLT tokamak

    SciTech Connect

    Bernabei, S.; Daughney, C.; Efthimion, P.

    1982-07-01

    Order of magnitude improvements in the level and duration of current driven by lower hybrid waves have been achieved in the PLT tokamak. Steady currents up to 175 kA have been maintained for three seconds and 400 kA for 0.3 sec by the rf power alone. The principal current carrier appears to be a high energy (approx. 100 keV) electron component, concentrated in the central 20 to 40 cm diameter core of the 80 cm PLT discharge.

  13. 40Hz-Transcranial alternating current stimulation (tACS) selectively modulates speech perception.

    PubMed

    Rufener, Katharina S; Zaehle, Tino; Oechslin, Mathias S; Meyer, Martin

    2016-03-01

    The present study investigated the functional relevance of gamma oscillations for the processing of rapidly changing acoustic features in speech signals. For this purpose we analyzed repetition-induced perceptual learning effects in 18 healthy adult participants. The participants received either 6Hz or 40Hz tACS over the bilateral auditory cortex, while repeatedly performing a phoneme categorization task. In result, we found that 40Hz tACS led to a specific alteration in repetition-induced perceptual learning. While participants in the non-stimulated control group as well as those in the experimental group receiving 6Hz tACS considerably improved their perceptual performance, the application of 40Hz tACS selectively attenuated the repetition-induced improvement in phoneme categorization abilities. Our data provide causal evidence for a functional relevance of gamma oscillations during the perceptual learning of acoustic speech features. Moreover, we demonstrate that even less than twenty minutes of alternating current stimulation below the individual perceptual threshold is sufficient to affect speech perception. This finding is relevant in that this novel approach might have implications with respect to impaired speech processing in dyslexics and older adults. PMID:26779822

  14. SIM regional comparison of ac-dc current transfer difference SIM.EM-K12

    NASA Astrophysics Data System (ADS)

    Di Lillo, Lucas

    2015-01-01

    The ac-dc current transfer difference identified as SIM.EM.K-12 began in July 2010 and was completed in September 2012. Six NMIs in the SIM region and one NMI in the AFRIMET region took part: NRC (Canada), NIST (United States of America), CENAM (Mexico), INTI (Argentina), UTE (Uruguay), INMETRO (Brazil) and NIS (Egypt). The comparisons were proposed to assess the measurement capabilities in ac-dc current transfer difference of the participants NMIs. The ac-dc current transfer differences of the travelling standard had been measured at 10 mA and 5 A at 10 Hz, 55 Hz, 1 kHz, 10 kHz, 20 kHz, 50 kHz and 100 kHz. The test points were selected to link the results with the equivalent CCEM Key Comparisons (CCEM-K12), through three NMIs participating in both SIM and CCEM key comparisons (INTI, NRC and NIST). The report shows the degree of equivalence in the SIM region and also the degree of equivalence with the corresponding CCEM reference value. The results of all participants support the values and uncertainties of the applicable CMC entries for ac-dc current transfer difference in the Key Comparison Database held at the BIPM. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  15. Modeling of Trapped Electron Effects on Electron Cyclotron Current Drive for Recent DIII-D Experiments

    SciTech Connect

    Lin-Liu, Y.R.; Sauter, O.; Harvey, R.W.; Chan, V.S.; Luce, T.C.; Prater, R.

    1999-08-01

    Owing to its potential capability of generating localized non-inductive current, especially off-axis, Electron Cyclotron Current Drive (ECCD) is considered a leading candidate for current profile control in achieving Advanced Tokamak (AT) operation. In recent DIII-D proof-of-principle experiments [1], localized off-axis ECCD has been clearly demonstrated for first time. The measured current drive efficiency near the magnetic axis agrees well with predictions of the bounce-averaged Fokker-Planck theory [2,3]. However, the off-axis current drive efficiency was observed to exceed the theoretical results, which predict significant degradation of the current drive efficiency due to trapped electron effects. The theoretical calculations have been based on an assumption that the effective collision frequency is much smaller than the bounce frequency such that the trapped electrons are allowed to complete the banana orbit at all energies. The assumption might be justified in reactor-grade tokamak plasmas, in which the electron temperature is sufficiently high or the velocity of resonant electrons is much larger than the thermal velocity, so that the influence of collisionality on current drive efficiency can be neglected. For off-axis deposition in the present-day experiments, the effect of high density and low temperature is to reduce the current drive efficiency, but the increasing collisionality reduces the trapping of current-carrying electrons, leading to compensating increases in the current drive efficiency. In this work, we use the adjoint function formulation [4] to examine collisionality effects on the current drive efficiency.

  16. Review of the experimental papers at the IAEA conference on noninductive current drive, Culham, 1983

    SciTech Connect

    Motley, R.W.

    1983-10-01

    Three types of noninductive current drive experiments have been reported at this conference: (1) neutral beam (2) rf current drive, and (3) relativistic electron beams (REB). If we compare the effort to develop current drive to a horse race, the neutral beam horse was first out of the gates, but it quickly found greener pastures (heating) and has dropped temporarily out of the race. The lower hybrid horse now has a big lead at the first furlong (200 m), but the bulk of the race remains to be run. The fast wave and REB horses have yet to get up speed.

  17. Confinement improvement with rf poloidal current drive in the reversed-field pinch

    SciTech Connect

    Hokin, S.; Sarff, J.; Sovinec, C.; Uchimoto, E.

    1994-03-08

    External control of the current profile in a reversed-field pinch (RFP), by means such as rf poloidal current drive, may have beneficial effects well beyond the direct reduction of Ohmic input power due to auxiliary heating. Reduction of magnetic turbulence associated with the dynamo, which drives poloidal current in a conventional RFP, may allow operation at lower density and higher electron temperature, for which rf current drive becomes efficient and the RFP operates in a more favorable regime on the n{tau} vs T diagram. Projected parameters for RFX at 2 MA axe studied as a concrete example. If rf current drive allows RFX to operate with {beta} = 10% (plasma energy/magnetic energy) at low density (3 {times} 10{sup 19} m{sup {minus}3}) with classical resistivity (i.e. without dynamo-enhanced power input), 40 ms energy confinement times and 3 keV temperatures will result, matching the performance of tokamaks of similar size.

  18. Determination of the Electron Cyclotron Current Drive Profile

    SciTech Connect

    Luce, T.C.; Petty, C.C.; Schuster, D.I.; Makowski, M.A.

    1999-11-01

    Evaluation of the profile of non-inductive current density driven by absorption of electron cyclotron waves (ECCD) using time evolution of the poloidal flux indicated a broader profile than predicted by theory. To determine the nature of this broadening, a 1-1/2 D transport calculation of current density evolution was used to generate the signals which the DIII-D motional Stark effect (MSE) diagnostic would measure in the event that the current density evolution followed the neoclassical Ohm's law with the theoretical ECCD profile. Comparison with the measured MSE data indicates the experimental data is consistent with the ECCD profile predicted by theory. The simulations yield a lower limit on the magnitude of the ECCD which is at or above the value found in Fokker-Planck calculations of the ECCD including quasilinear and parallel electric field effects.

  19. D Helicity Injection Studies on the Current Drive Experiment

    NASA Astrophysics Data System (ADS)

    Darrow, Douglass Sterling

    A tokamak-like plasma has been created and sustained in the CDX device solely by means of an electron beam. The poloidal field structure observed is that of a tokamak and the density and temperatures seen are larger than in previous types of plasmas generated in this device. A plasma current scaling consistent with the helicity balance equation is observed and about 40% of the injected helicity appears in the tokamak plasma. Rapid transport of current from the region of injection to the center produces a peaked current profile. Plasmas with beta in the neighborhood of the Troyon-Sykes limit may be generated by this technique. In high-beta plasmas, a coherent fluctuation is seen which has its largest amplitude in a region of unfavorable curvature. The mode is absent below a certain density and plasma current, corresponding to a threshold beta. When present, the mode has an m = 4 structure and it propagates in the ion diamagnetic direction. These properties identify it as a ballooning mode. A significant radial electric field alters the observed frequency and dispersion of the mode.

  20. Current drive with the second ECR harmonic on T-10

    SciTech Connect

    Alikaev, V.V.; Bagdasarov, A.A.; Borshegovskij, A.A.; Dremin, M.M.; Esipchuk, Y.V.; Gorelov, Y.A.; Ivanov, N.V.; Kislov, A.Y.; Kuznetsova, L.K.; Notkin, G.E.; Pavlov, Y.D.; Razumova, K.A.; Roy, I.N.; Vasin, N.L.; Vershkov, V.A. , Moscow ); Forest, C.B.; Lohr, J.; Luce, T.C.; Harvey, R.W. ); The T-10 Team

    1994-10-15

    The experiments on ECCD on the second harmonic were done. Current about 35 kA was generated. The efficiency of ECCD and its dependencies on plasma parameters were measured. Not all observed phenomena may be explained by the predictions of linear theory.

  1. Simulation analysis of three-phase current type AC-to-DC converter with high power factor

    SciTech Connect

    Okui, Yoshiaki; Yamada, Hajime

    1997-03-01

    A new three-phase current type AC-to-DC converter has been developed by the authors. This paper describes the principle of the circuit operation and the circuit configuration of the AC-to-DC converter controlled by PWM. Simulation analysis of each waveform, such as AC and DC voltages and currents, are calculated by Euler`s method. The simulated values of the total power factor agreed with the measured values within the difference of 5.8% on the condition of full load, 10kW. When the AC side voltage is unbalanced, it is found by simulation that the total harmonic distortion controlled by both feedforward control and AC side current feedback control (proportion gain, k{sub 4} = 1) is restrained at only 38% compared with only feedforward control (k{sub 4} = 0).

  2. Isotopic effect in experiments on lower hybrid current drive in the FT-2 tokamak

    SciTech Connect

    Lashkul, S. I. Altukhov, A. B.; Gurchenko, A. D. Gusakov, E. Z.; D’yachenko, V. V.; Esipov, L. A.; Irzak, M. A. Kantor, M. Yu.; Kouprienko, D. V.; Saveliev, A. N.; Stepanov, A. Yu.; Shatalin, S. V.

    2015-12-15

    To analyze factors influencing the limiting value of the plasma density at which lower hybrid (LH) current drive terminates, the isotopic factor (the difference in the LH resonance densities in hydrogen and deuterium plasmas) was used for the first time in experiments carried out at the FT-2 tokamak. It is experimentally found that the efficiency of LH current drive in deuterium plasma is appreciably higher than that in hydrogen plasma. The significant role of the parametric decay of the LH pumping wave, which hampers the use of the LH range of RF waves for current drive at high plasma densities, is confirmed. It is demonstrated that the parameters characterizing LH current drive agree well with the earlier results obtained at large tokamaks.

  3. Heating and current drive on NSTX and HHFW experiments on CDX-U

    SciTech Connect

    Wilson, J.R.; Hosea, J.; Grisham, L.

    1998-07-01

    The NSTX (National Spherical Torus Experiment) device to be built at Princeton is a low-aspect-ratio toroidal device that has the achievement of high toroidal beta ({approximately} 45%) and noninductive operation as two of its main research goals. To achieve these goals, significant auxiliary-heating and current-drive systems are required. Present plans include ECH (electron cyclotron heating) for preionized and start-up assist, HHFW (high harmonic fast wave) for heating and current drive, and, eventually, NBI (neutral-beam injection) for heating, current drive and plasma rotation. In support of the NSTX program, experimental tests of HHFW physics have been performed on the Current Drive Experiment-Upgrade (CDX-U).

  4. Simulations of EBW current drive and power deposition in the WEGA Stellarator

    SciTech Connect

    Preinhaelter, J.; Urban, J.; Vahala, L.; Vahala, G.

    2009-11-26

    The WEGA stellarator is well suited for fundamental electron Bernstein wave (EBW) studies. Heating and current drive experiments at 2.45 GHz and 28 GHz, carried out in WEGA's low temperature, steady state overdense plasmas, were supported by intensive modelling. We employ our AMR (Antenna-Mode-conversion-Ray-tracing) code to calculate the O-X-EBW conversion efficiency with a full-wave equation solver, while the power deposition and current drive profiles using ray tracing. Several phenomena have been studied and understood. Particularly, EBW current drive was theoretically predicted and experimentally detected at 2.45 GHz. Simulations confirmed the presence of two (cold and hot) electron components and the resonant behaviour of the EBW power deposition and its dependence on the magnetic field configuration. Furthermore, the code is used to predict the 28 GHz heating and current drive performance and to simulate EBW emission spectra.

  5. Coupling of α-channeling to |k∥| upshift in lower hybrid current drive

    SciTech Connect

    Ochs, I. E.; Bertelli, N.; Fisch, N. J.

    2014-08-26

    Although lower hybrid waves have been shown to be effective in driving plasma current in present-day tokamaks, they are predicted to strongly interact with the energetic α particles born from fusion reactions in eventual tokamak reactors.

  6. Oscillating-field current-drive experiments in a reversed field pinch.

    PubMed

    McCollam, K J; Blair, A P; Prager, S C; Sarff, J S

    2006-01-27

    Oscillating-field current drive (OFCD) is a steady-state magnetic helicity injection method to drive net toroidal current in a plasma by applying oscillating poloidal and toroidal loop voltages. OFCD is added to standard toroidal induction to produce about 10% of the total current in the Madison symmetric torus. The dependence of the added current on the phase between the two applied voltages is measured. Maximum current does not occur at the phase of the maximum helicity injection rate. Effects of OFCD on magnetic fluctuations and dissipated power are shown. PMID:16486717

  7. HEATING AND CURRENT DRIVE IN NSTX WITH ELECTRON BERNSTEIN WAVES AND HIGH HARMONIC FAST WAVES

    SciTech Connect

    Ram, Abhay K

    2010-06-14

    A suitable theoretical and computational framework for studying heating and current drive by electron Bernstein waves in the National Spherical Torus Experiment has been developed. This framework can also be used to study heating and current drive by electron Bernstein waves in spherical tori and other magnetic confinement devices. It is also useful in studying the propagation and damping of electron cyclotron waves in the International Thermonuclear Experimental Reactor

  8. Reversed field pinch current drive with oscillating helical fields

    SciTech Connect

    Farengo, Ricardo; Clemente, Roberto Antonio

    2006-04-15

    The use of oscillating helical magnetic fields to produce and sustain the toroidal and poloidal currents in a reversed field pinch (RFP) is investigated. A simple physical model that assumes fixed ions, massless electrons, and uniform density and resistivity is employed. Thermal effects are neglected in Ohm's law and helical coordinates are introduced to reduce the number of coupled nonlinear equations that must be advanced in time. The results show that it is possible to produce RFP-like magnetic field profiles with pinch parameters close to the experimental values. The efficiencies obtained for moderate resistivity, and the observed scaling, indicate that this could be a very attractive method for high temperature plasmas.

  9. Approach for Wide Use of Diagnostic Method for XLPE Cables Using Harmonics in AC Loss Current

    NASA Astrophysics Data System (ADS)

    Tsujimoto, Tomiyuki; Nakade, Masahiko; Yagi, Yukihiro; Ishii, Noboru

    Water tree is one of the degradation aspects of XLPE cables used for under-ground distribution or transmission lines. We have developed the loss current method using 3rd harmonic in AC loss current for cable diagnosis. Harmonic components in loss current arise as a result of the non-linear voltage-current characteristics of water trees. We confirmed that the 3rd harmonic in AC loss current had good correlation with water tree growth and break down strength. After that, we have applied this method to the actual 66kV XLPE cable lines. Up to now, the number of the application results is more than 130 lines. In case of cable lines terminated at gas-insulated switchgear (GIS), we have to remove the lightning arrestor (LA) and the potential transformer (PT) out of the test circuit. The reason is that we are afraid that each of LA and PT disturbs the degradation signal from cable lines. It takes extra time (1 or 2 days) and costs more to remove LA and PT in GIS out of a circuit. In order to achieve easy and reasonable diagnosis, we have developed a new method for cable lines terminated at GIS, by utilizing a technique, which enables to reduce signal of LA and PT from disturbed signal of cable lines. We confirmed the effect of the new method by experiments with actual cables.

  10. Current Research Activities in Drive System Technology in Support of the NASA Rotorcraft Program

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Zakrajsek, James J.

    2006-01-01

    Drive system technology is a key area for improving rotorcraft performance, noise/vibration reduction, and reducing operational and manufacturing costs. An overview of current research areas that support the NASA Rotorcraft Program will be provided. Work in drive system technology is mainly focused within three research areas: advanced components, thermal behavior/emergency lubrication system operation, and diagnostics/prognostics (also known as Health and Usage Monitoring Systems (HUMS)). Current research activities in each of these activities will be presented. Also, an overview of the conceptual drive system requirements and possible arrangements for the Heavy Lift Rotorcraft program will be reviewed.

  11. Measurement of helicon wave coupling for current drive and anticipated role for high beta KSTAR plasmas

    NASA Astrophysics Data System (ADS)

    Wang, S. J.; Kim, H. J.; Joung, M.; Jeong, J. H.; Kim, J. H.; Bae, Y. S.; Kwak, J. G.; Wi, H. H.; Kim, H.-S.

    2015-11-01

    Helicon wave current drive has been suggested for efficient off-axis current drive in high electron beta tokamak plasmas. Fast wave drives centrally peaking current in the frequency range up to several ion cyclotron harmonics in the present tokamaks, such as KSTAR. Increasing fast wave frequency up to LH resonance frequency at the plasma edge, the spiral propagation of wave at the outer region of plasma lengthens the wave path to the plasma center. Also, optical thickness increases with frequency. It is expected that these effects produce efficient off-axis power deposition depending on the electron beta and magnetic field pitch. A low power TWA for helicon wave was installed and tested in KSTAR tokamak which is aiming for the steady-state high beta plasma requiring off-axis current drive. The power coupling properties of TWA at various plasma conditions will be presented. In addition to the coupling efficiency, issues such as load sensitivity and unwanted slow wave coupling will be addressed. Also, the simulation of plasma performance with the combination of helicon wave current drive and other conventional heating and current drive power in KSTAR will be discussed. This work was supported by the Korean Ministry of Science, ICT and Future Planning and by R&D Program through the National Fusion Research Institute of Korea (NFRI) funded by the Government funds.

  12. Nonlinear dynamics, rectification, and phase locking for particles on symmetrical two-dimensional periodic substrates with dc and circular ac drives.

    PubMed

    Reichhardt, C; Olson Reichhardt, C J; Hastings, M B

    2004-05-01

    We investigate the dynamical motion of particles on a two-dimensional symmetric periodic substrate in the presence of both a dc drive along a symmetry direction of the periodic substrate and an additional circular ac drive. For large enough ac drives, the particle orbit encircles one or more potential maxima of the periodic substrate. In this case, when an additional increasing dc drive is applied in the longitudinal direction, the longitudinal velocity increases in a series of discrete steps that are integer multiples of a omega/(2 pi), where a is the lattice constant of the substrate. Fractional steps can also occur. These integer and fractional steps correspond to distinct stable dynamical orbits. A number of these phases also show a rectification in the positive or negative transverse direction where a nonzero transverse velocity occurs in the absence of a dc transverse drive. We map out the phase diagrams of the regions of rectification as a function of ac amplitude, and find a series of tongues. Most of the features, including the steps in the longitudinal velocity and the transverse rectification, can be captured with a simple toy model and by arguments from nonlinear maps. We have also investigated the effects of thermal disorder and incommensuration on the rectification phenomena, and find that for increasing disorder, the rectification regions are gradually smeared and the longitudinal velocity steps are no longer flat but show a linearly increasing velocity. PMID:15244891

  13. Co-counter asymmetry in fast wave heating and current drive

    SciTech Connect

    Jaeger, E.F.; Carter, M.D.; Berry, L.A.; Batchelor, D.B.; Forest, C.B.; Weitzner, H.

    1997-04-01

    Full wave ICRF coupling models show differences in plasma response when antenna arrays are phase to drive currents and counter to the plasma current. The source of this difference lies in the natural up- sown asymmetry of the antenna`s radiated power spectrum. This asymmetry is due to Hall terms in the wave equation, and occurs even without a poloidal magnetic field. When a poloidal field is included, the up-down asymmetry acquires a toroidal component. The result is that plasma absorption (i.e. antenna loading) is shifted or skewed toward the co-current drive direction, independent of the direction of the magnetic field. When wave are launched to drive current counter the plasma current , electron heating an current profiles are more peaked on axis, and this peaking becomes more pronounce a lower toroidal magnetic fields.

  14. HHFW Heating and Current Drive Progress on NSTX

    NASA Astrophysics Data System (ADS)

    Ryan, P. M.; Jaeger, E. F.; Wilgen, J. B.; Hosea, J. C.; Wilson, J. R.; Bell, R. E.; Bernabei, S.; Leblanc, B. P.; Phillips, C. K.; Delgado-Aparicio, L.; Tritz, K.; Sabbagh, S.; Yuh, H.

    2007-11-01

    Operation of NSTX at BT(0) = 0.55 T has increased the core power deposition and heating efficiency of the 30 MHz High Harmonic Fast Waves (HHFW) compared to previous BT(0) <= 0.45 T operation, particularly when launching longer parallel wavelengths. This improvement is attributed in part to moving the onset density at which the fast waves begin to propagate into the plasma to a point further from the wall [1]. At this field strength the HHFW power deposition at k|| = 7 m-1 is comparable to that of k|| = 14 m-1, and core heating at k|| = 3 m-1 is now seen, albeit at lower efficiency. Comparisons with power deposition from full-wave models (AORSA) will be made and MSE measurements of driven current will be presented. [1] see Invited Talk by J. Hosea, this conference.

  15. Changing Chilean coastal currents could drive aquatic evolution

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-01-01

    For invertebrate and fish species that spend most of their lives in rich coastal waters rather than migrating freely throughout the open ocean, the formation of island populations and the associated risk of genetic diversity loss are threats to long-term population health. Many species cope through a spawning mechanism whereby larvae are released en masse into near-shore ocean currents, like pollen adrift in the wind. The larvae are viable in open waters from days to months, but only those that find their way back to shore can settle and develop. To increase their chances, different species' larvae often use particular swimming behaviors, for example, varying their depth in the water column throughout the day.

  16. Lower hybrid current drive for edge current density modification in DIII-D: Final status report

    SciTech Connect

    Fenstermacher, M.E.; Porkolab, M.

    1993-08-04

    Application of Lower Hybrid (LH) Current Drive (CD) in the DIII-D tokamak has been studied at LLNL, off and on, for several years. The latest effort began in February 1992 in response to a letter from ASDEX indicating that the 2.45 GHz, 3 MW system there was available to be used on another device. An initial assessment of the possible uses for such a system on DIII-D was made and documented in September 1992. Multiple meetings with GA personnel and members of the LH community nationwide have occurred since that time. The work continued through the submission of the 1995 Field Work Proposals in March 1993 and was then put on hold due to budget limitations. The purpose of this document is to record the status of the work in such a way that it could fairly easily be restarted at a future date. This document will take the form of a collection of Appendices giving both background and the latest results from the FY 1993 work, connected by brief descriptive text. Section 2 will describe the final workshop on LHCD in DIII-D held at GA in February 1993. This was an open meeting with attendees from GA, LLNL, MIT and PPPL. Summary documents from the meeting and subsequent papers describing the results will be included in Appendices. Section 3 will describe the status of work on the use of low frequency (2.45 GHZ) LH power and Parametric Decay Instabilities (PDI) for the special case of high dielectric in the edge regions of the DIII-D plasma. This was one of the critical issues identified at the workshop. Other potential issues for LHCD in the DIII-D scenarios are: (1) damping of the waves on fast ions from neutral beam injection, (2) runaway electrons in the low density edge plasma, (3) the validity of the WKB approximation used in the ray-tracing models in the steep edge density gradients.

  17. Noninductive current drive experiments on DIII-D, and future plans

    SciTech Connect

    Prater, R.; Austin, M.E.; Baity, F.W.

    1994-02-01

    Experiments on DIII-D (and other tokamaks) have shown that improved performance can follow from optimization of the current density profile. Increased confinement of energy and a higher limit on beta have both been found in discharges in which the current density profile is modified through transient means, such as ramping of current or elongation. Peaking of the current distribution to obtain discharges with high internal inductance {ell}{sub i} has been found to be beneficial. Alternatively, discharges with broader profiles, as in the VH-mode or with high beta poloidal, have shown improved performance. Noninductive current drive is a means to access these modes of improved confinement on a steady state basis. Accordingly, experiments on noninductive current drive are underway on the DIII-D tokamak using fast waves, electron cyclotron waves. Recent experiments on fast wave current drive have demonstrated the ability to drive up to 180 kA of noninductive current using 1.5 MW of power at 60 MHz, including the contribution from 1 MW of ECCD and the bootstrap current. Higher power rf current drive systems are needed to strongly affect the current profile on DIII-D. An upgrade to the FWCD system is underway to increase the total power to 6 MW, using two additional antennas and two new 30 to 120 MHz transmitters. Additionally, a 1 MW prototype ECH system at 110 GHz is being developed (with eventual upgrade to 10 MW). With these systems, noninductive current drive at the 1 MA level will be available for experiments on profile control in DIII-D.

  18. Continuous Path Tracking Control by Considering Voltage Saturation and Current Saturation for AC Servo Motor

    NASA Astrophysics Data System (ADS)

    Sazawa, Masaki; Ohishi, Kiyoshi; Katsura, Seiichiro

    Continuous path tracking control is an important technology for the position control system such as factory automation field. Particulaly, large torque is required for continuous path tracking control at its start position and its goal position. Each AC servo motor of continuous path tracking control have limitation of current and voltage. Therefore, in controlling a multi-degree-of-freedom continuous path tracking control system, even if only the motor torque of one axis has the current limitation, the actual position response is not often equal to the desired trajectory reference. In order to overcome these problems, this paper proposes a new continuous path tracking control algorithm by considering both the saturation of voltage and current. The proposed method assures the coordinated motion by considering the saturation of voltage and current. The effectiveness of the proposed method is confirmed by the experimental results in this paper.

  19. Spin Hall voltages from a.c. and d.c. spin currents

    PubMed Central

    Wei, Dahai; Obstbaum, Martin; Ribow, Mirko; Back, Christian H.; Woltersdorf, Georg

    2014-01-01

    In spin electronics, the spin degree of freedom is used to transmit and store information. To this end the ability to create pure spin currents—that is, without net charge transfer—is essential. When the magnetization vector in a ferromagnet–normal metal junction is excited, the spin pumping effect leads to the injection of pure spin currents into the normal metal. The polarization of this spin current is time-dependent and contains a very small d.c. component. Here we show that the large a.c. component of the spin currents can be detected efficiently using the inverse spin Hall effect. The observed a.c.-inverse spin Hall voltages are one order of magnitude larger than the conventional d.c.-inverse spin Hall voltages measured on the same device. Our results demonstrate that ferromagnet–normal metal junctions are efficient sources of pure spin currents in the gigahertz frequency range. PMID:24780927

  20. Modification of the Current Profile in DIII-D by Off-Axis Electron Cyclotron Current Drive

    SciTech Connect

    Luce, T.C.; Lin-Liu, Y.R.; Harvey, R.W.; Giruzzi, G.; Lohr, J.M.; Petty, C.C.; Politzer, P.A.; Prater, R.; Rice, B.W.

    1999-07-01

    Localized non-inductive currents due to electron cyclotron wave absorption have been measured on the DIII-D tokamak. Clear evidence of the non-inductive currents is seen on the internal magnetic field measurements by motional Stark effect spectroscopy. The magnitude and location of the non-inductive current is evaluated by comparing the total and Ohmic current profiles of discharges with and without electron cyclotron wave power. The measured current agrees with Fokker-Planck calculations near the magnetic axis, but exceeds the predicted value as the location of the current drive is moved to the half radius.

  1. Experiments on Helicon Excitation and Off-Axis Current Drive on DIII-D: Status and Plans

    NASA Astrophysics Data System (ADS)

    Pinsker, R. I.; Prater, R.; Moeller, C. P.; Degrassie, J. S.; Tooker, J. F.; Anderson, J. P.; Torreblanca, H.; Hansink, M.; Nagy, A.; Porkolab, M.

    2015-11-01

    Fast waves in the LHRF, also called ``whistlers'' or ``helicons,'' will be studied in experiments on the DIII-D tokamak beginning in autumn 2015. In the first stage, a 12-element traveling wave antenna (``comb-line'') is installed in the DIII-D vessel for operation at very low power (~ 0.1 kW) at 476 MHz, with a well-defined launched n| | spectrum peaked at 3.0. The goals of the low-power experiment include: (1) determining the efficiency with which the desired fast waves can be excited under a variety of plasma conditions in discharges relevant to the subsequent high-power current drive experiments and (2) proving that the radial and poloidal location at which the antenna will be mounted does not cause deleterious effects in the DIII-D discharges with high neutral beam power, and that the antenna is not damaged by fast ion losses, etc. Plans for 1 MW-level experiments with a single klystron beginning in FY17 are discussed. In addition to demonstrating off-axis current drive at an efficiency of ~ 60 kA/MW in high-performance plasmas, these experiments will explore non-linear aspects of wave excitation, propagation and absorption such as ponderomotive effects and parametric decay instabilities. Supported by US DOE DE-FC02-04ER54698, DE-AC02-09CH11466 and DE-FG02-94ER54084.

  2. Robust current control of AC machines using the internal model control method

    SciTech Connect

    Harnefors, L.; Nee, H.P.

    1995-12-31

    In the present paper, the internal model control (IMC) method is introduced and applied to ac machine current control. A permanent-magnet synchronous machine is used as an example. It is shown that the IMC design is straightforward and the resulting controller is simple to implement. The controller parameters are expressed in the machine parameters and the desired closed-loop rise time. The extra cost of implementation compared to PI control is negligible. It is further shown that IMC is able to outperform PI control with as well as without decoupling with respect to dq variable interaction in the presence of parameter deviations.

  3. Critical current densities estimated from AC susceptibilities in proximity-induced superconducting matrix of multifilamentary wire

    NASA Astrophysics Data System (ADS)

    Akune, Tadahiro; Sakamoto, Nobuyoshi

    2009-03-01

    In a multifilamentary wire proximity-currents between filaments show a close resemblance with the inter-grain current in a high-Tc superconductor. The critical current densities of the proximity-induced superconducting matrix Jcm can be estimated from measured twist-pitch dependence of magnetization and have been shown to follow the well-known scaling law of the pinning strength. The grained Bean model is applied on the multifilamentary wire to obtain Jcm, where the filaments are immersed in the proximity-induced superconducting matrix. Difference of the superconducting characteristics of the filament, the matrix and the filament content factor give a variety of deformation on the AC susceptibility curves. The computed AC susceptibility curves of multifilamentary wires using the grained Bean model are favorably compared with the experimental results. The values of Jcm estimated from the susceptibilities using the grained Bean model are comparable to those estimated from measured twist-pitch dependence of magnetization. The applicability of the grained Bean model on the multifilamentary wire is discussed in detail.

  4. Dynamic Resistance of YBCO-Coated Conductors in Applied AC Fields with DC Transport Currents and DC Background Fields

    SciTech Connect

    Duckworth, Robert C; Zhang, Yifei; Ha, Tam T; Gouge, Michael J

    2011-01-01

    In order to predict heat loads in future saturable core fault-current-limiting devices due to ac fringing fields, dynamic resistance in YBCO-coated conductors was measured at 77 K in peak ac fields up to 25 mT at 60 Hz and in dc fields up to 1 T. With the sample orientation set such that the conductor face was either parallel or perpendicular to the ac and dc applied fields, the dynamic resistance was measured at different fractions of the critical current to determine the relationship between the dc transport current and the applied fields. With respect to field orientation, the dynamic resistance for ac fields that were perpendicular to the conductor face was significantly higher than when the ac fields were parallel to the conductor face. It was also observed that the dynamic resistance: (1) increased with increasing fraction of the dc transport current to the critical current, (2) was proportional to the inverse of the critical current, and (3) demonstrated a linear dependence with the applied ac field once a threshold field was exceeded. This functional behavior was consistent with a critical state model for the dynamic resistance, but discrepancies in absolute value of the dynamic resistance suggested that further theoretical development is needed.

  5. Non-Inductive Current Drive Modeling Extending Advanced Tokamak Operation to Steady State

    SciTech Connect

    Casper, T.A.; Lodestro, L.L.; Pearlstein, L.D.; Porter, G.D.; Murakami, M.; Lao, L.L.; Lin-Lui, Y.R.; St. John, H.E.

    2000-06-06

    A critical issue for sustaining high performance, negative central shear (NCS) discharges is the ability to maintain current distributions that are maximum off axis. Sustaining such hollow current profiles in steady state requires the use of non-inductively driven current sources. On the DIII-D experiment, a combination of neutral beam current drive (NBCD) and bootstrap current have been used to create transient NCS discharges. The electron cyclotron heating (ECH) and current drive (ECCD) system is currently being upgraded from three gyrotrons to six to provide more than 3MW of absorbed power in long-pulse operation to help sustain the required off-axis current drive. This upgrade SuPporrs the long range goal of DIII-D to sustain high performance discharges with high values of normalized {beta}, {beta}{sub n} = {beta}/(I{sub p}/aB{sub T}), confinement enhancement factor, H, and neutron production rates while utilizing bootstrap current fraction, f{sub bs}, in excess of 50%. At these high performance levels, the likelihood of onset of MHD modes that spoil confinement indicates the need to control plasma profiles if we are to extend this operation to long pulse or steady state. To investigate the effectiveness of the EC system and to explore operating scenarios to sustain these discharges, we use time-dependent simulations of the equilibrium, transport and stability. We explore methods to directly alter the safety factor profile, q, through direct current drive or by localized electron heating to modify the bootstrap current profile. Time dependent simulations using both experimentally determined [1] and theory-based [2] energy transport models have been done. Here, we report on simulations exploring parametric dependencies of the heating, current drive, and profiles that affect our ability to sustain stable discharges.

  6. Analysis and comparison for rotor eddy current losses of permanent magnet synchronous generator according to dc and ac load conditions

    NASA Astrophysics Data System (ADS)

    Jang, Seok-Myeong; Kim, Hyun-Kyu; Choi, Jang-Young; Ko, Kyoung-Jin

    2009-04-01

    This paper presents an analytical procedure for the calculation of the eddy current losses of permanent magnet synchronous generator (PMSG). The dc and ac loading effects on the eddy current is examined through the suggested analytical procedure that considers the radial and tangential flux density waveform through a phase current harmonic analysis. The corresponding test results are also presented to quantify and compare those loading effects on the eddy current. The results verified the suggested analytical procedures and show that the rotor eddy current losses for PMSG with the dc loads turned out to be more significant than those with the ac loads.

  7. Modeling of high harmonic fast wave current drive on EAST tokamak

    SciTech Connect

    Li, J. C.; Gong, X. Y. Li, F. Y.; Dong, J. Q.; Gao, Q. D.; Zhang, N.

    2015-10-15

    High harmonic fast waves (HHFW) are among the candidates for non-inductive current drive (CD), which is essential for long-pulse or steady-state operation of tokamaks. Current driven with HHFW in EAST tokamak plasmas is numerically studied. The HHFW CD efficiency is found to increase non-monotonically with the wave frequency, and this phenomenon is attributed to the multi-pass absorption of HHFW. The sensitivity of CD efficiency to the value of the parallel refraction index of the launched wave is confirmed. The quasilinear effects, assessed as significant in HHFW current drive with the GENRAY/CQL3D package, cause a significant increase in CD efficiency as RF power is increased, which is very different from helicon current drive. Simulations for a range of toroidal dc electric fields, in combination with a range of fast wave powers, are also presented and indicate that the presence of the DC field can also enhance the CD efficiency.

  8. Modeling of high harmonic fast wave current drive on EAST tokamak

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Gong, X. Y.; Dong, J. Q.; Gao, Q. D.; Zhang, N.; Li, F. Y.

    2015-10-01

    High harmonic fast waves (HHFW) are among the candidates for non-inductive current drive (CD), which is essential for long-pulse or steady-state operation of tokamaks. Current driven with HHFW in EAST tokamak plasmas is numerically studied. The HHFW CD efficiency is found to increase non-monotonically with the wave frequency, and this phenomenon is attributed to the multi-pass absorption of HHFW. The sensitivity of CD efficiency to the value of the parallel refraction index of the launched wave is confirmed. The quasilinear effects, assessed as significant in HHFW current drive with the GENRAY/CQL3D package, cause a significant increase in CD efficiency as RF power is increased, which is very different from helicon current drive. Simulations for a range of toroidal dc electric fields, in combination with a range of fast wave powers, are also presented and indicate that the presence of the DC field can also enhance the CD efficiency.

  9. Lower-hybrid poloidal current drive for fluctuation reduction in a reversed field pinch

    SciTech Connect

    Uchimoto, E.; Cekic, M.; Harvey, R.W.; Litwin, C.; Prager, S.C.; Sarff, J.S.; Sovinec, C.R.

    1994-06-01

    Current drive using the lower-hybrid slow wave is shown to be a promising candidate for improving confinement properties of a reversed field pinch (RFP). Ray-tracing calculations indicate that the wave will make a few poloidal turns while spiraling radially into a target zone inside the reversal layer. The poloidal antenna wavelength of the lower hybrid wave can be chosen so that efficient parallel current drive will occur mostly in the poloidal direction in this outer region. Three-dimensional resistive magnetohydrodynamic (MHD) computation demonstrates that an additive poloidal current in this region will reduce the magnetic fluctuations and magnetic stochasticity.

  10. Study of lower hybrid current drive towards long-pulse operation with high performance in EAST

    NASA Astrophysics Data System (ADS)

    Ding, B. J.; Li, M. H.; Li, Y. C.; Wang, M.; Shan, J. F.; Liu, F. K.; Wang, S. L.; Wei, W.; Xu, H. D.; Zhao, L. M.; Hu, H. C.; Jia, H.; Cheng, M.; Yang, Y.; Liu, L.; Xu, G. S.; Zang, Q.; Zhao, H. L.; Peysson, Y.; Decker, J.; Goniche, M.; Cesario, R.; Amicucci, L.; Tuccillo, A. A.; Baek, G. S.; Parker, R.; Bonoli, P. T.; Yang, C.; Zhao, Y. P.; Qian, J. P.; Gong, X. Z.; Hu, L. Q.; Li, J. G.; Wan, B. N.

    2015-12-01

    High density experiments with 2.45 GHz lower hybrid current drive (LHCD) in EAST are analyzed by means of simulation and modeling, showing that parametric instabilities (PI), collisional absorption and density fluctuations in the edge region could be responsible for the low CD efficiency at high density. In addition, recent LHCD results with 4.6 GHz are presented, showing that lower hybrid wave can be coupled to plasma with low reflection coefficient, drive plasma current and modify the current profile, and heat plasma effectively. The related results between two systems (2.45 GHz and 4.6 GHz) are also compared, including CD efficiency and PI behavior.

  11. The Argonne Wakefield Accelerator high current photocathode, gun and drive linac

    SciTech Connect

    Schoessow, P.; Chojnacki, E.; Cox, G.

    1995-06-01

    The Argonne Wakefield Accelerator (AWA) is a new facility for advanced accelerator research. A major component of the AWA is its drive linac, consisting of a unique high current short pulse L-Band photocathode based gun and special standing wave preaccelerator designed to produce 100 nC, 30 ps electron bunches at 20 MeV. Commissioning on the drive linac is now underway. We report on our initial operating experience with this novel machine, including bunch length and emittance measurements.

  12. Modeling of the electron distribution based on bremsstrahlung emission during lower hybrid current drive on PLT

    SciTech Connect

    Stevens, J.E.; von Goeler, S.; Bernabei, S.; Bitter, M.; Chu, T.K.; Efthimion, P.; Fisch, N.; Hooke, W.; Hosea, J.; Jobes, F.

    1985-03-01

    Lower hybrid current drive requires the generation of a high energy electron tail anisotropic in velocity. Measurements of bremsstrahlung emission produced by this tail are compared with the calculated emission from reasonable model distributions. The physical basis and the sensitivity of this modeling process are described and the plasma properties of current driven discharges which can be derived from the model are discussed.

  13. Fractional modeling of the AC large-signal frequency response in magnetoresistive current sensors.

    PubMed

    Ravelo Arias, Sergio Iván; Ramírez Muñoz, Diego; Moreno, Jaime Sánchez; Cardoso, Susana; Ferreira, Ricardo; de Freitas, Paulo Jorge Peixeiro

    2013-01-01

    Fractional calculus is considered when derivatives and integrals of non-integer order are applied over a specific function. In the electrical and electronic domain, the transfer function dependence of a fractional filter not only by the filter order n, but additionally, of the fractional order α is an example of a great number of systems where its input-output behavior could be more exactly modeled by a fractional behavior. Following this aim, the present work shows the experimental ac large-signal frequency response of a family of electrical current sensors based in different spintronic conduction mechanisms. Using an ac characterization set-up the sensor transimpedance function Z(t)(JF) is obtained considering it as the relationship between sensor output voltage and input sensing current, Z(t)(jf)= V(o, sensor)(jf)/I(sensor)(jf). The study has been extended to various magnetoresistance sensors based in different technologies like anisotropic magnetoresistance (AMR), giant magnetoresistance (GMR), spin-valve (GMR-SV) and tunnel magnetoresistance (TMR). The resulting modeling shows two predominant behaviors, the low-pass and the inverse low-pass with fractional index different from the classical integer response. The TMR technology with internal magnetization offers the best dynamic and sensitivity properties opening the way to develop actual industrial applications. PMID:24351648

  14. Fractional Modeling of the AC Large-Signal Frequency Response in Magnetoresistive Current Sensors

    PubMed Central

    Arias, Sergio Iván Ravello; Muñoz, Diego Ramírez; Moreno, Jaime Sánchez; Cardoso, Susana; Ferreira, Ricardo; de Freitas, Paulo Jorge Peixeiro

    2013-01-01

    Fractional calculus is considered when derivatives and integrals of non-integer order are applied over a specific function. In the electrical and electronic domain, the transfer function dependence of a fractional filter not only by the filter order n, but additionally, of the fractional order α is an example of a great number of systems where its input-output behavior could be more exactly modeled by a fractional behavior. Following this aim, the present work shows the experimental ac large-signal frequency response of a family of electrical current sensors based in different spintronic conduction mechanisms. Using an ac characterization set-up the sensor transimpedance function Zt(if) is obtained considering it as the relationship between sensor output voltage and input sensing current, Zt(jf)=Vo,sensor(jf)/Isensor(jf). The study has been extended to various magnetoresistance sensors based in different technologies like anisotropic magnetoresistance (AMR), giant magnetoresistance (GMR), spin-valve (GMR-SV) and tunnel magnetoresistance (TMR). The resulting modeling shows two predominant behaviors, the low-pass and the inverse low-pass with fractional index different from the classical integer response. The TMR technology with internal magnetization offers the best dynamic and sensitivity properties opening the way to develop actual industrial applications. PMID:24351648

  15. Direct electron heating and current drive with fast waves in DIII-D

    SciTech Connect

    Pinsker, R.I.; Petty, C.C.; Callis, R.W.; Cary, W.P.; Chiu, S.C.; Freeman, R.L.; deGrassie, J.S.; Harvey, R.W.; Luce, T.C.; Mayberry, M.J.; Prater, R.; Porkolab, M.; Bonoli, P.T.; Baity, F.W.; Goulding, R.H.; Hoffmann, D.J.; James, R.A.; Kawashima, H.

    1992-09-01

    Experiments on the DIII-D tokamak have been performed to evaluate noninductive current drive with direct electron absorption of the fast Alfven wave (FW) in the ion cyclotron range of frequencies. These experiments have employed a 2 MW 60 NM transmitter connected to a four-element toroidally phased array of loop antennas located at the outside midplane of the DIII-D vacuum vessel. Efficient direct electron heating was obtained with (0, {pi}, 0, {pi}) antenna phasing; H-mode confinement was obtained with direct electron absorption of the fast wave as the sole source of auxiliary heating. Current drive experiments were performed with (0,{pi}/2,{pi},3{pi}/2) antenna phasing at fast wave power levels up to 1.2 MW. Preheating with 60 GHz ECH was used to increase the single-pass absorption of the fast wave with a directive spectrum. When the fast wave is lunched in the direction that aids the inductively driven current (co-current drive), up to 40% of the 0.4 MA plasma current is sustained noninductively. Counter-current drive strongly affects the sawtoothing behavior, and results in highly peaked electron temperature profiles (T{sub e}(0) {approx_lt} 6 keV) but much smaller driven currents.

  16. Direct electron heating and current drive with fast waves in DIII-D

    SciTech Connect

    Pinsker, R.I.; Petty, C.C.; Callis, R.W.; Cary, W.P.; Chiu, S.C.; Freeman, R.L.; deGrassie, J.S.; Harvey, R.W.; Luce, T.C.; Mayberry, M.J.; Prater, R. ); Porkolab, M.; Bonoli, P.T. ); Baity, F.W.; Goulding, R.H.; Hoffmann, D.J. ); James, R.A. (Lawrence Livermor

    1992-09-01

    Experiments on the DIII-D tokamak have been performed to evaluate noninductive current drive with direct electron absorption of the fast Alfven wave (FW) in the ion cyclotron range of frequencies. These experiments have employed a 2 MW 60 NM transmitter connected to a four-element toroidally phased array of loop antennas located at the outside midplane of the DIII-D vacuum vessel. Efficient direct electron heating was obtained with (0, [pi], 0, [pi]) antenna phasing; H-mode confinement was obtained with direct electron absorption of the fast wave as the sole source of auxiliary heating. Current drive experiments were performed with (0,[pi]/2,[pi],3[pi]/2) antenna phasing at fast wave power levels up to 1.2 MW. Preheating with 60 GHz ECH was used to increase the single-pass absorption of the fast wave with a directive spectrum. When the fast wave is lunched in the direction that aids the inductively driven current (co-current drive), up to 40% of the 0.4 MA plasma current is sustained noninductively. Counter-current drive strongly affects the sawtoothing behavior, and results in highly peaked electron temperature profiles (T[sub e](0) [approx lt] 6 keV) but much smaller driven currents.

