Science.gov

Sample records for ac electrical resistivity

  1. Equivalent Electrical Circuit Representations of AC Quantized Hall Resistance Standards

    PubMed Central

    Cage, M. E.; Jeffery, A.; Matthews, J.

    1999-01-01

    We use equivalent electrical circuits to analyze the effects of large parasitic impedances existing in all sample probes on four-terminal-pair measurements of the ac quantized Hall resistance RH. The circuit components include the externally measurable parasitic capacitances, inductances, lead resistances, and leakage resistances of ac quantized Hall resistance standards, as well as components that represent the electrical characteristics of the quantum Hall effect device (QHE). Two kinds of electrical circuit connections to the QHE are described and considered: single-series “offset” and quadruple-series. (We eliminated other connections in earlier analyses because they did not provide the desired accuracy with all sample probe leads attached at the device.) Exact, but complicated, algebraic equations are derived for the currents and measured quantized Hall voltages for these two circuits. Only the quadruple-series connection circuit meets our desired goal of measuring RH for both ac and dc currents with a one-standard-deviation uncertainty of 10−8 RH or less during the same cool-down with all leads attached at the device. The single-series “offset” connection circuit meets our other desired goal of also measuring the longitudinal resistance Rx for both ac and dc currents during that same cool-down. We will use these predictions to apply small measurable corrections, and uncertainties of the corrections, to ac measurements of RH in order to realize an intrinsic ac quantized Hall resistance standard of 10−8 RH uncertainty or less.

  2. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  3. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  4. Module Twelve: Series AC Resistive-Reactive Circuits; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The module covers series circuits which contain both resistive and reactive components and methods of solving these circuits for current, voltage, impedance, and phase angle. The module is divided into six lessons: voltage and impedance in AC (alternating current) series circuits, vector computations, rectangular and polar notation, variational…

  5. ac-resistance-measuring instrument

    SciTech Connect

    Hof, P.J.

    1981-04-22

    An auto-ranging ac resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an ac excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance.

  6. Electrical Effect in Silver-Point Realization Due to Cell Structure and Bias Voltage Based on Resistance Measurement Using AC and DC Bridges

    NASA Astrophysics Data System (ADS)

    Widiatmo, J. V.; Harada, K.; Yamazawa, K.; Tamba, J.; Arai, M.

    2015-08-01

    Electrical effects related to insulating leakage represent one of the major factors contributing to uncertainties in measurements using high-temperature standard platinum resistance thermometers (HTSPRTs), especially during the realization of the silver freezing point (). This work is focused on the evaluation of the differences in resistance measurements observed when using AC resistance bridges and DC resistance bridges, hereafter, termed the AC-DC differences, as the result of various electrical effects. The magnitude of the AC-DC difference in several silver-point cells is demonstrated with several HTSPRTs. The effect of the cell structure on the AC-DC difference is evaluated by exchanging some components, part by part, within a silver-point cell. Then, the effect of the bias voltage applied to the heat pipe within the silver-point furnace is evaluated. Through the analysis of the experimental results and comparison with the reports in the literature, the importance of evaluating the AC-DC difference as a means to characterize the underlying electrical effects is discussed, considering that applying a negative bias condition to the furnace with respect to the high-temperature SPRT can minimize the AC-DC difference. Concluding recommendations are proposed on the components used in silver-point cells and the application of a bias voltage to the measurement circuit to minimize the effects of the electrical leakage.

  7. Module Fourteen: Parallel AC Resistive-Reactive Circuits; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    In this module the student will learn about parallel RL (resistive-inductance), RC (resistive-capacitive), and RCL (resistive-capacitive-inductance) circuits and the conditions that exist at resonance. The module is divided into six lessons: solving for quantities in RL parallel circuits; variational analysis of RL parallel circuits; parallel RC…

  8. Manipulating Flames with AC Electric Fields

    NASA Astrophysics Data System (ADS)

    Bishop, Kyle

    2013-11-01

    Time-oscillating electric fields applied to plasmas present in flames create steady flows of gas capable of shaping, directing, enhancing, or even extinguishing flames. Interestingly, electric winds induced by AC electric fields can be stronger that those due to static fields of comparable magnitude. Furthermore, unlike static fields, the electric force due to AC fields is localized near the surface of the flame. Consequently, the AC response depends only on the local field at the surface of the flame - not on the position of the electrodes used to generate the field. These results suggest that oscillating electric fields can be used to manipulate and control combustion processes at a distance. To characterize and explain these effects, we investigate a simple experimental system comprising a laminar methane-air flame positioned between two parallel-plate electrodes. We quantify both the electric and hydrodynamic response of the flame as a function of frequency and magnitude of the applied field. A theoretical model shows how steady gas flows emerge from the time-averaged electrical force due to the field-induced motion of ions generated within the flame and by their disappearance by recombination. These results provide useful insights into the application of AC fields to direct combustion processes.

  9. AC electric trapping of neutral atoms

    NASA Astrophysics Data System (ADS)

    Marian, Adela; Schlunk, Sophie; Schoellkopf, Wieland; Meijer, Gerard

    2008-05-01

    We have demonstrated trapping of ultracold ground-state ^87Rb atoms in a macroscopic ac electric trap [1]. Trapping by ac electric fields has been previously achieved for polar molecules [2], as well as Sr atoms on a chip [3], and recently for Rb atoms in a three-phase electric trap [4]. Similar to trapping of ions in a Paul trap, three-dimensional confinement in an ac electric trap is obtained by switching between two saddle-point configurations of the electric field. For the first time, this dynamic confinement is directly visualized with absorption images taken at different phases of the ac switching cycle. Stable electric trapping is observed in a narrow range of switching frequencies around 60 Hz, in agreement with trajectory calculations. In a typical experiment, about 3 x 10^5 Rb atoms are trapped with lifetimes on the order of 9 s and trap depths of about 10 μK. Additionally, we show that the atoms can be used to sensitively probe the electric fields in the trap by imaging the cloud while the fields are still on. References: 1. S. Schlunk et al., PRL 98, 223002 (2007) 2. H. L. Bethlem et al., PRA 74, 063403 (2006) 3. T. Kishimoto et al., PRL 96, 123001 (2006) 4. T. Rieger et al., PRL 99, 063001 (2007)

  10. ac propulsion system for an electric vehicle

    NASA Technical Reports Server (NTRS)

    Geppert, S.

    1980-01-01

    It is pointed out that dc drives will be the logical choice for current production electric vehicles (EV). However, by the mid-80's, there is a good chance that the price and reliability of suitable high-power semiconductors will allow for a competitive ac system. The driving force behind the ac approach is the induction motor, which has specific advantages relative to a dc shunt or series traction motor. These advantages would be an important factor in the case of a vehicle for which low maintenance characteristics are of primary importance. A description of an EV ac propulsion system is provided, taking into account the logic controller, the inverter, the motor, and a two-speed transmission-differential-axle assembly. The main barrier to the employment of the considered propulsion system in EV is not any technical problem, but inverter transistor cost.

  11. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Twelve: Series AC Resistive-Reactive Circuits. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on series alternating current resistive-reactive circuits is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting.…

  12. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Fourteen: Parallel AC Resistive-Reactive Circuits. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on parallel alternating current resistive-reaction circuits is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian…

  13. Electrical Resistivity Imaging

    EPA Science Inventory

    Electrical resistivity imaging (ERI) is a geophysical method originally developed within the mining industry where it has been used for decades to explore for and characterize subsurface mineral deposits. It is one of the oldest geophysical methods with the first documented usag...

  14. Design and Control Implementation of AC Electric Power Steering System Test Bench*

    NASA Astrophysics Data System (ADS)

    Zhang, Weidong; Ai, Yibo

    Using AC motor is an important development trend of electric power steering system, and in this paper, we proposed a design of AC electric power steering system test bench. The paper introduced the bench structure, working principle and main components selection first, and then given the implementation scheme of test bench's three functions: simulation of the road resistance, power assistant control and data acquisition. The test results showed the feasibility of the test bench.

  15. Advanced ac powertrain for electric vehicles

    SciTech Connect

    Slicker, J.M.; Kalns, L.

    1985-01-01

    The design of an ac propulsion system for an electric vehicle includes a three-phase induction motor, transistorized PWM inverter/battery charger, microprocessor-based controller, and two-speed automatic transaxle. This system was built and installed in a Mercury Lynx test bed vehicle as part of a Department of Energy propulsion system development program. An integral part of the inverter is a 4-kw battery charger which utilizes one of the bridge transistors. The overall inverter strategy for this configuration is discussed. The function of the microprocessor-based controller is described. Typical test results of the total vehicle and each of its major components are given, including system efficiencies and test track performance results.

  16. Electrical resistivity probes

    DOEpatents

    Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.

    2003-10-21

    A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.

  17. Analyses of temperature-dependent interface states, series resistances, and AC electrical conductivities of Al/p—Si and Al/Bi4Ti3O12/p—Si structures by using the admittance spectroscopy method

    NASA Astrophysics Data System (ADS)

    Mert, Yıldırım; Perihan, Durmuş; Şemsettin, Altındal

    2013-10-01

    In this study, Al/p—Si and Al/Bi4Ti3O12/p—Si structures are fabricated and their interface states (Nss), the values of series resistance (Rs), and AC electrical conductivity (σac) are obtained each as a function of temperature using admittance spectroscopy method which includes capacitance—voltage (C—V) and conductance—voltage (G—V) measurements. In addition, the effect of interfacial Bi4Ti3O12 (BTO) layer on the performance of the structure is investigated. The voltage-dependent profiles of Nss and Rs are obtained from the high-low frequency capacitance method and the Nicollian method, respectively. Experimental results show that Nss and Rs, as strong functions of temperature and applied bias voltage, each exhibit a peak, whose position shifts towards the reverse bias region, in the depletion region. Such a peak behavior is attributed to the particular distribution of Nss and the reordering and restructuring of Nss under the effect of temperature. The values of activation energy (Ea), obtained from the slope of the Arrhenius plot, of both structures are obtained to be bias voltage-independent, and the Ea of the metal-ferroelectric-semiconductor (MFS) structure is found to be half that of the metal—semiconductor (MS) structure. Furthermore, other main electrical parameters, such as carrier concentration of acceptor atoms (NA), built-in potential (Vbi), Fermi energy (EF), image force barrier lowering (Δ Φb), and barrier height (Φb), are extracted using reverse bias C-2—V characteristics as a function of temperature.

  18. A study of some features of ac and dc electric power systems for a space station

    NASA Technical Reports Server (NTRS)

    Hanania, J. I.

    1983-01-01

    This study analyzes certain selected topics in rival dc and high frequency ac electric power systems for a Space Station. The interaction between the Space Station and the plasma environment is analyzed, leading to a limit on the voltage for the solar array and a potential problem with resonance coupling at high frequencies. Certain problems are pointed out in the concept of a rotary transformer, and further development work is indicated in connection with dc circuit switching, special design of a transmission conductor for the ac system, and electric motors. The question of electric shock hazards, particularly at high frequency, is also explored. and a problem with reduced skin resistance and therefore increased hazard with high frequency ac is pointed out. The study concludes with a comparison of the main advantages and disadvantages of the two rival systems, and it is suggested that the choice between the two should be made after further studies and development work are completed.

  19. Aligned Immobilization of Proteins Using AC Electric Fields.

    PubMed

    Laux, Eva-Maria; Knigge, Xenia; Bier, Frank F; Wenger, Christian; Hölzel, Ralph

    2016-03-01

    Protein molecules are aligned and immobilized from solution by AC electric fields. In a single-step experiment, the enhanced green fluorescent proteins are immobilized on the surface as well as at the edges of planar nanoelectrodes. Alignment is found to follow the molecules' geometrical shape with their longitudinal axes parallel to the electric field. Simultaneous dielectrophoretic attraction and AC electroosmotic flow are identified as the dominant forces causing protein movement and alignment. Molecular orientation is determined by fluorescence microscopy based on polarized excitation of the proteins' chromophores. The chromophores' orientation with respect to the whole molecule supports X-ray crystal data. PMID:26779699

  20. Electrically Variable Resistive Memory Devices

    NASA Technical Reports Server (NTRS)

    Liu, Shangqing; Wu, Nai-Juan; Ignatiev, Alex; Charlson, E. J.

    2010-01-01

    Nonvolatile electronic memory devices that store data in the form of electrical- resistance values, and memory circuits based on such devices, have been invented. These devices and circuits exploit an electrically-variable-resistance phenomenon that occurs in thin films of certain oxides that exhibit the colossal magnetoresistive (CMR) effect. It is worth emphasizing that, as stated in the immediately preceding article, these devices function at room temperature and do not depend on externally applied magnetic fields. A device of this type is basically a thin film resistor: it consists of a thin film of a CMR material located between, and in contact with, two electrical conductors. The application of a short-duration, low-voltage current pulse via the terminals changes the electrical resistance of the film. The amount of the change in resistance depends on the size of the pulse. The direction of change (increase or decrease of resistance) depends on the polarity of the pulse. Hence, a datum can be written (or a prior datum overwritten) in the memory device by applying a pulse of size and polarity tailored to set the resistance at a value that represents a specific numerical value. To read the datum, one applies a smaller pulse - one that is large enough to enable accurate measurement of resistance, but small enough so as not to change the resistance. In writing, the resistance can be set to any value within the dynamic range of the CMR film. Typically, the value would be one of several discrete resistance values that represent logic levels or digits. Because the number of levels can exceed 2, a memory device of this type is not limited to binary data. Like other memory devices, devices of this type can be incorporated into a memory integrated circuit by laying them out on a substrate in rows and columns, along with row and column conductors for electrically addressing them individually or collectively.

  1. Performance testing of the AC propulsion ELX electric vehicle

    SciTech Connect

    Kramer, W.E.; MacDowall, R.D.; Burke, A.F.

    1994-06-01

    Performance testing of the AC Propulsion ELX electric vehicle is described. Test data are presented and analyzed. The ELX vehicle is the first of a series of electric vehicles of interest to the California Air Resources Board. The test series is being conducted under a Cooperative Research and Development Agreement (CRADA) between the US Department of energy and the California Air Resources Board. The tests which were conducted showed that the AC Propulsion ELX electric vehicle has exceptional acceleration and range performance. when the vehicle`s battery was fully charged, the vehicle can accelerate from 0 to 96 km/h in about 10 seconds. Energy consumption and range tests using consecutive FUDS and HWFET Driving cycles (the all-electric cycle) indicate that the energy economy of the AC Propulsion ELX electric vehicle with regenerative braking is 97 W{center_dot}h/km, with a range of 153 km (95 miles). Computer simulations performed using the SIMPLEV Program indicate that the vehicle would have a range of 327 km (203 miles) on the all-electric cycle if the lead acid batteries were replaced with NiMH batteries having an energy density of 67 W{center_dot}h/kg. Comparisons of FUDS test data with and without regenerative braking indicated that regenerative braking reduced the energy consumption of the ELX vehicle by approximately 25%.

  2. Performance testing of the AC propulsion ELX electric vehicle

    NASA Astrophysics Data System (ADS)

    Kramer, W. E.; MacDowall, R. D.; Burke, A. F.

    1994-06-01

    Performance testing of the AC Propulsion ELX electric vehicle is described. Test data are presented and analyzed. The ELX vehicle is the first of a series of electric vehicles of interest to the California Air Resources Board. The test series is being conducted under a Cooperative Research and Development Agreement (CRADA) between the US Department of energy and the California Air Resources Board. The tests which were conducted showed that the AC Propulsion ELX electric vehicle has exceptional acceleration and range performance. When the vehicle's battery was fully charged, the vehicle can accelerate from 0 to 96 km/h in about 10 seconds. Energy consumption and range tests using consecutive FUDS and HWFET Driving cycles (the all-electric cycle) indicate that the energy economy of the AC Propulsion ELX electric vehicle with regenerative braking is 97 W(center dot)h/km, with a range of 153 km (95 miles). Computer simulations performed using the SIMPLEV Program indicate that the vehicle would have a range of 327 km (203 miles) on the all-electric cycle if the lead acid batteries were replaced with NiMH batteries having an energy density of 67 W(center dot)h/kg. Comparisons of FUDS test data with and without regenerative braking indicated that regenerative braking reduced the energy consumption of the ELX vehicle by approximately 25%.

  3. Assessment of US electric vehicle programs with ac powertrains

    SciTech Connect

    Kevala, R.J. . Transportation Consulting Div.)

    1990-02-01

    AC powertrain technology is a promising approach to improving the performance of electric vehicles. Four major programs are now under way in the United States to develop ac powertrains: the Ford/General Electric single-shaft electric propulsion system (ETX-II), the Eaton dual-shaft electric propulsion system (DSEP), the Jet Propulsion Laboratories (JPL) integrated ac motor drive and recharge system, and the Massachusetts Institute of Technology (MIT) variable reluctance motor (VRM) drive. The JPL program is sponsored by EPRI; the other three programs are funded by the US Department of Energy. This preliminary assessment of the four powertrain programs focuses on potential performance, costs, safety, and commercial feasibility. Interviews with program personnel were supplemented by computer simulations of electric vehicle performance using the four systems. Each of the four powertrains appears superior to standard dc powertrain technology in terms of performance and weight. The powertrain technologies studied in this assessment are at varying degrees of technological maturity. One or more of the systems may be ready for incorporation into an advanced electric vehicle during the early 1990s. Each individual report will have a separate abstract. 5 refs., 37 figs., 29 tabs.

  4. The ac propulsion system for an electric vehicle, phase 1

    NASA Technical Reports Server (NTRS)

    Geppert, S.

    1981-01-01

    A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.

  5. AC Electric Field Communication for Human-Area Networking

    NASA Astrophysics Data System (ADS)

    Kado, Yuichi; Shinagawa, Mitsuru

    We have proposed a human-area networking technology that uses the surface of the human body as a data transmission path and uses an AC electric field signal below the resonant frequency of the human body. This technology aims to achieve a “touch and connect” intuitive form of communication by using the electric field signal that propagates along the surface of the human body, while suppressing both the electric field radiating from the human body and mutual interference. To suppress the radiation field, the frequency of the AC signal that excites the transmitter electrode must be lowered, and the sensitivity of the receiver must be raised while reducing transmission power to its minimally required level. We describe how we are developing AC electric field communication technologies to promote the further evolution of a human-area network in support of ubiquitous services, focusing on three main characteristics, enabling-transceiver technique, application-scenario modeling, and communications quality evaluation. Special attention is paid to the relationship between electro-magnetic compatibility evaluation and regulations for extremely low-power radio stations based on Japan's Radio Law.

  6. AC propulsion system for an electric vehicle, phase 2

    NASA Technical Reports Server (NTRS)

    Slicker, J. M.

    1983-01-01

    A second-generation prototype ac propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the Contractor's site. The system consisted of a Phase 2, 18.7 kw rated ac induction traction motor, a 192-volt, battery powered, pulse-width-modulated, transistorized inverter packaged for under rear seat installation, a 2-axis, 2-speed, automatically-shifted mechanical transaxle and a microprocessor-based powertrain/vehicle controller. A diagnostics computer to assist tuning and fault finding was fabricated. Dc-to-mechanical-system efficiency varied from 78% to 82% as axle speed/torque ranged from 159 rpm/788 nm to 65 rpm/328 nm. Track test efficiency results suggest that the ac system will be equal or superior to dc systems when driving urban cycles. Additional short-term work is being performed under a third contract phase (AC-3) to raise transaxle efficiency to predicted levels, and to improve starting and shifting characteristics. However, the long-term challenge to the system's viability remains inverter cost. A final report on the Phase 2 system, describing Phase 3 modifications, will be issued at the conclusion of AC-3.

  7. AC propulsion system for an electric vehicle, phase 2

    NASA Astrophysics Data System (ADS)

    Slicker, J. M.

    1983-06-01

    A second-generation prototype ac propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the Contractor's site. The system consisted of a Phase 2, 18.7 kw rated ac induction traction motor, a 192-volt, battery powered, pulse-width-modulated, transistorized inverter packaged for under rear seat installation, a 2-axis, 2-speed, automatically-shifted mechanical transaxle and a microprocessor-based powertrain/vehicle controller. A diagnostics computer to assist tuning and fault finding was fabricated. Dc-to-mechanical-system efficiency varied from 78% to 82% as axle speed/torque ranged from 159 rpm/788 nm to 65 rpm/328 nm. Track test efficiency results suggest that the ac system will be equal or superior to dc systems when driving urban cycles. Additional short-term work is being performed under a third contract phase (AC-3) to raise transaxle efficiency to predicted levels, and to improve starting and shifting characteristics. However, the long-term challenge to the system's viability remains inverter cost. A final report on the Phase 2 system, describing Phase 3 modifications, will be issued at the conclusion of AC-3.

  8. Electrical resistivity of composite superconductors

    NASA Technical Reports Server (NTRS)

    Davis, J. H.; Lee, J. A.

    1983-01-01

    In addition to its superconducting properties, a superconductor is usually characterized by poor thermal conductivity and relatively high electrical resistivity in the normal state. To remedy this situation a study of superconducting properties of Cu-rich CU-Nb wires prepared by directionally solidified and cold-rolled technique was conducted. Some of the specimens were prepared by melting, directional solidification and diffusing in Tin. A total of 12 wire specimens was tested. Each specimen was analyzed by plotting experimental data into the following curves: the graph of the residual resistivity as a function of the specimen current at 4.3 K; and the graph of the electrical resistivity as a function of the temperature at a constant current.

  9. Lipid Bilayer Vesicle Dynamics in AC Electric Fields

    NASA Astrophysics Data System (ADS)

    McConnell, Lane; Vlahovska, Petia; Miksis, Michael

    2014-11-01

    Vesicles are closed, fluid-filled lipid bilayers which are mechanically similar to biological cells and which undergo shape transitions in the presence of electric fields. Here we model the vesicle membrane as an infinitely thin, capacitive, area-incompressible interface with the surrounding fluids acting as charge-advecting leaky dielectrics. We then implement the boundary integral method to numerically investigate the dynamics of a vesicle in various AC electric field profiles. Our numerical results are then compared with recent small deformation theory and experimental data. We also note our observation of a new theoretical vesicle behavior that has yet to be observed experimentally.

  10. Collapse of DNA in a.c. electric fields

    PubMed Central

    Zhou, Chunda; Reisner, Walter W.; Staunton, Rory J.; Ashan, Amir; Austin, Robert H.; Riehn, Robert

    2013-01-01

    We report that double-stranded DNA collapses in presence of a.c. electric fields at frequencies of a few hundred Hertz, and does not stretch as commonly assumed. In particular, we show that confinement-stretched DNA can collapse to about one quarter of its equilibrium length. We propose that this effect is based on finite relaxation times of the counterion cloud, and the subsequent partitioning of the molecule into mutually attractive units. We discuss alternative models of those attractive units. PMID:21770604

  11. A PWM transistor inverter for an ac electric vehicle drive

    NASA Technical Reports Server (NTRS)

    Slicker, J. M.

    1981-01-01

    A prototype system consisting of closely integrated motor, inverter, and transaxle has been built in order to demonstrate the feasibility of a three-phase ac transistorized inverter for electric vehicle applications. The microprocessor-controlled inverter employs monolithic power transistors to drive an oil-cooled, three-phase induction traction motor at a peak output power of 30 kW from a 144 V battery pack. Transistor safe switching requirements are discussed, and a circuit is presented for recovering trapped snubber inductor energy at transistor turn-off.

  12. Long-range response in ac electricity grids.

    PubMed

    Jung, Daniel; Kettemann, Stefan

    2016-07-01

    Local changes in the topology of electricity grids can cause overloads far away from the disturbance [D. Witthaut and M. Timme, Eur. Phys. J. B 86, 377 (2013)EPJBFY1434-602810.1140/epjb/e2013-40469-4], making the prediction of the robustness against changes in the topology-for example, caused by power outages or grid extensions-a challenging task. The impact of single-line additions on the long-range response of dc electricity grids has recently been studied [D. Labavić, R. Suciu, H. Meyer-Ortmanns, and S. Kettemann, Eur. Phys. J.: Spec. Top. 223, 2517 (2014)1951-635510.1140/epjst/e2014-02273-0]. By solving the real part of the static ac load flow equations, we conduct a similar investigation for ac grids. In a regular two-dimensional grid graph with cyclic boundary conditions, we find a power law decay for the change of power flow as a function of distance to the disturbance over a wide range of distances. The power exponent increases and saturates for large system sizes. By applying the same analysis to the German transmission grid topology, we show that also in real-world topologies a long-ranged response can be found. PMID:27575148

  13. Long-range response in ac electricity grids

    NASA Astrophysics Data System (ADS)

    Jung, Daniel; Kettemann, Stefan

    2016-07-01

    Local changes in the topology of electricity grids can cause overloads far away from the disturbance [D. Witthaut and M. Timme, Eur. Phys. J. B 86, 377 (2013), 10.1140/epjb/e2013-40469-4], making the prediction of the robustness against changes in the topology—for example, caused by power outages or grid extensions—a challenging task. The impact of single-line additions on the long-range response of dc electricity grids has recently been studied [D. Labavić, R. Suciu, H. Meyer-Ortmanns, and S. Kettemann, Eur. Phys. J.: Spec. Top. 223, 2517 (2014), 10.1140/epjst/e2014-02273-0]. By solving the real part of the static ac load flow equations, we conduct a similar investigation for ac grids. In a regular two-dimensional grid graph with cyclic boundary conditions, we find a power law decay for the change of power flow as a function of distance to the disturbance over a wide range of distances. The power exponent increases and saturates for large system sizes. By applying the same analysis to the German transmission grid topology, we show that also in real-world topologies a long-ranged response can be found.

  14. System and method for determining stator winding resistance in an AC motor using motor drives

    DOEpatents

    Lu, Bin; Habetler, Thomas G; Zhang, Pinjia

    2013-02-26

    A system and method for determining the stator winding resistance of AC motors is provided. The system includes an AC motor drive having an input connectable to an AC source and an output connectable to an input terminal of an AC motor, a pulse width modulation (PWM) converter having switches therein to control current flow and terminal voltages in the AC motor, and a control system connected to the PWM converter. The control system generates a command signal to cause the PWM converter to control an output of the AC motor drive corresponding to an input to the AC motor, selectively generates a modified command signal to cause the PWM converter to inject a DC signal into the output of the AC motor drive, and determines a stator winding resistance of the AC motor based on the DC signal of at least one of the voltage and current.

