Science.gov

Sample records for ac electric current

  1. Time dependence of electrical bioimpedance on porcine liver and kidney under a 50 Hz ac current

    NASA Astrophysics Data System (ADS)

    Spottorno, J.; Multigner, M.; Rivero, G.; Álvarez, L.; de la Venta, J.; Santos, M.

    2008-03-01

    The purpose of this work is to study the changes of the bioimpedance from its 'in vivo' value to the values measured in a few hours after the excision from the body. The evolution of electrical impedance with time after surgical extraction has been studied on two porcine organs: the liver and the kidney. Both in vivo and ex vivo measurements of electrical impedance, measuring its real and imaginary components, have been performed. The in vivo measurements have been carried out with the animal anaesthetized. The ex vivo measurements have been made more than 2 h after the extraction of the organ. The latter experiment has been carried out at two different stabilized temperatures: at normal body temperature and at the standard preservation temperature for transplant surgery. The measurements show a correlation between the biological evolution and the electrical bioimpedance of the organs, which increases from its in vivo value immediately after excision, multiplying its value by 2 in a few hours.

  2. Electric characterization of (Sr, Sr-Ba, Ba) M-type ferrites by AC measurements[Alternating Current

    SciTech Connect

    Huanosta-Tera, A.; Lira-Hueso, R. de; Perez-Orta, O.; Palomares-Sanchez, S.A.; Ponce-Castaneda, S.; Mirabal-Garcia, M.

    2000-02-01

    Considering the electrical conductivity in ceramics, necessary reference should be given to dynamic processes occurring as a function of frequency and temperature. Although the most immediate interest in ferrites lies in their magnetic properties, technological applications require a wider knowledge of general physical properties as well. This is especially applicable when the materials are studied as a function of composition or when adding different modifiers. In this report, the authors present results of the ac and dc electric characteristics of a family of magneto-plumbite-type hexaferrites, where Ba gradually substitutes Sr in the Ba{sub x}Sr{sub 1{minus}x}Fe{sub 12}O{sub 19} compound (0 {le} x {le} 1). The results were determined over a wide range of frequencies and temperatures.

  3. Efficacy of low level electric current (A-C) for controlling quagga mussles in the Welland Canal

    SciTech Connect

    Fears, C.; Mackie, G.L.

    1995-06-01

    The efficacy of systems (for which patents are pending) which use low-voltage A-C currents for preventing settlement and attachment by zebra mussels were tested with steel rods and plates placed near the intake of a pulp and paper plant in the Welland Canal at Thorold, Ontario. Six racks made of 16 ft. (4.9 m), 2x4s (5.1 x 10.2 cm) were placed into the Welland Canal on August 5, 1994. One rack had 1/8th in (3.2 mm) diam x 12 in (30.5 cm) long steel rods, each separated by 2 in (5.1 cm) attached to pressure treated wood and concrete blocks and an A-C current of 16 v (or 8 v/in); rack 2 had steel rods of the same configuration but 12 v (or 6 v/in) was applied; rack 3 was identical to these but no current was applied and was used as a rod control. The remaining three racks had steel plates, each plate being 3 in (7.6 cm) wide X 24 in (61 cm) long X 1/4 in (6.4 mm) thick and separated by 2 in (5.1 cm); one had 12 v applied (or 6 v/in), another had 16 v applied (or 8 v/in), and the third had no current and was used as a plate control. The racks were placed on the upstream and downstream side of the intake at a depth of about 7 ft (2.1 m) where the mussels populations were heaviest (as determined by SCUBA diving). All mussels were quagga mussels (Dreissena bugensis). The racks were pulled in mid November after settlement was complete and the results showed: (1) complete prevention of settlement of both new recruits and translocators at 8 volts/in with steel rods on both wood and concrete surfaces and with steel plate trash bars; (2) partial prevention of settlement at 6 volts/in with steel rods on both wood and concrete surfaces and steel plates; and (3) that, at current kilowatt hr rates, total efficacy at 8 volts/in would cost approximately $10.80/day/1000 sq ft using rods to protect concrete walls and about $16.32/day/1000 sq ft to protect 3 in wide x 1/4 in thick trash bars. These costs can be reduced even further with pulse dosed AC currents.

  4. ac propulsion system for an electric vehicle

    NASA Technical Reports Server (NTRS)

    Geppert, S.

    1980-01-01

    It is pointed out that dc drives will be the logical choice for current production electric vehicles (EV). However, by the mid-80's, there is a good chance that the price and reliability of suitable high-power semiconductors will allow for a competitive ac system. The driving force behind the ac approach is the induction motor, which has specific advantages relative to a dc shunt or series traction motor. These advantages would be an important factor in the case of a vehicle for which low maintenance characteristics are of primary importance. A description of an EV ac propulsion system is provided, taking into account the logic controller, the inverter, the motor, and a two-speed transmission-differential-axle assembly. The main barrier to the employment of the considered propulsion system in EV is not any technical problem, but inverter transistor cost.

  5. Voltage controller/current limiter for ac

    NASA Technical Reports Server (NTRS)

    Wu, T. T.

    1980-01-01

    Circuit protects ac power systems for overload failures, limits power surge and short-circuit currents to 150 percent of steady state level, regulates ac output voltage, and soft starts loads. Limiter generates dc error signal in response to line fluctuations and dumps power when overload is reached. Device is inserted between ac source and load.

  6. Electric current solves mazes

    NASA Astrophysics Data System (ADS)

    Ayrinhac, Simon

    2014-07-01

    We present in this work a demonstration of the maze-solving problem with electricity. Electric current flowing in a maze as a printed circuit produces Joule heating and the right way is instantaneously revealed with infrared thermal imaging. The basic properties of electric current can be discussed in this context, with this challenging question: how can the electric current choose the right way and avoid dead ends?

  7. Manipulating Flames with AC Electric Fields

    NASA Astrophysics Data System (ADS)

    Bishop, Kyle

    2013-11-01

    Time-oscillating electric fields applied to plasmas present in flames create steady flows of gas capable of shaping, directing, enhancing, or even extinguishing flames. Interestingly, electric winds induced by AC electric fields can be stronger that those due to static fields of comparable magnitude. Furthermore, unlike static fields, the electric force due to AC fields is localized near the surface of the flame. Consequently, the AC response depends only on the local field at the surface of the flame - not on the position of the electrodes used to generate the field. These results suggest that oscillating electric fields can be used to manipulate and control combustion processes at a distance. To characterize and explain these effects, we investigate a simple experimental system comprising a laminar methane-air flame positioned between two parallel-plate electrodes. We quantify both the electric and hydrodynamic response of the flame as a function of frequency and magnitude of the applied field. A theoretical model shows how steady gas flows emerge from the time-averaged electrical force due to the field-induced motion of ions generated within the flame and by their disappearance by recombination. These results provide useful insights into the application of AC fields to direct combustion processes.

  8. AC electric trapping of neutral atoms

    NASA Astrophysics Data System (ADS)

    Marian, Adela; Schlunk, Sophie; Schoellkopf, Wieland; Meijer, Gerard

    2008-05-01

    We have demonstrated trapping of ultracold ground-state ^87Rb atoms in a macroscopic ac electric trap [1]. Trapping by ac electric fields has been previously achieved for polar molecules [2], as well as Sr atoms on a chip [3], and recently for Rb atoms in a three-phase electric trap [4]. Similar to trapping of ions in a Paul trap, three-dimensional confinement in an ac electric trap is obtained by switching between two saddle-point configurations of the electric field. For the first time, this dynamic confinement is directly visualized with absorption images taken at different phases of the ac switching cycle. Stable electric trapping is observed in a narrow range of switching frequencies around 60 Hz, in agreement with trajectory calculations. In a typical experiment, about 3 x 10^5 Rb atoms are trapped with lifetimes on the order of 9 s and trap depths of about 10 μK. Additionally, we show that the atoms can be used to sensitively probe the electric fields in the trap by imaging the cloud while the fields are still on. References: 1. S. Schlunk et al., PRL 98, 223002 (2007) 2. H. L. Bethlem et al., PRA 74, 063403 (2006) 3. T. Kishimoto et al., PRL 96, 123001 (2006) 4. T. Rieger et al., PRL 99, 063001 (2007)

  9. Equivalent Electrical Circuit Representations of AC Quantized Hall Resistance Standards

    PubMed Central

    Cage, M. E.; Jeffery, A.; Matthews, J.

    1999-01-01

    We use equivalent electrical circuits to analyze the effects of large parasitic impedances existing in all sample probes on four-terminal-pair measurements of the ac quantized Hall resistance RH. The circuit components include the externally measurable parasitic capacitances, inductances, lead resistances, and leakage resistances of ac quantized Hall resistance standards, as well as components that represent the electrical characteristics of the quantum Hall effect device (QHE). Two kinds of electrical circuit connections to the QHE are described and considered: single-series “offset” and quadruple-series. (We eliminated other connections in earlier analyses because they did not provide the desired accuracy with all sample probe leads attached at the device.) Exact, but complicated, algebraic equations are derived for the currents and measured quantized Hall voltages for these two circuits. Only the quadruple-series connection circuit meets our desired goal of measuring RH for both ac and dc currents with a one-standard-deviation uncertainty of 10−8 RH or less during the same cool-down with all leads attached at the device. The single-series “offset” connection circuit meets our other desired goal of also measuring the longitudinal resistance Rx for both ac and dc currents during that same cool-down. We will use these predictions to apply small measurable corrections, and uncertainties of the corrections, to ac measurements of RH in order to realize an intrinsic ac quantized Hall resistance standard of 10−8 RH uncertainty or less.

  10. Electric Current Solves Mazes

    ERIC Educational Resources Information Center

    Ayrinhac, Simon

    2014-01-01

    We present in this work a demonstration of the maze-solving problem with electricity. Electric current flowing in a maze as a printed circuit produces Joule heating and the right way is instantaneously revealed with infrared thermal imaging. The basic properties of electric current can be discussed in this context, with this challenging question:…

  11. Electric current locator

    DOEpatents

    King, Paul E.; Woodside, Charles Rigel

    2012-02-07

    The disclosure herein provides an apparatus for location of a quantity of current vectors in an electrical device, where the current vector has a known direction and a known relative magnitude to an input current supplied to the electrical device. Mathematical constants used in Biot-Savart superposition equations are determined for the electrical device, the orientation of the apparatus, and relative magnitude of the current vector and the input current, and the apparatus utilizes magnetic field sensors oriented to a sensing plane to provide current vector location based on the solution of the Biot-Savart superposition equations. Description of required orientations between the apparatus and the electrical device are disclosed and various methods of determining the mathematical constants are presented.

  12. Advanced ac powertrain for electric vehicles

    SciTech Connect

    Slicker, J.M.; Kalns, L.

    1985-01-01

    The design of an ac propulsion system for an electric vehicle includes a three-phase induction motor, transistorized PWM inverter/battery charger, microprocessor-based controller, and two-speed automatic transaxle. This system was built and installed in a Mercury Lynx test bed vehicle as part of a Department of Energy propulsion system development program. An integral part of the inverter is a 4-kw battery charger which utilizes one of the bridge transistors. The overall inverter strategy for this configuration is discussed. The function of the microprocessor-based controller is described. Typical test results of the total vehicle and each of its major components are given, including system efficiencies and test track performance results.

  13. Magnetospheric electric fields and currents

    NASA Technical Reports Server (NTRS)

    Mauk, B. H.; Zanetti, L. J.

    1987-01-01

    The progress made in the years 1983-1986 in understanding the character and operation of magnetospheric electric fields and electric currents is discussed, with emphasis placed on the connection with the interior regions. Special attention is given to determinations of global electric-field configurations, measurements of the response of magnetospheric particle populations to the electric-field configurations, and observations of the magnetospheric currents at high altitude and during northward IMF. Global simulations of current distributions are discussed, and the sources of global electric fields and currents are examined. The topics discussed in the area of impulsive and small-scale phenomena include substorm current systems, impulsive electric fields and associated currents, and field-aligned electrodynamics. A key finding of these studies is that the electric fields and currents are interrelated and cannot be viewed as separate entities.

  14. Comparison of the Unique Mobility and DOE-developed ac electric drive systems

    SciTech Connect

    Cole, G.H.

    1993-01-01

    A comparison was made between the most recent DOE-developed AC electric vehicle drive systems and that which is independently under development by Unique Mobility of Golden, Colorado. The DOE-developed AC systems compared in this study are the Single-Shaft Electric Propulsion System (ETX-II) developed by Ford Motor Company and the General Electric Company under contract number DE-AC07-85NV10418, the Dual-Shaft Electric Propulsion (DSEP) System developed by Eaton Corporation under contract number DOE-AC08-84NV-10366, and the anticipated results of the Modular Electric Vehicle (MEV) system currently being developed by Ford and General Electric under contract number DE-AC07-90ID13019. The Unique Mobility brushless DC electric vehicle drive system represents their latest electric drive technology and is being developed in cooperation with BMW Technik Gmbh of Germany. Comparisons of specific volume, specific weight, efficiency and expected vehicle performance are made of the different systems based upon measured system performance data where available. One conclusion presented is that the Unique Mobility drive system under development with BMW appears to provide comparable performance to the AC systems studied.

  15. Static and Current Electricity.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.; Murtha, Kathy T.

    This is a copy of the script for the electrical relationships unit in an auto-tutorial physical science course for non-science majors, offered at the University of Maine at Orono. The unit includes 15 simple experiments designed to allow the student to discover various fundamental electrical relationships. The student has the option of reading the…

  16. Alternating-Current Motor Drive for Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Rippel, W. E.

    1982-01-01

    New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.

  17. Roebel assembled coated conductor cables (RACC): Ac-Losses and current carrying potential

    NASA Astrophysics Data System (ADS)

    Frank, A.; Heller, R.; Goldacker, W.; Kling, A.; Schmidt, C.

    2008-02-01

    Low ac-loss HTS cables for transport currents well above 1 kA are required for application in transformers and generators and are taken into consideration for future generations of fusion reactor coils. Coated conductors (CC) are suitable candidates for high field application at an operation temperature in the range 50-77 K. Ac-field applications require cables with low ac-losses and hence twisting of the individual strands. We solved this problem using the Roebel technique. Short lengths of Roebel bar cables were prepared from industrial DyBCO and YBCO-CC. Meander shaped tapes of 4 or 5 mm width with twist pitches of 123 or 127 mm were cut from the 10 or 12 mm wide CC tapes using a specially designed tool. Eleven or twelve of these strands were assembled to a cable. The electrical and mechanical connection of the tapes was achieved using a silver powder filled conductive epoxy resin. Ac-losses of a short sample in an external ac-field were measured as a function of frequency and field amplitude as well as the coupling current decay time constant. We discuss the results in terms of available theories and compare measured time constants in transverse field with measured coupling losses. Finally the potential of this cable type for ac-use is discussed with respect to ac-losses and current carrying capability.

  18. Test plan for performance testing of the Eaton AC-3 electric vehicle

    SciTech Connect

    Crumley, R.L.; Heiselmann, H.W.

    1985-04-01

    An alternating current (ac) propulsion system for an electric vehicle has been developed and tested by the Eaton Corporation. The test bed vehicle is a modified 1981 Mercury Lynx. The test plan has been prepared specifically for the third modification to this test bed and identified as the Eaton AC-3. The scope of the EG and G testing at INEL to be done on the Eaton AC-3 will include coastdown and dynamometer tests but will not include environmental, on-road, or track testing. Coastdown testing will be performed in accordance with SAE J-1263 (SAE Recommended Practice for Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques).

  19. Aligned Immobilization of Proteins Using AC Electric Fields.

    PubMed

    Laux, Eva-Maria; Knigge, Xenia; Bier, Frank F; Wenger, Christian; Hölzel, Ralph

    2016-03-01

    Protein molecules are aligned and immobilized from solution by AC electric fields. In a single-step experiment, the enhanced green fluorescent proteins are immobilized on the surface as well as at the edges of planar nanoelectrodes. Alignment is found to follow the molecules' geometrical shape with their longitudinal axes parallel to the electric field. Simultaneous dielectrophoretic attraction and AC electroosmotic flow are identified as the dominant forces causing protein movement and alignment. Molecular orientation is determined by fluorescence microscopy based on polarized excitation of the proteins' chromophores. The chromophores' orientation with respect to the whole molecule supports X-ray crystal data. PMID:26779699

  20. The AC/DCs of Electricity.

    ERIC Educational Resources Information Center

    Calhoun, Michael J.

    1994-01-01

    Describes an activity that allows students to use a rectifier circuit to convert alternating current into direct current. Also informs teachers of how to obtain most of the equipment needed for free. (ZWH)

  1. Modelling ac ripple currents in HTS coated conductors

    NASA Astrophysics Data System (ADS)

    Xu, Zhihan; Grilli, Francesco

    2015-10-01

    Dc transmission using high temperature superconducting (HTS) coated conductors (CCs) offers a promising solution to the globally growing demand for effective, reliable and economic transmission of green energy up to the gigawatt level over very long distances. The credible estimation of the losses and thereby the heat dissipation involved, where ac ripples (introduced in rectification/ac-dc conversion) are viewed as a potential source of notable contribution, is highly essential for the rational design of practical HTS dc transmission cables and corresponding cryogenic systems to fulfil this demand. Here we report a targeted modelling study into the ac losses in a HTS CC subject to dc and ac ripple currents simultaneously, by solving Maxwell’s equations using the finite element method (FEM) in the commercial software package COMSOL. It is observed that the instantaneous loss exhibits only one peak per cycle in the HTS CC subject to sinusoidal ripples, given that the amplitude of the ac ripples is smaller than approximately 20% of that of the dc current. This is a distinct contrast to the usual observation of two peaks per cycle in a HTS CC subject to ac currents only. The unique mechanism is also revealed, which is directly associated with the finding that, around any local minima of the applied ac ripples, the critical state of -J c is never reached at the edges of the HTS CC, as it should be according to the Bean model. When running further into the longer term, it is discovered that the ac ripple loss of the HTS CC in full-wave rectification decays monotonically, at a speed which is found to be insensitive to the frequency of the applied ripples within our targeted situations, to a relatively low level of approximately 1.38 × 10-4 W m-1 in around 1.7 s. Comparison between this level and other typical loss contributions in a HTS dc cable implies that ac ripple currents in HTS CCs should only be considered as a minor source of dissipation in superconducting dc

  2. Performance testing of the AC propulsion ELX electric vehicle

    SciTech Connect

    Kramer, W.E.; MacDowall, R.D.; Burke, A.F.

    1994-06-01

    Performance testing of the AC Propulsion ELX electric vehicle is described. Test data are presented and analyzed. The ELX vehicle is the first of a series of electric vehicles of interest to the California Air Resources Board. The test series is being conducted under a Cooperative Research and Development Agreement (CRADA) between the US Department of energy and the California Air Resources Board. The tests which were conducted showed that the AC Propulsion ELX electric vehicle has exceptional acceleration and range performance. when the vehicle`s battery was fully charged, the vehicle can accelerate from 0 to 96 km/h in about 10 seconds. Energy consumption and range tests using consecutive FUDS and HWFET Driving cycles (the all-electric cycle) indicate that the energy economy of the AC Propulsion ELX electric vehicle with regenerative braking is 97 W{center_dot}h/km, with a range of 153 km (95 miles). Computer simulations performed using the SIMPLEV Program indicate that the vehicle would have a range of 327 km (203 miles) on the all-electric cycle if the lead acid batteries were replaced with NiMH batteries having an energy density of 67 W{center_dot}h/kg. Comparisons of FUDS test data with and without regenerative braking indicated that regenerative braking reduced the energy consumption of the ELX vehicle by approximately 25%.

  3. Performance testing of the AC propulsion ELX electric vehicle

    NASA Astrophysics Data System (ADS)

    Kramer, W. E.; MacDowall, R. D.; Burke, A. F.

    1994-06-01

    Performance testing of the AC Propulsion ELX electric vehicle is described. Test data are presented and analyzed. The ELX vehicle is the first of a series of electric vehicles of interest to the California Air Resources Board. The test series is being conducted under a Cooperative Research and Development Agreement (CRADA) between the US Department of energy and the California Air Resources Board. The tests which were conducted showed that the AC Propulsion ELX electric vehicle has exceptional acceleration and range performance. When the vehicle's battery was fully charged, the vehicle can accelerate from 0 to 96 km/h in about 10 seconds. Energy consumption and range tests using consecutive FUDS and HWFET Driving cycles (the all-electric cycle) indicate that the energy economy of the AC Propulsion ELX electric vehicle with regenerative braking is 97 W(center dot)h/km, with a range of 153 km (95 miles). Computer simulations performed using the SIMPLEV Program indicate that the vehicle would have a range of 327 km (203 miles) on the all-electric cycle if the lead acid batteries were replaced with NiMH batteries having an energy density of 67 W(center dot)h/kg. Comparisons of FUDS test data with and without regenerative braking indicated that regenerative braking reduced the energy consumption of the ELX vehicle by approximately 25%.

  4. Assessment of US electric vehicle programs with ac powertrains

    SciTech Connect

    Kevala, R.J. . Transportation Consulting Div.)

    1990-02-01

    AC powertrain technology is a promising approach to improving the performance of electric vehicles. Four major programs are now under way in the United States to develop ac powertrains: the Ford/General Electric single-shaft electric propulsion system (ETX-II), the Eaton dual-shaft electric propulsion system (DSEP), the Jet Propulsion Laboratories (JPL) integrated ac motor drive and recharge system, and the Massachusetts Institute of Technology (MIT) variable reluctance motor (VRM) drive. The JPL program is sponsored by EPRI; the other three programs are funded by the US Department of Energy. This preliminary assessment of the four powertrain programs focuses on potential performance, costs, safety, and commercial feasibility. Interviews with program personnel were supplemented by computer simulations of electric vehicle performance using the four systems. Each of the four powertrains appears superior to standard dc powertrain technology in terms of performance and weight. The powertrain technologies studied in this assessment are at varying degrees of technological maturity. One or more of the systems may be ready for incorporation into an advanced electric vehicle during the early 1990s. Each individual report will have a separate abstract. 5 refs., 37 figs., 29 tabs.

  5. Electric field in an AC dielectric barrier discharge overlapped with a nanosecond pulse discharge

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin M.; Shkurenkov, Ivan; Adamovich, Igor V.; Lempert, Walter R.

    2016-08-01

    The effect of ns discharge pulses on the AC barrier discharge in hydrogen in plane-to-plane geometry is studied using time-resolved measurements of the electric field in the plasma. The AC discharge was operated at a pressure of 300 Torr at frequencies of 500 and 1750 Hz, with ns pulses generated when the AC voltage was near zero. The electric field vector is measured by ps four-wave mixing technique, which generates coherent IR signal proportional to the square of electric field. Absolute calibration was done using an electrostatic (sub-breakdown) field applied to the discharge electrodes, when no plasma was generated. The results are compared with one-dimensional kinetic modeling of the AC discharge and the nanosecond pulse discharge, predicting behavior of both individual micro-discharges and their cumulative effect on the electric field distribution in the electrode gap, using stochastic averaging based on the experimental micro-discharge temporal probability distribution during the AC period. Time evolution of the electric field in the AC discharge without ns pulses, controlled by a superposition of random micro-discharges, exhibits a nearly ‘flat top’ distribution with the maximum near breakdown threshold, reproduced quite well by kinetic modeling. Adding ns pulse discharges on top of the AC voltage waveform changes the AC discharge behavior in a dramatic way, inducing transition from random micro-discharges to a more regular, near-1D discharge. In this case, reproducible volumetric AC breakdown is produced at a well-defined moment after each ns pulse discharge. During the reproducible AC breakdown, the electric field in the plasma exhibits a sudden drop, which coincides in time with a well-defined current pulse. This trend is also predicted by the kinetic model. Analysis of kinetic modeling predictions shows that this effect is caused by large-volume ionization and neutralization of surface charges on the dielectrics by ns discharge pulses. The present

  6. Electric currents in cosmic plasmas

    NASA Technical Reports Server (NTRS)

    Alfven, H.

    1977-01-01

    It is suggested that dualism is essential for the physics of cosmic plasmas, that is, that some phenomena should be described by a magnetic field formalism, and others by an electric current formalism. While in earlier work the magnetic field aspect has dominated, at present there is a systematic exploration of the particle (or current) aspect. A number of phenomena which can be understood only from the particle aspect are surveyed. Topics include the formation of electric double layers, the origin of 'explosive' events like magnetic substorms and solar flares, and the transfer of energy from one region to another. A method for exploring many of these phenomena is to draw the electric circuit in which the current flows and then study its properties. A number of simple circuits are analyzed in this way.

  7. The ac propulsion system for an electric vehicle, phase 1

    NASA Technical Reports Server (NTRS)

    Geppert, S.

    1981-01-01

    A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.

  8. Electric current abroad, 1991 edition

    NASA Astrophysics Data System (ADS)

    1991-07-01

    The characteristics are listed, for the information of U.S. manufacturers and exporters and individuals living or traveling abroad, of electric current available and the type of attachment plugs used in principal cities throughout the world. The characteristics of electric current-type (alternating or direct current), number of phases, frequency (hertz), and voltage found in major foreign cities are listed. In addition, the stability of the frequency and the number of wires to a commercial or residential installation are given where available. The current characteristics and other data furnished relate to domestic and commercial service only. It does not include special commercial installations involving relatively high voltage requirements nor does it refer to any industrial installations.

  9. AC Electric Field Communication for Human-Area Networking

    NASA Astrophysics Data System (ADS)

    Kado, Yuichi; Shinagawa, Mitsuru

    We have proposed a human-area networking technology that uses the surface of the human body as a data transmission path and uses an AC electric field signal below the resonant frequency of the human body. This technology aims to achieve a “touch and connect” intuitive form of communication by using the electric field signal that propagates along the surface of the human body, while suppressing both the electric field radiating from the human body and mutual interference. To suppress the radiation field, the frequency of the AC signal that excites the transmitter electrode must be lowered, and the sensitivity of the receiver must be raised while reducing transmission power to its minimally required level. We describe how we are developing AC electric field communication technologies to promote the further evolution of a human-area network in support of ubiquitous services, focusing on three main characteristics, enabling-transceiver technique, application-scenario modeling, and communications quality evaluation. Special attention is paid to the relationship between electro-magnetic compatibility evaluation and regulations for extremely low-power radio stations based on Japan's Radio Law.

  10. AC propulsion system for an electric vehicle, phase 2

    NASA Technical Reports Server (NTRS)

    Slicker, J. M.

    1983-01-01

    A second-generation prototype ac propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the Contractor's site. The system consisted of a Phase 2, 18.7 kw rated ac induction traction motor, a 192-volt, battery powered, pulse-width-modulated, transistorized inverter packaged for under rear seat installation, a 2-axis, 2-speed, automatically-shifted mechanical transaxle and a microprocessor-based powertrain/vehicle controller. A diagnostics computer to assist tuning and fault finding was fabricated. Dc-to-mechanical-system efficiency varied from 78% to 82% as axle speed/torque ranged from 159 rpm/788 nm to 65 rpm/328 nm. Track test efficiency results suggest that the ac system will be equal or superior to dc systems when driving urban cycles. Additional short-term work is being performed under a third contract phase (AC-3) to raise transaxle efficiency to predicted levels, and to improve starting and shifting characteristics. However, the long-term challenge to the system's viability remains inverter cost. A final report on the Phase 2 system, describing Phase 3 modifications, will be issued at the conclusion of AC-3.

  11. AC propulsion system for an electric vehicle, phase 2

    NASA Astrophysics Data System (ADS)

    Slicker, J. M.

    1983-06-01

    A second-generation prototype ac propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the Contractor's site. The system consisted of a Phase 2, 18.7 kw rated ac induction traction motor, a 192-volt, battery powered, pulse-width-modulated, transistorized inverter packaged for under rear seat installation, a 2-axis, 2-speed, automatically-shifted mechanical transaxle and a microprocessor-based powertrain/vehicle controller. A diagnostics computer to assist tuning and fault finding was fabricated. Dc-to-mechanical-system efficiency varied from 78% to 82% as axle speed/torque ranged from 159 rpm/788 nm to 65 rpm/328 nm. Track test efficiency results suggest that the ac system will be equal or superior to dc systems when driving urban cycles. Additional short-term work is being performed under a third contract phase (AC-3) to raise transaxle efficiency to predicted levels, and to improve starting and shifting characteristics. However, the long-term challenge to the system's viability remains inverter cost. A final report on the Phase 2 system, describing Phase 3 modifications, will be issued at the conclusion of AC-3.

  12. Measurements of AC Losses and Current Distribution in Superconducting Cables

    SciTech Connect

    Nguyen, Doan A; Ashworth, Stephen P; Duckworth, Robert C; Carter, Bill; Fleshler, Steven

    2011-01-01

    This paper presents our new experimental facility and techniques to measure ac loss and current distribution between the layers for High Temperature Superconducting (HTS) cables. The facility is powered with a 45 kVA three-phase power supply which can provide three-phase currents up to 5 kA per phase via high current transformers. The system is suitable for measurements at any frequency between 20 and 500 Hz to better understand the ac loss mechanisms in HTS cables. In this paper, we will report techniques and results for ac loss measurements carried out on several HTS cables with and without an HTS shielding layer. For cables without a shielding layer, care must be taken to control the effect of the magnetic fields from return currents on loss measurements. The waveform of the axial magnetic field was also measured by a small pick-up coil placed inside a two-layer cable. The temporal current distribution between the layers can be calculated from the waveform of the axial field.

  13. Demodulation circuit for AC motor current spectral analysis

    DOEpatents

    Hendrix, Donald E.; Smith, Stephen F.

    1990-12-18

    A motor current analysis method for the remote, noninvasive inspection of electric motor-operated systems. Synchronous amplitude demodulation and phase demodulation circuits are used singly and in combination along with a frequency analyzer to produce improved spectral analysis of load-induced frequencies present in the electric current flowing in a motor-driven system.

  14. High current capacity electrical connector

    DOEpatents

    Bettis, Edward S.; Watts, Harry L.

    1976-01-13

    An electrical connector is provided for coupling high current capacity electrical conductors such as copper busses or the like. The connector is arranged in a "sandwiched" configuration in which a conductor plate contacts the busses along major surfaces thereof clamped between two stainless steel backing plates. The conductor plate is provided with a plurality of contact buttons affixed therein in a spaced array such that the caps of the buttons extend above the conductor plate surface to contact the busses. When clamping bolts provided through openings in the sandwiched arrangement are tightened, Belleville springs provided under the rim of each button cap are compressed and resiliently force the caps into contact with the busses' contacting surfaces to maintain a predetermined electrical contact area provided by the button cap tops. The contact area does not change with changing thermal or mechanical stresses applied to the coupled conductors.

  15. Improved transistorized AC motor controller for battery powered urban electric passenger vehicles

    NASA Technical Reports Server (NTRS)

    Peak, S. C.

    1982-01-01

    An ac motor controller for an induction motor electric vehicle drive system was designed, fabricated, tested, evaluated, and cost analyzed. A vehicle performance analysis was done to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of ac motor and ac controller requirements. The power inverter is a three-phase bridge using power Darlington transistors. The induction motor was optimized for use with an inverter power source. The drive system has a constant torque output to base motor speed and a constant horsepower output to maximum speed. A gear shifting transmission is not required. The ac controller was scaled from the base 20 hp (41 hp peak) at 108 volts dec to an expanded horsepower and battery voltage range. Motor reversal was accomplished by electronic reversal of the inverter phase sequence. The ac controller can also be used as a boost chopper battery charger. The drive system was tested on a dynamometer and results are presented. The current-controlled pulse width modulation control scheme yielded improved motor current waveforms. The ac controller favors a higher system voltage.

  16. Lipid Bilayer Vesicle Dynamics in AC Electric Fields

    NASA Astrophysics Data System (ADS)

    McConnell, Lane; Vlahovska, Petia; Miksis, Michael

    2014-11-01

    Vesicles are closed, fluid-filled lipid bilayers which are mechanically similar to biological cells and which undergo shape transitions in the presence of electric fields. Here we model the vesicle membrane as an infinitely thin, capacitive, area-incompressible interface with the surrounding fluids acting as charge-advecting leaky dielectrics. We then implement the boundary integral method to numerically investigate the dynamics of a vesicle in various AC electric field profiles. Our numerical results are then compared with recent small deformation theory and experimental data. We also note our observation of a new theoretical vesicle behavior that has yet to be observed experimentally.

  17. AC current distribution and losses in multifilamentary superconductors exposed to longitudinal magnetic field

    SciTech Connect

    Le Naour, S.; Lacaze, A.; Laumond, Y.; Estop, P.; Verhaege, T.

    1996-07-01

    The current distribution and also AC losses, in a multifilamentary superconductor carrying a transport current, are influenced by the self and the external magnetic field. By using the Maxwell equations, a model has been developed in order to calculate the temporal evolution of current distribution in a single wire exposed or not to external magnetic field. This model is based on the actual relationship of electrical field E with current density J and takes into account the twist pitch of the wire. AC losses are calculated by adding all local losses through the cross section. This paper presents calculations of the influence of the cable twist coupled with the longitudinal magnetic field, and also gives some ideas how to decrease losses.

  18. AC-DC converter with an improved input current waveform

    SciTech Connect

    Yuvarajan, S.; Weng, D.F.; Chen, M.S.

    1995-12-31

    The paper proposes a new control scheme for an ac-dc converter that will reduce the total harmonic distortion in the input current while operating at an improved power factor. The circuit uses a diode rectifier whose output is varied by a boost regulator with a second-harmonic injected PWM. An approximate analysis shows that the addition of a second harmonic component in the PWM helps to reduce the third harmonic in the input current. The design parameters are obtained using digital simulation. The results obtained on an experimental converter are compared with the ones obtained from a conventional scheme.

  19. Improved transistorized ac motor controller for battery powered urban electric passenger vehicles

    SciTech Connect

    Peak, S.C.

    1982-09-01

    The objectives of this program for an improved ac motor controller for battery powered urban electric passenger vehicles were: the design, fabrication, test, evaluation and cost analysis of an engineering model controller for an ac induction motor drive system, the investigation of a power level expansion to a family of horsepower and battery system voltages, and the investigation of the applicability of the ac controller for use as an on-board battery charger and for providing the function of motor reversal. Additional vehicle specifications, e.g., acceleration and pulling out of potholes, were added to the NASA vehicle specifications. Then, a vehicle performance analysis was done to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of ac motor and ac controller requirements. The General Electric ac induction motor used in the drive is optimized to operate as a vehicle traction motor with a pulse width modulated (PWM) inverter as a power source. The motor is nominally rated 20 hp and 41 hp peak. The power inverter design is a three-phase transistorized bridge configuration with feedback diodes. The transistors are a special design General Electric high-power Darlington transistor rated 450 volts and 200 amps. The battery system voltage chosen was 108 volts. The control strategy is a constant torque profile by PWM operation to base speed and a constant horsepower profile by square-wave operation to maximum speed. A gear shifting transmission is not required. An advanced current-controlled PWM technique is used to control the motor voltage. The primary feedback control is a motor angle control, with voltage and torque outer loop controls.

  20. Collapse of DNA in a.c. electric fields

    PubMed Central

    Zhou, Chunda; Reisner, Walter W.; Staunton, Rory J.; Ashan, Amir; Austin, Robert H.; Riehn, Robert

    2013-01-01

    We report that double-stranded DNA collapses in presence of a.c. electric fields at frequencies of a few hundred Hertz, and does not stretch as commonly assumed. In particular, we show that confinement-stretched DNA can collapse to about one quarter of its equilibrium length. We propose that this effect is based on finite relaxation times of the counterion cloud, and the subsequent partitioning of the molecule into mutually attractive units. We discuss alternative models of those attractive units. PMID:21770604

  1. A PWM transistor inverter for an ac electric vehicle drive

    NASA Technical Reports Server (NTRS)

    Slicker, J. M.

    1981-01-01

    A prototype system consisting of closely integrated motor, inverter, and transaxle has been built in order to demonstrate the feasibility of a three-phase ac transistorized inverter for electric vehicle applications. The microprocessor-controlled inverter employs monolithic power transistors to drive an oil-cooled, three-phase induction traction motor at a peak output power of 30 kW from a 144 V battery pack. Transistor safe switching requirements are discussed, and a circuit is presented for recovering trapped snubber inductor energy at transistor turn-off.

  2. Input current shaped ac-to-dc converters

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Input current shaping techniques for ac-to-dc converters were investigated. Input frequencies much higher than normal, up to 20 kHz were emphasized. Several methods of shaping the input current waveform in ac-to-dc converters were reviewed. The simplest method is the LC filter following the rectifier. The next simplest method is the resistor emulation approach in which the inductor size is determined by the converter switching frequency and not by the line input frequency. Other methods require complicated switch drive algorithms to construct the input current waveshape. For a high-frequency line input, on the order of 20 kHz, the simple LC cannot be discarded so peremptorily, since the inductor size can be compared with that for the resistor emulation method. In fact, since a dc regulator will normally be required after the filter anyway, the total component count is almost the same as for the resistor emulation method, in which the filter is effectively incorporated into the regulator.

  3. Finite element analysis of current flowing patterns and AC loss in the multifilament strand

    NASA Astrophysics Data System (ADS)

    Ta, Wurui; Li, Yingxu; Gao, Yuanwen

    2013-12-01

    Intrinsic current flow and field distribution scheme under the imposed low current injection and the applied weak field is meaningful to interpret Ic degradation and AC loss in a strand that performs as a normal composite conductor. A 2D finite element (FE) transport model is built in COMSOL to identify the various transverse resistance components and reveal the interrelation among them. Then the transverse resistivity components are taken as the basic electrical components in a 3D composite strand model. The 3D model follows the realistic trajectories of twisted filaments in strand composite and experimental material properties. To address the potential/current map in the stationary transport, the FE model is thoroughly analyzed for the short-sample and long-sample strand, imposed by two in-plane steady current injections and a potential boundary condition at one strand end with the other end grounded, respectively. The results show that the short-sample longitudinal current is uniform with little resistivity loss, and flows from the positive source and converges to the negative one in the cross section with different paths and current proportions between filaments and matrix. However, for the long-sample, there is a serious reduction in electric potential along the strand axis and the currents mostly concentrate on filaments. The time-varying problem is also implemented by computing AC loss induced by a relatively far-away alternating line current. It is discussed where appropriate that the effect of the twist pitch and contact resistivity on the pattern and magnitude of the current flow and AC loss.

  4. Wind-powered asynchronous AC/DC/AC converter system. [for electric power supply regulation

    NASA Technical Reports Server (NTRS)

    Reitan, D. K.

    1973-01-01

    Two asynchronous ac/dc/ac systems are modelled that utilize wind power to drive a variable or constant hertz alternator. The first system employs a high power 60-hertz inverter tie to the large backup supply of the power company to either supplement them from wind energy, storage, or from a combination of both at a preset desired current; rectifier and inverter are identical and operate in either mode depending on the silicon control rectifier firing angle. The second system employs the same rectification but from a 60-hertz alternator arrangement; it provides mainly dc output, some sinusoidal 60-hertz from the wind bus and some high harmonic content 60-hertz from an 800-watt inverter.

  5. Input-current shaped ac to dc converters

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The problem of achieving near unity power factor while supplying power to a dc load from a single phase ac source of power is examined. Power processors for this application must perform three functions: input current shaping, energy storage, and output voltage regulation. The methods available for performing each of these three functions are reviewed. Input current shaping methods are either active or passive, with the active methods divided into buck-like and boost-like techniques. In addition to large reactances, energy storage methods include resonant filters, active filters, and active storage schemes. Fast voltage regulation can be achieved by post regulation or by supplementing the current shaping topology with an extra switch. Some indications of which methods are best suited for particular applications concludes the discussion.

  6. Leakage current and commutation losses reduction in electric drives for Hybrid Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Miliani, El Hadj

    2014-06-01

    Nowadays, leakage current and inverter losses, produced by adjustable-speed AC drive systems become one of the main interested subject for researchers on Electric Vehicle (EV) and Hybrid Electric Vehicle (HEV) technology. The continuous advancements in solid state device engineering have considerably minimized the switching transients for power switches but the high dv/dt and high switching frequency have caused many adverse effects such as shaft voltage, bearing current, leakage current and electromagnetic interference (EMI). The major objective of this paper is to investigate and suppress of the adverse effects of a PWM inverter feeding AC motor in EV and HEV. A technique to simultaneously reduce the leakage current and the switching losses is presented in this paper. Based on a discontinuous space vector pulse width modulation (DSVPWM) and a modular switches gate resistance, inverter losses and leakage current are reduced. Algorithms are presented and implemented on a DSP controller and experimental results are presented.

  7. System electrical parameters and their effects on bearing currents

    SciTech Connect

    Busse, D.; Erdman, J.; Kerkman, R.J.; Schlegel, D.; Skibinski, G.

    1997-03-01

    This paper examines ac motor shaft voltages and resulting bearing currents when operated under pulse width modulation (PWM) voltage source inverters. The paper reviews the electrical characteristics of bearings and motors that cause shaft voltages and bearing currents. A brief review of previous work is presented, including a system model for electrical analysis of bearing currents. Relying on the work of a companion paper, the propensity for electric discharge machining (EDM) is determined by a design equation that is a function of system components. Pertinent machine parameters and their formulas are presented and values calculated for machines from 5 to 1,000 hp. The effects of system elements on shaft voltages and bearing currents are evaluated experimentally and the results compared to theory. Finally, the paper will present quantitative results for one solution to the shaft voltage and bearing current problem.

  8. Long-range response in ac electricity grids.

    PubMed

    Jung, Daniel; Kettemann, Stefan

    2016-07-01

    Local changes in the topology of electricity grids can cause overloads far away from the disturbance [D. Witthaut and M. Timme, Eur. Phys. J. B 86, 377 (2013)EPJBFY1434-602810.1140/epjb/e2013-40469-4], making the prediction of the robustness against changes in the topology-for example, caused by power outages or grid extensions-a challenging task. The impact of single-line additions on the long-range response of dc electricity grids has recently been studied [D. Labavić, R. Suciu, H. Meyer-Ortmanns, and S. Kettemann, Eur. Phys. J.: Spec. Top. 223, 2517 (2014)1951-635510.1140/epjst/e2014-02273-0]. By solving the real part of the static ac load flow equations, we conduct a similar investigation for ac grids. In a regular two-dimensional grid graph with cyclic boundary conditions, we find a power law decay for the change of power flow as a function of distance to the disturbance over a wide range of distances. The power exponent increases and saturates for large system sizes. By applying the same analysis to the German transmission grid topology, we show that also in real-world topologies a long-ranged response can be found. PMID:27575148

  9. Long-range response in ac electricity grids

    NASA Astrophysics Data System (ADS)

    Jung, Daniel; Kettemann, Stefan

    2016-07-01

    Local changes in the topology of electricity grids can cause overloads far away from the disturbance [D. Witthaut and M. Timme, Eur. Phys. J. B 86, 377 (2013), 10.1140/epjb/e2013-40469-4], making the prediction of the robustness against changes in the topology—for example, caused by power outages or grid extensions—a challenging task. The impact of single-line additions on the long-range response of dc electricity grids has recently been studied [D. Labavić, R. Suciu, H. Meyer-Ortmanns, and S. Kettemann, Eur. Phys. J.: Spec. Top. 223, 2517 (2014), 10.1140/epjst/e2014-02273-0]. By solving the real part of the static ac load flow equations, we conduct a similar investigation for ac grids. In a regular two-dimensional grid graph with cyclic boundary conditions, we find a power law decay for the change of power flow as a function of distance to the disturbance over a wide range of distances. The power exponent increases and saturates for large system sizes. By applying the same analysis to the German transmission grid topology, we show that also in real-world topologies a long-ranged response can be found.

  10. Resonant tunneling of interacting electrons in an AC electric field

    SciTech Connect

    Elesin, V. F.

    2013-11-15

    The problem of the effect of electron-electron interaction on the static and dynamic properties of a double-barrier nanostructure (resonant tunneling diode (RTD)) is studied in terms of a coherent tunneling model, which includes a set of Schrödinger and Poisson equations with open boundary conditions. Explicit analytical expressions are derived for dc and ac potentials and reduced (active and reactive) currents in the quasi-classical approximation over a wide frequency range. These expressions are used to analyze the frequency characteristics of RTD. It is shown that the interaction can radically change the form of these expressions, especially in the case of a hysteretic I-V characteristic. In this case, the active current and the ac potentials can increase sharply at both low and high frequencies. For this increase to occur, it is necessary to meet quantum regime conditions and to choose a proper working point in the I-V characteristic of RTD. The possibility of appearance of specific plasma oscillations, which can improve the high-frequency characteristics of RTD, is predicted. It is found that the active current can be comparable with the resonant dc current of RTD.

  11. Manipulating single annealed polyelectrolyte under alternating current electric fields: Collapse versus accumulation

    PubMed Central

    Wang, Shengqin; Zhu, Yingxi

    2012-01-01

    Effective manipulation and understanding of the structural and dynamic behaviors of a single polyelectrolyte (PE) under alternating current (AC) electric fields are of great scientific and technological importance because of its intimate relevance to emerging bionanotechnology. In this work, we employ fluorescence correlation spectroscopy (FCS) to study the conformational and AC-electrokinetic behaviors of a model annealed PE, poly(2-vinyl pyridine) (P2VP) under both spatially uniform and non-uniform AC fields at a single molecule level. Under spatially uniform AC-fields, we observe a gradual and continuous coil-to-globule conformational transition (CGT) of single P2VP at varied AC-frequency when a critical AC-field strength is exceeded, in contrast to the pH-induced abrupt CGT in the absence of AC-fields. On the contrary, under spatially non-uniform AC-fields, we observe field-driven net flow and accumulation of P2VP near high AC-field regions due to combined AC electro-osmosis and dielectrophoresis but surprisingly no conformational change. Thus, distinct AC-electric polarization effect on single annealed PE subject to AC-field homogeneity is suggested. PMID:22655024

  12. Eddy Current Rail Inspection Using AC Bridge Techniques

    PubMed Central

    Liu, Ze; Koffman, Andrew D; Waltrip, Bryan C; Wang, Yicheng

    2013-01-01

    AC bridge techniques commonly used for precision impedance measurements have been adapted to develop an eddy current sensor for rail defect detection. By using two detection coils instead of just one as in a conventional sensor, we can balance out the large baseline signals corresponding to a normal rail. We have significantly enhanced the detection sensitivity of the eddy current method by detecting and demodulating the differential signal of the two coils induced by rail defects, using a digital lock-in amplifier algorithm. We have also explored compensating for the lift-off effect of the eddy current sensor due to vibrations by using the summing signal of the detection coils to measure the lift-off distance. The dominant component of the summing signal is a constant resulting from direct coupling from the excitation coil, which can be experimentally determined. The remainder of the summing signal, which decreases as the lift-off distance increases, is induced by the secondary eddy current. This dependence on the lift-off distance is used to calibrate the differential signal, allowing for a more accurate characterization of the defects. Simulated experiments on a sample rail have been performed using a computer controlled X-Y moving table with the X-axis mimicking the train’s motion and the Y-axis mimicking the train’s vibrational bumping. Experimental results demonstrate the effectiveness of the new detection method. PMID:26401427

  13. Eddy Current Rail Inspection Using AC Bridge Techniques.

    PubMed

    Liu, Ze; Koffman, Andrew D; Waltrip, Bryan C; Wang, Yicheng

    2013-01-01

    AC bridge techniques commonly used for precision impedance measurements have been adapted to develop an eddy current sensor for rail defect detection. By using two detection coils instead of just one as in a conventional sensor, we can balance out the large baseline signals corresponding to a normal rail. We have significantly enhanced the detection sensitivity of the eddy current method by detecting and demodulating the differential signal of the two coils induced by rail defects, using a digital lock-in amplifier algorithm. We have also explored compensating for the lift-off effect of the eddy current sensor due to vibrations by using the summing signal of the detection coils to measure the lift-off distance. The dominant component of the summing signal is a constant resulting from direct coupling from the excitation coil, which can be experimentally determined. The remainder of the summing signal, which decreases as the lift-off distance increases, is induced by the secondary eddy current. This dependence on the lift-off distance is used to calibrate the differential signal, allowing for a more accurate characterization of the defects. Simulated experiments on a sample rail have been performed using a computer controlled X-Y moving table with the X-axis mimicking the train's motion and the Y-axis mimicking the train's vibrational bumping. Experimental results demonstrate the effectiveness of the new detection method. PMID:26401427

  14. Hierarchical assembly of anisotropic particles in AC electric fields

    NASA Astrophysics Data System (ADS)

    Torres Diaz, Isaac; Rupp, Bradley; Hua, Xiaoqing; Yang, Yuguang; Bevan, Michael A.

    Hierarchical microstructures composed of colloids are of great interest for technological applications and advanced materials such as metamaterials and microfluidic devices. The dynamics of spherical colloidal particles has been analyzed previously for several systems, and has led to the control of the formation of perfect crystals using AC electric fields. However, spherical particles do not have a dependence on its orientation as anisotropic particles. Recently, researchers reported experiments showing the capabilities of anisotropic particles to assemble in different configurations, yet a detailed understanding of the mechanism and control is lacking. This work shows both theoretical and experimental results of the control of a colloidal system composed of anisotropic colloidal particles with a tri-axial ellipsoidal shape subjected to a non-uniform electric field close to a planar wall. We show that particles pack into different structures and orientations as a function of the applied electric field amplitude and frequency by taking into account dipole-field, dipole-dipole, and colloidal interactions. This analysis provides a theoretical framework for the equilibrium and non-equilibrium structures that can be formed via field mediated interaction, which are validated by experimental microscopy results, and can ultimately be used to engineer the hierarchical assembly of anisotropic particles.

  15. AC Electric Field Activated Shape Memory Polymer Composite

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.

    2011-01-01

    Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.

  16. Particle Agglomeration in Bipolar Barb Agglomerator Under AC Electric Field

    NASA Astrophysics Data System (ADS)

    Huang, Chao; Ma, Xiuqin; Sun, Youshan; Wang, Meiyan; Zhang, Changping; Lou, Yueya

    2015-04-01

    The development of an efficient technology for removing fine particles in flue gas is essential as the haze is becoming more and more serious. To improve agglomeration effectiveness of fine particles, a dual zone electric agglomeration device consisting of a charging chamber and an agglomeration chamber with bipolar barb electrodes was developed. The bipolar barb electric agglomerator with a polar distance of 200 mm demonstrates good agglomeration effectiveness for particles with a size less than 8.0 μm under applied AC electric field. An optimal condition for achieving better agglomeration effectiveness was found to be as follows: flue gas flow velocity of 3.00 m/s, particle concentration of 2.00 g/m3, output voltage of 35 kV and length of the barb of 16 mm. In addition, 4.0-6.0 μm particles have the best effectiveness with the variation of particle volume occupancy of -3.2. supported by the Key Technology R&D Program of Hebei, China (No. 13211207D)

  17. Evaluation of semiconductor devices for Electric and Hybrid Vehicle (EHV) ac-drive applications, volume 1

    NASA Technical Reports Server (NTRS)

    Lee, F. C.; Chen, D. Y.; Jovanovic, M.; Hopkins, D. C.

    1985-01-01

    The results of evaluation of power semiconductor devices for electric hybrid vehicle ac drive applications are summarized. Three types of power devices are evaluated in the effort: high power bipolar or Darlington transistors, power MOSFETs, and asymmetric silicon control rectifiers (ASCR). The Bipolar transistors, including discrete device and Darlington devices, range from 100 A to 400 A and from 400 V to 900 V. These devices are currently used as key switching elements inverters for ac motor drive applications. Power MOSFETs, on the other hand, are much smaller in current rating. For the 400 V device, the current rating is limited to 25 A. For the main drive of an electric vehicle, device paralleling is normally needed to achieve practical power level. For other electric vehicle (EV) related applications such as battery charger circuit, however, MOSFET is advantageous to other devices because of drive circuit simplicity and high frequency capability. Asymmetrical SCR is basically a SCR device and needs commutation circuit for turn off. However, the device poses several advantages, i.e., low conduction drop and low cost.

  18. Universal features of particle motion in ac electric fields

    NASA Astrophysics Data System (ADS)

    Niemeyer, L.; Seeger, M.

    2015-11-01

    Mobile particles present as contaminants in high voltage gas insulated switchgear (GIS) may constitute a risk for insulation failure. The understanding of their motion in the electric field of the insulation gap is therefore essential for quality control in manufacturing, commissioning and in service monitoring. Published research on particle motion in ac electric fields has shown that this rather complex process depends on numerous parameters, many of which remain unknown under practical conditions. This renders modelling, generalization of experimental data and practical application difficult. The scope of this paper therefore is to develop a unified description of particle motion which minimizes the number of controlling parameters, enables the comparison of experimental data and allows simple interpretation relations to be derived. This is achieved by making the controlling equations dimensionless with an appropriate choice of reference values and by using simplifying assumptions for the specific conditions prevailing in GIS. The resulting generalized description of the process can then be summarized in the form of 2D patterns (dynamic maps). Approximate scaling relations are derived between specific features of these patterns and particle-related parameters. A reference case is discussed in detail. The non-linear character of the equation of motion suggests that the particle motion may be a deterministic process with chaotic features. This is confirmed by a preliminary chaos-theoretical analysis of the process.

  19. Keratinocyte galvanotaxis in combined DC and AC electric fields supports an electromechanical transduction sensing mechanism.

    PubMed

    Hart, Francis X; Laird, Mhairi; Riding, Aimie; Pullar, Christine E

    2013-02-01

    Sedentary keratinocytes at the edge of a skin wound migrate into the wound, guided by the generation of an endogenous electric field (EF) generated by the collapse of the transepithelial potential. The center of the wound quickly becomes more negative than the surrounding tissue and remains the cathode of the endogenous EF until the wound is completely re-epithelialized. This endogenous guidance cue can be studied in vitro. When placed in a direct current (DC) EF of physiological strength, 100 V/m, keratinocytes migrate directionally toward the cathode in a process known as galvanotaxis. Although a number of membrane-bound (e.g., epidermal growth factor receptor (EGFR), integrins) and cytosolic proteins (cAMP, ERK, PI3K) are known to play a role in the downstream signaling mechanisms underpinning galvanotaxis, the initial sensing mechanism for this response is not understood. To investigate the EF sensor, we studied the migration of keratinocytes in a DC EF of 100 V/m, alternating current (AC) EFs of 40 V/m at either 1.6 or 160 Hz, and combinations of DC and AC EFs. In the AC EFs alone, keratinocytes migrated randomly. The 1.6 Hz AC EF combined with the DC EF suppressed the direction of migration but had no effect on speed. In contrast, the 160 Hz AC EF combined with the DC EF did not affect the direction of migration but increased the migration speed compared to the DC EF alone. These results can be understood in terms of an electromechanical transduction model, but not an electrodiffusion/osmosis or a voltage-gated channel model. PMID:22907479

  20. Fractional modeling of the AC large-signal frequency response in magnetoresistive current sensors.

    PubMed

    Ravelo Arias, Sergio Iván; Ramírez Muñoz, Diego; Moreno, Jaime Sánchez; Cardoso, Susana; Ferreira, Ricardo; de Freitas, Paulo Jorge Peixeiro

    2013-01-01

    Fractional calculus is considered when derivatives and integrals of non-integer order are applied over a specific function. In the electrical and electronic domain, the transfer function dependence of a fractional filter not only by the filter order n, but additionally, of the fractional order α is an example of a great number of systems where its input-output behavior could be more exactly modeled by a fractional behavior. Following this aim, the present work shows the experimental ac large-signal frequency response of a family of electrical current sensors based in different spintronic conduction mechanisms. Using an ac characterization set-up the sensor transimpedance function Z(t)(JF) is obtained considering it as the relationship between sensor output voltage and input sensing current, Z(t)(jf)= V(o, sensor)(jf)/I(sensor)(jf). The study has been extended to various magnetoresistance sensors based in different technologies like anisotropic magnetoresistance (AMR), giant magnetoresistance (GMR), spin-valve (GMR-SV) and tunnel magnetoresistance (TMR). The resulting modeling shows two predominant behaviors, the low-pass and the inverse low-pass with fractional index different from the classical integer response. The TMR technology with internal magnetization offers the best dynamic and sensitivity properties opening the way to develop actual industrial applications. PMID:24351648

  1. Fractional Modeling of the AC Large-Signal Frequency Response in Magnetoresistive Current Sensors

    PubMed Central

    Arias, Sergio Iván Ravello; Muñoz, Diego Ramírez; Moreno, Jaime Sánchez; Cardoso, Susana; Ferreira, Ricardo; de Freitas, Paulo Jorge Peixeiro

    2013-01-01

    Fractional calculus is considered when derivatives and integrals of non-integer order are applied over a specific function. In the electrical and electronic domain, the transfer function dependence of a fractional filter not only by the filter order n, but additionally, of the fractional order α is an example of a great number of systems where its input-output behavior could be more exactly modeled by a fractional behavior. Following this aim, the present work shows the experimental ac large-signal frequency response of a family of electrical current sensors based in different spintronic conduction mechanisms. Using an ac characterization set-up the sensor transimpedance function Zt(if) is obtained considering it as the relationship between sensor output voltage and input sensing current, Zt(jf)=Vo,sensor(jf)/Isensor(jf). The study has been extended to various magnetoresistance sensors based in different technologies like anisotropic magnetoresistance (AMR), giant magnetoresistance (GMR), spin-valve (GMR-SV) and tunnel magnetoresistance (TMR). The resulting modeling shows two predominant behaviors, the low-pass and the inverse low-pass with fractional index different from the classical integer response. The TMR technology with internal magnetization offers the best dynamic and sensitivity properties opening the way to develop actual industrial applications. PMID:24351648

  2. Effect of an alternating current electric field on Co(OH)2 periodic precipitation

    NASA Astrophysics Data System (ADS)

    Karam, Tony; Sultan, Rabih

    2013-02-01

    The present paper studies the effect of an alternating current (AC) electric field on Co(OH)2 Liesegang patterns. In the presence of an AC electric field, the band spacing increases with spacing number, but reaches a plateau at large spacing (or band) numbers. The band spacing increases with applied AC voltage, but to a much lesser extent than the effect of a DC electric field under the same applied voltage [see R. Sultan, R. Halabieh, Chem. Phys. Lett. 332 (2000) 331][1]. At low enough applied voltage, the band spacing increases with frequency. At higher voltages, the band spacing becomes independent of the field frequency. The effect of concentration of the inner electrolyte (Co2+), exactly opposes that observed under DC electric field; i.e., the band spacing decreases with increasing concentration. The dynamics were shown to be governed by a competitive scenario between the diffusion gradient and the alternating current electric field factor.

  3. Concentrating membrane proteins using asymmetric traps and AC electric fields.

    PubMed

    Cheetham, Matthew R; Bramble, Jonathan P; McMillan, Duncan G G; Krzeminski, Lukasz; Han, Xiaojun; Johnson, Benjamin R G; Bushby, Richard J; Olmsted, Peter D; Jeuken, Lars J C; Marritt, Sophie J; Butt, Julea N; Evans, Stephen D

    2011-05-01

    Membrane proteins are key components of the plasma membrane and are responsible for control of chemical ionic gradients, metabolite and nutrient transfer, and signal transduction between the interior of cells and the external environment. Of the genes in the human genome, 30% code for membrane proteins (Krogh et al. J. Mol. Biol.2001, 305, 567). Furthermore, many FDA-approved drugs target such proteins (Overington et al. Nat. Rev. Drug Discovery 2006, 5, 993). However, the structure-function relationships of these are notably sparse because of difficulties in their purification and handling outside of their membranous environment. Methods that permit the manipulation of membrane components while they are still in the membrane would find widespread application in separation, purification, and eventual structure-function determination of these species (Poo et al. Nature 1977, 265, 602). Here we show that asymmetrically patterned supported lipid bilayers in combination with AC electric fields can lead to efficient manipulation of charged components. We demonstrate the concentration and trapping of such components through the use of a "nested trap" and show that this method is capable of yielding an approximately 30-fold increase in the average protein concentration. Upon removal of the field, the material remains trapped for several hours as a result of topographically restricted diffusion. Our results indicate that this method can be used for concentrating and trapping charged membrane components while they are still within their membranous environment. We anticipate that our approach could find widespread application in the manipulation and study of membrane proteins. PMID:21476549

  4. Study of AC electrical conduction mechanisms in an epoxy polymer

    NASA Astrophysics Data System (ADS)

    Jilani, Wissal; Mzabi, Nissaf; Gallot-Lavallée, Olivier; Fourati, Najla; Zerrouki, Chouki; Zerrouki, Rachida; Guermazi, Hajer

    2015-11-01

    The AC conductivity of an epoxy resin was investigated in the frequency range 10^{-1} - 106 Hz at temperatures ranging from -100 to 120 °C. The frequency dependence of σ_{ac} was described by the law: σ_{ac}=ω \\varepsilon0\\varepsilon^''_{HN}+Aωs. The study of temperature variation of the exponent (s) reveals two conduction models: the AC conduction dependence upon temperature is governed by the small polaron tunneling mechanism (SPTM) at low temperature (-100 -60 °C) and the correlated barrier hopping (CHB) model at high temperature (80-120 °C).