  17. A Novel Current Angle Control Scheme in a Current Source Inverter Fed Permanent Magnet Synchronous Motor Drive for Automotive Applications

    SciTech Connect

    Tang, Lixin; Su, Gui-Jia

    2011-01-01

    This paper describes a novel speed control scheme to operate a current source inverter (CSI) driven surface-mounted permanent magnet synchronous machine (SPMSM) for hybrid electric vehicles (HEVs) applications. The idea is to use the angle of the current vector to regulate the rotor speed while keeping the two dc-dc converter power switches on all the time to boost system efficiency. The effectiveness of the proposed scheme was verified with a 3 kW CSI-SPMSM drive prototype.

  18. Electron Energy Confinement For HHFW Heating and Current Drive Phasing on NSTX

    SciTech Connect

    Hosea, J.C.; Bernabei, S.; Biewer, T.; LeBlanc, B.; Phillips, C.K.; Wilson, J.R.; Stutman, D.; Ryan, P.; Swain, D.W.

    2005-09-26

    Thomson scattering laser pulses are synchronized relative to modulated HHFW power to permit evaluation of the electron energy confinement time during and following HHFW pulses for both heating and current drive antenna phasing. Profile changes resulting from instabilities require that the total electron stored energy, evaluated by integrating the midplane electron pressure Pe(R) over the magnetic surfaces prescribed by EFIT analysis, be used to derive the electron energy confinement time. Core confinement is reduced during a sawtooth instability but, although the electron energy is distributed outward by the sawtooth, the bulk electron energy confinement time is essentially unaffected. The radial deposition of energy into the electrons is noticeably more peaked for current drive phasing (longer wavelength excitation) relative to that for heating phasing (shorter wavelength excitation) as is expected theoretically. However, the power delivered to the core plasma is reduced considerably for the current drive phasing, indicating that surface/peripheral damping processes play a more important role for this case.

  19. Lower hybrid current drive at plasma densities required for thermonuclear reactors

    SciTech Connect

    Cesario, R.; Cardinali, A.; Castaldo, C.; Tuccillo, A. A.; Amicucci, L.

    2011-12-23

    Driving current in high-density plasmas is essential for the progress of thermonuclear fusion energy research based on the tokamak concept. The lower hybrid current drive (LHCD) effect, is potentially the most suitable tool for driving current at large plasma radii, consistent with the needs of ITER steady state scenario. Unfortunately, experiments at reactor grade high plasma densities with kinetic profiles approaching those required for ITER, have shown problems in penetration of the LH power into the core plasma. These plasmas represent a basic reference for designing possible methods useful for assessing the LHCD concept in ITER. On the basis of the phenomenology observed during LHCD experiments carried out in different machines, and model of the spectral broadening effect due to parametric instability, an interpretation and possible solution of the related important problem is presented.

  20. Fluctuation and transport reduction in a reversed field pinch by inductive poloidal current drive

    SciTech Connect

    Sarff, J.S.; Hokin, S.A.; Ji, H.; Prager, S.C.; Sovinec, C.R.

    1993-12-01

    An auxilliay poloidal inductive electric field applied to a reversed field pinch plasma reduces the current density gradient, slows the growth of m=1 tearing fluctations, suppresses their associated sawteeth, and doubles the energy confinement time. Small sawteeth occur in the improved state but with m=0 precursors. By requiring a change of toroidal flux embedding the plasma, inductive poloidal current profile drive is transient, but the improvement encourages the program of RFP transport suppression using current profile control.

  1. Fast wave current drive experiment on the DIII-D tokamak

    SciTech Connect

    Petty, C.C.; Pinsker, R.I.; Chiu, S.C.; deGrassie, J.S.; Harvey, R.W.; Lohr, J.; Luce, T.C.; Mayberry, M.J.; Prater, R. ); Porkolab, M. ); Baity, F.W.; Goulding, R.H.; Hoffman, J.D. ); James, R.A. ); Kawash

    1992-06-01

    One method of radio-frequency heating which shows theoretical promise for both heating and current drive in tokamak plasmas is the direct absorption by electrons of the fast Alfven wave (FW). Electrons can directly absorb fast waves via electron Landau damping and transit-time magnetic pumping when the resonance condition {omega} {minus} {kappa}{sub {parallel}e}{upsilon}{sup {parallel}e} = O is satisfied. Since the FW accelerates electrons traveling the same toroidal direction as the wave, plasma current can be generated non-inductively by launching FW which propagate in one toroidal direction. Fast wave current drive (FWCD) is considered an attractive means of sustaining the plasma current in reactor-grade tokamaks due to teh potentially high current drive efficiency achievable and excellent penetration of the wave power to the high temperature plasma core. Ongoing experiments on the DIII-D tokamak are aimed at a demonstration of FWCD in the ion cyclotron range of frequencies (ICRF). Using frequencies in the ICRF avoids the possibility of mode conversion between the fast and slow wave branches which characterized early tokamak FWCD experiments in the lower hybrid range of frequencies. Previously on DIII-D, efficient direct electron heating by FW was found using symmetric (non-current drive) antenna phasing. However, high FWCD efficiencies are not expected due to the relatively low electron temperatures (compared to a reactor) in DIII-D.

  2. Effects of magnetic shear on toroidal rotation in tokamak plasmas with lower hybrid current drive.

    PubMed

    Rice, J E; Podpaly, Y A; Reinke, M L; Mumgaard, R; Scott, S D; Shiraiwa, S; Wallace, G M; Chouli, B; Fenzi-Bonizec, C; Nave, M F F; Diamond, P H; Gao, C; Granetz, R S; Hughes, J W; Parker, R R; Bonoli, P T; Delgado-Aparicio, L; Eriksson, L-G; Giroud, C; Greenwald, M J; Hubbard, A E; Hutchinson, I H; Irby, J H; Kirov, K; Mailloux, J; Marmar, E S; Wolfe, S M

    2013-09-20

    Application of lower hybrid (LH) current drive in tokamak plasmas can induce both co- and countercurrent directed changes in toroidal rotation, depending on the core q profile. For discharges with q(0) <1, rotation increments in the countercurrent direction are observed. If the LH-driven current is sufficient to suppress sawteeth and increase q(0) above unity, the core toroidal rotation change is in the cocurrent direction. This change in sign of the rotation increment is consistent with a change in sign of the residual stress (the divergence of which constitutes an intrinsic torque that drives the flow) through its dependence on magnetic shear. PMID:24093268

  3. Overview of recent results on Heating and Current Drive in JET

    SciTech Connect

    Ongena, J.; Durodie, F.; Lerche, E.; Eester, D. van; Vrancken, M.; Baranov, Yu.; Challis, C. D.; Jacquet, Ph.; Jenkins, I.; Kiptily, V.; Kirov, K.; Mailloux, J.; Mayoral, M. L.; Monakhov, I.; Nightingale, M.; Walden, A.; Bobkov, V.; Lennholm, M.; Colas, L.; Ekedahl, A.

    2007-09-28

    Recent progress on heating and current drive on JET is reported. Topics discussed are: high power coupling of ICRF/LH at ITER relevant antenna/launcher-separatrix distances, succesfull demonstration of 3 dB couplers for ELM tolerance of the ICRF system, influence of ICRF on LH operation, rotation studies in plasma without external momentum with standard and enhanced JET toriodal field ripple, studies of different ICRF heating schemes and of NTM avoidance schemes using Ion Cyclotron Current Drive. A brief outlook on future plans for experiments at JET is given.

  4. Particle simulation of intense electron cyclotron heating and beat-wave current drive

    SciTech Connect

    Cohen, B.I.

    1987-10-12

    High-power free-electron lasers make new methods possible for heating plasmas and driving current in toroidal plasmas with electromagnetic waves. We have undertaken particle simulation studies with one and two dimensional, relativistic particle simulation codes of intense pulsed electron cyclotron heating and beat-wave current drive. The particle simulation methods here are conventional: the algorithms are time-centered, second-order-accurate, explicit, leap-frog difference schemes. The use of conventional methods restricts the range of space and time scales to be relatively compact in the problems addressed. Nevertheless, experimentally relevant simulations have been performed. 10 refs., 2 figs.

  5. Balancing Current Drive and Heating in DIII-D High Noninductive Current Fraction Discharges Through Choice of the Toroidal Field

    SciTech Connect

    Ferron, J.R.; Holcomb, C T; Luce, T.C.; Politzer, P. A.; Turco, F.; DeBoo, J. C.; Doyle, E. J.; In, Y.; La Haye, R.; Murakami, Masanori; Okabayashi, M.; Park, J. M.; Petrie, T W; Petty, C C.; Reimerdes, H.

    2011-01-01

    In order to maintain stationary values of the stored energy and the plasma current in a tokamak discharge with all of the current driven noninductively, the sum of the alpha-heating power and the power required to provide externally driven current must be equal to the power required to maintain the pressure against transport losses. In a study of high noninductive current fraction discharges in the DIII-D tokamak, it is shown that in the case of present-day tokamaks with no alpha-heating, adjustment of the toroidal field strength (B(T)) is a tool to obtain this balance between the required current drive and heating powers with other easily modifiable discharge parameters (beta(N), q(95), discharge shape, n(e)) fixed at values chosen to satisfy specific constraints. With all of the external power sources providing both heating and current drive, and beta(N) and q(95) fixed, the fraction of externally driven current scales with B(T) with little change in the bootstrap current fraction, thus allowing the noninductive current fraction to be adjusted.

  6. ac losses and field and current density distribution during a full cycle of a stack of superconducting tapes

    NASA Astrophysics Data System (ADS)

    Yuan, Weijia; Campbell, A. M.; Coombs, T. A.

    2010-05-01

    Starting from an existing model by Clem et al., this paper has analyzed how the current density and magnetic field distribution of a stack of superconducting tapes with ac transport currents or applied fields will change in a full cycle. This paper assumes when the ac current or field starts to change in the other direction, a new penetrated region will begin to penetrate from the superconductor surface. If we assume Jc is constant in the critical region, this paper demonstrates that the Claassen formula (7) can be used to calculate the exact ac losses. If Jc depends on local Bz, we can use Eq. (9) to quickly predict the ac losses. This approach does not need to calculate a complete ac cycle. This saves considerably computation time while gives a result which is in close agreement with that calculated from a complete ac cycle. The calculation method can be applied for calculating a superconducting pancake coil if the coil radius is much larger than the tape width.

  7. Fivefold confinement time increase in the Madison Symmetric Torus using inductive poloidal current drive

    SciTech Connect

    Stoneking, M.R.; Lanier, N.E.; Prager, S.C.; Sarff, J.S.; Sinitsyn, D.

    1996-12-01

    Current profile control is employed in the Madison Symmetric Torus reversed field pinch to reduce the magnetic fluctuations responsible for anomalous transport. An inductive poloidal electric field pulse is applied in the sense to flatten the parallel current profile, reducing the dynamo fluctuation amplitude required to sustain the equilibrium. This technique demonstrates a substantial reduction in fluctuation amplitude (as much as 50%), and improvement in energy confinement (from 1 ms to 5 ms); a record low fluctuation (0.8%) and record high temperature (615 eV) for this device were observed simultaneously during current drive experiments. Plasma beta increases by 50% and the Ohmic input power is three times lower. Particle confinement improves and plasma impurity contamination is reduced. The results of the transient current drive experiments provide motivation for continuing development of steady-state current profile control strategies for the reversed field pinch.

  8. Modeling of electron cyclotron current drive experiments on DIII-D

    SciTech Connect

    Lin-Liu, Y.R.; Chan, V.S.; Luce, T.C.; Prater, R.; Sauter, O.; Harvey, R.W.

    1999-05-01

    Electron Cyclotron Current Drive (ECCD) is considered a leading candidate for current profile control in Advanced Tokamak (AT) operation. Localized ECCD has been clearly demonstrated in recent proof-of-principle experiments on DIII-D. The measured ECCD efficiency near the magnetic axis agrees well with standard theoretical predictions. However, for off-axis current drive the normalized experimental efficiency does not decrease with minor radius as expected from the standard theory; the observed reduction of ECCD efficiency due to trapped electron effects in the off-axis cases is smaller than theoretical predictions. The standard approach of modeling ECCD in tokamaks has been based on the bounce-average calculations, which assume the bounce frequency is much larger than the effective collision frequency for trapped electrons at all energies. The assumption is clearly invalid at low energies. Finite collisionality will effectively reduce the trapped electron fraction, hence, increase current drive efficiency. Here, a velocity-space connection formula is proposed to estimate the collisionality effect on electron cyclotron current drive efficiency. The collisionality correction gives modest improvement in agreement between theoretical and recent DIII-D experimental results.

  9. Simulation Study of Current Drive Efficiency for KSTAR 5 GHz LHCD

    SciTech Connect

    Aria, A. K.; Bae, Y. S.; Yang, H. L.; Kwon, M.; Do, H. J.; Namkung, W.; Cho, M. H.; Park, H.

    2011-12-23

    Theoretical 5 GHz lower hybrid current drive (LHCD) efficiency using power spectrum given by 0-D Brambilla code and Lower Hybrid Simulation Code (LSC) have been studied for KSTAR. In LSC simulation, RF-driven current and current drive efficiency has been found to be deeply dependent on the profiles of the plasma density and temperature as well as on current profile in order to obtain hollow current profile favorable for advance tokamak operation mode and steady state operation. The peaked density and broad temperature profile control has been found to be efficient in current drive with maximum RF-driven current larger than 400 kA/MW with very high efficiency when the peak plasma density is ranged from 0.2 to 2.0x1020 m-3, and the peak electron temperature range of 2-20 keV together with toroidal field 2-3.5 T and Ip = 0.5-2 MA. The on-/off-axis current profile controllability is also investigated through parametric scan, and small negative magnetic shear is seen at the narrow region of the off-axis for very high temperature regime and for high BT and I{sub p}. In order to achieve the same for lower temperature regime Ip has to be lower and also for higher LH-power compromising with CD efficiency in this case.

  10. Lower Hybrid Heating and Current Drive on the Alcator C-Mod Tokamak

    SciTech Connect

    R. Wilson, R. Parker, M. Bitter, P.T. Bonoli, C. Fiore, R.W. Harvey, K. Hill, A.E. Hubbard, J.W. Hughes, A. Ince-Cushman, C. Kessel, J.S. Ko, O. Meneghini, C.K. Phillips, M. Porkolab, J. Rice, A.E. Schmidt, S. Scott,S. Shiraiwa, E. Valeo, G.Wallace, J.C. Wright and the Alcator C-Mod Team

    2009-11-20

    On the Alcator C-Mod tokamak, lower hybrid current drive (LHCD) is being used to modify the current profile with the aim of obtaining advanced tokamak (AT) performance in plasmas with parameters similar to those that would be required on ITER. To date, power levels in excess of 1 MW at a frequency of 4.6 GHz have been coupled into a variety of plasmas. Experiments have established that LHCD on C-Mod behaves globally as predicted by theory. Bulk current drive efficiencies, n20IlhR/Plh ~ 0.25, inferred from magnetics and MSE are in line with theory. Quantitative comparisons between local measurements, MSE, ECE and hard x-ray bremsstrahlung, and theory/simulation using the GENRAY, TORIC-LH CQL3D and TSC-LSC codes have been performed. These comparisons have demonstrated the off-axis localization of the current drive, its magnitude and location dependence on the launched n|| spectrum, and the use of LHCD during the current ramp to save volt-seconds and delay the peaking of the current profile. Broadening of the x-ray emission profile during ICRF heating indicates that the current drive location can be controlled by the electron temperature, as expected. In addition, an alteration in the plasma toroidal rotation profile during LHCD has been observed with a significant rotation in the counter current direction. Notably, the rotation is accompanied by peaking of the density and temperature profiles on a current diffusion time scale inside of the half radius where the LH absorption is taking place.

  11. A mechanism for the dynamo terms to sustain closed-flux current, including helicity balance, by driving current which crosses the magnetic field

    SciTech Connect

    Jarboe, T. R.; Nelson, B. A.; Sutherland, D. A.

    2015-07-15

    An analysis of imposed dynamo current drive (IDCD) [T.R. Jarboe et al., Nucl. Fusion 52 083017 (2012)] reveals: (a) current drive on closed flux surfaces seems possible without relaxation, reconnection, or other flux-surface-breaking large events; (b) the scale size of the key physics may be smaller than is often computationally resolved; (c) helicity can be sustained across closed flux; and (d) IDCD current drive is parallel to the current which crosses the magnetic field to produce the current driving force. In addition to agreeing with spheromak data, IDCD agrees with selected tokamak data.

  12. Stabilization of Neoclassical Tearing Modes in Tokamaks by Radio Frequency Current Drive

    SciTech Connect

    La Haye, R. J.

    2007-09-28

    Resistive neoclassical tearing modes (NTMs) will be the principal limit on stability and performance in the ITER standard scenario as the resulting islands break up the magnetic surfaces that confine the plasma. Drag from rotating island-induced eddy current in the resistive wall can also slow the plasma rotation, produce locking to the wall, and cause loss of high confinement H-mode and disruption. The NTMs are maintained by helical perturbations to the pressure-gradient driven 'bootstrap' current. Thus, this is a high beta instability even at the modest beta for ITER. A major line of research on NTM stabilization is the use of radio frequency (rf) current drive at the island rational surface. While large, broad current drive from lower hybrid waves has been shown to be stabilizing (COMPASS-D), most research is directed to small, narrow current drive from electron cyclotron waves (ECCD); ECCD stabilization and/or preemptive prevention is successful in ASDEX Upgrade, DIII-D and JT-60U, for example, with as little as a few percent of the total plasma current if the ECCD is kept sufficiently narrow so that the peak off-axis ECCD is comparable to the local bootstrap current.

  13. Modeling of electron cyclotron current drive experiments on DIII-D

    SciTech Connect

    Lin-Liu, Y. R.; Chan, V. S.; Luce, T. C.; Prater, R.; Sauter, O.; Harvey, R. W.

    1999-09-20

    A velocity-space connection formula is proposed to estimate the collisionality effect on electron cyclotron current drive efficiency. The collisionality correction gives modest improvement in agreement between theoretical and recent DIII-D experimental results (c) 1999 American Institute of Physics.

  14. 60 MHz fast wave current drive experiment for DIII-D

    SciTech Connect

    Mayberry, M.J.; Chiu, S.C.; Porkolab, M.; Chan, V.; Freeman, R.; Harvey, R.; Pinsker, R. )

    1989-07-01

    The DIII-D facility provides an opportunity to test fast wave current drive appoach. Efficient FWCD is achieved by direct electron absorption due to Landa damping and transit time magnetic pumping. To avoid competing damping mechamisms we seek to maximize the single-pass asorption of the fast waves by electrons. (AIP)

  15. Modeling of the influences of electron cyclotron current drive on neoclassical tearing modes

    SciTech Connect

    Chen, Long; Liu, Jinyuan; Sun, Jizhong; Sun, Guanglan; Duan, Ping

    2015-05-15

    Influences of external current drive on neoclassical tearing modes are studied numerically with a set of compressible magnetohydrodynamics equations. By considering the effects of driven current parameters and its deposition timing, and by examining the relationship between driven current and the missing bootstrap current, the basic requirements of deposition width and external current density for effectively suppressing neoclassical tearing modes are investigated. When the driven current density is able to compensate the missing bootstrap current and the deposition region is comparable with the saturated island, the suppression results are notable. Meanwhile, the pre-emptive strategy of current deposition reported experimentally is also evaluated, and the results agree with the experimental ones that early current deposition can enhance suppression effectiveness greatly. In addition, the deficiencies of continuous driven current are discussed when the plasma rotation has been taken into account, and the application of modulated current drive, which is synchronized in phase with the rotating island, can restore the stabilizing role under some conditions. The favorable parameters of modulation such as duty cycle are also addressed.

  16. Numerical study on the stabilization of neoclassical tearing modes by electron cyclotron current drive

    SciTech Connect

    Wang, Xiaoguang; Zhang, Xiaodong; Wu, Bin; Zhu, Sizheng; Hu, Yemin

    2015-02-15

    It is well known that electron cyclotron current drive (ECCD) around the o-point of magnetic island along the plasma current direction can stabilize neoclassical tearing modes (NTMs) in tokamak devices. The effects of the radial misalignment between the island and the driven current, the phase misalignment, and the on-duty ratio for modulated current drive on NTM stabilization are studied numerically in this paper. A small radial misalignment is found to significantly decrease the stabilizing effect. When a sufficiently large phase misalignment occurs for the modulated ECCD, the stabilization effect is also reduced a lot. The optimal on-duty ratio of modulated ECCD to stabilize NTMs is found to be in the range of 60%–70%. A larger on-duty ratio than 50% could also mitigate the effect of phase misalignment if it is not too large. There is no benefit from modulation if the phase misalignment is larger than a threshold.

  17. Numerical study on the stabilization of neoclassical tearing modes by electron cyclotron current drive

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoguang; Zhang, Xiaodong; Wu, Bin; Zhu, Sizheng; Hu, Yemin

    2015-02-01

    It is well known that electron cyclotron current drive (ECCD) around the o-point of magnetic island along the plasma current direction can stabilize neoclassical tearing modes (NTMs) in tokamak devices. The effects of the radial misalignment between the island and the driven current, the phase misalignment, and the on-duty ratio for modulated current drive on NTM stabilization are studied numerically in this paper. A small radial misalignment is found to significantly decrease the stabilizing effect. When a sufficiently large phase misalignment occurs for the modulated ECCD, the stabilization effect is also reduced a lot. The optimal on-duty ratio of modulated ECCD to stabilize NTMs is found to be in the range of 60%-70%. A larger on-duty ratio than 50% could also mitigate the effect of phase misalignment if it is not too large. There is no benefit from modulation if the phase misalignment is larger than a threshold.

  18. Fast wave heating and current drive in tokamak plasmas with negative central shear

    SciTech Connect

    Forest, C.B.; Petty, C.C.; Baity, F.W.

    1996-07-01

    Fast waves provide an excellent tool for heating electrons and driving current in the central region of tokamak plasmas. In this paper, we report the use of centrally peaked electron heating and current drive to study transport in plasmas with negative central shear (NCS). Tokamak plasmas with NCS offer the potential of reduced energy transport and improved MHD stability properties, but will require non-inductive current drive to maintain the required current profiles. Fast waves, combined with neutral beam injection, provide the capability to change the central current density evolution and independently vary {ital T{sub e}}, and {ital T{sub i}} for transport studies in these plasmas. Electron heating also reduces the collisional heat exchange between electrons and ions and reduces the power deposition from neutral beams into electrons, thus improving the certainty in the estimate of the electron heating. The first part of this paper analyzes electron and ion heat transport in the L-mode phase of NCS plasmas as the current profile resistively evolves. The second part of the paper discusses the changes that occur in electron as well as ion energy transport in this phase of improved core confinement associated with NCS.

  19. Modeling of Optimization and Control of EBW Heating and Current Drive

    NASA Astrophysics Data System (ADS)

    Urban, Jakub; Decker, Joan; Peysson, Yves; Preinhaelter, Josef; Taylor, Gary; Vahala, Linda; Vahala, George

    2009-11-01

    We present a modeling of Electron Bernstein waves (EBWs) by recently coupled AMR (Antenna---Mode-conversion---Ray-tracing) and LUKE (3D Fokker-Planck) codes. The electrostatic EBW is a promising candidate for localized heating and current drive in high-β plasmas, where the standard electron cyclotron O- and X-waves are cutoff. EBW heating and current drive is simulated here in spherical tokamak conditions, particularly in typical NSTX and MAST equilibria and also in equilibria predicted by transport modeling. The EBW injection parameters are varied in order to find optimized scenarios and a possible way to control the deposition location and the driven current. This task is rather challenging because EBW ray trajectories and N spectra are strongly dependent on the plasma parameters.

  20. Summary and viewgraphs from the Q-121 US/Japan advanced current drive concepts workshop

    SciTech Connect

    Bonoli, P.; Porkolab, M. ); Chan, V.; Pinsker, R.; Politzer, P. ); Darrow, D. . Plasma Physics Lab.); Ehst, D. ); Fukuyama, Atsushi ); Imai, Tsuyoshi; Watari, Tetsuo ); Itoh, Satoshi; Naka

    1990-03-09

    With the emphasis placed on current drive by ITER, which requires steady state operation in its engineering phase, it is important to bring theory and experiment in agreement for each of the schemes that could be used in that design. Both neutral beam and lower hybrid (LH) schemes are in excellent shape in that regard. Since the projected efficiency of all schemes is marginal it is also important to continue our search for more efficient processes. This workshop featured experimental and theoretical work in each processes. This workshop featured experimental and theoretical work in each of these areas, that is, validation of theory and the search for better ideas. There were a number of notable results to report, the most striking again (as with last year) the long pulse operation of TRIAM-1M. A low current was sustained for over 1 hour with LH waves, using new hall-effect sensors in the equilibrium field circuit to maintain position control. In JT-60, by sharpening the wave spectrum the current drive efficiency was improved to 0.34 {times} 10{sup 20}m{sup -2}A/W and 1.5 MA of current was driven entirely by the lower hybrid system. Also in that machine, using two different LH frequencies, the H-mode was entered. Finally, by using the LH system for startup they saved 2.5 resistive volt-sec of flux, which if extrapolated to ITER would save 40 volt-sec there. For the first time, and experiment on ECH current drive showed reasonable agreement with theory. Those experiments are reported here by James (LLNL) on the D3-D machine. Substantially lower ECH current drive than expected theoretically was observed on WT-3, but if differed by being in a low absorption regime. Nonetheless, excellent physics results were achieved in the WT-3 experiments, notably in having careful measurements of the parallel velocity distributions.

  1. Quantitative Thermal Microscopy Measurement with Thermal Probe Driven by dc+ac Current

    NASA Astrophysics Data System (ADS)

    Bodzenta, Jerzy; Juszczyk, Justyna; Kaźmierczak-Bałata, Anna; Firek, Piotr; Fleming, Austin; Chirtoc, Mihai

    2016-07-01

    Quantitative thermal measurements with spatial resolution allowing the examination of objects of submicron dimensions are still a challenging task. The quantity of methods providing spatial resolution better than 100 nm is very limited. One of them is scanning thermal microscopy (SThM). This method is a variant of atomic force microscopy which uses a probe equipped with a temperature sensor near the apex. Depending on the sensor current, either the temperature or the thermal conductivity distribution at the sample surface can be measured. However, like all microscopy methods, the SThM gives only qualitative information. Quantitative measuring methods using SThM equipment are still under development. In this paper, a method based on simultaneous registration of the static and the dynamic electrical resistances of the probe driven by the sum of dc and ac currents, and examples of its applications are described. Special attention is paid to the investigation of thin films deposited on thick substrates. The influence of substrate thermal properties on the measured signal and its dependence on thin film thermal conductivity and film thickness are analyzed. It is shown that in the case where layer thicknesses are comparable or smaller than the probe-sample contact diameter, a correction procedure is required to obtain actual thermal conductivity of the layer. Experimental results obtained for thin SiO2 and BaTiO_{3 }layers with thicknesses in the range from 11 nm to 100 nm are correctly confirmed with this approach.

  2. Radial current density effects on rotating magnetic field current drive in field-reversed configurations

    SciTech Connect

    Clemente, R. A.; Gilli, M.; Farengo, R.

    2008-10-15

    Steady state solutions, suitable for field-reversed configurations (FRCs) sustained by rotating magnetic fields (RMFs) are obtained by properly including three-dimensional effects, in the limit of large FRC elongation, and the radial component of Ohm's law. The steady electrostatic potential, necessary to satisfy Ohm's law, is considered to be a surface function. The problem is analyzed at the midplane of the configuration and it is reduced to the solution of two coupled nonlinear differential equations for the real and imaginary parts of the phasor associated to the longitudinal component of the vector potential. Additional constraints are obtained by requesting that the steady radial current density and poloidal magnetic flux vanish at the plasma boundary which is set at the time-averaged separatrix. The results are presented in terms of the degree of synchronism of the electrons with the RMF and compared with those obtained when radial current effects are neglected. Three important differences are observed when compared with the case without radial current density. First, at low penetration of the RMF into the plasma there is a significant increase in the driven azimuthal current. Second, the RMF amplitude necessary to access the high synchronism regime, starting from low synchronism, is larger and the difference appears to increase as the separatrix to classical skin depth ratio increases. Third, the minimum RMF amplitude necessary to sustain almost full synchronism is reduced.

  3. Radial transport and electron-cyclotron-current drive in the TCV and DIII-D tokamaks.

    PubMed

    Harvey, R W; Sauter, O; Prater, R; Nikkola, P

    2002-05-20

    Calculation of electron-cyclotron-current drive (ECCD) with the comprehensive CQL3D Fokker-Planck code for a TCV tokamak shot gives 550 kA of driven toroidal current, in marked disagreement with the 100-kA experimental value. Published ECCD efficiencies calculated with CQL3D in the much larger, higher-confinement DIII-D tokamak are in excellent agreement with experiment. The disagreement is resolved by including in the calculations electrostatic-type radial transport at levels given by global energy confinement in tokamaks. The radial transport of energy and toroidal current are in agreement. PMID:12005571

  4. Closure of the single fluid magnetohydrodynamic equations in presence of electron cyclotron current drive

    NASA Astrophysics Data System (ADS)

    Westerhof, E.; Pratt, J.; Ayten, B.

    2015-03-01

    In the presence of electron cyclotron current drive (ECCD), the Ohm's law of single fluid magnetohydrodynamics (MHD) is modified as E + v × B = η(J - JECCD). This paper presents a new closure relation for the EC driven current density appearing in this modified Ohm's law. The new relation faithfully represents the nonlocal character of the EC driven current and its main origin in the Fisch-Boozer effect. The closure relation is validated on both an analytical solution of an approximated Fokker-Planck equation as well as on full bounce-averaged, quasi-linear Fokker-Planck code simulations of ECCD inside rotating magnetic islands.

  5. Current drive with fast waves, electron cyclotron waves, and neutral injection in the DIII-D tokamak

    SciTech Connect

    Prater, R.; Petty, C.C.; Pinsker, R.I.; Chiu, S.C.; deGrassie, J.S.; Harvey, R.W.; Ikel, H.; Lin-Liu, Y.R.; Luce, T.C. ); James, R.A. ); Porkolab, M. ); Baity, F.W.; Goulding, R.H.; Hoffmann, D.J. ); Kawash

    1992-09-01

    Current drive experiments have been performed on the DIII-D tokamak using fast waves, electron cyclotron waves, and neutral injection. Fast wave experiments were performed using a 4-strap antenna with 1 MW of power at 60 MHz. These experiments showed effective heating of electrons, with a global heating efficiency equivalent to that of neutral injection even when the single pass damping was calculated to be as small as 5%. The damping was probably due to the effect of multiple passes of the wave through the plasma. Fast wave current drive experiments were performed with a toroidally directional phasing of the antenna straps. Currents driven by fast wave current drive (FWCD) in the direction of the main plasma current of up to 100 kA were found, not including a calculated 40 kA of bootstrap current. Experiments with FWCD in the counter current direction showed little current drive. In both cases, changes in the sawtooth behavior and the internal inductance qualitatively support the measurement of FWCD. Experiments on electron cyclotron current drive have shown that 100 kA of current can be driven by 1 MW of power at 60 GHz. Calculations with a Fokker-Planck code show that electron cyclotron current drive (ECCD) can be well predicted when the effects of electron trapping and of the residual electric field are included. Experiments on driving current with neutral injection showed that effective current drive could be obtained and discharges with full current drive were demonstrated. Interestingly, all of these methods of current drive had about the same efficiency, 0.015 {times} 10{sup 20} MA/MW/m{sup 2}.

  6. Off-axis Neutral Beam Current Drive for Advanced Scenario Development in DIII-D

    SciTech Connect

    Murakami, M; Park, J; Petty, C; Luce, T; Heidbrink, W; Osborne, T; Wade, M; Austin, M; Brooks, N; Budny, R; Challis, C; DeBoo, J; deGrassie, J; Ferron, J; Gohil, P; Hobirk, J; Holcomb, C; Hollmann, E; Hong, R; Hyatt, A; Lohr, J; Lanctot, M; Makowski, M; McCune, D; Politzer, P; Prater, R; John, H S; Suzuki, T; West, W; Unterberg, E; Van Zeeland, M; Yu, J

    2008-10-13

    Modification of the two existing DIII-D neutral beam lines is proposed to allow vertical steering to provide off-axis neutral beam current drive (NBCD) as far off-axis as half the plasma radius. New calculations indicate very good current drive with good localization off-axis as long as the toroidal magnetic field, B{sub T}, and the plasma current, I{sub p}, are in the same direction (for a beam steered downward). The effects of helicity can be large: e.g., ITER off-axis NBCD can be increased by more than 20% if the B{sub T} direction is reversed. This prediction has been tested by an off-axis NBCD experiment using reduced size plasmas that are vertically shifted with the existing NBI on DIII-D. The existence of off-axis NBCD is evident in sawtooth and internal inductance behavior. By shifting the plasma upward or downward, or by changing the sign of the toroidal field, measured off-axis NBCD profiles, determined from MSE data, are consistent with predicted differences (40%-45%) arising from the NBI orientation with respect to the magnetic field lines. Modification of the DIII-D NB system will strongly support scenario development for ITER and future tokamaks as well as providing flexible scientific tools for understanding transport, energetic particles and heating and current drive.

  7. Numerical study on the influence of electron cyclotron current drive on tearing mode

    SciTech Connect

    Chen, Long; Liu, Jinyuan; Mao, Aohua; Sun, Jizhong; Duan, Ping

    2014-10-15

    Controlling tearing modes by localized current drive is explored by using numerical simulation with a set of compressible magnetohydrodynamics equations. By examining the effects of different characteristics of driven current, such as density distribution, duration time, and deposition location, it is found that a driven current with larger magnitude and more focused deposition region shows a better suppression effect on the tearing modes. Meanwhile destabilizing effects are also observed when a driven current over a certain magnitude is applied continuously. In comparison with those on the X-point of the magnetic island, the results are better when the current deposition is targeted on the O-point. In addition, the timing control of the current deposition will be also addressed.

  8. A current-source inverter fed induction motor drive system with reduced losses

    SciTech Connect

    Espinoza, J.R.; Joos, G.

    1995-12-31

    Standard low and medium induction power motor drives are based on the PWM voltage source inverter (VSI) fed from a diode rectifier. The dual topology, based on the current source inverter/rectifier structure is used in medium and high power applications. This paper addresses some of the drawbacks of this approach compared to the voltage source approach. The proposed drive features: (a) an on-line operated PWM inverter, using instantaneous output capacitor voltage control based on space vector modulation; (b) a line-synchronized PWM rectifier, with dc bus current control; (c) an additional inverter modulation index control loop, ensuring a constant inverter modulation index. The resulting advantages include: (a) ruggedness and inherent continuous regeneration capability; (b) near unity global input power factor; (c) reduced motor voltage distortion; (d) reduced dc bus inductor and switch conduction losses; (e) fast motor dynamic response; (f) elimination of motor circuit resonances. Simulated and experimental results based on a DSP implementation are given.

  9. A Lower Hybrid Current Drive System for Alcator C-Mod

    SciTech Connect

    S. Bernabei; J.C. Hosea; D. Loesser; J. Rushinski; J.R. Wilson; P. Bonoli; M. Grimes; R. Parker; M. Porkolab; D. Terry; P. Woskov

    2001-05-04

    A Lower Hybrid Current Drive system is being constructed jointly by Plasma Science and Fusion Center (PSFC) and Princeton Plasma Physics Laboratory (PPPL) for installation on the Alcator C-Mod tokamak, with the primary goal of driving plasma current in the outer region of the plasma. The Lower Hybrid (LH) system consists of 3 MW power at 4.6 GHz with a maximum pulse length of 5 seconds. Twelve klystrons will feed an array of 4-vertical and 24-horizontal waveguides mounted in one equatorial port. The coupler will incorporate some compact characteristics of the multijunction power splitting while retaining full control of the toroidal phase. In addition a dynamic phase control system will allow feedback stabilization of MHD modes. The desire to avoid possible waveguide breakdown and the need for compactness have resulted in some innovative technical solution which will be presented.

  10. FED-A, an advanced performance FED based on low safety factor and current drive

    SciTech Connect

    Peng, Y.K.M.; Rutherford, P.H.

    1983-08-01

    The FED-A study aims to quantify the potential improvement in cost-effectiveness of the Fusion Engineering Device (FED) by assuming low safety factor q (less than 2 as opposed to about 3) at the plasma edge and noninductive current drive (as opposed to only inductive current drive). The FED-A performance objectives are set to be : (1) ignition assuming International Tokamak Reactor (INTOR) plamsa confinement scaling, but still achieving a fusion power amplification Q greater than or equal to 5 when the confinement is degraded by a factor of 2; (2) neutron wall loading of about 1 MW/m/sup 2/, with 0.5 MW/m/sup 2/ as a conservative lower bound; and (3) more clearly power-reactor-like operations, such as steady state.

  11. X-ray analysis of nonMaxwellian distributions (current drive)

    SciTech Connect

    von Goeler, S.; Stevens, J.; Stodiek, W.

    1983-06-01

    The plasma bremsstrahlung emission is utilized to determine the shape of the electron velocity distribution in situations where it deviates strongly from a Maxwellian distribution. The instrumentation used to measure the hard x-ray emission is briefly discussed. Model calculations show that polarization measurements give best results for unrelativistic tails with tail temperatures T/sub b/ < 50 keV, whereas measurements of the angular distribution of the x-ray emission based on the forward scattering of bremsstrahlung for relativistic electrons yields the best information for T/sub b/ > 50 keV. The techniques were originally developed in order to analyze runaway discharges. Recently, they found new interest because of the formation of energetic electron tails during current drive. The first x-ray results from the current drive during LH heating on PLT are discussed.

  12. Ray-tracing code TRAVIS for ECR heating, EC current drive and ECE diagnostic

    NASA Astrophysics Data System (ADS)

    Marushchenko, N. B.; Turkin, Y.; Maassberg, H.

    2014-01-01

    A description of the recently developed ray-tracing code TRAVIS is given together with the theoretical background, results of benchmarking and examples of application. The code is written for electron cyclotron studies with emphasis on heating, current drive and ECE diagnostic. The code works with an arbitrary 3D magnetic equilibrium being applicable for both stellarators and tokamaks. The equations for ray tracing are taken in the weakly relativistic approach, i.e. with thermal effects taken into account, while the absorption, current drive and emissivity are calculated in the fully relativistic approach. For the calculation of ECCD, an adjoint technique with parallel momentum conservation is applied. The code is controlled through a specially designed graphical user interface, which allows the preparation of the input parameters and viewing the results in convenient (2D and 3D) form.

  13. Redundant drive current imbalance problem of the Automatic Radiator Inspection Device (ARID)

    NASA Technical Reports Server (NTRS)

    Latino, Carl D.

    1992-01-01

    The Automatic Radiator Inspection Device (ARID) is a 4 Degree of Freedom (DOF) robot with redundant drive motors at each joint. The device is intended to automate the labor intensive task of space shuttle radiator inspection. For safety and redundancy, each joint is driven by two independent motor systems. Motors driving the same joint, however, draw vastly different currents. The concern was that the robot joints could be subjected to undue stress. It was the objective of this summer's project to determine the cause of this current imbalance. In addition it was to determine, in a quantitative manner, what was the cause, how serious the problem was in terms of damage or undue wear to the robot and find solutions if possible. It was concluded that most problems could be resolved with a better motor control design. This document discusses problems encountered and possible solutions.

  14. Electron cyclotron heating and current drive results from the DIII-D tokamak

    SciTech Connect

    Luce, T.C.; Harvey, R.; Lohr, J.; Prater, R.; Snider, R.; Stallard, B.; Stockdale, R. ); James, R.A.; deHaas, J. ); Fyaretdinov, A.; Gorelov, Yu; Trukhin, V. ); de Gentile, B.; Giruzzi, G.; Rodriguez, L. (CEA Centre d'Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (Fra

    1990-11-01

    Auxiliary heating experiments with electron cyclotron heating have been carried out in the DIII-D tokamak. Waves at 60 GHz have been launched at power levels up to 1.4 MW from both the high-field and low-field side with the appropriate polarization for damping at the fundamental resonance (2.14 T). Confinement was studied in L-mode and H-mode plasmas for a single-null, open divertor geometry. For L-mode discharges, the energy confinement scaling agrees well with the ITER-89 power law or offset linear scaling relations. With strong off-axis heating, the electron temperature profile remains peaked, and power balance analysis indicates that the transport cannot be described by a purely diffusive model. In H-mode confinement plasmas, the magnitude and scaling of the confinement time are equal to that of plasmas heated by neutral beam injection (NBI), if the energy stored in the fast ions is removed in the NBI cases. A major issue for steady-state H-mode plasmas is control of the edge-localized mode (ELM) behavior. By moving the resonance location {plus minus}5 cm around the separatrix, the frequency of giant ELMs can be changed by a factor of three. Non-inductive current drive with electron cyclotron waves has also been investigated. Driven currents up to 70 kA have been observed, but the current drive is enhanced by the residual dc electric field. Currents aiding and opposing the Ohmic current have been measured. The magnitude of the current for co-current drive is greater than expected from modeling which includes trapped particle effects, but no electric field. Preliminary calculations including the residual dc electric field can account for the observed enhancement.

  15. 60 MHz fast wave current drive experiments for DIII-D

    SciTech Connect

    Mayberry, M.J.; Chiu, S.C.; Porkolab, M.; Chan, V.; Freeman, R.; Harvey, R.; Pinsker, R.

    1989-05-01

    Non-inductive current drive is an essential element of the ITER program because it enhances high fluence nuclear testing during the technology phase of operations. By using fast waves in the ion cyclotron range of frequencies (ICRF), current drive efficiencies comparable to lower-hybrid current drive can be obtained with good penetration of wave power to the high temperature plasma core. An additional advantage of the low frequency scheme is its technological simplicity due to the present availability of efficient, multi-megawatt rf sources in the ICRF. The DIII-D facility provides an excellent opportunity to test the feasibility of the low frequency FWCD approach. By combining with high power (2 MW) ECH injection at 60 GHz, it should be possible to generate plasmas with central electron temperatures of T/sub e0/ approx. = 4 keV, and by operating at a reduced toroidal field (B = 1T) to increase the electron ..beta.., strong single-pass absorption (/eta//sub abs/ greater than or equal to 0.3) can be achieved. The availability of a wide port recess (1m toroidal by 0.5m poloidal) will enable a travelling wave spectrum to be launched with N/sub parallel/ approx. = 5--7 at 60 MHz, which should be optimum for strong electron interaction. The resulting current drive efficiency should be sufficiently high to demonstrate FWCD at the /approximately/ 0.25--0.5 MA level at moderate densities (/bar n/ approx. = 1.3 /times/ 10/sup 19/ m/sup /minus/3/) using the existing 2 MW ICRF transmitter. 7 refs., 5 figs.

  16. Electron Energy Confinement for HHFW Heating and Current Drive Phasing on NSTX

    SciTech Connect

    J.C. Hosea; S. Bernabei; T. Biewer; B. LeBlanc; C.K. Phillips; J.R. Wilson; D. Stutman; P. Ryan; D.W. Swain

    2005-05-03

    Thomson scattering laser pulses are synchronized relative to modulated HHFW power to permit evaluation of the electron energy confinement time during and following HHFW pulses for both heating and current drive antenna phasing. Profile changes resulting from instabilities require that the total electron stored energy, evaluated by integrating the midplane electron pressure P(sub)e(R) over the magnetic surfaces prescribed by EFIT analysis, be used to derive the electron energy confinement time. Core confinement is reduced during a sawtooth instability but, although the electron energy is distributed outward by the sawtooth, the bulk electron energy confinement time is essentially unaffected. The radial deposition of energy into the electrons is noticeably more peaked for current drive phasing (longer wavelength excitation) relative to that for heating phasing (shorter wavelength excitation) as is expected theoretically. However, the power delivered to the core plasma is reduced consider ably for the current drive phasing, indicating that surface/peripheral damping processes play a more important role for this case.

  17. Recent progress on lower hybrid current drive and implications for ITER

    NASA Astrophysics Data System (ADS)

    Hillairet, J.; Ekedahl, A.; Goniche, M.; Bae, Y. S.; Achard, J.; Armitano, A.; Beckett, B.; Belo, J.; Berger-By, G.; Bernard, J. M.; Corbel, E.; Delpech, L.; Decker, J.; Dumont, R.; Guilhem, D.; Hoang, G. T.; Kazarian, F.; Kim, H. J.; Litaudon, X.; Magne, R.; Marfisi, L.; Mollard, P.; Namkung, W.; Nilsson, E.; Park, S.; Peysson, Y.; Preynas, M.; Sharma, P. K.; Prou, M.; the Tore Supra Team

    2013-07-01

    The sustainment of steady-state plasmas in tokamaks requires efficient current drive systems. Lower hybrid current drive is currently the most efficient method to generate a continuous additional off-axis toroidal plasma current and to reduce the poloidal flux consumption during the plasma current ramp-up phase. The operation of the Tore Supra ITER-like lower hybrid (LH) launcher has demonstrated the capability to couple LH power at ITER-like power densities with very low reflected power during long pulses. In addition, the installation of eight 700 kW/CW klystrons at the LH transmitter has allowed increasing the total LH power in long-pulse scenarios. However, in order to achieve pure stationary LH-sustained plasmas, some R&D is needed to increase the reliability of all the systems and codes, from radio-frequency (RF) sources to plasma scenario prediction. The CEA/IRFM is addressing some of these issues by leading a R&D programme towards an ITER LH system and by the validation of an integrated LH modelling suite of codes. In 2011, the RF design of a mode converter was validated at a low power. A 500 kW/5 s RF window is currently under manufacture and will be tested at a high power in 2012 in collaboration with the National Fusion Research Institute. All of this work aims to reduce the operational risks associated with the ITER steady-state operations.