  15. Hierarchical assembly of anisotropic particles in AC electric fields

    NASA Astrophysics Data System (ADS)

    Torres Diaz, Isaac; Rupp, Bradley; Hua, Xiaoqing; Yang, Yuguang; Bevan, Michael A.

    Hierarchical microstructures composed of colloids are of great interest for technological applications and advanced materials such as metamaterials and microfluidic devices. The dynamics of spherical colloidal particles has been analyzed previously for several systems, and has led to the control of the formation of perfect crystals using AC electric fields. However, spherical particles do not have a dependence on its orientation as anisotropic particles. Recently, researchers reported experiments showing the capabilities of anisotropic particles to assemble in different configurations, yet a detailed understanding of the mechanism and control is lacking. This work shows both theoretical and experimental results of the control of a colloidal system composed of anisotropic colloidal particles with a tri-axial ellipsoidal shape subjected to a non-uniform electric field close to a planar wall. We show that particles pack into different structures and orientations as a function of the applied electric field amplitude and frequency by taking into account dipole-field, dipole-dipole, and colloidal interactions. This analysis provides a theoretical framework for the equilibrium and non-equilibrium structures that can be formed via field mediated interaction, which are validated by experimental microscopy results, and can ultimately be used to engineer the hierarchical assembly of anisotropic particles.

  16. AC Electric Field Activated Shape Memory Polymer Composite

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.

    2011-01-01

    Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.

  17. Particle Agglomeration in Bipolar Barb Agglomerator Under AC Electric Field

    NASA Astrophysics Data System (ADS)

    Huang, Chao; Ma, Xiuqin; Sun, Youshan; Wang, Meiyan; Zhang, Changping; Lou, Yueya

    2015-04-01

    The development of an efficient technology for removing fine particles in flue gas is essential as the haze is becoming more and more serious. To improve agglomeration effectiveness of fine particles, a dual zone electric agglomeration device consisting of a charging chamber and an agglomeration chamber with bipolar barb electrodes was developed. The bipolar barb electric agglomerator with a polar distance of 200 mm demonstrates good agglomeration effectiveness for particles with a size less than 8.0 μm under applied AC electric field. An optimal condition for achieving better agglomeration effectiveness was found to be as follows: flue gas flow velocity of 3.00 m/s, particle concentration of 2.00 g/m3, output voltage of 35 kV and length of the barb of 16 mm. In addition, 4.0-6.0 μm particles have the best effectiveness with the variation of particle volume occupancy of -3.2. supported by the Key Technology R&D Program of Hebei, China (No. 13211207D)

  18. Universal features of particle motion in ac electric fields

    NASA Astrophysics Data System (ADS)

    Niemeyer, L.; Seeger, M.

    2015-11-01

    Mobile particles present as contaminants in high voltage gas insulated switchgear (GIS) may constitute a risk for insulation failure. The understanding of their motion in the electric field of the insulation gap is therefore essential for quality control in manufacturing, commissioning and in service monitoring. Published research on particle motion in ac electric fields has shown that this rather complex process depends on numerous parameters, many of which remain unknown under practical conditions. This renders modelling, generalization of experimental data and practical application difficult. The scope of this paper therefore is to develop a unified description of particle motion which minimizes the number of controlling parameters, enables the comparison of experimental data and allows simple interpretation relations to be derived. This is achieved by making the controlling equations dimensionless with an appropriate choice of reference values and by using simplifying assumptions for the specific conditions prevailing in GIS. The resulting generalized description of the process can then be summarized in the form of 2D patterns (dynamic maps). Approximate scaling relations are derived between specific features of these patterns and particle-related parameters. A reference case is discussed in detail. The non-linear character of the equation of motion suggests that the particle motion may be a deterministic process with chaotic features. This is confirmed by a preliminary chaos-theoretical analysis of the process.

  19. Analyzing the Effects of Capacitances-to-Shield in Sample Probes on AC Quantized Hall Resistance Measurements

    PubMed Central

    Cage, M. E.; Jeffery, A.

    1999-01-01

    We analyze the effects of the large capacitances-to-shields existing in all sample probes on measurements of the ac quantized Hall resistance RH. The object of this analysis is to investigate how these capacitances affect the observed frequency dependence of RH. Our goal is to see if there is some way to eliminate or minimize this significant frequency dependence, and thereby realize an intrinsic ac quantized Hall resistance standard. Equivalent electrical circuits are used in this analysis, with circuit components consisting of: capacitances and leakage resistances to the sample probe shields; inductances and resistances of the sample probe leads; quantized Hall resistances, longitudinal resistances, and voltage generators within the quantum Hall effect device; and multiple connections to the device. We derive exact algebraic equations for the measured RH values expressed in terms of the circuit components. Only two circuits (with single-series “offset” and quadruple-series connections) appear to meet our desired goals of measuring both RH and the longitudinal resistance Rx in the same cool-down for both ac and dc currents with a one-standard-deviation uncertainty of 10−8 RH or less. These two circuits will be further considered in a future paper in which the effects of wire-to-wire capacitances are also included in the analysis.

  20. Production and characterization of Bacillus thuringiensis Cry1Ac-resistant cotton bollworm Helicoverpa zea (Boddie).

    PubMed

    Anilkumar, Konasale J; Rodrigo-Simón, Ana; Ferré, Juan; Pusztai-Carey, Marianne; Sivasupramaniam, Sakuntala; Moar, William J

    2008-01-01

    Laboratory-selected Bacillus thuringiensis-resistant colonies are important tools for elucidating B. thuringiensis resistance mechanisms. However, cotton bollworm, Helicoverpa zea, a target pest of transgenic corn and cotton expressing B. thuringiensis Cry1Ac (Bt corn and cotton), has proven difficult to select for stable resistance. Two populations of H. zea (AR and MR), resistant to the B. thuringiensis protein found in all commercial Bt cotton varieties (Cry1Ac), were established by selection with Cry1Ac activated toxin (AR) or MVP II (MR). Cry1Ac toxin reflects the form ingested by H. zea when feeding on Bt cotton, whereas MVP II is a Cry1Ac formulation used for resistance selection and monitoring. The resistance ratio (RR) for AR exceeded 100-fold after 11 generations and has been maintained at this level for nine generations. This is the first report of stable Cry1Ac resistance in H. zea. MR crashed after 11 generations, reaching only an RR of 12. AR was only partially cross-resistant to MVP II, suggesting that MVP II does not have the same Cry1Ac selection pressure as Cry1Ac toxin against H. zea and that proteases may be involved with resistance. AR was highly cross-resistant to Cry1Ab toxin but only slightly cross-resistant to Cry1Ab expressing corn leaf powder. AR was not cross-resistant to Cry2Aa2, Cry2Ab2-expressing corn leaf powder, Vip3A, and cypermethrin. Toxin-binding assays showed no significant differences, indicating that resistance was not linked to a reduction in binding. These results aid in understanding why this pest has not evolved B. thuringiensis resistance, and highlight the need to choose carefully the form of B. thuringiensis protein used in experiments. PMID:18024681

  1. Study on A.C. electrical properties of pure and L-serine doped ADP crystals

    NASA Astrophysics Data System (ADS)

    Joshi, J. H.; Dixit, K. P.; Joshi, M. J.; Parikh, K. D.

    2016-05-01

    Ammonium Dihydrogen Phosphate (ADP) crystals have a wide range of applications in integrated and nonlinear optics. Amino acids having significant properties like molecular chirality, zwitter ionic nature, etc. attracted many researchers to dope them in various NLO crystals. In the present study, pure and different weight percentage L-serine doped ADP crystals were grown by slow solvent evaporation technique at room temperature. The A.C. electrical study was carried out for palletized samples at room temperature. The Nyquist plot showed two semi circles for pure ADP indicated the effect of grain and grain boundary, whereas the doped ADP samples exhibited the single semi circle suggesting the effect of grain. The values resistance and capacitance for grain and grain boundary were calculated. The effect of doping was clearly seen in the grain capacitance and resistance values. The dielectric constant and dielectric loss decreased with increase in frequency for all samples. The Jonscher power law was applied for A.C. conductivity for pure and doped ADP samples. The imaginary part of modulus and impedance versus frequency were drawn and the value of stretch exponent (β) was calculated for all the samples.

  2. Concentrating membrane proteins using asymmetric traps and AC electric fields.

    PubMed

    Cheetham, Matthew R; Bramble, Jonathan P; McMillan, Duncan G G; Krzeminski, Lukasz; Han, Xiaojun; Johnson, Benjamin R G; Bushby, Richard J; Olmsted, Peter D; Jeuken, Lars J C; Marritt, Sophie J; Butt, Julea N; Evans, Stephen D

    2011-05-01

    Membrane proteins are key components of the plasma membrane and are responsible for control of chemical ionic gradients, metabolite and nutrient transfer, and signal transduction between the interior of cells and the external environment. Of the genes in the human genome, 30% code for membrane proteins (Krogh et al. J. Mol. Biol.2001, 305, 567). Furthermore, many FDA-approved drugs target such proteins (Overington et al. Nat. Rev. Drug Discovery 2006, 5, 993). However, the structure-function relationships of these are notably sparse because of difficulties in their purification and handling outside of their membranous environment. Methods that permit the manipulation of membrane components while they are still in the membrane would find widespread application in separation, purification, and eventual structure-function determination of these species (Poo et al. Nature 1977, 265, 602). Here we show that asymmetrically patterned supported lipid bilayers in combination with AC electric fields can lead to efficient manipulation of charged components. We demonstrate the concentration and trapping of such components through the use of a "nested trap" and show that this method is capable of yielding an approximately 30-fold increase in the average protein concentration. Upon removal of the field, the material remains trapped for several hours as a result of topographically restricted diffusion. Our results indicate that this method can be used for concentrating and trapping charged membrane components while they are still within their membranous environment. We anticipate that our approach could find widespread application in the manipulation and study of membrane proteins. PMID:21476549

  3. Study of AC electrical conduction mechanisms in an epoxy polymer

    NASA Astrophysics Data System (ADS)

    Jilani, Wissal; Mzabi, Nissaf; Gallot-Lavallée, Olivier; Fourati, Najla; Zerrouki, Chouki; Zerrouki, Rachida; Guermazi, Hajer

    2015-11-01

    The AC conductivity of an epoxy resin was investigated in the frequency range 10^{-1} - 106 Hz at temperatures ranging from -100 to 120 °C. The frequency dependence of σ_{ac} was described by the law: σ_{ac}=ω \\varepsilon0\\varepsilon^''_{HN}+Aωs. The study of temperature variation of the exponent (s) reveals two conduction models: the AC conduction dependence upon temperature is governed by the small polaron tunneling mechanism (SPTM) at low temperature (-100 -60 °C) and the correlated barrier hopping (CHB) model at high temperature (80-120 °C).

  4. System and method for determining stator winding resistance in an AC motor

    DOEpatents

    Lu, Bin; Habetler, Thomas G.; Zhang, Pinjia; Theisen, Peter J.

    2011-05-31

    A system and method for determining stator winding resistance in an AC motor is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of an AC motor. The circuit includes at least one contactor and at least one switch to control current flow and terminal voltages in the AC motor. The system also includes a controller connected to the circuit and configured to modify a switching time of the at least one switch to create a DC component in an output of the system corresponding to an input to the AC motor and determine a stator winding resistance of the AC motor based on the injected DC component of the voltage and current.

  5. Comparison of the Unique Mobility and DOE-developed ac electric drive systems

    SciTech Connect

    Cole, G.H.

    1993-01-01

    A comparison was made between the most recent DOE-developed AC electric vehicle drive systems and that which is independently under development by Unique Mobility of Golden, Colorado. The DOE-developed AC systems compared in this study are the Single-Shaft Electric Propulsion System (ETX-II) developed by Ford Motor Company and the General Electric Company under contract number DE-AC07-85NV10418, the Dual-Shaft Electric Propulsion (DSEP) System developed by Eaton Corporation under contract number DOE-AC08-84NV-10366, and the anticipated results of the Modular Electric Vehicle (MEV) system currently being developed by Ford and General Electric under contract number DE-AC07-90ID13019. The Unique Mobility brushless DC electric vehicle drive system represents their latest electric drive technology and is being developed in cooperation with BMW Technik Gmbh of Germany. Comparisons of specific volume, specific weight, efficiency and expected vehicle performance are made of the different systems based upon measured system performance data where available. One conclusion presented is that the Unique Mobility drive system under development with BMW appears to provide comparable performance to the AC systems studied.

  6. Calculation of the ac to dc resistance ratio of conductive nonmagnetic straight conductors by applying FEM simulations

    NASA Astrophysics Data System (ADS)

    Riba, Jordi-Roger

    2015-09-01

    This paper analyzes the skin and proximity effects in different conductive nonmagnetic straight conductor configurations subjected to applied alternating currents and voltages. These effects have important consequences, including a rise of the ac resistance, which in turn increases power loss, thus limiting the rating for the conductor. Alternating current (ac) resistance is important in power conductors and bus bars for line frequency applications, as well as in smaller conductors for high frequency applications. Despite the importance of this topic, it is not usually analyzed in detail in undergraduate and even in graduate studies. To address this, this paper compares the results provided by available exact formulas for simple geometries with those obtained by means of two-dimensional finite element method (FEM) simulations and experimental results. The paper also shows that FEM results are very accurate and more general than those provided by the formulas, since FEM models can be applied in a wide range of electrical frequencies and configurations.

  7. Fast electric dipole transitions in Ra-Ac nuclei

    SciTech Connect

    Ahmad, I.

    1985-01-01

    Lifetime of levels in /sup 225/Ra, /sup 225/Ac, and /sup 227/Ac have been measured by delayed coincidence techniques and these have been used to determine the E1 gamma-ray transition probabilities. The reduced E1 transition probabilities. The reduced E1 transition probabilities in /sup 225/Ra and /sup 225/Ac are about two orders of magnitude larger than the values in mid-actinide nuclei. On the other hand, the E1 rate in /sup 227/Ac is similar to those measured in heavier actinides. Previous studies suggest the presence of octupole deformation in all the three nuclei. The present investigation indicates that fast E1 transitions occur for nuclei with octupole deformation. However, the studies also show that there is no one-to-one correspondence between E1 rate and octupole deformation. 13 refs., 4 figs.

  8. Sub-micrometer particles produced by a low-powered AC electric arc in liquids.

    PubMed

    Jaworski, Jacek A; Fleury, Eric

    2012-01-01

    The article presents the report of the production of composites of sub-micrometer metal particles in matrix consisted of the metal compounds by means of an AC electric arc in water and paraffin solutions using electrodes carbon-metal and metal-metal (metal: Ni, Fe, Co, Cu). The advantage of this method is the low electric power (from 5 to 10 W) needed in comparison to standard DC arc-discharge methods (0.8 to 3 kW). This method enables the production of particles from conductive material also in wide range of temperature and in solvent which could be either transparent to light or opaque. Moreover the solvent can be electrolyte or insulating liquid. The microstructure of the composite layer was investigated by scanning electron microscopy (SEM), Electron Probe Microanalysis (EPMA) and X-ray. During particles production in water metal oxides were created. Additionally using cobalt-copper, nickel-copper as couple electrodes, insoluble in water copper (II) hydroxide crystal grains were created additionally which crystals shape was depended on transition metal. For iron-copper couple electrodes system the copper (II) hydroxide was not formed. Experiments with sequence production of Ni and Fe particles with C electrode assisting in molten paraffin let to obtain both Ni and Fe particles surrounded by paraffin. After solidification the material was insulator but if locally magnetic field influenced on the liquid solution in that place after solidification a new composite was created which was electric current conductor with resistivity around 0.1 omega x m, was attracted by magnetic field and presented magneto resistance around 0.4% in changing magnetic field in a range 150 mT. After mixing the concentrated paraffin with normal paraffin resistivity of the mixture increased and it became photosensitive and created small voltage under light influence. PMID:22524027

  9. Patterns driven by combined ac and dc electric fields in nematic liquid crystals.

    PubMed

    Krekhov, Alexei; Decker, Werner; Pesch, Werner; Eber, Nándor; Salamon, Péter; Fekete, Balázs; Buka, Agnes

    2014-05-01

    The effect of superimposed ac and dc electric fields on the formation of electroconvection and flexoelectric patterns in nematic liquid crystals was studied. For selected ac frequencies, an extended standard model of the electrohydrodynamic instabilities was used to characterize the onset of pattern formation in the two-dimensional parameter space of the magnitudes of the ac and dc electric field components. Numerical as well as approximate analytical calculations demonstrate that depending on the type of patterns and on the ac frequency, the combined action of ac and dc fields may either enhance or suppress the formation of patterns. The theoretical predictions are qualitatively confirmed by experiments in most cases. Some discrepancies, however, seem to indicate the need to extend the theoretical description. PMID:25353815

  10. Effect of Interfacial Resistance on AC Loss as a Function of Applied AC Field in YBCO Filamentary Conductors

    SciTech Connect

    Duckworth, Robert C; List III, Frederick Alyious; Zhang, Yifei

    2009-01-01

    To reduce ac loss in Y-Ba-Cu-O (YBCO) coated conductors while maintaining current sharing between filaments, an attempt was made to introduce an interfacial resistance between the YBCO filaments and a continuous silver cap layer. The YBCO filaments were produced via laser scribing of MOCVD YBCO films deposited on standard Ion Beam Assisted Deposition (IBAD) templates. After laser scribing, the filaments were exposed to air at room temperature to degrade the YBCO surface. A three micron thick silver cap layer was then and each sample was oxygen annealed at different temperature to produce different interface resistance at the interface between the silver and YBCO. Measurements of the ac loss was measured as a function of applied perpendicular field and frequency revealed a correlation between the reduction in coupling loss and the oxygen annealing temperature.

  11. Activation of Bt Protoxin Cry1Ac in Resistant and Susceptible Cotton Bollworm

    PubMed Central

    Liang, Gemei; Wang, Bingjie; Zhong, Feng; Chen, Lin; Khaing, Myint Myint; Zhang, Jie; Guo, Yuyuan; Wu, Kongming; Tabashnik, Bruce E.

    2016-01-01

    Crystalline (Cry) proteins from Bacillus thuringiensis (Bt) are used extensively for insect control in sprays and transgenic plants, but their efficacy is reduced by evolution of resistance in pests. Here we evaluated reduced activation of Cry1Ac protoxin as a potential mechanism of resistance in the invasive pest Helicoverpa armigera. Based on the concentration killing 50% of larvae (LC50) for a laboratory-selected resistant strain (LF120) divided by the LC50 for its susceptible parent strain (LF), the resistance ratio was 1600 for Cry1Ac protoxin and 1200 for trypsin-activated Cry1Ac toxin. The high level of resistance to activated toxin as well as to protoxin indicates reduced activation of protoxin is not a major mechanism of resistance to Cry1Ac in LF120. For both insect strains, treatment with either the trypsin inhibitor N-a-tosyl-L-lysine chloromethyl ketone (TLCK) or the chymotrypsin inhibitor N-a-tosyl-L-phenylalanine chloromethyl ketone (TPCK) did not significantly affect the LC50 of Cry1Ac protoxin. Enzyme activity was higher for LF than LF120 for trypsin-like proteases, but did not differ between strains for chymotrypsin-like proteases. The results here are consistent with previous reports indicating that reduced activation of protoxin is generally not a major mechanism of resistance to Bt proteins. PMID:27257885

  12. Acid ceramidase upregulation in prostate cancer cells confers resistance to radiation: AC inhibition, a potential radiosensitizer.

    PubMed

    Mahdy, Ayman E M; Cheng, Joseph C; Li, Jun; Elojeimy, Saeed; Meacham, William D; Turner, Lorianne S; Bai, Aiping; Gault, Christopher R; McPherson, Alex S; Garcia, Nicole; Beckham, Thomas H; Saad, Antonio; Bielawska, Alicja; Bielawski, Jacek; Hannun, Yusuf A; Keane, Thomas E; Taha, Mohhammed I; Hammouda, Hisham M; Norris, James S; Liu, Xiang

    2009-03-01

    Radiation resistance in a subset of prostate tumors remains a challenge to prostate cancer radiotherapy. The current study on the effects of radiation on prostate cancer cells reveals that radiation programs an unpredicted resistance mechanism by upregulating acid ceramidase (AC). Irradiated cells demonstrated limited changes of ceramide levels while elevating levels of sphingosine and sphingosine-1-phosphate. By genetically downregulating AC with small interfering RNA (siRNA), we observed radiosensitization of cells using clonogenic and cytotoxicity assays. Conversely, AC overexpression further decreased sensitivity to radiation. We also observed that radiation-induced AC upregulation was sufficient to create cross-resistance to chemotherapy as demonstrated by decreased sensitivity to Taxol and C(6) ceramide compared to controls. Lower levels of caspase 3/7 activity were detected in cells pretreated with radiation, also indicating increased resistance. Finally, utilization of the small molecule AC inhibitor, LCL385, sensitized PPC-1 cells to radiation and significantly decreased tumor xenograft growth. These data suggest a new mechanism of cancer cell resistance to radiation, through upregulation of AC that is, in part, mediated by application of the therapy itself. An improved understanding of radiotherapy and the application of combination therapy achieved in this study offer new opportunities for the modulation of radiation effects in the treatment of cancer. PMID:19107118

  13. Electrical Resistive Heaters for Magnetically Sensitive Instruments

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael

    2014-05-01

    US Patent 8,138,760 ``Temperature System with Magnetic Field Suppression'' describes design concepts and examples for development of electrical resistive heaters and temperature detectors suitable for temperature control of the alkali vapor cells of magnetically sensitive atomic instruments such as spin-exchange relaxation free (SERF) magnetometers. This is achieved through careful manipulation of electromagnetic multi-pole moments in the design of these resistive heaters for substantial self-cancellation of electrically generated magnetic fields. The magnetic performance of electrical resistive heaters produced according to these design principles and directly attached to a rubidium vapor cell has been demonstrated to cause no measurable degradation of the performance of a SERF magnetometer exhibiting noise below 2 femto-Tesla per square root Hz.

  14. Resistance after firing protected electric match

    DOEpatents

    Montoya, Arsenio P.

    1981-11-10

    An electric match having electrical leads embedded in flame-producing compound is protected against an accidental resistance across the leads after firing by a length of heat-shrinkable tubing encircling the match body and having a skirt portion extending beyond the leads. The heat of the burning match and an adjacent thermal battery causes the tubing to fold over the end of the match body, covering the ends of the leads and protecting them from molten pieces of the battery.

  15. Wind-powered asynchronous AC/DC/AC converter system. [for electric power supply regulation

    NASA Technical Reports Server (NTRS)

    Reitan, D. K.

    1973-01-01

    Two asynchronous ac/dc/ac systems are modelled that utilize wind power to drive a variable or constant hertz alternator. The first system employs a high power 60-hertz inverter tie to the large backup supply of the power company to either supplement them from wind energy, storage, or from a combination of both at a preset desired current; rectifier and inverter are identical and operate in either mode depending on the silicon control rectifier firing angle. The second system employs the same rectification but from a 60-hertz alternator arrangement; it provides mainly dc output, some sinusoidal 60-hertz from the wind bus and some high harmonic content 60-hertz from an 800-watt inverter.

  16. Electric field in an AC dielectric barrier discharge overlapped with a nanosecond pulse discharge

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin M.; Shkurenkov, Ivan; Adamovich, Igor V.; Lempert, Walter R.

    2016-08-01

    The effect of ns discharge pulses on the AC barrier discharge in hydrogen in plane-to-plane geometry is studied using time-resolved measurements of the electric field in the plasma. The AC discharge was operated at a pressure of 300 Torr at frequencies of 500 and 1750 Hz, with ns pulses generated when the AC voltage was near zero. The electric field vector is measured by ps four-wave mixing technique, which generates coherent IR signal proportional to the square of electric field. Absolute calibration was done using an electrostatic (sub-breakdown) field applied to the discharge electrodes, when no plasma was generated. The results are compared with one-dimensional kinetic modeling of the AC discharge and the nanosecond pulse discharge, predicting behavior of both individual micro-discharges and their cumulative effect on the electric field distribution in the electrode gap, using stochastic averaging based on the experimental micro-discharge temporal probability distribution during the AC period. Time evolution of the electric field in the AC discharge without ns pulses, controlled by a superposition of random micro-discharges, exhibits a nearly ‘flat top’ distribution with the maximum near breakdown threshold, reproduced quite well by kinetic modeling. Adding ns pulse discharges on top of the AC voltage waveform changes the AC discharge behavior in a dramatic way, inducing transition from random micro-discharges to a more regular, near-1D discharge. In this case, reproducible volumetric AC breakdown is produced at a well-defined moment after each ns pulse discharge. During the reproducible AC breakdown, the electric field in the plasma exhibits a sudden drop, which coincides in time with a well-defined current pulse. This trend is also predicted by the kinetic model. Analysis of kinetic modeling predictions shows that this effect is caused by large-volume ionization and neutralization of surface charges on the dielectrics by ns discharge pulses. The present

  17. Pedotransfer functions in soil electrical resistivity estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface electrical resistivity tomography (ERT) is recognized as a powerful non-invasive soil survey and monitoring method. Relationships between ER and soil water contents that are needed to infer the spatial distribution of soil moisture from the ERT results, are known to reflect soil properties. ...

  18. ``Superfast'' and ``Hyperfast'' Electrophoresis in DC and AC Electric Fields

    NASA Astrophysics Data System (ADS)

    Demekhin, Evgeny; Korovyakovsky, Alex

    2006-11-01

    Movement of a small conducting spherical granule in an electrolyte solution under force of DC and AC fields is considered. The problem is described by strongly coupled nonlinear PDE system. The fact that it has two small parameters, the ratio of the ion double layer to the diffusion layer and the ratio of the diffusion layer to the granule's diameter, makes the problem unique and extremely difficult to solve. This is the reason why only solutions for some particular cases have been known. In this work for the first time, combining asymptotic and numerical methods, a complete theory of electrophoresis in DC and AC fields is developed. By special decomposition method the system is transformed to new variables. Analytical solution in the inner region results in the nonlinear Smoluchowski slip velocity. In the intermediate region convection-diffusion equation is solved numerically. In tern, the intermediate solution is matched with the outer solution of Laplace equation to complete the statement. For a strong DC field (``superfast'' electrophoresis) the theory predicts, in agreement with experiments, the granule's velocity to be proportional to the granule's size and squared external field; there is a large elongated vortex behind the granule and a small one near its equator. There is an excellent agreement with available experimental data. Granule's velocity for AC field becomes even larger than for DC, it has a maximum with respect to the field's frequency (``hyperfast'' electrophoresis).