  5. Electric field induced spin-polarized current

    DOEpatents

    Murakami, Shuichi; Nagaosa, Naoto; Zhang, Shoucheng

    2006-05-02

    A device and a method for generating an electric-field-induced spin current are disclosed. A highly spin-polarized electric current is generated using a semiconductor structure and an applied electric field across the semiconductor structure. The semiconductor structure can be a hole-doped semiconductor having finite or zero bandgap or an undoped semiconductor of zero bandgap. In one embodiment, a device for injecting spin-polarized current into a current output terminal includes a semiconductor structure including first and second electrodes, along a first axis, receiving an applied electric field and a third electrode, along a direction perpendicular to the first axis, providing the spin-polarized current. The semiconductor structure includes a semiconductor material whose spin orbit coupling energy is greater than room temperature (300 Kelvin) times the Boltzmann constant. In one embodiment, the semiconductor structure is a hole-doped semiconductor structure, such as a p-type GaAs semiconductor layer.

  6. Electron-radiation effects on the ac and dc electrical properties and unpaired electron densities of three aerospace polymers

    NASA Technical Reports Server (NTRS)

    Long, Sheila Ann T.; Long, Edward R., Jr.; Ries, Heidi R.; Harries, Wynford L.

    1986-01-01

    The effects of gigarad-level total absorbed doses from 1-MeV electrons on the post-irradiation alternating-current (ac) and direct-current (dc) electrical properties and the unpaired electron densities have been studied for Kapton, Ultem, and Mylar. The unpaired electron densities (determined from electron paramagnetic resonance spectroscopy) and the dc electrical conductivities of the irradiated materials were monitored as functions of time following the exposures to determine their decay characteristics at room temperature. The elevated-temperature ac electrical dissipations of the Ultem and Mylar were affected by the radiation. The dc conductivity of the Kapton increased by five orders of magnitude, while the dc conductivities of the Ultem and Mylar increased by less than an order of magnitude, due to the radiation. The observed radiation-generated changes in the ac electrical dissipations are explained in terms of known radiation-generated changes in the molecular structures of the three materials. A preliminary model relating the dc electrical conductivity and the unpaired electron density in the Kapton is proposed.

  7. Electron-radiation effects on the ac and dc electrical properties and unpaired electron densities of three aerospace polymers

    NASA Astrophysics Data System (ADS)

    Long, Sheila Ann T.; Long, Edward R., Jr.; Ries, Heidi R.; Harries, Wynford L.

    1986-12-01

    The effects of gigarad-level total absorbed doses from 1-MeV electrons on the post-irradiation alternating-current (ac) and direct-current (dc) electrical properties and the unpaired electron densities have been studied for Kapton, Ultem, and Mylar. The unpaired electron densities (determined from electron paramagnetic resonance spectroscopy) and the dc electrical conductivities of the irradiated materials were monitored as functions of time following the exposures to determine their decay characteristics at room temperature. The elevated-temperature ac electrical dissipations of the Ultem and Mylar were affected by the radiation. The dc conductivity of the Kapton increased by five orders of magnitude, while the dc conductivities of the Ultem and Mylar increased by less than an order of magnitude, due to the radiation. The observed radiation-generated changes in the ac electrical dissipations are explained in terms of known radiation-generated changes in the molecular structures of the three materials. A preliminary model relating the dc electrical conductivity and the unpaired electron density in the Kapton is proposed.

  8. Relationships between the Birkeland currents, ionospheric currents, and electric fields

    NASA Technical Reports Server (NTRS)

    Bleuler, E.; Li, C. H.; Nisbet, J. S.

    1982-01-01

    Currents and electric fields in the ionosphere are calculated using a global model of the electron density including conjugate coupling along field lines. Incoherent scatter and rocket measurements of high-latitude electron densities are used to derive realistic variations of the polar conductivities as a function of magnetic activity. The Birkeland currents are specified in terms of three indices, and the relationship between these parameters and the auroral electrojets indices is examined along with the polar cap potential and the electric field at lower latitudes. A mathematical model of the currents, electric fields, and energy inputs produced by field aligned currents is developed, which is consistent with and specifiable in terms of measured geophysical indices.

  9. Design and Control Implementation of AC Electric Power Steering System Test Bench*

    NASA Astrophysics Data System (ADS)

    Zhang, Weidong; Ai, Yibo

    Using AC motor is an important development trend of electric power steering system, and in this paper, we proposed a design of AC electric power steering system test bench. The paper introduced the bench structure, working principle and main components selection first, and then given the implementation scheme of test bench's three functions: simulation of the road resistance, power assistant control and data acquisition. The test results showed the feasibility of the test bench.

  10. Fast electric dipole transitions in Ra-Ac nuclei

    SciTech Connect

    Ahmad, I.

    1985-01-01

    Lifetime of levels in /sup 225/Ra, /sup 225/Ac, and /sup 227/Ac have been measured by delayed coincidence techniques and these have been used to determine the E1 gamma-ray transition probabilities. The reduced E1 transition probabilities. The reduced E1 transition probabilities in /sup 225/Ra and /sup 225/Ac are about two orders of magnitude larger than the values in mid-actinide nuclei. On the other hand, the E1 rate in /sup 227/Ac is similar to those measured in heavier actinides. Previous studies suggest the presence of octupole deformation in all the three nuclei. The present investigation indicates that fast E1 transitions occur for nuclei with octupole deformation. However, the studies also show that there is no one-to-one correspondence between E1 rate and octupole deformation. 13 refs., 4 figs.

  11. Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.

    PubMed

    Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented. PMID:22163697

  12. Hall-Effect Based Semi-Fast AC On-Board Charging Equipment for Electric Vehicles

    PubMed Central

    Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented. PMID:22163697

  13. Electric Dipole Moment Experiment Systematic from Electric Field Discharge Current

    NASA Astrophysics Data System (ADS)

    Feinberg, B.; Gould, Harvey

    2014-09-01

    A magnetic field, in the direction of the electric field and synchronous with the electric field reversal, will mimic an EDM signal. One might expect a discharge across the electric field plates to produce magnetic fields with only small or vanishing components parallel to the electric field, minimizing its systematic effect. Our experimental model, using simulated discharge currents, found otherwise: the discharge current may be at an angle to the normal, and thus generate a normal magnetic field. Comparison of data from the experimental model with the results from calculations will be presented, along with estimates of the time-averaged normal magnetic field seen by atoms in an electron EDM experiment using a fountain of laser-cooled francium, as a function of discharge current.

  14. Patterns driven by combined ac and dc electric fields in nematic liquid crystals.

    PubMed

    Krekhov, Alexei; Decker, Werner; Pesch, Werner; Eber, Nándor; Salamon, Péter; Fekete, Balázs; Buka, Agnes

    2014-05-01

    The effect of superimposed ac and dc electric fields on the formation of electroconvection and flexoelectric patterns in nematic liquid crystals was studied. For selected ac frequencies, an extended standard model of the electrohydrodynamic instabilities was used to characterize the onset of pattern formation in the two-dimensional parameter space of the magnitudes of the ac and dc electric field components. Numerical as well as approximate analytical calculations demonstrate that depending on the type of patterns and on the ac frequency, the combined action of ac and dc fields may either enhance or suppress the formation of patterns. The theoretical predictions are qualitatively confirmed by experiments in most cases. Some discrepancies, however, seem to indicate the need to extend the theoretical description. PMID:25353815

  15. TOPICAL REVIEW: Electric current sensors: a review

    NASA Astrophysics Data System (ADS)

    Ripka, Pavel

    2010-11-01

    The review makes a brief overview of traditional methods of measurement of electric current and shows in more detail relatively new types of current sensors. These include Hall sensors with field concentrators, AMR current sensors, magneto-optical and superconducting current sensors. The influence of the magnetic core properties on the error of the current transformer shows why nanocrystalline materials are so advantageous for this application. Built-in CMOS current sensors are important tools for monitoring the health of integrated circuits. Of special industrial value are current clamps which can be installed without breaking the measured conductor. Parameters of current sensors are also discussed, including geometrical selectivity. This parameter specific for current sensors means the ability to suppress the influence of currents external to the sensor (including the position of the return conductor) and also suppress the influence on the position of the measured conductor with respect to the current.

  16. Proposal of Current Control Method for High-Speed AC Motor System

    NASA Astrophysics Data System (ADS)

    Furutani, Shinichi; Satake, Akira

    In this paper, current control method for High-Speed AC Motor System is proposed. In High-Speed driving operation, Current controller tends to lose stability because of dead time caused by computational delay and Electromagnetic coupling included AC Motor Model. The Main purpose of the proposed method is reduction of dead time on current controller. Proposed method based model predictive control and optimizing of start timing. The Effectiveness of proposed method is confirmed by simulation results.

  17. Measuring Electrical Current: The Roads Not Taken

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2011-01-01

    Recently I wrote about the standard Weston meter movement, that is at the heart of all modern analogue current measurements. Now I will discuss other techniques used to measure electric current that, despite being based on valid physical principles, are largely lost in technological history.

  18. Concurrent Electroencephalography Recording During Transcranial Alternating Current Stimulation (tACS)

    PubMed Central

    Fehér, Kristoffer D.; Morishima, Yosuke

    2016-01-01

    Oscillatory brain activities are considered to reflect the basis of rhythmic changes in transmission efficacy across brain networks and are assumed to integrate cognitive neural processes. Transcranial alternating current stimulation (tACS) holds the promise to elucidate the causal link between specific frequencies of oscillatory brain activity and cognitive processes. Simultaneous electroencephalography (EEG) recording during tACS would offer an opportunity to directly explore immediate neurophysiological effects of tACS. However, it is not trivial to measure EEG signals during tACS, as tACS creates a huge artifact in EEG data. Here we explain how to set up concurrent tACS-EEG experiments. Two necessary considerations for successful EEG recording while applying tACS are highlighted. First, bridging of the tACS and EEG electrodes via leaking EEG gel immediately saturates the EEG amplifier. To avoid bridging via gel, the viscosity of the EEG gel is the most important parameter. The EEG gel must be viscous to avoid bridging, but at the same time sufficiently fluid to create contact between the tACS electrode and the scalp. Second, due to the large amplitude of the tACS artifact, it is important to consider using an EEG system with a high resolution analog-to-digital (A/D) converter. In particular, the magnitude of the tACS artifact can exceed 100 mV at the vicinity of a stimulation electrode when 1 mA tACS is applied. The resolution of the A/D converter is of importance to measure good quality EEG data from the vicinity of the stimulation site. By following these guidelines for the procedures and technical considerations, successful concurrent EEG recording during tACS will be realized. PMID:26862814

  19. Concurrent Electroencephalography Recording During Transcranial Alternating Current Stimulation (tACS).

    PubMed

    Fehér, Kristoffer D; Morishima, Yosuke

    2016-01-01

    Oscillatory brain activities are considered to reflect the basis of rhythmic changes in transmission efficacy across brain networks and are assumed to integrate cognitive neural processes. Transcranial alternating current stimulation (tACS) holds the promise to elucidate the causal link between specific frequencies of oscillatory brain activity and cognitive processes. Simultaneous electroencephalography (EEG) recording during tACS would offer an opportunity to directly explore immediate neurophysiological effects of tACS. However, it is not trivial to measure EEG signals during tACS, as tACS creates a huge artifact in EEG data. Here we explain how to set up concurrent tACS-EEG experiments. Two necessary considerations for successful EEG recording while applying tACS are highlighted. First, bridging of the tACS and EEG electrodes via leaking EEG gel immediately saturates the EEG amplifier. To avoid bridging via gel, the viscosity of the EEG gel is the most important parameter. The EEG gel must be viscous to avoid bridging, but at the same time sufficiently fluid to create contact between the tACS electrode and the scalp. Second, due to the large amplitude of the tACS artifact, it is important to consider using an EEG system with a high resolution analog-to-digital (A/D) converter. In particular, the magnitude of the tACS artifact can exceed 100 mV at the vicinity of a stimulation electrode when 1 mA tACS is applied. The resolution of the A/D converter is of importance to measure good quality EEG data from the vicinity of the stimulation site. By following these guidelines for the procedures and technical considerations, successful concurrent EEG recording during tACS will be realized. PMID:26862814

  20. DNA molecular wire-based nanoelectronics: New insight and high frequency AC electrical characterization

    NASA Astrophysics Data System (ADS)

    Wibowo, Denni Ari

    While recent research in electron-transport mechanism on a double strands DNA seems to converge into a consensus, experiments in direct electrical measurements on a long DNA molecules still lead to a conflicting result. This research investigates experimentally the attachment of DNA molecular wire to high aspect ratio three-dimensional (3D) metal electrode and the effect of temperature to its AC electrical conductivity. The 3-D microelectrode was built on a silicone oxide substrate using patterned thick layers of negative tone photoresist covered by sputtered gold on the top surface. Attachment of lambda-DNA to the microelectrode was demonstrated using oligonucleotide-DNA phosphate backbone ligation and thiol-gold covalent bonding. Electrical characterizations based on I-V and AC impedance analysis of several repeatable data points of attachment with varying lambda-DNA concentration (500 ng/microL to 0.0625 ng/microL) showed measurable and significant conductivity of lambda-DNA molecular wires. Further study was carried out by measuring I-V and impedance while ramping up the temperature to reach complete denaturation (~1100C) resulting in no current transduction. Subsequent re-annealing of the DNA through incubation in TM buffer at annealing temperature (~900C) resulted in recovery of electrical conduction, providing a strong proof that DNA molecular wire is the one generate the electrical conductivity. lambda-DNA molecular wires reported to have differing impedance response at two temperature regions: impedance increases (conductivity decrease) between 40C -- 400C, and then decreases from 400C until DNA completely denatured (~1100C). The increase conductivity after 400C is an experimental support the long distance electron transport mechanism referred as "thermal hopping" mechanism. We believe that this research represents a significant departure from previous studies and makes unique contributions through (i) modification of DNA attachment methods has increase

  1. Flashover Current And Solar Array Electrical Architecure

    NASA Astrophysics Data System (ADS)

    Boulanger, Bernard; Zugaj, Herve; Malorn, Frederic

    2011-10-01

    The detrimental effects of electrical stress are well known for multijunction GaAs cells, particularly when the cells are not protected by the dedicated bypass diode, in case of reverse current in the cell. This electrical stress may occur due to coverglass electrostatic discharge and associated flashover (FO) current, with detrimental effect if the flashover current value and duration exceed the limits. Motivated by these concerns, THALES ALENIA SPACE has performed a solar array electrical architecture trade-off in order to reduce this risk. The first issue of this analysis [10] have been presented during the 11th SCTC. This 9th ESPC TAS paper includes : The second issue of this analysis , completed by using Emags3 results and new data from 11th SCTC, Proposal of complementary flashover characterisation tests versus solar cell network parameters.

  2. DC-AC Cascaded H-Bridge Multilevel Boost Inverter With No Inductors for Electric/Hybrid Electric Vehicle Applications

    SciTech Connect

    Tolbert, Leon M; Ozpineci, Burak; Du, Zhong; Chiasson, John N

    2009-01-01

    This paper presents a cascaded H-bridge multilevel boost inverter for electric vehicle (EV) and hybrid EV (HEV) applications implemented without the use of inductors. Currently available power inverter systems for HEVs use a dc-dc boost converter to boost the battery voltage for a traditional three-phase inverter. The present HEV traction drive inverters have low power density, are expensive, and have low efficiency because they need a bulky inductor. A cascaded H-bridge multilevel boost inverter design for EV and HEV applications implemented without the use of inductors is proposed in this paper. Traditionally, each H-bridge needs a dc power supply. The proposed design uses a standard three-leg inverter (one leg for each phase) and an H-bridge in series with each inverter leg which uses a capacitor as the dc power source. A fundamental switching scheme is used to do modulation control and to produce a five-level phase voltage. Experiments show that the proposed dc-ac cascaded H-bridge multilevel boost inverter can output a boosted ac voltage without the use of inductors.

  3. PRECISION INTEGRATOR FOR MINUTE ELECTRIC CURRENTS

    DOEpatents

    Hemmendinger, A.; Helmer, R.J.

    1961-10-24

    An integrator is described for measuring the value of integrated minute electrical currents. The device consists of a source capacitor connected in series with the source of such electrical currents, a second capacitor of accurately known capacitance and a source of accurately known and constant potential, means responsive to the potentials developed across the source capacitor for reversibly connecting the second capacitor in series with the source of known potential and with the source capacitor and at a rate proportional to the potential across the source capacitor to maintain the magnitude of the potential across the source capacitor at approximately zero. (AEC)

  4. Electrical Characteristics of an Alternating Current Plasma Igniter in Airflow

    NASA Astrophysics Data System (ADS)

    Zhao, Bingbing; He, Liming; Du, Hongliang; Zhang, Hualei

    2014-04-01

    The electrical characteristics of an alternating current (AC) plasma igniter were investigated for a working gas of air at atmospheric pressure. The discharge voltage and current were measured in air in both breakdown and stable combustion processes, respectively, and the current-zero phenomena, voltage-current (V-I) characteristics were studied for different working gas flow rates. The results indicated that the working gas between anode and cathode could be ionized to generate gas discharge when the voltage reached 8 kV, and the maximum current was 33.36 A. When the current came to zero, current-zero phenomena appeared with duration of 2 μs. At the current-zero moment, dynamic resistance between electrodes became extremely high, and the maximum value could reach 445 kΩ, which was the main factor to restrain the current. With increasing working gas flow rates, the gradient of V-I characteristic curves was increased, as was the dynamic resistance. At a constant driven power, the discharge voltage increased.

  5. Axial current generation from electric field: chiral electric separation effect.

    PubMed

    Huang, Xu-Guang; Liao, Jinfeng

    2013-06-01

    We study a relativistic plasma containing charged chiral fermions in an external electric field. We show that with the presence of both vector and axial charge densities, the electric field can induce an axial current along its direction and thus cause chirality separation. We call it the chiral electric separation effect (CESE). On a very general basis, we argue that the strength of CESE is proportional to μ(V)μ(A) with μ(V) and μ(A) the chemical potentials for vector charge and axial charge. We then explicitly calculate this CESE conductivity coefficient in thermal QED at leading-log order. The CESE can manifest a new gapless wave mode propagating along the electric field. Potential observable effects of CESE in heavy-ion collisions are also discussed. PMID:25167486

  6. Towards Modifying Children's Ideas about Electric Current.

    ERIC Educational Resources Information Center

    Osborne, Roger

    1983-01-01

    Investigated ideas used/favored by 40 California students (ages 8-12) who received little/no formal teaching about electric currents. Also investigated whether they were interested in or could discuss other childrens' ideas and whether they would change their ideas following exposure to experimental evidence that was at variance with these ideas.…

  7. ``Superfast'' and ``Hyperfast'' Electrophoresis in DC and AC Electric Fields

    NASA Astrophysics Data System (ADS)

    Demekhin, Evgeny; Korovyakovsky, Alex

    2006-11-01

    Movement of a small conducting spherical granule in an electrolyte solution under force of DC and AC fields is considered. The problem is described by strongly coupled nonlinear PDE system. The fact that it has two small parameters, the ratio of the ion double layer to the diffusion layer and the ratio of the diffusion layer to the granule's diameter, makes the problem unique and extremely difficult to solve. This is the reason why only solutions for some particular cases have been known. In this work for the first time, combining asymptotic and numerical methods, a complete theory of electrophoresis in DC and AC fields is developed. By special decomposition method the system is transformed to new variables. Analytical solution in the inner region results in the nonlinear Smoluchowski slip velocity. In the intermediate region convection-diffusion equation is solved numerically. In tern, the intermediate solution is matched with the outer solution of Laplace equation to complete the statement. For a strong DC field (``superfast'' electrophoresis) the theory predicts, in agreement with experiments, the granule's velocity to be proportional to the granule's size and squared external field; there is a large elongated vortex behind the granule and a small one near its equator. There is an excellent agreement with available experimental data. Granule's velocity for AC field becomes even larger than for DC, it has a maximum with respect to the field's frequency (``hyperfast'' electrophoresis).

  8. A study of some features of ac and dc electric power systems for a space station

    NASA Technical Reports Server (NTRS)

    Hanania, J. I.

    1983-01-01

    This study analyzes certain selected topics in rival dc and high frequency ac electric power systems for a Space Station. The interaction between the Space Station and the plasma environment is analyzed, leading to a limit on the voltage for the solar array and a potential problem with resonance coupling at high frequencies. Certain problems are pointed out in the concept of a rotary transformer, and further development work is indicated in connection with dc circuit switching, special design of a transmission conductor for the ac system, and electric motors. The question of electric shock hazards, particularly at high frequency, is also explored. and a problem with reduced skin resistance and therefore increased hazard with high frequency ac is pointed out. The study concludes with a comparison of the main advantages and disadvantages of the two rival systems, and it is suggested that the choice between the two should be made after further studies and development work are completed.

  9. Calculations of electric currents in Europa

    NASA Technical Reports Server (NTRS)

    Colburn, D. S.; Reynolds, R. T.

    1986-01-01

    Electrical currents should flow in the Galilean satellite, Europa, because it is located in Jupiter's corotating magnetosphere. The possible magnitudes of these currents are calculated by assuming that Europa is a differentiated body consisting of an outer H2O layer and a silicate core. Two types of models are considered here: one in which the water is completely frozen and a second in which there is an intermediate liquid layer. For the transverse electric mode (eddy currents), the calculated current density in a liquid layer is approximately 10 to the -5/Am. For the transverse magnetic mode (unipolar generator), the calculated current density in the liquid is severely constrained by the ice layer to a range of only 10 to the -10 to -11th power/ Am, for a total H2O thickness of 100 km, provided that neither layer is less than 4 km thick. The current density is less for a completely frozen H2O layer. If transient cracks were to appear in the ice layer, thereby exposing liquid, the calculated current density could rise to a range of 10 to the -6 to 10 to the -5/Am, depending on layer thicknesses, which would require an exposed area of 10 to the -9 to 10 to the -8 of the Europa surface. The corresponding total current of 2.3x10 to the 5th power A could in 1 yr. electrolyze 7x10 to the 5th power kg of water (and more if the cells were in series), and thereby store up to 10 the 8th power J of energy, but it is not clear how electrolysis can take place in the absence of suitable electrodes. Electrical heating would be significant only if the ice-layer thickness were on the order of 1 m, such as might occur if an exposed liquid surface were to freeze over; the heating under this condition could hinder the thickening of the ice layer.

  10. Storing the Electric Energy Produced by an AC Generator

    ERIC Educational Resources Information Center

    Carvalho, P. Simeao; Lima, Ana Paula; Carvalho, Pedro Simeao

    2010-01-01

    Producing energy from renewable energy sources is nowadays a priority in our society. In many cases this energy comes as electric energy, and when we think about electric energy generators, one major issue is how we can store that energy. In this paper we discuss how this can be done and give some ideas for applications that can serve as a…

  11. AC and DC transport currents in melt-grown YBCO

    SciTech Connect

    Yi, Z.; Ashworth, S.; Becluz, C.; Scurlock, R.G. )

    1991-03-01

    It has been suggested that the transport J{sub c} in multi-grain samples of bulk YBCO are limited by the intergrain links. This paper reports on preliminary measurements of intergrain currents. The intergrain critical currents in melt grown YBCO do not appear to be as sensitive to the precise crystallographic alignment of adjacent grains a has been reported for thin films. The measured critical current of similar grain boundaries varies widely, between 15000 A/cm{sup 2} and 200A/Cm{sub 2} for adjacent boundaries in the same sample.

  12. Efficacy of an AC sinusoidal electric field for apoptosis induction in lung carcinoma cells (A549)

    NASA Astrophysics Data System (ADS)

    Park, Hyoun-Hyang; Lee, Seung S.; Hoon Lee, Dae

    2012-08-01

    An AC sinusoidal electric field was applied to lung carcinoma cells for the induction of apoptosis. The occurrence of apoptosis was determined by analysis of Annexin V/PI and DNA fragmentation. Additional evidence of apoptosis was confirmed by caspase-3 cleavage and disruption of mitochondrial membrane potential. These results demonstrated that the expression of apoptosis can be controlled by varying the magnitude and the duration of the field, and that the application of an AC electric field can stimulate the apoptosis via mitochondria-mediated pathway.

  13. New ac microammeter for leakage current measurement of biomedical equipment

    NASA Astrophysics Data System (ADS)

    Branca, F. P.; Del Prete, Z.; Marinozzi, F.

    1993-11-01

    A new inexpensive current probe for on-line leakage current measurement of biomedical devices in hospital environment is described. The prototype is designed to detect and measure leakage currents on the ground wire of the device's power cord so that its integrity can be monitored in real time. Realized with a sensing coil specially matched to a low-noise op amp, this probe adds only negligible impedance on the monitored ground lines. From this preliminary study about the device's metrological performances, a sensitivity of 10 nArms for a current range 1-500 μArms has emerged, together with a mean linearity error of 0.03% and a frequency response flat within 1% of gain from 50 to 2000 Hz.

  14. Study of DC and AC electric field effect on Pisum sativum seeds growth

    NASA Astrophysics Data System (ADS)

    Mahmood, Bahar; Jaleh, Sojoodi; Yasaman, Yasaie

    2014-07-01

    In this research the effect of electric field on two groups of wet and dry Pisum sativum seeds growth was studied. To generate the required electric field a parallel-plate capacitor with round copper plates of 30 cm diameter was used. The experiments were performed once in fixed exposure duration of 8 min in variable DC electric field of 0.25-1.5 kV/m. The other experiments were performed in variable fields of 50-125 kV/m in fixed exposure duration of 8 min, in two groups of AC and DC electric fields. The experiments were repeated three times. In each experiment 10 seeds were used and there was a sham exposed group for comparison, too. After application of electric field, the seeds were kept for six days in the same growth chamber with the temperature of 25 ± 1 °C and 12 h light/12 h darkness. On the 6th day length of stems and height of roots were measured. After doing statistical analysis, in low intensities of DC electric field, the highest significant increase of mean growth (The average of stem length and the height of roots) was seen in 1.5 kV/m in wet seeds. In high intensities of DC and AC electric fields, the highest significant increase of mean growth was seen in AC electric field of 100 kV/m in wet seeds.

  15. Quantitative Thermal Microscopy Measurement with Thermal Probe Driven by dc+ac Current

    NASA Astrophysics Data System (ADS)

    Bodzenta, Jerzy; Juszczyk, Justyna; Kaźmierczak-Bałata, Anna; Firek, Piotr; Fleming, Austin; Chirtoc, Mihai

    2016-07-01

    Quantitative thermal measurements with spatial resolution allowing the examination of objects of submicron dimensions are still a challenging task. The quantity of methods providing spatial resolution better than 100 nm is very limited. One of them is scanning thermal microscopy (SThM). This method is a variant of atomic force microscopy which uses a probe equipped with a temperature sensor near the apex. Depending on the sensor current, either the temperature or the thermal conductivity distribution at the sample surface can be measured. However, like all microscopy methods, the SThM gives only qualitative information. Quantitative measuring methods using SThM equipment are still under development. In this paper, a method based on simultaneous registration of the static and the dynamic electrical resistances of the probe driven by the sum of dc and ac currents, and examples of its applications are described. Special attention is paid to the investigation of thin films deposited on thick substrates. The influence of substrate thermal properties on the measured signal and its dependence on thin film thermal conductivity and film thickness are analyzed. It is shown that in the case where layer thicknesses are comparable or smaller than the probe-sample contact diameter, a correction procedure is required to obtain actual thermal conductivity of the layer. Experimental results obtained for thin SiO2 and BaTiO_{3 }layers with thicknesses in the range from 11 nm to 100 nm are correctly confirmed with this approach.

  16. Methods, systems and apparatus for controlling operation of two alternating current (AC) machines

    DOEpatents

    Gallegos-Lopez, Gabriel; Nagashima, James M.; Perisic, Milun; Hiti, Silva

    2012-06-05

    A system is provided for controlling two alternating current (AC) machines via a five-phase PWM inverter module. The system comprises a first control loop, a second control loop, and a current command adjustment module. The current command adjustment module operates in conjunction with the first control loop and the second control loop to continuously adjust current command signals that control the first AC machine and the second AC machine such that they share the input voltage available to them without compromising the target mechanical output power of either machine. This way, even when the phase voltage available to either one of the machines decreases, that machine outputs its target mechanical output power.

  17. Electric properties of carbon nano-onion/polyaniline composites: a combined electric modulus and ac conductivity study

    NASA Astrophysics Data System (ADS)

    Papathanassiou, Anthony N.; Mykhailiv, Olena; Echegoyen, Luis; Sakellis, Ilias; Plonska-Brzezinska, Marta E.

    2016-07-01

    The complex electric modulus and the ac conductivity of carbon nano-onion/polyaniline composites were studied from 1 mHz to 1 MHz at isothermal conditions ranging from 15 K to room temperature. The temperature dependence of the electric modulus and the dc conductivity analyses indicate a couple of hopping mechanisms. The distinction between thermally activated processes and the determination of cross-over temperature were achieved by exploring the temperature dependence of the fractional exponent of the dispersive ac conductivity and the bifurcation of the scaled ac conductivity isotherms. The results are analyzed by combining the granular metal model (inter-grain charge tunneling of extended electron states located within mesoscopic highly conducting polyaniline grains) and a 3D Mott variable range hopping model (phonon assisted tunneling within the carbon nano-onions and clusters).

  18. The effects of theta transcranial alternating current stimulation (tACS) on fluid intelligence.

    PubMed

    Pahor, Anja; Jaušovec, Norbert

    2014-09-01

    The objective of the study was to explore the influence of transcranial alternating current stimulation (tACS) on resting brain activity and on measures of fluid intelligence. Theta tACS was applied to the left parietal and left frontal brain areas of healthy participants after which resting electroencephalogram (EEG) data was recorded. Following sham/active stimulation, the participants solved two tests of fluid intelligence while their EEG was recorded. The results showed that active theta tACS affected spectral power in theta and alpha frequency bands. In addition, active theta tACS improved performance on tests of fluid intelligence. This influence was more pronounced in the group of participants that received stimulation to the left parietal area than in the group of participants that received stimulation to the left frontal area. Left parietal tACS increased performance on the difficult test items of both tests (RAPM and PF&C) whereas left frontal tACS increased performance only on the easy test items of one test (RAPM). The observed behavioral tACS influences were also accompanied by changes in neuroelectric activity. The behavioral and neuroelectric data tentatively support the P-FIT neurobiological model of intelligence. PMID:24998643

  19. Calorimetric AC loss measurement of MgB2 superconducting tape in an alternating transport current and direct magnetic field

    NASA Astrophysics Data System (ADS)

    See, K. W.; Xu, X.; Horvat, J.; Cook, C. D.; Dou, S. X.

    2012-11-01

    Applications of MgB2 superconductors in electrical engineering have been widely reported, and various studies have been made to define their alternating current (AC) losses. However, studies on the transport losses with an applied transverse DC magnetic field have not been conducted, even though this is one of the favored conditions in applications of practical MgB2 tapes. Methods and techniques used to characterize and measure these losses have so far been grouped into ‘electrical’ and ‘calorimetric’ approaches with external conditions set to resemble the application conditions. In this paper, we present a new approach to mounting the sample and employ the calorimetric method to accurately determine the losses in the concurrent application of AC transport current and DC magnetic fields that are likely to be experienced in practical devices such as generators and motors. This technique provides great simplification compared to the pickup coil and lock-in amplifier methods and is applied to a long length (˜10 cm) superconducting tape. The AC loss data at 20 and 30 K will be presented in an applied transport current of 50 Hz under external DC magnetic fields. The results are found to be higher than the theoretical predictions because of the metallic fraction of the tape that contributes quite significantly to the total losses. The data, however, will allow minimization of losses in practical MgB2 coils and will be used in the verification of numerical coil models.

  20. Targeting the neurophysiology of cognitive systems with transcranial alternating current stimulation (tACS)

    PubMed Central

    Fröhlich, Flavio; Sellers, Kristin K.; Cordle, Asa L.

    2015-01-01

    Cognitive impairment represents one of the most debilitating and most difficult symptom to treat of many psychiatric illnesses. Human neurophysiology studies have suggested specific pathologies of cortical network activity correlate with cognitive impairment. However, we lack (1) demonstration of causal relationships between specific network activity patterns and cognitive capabilities and (2) treatment modalities that directly target impaired network dynamics of cognition. Transcranial alternating current stimulation (tACS), a novel non-invasive brain stimulation approach, may provide a crucial tool to tackle these challenges. We here propose that tACS can be used to elucidate the causal role of cortical synchronization in cognition and, eventually, to enhance pathologically weakened synchrony that may underlie cognitive deficits. To accelerate such development of tACS as a treatment for cognitive deficits, we discuss studies on tACS and cognition (all performed in healthy participants) according to the Research Domain Criteria (RDoC) of the National Institute of Mental Health. PMID:25547149

  1. Analytic formulation for the ac electrical conductivity in two- temperature, strongly coupled, overdense plasma: FORTRAN subroutine

    SciTech Connect

    Cauble, R.; Rozmus, W.

    1993-10-21

    A FORTRAN subroutine for the calculation of the ac electrical conductivity in two-temperature, strongly coupled, overdense plasma is presented. The routine is the result of a model calculation based on classical transport theory with application to plasmas created by the interaction of short pulse lasers and solids. The formulation is analytic and the routine is self-contained.

  2. The effect of 10 Hz transcranial alternating current stimulation (tACS) on corticomuscular coherence

    PubMed Central

    Wach, Claudia; Krause, Vanessa; Moliadze, Vera; Paulus, Walter; Schnitzler, Alfons; Pollok, Bettina

    2013-01-01

    Synchronous oscillatory activity at alpha (8–12 Hz), beta (13–30 Hz), and gamma (30–90 Hz) frequencies is assumed to play a key role for motor control. Corticomuscular coherence (CMC) represents an established measure of the pyramidal system's integrity. Transcranial alternating current stimulation (tACS) offers the possibility to modulate ongoing oscillatory activity. Behaviorally, 20 Hz tACS in healthy subjects has been shown to result in movement slowing. However, the neurophysiological changes underlying these effects are not entirely understood yet. The present study aimed at ascertaining the effects of tACS at 10 and 20 Hz in healthy subjects on CMC and local power of the primary sensorimotor cortex. Neuromagnetic activity was recorded during isometric contraction before and at two time points (2–10 min and 30–38 min) after tACS of the left primary motor cortex (M1), using a 306 channel whole head magnetoencephalography (MEG) system. Additionally, electromyography (EMG) of the right extensor digitorum communis (EDC) muscle was measured. TACS was applied at 10 and 20 Hz, respectively, for 10 min at 1 mA. Sham stimulation served as control condition. The data suggest that 10 Hz tACS significantly reduced low gamma band CMC during isometric contraction. This implies that tACS does not necessarily cause effects at stimulation frequency. Rather, the findings suggest cross-frequency interplay between alpha and low gamma band activity modulating functional interaction between motor cortex and muscle. PMID:24009573

  3. Electrode Models for Electric Current Computed Tomography

    PubMed Central

    CHENG, KUO-SHENG; ISAACSON, DAVID; NEWELL, J. C.; GISSER, DAVID G.

    2016-01-01

    This paper develops a mathematical model for the physical properties of electrodes suitable for use in electric current computed tomography (ECCT). The model includes the effects of discretization, shunt, and contact impedance. The complete model was validated by experiment. Bath resistivities of 284.0, 139.7, 62.3, 29.5 Ω · cm were studied. Values of “effective” contact impedance z used in the numerical approximations were 58.0, 35.0, 15.0, and 7.5 Ω · cm2, respectively. Agreement between the calculated and experimentally measured values was excellent throughout the range of bath conductivities studied. It is desirable in electrical impedance imaging systems to model the observed voltages to the same precision as they are measured in order to be able to make the highest resolution reconstructions of the internal conductivity that the measurement precision allows. The complete electrode model, which includes the effects of discretization of the current pattern, the shunt effect due to the highly conductive electrode material, and the effect of an “effective” contact impedance, allows calculation of the voltages due to any current pattern applied to a homogeneous resistivity field. PMID:2777280

  4. Hands-On Current Electricity: A Professional Development Course

    ERIC Educational Resources Information Center

    Gibbons, Patrick C.; McMahon, Ann P.; Wiegers, John F.

    2003-01-01

    "Hands-on Current Electricity" gives K-8 teachers the opportunity to experience inquiry learning about current electricity by (1) experimenting with current electricity through a variety of activities, (2) discovering preconceived mental models of electricity used to understand their observations, (3) creating new mental models that have greater…

  5. Sub-micrometer particles produced by a low-powered AC electric arc in liquids.

    PubMed

    Jaworski, Jacek A; Fleury, Eric

    2012-01-01

    The article presents the report of the production of composites of sub-micrometer metal particles in matrix consisted of the metal compounds by means of an AC electric arc in water and paraffin solutions using electrodes carbon-metal and metal-metal (metal: Ni, Fe, Co, Cu). The advantage of this method is the low electric power (from 5 to 10 W) needed in comparison to standard DC arc-discharge methods (0.8 to 3 kW). This method enables the production of particles from conductive material also in wide range of temperature and in solvent which could be either transparent to light or opaque. Moreover the solvent can be electrolyte or insulating liquid. The microstructure of the composite layer was investigated by scanning electron microscopy (SEM), Electron Probe Microanalysis (EPMA) and X-ray. During particles production in water metal oxides were created. Additionally using cobalt-copper, nickel-copper as couple electrodes, insoluble in water copper (II) hydroxide crystal grains were created additionally which crystals shape was depended on transition metal. For iron-copper couple electrodes system the copper (II) hydroxide was not formed. Experiments with sequence production of Ni and Fe particles with C electrode assisting in molten paraffin let to obtain both Ni and Fe particles surrounded by paraffin. After solidification the material was insulator but if locally magnetic field influenced on the liquid solution in that place after solidification a new composite was created which was electric current conductor with resistivity around 0.1 omega x m, was attracted by magnetic field and presented magneto resistance around 0.4% in changing magnetic field in a range 150 mT. After mixing the concentrated paraffin with normal paraffin resistivity of the mixture increased and it became photosensitive and created small voltage under light influence. PMID:22524027

  6. Module Twelve: Series AC Resistive-Reactive Circuits; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The module covers series circuits which contain both resistive and reactive components and methods of solving these circuits for current, voltage, impedance, and phase angle. The module is divided into six lessons: voltage and impedance in AC (alternating current) series circuits, vector computations, rectangular and polar notation, variational…

  7. Numerical and theoretical evaluations of AC losses for single and infinite numbers of superconductor strips with direct and alternating transport currents in external AC magnetic field

    NASA Astrophysics Data System (ADS)

    Kajikawa, K.; Funaki, K.; Shikimachi, K.; Hirano, N.; Nagaya, S.

    2010-11-01

    AC losses in a superconductor strip are numerically evaluated by means of a finite element method formulated with a current vector potential. The expressions of AC losses in an infinite slab that corresponds to a simple model of infinitely stacked strips are also derived theoretically. It is assumed that the voltage-current characteristics of the superconductors are represented by Bean’s critical state model. The typical operation pattern of a Superconducting Magnetic Energy Storage (SMES) coil with direct and alternating transport currents in an external AC magnetic field is taken into account as the electromagnetic environment for both the single strip and the infinite slab. By using the obtained results of AC losses, the influences of the transport currents on the total losses are discussed quantitatively.

  8. Traveling-wave electrokinetic micropumps: velocity, electrical current, and impedance measurements.

    PubMed

    García-Sánchez, P; Ramos, A; Green, N G; Morgan, H

    2008-09-01

    An array of microelectrodes covered in an electrolyte and energized by a traveling-wave potential produces net movement of the fluid. Arrays of platinum microelectrodes of two different characteristic sizes have been studied. For both sizes of arrays, at low voltages (<2 V pp) the electrolyte flow is in qualitative agreement with the linear theory of ac electroosmosis. At voltages above a threshold, the direction of fluid flow is reversed. The electrical impedance of the electrode-electrolyte system was measured after the experiments, and changes in the electrical properties of the electrolyte were observed. Measurements of the electrical current during pumping of the electrolyte are also reported. Transient behaviors in both electrical current and fluid velocity were observed. The Faradaic currents probably generate conductivity gradients in the liquid bulk, which in turn give rise to electrical forces. These effects are discussed in relation to the fluid flow observations. PMID:18672919

  9. Direct Detection of Pure ac Spin Current by X-Ray Pump-Probe Measurements.

    PubMed

    Li, J; Shelford, L R; Shafer, P; Tan, A; Deng, J X; Keatley, P S; Hwang, C; Arenholz, E; van der Laan, G; Hicken, R J; Qiu, Z Q

    2016-08-12

    Despite recent progress in spin-current research, the detection of spin current has mostly remained indirect. By synchronizing a microwave waveform with synchrotron x-ray pulses, we use the ferromagnetic resonance of the Py (Ni_{81}Fe_{19}) layer in a Py/Cu/Cu_{75}Mn_{25}/Cu/Co multilayer to pump a pure ac spin current into the Cu_{75}Mn_{25} and Co layers, and then directly probe the spin current within the Cu_{75}Mn_{25} layer and the spin dynamics of the Co layer by x-ray magnetic circular dichroism. This element-resolved pump-probe measurement unambiguously identifies the ac spin current in the Cu_{75}Mn_{25} layer. PMID:27563981

  10. Direct Detection of Pure ac Spin Current by X-Ray Pump-Probe Measurements

    NASA Astrophysics Data System (ADS)

    Li, J.; Shelford, L. R.; Shafer, P.; Tan, A.; Deng, J. X.; Keatley, P. S.; Hwang, C.; Arenholz, E.; van der Laan, G.; Hicken, R. J.; Qiu, Z. Q.

    2016-08-01

    Despite recent progress in spin-current research, the detection of spin current has mostly remained indirect. By synchronizing a microwave waveform with synchrotron x-ray pulses, we use the ferromagnetic resonance of the Py (Ni81Fe19 ) layer in a Py /Cu /Cu75Mn25/Cu /Co multilayer to pump a pure ac spin current into the Cu75Mn25 and Co layers, and then directly probe the spin current within the Cu75Mn25 layer and the spin dynamics of the Co layer by x-ray magnetic circular dichroism. This element-resolved pump-probe measurement unambiguously identifies the ac spin current in the Cu75Mn25 layer.

  11. ac powertrain for an electric vehicle. Phase 2 and Phase 3 final report

    SciTech Connect

    Slicker, J.M.

    1984-11-01

    This report describes work relating to Phases 2 and 3 development and testing of an ac powertrain for a 25 hp four-passenger electric vehicle. The system, which consists of a two-speed automatic mechanical transaxle, 18.6 kW ac induction traction motor, 33.6 kW inverter and overall logic controller, was installed and evaluated in a converted Mercury Lynx rolling test bed vehicle. An on-board charger and an auxiliary dc-to-dc converter were integrated into the inverter/controller package.

  12. An improved FEM model for computing transport AC loss in coils made of RABiTS YBCO coated conductors for electric machines

    NASA Astrophysics Data System (ADS)

    Ainslie, Mark D.; Rodriguez-Zermeno, Victor M.; Hong, Zhiyong; Yuan, Weijia; Flack, Timothy J.; Coombs, Timothy A.

    2011-04-01

    AC loss can be a significant problem for any applications that utilize or produce an AC current or magnetic field, such as an electric machine. The authors investigate the electromagnetic properties of high temperature superconductors with a particular focus on the AC loss in superconducting coils made from YBCO coated conductors for use in an all-superconducting electric machine. This paper presents an improved 2D finite element model for the cross-section of such coils, based on the H formulation. The model is used to calculate the transport AC loss of a racetrack-shaped coil using constant and magnetic field-dependent critical current densities, and the inclusion and exclusion of a magnetic substrate, as found in RABiTS (rolling-assisted biaxially textured substrate) YBCO coated conductors. The coil model is based on the superconducting stator coils used in the University of Cambridge EPEC Superconductivity Group's all-superconducting permanent magnet synchronous motor design. To validate the modeling results, the transport AC loss of a stator coil is measured using an electrical method based on inductive compensation by means of a variable mutual inductance. Finally, the implications of the findings on the performance of the motor are discussed.

  13. AC electric field induced droplet deformation in a microfluidic T-junction.

    PubMed

    Xi, Heng-Dong; Guo, Wei; Leniart, Michael; Chong, Zhuang Zhi; Tan, Say Hwa

    2016-08-01

    We present for the first time an experimental study on the droplet deformation induced by an AC electric field in droplet-based microfluidics. It is found that the deformation of the droplets becomes stronger with increasing electric field intensity and frequency. The measured electric field intensity dependence of the droplet deformation is consistent with an early theoretical prediction for stationary droplets. We also proposed a simple equivalent circuit model to account for the frequency dependence of the droplet deformation. The model well explains our experimental observations. In addition, we found that the droplets can be deformed repeatedly by applying an amplitude modulation (AM) signal. PMID:27173587

  14. Improved SCR ac Motor Controller for Battery Powered Urban Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Latos, T. S.

    1982-01-01

    An improved ac motor controller, which when coupled to a standard ac induction motor and a dc propulsion battery would provide a complete electric vehicle power train with the exception of the mechanical transmission and drive wheels was designed. In such a system, the motor controller converts the dc electrical power available at the battery terminals to ac electrical power for the induction motor in response to the drivers commands. The performance requirements of a hypothetical electric vehicle with an upper weight bound of 1590 kg (3500 lb) were used to determine the power rating of the controller. Vehicle acceleration capability, top speed, and gradeability requisites were contained in the Society of Automotive Engineers (SAE) Schedule 227a(d) driving cycle. The important capabilities contained in this driving cycle are a vehicle acceleration requirement of 0 to 72.4 kmph (0 to 45 mph) in 28 seconds a top speed of 88.5 kmph (55 mph), and the ability to negotiate a 10% grade at 48 kmph (30 mph). A 10% grade is defined as one foot of vertical rise per 10 feet of horizontal distance.

  15. Comparison of AC drives for electric vehicles -- A report on experts` opinion survey

    SciTech Connect

    Chang, L.

    1994-08-01

    It is recognized that wide applications of electric vehicles (EVs) will bring tremendous social, economical and ecological benefits. With the growing interests in electric vehicles, much effort is demanded for the development of efficient, reliable and economical AC drives` for EV propulsion purpose. Both induction motor (IM) drives and permanent magnet brushless DC motor (BDCM) drives have been applied to EVs. Switched reluctance motor (SRM) drives have been proposed as an alternative for EV propulsion. In order to assess the suitability of IM, BDCM and SRM drives for EV applications and to provide a technical support for the development and selection of future EV propulsion systems, the existing EV AC propulsion drives were compared, and a survey of experts` opinions was conducted. Comparison of the three AC drives was made on a relative and a quantitative basis using the survey questionnaires. According to the majority of the experts, induction motor drives are best suited for EV propulsion purpose, due to their low cost, high reliability, high speed, established converter and manufacturing technology, low torque ripple/noise and absence of position sensors. BDCM drives feature compactness, low weight and high efficiency and therefore provide an alternative for EV propulsion. The experts regard insulated gate bipolar transistors (IGBTs) as the most suited power semiconductor devices for AC drive converters at the present stage. 7 refs.

  16. Advanced AC permanent magnet axial flux disc motor for electric passenger vehicle

    NASA Technical Reports Server (NTRS)

    Kliman, G. B.

    1982-01-01

    An ac permanent magnet axial flux disc motor was developed to operate with a thyristor load commutated inverter as part of an electric vehicle drive system. The motor was required to deliver 29.8 kW (40 hp) peak and 10.4 kW (14 hp) average with a maximum speed of 11,000 rpm. It was also required to run at leading power factor to commutate the inverter. Three motors were built.

  17. Electric currents in networks of interconnected memristors

    NASA Astrophysics Data System (ADS)

    Nedaaee Oskoee, Ehsan; Sahimi, Muhammad

    2011-03-01

    Chua [IEEE Trans. Circuit TheoryIECTAF0018-932410.1109/TCT.1971.1083337 1, 507 (1971).] argued that, in addition to the standard resistors, capacitors, and inductors, there must be a fourth fundamental element in electrical circuits, which he called a memory resistor or memristor. Strukov [Nature (London)NATUAS0028-083610.1038/nature06932 453, 80 (2008)] showed how memristive behavior arises in some thin semiconducting films. Unlike other passive elements, however, a memristor with large sizes cannot be fabricated, because scale up of a memristor to dimensions of the order of microns causes loss of the memristive effect by decreasing the width of the doped region relative to the overall size of the memristor. A microscale memristor is, however, essential to most of the potential applications. One way of fabricating such a microscale memristor without losing the memristive effect is to make a network of very small interconnected memristors. We report the results of numerical simulations of electrical currents in such networks of interconnected memristors, as well as memristors and Ohmic conductors. The memristor networks exhibit a rich variety of interesting properties, including weakly and strongly memristive regimes, a possible first-order transition at the connectivity threshold, generation of second harmonics in the strongly memristive regime, and the universal dependence of the network’s strength on the frequency. Moreover, we show that the polarity of the memristors can play an important role in the overall properties of the memristor network, in particular its speed of switching, which may have a potentially important application to faster computers. None of these properties are exhibited by linear resistor networks, or even by nonlinear resistor networks without a memory effect.

  18. Electric currents in networks of interconnected memristors.

    PubMed

    Nedaaee Oskoee, Ehsan; Sahimi, Muhammad

    2011-03-01

    Chua [IEEE Trans. Circuit Theory 1, 507 (1971).] argued that, in addition to the standard resistors, capacitors, and inductors, there must be a fourth fundamental element in electrical circuits, which he called a memory resistor or memristor. Strukov et al. [Nature (London) 453, 80 (2008)] showed how memristive behavior arises in some thin semiconducting films. Unlike other passive elements, however, a memristor with large sizes cannot be fabricated, because scale up of a memristor to dimensions of the order of microns causes loss of the memristive effect by decreasing the width of the doped region relative to the overall size of the memristor. A microscale memristor is, however, essential to most of the potential applications. One way of fabricating such a microscale memristor without losing the memristive effect is to make a network of very small interconnected memristors. We report the results of numerical simulations of electrical currents in such networks of interconnected memristors, as well as memristors and Ohmic conductors. The memristor networks exhibit a rich variety of interesting properties, including weakly and strongly memristive regimes, a possible first-order transition at the connectivity threshold, generation of second harmonics in the strongly memristive regime, and the universal dependence of the network's strength on the frequency. Moreover, we show that the polarity of the memristors can play an important role in the overall properties of the memristor network, in particular its speed of switching, which may have a potentially important application to faster computers. None of these properties are exhibited by linear resistor networks, or even by nonlinear resistor networks without a memory effect. PMID:21517452

  19. High current electrical lead. [for thermionic converters

    NASA Technical Reports Server (NTRS)

    Kaufman, W. B.; Breitwieser, R. (Inventor)

    1974-01-01

    An electrical lead has insulators imbedded in an inner conductor rod to form an annulus between the rod and a surrounding outer sheath. This annular space is filled with gas which conducts heat and prevents electrical leakage.

  20. 9 CFR 313.30 - Electrical; stunning or slaughtering with electric current.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... with electric current. 313.30 Section 313.30 Animals and Animal Products FOOD SAFETY AND INSPECTION... Electrical; stunning or slaughtering with electric current. The slaughtering of swine, sheep, calves, cattle, and goats with the use of electric current and the handling in connection therewith, in...

  1. 9 CFR 313.30 - Electrical; stunning or slaughtering with electric current.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... with electric current. 313.30 Section 313.30 Animals and Animal Products FOOD SAFETY AND INSPECTION... Electrical; stunning or slaughtering with electric current. The slaughtering of swine, sheep, calves, cattle, and goats with the use of electric current and the handling in connection therewith, in...

  2. 9 CFR 313.30 - Electrical; stunning or slaughtering with electric current.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... with electric current. 313.30 Section 313.30 Animals and Animal Products FOOD SAFETY AND INSPECTION... Electrical; stunning or slaughtering with electric current. The slaughtering of swine, sheep, calves, cattle, and goats with the use of electric current and the handling in connection therewith, in...

  3. 9 CFR 313.30 - Electrical; stunning or slaughtering with electric current.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... with electric current. 313.30 Section 313.30 Animals and Animal Products FOOD SAFETY AND INSPECTION... Electrical; stunning or slaughtering with electric current. The slaughtering of swine, sheep, calves, cattle, and goats with the use of electric current and the handling in connection therewith, in...

  4. 9 CFR 313.30 - Electrical; stunning or slaughtering with electric current.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... with electric current. 313.30 Section 313.30 Animals and Animal Products FOOD SAFETY AND INSPECTION... Electrical; stunning or slaughtering with electric current. The slaughtering of swine, sheep, calves, cattle, and goats with the use of electric current and the handling in connection therewith, in...

  5. Preschool Children's Conceptions about the Electric Current and the Functioning of Electric Appliances.

    ERIC Educational Resources Information Center

    Solomonidou, Christina; Kakana, Domna-Mika

    2000-01-01

    Examined 5- and 6-year-olds' ideas about the functioning of common electrical appliances and properties of electric current. Found that children represented current in a static way, thinking it was included in the appliance, and confounded electric current and water flow, believing external electricity was different from internal. They were…

  6. An Annotated Bibliography of High-Voltage Direct-Current Transmission and Flexible AC Transmission (FACTS) Devices, 1991-1993.

    SciTech Connect

    Litzenberger, Wayne; Lava, Val

    1994-08-01

    References are contained for HVDC systems, converter stations and components, overhead transmission lines, cable transmission, system design and operations, simulation of high voltage direct current systems, high-voltage direct current installations, and flexible AC transmission system (FACTS).

  7. Switch contact device for interrupting high current, high voltage, AC and DC circuits

    DOEpatents

    Via, Lester C.; Witherspoon, F. Douglas; Ryan, John M.

    2005-01-04

    A high voltage switch contact structure capable of interrupting high voltage, high current AC and DC circuits. The contact structure confines the arc created when contacts open to the thin area between two insulating surfaces in intimate contact. This forces the arc into the shape of a thin sheet which loses heat energy far more rapidly than an arc column having a circular cross-section. These high heat losses require a dramatic increase in the voltage required to maintain the arc, thus extinguishing it when the required voltage exceeds the available voltage. The arc extinguishing process with this invention is not dependent on the occurrence of a current zero crossing and, consequently, is capable of rapidly interrupting both AC and DC circuits. The contact structure achieves its high performance without the use of sulfur hexafluoride.

  8. C/NOFS Observations of AC Electric Field Fields Associated with Equatorial Spread-F

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Liebrecht, C.

    2009-01-01

    The Vector Electric Field Investigation (VEFI) on the C/NOFS equatorial satellite provides a unique data set in which to acquire detailed knowledge of irregularities associated with the equatorial ionosphere and in particular with spread-F depletions. We present vector AC electric field observations, primarily gathered within the ELF band (1 Hz to 250 Hz) on C/NOFS that address a variety of key questions regarding how plasma irregularities, from meter to kilometer scales, are created and evolve. The data will be used to explore the anisotropy/isotropy of the waves, their wavelength and phase velocity, as well as their spectral distributions. When analyzed in conjunction with the driving DC electric fields and detailed plasma number density measurements, the combined data reveal important information concerning the instability mechanisms themselves. We also present high resolution, vector measurements of intense lower hybrid waves that have been detected on numerous occasions by the VEFI burst memory VLF electric field channels.

  9. Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum).

    PubMed

    Bi, Ran; Schlaak, Michael; Siefert, Eike; Lord, Richard; Connolly, Helen

    2011-04-01

    The combined use of electrokinetic remediation and phytoremediation to decontaminate soil polluted with heavy metals has been demonstrated in a laboratory-scale experiment. The plants species selected were rapeseed and tobacco. Three kinds of soil were used: un-contaminated soil from forest area (S1), artificially contaminated soil with 15mgkg(-1) Cd (S2) and multi-contaminated soil with Cd, Zn and Pb from an industrial area (S3). Three treatment conditions were applied to the plants growing in the experimental vessels: control (no electrical field), alternating current electrical field (AC, 1Vcm(-1)) and direct current electrical field (DC, 1Vcm(-1)) with switching polarity every 3h. The electrical fields were applied for 30d for rapeseed and 90d for tobacco, each experiment had three replicates. After a total of 90d growth for rapeseed and of 180d for tobacco, the plants were harvested. The pH variation from anode to cathode was eliminated by switching the polarity of the DC field. The plants reacted differently under the applied electrical field. Rapeseed biomass was enhanced under the AC field and no negative effect was found under DC field. However, no enhancement of the tobacco biomass under the AC treatment was found. The DC field had a negative influence on biomass production on tobacco plants. In general, Cd content was higher in both species growing in S2 treated with AC field compared to the control. Metal uptake (Cd, Cu, Zn and Pb) per rapeseed plant shoot was enhanced by the application of AC field in all soils. PMID:21237480

  10. 40Hz-Transcranial alternating current stimulation (tACS) selectively modulates speech perception.

    PubMed

    Rufener, Katharina S; Zaehle, Tino; Oechslin, Mathias S; Meyer, Martin

    2016-03-01

    The present study investigated the functional relevance of gamma oscillations for the processing of rapidly changing acoustic features in speech signals. For this purpose we analyzed repetition-induced perceptual learning effects in 18 healthy adult participants. The participants received either 6Hz or 40Hz tACS over the bilateral auditory cortex, while repeatedly performing a phoneme categorization task. In result, we found that 40Hz tACS led to a specific alteration in repetition-induced perceptual learning. While participants in the non-stimulated control group as well as those in the experimental group receiving 6Hz tACS considerably improved their perceptual performance, the application of 40Hz tACS selectively attenuated the repetition-induced improvement in phoneme categorization abilities. Our data provide causal evidence for a functional relevance of gamma oscillations during the perceptual learning of acoustic speech features. Moreover, we demonstrate that even less than twenty minutes of alternating current stimulation below the individual perceptual threshold is sufficient to affect speech perception. This finding is relevant in that this novel approach might have implications with respect to impaired speech processing in dyslexics and older adults. PMID:26779822

  11. SIM regional comparison of ac-dc current transfer difference SIM.EM-K12

    NASA Astrophysics Data System (ADS)

    Di Lillo, Lucas

    2015-01-01

    The ac-dc current transfer difference identified as SIM.EM.K-12 began in July 2010 and was completed in September 2012. Six NMIs in the SIM region and one NMI in the AFRIMET region took part: NRC (Canada), NIST (United States of America), CENAM (Mexico), INTI (Argentina), UTE (Uruguay), INMETRO (Brazil) and NIS (Egypt). The comparisons were proposed to assess the measurement capabilities in ac-dc current transfer difference of the participants NMIs. The ac-dc current transfer differences of the travelling standard had been measured at 10 mA and 5 A at 10 Hz, 55 Hz, 1 kHz, 10 kHz, 20 kHz, 50 kHz and 100 kHz. The test points were selected to link the results with the equivalent CCEM Key Comparisons (CCEM-K12), through three NMIs participating in both SIM and CCEM key comparisons (INTI, NRC and NIST). The report shows the degree of equivalence in the SIM region and also the degree of equivalence with the corresponding CCEM reference value. The results of all participants support the values and uncertainties of the applicable CMC entries for ac-dc current transfer difference in the Key Comparison Database held at the BIPM. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  12. Electric current-induced lymphatic activation.