  18. First principles fluid modelling of magnetic island stabilization by electron cyclotron current drive (ECCD)

    NASA Astrophysics Data System (ADS)

    Février, O.; Maget, P.; Lütjens, H.; Luciani, J. F.; Decker, J.; Giruzzi, G.; Reich, M.; Beyer, P.; Lazzaro, E.; Nowak, S.; the ASDEX Upgrade Team

    2016-04-01

    Tearing modes are MagnetoHydroDynamics (MHD) instabilities that reduce the performance of fusion devices. They can however be controlled and suppressed using electron cyclotron current drive (ECCD) as demonstrated in various tokamaks. In this work, simulations of island stabilization by ECCD-driven current have been carried out using the toroidal nonlinear 3D full MHD code xtor-2f, in which a current source term modeling the ECCD has been implemented. The efficiency parameter, {η\\text{RF}} , has been computed and its variations with respect to source width and location were also computed. The influence of parameters such as current intensity, source width and position with respect to the island was evaluated and compared to the modified Rutherford equation. We retrieved a good agreement between the simulations and the analytical predictions concerning the variations of control efficiency with source width and position. We also show that the 3D nature of the current source term can lead to the onset of an island if the source term is precisely applied on a rational surface. We report the observation of a flip phenomenon in which the O- and X-points of the island rapidly switch their position in order for the island to take advantage of the current drive to grow.

  19. Heating and current drive requirements towards steady state operation in ITER

    SciTech Connect

    Poli, F. M.; Kessel, C. E.; Gorelenkova, M.; Bonoli, P. T.; Batchelor, D. B.; Harvey, B.; Petrov, Y.

    2014-02-12

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H/CD sources that maintain weakly reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that, with a trade-off of the EC equatorial and upper launcher, the formation and sustainment of quasi-steady state ITBs could be demonstrated in ITER with the baseline heating configuration. However, with proper constraints from peeling-ballooning theory on the pedestal width and height, the fusion gain and the maximum non-inductive current are below the ITER target. Upgrades of the heating and current drive system in ITER, like the use of Lower Hybrid current drive, could overcome these limitations, sustaining higher non-inductive current and confinement, more expanded ITBs which are ideal MHD stable.

  20. Particle pinch with fully noninductive lower hybrid current drive in Tore Supra.

    PubMed

    Hoang, G T; Bourdelle, C; Pégourié, B; Schunke, B; Artaud, J F; Bucalossi, J; Clairet, F; Fenzi-Bonizec, C; Garbet, X; Gil, C; Guirlet, R; Imbeaux, F; Lasalle, J; Loarer, T; Lowry, C; Travère, J M; Tsitrone, E

    2003-04-18

    Recently, plasmas exceeding 4 min have been obtained with lower hybrid current drive (LHCD) in Tore Supra. These LHCD plasmas extend for over 80 times the resistive current diffusion time with zero loop voltage. Under such unique conditions the neoclassical particle pinch driven by the toroidal electric field vanishes. Nevertheless, the density profile remains peaked for more than 4 min. For the first time, the existence of an inward particle pinch in steady-state plasma without toroidal electric field, much larger than the value predicted by the collisional neoclassical theory, is experimentally demonstrated. PMID:12732041

  1. On the current drive capability of low dimensional semiconductors: 1D versus 2D

    DOE PAGESBeta

    Zhu, Y.; Appenzeller, J.

    2015-10-29

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Lastly, our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  2. Electron Cyclotron / Bernstein Wave Heating and Current Drive Experiments using Phased-array Antenna in QUEST

    SciTech Connect

    Idei, H.; Zushi, H.; Hanada, K.; Nakamura, K.; Fujisawa, A.; Hasegawa, M.; Yoshida, N.; Watanebe, H.; Tokunaga, K.; Nagashima, Y.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Sakamoto, M.; Ejiri, A.; Takase, Y.; Sakaguchi, M.; Kalinnikova, E.; Ishiguro, M.; Tashima, S.

    2011-12-23

    The phased-array antenna system for Electron Cyclotron/Bernstein Wave Heating and Current Drive experiments has been developed in the QUEST. The antenna was designed to excite a pure O-mode wave in the oblique injection for the O-X-B mode conversion experiments, and its good performances were confirmed at a low power level. The plasma current (<{approx}15 kA) with an aspect ratio of 1.5 was started up and sustained by only RF injection in the low-density operations. The long pulse discharge of 10 kA was also attained for 37 s. The new density window to sustain the plasma current was observed in the high-density plasmas. The single-null divertor configuration with the high plasma current (<{approx}25 kA) was attained in the 17 s plasma sustainment.

  3. Noninductive plasma generation and current drive in the Globus-M spherical tokamak

    SciTech Connect

    D'yachenko, V. V.; Gusev, V. K.; Larionov, M. M.; Mel'nik, A. D.; Novokhatskii, A. N.; Petrov, Yu. V.; Rozhdestvenskii, V. V.; Sakharov, N. V.; Stepanov, A. Yu.; Khitrov, S. A.; Khromov, N. A.; Chernyshev, F. V.; Shevelev, A. E.; Shcherbinin, O. N.; Bender, S. E.; Kavin, A. A.; Lobanov, K. M.

    2013-03-15

    Experimental results on the generation and maintenance of the toroidal current in the Globus-M spherical tokamak by using waves in the lower hybrid frequency range without applying an inductive vortex electric field are presented. For this purpose, the original ridge guide antennas forming a field distribution similar to that produced by multiwaveguide grills were used. The high-frequency field (900 MHz) was used for both plasma generation and current drive. The magnitude of the generated current reached 21 kA, and its direction depended on the direction of the vertical magnetic field. Analysis of the experimental results indicates that the major fraction of the current is carried by the suprathermal electron beam.

  4. Stabilization of tearing modes in DIII-D by localized electron cyclotron current drive

    NASA Astrophysics Data System (ADS)

    Luce, T. C.; La Haye, R. J.; Humphreys, D. A.; Petty, C. C.; Prater, R.

    2001-10-01

    Tearing modes have been shown to limit β and confinement in conventional ELMing H-mode tokamak regimes. The tearing modes grow from a "seed" island due to the destabilizing effect of pressure flattening in the island leading to a reduction in the local bootstrap current. Recent experiments on the DIII-D tokamak have demonstrated stabilization of m=3/n=2 tearing modes in the presence of sawteeth through localized electron cyclotron current drive (ECCD). Variation of the deposition location indicates the ECCD remains localized despite the beam traversing an ELMing edge. The effect of the ECCD on the mode is consistent with predictions that the ECCD must be within the island for stabilization. The calculated EC current density (JEC) is greater than the calculated local bootstrap current density (JBS) also in accord with predictions. A closed-loop feedback scheme has been successfully operated for the first time using position control and magnetic signals as the actuator and sensor, respectively.

  5. Investigation of the second harmonic electron cyclotron current drive efficiency on the T-10 tokamak

    SciTech Connect

    Razumova, K.A.; Alikaev, V.V.; Dremin, M.M.; Esipchuk, Y.V.; Kislov, A.Y.; Notkin, G.E.; Pavlov, Y.D. ); Forest, C.B.; Lohr, J.; Luce, T.C.; Harvey, R.W. )

    1994-05-01

    Experiments on second harmonic electron cyclotron current drive were done on the T-10 tokamak using four gyrotrons. Total powers up to 1.2 MW at a frequency of 140 GHz were injected. Current generation by electron cyclotron (EC) waves was demonstrated in the experiments. The efficiency [eta] of current generation and its dependence on plasma parameters were measured and it was shown that the efficiency is a nonlinear function of input power, more closely predicted by Fokker--Planck calculations than by linear theory. The interaction of EC waves with the tail of the electron distribution was shown to be important. It was also found that current density profile redistribution played an important role in the plasma behavior.

  6. Method for producing silicon thin-film transistors with enhanced forward current drive

    DOEpatents

    Weiner, K.H.

    1998-06-30

    A method is disclosed for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates. 1 fig.

  7. THE ROTATING MAGNETIC FIELD OSCILLATOR SYSTEM FOR CURRENT DRIVE IN THE TRANSLATION, CONFINEMENT AND SUSTAINMENT EXPERIMENT

    SciTech Connect

    S. TOBIN; ET AL

    2000-12-01

    The experimental setup and test results for the {approximately}125 MW rotating magnetic field current drive system of the Translation, Confinement and Sustainment Experiment at the University of Washington are described. The oscillator system, constructed at Los Alamos National Laboratory, drives two tank circuits (15 kV{sub peak} potential, 8.5 kA{sub peak} maximum circulating current in each tank to date) operated 90{degree} out of phase to produce a 54 G rotating magnetic field with a frequency of 163 kHz ({omega} = 1.02{sup x} 10{sup {minus}6} s{sup {minus}1}). Programmable waveform generators control ''hot deck'' totem pole drivers that are used to control the grid of 12 Machlett 8618 magnetically beamed triode tubes. This setup allows the current to be turned on or off in less than 100 ns ({approximately}6{degree}). Both tank circuits are isolated from the current source by a 1:1 air core, transmission line transformer. Each tank circuit contains two saddle coils (combined inductance of 1.6 {micro}H) and radio frequency capacitors (580 nF). Test results are presented for three conditions: no external load, a resistive external load and a plasma load. A SPICE model of the oscillator system was created. Comparisons between this model and experimental data are given.

  8. Initial fast wave heating and current drive experiments on the DIII-D tokamak

    SciTech Connect

    Prater, R.; Mayberry, M.J.; Petty, C.C.; Pinsker, R.I.; Chiu, S.C.; Harvey, R.W.; Luce, T.C.; Porkolab, M.; Bonoli, P.; James, R.A.; Kawashima, H.; Baity, F.W.; Goulding, R.H.; Hoffman, D.J.; Becoulet, A.; Moreau, D.; Trukhin, V.

    1991-12-01

    Heating and current drive experiments have been performed on the DIII-D tokamak using a 4-strap fast wave antenna at power up to 1.7 MW at 30--60 MHz. Minority heating experiments using D(H) showed effective wave absorption, confirming that the antenna was launching the fast wave. Experiments on the direct absorption of fast waves by electrons through Landau damping and transit-time magnetic pumping were performed at 60 MHz. These experiments showed effective heating of electrons, with a global heating efficiency comparable to that of neutral injection, even when the calculated single-pass dumping was as small as 5%. It is believed that effective multiple-pass damping is taking place. Fast wave current drive experiments were performed with a toroidally directional spectrum obtained by {pi}/2-phasing of the antenna straps. Although non-inductive currents of up to 160 kA were found, the magnitude of the non-inductive current did not decrease when the wave spectrum was reversed. These results are presently under investigation.

  9. Advanced Tokamak Regimes in Alcator C-Mod with Lower Hybrid Current Drive

    NASA Astrophysics Data System (ADS)

    Parker, R.; Bonoli, P.; Gwinn, D.; Hutchinson, I.; Porkolab, M.; Ramos, J.; Bernabei, S.; Hosea, J.; Wilson, R.

    1999-11-01

    Alcator C-Mod has been proposed as a test-bed for developing advanced tokamak scenarios owing to its strong shaping, relatively long pulse length capability at moderate field, e.g. t ~ L/R at B = 5T and T_eo ~ 7keV, and the availability of strong ICRF heating. We plan to exploit this capability by installing up to 4 MW RF power at 4.6 GHz for efficient off-axis current drive by lower hybrid waves. By launching LH waves with a grill whose n_xx spectrum can be dynamically controlled over the range 2 < n_xx < 3.5, the driven current profile can be modified so that, when combined with bootstrap current in high ɛβ_pol regimes, q_min > 2. Such reversed or nearly zero shear regimes have already been proposed as the basis of an advanced tokamak burning-plasma experiment-ATBX (M. Porkolab et al, IAEA-CN-69/FTP/13, IAEA,Yokohama 1998.), and could provide the basis for a demonstration power reactor. Theoretical and experimental basis for this advanced tokamak research program on C-Mod, including design of the lower hybrid coupler, its spectrum and current drive capabilities will be presented.

  10. Method for producing silicon thin-film transistors with enhanced forward current drive

    DOEpatents

    Weiner, Kurt H.

    1998-01-01

    A method for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates.

  11. Numerical studies of electron cyclotron wave current drive on HL-2A tokamak

    SciTech Connect

    Li, J. C.; Gong, X. Y.; Dong, J. Q.; Song, S. D.; Gao, Q. D.; Zheng, P. W.; Du, D.

    2015-06-15

    The electron cyclotron wave (ECW) current drive (CD) for the HL-2A tokamak is investigated numerically with a new ray-tracing and Fokker-Planck code. The code is benchmarked with other well-tested linear and quasilinear codes and is then used to study the electron cyclotron current drive on the HL-2A tokamak. The wave propagation, power deposition, and driven-current profiles are presented. The effect of electron trapping is also assessed. It is found that quasilinear effects are negligible at the present ECW power levels and that when both waves are injected at an angle of 20° on the plasma equatorial plane, the CD efficiency for the HL-2A saturates at ∼0.029 × 10{sup 20 }A/W/m{sup 2} and ∼0.020 × 10{sup 20 }A/W/m{sup 2} for the 0.5 MW/68 GHz first harmonic ordinary (O1) and 1 MW/140 GHz second harmonic extraordinary (X2) modes, respectively. The effects of the plasma density, temperature, and wave-launching position on the driven current are also investigated analytically and numerically.

  12. Kinesin-2 KIF3AC and KIF3AB Can Drive Long-Range Transport along Microtubules.

    PubMed

    Guzik-Lendrum, Stephanie; Rank, Katherine C; Bensel, Brandon M; Taylor, Keenan C; Rayment, Ivan; Gilbert, Susan P

    2015-10-01

    Mammalian KIF3AC is classified as a heterotrimeric kinesin-2 that is best known for organelle transport in neurons, yet in vitro studies to characterize its single molecule behavior are lacking. The results presented show that a KIF3AC motor that includes the native helix α7 sequence for coiled-coil formation is highly processive with run lengths of ∼1.23 μm and matching those exhibited by conventional kinesin-1. This result was unexpected because KIF3AC exhibits the canonical kinesin-2 neck-linker sequence that has been reported to be responsible for shorter run lengths observed for another heterotrimeric kinesin-2, KIF3AB. However, KIF3AB with its native neck linker and helix α7 is also highly processive with run lengths of ∼1.62 μm and exceeding those of KIF3AC and kinesin-1. Loop L11, a component of the microtubule-motor interface and implicated in activating ADP release upon microtubule collision, is significantly extended in KIF3C as compared with other kinesins. A KIF3AC encoding a truncation in KIF3C loop L11 (KIF3ACΔL11) exhibited longer run lengths at ∼1.55 μm than wild-type KIF3AC and were more similar to KIF3AB run lengths, suggesting that L11 also contributes to tuning motor processivity. The steady-state ATPase results show that shortening L11 does not alter kcat, consistent with the observation that single molecule velocities are not affected by this truncation. However, shortening loop L11 of KIF3C significantly increases the microtubule affinity of KIF3ACΔL11, revealing another structural and mechanistic property that can modulate processivity. The results presented provide new, to our knowledge, insights to understand structure-function relationships governing processivity and a better understanding of the potential of KIF3AC for long-distance transport in neurons. PMID:26445448

  13. Angular Dependence of Transport AC Losses in Superconducting Wire with Position-Dependent Critical Current Density in a DC Magnetic Field

    NASA Astrophysics Data System (ADS)

    Su, Xing-liang; Xiong, Li-ting; Gao, Yuan-wen; Zhou, You-he

    2013-07-01

    Transport AC losses play a very important role in high temperature superconductors (HTSs), which usually carry AC transport current under applied magnetic field in typical application-like conditions. In this paper, we propose the analytical formula for transport AC losses in HTS wire by considering critical current density of both inhomogeneous and anisotropic field dependent. The angular dependence of critical current density is described by effective mass theory, and the HTS wire has inhomogeneous distribution cross-section of critical current density. We calculate the angular dependence of normalized AC losses under different DC applied magnetic fields. The numerical results of this formula agree well with the experiment data and are better than the results of Norris formula. This analytical formula can explain the deviation of experimental transport current losses from the Norris formula and apply to calculate transport AC losses in realistic practical condition.

  14. Electron-cyclotron-current-drive experiments in the DIII-D tokamak

    SciTech Connect

    James, R.A. ); Giruzzi, G.; de Gentile, B.; Rodriguez, L. ); Harvey, R.; Lohr, J.; Luce, T.C.; Matsuda, K.; Moeller, C.P.; Prater, R.; Snider, R. ); Fyakhretdinov, A.; Gorelov, Y.; Trukhin, V. ); Janz, S. )

    1992-06-15

    Electron-cyclotron-current-drive (ECCD) experiments performed in the DIII-D tokamak have produced rf-driven currents of up to 100 kA. The experimental results, which exceed predictions using linear theory, are enhanced by the presence of a residual, toroidal dc electric field. These ECCD experiments are performed with plasma conditions sufficient to result in strong localized deposition of the rf power and good confinement of the rf-generated current carriers. These improved conditions permit a test of theory under reactor relevant conditions. Theoretical predictions obtained using a Fokker-Planck code are in good agreement with the experimental results when effects due to electron trapping and the residual dc electric field are included.

  15. Closure of the single fluid magnetohydrodynamic equations in presence of electron cyclotron current drive

    SciTech Connect

    Westerhof, E. Pratt, J.

    2014-10-15

    In the presence of electron cyclotron current drive (ECCD), the Ohm's law of single fluid magnetohydrodynamics is modified as E + v × B = η(J – J{sub EC}). This paper presents a new closure relation for the EC driven current density appearing in this modified Ohm's law. The new relation faithfully represents the nonlocal character of the EC driven current and its main origin in the Fisch-Boozer effect. The closure relation is validated on both an analytical solution of an approximated Fokker-Planck equation as well as on full bounce-averaged, quasi-linear Fokker-Planck code simulations of ECCD inside rotating magnetic islands. The new model contains the model put forward by Giruzzi et al. [Nucl. Fusion 39, 107 (1999)] in one of its limits.

  16. Thyristor-based current-fed drive with direct power control for permanent magnet-assisted synchronous reluctance generator

    NASA Astrophysics Data System (ADS)

    Baek, J.; Kwak, S.-S.; Toliyat, H. A.

    2015-03-01

    This paper proposes a robust and simple direct power control (DPC) of a thyristor-based current-fed drive for generator applications. A current-fed drive and permanent magnet-assisted synchronous reluctance generator (PMa-SynRG) are investigated to deliver 3 kW power using a combustion engine. The current-fed drive utilises a thyristor-based three-phase rectifier to convert generator power to DC-link power and a single-phase current-fed inverter to supply a single-phase inductive load. In addition, a new control algorithm is developed based on DPC for the current-fed drive. The DC-link voltage-based DPC is proposed in order to directly control the output power. The goal of the DPC is to maintain the DC-link voltage at the required output power operating point. The DPC has advantages such as a simple algorithm for constant speed operation. Another feature of the developed current-fed drive is its inherent capability to provide generating action by making the PMa-SynRG operates as a generator, rectifying the phase voltages by means of the three-phase rectifier and feeding the power into the load. These features make the current-fed drive a good candidate for driving any type of synchronous generators including the proposed PMa-SynRG.

  17. Time-resolved magnetic flux and AC-current distributions in superconducting yttrium barium copper oxide thin films and multifilaments

    NASA Astrophysics Data System (ADS)

    Yang, Ran

    Time-resolved magneto-optical imaging (TRMOI) technique allows dynamic ac transport measurements on superconductors. The high time and spatial resolutions of the measurements also offer good quantitative data analysis of the MO images. YBa2Cu 3O7-delta (YBCO) was discovered as a high-temperature superconductor (HTSC) which has wide applications due to its high critical temperature of Tc = 91 K, and high critical current density Jc in the order of 106-7 Acm-2. Many of the applications require high ac current load and a high magnetic field. We study the interaction behavior of YBCO thin films in an ac transport current and a dc magnetic field by the TRMOI technique. In this dissertation, I first introduce the applications of high-temperature superconductors with focus on YBCO and describe the advantages of the TRMOI technique we developed over other methods to map the magnetic flux distribution of superconductors. The theories to understand the magnetic properties of HTSC are presented, followed by theoretical models. I also introduce a newly developed finite elemental method (FEM) simulation which is proved to be a better theoretical guideline to our data analysis. The TRMOI experimental setup and the procedures are discussed in detail. I show step-by-step the calibration of light intensity profiles averaged from MO images to determine magnetic field distribution, and a numerical inversion of the Biot-Savart law to calculate the current density distributions. The current density evolution in YBCO thin films is studied by TRMOI as a function of the phase of an ac current applied simultaneously with a perpendicular dc magnetic field. The measurements show that an ac current enables the vortex matter in YBCO thin films to reorganize into two coexisting steady states of driven vortex motion with different characteristics. To study the transport current effects in YBCO thin films, we present a new empirical method to separate the total current distribution into a

  18. Broadband sidebands generated by parametric instability in lower hybrid current drive experiments on EAST

    SciTech Connect

    Amicucci, L. Castaldo, C.; Cesario, R.; Giovannozzi, E.; Tuccillo, A. A.; Ding, B. J.; Li, M. H.

    2015-12-10

    Modern research on nuclear fusion energy, based on the tokamak concept, has strong need of tools for actively driving non-inductive current especially at the periphery of plasma column, where tools available so far have poor efficiency. This is essential for solving one of the most critical problems for thermonuclear reactor, consisting in how to achieve the figure of fusion gain in the context of sufficient stability. The lower hybrid current drive (LHCD) effect has the potential capability of driving current at large radii of reactor plasma with high efficiency [1]. Experiments recently carried out on EAST showed that a strong activity of LH sideband waves (from the RF probe spectra), accompanied by weak core penetration of the coupled LH power, is present when operating at relatively high plasma densities. Previous theoretical results, confirmed by experiments on FTU, showed that the LH sideband phenomenon is produced by parametric instability (PI), which are mitigated by higher plasma edge temperatures. This condition is thus useful for enabling the LH power propagation when operating with profiles having high plasma densities even at the edge. In the present work, we show new PI modeling of EAST plasmas data, obtained in condition of higher plasma edge temperature due to chamber lithisation. The obtained trend of the PI frequencies and growth rates is consistent with data of RF probe spectra, available in different regimes of lithisated and not lithisated vessel. Moreover, these spectra are interpreted as PI effect occurring at the periphery of plasma column, however in the low field side where the LH power is coupled.

  19. Broadband sidebands generated by parametric instability in lower hybrid current drive experiments on EAST

    NASA Astrophysics Data System (ADS)

    Amicucci, L.; Ding, B. J.; Castaldo, C.; Cesario, R.; Giovannozzi, E.; Li, M. H.; Tuccillo, A. A.

    2015-12-01

    Modern research on nuclear fusion energy, based on the tokamak concept, has strong need of tools for actively driving non-inductive current especially at the periphery of plasma column, where tools available so far have poor efficiency. This is essential for solving one of the most critical problems for thermonuclear reactor, consisting in how to achieve the figure of fusion gain in the context of sufficient stability. The lower hybrid current drive (LHCD) effect has the potential capability of driving current at large radii of reactor plasma with high efficiency [1]. Experiments recently carried out on EAST showed that a strong activity of LH sideband waves (from the RF probe spectra), accompanied by weak core penetration of the coupled LH power, is present when operating at relatively high plasma densities. Previous theoretical results, confirmed by experiments on FTU, showed that the LH sideband phenomenon is produced by parametric instability (PI), which are mitigated by higher plasma edge temperatures. This condition is thus useful for enabling the LH power propagation when operating with profiles having high plasma densities even at the edge. In the present work, we show new PI modeling of EAST plasmas data, obtained in condition of higher plasma edge temperature due to chamber lithisation. The obtained trend of the PI frequencies and growth rates is consistent with data of RF probe spectra, available in different regimes of lithisated and not lithisated vessel. Moreover, these spectra are interpreted as PI effect occurring at the periphery of plasma column, however in the low field side where the LH power is coupled.

  20. Comparative modelling of lower hybrid current drive with two launcher designs in the Tore Supra tokamak

    NASA Astrophysics Data System (ADS)

    Nilsson, E.; Decker, J.; Peysson, Y.; Artaud, J.-F.; Ekedahl, A.; Hillairet, J.; Aniel, T.; Basiuk, V.; Goniche, M.; Imbeaux, F.; Mazon, D.; Sharma, P.

    2013-08-01

    Fully non-inductive operation with lower hybrid current drive (LHCD) in the Tore Supra tokamak is achieved using either a fully active multijunction (FAM) launcher or a more recent ITER-relevant passive active multijunction (PAM) launcher, or both launchers simultaneously. While both antennas show comparable experimental efficiencies, the analysis of stability properties in long discharges suggest different current profiles. We present comparative modelling of LHCD with the two different launchers to characterize the effect of the respective antenna spectra on the driven current profile. The interpretative modelling of LHCD is carried out using a chain of codes calculating, respectively, the global discharge evolution (tokamak simulator METIS), the spectrum at the antenna mouth (LH coupling code ALOHA), the LH wave propagation (ray-tracing code C3PO), and the distribution function (3D Fokker-Planck code LUKE). Essential aspects of the fast electron dynamics in time, space and energy are obtained from hard x-ray measurements of fast electron bremsstrahlung emission using a dedicated tomographic system. LHCD simulations are validated by systematic comparisons between these experimental measurements and the reconstructed signal calculated by the code R5X2 from the LUKE electron distribution. An excellent agreement is obtained in the presence of strong Landau damping (found under low density and high-power conditions in Tore Supra) for which the ray-tracing model is valid for modelling the LH wave propagation. Two aspects of the antenna spectra are found to have a significant effect on LHCD. First, the driven current is found to be proportional to the directivity, which depends upon the respective weight of the main positive and main negative lobes and is particularly sensitive to the density in front of the antenna. Second, the position of the main negative lobe in the spectrum is different for the two launchers. As this lobe drives a counter-current, the resulting

  1. Fast wave current drive in neutral beam heated plasmas on DIII-D

    SciTech Connect

    Petty, C.C.; Forest, C.B.; Pinsker, R.I.

    1997-04-01

    The physics of non-inductive current drive and current profile control using the fast magnetosonic wave has been demonstrated on the DIII-D tokamak. In non-sawtoothing discharges formed by neutral beam injection (NBI), the radial profile of the fast wave current drive (FWCD) was determined by the response of the loop voltage profile to co, counter, and symmetric antenna phasings, and was found to be in good agreement with theoretical models. The application of counter FWCD increased the magnetic shear reversal of the plasma and delayed the onset of sawteeth, compared to co FWCD. The partial absorption of fast waves by energetic beam ions at high harmonics of the ion cyclotron frequency was also evident from a build up of fast particle pressure near the magnetic axis and a correlated increase in the neutron rate. The anomalous fast particle pressure and neutron rate increased with increasing NBI power and peaked when a harmonic of the deuterium cyclotron frequency passed through the center of the plasma. The experimental FWCD efficiency was highest at 2 T where the interaction between the fast waves and the beam ions was weakest; as the magnetic field strength was lowered, the FWCD efficiency decreased to approximately half of the maximum theoretical value.

  2. High efficiency off-axis current drive by high frequency fast waves

    SciTech Connect

    Prater, R.; Pinsker, R. I.; Moeller, C. P.; Porkolab, M.; Vdovin, V.

    2014-02-12

    Modeling work shows that current drive can be done off-axis with high efficiency, as required for FNSF and DEMO, by using very high harmonic fast waves (“helicons” or “whistlers”). The modeling indicates that plasmas with high electron beta are needed in order for the current drive to take place off-axis, making DIII-D a highly suitable test vehicle for this process. The calculations show that the driven current is not very sensitive to the launched value of n{sub ∥}, a result that can be understood from examination of the evolution of n{sub ∥} as the waves propagate in the plasma. Because of this insensitivity, relatively large values (∼3) of n{sub ∥} can be launched, thereby avoiding some of the problems with mode conversion in the boundary found in some previous experiments. Use of a traveling wave antenna provides a very narrow n{sub ∥} spectrum, which also helps avoid mode conversion.

  3. Electron-cyclotron wave propagation, absorption and current drive in the presence of neoclassical tearing modes

    NASA Astrophysics Data System (ADS)

    Isliker, Heinz; Chatziantonaki, Ioanna; Tsironis, Christos; Vlahos, Loukas

    2012-09-01

    We analyze the propagation of electron-cyclotron waves, their absorption and current drive when neoclassical tearing modes (NTMs), in the form of magnetic islands, are present in a tokamak plasma. So far, the analysis of the wave propagation and power deposition in the presence of NTMs has been performed mainly in the frame of an axisymmetric magnetic field, ignoring any effects from the island topology. Our analysis starts from an axisymmetric magnetic equilibrium, which is perturbed such as to exhibit magnetic islands. In this geometry, we compute the wave evolution with a ray-tracing code, focusing on the effect of the island topology on the efficiency of the absorption and current drive. To increase the precision in the calculation of the power deposition, the standard analytical flux-surface labeling for the island region has been adjusted from the usual cylindrical to toroidal geometry. The propagation up to the O-point is found to be little affected by the island topology, whereas the power absorbed and the driven current are significantly enhanced, because the resonant particles are bound to the small volumes in between the flux surfaces of the island. The consequences of these effects on the NTM evolution are investigated in terms of the modified Rutherford equation.

  4. The targeted heating and current drive applications for the ITER electron cyclotron system

    SciTech Connect

    Henderson, M.; Darbos, C.; Gandini, F.; Gassmann, T.; Loarte, A.; Omori, T.; Purohit, D.; Saibene, G.; Gagliardi, M.; Farina, D.; Figini, L.; Hanson, G.; Poli, E.; Takahashi, K.

    2015-02-15

    A 24 MW Electron Cyclotron (EC) system operating at 170 GHz and 3600 s pulse length is to be installed on ITER. The EC plant shall deliver 20 MW of this power to the plasma for Heating and Current Drive (H and CD) applications. The EC system is designed for plasma initiation, central heating, current drive, current profile tailoring, and Magneto-hydrodynamic control (in particular, sawteeth and Neo-classical Tearing Mode) in the flat-top phase of the plasma. A preliminary design review was performed in 2012, which identified a need for extended application of the EC system to the plasma ramp-up, flattop, and ramp down phases of ITER plasma pulse. The various functionalities are prioritized based on those applications, which can be uniquely addressed with the EC system in contrast to other H and CD systems. An initial attempt has been developed at prioritizing the allocated H and CD applications for the three scenarios envisioned: ELMy H-mode (15 MA), Hybrid (∼12 MA), and Advanced (∼9 MA) scenarios. This leads to the finalization of the design requirements for the EC sub-systems.

  5. The targeted heating and current drive applications for the ITER electron cyclotron system

    NASA Astrophysics Data System (ADS)

    Henderson, M.; Saibene, G.; Darbos, C.; Farina, D.; Figini, L.; Gagliardi, M.; Gandini, F.; Gassmann, T.; Hanson, G.; Loarte, A.; Omori, T.; Poli, E.; Purohit, D.; Takahashi, K.

    2015-02-01

    A 24 MW Electron Cyclotron (EC) system operating at 170 GHz and 3600 s pulse length is to be installed on ITER. The EC plant shall deliver 20 MW of this power to the plasma for Heating and Current Drive (H&CD) applications. The EC system is designed for plasma initiation, central heating, current drive, current profile tailoring, and Magneto-hydrodynamic control (in particular, sawteeth and Neo-classical Tearing Mode) in the flat-top phase of the plasma. A preliminary design review was performed in 2012, which identified a need for extended application of the EC system to the plasma ramp-up, flattop, and ramp down phases of ITER plasma pulse. The various functionalities are prioritized based on those applications, which can be uniquely addressed with the EC system in contrast to other H&CD systems. An initial attempt has been developed at prioritizing the allocated H&CD applications for the three scenarios envisioned: ELMy H-mode (15 MA), Hybrid (˜12 MA), and Advanced (˜9 MA) scenarios. This leads to the finalization of the design requirements for the EC sub-systems.

  6. Beat wave current drive experiment on the Davis Diverted Tokamak (DDT). Final report

    SciTech Connect

    Hwang, D.Q.; Horton, R.D.; Rogers, J.H. |

    1993-12-31

    The beatwave current drive experiment is summarized. The first phase of the experiment was the construction of the microwave sources and the diagnostics needed to demonstrate the beat wave effects, i.e. the measurement of the electrostatic plasma wave produced by the beating of two high intensity electromagnetic waves. In order to keep the cost of the experiments to a minimum, a low density filament plasma source (10{sup 8}) to (10{sup 10} particles cm{sup {minus}3}) was employed and the magnetic field in the toroidal plasma was produced by a dc power supply.

  7. On variational formulation of current drive problem in uniformly magnetized relativistic plasma

    NASA Astrophysics Data System (ADS)

    Hu, Y. M.; Hu, Y. J.

    2016-01-01

    A fully relativistic extension of the variational principle with the modified test function for the Spitzer function with momentum conservation in the electron-electron collision is investigated in uniformly magnetized plasma. The term of the momentum conserving constraint in Hirshman’s variational calculation is studied. The model developed is extended for arbitrary temperatures and covers exactly the asymptotic for u\\gg 1 when {{Z}\\text{eff}}\\gg 1 , and the results obtained are suited to facilitate the development of a rigorous variational formulation of current drive efficiency in tokamak plasma.

  8. Angular distribution of the bremsstrahlung emission during lower-hybrid current drive on PLT

    SciTech Connect

    von Goeler, S.; Stevens, J.; Bernabei, S.; Bitter, M.; Chu, T.K.; Efthimion, P.; Fisch, N.; Hooke, W.; Hill, K.; Hosea, J.

    1985-06-01

    The bremsstrahlung emission from the PLT tokamak during lower-hybrid current drive has been measured as a function of angle between the magnetic field and the emission direction. The emission is peaked strongly in the forward direction, indicating a strong anisotropy of the electron-velocity distribution. The data demonstrate the existence of a nearly flat tail of the velocity distribution, which extends out to approximately 500 keV and which is interpreted as the plateau created by Landau damping of the lower-hybrid waves.

  9. Development of a prototype T-shaped fast switching device for electron cyclotron current drive systems

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Kenji; Nagashima, Koji; Honzu, Toshihiko; Saigusa, Mikio; Oda, Yasuhisa; Takahashi, Koji; Sakamoto, Keishi

    2016-09-01

    A T-shaped high-power switching device composed of circular corrugated waveguides with three ports and double dielectric disks made of sapphire was proposed as a fast switching device based on a new principle in electron cyclotron current drive systems. This switching device has the advantages of operating at a fixed frequency and being compact. The design of the prototype switch was obtained by numerical simulations using a finite-difference time-domain (FDTD) method. The size of these components was optimized for the frequency band of 170 GHz. Low-power tests were carried out in a cross-shaped model.

  10. Demonstration of Effective Control of Fast-Ion-Stabilized Sawteeth by Electron-Cyclotron Current Drive

    NASA Astrophysics Data System (ADS)

    Lennholm, M.; Eriksson, L.-G.; Turco, F.; Bouquey, F.; Darbos, C.; Dumont, R.; Giruzzi, G.; Jung, M.; Lambert, R.; Magne, R.; Molina, D.; Moreau, P.; Rimini, F.; Segui, J.-L.; Song, S.; Traisnel, E.

    2009-03-01

    In a tokamak plasma, sawtooth oscillations in the central temperature, caused by a magnetohydrodynamic instability, can be partially stabilized by fast ions. The resulting less frequent sawtooth crashes can trigger unwanted magnetohydrodynamic activity. This Letter reports on experiments showing that modest electron-cyclotron current drive power, with the deposition positioned by feedback control of the injection angle, can reliably shorten the sawtooth period in the presence of ions with energies ≥0.5MeV. Certain surprising elements of the results are evaluated qualitatively in terms of existing theory.

  11. Effects of electron cyclotron current drive on the evolution of double tearing mode

    SciTech Connect

    Sun, Guanglan Dong, Chunying; Duan, Longfang

    2015-09-15

    The effects of electron cyclotron current drive (ECCD) on the double tearing mode (DTM) in slab geometry are investigated by using two-dimensional compressible magnetohydrodynamics equations. It is found that, mainly, the double tearing mode is suppressed by the emergence of the secondary island, due to the deposition of driven current on the X-point of magnetic island at one rational surface, which forms a new non-complete symmetric magnetic topology structure (defined as a non-complete symmetric structure, NSS). The effects of driven current with different parameters (magnitude, initial time of deposition, duration time, and location of deposition) on the evolution of DTM are analyzed elaborately. The optimal magnitude or optimal deposition duration of driven current is the one which makes the duration of NSS the longest, which depends on the mutual effect between ECCD and the background plasma. Moreover, driven current introduced at the early Sweet-Parker phase has the best suppression effect; and the optimal moment also exists, depending on the duration of the NSS. Finally, the effects varied by the driven current disposition location are studied. It is verified that the favorable location of driven current is the X-point which is completely different from the result of single tearing mode.

  12. Finite-Element Model Predicts Current Density Distribution for Clinical Applications of tDCS and tACS.

    PubMed

    Neuling, Toralf; Wagner, Sven; Wolters, Carsten H; Zaehle, Tino; Herrmann, Christoph S

    2012-01-01

    Transcranial direct current stimulation (tDCS) has been applied in numerous scientific studies over the past decade. However, the possibility to apply tDCS in therapy of neuropsychiatric disorders is still debated. While transcranial magnetic stimulation (TMS) has been approved for treatment of major depression in the United States by the Food and Drug Administration (FDA), tDCS is not as widely accepted. One of the criticisms against tDCS is the lack of spatial specificity. Focality is limited by the electrode size (35 cm(2) are commonly used) and the bipolar arrangement. However, a current flow through the head directly from anode to cathode is an outdated view. Finite-element (FE) models have recently been used to predict the exact current flow during tDCS. These simulations have demonstrated that the current flow depends on tissue shape and conductivity. To face the challenge to predict the location, magnitude, and direction of the current flow induced by tDCS and transcranial alternating current stimulation (tACS), we used a refined realistic FE modeling approach. With respect to the literature on clinical tDCS and tACS, we analyzed two common setups for the location of the stimulation electrodes which target the frontal lobe and the occipital lobe, respectively. We compared lateral and medial electrode configuration with regard to their usability. We were able to demonstrate that the lateral configurations yielded more focused stimulation areas as well as higher current intensities in the target areas. The high resolution of our simulation allows one to combine the modeled current flow with the knowledge of neuronal orientation to predict the consequences of tDCS and tACS. Our results not only offer a basis for a deeper understanding of the stimulation sites currently in use for clinical applications but also offer a better interpretation of observed effects. PMID:23015792

  13. The Plasma Physics Processes that Drive Ring Current Enhancements during Geomagnetic Storms and Substorms

    NASA Astrophysics Data System (ADS)

    Cash, Michele Diane

    Geomagnetic storms result when energetic particles of solar and ionospheric origin fill Earth's inner magnetosphere and create a strong westward current, known as the ring current. This dissertation presents results from investigating the plasma dynamics that contribute to the development of Earth's ring current from ionospheric outflow of H+ and O+ ions, and the role of ring current enhancements in the generation of geomagnetic storms and substorms. Modeling was carried via a combined multifluid and particle approach, which enables us to resolve the small-scale dynamics that are key to particle energization within the context of the global magnetosphere. The results presented in this dissertation substantially contribute to our understanding of the development and composition of the ring current during geomagnetic storms and substorms, and offer insight into the ionospheric sources regions for ring current ions, as well as the processes through which these particles are energized, injected, and trapped within the inner magnetosphere. This thesis presents results that show how small-scale particle dynamics within the current sheet, boundary layers, and reconnection regions drive the acceleration of ring current particles within the larger global context of the magnetosphere. Small-scale structures within the magnetotail are shown to be more important in determining when particles are accelerated than the time after particles are initialized in the ionosphere. It is also found that after a period of southward IMF, in which particle energization is observed, a northerly turning of the IMF is necessary in order to trap energetic particles in orbit around the Earth and form a symmetric ring current. Asymmetries in the acceleration mechanisms between ionospheric H+ and O + ions were observed with oxygen ions convecting duskward according to the cross-tail current and gaining more energy than protons, which moved earthward on reconnecting field lines and were accelerated

  14. 4 MW upgrade to the DIII-D fast wave current drive system

    SciTech Connect

    deGrassie, J.S.; Pinsker, R.I.; Cary, W.P.

    1993-10-01

    The DIII-D fast wave current drive (FWCD) system is being upgraded by an additional 4 MW in the 30 to 120 MHz frequency range. This capability adds to the existing 2 MW 30 to 60 MHz system. Two new ABB transmitters of the type that are in use on the ASDEX-Upgrade tokamak in Garching will be used to drive two new water-cooled four-strap antennas to be installed in DIII-D in early 1994. The transmission and tuning system for each antenna will be similar to that now in use for the first 2 MW system on DIII-D, but with some significant improvements. One improvement consists of adding a decoupler element to counter the mutual coupling between the antenna straps which results in large imbalances in the power to a strap for the usual current drive intrastrap phasing of 90{degrees}. Another improvement is to utilize pressurized, ceramic-insulated transmission lines. The intrastrap phasing will again be controlled in pairs, with a pair of straps coupled in a resonant loop configuration, locking their phase difference at either 0 or 180{degrees}, depending upon the length of line installed. These resonant loops will incorporate a phase shifter so that they will be able to be tuned to resonance at several frequencies in the operating band of the transmitter. With the frequency change capability of the ABB generators, the FWCD frequency will thus be selectable on a shot-to-shot basis, from this preselected set of frequencies. The schedule is for experiments to begin with this added 4 MW capability in mid-1994. The details of the system are described.

  15. Calorimetric AC loss measurement of MgB2 superconducting tape in an alternating transport current and direct magnetic field

    NASA Astrophysics Data System (ADS)

    See, K. W.; Xu, X.; Horvat, J.; Cook, C. D.; Dou, S. X.

    2012-11-01

    Applications of MgB2 superconductors in electrical engineering have been widely reported, and various studies have been made to define their alternating current (AC) losses. However, studies on the transport losses with an applied transverse DC magnetic field have not been conducted, even though this is one of the favored conditions in applications of practical MgB2 tapes. Methods and techniques used to characterize and measure these losses have so far been grouped into ‘electrical’ and ‘calorimetric’ approaches with external conditions set to resemble the application conditions. In this paper, we present a new approach to mounting the sample and employ the calorimetric method to accurately determine the losses in the concurrent application of AC transport current and DC magnetic fields that are likely to be experienced in practical devices such as generators and motors. This technique provides great simplification compared to the pickup coil and lock-in amplifier methods and is applied to a long length (˜10 cm) superconducting tape. The AC loss data at 20 and 30 K will be presented in an applied transport current of 50 Hz under external DC magnetic fields. The results are found to be higher than the theoretical predictions because of the metallic fraction of the tape that contributes quite significantly to the total losses. The data, however, will allow minimization of losses in practical MgB2 coils and will be used in the verification of numerical coil models.

  16. Review of tokamak experiments on direct electron heating and current drive with fast waves

    SciTech Connect

    Pinsker, R.I.

    1993-12-01

    Results from tokamak experiments on direct electron interaction with the compressional Alfven wave ({open_quote}fast wave{close_quote}) are reviewed. Experiments aimed at electron heating as well as those in which fast wave electron current drive was investigated are discussed. A distinction is drawn between experiments employing the lower hybrid range of frequencies, where both the lower hybrid wave ({open_quote}slow wave{close_quote}) and the fast wave can propagate in much of the plasma, and those experiments using the fast wave in the range of moderate to high ion cyclotron harmonics, where only the fast wave can penetrate to the plasma core. Most of the early tokamak experiments were in the lower hybrid frequency regime, and the observed electron interaction appeared to be very similar to that obtained with the slow wave at the same frequency. In particular, electron interaction with the fast wave was observed only below a density limit nearly the same as the well known slow wave density limit. In the more recent lower frequency fast wave experiments, electron interaction (heating and current drive) is observed at the center of the discharge, where slow waves are not present.

  17. Overview of Recent Results on Heating and Current Drive in the JET tokamak

    SciTech Connect

    Mayoral, M.-L.; Baranov, Yu.; Blackman, T.; Graham, M.; Jacquet, Ph.; Kiptily, V.; Kirov, K.; Mailloux, J.; Monakhov, I.; Nightingale, M.; Whitehurst, A.; Wooldridge, E.; Argouarch, A.; Colas, L.

    2009-11-26

    In this paper, significant results in the heating and current drive domains obtained at JET in the past few years following systems upgrade and dedicated experimental time, will be reviewed. Firstly, an overview of the new Ion Cyclotron Resonance Frequency (ICRF) heating capabilities will be presented i.e. results from the ITER-Like ICRF antenna (ILA), the use of External Conjugate-T and 3dB hybrid couplers to increase the ICRF power during ELMy H-mode. Furthermore, experiments to study the influence of the phasing of the ICRF antenna on power absorption and coupling will be described. Looking at Low Hybrid (LH) issues for ITER, the effect of the location of gas injection on the LH coupling improvement at large launcher-separatrix distances will be discussed as the possibility to operate at ITER-relevant power densities. Experiments to characterise the LH power losses in the Scrape-Off-Layer (SOL) and to determine the LH wave absorption and current drive using power modulation will be shown. Finally, plasma rotation studies in the presence of ICRF heating with standard and enhanced JET toroidal field ripple will be presented.

  18. First results on lower hybrid current drive at 2. 45 GHz in ASDEX

    SciTech Connect

    Leuterer, F.; Soldner, F.X.; Buechse, R.; Carlson, A.; Eberhagen, A.; Fahrbach, H.; Gehre, O.; Hassenpflug, F.; Herrmann, W.; Janeschitz, G.; Kornherr, M.; Luce, T.; McKormick, K.; Monaco, F.; Muenich, M.; Murmann, H.; Pelicano, M.; Steuer, K.; Zouhar, M. ); Bartiromo, R.; DeAngelis, R.; Pericoli, V.; Santini, F.; Tuccillo, A. ); Bernabei, S.; Forrest, C. ); ASDEX-team

    1989-07-01

    A new lower hybrid system with 2.45 GHz/3 MW/1 sec has started operation on ASDEX. Current drive effects have been identified up to a density of {bar n}{sub e}=4.7 {center dot} 10{sup 13} cm{sup {minus}3}. Full current drive at I{sub p}=420 kV was achieved up to a density of {bar n}{sub e}=2.1 {center dot} 10{sup 13} cm{sup {minus}3}. The effeciency was maximum at {bar n}{sub e}=1.35 {center dot} 10{sup 13} cm{sup {minus}3} and reached {eta}=1.46 (10{sup 13} cm{sup {minus}3} {center dot} A {center dot} m/W). The electron temperature is peaking and reached peak values up to 6 keV, while the electron density profile flattens. Sawteeth have been stabilized up to a density of {bar n}{sub e}=3.4 {center dot} 10{sup 13} cm{sup {minus}3}. The global confinement times decreases with increasing rf-power. The scaling can be described by an offset linear relation. At low density global confinement is better during the LH-phase than in the OH-phase at the same total power input.