  19. Temperature dependent electrical resistivity of liquid Sn

    NASA Astrophysics Data System (ADS)

    Prajapati, A. V.; Sonvane, Y. A.; Patel, H. P.; Thakor, P. B.

    2016-05-01

    The present paper deals with the effect of temperature variation on the electrical resistivity (ρ) of liquid Sn(Tin). We have used a new parameter free pseudopotential along with screening Taylor et al and Farid et al local field correction functions. The Percus-Yevick Hard Sphere (PYHS) reference system is used to describe structural information. Zeeman formula has been used for finding resistivity with the variation of temperature. The balanced harmonies between present data and experimental data have been achieved with a minimal deviation. So, we concluded that our newly constructed model potential is an effective one to produce the data of electrical resistivity of liquid Sn(Tin) as a function of temperature.

  20. Test plan for performance testing of the Eaton AC-3 electric vehicle

    SciTech Connect

    Crumley, R.L.; Heiselmann, H.W.

    1985-04-01

    An alternating current (ac) propulsion system for an electric vehicle has been developed and tested by the Eaton Corporation. The test bed vehicle is a modified 1981 Mercury Lynx. The test plan has been prepared specifically for the third modification to this test bed and identified as the Eaton AC-3. The scope of the EG and G testing at INEL to be done on the Eaton AC-3 will include coastdown and dynamometer tests but will not include environmental, on-road, or track testing. Coastdown testing will be performed in accordance with SAE J-1263 (SAE Recommended Practice for Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques).

  1. Release Resistant Electrical Interconnections For Mems Devices

    DOEpatents

    Peterson, Kenneth A.; Garrett, Stephen E.; Reber, Cathleen A.

    2005-02-22

    A release resistant electrical interconnection comprising a gold-based electrical conductor compression bonded directly to a highly-doped polysilicon bonding pad in a MEMS, IMEMS, or MOEMS device, without using any intermediate layers of aluminum, titanium, solder, or conductive adhesive disposed in-between the conductor and polysilicon pad. After the initial compression bond has been formed, subsequent heat treatment of the joint above 363 C creates a liquid eutectic phase at the bondline comprising gold plus approximately 3 wt % silicon, which, upon re-solidification, significantly improves the bond strength by reforming and enhancing the initial bond. This type of electrical interconnection is resistant to chemical attack from acids used for releasing MEMS elements (HF, HCL), thereby enabling the use of a "package-first, release-second" sequence for fabricating MEMS devices. Likewise, the bond strength of an Au--Ge compression bond may be increased by forming a transient liquid eutectic phase comprising Au-12 wt % Ge.

  2. On equivalent resistance of electrical circuits

    NASA Astrophysics Data System (ADS)

    Kagan, Mikhail

    2015-01-01

    While the standard (introductory physics) way of computing the equivalent resistance of nontrivial electrical circuits is based on Kirchhoff's rules, there is a mathematically and conceptually simpler approach, called the method of nodal potentials, whose basic variables are the values of the electric potential at the circuit's nodes. In this paper, we review the method of nodal potentials and illustrate it using the Wheatstone bridge as an example. We then derive a closed-form expression for the equivalent resistance of a generic circuit, which we apply to a few sample circuits. The result unveils a curious interplay between electrical circuits, matrix algebra, and graph theory and its applications to computer science. The paper is written at a level accessible by undergraduate students who are familiar with matrix arithmetic. Additional proofs and technical details are provided in appendices.

  3. Electrical resistance tomography for imaging concrete structures

    SciTech Connect

    Buettner, M.; Ramirez, A.; Daily, W.

    1995-11-08

    Electrical Resistance Tomography (ERT) has been used to non-destructively examine the interior of reinforced concrete pillars in the laboratory during a water infiltration experiment. ERT is a technique for determining the electrical resistivity distribution within a volume from measurement of injected currents and the resulting electrical potential distribution on the surface. The transfer resistance (ratio of potential to injected current) data are inverted using an algorithm based on a finite element forward solution which is iteratively adjusted in a least squares sense until the measured and calculated transfer resistances agree to within some predetermined value. Laboratory specimens of concrete pillars, 61.0 cm (24 in) in length and 20.3 cm (8 in) on a side, were prepared with various combinations of steel reinforcing bars and voids (1.27 cm diameter) which ran along the length of the pillars. An array of electrodes was placed around the pillar to allow for injecting current and measuring the resulting potentials. After the baseline resistivity distribution was determined, water was added to a void near one comer of the pillar. ERT was used to determine the resistivity distribution of the pillar at regular time intervals as water was added. The ERT images show very clearly that the water was gradually imbibed into the concrete pillar during the course of the experiment. The resistivity decreased by nearly an order of magnitude near the point of water addition in the first hour, and by nearly two orders of magnitude by the end of the experiment. Other applications for this technology include monitoring of curing in concrete structures, detecting cracks in concrete structures, detecting rebar location and corrosion state, monitoring slope stability and the stability of footings, detecting and monitoring leaks from storage tanks, monitoring thermal processes during environmental remediation, and for detecting and monitoring contaminants in soil and groundwater.

  4. Storing the Electric Energy Produced by an AC Generator

    ERIC Educational Resources Information Center

    Carvalho, P. Simeao; Lima, Ana Paula; Carvalho, Pedro Simeao

    2010-01-01

    Producing energy from renewable energy sources is nowadays a priority in our society. In many cases this energy comes as electric energy, and when we think about electric energy generators, one major issue is how we can store that energy. In this paper we discuss how this can be done and give some ideas for applications that can serve as a…

  5. Electrical Resistivity Imaging and Depression Focused Recharge

    NASA Astrophysics Data System (ADS)

    Bentley, L. R.; Hayashi, M.; Berthold, S.

    2003-12-01

    Seasonal wetlands and small depressions play a fundamental role in recharging regional aquifers in the northern glaciated planes. Water from snowmelt collects in the depressions in the spring and infiltrates into the ground after the soil unfreezes. Infiltrating water leaches salts from the soil beneath depressions. The majority of the infiltrating water moves to the local uplands where it leaves the ground through ET leaving behind zones of evaporitically concentrated salts. A small percentage infiltrates down to the regional aquifer. Leaching and concentrating salts effect the electrical resistivity distribution of the subsurface. Three-dimensional electrical resistivity imaging (ERI) was combined with groundwater and soil measurements to generate a conceptual model of three dimensional fluid flow at San Denis, Saskatchewan. Water chemistry was used to generate a conceptual model of different geochemical zones which could be distinguished by the electrical conductivity of pore water. The Waxman-Smits equation was used to link groundwater electrical conductivity to in situ bulk resistivity. Electrical resisistivity from ERI was then used to map geochemical zones in the subsurface. ERI and chemistry show that infiltrating water reaches a regional aquifer at 20 meters depth. Seasonal wetlands have large zones of high resistivity that reach to the regional water table indicating that salts have been leached out of the tills to the depth of the regional aquifer. Small local depressions also have zones of leached soil beneath them indicating that they contribute to regional groundwater recharge. Since there are millions of small depressions, they may play a fundamental role in groundwater recharge and must be considered in land management. The images show a complex distribution of salts. Most of the salt is located in the upper weathered zone in the glacial tills and the horizontal distribution is controled by the locations of wetlands, steepness of slopes and the

  6. Efficacy of an AC sinusoidal electric field for apoptosis induction in lung carcinoma cells (A549)

    NASA Astrophysics Data System (ADS)

    Park, Hyoun-Hyang; Lee, Seung S.; Hoon Lee, Dae

    2012-08-01

    An AC sinusoidal electric field was applied to lung carcinoma cells for the induction of apoptosis. The occurrence of apoptosis was determined by analysis of Annexin V/PI and DNA fragmentation. Additional evidence of apoptosis was confirmed by caspase-3 cleavage and disruption of mitochondrial membrane potential. These results demonstrated that the expression of apoptosis can be controlled by varying the magnitude and the duration of the field, and that the application of an AC electric field can stimulate the apoptosis via mitochondria-mediated pathway.

  7. Resonant tunneling of interacting electrons in an AC electric field

    SciTech Connect

    Elesin, V. F.

    2013-11-15

    The problem of the effect of electron-electron interaction on the static and dynamic properties of a double-barrier nanostructure (resonant tunneling diode (RTD)) is studied in terms of a coherent tunneling model, which includes a set of Schrödinger and Poisson equations with open boundary conditions. Explicit analytical expressions are derived for dc and ac potentials and reduced (active and reactive) currents in the quasi-classical approximation over a wide frequency range. These expressions are used to analyze the frequency characteristics of RTD. It is shown that the interaction can radically change the form of these expressions, especially in the case of a hysteretic I-V characteristic. In this case, the active current and the ac potentials can increase sharply at both low and high frequencies. For this increase to occur, it is necessary to meet quantum regime conditions and to choose a proper working point in the I-V characteristic of RTD. The possibility of appearance of specific plasma oscillations, which can improve the high-frequency characteristics of RTD, is predicted. It is found that the active current can be comparable with the resonant dc current of RTD.

  8. Study of DC and AC electric field effect on Pisum sativum seeds growth

    NASA Astrophysics Data System (ADS)

    Mahmood, Bahar; Jaleh, Sojoodi; Yasaman, Yasaie

    2014-07-01

    In this research the effect of electric field on two groups of wet and dry Pisum sativum seeds growth was studied. To generate the required electric field a parallel-plate capacitor with round copper plates of 30 cm diameter was used. The experiments were performed once in fixed exposure duration of 8 min in variable DC electric field of 0.25-1.5 kV/m. The other experiments were performed in variable fields of 50-125 kV/m in fixed exposure duration of 8 min, in two groups of AC and DC electric fields. The experiments were repeated three times. In each experiment 10 seeds were used and there was a sham exposed group for comparison, too. After application of electric field, the seeds were kept for six days in the same growth chamber with the temperature of 25 ± 1 °C and 12 h light/12 h darkness. On the 6th day length of stems and height of roots were measured. After doing statistical analysis, in low intensities of DC electric field, the highest significant increase of mean growth (The average of stem length and the height of roots) was seen in 1.5 kV/m in wet seeds. In high intensities of DC and AC electric fields, the highest significant increase of mean growth was seen in AC electric field of 100 kV/m in wet seeds.

  9. Electric properties of carbon nano-onion/polyaniline composites: a combined electric modulus and ac conductivity study

    NASA Astrophysics Data System (ADS)

    Papathanassiou, Anthony N.; Mykhailiv, Olena; Echegoyen, Luis; Sakellis, Ilias; Plonska-Brzezinska, Marta E.

    2016-07-01

    The complex electric modulus and the ac conductivity of carbon nano-onion/polyaniline composites were studied from 1 mHz to 1 MHz at isothermal conditions ranging from 15 K to room temperature. The temperature dependence of the electric modulus and the dc conductivity analyses indicate a couple of hopping mechanisms. The distinction between thermally activated processes and the determination of cross-over temperature were achieved by exploring the temperature dependence of the fractional exponent of the dispersive ac conductivity and the bifurcation of the scaled ac conductivity isotherms. The results are analyzed by combining the granular metal model (inter-grain charge tunneling of extended electron states located within mesoscopic highly conducting polyaniline grains) and a 3D Mott variable range hopping model (phonon assisted tunneling within the carbon nano-onions and clusters).

  10. Electrical resistance tomography of concrete structures

    SciTech Connect

    Daily, W.; Ramirez, A.; Binley, A.; Henry-Poulter, S.

    1993-10-01

    The purpose of this work is to determine the feasibility of using Electrical resistance tomography (ERT) to nondestructively examine the interior of concrete structures such as bridge pillars and roadways. We report the results of experiments wherein ERT is used to image the two concrete specimens in the laboratory. Each specimen is 5 inches square and 12 inches long and contained steel reinforcing rods along its length. Twenty electrodes were placed on each sample and an-image of electrical resistivity distribution was generated from current and voltage measurements. We found that the images show the general location of the reinforcing steel and, what`s more important, delineate the absence of the steel. The method may therefore be useful for determining if such steel has been destroyed by corrosion, however to make it useful, the technique must have better resolution so that individual reinforcing steel units are resolved.

  11. Soil Identification using Field Electrical Resistivity Method

    NASA Astrophysics Data System (ADS)

    Hazreek, Z. A. M.; Rosli, S.; Chitral, W. D.; Fauziah, A.; Azhar, A. T. S.; Aziman, M.; Ismail, B.

    2015-06-01

    Geotechnical site investigation with particular reference to soil identification was important in civil engineering works since it reports the soil condition in order to relate the design and construction of the proposed works. In the past, electrical resistivity method (ERM) has widely being used in soil characterization but experienced several black boxes which related to its results and interpretations. Hence, this study performed a field electrical resistivity method (ERM) using ABEM SAS (4000) at two different types of soils (Gravelly SAND and Silty SAND) in order to discover the behavior of electrical resistivity values (ERV) with type of soils studied. Soil basic physical properties was determine thru density (p), moisture content (w) and particle size distribution (d) in order to verify the ERV obtained from each type of soil investigated. It was found that the ERV of Gravelly SAND (278 Ωm & 285 Ωm) was slightly higher than SiltySAND (223 Ωm & 199 Ωm) due to the uncertainties nature of soils. This finding has showed that the results obtained from ERM need to be interpreted based on strong supported findings such as using direct test from soil laboratory data. Furthermore, this study was able to prove that the ERM can be established as an alternative tool in soil identification provided it was being verified thru other relevance information such as using geotechnical properties.

  12. Delineation of graves using electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Nero, Callistus; Aning, Akwasi Acheampong; Danuor, Sylvester K.; Noye, Reginald M.

    2016-03-01

    A suspected old royal cemetery has been surveyed at the Kwame Nkrumah University of Science and Technology (KNUST) campus, Kumasi, Ghana using Electrical Resistivity Tomography (ERT) with the objective of detecting graves in order to make informed decisions with regard to the future use of the area. The survey was conducted on a 10,000 m2 area. Continuous Vertical Electrical Sounding (CVES) was combined with the roll along technique for 51 profiles with 1 m probe separation separated by 2 m. Inverted data results indicated wide resistivity variations ranging between 9.34 Ωm and 600 Ωm in the near surface. Such heterogeneity suggests a disturbance of the soil at this level. Both high (≥ 600 Ωm) and low resistivity (≤ 74.7 Ωm) anomalies, relative to background levels, were identified within the first 4 m of the subsurface. These were suspected to be burial tombs because of their rectangular geometries and resistivity contrasts. The results were validated with forward numerical modeling results. The study area is therefore an old cemetery and should be preserved as a cultural heritage site.

  13. Rational Experimental Design for Electrical Resistivity Imaging

    NASA Astrophysics Data System (ADS)

    Mitchell, V.; Pidlisecky, A.; Knight, R.

    2008-12-01

    Over the past several decades advances in the acquisition and processing of electrical resistivity data, through multi-channel acquisition systems and new inversion algorithms, have greatly increased the value of these data to near-surface environmental and hydrological problems. There has, however, been relatively little advancement in the design of actual surveys. Data acquisition still typically involves using a small number of traditional arrays (e.g. Wenner, Schlumberger) despite a demonstrated improvement in data quality from the use of non-standard arrays. While optimized experimental design has been widely studied in applied mathematics and the physical and biological sciences, it is rarely implemented for non-linear problems, such as electrical resistivity imaging (ERI). We focus specifically on using ERI in the field for monitoring changes in the subsurface electrical resistivity structure. For this application we seek an experimental design method that can be used in the field to modify the data acquisition scheme (spatial and temporal sampling) based on prior knowledge of the site and/or knowledge gained during the imaging experiment. Some recent studies have investigated optimized design of electrical resistivity surveys by linearizing the problem or with computationally-intensive search algorithms. We propose a method for rational experimental design based on the concept of informed imaging, the use of prior information regarding subsurface properties and processes to develop problem-specific data acquisition and inversion schemes. Specifically, we use realistic subsurface resistivity models to aid in choosing source configurations that maximize the information content of our data. Our approach is based on first assessing the current density within a region of interest, in order to provide sufficient energy to the region of interest to overcome a noise threshold, and then evaluating the direction of current vectors, in order to maximize the

  14. Analytic formulation for the ac electrical conductivity in two- temperature, strongly coupled, overdense plasma: FORTRAN subroutine

    SciTech Connect

    Cauble, R.; Rozmus, W.

    1993-10-21

    A FORTRAN subroutine for the calculation of the ac electrical conductivity in two-temperature, strongly coupled, overdense plasma is presented. The routine is the result of a model calculation based on classical transport theory with application to plasmas created by the interaction of short pulse lasers and solids. The formulation is analytic and the routine is self-contained.

  15. Electrical resistance tomography from measurements inside a steel cased borehole

    DOEpatents

    Daily, William D.; Schenkel, Clifford; Ramirez, Abelardo L.

    2000-01-01

    Electrical resistance tomography (ERT) produced from measurements taken inside a steel cased borehole. A tomographic inversion of electrical resistance measurements made within a steel casing was then made for the purpose of imaging the electrical resistivity distribution in the formation remotely from the borehole. The ERT method involves combining electrical resistance measurements made inside a steel casing of a borehole to determine the electrical resistivity in the formation adjacent to the borehole; and the inversion of electrical resistance measurements made from a borehole not cased with an electrically conducting casing to determine the electrical resistivity distribution remotely from a borehole. It has been demonstrated that by using these combined techniques, highly accurate current injection and voltage measurements, made at appropriate points within the casing, can be tomographically inverted to yield useful information outside the borehole casing.

  16. An ABC Transporter Mutation Is Correlated with Insect Resistance to Bacillus thuringiensis Cry1Ac Toxin

    PubMed Central

    Gahan, Linda J.; Pauchet, Yannick; Vogel, Heiko; Heckel, David G.

    2010-01-01

    Transgenic crops producing insecticidal toxins from Bacillus thuringiensis (Bt) are commercially successful in reducing pest damage, yet knowledge of resistance mechanisms that threaten their sustainability is incomplete. Insect resistance to the pore-forming Cry1Ac toxin is correlated with the loss of high-affinity, irreversible binding to the mid-gut membrane, but the genetic factors responsible for this change have been elusive. Mutations in a 12-cadherin-domain protein confer some Cry1Ac resistance but do not block this toxin binding in in vitro assays. We sought to identify mutations in other genes that might be responsible for the loss of binding. We employed a map-based cloning approach using a series of backcrosses with 1,060 progeny to identify a resistance gene in the cotton pest Heliothis virescens that segregated independently from the cadherin mutation. We found an inactivating mutation of the ABC transporter ABCC2 that is genetically linked to Cry1Ac resistance and is correlated with loss of Cry1Ac binding to membrane vesicles. ABC proteins are integral membrane proteins with many functions, including export of toxic molecules from the cell, but have not been implicated in the mode of action of Bt toxins before. The reduction in toxin binding due to the inactivating mutation suggests that ABCC2 is involved in membrane integration of the toxin pore. Our findings suggest that ABC proteins may play a key role in the mode of action of Bt toxins and that ABC protein mutations can confer high levels of resistance that could threaten the continued utilization of Bt–expressing crops. However, such mutations may impose a physiological cost on resistant insects, by reducing export of other toxins such as plant secondary compounds from the cell. This weakness could be exploited to manage this mechanism of Bt resistance in the field. PMID:21187898

  17. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin.

    PubMed

    Gahan, Linda J; Pauchet, Yannick; Vogel, Heiko; Heckel, David G

    2010-12-01

    Transgenic crops producing insecticidal toxins from Bacillus thuringiensis (Bt) are commercially successful in reducing pest damage, yet knowledge of resistance mechanisms that threaten their sustainability is incomplete. Insect resistance to the pore-forming Cry1Ac toxin is correlated with the loss of high-affinity, irreversible binding to the mid-gut membrane, but the genetic factors responsible for this change have been elusive. Mutations in a 12-cadherin-domain protein confer some Cry1Ac resistance but do not block this toxin binding in in vitro assays. We sought to identify mutations in other genes that might be responsible for the loss of binding. We employed a map-based cloning approach using a series of backcrosses with 1,060 progeny to identify a resistance gene in the cotton pest Heliothis virescens that segregated independently from the cadherin mutation. We found an inactivating mutation of the ABC transporter ABCC2 that is genetically linked to Cry1Ac resistance and is correlated with loss of Cry1Ac binding to membrane vesicles. ABC proteins are integral membrane proteins with many functions, including export of toxic molecules from the cell, but have not been implicated in the mode of action of Bt toxins before. The reduction in toxin binding due to the inactivating mutation suggests that ABCC2 is involved in membrane integration of the toxin pore. Our findings suggest that ABC proteins may play a key role in the mode of action of Bt toxins and that ABC protein mutations can confer high levels of resistance that could threaten the continued utilization of Bt-expressing crops. However, such mutations may impose a physiological cost on resistant insects, by reducing export of other toxins such as plant secondary compounds from the cell. This weakness could be exploited to manage this mechanism of Bt resistance in the field. PMID:21187898

  18. Bacillus thuringiensis Cry1Ac Resistance Frequency in Tobacco Budworm (Lepidoptera: Noctuidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tobacco budworm (Heliothis virescens F.) is one of the most important pests of cotton and has become resistant to a wide range of synthetic insecticides. Cry1Ac-expressing cotton has proven its effectiveness against this insect since its introduction in North America in 1996. However, the consta...

  19. Graphene-coated coupling coil for AC resistance reduction

    DOEpatents

    Miller, John M

    2014-03-04

    At least one graphene layer is formed to laterally surround a tube so that the basal plane of each graphene layer is tangential to the local surface of the tube on which the graphene layer is formed. An electrically conductive path is provided around the tube for providing high conductivity electrical path provided by the basal plane of each graphene layer. The high conductivity path can be employed for high frequency applications such as coupling coils for wireless power transmission to overcome skin depth effects and proximity effects prevalent in high frequency alternating current paths.

  20. Complex Electrical Resistivity for Monitoring DNAPL Contamination

    SciTech Connect

    Stephen R. Brown; David Lesmes; John Fourkas

    2003-09-12

    Nearly all Department of Energy (DOE) facilities have landfills and buried waste areas. Of the various contaminants present at these sites, dense non-aqueous phase liquids (DNAPL) are particularly hard to locate and remove. There is an increasing need for external or non-invasive sensing techniques to locate DNAPLs in the subsurface and to track their spread and monitor their breakdown or removal by natural or engineered means. G. Olhoeft and colleagues have published several reports based on laboratory studies using the complex resistivity method which indicate that organic solvents, notably toluene, PCE, and TCE, residing in clay-bearing soils have distinctive electrical signatures. These results have suggested to many researchers the basis of an ideal new measurement technique for geophysical characterization of DNAPL pollution. Encouraged by these results we proposed to bring the field measurement of complex resistivity as a means of pollution characterization from the conceptual stage to practice. We planned to document the detectability of clay-organic solvent interactions with geophysical measurements in the laboratory, develop further understanding of the underlying physical and chemical mechanisms, and then apply these observations to develop field techniques. As with any new research endeavor we note the extreme importance of trying to reproduce the work of previous researchers to ensure that any effects observed are due to the physical phenomena occurring in the specimen and not due to the particular experimental apparatus or method used. To this end, we independently designed and built a laboratory system, including a sample holder, electrodes, electronics, and data analysis software, for the measurement of the complex electrical resistivity properties of soil contaminated with organic solvents. The capabilities and reliability of this technique were documented. Using various standards we performed measurement accuracy, repeatability, and noise immunity

  1. Improved transistorized AC motor controller for battery powered urban electric passenger vehicles

    NASA Technical Reports Server (NTRS)

    Peak, S. C.

    1982-01-01

    An ac motor controller for an induction motor electric vehicle drive system was designed, fabricated, tested, evaluated, and cost analyzed. A vehicle performance analysis was done to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of ac motor and ac controller requirements. The power inverter is a three-phase bridge using power Darlington transistors. The induction motor was optimized for use with an inverter power source. The drive system has a constant torque output to base motor speed and a constant horsepower output to maximum speed. A gear shifting transmission is not required. The ac controller was scaled from the base 20 hp (41 hp peak) at 108 volts dec to an expanded horsepower and battery voltage range. Motor reversal was accomplished by electronic reversal of the inverter phase sequence. The ac controller can also be used as a boost chopper battery charger. The drive system was tested on a dynamometer and results are presented. The current-controlled pulse width modulation control scheme yielded improved motor current waveforms. The ac controller favors a higher system voltage.

  2. Cone-based electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Pidlisecky, Adam

    Determining the 3-D spatial distribution of subsurface properties is a critical part of managing the clean-up of contaminated sites. Most standard hydrologic methods sample small regions immediately adjacent to wells or testing devices. This provides data which are not representative of the entire region of interest. Furthermore, at many contaminated sites invasive methods are not acceptable, due to the risks associated with contacting and spreading the contaminants. To address these issues, I have developed a minimally invasive technology that provides information about the 3-D distribution of electrical conductivity. This new technique, cone-based electrical resistivity tomography (C-bert), integrates the existing technologies of resistivity cone penetration testing (RCPT) with electrical resistivity tomography. Development of this tool included the creation of new software and modeling algorithms, the design of field equipment, field testing, and processing and interpretation of the resulting data. I present a 2.5-D forward modeling algorithm that incorporates an effective correction for the errors caused by boundary effects and source singularities. The algorithm includes an optimization technique for acquiring the Fourier coefficients required for the solution. A 3-D inversion algorithm is presented that has two major improvements over existing algorithms. First, it includes a 3-D version of the boundary correction/source singularity correction developed for the 2.5-D problem. Second, the algorithm can handle any type of acquisition geometry; this was a requirement for the development of C-bert. C-bert involves placing several permanent current electrodes in the subsurface and using electrodes mounted on a cone penetrometer and at the surface to measure the resultant potential field. In addition to these measurements, we obtain the standard suite of RCPT data, including high resolution resistivity logs. The RCPT data can be used to generate a realistic

  3. Cross-resistance and interactions between Bt toxins Cry1Ac and Cry2Ab against the cotton bollworm

    PubMed Central

    Wei, Jizhen; Guo, Yuyuan; Liang, Gemei; Wu, Kongming; Zhang, Jie; Tabashnik, Bruce E.; Li, Xianchun

    2015-01-01

    To delay evolution of pest resistance to transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt), the "pyramid" strategy uses plants that produce two or more toxins that kill the same pest. We conducted laboratory diet experiments with the cotton bollworm, Helicoverpa armigera, to evaluate cross-resistance and interactions between two toxins in pyramided Bt cotton (Cry1Ac and Cry2Ab). Selection with Cry1Ac for 125 generations produced 1000-fold resistance to Cry1Ac and 6.8-fold cross-resistance to Cry2Ab. Selection with Cry2Ab for 29 generations caused 5.6-fold resistance to Cry2Ab and 61-fold cross-resistance to Cry1Ac. Without exposure to Bt toxins, resistance to both toxins decreased. For each of the four resistant strains examined, 67 to 100% of the combinations of Cry1Ac and Cry2Ab tested yielded higher than expected mortality, reflecting synergism between these two toxins. Results showing minor cross-resistance to Cry2Ab caused by selection with Cry1Ac and synergism between these two toxins against resistant insects suggest that plants producing both toxins could prolong the efficacy of Bt cotton against this pest in China. Including toxins against which no cross-resistance occurs and integrating Bt cotton with other control tactics could also increase the sustainability of management strategies. PMID:25586723

  4. Improved transistorized ac motor controller for battery powered urban electric passenger vehicles

    SciTech Connect

    Peak, S.C.