    PubMed

    Kajiya, Kentaro; Matsumoto-Okazaki, Yuko; Sawane, Mika; Fukada, Kaedeko; Takasugi, Yuya; Akai, Tomonori; Saito, Naoki; Mori, Yuichiro

    2014-12-01

    The lymphatic system in skin plays important roles in drainage of wastes and in the afferent phase of immune response. We previously showed that activation of vascular endothelial growth factor receptor (VEGFR), specifically the VEGFC/VEGFR-3 pathway, attenuates oedema and inflammation by promoting lymphangiogenesis, suggesting a protective role of lymphatic vessels against skin inflammation. However, it remains unknown how physical stimuli promote lymphatic function. Here, we show that lymphatic endothelial cells (LECs) are activated by direct-current (DC) electrical stimulation, which induced extension of actin filaments of LECs, increased calcium influx into LECs, and increased phosphorylation of p38 mitogen-activated protein kinase (MAPK). An inhibitor of focal adhesion kinase, which plays a role in cellular adhesion and motility, diminished the DC-induced extension of F-actin and abrogated p38 phosphorylation. Time-lapse imaging revealed that pulsed-DC stimulation promoted proliferation and migration of LECs. Overall, these results indicate that electro-stimulation activates lymphatic function by activating p38 MAPK. PMID:25308203

  13. Frequency characteristics of field electron emission from long carbon nanofilaments/nanotubes in a weak AC electric field

    NASA Astrophysics Data System (ADS)

    Izrael'yants, K. R.; Orlov, A. P.; Musatov, A. L.; Blagov, E. V.

    2016-05-01

    Frequency characteristics of field electron emission from long carbon nanofilaments/nanotubes in strong dc and weak ac electric fields have been investigated. A series of narrow peaks with a quality factor of up to 1100 has been discovered in the frequency range of hundreds of kilohertz. The analysis has shown that these peaks are probably associated with mechanical oscillations of the carbon nanofilaments/nanotubes driven by the ac electric field.

  14. Deformation and Interaction of Droplet Pairs in a Microchannel Under ac Electric Fields

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Song, Yongxin; Li, Dongqing; Hu, Guoqing

    2015-08-01

    The deformation and interaction of a droplet pair in an electric field determine the success of droplet coalescence. Electric intensity and initial droplet separation are crucial parameters in this process. In this work, a combined theoretical and numerical analysis is performed to study the electrohydrodynamics of confined droplet pairs in a rectangular microchannel under ac electric fields. We develop a theoretical model to predict the relationship between critical electric intensity and droplet separation. A geometrical model relating the initial droplet separation to the cone angle is also established to determine the critical separation for partial coalescence. These models are validated by comparisons with existing experimental observations. According to the initial separation and electric intensity, five regimes of droplet interactions are classified by direct numerical simulations, namely noncoalescence, coalescence, partial coalescence, ejection after coalescence, and ejection with partial coalescence. According to their controlling mechanisms, the five regimes are distinguished by three well-defined boundaries. The detailed dynamics of the partial coalescence phenomenon is resolved when the droplet separation exceeds the critical value. A dynamic liquid bridge between the droplets is sustained by the competition between surface tension and electric stress. The dynamics of ejected microjets at the exterior ends are also addressed to show their responses to the oscillating electric field. The full understanding of the droplet dynamics under electric fields can be used to predict the droplet fusion behaviors and thus to facilitate the design of droplet-based microfluidic devices.

  15. Simulation analysis of three-phase current type AC-to-DC converter with high power factor

    SciTech Connect

    Okui, Yoshiaki; Yamada, Hajime

    1997-03-01

    A new three-phase current type AC-to-DC converter has been developed by the authors. This paper describes the principle of the circuit operation and the circuit configuration of the AC-to-DC converter controlled by PWM. Simulation analysis of each waveform, such as AC and DC voltages and currents, are calculated by Euler`s method. The simulated values of the total power factor agreed with the measured values within the difference of 5.8% on the condition of full load, 10kW. When the AC side voltage is unbalanced, it is found by simulation that the total harmonic distortion controlled by both feedforward control and AC side current feedback control (proportion gain, k{sub 4} = 1) is restrained at only 38% compared with only feedforward control (k{sub 4} = 0).

  16. Enhancement of crystal homogeneity of protein crystals under application of an external alternating current electric field

    SciTech Connect

    Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J.; Tachibana, M.; Kojima, K.

    2014-10-06

    X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.

  17. Progress on advanced dc and ac induction drives for electric vehicles

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1982-01-01

    Progress is reported in the development of complete electric vehicle propulsion systems, and the results of tests on the Road Load Simulator of two such systems representative of advanced dc and ac drive technology are presented. One is the system used in the DOE's ETV-1 integrated test vehicle which consists of a shunt wound dc traction motor under microprocessor control using a transistorized controller. The motor drives the vehicle through a fixed ratio transmission. The second system uses an ac induction motor controlled by transistorized pulse width modulated inverter which drives through a two speed automatically shifted transmission. The inverter and transmission both operate under the control of a microprocessor. The characteristics of these systems are also compared with the propulsion system technology available in vehicles being manufactured at the inception of the DOE program and with an advanced, highly integrated propulsion system upon which technology development was recently initiated.

  18. The ac and dc electric field meters developed for the US Department of Energy

    NASA Technical Reports Server (NTRS)

    Kirkham, H.; Johnston, A.; Jackson, S.; Sheu, K.

    1987-01-01

    Two space-potential electric field meters developed at the Jet Propulsion Laboratory under the auspices of the U.S. Department of Energy are described. One of the meters was designed to measure dc fields, the other ac fields. Both meters use fiber optics to couple a small measuring probe to a remote readout device, so as to minimize field perturbation due to the presence of the probe. By using coherent detection, it has been possible to produce instruments whose operating range extends from about 10 V/m up to about 2.5 kV/cm, without the need for range switching on the probe. The electrical and mechanical design of both meters are described in detail. Data from laboratory tests are presented, as well as the results of the tests at the National Bureau of Standards and the Electric Power Research Institute's High Voltage Transmission Research Facility.

  19. Approach for Wide Use of Diagnostic Method for XLPE Cables Using Harmonics in AC Loss Current

    NASA Astrophysics Data System (ADS)

    Tsujimoto, Tomiyuki; Nakade, Masahiko; Yagi, Yukihiro; Ishii, Noboru

    Water tree is one of the degradation aspects of XLPE cables used for under-ground distribution or transmission lines. We have developed the loss current method using 3rd harmonic in AC loss current for cable diagnosis. Harmonic components in loss current arise as a result of the non-linear voltage-current characteristics of water trees. We confirmed that the 3rd harmonic in AC loss current had good correlation with water tree growth and break down strength. After that, we have applied this method to the actual 66kV XLPE cable lines. Up to now, the number of the application results is more than 130 lines. In case of cable lines terminated at gas-insulated switchgear (GIS), we have to remove the lightning arrestor (LA) and the potential transformer (PT) out of the test circuit. The reason is that we are afraid that each of LA and PT disturbs the degradation signal from cable lines. It takes extra time (1 or 2 days) and costs more to remove LA and PT in GIS out of a circuit. In order to achieve easy and reasonable diagnosis, we have developed a new method for cable lines terminated at GIS, by utilizing a technique, which enables to reduce signal of LA and PT from disturbed signal of cable lines. We confirmed the effect of the new method by experiments with actual cables.

  20. Continuous Path Tracking Control by Considering Voltage Saturation and Current Saturation for AC Servo Motor

    NASA Astrophysics Data System (ADS)

    Sazawa, Masaki; Ohishi, Kiyoshi; Katsura, Seiichiro

    Continuous path tracking control is an important technology for the position control system such as factory automation field. Particulaly, large torque is required for continuous path tracking control at its start position and its goal position. Each AC servo motor of continuous path tracking control have limitation of current and voltage. Therefore, in controlling a multi-degree-of-freedom continuous path tracking control system, even if only the motor torque of one axis has the current limitation, the actual position response is not often equal to the desired trajectory reference. In order to overcome these problems, this paper proposes a new continuous path tracking control algorithm by considering both the saturation of voltage and current. The proposed method assures the coordinated motion by considering the saturation of voltage and current. The effectiveness of the proposed method is confirmed by the experimental results in this paper.

  1. Spin Hall voltages from a.c. and d.c. spin currents

    PubMed Central

    Wei, Dahai; Obstbaum, Martin; Ribow, Mirko; Back, Christian H.; Woltersdorf, Georg

    2014-01-01

    In spin electronics, the spin degree of freedom is used to transmit and store information. To this end the ability to create pure spin currents—that is, without net charge transfer—is essential. When the magnetization vector in a ferromagnet–normal metal junction is excited, the spin pumping effect leads to the injection of pure spin currents into the normal metal. The polarization of this spin current is time-dependent and contains a very small d.c. component. Here we show that the large a.c. component of the spin currents can be detected efficiently using the inverse spin Hall effect. The observed a.c.-inverse spin Hall voltages are one order of magnitude larger than the conventional d.c.-inverse spin Hall voltages measured on the same device. Our results demonstrate that ferromagnet–normal metal junctions are efficient sources of pure spin currents in the gigahertz frequency range. PMID:24780927

  2. Stretching of long DNA molecules in the microvortex induced by laser and ac electric field

    NASA Astrophysics Data System (ADS)

    Nakano, Michihiko; Kurita, Hirofumi; Komatsu, Jun; Mizuno, Akira; Katsura, Shinji

    2006-09-01

    A microvortex is generated around an infrared laser focus where an intense ac electric field is applied. The authors used this optoelectrostatic microvortex for stretching individual long DNAs. When λ-or T4-phage DNA molecules were introduced into the optoelectrostatic microvortex, they were stretched around the laser focus. In addition, especially for longer T4 DNA molecules, it was possible to keep it in stretching form for more than 30s. Using this method, length of DNA molecules can be measured without fixing to a substrate. This method can be applied to DNA molecules longer than about 10μm.

  3. Modeling of Nanoparticle-Mediated Electric Field Enhancement Inside Biological Cells Exposed to AC Electric Fields

    NASA Astrophysics Data System (ADS)

    Tiwari, Pawan K.; Kang, Sung Kil; Kim, Gon Jun; Choi, Jun; Mohamed, A.-A. H.; Lee, Jae Koo

    2009-08-01

    We present in this article the effect of alternating electric field at kilohertz (kHz) and megahertz (MHz) frequencies on the biological cells in presence and absence of nanoparticles. The induced electric field strength distribution in the region around cell membrane and nucleus envelope display different behavior at kHz and MHz frequencies. The attachment of gold nanoparticles (GNPs), especially gold nanowires around the surface of nucleus induce enhanced electric field strengths. The induced field strengths are dependent on the length of nanowire and create varying field regions when the length of nanowire is increased from 2 to 4 µm. The varying nanowire length increased the induced field strengths inside nucleoplasm and region adjacent to the nucleus in the cytoplasm. We investigated a process of electrostatic disruption of nucleus membrane when the induced electric field strength across the nucleus exceeds its tensile strength.

  4. Robust current control of AC machines using the internal model control method

    SciTech Connect

    Harnefors, L.; Nee, H.P.

    1995-12-31

    In the present paper, the internal model control (IMC) method is introduced and applied to ac machine current control. A permanent-magnet synchronous machine is used as an example. It is shown that the IMC design is straightforward and the resulting controller is simple to implement. The controller parameters are expressed in the machine parameters and the desired closed-loop rise time. The extra cost of implementation compared to PI control is negligible. It is further shown that IMC is able to outperform PI control with as well as without decoupling with respect to dq variable interaction in the presence of parameter deviations.

  5. Composite rod insulators for ac power lines; Electrical performance of various designs at a coastal testing station

    SciTech Connect

    Houlgate, R.G.; Swift, D.A. )

    1990-10-01

    The electrical performance of thirty-six composite insulators - of four commercial types for each AC system level of 34.5 kV, 230 kV and 500 kV - has been determined at the CEGB insulator testing station, Brighton, England. The weathershed materials were epoxy-resin, ethylene propylene rubber and silicone rubber; half of the 230 kV insulators had no stress rings. Surface leakage current was recorded for surge levels of 25 mA, 150 mA and 500 mA; a special technique was developed to obtain the flashover statistics of the 500 kV insulators, thereby enabling performance of the composite insulator to be quantified relative to that of a string of cap and pin porcelain insulators of anti-fog design, the deterioration of the insulators was observed by making regular visual inspections. The practical consequences of the findings and the causes of the degradation are discussed.

  6. Critical current densities estimated from AC susceptibilities in proximity-induced superconducting matrix of multifilamentary wire

    NASA Astrophysics Data System (ADS)

    Akune, Tadahiro; Sakamoto, Nobuyoshi

    2009-03-01

    In a multifilamentary wire proximity-currents between filaments show a close resemblance with the inter-grain current in a high-Tc superconductor. The critical current densities of the proximity-induced superconducting matrix Jcm can be estimated from measured twist-pitch dependence of magnetization and have been shown to follow the well-known scaling law of the pinning strength. The grained Bean model is applied on the multifilamentary wire to obtain Jcm, where the filaments are immersed in the proximity-induced superconducting matrix. Difference of the superconducting characteristics of the filament, the matrix and the filament content factor give a variety of deformation on the AC susceptibility curves. The computed AC susceptibility curves of multifilamentary wires using the grained Bean model are favorably compared with the experimental results. The values of Jcm estimated from the susceptibilities using the grained Bean model are comparable to those estimated from measured twist-pitch dependence of magnetization. The applicability of the grained Bean model on the multifilamentary wire is discussed in detail.

  7. Dynamic Resistance of YBCO-Coated Conductors in Applied AC Fields with DC Transport Currents and DC Background Fields

    SciTech Connect

    Duckworth, Robert C; Zhang, Yifei; Ha, Tam T; Gouge, Michael J

    2011-01-01

    In order to predict heat loads in future saturable core fault-current-limiting devices due to ac fringing fields, dynamic resistance in YBCO-coated conductors was measured at 77 K in peak ac fields up to 25 mT at 60 Hz and in dc fields up to 1 T. With the sample orientation set such that the conductor face was either parallel or perpendicular to the ac and dc applied fields, the dynamic resistance was measured at different fractions of the critical current to determine the relationship between the dc transport current and the applied fields. With respect to field orientation, the dynamic resistance for ac fields that were perpendicular to the conductor face was significantly higher than when the ac fields were parallel to the conductor face. It was also observed that the dynamic resistance: (1) increased with increasing fraction of the dc transport current to the critical current, (2) was proportional to the inverse of the critical current, and (3) demonstrated a linear dependence with the applied ac field once a threshold field was exceeded. This functional behavior was consistent with a critical state model for the dynamic resistance, but discrepancies in absolute value of the dynamic resistance suggested that further theoretical development is needed.

  8. Orientation and Pearl-Chain Formation of Paramecia Induced by AC Electric Field

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Toyomasa; Tanji, Ayafumi; Yagi, Hiroshi

    1987-11-01

    Paramecium deciliated with ethanol is able to orient itself in a parallel (positive orientation) or perpendicular direction (negative orientation) to an AC electric field, depending upon the applied frequency. We found that this turnover frequency is between 1 and 10 MHz in a non-electrolyte solution for the cells. The cells also aggregate with one another by the mutual dielectrophoresis in the electric field, provided the distance between the two cells is shorter than about half their length. The two critical field intensities for the orientation and for the aggregation cannot be clearly distinguished. Consequently, when the cell density in the solution is sufficiently high, a positive or negative pearl-chain of the cells is formed, depending upon the applied frequency.

  9. Accelerated Detection of Viral Particles by Combining AC Electric Field Effects and Micro-Raman Spectroscopy

    PubMed Central

    Tomkins, Matthew Robert; Liao, David Shiqi; Docoslis, Aristides

    2015-01-01

    A detection method that combines electric field-assisted virus capture on antibody-decorated surfaces with the “fingerprinting” capabilities of micro-Raman spectroscopy is demonstrated for the case of M13 virus in water. The proof-of-principle surface mapping of model bioparticles (protein coated polystyrene spheres) captured by an AC electric field between planar microelectrodes is presented with a methodology for analyzing the resulting spectra by comparing relative peak intensities. The same principle is applied to dielectrophoretically captured M13 phage particles whose presence is indirectly confirmed with micro-Raman spectroscopy using NeutrAvidin-Cy3 as a labeling molecule. It is concluded that the combination of electrokinetically driven virus sampling and micro-Raman based signal transduction provides a promising approach for time-efficient and in situ detection of viruses. PMID:25580902

  10. Standard and nonstandard nematic electrohydrodynamic convection in the presence of asymmetric ac electric fields

    NASA Astrophysics Data System (ADS)

    Low, Jonathan; Hogan, S. John

    2008-10-01

    In planar nematic electrohydrodynamic convection (EHC), a microscopic liquid crystal cell is driven by a homogeneous ac electric field, which, if strong enough, causes the fluid to destabilize into a regular pattern-forming state. We consider asymmetric electric fields E(t)=E(t+T)≠-E(t+T/2) , which leads to the possibility of three different types of instabilities at onset: conductive, dielectric, and subharmonic. The first two are already well known as they are easily produced when the system is driven by symmetric electric fields; the third can only occur when the electric field symmetry is broken. We present theoretical results on EHC using linear stability analysis and Floquet theory. We consider rigid and free boundary conditions, extending the model to two Fourier modes in the vertical plane, the inclusion of flexoelectricity, and using standard (nematic electric conductivity σa>0 and dielectric anisotorpy γa<0 ) and nonstandard (σa<0) material parameters. We make full use of a three-dimensional linear model where two mutually perpendicular planar wave numbers q and p can be varied. Our results show that there is a qualitative difference between the boundary conditions used, which is also dependent on how many vertical Fourier modes were used in the model. We have obtained threshold values favoring oblique rolls in subharmonic and dielectric regimes in parameter space. For the nonstandard EHC parameter values, both conduction and subharmonic regimes disappear and only the dielectric threshold exists.

  11. Analysis and comparison for rotor eddy current losses of permanent magnet synchronous generator according to dc and ac load conditions

    NASA Astrophysics Data System (ADS)

    Jang, Seok-Myeong; Kim, Hyun-Kyu; Choi, Jang-Young; Ko, Kyoung-Jin

    2009-04-01

    This paper presents an analytical procedure for the calculation of the eddy current losses of permanent magnet synchronous generator (PMSG). The dc and ac loading effects on the eddy current is examined through the suggested analytical procedure that considers the radial and tangential flux density waveform through a phase current harmonic analysis. The corresponding test results are also presented to quantify and compare those loading effects on the eddy current. The results verified the suggested analytical procedures and show that the rotor eddy current losses for PMSG with the dc loads turned out to be more significant than those with the ac loads.

  12. Combination of ac electroosmosis and dielectrophoresis for particle manipulation on electrically-induced microscale wave structures

    NASA Astrophysics Data System (ADS)

    Chung, Cheng-Che; Glawdel, Tomasz; Ren, Carolyn L.; Chang, Hsien-Chang

    2015-03-01

    This work presents a simple method to fabricate controllable microscale wave structures on the top of regular interdigitated electrode (IDE) arrays using electrically-assisted lithography techniques. Smooth wave structures are extremely difficult, if not impossible, to fabricate using traditional multilayer photolithography technology. The fabricated wave structures were carefully measured using an optical profiler and the measured wave profiles were used in the numerical simulation of electrical field and for evaluating the parameters influencing the fabricated wave structure. It is demonstrated that the combined smooth wave structure and IDE array offer unique capability for particle manipulation including particle concentration, aggregation and separation. Particle motion manipulated via the combined wave structure and IDE array is governed by ac electroosmosis (ACEO), dielectrophoresis (DEP) or a combination of both depending on the applied frequency. At lower frequencies (~30 kHz), ACEO dominates and particles are driven to move along the valleys of the wave structures; while at higher frequencies (~200 kHz), DEP force dominates which concentrates particles at the peaks of the wave structures. In addition, varying the ac waveform from sine-wave to square-wave allows for dynamic control of particle motion. Size-dependent particle separation over the wave structure is also demonstrated for a mixture of 0.5 µm and 2 µm particles that are separated into two populations by the joint effects of drag and DEP forces when being pumped to flow via ACEO.

  13. Can Pupils Use Taught Analogies for Electric Current?

    ERIC Educational Resources Information Center

    Black, David; Solomon, Joan

    1987-01-01

    Discusses the use of analogies and models for teaching about electric current. Reports on a study in which one group of students used analogies to learn about electric current and one did not. Results indicate that, in this case, analogies did not play a significant role in student understanding. (TW)

  14. Reducing current reversal time in electric motor control

    SciTech Connect

    Bredemann, Michael V

    2014-11-04

    The time required to reverse current flow in an electric motor is reduced by exploiting inductive current that persists in the motor when power is temporarily removed. Energy associated with this inductive current is used to initiate reverse current flow in the motor.

  15. Study on electrical current variations in electromembrane extraction process: Relation between extraction recovery and magnitude of electrical current.

    PubMed

    Rahmani, Turaj; Rahimi, Atyeh; Nojavan, Saeed

    2016-01-15

    This contribution presents an experimental approach to improve analytical performance of electromembrane extraction (EME) procedure, which is based on the scrutiny of current pattern under different extraction conditions such as using different organic solvents as supported liquid membrane, electrical potentials, pH values of donor and acceptor phases, variable extraction times, temperatures, stirring rates, different hollow fiber lengths and the addition of salts or organic solvents to the sample matrix. In this study, four basic drugs with different polarities were extracted under different conditions with the corresponding electrical current patterns compared against extraction recoveries. The extraction process was demonstrated in terms of EME-HPLC analyses of selected basic drugs. Comparing the obtained extraction recoveries with the electrical current patterns, most cases exhibited minimum recovery and repeatability at the highest investigated magnitude of electrical current. . It was further found that identical current patterns are associated with repeated extraction efficiencies. In other words, the pattern should be repeated for a successful extraction. The results showed completely different electrical currents under different extraction conditions, so that all variable parameters have contributions into the electrical current pattern. Finally, the current patterns of extractions from wastewater, plasma and urine samples were demonstrated. The results indicated an increase in the electrical current when extracting from complex matrices; this was seen to decrease the extraction efficiency. PMID:26709301

  16. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  17. Electrical Characteristics, Electrode Sheath and Contamination Layer Behavior of a Meso-Scale Premixed Methane-Air Flame Under AC/DC Electric Fields

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Yan, Limin; Zhang, Hao; Li, Guoxiu

    2016-05-01

    Electrical characteristics of a nozzle-attached meso-scale premixed methane-air flame under low-frequency AC (0-4300 V, 0-500 Hz) and DC (0-3300 V) electric fields were studied. I-V curves were measured under different experimental conditions to estimate the magnitude of the total current 100-102 μA, the electron density 1015-1016 m‑3 and further the power dissipation ≤ 0.7 W in the reaction zone. At the same time, the meso-scale premixed flame conductivity 10‑4-10‑3 Ω‑1·m‑1 as a function of voltage and frequency was experimentally obtained and was believed to represent a useful order-of magnitude estimate. Moreover, the influence of the collision sheath relating to Debye length (31–98 μm) and the contamination layer of an active electrode on measurements was discussed, based on the combination of simulation and theoretical analysis. As a result, the electrode sheath dimension was evaluated to less than 0.5 mm, which indicated a complex effect of the collision sheath on the current measurements. The surface contamination effect of an active electrode was further analyzed using the SEM imaging method, which showed elements immigration during the contamination layer formation process. supported by National Natural Science Foundation of China (No. 51376021), and the Fundamental Research Fund for Major Universities (No. 2013JBM079)

  18. Active current gating in electrically biased conical nanopores

    NASA Astrophysics Data System (ADS)

    Bearden, Samuel; Simpanen, Erik; Zhang, Guigen

    2015-05-01

    We observed that the ionic current through a gold/silicon nitride (Si3N4) nanopore could be modulated and gated by electrically biasing the gold layer. Rather than employing chemical modification to alter device behavior, we achieved control of conductance directly by electrically biasing the gold portion of the nanopore. By stepping through a range of bias potentials under a constant trans-pore electric field, we observed a gating phenomenon in the trans-pore current response in a variety of solutions including potassium chloride (KCl), sodium chloride (NaCl), and potassium iodide (KI). A computational model with a conical nanopore was developed to examine the effect of the Gouy-Chapman-Stern electrical double layer along with nanopore geometry, work function potentials, and applied electrical bias on the ionic current. The numerical results indicated that the observed modulation and gating behavior was due to dynamic reorganization of the electrical double layer in response to changes in the electrical bias. Specifically, in the conducting state, the nanopore conductance (both numerical and experimental) is linearly proportional to the applied bias due to accumulation of charge in the diffuse layer. The gating effect occurs due to the asymmetric charge distribution in the fluid induced by the distribution of potentials at the nanopore surface. Time dependent changes in current due to restructuring of the electrical double layer occur when the electrostatic bias is instantaneously changed. The nanopore device demonstrates direct external control over nanopore behavior via modulation of the electrical double layer by electrostatic biasing.

  19. The discovery of the electric current

    NASA Astrophysics Data System (ADS)

    Cotti, Piero

    1995-02-01

    The first battery, the so called voltaic pile, turns out to be the only and hidden entrance to the world of electrodynamics. It was not until 20 years after Alessandro Volta's discovery that the realisation came that the sensational novelty of the voltaic pile was not the permanent voltage source but the current source. This was not to be expected, and had, therefore, not been searched for specifically, but, rather had been found through a great deal of luck and coincidence in experimentation.

  20. Molecular stretching of long DNA in agarose gel using alternating current electric fields.

    PubMed Central

    Kaji, Noritada; Ueda, Masanori; Baba, Yoshinobu

    2002-01-01

    We demonstrate a novel method for stretching a long DNA molecule in agarose gel with alternating current (AC) electric fields. The molecular motion of a long DNA (T4 DNA; 165.6 kb) in agarose gel was studied using fluorescence microscopy. The effects of a wide range of field frequencies, field strengths, and gel concentrations were investigated. Stretching was only observed in the AC field when a frequency of approximately 10 Hz was used. The maximal length of the stretched DNA had the longest value when a field strength of 200 to 400 V/cm was used. Stretching was not sensitive to a range of agarose gel concentrations from 0.5 to 3%. Together, these experiments indicate that the optimal conditions for stretching long DNA in an AC electric field are a frequency of 10 Hz with a field strength of 200 V/cm and a gel concentration of 1% agarose. Using these conditions, we were able to successfully stretch Saccharomyces cerevisiae chromosomal DNA molecules (225-2,200 kb). These results may aid in the development of a novel method to stretch much longer DNA, such as human chromosomal DNA, and may contribute to the analysis of a single chromosomal DNA from a single cell. PMID:11751320

  1. Electrical breakdown of soil under nonlinear pulsed current spreading

    NASA Astrophysics Data System (ADS)

    Vasilyak, L. M.; Pecherkin, V. Ya; Vetchinin, S. P.; Panov, V. A.; Son, E. E.; Efimov, B. V.; Danilin, A. N.; Kolobov, V. V.; Selivanov, V. N.; Ivonin, V. V.

    2015-07-01

    Laboratory investigations on pulsed current spreading from spherical electrodes and evolution of electrical breakdown of silica sand with different water contents under a 15-20 kV voltage pulse were carried out. A sharp nonlinear decrease in the pulsed resistance of soil was observed when the current density exceeded a certain threshold value. Then ionization-overheating instability develops and leads to current contraction and plasma channel formation in the soil. The method for determination of the threshold electric field for ionization is proposed. Electrical discharge in wet sand was found to develop with a significant delay time for long discharge gaps similar to thermal breakdown.

  2. ac losses and field and current density distribution during a full cycle of a stack of superconducting tapes

    NASA Astrophysics Data System (ADS)

    Yuan, Weijia; Campbell, A. M.; Coombs, T. A.

    2010-05-01

    Starting from an existing model by Clem et al., this paper has analyzed how the current density and magnetic field distribution of a stack of superconducting tapes with ac transport currents or applied fields will change in a full cycle. This paper assumes when the ac current or field starts to change in the other direction, a new penetrated region will begin to penetrate from the superconductor surface. If we assume Jc is constant in the critical region, this paper demonstrates that the Claassen formula (7) can be used to calculate the exact ac losses. If Jc depends on local Bz, we can use Eq. (9) to quickly predict the ac losses. This approach does not need to calculate a complete ac cycle. This saves considerably computation time while gives a result which is in close agreement with that calculated from a complete ac cycle. The calculation method can be applied for calculating a superconducting pancake coil if the coil radius is much larger than the tape width.

  3. Vapor cooled current lead for cryogenic electrical equipment

    DOEpatents

    Vansant, James H.

    1983-01-01

    Apparatus and method are provided for conducting electric current to cryogenic electrical equipment devices. A combination of inner and outer tubes together form a plurality of hollow composite tubes housed in a sheath. Top and bottom block mounting means are fitted to hold the composite tubes and are affixed to the ends of the sheath. This combination forms a current lead. The current lead is attached to a cryogenic device housing a fluid coolant which moves through the current lead, cooling the current lead as the fluid travels.

  4. Study on A.C. electrical properties of pure and L-serine doped ADP crystals

    NASA Astrophysics Data System (ADS)

    Joshi, J. H.; Dixit, K. P.; Joshi, M. J.; Parikh, K. D.

    2016-05-01

    Ammonium Dihydrogen Phosphate (ADP) crystals have a wide range of applications in integrated and nonlinear optics. Amino acids having significant properties like molecular chirality, zwitter ionic nature, etc. attracted many researchers to dope them in various NLO crystals. In the present study, pure and different weight percentage L-serine doped ADP crystals were grown by slow solvent evaporation technique at room temperature. The A.C. electrical study was carried out for palletized samples at room temperature. The Nyquist plot showed two semi circles for pure ADP indicated the effect of grain and grain boundary, whereas the doped ADP samples exhibited the single semi circle suggesting the effect of grain. The values resistance and capacitance for grain and grain boundary were calculated. The effect of doping was clearly seen in the grain capacitance and resistance values. The dielectric constant and dielectric loss decreased with increase in frequency for all samples. The Jonscher power law was applied for A.C. conductivity for pure and doped ADP samples. The imaginary part of modulus and impedance versus frequency were drawn and the value of stretch exponent (β) was calculated for all the samples.

  5. Ac-electrical conductivity of poly(propylene) before and after X-ray irradiation

    NASA Astrophysics Data System (ADS)

    Gaafar, M.

    2001-05-01

    Study on the ac-electrical conductivity of poly(propylene), before and after X-ray irradiation within the temperature range 300-360 K are reported. The measurements have been performed in a wide range of frequencies (from 0 to 10 5 Hz) and under the effect of different X-ray irradiation doses (from 0 to 15 Gy). Cole-Cole diagrams have been used to show the frequency dependence of the complex impedance at different temperatures. The results exhibit semicircles which are consistent with existing equivalent circuit model. Analysis of the results reveal semiconducting features based mainly on a hopping mechanism. The study shows a pronounced effect of X-ray irradiation on the electrical conductivity at zero frequency σDC. At the early stage of irradiation, σDC increased as a result of free radical formation. As the irradiation progressed, it decreased as a result of crosslinking, then it increased again due to irradiation induced degradation, which motivates the generation of mobile free radicals. The study shows that this polymer is one among other polymers which its electrical conductivity is modified by irradiation.

  6. Phase-sensitive inductive detection of ac currents due to spin-pumping/inverse spin Hall effect in unpatterned Permalloy/Pt bilayers

    NASA Astrophysics Data System (ADS)

    Silva, Thomas; Nembach, Hans; Shaw, Justin; Karenowska, Alexy; Weiler, Mathias

    We present a new method to measure the ac inverse spin Hall effect at GHz frequencies. Unlike previous methods, our does not rely on any patterning or electrical contacts. We utilize phase-sensitive, broad-band, perpendicular-field ferromagnetic resonance to detect the ac current by the inverse spin Hall effect (iSHE) in Py/Pt bilayers. The iSHE component of the signal is non-linear in the excitation frequency; while the inductive FMR response scales linearly with frequency, the iSHE signal scales quadratically because the iSHE current itself is proportional to dm/dt. This differential gain affords us detection of previously unreported higher order contributions to the iSHE signal. We compare FMR measurements with a control samples that do not include the high spin-orbit layer, e.g. Pt. Data sets with and without Pt are normalized by the complex Polder susceptibility, which nullifies any effects due to differences in line-width and anisotropy. The complex ratio of the normalized inductive amplitudes is analyzed with a simple model that considers how the ac currents generated by the iSHE couple inductively back into the excitations waveguide. The linear iSHE signal agrees with previous reported values. The nonlinear iSHE signal is 3-4 orders of magnitude weaker, but is easily detected over the frequency range of 5-45 GHz

  7. Exposure of unionid mussels to electric current: Assessing risks associated with electrofishing

    USGS Publications Warehouse

    Holliman, F.M.; Kwak, T.J.; Cope, W.G.; Levine, J.F.

    2007-01-01

    Electric current is routinely applied in freshwater for scientific sampling of fish populations (i.e., electrofishing). Freshwater mussels (families Margaritiferidae and Unionidae) are distributed worldwide, but their recent declines in diversity and abundance constitute an imperilment of global significance. Freshwater mussels are not targeted for capture by electrofishing, and any exposure to electric current is unintentional. The effects of electric shock are not fully understood for mussels but could disrupt vital physiological processes and represent an additional threat to their survival. In a controlled laboratory environment, we examined the consequences of exposure to two typical electrofishing currents, 60-Hz pulsed DC and 60-Hz AC, for the survival of adult and early life stages of three unionid species; we included fish as a quality control measure. The outcomes suggest that electrical exposure associated with typical electrofishing poses little direct risk to freshwater mussels. That is, adult mussel survival and righting behaviors (indicators of sublethal stress) were not adversely affected by electrical exposure. Glochidia (larvae that attach to and become parasites on fish gills or fins) showed minimal immediate reduction in viability after exposure. Metamorphosis from glochidia to free-living juvenile mussels was not impaired after electric current simulated capture-prone behaviors (stunning) in infested host fish. In addition, the short-term survival of juvenile mussels was not adversely influenced by exposure to electric current. Any minimal risk to imperiled mussels must be weighed at the population level against the benefits gained by using the gear for scientific sampling of fish in the same waters. However, scientists sampling fish by electrofishing should be aware of mussel reproductive periods and processes in order to minimize the harmful effects to host fish, especially in areas where mussel conservation is a concern. ?? Copyright by the

  8. Simultaneous distribution of AC and DC power

    DOEpatents

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  9. An “Off-the-Shelf” System for Intraprocedural Electrical Current Evaluation and Monitoring of Irreversible Electroporation Therapy

    SciTech Connect

    Neal, Robert E. Kavnoudias, Helen; Thomson, Kenneth R.

    2015-06-15

    IntroductionIrreversible electroporation (IRE) ablation uses a series of brief electric pulses to create nanoscale defects in cell membranes, killing the cells. It has shown promise in numerous soft-tissue tumor applications. Larger voltages between electrodes will increase ablation volume, but exceeding electrical limits may risk damage to the patient, cause ineffective therapy delivery, or require generator restart. Monitoring electrical current for these conditions in real-time enables managing these risks. This capacity is not presently available in clinical IRE generators.MethodsWe describe a system using a Tektronix TCP305 AC/DC Current Probe connected to a TCPA300 AC/DC Current Probe Amplifier, which is read on a computer using a Protek DSO-2090 USB computer-interfacing oscilloscope. Accuracy of the system was tested with a resistor circuit and by comparing measured currents with final outputs from the NanoKnife clinical electroporation pulse generator.ResultsAccuracy of measured currents was 1.64 ± 2.4 % relative to calculations for the resistor circuit and averaged 0.371 ± 0.977 % deviation from the NanoKnife. During clinical pulse delivery, the system offers real-time evaluation of IRE procedure progress and enables a number of methods for identifying approaching issues from electrical behavior of therapy delivery, facilitating protocol changes before encountering therapy delivery issues.ConclusionsThis system can monitor electrical currents in real-time without altering the electric pulses or modifying the pulse generator. This facilitates delivering electric pulse protocols that remain within the optimal range of electrical currents—sufficient strength for clinically relevant ablation volumes, without the risk of exceeding safe electric currents or causing inadequate ablation.

  10. Electrical properties of Cu/a-BaTiO3/Cu capacitors studied in dc and ac regimes

    NASA Astrophysics Data System (ADS)

    El Kamel, F.; Gonon, P.; Radnóczi, G.

    2009-04-01

    Electrical properties of Cu/a-BaTiO3/Cu capacitors have been investigated in both dc and ac regimes as a function of temperature. A clear correlation is found between the temperature dependence of dc leakage currents and the temperature variation of the dielectric relaxation, showing that these measurement techniques are probing the same defects. Using either of these two techniques, we were able to detect at least three types of electrical active defects. Oxygen vacancy diffusion takes place at high temperature with an activation energy of around 1 eV. The diffusion of copper creates ionic defects in the a-BaTiO3 layer, which introduces two other contributions to the conduction process. The first is related to the motion of ionic species (ionic conduction, thermally activated with an activation energy of 0.3 eV). In addition, it has been argued that the presence of copper ions introduces a discrete set of shallow traps within the bandgap, resulting in a n-type conductivity (electronic conduction). The traps depth and their effective density are 0.45 eV and 4×1016 cm-3, respectively.

  11. Electric current in a unipolar sunspot with an untwisted field

    NASA Technical Reports Server (NTRS)

    Osherovich, V. A.; Garcia, H. A.

    1990-01-01

    The return flux (RF) sunspot model is applied to a round, unipolar sunspot observed by H. Kawakami (1983). Solving the magnetohydrostatic problem using the gas pressure deficit between the umbral and quiet-sun atmospheres as a source function, a distribution of electric current density in an untwisted, unipolar sunspot as a function of height and radial distance from the sunspot center is observed. Maximum electric current density is about 32 mA/sq m at the bottom of the sunspot.

  12. Primordial magnetic helicity from stochastic electric currents

    NASA Astrophysics Data System (ADS)

    Calzetta, Esteban; Kandus, Alejandra

    2014-04-01

    We study the possibility that primordial magnetic fields generated in the transition between inflation and reheating posses magnetic helicity, HM. The fields are induced by stochastic currents of scalar charged particles created during the mentioned transition. We estimate the rms value of the induced magnetic helicity by computing different four-point scalar quantum electrodynamics Feynman diagrams. For any considered volume, the magnetic flux across its boundaries is in principle not null, which means that the magnetic helicity in those regions is gauge dependent. We use the prescription given by Berger and Field and interpret our result as the difference between two magnetic configurations that coincide in the exterior volume. In this case, the magnetic helicity gives only the number of magnetic links inside the considered volume. We calculate a concrete value of HM for large scales and analyze the distribution of magnetic defects as a function of the scale. Those defects correspond to regular as well as random fields in the considered volume. We find that the fractal dimension of the distribution of topological defects is D=1/2. We also study if the regular fields induced on large scales are helical, finding that they are and that the associated number of magnetic defects is independent of the scale. In this case, the fractal dimension is D=0. We finally estimate the intensity of fields induced at the horizon scale of reheating and evolve them until the decoupling of matter and radiation under the hypothesis of the inverse cascade of magnetic helicity. The resulting intensity is high enough and the coherence length long enough to have an impact on the subsequent process of structure formation.

  13. Modeling and damping of high-frequency leakage currents in PWM inverter-fed AC motor drive systems

    SciTech Connect

    Ogasawara, Satoshi; Akagi, Hirofumi

    1995-12-31

    This paper presents an equivalent circuit for high-frequency leakage currents in PWM inverter-fed ac motors, which forms a series resonant circuit. The analysis based on the equivalent circuit leads to such a conclusion that the connection of a conventional common-mode choke or reactor in series between the ac terminals of a PWM inverter and those of an ac motor is not effective to reduce the rms and average values of the leakage current, but effective to reduce the peak value. Furthermore, this paper proposes a common-mode transformer which is different in damping principle from the conventional common-mode choke. It is shown theoretically and experimentally that the common-mode transformer is able to reduce the rms value of the leakage current to 25%, where the core used in the common-mode transformer is smaller than that of the conventional common-mode choke.

  14. Analytic formulation for the ac electrical conductivity in two-temperature, strongly coupled, overdense plasma: FORTRAN subroutine

    NASA Astrophysics Data System (ADS)

    Cauble, R.; Rozmus, W.

    1993-10-01

    A FORTRAN subroutine for the calculation of the ac electrical conductivity in two-temperature, strongly coupled, overdense plasma is presented. The routine is the result of a model calculation based on classical transport theory with application to plasmas created by the interaction of short pulse lasers and solids. The formulation is analytic and the routine is self-contained.

  15. Fast chirality reversal of the magnetic vortex by electric current

    SciTech Connect

    Lim, W. L. Liu, R. H.; Urazhdin, S.; Tyliszczak, T.; Erokhin, S. G.; Berkov, D.

    2014-12-01

    The possibility of high-density information encoding in magnetic materials by topologically stable inhomogeneous magnetization configurations such as domain walls, skyrmions, and vortices has motivated intense research into mechanisms enabling their control and detection. While the uniform magnetization states can be efficiently controlled by electric current using magnetic multilayer structures, this approach has proven much more difficult to implement for inhomogeneous states. Here, we report direct observation of fast reversal of magnetic vortex by electric current in a simple planar structure based on a bilayer of spin Hall material Pt with a single microscopic ferromagnetic disk contacted by asymmetric electrodes. The reversal is enabled by a combination of the chiral Oersted field and spin current generated by the nonuniform current distribution in Pt. Our results provide a route for the efficient control of inhomogeneous magnetization configurations by electric current.

  16. Electric currents and voltage drops along auroral field lines

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1983-01-01

    An assessment is presented of the current state of knowledge concerning Birkeland currents and the parallel electric field, with discussions focusing on the Birkeland primary region 1 sheets, the region 2 sheets which parallel them and appear to close in the partial ring current, the cusp currents (which may be correlated with the interplanetary B(y) component), and the Harang filament. The energy required by the parallel electric field and the associated particle acceleration processes appears to be derived from the Birkeland currents, for which evidence is adduced from particles, inverted V spectra, rising ion beams and expanded loss cones. Conics may on the other hand signify acceleration by electrostatic ion cyclotron waves associated with beams accelerated by the parallel electric field.

  17. Module One: Electrical Current; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The student is introduced in this module to some fundamental concepts of electricity. The module is divided into five lessons: electricity and the electron, electron movement, current flow, measurement of current, and the ammeter. Each lesson consists of an overview, a list of study resources, lesson narratives, programed materials, and lesson…

  18. High current density, cryogenically cooled sliding electrical joint development

    SciTech Connect

    Murray, H.

    1986-09-01

    In the past two years, conceptual designs for fusion energy research devices have focussed on compact, high magnetic field configurations. The concept of sliding electrical joints in the large magnets allows a number of technical advantages including enhanced mechanical integrity, remote maintainability, and reduced project cost. The rationale for sliding electrical joints is presented. The conceptual configuration for this generation of experimental devices is highlghted by an approx. 20 T toroidal field magnet with a flat top conductor current of approx. 300 kA and a sliding electrical joint with a gross current density of approx. 0.6 kA/cm/sup 2/. A numerical model was used to map the conductor current distribution as a function of time and position in the conductor. A series of electrical joint arrangements were produced against the system code envelope constraints for a specific version of the Ignition Studies Project (ISP) which is designated as 1025.

  19. Auroral electron beams - Electric currents and energy sources

    NASA Astrophysics Data System (ADS)

    Kaufmann, R. L.

    1981-09-01

    The energy sources, electric equipotentials and electric currents associated with auroral electron acceleration observed during rocket flight 18:152 are discussed. Steep flow gradients at the interface between the convection boundary layer and the plasma sheet are considered as the probable source of energy for dayside and dawn and dusk auroras, while it is suggested that the cross tail potential drop may provide an energy source for some midnight auroras. Birkeland currents that flow along distorted field lines are shown possibly to be important in the mechanism that produces U-shaped equipotentials in the ionosphere, as well as unexpected jumps in ionospheric or magnetotail currents and unusual electric fields and plasma drift in the magnetotail. The production of equipotential structures under oppositely directed higher-altitude electric fields is discussed, and it is pointed out that cold ionospheric plasma can enter the structure in a cusp-shaped region where fields are weak. The rocket data reveals that the sudden change in conductivity at the edge of the bright arc and the constancy of the electric field produce sudden changes in the Hall and Pedersen currents. It is concluded that current continuity is satisfied primarily by east-west changes in the electric field or conductivity.

  20. Human aquaporin 4 gating dynamics in dc and ac electric fields: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Garate, J.-A.; English, Niall J.; MacElroy, J. M. D.

    2011-02-01

    Water self-diffusion within human aquaporin 4 has been studied using molecular dynamics (MD) simulations in the absence and presence of external ac and dc electric fields. The computed diffusive (pd) and osmotic (pf) permeabilities under zero-field conditions are (0.718 ± 0.24) × 10-14 cm3 s-1 and (2.94 ± 0.47) × 10-14 cm3 s-1, respectively; our pf agrees with the experimental value of (1.50 ± 0.6) × 10-14 cm3 s-1. A gating mechanism has been proposed in which side-chain dynamics of residue H201, located in the selectivity filter, play an essential role. In addition, for nonequilibrium MD in external fields, it was found that water dipole orientation within the constriction region of the channel is affected by electric fields (e-fields) and that this governs the permeability. It was also found that the rate of side-chain flipping motion of residue H201 is increased in the presence of e-fields, which influences water conductivity further.

  1. Electric current distribution of a multiwall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Chen, Li-Ying; Chen, Yu-Jyun; Chang, Chia-Seng

    2016-07-01

    The electric current distribution in a multiwall carbon nanotube (MWCNT) was studied by in situ measuring the electric potential along an individual MWCNT in the ultra-high vacuum transmission electron microscope (TEM). The current induced voltage drop along each section of a side-bonded MWCNT was measured by a potentiometric probe in TEM. We have quantitatively derived that the current on the outermost shell depends on the applied current and the shell diameter. More proportion of the total electronic carriers hop into the inner shells when the applied current is increased. The larger a MWCNT's diameter is, the easier the electronic carriers can hop into the inner shells. We observed that, for an 8 nm MWCNT with 10 μA current applied, 99% of the total current was distributed on the outer two shells.

  2. Frequency Domain Analysis of Beat-Less Control Method for Converter-Inverter Driving Systems Applied to AC Electric Cars

    NASA Astrophysics Data System (ADS)

    Kimura, Akira

    In inverter-converter driving systems for AC electric cars, the DC input voltage of an inverter contains a ripple component with a frequency that is twice as high as the line voltage frequency, because of a single-phase converter. The ripple component of the inverter input voltage causes pulsations on torques and currents of driving motors. To decrease the pulsations, a beat-less control method, which modifies a slip frequency depending on the ripple component, is applied to the inverter control. In the present paper, the beat-less control method was analyzed in the frequency domain. In the first step of the analysis, transfer functions, which revealed the relationship among the ripple component of the inverter input voltage, the slip frequency, the motor torque pulsation and the current pulsation, were derived with a synchronous rotating model of induction motors. An analysis model of the beat-less control method was then constructed using the transfer functions. The optimal setting of the control method was obtained according to the analysis model. The transfer functions and the analysis model were verified through simulations.

  3. Deformation analysis of vesicles in an alternating-current electric field

    NASA Astrophysics Data System (ADS)

    Tang, Yu-Gang; Liu, Ying; Feng, Xi-Qiao

    2014-08-01

    In this paper the shape equation for axisymmetric vesicles subjected to an ac electric field is derived on the basis of the liquid-crystal model. The equilibrium morphology of a lipid vesicle is determined by the minimization of its free energy in coupled mechanical and ac electric fields. Besides elastic bending, the effects of the osmotic pressure difference, surface tension, Maxwell pressure, and flexoelectric and dielectric properties of phospholipid membrane as well are taken into account. The influences of elastic bending, osmotic pressure difference, and surface tension on the frequency-dependent behavior of a vesicle membrane in an ac electric field are examined. The singularity of the ac electric field is also investigated. Our theoretical results of vesicle deformation agree well with previous experimental and numerical results. The present study provides insights into the physical mechanisms underpinning the frequency-dependent morphological evolution of vesicles in the electric and mechanical fields.

  4. Electrical Experiments. VT-214-12-2. Part II. A-C Across the Line Control.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational Education.

    Designed for high school electronics students, this second document in a series of six electrical learning activity packages focuses on alternating current across-the-line control. An introductory section gives the objective for the activities, an introduction, and an outline of the content. The remainder of the activity book is comprised of…

  5. Electric currents in E-like planetary ionospheres

    NASA Technical Reports Server (NTRS)

    Cole, K. D.

    1990-01-01

    In this paper an MHD approach is used to consider the conduction of electric current in a lightly ionized gas, taking into account the gradients of pressure in the ion and electron gases, in addition to the electric field. The coefficients of electrical conductivity are found for each driver of current. New expressions for the components of heat dissipation associated with each driver of current are developed, which are fully consistent with kinetic theory. The relationship of the results to those obtained by kinetic theory is discussed. New components of currents associated with planetary equatorial electrojets are found. A new diffusion equation for magnetic induction is found, applicable in E-like regions of planetary ionospheres, and stellar photospheres.

  6. Ionic Components of Electric Current at Rat Corneal Wounds

    PubMed Central

    Cao, Lin; Mannis, Mark J.; Schwab, Ivan R.; Zhao, Min

    2011-01-01

    Background Endogenous electric fields and currents occur naturally at wounds and are a strong signal guiding cell migration into the wound to promote healing. Many cells involved in wound healing respond to small physiological electric fields in vitro. It has long been assumed that wound electric fields are produced by passive ion leakage from damaged tissue. Could these fields be actively maintained and regulated as an active wound response? What are the molecular, ionic and cellular mechanisms underlying the wound electric currents? Methodology/Principal Findings Using rat cornea wounds as a model, we measured the dynamic timecourses of individual ion fluxes with ion-selective probes. We also examined chloride channel expression before and after wounding. After wounding, Ca2+ efflux increased steadily whereas K+ showed an initial large efflux which rapidly decreased. Surprisingly, Na+ flux at wounds was inward. A most significant observation was a persistent large influx of Cl−, which had a time course similar to the net wound electric currents we have measured previously. Fixation of the tissues abolished ion fluxes. Pharmacological agents which stimulate ion transport significantly increased flux of Cl−, Na+ and K+. Injury to the cornea caused significant changes in distribution and expression of Cl− channel CLC2. Conclusions/Significance These data suggest that the outward electric currents occurring naturally at corneal wounds are carried mainly by a large influx of chloride ions, and in part by effluxes of calcium and potassium ions. Ca2+ and Cl− fluxes appear to be mainly actively regulated, while K+ flux appears to be largely due to leakage. The dynamic changes of electric currents and specific ion fluxes after wounding suggest that electrical signaling is an active response to injury and offers potential novel approaches to modulate wound healing, for example eye-drops targeting ion transport to aid in the challenging management of non

  7. Frequency and voltage dependent profile of dielectric properties, electric modulus and ac electrical conductivity in the PrBaCoO nanofiber capacitors

    NASA Astrophysics Data System (ADS)

    Demirezen, S.; Kaya, A.; Yerişkin, S. A.; Balbaşı, M.; Uslu, İ.

    In this study, praseodymium barium cobalt oxide nanofiber interfacial layer was sandwiched between Au and n-Si. Frequency and voltage dependence of ε‧, ε‧, tanδ, electric modulus (M‧ and M″) and σac of PrBaCoO nanofiber capacitor have been investigated by using impedance spectroscopy method. The obtained experimental results show that the values of ε‧, ε‧, tanδ, M‧, M″ and σac of the PrBaCoO nanofiber capacitor are strongly dependent on frequency of applied bias voltage. The values of ε‧, ε″ and tanδ show a steep decrease with increasing frequency for each forward bias voltage, whereas the values of σac and the electric modulus increase with increasing frequency. The high dispersion in ε‧ and ε″ values at low frequencies may be attributed to the Maxwell-Wagner and space charge polarization. The high values of ε‧ may be due to the interfacial effects within the material, PrBaCoO nanofibers interfacial layer and electron effect. The values of M‧ and M″ reach a maximum constant value corresponding to M∞ ≈ 1/ε∞ due to the relaxation process at high frequencies, but both the values of M‧ and M″ approach almost to zero at low frequencies. The changes in the dielectric and electrical properties with frequency can be also attributed to the existence of Nss and Rs of the capacitors. As a result, the change in the ε‧, ε″, tanδ, M‧, M″ and ac electric conductivity (σac) is a result of restructuring and reordering of charges at the PrBaCoO/n-Si interface under an external electric field or voltage and interface polarization.

  8. Field-aligned currents and large scale magnetospheric electric fields

    NASA Technical Reports Server (NTRS)

    Dangelo, N.

    1980-01-01

    D'Angelo's model of polar cap electric fields (1977) was used to visualize how high-latitude field-aligned currents are driven by the solar wind generator. The region 1 and region 2 currents of Iijima and Potemra (1976) and the cusp field-aligned currents of Wilhjelm et al. (1978) and McDiarmid et al. (1978) are apparently driven by different generators, although in both cases the solar wind is their ultimate source.

  9. Modulation of tendon fibroplasia by exogenous electric currents

    SciTech Connect

    Cleary, S.F.; Liu, L.M.; Graham, R.; Diegelmann, R.F.

    1988-01-01

    A chicken tendon explant model system has been developed to investigate the effects of extremely-low-frequency (ELF), low-amplitude, unipolar, square wave pulsed electric fields on fibroplasia in vitro. An electric field parameter set consisting of 1-Hz, 1-ms duration pulses, with a time-averaged current density of 7 mA/m2 (peak current density 7 A/m2) induced maximal (32%) increase in fibroblast proliferation in tendon explants exposed for 4 days. Exposure to the same field at an average current density of 1.8 mA/m2 had no effect on fibroblast proliferation, whereas exposure to current densities on greater than 10 mA/m2 inhibited proliferation and relative collagen synthesis, without affecting noncollagen protein synthesis. Fibroplasia was significantly increased in explants oriented parallel to applied electric fields having current densities of 3.5 or 7 mA/m2, but there was no detectable effect on explants oriented perpendicular to the same electric field. Fibroblast proliferation and relative collagen synthesis were inversely proportional to donor age for chickens in the 3- to 16-week age group used in this study. For these dependent variables (proliferation and relative collagen synthesis), there was no interaction between donor age and ELF electric field exposure.

  10. Electrical stimulation therapies for spinal fusions: current concepts

    PubMed Central

    Glazer, Paul A.

    2006-01-01

    Electrical stimulation therapies have been used for more than 30 years to enhance spinal fusions. Although their positive effects on spinal fusions have been widely reported, the mechanisms of action of the technologies were only recently identified. Three types of technologies are available clinically: direct current, capacitive coupling, and inductive coupling. The latter is the basis of pulsed electromagnetic fields and combined magnetic fields. This review summarizes the current concepts on the mechanisms of action, animal and clinical studies, and cost justification for the use of electrical stimulation for spinal fusions. Scientific studies support the validity of electrical stimulation treatments. The mechanisms of action of each of the three electrical stimulation therapies are different. New data demonstrates that the upregulation of several growth factors may be responsible for the clinical success seen with the use of such technologies. PMID:16604354

  11. Rethinking sediment biogeochemistry after the discovery of electric currents.

    PubMed

    Nielsen, Lars Peter; Risgaard-Petersen, Nils

    2015-01-01

    The discovery of electric currents in marine sediments arose from a simple observation that conventional biogeochemistry could not explain: Sulfide oxidation in one place is closely coupled to oxygen reduction in another place, centimeters away. After experiments demonstrated that this resulted from electric coupling, the conductors were found to be long, multicellular, filamentous bacteria, now known as cable bacteria. The spatial separation of oxidation and reduction processes by these bacteria represents a shortcut in the conventional cascade of redox processes and may drive most of the oxygen consumption. In addition, it implies a separation of strong proton generators and consumers and the formation of measurable electric fields, which have several effects on mineral development and ion migration. This article reviews the work on electric currents and cable bacteria published through April 2014, with an emphasis on general trends, thought-provoking consequences, and new questions to address. PMID:25251266

  12. Rethinking Sediment Biogeochemistry After the Discovery of Electric Currents

    NASA Astrophysics Data System (ADS)

    Nielsen, Lars Peter; Risgaard-Petersen, Nils

    2015-01-01

    The discovery of electric currents in marine sediments arose from a simple observation that conventional biogeochemistry could not explain: Sulfide oxidation in one place is closely coupled to oxygen reduction in another place, centimeters away. After experiments demonstrated that this resulted from electric coupling, the conductors were found to be long, multicellular, filamentous bacteria, now known as cable bacteria. The spatial separation of oxidation and reduction processes by these bacteria represents a shortcut in the conventional cascade of redox processes and may drive most of the oxygen consumption. In addition, it implies a separation of strong proton generators and consumers and the formation of measurable electric fields, which have several effects on mineral development and ion migration. This article reviews the work on electric currents and cable bacteria published through April 2014, with an emphasis on general trends, thought-provoking consequences, and new questions to address.

  13. Low Voltage Electric Current Causing Ileal Perforation: A Rare Injury

    PubMed Central

    Mathur, Vinay; Tanger, Ramesh; Gupta, Arun Kumar

    2016-01-01

    Post-electric burn ileal perforation is a rare but severe complication leading to high morbidity and mortality if there is delay in diagnosis and management. We are describing a case of electric current injury of left forearm, chest, and abdominal wall with perforation of ileum in an 8-year old boy. Patient was successfully managed by primary closure of the ileal perforation. PMID:27170922

  14. Rotary motion driven by a direct current electric field

    NASA Astrophysics Data System (ADS)

    Takinoue, Masahiro; Atsumi, Yu; Yoshikawa, Kenichi

    2010-03-01

    We report the rotary motion of an aqueous microdroplet in an oil phase under a stationary direct current electric field. A droplet exhibits rotary motion under a suitable geometrical arrangement of positive and negative electrodes. Rotary motion appears above a certain critical electric potential and its frequency increases with an increase in the potential. A simple theoretical model is proposed to describe the occurrence of this rotary motion, together with an argument for the future expansion of this micro rotary motor system.

  15. Controlled motion of electrically neutral microparticles by pulsed direct current

    PubMed Central

    Zhang, Xinfang; Qin, Rongshan

    2015-01-01

    A controlled motion of electrically neutral microparticles in a conductive liquid at high temperatures has not yet been realized under the uniform direct electric current field. We propose a simple method, which employs pulsed direct current to a conductive liquid metal containing low-conductivity objects at high temperature. The electric current enables the low-conductivity particles to pass from the centre towards the various surfaces of the high-conductivity liquid metal. Most interestingly, the directionality of microparticles can be controlled and their speed can be easily regulated by adjusting pulsed current density. We find that the movement may arise from the configuration of electrical domains which generates a driving force which exceeds the force of gravity and viscous friction. All of these features are of potential benefit in separating the particles of nearly equal density but distinctly different electrical conductivities, and also offer considerable promise for the precise and selective positioning of micro-objects or the controlled motion of minute quantities of surrounding fluids. PMID:25955864

  16. DISTRIBUTION OF ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Török, T.; Titov, V. S.; Mikić, Z.; Leake, J. E.; Archontis, V.; Linton, M. G.; Dalmasse, K.; Aulanier, G.; Kliem, B.

    2014-02-10

    There has been a long-standing debate on the question of whether or not electric currents in solar active regions are neutralized. That is, whether or not the main (or direct) coronal currents connecting the active region polarities are surrounded by shielding (or return) currents of equal total value and opposite direction. Both theory and observations are not yet fully conclusive regarding this question, and numerical simulations have, surprisingly, barely been used to address it. Here we quantify the evolution of electric currents during the formation of a bipolar active region by considering a three-dimensional magnetohydrodynamic simulation of the emergence of a sub-photospheric, current-neutralized magnetic flux rope into the solar atmosphere. We find that a strong deviation from current neutralization develops simultaneously with the onset of significant flux emergence into the corona, accompanied by the development of substantial magnetic shear along the active region's polarity inversion line. After the region has formed and flux emergence has ceased, the strong magnetic fields in the region's center are connected solely by direct currents, and the total direct current is several times larger than the total return current. These results suggest that active regions, the main sources of coronal mass ejections and flares, are born with substantial net currents, in agreement with recent observations. Furthermore, they support eruption models that employ pre-eruption magnetic fields containing such currents.

  17. Performance criteria guideline for three explosion protection methods of electrical equipment rated up to 15,000 volts AC

    NASA Technical Reports Server (NTRS)

    Linley, L. J.; Luper, A. B.; Dunn, J. H.

    1982-01-01

    The Bureau of Mines, U.S. Department of the Interior, is reviewing explosion protection methods for use in gassy coal mines. This performance criteria guideline is an evaluation of three explosion protection methods of machines electrically powered with voltages up to 15,000 volts ac. A sufficient amount of basic research has been accomplished to verify that the explosion proof and pressurized enclosure methods can provide adequate explosion protection with the present state of the art up to 15,000 volts ac. This routine application of the potted enclosure as a stand alone protection method requires further investigation or development in order to clarify performance criteria and verification certification requirements. An extensive literature search, a series of high voltage tests, and a design evaluation of the three explosion protection methods indicate that the explosion proof, pressurized, and potted enclosures can all be used to enclose up to 15,000 volts ac.