  19. Experimental and modeling uncertainties in the validation of lower hybrid current drive

    NASA Astrophysics Data System (ADS)

    Poli, F. M.; Bonoli, P. T.; Chilenski, M.; Mumgaard, R.; Shiraiwa, S.; Wallace, G. M.; Andre, R.; Delgado-Aparicio, L.; Scott, S.; Wilson, J. R.; Harvey, R. W.; Petrov, Yu V.; Reinke, M.; Faust, I.; Granetz, R.; Hughes, J.; Rice, J.

    2016-09-01

    This work discusses sources of uncertainty in the validation of lower hybrid wave current drive simulations against experiments, by evolving self-consistently the magnetic equilibrium and the heating and current drive profiles, calculated with a combined toroidal ray tracing code and 3D Fokker–Planck solver. The simulations indicate a complex interplay of elements, where uncertainties in the input plasma parameters, in the models and in the transport solver combine and—in some cases—compensate each other. It is concluded that ray-tracing calculations should include a realistic representation of the density and temperature in the region between the confined plasma and the wall, which is especially important in regimes where the LH waves are weakly damped and undergo multiple reflections from the plasma boundary. Uncertainties introduced in the processing of diagnostic data as well as uncertainties introduced by model approximations are assessed. It is shown that, by comparing the evolution of the plasma parameters in self-consistent simulations with available data, inconsistencies can be identified and limitations in the models or in the experimental data assessed.

  20. Simulation study of proposed off-midplane lower hybrid current drive in KSTAR

    NASA Astrophysics Data System (ADS)

    Bae, Young-soon; Shiraiwa, S.; Bonoli, P.; Wallace, G.; Wright, J. C.; Parker, R.; Kim, J. H.; Namkung, W.; Cho, M. H.; Park, B. H.; Yoon, S. W.; Oh, Y. K.; Park, H.

    2016-07-01

    A new proposal of lower hybrid (LH) wave launching is studied for efficient current drive aiming for high performance H-mode operation in Korea Superconducting Tokamak Advanced Research (KSTAR). This new concept is the off-midplane launch which results in a rapid up-shift of the parallel component of refractive index and hence simultaneously maintains good wave accessibility and efficient single pass absorption via Landau damping. In order to locate an optimal position of the launcher in the poloidal direction, the ray-tracing and Fokker–Planck codes were used. Based on a survey of the LH wave launch parameters and operation conditions including the compatibility issues with the existing in-vessel components, the LH wave launch from the top position near the upper X-point of the plasma separatrix provides the possibility to eliminate the accessibility problem and reduce parasitic edge loss for the KSTAR high performance H-mode operation scenario using 5 GHz lower hybrid current drive.

  1. Simulations of fast-wave current drive in pulsed and steady-state DEMO designs

    NASA Astrophysics Data System (ADS)

    Bilato, R.; Brambilla, M.; Fable, E.

    2014-11-01

    Electromagnetic waves in the ion-cyclotron (IC) range of frequencies are presently investigated as possible current drive (CD) systems in fusion reactors. Among many physical and technical issues, an accurate description of radio-frequency (RF) power absorption by fusion- born alpha particles is of special importance, since RF heating of these particles is not only detrimental for the CD efficiency, but might worsen the operative conditions by increasing their prompt losses. The capability of the full-wave TORIC code has been recently augmented to account for RF absorption by fusion-born alpha particles, calculated to all-orders in finite Larmor radius and with a realistic distribution function. Here, we present simulation with TORIC addressing the sensitivity of current drive efficiency on the design of a future reactor, in particular density and temperature profiles, magnetic field intensity, and plasma dimensions. For this purpose, we have investigated possible frequency windows for CD for two proposed versions of the DEMO reactor, namely its pulsed and its more ambitious steady-state design. The important role of the antenna for a realistic estimate of the CD efficiency is pointed out.

  2. Transient analysis of electromagnets with emphasis on solid components, eddy currents, and driving circuitry

    NASA Astrophysics Data System (ADS)

    Batdorff, Mark A.

    Valves are commonly used in fluid power systems to control pressure and flow. The emerging field of digital hydraulics demands high-speed, low cost, on/off valves with improved performance. Electromagnets, or solenoids, are commonly used to actuate valves due to their low cost, high reliability, and moderate performance. This work develops a dynamic model for a solid steel electromagnet that can be used for design and optimization, and unveils design tradeoffs with geometry and driving circuitry that are often overlooked. This work develops an accurate, computationally efficient, nonlinear, coupled, dynamic, axisymmetric, high fidelity magnetic equivalent circuit (HFMEC) electromagnet model capable of predicting force, inductance, dynamic response, and energy consumption. The model is intended for applications where both accuracy and solution time are critical. Axisymmetric magnetic fringing and leakage permeances were derived in order to capture nonlinear magnetic field phenomena that affect force and inductance. The tradeoffs between solid-center and hollow-center electromagnets were investigated. It was shown with both simulation and measurement that a hollow-center electromagnet has a 37.7% shorter useful stroke due to increased magnetic fringing and leakage (from 4.0mm to 2.5mm). However, it was also shown that the hollow-center electromagnet has a 70% improved turn-off response (from 617ms to 362ms). A single objective optimization study was performed demonstrating that hollow-center electromagnets are advantageous and can up to 204% increased dynamic response for systems where dynamics are dominated by eddy current lag. Electromagnets experience dynamic lag when turning on and off due to inductance and eddy currents. Coil driving methods, such as peak-and-hold, are often used to minimize turn-on lag by using high initial voltages and currents. However, circuits often do not address turn-off lag, which can be significant. This work investigates the effects of

  3. Integrated modelling of steady-state scenarios and heating and current drive mixes for ITER

    SciTech Connect

    Murakami, Masanori; Park, Jin Myung

    2011-01-01

    Recent progress on ITER steady-state (SS) scenario modelling by the ITPA-IOS group is reviewed. Code-to-code benchmarks as the IOS group's common activities for the two SS scenarios (weak shear scenario and internal transport barrier scenario) are discussed in terms of transport, kinetic profiles, and heating and current drive (CD) sources using various transport codes. Weak magnetic shear scenarios integrate the plasma core and edge by combining a theory-based transport model (GLF23) with scaled experimental boundary profiles. The edge profiles (at normalized radius rho = 0.8-1.0) are adopted from an edge-localized mode-averaged analysis of a DIII-D ITER demonstration discharge. A fully noninductive SS scenario is achieved with fusion gain Q = 4.3, noninductive fraction f(NI) = 100%, bootstrap current fraction f(BS) = 63% and normalized beta beta(N) = 2.7 at plasma current I(p) = 8MA and toroidal field B(T) = 5.3 T using ITER day-1 heating and CD capability. Substantial uncertainties come from outside the radius of setting the boundary conditions (rho = 0.8). The present simulation assumed that beta(N)(rho) at the top of the pedestal (rho = 0.91) is about 25% above the peeling-ballooning threshold. ITER will have a challenge to achieve the boundary, considering different operating conditions (T(e)/T(i) approximate to 1 and density peaking). Overall, the experimentally scaled edge is an optimistic side of the prediction. A number of SS scenarios with different heating and CD mixes in a wide range of conditions were explored by exploiting the weak-shear steady-state solution procedure with the GLF23 transport model and the scaled experimental edge. The results are also presented in the operation space for DT neutron power versus stationary burn pulse duration with assumed poloidal flux availability at the beginning of stationary burn, indicating that the long pulse operation goal (3000s) at I(p) = 9 MA is possible. Source calculations in these simulations have been

  4. Increased confinement and beta by inductive poloidal current drive in the RFP

    SciTech Connect

    Sarff, J.S.; Lanier, N.E.; Prager, S.C.; Stoneking, M.R.

    1996-10-01

    Progress in understanding magnetic-fluctuation-induced transport in the reversed field pinch (RFP) has led to the idea of current profile control to reduce fluctuations and transport. With the addition of inductive poloidal current drive in the Madison Symmetric Torus (MST), the magnetic fluctuation amplitude is halved, leading to a four- to five-fold increase in the energy confinement time to {tau}{sub E}{approximately}5 ms as a result of both decreased plasma resistance and increased stored thermal energy. The record low fluctuation amplitude coincides with a record high electron temperature of {approximately}600 eV (for MST), and beta {beta} = 2{mu}{sub 0}

    / B(a){sup 2} increases from 6% to 8% compared with conventional MST RFP plasmas. Other improvements include increased particle confinement and impurity reduction. 19 refs., 4 figs., 1 tab.

  5. Modeling of fast wave current drive experiments on DIII-D

    SciTech Connect

    Luce, T.C.; Chiu, S.C.; Harvey, R.W.; Mayberry, M.J.; Petty, C.C.; Pinsker, R.I.; Prater, R.; Tsunoda, S.I.

    1991-09-01

    Modeling of fast wave current drive experiments for D3-D has been improved to include calculation of target temperature profiles consistent with the D3-D database and more accurate modeling of the launched spectrum. The calculations indicate that a measurable current will be driven by fast wave in the near-term (30--200 kA). Modeling of the long-range goal of 2 MA non-inductive at high {beta} indicates the proposed 18 MW of rf power will be adequate. The optimum frequency for the intermediate scenario is 120 MHz; this frequency selection is also adequate for the long-term goals. 8 refs., 2 figs., 2 tabs.

  6. Current drive due to localized electron cyclotron power deposition in DIII-D

    SciTech Connect

    Harvey, R. W.; Lin-Liu, Y. R.; Sauter, O.; Smirnov, A. P.; Luce, T. C.; Prater, R.

    1999-09-20

    Due to spatial localization of electron cyclotron wave injection in DIII-D, electrons heated in an off-axis region must toroidally transit the tokamak 25-50 times before re-entering the heating region. This distance is of the order of the mean free path. The effect of such RF localization is simulated with a time-dependent Fokker-Planck code which is 2D-in-velocity, 1D-in-space-along-B, and periodic in space. An effective parallel electric field arises to maintain continuity of the driven current. Somewhat suprisingly, the localized current drive efficiency remains equal to that for a uniform medium. (c) 1999 American Institute of Physics.

  7. Ion cyclotron and lower hybrid arrays applicable to current drive in fusion reactors

    NASA Astrophysics Data System (ADS)

    Bosia, G.; Helou, W.; Goniche, M.; Hillaret, J.; Ragona, R.

    2014-02-01

    This paper presents concepts for Ion Cyclotron and Lower Hybrid Current Drive arrays applicable to fusion reactors and based on periodically loaded line power division. It is shown that, in large arrays, such as the ones proposed for fusion reactor applications, these schemes can offer, in principle, a number of practical advantages, compared with currently adopted ones, such as in-blanket operation at significantly reduced power density, lay out suitable for water cooling, single ended or balanced power feed, simple and load independent impedance matching In addition, a remote and accurate real time measurement of the complex impedance of all array elements as well as detection, location, and measurement of the complex admittance of a single arc occurring anywhere in the structure is possible.

  8. Microturbulence studies of pulsed poloidal current drive discharges in the reversed field pinch

    NASA Astrophysics Data System (ADS)

    Carmody, D.; Pueschel, M. J.; Anderson, J. K.; Terry, P. W.

    2015-01-01

    Experimental discharges with pulsed poloidal current drive (PPCD) in the Madison Symmetric Torus reversed field pinch are investigated using a semi-analytic equilibrium model in the gyrokinetic turbulence code Gene. PPCD cases, with plasma currents of 500 kA and 200 kA, exhibit a density-gradient-driven trapped electron mode (TEM) and an ion temperature gradient mode, respectively. Relative to expectations of tokamak core plasmas, the critical gradients for the onset of these instabilities are found to be greater by roughly a factor of the aspect ratio. A significant upshift in the nonlinear TEM transport threshold, previously found for tokamaks, is confirmed in nonlinear reversed field pinch simulations and is roughly three times the threshold for linear instability. The simulated heat fluxes can be brought in agreement with measured diffusivities by introducing a small, resonant magnetic perturbation, thus modeling the residual fluctuations from tearing modes. These fluctuations significantly enhance transport.

  9. Microturbulence studies of pulsed poloidal current drive discharges in the reversed field pinch

    SciTech Connect

    Carmody, D. Pueschel, M. J.; Anderson, J. K.; Terry, P. W.

    2015-01-15

    Experimental discharges with pulsed poloidal current drive (PPCD) in the Madison Symmetric Torus reversed field pinch are investigated using a semi-analytic equilibrium model in the gyrokinetic turbulence code GENE. PPCD cases, with plasma currents of 500 kA and 200 kA, exhibit a density-gradient-driven trapped electron mode (TEM) and an ion temperature gradient mode, respectively. Relative to expectations of tokamak core plasmas, the critical gradients for the onset of these instabilities are found to be greater by roughly a factor of the aspect ratio. A significant upshift in the nonlinear TEM transport threshold, previously found for tokamaks, is confirmed in nonlinear reversed field pinch simulations and is roughly three times the threshold for linear instability. The simulated heat fluxes can be brought in agreement with measured diffusivities by introducing a small, resonant magnetic perturbation, thus modeling the residual fluctuations from tearing modes. These fluctuations significantly enhance transport.

  10. QPSK modulation for AC-power-signal-biased visible light communication system

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Feng; Yeh, Chien-Hung; Chow, Chi-Wai; Liu, Yang

    2013-01-01

    With the integration of light emitting diode (LED), visible light communication (VLC) can provide wireless communication link using the lightning system. Due to the consideration of power efficiency, AC-LED has the design of reducing energy waste with alternating current from the power outlet. In this work, we propose an AC-power-signalbiased system that provides communication on both DC-LED and AC-LED. The bias circuit is designed to combine ACpower signal and the message signal with QPSK format. This driving scheme needs no AC-to-DC converters and it is suitable for driving AC LED. Synchronization is completed to avoid threshold effect of LED.

  11. Alpha Power Increase After Transcranial Alternating Current Stimulation at Alpha Frequency (α-tACS) Reflects Plastic Changes Rather Than Entrainment

    PubMed Central

    Vossen, Alexandra; Gross, Joachim; Thut, Gregor

    2015-01-01

    Background Periodic stimulation of occipital areas using transcranial alternating current stimulation (tACS) at alpha (α) frequency (8–12 Hz) enhances electroencephalographic (EEG) α-oscillation long after tACS-offset. Two mechanisms have been suggested to underlie these changes in oscillatory EEG activity: tACS-induced entrainment of brain oscillations and/or tACS-induced changes in oscillatory circuits by spike-timing dependent plasticity. Objective We tested to what extent plasticity can account for tACS-aftereffects when controlling for entrainment “echoes.” To this end, we used a novel, intermittent tACS protocol and investigated the strength of the aftereffect as a function of phase continuity between successive tACS episodes, as well as the match between stimulation frequency and endogenous α-frequency. Methods 12 healthy participants were stimulated at around individual α-frequency for 11–15 min in four sessions using intermittent tACS or sham. Successive tACS events were either phase-continuous or phase-discontinuous, and either 3 or 8 s long. EEG α-phase and power changes were compared after and between episodes of α-tACS across conditions and against sham. Results α-aftereffects were successfully replicated after intermittent stimulation using 8-s but not 3-s trains. These aftereffects did not reveal any of the characteristics of entrainment echoes in that they were independent of tACS phase-continuity and showed neither prolonged phase alignment nor frequency synchronization to the exact stimulation frequency. Conclusion Our results indicate that plasticity mechanisms are sufficient to explain α-aftereffects in response to α-tACS, and inform models of tACS-induced plasticity in oscillatory circuits. Modifying brain oscillations with tACS holds promise for clinical applications in disorders involving abnormal neural synchrony. PMID:25648377

  12. Lower Hybrid Current Drive and ion Bernstein wave heating experiments on PBX-M

    SciTech Connect

    Bernabei, S.

    1994-02-01

    This paper presents an overview of the experiments conducted on PBX-M to control on evaluate the feasibility and effect of current profile and pressure profile control on the plasma stability. Utilizing the inaccessibility of the Lower Hybrid waves, it has been possible to obtain a certain degree of power deposition localization and off-axis current drive. The effect of fast electron diffusion has been studied and found not to be a limiting factor; consequently, the current profile has been modified in a non-transient manner. More serious is the destabilization of global MHD modes, due to the change of the current profile, which can lead to disruption or to a rapid radial redistribution of the fast electron population. Experiments with Ion Bernstein wave heating have shown that power can be deposited off-aids and that the ion temperature can be modified locally. Application of IBW into a strongly Neutral Beam (NBI) heated H-mode plasma causes a substantial increase of thermal and particle confinement in the core of the plasma: this produces a localized bootstrap current sufficient to significantly raise the value of q(O). We propose to refer to this condition as the CH-mode.

  13. Control of plasma profiles and stability through localised Electron Cyclotron Current Drive

    NASA Astrophysics Data System (ADS)

    Merkulov, Oleksiy

    2006-06-01

    The work presented in this thesis addresses several topics from the physics of the magnetically confined plasma inside a tokamak. At the moment, the tokamak is the most successful concept for becoming a future thermonuclear reactor. However, there are plenty of physics and engineering problems to surpass before the prototype can become an economically and environmentally feasible device. The plasma in the tokamak experiences periodic oscillations of the central temperature and density when the safety factor, q, drops below unity on-axis. These oscillations are called the sawtooth instability and are the subject of the first part of this thesis. The sawtooth oscillations are characterised by the relatively slow rise phase, when the central temperature increases, and a following crash phase, when the central temperature drops. The energy, particles and plasma current are redistributed during the sawtooth crash. Obviously, this leads to a confinement degradation and moreover, the sawtooth instability can trigger potentially other more dangerous instabilities, such as a neoclassical tearing mode. The sawtooth period control is realised on the basis of the sawtooth trigger model, derived by Porcelli. The main idea of this model is that the sawtooth crash is triggered when the magnetic shear at the q=1 surface, s1, reaches a critical value which depends on the local plasma parameters. The magnetic shear, s, is a measure for the rate of change in the direction of the field line as a function of the position in the plasma. The sawtooth period can be changed by affecting the evolution of s1. The effects of the electron cyclotron current drive (ECCD) on the shear evolution are studied with a simple model for the poloidal field evolution. The results of the model are summarised in a form of a criterion for the amount of the non-inductive current drive required for sawtooth period control. The effects of the ECCD have been studied in the TEXTOR tokamak in order to confirm the

  14. MHD Modeling in Complex 3D Geometries: Towards Predictive Simulation of SIHI Current Drive

    NASA Astrophysics Data System (ADS)

    Hansen, Christopher James

    The HIT-SI experiment studies Steady Inductive Helicity Injection (SIHI) for the purpose of forming and sustaining a spheromak plasma. A spheromak is formed in a nearly axisymmetric flux conserver, with a bow tie cross section, by means of two semi-toroidal injectors. The plasma-facing surfaces of the device, which are made of copper for its low resistivity, are covered in an insulating coating in order to operate in a purely inductive manner. Following formation, the spheromak flux and current are increased during a quiescent period marked by a decrease in the global mode activity. A proposed mechanism, Imposed Dynamo Current Drive (IDCD), is expected to be responsible for this phase of quiescent current drive. Due to the geometric complexity of the experiment, previous numerical modeling efforts have used a simplified geometry that excludes the injector volumes from the simulated domain. The effect of helicity injection is then modeled by boundary conditions on this reduced plasma volume. The work presented here has explored and developed more complete computational models of the HIT-SI device. This work is separated into 3 distinct but complementary areas: 1) Development of a 3D MHD equilibrium code that can incorporate the non-axisymmetric injector fields present in HIT-SI and investigation of equilibria of interest during spheromak sustainment. 2) A 2D axisymmetric MHD equilibrium code that was used to explore reduced order models for mean-field evolution using equations derived from IDCD theory including coupling to 3D equilibria. 3) A 3D time-dependent non-linear MHD code that is capable of modeling the entire plasma volume including dynamics within the injectors. Although HIT-SI was the motivation for, and experiment studied in this research, the tools and methods developed are general --- allowing their application to a broad range of magnetic confinement experiments. These tools constitute a significant advance for modeling plasma dynamics in devices with

  15. Requirements on localized current drive for the suppression of neoclassical tearing modes

    NASA Astrophysics Data System (ADS)

    Bertelli, N.; De Lazzari, D.; Westerhof, E.

    2011-10-01

    A heuristic criterion for the full suppression of an NTM was formulated as ηNTM ≡ jCD,max/jBS >= 1.2 (Zohm et al 2005 J. Phys. Conf. Ser. 25 234), where jCD,max is the maximum in the driven current density profile applied to stabilize the mode and jBS is the local bootstrap current density. In this work we subject this criterion to a systematic theoretical analysis on the basis of the generalized Rutherford equation. Taking into account only the effect of jCD inside the island, a new criterion for full suppression by a minimum applied total current is obtained in the form of a maximum allowed value for the width of the driven current, wdep, combined with a required minimum for the total driven current in the form of wdepηNTM, where both limits depend on the marginal and saturated island sizes. These requirements can be relaxed when additional effects are taken into account, such as a change in the stability parameter Δ' from the current driven outside the island, power modulation, the accompanying heating inside the island or when the current drive is applied preemptively. When applied to ITER scenario 2, the requirement for full suppression of either the 3/2 or 2/1 NTM becomes wdep <~ 5 cm and wdepηNTM >~ 5 cm in agreement with (Sauter et al 2010 Plasma Phys. Control. Fusion 52 025002). Optimization of the ITER ECRH Upper Port Launcher design towards minimum required power for full NTM suppression requires an increase in the toroidal injection angle of the lower steering mirror of several degrees compared with its present design value, while for the upper steering mirror the present design value is close to the optimum.

  16. I-BIEM calculations of the frequency dispersion and ac current distribution at disk and ring-disk electrodes

    NASA Technical Reports Server (NTRS)

    Cahan, Boris D.

    1991-01-01

    The Iterative Boundary Integral Equation Method (I-BIEM) has been applied to the problem of frequency dispersion at a disk electrode in a finite geometry. The I-BIEM permits the direct evaluation of the AC potential (a complex variable) using complex boundary conditions. The point spacing was made highly nonuniform, to give extremely high resolution in those regions where the variables change most rapidly, i.e., in the vicinity of the edge of the disk. Results are analyzed with respect to IR correction, equipotential surfaces, and reference electrode placement. The current distribution is also examined for a ring-disk configuration, with the ring and the disk at the same AC potential. It is shown that the apparent impedance of the disk is inductive at higher frequencies. The results are compared to analytic calculations from the literature, and usually agree to better than 0.001 percent.

  17. I-BIEM calculations of the frequency dispersion and AC current distribution at disk and ring-disk electrodes

    NASA Technical Reports Server (NTRS)

    Cahan, Boris D.

    1991-01-01

    The Iterative Boundary Integral Equation Method (I-BIEM) has been applied to the problem of frequency dispersion at a disk electrode in a finite geometry. The I-BIEM permits the direct evaluation of the AC potential (a complex variable) using complex boundary conditions. The point spacing was made highly nonuniform, to give extremely high resolution in those regions where the variables change most rapidly, i.e., in the vicinity of the edge of the disk. Results are analyzed with respect to IR correction, equipotential surfaces, and reference electrode placement. The current distribution is also examined for a ring-disk configuration, with the ring and the disk at the same AC potential. It is shown that the apparent impedance of the disk is inductive at higher frequencies. The results are compared to analytic calculations from the literature, and usually agree to better than 0.001 percent.

  18. A quasi-optical ray tracing code for EC absorption and current drive

    NASA Astrophysics Data System (ADS)

    Farina, Daniela

    2005-10-01

    A new code GRAY has been developed for the quasi-optical (QO) propagation of a Gaussian beam of EC waves and the relevant absorbed power and driven current in a generic tokamak equilibrium [D. Farina, IFP-CNR Int. Rep. 2005, FP 05/1]. In the framework of the complex eikonal approach [E. Mazzucato, Phys. Fluids, 1, 1855 (1989)], the beam propagation is described by a set of mutually interacting rays. Several theoretical and numerical issues have been addressed and solved, mainly concerning the accurate solution of the complex dispersion relation. A fast numerical algorithm for the solution of the imaginary part of the QO dispersion relation has been implemented. Along each ray, EC wave absorption is computed solving either the weakly or the fully relativistic dispersion relation for EC waves (up to any order in Larmor radius expansion), and EC current drive by means of a neoclassical response function for the current [D. Farina, IFP-CNR Int. Rep. 2003, FP 03/5]. The code has been benchmarked against other existing codes, and used for calculations of EC driven current in ITER plasma.

  19. Phase-locking of driven vortex lattices with transverse ac force and periodic pinning

    SciTech Connect

    Reichhardt, Charles; Kolton, Alejandro B.; Dominguez, Daniel; Gronbech-Jensen, Niels

    2001-10-01

    For a vortex lattice moving in a periodic array we show analytically and numerically that a new type of phase locking occurs in the presence of a longitudinal dc driving force and a transverse ac driving force. This phase locking is distinct from the Shapiro step phase locking found with longitudinal ac drives. We show that an increase in critical current and a fundamental phase-locked step width scale with the square of the driving ac amplitude. Our results should carry over to other systems such as vortex motion in Josephson-junction arrays.

  20. Complete stabilization of neoclassical tearing modes with lower hybrid current drive on COMPASS-D. RF teams.

    PubMed

    Warrick, C D; Buttery, R J; Cunningham, G; Fielding, S J; Hender, T C; Lloyd, B; Morris, A W; O'Brien, M R; Pinfold, T; Stammers, K; Valovic, M; Walsh, M; Wilson, H R

    2000-07-17

    Lower hybrid current drive (LHCD) with modest powers ( approximately 10% of the total power input) has been used for the first time to completely stabilize performance limiting neoclassical tearing modes in many COMPASS-D tokamak discharges. The stabilizing effect in these experiments is consistent with a reduction in the free energy available in the current profile to drive tearing modes (i.e., the stability index, delta(')) resulting from favorable current gradients (from the LHCD driven current) around the rational surface. PMID:10991343

  1. ITER ECH launcher options for start-up assist, bulk heating, and EC current drive experiments

    SciTech Connect

    Bigelow, T.S.

    1994-03-01

    Electron Cyclotron Heating (ECH) is proposed for providing plasma start-up, bulk heating, current drive, and other applications on the International Tokamak Experimental Reactor (ITER) project. The requirements for ECH power launching systems for ITER have been investigated, and several possible configurations that have been devised are described in this report. The proposed launcher designs use oversized circular corrugated waveguides that make small penetrations through the blanket modules and radiate into the plasma. The criteria used for the design calls for minimum blanket penetration area, maximum reliability, and optimum launched beam quality. The effects of the harsh plasma edge environment on the launcher are discussed. Power generation systems, windows, and other components of the ECH systems are also investigated. The designs presented are believed to be capable of operating reliably and are relatively easy to maintain remotely.

  2. SnSe2 field-effect transistors with high drive current

    NASA Astrophysics Data System (ADS)

    Su, Yang; Ebrish, Mona A.; Olson, Eric J.; Koester, Steven J.

    2013-12-01

    SnSe2 field-effect transistors fabricated using mechanical exfoliation are reported. Substrate-gated devices with source-to-drain spacing of 0.5 μm have been fabricated with drive current of 160 μA/μm at T = 300 K. The transconductance at a drain-to-source voltage of Vds = 2 V increases from 0.94 μS/μm at 300 K to 4.0 μS/μm at 4.4 K, while the field-effect mobility increases from 8.6 cm2/Vs at 300 K to 28 cm2/Vs at 77 K. The conductance at Vds = 50 mV shows an activation energy of only 5.5 meV, indicating the absence of a significant Schottky barrier at the source and drain contacts.

  3. Electron Cyclotron Current Drive at High Electron Temperature on DIII-D

    SciTech Connect

    Petty, C. C.; Lohr, J.; Luce, T. C.; Prater, R.; Austin, M. E.; Harvey, R. W.; Makowski, M. A.

    2007-09-28

    Experiments on DIII-D have measured the electron cyclotron current drive (ECCD) efficiency for co- and counter-injection in low density plasmas with radiation temperatures from electron cyclotron emission (ECE) above 20 keV. The radiation temperature is generally higher than the Thomson scattering temperature, indicating that there is a significant population of non-thermal electrons. The experimental ECCD profile measured with motional Stark effect (MSE) polarimetry is found to agree with quasi-linear theory except for the highest power density cases (Q{sub EC}/n{sub e}{sup 2}>>1). Radial transport of the energetic electrons with diffusion coefficients of {approx}0.4 m{sup 2}/s is needed to model the broadened ECCD profile at high power density.

  4. Status of the ITER Electron Cyclotron Heating and Current Drive System

    NASA Astrophysics Data System (ADS)

    Darbos, Caroline; Albajar, Ferran; Bonicelli, Tullio; Carannante, Giuseppe; Cavinato, Mario; Cismondi, Fabio; Denisov, Grigory; Farina, Daniela; Gagliardi, Mario; Gandini, Franco; Gassmann, Thibault; Goodman, Timothy; Hanson, Gregory; Henderson, Mark A.; Kajiwara, Ken; McElhaney, Karen; Nousiainen, Risto; Oda, Yasuhisa; Omori, Toshimichi; Oustinov, Alexander; Parmar, Darshankumar; Popov, Vladimir L.; Purohit, Dharmesh; Rao, Shambhu Laxmikanth; Rasmussen, David; Rathod, Vipal; Ronden, Dennis M. S.; Saibene, Gabriella; Sakamoto, Keishi; Sartori, Filippo; Scherer, Theo; Singh, Narinder Pal; Strauß, Dirk; Takahashi, Koji

    2016-01-01

    The electron cyclotron (EC) heating and current drive (H&CD) system developed for the ITER is made of 12 sets of high-voltage power supplies feeding 24 gyrotrons connected through 24 transmission lines (TL), to five launchers, four located in upper ports and one at the equatorial level. Nearly all procurements are in-kind, following general ITER philosophy, and will come from Europe, India, Japan, Russia and the USA. The full system is designed to couple to the plasma 20 MW among the 24 MW generated power, at the frequency of 170 GHz, for various physics applications such as plasma start-up, central H&CD and magnetohydrodynamic (MHD) activity control. The design takes present day technology and extends toward high-power continuous operation, which represents a large step forward as compared to the present state of the art. The ITER EC system will be a stepping stone to future EC systems for DEMO and beyond.

  5. Current Drive and Plasma Heating by Electron Bernstein Waves in MAST

    SciTech Connect

    Shevchenko, V.

    2009-11-26

    Electron Bernstein waves (EBW) have the potential to provide highly localized heating and current drive (CD). EBWs are predominantly electrostatic and they damp on electrons near electron cyclotron harmonics without momentum injection into the plasma. These features represent a powerful tool for understanding transport and stability phenomena by locally perturbing the plasma and providing complementary CD methods in addition to neutral beams. The Mega-Ampere Spherical Tokamak (MAST) has a large cylindrical vacuum vessel and we have taken advantage of this to consider a number of launcher positions for RF power injection. The feasibility of EBW in the extended parameter space of MAST has been explored. Modelling was conducted with the EBW and BANDIT code package using a 'steady state' reference scenario with near zero loop voltage. Clear heating and CD effects have been identified for different launch configurations and frequencies.

  6. HHFW Heating and Current Drive Studies of NSTX H-Mode Plasmas

    SciTech Connect

    Taylor, G.; Hosea, J. C.; LeBlanc, B. P.; Phillips, C. K.; Valeo, E. J.; Wilson, J. R.; Bonoli, P. T.; Wright, J. C.; Green, D. L.; Jaeger, E. F.; Maingi, R.; Ryan, P. M.; Harvey, R. W.

    2011-12-23

    30 MHz high-harmonic fast wave (HHFW) heating and current drive are being developed to assist fully non-inductive plasma current (I{sub p}) ramp-up in NSTX. The initial approach to achieving this goal has been to heat I{sub p} = 300 kA inductive plasmas with current drive antenna phasing in order to generate an HHFW H-mode with significant bootstrap and RF-driven current. Recent experiments, using only 1.4 MW of RF power (P{sub RF}), achieved a non-inductive current fraction, f{sub NI}{approx}0.65. Improved antenna conditioning resulted in the generation of I{sub p} = 650 kA HHFW H-mode plasmas, with f{sub NI}{approx}0.35, when P{sub RF}{>=}2.5 MW. These plasmas have little or no edge localized mode (ELM) activity during HHFW heating, a substantial increase in stored energy and a sustained central electron temperature of 5-6 keV. Another focus of NSTX HHFW research is to heat an H-mode generated by 90 keV neutral beam injection (NBI). Improved HHFW coupling to NBI-generated H-modes has resulted in a broad increase in electron temperature profile when HHFW heating is applied. Analysis of a closely matched pair of NBI and HHFW+NBI H-mode plasmas revealed that about half of the antenna power is deposited inside the last closed flux surface (LCFS). Of the power damped inside the LCFS about two-thirds is absorbed directly by electrons and one-third accelerates fast-ions that are mostly promptly lost from the plasma. At longer toroidal launch wavelengths, HHFW+NBI H-mode plasmas can have an RF power flow to the divertor outside the LCFS that significantly reduces RF power deposition to the core. ELMs can also reduce RF power deposition to the core and increase power deposition to the edge. Recent full wave modeling of NSTX HHFW+NBI H-mode plasmas, with the model extended to the vessel wall, predicts a coaxial standing mode between the LCFS and the wall that can have large amplitudes at longer launch wavelengths. These simulation results qualitatively agree with HHFW

  7. HHFW Heating and Current Drive Studies of NSTX H-Mode Plasmas

    SciTech Connect

    G. Taylor, P.T. Bonoli, D.L. Green, R.W. Harvey, J.C. Hosea, E.F. Jaeger, B.P. LeBlanc, R. Maingi, C.K. Phillips, P.M. Ryan, E.J. Valeo, J.R. Wilson, J.C. Wright, and the NSTX Team

    2011-06-08

    30 MHz high-harmonic fast wave (HHFW) heating and current drive are being developed to assist fully non-inductive plasma current (I{sub p}) ramp-up in NSTX. The initial approach to achieving this goal has been to heat I{sub p} = 300 kA inductive plasmas with current drive antenna phasing in order to generate an HHFW H-mode with significant bootstrap and RF-driven current. Recent experiments, using only 1.4 MW of RF power (P{sub RF}), achieved a noninductive current fraction, f{sub NI} {approx} 0.65. Improved antenna conditioning resulted in the generation of I{sub p} = 650 kA HHFW H-mode plasmas, with f{sub NI} {approx} 0.35, when P{sub RF} {ge} 2.5 MW. These plasmas have little or no edge localized mode (ELM) activity during HHFW heating, a substantial increase in stored energy and a sustained central electron temperature of 5-6 keV. Another focus of NSTX HHFW research is to heat an H-mode generated by 90 keV neutral beam injection (NBI). Improved HHFW coupling to NBI-generated H-modes has resulted in a broad increase in electron temperature profile when HHFW heating is applied. Analysis of a closely matched pair of NBI and HHFW+NBI H-mode plasmas revealed that about half of the antenna power is deposited inside the last closed flux surface (LCFS). Of the power damped inside the LCFS about two-thirds is absorbed directly by electrons and one-third accelerates fast-ions that are mostly promptly lost from the plasma. At longer toroidal launch wavelengths, HHFW+NBI H-mode plasmas can have an RF power flow to the divertor outside the LCFS that significantly reduces RF power deposition to the core. ELMs can also reduce RF power deposition to the core and increase power deposition to the edge. Recent full wave modeling of NSTX HHFW+NBI H-mode plasmas, with the model extended to the vessel wall, predicts a coaxial standing mode between the LCFS and the wall that can have large amplitudes at longer launch wavelengths. These simulation results qualitatively agree with HHFW

  8. Influence of driving frequency on discharge modes in a dielectric-barrier discharge with multiple current pulses

    SciTech Connect

    Jiang, Weiman; Tang, Jie; Wang, Yishan; Zhao, Wei; Duan, Yixiang

    2013-07-15

    A one-dimensional self-consistent fluid model was employed to investigate the effect of the driving frequency on the discharge modes in atmospheric-pressure argon discharge with multiple current pulses. The discharge mode was discussed in detail not only at current peaks but also between two adjacent peaks. The simulation results show that different transitions between the Townsend and glow modes during the discharge take place with the driving frequency increased. A complicated transition from the Townsend mode, through glow, Townsend, and glow, and finally back to the Townsend one is found in the discharge with the driving frequency of 8 kHz. There is a tendency of transition from the Townsend to glow mode for the discharge both at the current peaks and troughs with the increasing frequency. The discharge in the half period can all along operate in the glow mode with the driving frequency high enough. This is resulted from the preservation of more electrons in the gas gap and acquisition of more electron energy from the swiftly varying electric field with the increase in driving frequency. Comparison of the spatial and temporal evolutions of the electron density at different driving frequencies indicates that the increment of the driving frequency allows the plasma chemistry to be enhanced. This electrical characteristic is important for the applications, such as surface treatment and biomedical sterilization.

  9. A DEMO relevant fast wave current drive high harmonic antenna exploiting the high impedance technique

    NASA Astrophysics Data System (ADS)

    Milanesio, D.; Maggiora, R.

    2015-12-01

    Ion Cyclotron (IC) antennas are routinely adopted in most of the existing nuclear fusion experiments, even though their main goal, i.e. to couple high power to the plasma (MW), is often limited by rather severe drawbacks due to high fields on the antenna itself and on the unmatched part of the feeding lines. In addition to the well exploited auxiliary ion heating during the start-up phase, some non-ohmic current drive (CD) at the IC range of frequencies may be explored in view of the DEMO reactor. In this work, we suggest and describe a compact high frequency DEMO relevant antenna, based on the high impedance surfaces concept. High-impedance surfaces are periodic metallic structures (patches) usually displaced on top of a dielectric substrate and grounded by means of vertical posts embedded inside the dielectric, in a mushroom-like shape. These structures present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. After a general introduction on the properties of high impedance surfaces, we analyze, by means of numerical codes, a dielectric based and a full metal solution optimized to be tested and benchmarked on the FTU experiment fed with generators at 433MHz.

  10. Plasma Heating and Current Drive by Stochastic Acceleration of Relativistic Electrons at the WEGA Stellarator

    NASA Astrophysics Data System (ADS)

    Laqua, Heinrich; Chlechowitz, Enrico; Fuchs, Vladimir; Otte, Matthias; Stange, Torsten

    2013-10-01

    Relativistic electrons with parallel energies of up to 2 MeV have been continuously (10 s) generated by a stochastic interaction with the rf-field (6-26kW) of a 2.45 GHz open waveguide antenna without any loop voltage. These ``run-away'' electrons have been detected by their synchrotron, x- and γ-ray emission and have also generated a toroidal plasma current in the kA range. They are perfectly confined in the stellarator magnetic field of 0.5 T. The particle trajectories form their own nested drift surfaces which are shrunken inward and shifted outward with respect to the magnetic flux surfaces. This geometrical effect connects the antenna region, where the electrons are accelerated, with the plasma core, where a low temperature (20eV, 0.2-5 1018m3) bulk plasma is generated. The acceleration process was modelled by a random walk diffusion model and a Fermi Ulan map Monte-Carlo simulation. Both calculations show similar results for the heating and current drive efficiencies. They also reproduce the temporal behaviour of the plasma current and the synchrotron radiation, when the RF-power is modulated and show the need for a random phase interaction between the relativistic electrons and the antenna field.

  11. A DEMO relevant fast wave current drive high harmonic antenna exploiting the high impedance technique

    SciTech Connect

    Milanesio, D. Maggiora, R.

    2015-12-10

    Ion Cyclotron (IC) antennas are routinely adopted in most of the existing nuclear fusion experiments, even though their main goal, i.e. to couple high power to the plasma (MW), is often limited by rather severe drawbacks due to high fields on the antenna itself and on the unmatched part of the feeding lines. In addition to the well exploited auxiliary ion heating during the start-up phase, some non-ohmic current drive (CD) at the IC range of frequencies may be explored in view of the DEMO reactor. In this work, we suggest and describe a compact high frequency DEMO relevant antenna, based on the high impedance surfaces concept. High-impedance surfaces are periodic metallic structures (patches) usually displaced on top of a dielectric substrate and grounded by means of vertical posts embedded inside the dielectric, in a mushroom-like shape. These structures present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. After a general introduction on the properties of high impedance surfaces, we analyze, by means of numerical codes, a dielectric based and a full metal solution optimized to be tested and benchmarked on the FTU experiment fed with generators at 433MHz.

  12. Fault diagnosis of motor drives using stator current signal analysis based on dynamic time warping

    NASA Astrophysics Data System (ADS)

    Zhen, D.; Wang, T.; Gu, F.; Ball, A. D.

    2013-01-01

    Electrical motor stator current signals have been widely used to monitor the condition of induction machines and their downstream mechanical equipment. The key technique used for current signal analysis is based on Fourier transform (FT) to extract weak fault sideband components from signals predominated with supply frequency component and its higher order harmonics. However, the FT based method has limitations such as spectral leakage and aliasing, leading to significant errors in estimating the sideband components. Therefore, this paper presents the use of dynamic time warping (DTW) to process the motor current signals for detecting and quantifying common faults in a downstream two-stage reciprocating compressor. DTW is a time domain based method and its algorithm is simple and easy to be embedded into real-time devices. In this study DTW is used to suppress the supply frequency component and highlight the sideband components based on the introduction of a reference signal which has the same frequency component as that of the supply power. Moreover, a sliding window is designed to process the raw signal using DTW frame by frame for effective calculation. Based on the proposed method, the stator current signals measured from the compressor induced with different common faults and under different loads are analysed for fault diagnosis. Results show that DTW based on residual signal analysis through the introduction of a reference signal allows the supply components to be suppressed well so that the fault related sideband components are highlighted for obtaining accurate fault detection and diagnosis results. In particular, the root mean square (RMS) values of the residual signal can indicate the differences between the healthy case and different faults under varying discharge pressures. It provides an effective and easy approach to the analysis of motor current signals for better fault diagnosis of the downstream mechanical equipment of motor drives in the time

  13. Frequency-dependent alternating-current scanning electrochemical microscopy (4D AC-SECM) for local visualisation of corrosion sites.

    PubMed

    Eckhard, Kathrin; Erichsen, Thomas; Stratmann, Martin; Schuhmann, Wolfgang

    2008-01-01

    For a better understanding of the initiation of localised corrosion, there is a need for analytical tools that are capable of imaging corrosion pits and precursor sites with high spatial resolution and sensitivity. The lateral electrochemical contrast in alternating-current scanning electrochemical microscopy (AC-SECM) has been found to be highly dependent on the frequency of the applied alternating voltage. In order to be able to obtain data with optimum contrast and high resolution, the AC frequency is swept in a full spectrum at each point in space instead of performing spatially resolved measurements at one fixed perturbation frequency. In doing so, four-dimensional data sets are acquired (4D AC-SECM). Here, we describe the instrument set-up and modus operandi, along with the first results from the imaging of corroding surfaces. Corrosion precursor sites and local defects in protective organic coatings, as well as an actively corroding pit on 304 stainless steel, have been successfully visualised. Since the lateral electrochemical contrast in these images varies with the perturbation frequency, the proposed approach constitutes an indispensable tool for obtaining optimum electrochemical contrast. PMID:18351698

  14. Optimization of the ITER electron cyclotron equatorial launcher for improved heating and current drive functional capabilities

    SciTech Connect

    Farina, D.; Figini, L.; Henderson, M.; Saibene, G.

    2014-06-15

    The design of the ITER Electron Cyclotron Heating and Current Drive (EC H and CD) system has evolved in the last years both in goals and functionalities by considering an expanded range of applications. A large effort has been devoted to a better integration of the equatorial and the upper launchers, both from the point of view of the performance and of the design impact on the engineering constraints. However, from the analysis of the ECCD performance in two references H-mode scenarios at burn (the inductive H-mode and the advanced non-inductive scenario), it was clear that the EC power deposition was not optimal for steady-state applications in the plasma region around mid radius. An optimization study of the equatorial launcher is presented here aiming at removing this limitation of the EC system capabilities. Changing the steering of the equatorial launcher from toroidal to poloidal ensures EC power deposition out to the normalized toroidal radius ρ ≈ 0.6, and nearly doubles the EC driven current around mid radius, without significant performance degradation in the core plasma region. In addition to the improved performance, the proposed design change is able to relax some engineering design constraints on both launchers.

  15. Quasi-linear modeling of lower hybrid current drive in ITER and DEMO

    NASA Astrophysics Data System (ADS)

    Cardinali, A.; Cesario, R.; Panaccione, L.; Santini, F.; Amicucci, L.; Castaldo, C.; Ceccuzzi, S.; Mirizzi, F.; Tuccillo, A. A.

    2015-12-01

    First pass absorption of the Lower Hybrid waves in thermonuclear devices like ITER and DEMO is modeled by coupling the ray tracing equations with the quasi-linear evolution of the electron distribution function in 2D velocity space. As usually assumed, the Lower Hybrid Current Drive is not effective in a plasma of a tokamak fusion reactor, owing to the accessibility condition which, depending on the density, restricts the parallel wavenumber to values greater than n∥crit and, at the same time, to the high electron temperature that would enhance the wave absorption and then restricts the RF power deposition to the very periphery of the plasma column (near the separatrix). In this work, by extensively using the "raystar" code, a parametric study of the propagation and absorption of the LH wave as function of the coupled wave spectrum (as its width, and peak value), has been performed very accurately. Such a careful investigation aims at controlling the power deposition layer possibly in the external half radius of the plasma, thus providing a valuable aid to the solution of how to control the plasma current profile in a toroidal magnetic configuration, and how to help the suppression of MHD mode that can develop in the outer part of the plasma. This analysis is useful not only for exploring the possibility of profile control of a pulsed operation reactor as well as the tearing mode stabilization, but also in order to reconsider the feasibility of steady state regime for DEMO.