    1982-09-01

    The objectives of this program for an improved ac motor controller for battery powered urban electric passenger vehicles were: the design, fabrication, test, evaluation and cost analysis of an engineering model controller for an ac induction motor drive system, the investigation of a power level expansion to a family of horsepower and battery system voltages, and the investigation of the applicability of the ac controller for use as an on-board battery charger and for providing the function of motor reversal. Additional vehicle specifications, e.g., acceleration and pulling out of potholes, were added to the NASA vehicle specifications. Then, a vehicle performance analysis was done to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of ac motor and ac controller requirements. The General Electric ac induction motor used in the drive is optimized to operate as a vehicle traction motor with a pulse width modulated (PWM) inverter as a power source. The motor is nominally rated 20 hp and 41 hp peak. The power inverter design is a three-phase transistorized bridge configuration with feedback diodes. The transistors are a special design General Electric high-power Darlington transistor rated 450 volts and 200 amps. The battery system voltage chosen was 108 volts. The control strategy is a constant torque profile by PWM operation to base speed and a constant horsepower profile by square-wave operation to maximum speed. A gear shifting transmission is not required. An advanced current-controlled PWM technique is used to control the motor voltage. The primary feedback control is a motor angle control, with voltage and torque outer loop controls.

  5. ac powertrain for an electric vehicle. Phase 2 and Phase 3 final report

    SciTech Connect

    Slicker, J.M.

    1984-11-01

    This report describes work relating to Phases 2 and 3 development and testing of an ac powertrain for a 25 hp four-passenger electric vehicle. The system, which consists of a two-speed automatic mechanical transaxle, 18.6 kW ac induction traction motor, 33.6 kW inverter and overall logic controller, was installed and evaluated in a converted Mercury Lynx rolling test bed vehicle. An on-board charger and an auxiliary dc-to-dc converter were integrated into the inverter/controller package.

  6. Discontinuities detection using transmission electrical resistivity imaging

    NASA Astrophysics Data System (ADS)

    Lesparre, Nolwenn; Cabrera, Justo; Boyle, Alistair; Grychtol, Bartłomiej; Adler, Andy

    2015-04-01

    In the context of nuclear waste storage, low permeability clays are investigated as potential geological barrier. Discontinuities in such formations might facilitate the radionuclide transport to the environment. The underground platform of Tournemire (Aveyron, France) presents the opportunity to perform in-situ experiments to evaluate the potential of geophysical methods to detect and characterize the presence of discontinuities in the sub-surface. In this work, we apply transmission electrical resistivity tomography to image the medium surrounding a regional fault. A specific array of electrodes were set up, adapted for the characterization of the fault. Electrodes were placed along the tunnel as well as at the surface above the tunnel on both sides of the fault. The objective of a such geometry is to acquire data in transmission across the massif in addition to classical protocol such as Schlumberger or dipole-dipole in order to better cover the sounded medium. 3D models considering the gallery geometry, the topography and the injection of current in transmission through the massif were developed for the analysis of such particular data sets. For the reconstruction of the medium electrical resistivity, the parametrization of the inverse problem was adapted to the geometry of the experience in a scope to reduce the inversion under-determination. The resulting image obtained with classical protocols and transmission current injection is compared to an image obtained using only classical protocols to better highlight the interest of a transmission experiment in terms of resolution and penetration depth. The addition of protocols in transmission allows a better coverage of the sounded medium so the resulting image presents a better resolution at higher depths than the image resulting from a single profile of electrodes. The proposed configuration of electrical resistivity measurements in transmission is then promising for hydrogeophysical studies, in particular for

  7. Electrical Resistance Tomography imaging of concrete

    SciTech Connect

    Karhunen, Kimmo; Seppaenen, Aku; Lehikoinen, Anssi; Monteiro, Paulo J.M.; Kaipio, Jari P.

    2010-01-15

    We apply Electrical Resistance Tomography (ERT) for three dimensional imaging of concrete. In ERT, alternating currents are injected into the target using an array of electrodes attached to the target surface, and the resulting voltages are measured using the same electrodes. These boundary measurements are used for reconstructing the internal (3D) conductivity distribution of the target. In reinforced concrete, the metallic phases (reinforcing bars and fibers), cracks and air voids, moisture gradients, and the chloride distribution in the matrix carry contrast with respect to conductivity. While electrical measurements have been widely used to characterize the properties of concrete, only preliminary results of applying ERT to concrete imaging have been published so far. The aim of this paper is to carry out a feasibility evaluation with specifically cast samples. The results indicate that ERT may be a feasible modality for non-destructive evaluation of concrete.

  8. Tank leak detection using electrical resistance methods

    SciTech Connect

    Ramirez, A.; Daily, W.; Binley, A.; LaBrecque, D.

    1996-01-01

    Large volumes of hazardous liquids and high-level radioactive wastes are stored worldwide in surface and underground tanks. Frequently these tanks are found to leak, thereby resulting in not only a loss of stored inventory, but in contamination to soils and groundwater. It is important to develop a reliable method of detecting leaks before large quantities are emitted into the environment surround the tanks. Two field experiments were performed to evaluate the performance of electrical resistance tomography (ERT) as a leak detection method under metal underground storage tanks (UST). This paper provides a summary of the field experiments performed under a 15 m diameter steel tank mockup located at the Hanford Reservation.

  9. AC electric field induced droplet deformation in a microfluidic T-junction.

    PubMed

    Xi, Heng-Dong; Guo, Wei; Leniart, Michael; Chong, Zhuang Zhi; Tan, Say Hwa

    2016-08-01

    We present for the first time an experimental study on the droplet deformation induced by an AC electric field in droplet-based microfluidics. It is found that the deformation of the droplets becomes stronger with increasing electric field intensity and frequency. The measured electric field intensity dependence of the droplet deformation is consistent with an early theoretical prediction for stationary droplets. We also proposed a simple equivalent circuit model to account for the frequency dependence of the droplet deformation. The model well explains our experimental observations. In addition, we found that the droplets can be deformed repeatedly by applying an amplitude modulation (AM) signal. PMID:27173587

  10. Cross-resistance and inheritance of resistance to Bacillus thuringiensis toxin Cry1Ac in diamondback moth (Plutella xylostella L) from lowland Malaysia.

    PubMed

    Sayyed, A H; Wright, D J

    2001-05-01

    A field population of Plutella xylostella from Malaysia (SERD4) was divided into five sub-populations and four were selected (G2-G5) with the Bacillus thuringiensis insecticidal crystal (Cry) toxins Cry1Ac, Cry1Ab, Cry1Ca and Cry1Da. Bioassay at G6 gave resistance ratios of 88, 5, 2 and 3 for Cry1Ac, Cry1Ab, Cry1Ca and Cry1Da respectively compared with the unselected sub-population (UNSEL-SERD4). The Cry1Ac-selected population showed little cross-resistance to Cry1Ab, Cry1Ca and Cry1Da, (3-, 2- and 3-fold compared with UNSEL-SERD4), whereas the Cry1Ab-SEL sub-population showed marked cross-resistance to Cry1Ac (40-fold), much greater than Cry1Ab itself. In contrast, the Cry1Ca- and Cry1Da-SEL sub-population showed little if any cross-resistance to Cry1Ac and Cry1Ab. The mode of inheritance of resistance to Cry1Ac was examined in Cry1Ac-selected SERD4 by standard reciprocal crosses and back-crosses using a laboratory insecticide-susceptible population (ROTH). Logit regression analysis of F1 reciprocal crosses indicated that resistance to Cry1Ac was inherited as an incompletely dominant trait. At the highest dose of Cry1Ac tested, resistance was recessive, while at the lowest dose it was almost completely dominant. The F2 progeny from a back-cross of F1 progeny with ROTH were tested with a concentration of Cry1Ac that would kill 100% of ROTH. The mortality ranged between 50 and 95% in seven families of back-cross progeny, which indicated that more than one allele on separate loci were responsible for resistance to Cry1Ac. PMID:11374157

  11. Field Evolved Resistance in Helicoverpa armigera (Lepidoptera: Noctuidae) to Bacillus thuringiensis Toxin Cry1Ac in Pakistan

    PubMed Central

    Alvi, Anwaar H. K.; Sayyed, Ali H.; Naeem, Muhammad; Ali, Muhammad

    2012-01-01

    Helicoverpa armigera (Hübner) is one of the most destructive pests of several field and vegetable crops, with indiscriminate use of insecticides contributing to multiple instances of resistance. In the present study we assessed whether H. armigera had developed resistance to Bt cotton and compared the results with several conventional insecticides. Furthermore, the genetics of resistance was also investigated to determine the inheritance to Cry1Ac resistance. To investigate the development of resistance to Bt cotton, and selected foliar insecticides, H. armigera populations were sampled in 2010 and 2011 in several cotton production regions in Pakistan. The resistance ratios (RR) for Cry1Ac, chlorpyrifos, profenofos, cypermethrin, spinosad, indoxacarb, abamectin and deltamethrin were 580-fold, 320-, 1110-, 1950-, 200-, 380, 690, and 40-fold, respectively, compared with the laboratory susceptible (Lab-PK) population. Selection of the field collected population with Cry1Ac in 2010 for five generations increased RR to 5440-fold. The selection also increased RR for deltamethrin, chlorpyrifos, profenofos, cypermethrin, spinosad, indoxacarb, abamectin to 125-folds, 650-, 2840-, 9830-, 370-, 3090-, 1330-fold. The estimated LC50s for reciprocal crosses were 105 µg/ml (Cry1Ac-SEL female × Lab-PK male) and 81 g µg/ml (Lab-PK female × Cry1Ac-SEL male) suggesting that the resistance to Cry1Ac was autosomal; the degree of dominance (DLC) was 0.60 and 0.57 respectively. Mixing of enzyme inhibitors significantly decreased resistance to Cry1Ac suggesting that the resistance to Cry1Ac and other insecticides tested in the present study was primarily metabolic. Resistance to Cry1Ac was probably due to a single but unstable factor suggesting that crop rotation with non-Bt cotton or other crops could reduce the selection pressure for H. armigera and improve the sustainability of Bt cotton. PMID:23077589

  12. Field evolved resistance in Helicoverpa armigera (Lepidoptera: Noctuidae) to Bacillus thuringiensis toxin Cry1Ac in Pakistan.

    PubMed

    Alvi, Anwaar H K; Sayyed, Ali H; Naeem, Muhammad; Ali, Muhammad

    2012-01-01

    Helicoverpa armigera (Hübner) is one of the most destructive pests of several field and vegetable crops, with indiscriminate use of insecticides contributing to multiple instances of resistance. In the present study we assessed whether H. armigera had developed resistance to Bt cotton and compared the results with several conventional insecticides. Furthermore, the genetics of resistance was also investigated to determine the inheritance to Cry1Ac resistance. To investigate the development of resistance to Bt cotton, and selected foliar insecticides, H. armigera populations were sampled in 2010 and 2011 in several cotton production regions in Pakistan. The resistance ratios (RR) for Cry1Ac, chlorpyrifos, profenofos, cypermethrin, spinosad, indoxacarb, abamectin and deltamethrin were 580-fold, 320-, 1110-, 1950-, 200-, 380, 690, and 40-fold, respectively, compared with the laboratory susceptible (Lab-PK) population. Selection of the field collected population with Cry1Ac in 2010 for five generations increased RR to 5440-fold. The selection also increased RR for deltamethrin, chlorpyrifos, profenofos, cypermethrin, spinosad, indoxacarb, abamectin to 125-folds, 650-, 2840-, 9830-, 370-, 3090-, 1330-fold. The estimated LC(50s) for reciprocal crosses were 105 µg/ml (Cry1Ac-SEL female × Lab-PK male) and 81 g µg/ml (Lab-PK female × Cry1Ac-SEL male) suggesting that the resistance to Cry1Ac was autosomal; the degree of dominance (D(LC)) was 0.60 and 0.57 respectively. Mixing of enzyme inhibitors significantly decreased resistance to Cry1Ac suggesting that the resistance to Cry1Ac and other insecticides tested in the present study was primarily metabolic. Resistance to Cry1Ac was probably due to a single but unstable factor suggesting that crop rotation with non-Bt cotton or other crops could reduce the selection pressure for H. armigera and improve the sustainability of Bt cotton. PMID:23077589

  13. Improved SCR ac Motor Controller for Battery Powered Urban Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Latos, T. S.

    1982-01-01

    An improved ac motor controller, which when coupled to a standard ac induction motor and a dc propulsion battery would provide a complete electric vehicle power train with the exception of the mechanical transmission and drive wheels was designed. In such a system, the motor controller converts the dc electrical power available at the battery terminals to ac electrical power for the induction motor in response to the drivers commands. The performance requirements of a hypothetical electric vehicle with an upper weight bound of 1590 kg (3500 lb) were used to determine the power rating of the controller. Vehicle acceleration capability, top speed, and gradeability requisites were contained in the Society of Automotive Engineers (SAE) Schedule 227a(d) driving cycle. The important capabilities contained in this driving cycle are a vehicle acceleration requirement of 0 to 72.4 kmph (0 to 45 mph) in 28 seconds a top speed of 88.5 kmph (55 mph), and the ability to negotiate a 10% grade at 48 kmph (30 mph). A 10% grade is defined as one foot of vertical rise per 10 feet of horizontal distance.

  14. Comparison of AC drives for electric vehicles -- A report on experts` opinion survey

    SciTech Connect

    Chang, L.

    1994-08-01

    It is recognized that wide applications of electric vehicles (EVs) will bring tremendous social, economical and ecological benefits. With the growing interests in electric vehicles, much effort is demanded for the development of efficient, reliable and economical AC drives` for EV propulsion purpose. Both induction motor (IM) drives and permanent magnet brushless DC motor (BDCM) drives have been applied to EVs. Switched reluctance motor (SRM) drives have been proposed as an alternative for EV propulsion. In order to assess the suitability of IM, BDCM and SRM drives for EV applications and to provide a technical support for the development and selection of future EV propulsion systems, the existing EV AC propulsion drives were compared, and a survey of experts` opinions was conducted. Comparison of the three AC drives was made on a relative and a quantitative basis using the survey questionnaires. According to the majority of the experts, induction motor drives are best suited for EV propulsion purpose, due to their low cost, high reliability, high speed, established converter and manufacturing technology, low torque ripple/noise and absence of position sensors. BDCM drives feature compactness, low weight and high efficiency and therefore provide an alternative for EV propulsion. The experts regard insulated gate bipolar transistors (IGBTs) as the most suited power semiconductor devices for AC drive converters at the present stage. 7 refs.

  15. Determination of electrical resistivity of dry coke beds

    SciTech Connect

    Eidem, P.A.; Tangstad, M.; Bakken, J.A.

    2008-02-15

    The electrical resistivity of the coke bed is of great importance when producing FeMn, SiMn, and FeCr in a submerged arc furnace. In these processes, a coke bed is situated below and around the electrode tip and consists of metallurgical coke, slag, gas, and metal droplets. Since the basic mechanisms determining the electrical resistivity of a coke bed is not yet fully understood, this investigation is focused on the resistivity of dry coke beds consisting of different carbonaceous materials, i.e., coke beds containing no slag or metal. A method that reliably compares the electrical bulk resistivity of different metallurgical cokes at 1500{sup o} C to 1600{sup o}C is developed. The apparatus is dimensioned for industrial sized materials, and the electrical resistivity of anthracite, charcoal, petroleum coke, and metallurgical coke has been measured. The resistivity at high temperatures of the Magnitogorsk coke, which has the highest resistivity of the metallurgical cokes investigated, is twice the resistivity of the Corus coke, which has the lowest electrical resistivity. Zdzieszowice and SSAB coke sort in between with decreasing resistivities in the respective order. The electrical resistivity of anthracite, charcoal, and petroleum coke is generally higher than the resistivity of the metallurgical cokes, ranging from about two to about eight times the resistivity of the Corus coke at 1450{sup o}C. The general trend is that the bulk resistivity of carbon materials decreases with increasing temperature and increasing particle size.

  16. Advanced AC permanent magnet axial flux disc motor for electric passenger vehicle

    NASA Technical Reports Server (NTRS)

    Kliman, G. B.

    1982-01-01

    An ac permanent magnet axial flux disc motor was developed to operate with a thyristor load commutated inverter as part of an electric vehicle drive system. The motor was required to deliver 29.8 kW (40 hp) peak and 10.4 kW (14 hp) average with a maximum speed of 11,000 rpm. It was also required to run at leading power factor to commutate the inverter. Three motors were built.

  17. Increased Frequency of Pink Bollworm Resistance to Bt Toxin Cry1Ac in China

    PubMed Central

    Wan, Peng; Huang, Yunxin; Wu, Huaiheng; Huang, Minsong; Cong, Shengbo; Tabashnik, Bruce E.; Wu, Kongming

    2012-01-01

    Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The main approach for delaying pest adaptation to Bt crops uses non-Bt host plants as “refuges” to increase survival of susceptible pests. To delay evolution of pest resistance to transgenic cotton producing Bt toxin Cry1Ac, the United States and some other countries have required refuges of non-Bt cotton, while farmers in China have relied on “natural” refuges of non-Bt host plants other than cotton. The “natural” refuge strategy focuses on cotton bollworm (Helicoverpa armigera), the primary target of Bt cotton in China that attacks many crops, but it does not apply to another major pest, pink bollworm (Pectinophora gossypiella), which feeds almost entirely on cotton in China. Here we report data showing field-evolved resistance to Cry1Ac by pink bollworm in the Yangtze River Valley of China. Laboratory bioassay data from 51 field-derived strains show that the susceptibility to Cry1Ac was significantly lower during 2008 to 2010 than 2005 to 2007. The percentage of field populations yielding one or more survivors at a diagnostic concentration of Cry1Ac increased from 0% in 2005–2007 to 56% in 2008–2010. However, the median survival at the diagnostic concentration was only 1.6% from 2008 to 2010 and failure of Bt cotton to control pink bollworm has not been reported in China. The early detection of resistance reported here may promote proactive countermeasures, such as a switch to transgenic cotton producing toxins distinct from Cry1A toxins, increased planting of non-Bt cotton, and integration of other management tactics together with Bt cotton. PMID:22238687

  18. Asymmetrical cross-resistance between Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in pink bollworm

    PubMed Central

    Tabashnik, Bruce E.; Unnithan, Gopalan C.; Masson, Luke; Crowder, David W.; Li, Xianchun; Carrière, Yves

    2009-01-01

    Transgenic crops producing Bacillus thuringiensis (Bt) toxins kill some key insect pests and can reduce reliance on insecticide sprays. Sustainable use of such crops requires methods for delaying evolution of resistance by pests. To thwart pest resistance, some transgenic crops produce 2 different Bt toxins targeting the same pest. This “pyramid” strategy is expected to work best when selection for resistance to 1 toxin does not cause cross-resistance to the other toxin. The most widely used pyramid is transgenic cotton producing Bt toxins Cry1Ac and Cry2Ab. Cross-resistance between these toxins was presumed unlikely because they bind to different larval midgut target sites. Previous results showed that laboratory selection with Cry1Ac caused little or no cross-resistance to Cry2A toxins in pink bollworm (Pectinophora gossypiella), a major cotton pest. We show here, however, that laboratory selection of pink bollworm with Cry2Ab caused up to 420-fold cross-resistance to Cry1Ac as well as 240-fold resistance to Cry2Ab. Inheritance of resistance to high concentrations of Cry2Ab was recessive. Larvae from a laboratory strain resistant to Cry1Ac and Cry2Ab in diet bioassays survived on cotton bolls producing only Cry1Ac, but not on cotton bolls producing both toxins. Thus, the asymmetrical cross-resistance seen here does not threaten the efficacy of pyramided Bt cotton against pink bollworm. Nonetheless, the results here and previous evidence indicate that cross-resistance occurs between Cry1Ac and Cry2Ab in some key cotton pests. Incorporating the potential effects of such cross-resistance in resistance management plans may help to sustain the efficacy of pyramided Bt crops. PMID:19581574

  19. Asymmetrical cross-resistance between Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in pink bollworm.

    PubMed

    Tabashnik, Bruce E; Unnithan, Gopalan C; Masson, Luke; Crowder, David W; Li, Xianchun; Carrière, Yves

    2009-07-21

    Transgenic crops producing Bacillus thuringiensis (Bt) toxins kill some key insect pests and can reduce reliance on insecticide sprays. Sustainable use of such crops requires methods for delaying evolution of resistance by pests. To thwart pest resistance, some transgenic crops produce 2 different Bt toxins targeting the same pest. This "pyramid" strategy is expected to work best when selection for resistance to 1 toxin does not cause cross-resistance to the other toxin. The most widely used pyramid is transgenic cotton producing Bt toxins Cry1Ac and Cry2Ab. Cross-resistance between these toxins was presumed unlikely because they bind to different larval midgut target sites. Previous results showed that laboratory selection with Cry1Ac caused little or no cross-resistance to Cry2A toxins in pink bollworm (Pectinophora gossypiella), a major cotton pest. We show here, however, that laboratory selection of pink bollworm with Cry2Ab caused up to 420-fold cross-resistance to Cry1Ac as well as 240-fold resistance to Cry2Ab. Inheritance of resistance to high concentrations of Cry2Ab was recessive. Larvae from a laboratory strain resistant to Cry1Ac and Cry2Ab in diet bioassays survived on cotton bolls producing only Cry1Ac, but not on cotton bolls producing both toxins. Thus, the asymmetrical cross-resistance seen here does not threaten the efficacy of pyramided Bt cotton against pink bollworm. Nonetheless, the results here and previous evidence indicate that cross-resistance occurs between Cry1Ac and Cry2Ab in some key cotton pests. Incorporating the potential effects of such cross-resistance in resistance management plans may help to sustain the efficacy of pyramided Bt crops. PMID:19581574

  20. Analysis of resistance to Cry1Ac in field-collected pink bollworm, Pectinophora gossypiella (Lepidoptera:Gelechiidae), populations.

    PubMed

    Ojha, Abhishek; Sree, K Sowjanya; Sachdev, Bindiya; Rashmi, M A; Ravi, K C; Suresh, P J; Mohan, Komarlingam S; Bhatnagar, Raj K

    2014-01-01

    High survivorship of pink bollworrm, Pectinophora gossypiella in bolls of Bollgard® cotton hybrids and resistance to Cry1Ac protein, expressed in Bollgard cotton were reported in field-populations collected from the state of Gujarat (western India) in 2010. We have found Cry1Ac-resistance in pink bollworm populations sourced from Bollgard and non-Bt cotton fields in the adjoining states of Maharashtra and Madhya Pradesh in Central India. Further, we observed reduced binding of labeled Cry1Ac protein to receptors localized on the brush-border membrane of pink bollworm larval strains with high tolerance to Cry1Ac. These strains were sourced from Bollgard and conventional cotton fields. A pooled Cry1Ac-resistant strain, further selected on Cry1Ac diet also showed significantly reduced binding to Cry1Ac protein. The reduced binding of Cry1Ac to receptors could be an underlying mechanism for the observed resistance in pink bollworm populations feeding on Bollgard hybrids. PMID:25523173

  1. C/NOFS Observations of AC Electric Field Fields Associated with Equatorial Spread-F

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Liebrecht, C.

    2009-01-01

    The Vector Electric Field Investigation (VEFI) on the C/NOFS equatorial satellite provides a unique data set in which to acquire detailed knowledge of irregularities associated with the equatorial ionosphere and in particular with spread-F depletions. We present vector AC electric field observations, primarily gathered within the ELF band (1 Hz to 250 Hz) on C/NOFS that address a variety of key questions regarding how plasma irregularities, from meter to kilometer scales, are created and evolve. The data will be used to explore the anisotropy/isotropy of the waves, their wavelength and phase velocity, as well as their spectral distributions. When analyzed in conjunction with the driving DC electric fields and detailed plasma number density measurements, the combined data reveal important information concerning the instability mechanisms themselves. We also present high resolution, vector measurements of intense lower hybrid waves that have been detected on numerous occasions by the VEFI burst memory VLF electric field channels.

  2. TUTORIAL: Electrical resistance: an atomistic view

    NASA Astrophysics Data System (ADS)

    Datta, Supriyo

    2004-07-01

    This tutorial article presents a 'bottom-up' view of electrical resistance starting from something really small, like a molecule, and then discussing the issues that arise as we move to bigger conductors. Remarkably, no serious quantum mechanics is needed to understand electrical conduction through something really small, except for unusual things like the Kondo effect that are seen only for a special range of parameters. This article starts with energy level diagrams (section 2), shows that the broadening that accompanies coupling limits the conductance to a maximum of q2/h per level (sections 3, 4), describes how a change in the shape of the self-consistent potential profile can turn a symmetric current-voltage characteristic into a rectifying one (sections 5, 6), shows that many interesting effects in molecular electronics can be understood in terms of a simple model (section 7), introduces the non-equilibrium Green function (NEGF) formalism as a sophisticated version of this simple model with ordinary numbers replaced by appropriate matrices (section 8) and ends with a personal view of unsolved problems in the field of nanoscale electron transport (section 9). Appendix A discusses the Coulomb blockade regime of transport, while appendix B presents a formal derivation of the NEGF equations. MATLAB codes for numerical examples are listed in appendix C. (The appendices are available in the online version only.)