  18. Electric current induced modification of germanium nanowire NEM switch contact

    NASA Astrophysics Data System (ADS)

    Meija, R.; Kosmaca, J.; Jasulaneca, L.; Petersons, K.; Biswas, S.; Holmes, J. D.; Erts, D.

    2015-05-01

    We present an investigation of contact properties of a germanium (Ge) nanowire based nanoelectromechanical (NEM) switch in its ON state. The contact stiffness in the ON state was evaluated by detecting the nanowire’s resonance frequency. It was found that the resonance frequency increases when electric current flows through the nanowire/counter electrode contact area. The reason for modification in the contact area is referred to as electric-current-induced processes in the native oxide layer covering the nanowires. The presented resonance shift method is a simple way to indicate strengthening of the nanowire/counter electrode contact area without disassembling the contact.

  19. Electric current induced modification of germanium nanowire NEM switch contact.

    PubMed

    Meija, R; Kosmaca, J; Jasulaneca, L; Petersons, K; Biswas, S; Holmes, J D; Erts, D

    2015-05-15

    We present an investigation of contact properties of a germanium (Ge) nanowire based nanoelectromechanical (NEM) switch in its ON state. The contact stiffness in the ON state was evaluated by detecting the nanowire's resonance frequency. It was found that the resonance frequency increases when electric current flows through the nanowire/counter electrode contact area. The reason for modification in the contact area is referred to as electric-current-induced processes in the native oxide layer covering the nanowires. The presented resonance shift method is a simple way to indicate strengthening of the nanowire/counter electrode contact area without disassembling the contact. PMID:25902759

  20. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  1. Mesoscopic turbulence and local order in Janus particles self-propelling under an ac electric field

    NASA Astrophysics Data System (ADS)

    Nishiguchi, Daiki; Sano, Masaki

    2015-11-01

    To elucidate mechanisms of mesoscopic turbulence exhibited by active particles, we experimentally study turbulent states of nonliving self-propelled particles. We realize an experimental system with dense suspensions of asymmetrical colloidal particles (Janus particles) self-propelling on a two-dimensional surface under an ac electric field. Velocity fields of the Janus particles in the crowded situation can be regarded as a sort of turbulence because it contains many vortices and their velocities change abruptly. Correlation functions of their velocity field reveal the coexistence of polar alignment and antiparallel alignment interactions, which is considered to trigger mesoscopic turbulence. Probability distributions of local order parameters for polar and nematic orders indicate the formation of local clusters with particles moving in the same direction. A broad peak in the energy spectrum of the velocity field appears at the spatial scales where the polar alignment and the cluster formation are observed. Energy is injected at the particle scale and conserved quantities such as energy could be cascading toward the larger clusters.

  2. Mesoscopic turbulence and local order in Janus particles self-propelling under an ac electric field.

    PubMed

    Nishiguchi, Daiki; Sano, Masaki

    2015-11-01

    To elucidate mechanisms of mesoscopic turbulence exhibited by active particles, we experimentally study turbulent states of nonliving self-propelled particles. We realize an experimental system with dense suspensions of asymmetrical colloidal particles (Janus particles) self-propelling on a two-dimensional surface under an ac electric field. Velocity fields of the Janus particles in the crowded situation can be regarded as a sort of turbulence because it contains many vortices and their velocities change abruptly. Correlation functions of their velocity field reveal the coexistence of polar alignment and antiparallel alignment interactions, which is considered to trigger mesoscopic turbulence. Probability distributions of local order parameters for polar and nematic orders indicate the formation of local clusters with particles moving in the same direction. A broad peak in the energy spectrum of the velocity field appears at the spatial scales where the polar alignment and the cluster formation are observed. Energy is injected at the particle scale and conserved quantities such as energy could be cascading toward the larger clusters. PMID:26651697

  3. Electric-Field Control over Spin-Wave and Current Induced Domain Wall Motion and Magnonic Torques in Multiferroics

    NASA Astrophysics Data System (ADS)

    Kulagina, Iryna; Linder, Jacob

    2015-03-01

    We discover that the way spin-waves exert magnetic torques in multiferroic materials can cause not only domain wall motion, but also magnetization dynamics for homogeneous magnetization textures. Interestingly, the domain wall motion can be controlled via purely electrical means with the spin-waves being generated by an ac electric field E while the direction of the wall motion also is sensitive to an applied dc E field. Moreover, we determine the interaction between spin-transfer torque from an electric current and a magnetic domain wall in multiferroics and show that the Walker breakdown threshold scales with the magnitude of a perpendicular electric field, offering a way to control the properties of domain wall propagation via electric gating.

  4. Controller for controlling operation of at least one electrical load operating on an AC supply, and a method thereof

    DOEpatents

    Cantin, Luc; Deschenes, Mario; D'Amours, Mario

    1995-08-15

    A controller is provided for controlling operation of at least one electrical load operating on an AC supply having a typical frequency, the AC supply being provided via power transformers by an electrical power distribution grid. The controller is associated with the load and comprises an input interface for coupling the controller to the grid, a frequency detector for detecting the frequency of the AC supply and producing a signal indicative of the frequency, memory modules for storing preprogrammed commands, a frequency monitor for reading the signal indicative of the frequency and producing frequency data derived thereof, a selector for selecting at least one of the preprogrammed commands with respect to the frequency data, a control unit for producing at least one command signal representative of the selected preprogrammed commands, and an output interface including a device responsive to the command signal for controlling the load. Therefore, the load can be controlled by means of the controller depending on the frequency of the AC supply.

  5. Electric currents and coronal heating in NOAA active region 6952

    NASA Technical Reports Server (NTRS)

    Metcalf, T. R.; Canfield, R. C.; Hudson, H. S.; Mickey, D. L.; Wulser, J. -P.; Martens, P. C. H.; Tsuneta, S.

    1994-01-01

    We examine the spatial and temporal relationship between coronal structures observed with the soft X-ray telescope (SXT) on board the Yohkoh spacecraft and the vertical electric current density derived from photospheric vector magnetograms obtained using the Stokes Polarimeter at the Mees Solar Observatory. We focus on a single active region: AR 6952 which we observed on 7 days during 1991 December. For 11 independent maps of the vertical electric current density co-aligned with non-flaring X-ray images, we search for a morphological relationship between sites of high vertical current density in the photosphere and enhanced X-ray emission in the overlying corona. We find no compelling spatial or temporal correlation between the sites of vertical current and the bright X-ray structures in this active region.

  6. Field-aligned currents and ionospheric electric fields

    NASA Technical Reports Server (NTRS)

    Yasuhara, F.; Akasofu, S.-I.

    1977-01-01

    It is shown that the observed distribution of the ionospheric electric field can be deduced from an equation combining Ohm's law with the current continuity equation by using the 'observed' distribution of field-aligned currents as the boundary condition for two models of the ionosphere. The first model has one conductive annular ring representing the quiet-time auroral precipitation belt; the second has two conductive annular rings that simulate the discrete and diffuse auroral regions. An analysis is performed to determine how well the electric-field distribution can be reproduced. The results indicate that the first model reproduces the Sq(p)-type distribution, the second model reproduces reasonably well a substorm-type potential and ionospheric current patterns together with the Harang discontinuity, and that the distribution of field-aligned currents is the same for both models.

  7. Electric fields and current sheet structure in magnetospheric plasmas

    NASA Astrophysics Data System (ADS)

    Cully, C. M.

    The electric currents of the central plasma sheet play a pivotal role in the dynamics of the Earth's magnetosphere. I describe new instrumentation developed for measuring its properties, and analyze data from existing instruments. The analysis shows the structure and physical current-carrying mechanisms of the quiescent central plasma sheet in new detail. Electric field observations are critical for this work. I discuss two aspects of space-based double-probe electric field experiments: the probe design and the signal processing. I develop a numerical model that self-consistently solves for the interaction between the probes and the nearby plasma environment, including the effects of the spacecraft and its attendant photoelectrons. I also describe the signal processing hardware developed for the 5-satellite THEMIS mission, known as the Digital Fields Boards (DFB). THEMIS was launched in February 2007, and all 5 DFBs are working as intended. Since THEMIS is only recently launched, I analyze data from the 4-satellite Cluster mission, which has similar instrumentation. With Cluster data, the position of the current sheet relative to the satellite can be determined, allowing direct comparisons between observations and models. To encompass the wide variety of possible current-carrying mechanisms, I develop a kinetic model based on the quasi-isotropic formalism of Schindler and Birn [2002]. The model fits many of the observed sheets well. The observations reveal a wide variety of current-carrying mechanisms. Some of the thinnest currents consist entirely of a pair of electron Hall currents which together form a bifurcated current sheet driven by strong inward-pointing electric fields.

  8. Electric currents in F-like planetary ionospheres

    NASA Technical Reports Server (NTRS)

    Cole, K. D.

    1990-01-01

    In this paper, electrical transport coefficients are found for charged particles in such lightly ionized gases as exist in planetary and stellar atmospheres, like the F-region of the earth's ionosphere. Electric fields and gradients of pressure in the ions and the electrons are taken as the drivers of electric current. Collisions of electrons with ions, and of ions and electrons with neutral particles, are taken into account, and new expressions are generated for electrical conductivity, heating rates, and diffusion of magnetic field. The paper extends and complements the results of an earlier paper by Cole (1990) which dealt with 'E-like' ionospheric regions. A comparison of the results with those of kinetic theory is made.

  9. A transverse electric current in triglycine sulphate ferroelectric crystal

    NASA Astrophysics Data System (ADS)

    Fugiel, Bogusław; Kikuta, Toshio

    2016-05-01

    The application of a prolonged transverse electric field at a temperature TA < TC leads to unexpected qualitative changes in dielectric and thermal properties of the uniaxial ferroelectric triglycine sulphate (TGS) crystal, where TC is the critical temperature of the paraelectric-ferroelectric phase transition. The new properties can be still observed even after the transverse field has ceased to be applied as long as the temperature of the sample does not exceed TA. However, annealing the sample above TC leads to the restoration of the original state of the crystal. An electric current flowing along the direction perpendicular to the polar axis of the uniaxial TGS ferroelectric crystal was measured below the temperature TA at which the prolonged transverse electric field had been formerly applied to the crystal for a few hours. The experimental data resemble the classic pyroelectric current flowing along the polar axis.

  10. Large transient fault current test of an electrical roll ring

    NASA Technical Reports Server (NTRS)

    Yenni, Edward J.; Birchenough, Arthur G.

    1992-01-01

    The space station uses precision rotary gimbals to provide for sun tracking of its photoelectric arrays. Electrical power, command signals and data are transferred across the gimbals by roll rings. Roll rings have been shown to be capable of highly efficient electrical transmission and long life, through tests conducted at the NASA Lewis Research Center and Honeywell's Satellite and Space Systems Division in Phoenix, AZ. Large potential fault currents inherent to the power system's DC distribution architecture, have brought about the need to evaluate the effects of large transient fault currents on roll rings. A test recently conducted at Lewis subjected a roll ring to a simulated worst case space station electrical fault. The system model used to obtain the fault profile is described, along with details of the reduced order circuit that was used to simulate the fault. Test results comparing roll ring performance before and after the fault are also presented.

  11. Eddy-current crack detection at frequencies approaching electrical resonance

    NASA Astrophysics Data System (ADS)

    Hughes, Robert R.; Dixon, Steve

    2014-02-01

    The effect of operating an absolute eddy-current (EC) probe at frequencies around its electrical resonance was investigated. A defect signal enhancement phenomenon was observed and characterised. Experimental tests were performed on notch defects in typical aerospace superalloys. An absolute mode EC probe was operated by sweeping through a range of frequencies, in the MHz range, encompassing the electrical resonance of the system. Resonance decoupling above defects results in a signal-to-noise ratio (SNR) peak, within a band of frequencies approaching resonance, of up to 3.7 times that measured at 1MHz. This near electrical resonance signal enhancement (NERSE) phenomenon poses the possibility for a simple operational approach method for improving the sensitivity of conventional eddy-current testing.

  12. 59. View of high voltage (4160 volts alternating current) electric ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. View of high voltage (4160 volts alternating current) electric load center and motor control center at mezzanine level in transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  13. Teaching Electrical Energy, Voltage and Current: An Alternative Approach.

    ERIC Educational Resources Information Center

    Licht, Pieter

    1991-01-01

    A program for teaching the concepts of electric energy, voltage, and current is proposed. The ideas and concepts are introduced in a sequence that places more emphasis on some aspects that are normally treated very briefly. A phenomenological orientation, qualitative and quantitative micro- and macroscopic treatments, and the inclusion of the…

  14. Electric Current. Learning in Science Project. Working Paper No. 25.

    ERIC Educational Resources Information Center

    Osborne, Roger

    One area explored in the second (in-depth) phase of the Learning in Science Project was "children's science," defined as views of the world and the meanings for words that children have and bring with them to science lessons. The investigation reported focuses on the concept of "electric current" held by 43 elementary school pupils and 2 teachers…

  15. Fourier analysis of polar cap electric field and current distributions

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1984-01-01

    A theoretical study of high-latitude electric fields and currents, using analytic Fourier analysis methods, is conducted. A two-dimensional planar model of the ionosphere with an enhanced conductivity auroral belt and field-aligned currents at the edges is employed. Two separate topics are treated. A field-aligned current element near the cusp region of the polar cap is included to investigate the modifications to the convection pattern by the east-west component of the interplanetary magnetic field. It is shown that a sizable one-cell structure is induced near the cusp which diverts equipotential contours to the dawnside or duskside, depending on the sign of the cusp current. This produces characteristic dawn-dusk asymmetries to the electric field that have been previously observed over the polar cap. The second topic is concerned with the electric field configuration obtained in the limit of perfect shielding, where the field is totally excluded equatorward of the auroral oval. When realistic field-aligned current distributions are used, the result is to produce severely distorted, crescent-shaped equipotential contours over the cap. Exact, analytic formulae applicable to this case are also provided.

  16. A method of detecting and locating electrical current imbalances

    NASA Astrophysics Data System (ADS)

    Patterson, Richard L.

    1993-01-01

    A method of detecting and locating current imbalances such as ground faults in multiwire systems using the Faraday effect is described. As an example, for 2-wire or 3-wire (1 ground wire) electrical systems, light is transmitted along an optical path which is exposed to magnetic fields produced by currents flowing in the hot and neutral wires. The rotations produced by these two magnetic fields cancel each other, therefore light on the optical path does not read the effect of either. However, when a ground fault occurs, the optical path is exposed to a net Faraday effect rotation due to the current imbalance thereby exposing the ground fault.

  17. Electric current measurement using fiber-optic curvature sensor

    NASA Astrophysics Data System (ADS)

    Di, Haiting; Xin, Ying; Sun, Suping

    2016-02-01

    A novel fiber-optic curvature sensor, which can measure curvature directly, has been developed in recent years. The electric current measurements system based on fiber-optic curvature sensor and electromagnetic principle is developed. A fiber-optic curvature sensor is bonded to a thin-walled cantilever and two circular magnet targets with the same parameters are configured at the tip of the cantilever symmetrically. In this case, the throughput of the sensor will be changed due to the bending deformation of cantilever, which is proportional to the electromagnetic force caused by measured electric current. Direct and alternate characteristics of the proposed measurement system are studied experimentally. The results show that the measurement errors are within the range of ±5.5 mA and the corresponding accuracy is within 1% at the current measurement range from -300 mA to 300 mA, which indicate the feasibility of the proposed measurement system.

  18. Recent progress in atomistic simulation of electrical current DNA sequencing.

    PubMed

    Kim, Han Seul; Kim, Yong-Hoon

    2015-07-15

    We review recent advances in the DNA sequencing method based on measurements of transverse electrical currents. Device configurations proposed in the literature are classified according to whether the molecular fingerprints appear as the major (Mode I) or perturbing (Mode II) current signals. Scanning tunneling microscope and tunneling electrode gap configurations belong to the former category, while the nanochannels with or without an embedded nanopore belong to the latter. The molecular sensing mechanisms of Modes I and II roughly correspond to the electron tunneling and electrochemical gating, respectively. Special emphasis will be given on the computer simulation studies, which have been playing a critical role in the initiation and development of the field. We also highlight low-dimensional nanomaterials such as carbon nanotubes, graphene, and graphene nanoribbons that allow the novel Mode II approach. Finally, several issues in previous computational studies are discussed, which points to future research directions toward more reliable simulation of electrical current DNA sequencing devices. PMID:25744599

  19. Explorations of electric current system in solar active regions. I - Empirical inferences of the current flows

    NASA Technical Reports Server (NTRS)

    Ding, Y. J.; Hong, Q. F.; Hagyard, M. J.; Deloach, A. C.; Liu, X. P.

    1987-01-01

    Techniques to identify sources of electric current systems and their channels of flow in solar active regions are explored. Measured photospheric vector magnetic fields together with high-resolution white-light and H-alpha filtergrams provide the data base to derive the current systems in the photosphere and chromosphere. As an example, the techniques are then applied to infer current systems in AR 2372 in early April 1980.

  20. Angular Dependence of Transport AC Losses in Superconducting Wire with Position-Dependent Critical Current Density in a DC Magnetic Field

    NASA Astrophysics Data System (ADS)

    Su, Xing-liang; Xiong, Li-ting; Gao, Yuan-wen; Zhou, You-he

    2013-07-01

    Transport AC losses play a very important role in high temperature superconductors (HTSs), which usually carry AC transport current under applied magnetic field in typical application-like conditions. In this paper, we propose the analytical formula for transport AC losses in HTS wire by considering critical current density of both inhomogeneous and anisotropic field dependent. The angular dependence of critical current density is described by effective mass theory, and the HTS wire has inhomogeneous distribution cross-section of critical current density. We calculate the angular dependence of normalized AC losses under different DC applied magnetic fields. The numerical results of this formula agree well with the experiment data and are better than the results of Norris formula. This analytical formula can explain the deviation of experimental transport current losses from the Norris formula and apply to calculate transport AC losses in realistic practical condition.

  1. Methods, systems and apparatus for controlling operation of two alternating current (AC) machines

    DOEpatents

    Gallegos-Lopez, Gabriel; Nagashima, James M.; Perisic, Milun; Hiti, Silva

    2012-02-14

    A system is provided for controlling two AC machines. The system comprises a DC input voltage source that provides a DC input voltage, a voltage boost command control module (VBCCM), a five-phase PWM inverter module coupled to the two AC machines, and a boost converter coupled to the inverter module and the DC input voltage source. The boost converter is designed to supply a new DC input voltage to the inverter module having a value that is greater than or equal to a value of the DC input voltage. The VBCCM generates a boost command signal (BCS) based on modulation indexes from the two AC machines. The BCS controls the boost converter such that the boost converter generates the new DC input voltage in response to the BCS. When the two AC machines require additional voltage that exceeds the DC input voltage required to meet a combined target mechanical power required by the two AC machines, the BCS controls the boost converter to drive the new DC input voltage generated by the boost converter to a value greater than the DC input voltage.

  2. Time-resolved magnetic flux and AC-current distributions in superconducting yttrium barium copper oxide thin films and multifilaments

    NASA Astrophysics Data System (ADS)

    Yang, Ran

    Time-resolved magneto-optical imaging (TRMOI) technique allows dynamic ac transport measurements on superconductors. The high time and spatial resolutions of the measurements also offer good quantitative data analysis of the MO images. YBa2Cu 3O7-delta (YBCO) was discovered as a high-temperature superconductor (HTSC) which has wide applications due to its high critical temperature of Tc = 91 K, and high critical current density Jc in the order of 106-7 Acm-2. Many of the applications require high ac current load and a high magnetic field. We study the interaction behavior of YBCO thin films in an ac transport current and a dc magnetic field by the TRMOI technique. In this dissertation, I first introduce the applications of high-temperature superconductors with focus on YBCO and describe the advantages of the TRMOI technique we developed over other methods to map the magnetic flux distribution of superconductors. The theories to understand the magnetic properties of HTSC are presented, followed by theoretical models. I also introduce a newly developed finite elemental method (FEM) simulation which is proved to be a better theoretical guideline to our data analysis. The TRMOI experimental setup and the procedures are discussed in detail. I show step-by-step the calibration of light intensity profiles averaged from MO images to determine magnetic field distribution, and a numerical inversion of the Biot-Savart law to calculate the current density distributions. The current density evolution in YBCO thin films is studied by TRMOI as a function of the phase of an ac current applied simultaneously with a perpendicular dc magnetic field. The measurements show that an ac current enables the vortex matter in YBCO thin films to reorganize into two coexisting steady states of driven vortex motion with different characteristics. To study the transport current effects in YBCO thin films, we present a new empirical method to separate the total current distribution into a

  3. Investigating electrical resonance in eddy-current array probes

    NASA Astrophysics Data System (ADS)

    Hughes, R.; Fan, Y.; Dixon, S.

    2016-02-01

    The sensitivity enhancing effects of eddy-current testing at frequencies close to electrical resonance are explored. Var-ied techniques exploiting the phenomenon, dubbed near electrical resonance signal enhancement (NERSE), were experimentally investigated to evaluate its potential exploitation for other interesting applications in aerospace materials, in particular its potential for boosting the sensitivity of standard ECT measurements. Methods for setting and controlling the typically unstable resonant frequencies of such systems are discussed. This research is funded by the EPSRC, via the Research Centre for Non-Destructive Evaluation RCNDE, and Rolls-Royce plc.

  4. Electric machine and current source inverter drive system

    DOEpatents

    Hsu, John S

    2014-06-24

    A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.

  5. Determinants of the electric field during transcranial direct current stimulation.

    PubMed

    Opitz, Alexander; Paulus, Walter; Will, Susanne; Antunes, Andre; Thielscher, Axel

    2015-04-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field distribution in the brain during tDCS. We constructed anatomically realistic finite element (FEM) models of two individual heads including conductivity anisotropy and different skull layers. We simulated a widely employed electrode montage to induce motor cortex plasticity and moved the stimulating electrode over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect is counteracted by a larger proportion of higher conducting spongy bone in thicker regions leading to a more homogenous current over the skull. Using a multiple regression model we could identify key factors that determine the field distribution to a significant extent, namely the thicknesses of the cerebrospinal fluid and the skull, the gyral depth and the distance to the anode and cathode. These factors account for up to 50% of the spatial variation of the electric field strength. Further, we demonstrate that individual anatomical factors can lead to stimulation "hotspots" which are partly resistant to electrode positioning. Our results give valuable novel insights in the biophysical foundation of tDCS and highlight the importance to account for individual anatomical factors when choosing an electrode montage. PMID:25613437

  6. AC electric field for rapid assembly of nanostructured polyaniline onto microsized gap for sensor devices.

    PubMed

    La Ferrara, Vera; Rametta, Gabriella; De Maria, Antonella

    2015-07-01

    Interconnected network of nanostructured polyaniline (PANI) is giving strong potential for enhancing device performances than bulk PANI counterparts. For nanostructured device processing, the main challenge is to get prototypes on large area by requiring precision, low cost and high rate assembly. Among processes meeting these requests, the alternate current electric fields are often used for nanostructure assembling. For the first time, we show the assembly of nanostructured PANI onto large electrode gaps (30-60 μm width) by applying alternate current electric fields, at low frequencies, to PANI particles dispersed in acetonitrile (ACN). An important advantage is the short assembly time, limited to 5-10 s, although electrode gaps are microsized. That encouraging result is due to a combination of forces, such as dielectrophoresis (DEP), induced-charge electrokinetic (ICEK) flow and alternate current electroosmotic (ACEO) flow, which speed up the assembly process when low frequencies and large electrode gaps are used. The main achievement of the present study is the development of ammonia sensors created by direct assembling of nanostructured PANI onto electrodes. Sensors exhibit high sensitivity to low gas concentrations as well as excellent reversibility at room temperature, even after storage in air. PMID:26009866

  7. Finite-Element Model Predicts Current Density Distribution for Clinical Applications of tDCS and tACS.

    PubMed

    Neuling, Toralf; Wagner, Sven; Wolters, Carsten H; Zaehle, Tino; Herrmann, Christoph S

    2012-01-01

    Transcranial direct current stimulation (tDCS) has been applied in numerous scientific studies over the past decade. However, the possibility to apply tDCS in therapy of neuropsychiatric disorders is still debated. While transcranial magnetic stimulation (TMS) has been approved for treatment of major depression in the United States by the Food and Drug Administration (FDA), tDCS is not as widely accepted. One of the criticisms against tDCS is the lack of spatial specificity. Focality is limited by the electrode size (35 cm(2) are commonly used) and the bipolar arrangement. However, a current flow through the head directly from anode to cathode is an outdated view. Finite-element (FE) models have recently been used to predict the exact current flow during tDCS. These simulations have demonstrated that the current flow depends on tissue shape and conductivity. To face the challenge to predict the location, magnitude, and direction of the current flow induced by tDCS and transcranial alternating current stimulation (tACS), we used a refined realistic FE modeling approach. With respect to the literature on clinical tDCS and tACS, we analyzed two common setups for the location of the stimulation electrodes which target the frontal lobe and the occipital lobe, respectively. We compared lateral and medial electrode configuration with regard to their usability. We were able to demonstrate that the lateral configurations yielded more focused stimulation areas as well as higher current intensities in the target areas. The high resolution of our simulation allows one to combine the modeled current flow with the knowledge of neuronal orientation to predict the consequences of tDCS and tACS. Our results not only offer a basis for a deeper understanding of the stimulation sites currently in use for clinical applications but also offer a better interpretation of observed effects. PMID:23015792

  8. Effect of electric field configuration on streamer and partial discharge phenomena in a hydrocarbon insulating liquid under AC stress

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Liu, Q.; Wang, Z. D.

    2016-05-01

    This paper concerns pre-breakdown phenomena, including streamer characteristics from a fundamental perspective and partial discharge (PD) measurements from an industrial perspective, in a hydrocarbon insulating liquid. The aim was to investigate the possible changes of the liquid’s streamer and PD characteristics and their correlations when the uniformity of the AC electric field varies. In the experiments, a plane-to-plane electrode system incorporating a needle protrusion was used in addition to a needle-to-plane electrode system. When the applied electric field became more uniform, fewer radial branches occurred and streamer propagation towards the ground electrode was enhanced. The transition from streamer propagation dominated breakdown in divergent fields to streamer initiation dominated breakdown in uniform fields was evidenced. Relationships between streamer and PD characteristics were established, which were found to be electric field dependent. PD of the same apparent charge would indicate longer streamers if the electric field is more uniform.

  9. Gender Differences in Current Received during Transcranial Electrical Stimulation

    PubMed Central

    Russell, Michael; Goodman, Theodore; Wang, Qiang; Groshong, Bennett; Lyeth, Bruce G.

    2014-01-01

    Low current transcranial electrical stimulation (tCS) is an effective but somewhat inconsistent tool for augmenting neuromodulation. In this study, we used 3D MRI guided electrical transcranial stimulation modeling to estimate the range of current intensities received at cortical brain tissues. Combined T1, T2, and proton density MRIs from 24 adult subjects (12 male and 12 female) were modeled with virtual electrodes placed at F3, F4, C3, and C4. Two sizes of electrodes 20 mm round and 50 mm × 45 mm were examined at 0.5, 1, and 2 mA input currents. The intensity of current received was sampled in a 1-cm sphere placed at the cortex directly under each scalp electrode. There was a 10-fold difference in the amount of current received by individuals. A large gender difference was observed with female subjects receiving significantly less current at targeted parietal cortex than male subjects when stimulated at identical current levels (P < 0.05). Larger electrodes delivered somewhat larger amounts of current than the smaller ones (P < 0.01). Electrodes in the frontal regions delivered less current than those in the parietal region (P < 0.05). There were large individual differences in current levels that the subjects received. Analysis of the cranial bone showed that the gender difference and the frontal parietal differences are due to differences in cranial bone. Males have more cancelous parietal bone and females more dense parietal bone (P < 0.01). These differences should be considered when planning tCS studies and call into question earlier reports of gender differences due to hormonal influences. PMID:25177301

  10. Inactivation of bacteria by electric current in the presence of carbon nanotubes embedded within a polymeric membrane.

    PubMed

    Zhu, Anna; Liu, Harris K; Long, Feng; Su, Erzheng; Klibanov, Alexander M

    2015-01-01

    Uniform conductive composite membranes were prepared using a phase inversion method by blending carboxyl-functionalized multi-walled carbon nanotubes (CNTs) with a polysulfone polymer. At 6 % of the embedded CNTs, the membrane pore size measured by transmission electron microscopy (TEM) was approximately 50 nm. Electric current in the presence of the composite membranes markedly inactivated the model pathogenic bacteria Escherichia coli and Staphylococcus aureus, with the extent of bacterial inactivation rising when the current was increased. Over 99.999 % inactivation of both bacteria was observed in deionized water after 40 min at 5 mA direct current (DC); importantly, no appreciable inactivation occurred in the absence of either the electric field or the CNTs within the membranes under otherwise the same conditions. A much lower, although still pronounced, inactivation was seen with alternating current (AC) in a 25 mM NaCl aqueous solution. PMID:25342266

  11. Direct biological conversion of electrical current into methane by electromethanogenesis.

    PubMed

    Cheng, Shaoan; Xing, Defeng; Call, Douglas F; Logan, Bruce E

    2009-05-15

    New sustainable methods are needed to produce renewable energy carriers that can be stored and used for transportation, heating, or chemical production. Here we demonstrate that methane can directly be produced using a biocathode containing methanogens in electrochemical systems (abiotic anode) or microbial electrolysis cells (MECs; biotic anode) by a process called electromethanogenesis. At a set potential of less than -0.7 V (vs Ag/AgCl), carbon dioxide was reduced to methane using a two-chamber electrochemical reactor containing an abiotic anode, a biocathode, and no precious metal catalysts. At -1.0 V, the current capture efficiency was 96%. Electrochemical measurements made using linear sweep voltammetry showed that the biocathode substantially increased current densities compared to a plain carbon cathode where only small amounts of hydrogen gas could be produced. Both increased current densities and very small hydrogen production rates by a plain cathode therefore support a mechanism of methane production directly from current and not from hydrogen gas. The biocathode was dominated by a single Archaeon, Methanobacterium palustre. When a current was generated by an exoelectrogenic biofilm on the anode growing on acetate in a single-chamber MEC, methane was produced at an overall energy efficiency of 80% (electrical energy and substrate heat of combustion). These results show that electromethanogenesis can be used to convert electrical current produced from renewable energy sources (such as wind, solar, or biomass) into a biofuel (methane) as well as serving as a method for the capture of carbon dioxide. PMID:19544913

  12. Currents and electric fields in the ionosphere due to field-aligned auroral currents

    NASA Technical Reports Server (NTRS)

    Nisbet, J. S.; Miller, M. J.; Carpenter, L. A.

    1978-01-01

    Birkeland (1908, 1913) did a detailed analysis of the upper atmospheric current system in the high-latitude region, and suggested that field-aligned currents flowing into and out of the auroral ionosphere were the driving mechanism for this current system. In the present paper, static electric field and current patterns due to the field-aligned Birkeland currents are examined, using a model in which currents approximating those reported by Iijima and Potemra (1976) are used as input to a global model of the ionospheric conductivities, in which interhemispheric coupling along field lines is included. The model reproduces the main features of the high-latitude current and voltage system and the penetration of these currents within the plasmasphere.

  13. Frequency-dependent electrodeformation of giant phospholipid vesicles in AC electric field

    PubMed Central

    2010-01-01

    A model of vesicle electrodeformation is described which obtains a parametrized vesicle shape by minimizing the sum of the membrane bending energy and the energy due to the electric field. Both the vesicle membrane and the aqueous media inside and outside the vesicle are treated as leaky dielectrics, and the vesicle itself is modeled as a nearly spherical shape enclosed within a thin membrane. It is demonstrated (a) that the model achieves a good quantitative agreement with the experimentally determined prolate-to-oblate transition frequencies in the kilohertz range and (b) that the model can explain a phase diagram of shapes of giant phospholipid vesicles with respect to two parameters: the frequency of the applied alternating current electric field and the ratio of the electrical conductivities of the aqueous media inside and outside the vesicle, explored in a recent paper (S. Aranda et al., Biophys J 95:L19–L21, 2008). A possible use of the frequency-dependent shape transitions of phospholipid vesicles in conductometry of microliter samples is discussed. PMID:21886342

  14. Modeling Electric Current Flow in 3D Fractured Media

    NASA Astrophysics Data System (ADS)

    Demirel, S.; Roubinet, D.; Irving, J.

    2014-12-01

    The study of fractured rocks is extremely important in a variety of research fields and applications such as hydrogeology, hydrocarbon extraction and long-term storage of toxic waste. As fractures are highly conductive structures in comparison to the surrounding rock, their presence can be either an advantage or a drawback. For hydrocarbon extraction, fractures allow for quick and easy access to the resource whereas for toxic waste storage their presence increases the risk of leakage and migration of pollutants. In both cases, the identification of fracture network characteristics is an essential step. Recently, we have developed an approach for modeling electric current flow in 2D fractured media. This approach is based on a discrete-dual-porosity model where fractures are represented explicitly, the matrix is coarsely discretized into blocks, and current flow exchange between the fractures and matrix is analytically evaluated at the fracture-scale and integrated at the block-scale [1]. Although this approach has shown much promise and has proven its efficiency for 2D simulations, its extension to 3D remains to be addressed. To this end, we assume that fractures can be represented as two-dimensional finite planes embedded in the surrounding matrix, and we express analytically the distribution of electric potential at the fracture scale. This fracture-scale expression takes into account the electric-current-flow exchange with the surrounding matrix and flow conservation is enforced at the fracture intersections. The fracture-matrix exchange is then integrated at the matrix-block scale where the electric current flow conservation at the block boundaries is formulated with a modified finite volume method. With the objective of providing a low-computational-cost modeling approach adapted to 3D simulations in fractured media, our model is (i) validated and compared to existing modeling approaches and, (ii) used to evaluate the impact of the presence of fractures on

  15. Individual differences in transcranial electrical stimulation current density

    PubMed Central

    Russell, Michael J; Goodman, Theodore; Pierson, Ronald; Shepherd, Shane; Wang, Qiang; Groshong, Bennett; Wiley, David F

    2013-01-01

    Transcranial electrical stimulation (TCES) is effective in treating many conditions, but it has not been possible to accurately forecast current density within the complex anatomy of a given subject's head. We sought to predict and verify TCES current densities and determine the variability of these current distributions in patient-specific models based on magnetic resonance imaging (MRI) data. Two experiments were performed. The first experiment estimated conductivity from MRIs and compared the current density results against actual measurements from the scalp surface of 3 subjects. In the second experiment, virtual electrodes were placed on the scalps of 18 subjects to model simulated current densities with 2 mA of virtually applied stimulation. This procedure was repeated for 4 electrode locations. Current densities were then calculated for 75 brain regions. Comparison of modeled and measured external current in experiment 1 yielded a correlation of r = .93. In experiment 2, modeled individual differences were greatest near the electrodes (ten-fold differences were common), but simulated current was found in all regions of the brain. Sites that were distant from the electrodes (e.g. hypothalamus) typically showed two-fold individual differences. MRI-based modeling can effectively predict current densities in individual brains. Significant variation occurs between subjects with the same applied electrode configuration. Individualized MRI-based modeling should be considered in place of the 10-20 system when accurate TCES is needed. PMID:24285948

  16. Rapid immunocytochemistry based on alternating current electric field using squash smear preparation of central nervous system tumors.

    PubMed

    Moriya, Jun; Tanino, Mishie Ann; Takenami, Tomoko; Endoh, Tomoko; Urushido, Masana; Kato, Yasutaka; Wang, Lei; Kimura, Taichi; Tsuda, Masumi; Nishihara, Hiroshi; Tanaka, Shinya

    2016-01-01

    The role of intraoperative pathological diagnosis for central nervous system (CNS) tumors is crucial for neurosurgery when determining the surgical procedure. Especially, treatment of carmustine (BCNU) wafers requires a conclusive diagnosis of high-grade glioma proven by intraoperative diagnosis. Recently, we demonstrated the usefulness of rapid immunohistochemistry (R-IHC) that facilitates antigen-antibody reaction under alternative current (AC) electric field in the intraoperative diagnosis of CNS tumors; however, a higher proportion of water and lipid in the brain parenchyma sometimes leads to freezing artifacts, resulting in poor quality of frozen sections. On the other hand, squash smear preparation of CNS tumors for cytology does not affect the frozen artifacts, and the importance of smear preparation is now being re-recognized as being better than that of the tissue sections. In this study, we established the rapid immunocytochemistry (R-ICC) protocol for squash smears of CNS tumors using AC electric field that takes only 22 min, and demonstrated its usefulness for semi-quantitative Ki-67/MIB-1 labeling index and CD 20 by R-ICC for intraoperative diagnosis. R-ICC by AC electric field may become a substantial tool for compensating R-IHC and will be applied for broad antibodies in the future. PMID:26546480

  17. Electrical resonance and membrane currents in turtle cochlear hair cells.

    PubMed

    Art, J J; Crawford, A C; Fettiplace, R

    1986-01-01

    The electrical and mechanical properties of single hair cells from the turtle's cochlea were examined to investigate the basis of their electrical resonance. Receptor potentials were measured with intracellular micropipettes in the isolated basilar papilla. At the onset and termination of a step displacement of the ciliary bundle the receptor potential showed a damped oscillation reflecting the frequency selectivity of the cell. Resonance frequencies increased systematically from apex to base of the cochlea. Similar oscillations could be elicited by a current step injected through the recording electrode. Solitary hair cells enzymatically isolated from the papilla were investigated with the tight-seal whole-cell recording method. Cells retained their properties in response to current steps and had resonance frequencies between 10 and 350 Hz. In voltage clamp such cells displayed a large outward K+ current and an inward Ca2+ current both activated by depolarization from the resting potential. The relaxation time constant of the K+ current was inversely correlated with the resonance frequency of the cell, varying from 150 ms in the lowest frequency cells to less than 1 ms in the highest ones. It is argued that variation in the kinetics of this current is the major factor responsible for the range of resonance frequencies. In preparations of the isolated papilla a flexible glass fibre, attached to the tip of a ciliary bundle, was used to deliver constant force steps to the bundle and to monitor its displacement. Receptor potentials were simultaneously recorded. At the beginning and end of a force step towards the kinocilium, the bundle vibrated at a frequency which coincided with the electrical resonance frequency of the cell.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2426237

  18. Observer-based higher order sliding mode control of power factor in three-phase AC/DC converter for hybrid electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Liu, Jianxing; Laghrouche, Salah; Wack, Maxime

    2014-06-01

    In this paper, a full-bridge boost power converter topology is studied for power factor control, using output higher order sliding mode control. The AC/DC converters are used for charging the battery and super-capacitor in hybrid electric vehicles from the utility. The proposed control forces the input currents to track the desired values, which can control the output voltage while keeping the power factor close to one. Super-twisting sliding mode observer is employed to estimate the input currents and load resistance only from the measurement of output voltage. Lyapunov analysis shows the asymptotic convergence of the closed-loop system to zero. Multi-rate simulation illustrates the effectiveness and robustness of the proposed controller in the presence of measurement noise.

  19. Column buckling of magnetically affected stocky nanowires carrying electric current

    NASA Astrophysics Data System (ADS)

    Kiani, Keivan

    2015-08-01

    Axial load-bearing capacity of current carrying nanowires (CCNWs) acted upon by a longitudinal magnetic field is of high interest. By adopting Gurtin-Murdoch surface elasticity theory, the governing equations of the nanostructure are constructed based on the Timoshenko and higher-order beam models. To solve these equations for critical compressive load, a meshfree approach is exploited and the weak formulations for the proposed models are obtained. The predicted buckling loads are compared with those of assume mode method and a remarkable confirmation is reported. The role of influential factors on buckling load of the nanostructure is carefully addressed and discussed. The obtained results reveal that the surface energy effect becomes important in buckling behavior of slender CCNWs, particularly for high electric currents and magnetic field strengths. For higher electric currents, relative discrepancies between the results of Timoshenko and higher-order beam models increase with a higher rate as the slenderness ratio magnifies. A magnetically affected current-carrying nanowire acted upon by an axial force. Axial buckling of stocky current-carrying nanowires in the presence of a longitudinal magnetic field is of particular interest. Using Timoshenko and higher-order beam theories accounting for surface energy effect, the governing equations are derived and a meshfree methodology is applied to evaluate the buckling load.

  20. Electric fields and current densities under small Florida thunderstorms

    NASA Technical Reports Server (NTRS)

    Deaver, Lance E.; Krider, E. P.

    1991-01-01

    Results are presented of measurements of the electric field E and Maxwell current density that were performed simultaneously under and near small Florida thunderstorms. It is shown that the amplitude of JM is of the order of 1 nA/sq cm or less in the absence of precipitation and that there are regular time variations in JM during the intervals between lightning discharges that tend to have the same shapes after different discharges in different storms. It is argued that the major causes of time variations in JM between lightning discharges are currents that flow in the finitely conducting atmosphere in response to the field changes rather than rapid time variations in the strength of cloud current sources. The displacement current densities that are computed from the E records dominate JM except when there is precipitation, when E is large and steady, or when E is unusually noisy.

  1. An electric current associated with gravity sensing in maize roots

    NASA Technical Reports Server (NTRS)

    Bjorkman, T.; Leopold, A. C.

    1987-01-01

    The study of gravisensing would be greatly enhanced if physiological events associated with gravity sensing could be detected separately from subsequent growth processes. This report presents a means to discriminate sensing from the growth processes. By using a vibrating probe, we have found an electric current generated by the gravity sensing region of the root cap of maize (Zea mays cv Merit) in response to gravistimulation. On the upper surface of the root cap, the change from the endogenous current has a density of 0.55 microampere per square centimeter away from gravity. The onset of the current shift has a characteristic of lag of three to four minutes after gravistimulation, which corresponds to the presentation time for gravity sensing in this tissue. A description of the current provides some information about the sensing mechanism, as well as being a valuable means to detect gravity sensing independently of differential growth.

  2. Alpha Power Increase After Transcranial Alternating Current Stimulation at Alpha Frequency (α-tACS) Reflects Plastic Changes Rather Than Entrainment

    PubMed Central

    Vossen, Alexandra; Gross, Joachim; Thut, Gregor

    2015-01-01

    Background Periodic stimulation of occipital areas using transcranial alternating current stimulation (tACS) at alpha (α) frequency (8–12 Hz) enhances electroencephalographic (EEG) α-oscillation long after tACS-offset. Two mechanisms have been suggested to underlie these changes in oscillatory EEG activity: tACS-induced entrainment of brain oscillations and/or tACS-induced changes in oscillatory circuits by spike-timing dependent plasticity. Objective We tested to what extent plasticity can account for tACS-aftereffects when controlling for entrainment “echoes.” To this end, we used a novel, intermittent tACS protocol and investigated the strength of the aftereffect as a function of phase continuity between successive tACS episodes, as well as the match between stimulation frequency and endogenous α-frequency. Methods 12 healthy participants were stimulated at around individual α-frequency for 11–15 min in four sessions using intermittent tACS or sham. Successive tACS events were either phase-continuous or phase-discontinuous, and either 3 or 8 s long. EEG α-phase and power changes were compared after and between episodes of α-tACS across conditions and against sham. Results α-aftereffects were successfully replicated after intermittent stimulation using 8-s but not 3-s trains. These aftereffects did not reveal any of the characteristics of entrainment echoes in that they were independent of tACS phase-continuity and showed neither prolonged phase alignment nor frequency synchronization to the exact stimulation frequency. Conclusion Our results indicate that plasticity mechanisms are sufficient to explain α-aftereffects in response to α-tACS, and inform models of tACS-induced plasticity in oscillatory circuits. Modifying brain oscillations with tACS holds promise for clinical applications in disorders involving abnormal neural synchrony. PMID:25648377

  3. Causal Analysis of the Inadvertent Contact with an Uncontrolled Electrical Hazardous Energy Source (120 Volts AC)

    SciTech Connect

    David E. James; Dennis E. Raunig; Sean S. Cunningham

    2014-10-01

    On September 25, 2013, a Health Physics Technician (HPT) was performing preparations to support a pneumatic transfer from the HFEF Decon Cell to the Room 130 Glovebox in HFEF, per HFEF OI 3165 section 3.5, Field Preparations. This activity involves an HPT setting up and climbing a portable ladder to remove the 14-C meter probe from above ball valve HBV-7. The HPT source checks the meter and probe and then replaces the probe above HBV-7, which is located above Hood ID# 130 HP. At approximately 13:20, while reaching past the HBV-7 valve position indicator switches in an attempt to place the 14-C meter probe in the desired location, the HPT’s left forearm came in contact with one of the three sets of exposed terminals on the valve position indication switches for HBV 7. This resulted in the HPT receiving an electrical shock from a 120 Volt AC source. Upon moving the arm, following the electrical shock, the HPT noticed two exposed electrical connections on a switch. The HPT then notified the HFEF HPT Supervisor, who in turn notified the MFC Radiological Controls Manager and HFEF Operations Manager of the situation. Work was stopped in the area and the hazard was roped off and posted to prevent access to the hazard. The HPT was escorted by the HPT Supervisor to the MFC Dispensary and then preceded to CFA medical for further evaluation. The individual was evaluated and released without any medical restrictions. Causal Factor (Root Cause) A3B3C01/A5B2C08: - Knowledge based error/Attention was given to wrong issues - Written Communication content LTA, Incomplete/situation not covered The Causal Factor (root cause) was attention being given to the wrong issues during the creation, reviews, verifications, and actual performance of HFEF OI-3165, which covers the need to perform the weekly source check and ensure placement of the probe prior to performing a “rabbit” transfer. This resulted in the hazard not being identified and mitigated in the procedure. Work activities

  4. Analysis of electric current flow through the HTc multilayered superconductors

    NASA Astrophysics Data System (ADS)

    Sosnowski, J.

    2016-02-01

    Issue of the flow of the transport current through multilayered high-temperature superconductors is considered, depending on the direction of the electric current towards the surface of the superconducting CuO2 layers. For configuration of the current flow inside of the layers and for perpendicular magnetic field, it will be considered the current limitations connected with interaction of pancake type vortices with nano-sized defects, created among other during fast neutrons irradiation. So it makes this issue associated with work of nuclear energy devices, like tokamak ITER, LHC and actually developed accelerator Nuclotron-NICA, as well as cryocables. Phenomenological analysis of the pinning potential barrier formation will be in the paper given, which determines critical current flow inside the plane. Comparison of theoretical model with experimental data will be presented too as well as influence of fast neutrons irradiation dose on critical current calculated. For current direction perpendicular to superconducting planes the current-voltage characteristics are calculated basing on model assuming formation of long intrinsic Josephson's junctions in layered HTc superconductors.

  5. Electric Circuit Model Suitable for Common Mode Current Paths Distributing in the Motor Drive System

    NASA Astrophysics Data System (ADS)

    Mutoh, Nobuyoshi; Ogata, Mitsukatsu; Harashima, Fumio

    Experimental date are used to analyze conducted EMI noises which are produced in a motor drive system with power converters comprised of a converter and an inverter. The processes are investigated in which common mode noises (voltages and currents) are strongly influenced by voltage fluctuations occurring due to switching operations. It is found that the common mode currents are resonance currents which appear in series resonance circuits distributed in the motor drive system. The circuits have various kinds of resonance frequencies related to voltage fluctuations produced by switching operations and micro-surge voltages generated at the terminal of machines such as an ac rector or a motor. Thus, parameters of the distributed series resonance circuits are estimated using the transient waveforms obtained by separating the common mode current into waves analyzed by the FFT method. It is proved through simulations and experiments that the proposed circuit models closely represent actual electric circuits for common mode current paths distributed in the motor drive system.

  6. Succession of cable bacteria and electric currents in marine sediment.

    PubMed

    Schauer, Regina; Risgaard-Petersen, Nils; Kjeldsen, Kasper U; Tataru Bjerg, Jesper J; B Jørgensen, Bo; Schramm, Andreas; Nielsen, Lars Peter

    2014-06-01

    Filamentous Desulfobulbaceae have been reported to conduct electrons over centimetre-long distances, thereby coupling oxygen reduction at the surface of marine sediment to sulphide oxidation in sub-surface layers. To understand how these 'cable bacteria' establish and sustain electric conductivity, we followed a population for 53 days after exposing sulphidic sediment with initially no detectable filaments to oxygen. After 10 days, cable bacteria and electric currents were established throughout the top 15 mm of the sediment, and after 21 days the filament density peaked with a total length of 2 km cm(-2). Cells elongated and divided at all depths with doubling times over the first 10 days of <20 h. Active, oriented movement must have occurred to explain the separation of O2 and H2S by 15 mm. Filament diameters varied from 0.4-1.7 μm, with a general increase over time and depth, and yet they shared 16S rRNA sequence identity of >98%. Comparison of the increase in biovolume and electric current density suggested high cellular growth efficiency. While the vertical expansion of filaments continued over time and reached 30 mm, the electric current density and biomass declined after 13 and 21 days, respectively. This might reflect a breakdown of short filaments as their solid sulphide sources became depleted in the top layers of the anoxic zone. In conclusion, cable bacteria combine rapid and efficient growth with oriented movement to establish and exploit the spatially separated half-reactions of sulphide oxidation and oxygen consumption. PMID:24451206

  7. Succession of cable bacteria and electric currents in marine sediment

    PubMed Central

    Schauer, Regina; Risgaard-Petersen, Nils; Kjeldsen, Kasper U; Tataru Bjerg, Jesper J; B Jørgensen, Bo; Schramm, Andreas; Nielsen, Lars Peter

    2014-01-01

    Filamentous Desulfobulbaceae have been reported to conduct electrons over centimetre-long distances, thereby coupling oxygen reduction at the surface of marine sediment to sulphide oxidation in sub-surface layers. To understand how these ‘cable bacteria' establish and sustain electric conductivity, we followed a population for 53 days after exposing sulphidic sediment with initially no detectable filaments to oxygen. After 10 days, cable bacteria and electric currents were established throughout the top 15 mm of the sediment, and after 21 days the filament density peaked with a total length of 2 km cm−2. Cells elongated and divided at all depths with doubling times over the first 10 days of <20 h. Active, oriented movement must have occurred to explain the separation of O2 and H2S by 15 mm. Filament diameters varied from 0.4–1.7 μm, with a general increase over time and depth, and yet they shared 16S rRNA sequence identity of >98%. Comparison of the increase in biovolume and electric current density suggested high cellular growth efficiency. While the vertical expansion of filaments continued over time and reached 30 mm, the electric current density and biomass declined after 13 and 21 days, respectively. This might reflect a breakdown of short filaments as their solid sulphide sources became depleted in the top layers of the anoxic zone. In conclusion, cable bacteria combine rapid and efficient growth with oriented movement to establish and exploit the spatially separated half-reactions of sulphide oxidation and oxygen consumption. PMID:24451206

  8. Induction of auroral zone electric currents within the Alaska pipeline

    USGS Publications Warehouse

    Campbell, W.H.

    1978-01-01

    The Alaskar pipeline is a highly conducting anomaly extending 800 miles (1300 km) from about 62?? to 69?? geomagnetic latitude beneath the most active regions of the ionospheric electrojet current. The spectral behavior of the magnetic field from this current was analyzed using data from standard geomagnetic observatories to establish the predictable patterns of temporal and spatial changes for field pulsation periods between 5 min and 4 hr. Such behavior is presented in a series of tables, graphs and formulae. Using 2- and 3-layer models of the conducting earth, the induced electric fields associated with the geomagnetic changes were established. From the direct relationship of the current to the geomagnetic field variation patterns one can infer counterpart temporal and spatial characteristics of the pipeline current. The relationship of the field amplitudes to geomagnetic activity indices, Ap, and the established occurrence of various levels of Ap over several solar cycles were employed to show that about half of the time the induced currents in the pipe would be under 1 A for the maximum response oscillatory periods near 1 hr. Such currents should be of minimal consequence in corrosion effects for even a section of the pipeline unprotected by sacrificial electrodes. Of greater interest was the result that the extreme surges of current should reach over one-hundred amperes in the pipeline during high activity. ?? 1978 Birkha??user Verlag.

  9. I-BIEM calculations of the frequency dispersion and ac current distribution at disk and ring-disk electrodes

    NASA Technical Reports Server (NTRS)

    Cahan, Boris D.

    1991-01-01

    The Iterative Boundary Integral Equation Method (I-BIEM) has been applied to the problem of frequency dispersion at a disk electrode in a finite geometry. The I-BIEM permits the direct evaluation of the AC potential (a complex variable) using complex boundary conditions. The point spacing was made highly nonuniform, to give extremely high resolution in those regions where the variables change most rapidly, i.e., in the vicinity of the edge of the disk. Results are analyzed with respect to IR correction, equipotential surfaces, and reference electrode placement. The current distribution is also examined for a ring-disk configuration, with the ring and the disk at the same AC potential. It is shown that the apparent impedance of the disk is inductive at higher frequencies. The results are compared to analytic calculations from the literature, and usually agree to better than 0.001 percent.

  10. I-BIEM calculations of the frequency dispersion and AC current distribution at disk and ring-disk electrodes

    NASA Technical Reports Server (NTRS)

    Cahan, Boris D.

    1991-01-01

    The Iterative Boundary Integral Equation Method (I-BIEM) has been applied to the problem of frequency dispersion at a disk electrode in a finite geometry. The I-BIEM permits the direct evaluation of the AC potential (a complex variable) using complex boundary conditions. The point spacing was made highly nonuniform, to give extremely high resolution in those regions where the variables change most rapidly, i.e., in the vicinity of the edge of the disk. Results are analyzed with respect to IR correction, equipotential surfaces, and reference electrode placement. The current distribution is also examined for a ring-disk configuration, with the ring and the disk at the same AC potential. It is shown that the apparent impedance of the disk is inductive at higher frequencies. The results are compared to analytic calculations from the literature, and usually agree to better than 0.001 percent.

  11. Direct-current electrical stimulation of tendon healing in vitro

    SciTech Connect

    Nessler, J.P.; Mass, D.P.

    1987-04-01

    The intrinsic capacity of tendons to heal in response to injury has recently been demonstrated by many investigators. Electrical stimulation is often assumed to augment regeneration of various tissues. Using newly developed methods of whole-tendon culture, the authors examined the effect of direct-current electricity on healing in vitro. Deep flexor tendons of rabbits were excised, transected, repaired, and grown in an acellular culture medium for seven, 14, 21, or 42 days. Tendons through which a continuous 7-microAmp current was passed at the repair site were compared with nonstimulated controls. The incorporation of (/sup 14/C)proline and its conversion to (/sup 14/C)hydroxyproline was measured at seven days. The mean (/sup 14/C)proline and (/sup 14/C)hydroxyproline activities were 91% and 255% greater, respectively, in the stimulated group. The activity was also higher in the stimulated group, by 42 days. Histologic sections showed that intrinsic tenoblastic repair may be enhanced with electrical stimulation in vitro.

  12. Electric current-driven migration of electrically neutral particles in liquids

    SciTech Connect

    Zhang, Xinfang E-mail: r.qin@imperial.ac.uk; Qin, Rongshan E-mail: r.qin@imperial.ac.uk

    2014-03-17

    We design and experimentally demonstrate a migration of electrically neutral particles in liquids driven by electric current according to the discrepancies of their electrical conductivities. A force from electric current to electrically neutral particles has been identified to drive the particles toward the lateral surface from the centre of suspension via three distinguishable zones, namely, pushing, trapping, and expelling zones. The driving force can overtake gravity in practical cases. The property of the force is found neither similar to that of the force in electromagnetophoresis nor similar to that of the electromigration force in terms of direction and magnitude. An expression for the force at the pushing zone has been developed based on the numerical calculation of the thermodynamics of suspension fluids. The excellent agreement between numerical calculations and experimental data demonstrates that our calculation provides fundamental and predictive insight into particles separation from the liquids. Therefore, it is possible to use the force in many engineering applications such as separation of particles according to the differences of their electrical conductivities.

  13. Control of Hall angle of Skyrmion driven by electric current

    NASA Astrophysics Data System (ADS)

    Gao-Bin, Liu; Da, Li; de Chatel, P. F.; Jian, Wang; Wei, Liu; Zhi-Dong, Zhang

    2016-06-01

    Skyrmions are very promising for applications in spintronics and magnetic memory. It is desired to manipulate and operate a single skyrmion. Here we report on the thermal effect on the motion of current-driven magnetic Skyrmions in magnetic metal. The results show that the magnon current induced by the thermal gradient acts on Skyrmions via magnonic spin-transfer torque, an effect of the transverse and longitudinal Skyrmions drift velocities, thus leading to the effective manipulation of the Hall angle through the ratio of thermal gradient to electric current density, which can be used as a Skyrmion valve. Project supported by the National Natural Science Foundation of China (Grant No. 51331006) and the Fund from the Chinese Academy of Sciences (Grant No. KJZD-EW-M05).

  14. Advanced single permanent magnet axipolar ironless stator ac motor for electric passenger vehicles

    NASA Technical Reports Server (NTRS)

    Beauchamp, E. D.; Hadfield, J. R.; Wuertz, K. L.

    1983-01-01

    A program was conducted to design and develop an advanced-concept motor specifically created for propulsion of electric vehicles with increased range, reduced energy consumption, and reduced life-cycle costs in comparison with conventional systems. The motor developed is a brushless, dc, rare-earth cobalt, permanent magnet, axial air gap inductor machine that uses an ironless stator. Air cooling is inherent provided by the centrifugal-fan action of the rotor poles. An extensive design phase was conducted, which included analysis of the system performance versus the SAE J227a(D) driving cycle. A proof-of-principle model was developed and tested, and a functional model was developed and tested. Full generator-level testing was conducted on the functional model, recording electromagnetic, thermal, aerodynamic, and acoustic noise data. The machine demonstrated 20.3 kW output at 1466 rad/s and 160 dc. The novel ironless stator demonstated the capability to continuously operate at peak current. The projected system performance based on the use of a transistor inverter is 23.6 kW output power at 1466 rad/s and 83.3 percent efficiency. Design areas of concern regarding electric vehicle applications include the inherently high windage loss and rotor inertia.

  15. Iridium satellites help map electrical currents in space

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The satellite constellation of Iridium LLC, which filed for Chapter 11 bankruptcy in 1999 after it failed to win enough business for its commercial satellite communications services, is still orbiting at an altitude of about 780 kilometers. Now, however, the satellites are helping to write a new chapter in understanding space weather.Magnetometers onboard each of the system's 66 polar-orbiting satellites are working in conjunction with the high-frequency, multinational Super Dual Auroral Radar Network, or SuperDARN, to provide the first continuous measurements of electrical currents between Earth's upper atmosphere and space. These tools also are generating the first global maps of electrical power flowing into the polar upper atmosphere.

  16. Study on AC-DC Electrical Conductivities in Warm Dense Matter Generated by Pulsed-power Discharge with Isochoric Vessel

    NASA Astrophysics Data System (ADS)

    Sasaki, Toru; Ohuchi, Takumi; Takahashi, Takuya; Kawaguchi, Yoshinari; Saito, Hirotaka; Miki, Yasutoshi; Takahashi, Kazumasa; Kikuchi, Takashi; Aso, Tsukasa; Harada, Nob.

    2016-03-01

    To observe AC and DC electrical conductivity in warm dense matter (WDM), we have demonstrated to apply the spectroscopic ellipsometry for a pulsed-power discharge with isochoric vessel. At 10 μs from the beginning of discharge, the generated parameters by using pulsed-power discharge with isochoric vessel are 0.1 ρ s (ρ s: solid density) of density and 4000 K of temperature, respectively. The DC electrical conductivity for above parameters is estimated to be 104 S/m. In order to measure the AC electrical conductivity, we have developed a four-detector spectroscopic ellipsometer with a multichannel spectrometer. The multichannel spectrometer, in which consists of a 16-channel photodiode array, a two-stages voltage adder, and a flat diffraction grating, has 10 MHz of the frequency response with covered visible spectrum. For applying the four-detector spectroscopic ellipsometer, we observe the each observation signal evolves the polarized behavior compared to the ratio as I 1/I 2.

  17. Road load simulator tests of the Gould phase 1 functional model silicon controlled rectifier ac motor controller for electric vehicles

    NASA Technical Reports Server (NTRS)

    Gourash, F.

    1984-01-01

    The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.

  18. Road load simulator tests of the Gould phase 1 functional model silicon controlled rectifier ac motor controller for electric vehicles

    NASA Astrophysics Data System (ADS)

    Gourash, F.