  16. A survey of electron Bernstein wave heating and current drive potential for spherical tokamaks

    NASA Astrophysics Data System (ADS)

    Urban, Jakub; Decker, Joan; Peysson, Yves; Preinhaelter, Josef; Shevchenko, Vladimir; Taylor, Gary; Vahala, Linda; Vahala, George

    2011-08-01

    The electron Bernstein wave (EBW) is typically the only wave in the electron cyclotron (EC) range that can be applied in spherical tokamaks for heating and current drive (H&CD). Spherical tokamaks (STs) operate generally in high-β regimes, in which the usual EC O- and X-modes are cut off. In this case, EBWs seem to be the only option that can provide features similar to the EC waves—controllable localized H&CD that can be used for core plasma heating as well as for accurate plasma stabilization. The EBW is a quasi-electrostatic wave that can be excited by mode conversion from a suitably launched O- or X-mode; its propagation further inside the plasma is strongly influenced by the plasma parameters. These rather awkward properties make its application somewhat more difficult. In this paper we perform an extensive numerical study of EBW H&CD performance in four typical ST plasmas (NSTX L- and H-mode, MAST Upgrade, NHTX). Coupled ray-tracing (AMR) and Fokker-Planck (LUKE) codes are employed to simulate EBWs of varying frequencies and launch conditions, which are the fundamental EBW parameters that can be chosen and controlled. Our results indicate that an efficient and universal EBW H&CD system is indeed viable. In particular, power can be deposited and current reasonably efficiently driven across the whole plasma radius. Such a system could be controlled by a suitably chosen launching antenna vertical position and would also be sufficiently robust.

  17. High power millimeter wave experiment of ITER relevant electron cyclotron heating and current drive system.

    PubMed

    Takahashi, K; Kajiwara, K; Oda, Y; Kasugai, A; Kobayashi, N; Sakamoto, K; Doane, J; Olstad, R; Henderson, M

    2011-06-01

    High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20°-40° from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system. PMID:21721690

  18. High power millimeter wave experiment of ITER relevant electron cyclotron heating and current drive system

    SciTech Connect

    Takahashi, K.; Kajiwara, K.; Oda, Y.; Kasugai, A.; Kobayashi, N.; Sakamoto, K.; Doane, J.; Olstad, R.; Henderson, M.

    2011-06-15

    High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20 deg. - 40 deg. from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system.

  19. Status of KSTAR 170 GHz, 1 MW Electron Cyclotron Heating and Current Drive System

    SciTech Connect

    Joung, M.; Bae, Y. S.; Jeong, J. H.; Park, S.; Kim, H. J.; Yang, H. L.; Park, H.; Cho, M. H.; Namkung, W.; Hosea, J.; Ellis, R.; Sakamoto, K.; Kajiwara, K.; Doane, J.

    2011-12-23

    A 170 GHz Electron Cyclotron Heating and Current Drive (ECH/CD) system on KSTAR is designed to launch total 2.4 MW of power for up to 300 sec into the plasma. At present the first 1 MW ECH/CD system is under installation and commissioning for 2011 KSTAR campaign. The 170 GHz, 1 MW, 300 sec gyrotron and the matching optics unit (MOU) will be provided from JAEA under collaboration between NFRI and JAEA. The transmission line consists of MOU and 70 m long 63.5 mm ID corrugated waveguides with the eight miter bends. The 1 MW, 10 sec launcher is developed based on the existing two-mirror front-end launcher in collaboration with Princeton Plasma Physics Laboratory and Pohang University of Science and Technology, and is installed on the low field side in the KSTAR equatorial plane. The mirror pivot is located at 30 cm below from the equatorial plane. 3.6 MVA power supply system is manufactured and now is under commissioning to meet the triode gun operation of JAEA gyrotron. The power supply consists of 66 kV/55 A cathode power supply, mode-anode system, and 50 kV/160 mA body power supply. In this paper, the current status of KSTAR 170 GHz, 1 MW ECH/CD system will be presented as well as the experimental plan utilizing 170 GHz new ECH/CD system.

  20. Calculating electron cyclotron current drive stabilization of resistive tearing modes in a nonlinear magnetohydrodynamic model

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Kruger, Scott E.; Hegna, C. C.; Schnack, Dalton D.; Sovinec, Carl R.

    2010-01-01

    A model which incorporates the effects of electron cyclotron current drive (ECCD) into the magnetohydrodynamic equations is implemented in the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)] and used to investigate the effect of ECCD injection on the stability, growth, and dynamical behavior of magnetic islands associated with resistive tearing modes. In addition to qualitatively and quantitatively agreeing with numerical results obtained from the inclusion of localized ECCD deposition in static equilibrium solvers [A. Pletzer and F. W. Perkins, Phys. Plasmas 6, 1589 (1999)], predictions from the model further elaborate the role which rational surface motion plays in these results. The complete suppression of the (2,1) resistive tearing mode by ECCD is demonstrated and the relevant stabilization mechanism is determined. Consequences of the shifting of the mode rational surface in response to the injected current are explored, and the characteristic short-time responses of resistive tearing modes to spatial ECCD alignments which are stabilizing are also noted. We discuss the relevance of this work to the development of more comprehensive predictive models for ECCD-based mitigation and control of neoclassical tearing modes.

  1. Calculating electron cyclotron current drive stabilization of resistive tearing modes in a nonlinear magnetohydrodynamic model

    SciTech Connect

    Jenkins, Thomas G.; Schnack, Dalton D.; Kruger, Scott E.; Hegna, C. C.; Sovinec, Carl R.

    2010-01-15

    A model which incorporates the effects of electron cyclotron current drive (ECCD) into the magnetohydrodynamic equations is implemented in the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)] and used to investigate the effect of ECCD injection on the stability, growth, and dynamical behavior of magnetic islands associated with resistive tearing modes. In addition to qualitatively and quantitatively agreeing with numerical results obtained from the inclusion of localized ECCD deposition in static equilibrium solvers [A. Pletzer and F. W. Perkins, Phys. Plasmas 6, 1589 (1999)], predictions from the model further elaborate the role which rational surface motion plays in these results. The complete suppression of the (2,1) resistive tearing mode by ECCD is demonstrated and the relevant stabilization mechanism is determined. Consequences of the shifting of the mode rational surface in response to the injected current are explored, and the characteristic short-time responses of resistive tearing modes to spatial ECCD alignments which are stabilizing are also noted. We discuss the relevance of this work to the development of more comprehensive predictive models for ECCD-based mitigation and control of neoclassical tearing modes.

  2. Status of KSTAR 170 GHz, 1 MW Electron Cyclotron Heating and Current Drive System

    NASA Astrophysics Data System (ADS)

    Joung, M.; Bae, Y. S.; Jeong, J. H.; Park, S.; Kim, H. J.; Yang, H. L.; Park, H.; Cho, M. H.; Namkung, W.; Hosea, J.; Ellis, R.; Sakamoto, K.; Kajiwara, K.; Doane, J.

    2011-12-01

    A 170 GHz Electron Cyclotron Heating and Current Drive (ECH/CD) system on KSTAR is designed to launch total 2.4 MW of power for up to 300 sec into the plasma. At present the first 1 MW ECH/CD system is under installation and commissioning for 2011 KSTAR campaign. The 170 GHz, 1 MW, 300 sec gyrotron and the matching optics unit (MOU) will be provided from JAEA under collaboration between NFRI and JAEA. The transmission line consists of MOU and 70 m long 63.5 mm ID corrugated waveguides with the eight miter bends. The 1 MW, 10 sec launcher is developed based on the existing two-mirror front-end launcher in collaboration with Princeton Plasma Physics Laboratory and Pohang University of Science and Technology, and is installed on the low field side in the KSTAR equatorial plane. The mirror pivot is located at 30 cm below from the equatorial plane. 3.6 MVA power supply system is manufactured and now is under commissioning to meet the triode gun operation of JAEA gyrotron. The power supply consists of 66 kV/55 A cathode power supply, mode-anode system, and 50 kV/160 mA body power supply. In this paper, the current status of KSTAR 170 GHz, 1 MW ECH/CD system will be presented as well as the experimental plan utilizing 170 GHz new ECH/CD system.

  3. Comparison of AC losses, magnetic field/current distributions and critical currents of superconducting circular pancake coils and infinitely long stacks using coated conductors

    NASA Astrophysics Data System (ADS)

    Yuan, Weijia; Campbell, A. M.; Hong, Z.; Ainslie, M. D.; Coombs, T. A.

    2010-08-01

    A model is presented for calculating the AC losses, magnetic field/current density distribution and critical currents of a circular superconducting pancake coil. The assumption is that the magnetic flux lines will lie parallel to the wide faces of tapes in the unpenetrated area of the coil. Instead of using an infinitely long stack to approximate the circular coil, this paper gives an exact circular coil model using elliptic integrals. A new efficient numerical method is introduced to yield more accurate and fast computation. The computation results are in good agreement with the assumptions. For a small value of the coil radius, there is an asymmetry along the coil radius direction. As the coil radius increases, this asymmetry will gradually decrease, and the AC losses and penetration depth will increase, but the critical current will decrease. We find that if the internal radius is equal to the winding thickness, the infinitely long stack approximation overestimates the loss by 10% and even if the internal radius is reduced to zero, the error is still only 60%. The infinitely long stack approximation is therefore adequate for most practical purposes. In addition, the comparison result shows that the infinitely long stack approximation saves computation time significantly.

  4. Efficacy of low level electric current (A-C) for controlling quagga mussles in the Welland Canal

    SciTech Connect

    Fears, C.; Mackie, G.L.

    1995-06-01

    The efficacy of systems (for which patents are pending) which use low-voltage A-C currents for preventing settlement and attachment by zebra mussels were tested with steel rods and plates placed near the intake of a pulp and paper plant in the Welland Canal at Thorold, Ontario. Six racks made of 16 ft. (4.9 m), 2x4s (5.1 x 10.2 cm) were placed into the Welland Canal on August 5, 1994. One rack had 1/8th in (3.2 mm) diam x 12 in (30.5 cm) long steel rods, each separated by 2 in (5.1 cm) attached to pressure treated wood and concrete blocks and an A-C current of 16 v (or 8 v/in); rack 2 had steel rods of the same configuration but 12 v (or 6 v/in) was applied; rack 3 was identical to these but no current was applied and was used as a rod control. The remaining three racks had steel plates, each plate being 3 in (7.6 cm) wide X 24 in (61 cm) long X 1/4 in (6.4 mm) thick and separated by 2 in (5.1 cm); one had 12 v applied (or 6 v/in), another had 16 v applied (or 8 v/in), and the third had no current and was used as a plate control. The racks were placed on the upstream and downstream side of the intake at a depth of about 7 ft (2.1 m) where the mussels populations were heaviest (as determined by SCUBA diving). All mussels were quagga mussels (Dreissena bugensis). The racks were pulled in mid November after settlement was complete and the results showed: (1) complete prevention of settlement of both new recruits and translocators at 8 volts/in with steel rods on both wood and concrete surfaces and with steel plate trash bars; (2) partial prevention of settlement at 6 volts/in with steel rods on both wood and concrete surfaces and steel plates; and (3) that, at current kilowatt hr rates, total efficacy at 8 volts/in would cost approximately $10.80/day/1000 sq ft using rods to protect concrete walls and about $16.32/day/1000 sq ft to protect 3 in wide x 1/4 in thick trash bars. These costs can be reduced even further with pulse dosed AC currents.

  5. Principal physics of rotating magnetic-field current drive of field reversed configurations

    SciTech Connect

    Hoffman, A.L.; Guo, H.Y.; Miller, K.E.; Milroy, R.D.

    2006-01-15

    After extensive experimentation on the Translation, Confinement, and Sustainment rotating magnetic-field (RMF)-driven field reversed configuration (FRC) device [A. L. Hoffman et al., Fusion Sci. Technol. 41, 92 (2002)], the principal physics of RMF formation and sustainment of standard prolate FRCs inside a flux conserver is reasonably well understood. If the RMF magnitude B{sub {omega}} at a given frequency {omega} is high enough compared to other experimental parameters, it will drive the outer electrons of a plasma column into near synchronous rotation, allowing the RMF to penetrate into the plasma. If the resultant azimuthal current is strong enough to reverse an initial axial bias field B{sub o} a FRC will be formed. A balance between the RMF applied torque and electron-ion friction will determine the peak plasma density n{sub m}{proportional_to}B{sub {omega}}/{eta}{sup 1/2}{omega}{sup 1/2}r{sub s}, where r{sub s} is the FRC separatrix radius and {eta} is an effective weighted plasma resistivity. The plasma total temperature T{sub t} is free to be any value allowed by power balance as long as the ratio of FRC diamagnetic current, I{sup '}{sub dia}{approx_equal}2B{sub e}/{mu}{sub o}, is less than the maximum possible synchronous current, I{sup '}{sub sync}=e{omega}r{sub s}{sup 2}/2. The RMF will self-consistently penetrate a distance {delta}{sup *} governed by the ratio {zeta}=I{sup '}{sub dia}/I{sup '}{sub sync}. Since the FRC is a diamagnetic entity, its peak pressure p{sub m}=n{sub m}kT{sub t} determines its external magnetic field B{sub e}{approx_equal}(2{mu}{sub o}p{sub m}){sup 1/2}. Higher FRC currents, magnetic fields, and poloidal fluxes can thus be obtained, with the same RMF parameters, simply by raising the plasma temperature. Higher temperatures have also been noted to reduce the effective plasma resistivity, so that these higher currents can be supported with surprisingly little increase in absorbed RMF power.

  6. Status of the ITER ion cyclotron heating and current drive system

    NASA Astrophysics Data System (ADS)

    Lamalle, P.; Beaumont, B.; Kazarian, F.; Gassmann, T.; Agarici, G.; Montemayor, T. Alonzo; Bamber, R.; Bernard, J.-M.; Boilson, D.; Cadinot, A.; Calarco, F.; Colas, L.; Courtois, X.; Deibele, C.; Durodié, F.; Fano, J.; Fredd, E.; Goulding, R.; Greenough, N.; Hillairet, J.; Jacquinot, J.; Kaye, A. S.; Kočan, M.; Labidi, H.; Leichtle, D.; Loarte, A.; McCarthy, M.; Messiaen, A.; Meunier, L.; Mukherjee, A.; Oberlin-Harris, C.; Patel, A. M.; Peters, B.; Rajnish, K.; Rasmussen, D.; Sanabria, R.; Sartori, R.; Singh, R.; Swain, D.; Trivedi, R. G.; Turner, A.

    2015-12-01

    The paper reports on latest developments for the ITER Ion Cyclotron Heating and Current Drive system: imminent acceptance tests of a prototype power supply at full power; successful factory acceptance of candidate RF amplifier tubes which will be tested on dedicated facilities; further design integration and experimental validation of transmission line components under 6MW hour-long pulses. The antenna Faraday shield thermal design has been validated above requirements by cyclic high heat flux tests. R&D on ceramic brazing is under way for the RF vacuum windows. The antenna port plug RF design is stable but major evolution of the mechanical design is in preparation to achieve compliance with the load specification, warrant manufacturability and incorporate late interface change requests. The antenna power coupling capability predictions have been strengthened by showing that, if the plasma scrape-off layer turns out to be steep and the edge density low, the reference burning plasma can realistically be displaced to improve the coupling.

  7. RF current drive antenna. Final report, August 15, 1993--August 14, 1995

    SciTech Connect

    Probert, P.H.

    1995-09-01

    This work represents an attempt to solve a fundamental problem with all coupling devices in tokamaks intended to launch waves in the ion cyclotron range of frequencies (ICRF), that of excessive voltage levels on the launcher and its feed lines. These voltages can lead to impurity problems in the plasma, and they determine the maximum power that can be coupled to the plasma, since it is when arcs caused by this voltage frequently occur that the power must be reduced. The approach taken is to consider an antenna which is composed of many smaller units, each operating at much lower voltages, stacked on end to provide the equivalent functionality of a conventional launcher. The work described herein involved designing, building, and operating such a launcher in the Phaedrus-T tokamak. The results showed that the antenna worked as expected, reducing the voltage dramatically, while still functioning property, and producing fewer impurity problems and no arcing. A design extrapolating the principles of this idea to reactor-sized tokamaks such as ITER was developed. In addition, a novel decoupling scheme was developed in order to adapt this antenna idea to low frequency current drive schemes.

  8. Enhancement of Localized ICRF Heating and Current Drive in TFTR D-T Plasmas

    SciTech Connect

    = G Schilling, First Author

    1997-04-15

    Theoretical advantages have led to an increased importance of the modification and sustainment of pressure and magnetic shear profiles in plasmas. We have demonstrated electron heating and current drive in TFTR (Tokamak Fusion Test Reactor) plasmas with the existing 43/63.6 MHz ICRF (ion cyclotron range of frequencies) system, both via the fast wave and via mode conversion of the fast wave to an ion-Bernstein wave. In order to achieve both on- and off-axis mode conversion in a pure D-T (deuterium-tritium) plasma, we have changed the operating frequency of two of our transmitters and antennas to 30 MHz and improved the launched directional wave spectrum. As a second step, two new four-strap fast-wave antennas have been installed, and a new four-strap direct-launch IBW antenna has been added as well. This reconfiguration and the resulting operating characteristics of the TFTR ICRF system in a variety of discharges will be presented.

  9. RF Sources for the ITER Ion Cyclotron Heating and Current Drive System

    SciTech Connect

    Hosea, J.; Brunkhorst, C.; Fredd, E.; Goulding, R. H.; Goulding, R. H.; Greenough, N.; Kung, C.; Rasmussen, D. A.; Swain, D. W.; Wilson, J. R.

    2005-10-04

    The RF source requirements for the ITER ion cyclotron (IC) heating and current drive system are very challenging ? 20 MW CW power into an antenna load with a VSWR of up to 2 over the frequency range of 35-65 MHz. For the two present antenna designs under consideration, 8 sources providing 2.5 MW each are to be employed. For these sources, the outputs of two final power amplifiers (FPAs), using the high power CPI 4CM2500KG tube, are combined with a 180? hybrid combiner to easily meet the ITER IC source requirements ? 2.5 MW is supplied at a VSWR of 2 at ? 70% of the maximum tube power available in class B operation. The cylindrical cavity configuration for the FPAs is quite compact so that the 8 combined sources fit into the space allocated at the ITER site with room to spare. The source configuration is described in detail and its projected operating power curves are presented. Although the CPI tube has been shown to be stable under high power operating conditions on many facilities, a test of the combined FPA source arrangement is in preparation using existing high power 30 MHz amplifiers to assure that this configuration can be made robustly stable for all phases at a VSWR up to 2. The possibility of using 12 sources to feed a suitably modified antenna design is also discussed in the context of providing flexibility for specifying the final IC antenna design.

  10. Design of Electron Cyclotron Heating and Current Drive System of ITER

    SciTech Connect

    Kobayashi, N.; Bigelow, T.; Rasmussen, D.; Bonicelli, T.; Ramponi, G.; Saibene, G.; Cirant, S.; Denisov, G.; Heidinger, R.; Piosczyk, B.; Henderson, M.; Hogge, J.-P.; Thumm, M.; Tran, M. Q.; Rao, S. L.; Sakamoto, K.; Takahashi, K.; Temkin, R. J.; Verhoeven, A. G. A.; Zohm, H.

    2007-09-28

    Since the end of EDA, the design of the Electron Cyclotron Heating and Current Drive (ECH and CD) system has been modified to respond to progress in physics understanding and change of interface conditions. Nominal RF power of 20 MW is shared by four upper launchers or one equatorial launcher RF beams are steered by front steering mirrors providing wide sweeping angle for the RF beam. DC high voltage power supply may be composed of IGBT pulse step modulators because of high frequency modulation and design flexibility to three different types of 170 GHz gyrotrons provided by three parties. The RF power from the 170 GHz gyrotron is transmitted to the launcher by 63.5 mm{phi} corrugated waveguide line and remotely switched by a waveguide switch between the upper launcher and the equatorial launcher. The ECH and CD system has also a start-up sub-system for assist of initial discharge composed of three 127.5 GHz gyrotrons and a dedicated DC high voltage power supply. Three of transmission lines are shared between 170 GHz gyrotron and 127.5 GHz gyrotron so as to inject RF beam for the start-up through the equatorial launcher. R and Ds of components for high power long pulse and mirror steering mechanism have been on-going in the parties to establish a reliable ITER ECH and CD system.

  11. Detection and sizing of defects in control rod drive mechanism penetrations using eddy current and ultrasonics

    SciTech Connect

    Light, G.M.; Fisher, J.L.; Tennis, R.F.; Stolte, J.S.; Hendrix, G.J.

    1996-08-01

    Over the last two years, concern has been generated about the capabilities of performing nondestructive evaluation (NDE) of the closure-head penetrations in nuclear-reactor pressure vessels. These penetrations are primarily for instrumentation and control rod drive mechanisms (CRDMs) and are usually thick-walled Inconel tubes, which are shrink-fitted into the steel closure head. The penetrations are then welded between the outside surface of the penetration and the inside surface of the closure head. Stress corrosion cracks initiating at the inner surface of the penetration have been reported at several plants. Through-wall cracks in the CRDM penetration or CRDM weld could lead to loss of coolant in the reactor vessel. The CRDM penetration presents a complex inspection geometry for conventional NDE techniques. A thermal sleeve, through which pass the mechanical linkages for operating the control rods, is inserted into the penetration in such a way that only a small annulus (nominally 3 mm) exists between the thermal sleeve and inside surface of the penetration. Ultrasonic (UT) and eddy current testing (ET) techniques that could be used to provide defect detection and sizing capability were investigated. This paper describes the ET and UT techniques, the probes developed, and the results obtained using these probes and techniques on CRDM penetration mock-ups.

  12. FED-A, an advanced performance FED based on low safety factor and current drive

    SciTech Connect

    Peng, Yueng Kay Martin; Rutherford, P. H.; Hogan, J.T.; Attenberger, S. E.; Holmes, J.A.; Borowski, S. K.; Brown, T. G.; Carreras, B. A.; Ehst, D. A.; Haines, J.R.; Hively, L. M.; Houlberg, Wayne A; Iida, H.; Lee, V. D.; Lynch, S.J.; Reid, R. L.; Rothe, K. E.; Strickler, Dennis J; Stewart, L. D.

    1983-08-01

    This document is one of four describing studies performed in FY 1982 within the context of the Fusion Engineering Device (FED) Program for the Office of Fusion Energy, U.S. Department of Energy. The documents are: 1. FED Baseline Engineering Studies (ORNL/FEDC-82/2), 2. FED-A, An Advanced Performance FED Based on Low Safety Factor and Current Drive (this document), 3. FED-R, A Fusion Device Utilizing Resistive Magnets (ORNL/FEDC-82/1), and 4. Technology Demonstration Facility TDF. These studies extend the FED Baseline concept of FY 1981 and develop innovative and alternative concepts for the FED. The FED-A study project was carried out as part of the Innovative and Alternative Tokamak FED studies, under the direction of P. H. Rutherford, which were part of the national FED program during FY 1982. The studies were performed jointly by senior scientists in the magnetic fusion community and the staff of the Fusion Engineering Design Center (FEDC). Y-K. M. Peng of the FEDC, on assignment from Oak Ridge National Laboratory, served as the design manager.

  13. RF Heating and Current Drive in Magnetically Confined Plasma: a Historical Perspective

    SciTech Connect

    Porkolab, Miklos

    2007-09-28

    The history of high power RF waves injected into magnetically confined plasma for the purposes of heating to fusion relevant temperatures spans nearly five decades. The road to success demanded the development of the theory of wave propagation in high temperature plasma in complex magnetic field geometries, development of antenna structures and transmission lines capable of handling high RF powers, and the development of high power RF (microwave) sources. In the early days, progress was hindered by the lack of good confinement of energetic particles formed by high power RF wave-plasma interactions. For example, in the ion cyclotron resonance frequency regime (ICRF) ions with energies in the multi-100keV, or even MeV range may be formed due to the presence of efficient 'minority species' absorption. Electrons with similar energies can be formed upon the injection of RF waves in the electron cyclotron resonance (ECRH) or lower hybrid range of frequencies (LHRF) because of quasi-linear Landau (cyclotron) interactions between waves and particles. In this paper a summary of four decades of historical evolution of wave heating and current drive results will be given.

  14. Standard series of direct-current motors for regulated electric drives

    NASA Astrophysics Data System (ADS)

    Cholewicki, I.; Lubina, M.; Kozhevnikov, V. A.; Kochnev, A. V.; Skoda, K.; Voleskiy, E.

    1984-11-01

    A standard series of d.c. motors for electric drives with speed and torque regulation has been developed. Thyristor-type converters for machine tools with digital program control are also being developed. Meeting future goals requires modification of the motor frame from the conventional round to a nearly square one, a larger ratio of armature stack length to diameter, better cooling, and insulation of a higher temperature class. In addition, it is necessary to laminate the housing partially or completely and to include a compensating winding. The basic motor configuration is 1 M 1001, according to Council of Mutual Economic Assistance (CEMA) Standard 246-78, with at least IP 23S protection and 1C 06 or 1C 05 cooling (shaft height from 112 mm up) and 1C 01 cooling (Shaft height or up to 250 mm). The series will be designed for a reference speed of 1500 rpm with not more than 15% armature current fluctuation, with speeds of 300-3000 rpm depending on voltage and motor size and torque regulation 1:200 (externally cooled motors) or 1;5, 1:10, 1:30 (self-cooled motors). Prototype motors with 132 mm and 355 mm shaft heights have already passed all tests.

  15. Ion cyclotron range of frequencies heating and current drive in deuterium-tritium plasmas

    NASA Astrophysics Data System (ADS)

    Phillips, C. K.; Bell, M. G.; Bell, R.; Bretz, N.; Budny, R. V.; Darrow, D. S.; Grek, B.; Hammett, G.; Hosea, J. C.; Hsuan, H.; Ignat, D.; Majeski, R.; Mazzucato, E.; Nazikian, R.; Park, H.; Rogers, J. H.; Schilling, G.; Stevens, J. E.; Synakowski, E.; Taylor, G.; Wilson, J. R.; Zarnstorff, M. C.; Zweben, S. J.; Bush, C. E.; Goldfinger, R.; Jaeger, E. F.; Murakami, M.; Rasmussen, D.; Bettenhausen, M.; Lam, N. T.; Scharer, J.; Sund, R.; Sauter, O.

    1995-06-01

    The first experiments utilizing high-power radio waves in the ion cyclotron range of frequencies to heat deuterium-tritium (D-T) plasmas have been completed on the Tokamak Fusion Test Reactor [Fusion Technol. 21, 13 (1992)]. Results from the initial series of experiments have demonstrated efficient core second harmonic tritium (2ΩT) heating in parameter regimes approaching those anticipated for the International Thermonuclear Experimental Reactor [D. E. Post, Plasma Physics and Controlled Nuclear Fusion Research, Proceedings of the 13th International Conference, Washington, DC, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 239]. Observations are consistent with modeling predictions for these plasmas. Efficient electron heating via mode conversion of fast waves to ion Bernstein waves has been observed in D-T, deuterium-deuterium (D-D), and deuterium-helium-4 (D-4He) plasmas with high concentrations of minority helium-3 (3He) (n3He/ne≳10%). Mode conversion current drive in D-T plasmas was simulated with experiments conducted in D-3He-4He plasmas. Results show a directed propagation of the mode converted ion Bernstein waves, in correlation with the antenna phasing.

  16. A camera for imaging hard x-rays from suprathermal electrons during lower hybrid current drive on PBX-M

    SciTech Connect

    von Goeler, S.; Kaita, R.; Bernabei, S.; Davis, W.; Fishman, H.; Gettelfinger, G.; Ignat, D.; Roney, P.; Stevens, J.; Stodiek, W.; Jones, S.; Paoletti, F.; Petravich, G.; Rimini, F.

    1993-05-01

    During lower hybrid current drive (LHCD), suprathermal electrons are generated that emit hard X-ray bremsstrahlung. A pinhole camera has been installed on the PBX-M tokamak that records 128 {times} 128 pixel images of the bremsstrahlung with a 3 ms time resolution. This camera has identified hollow radiation profiles on PBX-M, indicating off-axis current drive. The detector is a 9in. dia. intensifier. A detailed account of the construction of the Hard X-ray Camera, its operation, and its performance is given.

  17. A camera for imaging hard x-rays from suprathermal electrons during lower hybrid current drive on PBX-M

    SciTech Connect

    von Goeler, S.; Kaita, R.; Bernabei, S.; Davis, W.; Fishman, H.; Gettelfinger, G.; Ignat, D.; Roney, P.; Stevens, J.; Stodiek, W. . Plasma Physics Lab.); Jones, S.; Paoletti, F. . Plasma Fusion Center); Petravich, G. . Central Research Inst. for Physics); Rimini,

    1993-05-01

    During lower hybrid current drive (LHCD), suprathermal electrons are generated that emit hard X-ray bremsstrahlung. A pinhole camera has been installed on the PBX-M tokamak that records 128 [times] 128 pixel images of the bremsstrahlung with a 3 ms time resolution. This camera has identified hollow radiation profiles on PBX-M, indicating off-axis current drive. The detector is a 9in. dia. intensifier. A detailed account of the construction of the Hard X-ray Camera, its operation, and its performance is given.

  18. Quasi-linear modeling of lower hybrid current drive in ITER and DEMO

    SciTech Connect

    Cardinali, A. Cesario, R.; Panaccione, L.; Santini, F.; Amicucci, L.; Castaldo, C.; Ceccuzzi, S.; Mirizzi, F.; Tuccillo, A. A.

    2015-12-10

    First pass absorption of the Lower Hybrid waves in thermonuclear devices like ITER and DEMO is modeled by coupling the ray tracing equations with the quasi-linear evolution of the electron distribution function in 2D velocity space. As usually assumed, the Lower Hybrid Current Drive is not effective in a plasma of a tokamak fusion reactor, owing to the accessibility condition which, depending on the density, restricts the parallel wavenumber to values greater than n{sub ∥crit} and, at the same time, to the high electron temperature that would enhance the wave absorption and then restricts the RF power deposition to the very periphery of the plasma column (near the separatrix). In this work, by extensively using the “ray{sup star}” code, a parametric study of the propagation and absorption of the LH wave as function of the coupled wave spectrum (as its width, and peak value), has been performed very accurately. Such a careful investigation aims at controlling the power deposition layer possibly in the external half radius of the plasma, thus providing a valuable aid to the solution of how to control the plasma current profile in a toroidal magnetic configuration, and how to help the suppression of MHD mode that can develop in the outer part of the plasma. This analysis is useful not only for exploring the possibility of profile control of a pulsed operation reactor as well as the tearing mode stabilization, but also in order to reconsider the feasibility of steady state regime for DEMO.

  19. Input Power Quality Improvement in Switched Reluctance Motor Drive using Minnesota Rectifier

    NASA Astrophysics Data System (ADS)

    Singh, B.; Rajesh, M.

    2013-09-01

    This paper deals with an input power quality improvement in a midpoint converter based switched reluctance motor (SRM) drive at ac mains using Minnesota rectifier. Normally a midpoint converter is used as a power converter for SRM drive. Conventionally three phase ac mains fed bridge rectifier is used as a dc source to feed this power converter which produces high content of harmonics at ac mains with a very low power factor. The proposed Minnesota rectifier with a midpoint converter fed SRM drive improves the power factor at ac mains with low current harmonics. This method provides constant dc link voltage and balanced capacitor voltages of the midpoint converter. The Minnesota rectifier fed SRM drive is modelled and its performance is simulated in Matlab/Simulink environment. The performance of Minnesota rectifier is compared with a conventional bridge topology for SRM drive to demonstrate improved power quality at ac mains.

  20. Quench behavior of Sr0.6K0.4Fe2As2/Ag tapes with AC and DC transport currents at different temperature

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Zhang, Guomin; Yang, Hua; Li, Zhenming; Liu, Wei; Jing, Liwei; Yu, Hui; Liu, Guole

    2016-09-01

    In applications, superconducting wires may carry AC or DC transport current. Thus, it is important to understand the behavior of normal zone propagation in conductors and magnets under different current conditions in order to develop an effective quench protection system. In this paper, quench behavior of Ag sheathed Sr0.6K0.4Fe2As2 (Sr-122 in the family of iron-based superconductor) tapes with AC and DC transport current is reported. The measurements are performed as a function of different temperature (20 K-30 K), varying transport current and operating frequency (50 Hz-250 Hz). The focus of the research is the minimum quench energy (MQE), the normal zone propagation velocity (NZPV) and the comparison of the related results with AC and DC transport current.

  1. Simulation of Trolleybus Traction Induction Drive With Supercapacitor Energy Storage System

    NASA Astrophysics Data System (ADS)

    Brazis, V.; Latkovskis, L.; Grigans, L.

    2010-01-01

    The article considers the possibilities of saving the regenerative braking energy in Škoda 24Tr type trolleybuses by installing the onboard supercapacitor energy storage system (ESS) and improving its performance with automated switching to the autonomous traction mode. Proposed is an ESS control system with constant DC bus voltage in the supercapacitor charging mode and supercapacitor current proportional to the AC drive current in the discharging mode. The authors investigate stability of the trolleybus ESS control system operating together with AC traction drive in various overhead voltage failure modes. The co-simulation of ESS operation was done by Matlab/Simulink AC drive and PSIM ESS continuous models.

  2. Full-wave calculation of fast-wave current drive in tokamaks including k sub parallel variations

    SciTech Connect

    Jaeger, E.F; Batchelor, D.B.

    1991-01-01

    When fast waves propagate inward from the edge of a tokamak toward the plasma center, the k{perpendicular} spectrum produced by the antenna is not maintained but is shifted and deformed due to the presence of the finite poloidal magnetic field. This k{perpendicular} shift causes a variation in the parallel phase speed of the wave and can therefore have a strong effect on electron damping and current drive efficiency. In this paper, we include this effect in a new full-wave calculation (PICES) which represents the wave fields as a superposition of poloidal modes, thereby reducing k{perpendicular} to an algebraic operator. The wave equation is solved in general flux coordinates, including a full (non-perturbative) solution for E{perpendicular} and a reduced-order dielectric formulation to eliminate short-wavelength ion Bernstein modes. A simplified current drive model which includes particle trapping is used to estimate the effect of the k{perpendicular} shift on current drive efficiency in ITER and D3-D. Results suggest that when single-pass absorption is weak, reflected power may drive current nearly as efficiently as that absorbed on the first pass. 15 refs., 5 figs.

  3. Inter-strand current sharing and ac loss measurements in superconducting YBCO Roebel cables

    SciTech Connect

    Majoros, M.; Sumption, M. D.; Collings, E. W.; Long, N. J.

    2015-04-08

    A Roebel cable, one twist pitch long, was modified from its as-received state by soldering copper strips between the strands to provide inter-strand connections enabling current sharing. Various DC transport currents (representing different percentages of its critical current) were applied to a single strand of such a modified cable at 77 K in a liquid nitrogen bath. Simultaneous monitoring of I–V curves in different parts of the strand as well as in its interconnections with other strands was made using a number of sensitive Keithley nanovoltmeters in combination with a multichannel high-speed data acquisition card, all controlled via LabView software. Current sharing onset was observed at about 1.02 of strand Ic. At a strand current of 1.3Ic about 5% of the current was shared through the copper strip interconnections. A finite element method modeling was performed to estimate the inter-strand resistivities required to enable different levels of current sharing. The relative contributions of coupling and hysteretic magnetization (and loss) were compared, and for our cable and tape geometry, and at dB/dt=1 T s-1, and our inter-strand resistance of 0.77 mΩ, (enabling a current sharing of 5% at 1.3Ic) the coupling component was 0.32% of the hysteretic component. However, inter-strand contact resistance values of 100–1000 times smaller (close to those of NbTi and Nb3Sn based accelerator cables) would make the coupling components comparable in size to the hysteretic components.

  4. Inter-strand current sharing and ac loss measurements in superconducting YBCO Roebel cables

    DOE PAGESBeta

    sumption, Mike; Majoros, Milan; Collings, E. W.; Van der Laan, D. C.

    2014-11-07

    A Roebel cable, one twist pitch long, was modified from its as-received state by soldering copper strips between the strands to provide inter-strand connections enabling current sharing. Various DC transport currents (representing different percentages of its critical current) were applied to a single strand of such a modified cable at 77 K in a liquid nitrogen bath. Simultaneous monitoring of I–V curves in different parts of the strand as well as in its interconnections with other strands was made using a number of sensitive Keithley nanovoltmeters in combination with a multichannel high-speed data acquisition card, all controlled via LabView software.more » Current sharing onset was observed at about 1.02 of strand Ic. At a strand current of 1.3Ic about 5% of the current was shared through the copper strip interconnections. A finite element method modeling was performed to estimate the inter-strand resistivities required to enable different levels of current sharing. The relative contributions of coupling and hysteretic magnetization (and loss) were compared, and for our cable and tape geometry, and at dB/dt=1 T s-1, and our inter-strand resistance of 0.77 mΩ, (enabling a current sharing of 5% at 1.3Ic ) the coupling component was 0.32% of the hysteretic component. However, inter-strand contact resistance values of 100–1000 times smaller (close to those of NbTi and Nb3Sn based accelerator cables) would make the coupling components comparable in size to the hysteretic components.« less

  5. Inter-strand current sharing and ac loss measurements in superconducting YBCO Roebel cables

    DOE PAGESBeta

    Majoros, M.; Sumption, M. D.; Collings, E. W.; Long, N. J.

    2015-04-08

    A Roebel cable, one twist pitch long, was modified from its as-received state by soldering copper strips between the strands to provide inter-strand connections enabling current sharing. Various DC transport currents (representing different percentages of its critical current) were applied to a single strand of such a modified cable at 77 K in a liquid nitrogen bath. Simultaneous monitoring of I–V curves in different parts of the strand as well as in its interconnections with other strands was made using a number of sensitive Keithley nanovoltmeters in combination with a multichannel high-speed data acquisition card, all controlled via LabView software.more » Current sharing onset was observed at about 1.02 of strand Ic. At a strand current of 1.3Ic about 5% of the current was shared through the copper strip interconnections. A finite element method modeling was performed to estimate the inter-strand resistivities required to enable different levels of current sharing. The relative contributions of coupling and hysteretic magnetization (and loss) were compared, and for our cable and tape geometry, and at dB/dt=1 T s-1, and our inter-strand resistance of 0.77 mΩ, (enabling a current sharing of 5% at 1.3Ic) the coupling component was 0.32% of the hysteretic component. However, inter-strand contact resistance values of 100–1000 times smaller (close to those of NbTi and Nb3Sn based accelerator cables) would make the coupling components comparable in size to the hysteretic components.« less

  6. Inter-strand current sharing and ac loss measurements in superconducting YBCO Roebel cables

    NASA Astrophysics Data System (ADS)

    Majoros, M.; Sumption, M. D.; Collings, E. W.; Long, N. J.

    2015-05-01

    A Roebel cable, one twist pitch long, was modified from its as-received state by soldering copper strips between the strands to provide inter-strand connections enabling current sharing. Various DC transport currents (representing different percentages of its critical current) were applied to a single strand of such a modified cable at 77 K in a liquid nitrogen bath. Simultaneous monitoring of I-V curves in different parts of the strand as well as in its interconnections with other strands was made using a number of sensitive Keithley nanovoltmeters in combination with a multi-channel high-speed data acquisition card, all controlled via LabView software. Current sharing onset was observed at about 1.02 of strand Ic. At a strand current of 1.3Ic about 5% of the current was shared through the copper strip interconnections. A finite element method modeling was performed to estimate the inter-strand resistivities required to enable different levels of current sharing. The relative contributions of coupling and hysteretic magnetization (and loss) were compared, and for our cable and tape geometry, and at dB/dt = 1 T s-1, and our inter-strand resistance of 0.77 mΩ, (enabling a current sharing of 5% at 1.3Ic ) the coupling component was 0.32% of the hysteretic component. However, inter-strand contact resistance values of 100-1000 times smaller (close to those of NbTi and Nb3Sn based accelerator cables) would make the coupling components comparable in size to the hysteretic components.

  7. Inter-strand current sharing and ac loss measurements in superconducting YBCO Roebel cables

    SciTech Connect

    sumption, Mike; Majoros, Milan; Collings, E. W.; Van der Laan, D. C.

    2014-11-07

    A Roebel cable, one twist pitch long, was modified from its as-received state by soldering copper strips between the strands to provide inter-strand connections enabling current sharing. Various DC transport currents (representing different percentages of its critical current) were applied to a single strand of such a modified cable at 77 K in a liquid nitrogen bath. Simultaneous monitoring of I–V curves in different parts of the strand as well as in its interconnections with other strands was made using a number of sensitive Keithley nanovoltmeters in combination with a multichannel high-speed data acquisition card, all controlled via LabView software. Current sharing onset was observed at about 1.02 of strand Ic. At a strand current of 1.3Ic about 5% of the current was shared through the copper strip interconnections. A finite element method modeling was performed to estimate the inter-strand resistivities required to enable different levels of current sharing. The relative contributions of coupling and hysteretic magnetization (and loss) were compared, and for our cable and tape geometry, and at dB/dt=1 T s-1, and our inter-strand resistance of 0.77 mΩ, (enabling a current sharing of 5% at 1.3Ic ) the coupling component was 0.32% of the hysteretic component. However, inter-strand contact resistance values of 100–1000 times smaller (close to those of NbTi and Nb3Sn based accelerator cables) would make the coupling components comparable in size to the hysteretic components.

  8. On ray stochasticity during lower-hybrid current drive in tokamaks

    SciTech Connect

    Bizarro, J.P.; Moreau, D. )

    1993-04-01

    Using a combined ray-tracing and Fokker--Planck code, a comprehensive and detailed analysis is presented on the importance of toroidally induced ray stochasticity for the modeling of lower-hybrid (LH) current drive in tokamaks and for the dynamics of the launched power spectrum. The injected LH power distribution in poloidal angle and in parallel wave index is accurately represented by taking into account the poloidal extent of the antenna and by efficiently covering the full range of its radiated spectrum. The influence of the balance between the wave damping and the exponential divergence of nearby ray trajectories in determining the shape and robustness of the predicted LH power deposition profiles is emphasized. When stochastic effects are important, code predictions are shown to be stable with respect to small changes in plasma parameters and initial conditions, and to be consistent with experimental data, provided a sufficiently large number of rays is used. Sensitivity studies indicate that the component of the launched power spectrum that is not affected by stochastic effects is well described by a grid in parallel wave index whose spacing may be as large as 10[sup [minus]1], whereas the component that is affected by such effects suffers strong randomization and needs a grid whose spacing must not exceed 10[sup [minus]3]. Ray stochasticity tends to broaden the launched power spectrum, to increase the LH power deposition in the inner half of the plasma, and to favor power deposition profiles that are spread over most of the plasma cross section and whose dependence on the injected LH power distribution in poloidal angle and in parallel wave index is weak. It is found that stochastic effects may be effectively reduced by using bottom launch schemes.

  9. Modification of the current profile in high-performance plasmas using off-axis electron-cyclotron-current drive in DIII-D.

    PubMed

    Murakami, M; Wade, M R; Greenfield, C M; Luce, T C; Makowski, M A; Petty, C C; DeBoo, J C; Ferron, J R; Jayakumar, R J; Lao, L L; Lohr, J; Politzer, P A; Prater, R; St John, H E

    2003-06-27

    Recent DIII-D experiments using off-axis electron cyclotron current drive (ECCD) have demonstrated the ability to modify the current profile in a plasma with toroidal beta near 3%. The resulting plasma simultaneously sustains the key elements required for Advanced Tokamak operation: high bootstrap current fraction, high beta, and good confinement. More than 85% of the plasma current is driven by noninductive means. ECCD is observed to produce strong negative central magnetic shear, which in turn acts to trigger confinement improvements in all transport channels in the plasma core. PMID:12857139

  10. Hysteretic Dependence of Magnetic Flux Density on Primary AC Current in Flat-Type Inductive Fault Current Limiter with YBCO Thin Film Discs

    NASA Astrophysics Data System (ADS)

    Harada, Masayuki; Yokomizu, Yasunobu; Matsumura, Toshiro

    2014-05-01

    This paper focuses on a flat-type inductive superconducting FCL (FIS-FCL) consisting of a pancake coil and a YBCO thin layer disc. AC current injection experiments and magnetic field analysis were carried out for two kinds of FIS-FCL, single-disc model and double-discs model. In the former, the pancake coil was putted on the YBCO disc. In the latter, the pancake coil was sandwiched with two YBCO discs. The double-discs model cancels out the magnetic flux density more effectively than the single-disc model. In the double-discs model, the superconducting state period is longer than in the single-disc model. Thus, it may be concluded that the double-discs model is considered to be suitable for FIS-FCL.

  11. Study of lower hybrid current drive efficiency and its correlation with photon temperatures in the HT-7 tokamak

    NASA Astrophysics Data System (ADS)

    Younis, J.; Wan, B. N.; Lin, S. Y.; Shi, Y. J.; Ding, B. J.; Gong, X.; HT-7 Team

    2009-07-01

    Lower hybrid current drive (LHCD) efficiency is a very important parameter. The experimental current drive efficiency is defined as η = IrfneR/PLH, where Irf is the current driven by the lower hybrid waves (LHWs), ne is the central line-average density, R is the major radius of the plasma and PLH is the injected LH wave power absorbed by the plasma through Landau damping. A study of current drive efficiency of LHWs in the HT-7 tokamak has been carried out in the parameter ranges: ne = (1.2-2.5) × 1019 m-3, Ip = (80-200) kA, Bt = 1.8 T, PLH = (188-532) kW in the limiter configuration. Current drive efficiency is investigated through a simple correlation with photon temperature and normalized intensity of fast electron bremstrahlung emission, which is, in the first approximation, proportional to the averaged velocity and population of the fast electrons. The plasma current scanning experiment shows that CD efficiency increase is due to the increase in both the photon temperature and the population of the fast electrons generated by LHWs. The density scanning experiment shows that as the plasma density is increased, an increment in CD efficiency along with the increase in the population of fast electrons is observed. The slowing down through the collisions with bulk electrons is mainly responsible for the decreased photon temperature during the plasma density scan. These experiments strongly suggest the dominant role of the population of fast electrons generated by LHCD and the generation of the current carried by fast electrons.