  3. The electrical resistivity method in cased boreholes

    SciTech Connect

    Schenkel, C.J.

    1991-05-01

    The use of downhole current sources in resistivity mapping can greatly enhance the detection and delineation of subsurface features. The purpose of this work is to examine the resistivity method for current sources in wells cased with steel. The resistivity method in cased boreholes with downhole current sources is investigated using the integral equation (IE) technique. The casing and other bodies are characterized as conductivity inhomogeneities in a half-space. For sources located along the casing axis, an axially symmetric Green's function is used to formulate the surface potential and electric field (E-field) volume integral equations. The situations involving off-axis current sources and three-dimensional (3-D) bodies is formulated using the surface potential IE method. The solution of the 3-D Green's function is presented in cylindrical and Cartesian coordinate systems. The methods of moments is used to solve the Fredholm integral equation of the second kind for the response due to the casing and other bodies. The numerical analysis revealed that the current in the casing can be approximated by its vertical component except near the source and the axial symmetric approximation of the casing is valid even for the 3-D problem. The E-field volume IE method is an effective and efficient technique to simulate the response of the casing in a half-space, whereas the surface potential approach is computationally better when multiple bodies are involved. Analyzing several configurations of the current source indicated that the casing response is influenced by four characteristic factors: conduction length, current source depth,casing depth, and casing length. 85 refs., 133 figs., 11 tabs.

  4. Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry1Ac toxin.

    PubMed

    Zhang, Shaoping; Cheng, Hongmei; Gao, Yulin; Wang, Guirong; Liang, Gemei; Wu, Kongming

    2009-07-01

    A Cry1Ac-resistant strain (Bt-R) of Helicoverpa armigera, with 2971-fold resistance, was derived by selection with Cry1Ac toxin for 75 generations. We used cDNA-amplified fragment length polymorphism analysis to identify those genes differentially expressed in the Cry1Ac-resistant and -susceptible strains, which revealed 212 differentially expressed transcripts among 2000 screened cDNAs. Among these transcript-derived fragments (TDFs), 37 showed some homology to known sequences, including Aminopeptidase N (APN), which is expressed in the midgut epithelium and has been implicated as a Cry1A subfamily receptor in several moths, including H. armigera. We confirmed the TDF by RT-PCR and identified a deletion mutation of apn1 in the Bt-R strain. We expressed the TDF in bacteria. The partial HaAPN1-96S wild-type protein, bound to Cry1Ac on ligand blots, whereas HaAPN1-BtR did not. This suggested that HaAPN1 is a receptor for Bt Cry1Ac and that its deletion mutation is associated with Cry1Ac resistance in H. armigera. The absence of one binding site is responsible for its resistance to Cry1Ac. We developed an allele-specific PCR to monitor whether the apn1 gene in an H. armigera field population produced a similar mutation. No deleted mutants were found in 2250 individuals collected from the field in 2006-2007. PMID:19376227

  5. Association of Cry1Ac Toxin Resistance in Helicoverpa zea (Boddie) with Increased Alkaline Phosphatase Levels in the Midgut Lumen

    PubMed Central

    Caccia, Silvia; Moar, William J.; Chandrashekhar, Jayadevi; Oppert, Cris; Anilkumar, Konasale J.; Jurat-Fuentes, Juan Luis

    2012-01-01

    Resistance to Bacillus thuringiensis Cry1Ac toxin was characterized in a population of Helicoverpa zea larvae previously shown not to have an alteration in toxin binding as the primary resistance mechanism to this toxin. Cry1Ac-selected larvae (AR1) were resistant to protoxins and toxins of Cry1Ab, Cry1Ac, and the corresponding modified proteins lacking helix α-1 (Cry1AbMod and Cry1AcMod). When comparing brush border membrane vesicles (BBMVs) prepared from susceptible (LC) and AR1 larval midguts, there were only negligible differences in overall Cry1Ac toxin binding, though AR1 had 18% reversible binding, in contrast to LC, in which all binding was irreversible. However, no differences were detected in Cry1Ac-induced pore formation activity in BBMVs from both strains. Enzymatic activities of two putative Cry1Ac receptors (aminopeptidase N [APN] and alkaline phosphatase [ALP]) were significantly reduced (2-fold and 3-fold, respectively) in BBMVs from AR1 compared to LC larvae. These reductions corresponded to reduced protein levels in midgut luminal contents only in the case of ALP, with an almost 10-fold increase in specific ALP activity in midgut fluids from AR1 compared to LC larvae. Partially purified H. zea ALP bound Cry1Ac toxin in ligand blots and competed with Cry1Ac toxin for BBMV binding. Based on these results, we suggest the existence of at least one mechanism of resistance to Cry1A toxins in H. zea involving binding of Cry1Ac toxin to an ALP receptor in the larval midgut lumen of resistant larvae. PMID:22685140

  6. Association of Cry1Ac toxin resistance in Helicoverpa zea (Boddie) with increased alkaline phosphatase levels in the midgut lumen.

    PubMed

    Caccia, Silvia; Moar, William J; Chandrashekhar, Jayadevi; Oppert, Cris; Anilkumar, Konasale J; Jurat-Fuentes, Juan Luis; Ferré, Juan

    2012-08-01

    Resistance to Bacillus thuringiensis Cry1Ac toxin was characterized in a population of Helicoverpa zea larvae previously shown not to have an alteration in toxin binding as the primary resistance mechanism to this toxin. Cry1Ac-selected larvae (AR1) were resistant to protoxins and toxins of Cry1Ab, Cry1Ac, and the corresponding modified proteins lacking helix α-1 (Cry1AbMod and Cry1AcMod). When comparing brush border membrane vesicles (BBMVs) prepared from susceptible (LC) and AR1 larval midguts, there were only negligible differences in overall Cry1Ac toxin binding, though AR1 had 18% reversible binding, in contrast to LC, in which all binding was irreversible. However, no differences were detected in Cry1Ac-induced pore formation activity in BBMVs from both strains. Enzymatic activities of two putative Cry1Ac receptors (aminopeptidase N [APN] and alkaline phosphatase [ALP]) were significantly reduced (2-fold and 3-fold, respectively) in BBMVs from AR1 compared to LC larvae. These reductions corresponded to reduced protein levels in midgut luminal contents only in the case of ALP, with an almost 10-fold increase in specific ALP activity in midgut fluids from AR1 compared to LC larvae. Partially purified H. zea ALP bound Cry1Ac toxin in ligand blots and competed with Cry1Ac toxin for BBMV binding. Based on these results, we suggest the existence of at least one mechanism of resistance to Cry1A toxins in H. zea involving binding of Cry1Ac toxin to an ALP receptor in the larval midgut lumen of resistant larvae. PMID:22685140

  7. Frequency characteristics of field electron emission from long carbon nanofilaments/nanotubes in a weak AC electric field

    NASA Astrophysics Data System (ADS)

    Izrael'yants, K. R.; Orlov, A. P.; Musatov, A. L.; Blagov, E. V.

    2016-05-01

    Frequency characteristics of field electron emission from long carbon nanofilaments/nanotubes in strong dc and weak ac electric fields have been investigated. A series of narrow peaks with a quality factor of up to 1100 has been discovered in the frequency range of hundreds of kilohertz. The analysis has shown that these peaks are probably associated with mechanical oscillations of the carbon nanofilaments/nanotubes driven by the ac electric field.

  8. Deformation and Interaction of Droplet Pairs in a Microchannel Under ac Electric Fields

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Song, Yongxin; Li, Dongqing; Hu, Guoqing

    2015-08-01

    The deformation and interaction of a droplet pair in an electric field determine the success of droplet coalescence. Electric intensity and initial droplet separation are crucial parameters in this process. In this work, a combined theoretical and numerical analysis is performed to study the electrohydrodynamics of confined droplet pairs in a rectangular microchannel under ac electric fields. We develop a theoretical model to predict the relationship between critical electric intensity and droplet separation. A geometrical model relating the initial droplet separation to the cone angle is also established to determine the critical separation for partial coalescence. These models are validated by comparisons with existing experimental observations. According to the initial separation and electric intensity, five regimes of droplet interactions are classified by direct numerical simulations, namely noncoalescence, coalescence, partial coalescence, ejection after coalescence, and ejection with partial coalescence. According to their controlling mechanisms, the five regimes are distinguished by three well-defined boundaries. The detailed dynamics of the partial coalescence phenomenon is resolved when the droplet separation exceeds the critical value. A dynamic liquid bridge between the droplets is sustained by the competition between surface tension and electric stress. The dynamics of ejected microjets at the exterior ends are also addressed to show their responses to the oscillating electric field. The full understanding of the droplet dynamics under electric fields can be used to predict the droplet fusion behaviors and thus to facilitate the design of droplet-based microfluidic devices.

  9. A Toxin-Binding Alkaline Phosphatase Fragment Synergizes Bt Toxin Cry1Ac against Susceptible and Resistant Helicoverpa armigera

    PubMed Central

    Xiao, Yutao; Zhang, Dandan; Zhang, Yongdong; Li, Xianchun; Tabashnik, Bruce E.; Wu, Kongming

    2015-01-01

    Evolution of resistance by insects threatens the continued success of pest control using insecticidal crystal (Cry) proteins from the bacterium Bacillus thuringiensis (Bt) in sprays and transgenic plants. In this study, laboratory selection with Cry1Ac yielded five strains of cotton bollworm, Helicoverpa armigera, with resistance ratios at the median lethal concentration (LC50) of activated Cry1Ac ranging from 22 to 1700. Reduced activity and reduced transcription of an alkaline phosphatase protein that binds Cry1Ac was associated with resistance to Cry1Ac in the four most resistant strains. A Cry1Ac-binding fragment of alkaline phosphatase from H. armigera (HaALP1f) was not toxic by itself, but it increased mortality caused by Cry1Ac in a susceptible strain and in all five resistant strains. Although synergism of Bt toxins against susceptible insects by toxin-binding fragments of cadherin and aminopeptidase N has been reported previously, the results here provide the first evidence of synergism of a Bt toxin by a toxin-binding fragment of alkaline phosphatase. The results here also provide the first evidence of synergism of a Bt toxin by any toxin-binding peptide against resistant insects. PMID:25885820

  10. Dynamic Resistance of YBCO-Coated Conductors in Applied AC Fields with DC Transport Currents and DC Background Fields

    SciTech Connect

    Duckworth, Robert C; Zhang, Yifei; Ha, Tam T; Gouge, Michael J

    2011-01-01

    In order to predict heat loads in future saturable core fault-current-limiting devices due to ac fringing fields, dynamic resistance in YBCO-coated conductors was measured at 77 K in peak ac fields up to 25 mT at 60 Hz and in dc fields up to 1 T. With the sample orientation set such that the conductor face was either parallel or perpendicular to the ac and dc applied fields, the dynamic resistance was measured at different fractions of the critical current to determine the relationship between the dc transport current and the applied fields. With respect to field orientation, the dynamic resistance for ac fields that were perpendicular to the conductor face was significantly higher than when the ac fields were parallel to the conductor face. It was also observed that the dynamic resistance: (1) increased with increasing fraction of the dc transport current to the critical current, (2) was proportional to the inverse of the critical current, and (3) demonstrated a linear dependence with the applied ac field once a threshold field was exceeded. This functional behavior was consistent with a critical state model for the dynamic resistance, but discrepancies in absolute value of the dynamic resistance suggested that further theoretical development is needed.

  11. Proteomics-based identification of midgut proteins correlated with Cry1Ac resistance in Plutella xylostella (L.).

    PubMed

    Xia, Jixing; Guo, Zhaojiang; Yang, Zezhong; Zhu, Xun; Kang, Shi; Yang, Xin; Yang, Fengshan; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Xu, Weijun; Zhang, Youjun

    2016-09-01

    The diamondback moth, Plutella xylostella (L.), is a worldwide pest of cruciferous crops and can rapidly develop resistance to many chemical insecticides. Although insecticidal crystal proteins (i.e., Cry and Cyt toxins) derived from Bacillus thuringiensis (Bt) have been useful alternatives to chemical insecticides for the control of P. xylostella, resistance to Bt in field populations of P. xylostella has already been reported. A better understanding of the resistance mechanisms to Bt should be valuable in delaying resistance development. In this study, the mechanisms underlying P. xylostella resistance to Bt Cry1Ac toxin were investigated using two-dimensional differential in-gel electrophoresis (2D-DIGE) and ligand blotting for the first time. Comparative analyses of the constitutive expression of midgut proteins in Cry1Ac-susceptible and -resistant P. xylostella larvae revealed 31 differentially expressed proteins, 21 of which were identified by mass spectrometry. Of these identified proteins, the following fell into diverse eukaryotic orthologous group (KOG) subcategories may be involved in Cry1Ac resistance in P. xylostella: ATP-binding cassette (ABC) transporter subfamily G member 4 (ABCG4), trypsin, heat shock protein 70 (HSP70), vacuolar H(+)-ATPase, actin, glycosylphosphatidylinositol anchor attachment 1 protein (GAA1) and solute carrier family 30 member 1 (SLC30A1). Additionally, ligand blotting identified the following midgut proteins as Cry1Ac-binding proteins in Cry1Ac-susceptible P. xylostella larvae: ABC transporter subfamily C member 1 (ABCC1), solute carrier family 36 member 1 (SLC36A1), NADH dehydrogenase iron-sulfur protein 3 (NDUFS3), prohibitin and Rap1 GTPase-activating protein 1. Collectively, these proteomic results increase our understanding of the molecular resistance mechanisms to Bt Cry1Ac toxin in P. xylostella and also demonstrate that resistance to Bt Cry1Ac toxin is complex and multifaceted. PMID:27521921

  12. Diapause, cold-hardiness and flight ability of Cry1Ac-resistant and -susceptible strains of Helicoverpa armigera (Lepidoptera: Noctuidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diapause inducement condition, cold hardiness, and flight ability in Cry1Ac-resistant (BtR) and Cry1Ac-susceptible (96S) strains of Helicoverpa armigera (Hübner) were compared in the laboratory. The BtR strain was derived from the 96S strain and shows 1375-fold resistance to the Cry1Ac toxin aft...

  13. Progress on advanced dc and ac induction drives for electric vehicles

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1982-01-01

    Progress is reported in the development of complete electric vehicle propulsion systems, and the results of tests on the Road Load Simulator of two such systems representative of advanced dc and ac drive technology are presented. One is the system used in the DOE's ETV-1 integrated test vehicle which consists of a shunt wound dc traction motor under microprocessor control using a transistorized controller. The motor drives the vehicle through a fixed ratio transmission. The second system uses an ac induction motor controlled by transistorized pulse width modulated inverter which drives through a two speed automatically shifted transmission. The inverter and transmission both operate under the control of a microprocessor. The characteristics of these systems are also compared with the propulsion system technology available in vehicles being manufactured at the inception of the DOE program and with an advanced, highly integrated propulsion system upon which technology development was recently initiated.

  14. Electrical Resistivity Imaging to Quantify Spatial Soil Heterogeneit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electrical resistivity (ER) sounding is increasingly being used as non-invasive technique to reveal and map soil heterogeneity. The objective of this work was to evaluate effects of soil properties on the electric resistivity and to observe these effects in spatial context in coarse-textured soil. T...

  15. Soil spatial heterogeneity effect on soil electrical resistivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electrical resistivity (ER) is growing in popularity due to its ease of use and because of its non-invasive techniques, which are used to reveal and map soil heterogeneity. The objective of this work was to evaluate how differing soil properties affect the electric resistivity and to observe these e...

  16. Keratinocyte galvanotaxis in combined DC and AC electric fields supports an electromechanical transduction sensing mechanism.

    PubMed

    Hart, Francis X; Laird, Mhairi; Riding, Aimie; Pullar, Christine E

    2013-02-01

    Sedentary keratinocytes at the edge of a skin wound migrate into the wound, guided by the generation of an endogenous electric field (EF) generated by the collapse of the transepithelial potential. The center of the wound quickly becomes more negative than the surrounding tissue and remains the cathode of the endogenous EF until the wound is completely re-epithelialized. This endogenous guidance cue can be studied in vitro. When placed in a direct current (DC) EF of physiological strength, 100 V/m, keratinocytes migrate directionally toward the cathode in a process known as galvanotaxis. Although a number of membrane-bound (e.g., epidermal growth factor receptor (EGFR), integrins) and cytosolic proteins (cAMP, ERK, PI3K) are known to play a role in the downstream signaling mechanisms underpinning galvanotaxis, the initial sensing mechanism for this response is not understood. To investigate the EF sensor, we studied the migration of keratinocytes in a DC EF of 100 V/m, alternating current (AC) EFs of 40 V/m at either 1.6 or 160 Hz, and combinations of DC and AC EFs. In the AC EFs alone, keratinocytes migrated randomly. The 1.6 Hz AC EF combined with the DC EF suppressed the direction of migration but had no effect on speed. In contrast, the 160 Hz AC EF combined with the DC EF did not affect the direction of migration but increased the migration speed compared to the DC EF alone. These results can be understood in terms of an electromechanical transduction model, but not an electrodiffusion/osmosis or a voltage-gated channel model. PMID:22907479

  17. The ac and dc electric field meters developed for the US Department of Energy

    NASA Technical Reports Server (NTRS)

    Kirkham, H.; Johnston, A.; Jackson, S.; Sheu, K.

    1987-01-01

    Two space-potential electric field meters developed at the Jet Propulsion Laboratory under the auspices of the U.S. Department of Energy are described. One of the meters was designed to measure dc fields, the other ac fields. Both meters use fiber optics to couple a small measuring probe to a remote readout device, so as to minimize field perturbation due to the presence of the probe. By using coherent detection, it has been possible to produce instruments whose operating range extends from about 10 V/m up to about 2.5 kV/cm, without the need for range switching on the probe. The electrical and mechanical design of both meters are described in detail. Data from laboratory tests are presented, as well as the results of the tests at the National Bureau of Standards and the Electric Power Research Institute's High Voltage Transmission Research Facility.

  18. Evaluation of semiconductor devices for Electric and Hybrid Vehicle (EHV) ac-drive applications, volume 1

    NASA Technical Reports Server (NTRS)

    Lee, F. C.; Chen, D. Y.; Jovanovic, M.; Hopkins, D. C.

    1985-01-01

    The results of evaluation of power semiconductor devices for electric hybrid vehicle ac drive applications are summarized. Three types of power devices are evaluated in the effort: high power bipolar or Darlington transistors, power MOSFETs, and asymmetric silicon control rectifiers (ASCR). The Bipolar transistors, including discrete device and Darlington devices, range from 100 A to 400 A and from 400 V to 900 V. These devices are currently used as key switching elements inverters for ac motor drive applications. Power MOSFETs, on the other hand, are much smaller in current rating. For the 400 V device, the current rating is limited to 25 A. For the main drive of an electric vehicle, device paralleling is normally needed to achieve practical power level. For other electric vehicle (EV) related applications such as battery charger circuit, however, MOSFET is advantageous to other devices because of drive circuit simplicity and high frequency capability. Asymmetrical SCR is basically a SCR device and needs commutation circuit for turn off. However, the device poses several advantages, i.e., low conduction drop and low cost.

  19. Stretching of long DNA molecules in the microvortex induced by laser and ac electric field

    NASA Astrophysics Data System (ADS)

    Nakano, Michihiko; Kurita, Hirofumi; Komatsu, Jun; Mizuno, Akira; Katsura, Shinji

    2006-09-01

    A microvortex is generated around an infrared laser focus where an intense ac electric field is applied. The authors used this optoelectrostatic microvortex for stretching individual long DNAs. When λ-or T4-phage DNA molecules were introduced into the optoelectrostatic microvortex, they were stretched around the laser focus. In addition, especially for longer T4 DNA molecules, it was possible to keep it in stretching form for more than 30s. Using this method, length of DNA molecules can be measured without fixing to a substrate. This method can be applied to DNA molecules longer than about 10μm.

  20. Modeling of Nanoparticle-Mediated Electric Field Enhancement Inside Biological Cells Exposed to AC Electric Fields

    NASA Astrophysics Data System (ADS)

    Tiwari, Pawan K.; Kang, Sung Kil; Kim, Gon Jun; Choi, Jun; Mohamed, A.-A. H.; Lee, Jae Koo

    2009-08-01

    We present in this article the effect of alternating electric field at kilohertz (kHz) and megahertz (MHz) frequencies on the biological cells in presence and absence of nanoparticles. The induced electric field strength distribution in the region around cell membrane and nucleus envelope display different behavior at kHz and MHz frequencies. The attachment of gold nanoparticles (GNPs), especially gold nanowires around the surface of nucleus induce enhanced electric field strengths. The induced field strengths are dependent on the length of nanowire and create varying field regions when the length of nanowire is increased from 2 to 4 µm. The varying nanowire length increased the induced field strengths inside nucleoplasm and region adjacent to the nucleus in the cytoplasm. We investigated a process of electrostatic disruption of nucleus membrane when the induced electric field strength across the nucleus exceeds its tensile strength.

  1. Engineering cotton (Gossypium hirsutum L.) for resistance to cotton leaf curl disease using viral truncated AC1 DNA sequences.

    PubMed

    Hashmi, Jamil A; Zafar, Yusuf; Arshad, Muhammad; Mansoor, Shahid; Asad, Shaheen

    2011-04-01

    Several important biological processes are performed by distinct functional domains found on replication-associated protein (Rep) encoded by AC1 of geminiviruses. Two truncated forms of replicase (tAC1) gene, capable of expressing only the N-terminal 669 bp (5'AC1) and C-terminal 783 bp (3'AC1) nucleotides cloned under transcriptional control of the CaMV35S were introduced into cotton (Gossypium hirsutum L.) using LBA4404 strain of Agrobacterium tumefaciens to make use of an interference strategy for impairing cotton leaf curl virus (CLCuV) infection in transgenic cotton. Compared with nontransformed control, we observed that transgenic cotton plants overexpressing either N-terminal (5'AC1) or C-terminal (3'AC1) sequences confer resistance to CLCuV by inhibiting replication of viral genomic and β satellite DNA components. Molecular analysis by Northern blot hybridization revealed high transgene expression in early and late growth stages associated with inhibition of CLCuV replication. Of the eight T(1) transgenic lines tested, six had delayed and minor symptoms as compared to nontransformed control lines which developed disease symptoms after 2-3 weeks of whitefly-mediated viral delivery. Virus biological assay and growth of T(2) plants proved that transgenic cotton plants overexpressing 5'- and 3'AC1 displayed high resistance level up to 72, 81%, respectively, as compared to non-transformed control plants following inoculation with viruliferous whiteflies giving significantly high cotton seed yield. Progeny analysis of these plants by polymerase chain reaction (PCR), Southern blotting and virus biological assay showed stable transgene, integration, inheritance and cotton leaf curl disease (CLCuD) resistance in two of the eight transgenic lines having single or two transgene insertions. Transgenic cotton expressing partial AC1 gene of CLCuV can be used as virus resistance source in cotton breeding programs aiming to improve virus resistance in cotton crop. PMID

  2. Iron aluminide useful as electrical resistance heating elements

    SciTech Connect

    Sikka, V.K.; Deevi, S.C.; Fleischhauer, G.S.; Hajaligol, M.R.; Lilly, A.C. Jr.

    1999-11-02

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, {le}1% Cr and either {ge}0.05% Zr or ZrO{sub 2} stringers extending perpendicular to an exposed surface of the heating element or {ge}0.1% oxide dispersoid particles. The alloy can contain 14--32% Al, {le}2% Ti, {le}2% Mo, {le}1% Zr, {le}1% C, {le}0.1% B, {le}30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, {le}1% rare earth metal, {le}1% oxygen, {le}3% Cu, balance Fe.

  3. Iron aluminide useful as electrical resistance heating elements

    DOEpatents

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    2001-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  4. Iron aluminide useful as electrical resistance heating elements

    DOEpatents

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    1997-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  5. Iron aluminide useful as electrical resistance heating elements

    DOEpatents

    Sikka, V.K.; Deevi, S.C.; Fleischhauer, G.S.; Hajaligol, M.R.; Lilly, A.C. Jr.

    1997-04-15

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, {<=}1% Cr and either {>=}0.05% Zr or ZrO{sub 2} stringers extending perpendicular to an exposed surface of the heating element or {>=}0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, {<=}2% Ti, {<=}2% Mo, {<=}1% Zr, {<=}1% C, {<=}0.1% B, {<=}30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, {<=}1% rare earth metal, {<=}1% oxygen, {<=}3% Cu, balance Fe. 64 figs.

  6. Iron aluminide useful as electrical resistance heating elements

    DOEpatents

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    1999-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  7. Theoretical relationship between elastic wave velocity and electrical resistivity

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Sub; Yoon, Hyung-Koo

    2015-05-01

    Elastic wave velocity and electrical resistivity have been commonly applied to estimate stratum structures and obtain subsurface soil design parameters. Both elastic wave velocity and electrical resistivity are related to the void ratio; the objective of this study is therefore to suggest a theoretical relationship between the two physical parameters. Gassmann theory and Archie's equation are applied to propose a new theoretical equation, which relates the compressional wave velocity to shear wave velocity and electrical resistivity. The piezo disk element (PDE) and bender element (BE) are used to measure the compressional and shear wave velocities, respectively. In addition, the electrical resistivity is obtained by using the electrical resistivity probe (ERP). The elastic wave velocity and electrical resistivity are recorded in several types of soils including sand, silty sand, silty clay, silt, and clay-sand mixture. The appropriate input parameters are determined based on the error norm in order to increase the reliability of the proposed relationship. The predicted compressional wave velocities from the shear wave velocity and electrical resistivity are similar to the measured compressional velocities. This study demonstrates that the new theoretical relationship may be effectively used to predict the unknown geophysical property from the measured values.

  8. Mapping Contaminant Remediation with Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Gerhard, J.; Power, C.; Tsourlos, P.; Karaoulis, M.; Giannopoulos, A.; Soupios, P. M.; Simyrdanis, K.