    1984-02-01

    The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.

  19. High-Voltage Pulsed Current Electrical Stimulation in Wound Treatment

    PubMed Central

    Polak, Anna; Franek, Andrzej; Taradaj, Jakub

    2014-01-01

    Significance: A range of studies point to the efficacy of electrical stimulation (ES) in wound treatment, but the methodology of its application has not been determined to date. This article provides a critical review of the results of clinical trials published by researchers using high-voltage pulsed current (HVPC) to treat chronic wounds. In describing the methodology of the trials, the article gives special attention to electric stimulus parameters, the frequency of procedures and total treatment duration. Recent Advances: HVPC is a monophasic pulsed electric current that consists of double-peaked impulses (5–200 μs), at very high peak-current amplitude (2–2.5 A), and high voltage (up to 500 V), at a frequency of 1–125 pulses per second. HVPC can activate “skin battery” and cellular galvanotaxis, and improves blood flow and capillary density. Critical Issues: HVPC efficacy was evaluated in conservatively treated patients with diabetic foot, venous leg and pressure ulcers (PUs), and in some patients with surgically treated venous insufficiency. Future Directions: The efficacy of HVPC as one of several biophysical energies promoting venous leg ulcer (VLU) and PU healing has been confirmed. Additional studies are needed to investigate its effect on the healing of other types of soft tissue defects. Other areas that require more research include the identification of the therapeutic effect of HVPC on infected wounds, the determination of the efficacy of cathodal versus anodal stimulation, and the minimal daily/weekly duration of HVPC required to ensure optimal promotion of wound healing. PMID:24761351

  20. High-Voltage Pulsed Current Electrical Stimulation in Wound Treatment.

    PubMed

    Polak, Anna; Franek, Andrzej; Taradaj, Jakub

    2014-02-01

    Significance: A range of studies point to the efficacy of electrical stimulation (ES) in wound treatment, but the methodology of its application has not been determined to date. This article provides a critical review of the results of clinical trials published by researchers using high-voltage pulsed current (HVPC) to treat chronic wounds. In describing the methodology of the trials, the article gives special attention to electric stimulus parameters, the frequency of procedures and total treatment duration. Recent Advances: HVPC is a monophasic pulsed electric current that consists of double-peaked impulses (5-200 μs), at very high peak-current amplitude (2-2.5 A), and high voltage (up to 500 V), at a frequency of 1-125 pulses per second. HVPC can activate "skin battery" and cellular galvanotaxis, and improves blood flow and capillary density. Critical Issues: HVPC efficacy was evaluated in conservatively treated patients with diabetic foot, venous leg and pressure ulcers (PUs), and in some patients with surgically treated venous insufficiency. Future Directions: The efficacy of HVPC as one of several biophysical energies promoting venous leg ulcer (VLU) and PU healing has been confirmed. Additional studies are needed to investigate its effect on the healing of other types of soft tissue defects. Other areas that require more research include the identification of the therapeutic effect of HVPC on infected wounds, the determination of the efficacy of cathodal versus anodal stimulation, and the minimal daily/weekly duration of HVPC required to ensure optimal promotion of wound healing. PMID:24761351

  1. Current turbine for water pumping and electricity generation

    SciTech Connect

    Mohamed, A.I.E.

    1983-12-01

    This paper describes work on Phase I of ''Mini Hydropower Research and Development Project'' in the Department of Mechanical Engineering, University of Khartoum, in cooperation with the National Council for Research in Sudan. The main purpose of Phase I of the project has been to demonstrate and evaluate the use of water current energy for powering small-scale pumping units and for generating electricity. Power requirements for pumping water for irrigation on typical small land holdings in the Sudan will be of the order of 5-10 Kw. The same sizes of power should sufficiently meet power requirements of home factories for processing farm produce of these lands and of domestic uses. A vertical shaft impulse turbine of innovative design has been built in the Faculty of Engineering, University of Khartoum, to extract energy from water current of canals, rivers or streams. The useful shaft power from the turbine is used for pumping water or electricity generation. The turbine set is suspended from a floating pontoon (made from plastic drums) which is secured in the current by means of two horizontal supporting poles and steel cables. Field trials of a number of model turbine systems are currently being carried out and valuable findings are being obtained about the desirable features to be developed in these machines. However, concrete results are still to be finalized with a view to facilitating analytical design of pump-turbine and generatorturbine systems. Indications are that this work should lead to an efficient, cheap and simple-to-build current turbine. Detailed information on system design and performance are expected to be ready in time for the conference.

  2. Electric Current Induced Thermomechanical Fatigue Testing of Interconnects

    NASA Astrophysics Data System (ADS)

    Keller, R. R.; Geiss, R. H.; Cheng, Y.-W.; Read, D. T.

    2005-09-01

    We demonstrate the use of electrical methods for evaluating the thermomechanical fatigue properties of patterned aluminum and copper interconnects on silicon-based substrates. Through a careful selection of alternating current frequency and current density, we used controlled Joule heating to simulate in an accelerated manner the type of low frequency thermal stress cycles that an interconnect structure may undergo. Sources of such stressing may include power cycling, energy-saving modes, or application-specific fluctuations, as opposed to stressing at chip operating frequencies. The thermal stresses are caused by differences in thermal expansion properties between the metal and constraining substrate or passivation. Test conditions included a frequency of 100 Hz and current density of 11 - 16 MA/cm2, which led to a cyclic temperature amplitude of approximately 100 K, and corresponding cyclic stress amplitude in excess of 100 MPa for Al-1Si and Cu lines on oxidized silicon. The failure mechanism differs from that observed in direct current electromigration studies, and involves formation of localized plasticity, which causes topography changes on the less-constrained surfaces of the interconnect. Open circuit eventually took place by melting at a region of severely reduced cross-sectional area. In these studies, both Al-1Si and Cu responded to power cycling by deforming in a manner that was highly dependent upon variations in grain size and orientation. Isolated patches of damage appeared early within the confines of individual grains or clusters of grains, as determined by automated electron backscatter diffraction. With increased cycling or with increased current density, the extent of damage became more severe and widespread. We discuss the utility of electrical methods for accelerated testing of mechanical reliability.

  3. Electric current induced forward and anomalous backward mass transport

    NASA Astrophysics Data System (ADS)

    Somaiah, Nalla; Sharma, Deepak; Kumar, Praveen

    2016-05-01

    Multilayered test samples were fabricated in form of standard Blech structure, where W was used as the interlayer between SiO2 substrate and Cu film. Electromigration test was performed at 250 °C by passing an electric current with a nominal density of 3.9  ×  1010 A m‑2. In addition to the regular electromigration induced mass transport ensuing from the cathode towards the anode, we also observed anomalous mass transport from the anode to the cathode, depleting Cu from the anode as well. We propose an electromigration-thermomigration coupling based reasoning to explain the observed mass transport.

  4. Frequency-dependent alternating-current scanning electrochemical microscopy (4D AC-SECM) for local visualisation of corrosion sites.

    PubMed

    Eckhard, Kathrin; Erichsen, Thomas; Stratmann, Martin; Schuhmann, Wolfgang

    2008-01-01

    For a better understanding of the initiation of localised corrosion, there is a need for analytical tools that are capable of imaging corrosion pits and precursor sites with high spatial resolution and sensitivity. The lateral electrochemical contrast in alternating-current scanning electrochemical microscopy (AC-SECM) has been found to be highly dependent on the frequency of the applied alternating voltage. In order to be able to obtain data with optimum contrast and high resolution, the AC frequency is swept in a full spectrum at each point in space instead of performing spatially resolved measurements at one fixed perturbation frequency. In doing so, four-dimensional data sets are acquired (4D AC-SECM). Here, we describe the instrument set-up and modus operandi, along with the first results from the imaging of corroding surfaces. Corrosion precursor sites and local defects in protective organic coatings, as well as an actively corroding pit on 304 stainless steel, have been successfully visualised. Since the lateral electrochemical contrast in these images varies with the perturbation frequency, the proposed approach constitutes an indispensable tool for obtaining optimum electrochemical contrast. PMID:18351698

  5. AC Electric Field-Induced Trapping of Microparticles in Pinched Microconfinements.

    PubMed

    Dey, Ranabir; Shaik, Vaseem Akram; Chakraborty, Debapriya; Ghosal, Sandip; Chakraborty, Suman

    2015-06-01

    The trapping of charged microparticles under confinement in a converging-diverging microchannel, under a symmetric AC field of tunable frequency, is studied. We show that at low frequencies, the trapping characteristics stem from the competing effects of positive dielectrophoresis and the linear electrokinetic phenomena of electroosmosis and electrophoresis. It is found, somewhat unexpectedly, that electroosmosis and electrophoresis significantly affect the concentration profile of the trapped analyte, even for a symmetric AC field. However, at intermediate frequencies, the microparticle trapping mechanism is predominantly a consequence of positive dielectrophoresis. We substantiate our experimental results for the microparticle concentration distribution, along the converging-diverging microchannel, with a detailed theoretical analysis that takes into account all of the relevant frequency-dependent electrokinetic phenomena. This study should be useful in understanding the response of biological components such as cells to applied AC fields. Moreover, it will have potential applications in the design of efficient point-of-care diagnostic devices for detecting biomarkers and also possibly in some recent strategies in cancer therapy using AC fields. PMID:25954982

  6. Electrical Effect in Silver-Point Realization Due to Cell Structure and Bias Voltage Based on Resistance Measurement Using AC and DC Bridges

    NASA Astrophysics Data System (ADS)

    Widiatmo, J. V.; Harada, K.; Yamazawa, K.; Tamba, J.; Arai, M.

    2015-08-01

    Electrical effects related to insulating leakage represent one of the major factors contributing to uncertainties in measurements using high-temperature standard platinum resistance thermometers (HTSPRTs), especially during the realization of the silver freezing point (). This work is focused on the evaluation of the differences in resistance measurements observed when using AC resistance bridges and DC resistance bridges, hereafter, termed the AC-DC differences, as the result of various electrical effects. The magnitude of the AC-DC difference in several silver-point cells is demonstrated with several HTSPRTs. The effect of the cell structure on the AC-DC difference is evaluated by exchanging some components, part by part, within a silver-point cell. Then, the effect of the bias voltage applied to the heat pipe within the silver-point furnace is evaluated. Through the analysis of the experimental results and comparison with the reports in the literature, the importance of evaluating the AC-DC difference as a means to characterize the underlying electrical effects is discussed, considering that applying a negative bias condition to the furnace with respect to the high-temperature SPRT can minimize the AC-DC difference. Concluding recommendations are proposed on the components used in silver-point cells and the application of a bias voltage to the measurement circuit to minimize the effects of the electrical leakage.

  7. Submerged electricity generation plane with marine current-driven motors

    DOEpatents

    Dehlsen, James G.P.; Dehlsen, James B.; Fleming, Alexander

    2014-07-01

    An underwater apparatus for generating electric power from ocean currents and deep water tides. A submersible platform including two or more power pods, each having a rotor with fixed-pitch blades, with drivetrains housed in pressure vessels that are connected by a transverse structure providing buoyancy, which can be a wing depressor, hydrofoil, truss, or faired tube. The platform is connected to anchors on the seafloor by forward mooring lines and a vertical mooring line that restricts the depth of the device in the water column. The platform operates using passive, rather than active, depth control. The wing depressor, along with rotor drag loads, ensures the platform seeks the desired operational current velocity. The rotors are directly coupled to a hydraulic pump that drives at least one constant-speed hydraulic-motor generator set and enables hydraulic braking. A fluidic bearing decouples non-torque rotor loads to the main shaft driving the hydraulic pumps.

  8. Comparison of a synergetic battery pack drive system to a pulse width modulated AC induction motor drive for an electric vehicle

    SciTech Connect

    Davis, A.; Salameh, Z.M.; Eaves, S.S.

    1999-06-01

    A new battery configuration technique and accompanying control circuitry, termed a Synergetic Battery Pack (SBP), is designed to work with Lithium batteries, and can be used as both an inverter for an electric vehicle AC induction motor drive and as a battery charger. In this paper, the performance of a Synergetic Battery Pack during motor drive operation is compared via computer simulation with a conventional motor drive which uses sinusoidal pulse width modulation (SPWM) to determine its effectiveness as a motor drive. The study showed that the drive efficiency was compatible with the conventional system, and offered a significant advantage in the lower frequency operating ranges. The voltage total harmonic distortion (THD) of the SBP was significantly lower than the PWM drive output, but the current THD was slightly higher due to the shape of the harmonic spectrum. In conclusion, the SBP is an effective alternative to a conventional drive, but the real advantage lies in its battery management capabilities and charger operation.

  9. Electrical and hydrodynamic characterization of a high current pulsed arc

    NASA Astrophysics Data System (ADS)

    Sousa Martins, R.; Chemartin, L.; Zaepffel, C.; Lalande, Ph; Soufiani, A.

    2016-05-01

    High current pulsed arcs are of significant industrial interest and, aiming to reduce time and cost, there is progressively more and more need for computation tools that describe and predict the behaviour of these arcs. These simulation codes need inputs and validations by experimental databases, but accurate data is missing for this category of electric discharges. The principal lack of understanding is with respect to the transient phase of the current, which can reach thousands of amperes in a few microseconds. In this paper, we present the work realized on an experimental setup that simulates in the laboratory an arc column subjected to five levels of high pulsed current, ranging from 10 kA to 100 kA, with the last one corresponding to the standard lightning current waveform used in aircraft certification processes. This device was instrumented by high speed video cameras to assess the characteristic sizes of the arc channel and to characterize the shock wave generated by the arc expansion. The arc channel radius was measured over time during the axisymmetric phase and reached 3.2 cm. The position and velocity of the shock wave was determined during the first 140 μs. The background-oriented schlieren method was used to study the shock wave and a model for the light deflection inside the shock wave was developed. The mass density profile of the shock wave was estimated and showed good agreement with Rankine–Hugoniot relations at the wave front. Electrical measurements were also used to estimate the time-dependent resistance and conductivity of the arc for times lasting up to 50 μs.

  10. Asymmetry-induced electric current rectification in permselective systems

    NASA Astrophysics Data System (ADS)

    Green, Yoav; Edri, Yaron; Yossifon, Gilad

    2015-09-01

    For a symmetric ion permselective system, in terms of geometry and bulk concentrations, the system response is also symmetric under opposite electric field polarity. In this work we derive an analytical solution for the concentration distribution, electric potential, and current-voltage response for a four-layered system comprised of two microchambers connected by two permselective regions of varying properties. It is shown that any additional asymmetry in the system, in terms of the geometry, bulk concentration, or surface charge property of the permselective regions, results in current rectification. Our work is divided into two parts: when both permselective regions have the same surface charge sign and the case of opposite signs. For the same sign case we are able to show that the system behaves as a dialytic battery while accounting for field-focusing effects. For the case of opposite signs (i.e., bipolar membrane), our system exhibits the behavior of a bipolar diode where the magnitude of the rectification can be of order 102-103 .

  11. Electric currents of a substorm current wedge on 24 February 2010

    NASA Astrophysics Data System (ADS)

    Connors, Martin; McPherron, Robert L.; Anderson, Brian J.; Korth, Haje; Russell, Christopher T.; Chu, Xiangning

    2014-07-01

    The three-dimensional "substorm current wedge" (SCW) was postulated by McPherron et al. (1973) to explain substorm magnetic perturbations. The origin and coherence as a physical system of this important paradigm of modern space physics remained unclear, however, with progress hindered by gross undersampling, and uniqueness problems in data inversion. Complementing AMPERE (Active Magnetosphere and Planetary Electrodynamics Response Experiment) space-derived radial electric currents with ground magnetic data allowing us to determine currents from the ionosphere up, we overcome problems of uniqueness identified by Fukushima (1969, 1994). For a substorm on 24 February 2010, we quantify SCW development consistently from ground and space data. Its westward electrojet carries 0.5 MA in the more poleward part of the auroral oval, in Region 1 (R1) sense spanning midnight. The evening sector electrojet also feeds into its upward current. We thus validate the SCW concept and obtain parameters needed for quantitative study of substorms.

  12. Dynamic characteristics of double-barrier nanostructures with asymmetric barriers of finite height and widths in a strong ac electric field

    SciTech Connect

    Chuenkov, V. A.

    2013-12-15

    The theory of the interaction of a monoenergetic flow of injected electrons with a strong high-frequency ac electric field in resonant-tunneling diode (RTD) structures with asymmetric barriers of finite height and width is generalized. In the quasi-classical approximation, electron wavefunctions and tunneling functions in the quantum well and barriers are found. Analytical expressions for polarization currents in RTDs are derived in both the general case and in a number of limiting cases. It is shown that the polarization currents and radiation power in RTDs with asymmetric barriers strongly depend on the ratio of the probabilities of electron tunneling through the emitter and collector barriers. In the quantum mode, when δ = ε − ε{sub r} = ħω ≪ Γ (ε is the energy of electrons injected in the RTD, ħ is Planck’s constant, ω is the ac field frequency, ε{sub r} and Γ are the energy and width of the resonance level, respectively), the active polarization current in a field of E ≈ 2.8ħω/ea (e is the electron charge and a is the quantum-well width) reaches a maximum equal in magnitude to 84% of the direct resonant current, if the probability of electron tunneling through the emitter barrier is much higher than that through the collector barrier. The radiation-generation power at frequencies of ω = 10{sup 12}–10{sup 13} s{sup −1} can reach 10{sup 5}–10{sup 6} W/cm{sup 2} in this case.

  13. Comparison of AC losses, magnetic field/current distributions and critical currents of superconducting circular pancake coils and infinitely long stacks using coated conductors

    NASA Astrophysics Data System (ADS)

    Yuan, Weijia; Campbell, A. M.; Hong, Z.; Ainslie, M. D.; Coombs, T. A.

    2010-08-01

    A model is presented for calculating the AC losses, magnetic field/current density distribution and critical currents of a circular superconducting pancake coil. The assumption is that the magnetic flux lines will lie parallel to the wide faces of tapes in the unpenetrated area of the coil. Instead of using an infinitely long stack to approximate the circular coil, this paper gives an exact circular coil model using elliptic integrals. A new efficient numerical method is introduced to yield more accurate and fast computation. The computation results are in good agreement with the assumptions. For a small value of the coil radius, there is an asymmetry along the coil radius direction. As the coil radius increases, this asymmetry will gradually decrease, and the AC losses and penetration depth will increase, but the critical current will decrease. We find that if the internal radius is equal to the winding thickness, the infinitely long stack approximation overestimates the loss by 10% and even if the internal radius is reduced to zero, the error is still only 60%. The infinitely long stack approximation is therefore adequate for most practical purposes. In addition, the comparison result shows that the infinitely long stack approximation saves computation time significantly.

  14. Effect of nanosilica on optical, electric modulus and AC conductivity of polyvinyl alcohol/polyaniline films

    NASA Astrophysics Data System (ADS)

    El-Sayed, Somyia; Abel-Baset, Tarob; Elfadl, Azza Abou; Hassen, Arafa

    2015-05-01

    Nanosilica (NS) was synthesized by a sol-gel method and mixed with 0.98 polyvinyl alcohol (PVA)/0.02 polyaniline (PANI) in different amounts to produce nanocomposite films. High-resolution transmission electron microscopy (HR-TEM) revealed the average particle size of the NS to be ca. 15 nm. Scanning electron microscopy (SEM) showed that the NS was well-dispersed on the surface of the PVA/PNAI films. The Fourier transform infrared (FTIR) spectra of the samples showed a significant change in the intensity of the characteristic peak of the functional groups in the composite films with the amount of NS added. The absorbance and refractive index (n) of the composites were studied in the UV-vis range, and the optical energy band gap, Eg, and different optical parameters were calculated. The dielectric loss modulus, M″ and ac conductivity, σac, of the samples were studied within 300-425 K and 0.1 kHz-5 MHz, respectively. Two relaxation peaks were observed in the frequency dependence of the dielectric loss modulus, M″. The behavior of σac(f) for the composite films indicated that the conduction mechanism was correlated barrier hopping (CBH). The results of this work are discussed and compared with those of previous studies of similar composites.

  15. Electrohydrodynamic Displacement of Polarizable Liquid Interfaces in an Alternating Current Electric Field

    NASA Astrophysics Data System (ADS)

    Gagnon, Zachary

    2015-11-01

    In this work, we investigate Maxwell-Wagner polarization at electrically polarizable liquid interfaces. An AC electric field is applied across a liquid electrical interface created between two co-flowing microfluidic fluid streams with different electrical properties. When potentials as low as 2 volts are applied, we observe a frequency dependent interfacial displacement that is dependent on the relative differences in the electrical conductivity and dielectric constant between the two liquids. At low frequency this deflection is dependent on electrical conductivity, and only depends on dielectric constant at high frequency. At intermediate frequencies, we observe a crossover that is independent of applied voltage, sensitive to both fluid electrical properties, and where no displacement is observed. An analytical polarization model is presented that predicts the liquid interfacial crossover frequency, the dependence of interfacial displacement on liquid electrical conductivity and dielectric constant, and accurately scales the interface displacement measurements. The results show that liquid interfaces are capable of polarizing under AC electric fields and being precisely deflected in a direction and magnitude that is dependent on the applied electric field frequency.

  16. DNA- and AC electric field-assisted assembly of two-dimensional colloidal photonic crystals and their controlled defect insertion

    NASA Astrophysics Data System (ADS)

    Kim, Sejong

    Photonic crystals (PC) are structures in which the refractive index is a periodic function in space. The ability of photonic crystals to localize and manipulate electromagnetic waves has attracted considerable attention from the scientific community. The self-assembly of monodisperse micrometer scale colloidal spheres into hexagonal closed-packed colloidal crystals provides a simple, fast, and cheap materials chemistry approach to PCs. Employing DNA supramolecular recognition, 2-dimensional (2D) photonic crystal monolayer was fabricated with monodisperse polystyrene colloidal microspheres. Amine-terminated DNA oligomers were covalently attached onto carboxy-decorated microspheres and enabled their DNA-functionalization while preserving their colloidal stability and organization properties. Following a capillary-force-assisted organization of DNA-decorated microspheres into close-packed 2D opaline arrays, the first monolayer was immobilized by DNA hybridization. Insertion of vacancies at predetermined sites within the lattice of colloidal crystals is a prerequisite in order to realize high-quality, opaline-based photonic devices. The previously obtained DNA-hybridization type binding of 2D-opaline arrays provides a heat-sensitive "adhesive" between substrate and microspheres within a surrounding aqueous medium that enables tuning the hybridization strength of DNA linker as well as a mechanism to facilitate the removal of unbound microspheres. Focusing a laser beam onto a single microsphere of the opaline array induces localized heating that enables the microsphere to detach, leaving behind vacancies. By repeating this process, line vacancies were successfully obtained. The effects of salt concentration, laser power, light-absorbing dyes, DNA length and refractive index mismatch were investigated and found to correlate with heat-induced DNA dehybridization. In addition, AC (alternating current) electrokinetic force was also utilized to obtain assembly of colloidal

  17. Distribution of electric currents in sunspots from photosphere to corona

    SciTech Connect

    Gosain, Sanjay; Démoulin, Pascal; López Fuentes, Marcelo

    2014-09-20

    We present a study of two regular sunspots that exhibit nearly uniform twist from the photosphere to the corona. We derive the twist parameter in the corona and in the chromosphere by minimizing the difference between the extrapolated linear force-free field model field lines and the observed intensity structures in the extreme-ultraviolet images of the Sun. The chromospheric structures appear more twisted than the coronal structures by a factor of two. Further, we derive the vertical component of electric current density, j{sub z} , using vector magnetograms from the Hinode Solar Optical Telescope (SOT). The spatial distribution of j{sub z} has a zebra pattern of strong positive and negative values owing to the penumbral fibril structure resolved by Hinode/SOT. This zebra pattern is due to the derivative of the horizontal magnetic field across the thin fibrils; therefore, it is strong and masks weaker currents that might be present, for example, as a result of the twist of the sunspot. We decompose j{sub z} into the contribution due to the derivatives along and across the direction of the horizontal field, which follows the fibril orientation closely. The map of the tangential component has more distributed currents that are coherent with the chromospheric and coronal twisted structures. Moreover, it allows us to map and identify the direct and return currents in the sunspots. Finally, this decomposition of j{sub z} is general and can be applied to any vector magnetogram in order to better identify the weaker large-scale currents that are associated with coronal twisted/sheared structures.

  18. Distribution of Electric Currents in Sunspots from Photosphere to Corona

    NASA Astrophysics Data System (ADS)

    Gosain, Sanjay; Démoulin, Pascal; López Fuentes, Marcelo

    2014-09-01

    We present a study of two regular sunspots that exhibit nearly uniform twist from the photosphere to the corona. We derive the twist parameter in the corona and in the chromosphere by minimizing the difference between the extrapolated linear force-free field model field lines and the observed intensity structures in the extreme-ultraviolet images of the Sun. The chromospheric structures appear more twisted than the coronal structures by a factor of two. Further, we derive the vertical component of electric current density, jz , using vector magnetograms from the Hinode Solar Optical Telescope (SOT). The spatial distribution of jz has a zebra pattern of strong positive and negative values owing to the penumbral fibril structure resolved by Hinode/SOT. This zebra pattern is due to the derivative of the horizontal magnetic field across the thin fibrils; therefore, it is strong and masks weaker currents that might be present, for example, as a result of the twist of the sunspot. We decompose jz into the contribution due to the derivatives along and across the direction of the horizontal field, which follows the fibril orientation closely. The map of the tangential component has more distributed currents that are coherent with the chromospheric and coronal twisted structures. Moreover, it allows us to map and identify the direct and return currents in the sunspots. Finally, this decomposition of jz is general and can be applied to any vector magnetogram in order to better identify the weaker large-scale currents that are associated with coronal twisted/sheared structures.

  19. Effective dynamics of an electrically charged string with a current

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.

    2005-08-01

    Equations of motion for an electrically charged string with a current in an external electromagnetic field with regard to the first correction due to the self-action are derived. It is shown that the reparametrization invariance of the free action of the string imposes constraints on the possible form of the current. The effective equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations for the external electromagnetic fields that admit stationary states of such a ring are revealed. Solutions to the effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radiation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is proposed. The effective equations of motion are derived within this model, and a class of solutions to these equations is found.

  20. Polymeric salt bridges for conducting electric current in microfluidic devices

    DOEpatents

    Shepodd, Timothy J.; Tichenor, Mark S.; Artau, Alexander

    2009-11-17

    A "cast-in-place" monolithic microporous polymer salt bridge for conducting electrical current in microfluidic devices, and methods for manufacture thereof is disclosed. Polymeric salt bridges are formed in place in capillaries or microchannels. Formulations are prepared with monomer, suitable cross-linkers, solvent, and a thermal or radiation responsive initiator. The formulation is placed in a desired location and then suitable radiation such as UV light is used to polymerize the salt bridge within a desired structural location. Embodiments are provided wherein the polymeric salt bridges have sufficient porosity to allow ionic migration without bulk flow of solvents therethrough. The salt bridges form barriers that seal against fluid pressures in excess of 5000 pounds per square inch. The salt bridges can be formulated for carriage of suitable amperage at a desired voltage, and thus microfluidic devices using such salt bridges can be specifically constructed to meet selected analytical requirements.

  1. Magnetic field and electric current structure in the chromosphere

    NASA Technical Reports Server (NTRS)

    Dravins, D.

    1974-01-01

    The three-dimensional vector magnetic field structure in the chromosphere above an active region is deduced by using high-resolution H-alpha filtergrams together with a simultaneous digital magnetogram. An analog model of the field is made with 400 metal wires representing field lines that outline the H-alpha structure. The height extent of the field is determined from vertical field-gradient observations around sunspots, from observed fibril heights, and from an assumption that the sources of the field are largely local. The computed electric currents (typically 10 mA/sq m) are found to flow in patterns not similar to observed features and not parallel to magnetic fields. Force structures correspond to observed solar features; the dynamics to be expected include: downward motion in bipolar areas in the lower chromosphere, an outflow of the outer chromosphere into the corona with radially outward flow above bipolar plage regions, and motion of arch filament systems.

  2. Quench behavior of Sr0.6K0.4Fe2As2/Ag tapes with AC and DC transport currents at different temperature

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Zhang, Guomin; Yang, Hua; Li, Zhenming; Liu, Wei; Jing, Liwei; Yu, Hui; Liu, Guole

    2016-09-01

    In applications, superconducting wires may carry AC or DC transport current. Thus, it is important to understand the behavior of normal zone propagation in conductors and magnets under different current conditions in order to develop an effective quench protection system. In this paper, quench behavior of Ag sheathed Sr0.6K0.4Fe2As2 (Sr-122 in the family of iron-based superconductor) tapes with AC and DC transport current is reported. The measurements are performed as a function of different temperature (20 K-30 K), varying transport current and operating frequency (50 Hz-250 Hz). The focus of the research is the minimum quench energy (MQE), the normal zone propagation velocity (NZPV) and the comparison of the related results with AC and DC transport current.

  3. Current and future greenhouse gas emissions associated with electricity generation in China: implications for electric vehicles.

    PubMed

    Shen, Wei; Han, Weijian; Wallington, Timothy J

    2014-06-17

    China's oil imports and greenhouse gas (GHG) emissions have grown rapidly over the past decade. Addressing energy security and GHG emissions is a national priority. Replacing conventional vehicles with electric vehicles (EVs) offers a potential solution to both issues. While the reduction in petroleum use and hence the energy security benefits of switching to EVs are obvious, the GHG benefits are less obvious. We examine the current Chinese electric grid and its evolution and discuss the implications for EVs. China's electric grid will be dominated by coal for the next few decades. In 2015 in Beijing, Shanghai, and Guangzhou, EVs will need to use less than 14, 19, and 23 kWh/100 km, respectively, to match the 183 gCO2/km WTW emissions for energy saving vehicles. In 2020, in Beijing, Shanghai, and Guangzhou EVs will need to use less than 13, 18, and 20 kWh/100 km, respectively, to match the 137 gCO2/km WTW emissions for energy saving vehicles. EVs currently demonstrated in China use 24-32 kWh/100 km. Electrification will reduce petroleum imports; however, it will be very challenging for EVs to contribute to government targets for GHGs emissions reduction. PMID:24853334

  4. Comment on 'Current Budget of the Atmospheric Electric Global Circuit'

    NASA Technical Reports Server (NTRS)

    Driscoll, Kevin T.; Blakeslee, Richard J.

    1996-01-01

    In this paper, three major issues relevant to Kasemir's new model will be addressed. The first concerns Kasemir's assertion that there are significant differences between the potentials associated with the new model and the conventional model. A recalculation of these potentials reveals that both models provide equivalent results for the potential difference between the Earth and ionosphere. The second issue to be addressed is Kasemir's assertion that discrepancies in the electric potentials associated with both models can be attributed to modeling the Earth as a sphere, instead of as a planar surface. A simple analytical comparison will demonstrate that differences in the equations for the potentials of the atmosphere derived with a spherical and a planar Earth are negligible for applications to global current flow. Finally, the third issue to be discussed is Kasemir's claim that numerous aspects of the conventional model are incorrect, including the role of the ionosphere in global current flow as well as the significance of cloud-to-ground lightning in supplying charge to the global circuit. In order to refute these misconceptions, it will be shown that these aspects related to the flow of charge in the atmosphere are accurately described by the conventional model of the global circuit.

  5. Physical and electrical models for interpreting AC and DC transport measurements in polymer solar cells

    NASA Astrophysics Data System (ADS)

    McIntyre, Max; Tzolov, Marian; Cossel, Raquel; Peeler, Seth

    We have fabricated and studied bulk heterojunction solar cells using a mixture of the low bandgap material PCPDTBT and PCBM-C60. Our transport studies show that the devices in dark have good rectification and they respond to AC voltage as a simple RC circuit. The illumination causes an additional contribution to the impedance, which varies with the level of illumination. One proposed model is that photo-generated charges can become trapped in potential wells. These charges then follow a Debye relaxation process, which contributes to a varying dielectric constant. Another proposed model is based on a RC circuit model with two capacitors which can describe the varying capacitance behavior. The physical mechanism for this model is that photo-generated charges become accumulated at the interface between PCPDTBT and PCBM-C60 and form an additional layer of charge. We will show that our circuit models and their analogous physical models can predict the AC and DC responses of polymer solar cells.

  6. Physics-Based Modeling of Electric Operation, Heat Transfer, and Scrap Melting in an AC Electric Arc Furnace

    NASA Astrophysics Data System (ADS)

    Opitz, Florian; Treffinger, Peter

    2016-04-01

    Electric arc furnaces (EAF) are complex industrial plants whose actual behavior depends upon numerous factors. Due to its energy intensive operation, the EAF process has always been subject to optimization efforts. For these reasons, several models have been proposed in literature to analyze and predict different modes of operation. Most of these models focused on the processes inside the vessel itself. The present paper introduces a dynamic, physics-based model of a complete EAF plant which consists of the four subsystems vessel, electric system, electrode regulation, and off-gas system. Furthermore the solid phase is not treated to be homogenous but a simple spatial discretization is employed. Hence it is possible to simulate the energy input by electric arcs and fossil fuel burners depending on the state of the melting progress. The model is implemented in object-oriented, equation-based language Modelica. The simulation results are compared to literature data.

  7. Inter-strand current sharing and ac loss measurements in superconducting YBCO Roebel cables

    SciTech Connect

    Majoros, M.; Sumption, M. D.; Collings, E. W.; Long, N. J.

    2015-04-08

    A Roebel cable, one twist pitch long, was modified from its as-received state by soldering copper strips between the strands to provide inter-strand connections enabling current sharing. Various DC transport currents (representing different percentages of its critical current) were applied to a single strand of such a modified cable at 77 K in a liquid nitrogen bath. Simultaneous monitoring of I–V curves in different parts of the strand as well as in its interconnections with other strands was made using a number of sensitive Keithley nanovoltmeters in combination with a multichannel high-speed data acquisition card, all controlled via LabView software. Current sharing onset was observed at about 1.02 of strand Ic. At a strand current of 1.3Ic about 5% of the current was shared through the copper strip interconnections. A finite element method modeling was performed to estimate the inter-strand resistivities required to enable different levels of current sharing. The relative contributions of coupling and hysteretic magnetization (and loss) were compared, and for our cable and tape geometry, and at dB/dt=1 T s-1, and our inter-strand resistance of 0.77 mΩ, (enabling a current sharing of 5% at 1.3Ic) the coupling component was 0.32% of the hysteretic component. However, inter-strand contact resistance values of 100–1000 times smaller (close to those of NbTi and Nb3Sn based accelerator cables) would make the coupling components comparable in size to the hysteretic components.

  8. Inter-strand current sharing and ac loss measurements in superconducting YBCO Roebel cables

    DOE PAGESBeta

    sumption, Mike; Majoros, Milan; Collings, E. W.; Van der Laan, D. C.

    2014-11-07

    A Roebel cable, one twist pitch long, was modified from its as-received state by soldering copper strips between the strands to provide inter-strand connections enabling current sharing. Various DC transport currents (representing different percentages of its critical current) were applied to a single strand of such a modified cable at 77 K in a liquid nitrogen bath. Simultaneous monitoring of I–V curves in different parts of the strand as well as in its interconnections with other strands was made using a number of sensitive Keithley nanovoltmeters in combination with a multichannel high-speed data acquisition card, all controlled via LabView software.more » Current sharing onset was observed at about 1.02 of strand Ic. At a strand current of 1.3Ic about 5% of the current was shared through the copper strip interconnections. A finite element method modeling was performed to estimate the inter-strand resistivities required to enable different levels of current sharing. The relative contributions of coupling and hysteretic magnetization (and loss) were compared, and for our cable and tape geometry, and at dB/dt=1 T s-1, and our inter-strand resistance of 0.77 mΩ, (enabling a current sharing of 5% at 1.3Ic ) the coupling component was 0.32% of the hysteretic component. However, inter-strand contact resistance values of 100–1000 times smaller (close to those of NbTi and Nb3Sn based accelerator cables) would make the coupling components comparable in size to the hysteretic components.« less

  9. Inter-strand current sharing and ac loss measurements in superconducting YBCO Roebel cables

    DOE PAGESBeta

    Majoros, M.; Sumption, M. D.; Collings, E. W.; Long, N. J.

    2015-04-08

    A Roebel cable, one twist pitch long, was modified from its as-received state by soldering copper strips between the strands to provide inter-strand connections enabling current sharing. Various DC transport currents (representing different percentages of its critical current) were applied to a single strand of such a modified cable at 77 K in a liquid nitrogen bath. Simultaneous monitoring of I–V curves in different parts of the strand as well as in its interconnections with other strands was made using a number of sensitive Keithley nanovoltmeters in combination with a multichannel high-speed data acquisition card, all controlled via LabView software.more » Current sharing onset was observed at about 1.02 of strand Ic. At a strand current of 1.3Ic about 5% of the current was shared through the copper strip interconnections. A finite element method modeling was performed to estimate the inter-strand resistivities required to enable different levels of current sharing. The relative contributions of coupling and hysteretic magnetization (and loss) were compared, and for our cable and tape geometry, and at dB/dt=1 T s-1, and our inter-strand resistance of 0.77 mΩ, (enabling a current sharing of 5% at 1.3Ic) the coupling component was 0.32% of the hysteretic component. However, inter-strand contact resistance values of 100–1000 times smaller (close to those of NbTi and Nb3Sn based accelerator cables) would make the coupling components comparable in size to the hysteretic components.« less

  10. Inter-strand current sharing and ac loss measurements in superconducting YBCO Roebel cables

    NASA Astrophysics Data System (ADS)

    Majoros, M.; Sumption, M. D.; Collings, E. W.; Long, N. J.

    2015-05-01

    A Roebel cable, one twist pitch long, was modified from its as-received state by soldering copper strips between the strands to provide inter-strand connections enabling current sharing. Various DC transport currents (representing different percentages of its critical current) were applied to a single strand of such a modified cable at 77 K in a liquid nitrogen bath. Simultaneous monitoring of I-V curves in different parts of the strand as well as in its interconnections with other strands was made using a number of sensitive Keithley nanovoltmeters in combination with a multi-channel high-speed data acquisition card, all controlled via LabView software. Current sharing onset was observed at about 1.02 of strand Ic. At a strand current of 1.3Ic about 5% of the current was shared through the copper strip interconnections. A finite element method modeling was performed to estimate the inter-strand resistivities required to enable different levels of current sharing. The relative contributions of coupling and hysteretic magnetization (and loss) were compared, and for our cable and tape geometry, and at dB/dt = 1 T s-1, and our inter-strand resistance of 0.77 mΩ, (enabling a current sharing of 5% at 1.3Ic ) the coupling component was 0.32% of the hysteretic component. However, inter-strand contact resistance values of 100-1000 times smaller (close to those of NbTi and Nb3Sn based accelerator cables) would make the coupling components comparable in size to the hysteretic components.

  11. Inter-strand current sharing and ac loss measurements in superconducting YBCO Roebel cables

    SciTech Connect

    sumption, Mike; Majoros, Milan; Collings, E. W.; Van der Laan, D. C.

    2014-11-07

    A Roebel cable, one twist pitch long, was modified from its as-received state by soldering copper strips between the strands to provide inter-strand connections enabling current sharing. Various DC transport currents (representing different percentages of its critical current) were applied to a single strand of such a modified cable at 77 K in a liquid nitrogen bath. Simultaneous monitoring of I–V curves in different parts of the strand as well as in its interconnections with other strands was made using a number of sensitive Keithley nanovoltmeters in combination with a multichannel high-speed data acquisition card, all controlled via LabView software. Current sharing onset was observed at about 1.02 of strand Ic. At a strand current of 1.3Ic about 5% of the current was shared through the copper strip interconnections. A finite element method modeling was performed to estimate the inter-strand resistivities required to enable different levels of current sharing. The relative contributions of coupling and hysteretic magnetization (and loss) were compared, and for our cable and tape geometry, and at dB/dt=1 T s-1, and our inter-strand resistance of 0.77 mΩ, (enabling a current sharing of 5% at 1.3Ic ) the coupling component was 0.32% of the hysteretic component. However, inter-strand contact resistance values of 100–1000 times smaller (close to those of NbTi and Nb3Sn based accelerator cables) would make the coupling components comparable in size to the hysteretic components.

  12. AC electric field induced dielectrophoretic assembly behavior of gold nanoparticles in a wide frequency range

    NASA Astrophysics Data System (ADS)

    Liu, Weiyu; Wang, Chunhui; Ding, Haitao; Shao, Jinyou; Ding, Yucheng

    2016-05-01

    In this work, we focus on frequency-dependence of pearl chain formations (PCF) of gold nanoparticles driven by AC dielectrophoresis (DEP), especially in a low field-frequency range, where induced double-layer charging effect at ideally polarizable surfaces on particle DEP behavior and surrounding liquid motion need not be negligible. As field frequency varies, grown features of DEP assembly structures ranging from low-frequency non-bridged gap to high-frequency single gold nanoparticle-made nanowires bridging the electrodes are demonstrated experimentally. Specifically, at 10 kHz, a kind of novel channel-like structure with parallel opposing banks is formed at the center of interelectrode gap. In stark contrast, at 1 MHz, thin PCF with diameter of 100 nm is created along the shortest distance of the isolation spacing. Moreover, a particular conductive path of nanoparticle chains is produced at 1 MHz in a DEP device embedded with multiple floating electrodes. A theoretical framework taking into account field-induced double-layer polarization at both the particle/electrolyte and electrode/electrolyte interface is developed to correlate these experimental observations with induced-charge electrokinetic (ICEK) phenomenon. And a RC circuit model is helpful in accounting for the formation of this particular non-bridged channel-like structure induced by a low-frequency AC voltage. As compared to thin PCF formed at high field frequency that effectively short circuits the electrode pair, though it is difficult for complete PCF bridging to occur at low frequency, the non-bridged conducting microstructure has potential to further miniaturize the size of electrode gap fabricated by standard micromachining process and may find useful application in biochemical sensing.

  13. Operation Method for AC Motor Control during Power Interruption in Direct AC/AC Converter System

    NASA Astrophysics Data System (ADS)

    Shizu, Keiichiro; Azuma, Satoshi

    Direct AC/AC converters have been studied due to their potential use in power converters with no DC-link capacitor, which can contribute to the miniaturization of power converters. However, the absence of a DC-link capacitor makes it difficult to control the AC motor during power interruption. First, this paper proposes a system that realizes AC motor control during power interruption by utilizing a clamp capacitor. In general, direct AC/AC converters have a clamp circuit consisting of a rectifier diode(s) and a clamp capacitor in order to avoid over-voltages. In the proposed system, there is an additional semiconductor switch reverse-parallel to the rectifier diode(s), and the clamp capacitor voltage can be utilized for AC motor control by turning on the additional switch. Second, this paper discusses an operation method for AC motor control and clamp capacitor voltage control during power interruption. In the proposed method “DC-link voltage control”, the kinetic energy in the AC motor is transformed into electrical energy and stored in the clamp capacitor; the clamp capacitor is therefore charged and the capacitor voltage is controlled to remain constant at an instruction value. Third, this paper discusses a switching operation during power interruption. A dead-time is introduced between the operation of turning off all switches on the rectifier side and the operation of turning on the additional switch, which prevents the occurrence of a short circuit between the interrupted power source and the clamp capacitor. Finally, experimental results are presented. During power interruptions, an output current was continuously obtained and the clamp capacitor voltage was maintained to be equal to the instruction value of the capacitor voltage. These results indicate that both AC motor control and capacitor voltage control were successfully achieved by using the proposed system.

  14. Electrical short circuit and current overload tests on aircraft wiring

    NASA Technical Reports Server (NTRS)

    Cahill, Patricia

    1995-01-01

    The findings of electrical short circuit and current overload tests performed on commercial aircraft wiring are presented. A series of bench-scale tests were conducted to evaluate circuit breaker response to overcurrent and to determine if the wire showed any visible signs of thermal degradation due to overcurrent. Three types of wire used in commercial aircraft were evaluated: MIL-W-22759/34 (150 C rated), MIL-W-81381/12 (200 C rated), and BMS 1360 (260 C rated). A second series of tests evaluated circuit breaker response to short circuits and ticking faults. These tests were also meant to determine if the three test wires behaved differently under these conditions and if a short circuit or ticking fault could start a fire. It is concluded that circuit breakers provided reliable overcurrent protection. Circuit breakers may not protect wire from ticking faults but can protect wire from direct shorts. These tests indicated that the appearance of a wire subjected to a current that totally degrades the insulation looks identical to a wire subjected to a fire; however the 'fire exposed' conductor was more brittle than the conductor degraded by overcurrent. Preliminary testing indicates that direct short circuits are not likely to start a fire. Preliminary testing indicated that direct short circuits do not erode insulation and conductor to the extent that ticking faults did. Circuit breakers may not safeguard against the ignition of flammable materials by ticking faults. The flammability of materials near ticking faults is far more important than the rating of the wire insulation material.

  15. Electric current and magnetic field effects on bacterial biofilms

    NASA Astrophysics Data System (ADS)

    Sandvik, Elizabeth Louise

    The ability of bacteria to form and grow as biofilm presents a major challenge in clinical medicine. Through this work, two alternative electromagnetic treatment strategies were investigated to combat bacterial biofilms like those that cause chronic infections on indwelling medical devices. Direct electric current (DC) was applied at current densities of 0.7 to 1.8 mA/cm2 alone and in conjunction with antibiotic. Unlike most previous studies, chloride ions were included in the treatment solution at a physiologically-relevant concentration. Using this approach, low levels of DC alone were demonstrated to have a dose-responsive, biocidal effect against Staphylococcus epidermidis and Pseudomonas aeruginosa biofilms with no synergistic enhancement of antibiotic activity. Through a series of experiments using chemical measures, cell viability, and global gene expression, electrolytic generation of chlorine, a potent disinfectant, was identified as the predominant mechanism by which DC kills bacteria in biofilm. The second treatment strategy investigated weak, extremely low-frequency magnetic fields (ELF-MFs) as a noninvasive approach, involving an extension of concepts from well-studied ELF-MF effects observed in eukaryotic systems to bacterial biofilm. S. epidermidis biofilms grown in weak, extremely low-frequency magnetic fields (ELF-MFs) at Ca2+ and K+ ion resonance frequencies were assessed using global gene expression to determine if S. epidermidis in biofilm detect and respond to ELF-MFs. Frequency-dependent changes in gene expression were observed with upregulation of genes involved in transposase activity, signal transduction systems, and membrane transport processes indicating possible effects consistent with theories of ELF-MF induced changes in ion transport reported in eukaryotic cells. This is the first transcriptome study to indentify ELF-MF effects in bacteria. While no direct biocidal effect was observed with ELF-MF treatment, alteration of membrane

  16. Direct Electrical Current Reduces Bacterial and Yeast Biofilm Formation

    PubMed Central

    Ruiz-Ruigomez, Maria; Badiola, Jon; Schmidt-Malan, Suzannah M.; Greenwood-Quaintance, Kerryl; Karau, Melissa J.; Brinkman, Cassandra L.; Mandrekar, Jayawant N.; Patel, Robin

    2016-01-01

    New strategies are needed for prevention of biofilm formation. We have previously shown that 24 hr of 2,000 µA of direct current (DC) reduces Staphylococcus epidermidis biofilm formation in vitro. Herein, we examined the effect of a lower amount of DC exposure on S. epidermidis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Propionibacterium acnes, and Candida albicans biofilm formation. 12 hr of 500 µA DC decreased S. epidermidis, S. aureus, E. coli, and P. aeruginosa biofilm formation on Teflon discs by 2, 1, 1, and 2 log10 cfu/cm2, respectively (p < 0.05). Reductions in S. epidermidis, S. aureus, and E. coli biofilm formation were observed with as few as 12 hr of 200 µA DC (2, 2 and 0.4 log10 cfu/cm2, resp.); a 1 log10 cfu/cm2 reduction in P. aeruginosa biofilm formation was observed at 36 hr. 24 hr of 500 µA DC decreased C. albicans biofilm formation on Teflon discs by 2 log10 cfu/cm2. No reduction in P. acnes biofilm formation was observed. 1 and 2 log10 cfu/cm2 reductions in E. coli and S. epidermidis biofilm formation on titanium discs, respectively, were observed with 12 hr of exposure to 500 µA. Electrical current is a potential strategy to reduce biofilm formation on medical biomaterials. PMID:27073807

  17. Manifestations of electric currents observed in the K-corona

    NASA Astrophysics Data System (ADS)

    Kim, I. S.; Popov, V. V.

    2015-12-01

    The 2D distribution of tangential velocities of the coronal plasma electron component (K-corona) was obtained and interpreted. Coronal continuum linear polarization films in the green spectral range obtained during the total solar eclipse of March 29, 2006, are used. The developed method of high-precision linear polarimetry made it possible to obtain the first 2D distribution in the K-corona linear polarimetry history for the polarization angle sign at distances smaller than 1.5 Rsun. For clarity, we accepted that clockwise deviations of the polarization direction from tangential to the solar limb have positive polarity, whereas counterclockwise deviations have negative polarity. The distribution differs from the anticipated pattern for scattering by resting electrons and reveals a correlation with the coronal structure and the presence of diffuse and structural components and largeand small-scale regions of opposite polarities. The interpretation in the scope of scattering by moving electrons indicates that free electron tangential velocities (tangential electric currents) are strongly fragmented in the inner corona.

  18. Fine Structure of Flare Ribbons and Evolution of Electric Currents

    NASA Astrophysics Data System (ADS)

    Sharykin, I. N.; Kosovichev, A. G.

    2014-06-01

    Emission of solar flares across the electromagnetic spectrum is often observed in the form of two expanding ribbons. The standard flare model explains flare ribbons as footpoints of magnetic arcades, emitting due to interaction of energetic particles with the chromospheric plasma. However, the physics of this interaction and properties of the accelerated particles are still unknown. We present results of multiwavelength observations of the C2.1 flare of 2013 August 15, observed with the New Solar Telescope of the Big Bear Solar Observatory, and the Solar Dynamics Observatory, GOES, and Fermi spacecraft. The observations reveal previously unresolved sub-arcsecond structure of flare ribbons in regions of strong magnetic field consisting from numerous small-scale bright knots. We observe a red-blue asymmetry of Hα flare ribbons with a width as small as ~100 km. We discuss the relationship between the ribbons and vertical electric currents estimated from vector magnetograms, and show that Joule heating can be responsible for energization of Hα knots in the ribbons.

  19. Electric current-producing device having sulfone-based electrolyte

    DOEpatents

    Angell, Charles Austen; Sun, Xiao-Guang

    2010-11-16

    Electrolytic solvents and applications of such solvents including electric current-producing devices. For example, a solvent can include a sulfone compound of R1--SO2--R2, with R1 being an alkyl group and R2 a partially oxygenated alkyl group, to exhibit high chemical and thermal stability and high oxidation resistance. For another example, a battery can include, between an anode and a cathode, an electrolyte which includes ionic electrolyte salts and a non-aqueous electrolyte solvent which includes a non-symmetrical, non-cyclic sulfone. The sulfone has a formula of R1--SO2--R2, wherein R1 is a linear or branched alkyl or partially or fully fluorinated linear or branched alkyl group having 1 to 7 carbon atoms, and R2 is a linear or branched or partially or fully fluorinated linear or branched oxygen containing alkyl group having 1 to 7 carbon atoms. The electrolyte can include an electrolyte co-solvent and an electrolyte additive for protective layer formation.

  20. FINE STRUCTURE OF FLARE RIBBONS AND EVOLUTION OF ELECTRIC CURRENTS

    SciTech Connect

    Sharykin, I. N.; Kosovichev, A. G.

    2014-06-10

    Emission of solar flares across the electromagnetic spectrum is often observed in the form of two expanding ribbons. The standard flare model explains flare ribbons as footpoints of magnetic arcades, emitting due to interaction of energetic particles with the chromospheric plasma. However, the physics of this interaction and properties of the accelerated particles are still unknown. We present results of multiwavelength observations of the C2.1 flare of 2013 August 15, observed with the New Solar Telescope of the Big Bear Solar Observatory, and the Solar Dynamics Observatory, GOES, and Fermi spacecraft. The observations reveal previously unresolved sub-arcsecond structure of flare ribbons in regions of strong magnetic field consisting from numerous small-scale bright knots. We observe a red-blue asymmetry of H{sub α} flare ribbons with a width as small as ∼100 km. We discuss the relationship between the ribbons and vertical electric currents estimated from vector magnetograms, and show that Joule heating can be responsible for energization of H{sub α} knots in the ribbons.

  1. Identification of boundaries in the cometary environment from AC electric field measurements

    NASA Astrophysics Data System (ADS)

    Mogilevsky, M.; Mikhailov, Y.; Molchanov, O.; Grard, R.; Pedersen, A.; Trotignon, J. G.; Beghin, C.; Formisano, V.; Shapiro, V.; Shevchenko, V.

    1986-12-01

    Electric fields are measured with the AVP-V experiment in the frequency range 8 Hz - 300 kHz. The field amplitude increases significantly, first at a distance of 2×105km, then at distances of 1.2 - 1.5×105km, and 5 - 7×104km from the nucleus. These phenomena have been observed both on VEGA-1 and VEGA-2. The electric field measurements are compared with data obtained from dust and plasma experiments; possible mechanisms responsible for the existence of these boundaries are discussed.

  2. Hysteretic Dependence of Magnetic Flux Density on Primary AC Current in Flat-Type Inductive Fault Current Limiter with YBCO Thin Film Discs

    NASA Astrophysics Data System (ADS)

    Harada, Masayuki; Yokomizu, Yasunobu; Matsumura, Toshiro

    2014-05-01

    This paper focuses on a flat-type inductive superconducting FCL (FIS-FCL) consisting of a pancake coil and a YBCO thin layer disc. AC current injection experiments and magnetic field analysis were carried out for two kinds of FIS-FCL, single-disc model and double-discs model. In the former, the pancake coil was putted on the YBCO disc. In the latter, the pancake coil was sandwiched with two YBCO discs. The double-discs model cancels out the magnetic flux density more effectively than the single-disc model. In the double-discs model, the superconducting state period is longer than in the single-disc model. Thus, it may be concluded that the double-discs model is considered to be suitable for FIS-FCL.

  3. 46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on...

  4. 46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on...

  5. 46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on...

  6. 46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on...

  7. 46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on...

  8. Superconducting-magnetic heterostructures: a method of decreasing AC losses and improving critical current density in multifilamentary conductors.

    PubMed

    Glowacki, B A; Majoros, M

    2009-06-24

    Magnetic materials can help to improve the performance of practical superconductors on the macroscale/microscale as magnetic diverters and also on the nanoscale as effective pinning centres. It has been established by numerical modelling that magnetic shielding of the filaments reduces AC losses in self-field conditions due to decoupling of the filaments and, at the same time, it increases the critical current of the composite. This effect is especially beneficial for coated conductors, in which the anisotropic properties of the superconductor are amplified by the conductor architecture. However, ferromagnetic coatings are often chemically incompatible with YBa(2)Cu(3)O(7) and (Pb,Bi)(2)Sr(2)Ca(2)Cu(3)O(9) conductors, and buffer layers have to be used. In contrast, in MgB(2) conductors an iron matrix may remain in direct contact with the superconducting core. The application of superconducting-magnetic heterostructures requires consideration of the thermal and electromagnetic stability of the superconducting materials used. On one hand, magnetic materials reduce the critical current gradient across the individual filaments but, on the other hand, they often reduce the thermal conductivity between the superconducting core and the cryogen, which may cause destruction of the conductor in the event of thermal instability. A possible nanoscale method of improving the critical current density of superconducting conductors is the introduction of sub-micron magnetic pinning centres. However, the volumetric density and chemical compatibility of magnetic inclusions has to be controlled to avoid suppression of the superconducting properties. PMID:21828430

  9. Direct simulation of phase delay effects on induced-charge electro-osmosis under large ac electric fields.

    PubMed

    Sugioka, Hideyuki

    2016-08-01

    The standard theory of induced-charge electro-osmosis (ICEO) often overpredicts experimental values of ICEO velocities. Using a nonsteady direct multiphysics simulation technique based on the coupled Poisson-Nernst-Planck and Stokes equations for an electrolyte around a conductive cylinder subject to an ac electric field, we find that a phase delay effect concerning an ion response provides a fundamental mechanism for electrokinetic suppression. A surprising aspect of our findings is that the phase delay effect occurs even at much lower frequencies (e.g., 50 Hz) than the generally believed charging frequency of an electric double layer (typically, 1 kHz) and it can decrease the electrokinetic velocities in one to several orders. In addition, we find that the phase delay effect may also cause a change in the electrokinetic flow directions (i.e., flow reversal) depending on the geometrical conditions. We believe that our findings move toward a more complete understanding of complex experimental nonlinear electrokinetic phenomena. PMID:27627362

  10. UCP2- and non-UCP2-mediated electric current in eukaryotic cells exhibits different properties.

    PubMed

    Wang, Ruihua; MoYung, K C; Zhang, M H; Poon, Karen

    2015-12-01

    Using live eukaryotic cells, including cancer cells, MCF-7 and HCT-116, normal hepatocytes and red blood cells in anode and potassium ferricyanide in cathode of MFC could generate bio-based electric current. Electrons and protons generated from the metabolic reaction in both cytosol and mitochondria contributing to the leaking would mediate the generation of electric current. Both resveratrol (RVT) and 2,4-dinitrophenol (DNP) used to induce proton leak in mitochondria were found to promote electric current production in all cells except red blood cells without mitochondria. Proton leak might be important for electric current production by bringing the charge balance in cells to enhance the further electron leak. The induced electric current by RVT can be blocked by Genipin, an inhibitor of UCP2-mediated proton leak, while that induced by DNP cannot. RVT could reduce reactive oxygen species (ROS) level in cells better than that of DNP. In addition, RVT increased mitochondrial membrane potential (MMP), while DNP decreased it. Results highly suggested the existence of at least two types of electric current that showed different properties. They included UCP2-mediated and non-UCP2-mediated electric current. UCP2-mediated electric current exhibited higher reactive oxygen species (ROS) reduction effect per unit electric current production than that of non-UCP2-mediated electric current. Higher UCP2-mediated electric current observed in cancer cells might contribute to the mechanism of drug resistence. Correlation could not be established between electric current production with either ROS and MMP without distinguishing the types of electric current. PMID:26276275

  11. Sign reversal of ac Josephson current in a ferromagnetic Josephson junction

    NASA Astrophysics Data System (ADS)

    Hikino, Shin-Ichi; Mori, Michiyasu; Takahashi, Saburo; Maekawa, Sadamichi

    2009-03-01

    It is known that in a superconductor/insulator/superconductor (SIS) junction, when a finite voltage is applied, the Josephson current shows a logarithmic divergence, i.e., the so-called Riedel peak(RP) at the gap voltage, V=2δ/e, (δ is a superconducting gap). In a double barrier Josephson junction such as SXS junction, on the other hand, the voltage dependence of Ic has not been investigated so far, where X is a normal metal (N) or a ferromagnet (F). We study the voltage dependence of Josephson critical current (Ic) in a variety of SXS junctions. In a SNS junction, Ic shows the RP at the gap voltage similar to a SIS junction. On the other hand, in a SFS junction, Ic shows a damped oscillation with the alternation of sign as a function of thickness (d) of F due to 0-π transition. The RP exhibits a strong dependence on d, and changes its sign. It is predicted that the RP disappears at the 0-π transition in the SFS junction.

  12. Effective variable switching point predictive current control for ac low-voltage drives

    NASA Astrophysics Data System (ADS)

    Stolze, Peter; Karamanakos, Petros; Kennel, Ralph; Manias, Stefanos; Endisch, Christian

    2015-07-01

    This paper presents an effective model predictive current control scheme for induction machines driven by a three-level neutral point clamped inverter, called variable switching point predictive current control. Despite the fact that direct, enumeration-based model predictive control (MPC) strategies are very popular in the field of power electronics due to their numerous advantages such as design simplicity and straightforward implementation procedure, they carry two major drawbacks. These are the increased computational effort and the high ripples on the controlled variables, resulting in a limited applicability of such methods. The high ripples occur because in direct MPC algorithms the actuating variable can only be changed at the beginning of a sampling interval. A possible remedy for this would be to change the applied control input within the sampling interval, and thus to apply it for a shorter time than one sample. However, since such a solution would lead to an additional overhead which is crucial especially for multilevel inverters, a heuristic preselection of the optimal control action is adopted to keep the computational complexity at bay. Experimental results are provided to verify the potential advantages of the proposed strategy.