  12. Superconducting-magnetic heterostructures: a method of decreasing AC losses and improving critical current density in multifilamentary conductors.

    PubMed

    Glowacki, B A; Majoros, M

    2009-06-24

    Magnetic materials can help to improve the performance of practical superconductors on the macroscale/microscale as magnetic diverters and also on the nanoscale as effective pinning centres. It has been established by numerical modelling that magnetic shielding of the filaments reduces AC losses in self-field conditions due to decoupling of the filaments and, at the same time, it increases the critical current of the composite. This effect is especially beneficial for coated conductors, in which the anisotropic properties of the superconductor are amplified by the conductor architecture. However, ferromagnetic coatings are often chemically incompatible with YBa(2)Cu(3)O(7) and (Pb,Bi)(2)Sr(2)Ca(2)Cu(3)O(9) conductors, and buffer layers have to be used. In contrast, in MgB(2) conductors an iron matrix may remain in direct contact with the superconducting core. The application of superconducting-magnetic heterostructures requires consideration of the thermal and electromagnetic stability of the superconducting materials used. On one hand, magnetic materials reduce the critical current gradient across the individual filaments but, on the other hand, they often reduce the thermal conductivity between the superconducting core and the cryogen, which may cause destruction of the conductor in the event of thermal instability. A possible nanoscale method of improving the critical current density of superconducting conductors is the introduction of sub-micron magnetic pinning centres. However, the volumetric density and chemical compatibility of magnetic inclusions has to be controlled to avoid suppression of the superconducting properties. PMID:21828430

  13. On the second harmonic electron cyclotron resonance heating and current drive experiments on T-10 and DIII-D

    SciTech Connect

    Lohr, J.; Forest, C.B.; Lin-Liu, Y.R.; Luce, T.C.; Harvey, R.W. ); Downs, E.A. Cornell Univ., Ithaca, NY ); James, R.A. Lawrence Livermore National Lab., CA ); Bagdasarov, A.A.; Borshegovskii, A.A.; Chistyakov, V.V.; Dremin, M.M.; Gors

    1993-02-01

    Studies of electron cyclotron current drive at the second harmonic resonance have been performed both on the DIII-D and T-10 tokamaks at injected power levels of approximately 0.5 MW. The DIII-D experiment used high held launch of the extraordinary mode at an angle of 15[degree] to the radial. In this experiment, with pulse lengths [approx equal] 500 msec, a loop voltage difference, compared to the value expected from the measured profiles, of [approx equal] 50 mV was ascribed to approximately 50 kA of rf-driven current. When dc electric field and trapped particle effects were considered, this was consistent with theoretical predictions. T-10 experiments planned for the fall of 1992 will use low field launch of the extraordinary mode and an injection angle of 21[degree] off-radial. In preliminary experiments with relatively poor machine conditions and pulse lengths [approx equal] 400 msec, rf current drive was not observed despite the fact that driven currents as low as 10 kA, corresponding to a loop voltage difference for co- versus counter-injection of 20 mV, could have been detected. In this paper we examine the T-10 experiments using ray tracing and transport calculations in an attempt to understand the results. The dependence of the current drive efficiency on discharge parameters, flux penetration, and non-linear effects will be discussed. The results show that the launching geometry can have a significant effect on the observation of electron cyclotron current drive using the loop voltage as a diagnostic. In addition, predictions for the next series of experiments on T-10, for which greater than 2 MW of high frequency power should be available, will be presented.

  14. On the second harmonic electron cyclotron resonance heating and current drive experiments on T-10 and DIII-D

    SciTech Connect

    Lohr, J.; Forest, C.B.; Lin-Liu, Y.R.; Luce, T.C.; Harvey, R.W.; Downs, E.A. |; James, R.A. |; Bagdasarov, A.A.; Borshegovskii, A.A.; Chistyakov, V.V.; Dremin, M.M.; Gorshkov, A.V.; Gorelov, Y.A.; Esipchuk, Y.V.; Ivanov, N.V.; Kislov, A.Y.; Kislov, D.A.; Lysenko, S.E.; Medvedev, A.A.; Mirenskii, V.Y.; Notkin, G.E.; Parail, V.V.; Pavlov, Y.D.; Razumova, K.A.; Roi, I.N.; Savrukhin, P.V.; Sannikov, V.V.; Sushkov, A.V.; Trukhin, V.M.; Vasin, N.L.; Volkov, V.V.; Denisov, G.G.; Petelin, M.I.; Flyagin, V.A.

    1993-02-01

    Studies of electron cyclotron current drive at the second harmonic resonance have been performed both on the DIII-D and T-10 tokamaks at injected power levels of approximately 0.5 MW. The DIII-D experiment used high held launch of the extraordinary mode at an angle of 15{degree} to the radial. In this experiment, with pulse lengths {approx_equal} 500 msec, a loop voltage difference, compared to the value expected from the measured profiles, of {approx_equal} 50 mV was ascribed to approximately 50 kA of rf-driven current. When dc electric field and trapped particle effects were considered, this was consistent with theoretical predictions. T-10 experiments planned for the fall of 1992 will use low field launch of the extraordinary mode and an injection angle of 21{degree} off-radial. In preliminary experiments with relatively poor machine conditions and pulse lengths {approx_equal} 400 msec, rf current drive was not observed despite the fact that driven currents as low as 10 kA, corresponding to a loop voltage difference for co- versus counter-injection of 20 mV, could have been detected. In this paper we examine the T-10 experiments using ray tracing and transport calculations in an attempt to understand the results. The dependence of the current drive efficiency on discharge parameters, flux penetration, and non-linear effects will be discussed. The results show that the launching geometry can have a significant effect on the observation of electron cyclotron current drive using the loop voltage as a diagnostic. In addition, predictions for the next series of experiments on T-10, for which greater than 2 MW of high frequency power should be available, will be presented.

  15. ac propulsion system for an electric vehicle

    NASA Technical Reports Server (NTRS)

    Geppert, S.

    1980-01-01

    It is pointed out that dc drives will be the logical choice for current production electric vehicles (EV). However, by the mid-80's, there is a good chance that the price and reliability of suitable high-power semiconductors will allow for a competitive ac system. The driving force behind the ac approach is the induction motor, which has specific advantages relative to a dc shunt or series traction motor. These advantages would be an important factor in the case of a vehicle for which low maintenance characteristics are of primary importance. A description of an EV ac propulsion system is provided, taking into account the logic controller, the inverter, the motor, and a two-speed transmission-differential-axle assembly. The main barrier to the employment of the considered propulsion system in EV is not any technical problem, but inverter transistor cost.

  16. Sign reversal of ac Josephson current in a ferromagnetic Josephson junction

    NASA Astrophysics Data System (ADS)

    Hikino, Shin-Ichi; Mori, Michiyasu; Takahashi, Saburo; Maekawa, Sadamichi

    2009-03-01

    It is known that in a superconductor/insulator/superconductor (SIS) junction, when a finite voltage is applied, the Josephson current shows a logarithmic divergence, i.e., the so-called Riedel peak(RP) at the gap voltage, V=2δ/e, (δ is a superconducting gap). In a double barrier Josephson junction such as SXS junction, on the other hand, the voltage dependence of Ic has not been investigated so far, where X is a normal metal (N) or a ferromagnet (F). We study the voltage dependence of Josephson critical current (Ic) in a variety of SXS junctions. In a SNS junction, Ic shows the RP at the gap voltage similar to a SIS junction. On the other hand, in a SFS junction, Ic shows a damped oscillation with the alternation of sign as a function of thickness (d) of F due to 0-π transition. The RP exhibits a strong dependence on d, and changes its sign. It is predicted that the RP disappears at the 0-π transition in the SFS junction.

  17. Are Teens Driving Safer? Cross Currents Issue 4, October 2005. Publication # 2005-16

    ERIC Educational Resources Information Center

    Marin, Pilar S.; Brown, Brett V.

    2005-01-01

    For many teens, learning to drive and obtaining a driver's license are exciting achievements,often allowing them more freedom to socialize, work at a job, or participate in other activities without being totally reliant on a parent or others for transportation. This brief provides an overview of relevant data including teen crash rates and trends,…

  18. Comparison between the electron cyclotron current drive experiments on DIII-D and predictions for T-10

    SciTech Connect

    Lohr, J.; Harvey, R.W.; Luce, T.C.; Matsuda, Kyoko; Moeller, C.P.; Petty, C.C.; Prater, R. ); James, R.A. ); Giruzzi, G. ); Gorelov, Y. ); DeHaas, J. (Joint European Torus Un

    1990-11-01

    Electron cyclotron current drive has been demonstrated on the DIII-D tokamak in an experiment in which {approximately}1 MW of microwave power generated {approximately}50 kA of non-inductive current. The rf-generated portion was about 15% of the total current. On the T-10 tokamak, more than 3 MW of microwave power will be available for current generation, providing the possibility that all the plasma current could be maintained by this method. Fokker-Planck calculations using the code CQL3D and ray tracing calculations using TORAY have been performed to model both experiments. For DIII-D the agreement between the calculations and measurements is good, producing confidence in the validity of the computational models. The same calculations using the T-10 geometry predict that for n{sub e}(0) {approximately} 1.8 {times} 10{sup 13} cm{sup {minus}3}, and T{sub e}(0) {approximately} 7 keV, 1.2 MW, that is, the power available from only three gyrotrons, could generate as much as 150 kA of non-inductive current. Parameter space scans in which temperature, density and resonance location were varied have been performed to indicate the current drive expected under different experimental conditions. The residual dc electric field was considered in the DIII-D analysis because of its nonlinear effect on the electron distribution, which complicates the interpretation of the results. A 110 GHz ECH system is being installed on DIII-D. Initial operations, planned for late 1991, will use four gyrotrons with 500 kW each and 10 second output pulses. Injection will be from the low field side from launchers which can be steered to heat at the desired location. These launchers, two of which are presently installed, are set at 20 degrees to the radial and rf current drive studies are planned for the initial operation. 8 refs., 10 figs.

  19. Calculations of Alfvén wave driving forces, plasma flow, and current drive in the Tokamak Chauffage Alfvén wave experiment in Brazil (TCABR)

    NASA Astrophysics Data System (ADS)

    Amarante-Segundo, G.; Elfimov, A. G.; Galvão, R. M. O.; Ross, D. W.; Nascimento, I. C.

    2001-01-01

    The current and plasma flows driven by ponderomotive forces are calculated for tokamak plasmas, using a kinetic code in the Alfvén range of frequencies. The rf (radio frequency) ponderomotive force is expressed as a sum of a gradient part and of a wave momentum transfer force, which is proportional to wave dissipation (electron Landau damping and transit time magnetic pumping). Finally, the rf force is balanced by the viscous force in the fluid momentum response to the rf fields in the plasma. The relative magnitudes of the different forces for kinetic and global Alfvén waves with low phase velocities are explicitly calculated. It is shown that, dissipating in electrons, Alfvén waves can drive ion flow via the gradient force, which is dominated in m=0-sideband harmonic resonance induced by toroidal mode coupling. Estimates of power requirements to drive substantial poloidal flow in the Tokamak Chauffage Alfvén wave heating experiment in Brazil (TCABR) [L. Ruchko, M. C. Andrade, R. M. O. Galvão, Nucl. Fusion 30, 503 (1996)] are made.

  20. Lower hybrid current drive in experiments for transport barriers at high {beta}{sub N} of JET (Joint European Torus)

    SciTech Connect

    Cesario, R. C.; Castaldo, C.; De Angelis, R.; Smeulders, P.; Calabro, G.; Pericoli, V.; Ravera, G.

    2007-09-28

    LHCD has been used in JET experiments aimed at producing internal transport barriers (ITBs) in highly triangular plasmas ({delta}{approx_equal}0.4) at high {beta}{sub N} (up to 3) for steady-state application. The LHCD is a potentially valuable tool for (i) modifying the target q-profile, which can help avoid deleterious MHD modes and favour the formation of ITBs, and (ii) contributing to the non-inductive current drive required to prolong such plasma regimes. The q-profile evolution has been simulated during the current ramp-up phase for such a discharge (B{sub 0} = 2.3 T, I{sub P} = 1.5 MA) where 2 MW of LHCD has been coupled. The JETTO code was used taking measured plasma profiles, and the LHCD profile modeled by the LHstar code. The results are in agreement with MSE measurements and indicate the importance of the elevated electron temperature due to LHCD, as well as the driven current. During main heating with 18 MW of NBI and 3 MW of ICRH the bootstrap current density at the edge also becomes large, consistently with the observed reduction of the local turbulence and of the MHD activity. JETTO modelling suggests that the bootstrap current can reduce the magnetic shear (sh) at large radius, potentially affecting the MHD stability and turbulence behaviour in this region. Keywords: lower hybrid current drive (LHCD), bootstrap current, q (safety factor) and shear (sh) profile evolutions.

  1. Optimization of Drive-Bunch Current Profile for Enhanced Transformer Ratio in Beam-Driven Acceleration Techniques

    SciTech Connect

    Lemery, F.; Mihalcea, D.; Prokop, C.R.; Piot, P.; /Northern Illinois U. /Fermilab

    2012-07-08

    In recent years, wakefield acceleration has gained attention due to its high acceleration gradients and cost effectiveness. In beam-driven wakefield acceleration, a critical parameter to optimize is the transformer ratio. It has been shown that current shaping of electron beams allows for enhanced (> 2) transformer ratios. In this paper we present the optimization of the pulse shape of the drive bunch for dielectric-wakefield acceleration.

  2. Development of long pulse RF heating and current drive for H-mode scenarios with metallic walls in WEST

    SciTech Connect

    Ekedahl, Annika Bourdelle, Clarisse; Artaud, Jean-François; Bernard, Jean-Michel; Bufferand, Hugo; Colas, Laurent; Decker, Joan; Delpech, Léna; Dumont, Rémi; Goniche, Marc; Helou, Walid; Hillairet, Julien; Lombard, Gilles; Magne, Roland; Mollard, Patrick; Nardon, Eric; Peysson, Yves; Tsitrone, Emmanuelle

    2015-12-10

    The longstanding expertise of the Tore Supra team in long pulse heating and current drive with radiofrequency (RF) systems will now be exploited in the WEST device (tungsten-W Environment in Steady-state Tokamak) [1]. WEST will allow an integrated long pulse tokamak programme for testing W-divertor components at ITER-relevant heat flux (10-20 MW/m{sup 2}), while treating crucial aspects for ITER-operation, such as avoidance of W-accumulation in long discharges, monitoring and control of heat fluxes on the metallic plasma facing components (PFCs) and coupling of RF waves in H-mode plasmas. Scenario modelling using the METIS-code shows that ITER-relevant heat fluxes are compatible with the sustainment of long pulse H-mode discharges, at high power (up to 15 MW / 30 s at I{sub P} = 0.8 MA) or high fluence (up to 10 MW / 1000 s at I{sub P} = 0.6 MA) [2], all based on RF heating and current drive using Ion Cyclotron Resonance Heating (ICRH) and Lower Hybrid Current Drive (LHCD). This paper gives a description of the ICRH and LHCD systems in WEST, together with the modelling of the power deposition of the RF waves in the WEST-scenarios.

  3. Development of long pulse RF heating and current drive for H-mode scenarios with metallic walls in WEST

    NASA Astrophysics Data System (ADS)

    Ekedahl, Annika; Bourdelle, Clarisse; Artaud, Jean-François; Bernard, Jean-Michel; Bufferand, Hugo; Colas, Laurent; Decker, Joan; Delpech, Léna; Dumont, Rémi; Goniche, Marc; Helou, Walid; Hillairet, Julien; Lombard, Gilles; Magne, Roland; Mollard, Patrick; Nardon, Eric; Peysson, Yves; Tsitrone, Emmanuelle

    2015-12-01

    The longstanding expertise of the Tore Supra team in long pulse heating and current drive with radiofrequency (RF) systems will now be exploited in the WEST device (tungsten-W Environment in Steady-state Tokamak) [1]. WEST will allow an integrated long pulse tokamak programme for testing W-divertor components at ITER-relevant heat flux (10-20 MW/m2), while treating crucial aspects for ITER-operation, such as avoidance of W-accumulation in long discharges, monitoring and control of heat fluxes on the metallic plasma facing components (PFCs) and coupling of RF waves in H-mode plasmas. Scenario modelling using the METIS-code shows that ITER-relevant heat fluxes are compatible with the sustainment of long pulse H-mode discharges, at high power (up to 15 MW / 30 s at IP = 0.8 MA) or high fluence (up to 10 MW / 1000 s at IP = 0.6 MA) [2], all based on RF heating and current drive using Ion Cyclotron Resonance Heating (ICRH) and Lower Hybrid Current Drive (LHCD). This paper gives a description of the ICRH and LHCD systems in WEST, together with the modelling of the power deposition of the RF waves in the WEST-scenarios.

  4. Current-drive on the Versator-2 tokamak with a slotted-waveguide fast-wave coupler

    NASA Astrophysics Data System (ADS)

    Colborn, J. A.

    1987-11-01

    A slotted-waveguide fast-wave coupler has been constructed, without dielectric, and used to drive current on the Versator-2 tokamak. Up to 35 kW of net microwave power at 2.45 GHz has been radiated into plasmas with 2 x 10 to the 12th/cu cm less than or equal to mean of n(sub e) less than or equal to 1.2 x 10 to the 13th/cu cm and B(sub tor) approx. = 1.0 T. The launched spectrum had a peak near N(sub parallel) = -2.0 and a larger peak near N(sub parallel) = 0.7. Radiating efficiency of the antenna was roughly independent of antenna position except when the antenna was at least 0.2 cm outside the limiter, in which case the radiating efficiency slightly improved as the antenna was moved farther outside. When the coupler was inside the limiter, radiating efficiency improved moderately with increased mean of n(sub e). Current-drive efficiency was comparable to that of the slow wave and was not affected when the antenna spectrum was reversed; however, no current was driven for mean of n(sub e) less than or equal to 2 x 10 to the 12th/cu cm. These results indicate the fast wave was launched, but a substantial part of the power may have been mode-converted to the slow wave, possible via a downshift in N(sub parallel), and these slow waves may have been responsible for most of the driven current. Relevant theory for waves in plasma, current-drive efficiency, and coupling of the slotted-waveguide is discussed, the antenna design method is explained, and future work, including the construction of a much-improved probe-fed antenna, is described.

  5. Compact antenna for two-dimensional beam scan in the JT-60U electron cyclotron heating/current drive system

    SciTech Connect

    Moriyama, S.; Kajiwara, K.; Takahashi, K.; Kasugai, A.; Seki, M.; Ikeda, Y.; Fujii, T.

    2005-11-15

    A compact antenna system was designed and fabricated to enable millimeter-wave beam scanning in the toroidal and poloidal directions of the JT-60U tokamak for electron cyclotron heating (ECH) and electron cyclotron current drive (ECCD) experiments. The antenna consists of a fast movable flat mirror mounted on the tokamak vacuum vessel and a rotary focusing mirror attached at the end of the waveguide that is supported from outside the vacuum vessel. This separate support concept enables a compact structure inside a shallow port (0.68x0.54x0.2 m) that is shared with a subport for an independent diagnostic system. During a plasma shot, the flat mirror is driven by a servomotor with a 3-m-long drive shaft to reduce the influence of the high magnetic field on the motor. The focusing mirror is rotated by a simple mechanism utilizing a push rod and an air cylinder. The antenna has been operated reliably for 3 years after a small improvement to the rotary drive mechanism. It has made significant contributions to ECH and ECCD experiments, especially the current profile control in JT-60U.

  6. The Effect of Solar Wind Dynamic Pressure on the Physical Processes that Drive the Storm-time Ring Current Development

    NASA Astrophysics Data System (ADS)

    Lemon, C.; Chen, M. W.; Guild, T. B.

    2011-12-01

    Statistical studies suggest that the solar wind dynamic pressure influences the development of the storm-time ring current, with increased dynamic pressure leading to increased ring current energy. But physical understanding of that relationship is lacking. While magnetospheric compressions drive adiabatic energization of plasma and thereby directly increase the ring current energy, this effect should be reversible, and dynamic pressure can vary rapidly in either direction during magnetic storms. Rather, the process of plasma transport from the plasma sheet to the ring current is affected by magnetopause currents that perturb the background field in the magnetosphere. This perturbation will affect both convective transport and gradient/curvature drift of plasma, which will subsequently further perturb the magnetic and electric fields. Using the Rice Convection Model with a force-equilibrated magnetic field (the RCM-E), we are able to simulate the ring current development in response to varying upstream conditions. This study contrasts the development of the ring current in response to different solar wind dynamic pressure inputs: sustained low dynamic pressure, sustained high dynamic pressure, and low dynamic pressure with a superposed pressure pulse. We quantitatively account for the processes that lead to variations in ring current development during these different upstream driving scenarios. These processes include the effect of the magnetopause currents (and ring and tail currents) on plasma drift paths, modifications of the convection electric field due to adiabatic energization of plasma (electric shielding), and the induction electric fields caused by changes in the magnetopause, ring, and tail currents. Our simulations separately investigate the extent to which ring current enhancements are driven by 1) the impact of the magnetopause currents on the magnetic and (indirectly) electric fields of the inner magnetosphere, 2) the coupling of the plasma sheet to

  7. Influence of Critical Current Density on Guidance Force Decay of HTS Bulk Exposed to AC Magnetic Field Perturbation in a Maglev Vehicle System

    NASA Astrophysics Data System (ADS)

    Longcai, Zhang; Jianguo, Kong

    2012-07-01

    Superconducting maglev vehicle is one of the most promising applications of HTS bulks. In such a system, the HTS bulks are always exposed to AC external magnetic field, which is generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, we studied the guidance force decay of the YBCO bulk over the NdFdB guideway used in the High-temperature superconducting maglev vehicle system with the application of the AC external magnetic field, and calculated the guidance force decay as a function of time based on an analytic model. In this paper, we investigated the influence of the critical current density on the guidance force decay of HTS bulk exposed to AC field perturbation in the maglev vehicle system and try to adopt a method to suppress the decay. From the results, it was found that the guidance force decay rate was higher for the bulk with lower critical current density. Therefore, we could suppress the guidance force decay of HTS bulk exposed to AC external magnetic field perturbation in the maglev vehicle system by improving critical current density of the bulk.

  8. Cortico-muscular coupling and motor performance are modulated by 20 Hz transcranial alternating current stimulation (tACS) in Parkinson’s disease

    PubMed Central

    Krause, Vanessa; Wach, Claudia; Südmeyer, Martin; Ferrea, Stefano; Schnitzler, Alfons; Pollok, Bettina

    2014-01-01

    Parkinson’s disease (PD) is associated with pathologically altered oscillatory activity. While synchronized oscillations between 13 and 30 Hz are increased within a cortico-subcortical network, cortico-muscular coupling (CMC) is decreased. The present study aims at investigating the effect of non-invasive transcranial alternating current stimulation (tACS) of the primary motor cortex (M1) on motor symptoms and motor-cortical oscillations in PD. In 10 PD patients and 10 healthy control subjects, static isometric contraction, dynamic fast finger tapping, and diadochokinesia of the more severely affected hand were investigated prior to and shortly after tACS of the contralateral M1 at 10 Hz vs. 20 Hz vs. sham. During isometric contraction, neuromagnetic activity was recorded using magnetoencephalography. 20 Hz tACS attenuated beta band CMC during isometric contraction and amplitude variability during finger tapping in PD patients but not in healthy control subjects. 10 Hz tACS yielded no significant after-effects. The present data suggest that PD is associated with pathophysiological alterations which abet a higher responsiveness toward frequency-specific tACS – possibly due to pathologically altered motor-cortical oscillatory synchronization at frequencies between 13 and 30 Hz. PMID:24474912

  9. Investigation of lower hybrid wave coupling and current drive experiments at different configurations in experimental advanced superconducting tokamak

    SciTech Connect

    Ding, B. J.; Qin, Y. L.; Li, W. K.; Li, M. H.; Kong, E. H.; Zhang, L.; Wang, M.; Xu, H. D.; Hu, H. C.; Xu, G. S.; Shan, J. F.; Liu, F. K.; Zhao, Y. P.; Wan, B. N.; Li, J. G.; Group, EAST; Ekedahl, A.; Peysson, Y.; Decker, J.

    2011-08-15

    Using a 2 MW 2.45 GHz lower hybrid wave (LHW) system installed in experimental advanced superconducting tokamak, we have systematically carried out LHW-plasma coupling and lower hybrid current drive experiments in both divertor (double null and lower single null) and limiter plasma configuration with plasma current (I{sub p}) {approx} 250 kA and central line averaged density (n{sub e}) {approx} 1.0-1.3 x 10{sup 19} m{sup -3} recently. Results show that the reflection coefficient (RC) first is flat up to some distance between plasma and LHW grill, and then increases with the distance. Studies indicate that with the same plasma parameters, the best coupling is obtained in the limiter case (with plasma leaning on the inner wall), followed by the lower single null, and the one with the worst coupling is the double null configuration, explained by different magnetic connection length. The RCs in the different poloidal rows show that they have different coupling characteristics, possibly due to local magnetic connection length. Current drive efficiency has been investigated by a least squares fit with N{sub //}{sup peak}=2.1, where N{sub //}{sup peak} is the peak value of parallel refractive index of the launched wave. Results show that there is no obvious difference in the current drive efficiency between double null and lower single null cases, whereas the efficiency is somewhat small in the limiter configuration. This is in agreement with the ray tracing/Fokker-Planck code simulation by LUKE/C3PO and can be interpreted by the power spectrum up-shift factor in different plasma configurations. A transformer recharge is realized with {approx}0.8 MW LHW power and the energy conversion efficiency from LHW to poloidal field energy is about 2%.

  10. Investigation of lower hybrid wave coupling and current drive experiments at different configurations in experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Ding, B. J.; Qin, Y. L.; Li, W. K.; Li, M. H.; Kong, E. H.; Zhang, L.; Ekedahl, A.; Peysson, Y.; Decker, J.; Wang, M.; Xu, H. D.; Hu, H. C.; Xu, G. S.; Shan, J. F.; Liu, F. K.; Zhao, Y. P.; Wan, B. N.; Li, J. G.; Group, EAST

    2011-08-01

    Using a 2 MW 2.45 GHz lower hybrid wave (LHW) system installed in experimental advanced superconducting tokamak, we have systematically carried out LHW-plasma coupling and lower hybrid current drive experiments in both divertor (double null and lower single null) and limiter plasma configuration with plasma current (Ip) ˜ 250 kA and central line averaged density (ne) ˜ 1.0-1.3 × 1019 m-3 recently. Results show that the reflection coefficient (RC) first is flat up to some distance between plasma and LHW grill, and then increases with the distance. Studies indicate that with the same plasma parameters, the best coupling is obtained in the limiter case (with plasma leaning on the inner wall), followed by the lower single null, and the one with the worst coupling is the double null configuration, explained by different magnetic connection length. The RCs in the different poloidal rows show that they have different coupling characteristics, possibly due to local magnetic connection length. Current drive efficiency has been investigated by a least squares fit with N//peak=2.1, where N//peak is the peak value of parallel refractive index of the launched wave. Results show that there is no obvious difference in the current drive efficiency between double null and lower single null cases, whereas the efficiency is somewhat small in the limiter configuration. This is in agreement with the ray tracing/Fokker-Planck code simulation by LUKE/C3PO and can be interpreted by the power spectrum up-shift factor in different plasma configurations. A transformer recharge is realized with ˜0.8 MW LHW power and the energy conversion efficiency from LHW to poloidal field energy is about 2%.

  11. Comparison of the theory and the practice of rf current drive

    SciTech Connect

    Karney, C.F.F.; Fisch, N.J.; Jobes, F.C.

    1984-10-01

    The theory of rf-driven plasma currents is applied to the lower-hybrid experiments on the PLT tokamak. Particular emphasis is placed on those experiments in which the plasma current was varying. The comparison between theory and experiment is made with respect to the efficiency with which rf energy was converted to poloidal magnetic field energy. Good agreement is found irrespective of whether the current was increasing, constant, or decreasing.

  12. Determination of critical current density and transition temperature of YBa sub 2 Cu sub 3 O sub 7 minus x thin films by measurement of ac susceptibility

    SciTech Connect

    Li, Y.; Noh, D.; Gallois, B. ); Tompa, G.S.; Norris, P.E.; Zawadzki, P.A. )

    1990-10-01

    A technique for the determination of the critical current of superconducting thin films by a current-dependent ac susceptibility measurement has been developed. This method has been used to characterize superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}{ital x}} films grown {ital in situ} at 1073 K by metalorganic chemical vapor deposition. Two superconducting phases with transition temperatures of 91 and 84 K have been detected by the measurement of ac susceptibility as a function of temperature even though the variation of resistance with temperature indicated a sharp transition. The critical current densities of the two superconducting phases have been determined from the variations of ac susceptibility with current at constant temperature and found to be equal to 1.14{times}10{sup 4} A/cm{sup 2} and 3.6{times}10{sup 3} A/cm{sup 2} at 75 K. The advantages of the technique in comparison to current methods of measurement of critical current are discussed.

  13. AC susceptibility and critical current in the organic superconductor {kappa}-(ET){sub 2}Cu(NCS){sub 2}

    SciTech Connect

    Gonzalez, M.A.; Velez, M.; Vicent, J.L.; Schleuter, J.; Williams, J.M.; Crabtree, G.W.

    1994-05-01

    The AC susceptibility (X{prime}, X{double_prime}) has bee measured in a single crystal of the organic superconductor K-(ET){sub 2}Cu(NCS){sub 2} ({Tc} = 9.5 K) as a function of the DC magnetic field, for several frequencies (10 {sup 2} Hz AC fields (l{mu}T

  14. Novel method for driving the ultrasonic motor.

    PubMed

    Kim, Hyeoung woo; Dong, Shuxiang; Laoratanakul, Pitak; Uchino, Kenji; Park, Tae gone

    2002-10-01

    This paper reports a novel driving method for an annular plate-type ultrasonic motor. Instead of the direct current/alternating current (DC/AC) converter type driver using conventional electromagnetic transformer, a compact disc-type piezoelectric transformer is used to obtain high voltage output for driving the ultrasonic motor. The piezoelectric transformer is operated in the radial vibration mode at resonance frequency close to the resonance frequency of the ultrasonic motor. Later, it was found that the piezoelectric transformer could drive the ultrasonic motor, even if their resonance frequencies are not exactly the same by incorporating the matching network in the circuit. The maximum speed of the ultrasonic motor obtained by using this driving method is over 300 rpm. It is believed that the results of this study will have impact on the integration and miniaturization of the ultrasonic motor and its driving circuit. PMID:12403137

  15. Investigations of LHW-plasma coupling and current drive at high density related to H-mode experiments in EAST

    NASA Astrophysics Data System (ADS)

    Ding, B. J.; Li, Y. C.; Zhang, L.; Li, M. H.; Wei, W.; Kong, E. H.; Wang, M.; Xu, H. D.; Wang, S. L.; Xu, G. S.; Zhao, L. M.; Hu, H. C.; Jia, H.; Cheng, M.; Yang, Y.; Liu, L.; Zhao, H. L.; Peysson, Y.; Decker, J.; Goniche, M.; Amicucci, L.; Cesario, R.; Tuccillo, A. A.; Baek, S. G.; Parker, R.; Bonoli, P. T.; Paoletti, F.; Yang, C.; Shan, J. F.; Liu, F. K.; Zhao, Y. P.; Gong, X. Z.; Hu, L. Q.; Gao, X.; Wan, B. N.; Li, J. G.; the EAST Team

    2015-09-01

    Two important issues in achieving lower hybrid current drive (LHCD) high confinement plasma in EAST are to improve lower hybrid wave (LHW)-plasma coupling and to drive the plasma current at a high density. Studies in different configurations with different directions of toroidal magnetic field (Bt) show that the density near the antenna is affected by both the radial electric field induced by plasma without a LHW (Er_plasma) in the scrape off layer (SOL), and the radial electric field induced by LHW power (Er_LH) near the grill. Investigations indicate that Er  ×  Bt in the SOL leads to a different effect of configuration on the LHW-plasma coupling and Er_LH  ×  Bt accounts for the asymmetric density behaviour in the SOL observed in the experiments, where Er is the total radial electric field in the SOL. Modelling of parametric instability (PI), collisional absorption (CA) and scattering from density fluctuations (SDF) in the edge region, performed considering the parameters of high density LHCD experiments in EAST, has shown that these mechanisms could be responsible for the low current drive (CD) efficiency at high density. Radiofrequency probe spectra, useful for documenting PI occurrence, show sidebands whose amplitude in the case of the lithiated vacuum chamber is smaller than in the case of poor lithiation, consistently with growth rates from PI modeling of the respective reference discharges. Since strong lithiation is also expected to diminish the parasitic effect on the LHCD of the remaining possible mechanisms, this appears to be a useful method for improving LHCD efficiency at a high density.

  16. COMPLETE SUPPRESSION OF THE M=2/N-1 NEOCLASSICAL TEARING MODE USING ELECTRON CYCLOTRON CURRENT DRIVE ON DIII-D

    SciTech Connect

    PETTY,CC; LAHAYE,LA; LUCE,TC; HUMPHREYS,DA; HYATT,AW; PRATER,R; STRAIT,EJ; WADE,MR

    2003-03-01

    A271 COMPLETE SUPPRESSION OF THE M=2/N-1 NEOCLASSICAL TEARING MODE USING ELECTRON CYCLOTRON CURRENT DRIVE ON DIII-D. The first suppression of the important and deleterious m=2/n=1 neoclassical tearing mode (NTM) is reported using electron cyclotron current drive (ECCD) to replace the ''missing'' bootstrap current in the island O-point. Experiments on the DIII-D tokamak verify the maximum shrinkage of the m=2/n=1 island occurs when the ECCD location coincides with the q = 2 surface. The DIII-D plasma control system is put into search and suppress mode to make small changes in the toroidal field to find and lock onto the optimum position, based on real time measurements of dB{sub {theta}}/dt, for complete m=2/n=1 NTM suppression by ECCD. The requirements on the ECCD for complete island suppression are well modeled by the modified Rutherford equation for the DIII-D plasma conditions.

  17. Gandhi and the Environmental Consequences of the Current Drive to Industrialization and Modernization.

    ERIC Educational Resources Information Center

    Sinha, Rajiv K.

    1993-01-01

    Discusses Gandhi's developmental philosophy that small is beautiful in relation to current issues in ecological conservation. Issues include environmental education, economic development, rural development, natural farming, and Gandhi's philosophy among Western nations. (MDH)

  18. Neoclassical tearing modes in DIII-D and calculations of the stabilizing effects of localized electron cyclotron current drive

    SciTech Connect

    Prater, R.; Bernabei, S.; Harvey, R. W.; La Haye, R. J.; Lin-Liu, Y. R.; Lohr, J.; Perkins, F. W.; Wong, K.-L.

    1999-09-20

    Neoclassical tearing modes are found to limit the achievable beta in many high performance discharges in DIII-D. Electron cyclotron current drive within the magnetic islands formed as the tearing mode grows has been proposed as a means of stabilizing these modes or reducing their amplitude, thereby increasing the beta limit by a factor around 1.5. Some experimental success has been obtained previously on Asdex-U. Here we examine the parameter range in DIII-D in which this effect can best be studied. (c) 1999 American Institute of Physics.

  19. Neoclassical tearing modes in DIII-D and calculations of the stabilizing effects of localized electron cyclotron current drive

    SciTech Connect

    Prater, R.; La Haye, R.J.; Lin-Liu, Y.R.; Lohr, J.; Bernabei, S.; Perkins, F.W.; Wong, K.L.; Harvey, R.W.

    1999-05-01

    Neoclassical tearing modes are found to limit the achievable beta in many high performance discharges in DIII-D. Electron cyclotron current drive within the magnetic islands formed as the tearing mode grows has been proposed as a means of stabilizing these modes or reducing their amplitude, thereby increasing the beta limit by a factor around 1.5. Some experimental success has been obtained previously on Asdex-U. Here the authors examine the parameter range in DIII-C in which this effect can best be studied.

  20. IMPROVING AC MOTOR EFFICIENCY WITH FUZZY LOGIC ENERGY OPTIMIZER

    EPA Science Inventory

    The paper discusses EPA's research program to develop fuzzy-logic-based energy optimizers for alternating-current (AC) induction motors driven by Adjustable Speed Drives (ASDs). he technical goals of the program are to increase the efficiency of ASD/motor combinations (especially...

  1. Beta Band Transcranial Alternating (tACS) and Direct Current Stimulation (tDCS) Applied After Initial Learning Facilitate Retrieval of a Motor Sequence

    PubMed Central

    Krause, Vanessa; Meier, Anna; Dinkelbach, Lars; Pollok, Bettina

    2016-01-01

    The primary motor cortex (M1) contributes to the acquisition and early consolidation of a motor sequence. Although the relevance of M1 excitability for motor learning has been supported, the significance of M1 oscillations remains an open issue. This study aims at investigating to what extent retrieval of a newly learned motor sequence can be differentially affected by motor-cortical transcranial alternating (tACS) and direct current stimulation (tDCS). Alpha (10 Hz), beta (20 Hz) or sham tACS was applied in 36 right-handers. Anodal or cathodal tDCS was applied in 30 right-handers. Participants learned an eight-digit serial reaction time task (SRTT; sequential vs. random) with the right hand. Stimulation was applied to the left M1 after SRTT acquisition at rest for 10 min. Reaction times were analyzed at baseline, end of acquisition, retrieval immediately after stimulation and reacquisition after eight further sequence repetitions. Reaction times during retrieval were significantly faster following 20 Hz tACS as compared to 10 Hz and sham tACS indicating a facilitation of early consolidation. tDCS yielded faster reaction times, too, independent of polarity. No significant differences between 20 Hz tACS and tDCS effects on retrieval were found suggesting that 20 Hz effects might be associated with altered motor-cortical excitability. Based on the behavioral modulation yielded by tACS and tDCS one might speculate that altered motor-cortical beta oscillations support early motor consolidation possibly associated with neuroplastic reorganization. PMID:26834593

  2. Optimal control of electric drive with simultaneous control inputs for motor current and flux

    NASA Astrophysics Data System (ADS)

    Pansyuk, V. I.

    1984-08-01

    A detailed mathematical analysis of the optimal control of a dc electric drive with a variable magnetic flux is presented. Expressions are found for the optimal controller. When this controller uses real time microprocessors control hardware, formulas are also derived for the various portions of the optimal process as well as the logic expressions for the switching of these parts of the process. The resulting optimal process differs from previous determinations in that the braking portion, when a resistance moment is present, contains a free run-down (passive braking) region, before and after which there can be regions of active braking, when the motor produces an electromagnetic moment. In one numerical example of step dc motor control, which is used to compare the optimal process found here with one developed earlier, power losses are found to be reduced by 5.44% with the new process. The entire solution of the problem using the procedure presented here reduces to finding the conditional extremum of some function of several variables whose number is no greater than the dimensionality of the system and does not lead to a boundary value problem.

  3. Dynamics of Dirac strings and monopolelike excitations in chiral magnets under a current drive

    DOE PAGESBeta

    Lin, Shi -Zeng; Saxena, Avadh

    2016-02-10

    Skyrmion lines in metallic chiral magnets carry an emergent magnetic field experienced by the conduction electrons. The inflow and outflow of this field across a closed surface is not necessarily equal, thus it allows for the existence of emergent monopoles. One example is a segment of skyrmion line inside a crystal, where a monopole and antimonopole pair is connected by the emergent magnetic flux line. This is a realization of Dirac stringlike excitations. Here we study the dynamics of monopoles in chiral magnets under an electric current. We show that in the process of creation of skyrmion lines, skyrmion linemore » segments are first created via the proliferation of monopoles and antimonopoles. Then these line segments join and span the whole system through the annihilation of monopoles. The skyrmion lines are destroyed via the proliferation of monopoles and antimonopoles at high currents, resulting in a chiral liquid phase. We also propose to create the monopoles in a controlled way by applying an inhomogeneous current to a crystal. Remarkably, an electric field component in the magnetic field direction proportional to the current squared in the low current region is induced by the motion of distorted skyrmion lines, in addition to the Hall and longitudinal voltage. As a result, the existence of monopoles can be inferred from transport or imaging measurements.« less

  4. Dynamics of Dirac strings and monopolelike excitations in chiral magnets under a current drive

    NASA Astrophysics Data System (ADS)

    Lin, Shi-Zeng; Saxena, Avadh

    2016-02-01

    Skyrmion lines in metallic chiral magnets carry an emergent magnetic field experienced by the conduction electrons. The inflow and outflow of this field across a closed surface is not necessarily equal, thus it allows for the existence of emergent monopoles. One example is a segment of skyrmion line inside a crystal, where a monopole and antimonopole pair is connected by the emergent magnetic flux line. This is a realization of Dirac stringlike excitations. Here we study the dynamics of monopoles in chiral magnets under an electric current. We show that in the process of creation of skyrmion lines, skyrmion line segments are first created via the proliferation of monopoles and antimonopoles. Then these line segments join and span the whole system through the annihilation of monopoles. The skyrmion lines are destroyed via the proliferation of monopoles and antimonopoles at high currents, resulting in a chiral liquid phase. We also propose to create the monopoles in a controlled way by applying an inhomogeneous current to a crystal. Remarkably, an electric field component in the magnetic field direction proportional to the current squared in the low current region is induced by the motion of distorted skyrmion lines, in addition to the Hall and longitudinal voltage. The existence of monopoles can be inferred from transport or imaging measurements.

  5. High-Speed Current dq PI Controller for Vector Controlled PMSM Drive

    PubMed Central

    Reaz, Mamun Bin Ibne; Rahman, Labonnah Farzana; Chang, Tae Gyu

    2014-01-01

    High-speed current controller for vector controlled permanent magnet synchronous motor (PMSM) is presented. The controller is developed based on modular design for faster calculation and uses fixed-point proportional-integral (PI) method for improved accuracy. Current dq controller is usually implemented in digital signal processor (DSP) based computer. However, DSP based solutions are reaching their physical limits, which are few microseconds. Besides, digital solutions suffer from high implementation cost. In this research, the overall controller is realizing in field programmable gate array (FPGA). FPGA implementation of the overall controlling algorithm will certainly trim down the execution time significantly to guarantee the steadiness of the motor. Agilent 16821A Logic Analyzer is employed to validate the result of the implemented design in FPGA. Experimental results indicate that the proposed current dq PI controller needs only 50 ns of execution time in 40 MHz clock, which is the lowest computational cycle for the era. PMID:24574913

  6. Suppression of sawtooth oscillations by lower-hybrid current drive in the ASDEX tokamak

    NASA Astrophysics Data System (ADS)

    Söldner, F. X.; McCormick, K.; Eckhartt, D.; Kornherr, M.; Leuterer, F.; Bartiromo, R.; Becker, G.; Bosch, H. S.; Brocken, H.; Derfler, H.; Eberhagen, A.; Fussmann, G.; Gehre, O.; Gernhardt, J.; Gierke, G. V.; Giuliana, A.; Glock, E.; Gruber, O.; Haas, G.; Hesse, M.; Hofmann, J.; Izvozchikov, A.; Janeschitz, G.; Karger, F.; Keilhacker, M.; Klüber, O.; Lackner, K.; Lenoci, M.; Lisitano, G.; Mast, F.; Mayer, H. M.; Meisel, D.; Mertens, V.; Müller, E. R.; Münich, M.; Murmann, H.; Niedermeyer, H.; Pietrzyk, A.; Poschenrieder, W.; Rapp, H.; Riedler, H.; Röhr, H.; Ryter, F.; Schmitter, K. H.; Schneider, F.; Setzensack, C.; Siller, G.; Smeulders, P.; Speth, E.; Steuer, K.-H.; Vien, T.; Vollmer, O.; Wagner, F.; Woyna, F. V.; Zasche, D.

    1986-09-01

    The sawtooth oscillations in tokamak discharges with Ohmic and neutral-beam heating could be suppressed when a large part of the plasma current was driven by lower-hybrid waves (IHF/Ip~=0.5). The stabilization is due to a flattening of the current profile j(r) and an increase of q(0) above 1. Higher central electron temperatures are obtained with neutral-beam heating if the sawteeth are stabilized. The increase in total energy content in this case was 30% higher than in the presence of sawteeth.

  7. Nonlinear MHD simulation of current drive by multi-pulsed coaxial helicity injection in spherical torus

    NASA Astrophysics Data System (ADS)

    Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro

    2011-10-01

    The dynamics of structures of magnetic field, current density, and plasma flow generated during multi-pulsed coaxial helicity injection in spherical torus is investigated by 3-D nonlinear MHD simulations. During the driven phase, the flux and current amplifications occur due to the merging and magnetic reconnection between the preexisting plasma in the confinement region and the ejected plasma from the gun region involving the n = 1 helical kink distortion of the central open flux column (COFC). Interestingly, the diamagnetic poloidal flow which tends toward the gun region is then observed due to the steep pressure gradients of the COFC generated by ohmic heating through an injection current winding around the inboard field lines, resulting in the formation of the strong poloidal flow shear at the interface between the COFC and the core region. This result is consistent with the flow shear observed in the HIST. During the decay phase, the configuration approaches the axisymmetric MHD equilibrium state without flow because of the dissipation of magnetic fluctuation energy to increase the closed flux surfaces, suggesting the generation of ordered magnetic field structure. The parallel current density λ concentrated in the COFC then diffuses to the core region so as to reduce the gradient in λ, relaxing in the direction of the Taylor state.