    2014-12-01

    The remediation of sites contaminated with industrial chemicals - specifically dense non-aqueous phase liquids (DNAPLs) like coal tar and chlorinated solvents - represents a major geoenvironmental challenge. Remediation activities would benefit from a non-destructive technique to map the evolution of DNAPL mass in space and time. Electrical resistivity tomography (ERT) has long-standing potential in this context but has not yet become a common tool at DNAPL sites. This work evaluated the potential of time-lapse ERT for mapping DNAPL mass reduction in real time during remediation. Initially, a coupled DNAPL-ERT numerical model was developed for exploring this potential at the field scale, generating realistic DNAPL scenarios and predicting the response of an ERT survey. Also, new four-dimensional (4D) inversion algorithms were integrated for tracking DNAPL removal over time. 4D ERT applied at the surface for mapping an evolving DNAPL distribution was first demonstrated in a laboratory experiment. Independent simulation of the experiment demonstrated the reliability of the DNAPL-ERT model for simulating real systems. The model was then used to explore the 4D ERT approach at the field scale for a range of realistic DNAPL remediation scenarios. The approach showed excellent potential for mapping shallow DNAPL changes. However, remediation at depth was not as well resolved. To overcome this limitation, a new surface-to-horizontal borehole (S2HB) ERT configuration is proposed. A second laboratory experiment was conducted that demonstrated that S2HB ERT does better resolve changes in DNAPL distribution relative to surface ERT, particularly at depth. The DNAPL-ERT model was also used to demonstrate the improved mapping of S2HB ERT for field scale DNAPL scenarios. Overall, this work demonstrates that, with these innovations, ERT exhibits significant potential as a real time, non-destructive geoenvironmental remediation site monitoring tool.

  9. Electrical resistivity measurements of the chalcogenide spinel, CuIr2S4, under extreme conditions

    NASA Astrophysics Data System (ADS)

    Hanni, Mark

    2006-10-01

    Electrical resistivity as a function of pressure will be investigated for the thiospinel compound, CuIr2S4, which exhibits a metal to insulator transition at high pressures. This study will corroborate existing experimental and theoretical work and is the first of its kind to perform high pressure electrical conductivity and insulating phase optical studies in the range of room temperature to liquid nitrogen temperature. In addition, the transport properties of adamantine semiconductors will be studied at high pressure. The resistivity measurements will be made using a pseudo four-wire probing technique, using an AC constant current source, to eliminate thermal noise in the connections, and a nanovoltmeter. The study is currently ongoing and results are still pending. Improvements made to a stepper motor control program and changes to the system used for optical studies will be presented.

  10. Electrical voltages and resistances measured to inspect metallic cased wells and pipelines

    DOEpatents

    Vail III, William Banning; Momii, Steven Thomas

    2003-06-10

    A cased well in the earth is electrically energized with A.C. current. Voltages are measured from three voltage measurement electrodes in electrical contact with the interior of the casing while the casing is electrically energized. In a measurement mode, A.C. current is conducted from a first current carrying electrode within the cased well to a remote second current carrying electrode located on the surface of the earth. In a calibration mode, current is passed from the first current carrying electrode to a third current carrying electrode located vertically at a different position within the cased well, where the three voltage measurement electrodes are located vertically in between the first and third current carrying electrodes. Voltages along the casing and resistances along the casing are measured to determine wall thickness and the location of any casing collars present so as to electrically inspect the casing. Similar methods are employed to energize a pipeline to measure the wall thickness of the pipeline and the location of pipe joints to electrically inspect the pipeline.

  11. Electrical voltages and resistances measured to inspect metallic cased wells and pipelines

    DOEpatents

    Vail, III, William Banning; Momii, Steven Thomas

    2000-01-01

    A cased well in the earth is electrically energized with A.C. current. Voltages are measured from three voltage measurement electrodes in electrical contact with the interior of the casing while the casing is electrically energized. In a measurement mode, A.C. current is conducted from a first current carrying electrode within the cased well to a remote second current carrying electrode located on the surface of the earth. In a calibration mode, current is passed from the first current carrying electrode to a third current carrying electrode located vertically at a different position within the cased well, where the three voltage measurement electrodes are located vertically in between the first and third current carrying electrodes. Voltages along the casing and resistances along the casing are measured to determine wall thickness and the location of any casing collars present so as to electrically inspect the casing. Similar methods are employed to energize a pipeline to measure the wall thickness of the pipeline and the location of pipe joints to electrically inspect the pipeline.

  12. Electrical voltages and resistances measured to inspect metallic cased wells and pipelines

    DOEpatents

    Vail, III, William Banning; Momii, Steven Thomas

    2001-01-01

    A cased well in the earth is electrically energized with A.C. current. Voltages are measured from three voltage measurement electrodes in electrical contact with the interior of the casing while the casing is electrically energized. In a measurement mode, A.C. current is conducted from a first current carrying electrode within the cased well to a remote second current carrying electrode located on the surface of the earth. In a calibration mode, current is passed from the first current carrying electrode to a third current carrying electrode located vertically at a different position within the cased well, where the three voltage measurement electrodes are located vertically in between the first and third current carrying electrodes. Voltages along the casing and resistances along the casing are measured to determine wall thickness and the location of any casing collars present so as to electrically inspect the casing. Similar methods are employed to energize a pipeline to measure the wall thickness of the pipeline and the location of pipe joints to electrically inspect the pipeline.

  13. Use of alveolar cell monolayers of varying electrical resistance to measure pulmonary peptide transport.

    PubMed

    Dodoo, A N; Bansal, S S; Barlow, D J; Bennet, F; Hider, R C; Lansley, A B; Lawrence, M J; Marriott, C

    2000-02-01

    The apparent permeability coefficient (P(app)) of two fluorescently tagged model hydrophilic peptides, acXASNH(2) and acXAS(GAS)(7)NH(2), and (14)C-mannitol across monolayers of cultured rat alveolar epithelial cells of varying transepithelial electrical resistance (TER) has been examined. In line with their design features, the peptides were not degraded under the conditions of the test. Furthermore, no concentration dependence of transport of the tripeptide acXASNH(2) was observed over the concentration range studied, nor was any directional transport seen for either of the model peptides, indicating that under the conditions of the test they were not substrates for any transporters or efflux pumps. From the hydrophilic nature of the peptides (as assessed by their log P), and their inverse dependence of transport with molecular weight and TER, it was assumed that the peptides were transported across the cell monolayer passively via the paracellular route. The observed P(app) for the transport of (14)C-mannitol and the peptides across rat alveolar epithelial cell monolayers were found to be inversely (though not linearly) related to the measured TER and could be well-modeled assuming the presence of two populations of "pores" in the cell monolayer, namely, cylindrical pores of diameter 1.5 nm and large pores of diameter 20 nm. The relative populations of the two types of pores varied with the TER of the monolayer, with the number of large pores decreasing with an increase in TER (and the number of small pores taken as fixed). These results suggest that if the cell monolayer is well characterized with respect to the passage of a range of probe molecules across monolayers of varying electrical resistance, it should be possible to predict the P(app) of any hydrophilic peptide or drug crossing the membrane by the paracellular route at any desired TER using a monolayer of any electrical resistance, above a minimum value. PMID:10688751

  14. DNA molecular wire-based nanoelectronics: New insight and high frequency AC electrical characterization

    NASA Astrophysics Data System (ADS)

    Wibowo, Denni Ari

    While recent research in electron-transport mechanism on a double strands DNA seems to converge into a consensus, experiments in direct electrical measurements on a long DNA molecules still lead to a conflicting result. This research investigates experimentally the attachment of DNA molecular wire to high aspect ratio three-dimensional (3D) metal electrode and the effect of temperature to its AC electrical conductivity. The 3-D microelectrode was built on a silicone oxide substrate using patterned thick layers of negative tone photoresist covered by sputtered gold on the top surface. Attachment of lambda-DNA to the microelectrode was demonstrated using oligonucleotide-DNA phosphate backbone ligation and thiol-gold covalent bonding. Electrical characterizations based on I-V and AC impedance analysis of several repeatable data points of attachment with varying lambda-DNA concentration (500 ng/microL to 0.0625 ng/microL) showed measurable and significant conductivity of lambda-DNA molecular wires. Further study was carried out by measuring I-V and impedance while ramping up the temperature to reach complete denaturation (~1100C) resulting in no current transduction. Subsequent re-annealing of the DNA through incubation in TM buffer at annealing temperature (~900C) resulted in recovery of electrical conduction, providing a strong proof that DNA molecular wire is the one generate the electrical conductivity. lambda-DNA molecular wires reported to have differing impedance response at two temperature regions: impedance increases (conductivity decrease) between 40C -- 400C, and then decreases from 400C until DNA completely denatured (~1100C). The increase conductivity after 400C is an experimental support the long distance electron transport mechanism referred as "thermal hopping" mechanism. We believe that this research represents a significant departure from previous studies and makes unique contributions through (i) modification of DNA attachment methods has increase

  15. Orientation and Pearl-Chain Formation of Paramecia Induced by AC Electric Field

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Toyomasa; Tanji, Ayafumi; Yagi, Hiroshi

    1987-11-01

    Paramecium deciliated with ethanol is able to orient itself in a parallel (positive orientation) or perpendicular direction (negative orientation) to an AC electric field, depending upon the applied frequency. We found that this turnover frequency is between 1 and 10 MHz in a non-electrolyte solution for the cells. The cells also aggregate with one another by the mutual dielectrophoresis in the electric field, provided the distance between the two cells is shorter than about half their length. The two critical field intensities for the orientation and for the aggregation cannot be clearly distinguished. Consequently, when the cell density in the solution is sufficiently high, a positive or negative pearl-chain of the cells is formed, depending upon the applied frequency.

  16. Accelerated Detection of Viral Particles by Combining AC Electric Field Effects and Micro-Raman Spectroscopy

    PubMed Central

    Tomkins, Matthew Robert; Liao, David Shiqi; Docoslis, Aristides

    2015-01-01

    A detection method that combines electric field-assisted virus capture on antibody-decorated surfaces with the “fingerprinting” capabilities of micro-Raman spectroscopy is demonstrated for the case of M13 virus in water. The proof-of-principle surface mapping of model bioparticles (protein coated polystyrene spheres) captured by an AC electric field between planar microelectrodes is presented with a methodology for analyzing the resulting spectra by comparing relative peak intensities. The same principle is applied to dielectrophoretically captured M13 phage particles whose presence is indirectly confirmed with micro-Raman spectroscopy using NeutrAvidin-Cy3 as a labeling molecule. It is concluded that the combination of electrokinetically driven virus sampling and micro-Raman based signal transduction provides a promising approach for time-efficient and in situ detection of viruses. PMID:25580902

  17. Standard and nonstandard nematic electrohydrodynamic convection in the presence of asymmetric ac electric fields

    NASA Astrophysics Data System (ADS)

    Low, Jonathan; Hogan, S. John

    2008-10-01

    In planar nematic electrohydrodynamic convection (EHC), a microscopic liquid crystal cell is driven by a homogeneous ac electric field, which, if strong enough, causes the fluid to destabilize into a regular pattern-forming state. We consider asymmetric electric fields E(t)=E(t+T)≠-E(t+T/2) , which leads to the possibility of three different types of instabilities at onset: conductive, dielectric, and subharmonic. The first two are already well known as they are easily produced when the system is driven by symmetric electric fields; the third can only occur when the electric field symmetry is broken. We present theoretical results on EHC using linear stability analysis and Floquet theory. We consider rigid and free boundary conditions, extending the model to two Fourier modes in the vertical plane, the inclusion of flexoelectricity, and using standard (nematic electric conductivity σa>0 and dielectric anisotorpy γa<0 ) and nonstandard (σa<0) material parameters. We make full use of a three-dimensional linear model where two mutually perpendicular planar wave numbers q and p can be varied. Our results show that there is a qualitative difference between the boundary conditions used, which is also dependent on how many vertical Fourier modes were used in the model. We have obtained threshold values favoring oblique rolls in subharmonic and dielectric regimes in parameter space. For the nonstandard EHC parameter values, both conduction and subharmonic regimes disappear and only the dielectric threshold exists.

  18. Correlating electrical resistance to growth conditions for multiwalled carbon nanotubes

    SciTech Connect

    Lan, Chun; Amama, Placidus B.; Fisher, Timothy S.; Reifenberger, Ronald G.

    2007-08-27

    A correlation between growth temperature and electrical resistance of multiwalled carbon nanotubes (MWNTs) has been established by measuring the resistance of individual MWNTs grown by microwave plasma-enhanced chemical vapor deposition (PECVD) at 800, 900, and 950 deg. C. The lowest resistances were obtained mainly from MWNTs grown at 900 deg. C. The MWNT resistance is larger on average at lower (800 deg. C) and higher (950 deg. C) growth temperatures. The resistance of MWNTs correlated well with other MWNT quality indices obtained from Raman spectra. This study identifies a temperature window for growing higher-quality MWNTs with fewer defects and lower resistance by PECVD.

  19. Correlating electrical resistance to growth conditions for multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lan, Chun; Amama, Placidus B.; Fisher, Timothy S.; Reifenberger, Ronald G.

    2007-08-01

    A correlation between growth temperature and electrical resistance of multiwalled carbon nanotubes (MWNTs) has been established by measuring the resistance of individual MWNTs grown by microwave plasma-enhanced chemical vapor deposition (PECVD) at 800, 900, and 950°C. The lowest resistances were obtained mainly from MWNTs grown at 900°C. The MWNT resistance is larger on average at lower (800°C) and higher (950°C) growth temperatures. The resistance of MWNTs correlated well with other MWNT quality indices obtained from Raman spectra. This study identifies a temperature window for growing higher-quality MWNTs with fewer defects and lower resistance by PECVD.

  20. Combination of ac electroosmosis and dielectrophoresis for particle manipulation on electrically-induced microscale wave structures

    NASA Astrophysics Data System (ADS)

    Chung, Cheng-Che; Glawdel, Tomasz; Ren, Carolyn L.; Chang, Hsien-Chang

    2015-03-01

    This work presents a simple method to fabricate controllable microscale wave structures on the top of regular interdigitated electrode (IDE) arrays using electrically-assisted lithography techniques. Smooth wave structures are extremely difficult, if not impossible, to fabricate using traditional multilayer photolithography technology. The fabricated wave structures were carefully measured using an optical profiler and the measured wave profiles were used in the numerical simulation of electrical field and for evaluating the parameters influencing the fabricated wave structure. It is demonstrated that the combined smooth wave structure and IDE array offer unique capability for particle manipulation including particle concentration, aggregation and separation. Particle motion manipulated via the combined wave structure and IDE array is governed by ac electroosmosis (ACEO), dielectrophoresis (DEP) or a combination of both depending on the applied frequency. At lower frequencies (~30 kHz), ACEO dominates and particles are driven to move along the valleys of the wave structures; while at higher frequencies (~200 kHz), DEP force dominates which concentrates particles at the peaks of the wave structures. In addition, varying the ac waveform from sine-wave to square-wave allows for dynamic control of particle motion. Size-dependent particle separation over the wave structure is also demonstrated for a mixture of 0.5 µm and 2 µm particles that are separated into two populations by the joint effects of drag and DEP forces when being pumped to flow via ACEO.

  1. State Waste Discharge Permit Application: Electric resistance tomography testing

    SciTech Connect

    Not Available

    1994-04-01

    This permit application documentation is for a State Waste Discharge Permit issued in accordance with requirements of Washington Administrative Code 173-216. The activity being permitted is a technology test using electrical resistance tomography. The electrical resistance tomography technology was developed at Lawrence Livermore National Laboratory and has been used at other waste sites to track underground contamination plumes. The electrical resistance tomography technology measures soil electrical resistance between two electrodes. If a fluid contaminated with electrolytes is introduced into the soil, the soil resistance is expected to drop. By using an array of measurement electrodes in several boreholes, the areal extent of contamination can be estimated. At the Hanford Site, the purpose of the testing is to determine if the electrical resistance tomography technology can be used in the vicinity of large underground metal tanks without the metal tank interfering with the test. It is anticipated that the electrical resistance tomography technology will provide a method for accurately detecting leaks from the bottom of underground tanks, such as the Hanford Site single-shell tanks.

  2. Electro-dewatering of activated sludge: Electrical resistance analysis.

    PubMed

    Conrardy, Jean-Baptiste; Vaxelaire, Jean; Olivier, Jérémy

    2016-09-01

    The significant risk of ohmic heating and the high electric energy consumption at terminal stages of the dewatering are two problems that hamper the development of the electro-dewatering (EDW) technology. In the future prospect of studying these two issues, it is important to provide and analyse quantitative data relative to the behavior of the electric resistance in EDW. It was the main goal of this study. It showed that the electric resistance of the complete system (cake + filter cloth) depended on the cake dryness. It increased sharply when the solids content exceeded around 45%.The solids loading also influenced the apparent resistance at the beginning of the process. The electric resistance of the filter cloth represented about 20% of the total resistance. It remained relatively constant over the process except at the terminal stage where it generally increased sharply. The use of conductive filter, such as metallic cloth, enabled to decrease the electric resistance and reduce the energy consumption of the process. The electric resistance decreased across the cake from the anode to the cathode. This behavior may be explained by several phenomena such as the ions migration and their interaction with the solid, the decrease of dry solids content from the anode to the cathode and the gas presence at the anode (due to electrolysis reaction). PMID:27192354

  3. Inheritance patterns, dominance and cross-resistance of Cry1Ab- and Cry1Ac-selected Ostrinia furnacalis (Guenée).

    PubMed

    Zhang, Tiantao; He, Mingxia; Gatehouse, Angharad M R; Wang, Zhenying; Edwards, Martin G; Li, Qing; He, Kanglai

    2014-09-01

    Two colonies of Asian corn borer, Ostrinia furnacalis (Guenée), artificially selected from a Bt-susceptible colony (ACB-BtS) for resistance to Cry1Ab (ACB-AbR) and Cry1Ac (ACB-AcR) toxins, were used to analyze inheritance patterns of resistance to Cry1 toxins. ACB-AbR and ACB-AcR evolved significant levels of resistance, with resistance ratios (RR) of 39-fold and 78.8-fold to Cry1Ab and Cry1Ac, respectively. The susceptibility of ACB-AbR larvae to Cry1Ac and Cry1F toxins, which had not previously been exposed, were significantly reduced, being >113-fold and 48-fold, respectively. Similarly, susceptibility of ACB-AcR larvae to Cry1Ab and Cry1F were also significantly reduced (RR > nine-fold, RR > 18-fold, respectively), indicating cross-resistance among Cry1Ab, Cry1Ac, and Cry1F toxins. However, ACB-AbR and ACB-AcR larvae were equally susceptible to Cry1Ie as were ACB-BtS larvae, indicating no cross-resistance between Cry1Ie and Cry1Ab or Cry1Ac toxins; this may provide considerable benefits in preventing or delaying the evolution of resistance in ACB to Cry1Ab and Cry1Ac toxins. Backcrossing studies indicated that resistance to Cry1Ab toxin was polygenic in ACB-AbR, but monogenic in ACB-AcR, whilst resistance to Cry1Ac toxin was primarily monogenic in both ACB-AbR and ACB-AcR, but polygenic as resistance increased. PMID:25216083

  4. Inheritance Patterns, Dominance and Cross-Resistance of Cry1Ab- and Cry1Ac-Selected Ostrinia furnacalis (Guenée)

    PubMed Central

    Zhang, Tiantao; He, Mingxia; Gatehouse, Angharad M. R.; Wang, Zhenying; Edwards, Martin G.; Li, Qing; He, Kanglai

    2014-01-01

    Two colonies of Asian corn borer, Ostrinia furnacalis (Guenée), artificially selected from a Bt-susceptible colony (ACB-BtS) for resistance to Cry1Ab (ACB-AbR) and Cry1Ac (ACB-AcR) toxins, were used to analyze inheritance patterns of resistance to Cry1 toxins. ACB-AbR and ACB-AcR evolved significant levels of resistance, with resistance ratios (RR) of 39-fold and 78.8-fold to Cry1Ab and Cry1Ac, respectively. The susceptibility of ACB-AbR larvae to Cry1Ac and Cry1F toxins, which had not previously been exposed, were significantly reduced, being >113-fold and 48-fold, respectively. Similarly, susceptibility of ACB-AcR larvae to Cry1Ab and Cry1F were also significantly reduced (RR > nine-fold, RR > 18-fold, respectively), indicating cross-resistance among Cry1Ab, Cry1Ac, and Cry1F toxins. However, ACB-AbR and ACB-AcR larvae were equally susceptible to Cry1Ie as were ACB-BtS larvae, indicating no cross-resistance between Cry1Ie and Cry1Ab or Cry1Ac toxins; this may provide considerable benefits in preventing or delaying the evolution of resistance in ACB to Cry1Ab and Cry1Ac toxins. Backcrossing studies indicated that resistance to Cry1Ab toxin was polygenic in ACB-AbR, but monogenic in ACB-AcR, whilst resistance to Cry1Ac toxin was primarily monogenic in both ACB-AbR and ACB-AcR, but polygenic as resistance increased. PMID:25216083

  5. DC-AC Cascaded H-Bridge Multilevel Boost Inverter With No Inductors for Electric/Hybrid Electric Vehicle Applications

    SciTech Connect

    Tolbert, Leon M; Ozpineci, Burak; Du, Zhong; Chiasson, John N

    2009-01-01

    This paper presents a cascaded H-bridge multilevel boost inverter for electric vehicle (EV) and hybrid EV (HEV) applications implemented without the use of inductors. Currently available power inverter systems for HEVs use a dc-dc boost converter to boost the battery voltage for a traditional three-phase inverter. The present HEV traction drive inverters have low power density, are expensive, and have low efficiency because they need a bulky inductor. A cascaded H-bridge multilevel boost inverter design for EV and HEV applications implemented without the use of inductors is proposed in this paper. Traditionally, each H-bridge needs a dc power supply. The proposed design uses a standard three-leg inverter (one leg for each phase) and an H-bridge in series with each inverter leg which uses a capacitor as the dc power source. A fundamental switching scheme is used to do modulation control and to produce a five-level phase voltage. Experiments show that the proposed dc-ac cascaded H-bridge multilevel boost inverter can output a boosted ac voltage without the use of inductors.

  6. Electrical resistance tomography using steel cased boreholes as electrodes

    DOEpatents

    Daily, W.D.; Ramirez, A.L.

    1999-06-22

    An electrical resistance tomography method is described which uses steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constrain the models. 2 figs.

  7. Electrical resistance tomography using steel cased boreholes as electrodes

    DOEpatents

    Daily, William D.; Ramirez, Abelardo L.

    1999-01-01

    An electrical resistance tomography method using steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constain the models.

  8. Marine permafrost detection using galvanic electrical resistivity methods

    SciTech Connect

    Corwin, R.F.

    1983-05-01

    Because of the high electrical resistivity contrast between ice-bonded sediments (permafrost) and the same sediments in an unfrozen state, galvanic (direct-current) electrical resistivity measurements are capable of determining the depth below the sea floor of marine permafrost layers. Unlike the seismic refraction method usually used for offshore permafrost surveying, resistivity measurements can determine the thickness as well as the depth of a permafrost layer. Also, the resistivity method is usable in acoustic anomaly areas where seismic data cannot be obtained and in shallow water where air gun sources are not effective. Marine resistivity measurements may be made through the sea ice in the winter or from a stationary or moving boat in the summer. The results of field trials conducted in the Prudhoe Bay area indicated that marine permafrost depths and thicknesses determined from resistivity measurements agreed well with those obtained from borehole data.

  9. COMPLEX ELECTRICAL RESISTIVITY FOR MONITORING DNAPL CONTAMINATION

    EPA Science Inventory

    We propose to develop new practical complex resistivity field measurement techniques for pollution characterization and monitoring. For this purpose we will document the detectability of clay-organic interactions with geophysical measurements in the laboratory, develop further un...

  10. Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.

    PubMed

    Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented. PMID:22163697

  11. Ac-electrical conductivity of poly(propylene) before and after X-ray irradiation

    NASA Astrophysics Data System (ADS)

    Gaafar, M.

    2001-05-01

    Study on the ac-electrical conductivity of poly(propylene), before and after X-ray irradiation within the temperature range 300-360 K are reported. The measurements have been performed in a wide range of frequencies (from 0 to 10 5 Hz) and under the effect of different X-ray irradiation doses (from 0 to 15 Gy). Cole-Cole diagrams have been used to show the frequency dependence of the complex impedance at different temperatures. The results exhibit semicircles which are consistent with existing equivalent circuit model. Analysis of the results reveal semiconducting features based mainly on a hopping mechanism. The study shows a pronounced effect of X-ray irradiation on the electrical conductivity at zero frequency σDC. At the early stage of irradiation, σDC increased as a result of free radical formation. As the irradiation progressed, it decreased as a result of crosslinking, then it increased again due to irradiation induced degradation, which motivates the generation of mobile free radicals. The study shows that this polymer is one among other polymers which its electrical conductivity is modified by irradiation.

  12. Hall-Effect Based Semi-Fast AC On-Board Charging Equipment for Electric Vehicles

    PubMed Central

    Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented. PMID:22163697

  13. Slime thickness evaluation of bored piles by electrical resistivity probe

    NASA Astrophysics Data System (ADS)

    Chun, Ok-Hyun; Yoon, Hyung-Koo; Park, Min-Chul; Lee, Jong-Sub

    2014-09-01

    The bottoms of bored piles are generally stacked with soil particles, both while boreholes are being drilled, and afterward. The stacked soils are called slime, and when loads are applied on the pile, increase the pile settlement. Thus to guarantee the end bearing capacity of bored piles, the slime thickness should be precisely detected. The objective of this study is to suggest a new method for evaluating the slime thickness, using temperature compensated electrical resistivity. Laboratory studies are performed in advance, to estimate and compare the resolution of the electrical resistivity probe (ERP) and time domain reflectometry (TDR). The electrical properties of the ERP and TDR are measured using coaxial type electrodes and parallel type two-wire electrodes, respectively. Penetration tests, conducted in the fully saturated sand-clay mixtures, demonstrate that the ERP produces a better resolution of layer detection than TDR. Thus, field application tests using the ERP with a diameter of 35.7 mm are conducted for the investigation of slime thickness in large diameter bored piles. Field tests show that the slime layers are clearly identified by the ERP: the electrical resistivity dramatically increases at the interface between the slurry and slime layer. The electrical resistivity in the slurry layer inversely correlates with the amount of circulated water. This study suggests that the new electrical resistivity method may be a useful method for the investigation of the slime thickness in bored piles.