  13. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. A-C CONVENTIONAL MAGNETIC MOTOR CONTROL, PART I, UNIT 5, ASSIGNMENTS.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING ALTERNATING CURRENT CONVENTIONAL MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 10 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, STUDY REFERENCES, SUPPLEMENTARY…

  14. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. A-C CONVENTIONAL MAGNETIC MOTOR CONTROL, PART I, UNIT 5, INSTRUCTOR'S GUIDE.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR TEACHER USE IN DIRECTING INDIVIDUAL STUDY OF ALTERNATING CURRENT CONVENTIONAL MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 10 INSTRUCTOR'S SHEETS GIVES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, REFERENCES, AND…

  15. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. A-C CONVENTIONAL MAGNETIC MOTOR CONTROL, PART II, UNIT 6, INSTRUCTOR'S GUIDE.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR TEACHER USE IN DIRECTING INDIVIDUAL STUDY OF ALTERNATING CURRENT CONVENTIONAL MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 10 INSTRUCTOR'S SHEETS GIVES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, REFERENCES, SUPPLEMENTARY…

  16. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. A-C CONVENTIONAL MAGNETIC MOTOR CONTROL, PART II, UNIT 6, ASSIGNMENTS.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS STUDY GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING ALTERNATING CURRENT CONVENTIONAL MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 10 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, STUDY REFERENCES,…

  17. Behavioral evidence that magnetic field effects in the land snail, Cepaea nemoralis, might not depend on magnetite or induced electric currents

    SciTech Connect

    Prato, F.S.; Kavaliers, M.; Carson, J.J.L.

    1996-05-01

    Although extremely low frequency (ELF) magnetic fields (< 300 Hz) appear to exert a variety of biological effects, the magnetic field sensing/transduction mechanism(s) remains to be established. Here, using the inhibitory effects of magnetic fields on endogenous opioid peptide-mediated analgesic response of the land snail, Cepaea nemoralis, the authors addressed the mechanism(s) of action of ELF magnetic fields. Indirect mechanisms involving both induced electric fields and direct magnetic field detection mechanisms (e.g., magnetite, parametric resonance) were evaluated. Snails were exposed to a static magnetic field (B{sub DC} = 78 {+-} 1 {micro}T) and a 60 Hz magnetic field (B{sub AC} = 299 {+-} 1 {micro}T peak) with the angle between the static and 60 Hz magnetic fields varied in eight steps between 0{degree} and 90{degree}. At 0{degree} and 90{degree}, the magnetic field reduced opioid-induced analgesia by approximately 20%, and this inhibition was increased to a maximum of 50% when the angle was between 50{degree} and 70{degree}. Because B{sub AC} was fixed in amplitude, direction, and frequency, any induced electric currents would be constant independent of the B{sub AC}/B{sub DC} angle. Also, an energy transduction mechanism involving magnetite should show greatest sensitivity at 90{degree}. Therefore, the energy transduction mechanism probably does not involve induced electric currents or magnetite. Rather, their results suggest a direct magnetic field detection mechanism consistent with the parametric resonance model proposed by Lednev.

  18. A Novel Inductor-less DC-AC Cascaded H-bridge Multilevel Boost Inverter for Electric/Hybrid Electric Vehicle Applications

    SciTech Connect

    Du, Zhong; Ozpineci, Burak; Tolbert, Leon M; Chiasson, John N

    2007-01-01

    This paper presents an inductorless cascaded H- bridge multilevel boost inverter for EV and HEV applications. Currently available power inverter systems for HEVs use a DC- DC boost converter to boost the battery voltage for a traditional 3-phase inverter. The present HEV traction drive inverters have low power density, are expensive, and have low efficiency because they need a bulky inductor. An inductorless cascaded H-bridge multilevel boost inverter for EV and HEV applications is proposed in this paper. Traditionally, each H-bridge needs a DC power supply. The proposed inductorless cascaded H-bridge multilevel boost inverter uses a standard 3-leg inverter (one leg for each phase) and an H-bridge in series with each inverter leg which uses a capacitor as the DC power source. Fundamental switching scheme is used to do modulation control and to produce a 5-level phase voltage. Experiments show that the proposed inductorless DC-AC cascaded H-bridge multilevel boost inverter can output a boosted AC voltage.

  19. Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields

    PubMed Central

    Ruffini, Giulio; Fox, Michael D.; Ripolles, Oscar; Miranda, Pedro Cavaleiro; Pascual-Leone, Alvaro

    2014-01-01

    Recently, multifocal transcranial current stimulation (tCS) devices using several relatively small electrodes have been used to achieve more focal stimulation of specific cortical targets. However, it is becoming increasingly recognized that many behavioral manifestations of neurological and psychiatric disease are not solely the result of abnormality in one isolated brain region but represent alterations in brain networks. In this paper we describe a method for optimizing the configuration of multifocal tCS for stimulation of brain networks, represented by spatially extended cortical targets. We show how, based on fMRI, PET, EEG or other data specifying a target map on the cortical surface for excitatory, inhibitory or neutral stimulation and a constraint of the maximal number of electrodes, a solution can be produced with the optimal currents and locations of the electrodes. The method described here relies on a fast calculation of multifocal tCS electric fields (including components normal and tangential to the cortical boundaries) using a five layer finite element model of a realistic head. Based on the hypothesis that the effects of current stimulation are to first order due to the interaction of electric fields with populations of elongated cortical neurons, it is argued that the optimization problem for tCS stimulation can be defined in terms of the component of the electric field normal to the cortical surface. Solutions are found using constrained least squares to optimize current intensities, while electrode number and their locations are selected using a genetic algorithm. For direct current tCS (tDCS) applications, we provide some examples of this technique using an available tCS system providing 8 small Ag/AgCl stimulation electrodes. We demonstrate the approach both for localized and spatially extended targets defined using rs-fcMRI and PET data, with clinical applications in stroke and depression. Finally, we extend these ideas to more general

  20. Electric field effects on ion currents in satellite wakes

    NASA Technical Reports Server (NTRS)

    Parks, D. E.; Katz, I.

    1985-01-01

    Small currents associated with satellite spin, dielectric conduction, or trace concentrations of H+, can have a substantial effect on the potential of a satellite and the particle currents reaching its surface. The importance of such small currents at altitudes below about 300 km stems from the extremely small 0+ currents impinging on the wake-side of the spacecraft. The particle current on the downstream side of the AE-C satellite is considered. Theoretical estimates based on a newly described constant of the motion of a particle indicate that accounting for small concentrations of H+ remove a major discrepancy between calculated and measured currents.

  1. Digital ac monitor

    DOEpatents

    Hart, George W.; Kern, Jr., Edward C.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer.

  2. A novel design of DC-AC electrical machine rotary converter for hybrid solar and wind energy applications

    NASA Astrophysics Data System (ADS)

    Mohammed, K. G.; Ramli, A. Q.; Amirulddin, U. A. U.

    2013-06-01

    This paper proposes the design of a new bi-directional DC-AC rotary converter machine to convert a d.c. voltage to three-phase voltage and vice-versa using a two-stage energy conversion machine. The rotary converter consists of two main stages which are combined into single frame. These two stages are constructed from three main electromagnetic components. The first inner electromagnetic component represents the input stage that enables the DC power generated by solar energy from photo-voltaic cells to be transformed by the second and third components electro-magnetically to produce multi-phase voltages at the output stage. At the same time, extra kinetic energy from wind, which is sufficiently available, can be added to existing torque on the second electromagnetic component. Both of these input energies will add up to the final energy generated at the output terminals. Therefore, the machine will be able to convert solar and wind energies to the output terminals simultaneously. If the solar energy is low, the available wind energy will be able to provide energy to the output terminals and at the same time charges the batteries which are connected as backup system. At this moment, the machine behaves as wind turbine. The energy output from the machine benefits from two energy sources which are solar and wind. At night when the solar energy is not available and also the load is low, the wind energy is able to charge the batteries and at the same time provides output electrical power to the remaining the load. Therefore, the proposed system will have high usage of available renewable energy as compared to separated wind or solar systems. MATLAB codes are used to calculate the required dimensions, the magnetic and electrical circuits parameters to design of the new bi-directional rotary converter machine.

  3. Shape change and physical properties of giant phospholipid vesicles prepared in the presence of an AC electric field.

    PubMed

    Mathivet, L; Cribier, S; Devaux, P F

    1996-03-01

    Giant unilamellar vesicles with diameters ranging from 10 to 60 microns were obtained by the swelling of phospholipid bilayers in water in the presence of an AC electric field. This technique leads to a homogeneous population of perfectly spherical and unilamellar vesicles, as revealed by phase-contrast optical microscopy and freeze-fracture electron microscopy. Freshly prepared vesicles had a high surface tension with no visible surface undulations. Undulations started spontaneously after several hours of incubation or were triggered by the application of a small osmotic pressure. Partially deflated giant vesicles could undergo further shape change if asymmetrical bilayers were formed by adding lyso compounds to the external leaflet or by imposing a transmembrane pH gradient that selectively accumulates on one leaflet phosphatidylglycerol. Fluorescence photobleaching with 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled phospholipids or labeled dextran trapped within the vesicles enabled the measurement of the membrane continuity in the dumbbell-shaped vesicles. In all instances phospholipids diffused from one lobe to the other, but soluble dextran sometimes was unable to traverse the neck. This suggests that the diameter of the connecting neck may be variable. PMID:8785271

  4. Relationship between Birkeland current regions, particle precipitation, and electric fields

    NASA Technical Reports Server (NTRS)

    De La Beaujardiere, O.; Watermann, J.; Newell, P.; Rich, F.

    1993-01-01

    The relationship of the large-scale dayside Birkeland currents to large-scale particle precipitation patterns, currents, and convection is examined using DMSP and Sondrestrom radar observations. It is found that the local time of the mantle currents is not limited to the longitude of the cusp proper, but covers a larger local time extent. The mantle currents flow entirely on open field lines. About half of region 1 currents flow on open field lines, consistent with the assumption that the region 1 currents are generated by the solar wind dynamo and flow within the surface that separates open and closed field lines. More than 80 percent of the Birkeland current boundaries do not correspond to particle precipitation boundaries. Region 2 currents extend beyond the plasma sheet poleward boundary; region 1 currents flow in part on open field lines; mantle currents and mantle particles are not coincident. On most passes when a triple current sheet is observed, the convection reversal is located on closed field lines.

  5. Alternating current impedance imaging of high-resistance membrane pores using a scanning electrochemical microscope. Application of membrane electrical shunts to increase measurement sensitivity and image contrast.

    PubMed

    Ervin, Eric Nathan; White, Henry S; Baker, Lane A; Martin, Charles R

    2006-09-15

    Whether an individual pore in a porous membrane can be imaged using scanning electrochemical microscopy (SECM), operated in ac impedance mode, is determined by the magnitude of the change in the total impedance of the imaging system as the SECM tip is scanned over the pore. In instances when the SECM tip resistance is small relative to the internal pore resistance, the total impedance changes by a negligible amount, rendering the pore invisible during impedance imaging. A simple solution to this problem is to introduce a low-impedance electrical shunt (i.e., a salt bridge) across the membrane. This principle is demonstrated by imaging polycarbonate membranes (6-12-microm thickness) containing between 1 and 2000 conical-shaped pores (60-nm- and 2.5-microm-diameter openings) using an approximately 1-microm-radius Pt tip. Theory and experiments show that image contrast (the change in ac current measured as the probe is scanned over the pore) is inversely proportional to the total resistance of the membrane and can be increased by a factor of approximately 50x by introducing a low-resistance electrical shunt across the membrane. Remarkably, SECM images of membranes containing a single high-resistance (approximately 1 G Omega) pore can only be imaged by short-circuiting the membrane. Image contrast also becomes independent of membrane resistance when an electrical shunt is used, allowing for more quantitative comparisons of the features in ac impedance images of different membranes. PMID:16970331

  6. A Historical Analysis of Electric Currents in Textbooks: A Century of Influence on Physics Education.

    ERIC Educational Resources Information Center

    Stocklmayer, Susan; Treagust, David

    1994-01-01

    Analyzes the presentations of electric current in physics textbooks. Concludes that from 1891 to 1991 most textbooks used a fluid model, which predated Faraday, for explaining direct-current circuits. (PR)

  7. Micromagnetic study of phase-locking in spin-transfer nano-oscillators driven by currents and ac fields

    NASA Astrophysics Data System (ADS)

    d'Aquino, M.; Serpico, C.; Bonin, R.; Bertotti, G.; Mayergoyz, I. D.

    2011-04-01

    The magnetization dynamics of a spin-transfer nano-oscillator is studied for a system subject to the combined action of dc spin-polarized electric current and microwave circularly polarized applied field. The uniform mode theory is developed for a spin-valve with an arbitrary orientation of the polarizer. The theory enables one to predict the control parameters for the synchronization between the magnetization self-oscillation and the external microwave field. Full micromagnetic simulations are performed with the predicted control parameters, and they demonstrate the hysteretic nature of the synchronization in very good agreement with the theory.

  8. On the Modeling of Electrical Effects Experienced by Space Explorers During Extra Vehicular Activities: Intracorporal Currents, Resistances, and Electric Fields

    NASA Technical Reports Server (NTRS)

    Cela, Carlos J.; Loizos, Kyle; Lazzi, Gianluca; Hamilton, Douglas; Lee, Raphael C.

    2011-01-01

    Recent research has shown that space explorers engaged in Extra Vehicular Activities (EVAs) may be exposed, under certain conditions, to undesired electrical currents. This work focuses on determining whether these undesired induced electrical currents could be responsible for involuntary neuromuscular activity in the subjects, possibly caused by either large diameter peripheral nerve activation or reflex activity from cutaneous afferent stimulation. An efficient multiresolution variant of the admittance method along with a millimeter-resolution model of a male human body were used to calculate induced electric fields, resistance between contact electrodes used to simulate the potential exposure condition, and currents induced in the human body model. Results show that, under realistic exposure conditions using a 15V source, current density magnitudes and total current injected are well above previously reported startle reaction thresholds. This indicates that, under the considered conditions, the subjects could experience involuntary motor response.

  9. Influence of Critical Current Density on Guidance Force Decay of HTS Bulk Exposed to AC Magnetic Field Perturbation in a Maglev Vehicle System

    NASA Astrophysics Data System (ADS)

    Longcai, Zhang; Jianguo, Kong

    2012-07-01

    Superconducting maglev vehicle is one of the most promising applications of HTS bulks. In such a system, the HTS bulks are always exposed to AC external magnetic field, which is generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, we studied the guidance force decay of the YBCO bulk over the NdFdB guideway used in the High-temperature superconducting maglev vehicle system with the application of the AC external magnetic field, and calculated the guidance force decay as a function of time based on an analytic model. In this paper, we investigated the influence of the critical current density on the guidance force decay of HTS bulk exposed to AC field perturbation in the maglev vehicle system and try to adopt a method to suppress the decay. From the results, it was found that the guidance force decay rate was higher for the bulk with lower critical current density. Therefore, we could suppress the guidance force decay of HTS bulk exposed to AC external magnetic field perturbation in the maglev vehicle system by improving critical current density of the bulk.

  10. Non invasive sensors for monitoring the efficiency of AC electrical rotating machines.

    PubMed

    Zidat, Farid; Lecointe, Jean-Philippe; Morganti, Fabrice; Brudny, Jean-François; Jacq, Thierry; Streiff, Frédéric

    2010-01-01

    This paper presents a non invasive method for estimating the energy efficiency of induction motors used in industrial applications. This method is innovative because it is only based on the measurement of the external field emitted by the motor. The paper describes the sensors used, how they should be placed around the machine in order to decouple the external field components generated by both the air gap flux and the winding end-windings. The study emphasizes the influence of the eddy currents flowing in the yoke frame on the sensor position. A method to estimate the torque from the external field use is proposed. The measurements are transmitted by a wireless module (Zig-Bee) and they are centralized and stored on a PC computer. PMID:22163631

  11. Non Invasive Sensors for Monitoring the Efficiency of AC Electrical Rotating Machines

    PubMed Central

    Zidat, Farid; Lecointe, Jean-Philippe; Morganti, Fabrice; Brudny, Jean-François; Jacq, Thierry; Streiff, Frédéric

    2010-01-01

    This paper presents a non invasive method for estimating the energy efficiency of induction motors used in industrial applications. This method is innovative because it is only based on the measurement of the external field emitted by the motor. The paper describes the sensors used, how they should be placed around the machine in order to decouple the external field components generated by both the air gap flux and the winding end-windings. The study emphasizes the influence of the eddy currents flowing in the yoke frame on the sensor position. A method to estimate the torque from the external field use is proposed. The measurements are transmitted by a wireless module (Zig-Bee) and they are centralized and stored on a PC computer. PMID:22163631

  12. Cortico-muscular coupling and motor performance are modulated by 20 Hz transcranial alternating current stimulation (tACS) in Parkinson’s disease

    PubMed Central

    Krause, Vanessa; Wach, Claudia; Südmeyer, Martin; Ferrea, Stefano; Schnitzler, Alfons; Pollok, Bettina

    2014-01-01

    Parkinson’s disease (PD) is associated with pathologically altered oscillatory activity. While synchronized oscillations between 13 and 30 Hz are increased within a cortico-subcortical network, cortico-muscular coupling (CMC) is decreased. The present study aims at investigating the effect of non-invasive transcranial alternating current stimulation (tACS) of the primary motor cortex (M1) on motor symptoms and motor-cortical oscillations in PD. In 10 PD patients and 10 healthy control subjects, static isometric contraction, dynamic fast finger tapping, and diadochokinesia of the more severely affected hand were investigated prior to and shortly after tACS of the contralateral M1 at 10 Hz vs. 20 Hz vs. sham. During isometric contraction, neuromagnetic activity was recorded using magnetoencephalography. 20 Hz tACS attenuated beta band CMC during isometric contraction and amplitude variability during finger tapping in PD patients but not in healthy control subjects. 10 Hz tACS yielded no significant after-effects. The present data suggest that PD is associated with pathophysiological alterations which abet a higher responsiveness toward frequency-specific tACS – possibly due to pathologically altered motor-cortical oscillatory synchronization at frequencies between 13 and 30 Hz. PMID:24474912

  13. Energetic electrons and photospheric electric currents during solar flares

    NASA Astrophysics Data System (ADS)

    Musset, Sophie; Vilmer, Nicole; Bommier, Veronique

    2016-07-01

    It is currently admitted that solar flares are powered by magnetic energy previously stored in the coronal magnetic field. During magnetic reconnection processes, this energy is transferred to particle acceleration, plasma motion and plasma heating. Magnetic energy release is likely to occur on coronal currents sheets along regions of strong gradient of magnetic connectivity. These coronal current sheets can be traced by their footprints at the surface on the Sun, i.e. by photospheric current ribbons. We aim to study the relation between these current ribbons observed at the photospheric level, tracing the coronal current sheets, and the flare energetic electrons traced by their X-ray emissions. The photospheric magnetic field and vertical current density have been calculated from SDO/HMI spectropolarimetric data with the UNNOFIT inversion and Metcalf disambiguation codes, while the X-ray images and spectra have been reconstructed from RHESSI data. In a first case, the GOES X2.2 flare of February 15, 2011, a spatial correlation is observed between the photospheric current ribbons and the coronal X-ray emissions from energetic electrons. Moreover, a conjoint evolution of both the photospheric currents and the X-ray emission is observed during the course of the flare. Both results are interpreted as consequences of the magnetic reconnection in coronal current sheets, and propagation of the reconnection sites to new structures during the flare, leading to new X-ray emission and local increase of the photospheric currents (Musset et al., 2015). We shall discuss here similar results obtained for other X-class flares.

  14. Determination of critical current density and transition temperature of YBa sub 2 Cu sub 3 O sub 7 minus x thin films by measurement of ac susceptibility

    SciTech Connect

    Li, Y.; Noh, D.; Gallois, B. ); Tompa, G.S.; Norris, P.E.; Zawadzki, P.A. )

    1990-10-01

    A technique for the determination of the critical current of superconducting thin films by a current-dependent ac susceptibility measurement has been developed. This method has been used to characterize superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}{ital x}} films grown {ital in situ} at 1073 K by metalorganic chemical vapor deposition. Two superconducting phases with transition temperatures of 91 and 84 K have been detected by the measurement of ac susceptibility as a function of temperature even though the variation of resistance with temperature indicated a sharp transition. The critical current densities of the two superconducting phases have been determined from the variations of ac susceptibility with current at constant temperature and found to be equal to 1.14{times}10{sup 4} A/cm{sup 2} and 3.6{times}10{sup 3} A/cm{sup 2} at 75 K. The advantages of the technique in comparison to current methods of measurement of critical current are discussed.

  15. Device for conversion of electromagnetic radiation into electrical current

    DOEpatents

    Blakeslee, A.E.; Mitchell, K.W.

    1980-03-25

    Electromagnetic energy may be converted directly into electrical energy by a device comprising a sandwich of at least two semiconductor portions, each portion having a p-n junction with a characteristic energy gap, and the portions lattice matched to one another by an intervening superlattice structure. This superlattice acts to block propagation into the next deposited portion of those dislocation defects which can form due to lattice mismatch between adjacent portions.

  16. Device for conversion of electromagnetic radiation into electrical current

    DOEpatents

    Blakeslee, A. Eugene; Mitchell, Kim W.

    1981-01-01

    Electromagnetic energy may be converted directly into electrical energy by a device comprising a sandwich of at least two semiconductor portions, each portion having a p-n junction with a characteristic energy gap, and the portions lattice matched to one another by an intervening superlattice structure. This superlattice acts to block propagation into the next deposited portion of those dislocation defects which can form due to lattice mismatch between adjacent portions.

  17. Computation of induced electric field and temperature elevation in human due to lightning current

    NASA Astrophysics Data System (ADS)

    Nagai, T.; Hirata, A.

    2010-05-01

    The present study investigated induced electric field and temperature elevation in specific tissues/organs of an anatomically based human body model for the lightning current. The threshold amplitude of the current inducing ventricular fibrillation and skin burning are estimated from computed induced electric field and temperature elevation with formulas for electrical stimulation and thermal damage. The computational results obtained herein were reasonably consistent with clinical observation.

  18. Electrical measurement techniques for pulsed high current electron beams

    SciTech Connect

    Struve, K.W.

    1986-04-01

    The advent of high current (1 to 100 kA), moderate energy (>10 MeV), short pulse (1 to 100 ns) electron accelerators used for charged particle beam research has motivated a need to complement standard diagnostics with development of new diagnostic techniques to measure electron beam parameters. A brief survey is given of the diagnostics for measuring beam current, position, size, energy, and emittance. While a broad scope of diagnostics will be discussed, this survey will emphasize diagnostics used on the Experimental Test Accelerator (ETA) and Advanced Test Accelerator (ATA). Focus is placed on diagnostics measuring beam current, position and size. Among the diagnostics discussed are resistive wall current monitors, B/sub theta/ loops, Rogowski coils, Faraday cups, and x-ray wire diagnostics. Operation at higher current levels also increases radiation and electromagnetic pulse interference. These difficulties and methods for circumventing them are also discussed.

  19. Alternating Current Electric Fields of Varying Frequencies: Effects on Proliferation and Differentiation of Porcine Neural Progenitor Cells

    PubMed Central

    Lim, Ji-Hey; McCullen, Seth D.; Piedrahita, Jorge A.

    2013-01-01

    Abstract Application of sinusoidal electric fields (EFs) has been observed to affect cellular processes, including alignment, proliferation, and differentiation. In the present study, we applied low-frequency alternating current (AC) EFs to porcine neural progenitor cells (pNPCs) and investigated the effects on cell patterning, proliferation, and differentiation. pNPCs were grown directly on interdigitated electrodes (IDEs) localizing the EFs to a region accessible visually for fluorescence-based assays. Cultures of pNPCs were exposed to EFs (1 V/cm) of 1 Hz, 10 Hz, and 50 Hz for 3, 7, and 14 days and compared to control cultures. Immunocytochemistry was performed to evaluate the expression of neural markers. pNPCs grew uniformly with no evidence of alignment to the EFs and no change in cell numbers when compared with controls. Nestin expression was shown in all groups at 3 and 7 days, but not at 14 days. NG2 expression was low in all groups. Co-expression of glial fibrillary acidic protein (GFAP) and TUJ1 was significantly higher in the cultures exposed to 10- and 50-Hz EFs than the controls. In summary, sinusoidal AC EFs via IDEs did not alter the alignment and proliferation of pNPCs, but higher frequency stimulation appeared to delay differentiation into mature astrocytes. PMID:23961767

  20. AC susceptibility and critical current in the organic superconductor {kappa}-(ET){sub 2}Cu(NCS){sub 2}

    SciTech Connect

    Gonzalez, M.A.; Velez, M.; Vicent, J.L.; Schleuter, J.; Williams, J.M.; Crabtree, G.W.

    1994-05-01

    The AC susceptibility (X{prime}, X{double_prime}) has bee measured in a single crystal of the organic superconductor K-(ET){sub 2}Cu(NCS){sub 2} ({Tc} = 9.5 K) as a function of the DC magnetic field, for several frequencies (10 {sup 2} Hz AC fields (l{mu}T

  1. Inferred flows of electric currents in solar active regions

    NASA Technical Reports Server (NTRS)

    Ding, Y. J.; Hong, Q. F.; Hagyard, M. J.; Deloach, A. C.

    1985-01-01

    Techniques to identify sources of major current systems in active regions and their channels of flow are explored. Measured photospheric vector magnetic fields together with high resolution white light and H-alpha photographs provide the data base to derive the current systems in the photosphere and chromosphere of a solar active region. Simple mathematical constructions of active region fields and currents are used to interpret these data under the assumptions that the fields in the lower atmosphere (below 200 km) may not be force free but those in the chromosphere and higher are. The results obtained for the complex active region AR 2372 are: (1) Spots exhibiting significant spiral structure in the penumbral filaments were the source of vertical currents at the photospheric surface; (2) Magnetic neutral lines where the transverse magnetic field was strongly sheared were channels along which a strong current system flowed; (3) The inferred current systems produced a neutral sheet and oppositely-flowing currents in the area of the magnetic delta configuration that was the site of flaring.

  2. AC Loss Calculation of REBCO Cables by the Combination of Electric Circuit Model and 2D Finite Element Method

    NASA Astrophysics Data System (ADS)

    Noji, H.

    This study investigates the losses in a two conducting-layer REBCO cable fabricated by researchers at Furukawa Electric Co. Ltd. The losses were calculated using a combination of my electric circuit (EC) model with a two-dimensional finite element method (2D FEM). The helical pitches of the tapes in each layer, P1 and P2, were adjusted to equalize the current in both cable layers, although the loss calculation assumed infinite helical pitches and the same current in each layer at first. The results showed that the losses depended on the relative tape-position angle between the layers (θ/θ'), because the vertical field between adjacent tapes in the same layer varied with θ/θ'. When simulating the real cable, the helical pitches were adjusted and the layer currents were calculated by the EC model. These currents were input to the 2D FEM to compute the losses. The losses changed along the cable length because the difference between P1 and P2 altered the θ/θ' along this direction. The average angle-dependent and position-dependent losses were equal and closely approximated the measured losses. As an example to reduce the loss in this cable, the angle and the helical pitches were fixed at θ/θ' = 0.5 and P1 = P2 = 100 mm (S-direction). The calculation with these conditions indicated that the loss is about one order of magnitude lower than the measurement.

  3. The cometary magnetic field and its associated electric currents

    NASA Technical Reports Server (NTRS)

    Ip, W.-H.; Mendis, D. A.

    1975-01-01

    Two different observations of Comet Kohoutek (1973f) seem to suggest the existence of substantial magnetic fields (not less than 100 gammas) in its coma and tail. The effects of the currents and hydromagnetic waves associated with these magnetic fields are considered. It is shown that while the currents closing through the inner coma may represent an important source of ionization in that region, the dissipation of hydromagnetic waves may also be a significant, if not dominant, source of heating there.

  4. On the presence of electric currents in the solar atmosphere. I - A theoretical framework

    NASA Technical Reports Server (NTRS)

    Hagyard, M.; Low, B. C.; Tandberg-Hanssen, E.

    1981-01-01

    The general magnetic field above the solar photosphere is divided by an elementary analysis based on Ampere's law into two parts: a potential field due to electric currents below the photosphere and a field produced by electric currents above the photosphere combined with the induced mirror currents. The latter, by symmetry, has a set of field lines lying in the plane taken to be the photosphere which may be constructed from given vector magnetograph measurements. These field lines also represent all the information on the electric currents above the photosphere that a magnetograph can provide. Theoretical illustrations are given, and implications for data analysis are discussed.

  5. Parasitic current losses due to solar electric propulsion generated plasmas

    NASA Technical Reports Server (NTRS)

    Katz, I.; Parks, D. E.; Mandell, M. J.; Schnuelle, G. W.

    1981-01-01

    Solar electric propulsion is a leading candidate for many upcoming space missions. Under many circumstances plasma produced by charge-exchange reactions within the ion beam dominates the ambient environment near the spacecraft. The calculations presented here contain a predictive hydrodynamic model for the charge-exchange plasma expansion, and a fully three-dimensional model for the structure of the plasma sheath around the solar array wing. Results of calculations for several configurations and voltage levels indicate that with kilovolt biases power losses of approximately 10 percent or more are likely, even with only one engine in operation, and that ameliorative measures should focus on the inboard portion of the solar arrays.

  6. Displacement current and the generation of parallel electric fields.

    PubMed

    Song, Yan; Lysak, Robert L

    2006-04-14

    We show for the first time the dynamical relationship between the generation of magnetic field-aligned electric field (E||) and the temporal changes and spatial gradients of magnetic and velocity shears, and the plasma density in Earth's magnetosphere. We predict that the signatures of reconnection and auroral particle acceleration should have a correlation with low plasma density, and a localized voltage drop (V||) should often be associated with a localized magnetic stress concentration. Previous interpretations of the E|| generation are mostly based on the generalized Ohm's law, causing serious confusion in understanding the nature of reconnection and auroral acceleration. PMID:16712084

  7. Displacement Current and the Generation of Parallel Electric Fields

    SciTech Connect

    Song Yan; Lysak, Robert L.

    2006-04-14

    We show for the first time the dynamical relationship between the generation of magnetic field-aligned electric field (E{sub parallel}) and the temporal changes and spatial gradients of magnetic and velocity shears, and the plasma density in Earth's magnetosphere. We predict that the signatures of reconnection and auroral particle acceleration should have a correlation with low plasma density, and a localized voltage drop (V{sub parallel}) should often be associated with a localized magnetic stress concentration. Previous interpretations of the E{sub parallel} generation are mostly based on the generalized Ohm's law, causing serious confusion in understanding the nature of reconnection and auroral acceleration.

  8. Module Nine: Relationships of Current, Counter EMF, and Voltage in LR Circuits; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The student will study the ways that inductance affects voltage and current in Direct Current (DC) and Alternating Current (AC) circuits and why and how inductors cause these actions. The module is divided into six lessons: rise and decay of current and voltage, LR (inductive-resistive) time constant, using the universal TC (time constant) chart,…

  9. DOE Fundamentals Handbook: Electrical Science, Volume 4

    SciTech Connect

    Not Available

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of electrical theory, terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors, and generators; AC power and reactive transformers; and electrical test components; batteries; AC and DC voltage regulators; instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment.

  10. DOE Fundamentals Handbook: Electrical Science, Volume 1

    SciTech Connect

    Not Available

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of electrical theory, terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors, and generators; AC power and reactive components; batteries; AC and DC voltage regulators; transformers; and electrical test instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment.

  11. DOE Fundamentals Handbook: Electrical Science, Volume 3

    SciTech Connect

    Not Available

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of electrical theory, terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors and generators; AC power and reactive components; batteries; AC and DC voltage regulators; transformers; and electrical test instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment.

  12. Beta Band Transcranial Alternating (tACS) and Direct Current Stimulation (tDCS) Applied After Initial Learning Facilitate Retrieval of a Motor Sequence

    PubMed Central

    Krause, Vanessa; Meier, Anna; Dinkelbach, Lars; Pollok, Bettina

    2016-01-01

    The primary motor cortex (M1) contributes to the acquisition and early consolidation of a motor sequence. Although the relevance of M1 excitability for motor learning has been supported, the significance of M1 oscillations remains an open issue. This study aims at investigating to what extent retrieval of a newly learned motor sequence can be differentially affected by motor-cortical transcranial alternating (tACS) and direct current stimulation (tDCS). Alpha (10 Hz), beta (20 Hz) or sham tACS was applied in 36 right-handers. Anodal or cathodal tDCS was applied in 30 right-handers. Participants learned an eight-digit serial reaction time task (SRTT; sequential vs. random) with the right hand. Stimulation was applied to the left M1 after SRTT acquisition at rest for 10 min. Reaction times were analyzed at baseline, end of acquisition, retrieval immediately after stimulation and reacquisition after eight further sequence repetitions. Reaction times during retrieval were significantly faster following 20 Hz tACS as compared to 10 Hz and sham tACS indicating a facilitation of early consolidation. tDCS yielded faster reaction times, too, independent of polarity. No significant differences between 20 Hz tACS and tDCS effects on retrieval were found suggesting that 20 Hz effects might be associated with altered motor-cortical excitability. Based on the behavioral modulation yielded by tACS and tDCS one might speculate that altered motor-cortical beta oscillations support early motor consolidation possibly associated with neuroplastic reorganization. PMID:26834593

  13. Electrical transport properties and current density - voltage characteristic of PVA-Ag nanocomposite film

    NASA Astrophysics Data System (ADS)

    Das, A. K.; Dutta, B.; Sinha, S.; Mukherjee, A.; Basu, S.; Meikap, A. K.

    2016-05-01

    Silver (Ag) nanoparticle and Polyvinyl alcohol (PVA) - Silver (Ag) composite have been prepared and its dielectric constant, ac conductivity, and current density-voltage characteristics have been studied, at and above room temperature. Here correlated barrier hopping found to be the dominant charge transport mechanism with maximum barrier height of 0.11 eV. The sample, under ±5 V applied voltage, show back to back Schottky diode behaviour.

  14. Fault current limiter

    DOEpatents

    Darmann, Francis Anthony

    2013-10-08

    A fault current limiter (FCL) includes a series of high permeability posts for collectively define a core for the FCL. A DC coil, for the purposes of saturating a portion of the high permeability posts, surrounds the complete structure outside of an enclosure in the form of a vessel. The vessel contains a dielectric insulation medium. AC coils, for transporting AC current, are wound on insulating formers and electrically interconnected to each other in a manner such that the senses of the magnetic field produced by each AC coil in the corresponding high permeability core are opposing. There are insulation barriers between phases to improve dielectric withstand properties of the dielectric medium.

  15. Electrical Circuit Model of an Eddy Current System for Computing Multiple Parameters

    NASA Astrophysics Data System (ADS)

    Siddoju, A.; Sathish, S.; Ko, R.; Blodgett, M.

    2006-03-01

    An electrical circuit based model for eddy current system has been developed using commercial electrical engineering software. The model allows incorporation of individual characteristics of the signal generator, the cable, the eddy current sensor and the sample under test. Computational results of the characteristics of the system, obtained by sweeping the frequency, under normal and varying test conditions are presented. The sensitivity of the eddy current system response due to changes in different parameters during test conditions is discussed.

  16. AC electrical characterisation and insight to charge transfer mechanisms in DNA molecular wires through temperature and UV effects.

    PubMed

    Kassegne, Sam; Wibowo, Denni; Chi, James; Ramesh, Varsha; Narenji, Alaleh; Khosla, Ajit; Mokili, John

    2015-06-01

    In this study, AC characterisation of DNA molecular wires, effects of frequency, temperature and UV irradiation on their conductivity is presented. λ-DNA molecular wires suspended between high aspect-ratio electrodes exhibit highly frequency-dependent conductivity that approaches metal-like behaviour at high frequencies (∼MHz). Detailed temperature dependence experiments were performed that traced the impedance response of λ-DNA until its denaturation. UV irradiation experiments where conductivity was lost at higher and longer UV exposures helped to establish that it is indeed λ-DNA molecular wires that generate conductivity. The subsequent renaturation of λ-DNA resulted in the recovery of current conduction, providing yet another proof of the conducting DNA molecular wire bridge. The temperature results also revealed hysteretic and bi-modal impedance responses that could make DNA a candidate for nanoelectronics components like thermal transistors and switches. Further, these experiments shed light on the charge transfer mechanism in DNA. At higher temperatures, the expected increase in thermal-induced charge hopping may account for the decrease in impedance supporting the 'charge hopping mechanism' theory. UV light, on the other hand, causes damage to GC base-pairs and phosphate groups reducing the path available both for hopping and short-range tunneling mechanisms, and hence increasing impedance--this again supporting both the 'charge hopping' and 'tunneling' mechanism theories. PMID:26023159

  17. Electrical measurements in the atmosphere and the Ionosphere over an active thunderstorm. II - Direct current electric fields and conductivity

    NASA Technical Reports Server (NTRS)

    Holzworth, R. H.; Kelley, M. C.; Siefring, C. L.; Hale, L. C.; Mitchell, J. D.

    1985-01-01

    On August 9, 1981, a series of three rockets was launched over an air mass thunderstorm off the eastern seaboard of Virginia while simultaneous stratospheric and ground-based electric field measurements were made. The conductivity was substantially lower at most altitudes than the conductivity profiles used by theoretical models. Direct current electric fields over 80 mV/m were measured as far away as 96 km from the storm in the stratosphere at 23 km altitude. No dc electric fields above 75 km altitude could be identified with the thunderstorm, in agreement with theory. However, vertical current densities over 120 pA/sq m were seen well above the classical 'electrosphere' (at 50 or 60 km). Frequent dc shifts in the electric field following lightning transients were seen by both balloon and rocket payloads. These dc shifts are clearly identifiable with either cloud-to-ground (increases) or intercloud (decreases) lightning flashes.

  18. Observation of multi-scale oscillation of laminar lifted flames with low-frequency AC electric fields

    SciTech Connect

    Ryu, S.K.; Kim, Y.K.; Kim, M.K.; Won, S.H.; Chung, S.H.

    2010-01-15

    The oscillation behavior of laminar lifted flames under the influence of low-frequency AC has been investigated experimentally in coflow jets. Various oscillation modes were existed depending on jet velocity and the voltage and frequency of AC, especially when the AC frequency was typically smaller than 30 Hz. Three different oscillation modes were observed: (1) large-scale oscillation with the oscillation frequency of about 0.1 Hz, which was independent of the applied AC frequency, (2) small-scale oscillation synchronized to the applied AC frequency, and (3) doubly-periodic oscillation with small-scale oscillation embedded in large-scale oscillation. As the AC frequency decreased from 30 Hz, the oscillation modes were in the order of the large-scale oscillation, doubly-periodic oscillation, and small-scale oscillation. The onset of the oscillation for the AC frequency smaller than 30 Hz was in close agreement with the delay time scale for the ionic wind effect to occur, that is, the collision response time. Frequency-doubling behavior for the small-scale oscillation has also been observed. Possible mechanisms for the large-scale oscillation and the frequency-doubling behavior have been discussed, although the detailed understanding of the underlying mechanisms will be a future study. (author)

  19. Backup of renewable energy for an electrical island: case study of Israeli electricity system--current status.

    PubMed

    Fakhouri, A; Kuperman, A

    2014-01-01

    The paper focuses on the quantitative analysis of Israeli Government's targets of 10% renewable energy penetration by 2020 and determining the desired methodology (models) for assessing the effects on the electricity market, addressing the fact that Israel is an electricity island. The main objective is to determine the influence of achieving the Government's goals for renewable energy penetration on the need for backup in the Israeli electricity system. This work presents the current situation of the Israeli electricity market and the study to be taken in order to assess the undesirable effects resulting from the intermittency of electricity generated by wind and solar power stations as well as presents some solutions to mitigating these phenomena. Future work will focus on a quantitative analysis of model runs and determine the amounts of backup required relative to the amount of installed capacity from renewable resources. PMID:24624044

  20. Backup of Renewable Energy for an Electrical Island: Case Study of Israeli Electricity System—Current Status

    PubMed Central

    Fakhouri, A.; Kuperman, A.

    2014-01-01

    The paper focuses on the quantitative analysis of Israeli Government's targets of 10% renewable energy penetration by 2020 and determining the desired methodology (models) for assessing the effects on the electricity market, addressing the fact that Israel is an electricity island. The main objective is to determine the influence of achieving the Government's goals for renewable energy penetration on the need for backup in the Israeli electricity system. This work presents the current situation of the Israeli electricity market and the study to be taken in order to assess the undesirable effects resulting from the intermittency of electricity generated by wind and solar power stations as well as presents some solutions to mitigating these phenomena. Future work will focus on a quantitative analysis of model runs and determine the amounts of backup required relative to the amount of installed capacity from renewable resources. PMID:24624044

  1. Femtosecond control of electric currents in metallic ferromagnetic heterostructures.

    PubMed

    Huisman, T J; Mikhaylovskiy, R V; Costa, J D; Freimuth, F; Paz, E; Ventura, J; Freitas, P P; Blügel, S; Mokrousov, Y; Rasing, Th; Kimel, A V

    2016-05-01

    The idea to use not only the charge but also the spin of electrons in the operation of electronic devices has led to the development of spintronics, causing a revolution in how information is stored and processed. A novel advancement would be to develop ultrafast spintronics using femtosecond laser pulses. Employing terahertz (10(12) Hz) emission spectroscopy and exploiting the spin-orbit interaction, we demonstrate the optical generation of electric photocurrents in metallic ferromagnetic heterostructures at the femtosecond timescale. The direction of the photocurrent is controlled by the helicity of the circularly polarized light. These results open up new opportunities for realizing spintronics in the unprecedented terahertz regime and provide new insights in all-optical control of magnetism. PMID:26854566

  2. Femtosecond control of electric currents in metallic ferromagnetic heterostructures

    NASA Astrophysics Data System (ADS)

    Huisman, T. J.; Mikhaylovskiy, R. V.; Costa, J. D.; Freimuth, F.; Paz, E.; Ventura, J.; Freitas, P. P.; Blügel, S.; Mokrousov, Y.; Rasing, Th.; Kimel, A. V.

    2016-05-01

    The idea to use not only the charge but also the spin of electrons in the operation of electronic devices has led to the development of spintronics, causing a revolution in how information is stored and processed. A novel advancement would be to develop ultrafast spintronics using femtosecond laser pulses. Employing terahertz (1012 Hz) emission spectroscopy and exploiting the spin–orbit interaction, we demonstrate the optical generation of electric photocurrents in metallic ferromagnetic heterostructures at the femtosecond timescale. The direction of the photocurrent is controlled by the helicity of the circularly polarized light. These results open up new opportunities for realizing spintronics in the unprecedented terahertz regime and provide new insights in all-optical control of magnetism.

  3. Plasmon induced electric current in a molecular junction

    NASA Astrophysics Data System (ADS)

    Pal, Partha; Jiang, Nan; Sonntag, Matthew; Chiang, Naihao; Foley, Edward; van Duyne, Richard; Seideman, Tamar

    2015-03-01

    We report light-triggered, plasmon-enhanced charge transport in a tip-molecule-surface molecular junction. Experimentally, enhancement of tunneling current is recorded when a chopped laser beam illuminates the junction. The enhancement is quenched when the sample is devoid of molecules and its amplitude increases steeply when the focus of the beam moves closer to the space between the tip and the mono layered sample. Finite difference time domain calculations indicate that maximum electromagnetic field enhancements due to plasmonic activity, occurs in the space between the tip and the sample which is also the region where the tunneling current perturbation peaks. The perturbation in the transport characteristics at the tip-sample junction is theoretically estimated utilizing a recent formulation for describing the transient electronic distribution due to plasmon decoherences. We find the enhancement in the electronic current to be directly proportional to the plasmon excitations only in the presence of a molecular linker which is in excellent agreement with the experimental results. Further analysis reveals that the nascent distribution allows injection of electrons through additional molecular resonances which were previously inaccessible, thus leading to an increased current.

  4. Current approaches to model extracellular electrical neural microstimulation

    PubMed Central

    Joucla, Sébastien; Glière, Alain; Yvert, Blaise

    2014-01-01

    Nowadays, high-density microelectrode arrays provide unprecedented possibilities to precisely activate spatially well-controlled central nervous system (CNS) areas. However, this requires optimizing stimulating devices, which in turn requires a good understanding of the effects of microstimulation on cells and tissues. In this context, modeling approaches provide flexible ways to predict the outcome of electrical stimulation in terms of CNS activation. In this paper, we present state-of-the-art modeling methods with sufficient details to allow the reader to rapidly build numerical models of neuronal extracellular microstimulation. These include (1) the computation of the electrical potential field created by the stimulation in the tissue, and (2) the response of a target neuron to this field. Two main approaches are described: First we describe the classical hybrid approach that combines the finite element modeling of the potential field with the calculation of the neuron's response in a cable equation framework (compartmentalized neuron models). Then, we present a “whole finite element” approach allowing the simultaneous calculation of the extracellular and intracellular potentials, by representing the neuronal membrane with a thin-film approximation. This approach was previously introduced in the frame of neural recording, but has never been implemented to determine the effect of extracellular stimulation on the neural response at a sub-compartment level. Here, we show on an example that the latter modeling scheme can reveal important sub-compartment behavior of the neural membrane that cannot be resolved using the hybrid approach. The goal of this paper is also to describe in detail the practical implementation of these methods to allow the reader to easily build new models using standard software packages. These modeling paradigms, depending on the situation, should help build more efficient high-density neural prostheses for CNS rehabilitation. PMID

  5. Probing the physiology of ASH neuron in Caenorhabditis elegans using electric current stimulation

    NASA Astrophysics Data System (ADS)

    Chokshi, Trushal Vijaykumar; Bazopoulou, Daphne; Chronis, Nikos

    2011-08-01

    Electrical stimulation has been widely used to modulate and study the in vitro and in vivo functionality of the nervous system. Here, we characterized the effect of electrical stimulation on ASH neuron in Caenorhabditis elegans and employed it to probe the neuron's age dependent properties. We utilized an automated microfluidic-based platform and characterized the ASH neuronal activity in response to an electric current applied to the worm's body. The electrically induced ASH neuronal response was observed to be dependent on the magnitude, polarity, and spatial location of the electrical stimulus as well as on the age of the worm.

  6. Electrical current from quantum vacuum fluctuations in nanoengines

    NASA Astrophysics Data System (ADS)

    Henriet, Loïc; Jordan, Andrew N.; Le Hur, Karyn

    2015-09-01

    We theoretically investigate a quantum dot coupled to fermionic (electronic) leads and show how zero-point quantum fluctuations stemming from bosonic environments permit the rectification of the current. The bosonic baths are either external impedances modeled as tunable transmission lines or LC resonators (single-mode cavities). Voltage fluctuations stemming from the external impedances at zero temperature are described through harmonic oscillators (photonlike excitations) producing the quantum vacuum fluctuations. The differing sizes of the zero-point fluctuations of the quantum vacuum break the spatial symmetry of the system if the quantum dot is coupled to two reservoirs or two junctions with different bosonic environments. We consider current rectification and power production when the system is operated as a heat engine in both nonresonant and resonant sequential tunneling cases.

  7. Beller Lectureship: Dynamics of skyrmions under electric current

    NASA Astrophysics Data System (ADS)

    Nagaosa, Naoto

    2013-03-01

    Current-driven motion of the skyrmions and skyrmion crystal is attracting intense attention because of the very small critical current density, but the microscopic mechanism of their motion is not yet explored. In this talk, I will present a numerical simulation of the Landau-Lifshitz-Gilbert (LLG) equation and an analytic theory, which reveals a remarkably robust and universal current-velocity relation of the skyrmion motion driven by the spin transfer torque unaffected by either impurities or nonadiabatic effect in sharp contrast to the case of domain wall or spin helix. This is due to the peculiar dynamics of skyrmions characterized by inherent absence of the intrinsic pinning and flexible shape-deformation of skyrmions so as to avoid pinning centers. The effect of the constricted geometry will be also discussed. This work has been done in collaboration with J. Iwasaki and M. Mochizuki. This work was supported by Grant-in-Aids for Scientific Research (No. 24224009) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST).

  8. An Approach to Suppressing Both Shaft Voltage and Leakage Current in an AC Motor Driven by a Voltage-Source PWM Inverter

    NASA Astrophysics Data System (ADS)

    Doumoto, Takafumi; Akagi, Hirofumi

    This paper proposes a practical approach to suppressing both shaft voltage and leakage current in an ac motor driven by a voltage-source PWM inverter. This approach is characterized by using a neutral line of the ac motor. A common-mode inductor is connected between the inverter and the motor. Moreover, a resistor and a capacitor are connected in series between the motor neutral point and the inverter negative dc bus. This unique circuit configuration makes the common-mode inductor effective in reducing the common-mode voltage appearing at the motor terminals. As a result, both shaft voltage and ground current are significantly suppressed with low cost. Over-voltages at the end of a cable can be suppressed by a normal-mode inductor and a resistor which are connected in parallel. The validity and effectiveness of the new approach are verified by experimental results from a 5-kVA laboratory system.

  9. Superstatistical view of stress-induced electric current fluctuations in rocks

    NASA Astrophysics Data System (ADS)

    Cartwright-Taylor, Alexis; Vallianatos, Filippos; Sammonds, Peter

    2014-11-01

    The concepts of non-extensive statistical physics, which have recently been applied in the study of complex systems, have been used here to analyse stress-induced electric current data in triaxially deformed Carrara marble samples. The fluctuations of electric current appear to follow a q-Gaussian distribution, with the PDF exhibiting ‘fat tails’. The application of super-statistical techniques to these electric current fluctuations shows to good approximation that they can be described by local Gaussian processes with fluctuating variance.

  10. Effects of low frequency pulsed electrical current on keratinocytes in vitro

    SciTech Connect

    Hinsenkamp, M.; Jercinovic, A.

    1997-05-01

    The effects of low frequency pulsed electrical current on epidermal repair in vitro were examined. Charge-balanced current stimuli proposed for chronic wound treatment were tested on skin keratinocytes cultured at an air-liquid interface on dead human dermis. Results imply that the balance between proliferation and differentiation in electrically treated samples is significantly modified in favor of differentiation. More advanced differentiation, shown through epidermal histology, was obtained in cultures exposed to electrical current, whereas the culture growth, the result of keratinocyte migration and proliferation, was greater in control samples.

  11. Effect of Direct Electric Current on the Cell Surface Properties of Phenol-Degrading Bacteria

    PubMed Central

    Luo, Qishi; Wang, Hui; Zhang, Xihui; Qian, Yi

    2005-01-01

    The change in cell surface properties in the presence of electric currents is of critical concern when the potential to manipulate bacterial movement with electric fields is evaluated. In this study, the effects of different direct electric currents on the cell surface properties involved in bacterial adhesion were investigated by using a mixed phenol-degrading bacterial culture in the exponential growth phase. The traits investigated were surface hydrophobicity (measured by adherence to n-octane), net surface electrostatic charge (determined by measurement of the zeta potential), and the cell surface shape and polymers (determined by scanning electron microscope analysis). The results showed that a lower current (less than 20 mA) induced no significant changes in the surface properties of phenol-degrading bacteria, that an electric current of 20 mA could increase the surface hydrophobicity and flatten the cell shape, and that a higher current (40 mA) could increase the surface extracellular substances and the net negative surface electrostatic charge. The results also revealed that the electric current effects on cell hydrophobicity varied with the suspending medium. We suggest that an electric current greater than 20 mA is not suitable for use in manipulation of the movement of the phenol-degrading bacteria, although such a current might favor the electrophoretic movement of the bacterial species. PMID:15640217

  12. Electrical characterization of p-GeSn/n-Ge diodes with interface traps under dc and ac regimes

    NASA Astrophysics Data System (ADS)

    Baert, B.; Gupta, S.; Gencarelli, F.; Loo, R.; Simoen, E.; Nguyen, N. D.

    2015-08-01

    In this work, the electrical properties of p-GeSn/n-Ge diodes are investigated in order to assess the impact of defects at the interface between Ge and GeSn using temperature-dependent current-voltage and capacitance-voltage measurements. These structures are made from GeSn epitaxial layers grown by CVD on Ge with in situ doping by Boron. As results, an average ideality factor of 1.2 has been determined and an activation energy comprised between 0.28 eV and 0.30 eV has been extracted from the temperature dependence of the reverse-bias current. Based on the comparison with numerical results obtained from device simulations, we explain this activation energy by the presence of traps located near the GeSn/Ge interface.

  13. High dislocation density of tin induced by electric current

    SciTech Connect

    Liao, Yi-Han; Liang, Chien-Lung; Lin, Kwang-Lung; Wu, Albert T.

    2015-12-15

    A dislocation density of as high as 10{sup 17} /m{sup 2} in a tin strip, as revealed by high resolution transmission electron microscope, was induced by current stressing at 6.5 x 10{sup 3} A/ cm{sup 2}. The dislocations exist in terms of dislocation line, dislocation loop, and dislocation aggregates. Electron Backscattered Diffraction images reflect that the high dislocation density induced the formation of low deflection angle subgrains, high deflection angle Widmanstätten grains, and recrystallization. The recrystallization gave rise to grain refining.

  14. Morphological changes in Escherichia coli subjected to direct current electrical fields.

    PubMed

    Ellis, H W

    1985-01-01

    Rod shaped Escherichia coli grown in a liquid minimal salts medium, through which an electrical current of 20 mA direct current was passed, were found to increase up to 25% of their original length. When the current was removed, or treated cells grown in fresh medium, they reverted to their original size and distribution. PMID:3897798

  15. Field-aligned electric currents and their measurement by the incoherent backscatter technique

    NASA Technical Reports Server (NTRS)

    Bauer, P.; Cole, K. D.; Lejeume, G.

    1975-01-01

    Field aligned electric currents flow in the magnetosphere in many situations of fundamental geophysical interest. It is shown here that the incoherent backscatter technique can be used to measure these currents when the plasma line can be observed. The technique provides a ground based means of measuring these currents which complements the rocket and satellite ones.

  16. Electric Machine with Boosted Inductance to Stabilize Current Control

    NASA Technical Reports Server (NTRS)

    Abel, Steve

    2013-01-01

    High-powered motors typically have very low resistance and inductance (R and L) in their windings. This makes the pulse-width modulated (PWM) control of the current very difficult, especially when the bus voltage (V) is high. These R and L values are dictated by the motor size, torque (Kt), and back-emf (Kb) constants. These constants are in turn set by the voltage and the actuation torque-speed requirements. This problem is often addressed by placing inductive chokes within the controller. This approach is undesirable in that space is taken and heat is added to the controller. By keeping the same motor frame, reducing the wire size, and placing a correspondingly larger number of turns in each slot, the resistance, inductance, torque constant, and back-emf constant are all increased. The increased inductance aids the current control but ruins the Kt and Kb selections. If, however, a fraction of the turns is moved from their "correct slot" to an "incorrect slot," the increased R and L values are retained, but the Kt and Kb values are restored to the desired values. This approach assumes that increased resistance is acceptable to a degree. In effect, the heat allocated to the added inductance has been moved from the controller to the motor body, which in some cases is preferred.

  17. The Morphological and Molecular Changes of Brain Cells Exposed to Direct Current Electric Field Stimulation

    PubMed Central

    Pelletier, Simon J.; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin

    2015-01-01

    Background: The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Methods: Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. Results: In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. Conclusion: We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. PMID:25522422

  18. Vertical coupling between troposphere and lower ionosphere by electric currents and fields at equatorial latitudes

    NASA Astrophysics Data System (ADS)

    Tonev, P. T.; Velinov, P. I. Y.

    2016-04-01

    Thunderstorms play significant role in the upward electrical coupling between the troposphere and lower ionosphere by quasi-static (QS) electric fields generated by quiet conditions (by slow variations of electric charges), as well as during lightning discharges when they can be strong enough to produce in the nighttime lower ionosphere sprites. Changes are caused in lower ionosphere by the QS electric fields before a sprite-producing lightning discharge which can play role in formation of the stronger sprite-driving transient QS electric fields due to lightning. These changes include electron heating, modifications of conductivity and electron density, etc. We demonstrate that such changes depend on the geomagnetic latitude determining the magnetic field lines inclination, and thus, the anisotropic conductivity. Our previous results show that the QS electric fields in the lower ionosphere above equatorial thunderstorms are much bigger and have larger horizontal extension than those generated at high and middle altitudes by otherwise same conditions. Now we estimate by modeling the electric currents and fields generated in lower ionosphere above equatorial thunderstorms of different horizontal dimensions during quiet periods and of their self-consistent effects to conductivity whose modifications can play role in formation of post-lightning sprite-producing electric fields. Specific electric currents configurations and distributions of related electric fields are estimated first by ambient conductivity. Then, these are evaluated self-consistently with conductivity modification. The electric currents are re-oriented above ~85 km and flow in a narrow horizontal layer where they dense. Respectively, the electric fields and their effect on conductivity have much larger horizontal scale than at middle latitudes (few hundred of kilometers). Horizontally large sources, such as mesoscale convective structures, cause enhancements of electric fields and their effects. These

  19. Analysis of the electric currents in 1D premixed flames under applied voltages

    NASA Astrophysics Data System (ADS)

    Han, Jie; Belhi, Memdouh; Bisetti, Fabrizio; Casey, Tiernan; Im, Hong G.; Chen, Jyh-Yuan

    2015-11-01

    Studying electric currents in flames has practical aspects such as the determination of the ionic structure of a flame, the analysis of the flame behavior under an electric field and the use of flame electric properties for combustion diagnostics. This study proposes a simplified model to compute the electric currents in lean-to-stoichiometric 1D premixed flames under applied voltages. The Navier-Stokes equations coupled with transport equations for neutral and charged species along with a Poisson equation for the electric potential are solved. The model reproduces qualitatively the voltage-current characteristic found experimentally. The sensitivity of the electric currents to the applied voltage, equivalence ratio, and pressure is studied and the key parameters affecting the saturation current are determined. Results show that the saturation current is controlled by the amount of charged species created by the chemi-ionization reaction. We found that the recombination rate of electrons with cations and transport coefficients of charged species are the most important parameters affecting the voltage at witch saturation occurs. Analytical formulas for the voltage-current characteristic and the potential of saturation are developed and used to explain the obtained results.

  20. The Effect of Electric Current and Strain Rate on Serrated Flow of Sheet Aluminum Alloy 5754

    NASA Astrophysics Data System (ADS)

    Zhao, Kunmin; Fan, Rong; Wang, Limin

    2016-03-01

    Electrically assisted tensile tests are carried out on sheet aluminum alloy AA5754 at electric current densities ranging from 0 to 30.4 A/mm2 and strain rates ranging from 10-3 to 10-1 s-1. The strain rate sensitivity and the serrated flow behavior are investigated in accordance with dynamic strain aging mechanism. The strain rate sensitivity changes from negative to positive and keeps increasing with current density. The tendency toward serrated flow is characterized by the onset of Portevin-Le Chatelier (PLC) instabilities, which are influenced by strain rate, temperature, and electric current. The evolutions of three types of serrated flow are observed and analyzed with respect to strain rate and current density. The magnitude of serration varies with strain rate and current density. The serrated flow can be suppressed by a high strain rate, a high temperature, or a strong electric current. The threshold values of these parameters are determined and discussed. Conventional oven-heated tensile tests are conducted to distinguish the electroplasticity. The flow stress reduces more in electrically assisted tension compared to oven-heated tension at the same temperature level. The electric current helps suppress the serrated flow at the similar temperature level of oven-heating.

  1. Conduction of Electrical Current to and Through the Human Body: A Review

    PubMed Central

    Fish, Raymond M.; Geddes, Leslie A.

    2009-01-01

    Objective: The objective of this article is to explain ways in which electric current is conducted to and through the human body and how this influences the nature of injuries. Methods: This multidisciplinary topic is explained by first reviewing electrical and pathophysiological principles. There are discussions of how electric current is conducted through the body via air, water, earth, and man-made conductive materials. There are also discussions of skin resistance (impedance), internal body resistance, current path through the body, the let-go phenomenon, skin breakdown, electrical stimulation of skeletal muscles and nerves, cardiac dysrhythmias and arrest, and electric shock drowning. After the review of basic principles, a number of clinically relevant examples of accident mechanisms and their medical effects are discussed. Topics related to high-voltage burns include ground faults, ground potential gradient, step and touch potentials, arcs, and lightning. Results: The practicing physician will have a better understanding of electrical mechanisms of injury and their expected clinical effects. Conclusions: There are a variety of types of electrical contact, each with important characteristics. Understanding how electric current reaches and travels through the body can help the clinician understand how and why specific accidents occur and what medical and surgical problems may be expected. PMID:19907637

  2. Disruption of crystalline structure of Sn3.5Ag induced by electric current

    NASA Astrophysics Data System (ADS)

    Huang, Han-Chie; Lin, Kwang-Lung; Wu, Albert T.