  8. The simulation of hard x-ray images obtained during lower hybrid current drive on PBX-M

    SciTech Connect

    Goeler, S. von; Fishman, H.; Ignat, D.

    1994-10-01

    During lower hybrid current drive on PBX-M suprathermal electrons in the 30 to 150 keV range are generated. These electrons emit hard X-ray bremsstrahlung in collisions with plasma ions; the radiation creates images in a hard X-ray pinhole camera. In order to interpret the hard X-ray images, a computer simulation code has been written, the PBXRAY code. It represents an extension of the STEVENS code that calculates the free-free and free-bound radiation for non-Maxwellian relativistic electron tail distributions. The PBXRAY code provides the chord integration in the bean-shaped plasma geometry on PBX-M and integrates over photon energy. The simulations show that the location of the suprathermal electrons can be determined with an accuracy of approximately two centimeters in the plasma. In particular, the authors analyzed discharges whose characteristic ``hollow`` images indicate off-axis LH current drive. A comparison of images taken with different absorber foils reveals that the suprathermal electrons have less than 150 keV parallel energy for the hollow discharges.

  9. Non-linear effects in electron cyclotron current drive applied for the stabilization of neoclassical tearing modes

    NASA Astrophysics Data System (ADS)

    Ayten, B.; Westerhof, E.; the ASDEX Upgrade Team

    2014-07-01

    Due to the smallness of the volumes associated with the flux surfaces around the O-point of a magnetic island, the electron cyclotron power density applied inside the island for the stabilization of neoclassical tearing modes (NTMs) can exceed the threshold for non-linear effects as derived previously by Harvey et al (1989 Phys. Rev. Lett. 62 426). We study the non-linear electron cyclotron current drive (ECCD) efficiency through bounce-averaged, quasi-linear Fokker-Planck calculations in the magnetic geometry as created by the islands. The calculations are performed for the parameters of a typical NTM stabilization experiment on ASDEX Upgrade. A particular feature of these experiments is that the rays of the EC wave beam propagate tangential to the flux surfaces in the power deposition region. The calculations show significant non-linear effects on the ECCD efficiency, when the ECCD power is increased from its experimental value of 1 MW to a larger value of 4 MW. The nonlinear effects are largest in the case of locked islands or when the magnetic island rotation period is longer than the collisional time scale. The non-linear effects result in an overall reduction of the current drive efficiency for this case with absorption of the EC power on the low-field side of the electron cyclotron resonance layer. As a consequence of the non-linear effects, also the stabilizing effect of the ECCD on the island is reduced from linear expectations.

  10. Status of Advanced Tokamak Scenario Modeling with Off-Axis Electron Cyclotron Current Drive in DIII-D

    SciTech Connect

    M. Murakami; H.E. St.John; T.A. Casper; M.S. Chu; J.C. DeBoo; C.M. Greenfield; J.E. Kinsey; L.L. Lao; R.J. La Haye; Y.R. Lin-Liu; T.C. Luce; P.A. Politzer; B.W. Rice; G.M. Staebler; T.S. Taylor; M.R. Wade

    1999-12-01

    The status of modeling work focused on developing the advanced tokamak scenarios in DIII-D is discussed. The objectives of the work are two-fold: (1) to develop AT scenarios with ECCD using time-dependent transport simulations, coupled with heating and current drive models, consistent with MHD equilibrium and stability; and (2) to use time-dependent simulations to help plan experiments and to understand the key physics involved. Time-dependent simulations based on transport coefficients derived from experimentally achieved target discharges are used to perform AT scenario modeling. The modeling indicates off-axis ECCD with approximately 3 MW absorbed power can maintain high-performance discharges with q{sub min} > 1 for 5 to 10 s. The resultant equilibria are calculated to be stable to n = 1 pressure driven modes. The plasma is well into the second stability regime for high-n ballooning modes over a large part of the plasma volume. The role of continuous localized ECCD is studied for stabilizing m/n = 2/1 tearing modes. The progress towards validating current drive and transport models, consistent with experimental results, and developing self-consistent, integrated high performance AT scenarios is discussed.

  11. Non-Linear Effects on the LH Wave Coupling in Tore Supra and Impact on the LH Current Drive Efficiency

    SciTech Connect

    Ekedahl, A.; Frincu, B.; Goniche, M.; Hillairet, J.; Petrzilka, V.

    2009-11-26

    A strong, non-linear degradation of the Lower Hybrid (LH) wave coupling in Tore Supra can be observed when the LH launcher is screened on both sides by additional side limiters, such as side protections of adjacent Ion Cyclotron (IC) antennas. The power reflection coefficient (RC) at the LH grill mouth is estimated to increase from {approx}20% at low power density (<1 MW/m{sup 2}) up to >40% at high power density (>10 MW/m{sup 2}). Such large RC (>40%) is unacceptably high, in particular for long durations. The screening by the additional side limiters reduces the connection length in front of the LH grill, which results in lower {lambda}{sub n}, {lambda}{sub T}, n{sub e} and T{sub e} at the grill. However, the reduction in ne alone is not enough to explain the non-linear behaviour. Modelling with a code that takes into account a ponderomotive force potential [1], depleting the electron density in front of the grill, shows consistent results. In full non-inductive current drive scenarios, the observed degradation in LH coupling is measurable on the LH current drive efficiency, through the increase in coupled LH power required to maintain V{sub Loop} = 0. These results demonstrate thus the importance of being able to control the LH coupling conditions, in order to optimize the efficiency and power handling of LH systems.

  12. A new latch-free LIGBT on SOI with very high current density and low drive voltage

    NASA Astrophysics Data System (ADS)

    Olsson, J.; Vestling, L.; Eklund, K.-H.

    2016-01-01

    A new latch-free LIGBT on SOI is presented. The new device combines advantages from both LDMOS as well as LIGBT technologies; high breakdown voltage, high drive current density, low control voltages, at the same time eliminating latch-up problems. The new LIGBT has the unique property of independent scaling of the input control device, i.e. LDMOS, and the output part of the device, i.e. the p-n-p part. This allows for additional freedom in designing and optimizing the device properties. Breakdown voltage of over 200 V, on-state current density over 3 A/mm, specific on-resistance below 190 mΩ mm2, and latch-free operation is demonstrated.

  13. An Approach to Suppressing Both Shaft Voltage and Leakage Current in an AC Motor Driven by a Voltage-Source PWM Inverter

    NASA Astrophysics Data System (ADS)

    Doumoto, Takafumi; Akagi, Hirofumi

    This paper proposes a practical approach to suppressing both shaft voltage and leakage current in an ac motor driven by a voltage-source PWM inverter. This approach is characterized by using a neutral line of the ac motor. A common-mode inductor is connected between the inverter and the motor. Moreover, a resistor and a capacitor are connected in series between the motor neutral point and the inverter negative dc bus. This unique circuit configuration makes the common-mode inductor effective in reducing the common-mode voltage appearing at the motor terminals. As a result, both shaft voltage and ground current are significantly suppressed with low cost. Over-voltages at the end of a cable can be suppressed by a normal-mode inductor and a resistor which are connected in parallel. The validity and effectiveness of the new approach are verified by experimental results from a 5-kVA laboratory system.

  14. Effect of high-frequency driving current on magnetization reversal in Co-rich amorphous microwires

    SciTech Connect

    Chizhik, A.; Zhukov, A.; Gonzalez, J.; Blanco, J.M.

    2004-09-20

    Influence of high frequency electric current on the magnetization reversal in Co-rich glass covered amorphous microwires has been studied. The strong correlation between the coercivity and the circular magnetization in the outer shell of the wire has been found. The change of the mechanism of magnetization reversal in the presence of high-frequency circular magnetic field, which is related with the impedance properties, is presented.

  15. Driving toroidally asymmetric current through the tokamak scrape-off layer, Part I: Potential for ELM suppression

    SciTech Connect

    Joseph, I; Cohen, R H; Ryutov, D D

    2009-03-31

    A potential technique for suppressing edge localized magnetohydrodynamic instabilities (ELMs) is theoretically analyzed. Recent experiments have shown that externally generated resonant magnetic perturbations (RMPs) can stabilize ELMs by modifying the density profile [T. E. Evans, et al., Nature Phys. 2, 419 (2006); Y. Liang, et al., Phys. Rev. Lett. 98, 265004 (2007)]. Driving toroidally asymmetric current internally, through the scrape-off layer (SOL) plasma itself, can also generate RMPs that are close to the required threshold for ELM control. The limiting ion saturation current densities can be achieved by producing potential differences on the order of the electron temperature. Although the threshold is uncertain in future devices, if driven coherently though the SOL, the upper limit for the resulting field would exceed the present experimental threshold. This analysis provides the tools required for estimating the magnitude of the coherent SOL current and RMP generated via toroidally asymmetric biasing of the target. Flux expansion increases the RMP near the X-point, while phase interference due to the shearing of field lines near the X-point reduces the amplitude of the effective SOL perturbation and makes the result sensitive to both toroidal mode number n and the radial coherence width of the biasing region. If the limiting current density decays rapidly enough radially, both the width and the amplitude of the current density drawn from the target will be reduced. The RMP can still exceed the present threshold at low n if the radial location and width of the biasing region are optimally chosen.

  16. Phase-sensitive inductive detection of ac currents due to spin-pumping/inverse spin Hall effect in unpatterned Permalloy/Pt bilayers

    NASA Astrophysics Data System (ADS)

    Silva, Thomas; Nembach, Hans; Shaw, Justin; Karenowska, Alexy; Weiler, Mathias

    We present a new method to measure the ac inverse spin Hall effect at GHz frequencies. Unlike previous methods, our does not rely on any patterning or electrical contacts. We utilize phase-sensitive, broad-band, perpendicular-field ferromagnetic resonance to detect the ac current by the inverse spin Hall effect (iSHE) in Py/Pt bilayers. The iSHE component of the signal is non-linear in the excitation frequency; while the inductive FMR response scales linearly with frequency, the iSHE signal scales quadratically because the iSHE current itself is proportional to dm/dt. This differential gain affords us detection of previously unreported higher order contributions to the iSHE signal. We compare FMR measurements with a control samples that do not include the high spin-orbit layer, e.g. Pt. Data sets with and without Pt are normalized by the complex Polder susceptibility, which nullifies any effects due to differences in line-width and anisotropy. The complex ratio of the normalized inductive amplitudes is analyzed with a simple model that considers how the ac currents generated by the iSHE couple inductively back into the excitations waveguide. The linear iSHE signal agrees with previous reported values. The nonlinear iSHE signal is 3-4 orders of magnitude weaker, but is easily detected over the frequency range of 5-45 GHz

  17. A fresh look at electron cyclotron current drive power requirements for stabilization of tearing modes in ITER

    SciTech Connect

    La Haye, R. J.

    2015-12-10

    ITER is an international project to design and build an experimental fusion reactor based on the “tokamak” concept. ITER relies upon localized electron cyclotron current drive (ECCD) at the rational safety factor q=2 to suppress or stabilize the expected poloidal mode m=2, toroidal mode n=1 neoclassical tearing mode (NTM) islands. Such islands if unmitigated degrade energy confinement, lock to the resistive wall (stop rotating), cause loss of “H-mode” and induce disruption. The International Tokamak Physics Activity (ITPA) on MHD, Disruptions and Magnetic Control joint experiment group MDC-8 on Current Drive Prevention/Stabilization of Neoclassical Tearing Modes started in 2005, after which assessments were made for the requirements for ECCD needed in ITER, particularly that of rf power and alignment on q=2 [1]. Narrow well-aligned rf current parallel to and of order of one percent of the total plasma current is needed to replace the “missing” current in the island O-points and heal or preempt (avoid destabilization by applying ECCD on q=2 in absence of the mode) the island [2-4]. This paper updates the advances in ECCD stabilization on NTMs learned in DIII-D experiments and modeling during the last 5 to 10 years as applies to stabilization by localized ECCD of tearing modes in ITER. This includes the ECCD (inside the q=1 radius) stabilization of the NTM “seeding” instability known as sawteeth (m/n=1/1) [5]. Recent measurements in DIII-D show that the ITER-similar current profile is classically unstable, curvature stabilization must not be neglected, and the small island width stabilization effect from helical ion polarization currents is stronger than was previously thought [6]. The consequences of updated assumptions in ITER modeling of the minimum well-aligned ECCD power needed are all-in-all favorable (and well-within the ITER 24 gyrotron capability) when all effects are included. However, a “wild card” may be broadening of the localized

  18. A fresh look at electron cyclotron current drive power requirements for stabilization of tearing modes in ITER

    NASA Astrophysics Data System (ADS)

    La Haye, R. J.

    2015-12-01

    ITER is an international project to design and build an experimental fusion reactor based on the "tokamak" concept. ITER relies upon localized electron cyclotron current drive (ECCD) at the rational safety factor q=2 to suppress or stabilize the expected poloidal mode m=2, toroidal mode n=1 neoclassical tearing mode (NTM) islands. Such islands if unmitigated degrade energy confinement, lock to the resistive wall (stop rotating), cause loss of "H-mode" and induce disruption. The International Tokamak Physics Activity (ITPA) on MHD, Disruptions and Magnetic Control joint experiment group MDC-8 on Current Drive Prevention/Stabilization of Neoclassical Tearing Modes started in 2005, after which assessments were made for the requirements for ECCD needed in ITER, particularly that of rf power and alignment on q=2 [1]. Narrow well-aligned rf current parallel to and of order of one percent of the total plasma current is needed to replace the "missing" current in the island O-points and heal or preempt (avoid destabilization by applying ECCD on q=2 in absence of the mode) the island [2-4]. This paper updates the advances in ECCD stabilization on NTMs learned in DIII-D experiments and modeling during the last 5 to 10 years as applies to stabilization by localized ECCD of tearing modes in ITER. This includes the ECCD (inside the q=1 radius) stabilization of the NTM "seeding" instability known as sawteeth (m/n=1/1) [5]. Recent measurements in DIII-D show that the ITER-similar current profile is classically unstable, curvature stabilization must not be neglected, and the small island width stabilization effect from helical ion polarization currents is stronger than was previously thought [6]. The consequences of updated assumptions in ITER modeling of the minimum well-aligned ECCD power needed are all-in-all favorable (and well-within the ITER 24 gyrotron capability) when all effects are included. However, a "wild card" may be broadening of the localized ECCD by the presence of

  19. Heating and current drive requirements for ideal MHD stability and ITB sustainment in ITER steady state scenarios

    NASA Astrophysics Data System (ADS)

    Poli, Francesca

    2012-10-01

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities in a wide range of βN, reducing the no-wall limit. Scenarios are established as relaxed flattop states with time-dependent transport simulations with TSC [1]. Fully non-inductive configurations with current in the range of 7-10 MA and various heating mixes (NB, EC, IC and LH) have been studied against variations of the pressure profile peaking and of the Greenwald fraction. It is found that stable equilibria have qmin> 2 and moderate ITBs at 2/3 of the minor radius [2]. The ExB flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H&CD sources that maintain reverse or weak magnetic shear profiles throughout the discharge and ρ(qmin)>=0.5 are the focus of this work. The ITER EC upper launcher, designed for NTM control, can provide enough current drive off-axis to sustain moderate ITBs at mid-radius and maintain a non-inductive current of 8-9MA and H98>=1.5 with the day one heating mix. LH heating and current drive is effective in modifying the current profile off-axis, facilitating the formation of stronger ITBs in the rampup phase, their sustainment at larger radii and larger bootstrap fraction. The implications for steady state operation and fusion performance are discussed.[4pt] [1] Jardin S.C. et al, J. Comput. Phys. 66 (1986) 481[0pt] [2] Poli F.M. et al, Nucl. Fusion 52 (2012) 063027.

  20. CO2 Laser Beat-Wave Current Drive in an Unmagnetized Plasma

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Hwang, David; Horton, Robert; Evans, Russell; Huang, Zhuo Fan; Hong, Sean

    2011-10-01

    The ability to remotely generate plasma current in dense plasmas is a basic yet important investigation in experimental plasma physics. Plasma current can be generated through nonlinear beat-wave mixing process by launching two intense electromagnetic waves into an unmagnetized plasma. The beat wave formation process is efficient if the difference frequency of the two pump waves corresponds to the local plasma frequency. Beat wave can accelerate plasma electrons via quasi-linear Landau process, which has been demonstrated in low-density plasma using micro-waves. The high tunability of the CO2 lasers provides many options for the wave-particle interaction experiment at a variety of CTIX plasma densities. Two sections of Lumonics TEA CO2 lasers have been modified at power over 100MW. The development of the tunable CO2 lasers and diagnostics system will be described. A high-density plasma test source and density diagnostics system will also be presented. This line of research will impact experiment such as the PLX facility under initial operation at Los Alamos National Lab. Supported by U.S. DOE Grant DE-FG02-10ER55083.

  1. FPGA-based voltage and current dual drive system for high frame rate electrical impedance tomography.

    PubMed

    Khan, Shadab; Manwaring, Preston; Borsic, Andrea; Halter, Ryan

    2015-04-01

    Electrical impedance tomography (EIT) is used to image the electrical property distribution of a tissue under test. An EIT system comprises complex hardware and software modules, which are typically designed for a specific application. Upgrading these modules is a time-consuming process, and requires rigorous testing to ensure proper functioning of new modules with the existing ones. To this end, we developed a modular and reconfigurable data acquisition (DAQ) system using National Instruments' (NI) hardware and software modules, which offer inherent compatibility over generations of hardware and software revisions. The system can be configured to use up to 32-channels. This EIT system can be used to interchangeably apply current or voltage signal, and measure the tissue response in a semi-parallel fashion. A novel signal averaging algorithm, and 512-point fast Fourier transform (FFT) computation block was implemented on the FPGA. FFT output bins were classified as signal or noise. Signal bins constitute a tissue's response to a pure or mixed tone signal. Signal bins' data can be used for traditional applications, as well as synchronous frequency-difference imaging. Noise bins were used to compute noise power on the FPGA. Noise power represents a metric of signal quality, and can be used to ensure proper tissue-electrode contact. Allocation of these computationally expensive tasks to the FPGA reduced the required bandwidth between PC, and the FPGA for high frame rate EIT. In 16-channel configuration, with a signal-averaging factor of 8, the DAQ frame rate at 100 kHz exceeded 110 frames s (-1), and signal-to-noise ratio exceeded 90 dB across the spectrum. Reciprocity error was found to be for frequencies up to 1 MHz. Static imaging experiments were performed on a high-conductivity inclusion placed in a saline filled tank; the inclusion was clearly localized in the reconstructions obtained for both absolute current and voltage mode data. PMID:25376037

  2. Pile Driving

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Machine-oriented structural engineering firm TERA, Inc. is engaged in a project to evaluate the reliability of offshore pile driving prediction methods to eventually predict the best pile driving technique for each new offshore oil platform. Phase I Pile driving records of 48 offshore platforms including such information as blow counts, soil composition and pertinent construction details were digitized. In Phase II, pile driving records were statistically compared with current methods of prediction. Result was development of modular software, the CRIPS80 Software Design Analyzer System, that companies can use to evaluate other prediction procedures or other data bases.

  3. Rotating magnetic field current drive of high-temperature field reversed configurations with high {zeta} scaling

    SciTech Connect

    Guo, H. Y.; Hoffman, A. L.; Milroy, R. D.

    2007-11-15

    Greatly reduced recycling and impurity ingestion in the Translation, Confinement, and Sustainment--Upgrade (TCSU) device has allowed much higher plasma temperatures to be achieved in the field reversed configurations (FRC) under rotating magnetic field (RMF) formation and sustainment. The hotter plasmas have higher magnetic fields and much higher diamagnetic electron rotation rates so that the important ratio of average electron rotation frequency to RMF frequency, called {zeta}, approaches unity, for the first time, in TCSU. A large fraction of the RMF power is absorbed by an as yet unexplained (anomalous) mechanism directly proportional to the square of the RMF magnitude. It becomes of relatively lesser significance as the FRC current increases, and simple resistive heating begins to dominate, but the anomalous absorption is useful for initial plasma heating. Measurements of total absorbed power, and comparisons of applied RMF torque to torque on the electrons due to electron-ion friction under high-{zeta} operation, over a range of temperatures and fields, have allowed the separation of the classical Ohmic and anomalous heating to be inferred, and cross-field plasma resistivities to be calculated.

  4. Impact of SOL plasma profiles on lower hybrid current drive: Experimental evidence, mitigation and modeling approaches

    NASA Astrophysics Data System (ADS)

    Shiraiwa, S.; Baek, S. G.; Faust, I.; Wallace, G.; Bonoli, P.; Meneghini, O.; Mumgaard, R.; Parker, R.; Scott, S.; Harvey, R. W.; Ding, B. J.; Li, M. H.; Lin, S. Y.; Yang, C.

    2015-12-01

    Recent progress in understanding and mitigating parasitic wave absorption in edge plasmas is presented. Experimental observations collected on Alcator C-Mod suggest multiple physics mechanisms are involved in such losses. Localized measurement of parametric decay instabilities (PDIs) has been performed using RF Langmuir probes. The divertor heat flux due to LH and ionization power loss have been evaluated quantitatively. We observe that the LHCD efficiency can be recovered when the SOL density profile is controlled by operating the tokamak at high current. The experimental progresses motivated a re-examination of the LHCD simulation model based on the ray-tracing/Fokker-Planck code (GENRAY/CQL3D). The effect of introducing a relatively small wave number broadening in the launched power spectrum and using 2D SOL density and temperature profiles was investigated. Comparison with C-Mod experiment indicates that the new model can explain the experimental trend over a wider density range including the density regime where disagreement was seen previously, suggesting that including realistic SOL geometry is a key to improve the simulation accuracy.

  5. 1993 annual report for the Phaedrus-T RF current drive experiments

    SciTech Connect

    Hershkowitz, N.

    1993-10-01

    After a series of antenna modifications and a program of optimizing our Boronization procedures, we have succeeded in coupling 300 kill of rf power to the plasma. Thomson Scattering shows a 20--60% increase in core T{sub e}, and constitutes experimental evidence that the waves are interacting with the electron population. Beam Emission Spectroscopy (BES) data show that the power is deposited in the core and at the edge as predicted by theoretical modeling. Ninety degree phasing of the antenna caused loop voltage drops of 15--25%, which can be interpreted as an increase 5 kA of toroidal plasma current for co-injection phasing versus counter injection phasing. Biased H-modes have been created with a biased electrode. These plasmas have a steeper edge density gradient and reduced edge fluctuations than our normal limiter plasmas and a D{sub alpha} emission drop at the limiter. Radial profiles of soft x-ray line emission have been measured by the Johns Hopkins group and significantly aided in our understanding of impurity generation with rf and in the biased H-mode. Initial reflectometry data shows the presence of rf density fluctuations in the plasma. Different boronization techniques have been tried leading to a higher boron content in the deposited layer and reduced wall recycling. In this report, we outline the series of experiments that we have performed in the last year that led us to our present encouraging results.

  6. The coordinate transformation method for design of polarizers on HL-2A electron cyclotron resonance heating and current drive systems

    SciTech Connect

    Xia, D. H.; Huang, M.; Zhou, J.; Rao, J.; Zhuang, G.

    2013-10-15

    Polarizers are widely used to change the polarization of millimeter waves on the electron cyclotron resonance heating and current drive (ECRH and CD) systems. A new method based on the coordinate transformation and the Fourier expansion (the so-called C-method) has been developed for design of polarizers on the HL-2A ECRH and CD systems. This method transforms the grating problem to an eigenvalue problem, making it easy and clear to understand and solve. The comparison between the C-method, the integral method, and the low power test results is presented. It indicates that the C-method can be considered as a rigorous numerical method for the design of polarizers. Finally, two polarizers were designed based on the C-method which can be used together to achieve almost arbitrary polarization.

  7. Effect of ordered array of magnetic dots on the dynamics of Josephson vortices in stacked SNS Josephson junctions under DC and AC current

    NASA Astrophysics Data System (ADS)

    Berdiyorov, Golibjon R.; Savel'ev, Sergey; Kusmartsev, Feodor V.; Peeters, François M.

    2015-11-01

    We use the anisotropic time-dependent Ginzburg-Landau theory to investigate the effect of a square array of out-of-plane magnetic dots on the dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting (SNS) Josephson junctions in the presence of external DC and AC currents. Periodic pinning due to the magnetic dots distorts the triangular lattice of fluxons and results in the appearance of commensurability features in the current-voltage characteristics of the system. For the larger values of the magnetization, additional peaks appear in the voltage-time characteristics of the system due to the creation and annihilation of vortex-antivortex pairs. Peculiar changes in the response of the system to the applied current is found resulting in a "superradiant" vortex-flow state at large current values, where a rectangular lattice of moving vortices is formed. Synchronizing the motion of fluxons by adding a small ac component to the biasing dc current is realized. However, we found that synchronization becomes difficult for large magnetization of the dots due to the formation of vortex-antivortex pairs.

  8. The Dynomak: An advanced spheromak reactor system with imposed-dynamo current drive and next-generation nuclear power technologies

    NASA Astrophysics Data System (ADS)

    Sutherland, D. A.; Jarboe, T. R.; Marklin, G.; Morgan, K. D.; Nelson, B. A.

    2013-10-01

    A high-beta spheromak reactor system has been designed with an overnight capital cost that is competitive with conventional power sources. This reactor system utilizes recently discovered imposed-dynamo current drive (IDCD) and a molten salt blanket system for first wall cooling, neutron moderation and tritium breeding. Currently available materials and ITER developed cryogenic pumping systems were implemented in this design on the basis of technological feasibility. A tritium breeding ratio of greater than 1.1 has been calculated using a Monte Carlo N-Particle (MCNP5) neutron transport simulation. High-temperature superconducting tapes (YBCO) were used for the equilibrium coil set, substantially reducing the recirculating power fraction when compared to previous spheromak reactor studies. Using zirconium hydride for neutron shielding, a limiting equilibrium coil lifetime of at least thirty full-power years has been achieved. The primary FLiBe loop was coupled to a supercritical carbon dioxide Brayton cycle due to attractive economics and high thermal efficiencies. With these advancements, an electrical output of 1000 MW from a thermal output of 2486 MW was achieved, yielding an overall plant efficiency of approximately 40%. A paper concerning the Dynomak reactor design is currently being reviewed for publication.

  9. Variational full wave calculation of fast wave current drive in DIII-D using the ALCYON code

    SciTech Connect

    Becoulet, A.; Moreau, D.

    1992-04-01

    Initial fast wave current drive simulations performed with the ALCYON code for the 60 MHz DIII-D experiment are presented. Two typical shots of the 1991 summer campaign were selected with magnetic field intensities of 1 and 2 teslas respectively. The results for the wave electromagnetic field in the plasma chamber are displayed. They exhibit a strong enrichment of the poloidal mode number m-spectrum which leads to the upshift of the parallel wavenumber, {kappa}{perpendicular}, and to the wave absorption. The m-spectrum is bounded when the local poloidal wavenumber reaches the Alfven wavenumber and the {kappa}{perpendicular} upshifts do not destroy the wave directionality. Linear estimations of the driven current are made. The current density profiles are found to be peaked and we find that about 88 kA can be driven in the 1 tesla/1.7 keV phase with 1.7 MW coupled to the electrons. In the 2 tesla/3.4 keV case, 47 kA are driven with a total power of 1.5 MW, 44% of which are absorbed on the hydrogen minority, through the second harmonic ion cyclotron resonance. The global efficiency is then 0.18 {times} 10{sup 19} A m{sup {minus}2}W{sup {minus}1} if one considers only the effective power going to the electrons.

  10. Spectral broadening of lower hybrid waves produced by parametric instability in current drive experiments of tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Cesario, R.; Cardinali, A.; Castaldo, C.; Paoletti, F.; Fundamenski, W.; Hacquin, S.; JET-EFDA workprogramme contributors

    2006-04-01

    In order to explain the results of the non-inductive current produced in the lower hybrid current drive (LHCD) experiments, a broadening of the radiofrequency (RF) power spectrum coupled to tokamak plasma needs to occur. The presented modelling, supported by diagnostic measurements, shows that the parametric instability (PI) driven by ion sound quasimodes, which occur in the scrape-off plasma layer located near the antenna mouth, produces a significant broadening of the launched LH spectrum. Considering the parameters of LHCD experiments of JET (Joint European Torus), and other machines as well, the PI growth rate is high enough for producing the compensation of the convective losses and, consequently, the broadening of a small fraction (of the order of 10%) of the launched power spectrum. Such a phenomenon is identified to be intrinsic to the RF power coupling in the LHCD experiments. As the principal implication of considering such spectral broadening in modelling the LH deposition profile, experiments of LHCD-sustained internal transport barriers in JET were successfully interpreted, which evidenced the effects of a well-defined LH deposition profile. The present work is important for addressing the long-lasting debate on the problem of the so-called spectral gap in LHCD. The design of LHCD scenarios relevant to the modern fusion research programme, an important requirement of which is the control of the plasma current profile in the outer half of plasma, can be properly achieved by considering PI-induced spectral broadening.

  11. Interplay between electron overheating and ac Josephson effect

    NASA Astrophysics Data System (ADS)

    De Cecco, A.; Le Calvez, K.; Sacépé, B.; Winkelmann, C. B.; Courtois, H.

    2016-05-01

    We study the response of high-critical-current proximity Josephson junctions to a microwave excitation. Electron overheating in such devices is known to create hysteretic dc voltage-current characteristics. Here we demonstrate that it also strongly influences the ac response. The interplay of electron overheating and ac Josephson dynamics is revealed by the evolution of the Shapiro steps with the microwave drive amplitude. Extending the resistively shunted Josephson junction model by including a thermal balance for the electronic bath coupled to phonons, a strong electron overheating is obtained.

  12. Control algorithm for the inverter fed induction motor drive with DC current feedback loop based on principles of the vector control

    SciTech Connect

    Vuckovic, V.; Vukosavic, S. )

    1992-01-01

    This paper brings out a control algorithm for VSI fed induction motor drives based on the converter DC link current feedback. It is shown that the speed and flux can be controlled over the wide speed and load range quite satisfactorily for simpler drives. The base commands of both the inverter voltage and frequency are proportional to the reference speed, but each of them is further modified by the signals derived from the DC current sensor. The algorithm is based on the equations well known from the vector control theory, and is aimed to obtain the constant rotor flux and proportionality between the electrical torque, the slip frequency and the active component of the stator current. In this way, the problems of slip compensation, Ri compensation and correction of U/f characteristics are solved in the same time. Analytical considerations and computer simulations of the proposed control structure are in close agreement with the experimental results measured on a prototype drive.

  13. Enhancement of the Stabilization Efficiency of a Neoclassical Magnetic Island by Modulated Electron Cyclotron Current Drive in the ASDEX Upgrade Tokamak

    SciTech Connect

    Maraschek, M.; Yu, Q.; Zohm, H.; Guenter, S.; Leuterer, F.; Manini, A.; Gantenbein, G.

    2007-01-12

    The efficiency of generating a helical current in magnetic islands for the purpose of suppression of neoclassical tearing modes (NTMs) by electron cyclotron current drive (ECCD) is studied experimentally in the ASDEX Upgrade tokamak. It is found that the efficiency of generating helical current by continuous current drive in a rotating island drops drastically as the width 2d of the co-ECCD driven current becomes larger than the island width W. However, by modulating the co-ECCD in phase with the rotating islands O point, the efficiency can be recovered. The results are in good agreement with theoretical calculations taking into account the equilibration of the externally driven current on the island flux surfaces. The result is especially important for large next-step fusion devices, such as ITER, where 2d>W is expected to be unavoidable during NTM suppression, suggesting that modulation capability should be foreseen.

  14. Electric characterization of (Sr, Sr-Ba, Ba) M-type ferrites by AC measurements[Alternating Current

    SciTech Connect

    Huanosta-Tera, A.; Lira-Hueso, R. de; Perez-Orta, O.; Palomares-Sanchez, S.A.; Ponce-Castaneda, S.; Mirabal-Garcia, M.

    2000-02-01

    Considering the electrical conductivity in ceramics, necessary reference should be given to dynamic processes occurring as a function of frequency and temperature. Although the most immediate interest in ferrites lies in their magnetic properties, technological applications require a wider knowledge of general physical properties as well. This is especially applicable when the materials are studied as a function of composition or when adding different modifiers. In this report, the authors present results of the ac and dc electric characteristics of a family of magneto-plumbite-type hexaferrites, where Ba gradually substitutes Sr in the Ba{sub x}Sr{sub 1{minus}x}Fe{sub 12}O{sub 19} compound (0 {le} x {le} 1). The results were determined over a wide range of frequencies and temperatures.

  15. Impact of aviation emissions on UTLS and air quality in current and future climate - GEM-AC model simulations

    NASA Astrophysics Data System (ADS)

    Kaminski, J. W.

    2015-12-01

    The objective of this study is to investigate the potential impacts of aviation emissions on the upper troposphere and lower stratosphere (UTLS) and surface air quality. The tool that was used in our study is the GEM-AC (Global Environmental Multiscale with Atmospheric Chemistry) chemical weather model where air quality, free tropospheric and stratospheric chemistry processes are on-line and interactive in a weather forecast model of Environment Canada. In vertical, the model domain is defined on 70 hybrid levels from the surface to ~60km. The gas-phase chemistry includes a comprehensive set of reactions for Ox, NOx, HOx, CO, CH4, NMVOCs, halocarbons, ClOx and BrO. Also, the model can address aerosol microphysics and gas-aerosol partitioning. Aircraft emissions are provided by the AEDT 2006 database developed by the Federal Aviation Administration. Results from model simulations on a global variable grid with 1 degree uniform resolution in the northern hemisphere will be presented.

  16. High Harmonic Fast Wave Heating Efficiency Enhancemen and Current Drive at Longer Wavelength on the National Spherical Torus Experiment

    SciTech Connect

    J. Hosea, R. E. Bell, B.P. LeBlanc, C.K. Phillips, G. Taylor, E. Valeo, J.R. Wilson, E.F. Jaeger, P.M. Ryan, J. Wilgen, H. Yuh, F. Levinton, S. Sabbagh, K. Tritz, J. Parker, P.T. Bonoli, R. Harvey, and the NSTX Team

    2008-01-14

    High harmonic fast wave heating and current drive (CD) are being developed on the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 41, 1435 (2001)] for supporting startup and sustainment of the ST plasma. Considerable enhancement of the core heating efficiency (η) from 44% to 65% has been obtained for CD phasing of the antenna (strap-to-strap φ = -90o, kφ = -8 m-1) by increasing the magnetic field from 4.5 kG to 5.5 kG. This increase in efficiency is strongly correlated to moving the location of the onset density for perpendicular fast wave propagation (nonset ∝ ΒΦ× k|| 2/w) away from the antenna face and wall, and hence reducing the propagating surface wave fields. RF waves propagating close to the wall at lower BΦ and k|| can enhance power losses from both the parametric decay instability (PDI) and wave dissipation in sheaths and structures around the machine. The improved efficiency found here is attributed to a reduction in the latter, as PDI losses are little changed at the higher magnetic field. Under these conditions of higher coupling efficiency, initial measurements of localized CD effects have been made and compared with advanced RF code simulations

  17. High harmonic fast wave heating efficiency enhancement and current drive at longer wavelength on the National Spherical Torus Experiment

    SciTech Connect

    Hosea, J.; Bell, R. E.; LeBlanc, B. P.; Phillips, C. K.; Taylor, G.; Valeo, E.; Wilson, J. R.; Jaeger, E. F.; Ryan, P. M.; Wilgen, J.; Yuh, H.; Levinton, F.; Sabbagh, S.; Tritz, K.; Parker, J.; Bonoli, P. T.; Harvey, R.

    2008-05-15

    High harmonic fast wave heating and current drive (CD) are being developed on the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 41, 1435 (2001)] for supporting startup and sustainment of the spherical torus plasma. Considerable enhancement of the core heating efficiency ({eta}) from 44% to 65% has been obtained for CD phasing of the antenna (strap-to-strap {phi}=-90 deg., k{sub {phi}}=-8 m{sup -1}) by increasing the magnetic field from 4.5 to 5.5 kG. This increase in efficiency is strongly correlated to moving the location of the onset density for perpendicular fast wave propagation (n{sub onset}{proportional_to}Bxk{sub parallel}{sup 2}/{omega}) away from the antenna face and wall, and hence reducing the propagating surface wave fields. Radio frequency (RF) waves propagating close to the wall at lower B and k{sub parallel} can enhance power losses from both the parametric decay instability (PDI) and wave dissipation in sheaths and structures around the machine. The improved efficiency found here is attributed to a reduction in the latter, as PDI losses are little changed at the higher magnetic field. Under these conditions of higher coupling efficiency, initial measurements of localized CD effects have been made and compared with advanced RF code simulations.

  18. High Harmonic Fast Wave Heating Efficiency Enhancement and Current Drive at Longer Wavelength on the National Spherical Torus Experiment

    SciTech Connect

    Hosea, J.; Bell, R. E.; LeBlanc, B; Phillips, Cynthia; Taylor, G.; Valeo, Dr Ernest; Wilson, J. R.; Jaeger, Erwin Frederick; Ryan, Philip Michael; Wilgen, John B; Yuh, H.; Levinton, F.; Sabbagh, S. A.; Tritz, K.; Parker, J.; Bonoli, P.; Harvey, R. W.

    2008-01-01

    High harmonic fast wave heating and current drive CD are being developed on the National Spherical Torus Experiment M. Ono et al., Nucl. Fusion 41, 1435 2001 for supporting startup and sustainment of the spherical torus plasma. Considerable enhancement of the core heating efficiency from 44% to 65% has been obtained for CD phasing of the antenna strap-to-strap = 90 , k= 8 m 1 by increasing the magnetic field from 4.5 to 5.5 kG. This increase in efficiency is strongly correlated to moving the location of the onset density for perpendicular fast wave propagation nonsetBk 2 / away from the antenna face and wall, and hence reducing the propagating surface wave fields. Radio frequency RF waves propagating close to the wall at lower B and k can enhance power losses from both the parametric decay instability PDI and wave dissipation in sheaths and structures around the machine. The improved efficiency found here is attributed to a reduction in the latter, as PDI losses are little changed at the higher magnetic field. Under these conditions of higher coupling efficiency, initial measurements of localized CD effects have been made and compared with advanced RF code simulations.

  19. Simulation of injector dynamics during steady inductive helicity injection current drive in the HIT-SI experiment

    SciTech Connect

    Hansen, C.; Marklin, G.; Victor, B.; Akcay, C.; Jarboe, T.

    2015-04-15

    We present simulations of inductive helicity injection in the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI) device that treats the entire plasma volume in a single dynamic MHD model. A new fully 3D numerical tool, the PSI-center TETrahedral mesh code, was developed that provides the geometric flexibility required for this investigation. Implementation of a zero-β Hall MHD model using PSI-TET will be presented including formulation of a new self-consistent magnetic boundary condition for the wall of the HIT-SI device. Results from simulations of HIT-SI are presented focusing on injector dynamics that are investigated numerically for the first time. Asymmetries in the plasma loading between the two helicity injectors and progression of field reversal in each injector are observed. Analysis indicates cross-coupling between injectors through confinement volume structures. Injector impedance is found to scale with toroidal current at fixed density, consistent with experimental observation. Comparison to experimental data with an injector drive frequency of 14.5 kHz shows good agreement with magnetic diagnostics. Global mode structures from Bi-Orthogonal decomposition agree well with experimental data for the first four modes.

  20. Gaussian short-time propagators and electron kinetics: Numerical evaluation of path-sum solutions to Fokker{endash}Planck equations for rf heating and current drive

    SciTech Connect

    Bizarro, J.P.; Belo, J.H.; Figueiredo, A.C.

    1997-06-01

    Knowing that short-time propagators for Fokker{endash}Planck equations are Gaussian, and based on a path-sum formulation, an efficient and simple numerical method is presented to solve the initial-value problem for electron kinetics during rf heating and current drive. The formulation is thoroughly presented and discussed, its advantages are stressed, and general, practical criteria for its implementation are derived regarding the time step and grid spacing. The new approach is illustrated and validated by solving the one-dimensional model for lower-hybrid current drive, which has a well-known steady-state analytical solution. {copyright} {ital 1997 American Institute of Physics.}

  1. Starlite figures of merit for tokamak current drive - economic analysis of pulsed and steady state power plants with various engineering and physics performance parameters

    SciTech Connect

    Ehst, D.A.

    1995-09-01

    The physics efficiency of current drive ({gamma}{sub B} {proportional_to} n{sub e} I{sub o} R{sub o}/P{sub CD}), including the bootstrap effect, needs to exceed certain goals in order to provide economical steady state operation compared to pulsed power plants. The goal for {gamma}{sub B} depends not only on engineering performance of the current drive system, but also on normalized beta and the effective safety factor of the achievable MHD equilibrium.

  2. STARLITE figures of merit for tokamak current drive -- Economic analysis of pulsed and steady state power plants with various engineering and physics performance parameters

    SciTech Connect

    Ehst, D.A.; Jardin, S.; Kessel, C.

    1995-10-01

    The physics efficiency of current drive ({gamma}{sub B} {proportional_to} n{sub e} I{sub 0} R{sub 0}/P{sub CD}), including the bootstrap effect, needs to exceed certain goals in order to provide economical steady state operation compared to pulsed power plants. The goal for {gamma}{sub B} depends not only on engineering performance of the current drive system, but also on normalized beta and the effective safety factor of the achievable MHD equilibrium.

  3. Exploring the conformational preferences of 20-residue peptides in isolation: Ac-Ala19-Lys + H(+)vs. Ac-Lys-Ala19 + H(+) and the current reach of DFT.

    PubMed

    Schubert, Franziska; Rossi, Mariana; Baldauf, Carsten; Pagel, Kevin; Warnke, Stephan; von Helden, Gert; Filsinger, Frank; Kupser, Peter; Meijer, Gerard; Salwiczek, Mario; Koksch, Beate; Scheffler, Matthias; Blum, Volker

    2015-03-21

    Reliable, quantitative predictions of the structure of peptides based on their amino-acid sequence information are an ongoing challenge. We here explore the energy landscapes of two unsolvated 20-residue peptides that result from a shift of the position of one amino acid in otherwise the same sequence. Our main goal is to assess the performance of current state-of-the-art density-functional theory for predicting the structure of such large and complex systems, where weak interactions such as dispersion or hydrogen bonds play a crucial role. For validation of the theoretical results, we employ experimental gas-phase ion mobility-mass spectrometry and IR spectroscopy. While unsolvated Ac-Ala19-Lys + H(+) will be shown to be a clear helix seeker, the structure space of Ac-Lys-Ala19 + H(+) is more complicated. Our first-principles structure-screening strategy using the dispersion-corrected PBE functional (PBE + vdW(TS)) identifies six distinctly different structure types competing in the low-energy regime (≈16 kJ mol(-1)). For these structure types, we analyze the influence of the PBE and the hybrid PBE0 functional coupled with either a pairwise dispersion correction (PBE + vdW(TS), PBE0 + vdW(TS)) or a many-body dispersion correction (PBE + MBD*, PBE0 + MBD*). We also take harmonic vibrational and rotational free energy into account. Including this, the PBE0 + MBD* functional predicts only one unique conformer to be present at 300 K. We show that this scenario is consistent with both experiments. PMID:25700010

  4. EDITORIAL: Special section on recent progress on radio frequency heating and current drive studies in the JET tokamak Special section on recent progress on radio frequency heating and current drive studies in the JET tokamak

    NASA Astrophysics Data System (ADS)

    Ongena, Jef; Mailloux, Joelle; Mayoral, Marie-Line

    2009-04-01

    This special cluster of papers summarizes the work accomplished during the last three years in the framework of the Task Force Heating at JET, whose mission it is to study the optimisation of heating systems for plasma heating and current drive, launching and deposition questions and the physics of plasma rotation. Good progress and new physics insights have been obtained with the three heating systems available at JET: lower hybrid (LH), ion cyclotron resonance heating (ICRH) and neutral beam injection (NBI). Topics covered in the present issue are the use of edge gas puffing to improve the coupling of LH waves at large distances between the plasma separatrix and the LH launcher. Closely linked with this topic are detailed studies of the changes in LH coupling due to modifications in the scrape-off layer during gas puffing and simultaneous application of ICRH. We revisit the fundamental ICRH heating of D plasmas, include new physics results made possible by recently installed new diagnostic capabilities on JET and point out caveats for ITER when NBI is simultaneously applied. Other topics are the study of the anomalous behaviour of fast ions from NBI, and a study of toroidal rotation induced by ICRH, both again with possible implications for ITER. In finalizing this cluster of articles, thanks are due to all colleagues involved in preparing and executing the JET programme under EFDA in recent years. We want to thank the EFDA leadership for the special privilege of appointing us as Leaders or Deputies of Task Force Heating, a wonderful and hardworking group of colleagues. Thanks also to all other European and non-European scientists who contributed to the JET scientific programme, the Operations team of JET and the colleagues of the Close Support Unit (CSU). Thanks are also due to the Editors, Editorial Board and referees of Plasma Physics and Controlled Fusion together with the publishing staff of IOP Publishing who have supported and contributed substantially to

  5. Power requirements for electron cyclotron current drive and ion cyclotron resonance heating for sawtooth control in ITER

    NASA Astrophysics Data System (ADS)

    Chapman, I. T.; Graves, J. P.; Sauter, O.; Zucca, C.; Asunta, O.; Buttery, R. J.; Coda, S.; Goodman, T.; Igochine, V.; Johnson, T.; Jucker, M.; La Haye, R. J.; Lennholm, M.; Contributors, JET-EFDA

    2013-06-01

    13 MW of electron cyclotron current drive (ECCD) power deposited inside the q = 1 surface is likely to reduce the sawtooth period in ITER baseline scenario below the level empirically predicted to trigger neoclassical tearing modes (NTMs). However, since the ECCD control scheme is solely predicated upon changing the local magnetic shear, it is prudent to plan to use a complementary scheme which directly decreases the potential energy of the kink mode in order to reduce the sawtooth period. In the event that the natural sawtooth period is longer than expected, due to enhanced α particle stabilization for instance, this ancillary sawtooth control can be provided from >10MW of ion cyclotron resonance heating (ICRH) power with a resonance just inside the q = 1 surface. Both ECCD and ICRH control schemes would benefit greatly from active feedback of the deposition with respect to the rational surface. If the q = 1 surface can be maintained closer to the magnetic axis, the efficacy of ECCD and ICRH schemes significantly increases, the negative effect on the fusion gain is reduced, and off-axis negative-ion neutral beam injection (NNBI) can also be considered for sawtooth control. Consequently, schemes to reduce the q = 1 radius are highly desirable, such as early heating to delay the current penetration and, of course, active sawtooth destabilization to mediate small frequent sawteeth and retain a small q = 1 radius. Finally, there remains a residual risk that the ECCD + ICRH control actuators cannot keep the sawtooth period below the threshold for triggering NTMs (since this is derived only from empirical scaling and the control modelling has numerous caveats). If this is the case, a secondary control scheme of sawtooth stabilization via ECCD + ICRH + NNBI, interspersed with deliberate triggering of a crash through auxiliary power reduction and simultaneous pre-emptive NTM control by off-axis ECCD has been considered, permitting long transient periods with high fusion

  6. Improved transistorized AC motor controller for battery powered urban electric passenger vehicles

    NASA Technical Reports Server (NTRS)

    Peak, S. C.