  14. Electrical resistivity of coal-bearing rocks under high temperature and the detection of coal fires using electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Shao, Zhenlu; Wang, Deming; Wang, Yanming; Zhong, Xiaoxing; Tang, Xiaofei; Xi, Dongdong

    2016-02-01

    Coal fires are severe hazards to environment, health and safety throughout the world. Efficient and economical extinguishing of these fires requires that the extent of the subsurface coal fires should be delineated. Electrical and electromagnetic methods have been used to detect coal fires in recent years. However, the resistivity change of coal-bearing rocks at high temperature is rarely investigated. The resistivity characteristics of coal fires at different temperatures and depths are seldomly researched as well. In this paper, we present the results of measurements of several coal-bearing rocks' resistivity and permeability under high temperature. Two major causes for the change in resistivity with increasing temperature are recognized, there are the increase of charge carriers and thermal fracturing, of which the first one is probably the dominant cause. A set of 2-D simulations is carried out to compare the relation of resolution and efficiency of coal fires detection to temperature and depth when adopting the electrical resistance tomography. The simulation results show that the resolution and efficiency decrease with the decrease of temperature and the increase of depth. Finally, the electrical resistance tomography is used to delineate coal fires in the Anjialing Open Pit Mine. Most low-resistivity regions are verified as coal-fire areas according to the long-term monitoring of borehole temperature. The results indicate that the electrical resistance tomography can be used as a tool for the detection of coal fires.

  15. Transgenic Sugarcane with a cry1Ac Gene Exhibited Better Phenotypic Traits and Enhanced Resistance against Sugarcane Borer.

    PubMed

    Gao, Shiwu; Yang, Yingying; Wang, Chunfeng; Guo, Jinlong; Zhou, Dinggang; Wu, Qibin; Su, Yachun; Xu, Liping; Que, Youxiong

    2016-01-01

    We developed sugarcane plants with improved resistance to the sugarcane borer, Diatraea saccharalis (F). An expression vector pGcry1Ac0229, harboring the cry1Ac gene and the selectable marker gene, bar, was constructed. This construct was introduced into the sugarcane cultivar FN15 by particle bombardment. Transformed plantlets were identified after selection with Phosphinothricin (PPT) and Basta. Plantlets were then screened by PCR based on the presence of cry1Ac and 14 cry1Ac positive plantlets were identified. Real-time quantitative PCR (RT-qPCR) revealed that the copy number of cry1Ac gene in the transgenic lines varied from 1 to 148. ELISA analysis showed that Cry1Ac protein levels in 7 transgenic lines ranged from 0.85 μg/FWg to 70.92 μg/FWg in leaves and 0.04 μg/FWg to 7.22 μg/FWg in stems, and negatively correlated to the rate of insect damage that ranged from 36.67% to 13.33%, respectively. Agronomic traits of six transgenic sugarcane lines with medium copy numbers were similar to the non-transgenic parental line. However, phenotype was poor in lines with high or low copy numbers. Compared to the non-transgenic control plants, all transgenic lines with medium copy numbers had relatively equal or lower sucrose yield and significantly improved sugarcane borer resistance, which lowered susceptibility to damage by insects. This suggests that the transgenic sugarcane lines harboring medium copy numbers of the cry1Ac gene may have significantly higher resistance to sugarcane borer but the sugarcane yield in these lines is similar to the non-transgenic control thus making them superior to the control lines. PMID:27093437

  16. Transgenic Sugarcane with a cry1Ac Gene Exhibited Better Phenotypic Traits and Enhanced Resistance against Sugarcane Borer

    PubMed Central

    Gao, Shiwu; Yang, Yingying; Wang, Chunfeng; Guo, Jinlong; Zhou, Dinggang; Wu, Qibin; Su, Yachun; Xu, Liping

    2016-01-01

    We developed sugarcane plants with improved resistance to the sugarcane borer, Diatraea saccharalis (F). An expression vector pGcry1Ac0229, harboring the cry1Ac gene and the selectable marker gene, bar, was constructed. This construct was introduced into the sugarcane cultivar FN15 by particle bombardment. Transformed plantlets were identified after selection with Phosphinothricin (PPT) and Basta. Plantlets were then screened by PCR based on the presence of cry1Ac and 14 cry1Ac positive plantlets were identified. Real-time quantitative PCR (RT-qPCR) revealed that the copy number of cry1Ac gene in the transgenic lines varied from 1 to 148. ELISA analysis showed that Cry1Ac protein levels in 7 transgenic lines ranged from 0.85 μg/FWg to 70.92 μg/FWg in leaves and 0.04 μg/FWg to 7.22 μg/FWg in stems, and negatively correlated to the rate of insect damage that ranged from 36.67% to 13.33%, respectively. Agronomic traits of six transgenic sugarcane lines with medium copy numbers were similar to the non-transgenic parental line. However, phenotype was poor in lines with high or low copy numbers. Compared to the non-transgenic control plants, all transgenic lines with medium copy numbers had relatively equal or lower sucrose yield and significantly improved sugarcane borer resistance, which lowered susceptibility to damage by insects. This suggests that the transgenic sugarcane lines harboring medium copy numbers of the cry1Ac gene may have significantly higher resistance to sugarcane borer but the sugarcane yield in these lines is similar to the non-transgenic control thus making them superior to the control lines. PMID:27093437

  17. Electrical resistance tomography for monitoring the infiltration of water into a pavement section

    SciTech Connect

    Buettner, M.; Daily, B.; Ramirez, A.

    1997-07-03

    Electrical resistance tomography (ERT) was used to follow the infiltration of water into pavement section at the UC Berkeley Richmond Field Station. A volume of pavement 1m square and 1.29 m deep was sampled by an ERT array consisting of electrodes in 9 drilled holes plus 8 surface electrodes. The data were collected using a computer controlled data acquisition system capable of collecting a full data set in under 1 hour, allowing for nearly real time sampling of the infiltration. The infiltration was conducted in two phases. During the first phase, water was introduced into the asphalt-concrete (AC) layers at a slow rate of about 8 ml per hour for a period of about 6 days. In the second phase, water was introduced into the asphalt-treated-permeable base (ATPB) layer at a more rapid rate of about 100 ml/h for about 2 days. The ERT images show that water introduced into the upper AC layers shows up as a decrease in resistivity which grows with time. The images also appear to show that when water moves into the layers below the ATPB, the resistivity increases; an unexpected result. There are some indications that the water moved laterally as well as down into the deeper ATPB and the aggregate base. The images also show that when water is introduced directly into the ATPB and aggregate layer, the water moves into the the underlying materials much more quickly.

  18. Cross-Resistance Responses of Cry1Ac-Selected Heliothis virescens (Lepidoptera: Noctuidae) to the Bacillus thuringiensis Protein Vip3A

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One susceptible and three Cry1Ac-resistant strains of tobacco budworm, Heliothis virescens (F.), were used in laboratory studies to determine the level of cross-resistance between the Bacillus thuringiensis (Berliner) toxins Cry1Ac and Vip3A using concentration-mortality and leaf tissue experiments....

  19. Analytic formulation for the ac electrical conductivity in two-temperature, strongly coupled, overdense plasma: FORTRAN subroutine

    NASA Astrophysics Data System (ADS)

    Cauble, R.; Rozmus, W.

    1993-10-01

    A FORTRAN subroutine for the calculation of the ac electrical conductivity in two-temperature, strongly coupled, overdense plasma is presented. The routine is the result of a model calculation based on classical transport theory with application to plasmas created by the interaction of short pulse lasers and solids. The formulation is analytic and the routine is self-contained.

  20. Research on temperature control with numerical regulators in electric resistance furnaces with indirect heating

    NASA Astrophysics Data System (ADS)

    Diniş, C. M.; Popa, G. N.; Iagăr, A.

    2016-02-01

    The paper is an analysis of two-positions (hysteresis) regulators, self-tuned PID controller and PID controller for temperature control used for indirect heat resistance furnaces. For PID controller was used three methods of tuning: Ziegler-Nichols step response model, Cohen-Coon tuning rules and Ziegler-Nichols tuning rules. In experiments it used an electric furnace with indirect heating with active power of resistance of 1 kW/230V AC and a numerical temperature regulator AT-503 type (ANLY). It got a much better temperature control when using the Cohen-Coon tuning rules method than those of Ziegler-Nichols step response method and Ziegler-Nichols tuning rules method.

  1. Thermal treatment of low permeability soils using electrical resistance heating

    SciTech Connect

    Udell, K.S.

    1996-08-01

    The acceleration of recovery rates of second phase liquid contaminants from the subsurface during gas or water pumping operations is realized by increasing the soil and ground water temperature. Electrical heating with AC current is one method of increasing the soil and groundwater temperature and has particular applicability to low permeability soils. Several mechanisms have been identified that account for the enhanced removal of the contaminants during electrical heating. These are vaporization of liquid contaminants with low boiling points, temperature-enhanced evaporation rates of semi-volatile components, and removal of residual contaminants by the boiling of residual water. Field scale studies of electrical heating and fluid extraction show the effectiveness of this technique and its applicability to contaminants found both above and below the water table and within low permeability soils. 10 refs., 8 figs.

  2. Human aquaporin 4 gating dynamics in dc and ac electric fields: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Garate, J.-A.; English, Niall J.; MacElroy, J. M. D.

    2011-02-01

    Water self-diffusion within human aquaporin 4 has been studied using molecular dynamics (MD) simulations in the absence and presence of external ac and dc electric fields. The computed diffusive (pd) and osmotic (pf) permeabilities under zero-field conditions are (0.718 ± 0.24) × 10-14 cm3 s-1 and (2.94 ± 0.47) × 10-14 cm3 s-1, respectively; our pf agrees with the experimental value of (1.50 ± 0.6) × 10-14 cm3 s-1. A gating mechanism has been proposed in which side-chain dynamics of residue H201, located in the selectivity filter, play an essential role. In addition, for nonequilibrium MD in external fields, it was found that water dipole orientation within the constriction region of the channel is affected by electric fields (e-fields) and that this governs the permeability. It was also found that the rate of side-chain flipping motion of residue H201 is increased in the presence of e-fields, which influences water conductivity further.

  3. Electrical Resistivity of Liquid Alkali Na-based Binary Alloys

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2007-11-01

    The study of the electrical resistivity rL of alkali Na-based binary alloys Na1-xLix, Na1-xKx, Na1-xRbx and Na1-xCsx have been made by well-recognized model potential of Gajjar et al. The most recent exchange and correlation functions due to Farid et al (F) and Sarkar et al (S) are used for the first time in the study of electrical resistivity of liquid binary mixtures and found suitable for such study. The results, due to the inclusion of Sarkar et al's local field correction function, are found superior to those obtained due to Farid et al's local field correction function. Electrical resistivity of Na-based binary alloys compare well with the experimental data available in the literature.

  4. Electrical resistivity study of Magnetite under high pressure

    NASA Astrophysics Data System (ADS)

    Muramatsu, Takaki; Struzhkin, Viktor; Gasparov, Lev

    2014-03-01

    Magnetite is known as one of the oldest magnetic materials and crystallizes in the inversed spinel structure. At about 120 K magnetite undergoes a structural phase transition called Verway transition where electrical resistivity abruptly increases with decreasing temperature. Pressure effects of Verway transition studied by magnetic susceptibility and electrical resistivity by several groups revealed Verway transition decreased with pressure and the precise pressure effects depend on the pressure condition i.e., pressure transmitting media. In this work, electrical resistivity measurements were made to revisit the property of magnetite under pressure. Both metallization observed in precedent work using cubic anvil press and the higher pressure properties beyond metallization are examined by diamond anvil cell.

  5. Electrical resistivity borehole measurements: application to an urban tunnel site

    NASA Astrophysics Data System (ADS)

    Denis, A.; Marache, A.; Obellianne, T.; Breysse, D.

    2002-06-01

    This paper shows how it is possible to use wells drilled during geotechnical pre-investigation of a tunneling site to obtain a 2-D image of the resistivity close to a tunnel boring machine. An experimental apparatus is presented which makes it possible to perform single and borehole-to-borehole electrical measurements independent of the geological and hydrogeological context, which can be activated at any moment during the building of the tunnel. This apparatus is first demonstrated through its use on a test site. Numerical simulations and data inversion are used to analyse the experimental results. Finally, electrical resistivity tomography and single-borehole measurements on a tunneling site are presented. Experimental results show the viability of the apparatus and the efficiency of the inverse algorithm, and also highlight the limitations of the electrical resistivity tomography as a tool for geotechnical investigation in urban areas.

  6. High electrical resistivity carbon/graphite fibers

    NASA Technical Reports Server (NTRS)

    Vogel, F. L.; Forsman, W. C.

    1980-01-01

    Carbon/graphite fibers were chemically oxidized in the liquid phase to fibers of graphite oxide. Resistivity increases as high as 10,000 times were obtained, the oxidized fiber decomposed on exposure to atmosphere. A factor of 1,000 remained as a stable increment. The largest change observed was 1,000,000 times. Best results were obtained on the most highly graphitized fibers. Electrochemical oxidation yielded a lower increase--about 10 times, but provided a controllable method of synthesis and insight to the mechanism of reaction. Tensile tests indicated that the strength of the fiber on oxidation was decreased by no more than 25 percent.

  7. Influence of Electrical Resistivity and Machining Parameters on Electrical Discharge Machining Performance of Engineering Ceramics

    PubMed Central

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge

  8. Influence of electrical resistivity and machining parameters on electrical discharge machining performance of engineering ceramics.

    PubMed

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge

  9. Resistivity of flame plasma in an electric field

    NASA Astrophysics Data System (ADS)

    Ikuta, Kazunari

    1989-03-01

    A generalized Ohm's law is obtained for a flame plasma in an electric field for the study of arc resistivity in an electromagnetic launcher (EML). The resistivity of flame plasma is reduced by the particle source, which suggests the injection of premixed combustible fuel into the arc plasma as the particle source in order to reduce the arc voltage. Reduction of the voltage in the arc is desirable to reduce the damage of electrodes in EML since the electric field in the arc plasma energizes charged particles which can bombard the electrodes.

  10. Electrical resistivity of Au-ZnO nanocomposite films

    SciTech Connect

    Argibay, N.; Goeke, R. S.; Dugger, M. T.; Rodriguez, M. A.; Michael, J. R.; Prasad, S. V.

    2013-04-14

    The electrical resistivity of electron beam codeposited gold and zinc oxide (Au-ZnO) films was investigated over the full composition range. The electrical resistivity was shown to increase monotonically with increasing ZnO content, with three characteristic regimes of behavior associated primarily with (1) grain boundary electron scattering due to grain refinement at ZnO volume fractions below 0.3, (2) percolation theory for ZnO volume fractions at and above the percolation threshold (f{sub c} = 0.85), and (3) a transition region between these where it was proposed that resistivity was influenced by the formation of Au-Zn complexes due to an oxygen deficiency in the deposited ZnO. The electrical resistivity of the composite films remained below 100 {mu}{Omega} cm for ZnO volume fractions below 0.5. A model combining the general effective media equation and Mayadas-Shatzkes grain boundary electron scattering model was shown to generally describe the composition dependence of electrical resistivity for the investigated oxide dispersion hardened metal-matrix composite thin films.

  11. Using electrical resistance tomography to map subsurface temperatures

    DOEpatents

    Ramirez, A.L.; Chesnut, D.A.; Daily, W.D.

    1994-09-13

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations. 1 fig.

  12. Using electrical resistance tomography to map subsurface temperatures

    DOEpatents

    Ramirez, Abelardo L.; Chesnut, Dwayne A.; Daily, William D.

    1994-01-01

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations.

  13. Modeling the Electrical Contact Resistance at Steel-Carbon Interfaces

    NASA Astrophysics Data System (ADS)

    Brimmo, Ayoola T.; Hassan, Mohamed I.

    2016-01-01

    In the aluminum smelting industry, electrical contact resistance at the stub-carbon (steel-carbon) interface has been recurrently reported to be of magnitudes that legitimately necessitate concern. Mitigating this via finite element modeling has been the focus of a number of investigations, with the pressure- and temperature-dependent contact resistance relation frequently cited as a factor that limits the accuracy of such models. In this study, pressure- and temperature-dependent relations are derived from the most extensively cited works that have experimentally characterized the electrical contact resistance at these contacts. These relations are applied in a validated thermo-electro-mechanical finite element model used to estimate the voltage drop across a steel-carbon laboratory setup. By comparing the models' estimate of the contact electrical resistance with experimental measurements, we deduce the applicability of the different relations over a range of temperatures. The ultimate goal of this study is to apply mathematical modeling in providing pressure- and temperature-dependent relations that best describe the steel-carbon electrical contact resistance and identify the best fit relation at specific thermodynamic conditions.

  14. Resistivity of flame plasma in an electric field

    NASA Astrophysics Data System (ADS)

    Ikuta, Kazunari

    1989-01-01

    A generalized Ohm's law is obtained for a flame plasma in an electric field for the study of arc resistivity in an electromagnetic launcher (EML). The effective resistivity of flame plasma is reduced by the source, which suggests the injection of premixed combustible fuel into the arc plasma in EML in order to reduce the electron energy of the arc. The reduction of electron energy in the arc is desirable to minimize the damage of electrodes in EML.

  15. Electron-radiation effects on the ac and dc electrical properties and unpaired electron densities of three aerospace polymers

    NASA Technical Reports Server (NTRS)

    Long, Sheila Ann T.; Long, Edward R., Jr.; Ries, Heidi R.; Harries, Wynford L.

    1986-01-01

    The effects of gigarad-level total absorbed doses from 1-MeV electrons on the post-irradiation alternating-current (ac) and direct-current (dc) electrical properties and the unpaired electron densities have been studied for Kapton, Ultem, and Mylar. The unpaired electron densities (determined from electron paramagnetic resonance spectroscopy) and the dc electrical conductivities of the irradiated materials were monitored as functions of time following the exposures to determine their decay characteristics at room temperature. The elevated-temperature ac electrical dissipations of the Ultem and Mylar were affected by the radiation. The dc conductivity of the Kapton increased by five orders of magnitude, while the dc conductivities of the Ultem and Mylar increased by less than an order of magnitude, due to the radiation. The observed radiation-generated changes in the ac electrical dissipations are explained in terms of known radiation-generated changes in the molecular structures of the three materials. A preliminary model relating the dc electrical conductivity and the unpaired electron density in the Kapton is proposed.

  16. Electron-radiation effects on the ac and dc electrical properties and unpaired electron densities of three aerospace polymers

    NASA Astrophysics Data System (ADS)

    Long, Sheila Ann T.; Long, Edward R., Jr.; Ries, Heidi R.; Harries, Wynford L.

    1986-12-01

    The effects of gigarad-level total absorbed doses from 1-MeV electrons on the post-irradiation alternating-current (ac) and direct-current (dc) electrical properties and the unpaired electron densities have been studied for Kapton, Ultem, and Mylar. The unpaired electron densities (determined from electron paramagnetic resonance spectroscopy) and the dc electrical conductivities of the irradiated materials were monitored as functions of time following the exposures to determine their decay characteristics at room temperature. The elevated-temperature ac electrical dissipations of the Ultem and Mylar were affected by the radiation. The dc conductivity of the Kapton increased by five orders of magnitude, while the dc conductivities of the Ultem and Mylar increased by less than an order of magnitude, due to the radiation. The observed radiation-generated changes in the ac electrical dissipations are explained in terms of known radiation-generated changes in the molecular structures of the three materials. A preliminary model relating the dc electrical conductivity and the unpaired electron density in the Kapton is proposed.

  17. Frequency and voltage dependent profile of dielectric properties, electric modulus and ac electrical conductivity in the PrBaCoO nanofiber capacitors

    NASA Astrophysics Data System (ADS)

    Demirezen, S.; Kaya, A.; Yerişkin, S. A.; Balbaşı, M.; Uslu, İ.

    In this study, praseodymium barium cobalt oxide nanofiber interfacial layer was sandwiched between Au and n-Si. Frequency and voltage dependence of ε‧, ε‧, tanδ, electric modulus (M‧ and M″) and σac of PrBaCoO nanofiber capacitor have been investigated by using impedance spectroscopy method. The obtained experimental results show that the values of ε‧, ε‧, tanδ, M‧, M″ and σac of the PrBaCoO nanofiber capacitor are strongly dependent on frequency of applied bias voltage. The values of ε‧, ε″ and tanδ show a steep decrease with increasing frequency for each forward bias voltage, whereas the values of σac and the electric modulus increase with increasing frequency. The high dispersion in ε‧ and ε″ values at low frequencies may be attributed to the Maxwell-Wagner and space charge polarization. The high values of ε‧ may be due to the interfacial effects within the material, PrBaCoO nanofibers interfacial layer and electron effect. The values of M‧ and M″ reach a maximum constant value corresponding to M∞ ≈ 1/ε∞ due to the relaxation process at high frequencies, but both the values of M‧ and M″ approach almost to zero at low frequencies. The changes in the dielectric and electrical properties with frequency can be also attributed to the existence of Nss and Rs of the capacitors. As a result, the change in the ε‧, ε″, tanδ, M‧, M″ and ac electric conductivity (σac) is a result of restructuring and reordering of charges at the PrBaCoO/n-Si interface under an external electric field or voltage and interface polarization.

  18. Electrical resistivity measurements in the Neillsville area, Wisconsin

    USGS Publications Warehouse

    Spicer, H. Cecil; Edwards, George J.

    1955-01-01

    Sixty-eight electrical depth profiles were completed in the vicinity of Neillsville, Wis. to obtain information on the water-bearing beds in the glacial moraine and consolidated sedimentary rocks in the area. No productive aquifers were found but the best areas for test drilling are described. The basic theory and interpretation procedures, together with a short description of field methods on electrical resistivity measurements are also presented.

  19. Resistance after firing protected electric match. [Patent application

    DOEpatents

    Montoya, A.P.

    1980-03-20

    An electric match having electrical leads embedded in flame-producing compound is protected against an accidental resistance across the leads after firing by a length of heat-shrinkable tubing encircling the match body and having a skirt portion extending beyond the leads. The heat of the burning match and an adjacent thermal battery causes the tubing to fold over the end of the match body, covering the ends of the leads and protecting them from molten pieces of the battery.

  20. Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae.

    PubMed

    Jurat-Fuentes, Juan L; Adang, Michael J

    2004-08-01

    We reported previously a direct correlation between reduced soybean agglutinin binding to 63- and 68-kDa midgut glycoproteins and resistance to Cry1Ac toxin from Bacillus thuringiensis in the tobacco budworm (Heliothis virescens). In the present work we describe the identification of the 68-kDa glycoprotein as a membrane-bound form of alkaline phosphatase we term HvALP. Lectin blot analysis of HvALP revealed the existence of N-linked oligosaccharides containing terminal N-acetylgalactosamine required for [125I]Cry1Ac binding in ligand blots. Based on immunoblotting and alkaline phosphatase activity detection, reduced soybean agglutinin binding to HvALP from Cry1Ac resistant larvae of the H. virescens YHD2 strain was attributable to reduced amounts of HvALP in resistant larvae. Quantification of specific alkaline phosphatase activity in brush border membrane proteins from susceptible (YDK and F1 generation from backcrosses) and YHD2 H. virescens larvae confirmed the observation of reduced HvALP levels. We propose HvALP as a Cry1Ac binding protein that is present at reduced levels in brush border membrane vesicles from YHD2 larvae. PMID:15265032

  1. High Susceptibility to Cry1Ac and Low Resistance Allele Frequency Reduce the Risk of Resistance of Helicoverpa armigers to Bt Soybean in Brazil.