    2016-03-01

    This study presented the disruption of the Sn and Ag3Sn lattice structures of Sn3.5Ag solder induced by electric current at 5-7 × 103 A/cm2 with a high resolution transmission electron microscope investigation and electron diffraction analysis. The electric current stressing induced a high degree of strain on the alloy, as estimated from the X-ray diffraction (XRD) peak shift of the current stressed specimen. The XRD peak intensity of the Sn matrix and the Ag3Sn intermetallic compound diminished to nearly undetectable after 2 h of current stressing. The electric current stressing gave rise to a high dislocation density of up to 1017/m2. The grain morphology of the Sn matrix became invisible after prolonged current stressing as a result of the coalescence of dislocations.

  3. Electrical current through individual pairs of phosphorus donor atoms and silicon dangling bonds

    PubMed Central

    Ambal, K.; Rahe, P.; Payne, A.; Slinkman, J.; Williams, C. C.; Boehme, C.

    2016-01-01

    Nuclear spins of phosphorus [P] donor atoms in crystalline silicon are among the most coherent qubits found in nature. For their utilization in scalable quantum computers, distinct donor electron wavefunctions must be controlled and probed through electrical coupling by application of either highly localized electric fields or spin-selective currents. Due to the strong modulation of the P-donor wavefunction by the silicon lattice, such electrical coupling requires atomic spatial accuracy. Here, the spatially controlled application of electrical current through individual pairs of phosphorus donor electron states in crystalline silicon and silicon dangling bond states at the crystalline silicon (100) surface is demonstrated using a high‐resolution scanning probe microscope operated under ultra‐high vacuum and at a temperature of 4.3K. The observed pairs of electron states display qualitatively reproducible current-voltage characteristics with a monotonous increase and intermediate current plateaus. PMID:26758087

  4. Design Method of ILQ Robust Current Control System for Synchronous Reluctance Electrical Motors

    NASA Astrophysics Data System (ADS)

    Amano, Yoko; Takami, Hiroshi; Fujii, Takao

    In this paper, a robust current control system for a synchronous reluctance electrical motor by an ILQ (Inverse Linear Quadratic) design method is proposed newly. First, for performing simultaneously decouple and large region linearization of an d-q axes system in the synchronous reluctance electrical motor using nonlinear state feedback, it is derived that a linear current-voltage state equation linearized model by the d-q axes decouple of the synchronous reluctance electrical motor. Next, according to the ILQ design method, an optimum solution and an optimal condition that achieve the robust current control system for the synchronous reluctance electrical motor are analytically derived, then the robust current control system can be designed. Finally, in practical experiments, we compare the proposed method with the PI (Proportional Integral) control method, the creativity and the usefulness of the proposed method are confirmed by experimental results.

  5. DC bias effect on alternating current electrical conductivity of poly(ethylene terephthalate)/alumina nanocomposites

    NASA Astrophysics Data System (ADS)

    Nikam, Pravin N.; Deshpande, Vineeta D.

    2016-05-01

    Polymer nanocomposites based on metal oxide (ceramic) nanoparticles are a new class of materials with unique properties and designed for various applications such as electronic device packaging, insulation, fabrication and automotive industries. Poly(ethylene terephthalate) (PET)/alumina (Al2O3) nanocomposites with filler content between 1 wt% and 5 wt% were prepared by melt compounding method using co-rotating twin screw extruder and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and precision LCR meter techniques. The results revealed that proper uniform dispersion at lower content up to 2 wt% of nano-alumina observed by using TEM. Aggregation of nanoparticles was observed at higher content of alumina examined by using SEM and TEM. The frequency dependences of the alternating current (AC) conductivity (σAC) of PET/alumina nanocomposites on the filler content and DC bias were investigated in the frequency range of 20Hz - 1MHz. The results showed that the AC and direct current (DC) conductivity increases with increasing DC bias and nano-alumina content upto 3 wt%. It follows the Jonscher's universal power law of solids. It revealed that σAC of PET/alumina nanocomposites can be well characterized by the DC conductivity (σDC), critical frequency (ωc), critical exponent of the power law (s). Roll of DC bias potential led to an increase of DC conductivity (σDC) due to the creation of additional conducting paths with the polymer nanocomposites and percolation behavior achieved through co-continuous morphology.

  6. Quasistatic electric field structures and field-aligned currents in the polar cusp region

    NASA Astrophysics Data System (ADS)

    Jacobsen, K. S.; Moen, J. I.; Pedersen, A.

    2010-10-01

    Cluster data have been examined for quasi-stationary electric field structures and field-aligned currents (FACs) in the vicinity of the dayside cusp region. We have related the measurements to the Region 1/Region 2 (R1/R2) current system and the cusp current system. It has been theoretically proposed that the dayside R1 current may be located on open field lines, and experimental evidence has been shown for R1 currents partially on open field lines. We document that R1 currents may flow entirely on open field lines. The electric field structures are found to occur at plasma density gradients in the cusp. They are associated with strong FACs with current directions that are consistent with the cusp currents. This indicates that the electric field structures are closely coupled to the cusp current system. The electric equipotential structures linking the perpendicular electric fields seen at Cluster altitudes to field-aligned electric fields at lower altitudes fall into one of two categories: S shape or U shape. Both types are found at both the equatorward edge of the cusp ion dispersion and at the equatorward edge of injection events within the cusp. Previous studies in the nightside auroral region attributed the S-shaped potential structures to the boundary transition between the low-density polar cap and the high-density plasma sheet, concluding that the shape of the electric potential structure depends on whether the plasma populations on each side of the structure can support intense currents. This explanation is not applicable for the S-shaped structures observed in the dayside cusp region.

  7. [Treatment of suppurative mastitis using laser irradiation and continuous electric current].

    PubMed

    Alekseenko, A V; Palianitsa, S I; Tarabanchuk, V V; Seniutovich, R V; Stoliar, V F

    1987-10-01

    Laser radiation and direct electric current were used in the complex therapy of acute suppurative mastitis. The wound cavity was treated by a focussed laser till the appearance of a coagulation crust followed by galvanization of the mammary gland. Such an approach to the associated application of the laser radiation and electric field of direct current is justified pathogenetically and increases the efficiency of treatment of suppurative mastitis. PMID:3502549

  8. THE ELECTRICAL CAPACITY OF VALONIA : DIRECT CURRENT MEASUREMENTS.

    PubMed

    Blinks, L R; Skow, R K

    1940-11-20

    Impaled cells of Valonia were balanced in a Wheatstone bridge against a simple series-parallel circuit of two resistances and a capacity, the transient charge and discharge curves at make and break of direct current being recorded with a string galvanometer. With the resistances properly balanced, a series of characteristic deflections resulted when the balancing capacity was varied. With many cells, no complete capacity balance was ever attained over the entire transient time course; but instead either a monophasic or diphasic residual deflection always remained. This behavior is comparable to that of a polarizing electrode in D.C., although not so clearly marked; and it is concluded that Valonia usually has an appreciable polarization component, probably in parallel with a static capacity. However, some cells can be balanced almost completely against a mica condenser of proper value, which indicates that they display a nearly pure static capacity under some conditions. This static state could be produced experimentally by exposure to weak acids (acetic, carbonic, etc.) and by metabolic agents probably inducing internal acidity (low oxygen tension, long exposure to cold, narcotics, etc.). Conversely, penetrating weak bases, such as ammonia, abolished the static capacity, or even any regular polarization. Light acts something like ammonia, after an initial "acid gush" anomaly. Most of these agents likewise affect the P.D. and its response to external ionic alterations, and it seems likely that the change in capacity type reflects altered ionic permeabilities and relative mobilities. PMID:19873211

  9. Relationship of the interplanetary electric field to the high-latitude ionospheric electric field and currents Observations and model simulation

    NASA Technical Reports Server (NTRS)

    Clauer, C. R.; Banks, P. M.

    1986-01-01

    The electrical coupling between the solar wind, magnetosphere, and ionosphere is studied. The coupling is analyzed using observations of high-latitude ion convection measured by the Sondre Stromfjord radar in Greenland and a computer simulation. The computer simulation calculates the ionospheric electric potential distribution for a given configuration of field-aligned currents and conductivity distribution. The technique for measuring F-region in velocities at high time resolution over a large range of latitudes is described. Variations in the currents on ionospheric plasma convection are examined using a model of field-aligned currents linking the solar wind with the dayside, high-latitude ionosphere. The data reveal that high-latitude ionospheric convection patterns, electric fields, and field-aligned currents are dependent on IMF orientation; it is observed that the electric field, which drives the F-region plasma curve, responds within about 14 minutes to IMF variations in the magnetopause. Comparisons of the simulated plasma convection with the ion velocity measurements reveal good correlation between the data.

  10. Global Electric Circuit Implications of Combined Aircraft Storm Electric Current Measurements and Satellite-Based Diurnal Lightning Statistics

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2011-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of thunderstorms and electrified shower clouds (ESCs) spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, and with positive and negative fields above the storms. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean thunderstorms is 1.7 A while the mean current for land thunderstorms is 1.0 A. The mean current for ocean ESCs 0.41 A and the mean current for land ESCs is 0.13 A. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal flash rate statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie curve) to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Given our data and assumptions, mean contributions to the global electric circuit are 1.1 kA (land) and 0.7 kA (ocean) from thunderstorms, and 0.22 kA (ocean) and 0.04 (land) from ESCs, resulting in a mean total conduction current estimate for the global electric circuit of 2.0 kA. Mean storm counts are 1100 for land

  11. A novel high-birefringence fiber loop mirror electric current sensor

    NASA Astrophysics Data System (ADS)

    Bo, Dong; Zhao, Qida; Liao, Liubo Tongqing; Li, Shuhong; Zeng, Xiangye; Miao, Yinping; Huang, Guiling

    2007-11-01

    A novel electric current sensor based on a high-birefringence fiber loop mirror(HBFLM) and a kind of magnetostrictive material rod(MMR) is demonstrated theoretically and experimentally. Part of the high-birefringence fiber(HBF) is pasted onto the MMR which is placed in the central part of a solenoid. The HBFLM is used as the sensor head and the linear filter simultaneously. Part of the high-birefringence fiber(HBF) is pasted onto the MMR which is placed in the central part of a solenoid. The rod will have elastic lengthening along the direction of the magnetic field when the uniform magnetic field changes, which will lead to a change of transmission intensity of the HBFLM filter, thus the variation of the electric current can be determined via the laser wavelength within the quasi-linear transmission range of the HBFLM filter. The sensitivity reaches 0.0153/100mA, the resolution reaches 10mA. Comparing with the previous fiber-optic electric current sensor, it has nothing with the linear birefringence based on Faraday effects in the previous fiber-optic electric current sensor. Comparing with the expensive and complex FBG electric current, the sensing signal can be directly detected by a photodiode(PD) and complicated demodulation devices are avoidable. The advantages of the electric current include optical power detection, simple and smart structure, high sensitivity, low cost, and good repeatability, etc.

  12. Induced electric currents in the Alaska oil pipeline measured by gradient, fluxgate, and SQUID magnetometers

    NASA Technical Reports Server (NTRS)

    Campbell, W. H.; Zimmerman, J. E.

    1979-01-01

    The field gradient method for observing the electric currents in the Alaska pipeline provided consistent values for both the fluxgate and SQUID method of observation. These currents were linearly related to the regularly measured electric and magnetic field changes. Determinations of pipeline current were consistent with values obtained by a direct connection, current shunt technique at a pipeline site about 9.6 km away. The gradient method has the distinct advantage of portability and buried- pipe capability. Field gradients due to the pipe magnetization, geological features, or ionospheric source currents do not seem to contribute a measurable error to such pipe current determination. The SQUID gradiometer is inherently sensitive enough to detect very small currents in a linear conductor at 10 meters, or conversely, to detect small currents of one amphere or more at relatively great distances. It is fairly straightforward to achieve imbalance less than one part in ten thousand, and with extreme care, one part in one million or better.

  13. Effect of electric current frequency on the activation kinetics of raw charcoal

    SciTech Connect

    Shevchenko, A.O.; Ivakhnyuk, G.K.; Fedorov, N.F.

    1993-12-10

    The effect of electric current frequency on the kinetics of raw charcoal activation with water vapor has been investigated. It was established that under the effect of alternating current the rate constant increases under otherwise equal conditions. A dependence of the reaction rate on the current frequency was found. It was discovered that under the effect of alternating current the activation energy of interaction with water vapor diminishes.

  14. Evaluation of Electrical Stimulus Current Applied to Retina Cells for Retinal Prosthesis

    NASA Astrophysics Data System (ADS)

    Motonami, Keita; Watanabe, Taiichiro; Deguchi, Jun; Fukushima, Takafumi; Tomita, Hiroshi; Sugano, Eriko; Sato, Manami; Kurino, Hiroyuki; Tamai, Makoto; Koyanagi, Mitsumasa

    2006-04-01

    We have proposed a novel multilayer stacked retinal prosthesis chip based on three-dimensional integration technology. Implantable stimulus electrode arrays in polyimide flexible cables were fabricated for the electrical stimulation of the retina. To evaluate optimal retinal stimulus current, electrically evoked potential (EEP) was recorded in animal experiments using Japanese white rabbits. The EEP waveform was compared with visually evoked potential (VEP) waveform. The amplitude of the recorded EEP increased with stimulus current. The EEP waveform shows a similar behavior to the VEP waveform, indicating that the electrical stimulation of the retina can be exploited for the blind to perceive incident light to the retina.

  15. Experimental study on directional solidification of Al-Si alloys under the influence of electric currents

    NASA Astrophysics Data System (ADS)

    Räbiger, D.; Zhang, Y.; Galindo, V.; Franke, S.; Willers, B.; Eckert, S.

    2016-07-01

    The application of electric currents during solidification can cause grain refinement in metallic alloys. However, the knowledge about the mechanisms underlying the decrease in grain size remains fragmentary. This study considers the solidification of Al-Si alloys under the influence of electric currents for the configuration of two parallel electrodes at the free surface. Solidification experiments were performed under the influence of both direct currents (DC) and rectangular electric current pulses (ECP). The interaction between the applied current and its own induced magnetic field causes a Lorentz force which produces an electro-vortex flow. Numerical simulations were conducted to calculate the Lorentz force, the Joule heating and the induced melt flow. The numerical predictions were confirmed by isothermal flow measurements in eutectic GaInSn. The results demonstrate that the grain refining effect observed in our experiments can be ascribed solely to the forced melt flow driven by the Lorentz force.

  16. Quasistatic electric field structures and field-aligned currents in the polar cusp region

    NASA Astrophysics Data System (ADS)

    Jacobsen, Knut; Moen, Joran; Pedersen, Arne

    2010-05-01

    Quasistatic electric field structures in the vicinity of the cusp have been studied using Cluster data. There are two categories of electric potential structures, S-shaped and U-shaped. In previous studies in the nightside auroral region, the S-shaped potential was uniquely related to the boundary transition between low density and high density plasma regimes, leading to the conclusion that the electric field profile depends on whether the plasma populations on each side of the boundary can support intense field-aligned and Pedersen currents. In this study in the dayside cusp this is not the case, and a different explanation has to be sought. Most electric field structures are associated with the start of the cusp ion dispersion or with injection signatures within the cusp, and the field-aligned currents associated with these structures are found to be consistent with the cusp currents expected for the IMF By polarity at the time. This indicates that the electric field structures are generated by the cusp current system, or modified by the cusp current system to be consistent with the required currents. Furthermore, we provide firm evidence for the dayside Region 1 current to be located on open field lines, which have been postulated but to our knowledge heretofore not experimentally verified.

  17. Effect of ordered array of magnetic dots on the dynamics of Josephson vortices in stacked SNS Josephson junctions under DC and AC current

    NASA Astrophysics Data System (ADS)

    Berdiyorov, Golibjon R.; Savel'ev, Sergey; Kusmartsev, Feodor V.; Peeters, François M.

    2015-11-01

    We use the anisotropic time-dependent Ginzburg-Landau theory to investigate the effect of a square array of out-of-plane magnetic dots on the dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting (SNS) Josephson junctions in the presence of external DC and AC currents. Periodic pinning due to the magnetic dots distorts the triangular lattice of fluxons and results in the appearance of commensurability features in the current-voltage characteristics of the system. For the larger values of the magnetization, additional peaks appear in the voltage-time characteristics of the system due to the creation and annihilation of vortex-antivortex pairs. Peculiar changes in the response of the system to the applied current is found resulting in a "superradiant" vortex-flow state at large current values, where a rectangular lattice of moving vortices is formed. Synchronizing the motion of fluxons by adding a small ac component to the biasing dc current is realized. However, we found that synchronization becomes difficult for large magnetization of the dots due to the formation of vortex-antivortex pairs.

  18. Generation of coronal electric currents due to convective motions on the photosphere

    NASA Technical Reports Server (NTRS)

    Sakurai, T.; Levine, R. H.

    1981-01-01

    Generation of electric currents in a magnetized plasma overlying a dense convective layer is studied, assuming that the magnetic field perturbation is small and satisfies the force-free equation. Currents are produced by rotational motions on the boundary in the case of a uniform equilibrium field. In a simple two-dimensional bipolar configuration, however, both irrotational and incompressible motions give rise to currents, and the current density has a peak at the magnetic neutral line. Scaling laws for the current density as well as for the stored magnetic energy are derived, and the possibility of heating the solar corona through the dissipation of coronal currents generated in this way is discussed.

  19. DOE Fundamentals Handbook: Electrical Science, Volume 2

    SciTech Connect

    Not Available

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors, and generators; AC power and reactive components; batteries; AC and DC voltage regulators; transformers; and electrical test instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment.

  20. Space-charge-limited currents for cathodes with electric field enhanced geometry

    NASA Astrophysics Data System (ADS)

    Lai, Dingguo; Qiu, Mengtong; Xu, Qifu; Huang, Zhongliang

    2016-08-01

    This paper presents the approximate analytic solutions of current density for annulus and circle cathodes. The current densities of annulus and circle cathodes are derived approximately from first principles, which are in agreement with simulation results. The large scaling laws can predict current densities of high current vacuum diodes including annulus and circle cathodes in practical applications. In order to discuss the relationship between current density and electric field on cathode surface, the existing analytical solutions of currents for concentric cylinder and sphere diodes are fitted from existing solutions relating with electric field enhancement factors. It is found that the space-charge-limited current density for the cathode with electric-field enhanced geometry can be written in a general form of J = g(βE)2J0, where J0 is the classical (1D) Child-Langmuir current density, βE is the electric field enhancement factor, and g is the geometrical correction factor depending on the cathode geometry.

  1. Pupils' Representations of Electric Current before, during and after Instruction on DC Circuits.

    ERIC Educational Resources Information Center

    Psillos, D.; And Others

    1987-01-01

    Reported are compulsory education pupils' representations of electric current in a constructivist approach to introducing direct current (DC) circuits. Suggests that the pupils views can be modelled after an energy framework. Makes suggestions about the content, the apparatus and the experiments used in teaching DC circuits. (CW)

  2. Perpendicular currents and electric fields in fully and partially ionized magnetized plasma

    SciTech Connect

    Rozhansky, V.

    2013-10-15

    Perpendicular currents and self-consistent electric fields in fully and partially ionized plasma in strong magnetic field are analyzed. In fully ionized plasma, the analyses are concentrated on closing of viscosity driven currents. For partially ionized plasma, it is demonstrated that the perpendicular currents could be expressed through the total pressure gradient (including the pressure gradient of neutral particles) and viscosity of neutrals. The self-consistent electric fields and corresponding E(vector sign)×B(vector sign) could be quite large, which is important for various applications, in particular, for the divertor plasma of a tokamak in the detached regime.

  3. High-latitude field-aligned current sources and induced electric fields

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1979-01-01

    Using a simple, planar model of the high latitude ionosphere with an enhanced conductivity auroral ring, the electric potential is computed for a pair of field-aligned current sheets inferred from observations. The relationship of various characteristics of the electric potential pattern to features of the field-aligned current distribution are elucidated in the context of a generalized field-aligned current Fourier analysis. On the basis of the analysis and observations to date, it is concluded that boundary layer dynamo action is the prevalent mechanism in the solar wind/magnetosphere/ionosphere interaction.

  4. Domain Motion of Ferroelectricity of Bi2SrTa2O9 Single Crystals under an AC-Voltage Electric Field

    NASA Astrophysics Data System (ADS)

    Machida, Akio; Nagasawa, Naomi; Ami, Takaaki; Suzuki, Masayuki

    1999-02-01

    A novel phenomenon, which increases the remanent polarization of Bi2SrTa2O9 single crystals, a promising candidate for ferroelectric random access memories (FeRAM), has been identified. The single crystals, grown in vapor phases using the self-flux method, have a composition characterized asBixSryTa2O9 (x=2.08±0.09, y=1.04±0.06). Incontrast to BixSryTa2O9 (x=1.91±0.05, y=1.27±0.08) single crystals grown by the self-flux method, the coercive field of the present single crystals is smaller. Observing optical anisotropy in the c-plane, we found that this material has a paraelectric phase, which might originate from the partial distortion of the crystal. After voltage was applied, the paraelectric phase disappeared and the crystal became a ferroelectric domain structure. Measuring the electrical properties in the c-plane, the remanent polarization of the Bi2SrTa2O9 single crystal was increased by applying ac-voltage. One-hour annealing over the Curie temperature also produced a paraelectric phase in the crystal but it was confirmed that this paraelectric phase can also be decreased by applying ac-voltage. Using this ac-voltage application, we can clearly observe the domain structure of BiSTa single crystal for the first time.

  5. Relations between transverse electric fields and field-aligned currents. [in magnetosphere and ionosphere

    NASA Technical Reports Server (NTRS)

    Mallinckrodt, A. J.; Carlson, C. W.

    1978-01-01

    A model for the field-aligned propagation of transverse electric fields and associated field-aligned sheet currents is presented which takes into account the wave nature of the process. The model is applied to the separate cases of ionospheric and magnetospheric sources, and the resulting ionospheric electric field to field-aligned sheet current ratios are determined for comparison with experimental observations. It is found that the magnetospheric wave 'conductivity' for shear mode Alfven waves is small with respect to typical values of the height-integrated ionospheric Pedersen conductivity. For plasma convecting across a stationary disturbance a dynamic equilibrium is achieved in which field-aligned currents flow continuously away from the source on convecting field lines. Consistency with typical ionospheric electric fields requires that the field-aligned sheet currents are limited to around 0.1 A/m for ionospheric polarization sources, while magnetospheric sources are easily capable of 1 A/m or more.

  6. Estimation of electric fields and current from ground-based magnetometer data

    NASA Technical Reports Server (NTRS)

    Kamide, Y.; Richmond, A. D.

    1984-01-01

    Recent advances in numerical algorithms for estimating ionospheric electric fields and currents from groundbased magnetometer data are reviewed and evaluated. Tests of the adequacy of one such algorithm in reproducing large-scale patterns of electrodynamic parameters in the high-latitude ionosphere have yielded generally positive results, at least for some simple cases. Some encouraging advances in producing realistic conductivity models, which are a critical input, are pointed out. When the algorithms are applied to extensive data sets, such as the ones from meridian chain magnetometer networks during the IMS, together with refined conductivity models, unique information on instantaneous electric field and current patterns can be obtained. Examples of electric potentials, ionospheric currents, field-aligned currents, and Joule heating distributions derived from ground magnetic data are presented. Possible directions for future improvements are also pointed out.

  7. Spontaneous formation of electric current sheets and the origin of solar flares

    NASA Technical Reports Server (NTRS)

    Low, B. C.; Wolfson, R.

    1988-01-01

    It is demonstrated that the continuous boundary motion of a sheared magnetic field in a tenuous plasma with an infinite electrical conductivity can induce the formation of multiple electric current sheets in the interior plasma. In response to specific footpoint displacements, the quadrupolar magnetic field considered is shown to require the formation of multiple electric current sheets as it achieves a force-free state. Some of the current sheets are found to be of finite length, running along separatrix lines of force which separate lobes of magnetic flux. It is suggested that current sheets in the form of infinitely thin magnetic shear layers may be unstable to resistive tearing, a process which may have application to solar flares.

  8. Fiber Materials AC Impedance Characteristics and Principium Analysis

    NASA Astrophysics Data System (ADS)

    Wang, Jianjun; Li, Xiaofeng

    With an invariable amplitude and variable frequency inspiriting, impedance of fiber materials rapidly decrease at first and then increase speedy followed with increasing of signal frequency. For the impedance curve of frequency is section of bathtub, this phenomenon is defined as alternating current electric conductive bathtub effect of fiber material. With analysis tools,of circuit theory and medium polarization theory, the phenomenon can be deeply detected that in AC electric field there are four different kind of currents in fiber material: absorbing current, conductance current, charging current and superficial current. With more analyzing it's discovered this phenomenon can be explained by medium polarize theory. Make using of fiber AC electric conductivity bathtub effect, fast testing equipment on fiber moisture regain can be invent, and disadvantages of conventional impedance technique, such as greatness test error and electrode polarization easily. This paper affords directions to design novel speediness fiber moisture test equipments in theory.

  9. Non-stationary corona around multi-point system in atmospheric electric field: I. Onset electric field and discharge current

    NASA Astrophysics Data System (ADS)

    Bazelyan, E. M.; Raizer, Yu. P.; Aleksandrov, N. L.

    2014-03-01

    The properties of a non-stationary glow corona maintained near the tips of a multi-point ground system in a time-varying thundercloud electric field have been studied numerically and analytically. Computer and analytical models were developed to simulate the corona discharge initiated from a system of identical vertical conductive electrodes distributed uniformly over a grounded plane surface. The simulation was based on a solution of the electrostatic equation for electric field and continuity equations for light and aerosol ions. The development of individual corona space charge layers from different points and the formation of a united plane layer were considered. The effect of system dimensions and that of the distance between electrodes on the external electric field corresponding to corona onset near the rod tips was investigated. The evolution in time of the corona current was calculated for systems with various numbers of coronating rods in time-varying atmospheric electric field. In the limit of infinite number of coronating rods, reasonable agreement was obtained between numerical calculations and analytical theory considering the effect of surrounding rods on the corona discharge from a given rod in a simplified integral way. Conditions were determined under which the corona properties of a multi-point system are similar to the properties of a plane surface emitting ions into the atmosphere. In this case, the corona current density is governed by the time derivative of the thundercloud electric field and is independent of the ion mobility and of the coronating system dimensions. The total corona space charge injected into the atmosphere per unit area by a given instant is controlled by the thundercloud electric field at this instant and depends on the geometrical parameters of the system only indirectly, through the corona onset atmospheric electric field. This simple model could be used to simulate a corona discharge during thunderstorms at the earth

  10. Ultrastable low-noise current amplifier: A novel device for measuring small electric currents with high accuracy

    SciTech Connect

    Drung, D.; Krause, C.; Becker, U.; Scherer, H.; Ahlers, F. J.

    2015-02-15

    An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA’s transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.

  11. Ultrastable low-noise current amplifier: a novel device for measuring small electric currents with high accuracy.

    PubMed

    Drung, D; Krause, C; Becker, U; Scherer, H; Ahlers, F J

    2015-02-01

    An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA's transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors. PMID:25725866

  12. Ultrastable low-noise current amplifier: A novel device for measuring small electric currents with high accuracy

    NASA Astrophysics Data System (ADS)

    Drung, D.; Krause, C.; Becker, U.; Scherer, H.; Ahlers, F. J.

    2015-02-01

    An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA's transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.

  13. Reduction, analysis, and properties of electric current systems in solar active regions

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Demoulin, Pascal

    1995-01-01

    The specific attraction and, in large part, the significance of solar magnetograms lie in the fact that they give the most important data on the electric currents and the nonpotentiality of active regions. Using the vector magnetograms from the Marshall Space Flight Center (MSFC), we employ a unique technique in the area of data analysis for resolving the 180 deg ambiguity in order to calculate the spatial structure of the vertical electric current density. The 180 deg ambiguity is resolved by applying concepts from the nonlinear multivariable optimization theory. The technique is shown to be of particular importance in very nonpotential active regions. The characterization of the vertical electric current density for a set of vector magnetograms using this method then gives the spatial scale, locations, and magnitude of these current systems. The method, which employs an intermediate parametric function which covers the magnetogram and which defines the local `preferred' direction, minimizes a specific functional of the observed transverse magnetic field. The specific functional that is successful is the integral of the square of the vertical current density. We find that the vertical electric current densities have common characteristics for the extended bipolar (beta) (gamma) (delta)-regions studied. The largest current systems have j(sub z)'s which maximizes around 30 mA/sq m and have a linear decreasing distribution to a diameter of 30 Mn.

  14. Reduction, Analysis, and Properties of Electric Current Systems in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Demoulin, Pascal

    1995-01-01

    The specific attraction and, in large part, the significance of solar vector magnetograms lie in the fact that they give the most important data on the electric currents and the nonpotentiality of active regions. Using the vector magnetograms from the Marshall Space Flight Center (MSFC), we employ a unique technique in the area of data analysis for resolving the 180 degree ambiguity in order to calculate the spatial structure of the vertical electric current density. The 180 degree ambiguity is resolved by applying concepts from the nonlinear multivariable optimization theory. The technique is shown to be of particular importance in very nonpotential active regions. The characterization of the vertical electric current density for a set of vector magnetograms using this method then gives the spatial scale, locations, and magnitude of these current systems. The method, which employs an intermediate parametric function which covers the magnetogram and which defines the local "preferred" direction, minimizes a specific functional of the observed transverse magnetic field. The specific functional that is successful is the integral of the square of the vertical current density. We find that the vertical electric current densities have common characteristics for the extended bipolar beta gamma delta-regions studied. The largest current systems have j(sub z)'s which maximizes around 30 mA per square meter and have a linear decreasing distribution to a diameter of 30 Mm.

  15. Combined Aircraft and Satellite-Derived Storm Electric Current and Lightning Rates Measurements and Implications for the Global Electric Circuit

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2010-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of electrified shower clouds and thunderstorms spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, with and without lightning, and with positive and negative fields above the storms. The measurements were made with the NASA ER-2 and the Altus-II high altitude aircrafts. Peak electric fields, with lightning transients removed, ranged from -1.0 kV/m to 16 kV/m, with a mean value of 0.9 kV/m. The median peak field was 0.29 kV/m. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean storms with lightning is 1.6 A while the mean current for land storms with lightning is 1.0 A. The mean current for oceanic storms without lightning (i.e., electrified shower clouds) is 0.39 A and the mean current for land storms without lightning is 0.13 A. Thus, on average, land storms with or without lightning have about half the mean current as their corresponding oceanic storm counterparts. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal lightning statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie

  16. In Vitro Assessment of Electric Currents Increasing the Effectiveness of Vancomycin Against Staphylococcus epidermidis Biofilms.

    PubMed

    Haddad, Peter A; Mah, Thien-Fah; Mussivand, Tofy

    2016-08-01

    Biofilms are communities of bacteria that can cause infections which are resistant to the immune system and antimicrobial treatments, posing a significant threat for patients with implantable and indwelling medical devices. The purpose of our research was to determine if utilizing specific parameters for electric currents in conjunction with antibiotics could effectively treat a highly resistant biofilm. Our study evaluated the impact of 16 μg/mL of vancomycin with or without 22 or 333 μA of direct electric current (DC) generated by stainless steel electrodes against 24-, 48-, and 72-h-old Staphylococcus epidermidis biofilms formed on titanium coupons. An increase in effectiveness of vancomycin was observed with the combination of 333 μA of electric current against 48-h-old biofilms (P value = 0.01) as well as in combination with 22 μA of electric current against 72-h-old biofilms (P value = 0.04); 333 μA of electric current showed the most significant impact on the effectiveness of vancomycin against S. epidermidis biofilms demonstrating a bioelectric effect previously not observed against this strain of bacteria. PMID:26713750

  17. Serotonin Regulates Electrical Coupling via Modulation of Extrajunctional Conductance: H-current

    PubMed Central

    Szabo, Theresa M.; Caplan, Jonathan S.; Zoran, Mark J.

    2010-01-01

    Synaptic strength can be highly variable from animal to animal within a species or over time within an individual. The process of synaptic plasticity induced by neuromodulatory agents might be unpredictable when the underlying circuits subject to modulation are themselves inherently variable. Serotonin (5-hydroxytryptomine; 5HT) and serotonergic signaling pathways are important regulators of animal behavior and are pharmacological targets in a wide range of neurological disorders. We have examined the effect of 5HT on electrical synapses possessing variable coupling strengths. While 5HT decreased electrical coupling at synapses with weak electrical connectivity, synapses with strong electrical coupling were less affected by 5HT treatment, as follows from the equations used for calculating coupling coefficients. The fact that the modulatory effect of 5HT on electrical connections was negatively correlated with the strength of electrical coupling suggests that the degree of electrical coupling within a neural network impacts subsequent neuromodulation of those synapses. Biophysical studies indicated that these effects were primarily due to 5HT-induced modulation of membrane currents that indirectly affect junctional coupling at synaptic contacts. In support of these experimental analyses, we created a simple model of coupled neurons to demonstrate that modulation of electrical coupling could be due solely to 5HT effects on H-channel conductance. Therefore, variability in the strength of electrical coupling in neural circuits can determine the pharmacological effect of this neuromodulatory agent. PMID:20599836

  18. Serotonin regulates electrical coupling via modulation of extrajunctional conductance: H-current.

    PubMed

    Szabo, Theresa M; Caplan, Jonathan S; Zoran, Mark J

    2010-08-19

    Synaptic strength can be highly variable from animal to animal within a species or over time within an individual. The process of synaptic plasticity induced by neuromodulatory agents might be unpredictable when the underlying circuits subject to modulation are themselves inherently variable. Serotonin (5-hydroxytryptomine; 5HT) and serotonergic signaling pathways are important regulators of animal behavior and are pharmacological targets in a wide range of neurological disorders. We have examined the effect of 5HT on electrical synapses possessing variable coupling strengths. While 5HT decreased electrical coupling at synapses with weak electrical connectivity, synapses with strong electrical coupling were less affected by 5HT treatment, as follows from the equations used for calculating coupling coefficients. The fact that the modulatory effect of 5HT on electrical connections was negatively correlated with the strength of electrical coupling suggests that the degree of electrical coupling within a neural network impacts subsequent neuromodulation of those synapses. Biophysical studies indicated that these effects were primarily due to 5HT-induced modulation of membrane currents that indirectly affect junctional coupling at synaptic contacts. In support of these experimental analyses, we created a simple model of coupled neurons to demonstrate that modulation of electrical coupling could be due solely to 5HT effects on H-channel conductance. Therefore, variability in the strength of electrical coupling in neural circuits can determine the pharmacological effect of this neuromodulatory agent. PMID:20599836

  19. Application of piezoelectric stress gauges to the measurement of fast-rise-time multimegampere electric currents

    SciTech Connect

    Hanson, D.L.; Spielman, R.B.; Seamen, J.F.; Struve, K.W.

    1993-07-01

    Modeling of load behavior in Z-pinch plasma radiation sources driven by high current generators requires accurate measurement of fast-rise-time multimegampere electrical currents close to the load. Using a novel application of high pressure technology, we have demonstrated that fast-response piezoelectric stress transducers can measure such currents under conditions of extremely high current density, induced electric fields, and bremsstrahlung radiation where conventional current diagnostics fail. Large signal, nanosecond-time-resolution lithium niobate piezoelectric stress gauges are employed to directly measure the magnetic pressure B{sup 2}/2{mu}{sub 0} = {mu}{sub 0}I{sup 2}/8{pi}{sup 2}r{sup 2} generated at radius r by a current I flowing in a radial transmission line near the load of a pulsed power current source. With a current diagnostic consisting of a pure tungsten electrode on a Y-cut lithium niobate stress gauge, current densities up to 1/2{pi}cr = 78MA/m can be measured before the electrode yield strength and piezoelectric operating stress limit are exceeded. Based on this work, we have developed a compact modular current probe for use on the high current (20--25 MA) DECADE simulator being constructed for the Defense Nuclear Agency. We also describe recent work extending this measurement technique to higher current densities (125 MA/m) using a cooper-sapphire electrode impedance stack on an X-cut quartz piezoelectric element.

  20. Application of piezoelectric stress gauges to the measurement of fast-rise-time multimegampere electric currents

    NASA Astrophysics Data System (ADS)

    Hanson, D. L.; Spielman, R. B.; Seamen, J. F.; Struve, K. W.

    1993-02-01

    Modeling of load behavior in Z-pinch plasma radiation sources driven by high current generators requires accurate measurement of fast-rise-time multimegampere electrical currents close to the load. Using a novel application of high pressure technology, we have demonstrated that fast-response piezoelectric stress transducers can measure such currents under conditions of extremely high current density, induced electric fields, and bremsstrahlung radiation where conventional current diagnostics fail. Large signal, nanosecond-time-resolution lithium niobate piezoelectric stress gauges are employed to directly measure the magnetic pressure B(sup 2)/2(mu)(sub 0) = (mu)(sub 0)I(sup 2)/8(pi)(sup 2)r(sup 2) generated at radius r by a current I flowing in a radial transmission line near the load of a pulsed power current source. With a current diagnostic consisting of a pure tungsten electrode on a Y-cut lithium niobate stress gauge, current densities up to 1/2(pi)cr = 78MA/m can be measured before the electrode yield strength and piezoelectric operating stress limit are exceeded. Based on this work, we have developed a compact modular current probe for use on the high current (20-25 MA) DECADE simulator being constructed for the Defense Nuclear Agency. We also describe recent work extending this measurement technique to higher current densities (125 MA/m) using a copper-sapphire electrode impedance stack on an X-cut quartz piezoelectric element.

  1. EHV systems technology - A look at the principles and current status. [Electric and Hybrid Vehicle

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.; Levin, R. R.

    1983-01-01

    An examination of the basic principles and practices of systems engineering is undertaken in the context of their application to the component and subsystem technologies involved in electric and hybrid vehicle (EHV) development. The limitations of purely electric vehicles are contrasted with hybrid, heat engine-incorporating vehicle technology, which is inherently more versatile. A hybrid vehicle concept assessment methodology is presented which employs current technology and yet fully satisfies U.S. Department of Energy petroleum displacement goals.

  2. Discharge current and current of supershort avalanche E-beam at volume nanosecond discharge in non-uniform electric field

    NASA Astrophysics Data System (ADS)

    Tarasenko, Victor F.; Rybka, Dmitrii V.; Baksht, Evgenii H.; Kostyrya, Igor'D.; Lomaev, Mikhail I.

    2008-01-01

    The gas diode current-voltage characteristics at the voltage pulses applied from the RADAN and SM-3NS pulsers, and generation of an supershort avalanche electron beam (SAEB) have been studied experimentally in an inhomogeneous electric field upon a nanosecond breakdown in an air gap at atmospheric pressure. Displacement currents with amplitude over 1 kA have been observed and monitored. It is shown that the displacement current amplitude gets increased due to movement of the dense plasma front and charging of a "capacitor" formed between plasma and anode. The SAEB generation time relatively to the discharge current pulses and the gap voltage were determined in the experiments. It is shown that the SAEB current maximum at the pulser voltages of hundreds kV is registered on the discharge current pulse front, before the discharge current peak of the gas diode capacitance, and the delay time of these peaks is determined by the value of an interelectrode spacing. The delay time in case of a gap of 16 mm and air breakdown at atmospheric pressure was ~100 ps, and in case of 10 mm it was less than 50 ps.

  3. Polarization electric field in subalfvenic plasma jet under condition of field- aligned currents generation

    NASA Astrophysics Data System (ADS)

    Sobyanin, D.; Gavrilov, B.; Podgorny, I.

    The subalfvenic magnetized plasma jet propagating across the geomagnetic field generates field-aligned currents in the ionospheric plasma. As a result the transverse polarization electric field Ep =-VxB/c in the jet should be reduced (plasma jet depolarization). These phenomena are investigated in the laboratory experiment. It was revealed that the depolarization is accompanied by the appearing of the electric field E along the plasma velocity vector. The value of E is comparable with theaa transverse electric field. It results in the plasma jet deflection. The possibility of manifestation of these effects in the NORTH STAR Russian-American active rocket experiment is discussed.

  4. Room Temperature Electrical Detection of Spin Polarized Currents in Topological Insulators.

    PubMed

    Dankert, André; Geurs, Johannes; Kamalakar, M Venkata; Charpentier, Sophie; Dash, Saroj P

    2015-12-01

    Topological insulators (TIs) are a new class of quantum materials that exhibit a current-induced spin polarization due to spin-momentum locking of massless Dirac Fermions in their surface states. This helical spin polarization in three-dimensional (3D) TIs has been observed using photoemission spectroscopy up to room temperatures. Recently, spin polarized surface currents in 3D TIs were detected electrically by potentiometric measurements using ferromagnetic detector contacts. However, these electric measurements are so far limited to cryogenic temperatures. Here we report the room temperature electrical detection of the spin polarization on the surface of Bi2Se3 by employing spin sensitive ferromagnetic tunnel contacts. The current-induced spin polarization on the Bi2Se3 surface is probed by measuring the magnetoresistance while switching the magnetization direction of the ferromagnetic detector. A spin resistance of up to 70 mΩ is measured at room temperature, which increases linearly with current bias, reverses sign with current direction, and decreases with higher TI thickness. The magnitude of the spin signal, its sign, and control experiments, using different measurement geometries and interface conditions, rule out other known physical effects. These findings provide further information about the electrical detection of current-induced spin polarizations in 3D TIs at ambient temperatures and could lead to innovative spin-based technologies. PMID:26560203

  5. A modeling study of the time-averaged electric currents in the vicinity of isolated thunderstorms

    NASA Technical Reports Server (NTRS)

    Driscoll, Kevin T.; Blakeslee, Richard J.; Baginski, Michael E.

    1992-01-01

    A thorough examination of the results of a time-dependent computer model of a dipole thunderstorm revealed that there are numerous similarities between the time-averaged electrical properties and the steady-state properties of an active thunderstorm. Thus, the electrical behavior of the atmosphere in the vicinity of a thunderstorm can be determined with a formulation similar to what was first described by Holzer and Saxon (1952). From the Maxwell continuity equation of electric current, a simple analytical equation was derived that expresses a thunderstorm's average current contribution to the global electric circuit in terms of the generator current within the thundercloud, the intracloud lightning current, the cloud-to-ground lightning current, the altitudes of the charge centers, and the conductivity profile of the atmosphere. This equation was found to be nearly as accurate as the more computationally expensive numerical model, even when it is applied to a thunderstorm with a reduced conductivity thundercloud, a time-varying generator current, a varying flash rate, and a changing lightning mix.

  6. Electrical stress-induced instability of amorphous indium-gallium-zinc oxide thin-film transistors under bipolar ac stress

    SciTech Connect

    Lee, Sangwon; Jeon, Kichan; Park, Jun-Hyun; Kim, Sungchul; Kong, Dongsik; Kim, Dong Myong; Kim, Dae Hwan; Kim, Sangwook; Kim, Sunil; Hur, Jihyun; Park, Jae Chul; Song, Ihun; Kim, Chang Jung; Park, Youngsoo; Jung, U-In

    2009-09-28

    Bipolar ac stress-induced instability of amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors is comparatively investigated with that under a positive dc gate bias stress. While the positive dc gate bias stress-induced threshold voltage shift ({delta}V{sub T}) is caused by the charge trapping into the interface/gate dielectric as reported in previous works, the dominant mechanism of the ac stress-induced {delta}V{sub T} is observed to be due to the increase in the acceptorlike deep states of the density of states (DOS) in the a-IGZO active layer. Furthermore, it is found that the variation of deep states in the DOS makes a parallel shift in the I{sub DS}-V{sub GS} curve with an insignificant change in the subthreshold slope, as well as the deformation of the C{sub G}-V{sub G} curves.

  7. Mutagenic and genotoxic potential of direct electric current in Escherichia coli and Salmonella thyphimurium strains.

    PubMed

    Gomes, Marina das Neves; Cardoso, Janine Simas; Leitão, Alvaro Costa; Quaresma, Carla Holandino

    2016-05-01

    Direct electric current has several therapeutic uses such as antibacterial and antiprotozoal action, tissues scarring and regeneration, as well as tumor treatment. This method has shown promising results in vivo and in vitro, with significant efficacy and almost no side effects. Considering lack of studies regarding direct electric current mutagenic and/or genotoxic effects, the present work evaluated both aspects by using five different bacterial experimental assays: survival of repair-deficient mutants, Salmonella-histidine reversion mutagenesis (Ames test), forward mutations to rifampicin resistance, phage reactivation, and lysogenic induction. In these experimental conditions, cells were submitted to an approach that allows evaluation of anodic, cathodic, and electro-ionic effects generated by 2 mA of direct electric current, with doses ranging from 0.36 to 3.60 Coulombs. Our results showed these doses did not induce mutagenic or genotoxic effects. Bioelectromagnetics. 37:234-243, 2016. © 2016 Wiley Periodicals, Inc. PMID:27018544

  8. Inferring electric fields and currents from ground magnetometer data - A test with theoretically derived inputs

    NASA Technical Reports Server (NTRS)

    Wolf, R. A.; Kamide, Y.

    1983-01-01

    Advanced techniques considered by Kamide et al. (1981) seem to have the potential for providing observation-based high time resolution pictures of the global ionospheric current and electric field patterns for interesting events. However, a reliance on the proposed magnetogram-inversion schemes for the deduction of global ionospheric current and electric field patterns requires proof that reliable results are obtained. 'Theoretical' tests of the accuracy of the magnetogram inversion schemes have, therefore, been considered. The present investigation is concerned with a test, involving the developed KRM algorithm and the Rice Convection Model (RCM). The test was successful in the sense that there was overall agreement between electric fields and currents calculated by the RCM and KRM schemes.

  9. Lightning criteria relative to space shuttles: Currents and electric field intensity in Florida lightning

    NASA Technical Reports Server (NTRS)

    Uman, M. A.; Mclain, D. K.

    1972-01-01

    The measured electric field intensities of 161 lightning strokes in 39 flashes which occurred between 1 and 35 km from an observation point at Kennedy Space Center, Florida during June and July of 1971 have been analyzed to determine the lightning channel currents which produced the fields. In addition, typical channel currents are derived and from these typical electric fields at distances between 0.5 and 100 km are computed and presented. On the basis of the results recommendations are made for changes in the specification of lightning properties relative to space vehicle design as given in NASA TMX-64589 (Daniels, 1971). The small sample of lightning analyzed yielded several peak currents in the 100 kA range. Several current rise-times from zero to peak of 0.5 microsec or faster were found; and the fastest observed current rate-of-rise was near 200 kA/microsec. The various sources of error are discussed.

  10. Application of piezoelectric stress gauges to the measurement of fast-rise-time multimegampere electric currents

    NASA Astrophysics Data System (ADS)

    Hanson, D. L.; Struve, K. W.; Spielman, R. B.; Seamen, J. F.

    1994-07-01

    Modeling of load behavior in Z-pinch plasma radiation sources driven by high current generators requires accurate measurement of fast-rise-time multimegampere electrical currents close to the load. Using a novel applications of high pressure technology, we have demonstrated that fast-response piezoelectric stress transducers can measure such currents under conditions of extremely high current density, induced electric fields, and bremsstrahlung radiation where conventional current diagnostics fail. Large signal, nanosecond-time-resolution lithium niobate piezoelectric stress gauges are employed to directly measure the magnetic pressure B2/dμ0=μ0I2/ 8π2r2 generated at radius r by a curret I flowing in a radial transmission line near the load of a pulsed power current source. With a current diagnostic consisting of a pure tungsten electrode of a Y-cut lithium niobate stress gauge, current densities up to I/2πr=78 MA/m can be measured before the electrode yield strength and piezoelectric operating stress limit are exceeded. Based on this work, we have developed a compact modular current probe for use on the high current (20-25 MA) DECADE simulator being constructed for the Defense Nuclear Agency. We also describe recent work extending this measurement technique to higher current densities (125 MA/m) using a copper-sapphire electrode impedance stack on an X-cut quartz piezoelectric element.

  11. Effective area of a horizontal long-wire antenna collecting the atmospheric electric vertical current

    NASA Astrophysics Data System (ADS)

    Tammet, H.; Israelsson, S.; Knudsen, E.; Tuomi, T. J.

    1996-12-01

    The effective area of an antenna collecting the vertical air-Earth current is a coefficient of proportionality between the collected current and the air-Earth current density. The effective area can be correctly defined only if the model behind the proportionality relation is adequate. The current collected by a horizontal long-wire antenna is not exactly proportional to the vertical air-Earth Maxwell current density because of the different behavior of the displacement and conduction components of the current. Thus, two different effective areas are separately defined for the displacement and nondisplacement components. First, the dynamic effective area characterizes rapid variations of the displacement current. It is calculated assuming that the air does not contain any space charges and that the electric current flow lines match the electric field lines. Second, the static effective area characterizes the nondisplacement current, and it is calculated by taking into account the facts that the conductivity close to the wire surface is unipolar, that the wind-determined horizontal ion trajectories do not match the electric field lines, and that there are space charges due to the electrode effect of the wire and of the ground. Traditionally, the atmospheric electric vertical current density measurements have been interpreted by using the dynamic effective area as a calibration coefficient. This turns out to be a satisfactory approximation in the case of strong turbulence when the near-ground space charge layer is high and the static effective area approaches the dynamic effective area. In the limit of low turbulence the traditional interpretation results in errors of several tens percent. A reduced height of the antenna helps to keep the static effective area close to the dynamic effective area and to suppress the errors.

  12. Endogenous electrical currents in the water mold Blastocladiella emersonii during growth and sporulation.

    PubMed

    Stump, R F; Robinson, K R; Harold, R L; Harold, F M

    1980-11-01

    We have explored the pattern of electrical currents generated by single cells of the water mold Blastocladiella emersonii at several stages of its life cycle. Extracellular currents were measured with a vibrating probe constructed after the design of Jaffe and Nuccitelli [Jaffe, L. F. & Nuccitelli, R. (1974) J. Cell Biol. 63, 614-628]. In growing cells positive current, of the order of 1 microA/cm2, enters the rhizoid and leaves from the thallus; circumstantial evidence suggests that protons carry much of the current. Sporulation is associated with reversal of the current pattern, such that positive current enters the thallus and leaves from the rhizoidal region; the ions that carry the current have not been identified. These current patterns appear to play a role in the spatial localization of fungal growth and development. PMID:6256753

  13. Conductor of high electrical current at high temperature in oxygen and liquid metal environment

    DOEpatents

    Powell, IV, Adam Clayton; Pati, Soobhankar; Derezinski, Stephen Joseph; Lau, Garrett; Pal, Uday B.; Guan, Xiaofei; Gopalan, Srikanth

    2016-01-12

    In one aspect, the present invention is directed to apparatuses for and methods of conducting electrical current in an oxygen and liquid metal environment. In another aspect, the invention relates to methods for production of metals from their oxides comprising providing a cathode in electrical contact with a molten electrolyte, providing a liquid metal anode separated from the cathode and the molten electrolyte by a solid oxygen ion conducting membrane, providing a current collector at the anode, and establishing a potential between the cathode and the anode.

  14. Electrostatic ion instabilities in the presence of parallel currents and transverse electric fields

    NASA Technical Reports Server (NTRS)

    Ganguli, G.; Palmadesso, P. J.

    1988-01-01

    The electrostatic ion instabilities are studied for oblique propagation in the presence of magnetic field-aligned currents and transverse localized electric fields in a weakly collisional plasma. The presence of transverse electric fields result in mode excitation for magnetic field aligned current values that are otherwise stable. The electron collisions enhance the growth while ion collisions have a damping effect. These results are discussed in the context of observations of low frequency ion modes in the auroral ionosphere by radar and rocket experiments.

  15. Directional solidification of a planar interface in the presence of a time-dependent electric current

    NASA Technical Reports Server (NTRS)

    Brush, L. N.; Coriell, S. R.; Mcfadden, G. B.

    1990-01-01

    Directional solidification of pure materials and binary alloys with a planar crystal-metal interface in the presence of a time-dependent electric current is considered. For a variety of time-dependent currents, the temperature fields and the interface velocity as functions of time are presented for indium antimonide and bismuth and for the binary alloys germanium-gallium and tin-bismuth. For the alloys, the solid composition is calculated as a function of position. Quantitative predictions are made of the effect of an electrical pulse on the solute distribution in the solidified material.

  16. Impact of aviation emissions on UTLS and air quality in current and future climate - GEM-AC model simulations

    NASA Astrophysics Data System (ADS)

    Kaminski, J. W.

    2015-12-01

    The objective of this study is to investigate the potential impacts of aviation emissions on the upper troposphere and lower stratosphere (UTLS) and surface air quality. The tool that was used in our study is the GEM-AC (Global Environmental Multiscale with Atmospheric Chemistry) chemical weather model where air quality, free tropospheric and stratospheric chemistry processes are on-line and interactive in a weather forecast model of Environment Canada. In vertical, the model domain is defined on 70 hybrid levels from the surface to ~60km. The gas-phase chemistry includes a comprehensive set of reactions for Ox, NOx, HOx, CO, CH4, NMVOCs, halocarbons, ClOx and BrO. Also, the model can address aerosol microphysics and gas-aerosol partitioning. Aircraft emissions are provided by the AEDT 2006 database developed by the Federal Aviation Administration. Results from model simulations on a global variable grid with 1 degree uniform resolution in the northern hemisphere will be presented.

  17. Magnetic resonance electrical impedance tomography (MREIT): conductivity and current density imaging

    NASA Astrophysics Data System (ADS)

    Seo, Jin Keun; Kwon, Ohin; Woo, Eung Je

    2005-01-01

    This paper reviews the latest impedance imaging technique called Magnetic Resonance Electrical Impedance Tomography (MREIT) providing information on electrical conductivity and current density distributions inside an electrically conducting domain such as the human body. The motivation for this research is explained by discussing conductivity changes related with physiological and pathological events, electromagnetic source imaging and electromagnetic stimulations. We briefly summarize the related technique of Electrical Impedance Tomography (EIT) that deals with cross-sectional image reconstructions of conductivity distributions from boundary measurements of current-voltage data. Noting that EIT suffers from the ill-posed nature of the corresponding inverse problem, we introduce MREIT as a new conductivity imaging modality providing images with better spatial resolution and accuracy. MREIT utilizes internal information on the induced magnetic field in addition to the boundary current-voltage measurements to produce three-dimensional images of conductivity and current density distributions. Mathematical theory, algorithms, and experimental methods of current MREIT research are described. With numerous potential applications in mind, future research directions in MREIT are proposed.

  18. Atmospheric electric field and current configurations in the vicinity of mountains

    NASA Technical Reports Server (NTRS)

    Tzur, I.; Roble, R. G.; Adams, J. C.

    1985-01-01

    A number of investigations have been conducted regarding the electrical distortion produced by the earth's orography. Hays and Roble (1979) utilized their global model of atmospheric electricity to study the effect of large-scale orographic features on the currents and fields of the global circuit. The present paper is concerned with an extension of the previous work, taking into account an application of model calculations to orographic features with different configurations and an examination of the electric mapping of these features to ionospheric heights. A two-dimensional quasi-static numerical model of atmospheric electricity is employed. The model contains a detailed electrical conductivity profile. The model region extends from the surface to 100 km and includes the equalization layer located above approximately 70 km. The obtained results show that the electric field and current configurations above mountains depend upon the curvature of the mountain slopes, on the width of the mountain, and on the columnar resistance above the mountain (or mountain height).

  19. Observation of magnon-mediated electric current drag at room temperature

    NASA Astrophysics Data System (ADS)

    Wu, H.; Wan, C. H.; Zhang, X.; Yuan, Z. H.; Zhang, Q. T.; Qin, J. Y.; Wei, H. X.; Han, X. F.; Zhang, S.

    2016-02-01

    Spin-based electronic devices such as magnetic memory and spin logic rely on spin information transport. Conduction electrons, due to their intrinsic spin angular momentum, become an obvious choice for spin information carriers. Here, we experimentally demonstrate that magnons, quasiparticles representing low-energy excitations of ferromagnetic materials, can serve as effective spin information carriers as well. Specifically, we consider two nonmagnetic heavy metals (HMs) that are separated by an electric leak-free ferrimagnetic insulator. When an electric current is applied in one of the HM layers, magnons in the ferrimagnetic insulator are excited and become an effective medium to couple the spin currents in two HMs. As a result, the charge/spin current in one HM layer can drag a charge/spin current in the other HM layer. This work provides a route for spin-based electronic devices where the spin transport is carried by quasiparticles other than electrons.

  20. Ultra-fast and energy-efficient sintering of ceramics by electric current concentration

    NASA Astrophysics Data System (ADS)

    Zapata-Solvas, E.; Gómez-García, D.; Domínguez-Rodríguez, A.; Todd, R. I.

    2015-02-01

    Electric current activated/assisted sintering (ECAS) techniques, such as electrical discharge sintering (EDS) or resistive sintering (RS), have been intensively investigated for longer than 50 years. In this work, a novel system including an electrically insulated graphite die for Spark Plasma Sintering (SPS) is described, which allows the sintering of any refractory ceramic material in less than 1 minute starting from room temperature with heating rates higher than 2000°C/min and an energy consumption up to 100 times lower than with SPS. The system alternates or combines direct resistive sintering (DRS) and indirect resistive sintering (IRS). Electrical insulation of the die has been achieved through the insertion of a film made of alumina fibers between the graphite die and the graphite punches, which are protected from the alumina fiber film by a graphite foil. This system localized the electric current directly through the sample (conductive materials) as in DRS and EDS, or through the thin graphite foil (non-conductive materials) as in IRS, and is the first system capable of being used under EDS or RS conditions independently combining current concentration/localization phenomena.

  1. Ultra-fast and energy-efficient sintering of ceramics by electric current concentration

    PubMed Central

    Zapata-Solvas, E.; Gómez-García, D.; Domínguez-Rodríguez, A.; Todd, R. I.

    2015-01-01

    Electric current activated/assisted sintering (ECAS) techniques, such as electrical discharge sintering (EDS) or resistive sintering (RS), have been intensively investigated for longer than 50 years. In this work, a novel system including an electrically insulated graphite die for Spark Plasma Sintering (SPS) is described, which allows the sintering of any refractory ceramic material in less than 1 minute starting from room temperature with heating rates higher than 2000°C/min and an energy consumption up to 100 times lower than with SPS. The system alternates or combines direct resistive sintering (DRS) and indirect resistive sintering (IRS). Electrical insulation of the die has been achieved through the insertion of a film made of alumina fibers between the graphite die and the graphite punches, which are protected from the alumina fiber film by a graphite foil. This system localized the electric current directly through the sample (conductive materials) as in DRS and EDS, or through the thin graphite foil (non-conductive materials) as in IRS, and is the first system capable of being used under EDS or RS conditions independently combining current concentration/localization phenomena. PMID:25686537

  2. Exploring the conformational preferences of 20-residue peptides in isolation: Ac-Ala19-Lys + H(+)vs. Ac-Lys-Ala19 + H(+) and the current reach of DFT.

    PubMed

    Schubert, Franziska; Rossi, Mariana; Baldauf, Carsten; Pagel, Kevin; Warnke, Stephan; von Helden, Gert; Filsinger, Frank; Kupser, Peter; Meijer, Gerard; Salwiczek, Mario; Koksch, Beate; Scheffler, Matthias; Blum, Volker

    2015-03-21

    Reliable, quantitative predictions of the structure of peptides based on their amino-acid sequence information are an ongoing challenge. We here explore the energy landscapes of two unsolvated 20-residue peptides that result from a shift of the position of one amino acid in otherwise the same sequence. Our main goal is to assess the performance of current state-of-the-art density-functional theory for predicting the structure of such large and complex systems, where weak interactions such as dispersion or hydrogen bonds play a crucial role. For validation of the theoretical results, we employ experimental gas-phase ion mobility-mass spectrometry and IR spectroscopy. While unsolvated Ac-Ala19-Lys + H(+) will be shown to be a clear helix seeker, the structure space of Ac-Lys-Ala19 + H(+) is more complicated. Our first-principles structure-screening strategy using the dispersion-corrected PBE functional (PBE + vdW(TS)) identifies six distinctly different structure types competing in the low-energy regime (≈16 kJ mol(-1)). For these structure types, we analyze the influence of the PBE and the hybrid PBE0 functional coupled with either a pairwise dispersion correction (PBE + vdW(TS), PBE0 + vdW(TS)) or a many-body dispersion correction (PBE + MBD*, PBE0 + MBD*). We also take harmonic vibrational and rotational free energy into account. Including this, the PBE0 + MBD* functional predicts only one unique conformer to be present at 300 K. We show that this scenario is consistent with both experiments. PMID:25700010

  3. Fracture and electric current in the crust: a q-statistical approach

    NASA Astrophysics Data System (ADS)

    Cartwright-Taylor, A. L.; Vallianatos, F.; Sammonds, P. R.