    1982-01-01

    An ac motor controller for an induction motor electric vehicle drive system was designed, fabricated, tested, evaluated, and cost analyzed. A vehicle performance analysis was done to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of ac motor and ac controller requirements. The power inverter is a three-phase bridge using power Darlington transistors. The induction motor was optimized for use with an inverter power source. The drive system has a constant torque output to base motor speed and a constant horsepower output to maximum speed. A gear shifting transmission is not required. The ac controller was scaled from the base 20 hp (41 hp peak) at 108 volts dec to an expanded horsepower and battery voltage range. Motor reversal was accomplished by electronic reversal of the inverter phase sequence. The ac controller can also be used as a boost chopper battery charger. The drive system was tested on a dynamometer and results are presented. The current-controlled pulse width modulation control scheme yielded improved motor current waveforms. The ac controller favors a higher system voltage.

  7. Characterization and snubbing of a bidirectional MCT in a resonant ac link converter

    NASA Technical Reports Server (NTRS)

    Lee, Tony; Elbuluk, Malik E.; Zinger, Donald S.

    1993-01-01

    The MOS-Controlled Thyristor (MCT) is emerging as a powerful switch that combines the better characteristics of existing power devices. A study of switching stresses on an MCT switch under zero voltage resonant switching is presented. The MCT is used as a bidirectional switch in an ac/ac pulse density modulated inverter for induction motor drive. Current and voltage spikes are observed and analyzed with variations in the timing of the switching. Different snubber circuit configurations are under investigation to minimize the effect of these transients. The results will be extended to study and test the MCT switching in a medium power (5 hp) induction motor drive.

  8. High Non-inductive Fraction H-mode Discharges Generated by High-harmonic Fast Wave Heating and Current Drive in the National Spherical Torus Experiment

    SciTech Connect

    Taylor, G.; Hosea, J.; Kessel, C. E.; LeBlanc, B; Mueller, D.; Phillips, C. K.; Valeo, E. J.; Wilson, J. R.; Ryan, Philip Michael; Bonoli, P.; Harvey, R. W.

    2012-01-01

    A deuterium H-mode discharge with a plasma current of 300 kA, an axial toroidal magnetic field of 0.55 T, and a calculated non-inductive plasma current fraction of 0.7 1 has been generated in the National Spherical Torus Experiment by 1.4MW of 30MHz high-harmonic fast wave (HHFW) heating and current drive. Seventy-five percent of the non-inductive current was generated inside an internal transport barrier that formed at a normalized minor radius 0.4. Three quarters of the non-inductive current was bootstrap current, and the remaining non-inductive current was generated directly by HHFW power inside a normalized minor radius 0.2. VC 2012 American Institute of Physics.

  9. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  10. Common drive unit

    NASA Technical Reports Server (NTRS)

    Ellis, R. C.; Fink, R. A.; Moore, E. A.

    1987-01-01

    The Common Drive Unit (CDU) is a high reliability rotary actuator with many versatile applications in mechanism designs. The CDU incorporates a set of redundant motor-brake assemblies driving a single output shaft through differential. Tachometers provide speed information in the AC version. Operation of both motors, as compared to the operation of one motor, will yield the same output torque with twice the output speed.

  11. Micromagnetic study of phase-locking in spin-transfer nano-oscillators driven by currents and ac fields

    NASA Astrophysics Data System (ADS)

    d'Aquino, M.; Serpico, C.; Bonin, R.; Bertotti, G.; Mayergoyz, I. D.

    2011-04-01

    The magnetization dynamics of a spin-transfer nano-oscillator is studied for a system subject to the combined action of dc spin-polarized electric current and microwave circularly polarized applied field. The uniform mode theory is developed for a spin-valve with an arbitrary orientation of the polarizer. The theory enables one to predict the control parameters for the synchronization between the magnetization self-oscillation and the external microwave field. Full micromagnetic simulations are performed with the predicted control parameters, and they demonstrate the hysteretic nature of the synchronization in very good agreement with the theory.

  12. On self-consistent ray-tracing and Fokker--Planck modeling of the hard x-ray emission during lower-hybrid current drive in tokamaks

    SciTech Connect

    Bizarro, J.P.; Peysson, Y.; Bonoli, P.T.; Carrasco, J.; de Wit, T.D.; Fuchs, V.; Hoang, G.T.; Litaudon, X.; Moreau, D.; Pocheau, C.; Shkarofsky, I.P. )

    1993-09-01

    A detailed investigation is presented on the ability of combined ray-tracing and Fokker--Planck calculations to predict the hard x-ray (HXR) emission during lower-hybrid (LH) current drive in tokamaks when toroidally induced ray stochasticity is important. A large number of rays is used and the electron distribution function is obtained by self-consistently iterating the appropriate power deposition and Fokker--Planck calculations. It is shown that effects due to radial diffusion of suprathermal electrons and to radiation scattering by the inner wall can be significant. The experimentally observed features of the HXR emission are fairly well predicted, thus confirming that combined ray-tracing and Fokker--Planck codes are capable of correctly modeling the physics of LH current drive in tokamaks.

  13. Whistlers, helicons, and lower hybrid waves: The physics of radio frequency wave propagation and absorption for current drive via Landau damping

    SciTech Connect

    Pinsker, R. I.

    2015-09-15

    This introductory-level tutorial article describes the application of plasma waves in the lower hybrid range of frequencies (LHRF) for current drive in tokamaks. Wave damping mechanisms in a nearly collisionless hot magnetized plasma are briefly described, and the connections between the properties of the damping mechanisms and the optimal choices of wave properties (mode, frequency, wavelength) are explored. The two wave modes available for current drive in the LHRF are described and compared. The terms applied to these waves in different applications of plasma physics are elucidated. The character of the ray paths of these waves in the LHRF is illustrated in slab and toroidal geometries. Applications of these ideas to experiments in the DIII-D tokamak are discussed.

  14. Stepper motor drive for on load tapchanger in electric locomotive

    SciTech Connect

    Aruna Kumar, G.V.D.; Kumar, S.; Mishra, P.; Wadhonkar, N.K.

    1995-12-31

    Indian Railways have a fleet of 2,200 electrical locomotives running on 25 KV ac traction. An on-load tap changer is used to select voltage for speed control of dc traction motor. A four stroke reciprocating type air motor is used presently to drive the tap changer (GR). Complex gear and camshaft mechanism is used to move tap changer and to generate various logic signals for safe loco operation. The annual failure rate for tap changer and its drive is of the order of 20%. A microprocessor controlled stepper motor drive has been designed and constructed to drive the on-load tap changer. A current controlled chopper is used to drive the motor and control logic has been generated through an optimum hardware and software combination. The assembly has been tested on a prototype tap changer in the laboratory.

  15. Critical current density and ac harmonic voltage generation in YBaCuO thin films by the screening technique

    NASA Astrophysics Data System (ADS)

    Pérez-López, Israel O.; Gamboa, Fidel; Sosa, Víctor

    2010-12-01

    The temperature and field dependence of harmonics in voltage Vn=Vn‧-iVn″ using the screening technique have been measured for YBaCuO superconducting thin films. Using the Sun model we obtained the curves for the temperature-dependent critical current density Jc(T). In addition, we applied the criterion proposed by Acosta et al. to compute Jc(T). Also, we made used of the empirical law Jc∝(1-T/Tc)n as an input in our calculations to reproduce experimental harmonic generation up to the fifth harmonic. We found that most models fit well the fundamental voltage but higher harmonics are poorly reproduced. Such behavior suggests the idea that higher harmonics contain information concerning complex processes like flux creep or thermally assisted flux flow.

  16. Fuzzy efficiency optimization of AC induction motors

    NASA Technical Reports Server (NTRS)

    Jani, Yashvant; Sousa, Gilberto; Turner, Wayne; Spiegel, Ron; Chappell, Jeff

    1993-01-01

    This paper describes the early states of work to implement a fuzzy logic controller to optimize the efficiency of AC induction motor/adjustable speed drive (ASD) systems running at less than optimal speed and torque conditions. In this paper, the process by which the membership functions of the controller were tuned is discussed and a controller which operates on frequency as well as voltage is proposed. The membership functions for this dual-variable controller are sketched. Additional topics include an approach for fuzzy logic to motor current control which can be used with vector-controlled drives. Incorporation of a fuzzy controller as an application-specific integrated circuit (ASIC) microchip is planned.

  17. Methods, systems and apparatus for synchronous current regulation of a five-phase machine

    DOEpatents

    Gallegos-Lopez, Gabriel; Perisic, Milun

    2012-10-09

    Methods, systems and apparatus are provided for controlling operation of and regulating current provided to a five-phase machine when one or more phases has experienced a fault or has failed. In one implementation, the disclosed embodiments can be used to synchronously regulate current in a vector controlled motor drive system that includes a five-phase AC machine, a five-phase inverter module coupled to the five-phase AC machine, and a synchronous current regulator.

  18. Wind-powered asynchronous AC/DC/AC converter system. [for electric power supply regulation

    NASA Technical Reports Server (NTRS)

    Reitan, D. K.

    1973-01-01

    Two asynchronous ac/dc/ac systems are modelled that utilize wind power to drive a variable or constant hertz alternator. The first system employs a high power 60-hertz inverter tie to the large backup supply of the power company to either supplement them from wind energy, storage, or from a combination of both at a preset desired current; rectifier and inverter are identical and operate in either mode depending on the silicon control rectifier firing angle. The second system employs the same rectification but from a 60-hertz alternator arrangement; it provides mainly dc output, some sinusoidal 60-hertz from the wind bus and some high harmonic content 60-hertz from an 800-watt inverter.

  19. High-harmonic Fast Wave Heating and Current Drive Results for Deuterium H-mode Plasmas in the National Spherical Torus Experiment

    SciTech Connect

    G. Taylor, P.T. Bonoli, R.W. Harvey, J.C. hosea, E.F. Jaeger, B.P. LeBlanc, C.K. Phillisp, P.M. Ryan, E.J. Valeo, J.R. Wilson, J.C. Wright, and the NSTX Team

    2012-07-25

    A critical research goal for the spherical torus (ST) program is to initiate, ramp-up, and sustain a discharge without using the central solenoid. Simulations of non-solenoidal plasma scenarios in the National Spherical Torus Experiment (NSTX) [1] predict that high-harmonic fast wave (HHFW) heating and current drive (CD) [2] can play an important roll in enabling fully non-inductive (fNI {approx} 1) ST operation. The NSTX fNI {approx} 1 strategy requires 5-6 MW of HHFW power (PRF) to be coupled into a non-inductively generated discharge [3] with a plasma current, Ip {approx} 250-350 kA, driving the plasma into an HHFW H-mode with Ip {approx} 500 kA, a level where 90 keV deuterium neutral beam injection (NBI) can heat the plasma and provide additional CD. The initial approach on NSTX has been to heat Ip {approx} 300 kA, inductively heated, deuterium plasmas with CD phased HHFW power [2], in order to drive the plasma into an H-mode with fNI {approx} 1.

  20. Sequential Dependencies in Driving

    ERIC Educational Resources Information Center

    Doshi, Anup; Tran, Cuong; Wilder, Matthew H.; Mozer, Michael C.; Trivedi, Mohan M.

    2012-01-01

    The effect of recent experience on current behavior has been studied extensively in simple laboratory tasks. We explore the nature of sequential effects in the more naturalistic setting of automobile driving. Driving is a safety-critical task in which delayed response times may have severe consequences. Using a realistic driving simulator, we find…

  1. INCREASED STABLE BETA IN DIII-D BY SUPPRESSION OF A NEOCLASSICAL TEARING MODE USING ELECTRON CYCLOTRON CURRENT DRIVE AND ACTIVE FEEDBACK

    SciTech Connect

    LAHAYE,RJ; HUMPHREYS,DA; LOHR,J; LUCE,TC; PERKINS,FW; PETTY,CC; PRATER,R; STRAIT,EJ

    2002-09-01

    OAK A271 INCREASED STABLE BETA IN DIII-D BY SUPPRESSION OF A NEOCLASSICAL TEARING MODE USING ELECTRON CYCLOTRON CURRENT DRIVE AND ACTIVE FEEDBACK. In DIII-D, the first real-time active control of the electron cyclotron current drive stabilization of a neoclassical tearing mode (here m/n=3/2) is demonstrated. The plasma control system is put into a search and suppress mode to align the ECCD with the island by making either small rigid radial position shifts (of order 1 cm) of the entire plasma (and thus the island) or small changes in toroidal field (of order 0.5%) which radially moves the second harmonic resonance location (and thus the rf current drive). The optimum position minimizes the real-time mode amplitude signal and stabilization occurs despite changes in island location from discharge-to-discharge or from time-to-time. When the neutral beam heating power is programmed to rise after mode suppression by the ECCD, the plasma pressure increases above the peak at the onset of the neoclassical tearing mode until the magnetic island reappears due to the ECCD no longer being on the optimal position. Real-time tracking of the change in location of q=3/2 due to the Shafranov shift with increasing beta is necessary to position the ECCD in the absence of a mode so that higher stable beta can be sustained. The control techniques developed for the m/n=3/2 NTM are also being applied to the more deleterious m/n-2/1 NTM. For the first time in any tokamak, an m/n=2/1 mode has been completely suppressed using radially localized off-axis ECCD.

  2. The impact of interface states on the mobility and drive current of In0.53Ga0.47 As semiconductor n-MOSFETs

    NASA Astrophysics Data System (ADS)

    Osgnach, Patrik; Caruso, Enrico; Lizzit, Daniel; Palestri, Pierpaolo; Esseni, David; Selmi, Luca

    2015-06-01

    Accurate Schrödinger-Poisson and Multi-Subband Monte Carlo simulations are used to investigate the effect of interface states at the channel-insulator interface of In0.53Ga0.47 As MOSFETs. Acceptor states with energy inside the conduction band of the semiconductor can explain the dramatic Fermi level pinning observed in the experiments. Our results show that these states significantly impact the electrical mobility measurements but they appear to have a limited influence on the static current drive of short channel devices.

  3. Driving toroidally asymmetric current through the tokamak scrape-off layer, Part II: Magnetic field structure and spectrum

    SciTech Connect

    Joseph, I

    2009-04-08

    The structure of the magnetic field perturbations due to non-axisymmetric field-aligned currents in the tokamak scrape-off layer (SOL) are analytically calculated near the X-point. Part I [I. Joseph, et al., submitted to Phys. Plasmas (2008)] demonstrated that biasing divertor target plates in a toroidally asymmetric fashion can generate an appreciable toroidally asymmetric parallel current density in the SOL along the separatrix. Here, the magnetic field perturbation caused by a SOL current channel of finite width and step-wise constant amplitude at the target plate is derived. Flux expansion amplifies the magnetic perturbation near the X-point, while phase interference causes the SOL amplitude to be reduced at large toroidal mode number. Far enough from the current channel, the magnetic field can be approximated as arising from a surface current near the separatrix with differing amplitudes in the SOL and the divertor leg. The perturbation spectrum and resonant components of this field are computed analytically asymptotically close to the separatrix in magnetic flux coordinates. The size of the stochastic layer due to the applied perturbation that would result without self-consistent plasma shielding is also estimated. If enough resonant field is generated, control of the edge pressure gradient may allow stabilization of edge localized modes.

  4. State-of-the-art neoclassical tearing mode control in DIII-D using real-time steerable electron cyclotron current drive launchers

    NASA Astrophysics Data System (ADS)

    Kolemen, E.; Welander, A. S.; La Haye, R. J.; Eidietis, N. W.; Humphreys, D. A.; Lohr, J.; Noraky, V.; Penaflor, B. G.; Prater, R.; Turco, F.

    2014-07-01

    Real-time steerable electron cyclotron current drive (ECCD) has been demonstrated to reduce the power requirements and time needed to remove 3/2 and 2/1 neoclassical tearing modes (NTMs) in the DIII-D tokamak. In a world first demonstration of the techniques required in ITER, the island formation onset is detected automatically, gyrotrons are turned on and the real-time steerable ECCD launcher mirrors are moved promptly to drive current at the location of the islands. This shrinks and suppresses the modes well before saturation using real-time motional Stark effect constrained equilibria reconstruction with advanced feedback and search algorithms to target the deposition. In ITER, this method will reduce the ECCD energy requirement and so raise Q by keeping the EC system off when the NTM is not present. Further, in the experiments with accurate tracking of pre-emptive ECCD to resonant surfaces, both 3/2 and 2/1 modes are prevented from appearing with much lower ECCD peak power than required for removal of a saturated mode.

  5. Lower hybrid current drive and ion cyclotron range of frequencies heating experiments in H-mode plasmas in Experimental Advanced Superconducting Tokomak

    SciTech Connect

    Zhang, X. J.; Wan, B. N. Zhao, Y. P.; Ding, B. J.; Xu, G. S.; Gong, X. Z.; Li, J. G.; Lin, Y.; Wukitch, S.; Taylor, G.; Noterdaeme, J. M.; Braun, F.; Magne, R.; Litaudon, X.; Kumazawa, R.; Kasahara, H.

    2014-06-15

    An ion cyclotron range of frequencies (ICRF) system with power up to 6.0 MW and a lower hybrid current drive (LHCD) system up to 4 MW have been applied for heating and current drive experiments in Experimental Advanced Superconducting Tokomak (EAST). Significant progress has been made with ICRF heating and LHCD for realizing the H-mode plasma operation in EAST. During 2010 and 2012 experimental campaigns, ICRF heating experiments were carried out at the fixed frequency of 27MHz, achieving effective ions and electrons heating with the H minority heating (H-MH) mode. The H-MH mode produced good plasma performance, and realized H-mode using ICRF power alone in 2012. In 2010, H-modes were generated and sustained by LHCD alone, where lithium coating and gas puffing near the mouth of the LH launcher were applied to improve the LHCD power coupling and penetration into the core plasmas of H-modes. In 2012, the combination of LHCD and ICRH power extended the H-mode duration up to over 30 s. H-modes with various types of edge localized modes (ELMs) have been achieved with H{sub IPB98}(y, 2) ranging from 0.7 to over unity. A brief overview of LHCD and ICRF Heating experiment and their application in achieving H-mode operation during these two campaigns will be presented.

  6. Tevatron AC dipole system

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is an oscillating dipole magnet which can induce large amplitude oscillations without the emittance growth and decoherence. These properties make it a good tool to measure optics of a hadron synchrotron. The vertical AC dipole for the Tevatron is powered by an inexpensive high power audio amplifier since its operating frequency is approximately 20 kHz. The magnet is incorporated into a parallel resonant system to maximize the current. The use of a vertical pinger magnet which has been installed in the Tevatron made the cost relatively inexpensive. Recently, the initial system was upgraded with a more powerful amplifier and oscillation amplitudes up to 2-3{sigma} were achieved with the 980 GeV proton beam. This paper discusses details of the Tevatron AC dipole system and also shows its test results.

  7. Role of energetic electrons during current ramp-up and production of high poloidal beta plasma in non-inductive current drive on QUEST

    NASA Astrophysics Data System (ADS)

    Tashima, Saya; Zushi, H.; Isobe, M.; Hanada, K.; Idei, H.; Nakamura, K.; Fujisawa, A.; Matsuoka, K.; Hasegawa, M.; Nagashima, Y.; Okamura, S.; Banerjee, S.; Kawasaki, S.; Nakashima, H.; Higashijima, A.

    2014-02-01

    A scenario for non-inductive current ramp-up has been demonstrated using electron cyclotron waves in the spherical tokamak QUEST. The configuration was characterized by a high toroidal magnetic mirror ratio of 2 and a steady vertical magnetic field of more than 10% of the toroidal magnetic field. The generation and confinement of energetic electrons having energy greater than 10 keV were studied using hard x-rays. Because of the energetic electron pressure, a natural divertor formed with an inboard poloidal field null at the high poloidal beta (approximately 3-4).

  8. RMF concept: a rotating-magnetic-field technique for driving steady plasma currents in compact toroid devices

    SciTech Connect

    McKenna, K.F.

    1980-09-01

    The generation and/or sustaining of a Compact Toroid (CT) configuration using the RMF technique is a relatively new and unknown concept. In this report the basic principles, historical development, and current theoretical understanding of this concept are reviewed. Significant experimental and theoretical results, potential problem areas, and recommendations for the direction of future work are discussed. An illustrative analysis of the application of the RMF technique to a CT reactor is presented. The results of a recent experiment, the Rotamak, in which a Spheromak-like CT plasma was produced using the RMF technique, are presented.

  9. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  10. Electric versus hydraulic drives

    SciTech Connect

    Not Available

    1983-01-01

    This volume records the proceedings of a conference organised by the Engineering Manufacturing Industries Division of the Institution of Mechanical Engineers. Topics considered include high performance position control - a review of the current state of developments; hydrostatic drives - present and future; electric drives - present and future trends; electrical and hydraulic drives for heavy industrial robots; the development of an electro-mechanical tilt system for the advanced passenger train; industrial hydraulic ring mains - effective or efficient. the comparison of performance of servo feed-drive systems; overhead crane drives; the future of d.c. servodrives; the choice of actuator for military systems; linear electro-hydraulic actuators; and actuation for industrial robots.

  11. Simultaneous distribution of AC and DC power

    DOEpatents

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  12. Mesoscale SST-wind stress coupling in the Peru-Chile current system: Which mechanisms drive its seasonal variability?

    NASA Astrophysics Data System (ADS)

    Oerder, Vera; Colas, François; Echevin, Vincent; Masson, Sebastien; Hourdin, Christophe; Jullien, Swen; Madec, Gurvan; Lemarié, Florian

    2016-01-01

    Satellite observations and a high-resolution regional ocean-atmosphere coupled model are used to study the air/sea interactions at the oceanic mesoscale in the Peru-Chile upwelling current system. Coupling between mesoscale sea surface temperature (SST) and wind stress (WS) intensity is evidenced and characterized by correlations and regression coefficients. Both the model and the observations display similar spatial and seasonal variability of the coupling characteristics that are stronger off Peru than off Northern Chile, in relation with stronger wind mean speed and steadiness. The coupling is also more intense during winter than during summer in both regions. It is shown that WS intensity anomalies due to SST anomalies are mainly forced by mixing coefficient anomalies and partially compensated by wind shear anomalies. A momentum balance analysis shows that wind speed anomalies are created by stress shear anomalies. Near-surface pressure gradient anomalies have a negligible contribution because of the back-pressure effect related to the air temperature inversion. As mixing coefficients are mainly unchanged between summer and winter, the stronger coupling in winter is due to the enhanced large-scale wind shear that enables a more efficient action of the turbulent stress perturbations. This mechanism is robust as it does not depend on the choice of planetary boundary layer parameterization.

  13. Evidence of coupling to Global Alfvéne Eigenmodes during Alfvén wave current drive experiments on the Phaedrus-T tokamak

    NASA Astrophysics Data System (ADS)

    Vukovic, M.; Wukitch, S.; Harper, M.; Parker, R.

    1996-02-01

    A series of experiments designed to explore mechanisms of power deposition during Alfvén wave current drive experiments on the Phaedrus-T tokamak has shown evidence of power deposition via mode conversion of Global Alfvén Eigenmodes at the Alfvén resonance. Observation of radially localized RF induced density fluctuations in the plasma and their location vs. BT is in agreement with the predictions of behaviour of GAE damping on the AR by the toroidal code LION. Furthermore, the change in the time evolution of the loop voltage, is consistent with the change of effective power deposition radius, rPD, and is in agreement with the density fluctuations radius.

  14. Simulation of the conditions of wave excitation for the optimization of the lower hybrid current drive in the Globus-M spherical tokamak

    SciTech Connect

    Dyachenko, V. V.; Irzak, M. A.; Cherotchenko, E. D.; Shcherbinin, O. N.

    2013-02-15

    At present, the method of current drive by means of lower hybrid waves is not applied to low-aspect-ratio tokamaks, because, in the traditional approach, it would be necessary to use waves with a very high slowing-down factor. However, studies of new transparency regions for waves in a nonuniform magnetized plasma, performed earlier at the Ioffe Physical Technical Institute, Russian Academy of Sciences, made it possible to develop an approach in which slow waves are excited in the poloidal (rather than toroidal) direction. In this approach, moderately slowed-down waves first propagate in the poloidal direction, but then turn in the toroidalal direction and get into the dense plasma. In this work, this approach is further developed using numerical methods. In particular, the influence of the density profile in the edge plasma on the efficiency of wave excitation for given antenna parameters is studied in detail.

  15. The dynamics of short-scale turbulent fluctuations across low-intermediate-high-confinement transition with lower hybrid current drive in the EAST superconducting tokamak

    SciTech Connect

    Cao, G. M.; Li, Y. D.; Zhang, X. D.; Sun, P. J.; Wu, G. J.; Hu, L. Q.

    2015-02-15

    Two different confinement transition discharges, the low-intermediate-high (L-I-H) and the low-intermediate-low (L-I-L) confinement transitions, respectively, have been obtained by lower hybrid current drive with lithium wall conditioning in the EAST superconducting tokamak. The dynamic features of short-scale turbulent fluctuations in the two discharges are investigated by a tangential CO{sub 2} laser collective scattering system. It is found that the great changes of broadband fluctuations in amplitude and structure characteristics are closely related to the choice of the final transition to H-mode. These results could shed light on the understanding of the L-H transition mechanism.

  16. Simulation of the conditions of wave excitation for the optimization of the lower hybrid current drive in the Globus-M spherical tokamak

    NASA Astrophysics Data System (ADS)

    Dyachenko, V. V.; Irzak, M. A.; Cherotchenko, E. D.; Shcherbinin, O. N.

    2013-02-01

    At present, the method of current drive by means of lower hybrid waves is not applied to low-aspect-ratio tokamaks, because, in the traditional approach, it would be necessary to use waves with a very high slowing-down factor. However, studies of new transparency regions for waves in a nonuniform magnetized plasma, performed earlier at the Ioffe Physical Technical Institute, Russian Academy of Sciences, made it possible to develop an approach in which slow waves are excited in the poloidal (rather than toroidal) direction. In this approach, moderately slowed-down waves first propagate in the poloidal direction, but then turn in the toroidalal direction and get into the dense plasma. In this work, this approach is further developed using numerical methods. In particular, the influence of the density profile in the edge plasma on the efficiency of wave excitation for given antenna parameters is studied in detail.

  17. Frequency modulation drive for a piezoelectric motor

    DOEpatents

    Mittas, Anthony

    2001-01-01

    A piezoelectric motor has peak performance at a specific frequency f.sub.1 that may vary over a range of frequencies. A drive system is disclosed for operating such a motor at peak performance without feedback. The drive system consists of the motor and an ac source connected to power the motor, the ac source repeatedly generating a frequency over a range from f.sub.1 -.DELTA.x to f.sub.1 +.DELTA.y.

  18. iDriving (Intelligent Driving)

    2012-09-17

    iDriving identifies the driving style factors that have a major impact on fuel economy. An optimization framework is used with the aim of optimizing a driving style with respect to these driving factors. A set of polynomial metamodels is constructed to reflect the responses produced in fuel economy by changing the driving factors. The optimization framework is used to develop a real-time feedback system, including visual instructions, to enable drivers to alter their driving stylesmore » in responses to actual driving conditions to improve fuel efficiency.« less

  19. iDriving (Intelligent Driving)

    SciTech Connect

    Malikopoulos, Andreas

    2012-09-17

    iDriving identifies the driving style factors that have a major impact on fuel economy. An optimization framework is used with the aim of optimizing a driving style with respect to these driving factors. A set of polynomial metamodels is constructed to reflect the responses produced in fuel economy by changing the driving factors. The optimization framework is used to develop a real-time feedback system, including visual instructions, to enable drivers to alter their driving styles in responses to actual driving conditions to improve fuel efficiency.

  20. Impaired Driving

    MedlinePlus

    ... Risk Factors BAC Effects Prevention Additional Resources How big is the problem? In 2014, 9,967 people ... Driving: A Threat to Everyone (October 2011) Additional Data Drunk Driving State Data and Maps Motor Vehicle ...

  1. Drugged Driving

    MedlinePlus

    ... Infographics » Drugged Driving Drugged Driving Email Facebook Twitter Text Description of Infographic Top Right Figure : In 2009, ... crash than those who don't smoke. Bottom Text: Develop Social Strategies Offer to be a designated ...

  2. Current sensor

    DOEpatents

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-01-16

    A current sensor is described that uses a plurality of magnetic field sensors positioned around a current carrying conductor. The sensor can be hinged to allow clamping to a conductor. The current sensor provides high measurement accuracy for both DC and AC currents, and is substantially immune to the effects of temperature, conductor position, nearby current carrying conductors and aging.

  3. Operation Method for AC Motor Control during Power Interruption in Direct AC/AC Converter System

    NASA Astrophysics Data System (ADS)

    Shizu, Keiichiro; Azuma, Satoshi

    Direct AC/AC converters have been studied due to their potential use in power converters with no DC-link capacitor, which can contribute to the miniaturization of power converters. However, the absence of a DC-link capacitor makes it difficult to control the AC motor during power interruption. First, this paper proposes a system that realizes AC motor control during power interruption by utilizing a clamp capacitor. In general, direct AC/AC converters have a clamp circuit consisting of a rectifier diode(s) and a clamp capacitor in order to avoid over-voltages. In the proposed system, there is an additional semiconductor switch reverse-parallel to the rectifier diode(s), and the clamp capacitor voltage can be utilized for AC motor control by turning on the additional switch. Second, this paper discusses an operation method for AC motor control and clamp capacitor voltage control during power interruption. In the proposed method “DC-link voltage control”, the kinetic energy in the AC motor is transformed into electrical energy and stored in the clamp capacitor; the clamp capacitor is therefore charged and the capacitor voltage is controlled to remain constant at an instruction value. Third, this paper discusses a switching operation during power interruption. A dead-time is introduced between the operation of turning off all switches on the rectifier side and the operation of turning on the additional switch, which prevents the occurrence of a short circuit between the interrupted power source and the clamp capacitor. Finally, experimental results are presented. During power interruptions, an output current was continuously obtained and the clamp capacitor voltage was maintained to be equal to the instruction value of the capacitor voltage. These results indicate that both AC motor control and capacitor voltage control were successfully achieved by using the proposed system.

  4. Circuit for Driving Piezoelectric Transducers

    NASA Technical Reports Server (NTRS)

    Randall, David P.; Chapsky, Jacob

    2009-01-01

    The figure schematically depicts an oscillator circuit for driving a piezoelectric transducer to excite vibrations in a mechanical structure. The circuit was designed and built to satisfy application-specific requirements to drive a selected one of 16 such transducers at a regulated amplitude and frequency chosen to optimize the amount of work performed by the transducer and to compensate for both (1) temporal variations of the resonance frequency and damping time of each transducer and (2) initially unknown differences among the resonance frequencies and damping times of different transducers. In other words, the circuit is designed to adjust itself to optimize the performance of whichever transducer is selected at any given time. The basic design concept may be adaptable to other applications that involve the use of piezoelectric transducers in ultrasonic cleaners and other apparatuses in which high-frequency mechanical drives are utilized. This circuit includes three resistor-capacitor networks that, together with the selected piezoelectric transducer, constitute a band-pass filter having a peak response at a frequency of about 2 kHz, which is approximately the resonance frequency of the piezoelectric transducers. Gain for generating oscillations is provided by a power hybrid operational amplifier (U1). A junction field-effect transistor (Q1) in combination with a resistor (R4) is used as a voltage-variable resistor to control the magnitude of the oscillation. The voltage-variable resistor is part of a feedback control loop: Part of the output of the oscillator is rectified and filtered for use as a slow negative feedback to the gate of Q1 to keep the output amplitude constant. The response of this control loop is much slower than 2 kHz and, therefore, does not introduce significant distortion of the oscillator output, which is a fairly clean sine wave. The positive AC feedback needed to sustain oscillations is derived from sampling the current through the

  5. Low recycling and high power density handling physics in the Current Drive Experiment-Upgrade with lithium plasma-facing components

    SciTech Connect

    Kaita, R.; Majeski, R.; Gray, T.; Kugel, H.; Mansfield, D.; Spaleta, J.; Timberlake, J.; Zakharov, L.; Doerner, R.; Lynch, T.; Maingi, R.; Soukhanovskii, V.

    2007-05-15

    The Current Drive Experiment-Upgrade [T. Munsat, P. C. Efthimion, B. Jones, R. Kaita, R. Majeski, D. Stutman, and G. Taylor, Phys. Plasmas 9, 480 (2002)] spherical tokamak research program has focused on lithium as a large area plasma-facing component (PFC). The energy confinement times showed a sixfold or more improvement over discharges without lithium PFCs. This was an increase of up to a factor of 3 over ITER98P(y,1) scaling [ITER Physics Basis Editors, Nucl. Fusion 39, 2137 (1999)], and reflects the largest enhancement in confinement ever seen in Ohmic plasmas. Recycling coefficients of 0.3 or below were achieved, and they are the lowest to date in magnetically confined plasmas. The effectiveness of liquid lithium in redistributing heat loads at extremely high power densities was demonstrated with an electron beam, which was used to generate lithium coatings. When directed to a lithium reservoir, evaporation occurred only after the entire volume of lithium was raised to the evaporation temperature. The ability to dissipate a beam power density of about 60 MW/m{sup 2} could have significant consequences for PFCs in burning plasma devices.

  6. Advanced control of neoclassical tearing modes in DIII-D with real-time steering of the electron cyclotron current drive

    NASA Astrophysics Data System (ADS)

    Welander, A. S.; Kolemen, E.; La Haye, R. J.; Eidietis, N. W.; Humphreys, D. A.; Lohr, J.; Noraky, S.; Penaflor, B. G.; Prater, R.; Turco, F.

    2013-12-01

    The system for controlling neoclassical tearing modes (NTMs) in DIII-D now catches the NTM the moment it becomes unstable by turning on the stabilizing electron cyclotron current drive (ECCD) and promptly bringing it back to stable before it has grown to a large size. Between NTMs, the ECCD can be turned off to save power, which will improve the fusion gain, Q, when used in ITER. This technique, named ‘catch and subdue’ (C&S), has been made possible by several advancements over the years at DIII-D. Firstly, ECCD must be very accurately aligned to the NTM; this is achieved by algorithms that probe how the NTM responds to changes in the alignment. Secondly, the alignment must be maintained even when the NTM is gone so that the ECCD will immediately stabilize when turned on in response to a new NTM. This is made possible by real-time equilibrium reconstructions that include measurements of the motional Stark effect and by a refraction estimator. Thirdly, real-time steerable mirrors are now fast and accurate actuators for the alignment adjustments. Fourthly, early NTM detection is made possible by a real-time mode analysis that filters noise to minimize false positives. These various control elements will be described and followed by a discussion of the further development needed for NTM control on ITER.

  7. Simple Equipment for Imaging AC.

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Anayama, Takayuki

    2003-01-01

    Presents an effective way to demonstrate the difference between direct current and alternating current using red and green LEDs. Describes how to make a tool that shows how an AC voltage changes with time using the afterimage effect of the LEDs. (Author/NB)

  8. Superposition of an AC field improves the discrimination between peptides in nanopore analysis.

    PubMed

    Jakova, Elisabet; Lee, Jeremy S

    2015-07-21

    In standard nanopore analysis a constant DC voltage is used to electrophoretically drive small molecules and peptides towards a pore. Superposition of an AC voltage at particular frequencies causes molecules to oscillate as they approach the pore which can alter the event parameters, the blockade current (I) and blockade time (T). Four peptides with similar structures were studied. Alpha-helical peptides A10 (FmocDDA10KK), A14, A18 and retro-inverso A10. It was shown that the ratio of translocations to bumping events could be manipulated by a combination of AC voltages and frequencies. In particular, A10 could be studied without interference from retro-inverso A10. Similarly, a large, intrinsically disordered protein of 140 amino acids, α-synuclein, which translocates the pore readily in a DC field could be prevented from doing so by application of an AC field of 200 mV at 100 MHz. PMID:25699656

  9. Zigzag Connected Autotransformer-Based 24-pulse AC-DC Converter

    NASA Astrophysics Data System (ADS)

    Xiao-qiang, Chen; Hao, Qiu

    2015-02-01

    In this paper, a zigzag connected autotransformer-based 24-pulse AC-DC converter is designed, modeled and simulated to feed direct torque controlled induction motor drives. Winding arrangements and parameters of the autotransformer and interphase reactor are given. Moreover, the design procedure of the autotransformer is modified to make it suitable for retrofit applications. Simulation results indicate that the system is capable of eliminating up to 21st harmonics in the ac mains current. The effect of load variation and load character is also studied to demonstrate the performance and effectiveness of the proposed 24-pulse converters. A set of power quality indices at ac mains and dc side are presented to compare the performance of 6-, 12- and 24-pulse converters.

  10. Digital ac monitor

    DOEpatents

    Hart, George W.; Kern, Jr., Edward C.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer.

  11. Voight variable speed drive. [for windpowered generator

    NASA Technical Reports Server (NTRS)

    Tompkin, J.

    1973-01-01

    The variable speed drive transmission is mounted within the gondola and connected with the wind turbine blades and the hub. This unit is designed for the production of ac power. The turbine turns by means of the variable speed drive and a set of synchronous three phase generators. This motion is controlled automatically by two wind rosettes in such a way that the wind turbine always opposes the wind direction. The Voight variable speed drive is a mechanical variable positive drive gear transmission. It has an unlimited power and torque transmission, a constant ratio with high degree of accuracy, a speed variation over a wide range, and a nonslip drive.

  12. Vortex ratchet reversal in an asymmetric washboard pinning potential subject to combined dc and ac stimuli.

    PubMed

    Shklovskij, Valerij A; Sosedkin, Vladimir V; Dobrovolskiy, Oleksandr V

    2014-01-15

    The mixed-state resistive response of a superconductor thin film with an asymmetric washboard pinning potential subject to superimposed dc and ac currents of arbitrary amplitudes and frequency at finite temperature is theoretically investigated. The problem is considered in the single-vortex approximation, relying upon the exact solution of the Langevin equation in terms of a matrix continued fraction. The dc voltage response and the absorbed power in ac response are analyzed as functions of dc bias and ac current amplitude and frequency in a wide range of corresponding dimensionless parameters. Predictions are made of (i) a reversal of the rectified voltage at small dc biases and strong ac drives and (ii) a non-monotonic enhancement of the absorbed power in the nonlinear ac response at far sub-depinning frequencies. It is elucidated how and why both these effects appear due to the competition of the fixed internal and the tunable, dc bias-induced external asymmetry of the potential as the only reason. This is distinct from other scenarios used for explaining the vortex ratchet reversal effect so far. PMID:24304564

  13. 7. VIEW OF THREE BOATHOUSES FROM 'PENN AC ROWING ASSN' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF THREE BOATHOUSES FROM 'PENN AC ROWING ASSN' TO NORTH END OF 'VESPER,' LOOKING EAST FROM WEST BANK OF SCHUYLKILL RIVER - Boathouse Row, East River Drive, Philadelphia, Philadelphia County, PA

  14. Characterization of Transducers and Resonators under High Drive Levels

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bao, X.; Sigel, D. A.; Gradziel, M. J.; Askins, S. A.; Dolgin, B. P.; Bar-Cohen, Y.

    2001-01-01

    In many applications, piezoelectric transducers are driven at AC voltage levels well beyond the level for which the material was nominally characterized. In this paper we describe an experimental setup that allows for the determination of the main transducer or resonator properties under large AC drive. A sinusoidal voltage from a waveform generator is amplified and applied across the transducer/resonator in series with a known high power resistor. The amplitude of applied voltage and the amplitude and the relative phase of the current through the resistor are monitored on a digital scope. The frequency of the applied signal is swept through resonance and the voltage/current signals are recorded. After corrections for the series resistance and parasitic elements the technique allows for the determination of the complex impedance spectra of the sample as a function of frequency. In addition, access to the current signal allows for the direct investigation of non-linear effects through the application of Fourier transform techniques on the current signal. Our results indicate that care is required when interpreting impedance data at high drive level due to the frequency dependence of the dissipated power. Although the transducer/resonator at a single frequency and after many cycles may reach thermal equilibrium, the spectra as a whole cannot be considered an isothermal measurement due to the temperature change with frequency. Methods to correct for this effect will be discussed. Results determined from resonators of both soft and hard PZT and a ultrasonic horn transducer are presented.

  15. Driving platform for OLED lighting investigations

    NASA Astrophysics Data System (ADS)

    Vogel, Uwe; Elgner, Andreas; Kreye, Daniel; Amelung, Jörg; Scholles, Michael

    2006-08-01

    OLED technology may be excellently suitable for lighting applications by combining high efficiency, cost effective manufacturing and the use of low cost materials. Certain issues remain to be solved so far, including OLED brightness, color, lifetime, large area uniformity and encapsulation. Another aspect, that might be capable in addressing some of the mentioned issues, is OLED lighting electrical driving. We report on the design of a driving platform for OLED lighting test panels or substrates. It is intended for being a test environment for lighting substrates as well as demonstration/presentation environment. It is based on a 128-channel passive-matrix driver/controller ASIC OC2. Its key component is an MSP430-compatible 16-bit micro-controller core including embedded Flash memory (program), EEPROM (parameter), and RAM (data memory). A significant feature of the device is an electronic approach for improving the lifetime/uniformity behavior of connected OLED. The embedded micro-controller is the key to the high versatility of OC2, since by firmware modification it can be adapted to various applications and conditions. Here its application for an OLED lighting driving platform is presented. Major features of this platform are PC-control mode (via USB interface), stand-alone mode (no external control necessary, just power supply), on-board OLED panel parameter storage, flat geometry of OLED lighting panel carrier (board), AC and DC driving regimes, adjustable reverse voltage, dedicated user SW (PC/Windows-based), sub-tile patterning and single sub-tile control, combination of multiple channels for increasing driving current. This publication contains results of the project "High Brightness OLEDs for ICT & Next Generation Lighting Applications" (OLLA), funded by the European Commission.

  16. Vision and Driving

    PubMed Central

    Owsley, Cynthia; McGwin, Gerald

    2010-01-01

    Driving is the primary means of personal travel in many countries and is relies heavily on vision for its successful execution. Research over the past few decades has addressed the role of vision in driver safety (motor vehicle collision involvement) and in driver performance (both on-road and using interactive simulators in the laboratory). Here we critically review what is currently known about the role of various aspects of visual function in driving. We also discuss translational research issues on vision screening for licensure and re-licensure and rehabilitation of visually impaired persons who want to drive. PMID:20580907

  17. Improved transistorized ac motor controller for battery powered urban electric passenger vehicles

    SciTech Connect

    Peak, S.C.

    1982-09-01

    The objectives of this program for an improved ac motor controller for battery powered urban electric passenger vehicles were: the design, fabrication, test, evaluation and cost analysis of an engineering model controller for an ac induction motor drive system, the investigation of a power level expansion to a family of horsepower and battery system voltages, and the investigation of the applicability of the ac controller for use as an on-board battery charger and for providing the function of motor reversal. Additional vehicle specifications, e.g., acceleration and pulling out of potholes, were added to the NASA vehicle specifications. Then, a vehicle performance analysis was done to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of ac motor and ac controller requirements. The General Electric ac induction motor used in the drive is optimized to operate as a vehicle traction motor with a pulse width modulated (PWM) inverter as a power source. The motor is nominally rated 20 hp and 41 hp peak. The power inverter design is a three-phase transistorized bridge configuration with feedback diodes. The transistors are a special design General Electric high-power Darlington transistor rated 450 volts and 200 amps. The battery system voltage chosen was 108 volts. The control strategy is a constant torque profile by PWM operation to base speed and a constant horsepower profile by square-wave operation to maximum speed. A gear shifting transmission is not required. An advanced current-controlled PWM technique is used to control the motor voltage. The primary feedback control is a motor angle control, with voltage and torque outer loop controls.

  18. Improved AC pixel electrode circuit for active matrix of organic light-emitting display

    NASA Astrophysics Data System (ADS)

    Si, Yujuan; Lang, Liuqi; Chen, Wanzhong; Liu, Shiyong

    2004-05-01

    In this paper, a modified four-transistor pixel circuit for active-matrix organic light-emitting displays (AMOLED) was developed to improve the performance of OLED device. This modified pixel circuit can provide an AC driving mode to make the OLED working in a reversed-biased voltage during the certain cycle. The optimized values of the reversed-biased voltage and the characteristics of the pixel circuit were investigated using AIM-SPICE. The simulated results reveal that this circuit can provide a suitable output current and voltage characteristic, and little change was made in luminance current.

  19. Distracted Driving

    MedlinePlus

    ... combines all three types of distraction. 3 How big is the problem? Deaths In 2013, 3,154 ... European countries. More A CDC study analyzed 2011 data on distracted driving, including talking on a cell ...

  20. Distracted driving

    MedlinePlus

    ... stay safe with a cell phone in the car. ... for Disease Control and Prevention Injury Prevention & Control. Motor Vehicle Safety. www.cdc.gov/motorvehiclesafety/distracted_driving . Accessed May ...