    2013-12-01

    We have conducted room-temperature, triaxial compression experiments on samples of Carrara marble, recording concurrently acoustic and electric current signals emitted during deformation as well as mechanical loading information and ultrasonic wave velocities. Our results reveal that, in a non-piezoelectric rock under simulated crustal conditions, a measurable and increasing electric current (nA) is generated within the stressed sample in the region beyond (quasi-)linear elastic deformation; i.e. in the region of permanent deformation beyond the yield point of the material and in the presence of microcracking. This has implications for the earthquake preparation process. Our results extend to shallow crustal conditions previous observations of electric current signals in quartz-free rocks undergoing uniaxial deformation, supporting the idea of a universal electrification mechanism related to deformation; a number of which have been proposed. Confining pressure conditions of our slow strain rate experiments range from the purely brittle regime to the semi-brittle transition where cataclastic flow is the dominant deformation mechanism. Electric current evolution under these two confining pressures shows some markedly different features, implying the existence of a current-producing mechanism during both microfracture and frictional sliding, possibly related to crack localisation. In order to analyse these 'pressure-stimulated' electric currents, we adopt an entropy-based non-extensive statistical physics approach that is particularly suited to the study of fracture-related phenomena. In the presence of a long timescale (hours) external driving force (i.e. loading), the measured electric current exhibits transient, nonstationary behaviour with strong fluctuations over short timescales (seconds); calmer periods punctuated by bursts of strong activity. We find that the probability distribution of normalised electric current fluctuations over short time intervals (0.5s

  4. Blood Stage Plasmodium falciparum Exhibits Biological Responses to Direct Current Electric Fields

    PubMed Central

    Coronado, Lorena M.; Montealegre, Stephania; Chaverra, Zumara; Mojica, Luis; Espinosa, Carlos; Almanza, Alejandro; Correa, Ricardo; Stoute, José A.; Gittens, Rolando A.

    2016-01-01

    The development of resistance to insecticides by the vector of malaria and the increasingly faster appearance of resistance to antimalarial drugs by the parasite can dangerously hamper efforts to control and eradicate the disease. Alternative ways to treat this disease are urgently needed. Here we evaluate the in vitro effect of direct current (DC) capacitive coupling electrical stimulation on the biology and viability of Plasmodium falciparum. We designed a system that exposes infected erythrocytes to different capacitively coupled electric fields in order to evaluate their effect on P. falciparum. The effect on growth of the parasite, replication of DNA, mitochondrial membrane potential and level of reactive oxygen species after exposure to electric fields demonstrate that the parasite is biologically able to respond to stimuli from DC electric fields involving calcium signaling pathways. PMID:27537497

  5. Blood Stage Plasmodium falciparum Exhibits Biological Responses to Direct Current Electric Fields.

    PubMed

    Coronado, Lorena M; Montealegre, Stephania; Chaverra, Zumara; Mojica, Luis; Espinosa, Carlos; Almanza, Alejandro; Correa, Ricardo; Stoute, José A; Gittens, Rolando A; Spadafora, Carmenza

    2016-01-01

    The development of resistance to insecticides by the vector of malaria and the increasingly faster appearance of resistance to antimalarial drugs by the parasite can dangerously hamper efforts to control and eradicate the disease. Alternative ways to treat this disease are urgently needed. Here we evaluate the in vitro effect of direct current (DC) capacitive coupling electrical stimulation on the biology and viability of Plasmodium falciparum. We designed a system that exposes infected erythrocytes to different capacitively coupled electric fields in order to evaluate their effect on P. falciparum. The effect on growth of the parasite, replication of DNA, mitochondrial membrane potential and level of reactive oxygen species after exposure to electric fields demonstrate that the parasite is biologically able to respond to stimuli from DC electric fields involving calcium signaling pathways. PMID:27537497

  6. Large transient fault current test of an electrical roll ring. [for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Yenni, Edward J.; Birchenough, Arthur G.

    1991-01-01

    The Space Station Freedom uses precision rotary gimbals to provide for sun tracking of its photoelectric arrays. Electrical power, command signals, and data are transferred across the gimbals by roll rings. Roll rings have been shown to be capable of highly efficient electrical transmission and long life, through tests conducted at the NASA Lewis Research Center and Honeywell's Satellite and Space Systems Division in Phoenix, AZ. Large potential fault currents inherent to the power system's DC distribution architecture have brought about the need to evaluate the effects of large transient fault currents on roll rings. A test recently conducted at Lewis subjected a roll ring to a simulated worst case space station electrical fault. The system model used to obtain the fault profile is described, along with details of the reduced order circuit that was used to simulate the fault. Test results comparing roll ring performance before and after the fault are also presented.

  7. Reliable, Efficient and Cost-Effective Electric Power Converter for Small Wind Turbines Based on AC-link Technology

    SciTech Connect

    Darren Hammell; Mark Holveck; DOE Project Officer - Keith Bennett

    2006-08-01

    Grid-tied inverter power electronics have been an Achilles heel of the small wind industry, providing opportunity for new technologies to provide lower costs, greater efficiency, and improved reliability. The small wind turbine market is also moving towards the 50-100kW size range. The unique AC-link power conversion technology provides efficiency, reliability, and power quality advantages over existing technologies, and Princeton Power will adapt prototype designs used for industrial asynchronous motor control to a 50kW small wind turbine design.

  8. Induced electric current-based formulation in computations of low magnetic Reynolds number magnetohydrodynamic flows

    NASA Astrophysics Data System (ADS)

    Smolentsev, S.; Cuevas, S.; Beltrán, A.

    2010-03-01

    We use the induced electric current as the main electromagnetic variable to compute low magnetic Reynolds number magnetohydrodynamic (MHD) flows. The equation for the induced electric current is derived by taking the curl of the induction equation and using Ampère's law. Boundary conditions on the induced electric current are derived at the interface between the liquid and the thin conducting wall by considering the current loop closing in the wall and the adjacent liquid. These boundary conditions at the liquid-solid interface include the Robin boundary condition for the wall-normal component of the current and an additional equation for the wall potential to compute the tangential current component. The suggested formulation (denominated j-formulation) is applied to three common types of MHD wall-bounded flows by implementing the finite-difference technique: (i) high Hartmann number fully developed flows in a rectangular duct with conducting walls; (ii) quasi-two-dimensional duct flow in the entry into a magnet; and (iii) flow past a magnetic obstacle. Comparisons have been performed against the traditional formulation based on the induced magnetic field ( B-formulation), demonstrating very good agreement.

  9. Variable Uses of Alternative Conceptions: A Case Study in Current Electricity.

    ERIC Educational Resources Information Center

    Heller, Patricia M.; Finley, Fred N.

    1992-01-01

    Fourteen elementary and middle school teachers from an inservice physics course were found to share a common core of strongly held propositions that formed a coherent, but incorrect and contradictory, model of the sequential flow of electrical current. Theoretical and practical implications of these teachers' beliefs with respect to both…

  10. Electric Current Filamentation at a Non-potential Magnetic Null-point Due to Pressure Perturbation

    NASA Astrophysics Data System (ADS)

    Jelínek, P.; Karlický, M.; Murawski, K.

    2015-10-01

    An increase of electric current densities due to filamentation is an important process in any flare. We show that the pressure perturbation, followed by an entropy wave, triggers such a filamentation in the non-potential magnetic null-point. In the two-dimensional (2D), non-potential magnetic null-point, we generate the entropy wave by a negative or positive pressure pulse that is launched initially. Then, we study its evolution under the influence of the gravity field. We solve the full set of 2D time dependent, ideal magnetohydrodynamic equations numerically, making use of the FLASH code. The negative pulse leads to an entropy wave with a plasma density greater than in the ambient atmosphere and thus this wave falls down in the solar atmosphere, attracted by the gravity force. In the case of the positive pressure pulse, the plasma becomes evacuated and the entropy wave propagates upward. However, in both cases, owing to the Rayleigh-Taylor instability, the electric current in a non-potential magnetic null-point is rapidly filamented and at some locations the electric current density is strongly enhanced in comparison to its initial value. Using numerical simulations, we find that entropy waves initiated either by positive or negative pulses result in an increase of electric current densities close to the magnetic null-point and thus the energy accumulated here can be released as nanoflares or even flares.

  11. Humanizing the Teaching of Physics through Storytelling: The Case of Current Electricity

    ERIC Educational Resources Information Center

    Hadzigeorgiou, Yannis

    2006-01-01

    The main purpose of this article is to discuss the potential role of storytelling in the teaching and learning of physics. I first present the main historical events concerning the discovery of current electricity by focusing on the Galvani-Volta controversy and the work of Michael Faraday. Then I outline a planning framework for teaching through…

  12. Effect of Polya Problem-Solving Model on Senior Secondary School Students' Performance in Current Electricity

    ERIC Educational Resources Information Center

    Olaniyan, Ademola Olatide; Omosewo, Esther O.; Nwankwo, Levi I.

    2015-01-01

    This study was designed to investigate the Effect of Polya Problem-Solving Model on Senior School Students' Performance in Current Electricity. It was a quasi experimental study of non- randomized, non equivalent pre-test post-test control group design. Three research questions were answered and corresponding three research hypotheses were tested…

  13. Metamorphosis of helical magnetorotational instability in the presence of axial electric current

    NASA Astrophysics Data System (ADS)

    Priede, Jānis

    2015-03-01

    This paper presents numerical linear stability analysis of a cylindrical Taylor-Couette flow of liquid metal carrying axial electric current in a generally helical external magnetic field. Axially symmetric disturbances are considered in the inductionless approximation corresponding to zero magnetic Prandtl number. Axial symmetry allows us to reveal an entirely new electromagnetic instability. First, we show that the electric current passing through the liquid can extend the range of helical magnetorotational instability (HMRI) indefinitely by transforming it into a purely electromagnetic instability. Two different electromagnetic instability mechanisms are identified. The first is an internal pinch-type instability, which is due to the interaction of the electric current with its own magnetic field. Axisymmetric mode of this instability requires a free-space component of the azimuthal magnetic field. When the azimuthal component of the magnetic field is purely rotational and the axial component is nonzero, a new kind of electromagnetic instability emerges. The latter, driven by the interaction of electric current with a weak collinear magnetic field in a quiescent fluid, gives rise to a steady meridional circulation coupled with azimuthal rotation.

  14. Video: Animals; Electric Current; Force; Science Activities. Learning in Science Project. Working Papers 51-54.

    ERIC Educational Resources Information Center

    Bell, Beverley; And Others

    Four papers to be used in conjunction with video-tapes developed by the Learning in Science Project are presented. Topic areas of the papers focus on: (1) animals; (2) electric current; (3) force; and (4) science activities. The first paper presents transcripts of class discussions focusing on the scientific meaning of the word animal. The second…

  15. Variable Uses of Alternative Conceptions: A Case Study in Current Electricity.

    ERIC Educational Resources Information Center

    Heller, Patricia; Finley, Fred

    In order to investigate the nature of students' prior knowledge of current electricity and how they applied their knowledge to different problems, 5 middle school science teachers and 11 elementary school teachers were given a written test that required them to: (1) predict what happens to the brightness of a bulb if a change is made to the…

  16. Sub-lethal levels of electric current elicit the biosynthesis of plant secondary metabolites.

    PubMed

    Kaimoyo, Evans; Farag, Mohamed A; Sumner, Lloyd W; Wasmann, Catherine; Cuello, Joel L; VanEtten, Hans

    2008-01-01

    Many secondary metabolites that are normally undetectable or in low amounts in healthy plant tissue are synthesized in high amounts in response to microbial infection. Various abiotic and biotic agents have been shown to mimic microorganisms and act as elicitors of the synthesis of these plant compounds. In the present study, sub-lethal levels of electric current are shown to elicit the biosynthesis of secondary metabolites in transgenic and non-transgenic plant tissue. The production of the phytoalexin (+)-pisatin by pea was used as the main model system. Non-transgenic pea hairy roots treated with 30-100 mA of electric current produced 13 times higher amounts of (+)-pisatin than did the non-elicited controls. Electrically elicited transgenic pea hairy root cultures blocked at various enzymatic steps in the (+)-pisatin biosynthetic pathway also accumulated intermediates preceding the blocked enzymatic step. Secondary metabolites not usually produced by pea accumulated in some of the transgenic root cultures after electric elicitation due to the diversion of the intermediates into new pathways. The amount of pisatin in the medium bathing the roots of electro-elicited roots of hydroponically cultivated pea plants was 10 times higher 24 h after elicitation than in the medium surrounding the roots of non-elicited control plants, showing not only that the electric current elicited (+)-pisatin biosynthesis but also that the (+)-pisatin was released from the roots. Seedlings, intact roots or cell suspension cultures of fenugreek (Trigonella foenum-graecum), barrel medic, (Medicago truncatula), Arabidopsis thaliana, red clover (Trifolium pratense) and chickpea (Cicer arietinum) also produced increased levels of secondary metabolites in response to electro-elicitation. On the basis of our results, electric current would appear to be a general elicitor of plant secondary metabolites and to have potential for application in both basic and commercial research. PMID:18331050

  17. Dielectric properties and study of AC electrical conduction mechanisms by non-overlapping small polaron tunneling model in Bis(4-acetylanilinium) tetrachlorocuprate(II) compound

    NASA Astrophysics Data System (ADS)

    Abkari, A.; Chaabane, I.; Guidara, K.

    2016-09-01

    In the present work, the synthesis and characterization of the Bis(4-acetylanilinium) tetrachlorocuprate(II) compound are presented. The structure of this compound is analyzed by X-ray diffraction which confirms the formation of single phase and is in good agreement the literature. Indeed, the Thermo gravimetric Analysis (TGA) shows that the decomposition of the compound is observed in the range of 420-520 K. However, the differential thermal analysis (DTA) indicates the presence of a phase transition at T=363 k. Furthermore, the dielectric properties and AC conductivity were studied over a temperature range (338-413 K) and frequency range (200 Hz-5 MHz) using complex impedance spectroscopy. Dielectric measurements confirmed such thermal analyses by exhibiting the presence of an anomaly in the temperature range of 358-373 K. The complex impedance plots are analyzed by an electrical equivalent circuit consisting of resistance, constant phase element (CPE) and capacitance. The activation energy values of two distinct regions are obtained from log σT vs 1000/T plot and are found to be E=1.27 eV (T<363 K) and E=1.09 eV (363 Kac conductivity, σac, has been analyzed by Jonscher's universal power law σ(ω)=σdc+Aωs. The value of s is to be temperature-dependent, which has a tendency to increase with temperature and the non-overlapping small polaron tunneling (NSPT) model is the most applicable conduction mechanism in the title compound. Complex impedance spectra of [C8H10NO]2CuCl4 at different temperatures.

  18. Line-of-sight magnetic flux imbalances caused by electric currents

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Rabin, Douglas

    1995-01-01

    Several physical and observational effects contribute to the significant imbalances of magnetic flux that are often observed in active regions. We consider an effect not previously treated: the influence of electric currents in the photosphere. Electric currents can cause a line-of-sight flux imbalance because of the directionality of the magnetic field they produce. Currents associated with magnetic flux tubes produce larger imbalances than do smoothly-varying distributions of flux and current. We estimate the magnitude of this effect for current densities, total currents, and magnetic geometry consistent with observations. The expected imbalances lie approximately in the range 0-15%, depending on the character of the current-carying fields and the angle from which they are viewed. Observationally, current-induced flux imbalances could be indicated by a statistical dependence of the imbalance on angular distance from disk center. A general study of magnetic flux balance in active regions is needed to determine the relative importance of other- probably larger- effects such as dilute flux (too weak to measure or rendered invisible by radiative transfer effects), merging with weak background fields, and long-range connections between active regions.

  19. Distribution of Dense and Current-Conducting Matter in the Discharge Channel upon Electrical Explosion of Wires in Vacuum

    SciTech Connect

    Tkachenko, Svetlana; Romanova, Vera; Mingaleev, Albert; Ter-Oganesyan, Alexey; Shelkovenko, Tatiana; Pikuz, Sergey

    2009-01-21

    Distribution of dense and current-conducting matter upon electrical wire explosion using electrical, optical, and UV diagnostics was studied. Wires of 25 {mu}m diameter and 12 mm length were exploded in vacuum by 10 kA current pulse having a 50 A/ns rate of current rise.

  20. Electric fields, conductivity, and estimated currents from aircraft overflights of electrified clouds

    NASA Astrophysics Data System (ADS)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.; Bailey, Jeffrey C.

    2009-05-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of clouds and thunderstorms. The measurements were made with NASA ER-2 and Altus-II aircrafts. Peak electric fields, with lightning transients removed, ranged from -1.0 kV m-1 to 16. kV m-1, with a mean value of 0.9 kV m-1. The median peak field was 0.29 kV m-1. Flash rates ranged from 0 to over 27 flashes min-1 with the mean flash rate of 1.2 flashes min-1. The median flash rate for an overpass was 0.25 flashes min-1. The positive plus negative conductivity ranged from 0.6 pS m-1 to 3.6 pS m-1 at the nominal flight altitudes of 15 to 20 km. The mean and median total conductivity was 2.2 pS m-1. Peak current densities during the overpasses ranged from -2.0 nA m-2 to 33. nA m-2. The mean peak current density was 1.9 nA m-2, and the median value was 0.6 nA m-2. Using the peak electric fields, a median field falloff with distance based on all overflights, and cylindrical storm symmetry, the total upward current flow from storms in our data set ranges from -1.3 to 9.4 A with a mean value of 0.8 A. The median total current was 0.27 A. The contributions from lightning field changes do not significantly affect the total derived currents. We found that 7% of the storms were producing current flows above the storms that were opposite in polarity from the standard role that thunderstorms play in the global electric circuit. Approximately one third of the storms had no detectable lightning during the overpasses but still had significant electric fields. Owing to a possible sampling bias, the fraction of nonlightning storms with electric fields may not reflect the global probability of these clouds.

  1. Multiple pole electromagnetic propulsion system with separated ballistic guidance and electrical current contact surfaces

    DOEpatents

    Sims, Jr., James R.

    2008-07-15

    An electromagnetic propulsion system is disclosed having separate rails for ballistic guidance and for carrying current. In this system, one or more pairs of ballistic guidance rails are provided, with each ballistic guidance rail having a pair of current carrying rails joined to it to form a combined rail. Each combined rail is separated electrically from adjacent combined rails by electrically insulating blocks. Each of the current carrying rails in a given combined rail pair have the same electrical polarity, and the polarities alternate between adjacent combined rails. Armatures contact current carrying rails to complete the circuit to generate the accelerating Lorentz force on the armatures. Bore riders on the sabot and/or projectile are in contact with the ballistic guide rails. Separation of the current carrying and ballistic guidance functions increases resistance of the system to rail movement and bending, as well as reduced wear/damage to the rails. In further embodiments, a circumferential over wrap providing compressive force on the rails further increases resistance of the system to rail movement and bending.

  2. [Methods of brain stimulation based on weak electric current--future tool for the clinician?].

    PubMed

    Kotilainen, Tuukka; Lehto, Soili M

    2016-01-01

    Methods of brain stimulation based on a weak electric current are non-invasive neuromodulation techniques. They include transcranial direct current, alternating current and random noise stimulation. These methods modify the membrane potential of neurons without triggering the action potential, and have been successfully utilized to influence cognition and regulation of emotions in healthy experimental subjects. In clinical studies, indications of the efficacy of these techniques have been obtained in the treatment of depression, schizophrenia, memory disorders and pain as well as in stroke rehabilitation. It is hoped that these techniques will become established as part of the care and rehabilitation of psychiatric and neurologic patients in the future. PMID:27017784

  3. Heating the sun's lower transition region with fine-scale electric currents

    NASA Technical Reports Server (NTRS)

    Rabin, D.; Moore, R.

    1984-01-01

    Analytical and observational data are presented to show that the lower transition zone, a 100 km thick region at 10,000-200,000 K between the solar chromosphere and corona, is heated by local electric currents. The study was spurred by correlations between the enhanced atmospheric heating and magnetospheric flux in the chromospheric network and active regions. Field aligned current heated flux loops are asserted to mainly reside in and make up most of the transition region. It is shown that thermal conduction from the sides of hot gas columns generated by the current dissipation is the source of the observed temperature distribution in the transition regions.

  4. Column buckling of doubly parallel slender nanowires carrying electric current acted upon by a magnetic field

    NASA Astrophysics Data System (ADS)

    Kiani, Keivan

    2016-08-01

    Axial buckling of current-carrying double-nanowire-systems immersed in a longitudinal magnetic field is aimed to be explored. Each nanowire is affected by the magnetic forces resulted from the externally exerted magnetic field plus the magnetic field resulted from the passage of electric current through the adjacent nanowire. To study the problem, these forces are appropriately evaluated in terms of transverse displacements. Subsequently, the governing equations of the nanosystem are constructed using Euler-Bernoulli beam theory in conjunction with the surface elasticity theory of Gurtin and Murdoch. Using a meshless technique and assumed mode method, the critical compressive buckling load of the nanosystem is determined. In a special case, the obtained results by these two numerical methods are successfully checked. The roles of the slenderness ratio, electric current, magnetic field strength, and interwire distance on the axial buckling load and stability behavior of the nanosystem are displayed and discussed in some detail.

  5. A current monitoring system for diagnosing electrical failures in induction motors

    NASA Astrophysics Data System (ADS)

    Acosta, G. G.; Verucchi, C. J.; Gelso, E. R.

    2006-05-01

    Induction motors are critical components in industrial processes. A motor failure may yield an unexpected interruption at the industrial plant, with consequences in costs, product quality, and safety. Many of these faulty situations in three phase induction motors have an electrical reason. Among different detection approaches proposed in the literature, those based on stator current monitoring are advantageous due to its non-invasive properties. One of these techniques resorts to spectrum analysis of machine line current. Another non-invasive technique is the Extended Park's Vector Approach, which allows the detection of inter-turn short circuits in the stator winding. This article presents the development of an on-line current monitoring system that uses both techniques for fault detection and diagnosis in the stator and in the rotor. Based on experimental observations and on the knowledge of the electrical machine, a knowledge-based system was constructed in order to carry out the diagnosis task from these estimated data.

  6. AC Loss Measurements on a 2G YBCO Coil

    SciTech Connect

    Rey, Christopher M; Duckworth, Robert C; Schwenterly, S W

    2011-01-01

    The Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES) to continue development of HTS power transformers. For compatibility with the existing power grid, a commercially viable HTS transformer will have to operate at high voltages in the range of 138 kV and above, and will have to withstand 550-kV impulse voltages as well. Second-generation (2G) YBCO coated conductors will be required for an economically-competitive design. In order to adequately size the refrigeration system for these transformers, the ac loss of these HTS coils must be characterized. Electrical AC loss measurements were conducted on a prototype high voltage (HV) coil with co-wound stainless steel at 60 Hz in a liquid nitrogen bath using a lock-in amplifier technique. The prototype HV coil consisted of 26 continuous (without splice) single pancake coils concentrically centered on a stainless steel former. For ac loss measurement purposes, voltage tap pairs were soldered across each set of two single pancake coils so that a total of 13 separate voltage measurements could be made across the entire length of the coil. AC loss measurements were taken as a function of ac excitation current. Results show that the loss is primarily concentrated at the ends of the coil where the operating fraction of critical current is the highest and show a distinct difference in current scaling of the losses between low current and high current regimes.

  7. Global Electric Circuit Implications of Total Current Measurements over Electrified Clouds

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2009-01-01

    We determined total conduction (Wilson) currents and flash rates for 850 overflights of electrified clouds spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, with and without lightning, and with positive and negative Wilson currents. We combined these individual storm overflight statistics with global diurnal lightning variation data from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) to estimate the thunderstorm and electrified shower cloud contributions to the diurnal variation in the global electric circuit. The contributions to the global electric circuit from lightning producing clouds are estimated by taking the mean current per flash derived from the overflight data for land and ocean overflights and combining it with the global lightning rates (for land and ocean) and their diurnal variation derived from the LIS/OTD data. We estimate the contribution of non-lightning producing electrified clouds by assuming several different diurnal variations and total non-electrified storm counts to produce estimates of the total storm currents (lightning and non-lightning producing storms). The storm counts and diurnal variations are constrained so that the resultant total current diurnal variation equals the diurnal variation in the fair weather electric field (+/-15%). These assumptions, combined with the airborne and satellite data, suggest that the total mean current in the global electric circuit ranges from 2.0 to 2.7 kA, which is greater than estimates made by others using other methods.

  8. Electric fields and currents of stable drifting auroral arcs in the evening sector

    NASA Astrophysics Data System (ADS)

    Aikio, A. T.; Lakkala, T.; Kozlovsky, A.; Williams, P. J. S.

    2002-12-01

    The spatial distribution of electric fields, conductances, and currents of steadily drifting medium-scale (15-50 km) arcs in the evening sector (20-23 magnetic local time (MLT)) is obtained from European Incoherent Scatter Radar (EISCAT) and optical ground-based measurements. The current systems of stable arcs residing in the northward convection electric field region show a consistent pattern: currents flow downward on the equatorward side of the arcs, then poleward, and upward from the arcs. In one event where the arcs are located in a region of convection reversals, the current pattern is more complicated. Most of the arcs are associated with an enhanced northward-directed electric field region on the equatorward side of the arc, colocated with downward field-aligned currents (FACs) and suppressed E and F region electron densities. The width of the region of the enhanced electric field is one to four times the width of the arc. In some cases, the electron density reduction is so pronounced that the region can be described as an auroral ionospheric density cavity. The electrostatic magnetosphere-ionosphere coupling model of arcs predicts that the width L of an arc is related to the ionospheric Pedersen conductance ΣP and the "field-aligned conductance" K by ?. This study shows that stable medium-scale arcs in the evening sector obey this equation. A value of K = 2 × 10-8 S m-2 is obtained for 15-35 km wide arcs. It is argued that the large value of the field-aligned conductance cannot be interpreted in terms of the adiabatic theory. Possibly the high value of K results from nonadiabatic processes acting on the current-carrying electrons.

  9. Direct current electrical potential measurement of the growth of small cracks

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Slavik, Donald C.; Piascik, Robert S.; Van Stone, Robert H.

    1992-01-01

    The analytical and experimental aspects of the direct-current electrical potential difference (dcEPD) method for continuous monitoring of the growth kinetics of short (50 to 500 microns) fatigue cracks are reviewed, and successful applications of the deEPD method to study fatigue crack propagation in a variety of metallic alloys exposed to various environments are described. Particular attention is given to the principle of the dcEPD method, the analytical electrical potential calibration relationships, and the experimental procedures and equipment.

  10. Direct current electrical potential measurement of the growth of small cracks

    NASA Astrophysics Data System (ADS)

    Gangloff, Richard P.; Slavik, Donald C.; Piascik, Robert S.; van Stone, Robert H.

    The analytical and experimental aspects of the direct-current electrical potential difference (dcEPD) method for continuous monitoring of the growth kinetics of short (50 to 500 microns) fatigue cracks are reviewed, and successful applications of the deEPD method to study fatigue crack propagation in a variety of metallic alloys exposed to various environments are described. Particular attention is given to the principle of the dcEPD method, the analytical electrical potential calibration relationships, and the experimental procedures and equipment.

  11. Leakage current measurement of protective equipment insulating materials used in electrical installations

    NASA Astrophysics Data System (ADS)

    Buică, G.; Dobra, R.; Păsculescu, D.; Tătar, A.

    2016-06-01

    This research describes the behaviour of equipment and safety devices during use in extreme environmental conditions, in order to establish the technical conditions and additional health and safety requirements during operation, to ensure the health and safety of users, regardless of conditions and working environment in which they are use. The studies have been conducted both on new equipment and means of protection used in electrical installations. There has been evaluated protective equipment made of insulating rubber, reinforced fiberglass or PVC. They have been followed the technical characteristics and protection against electric shock by measuring the leakage current of different insulating materials.

  12. AC loss in superconducting tapes and cables

    NASA Astrophysics Data System (ADS)

    Oomen, Marijn Pieter

    High-temperature superconductors are developed for use in power-transmission cables, transformers and motors. The alternating magnetic field in these devices causes AC loss, which is a critical factor in the design. The study focuses on multi-filament Bi-2223/Ag tapes exposed to a 50-Hz magnetic field at 77 K. The AC loss is measured with magnetic, electric and calorimetric methods. The results are compared to theoretical predictions based mainly on the Critical-State Model. The loss in high- temperature superconductors is affected by their characteristic properties: increased flux creep, high aspect ratio and inhomogeneties. Filament intergrowths and a low matrix resistivity cause a high coupling-current loss especially when the filaments are fully coupled. When the wide side of the tape is parallel to the external magnetic field, the filaments are decoupled by twisting. In a perpendicular field the filaments can be decoupled only by combining a short twist pitch with a transverse resistivity much higher than that of silver. The arrangement of the inner filaments determines the transverse resistivity. Ceramic barriers around the filaments cause partial decoupling in perpendicular magnetic fields at power frequencies. The resultant decrease in AC loss is greater than the accompanying decrease in critical current. With direct transport current in alternating magnetic field, the transport-current loss is well described with a new model for the dynamic resistance. The Critical- State Model describes well the magnetisation and total AC loss in parallel magnetic fields, at transport currents up to 0.7 times the critical current. When tapes are stacked face-to-face in a winding, the AC-loss density in perpendicular fields is greatly decreased due to the mutual shielding of the tapes. Coupling currents between the tapes in a cable cause an extra AC loss, which is reduced by a careful cable design. The total AC loss in complex devices with many tapes is generally well

  13. Role of peroxide in AC electrical field exposure effects on Friend murine erythroleukemia cells during dielectrophoretic manipulations

    PubMed Central

    Wang, Xujing; Yang, Jun; Gascoyne, Peter R.C.

    2009-01-01

    The effects of AC field exposure on the viability and proliferation of mammalian cells under conditions appropriate for their dielectrophoretic manipulation and sorting were investigated using DS19 murine erythroleukemia cells as a model system. The frequency range 100 Hz-10 MHz and medium conductivities of 10 mS/m, 30 mS/m and 56 mS/m were studied for fields generated by applying signals of up to 7V peak to peak (p-p) to a parallel electrode array having equal electrode widths and gaps of 100 μm. Between 1 kHz and 10 MHz, cell viability after up to 40 min of field exposure was found to be above 95% and cells were able to proliferate. However, cell growth lag phase was extended with decreasing field frequency and with increasing voltage, medium conductivity and exposure duration. Modified growth behavior was not passed on to the next cell passage, indicating that field exposure did not cause permanent alterations in cell proliferation characteristics. Cell membrane potentials induced by field exposure were calculated and shown to be well below values typically associated with cell damage. Furthermore, medium treated by field exposure and then added to untreated cells produced the same modifications of growth as exposing cells directly, and these modifications occurred only when the electrode polarization voltage exceeded a threshold of ~0.4 V p-p. These findings suggested that electrochemical products generated during field exposure were responsible for the changes in cell growth. Finally, it was found that hydrogen peroxide was produced when sugar-containing media were exposed to fields and that normal cell growth could be restored by addition of catalase to the medium, whether or not field exposure occurred in the presence of cells. These results show that AC fields typically used for dielectrophoretic manipulation and sorting of cells do not damage DS19 cells and that cell alterations arising from electrochemical effects can be completely mitigated. PMID

  14. ac electroosmosis in rectangular microchannels.

    PubMed

    Campisi, Michele; Accoto, Dino; Dario, Paolo

    2005-11-22

    Motivated by the growing interest in ac electroosmosis as a reliable no moving parts strategy to control fluid motion in microfluidic devices for biomedical applications, such as lab-on-a-chip, we study transient and steady-state electrokinetic phenomena (electroosmosis and streaming currents) in infinitely extended rectangular charged microchannels. With the aid of Fourier series and Laplace transforms we provide a general formal solution of the problem, which is used to study the time-dependent response to sudden ac applied voltage differences in case of finite electric double layer. The Debye-Huckel approximation has been adopted to allow for an algebraic solution of the Poisson-Boltzmann problem in Fourier space. We obtain the expressions of flow velocity profiles, flow rates, streaming currents, as well as expressions of the complex hydraulic and electrokinetic conductances. We analyze in detail the dependence of the electrokinetic conductance on the extension of linear dimensions relative to the Debye length, with an eye on finite electric double layer effects. PMID:16351310

  15. Application of dynamic displacement current for diagnostics of subnanosecond breakdowns in an inhomogeneous electric field

    SciTech Connect

    Shao Tao; Zhang Cheng; Yan Ping; Tarasenko, Victor F.; Burachenko, Alexandr G.; Rybka, Dmitry V.; Kostyrya, Igor' D.; Lomaev, Mikhail I.; Baksht, Evgeni Kh.

    2013-05-15

    The breakdown of different air gaps at high overvoltages in an inhomogeneous electric field was investigated with a time resolution of up to 100 ps. Dynamic displacement current was used for diagnostics of ionization processes between the ionization wave front and a plane anode. It is demonstrated that during the generation of a supershort avalanche electron beam (SAEB) with amplitudes of {approx}10 A and more, conductivity in the air gaps at the breakdown stage is ensured by the ionization wave, whose front propagates from the electrode of small curvature radius, and by the dynamic displacement current between the ionization wave front and the plane electrode. The amplitude of the dynamic displacement current measured by a current shunt is 100 times greater than the SAEB. It is shown that with small gaps and with a large cathode diameter, the amplitude of the dynamic displacement current during a subnanosecond rise time of applied pulse voltage can be higher than 4 kA.

  16. Application of dynamic displacement current for diagnostics of subnanosecond breakdowns in an inhomogeneous electric field

    NASA Astrophysics Data System (ADS)

    Shao, Tao; Tarasenko, Victor F.; Zhang, Cheng; Burachenko, Alexandr G.; Rybka, Dmitry V.; Kostyrya, Igor'D.; Lomaev, Mikhail I.; Baksht, Evgeni Kh.; Yan, Ping

    2013-05-01

    The breakdown of different air gaps at high overvoltages in an inhomogeneous electric field was investigated with a time resolution of up to 100 ps. Dynamic displacement current was used for diagnostics of ionization processes between the ionization wave front and a plane anode. It is demonstrated that during the generation of a supershort avalanche electron beam (SAEB) with amplitudes of ˜10 A and more, conductivity in the air gaps at the breakdown stage is ensured by the ionization wave, whose front propagates from the electrode of small curvature radius, and by the dynamic displacement current between the ionization wave front and the plane electrode. The amplitude of the dynamic displacement current measured by a current shunt is 100 times greater than the SAEB. It is shown that with small gaps and with a large cathode diameter, the amplitude of the dynamic displacement current during a subnanosecond rise time of applied pulse voltage can be higher than 4 kA.

  17. Pulsed currents carried by whistlers. IV. Electric fields and radiation excited by an electrode

    SciTech Connect

    Stenzel, R.L.; Urrutia, J.M.; Rousculp, C.L.

    1995-04-01

    Electromagnetic properties of current pulses carried by whistler wave packets are obtained from a basic laboratory experiment. While the magnetic field and current density are described in the preceding companion paper (Part III), the present analysis starts with the electric field. The inductive and space charge electric field contributions are separately calculated in Fourier space from the measured magnetic field and Ohm`s law along B{sub 0}. Inverse Fourier transformation yields the total electric field in space and time, separated into rotational and divergent contributions. The space-charge density in whistler wave packets is obtained. The cross-field tensor conductivity is determined. The frozen-in condition is nearly satisfied, {bold E}+{bold v}{sub {ital e}}{times}{bold B}{congruent}0. The dissipation is obtained from Poynting`s theorem. The waves are collisionally damped; Landau damping is negligible. A radiation resistance for the electrode is determined. Analogous to Poynting`s theorem, the transport of helicity is analyzed. Current helicity is generated by a flow of helicity between pulses traveling in opposite directions which carry opposite signs of helicity. Helicity is dissipated by collisions. These observations complete a detailed description of whistler/current pulses which can occur in various laboratory and space plasmas. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  18. Electrical Motor Current Signal Analysis using a Dynamic Time Warping Method for Fault Diagnosis

    NASA Astrophysics Data System (ADS)

    Zhen, D.; Alibarbar, A.; Zhou, X.; Gu, F.; Ball, A. D.

    2011-07-01

    This paper presents the analysis of phase current signals to identify and quantify common faults from an electrical motor based on dynamic time warping (DTW) algorithm. In condition monitoring, measurements are often taken when the motor undertakes varying loads and speeds. The signals acquired in these conditions show similar profiles but have phase shifts, which do not line up in the time-axis for adequate comparison to discriminate the small changes in machine health conditions. In this study, DTW algorithms are exploited to align the signals to an ideal current signal constructed based on average operating conditions. In this way, comparisons between the signals can be made directly in the time domain to obtain residual signals. These residual signals are then based on to extract features for detecting and diagnosing the faults of the motor and components operating under different loads and speeds. This study provides a novel approach to the analysis of electrical current signal for diagnosis of motor faults. Experimental data sets of electrical motor current signals have been studied using DTW algorithms. Results show that DTW based residual signals highlights more the modulations due to the compressor process. And hence can obtain better fault detection and diagnosis results.

  19. Direct current uninterruptible power supply method and system

    DOEpatents

    Sinha, Gautam

    2003-12-02

    A method and system are described for providing a direct current (DC) uninterruptible power supply with the method including, for example: continuously supplying fuel to a turbine; converting mechanical power from the turbine into alternating current (AC) electrical power; converting the AC electrical power to DC power within a predetermined voltage level range; supplying the DC power to a load; and maintaining a DC load voltage within the predetermined voltage level range by adjusting the amount of fuel supplied to the turbine.

  20. Influence of electric current pulses on the solidification of Cu-Bi-Sn immiscible alloys

    PubMed Central

    Hongxiang, Jiang; Jie, He; Jiuzhou, Zhao

    2015-01-01

    Continuous solidification experiments were carried out with Cu-Bi-Sn alloys under the effects of Electric Current Pulses (ECPs). A model describing the microstructure evolution was developed. The formation of the microstructure in the continuously solidified alloys was calculated. The calculations demonstrated that ECPs mainly affect the solidification process through changing the energy barrier for the nucleation of the minority phase droplets (MPDs). When the matrix liquid has a lower electric conductivity compared to the MPD, the ECPs lead to a decrease in the energy barrier for the nucleation of the MPDs which then promote the formation of a finely dispersed microstructure. When the matrix liquid has a higher electric conductivity compared to the MPD, the ECPs cause an increase in the energy barrier for the nucleation and lead to the formation of a phase segregated microstructure. PMID:26228180

  1. New contactless eddy current non-destructive methodology for electric conductivity measurement

    NASA Astrophysics Data System (ADS)

    Bouchala, T.; Abdelhadi, B.; Benoudjit, A.

    2015-01-01

    In this paper, a new method of contactless electric conductivity measurement is developed. This method is essentially based on the association of the coupled electric field forward model, which we have recently developed, with a simple and efficient research algorithm. The proposed method is very fast because 1.3 s are sufficient to calculate electric conductivity, in a CPU of 2 GHz and RAM of 3 GB, for a starting research interval of 1.72-17.2 %IACS and tolerance of 1.72 × 10- 5 %IACS. The study of the calculation time according to mesh density and starting interval width has showed that an optimal choice has to be made in order to improve the rapidity while preserving its precision. Considering its rapidity and its simplicity of implementation, this method is more adapted, in comparison to direct current techniques using Van der Pauw geometry, for automated applications.

  2. Simulation of electrostatic ion instabilities in the presence of parallel currents and transverse electric fields

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ganguli, G.; Lee, Y. C.; Palmadesso, P. J.

    1989-01-01

    A spatially two-dimensional electrostatic PIC simulation code was used to study the stability of a plasma equilibrium characterized by a localized transverse dc electric field and a field-aligned drift for L is much less than Lx, where Lx is the simulation length in the x direction and L is the scale length associated with the dc electric field. It is found that the dc electric field and the field-aligned current can together play a synergistic role to enable the excitation of electrostatic waves even when the threshold values of the field aligned drift and the E x B drift are individually subcritical. The simulation results show that the growing ion waves are associated with small vortices in the linear stage, which evolve to the nonlinear stage dominated by larger vortices with lower frequencies.

  3. Fluidic Dielectrophoresis of Aqueous Electrical Interfaces

    NASA Astrophysics Data System (ADS)

    Gagnon, Zachary

    2014-11-01

    To date, alternating current (AC) electric fields have been exploited to dielectrophoretically manipulate bubbles, liquid drops, particles, biomolecules and cells. Research and applications in this area, however, has been primarily limited to the interfaces formed between two immiscible metal-liquid, particle-liquid, or gas-liquid surfaces on particles. The influence of AC electric fields across aqueous liquid-liquid interfaces remains relatively unexplored. Fundamentally, many electrokinetic phenomena arise from discontinuities in ionic flux and charge accumulation at electrical interfaces, and here I explore the influence of AC electric fields on the electrical interface created between two aqueous liquids with disparaging electrical properties Using a microfluidic channel with embedded electrodes, two fluid streams - one with a greater electrical conductivity, the other a greater dielectric constant - were made to flow side-by-side. An AC electric field was applied across the flow channel and fluid was observed to displace across the phase interface. The displacement direction is AC frequency dependent, and is attributed to the Maxwell-Wagner interfacial polarization at the liquid-liquid electrical interface. At low AC frequency, below the interfacial charge relaxation time, the high conductive stream is observed to displace into the high dielectric stream. Above this frequency, the direction of liquid injection reverses, and the high dielectric stream injects into the high conductivity stream. An analytical model is presented for this liquid crossover frequency, and applied towards biosensing applications.

  4. Summary of Almost 20 Years of Storm Overflight Electric Field, Conductivity, Flash Rates, and Electric Current Statistics

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard J.; Mach, Douglas M.; Bateman, Monte J.; Bailey, Jeffrey C.

    2011-01-01

    We determined total conduction currents and flash rates for around 900 high-altitude aircraft overflights of electrified clouds over 17 years. The overflights include a wide geographical sample of storms over land and ocean, with and without lightning, and with positive (i.e., upward-directed) and negative current. Peak electric field, with lightning transients removed, ranged from -1.0 kV m(sup -1) to 16. kV m(sup -1), with mean (median) of 0.9 kV m(sup -1) (0.29 kV m(sup -1)). Total conductivity at flight altitude ranged from 0.6 pS m(sup -1) to 3.6 pS m(sup -1), with mean and median of 2.2 pS m(sup -1). Peak current densities ranged from -2.0 nA m(sup -2) to 33.0 nA m(sup -2) with mean (median) of 1.9 nA m(sup -2) (0.6 nA m(sup -2)). Total upward current flow from storms in our dataset ranged from -1.3 to 9.4 A. The mean current for storms with lightning is 1.6 A over ocean and 1.0 A over land. The mean current for electrified shower clouds (i.e. electrified storms without lightning) is 0.39 A for ocean and 0.13 A for land. About 78% (43%) of the land (ocean) storms have detectable lightning. Land storms have 2.8 times the mean flash rate as ocean storms (2.2 versus 0.8 flashes min(sup -1), respectively). Approximately 7% of the overflights had negative current. The mean and median currents for positive (negative) polarity storms are 1.0 and 0.35 A (-0.30 and -0.26 A). We found no regional or latitudinal-based patterns in our storm currents, nor support for simple scaling laws between cloud top height and lightning flash rate.

  5. Thermionic triode generates ac power

    NASA Technical Reports Server (NTRS)

    Kniazzeh, A. G. F.; Scharz, F. C.

    1970-01-01

    Electrostatic grid controls conduction cycle of thermionic diode to convert low dc output voltages to high ac power without undesirable power loss. An ac voltage applied to the grid of this new thermionic triode enables it to convert heat directly into high voltage electrical power.

  6. Physicochemical properties and structural changes in vegetative tissues as affected by a direct current electrical field.

    PubMed

    Zvitov, R; Nussinovitch, A

    2001-01-01

    Cylindrical pieces of potato, sweet potato, kohlrabi, radish, and pear were interposed between a pair of electrodes, and a direct current was applied. A special custom-made apparatus enabled the use of differently shaped electrodes. The electrical field was applied for 1 min at 40 V/cm and caused a reduction in specimen weight by a minimal value of 2.7% of initial weight in sweet potato to a maximum 38.4% in pear. The affected area of the tissue resembled the shape of the electrode. Pores were produced in the tissue (from the anode side), possibly promoting slow release of minerals and other cell components from the contracted specimens. From the cathode side, cell "sealing" could be observed. Weight loss was dependent on the mechanical properties of the nontreated vegetative tissue specimens. After confirmation that all samples pass through induced electrical shrinkage, further work, executed only on potato, demonstrated that after electrical treatment the samples were less brown (higher L values). In addition, a dependence of weight loss on current intensity, electrode diameter, and surface ratio between the electrode and specimen was shown. The reduction in weight loss could be useful for initial drying of vegetative materials. Indirect proof of a decrease in enzyme activity as a result of electrical field application could be beneficial in replacing traditional methods for browning prevention. PMID:11735447

  7. Tests of an alternating current propulsion subsystem for electric vehicles on a road load simulator

    NASA Technical Reports Server (NTRS)

    Stenger, F. J.

    1982-01-01

    The test results of a breadboard version of an ac electric-vehicle propulsion subsystem are presented. The breadboard was installed in the NASA Lewis Research Center Road Load Simulator facility and tested under steady-state and transient conditions. Steady-state tests were run to characterize the system and component efficiencies over the complete speed-torque range within the capability of the propulsion subsystem in the motoring mode of operation. Transient tests were performed to determine the energy consumption of the breadboard over the acceleration and cruise portions of SAE J227 and driving schedules B, C, and D. Tests in the regenerative mode were limited to the low-gear-speed range of the two speed transaxle used in the subsystem. The maximum steady-state subsystem efficiency observed for the breadboard was 81.5 percent in the high-gear-speed range in the motoring mode, and 76 percent in the regenerative braking mode (low gear). The subsystem energy efficiency during the transient tests ranged from 49.2 percent for schedule B to 68.4 percent for Schedule D.

  8. Tests of an alternating current propulsion subsystem for electric vehicles on a road load simulator

    NASA Astrophysics Data System (ADS)

    Stenger, F. J.

    1982-12-01

    The test results of a breadboard version of an ac electric-vehicle propulsion subsystem are presented. The breadboard was installed in the NASA Lewis Research Center Road Load Simulator facility and tested under steady-state and transient conditions. Steady-state tests were run to characterize the system and component efficiencies over the complete speed-torque range within the capability of the propulsion subsystem in the motoring mode of operation. Transient tests were performed to determine the energy consumption of the breadboard over the acceleration and cruise portions of SAE J227 and driving schedules B, C, and D. Tests in the regenerative mode were limited to the low-gear-speed range of the two speed transaxle used in the subsystem. The maximum steady-state subsystem efficiency observed for the breadboard was 81.5 percent in the high-gear-speed range in the motoring mode, and 76 percent in the regenerative braking mode (low gear). The subsystem energy efficiency during the transient tests ranged from 49.2 percent for schedule B to 68.4 percent for Schedule D.

  9. Electric Current-Induced Detachment of Staphylococcus epidermidis Biofilms from Surgical Stainless Steel

    PubMed Central

    van der Borden, Arnout J.; van der Werf, Hester; van der Mei, Henny C.; Busscher, Henk J.

    2004-01-01

    Biomaterial-centered infections of orthopedic percutaneous implants are serious complications which can ultimately lead to osteomyelitis, with devastating effects on bone and surrounding tissues, especially since the biofilm mode of growth offers protection against antibiotics and since removal frequently is the only ultimate solution. Recently, it was demonstrated that as a possible pathway to prevent infections of percutaneous stainless steel implants, electric currents of 60 to 100 μA were effective at stimulating the detachment of initially adhering staphylococci from surgical stainless steel. However, initially adhering bacteria are known to adhere more reversibly than bacteria growing in the later stages of biofilm formation. Hence, the aim of this study was to examine whether a growing Staphylococcus epidermidis biofilm can be stimulated to detach from surgical stainless steel by the use of electric currents. In separate experiments, four currents, i.e., 60 and 100 μA of direct current (DC) and 60 and 100 μA of block current (50% duty cycle, 1 Hz), were applied for 360 min to stimulate the detachment of an S. epidermidis biofilm that had grown for 200 min. A 100-μA DC yielded 78% detachment, whereas a 100-μA block current under the same experimental conditions yielded only 31% detachment. The same trend was found for 60 μA, with 37% detachment for a DC and 24% for a block current. Bacteria remaining on the surface after the current application were less viable than they were prior to the current application, as demonstrated by confocal laser scanning microscopy. In conclusion, these results suggest that DCs are preferred for curing infections. PMID:15528555

  10. Relativistic Néel-Order Fields Induced by Electrical Current in Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Železný, J.; Gao, H.; Výborný, K.; Zemen, J.; Mašek, J.; Manchon, Aurélien; Wunderlich, J.; Sinova, Jairo; Jungwirth, T.

    2014-10-01

    We predict that a lateral electrical current in antiferromagnets can induce nonequilibrium Néel-order fields, i.e., fields whose sign alternates between the spin sublattices, which can trigger ultrafast spin-axis reorientation. Based on microscopic transport theory calculations we identify staggered current-induced fields analogous to the intraband and to the intrinsic interband spin-orbit fields previously reported in ferromagnets with a broken inversion-symmetry crystal. To illustrate their rich physics and utility, we consider bulk Mn2Au with the two spin sublattices forming inversion partners, and a 2D square-lattice antiferromagnet with broken structural inversion symmetry modeled by a Rashba spin-orbit coupling. We propose an antiferromagnetic memory device with electrical writing and reading.

  11. Development of fiber-optic current sensing technique and its applications in electric power systems

    NASA Astrophysics Data System (ADS)

    Kurosawa, Kiyoshi

    2014-03-01

    This paper describes the development and applications of a fiber-optic electric current sensing technique with the stable properties and compact, simple, and flexible structure of the sensing device. The special characteristics of the sensors were achieved by use of the special low birefringence fiber as the Faraday-effect sensing element and were also achieved with creation of sensing schemes which matched with the features of the fiber. Making use of the excellent features of the sensing technique, various current monitoring devices and systems were developed and applied practically for the control and maintenance in the electric power facility. In this paper, the design and performance of the sensing devices are introduced first. After that, examples of the application systems practically applied are also introduced, including fault section/point location systems for power transmission cable lines.

  12. Experimental Demonstration of a Multiphysics Cloak: Manipulating Heat Flux and Electric Current Simultaneously

    NASA Astrophysics Data System (ADS)

    Ma, Yungui; Liu, Yichao; Raza, Muhammad; Wang, Yudong; He, Sailing

    2014-11-01

    Invisible cloaks have been widely explored in many different physical systems but usually for a single phenomenon for one device. In this Letter we make an experimental attempt to show a multidisciplinary framework that has the capability to simultaneously respond to two different physical excitations according to predetermined scenarios. As a proof of concept, we implement an electric-thermal bifunctional device that can guide both electric current and heat flux "across" a strong `scatterer' (air cavity) and restore their original diffusion directions as if nothing exists along the paths, thus rendering dual cloaking effects for objects placed inside the cavity. This bifunctional cloaking performance is also numerically verified for a line-source nonuniform excitation. Our results and the fabrication technique presented here will help broaden the current research scope for multiple disciplines and may pave a way to manipulate multiple flows and create new functional devices, e.g., for on-chip applications.

  13. Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously.

    PubMed

    Ma, Yungui; Liu, Yichao; Raza, Muhammad; Wang, Yudong; He, Sailing

    2014-11-14

    Invisible cloaks have been widely explored in many different physical systems but usually for a single phenomenon for one device. In this Letter we make an experimental attempt to show a multidisciplinary framework that has the capability to simultaneously respond to two different physical excitations according to predetermined scenarios. As a proof of concept, we implement an electric-thermal bifunctional device that can guide both electric current and heat flux "across" a strong 'scatterer' (air cavity) and restore their original diffusion directions as if nothing exists along the paths, thus rendering dual cloaking effects for objects placed inside the cavity. This bifunctional cloaking performance is also numerically verified for a line-source nonuniform excitation. Our results and the fabrication technique presented here will help broaden the current research scope for multiple disciplines and may pave a way to manipulate multiple flows and create new functional devices, e.g., for on-chip applications. PMID:25432046

  14. High-power CMOS current driver with accurate transconductance for electrical impedance tomography.

    PubMed

    Constantinou, Loucas; Triantis, Iasonas F; Bayford, Richard; Demosthenous, Andreas

    2014-08-01

    Current drivers are fundamental circuits in bioimpedance measurements including electrical impedance tomography (EIT). In the case of EIT, the current driver is required to have a large output impedance to guarantee high current accuracy over a wide range of load impedance values. This paper presents an integrated current driver which meets these requirements and is capable of delivering large sinusoidal currents to the load. The current driver employs a differential architecture and negative feedback, the latter allowing the output current to be accurately set by the ratio of the input voltage to a resistor value. The circuit was fabricated in a 0.6- μm high-voltage CMOS process technology and its core occupies a silicon area of 0.64 mm (2) . It operates from a ± 9 V power supply and can deliver output currents up to 5 mA p-p. The accuracy of the maximum output current is within 0.41% up to 500 kHz, reducing to 0.47% at 1 MHz with a total harmonic distortion of 0.69%. The output impedance is 665 k Ω at 100 kHz and 372 k Ω at 500 kHz. PMID:25073130

  15. DUAL ALKALI ACCEPTANCE TEST AT LOUISVILLE GAS AND ELECTRIC COMPANY; VOLUME I. ACCEPTANCE TEST AND APPENDICES A-C

    EPA Science Inventory

    The report gives results of the completed acceptance test series run on the dual alkali system serving Louisville Gas and Electric Company's Cane Run Unit 6 boiler. This volume contains the process description and a discussion of the test results, operating history, and performan...

  16. Vertebral Growth Modulation by Electrical Current in an Animal Model: Potential Treatment for Scoliosis

    PubMed Central

    Dodge, George R.; Bowen, J. Richard; Jeong, Changhoon

    2010-01-01

    Background The concept of modulating spinal growth to correct scoliosis is intriguing, and this study proposes a new model. Inhibition of vertebral growth on the convex side of a curve would allow continued normal growth on the concave side to correct the scoliosis. In a previous study, we induced bony bridges across the physis of the femur producing an epiphysiodesis in rabbits by using a stimulator modified to deliver a current of 50 μA. The present study builds on this finding to design a model with an aim of inhibiting growth in a unilateral peripheral portion of the vertebral endplate physis, which induces asymmetric spinal growth. Methods The study was conducted with 8-week-old rabbits; six were treated with electrical current via an implantable 4-lead device; three were age matched normal rabbits. The device was implanted and delivered a constant current of 50 μA from each electrode, continuously for 6 weeks. Weekly radiograph monitoring and endpoint histology were performed. Results Spinal growth was modified by inducing asymmetric growth of the vertebra of young rabbits using electric stimulators delivering 50 μA of direct current through electrodes implanted in a left peripheral portion of the endplate physis. Conclusion This concept study, based on our previous study, involved a method and device for inhibiting growth in one aspect of the vertebral endplate using electrical current at an amplitude that induced a hemiepiphysiodesis. Our results demonstrated that this technique both establishes an in vivo model of scoliosis and suggests that if this technique were applied to an existing curve it could potentially induce asymmetrical growth of the spine, thereby correcting scoliosis by continuing the normal growth on the concavity of the curve. Clinical Relevance A potential new method for modulating spinal growth was developed, and, with further research, this method may be useful in treating children with scoliosis by delivering a growth

  17. Design of a high-temperature superconductor current lead for electric utility SMES

    SciTech Connect

    Niemann, R.C.; Cha, Y.S.; Hull, J.R.; Rey, C.M.; Dixon, K.D.

    1995-01-01

    Current leads that rely on high-temperature superconductors (HTSs) to deliver power to devices operating at liquid helium temperature have the potential to reduce refrigeration requirements to levels significantly below those achievable with conventional leads. The design of HTS current leads suitable for use in near-term superconducting magnetic energy storage (SMES) is in progress. The SMES system has an 0.5 MWh energy capacity and a discharge power of 30 MW. Lead-design considerations include safety and reliability, electrical and thermal performance, structural integrity, manufacturability, and cost. Available details of the design, including materials, configuration, and performance predictions, are presented.

  18. Electric control of the Josephson current-phase relation in a topological circuit

    NASA Astrophysics Data System (ADS)

    Wang, J.; Hao, L.; Liu, Jun-Feng

    2016-04-01

    We study the current-phase relation of a topological ring-shape Josephson junction, where the ring structure is defined by one-dimensional topological interface states constructed in a two-dimensional honeycomb-lattice system. We show that control of the potential difference between the two ring arms can lead to a φ0 Josephson junction. The physics origin is the superconducting electron- and holelike quasiparticles possessing a valley-dependent chirality and moving separately in the two ring arms. Our findings provide a purely electric way to consecutively manipulate the Josephson current-phase relation.

  19. Enhanced current-rectification in bilayer graphene with an electrically tuned sloped bandgap

    NASA Astrophysics Data System (ADS)

    Aparecido-Ferreira, Alex; Miyazaki, Hisao; Li, Song-Lin; Komatsu, Katsuyoshi; Nakaharai, Shu; Tsukagoshi, Kazuhito

    2012-11-01

    We propose a novel sloped dielectric geometry in graphene as a band engineering method for widening the depletion region and increasing the electrical rectification effect in graphene pn junctions. Enhanced current-rectification was achieved in a bilayer graphene with a sloped dielectric top gate and a normal back gate. A bias was applied to the top gate to induce a spatially modulated and sloped band configuration, while a back-gate bias was applied to open a bandgap. The sloped band can be tuned to separate n- and p-type regions in the bilayer graphene, depending on a suitable choice of gate voltage. The effective depletion region between the n- and p-type regions can be spatially enlarged due to the proposed top-gate structure. As a result, a strong non-linear electric current was observed during drain bias sweeping, demonstrating the expected rectification behavior with an on/off ratio higher than all previously reported values for graphene pn junctions. The observed rectification was modified to a linear current-voltage relationship by adjusting the biases of both gates to form an nn- or pp-type junction configuration. These results demonstrate that an external voltage can control the current flow in atomic film diodes.We propose a novel sloped dielectric geometry in graphene as a band engineering method for widening the depletion region and increasing the electrical rectification effect in graphene pn junctions. Enhanced current-rectification was achieved in a bilayer graphene with a sloped dielectric top gate and a normal back gate. A bias was applied to the top gate to induce a spatially modulated and sloped band configuration, while a back-gate bias was applied to open a bandgap. The sloped band can be tuned to separate n- and p-type regions in the bilayer graphene, depending on a suitable choice of gate voltage. The effective depletion region between the n- and p-type regions can be spatially enlarged due to the proposed top-gate structure. As a result, a

  20. Defect-Enabled Electrical Current Leakage in Ultraviolet Light-Emitting Diodes

    DOE PAGESBeta

    Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; Wierer, Jonathan; Smith, Michael L.; Biedermann, Laura

    2015-04-13

    The AlGaN materials system offers a tunable, ultra-wide bandgap that is exceptionally useful for high-power electronics and deep ultraviolet optoelectronics. Moseley et al. (pp. 723–726) investigate a structural defect known as an open-core threading dislocation or ''nanopipe'' that is particularly detrimental to devices that employ these materials. Furthermore, an AlGaN thin film was synthesized using metal-organic chemical-vapor deposition. Electrical current leakage is detected at a discrete point using a conductive atomic-force microscope (CAFM). However, no physical feature or abnormality at this location was visible by an optical microscope. The AlGaN thin film was then etched in hot phosphoric acid, andmore » the same location that was previously analyzed was revisited with the CAFM. The point that previously exhibited electrical current leakage had been decorated with a 1.1 μm wide hexagonal pit, which identified the site of electrical current leakage as a nanopipe and allows these defects to be easily observed by optical microscopy. Moreover, with this nanopipe identification and quantification strategy, the authors were able to correlate decreasing ultraviolet light-emitting diode optical output power with increasing nanopipe density.« less