    PubMed

    Dourado, Patrick M; Bacalhau, Fabiana B; Amado, Douglas; Carvalho, Renato A; Martinelli, Samuel; Head, Graham P; Omoto, Celso

    2016-01-01

    The Old World bollworm, Helicoverpa armigera (Hübner), was recently introduced into Brazil, where it has caused extensive damage to cotton and soybean crops. MON 87701 × MON 89788 soybean, which expresses the Bt protein Cry1Ac, was recently deployed in Brazil, providing high levels of control against H. armigera. To assess the risk of resistance to the Cry1Ac protein expressed by MON 87701 × MON 89788 soybean in Brazil, we conducted studies to evaluate the baseline susceptibility of H. armigera to Cry1Ac, in planta efficacy including the assessment of the high-dose criterion, and the initial resistance allele frequency based on an F2 screen. The mean Cry1Ac lethal concentration (LC50) ranged from 0.11 to 1.82 μg·mL-1 of diet among all H. armigera field populations collected from crop seasons 2013/14 to 2014/15, which indicated about 16.5-fold variation. MON 87701 × MON 89788 soybean exhibited a high level of efficacy against H. armigera and most likely met the high dose criterion against this target species in leaf tissue dilution bioassays up to 50 times. A total of 212 F2 family lines of H. armigera were established from field collections sampled from seven locations across Brazil and were screened for the presence of MON 87701 × MON 89788 soybean resistance alleles. None of the 212 families survived on MON 87701 × MON 89788 soybean leaf tissue (estimated allele frequency = 0.0011). The responses of H. armigera to Cry1Ac protein, high susceptibility to MON 87701 × MON 89788 soybean, and low frequency of resistance alleles across the main soybean-producing regions support the assumptions of a high-dose/refuge strategy. However, maintenance of reasonable compliance with the refuge recommendation will be essential to delay the evolution of resistance in H. armigera to MON 87701 × MON 89788 soybean in Brazil. PMID:27532632

  2. High Susceptibility to Cry1Ac and Low Resistance Allele Frequency Reduce the Risk of Resistance of Helicoverpa armigers to Bt Soybean in Brazil

    PubMed Central

    Bacalhau, Fabiana B.; Amado, Douglas; Carvalho, Renato A.; Martinelli, Samuel; Head, Graham P.; Omoto, Celso

    2016-01-01

    The Old World bollworm, Helicoverpa armigera (Hübner), was recently introduced into Brazil, where it has caused extensive damage to cotton and soybean crops. MON 87701 × MON 89788 soybean, which expresses the Bt protein Cry1Ac, was recently deployed in Brazil, providing high levels of control against H. armigera. To assess the risk of resistance to the Cry1Ac protein expressed by MON 87701 × MON 89788 soybean in Brazil, we conducted studies to evaluate the baseline susceptibility of H. armigera to Cry1Ac, in planta efficacy including the assessment of the high-dose criterion, and the initial resistance allele frequency based on an F2 screen. The mean Cry1Ac lethal concentration (LC50) ranged from 0.11 to 1.82 μg·mL−1 of diet among all H. armigera field populations collected from crop seasons 2013/14 to 2014/15, which indicated about 16.5-fold variation. MON 87701 × MON 89788 soybean exhibited a high level of efficacy against H. armigera and most likely met the high dose criterion against this target species in leaf tissue dilution bioassays up to 50 times. A total of 212 F2 family lines of H. armigera were established from field collections sampled from seven locations across Brazil and were screened for the presence of MON 87701 × MON 89788 soybean resistance alleles. None of the 212 families survived on MON 87701 × MON 89788 soybean leaf tissue (estimated allele frequency = 0.0011). The responses of H. armigera to Cry1Ac protein, high susceptibility to MON 87701 × MON 89788 soybean, and low frequency of resistance alleles across the main soybean-producing regions support the assumptions of a high-dose/refuge strategy. However, maintenance of reasonable compliance with the refuge recommendation will be essential to delay the evolution of resistance in H. armigera to MON 87701 × MON 89788 soybean in Brazil. PMID:27532632

  3. Nondestructive evaluation of composite materials by electrical resistance measurement

    NASA Astrophysics Data System (ADS)

    Mei, Zhen

    This dissertation investigates electrical resistance measurement for nondestructive evaluation of carbon fiber (CF) reinforced polymer matrix composites. The method involves measuring the DC electrical resistance in either the longitudinal or through thickness direction. The thermal history and thermal properties of thermoplastic/CF composites were studied by longitudinal and through-thickness resistance measurements. The resistance results were consistent with differential scanning calorimetry (DSC) and thermomechanical analysis (TMA) results. The resistance measurements gave more information on the melting of the polymer matrix than TMA. They were more sensitive to the glass transition of the polymer matrix than DSC. The through-thickness resistance decreased as autohesion progressed. The activation energy of autohesion was 21.2 kJ/mol for both nylon-6 and polyphenylene sulfide (PPS)/CF composites. Adhesive bonding and debonding were monitored in real-time by measurement of the through-thickness resistance between the adherends in an adhesive joint during heating and subsequent cooling. Debonding occurred during cooling when the pressure or temperature during prior bonding was not sufficiently high. A long heating time below the melting temperature (T m) was found to be detrimental to subsequent PPS adhesive joint development above Tm, due to curing reactions below Tm and consequent reduced mass flow response above Tm. A high heating rate (small heating time) enhanced the bonding more than a high pressure. The longitudinal resistance measurement was used to investigate the effects of temperature and stress on the interface between a concrete substrate and its epoxy/CF composite retrofit. The resistance of the retrofit was increased by bond degradation, whether the degradation was due to heat or stress. The degradation was reversible. Irreversible disturbance in the fiber arrangement occurred slightly as thermal or load cycling occurred, as indicated by the

  4. Resistance of a pulsed electrical breakdown channel in ionic crystals

    NASA Astrophysics Data System (ADS)

    Punanov, I. F.; Emlin, R. V.; Kulikov, V. D.; Cholakh, S. O.

    2014-04-01

    A technique for estimating the resistance of the electrical breakdown channel in ionic crystals is proposed. This technique is based on measuring the channel velocity in a sample when a ballast resistor is connected to the circuit of a needle anode and on using the theoretical dependence of the channel velocity on the channel conductivity. The breakdown channel resistance at a voltage of 140 kV is about 6.5 kΩ in KCl and about 6.1 kΩ in KBr. These resistances are shown to characterize a gas phase. The gas-phase resistance is found to be nonuniform along the breakdown channel. The head part ˜1 mm long has the maximum resistance. This head region is concluded to contain dielectric substance clusters, which then decompose into metal and halogen ions. The cluster lifetime is ˜10-9 s.

  5. Performance criteria guideline for three explosion protection methods of electrical equipment rated up to 15,000 volts AC

    NASA Technical Reports Server (NTRS)

    Linley, L. J.; Luper, A. B.; Dunn, J. H.

    1982-01-01

    The Bureau of Mines, U.S. Department of the Interior, is reviewing explosion protection methods for use in gassy coal mines. This performance criteria guideline is an evaluation of three explosion protection methods of machines electrically powered with voltages up to 15,000 volts ac. A sufficient amount of basic research has been accomplished to verify that the explosion proof and pressurized enclosure methods can provide adequate explosion protection with the present state of the art up to 15,000 volts ac. This routine application of the potted enclosure as a stand alone protection method requires further investigation or development in order to clarify performance criteria and verification certification requirements. An extensive literature search, a series of high voltage tests, and a design evaluation of the three explosion protection methods indicate that the explosion proof, pressurized, and potted enclosures can all be used to enclose up to 15,000 volts ac.

  6. Alternating current impedance imaging of high-resistance membrane pores using a scanning electrochemical microscope. Application of membrane electrical shunts to increase measurement sensitivity and image contrast.

    PubMed

    Ervin, Eric Nathan; White, Henry S; Baker, Lane A; Martin, Charles R

    2006-09-15

    Whether an individual pore in a porous membrane can be imaged using scanning electrochemical microscopy (SECM), operated in ac impedance mode, is determined by the magnitude of the change in the total impedance of the imaging system as the SECM tip is scanned over the pore. In instances when the SECM tip resistance is small relative to the internal pore resistance, the total impedance changes by a negligible amount, rendering the pore invisible during impedance imaging. A simple solution to this problem is to introduce a low-impedance electrical shunt (i.e., a salt bridge) across the membrane. This principle is demonstrated by imaging polycarbonate membranes (6-12-microm thickness) containing between 1 and 2000 conical-shaped pores (60-nm- and 2.5-microm-diameter openings) using an approximately 1-microm-radius Pt tip. Theory and experiments show that image contrast (the change in ac current measured as the probe is scanned over the pore) is inversely proportional to the total resistance of the membrane and can be increased by a factor of approximately 50x by introducing a low-resistance electrical shunt across the membrane. Remarkably, SECM images of membranes containing a single high-resistance (approximately 1 G Omega) pore can only be imaged by short-circuiting the membrane. Image contrast also becomes independent of membrane resistance when an electrical shunt is used, allowing for more quantitative comparisons of the features in ac impedance images of different membranes. PMID:16970331

  7. Mesoscopic turbulence and local order in Janus particles self-propelling under an ac electric field

    NASA Astrophysics Data System (ADS)

    Nishiguchi, Daiki; Sano, Masaki

    2015-11-01

    To elucidate mechanisms of mesoscopic turbulence exhibited by active particles, we experimentally study turbulent states of nonliving self-propelled particles. We realize an experimental system with dense suspensions of asymmetrical colloidal particles (Janus particles) self-propelling on a two-dimensional surface under an ac electric field. Velocity fields of the Janus particles in the crowded situation can be regarded as a sort of turbulence because it contains many vortices and their velocities change abruptly. Correlation functions of their velocity field reveal the coexistence of polar alignment and antiparallel alignment interactions, which is considered to trigger mesoscopic turbulence. Probability distributions of local order parameters for polar and nematic orders indicate the formation of local clusters with particles moving in the same direction. A broad peak in the energy spectrum of the velocity field appears at the spatial scales where the polar alignment and the cluster formation are observed. Energy is injected at the particle scale and conserved quantities such as energy could be cascading toward the larger clusters.

  8. Mesoscopic turbulence and local order in Janus particles self-propelling under an ac electric field.

    PubMed

    Nishiguchi, Daiki; Sano, Masaki

    2015-11-01

    To elucidate mechanisms of mesoscopic turbulence exhibited by active particles, we experimentally study turbulent states of nonliving self-propelled particles. We realize an experimental system with dense suspensions of asymmetrical colloidal particles (Janus particles) self-propelling on a two-dimensional surface under an ac electric field. Velocity fields of the Janus particles in the crowded situation can be regarded as a sort of turbulence because it contains many vortices and their velocities change abruptly. Correlation functions of their velocity field reveal the coexistence of polar alignment and antiparallel alignment interactions, which is considered to trigger mesoscopic turbulence. Probability distributions of local order parameters for polar and nematic orders indicate the formation of local clusters with particles moving in the same direction. A broad peak in the energy spectrum of the velocity field appears at the spatial scales where the polar alignment and the cluster formation are observed. Energy is injected at the particle scale and conserved quantities such as energy could be cascading toward the larger clusters. PMID:26651697

  9. Image-guided inversion of electrical resistivity data

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Revil, A.; Karaoulis, M.; Hale, D.; Doetsch, J.; Cuttler, S.

    2014-04-01

    Electrical resistivity tomography (ERT) is based on solving a Poisson equation for the electrical potential and is characterized by a good sensitivity only in the vicinity of the electrodes used to gather the data. To provide more information to ERT, we propose an image-guided or structure-constrained inversion of the apparent resistivity data. This approach uses structural information obtained directly from a guiding image. This guiding image can be drawn from a high resolution geophysical method based on the propagation equation (e.g. migrated seismic or ground penetrating radar images) or possibly from a geological cross-section of the subsurface based on some prior geological expertise. The locations and orientations of the structural features can be extracted by image processing methods to determine the structure tensor and the semblances of the guiding image at a set of pixel. Then, we introduce these structural constraints into the inversion of the apparent resistivity data by weighting the four-direction smoothing matrix to smooth along, but not across, structural features. This approach allows preserving both discontinuities and coherences in the inversion of the resistivity data. The image-guided inversion is also combined with an image-guided interpolation approach used to focus a smooth resistivity image. This yields structurally-appealing resistivity tomograms, while the whole process remains computationally efficient. Such a procedure generates a more realistic resistivity distribution (closer to the true ones), which can be, in turn, used quantitatively using appropriate petrophysical transforms, to obtain parameters of interest such as porosity and saturation. We check the validity of this approach using two synthetic case studies as well as two real datasets. For the field data, the image used to guide the inversion of the electrical resistivity data is a GPR section in the first case and a combination of seismic and structural information in the

  10. Electrical resistance sensors for soil water tension estimates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter, in a book to be published by the International Atomic Energy Agency/FAO Joint Division, provides detailed information on how to sense soil water tension with electrical resistance sensors. It provides insight into problems commonly encountered in using these sensors. Guidance on data r...

  11. Electrical Resistivity Changes in Saturated Rock under Stress.

    PubMed

    Brace, W F; Orange, A S

    1966-09-23

    Electrical resistivity of water-saturated crystalline rock such as granite, diabase, dunite, or quartzite changes by an order of magnitude prior to fracture of the rock in compression. The effect observed even under high confining pressure is due to formation of open cracks which first appear at one-third to two-thirds the fracture stress. PMID:17749731

  12. Using electrical resistance probes for moisture determination in switchgrass windrows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determining moisture levels in windrowed biomass is important for both forage producers and researchers. Energy crops such as switchgrass have been troublesome when using the standard methods set for electrical resistance meters. The objectives of this study were to i) develop the methodologies need...

  13. The midgut cadherin-like gene is not associated with resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella (L.).

    PubMed

    Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun

    2015-03-01

    The Gram-positive bacterium Bacillus thuringiensis (Bt) produces Cry toxins that have been used to control important agricultural pests. Evolution of resistance in target pests threatens the effectiveness of these toxins when used either in sprayed biopesticides or in Bt transgenic crops. Although alterations of the midgut cadherin-like receptor can lead to Bt Cry toxin resistance in many insects, whether the cadherin gene is involved in Cry1Ac resistance of Plutella xylostella (L.) remains unclear. Here, we present experimental evidence that resistance to Cry1Ac or Bt var. kurstaki (Btk) in P. xylostella is not due to alterations of the cadherin gene. The bona fide P. xylostella cadherin cDNA sequence was cloned and analyzed, and comparisons of the cadherin cDNA sequence among susceptible and resistant P. xylostella strains confirmed that Cry1Ac resistance was independent of mutations in this gene. In addition, real-time quantitative PCR (qPCR) indicated that cadherin transcript levels did not significantly differ among susceptible and resistant P. xylostella strains. RNA interference (RNAi)-mediated suppression of cadherin gene expression did not affect larval susceptibility to Cry1Ac toxin. Furthermore, genetic linkage assays using four cadherin gDNA allelic biomarkers confirmed that the cadherin gene is not linked to resistance against Cry1Ac in P. xylostella. Taken together, our findings demonstrate that Cry1Ac resistance of P. xylostella is independent of the cadherin gene. PMID:25595643

  14. Rolling resistance of electric-vehicle tires from track tests

    SciTech Connect

    Dustin, M.O.; Slavik, R.J.

    1982-06-01

    Two sets of low-rolling-resistance tires were track tested to obtain realistic tire characteristics for use in programming the Road Load Simulator, a special dynamometer facility located at the NASA Lewis Research Center. One set was specially made by Goodyear Tire and Rubber Company for DOE's ETV-1 electric vehicle, and the other was a set of standard commercial automotive tires. The tests were conducted over an ambient temperature range of 15/sup 0/ to 32/sup 0/C (59/sup 0/ to 89/sup 0/F) and with tire pressures of 207 and 276 kPa (30 and 40 psi). Both sets of tires had very low rolling resistance. The commercial tires, which were manufactured approximately 3 years after the electric vehicle tires, exhibited lower rolling resistance than the electric vehicle tires. This is a result of the continuing effort by the tire manufacturers to reduce rolling resistance in order to improve fuel economy. At a contained-air temperature of 38/sup 0/C (100/sup 0/F) and a pressure of 207 kPa (30 psi), the resistance of the electric vehicle tires was 0.0102 kilogram per kilogram of vehicle weight and the resistance of the commercial tires was 0.0088 kilogram per kilogram of vehicle weight. At a contained-air temperature of 38/sup 0/C (100/sup 0/F) and a pressure of 276 kPa (40 psi), the resistance of the electric vehicle tires was 0.009 kilogram per kilogram of vehicle weight and the resistance of the commercial tires was 0.0074 kilogram per kilogram of vehicle weight. The average time for the tires to reach an equilibrium temperature after startup was 20 minutes for the constant-speed tests regardless of vehicle speed and 27 minutes for the SAE J227a Schedule D driving cycle tests. The average change in rolling resistance from startup to final equilibrium value was 5% for all tests. There was very little heating of the tires from velocity-dependent losses. The predominant heating source for these tires was radiation heating from the Sun.

  15. Controller for controlling operation of at least one electrical load operating on an AC supply, and a method thereof

    DOEpatents

    Cantin, Luc; Deschenes, Mario; D'Amours, Mario

    1995-08-15

    A controller is provided for controlling operation of at least one electrical load operating on an AC supply having a typical frequency, the AC supply being provided via power transformers by an electrical power distribution grid. The controller is associated with the load and comprises an input interface for coupling the controller to the grid, a frequency detector for detecting the frequency of the AC supply and producing a signal indicative of the frequency, memory modules for storing preprogrammed commands, a frequency monitor for reading the signal indicative of the frequency and producing frequency data derived thereof, a selector for selecting at least one of the preprogrammed commands with respect to the frequency data, a control unit for producing at least one command signal representative of the selected preprogrammed commands, and an output interface including a device responsive to the command signal for controlling the load. Therefore, the load can be controlled by means of the controller depending on the frequency of the AC supply.

  16. Finding the asymmetric parasitic source and drain resistances from the a.c. conductances of a single MOS transistor

    NASA Astrophysics Data System (ADS)

    Raychaudhuri, A.; Deen, M. J.; King, M. I. H.; Kolk, J.

    1996-06-01

    Layout asymmetry, processing, or hot-carrier stressing can give rise to unequal source and drain parasitic resistances in a MOSFET. In these cases, it is necessary to extract these resistances separately without the aid of other transistors. In this paper, we present a simple method to extract the source and drain parasitic resistances separately. This method, unlike earlier ones that depend on the measurements of the d.c. resistances of several MOSFETs, is based on accurate formulations and measurements of the a.c. conductances with respect to the gate and drain terminals of a single transistor. This allows us to get reasonably accurate estimates of these resistances in a more straightforward manner. We also discuss the main error terms in detail.

  17. Frequency of alleles conferring resistance to the Bt toxins Cry1Ac and Cry2Ab in Australian populations of Helicoverpa armigera (Lepidoptera: Noctuidae).

    PubMed

    Mahon, R J; Olsen, K M; Downes, S; Addison, S

    2007-12-01

    Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is an important lepidopteran pest of cotton (Gossypium spp.) in Australia and the Old World. From 2002, F2 screens were used to examine the frequency of resistance alleles in Australian populations of H. armigera to Bacillus thuringiensis (Bt) CrylAc and Cry2Ab, the two insecticidal proteins present in the transgenic cotton Bollgard II. At that time, Ingard (expressing Cry1Ac) cotton had been grown in Australia for seven seasons, and Bollgard II was about to be commercially released. The principal objective of our study was to determine whether sustained exposure caused an elevated frequency of alleles conferring resistance to Cry1Ac in a species with a track record of evolving resistance to conventional insecticides. No major alleles conferring resistance to Cry1Ac were found. The frequency of resistance alleles for Cry1Ac was <0.0003, with a 95% credibility interval between 0 and 0.0009. In contrast, alleles conferring resistance to Cry2Ab were found at a frequency of 0.0033 (0.0017, 0.0055). The first isolation of this allele was found before the widespread deployment of Bollgard II. For both toxins the experiment-wise detection probability was 94.4%. Our results suggest that alleles conferring resistance to Cry1Ac are rare and that a relatively high baseline frequency of alleles conferring resistance to Cry2Ab existed before the introduction of Bt cotton containing this toxin. PMID:18232402

  18. Genetics and mapping of seedling resistance to Ug99 stem rust in Canadian wheat cultivars 'Peace' and 'AC Cadillac'.

    PubMed

    Hiebert, Colin W; Fetch, Tom G; Zegeye, Taye; Thomas, Julian B; Somers, Daryl J; Humphreys, D Gavin; McCallum, Brent D; Cloutier, Sylvie; Singh, Davinder; Knott, Doug R

    2011-01-01

    Stem rust (caused by Puccinia graminis Pers.:Pers. f. sp. tritici Eriks. & E. Henn.) has re-emerged as a threat to wheat production with the evolution of new pathogen races, namely TTKSK (Ug99) and its variants, in Africa. Deployment of resistant wheat cultivars has provided long-term control of stem rust. Identification of new resistance genes will contribute to future cultivars with broad resistance to stem rust. The related Canadian cultivars Peace and AC Cadillac show resistance to Ug99 at the seedling stage and in the field. The purpose of this study was to elucidate the inheritance and genetically map resistance to Ug99 in these two cultivars. Two populations were produced, an F(2:3) population from LMPG/AC Cadillac and a doubled haploid (DH) population from RL6071/Peace. Both populations showed segregation at the seedling stage for a single stem rust resistance (Sr) gene, temporarily named SrCad. SrCad was mapped to chromosome 6DS in both populations with microsatellite markers and a marker (FSD_RSA) that is tightly linked to the common bunt resistance gene Bt10. FSD_RSA was the closest marker to SrCad (≈ 1.6 cM). Evaluation of the RL6071/Peace DH population and a second DH population, AC Karma/87E03-S2B1, in Kenya showed that the combination of SrCad and leaf rust resistance gene Lr34 provided a high level of resistance to Ug99-type races in the field, whereas in the absence of Lr34 SrCad conferred moderate resistance. A survey confirmed that SrCad is the basis for all of the seedling resistance to Ug99 in Canadian wheat cultivars. While further study is needed to determine the relationship between SrCad and other Sr genes on chromosome 6DS, SrCad represents a valuable genetic resource for producing stem rust resistant wheat cultivars. PMID:20725713

  19. Introducing AC Inductive Reactance with a Power Tool

    ERIC Educational Resources Information Center

    Bryant, Wesley; Baker, Blane

    2016-01-01

    The concept of reactance in AC electrical circuits is often non-intuitive and difficult for students to grasp. In order to address this lack of conceptual understanding, classroom exercises compare the predicted resistance of a power tool, based on electrical specifications, to measured resistance. Once students discover that measured resistance…

  20. Recent Advances in Electrical Resistance Preheating of Aluminum Reduction Cells

    NASA Astrophysics Data System (ADS)

    Ali, Mohamed Mahmoud; Kvande, Halvor

    2016-06-01

    ABSTRACT There are two mainpreheating methods that are used nowadays for aluminum reduction cells. One is based on electrical resistance preheating with a thin bed of small coke and/or graphite particles between the anodes and the cathode carbon blocks. The other is flame preheating, where two or more gas or oil burners are used. Electrical resistance preheating is the oldest method, but is still frequently used by different aluminum producers. Many improvements have been made to this method by different companies over the last decade. In this paper, important points pertaining to the preparation and preheating of these cells, as well as measurements made during the preheating process and evaluation of the performance of the preheating, are illustrated. The preheating times of these cells were found to be between 36 h and 96 h for cell currents between 176 kA and 406 kA, while the resistance bed thickness was between 13 mm and 60 mm. The average cathode surface temperature at the end of the preheating was usually between 800°C and 950°C. The effect of the preheating methods on cell life is unclear and no quantifiable conclusions can be drawn. Some works carried out in the mathematical modeling area are also discussed. It is concluded that there is a need for more studies with real situations for preheated cells on the basis of actual measurements. The expected development in electrical resistance preheating of aluminum reduction cells is also summarized.

  1. Electrical Resistance Technique to Monitor SiC Composite Detection

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Morscher, Gregory; Xia, Zhenhai

    2008-01-01

    Ceramic matrix composites are suitable for high temperature structural applications such as turbine airfoils and hypersonic thermal protection systems. The employment of these materials in such applications is limited by the ability to process components reliable and to accurately monitor and predict damage evolution that leads to failure under stressed-oxidation conditions. Current nondestructive methods such as ultrasound, x-ray, and thermal imaging are limited in their ability to quantify small scale, transverse, in-plane, matrix cracks developed over long-time creep and fatigue conditions. Electrical resistance of SiC/SiC composites is one technique that shows special promise towards this end. Since both the matrix and the fibers are conductive, changes in matrix or fiber properties should relate to changes in electrical conductivity along the length of a specimen or part. The effect of matrix cracking on electrical resistivity for several composite systems will be presented and some initial measurements performed at elevated temperatures under stress-rupture conditions. The implications towards electrical resistance as a technique applied to composite processing, damage detection (health monitoring), and life-modeling will be discussed.

  2. Observer-based higher order sliding mode control of power factor in three-phase AC/DC converter for hybrid electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Liu, Jianxing; Laghrouche, Salah; Wack, Maxime

    2014-06-01

    In this paper, a full-bridge boost power converter topology is studied for power factor control, using output higher order sliding mode control. The AC/DC converters are used for charging the battery and super-capacitor in hybrid electric vehicles from the utility. The proposed control forces the input currents to track the desired values, which can control the output voltage while keeping the power factor close to one. Super-twisting sliding mode observer is employed to estimate the input currents and load resistance only from the measurement of output voltage. Lyapunov analysis shows the asymptotic convergence of the closed-loop system to zero. Multi-rate simulation illustrates the effectiveness and robustness of the proposed controller in the presence of measurement noise.

  3. Whole-genome analysis of an extensively drug-resistant clinical isolate of Acinetobacter baumannii AC12: insights into the mechanisms of resistance of an ST195 clone from Malaysia.

    PubMed

    Lean, Soo-Sum; Yeo, Chew Chieng; Suhaili, Zarizal; Thong, Kwai-Lin

    2015-02-01

    Acinetobacter baumannii has emerged as an important nosocomial pathogen owing to its increasing resistance to most, if not all, antibiotics in clinical use. We recently reported the occurrence of extensively drug-resistant (XDR) A. baumannii isolates in a Malaysian tertiary hospital. The genome of one of these XDR isolates (A. baumannii AC12) was completely sequenced and comparative genome analyses were performed to elucidate the genetic basis of its antimicrobial resistance. The A. baumannii AC12 genome consists of a 3.8 Mbp circular chromosome and an 8731 bp cryptic plasmid, pAC12. It belongs to the ST195 lineage and is most closely related to A. baumannii BJAB0715 as well as other strains of the international clone III (IC-III) group. Two antibiotic resistance islands (RIs), designated AC12-RI1 and AC12-RI2, were found in the AC12 chromosome along with a 7 kb Tn1548::armA island conferring resistance to aminoglycosides and macrolides. The 22.8 kb AC12-RI1 interrupts the comM gene and harbours the carbapenem resistance gene blaOXA-23 flanked by ISAba1 within a Tn2006-like structure. AC12-RI1 also harbours resistance determinants for aminoglycosides, tetracyclines and sulphonamides. The 10.3 kb IS26-flanked AC12-RI2 is a derivative of AbGRI2-1, containing aphA1b and blaTEM genes (conferring aminoglycoside and β-lactam resistance, respectively). The presence of numerous genes mediating resistance to various antibiotics in novel RI structures as well as other genes encoding drug transporters and efflux pumps in A. baumannii AC12 most likely contributed to its XDR characteristics. PMID:25481460

  4. Electrical resistivity response due to elastic-plastic deformations

    SciTech Connect

    Stout, R.B.

    1987-01-01

    The electrical resistivity of many materials is sensitive to changes in the electronic band configurations surrounding the atoms, changes in the electron-phonon interaction cross-sections, and changes in the density of intrinsic defect structures. These changes are most directly dependent on interatomic measures of relative deformation. For this reason, a model for resistivity response is developed in terms of interatomic measures of relative deformation. The relative deformation consists of two terms, a continuous function to describe the recoverable displacement between two atoms in the atomic lattice structure and a functional to describe the nonrecoverable displacement between two atoms as a result of interatomic discontinuities from dislocation kinetics. This model for resistivity extends the classical piezoresistance representation and relates electric resistance change directly to physical mechanisms. An analysis for the resistivity change of a thin foil ideally embedded in a material that undergoes elastic-plastic deformation is presented. For the case of elastic deformations, stress information in the material surrounding the thin foil is inferred for the cases of pure strain coupling boundary conditions, pure stress coupling boundary conditions, and a combination of stress-strain coupling boundary conditions. 42 refs., 4 figs.

  5. Electrical Resistivity Monitoring of Voids: Results of Dynamic Modeling Experiments

    NASA Astrophysics Data System (ADS)

    Lane, J. W.; Day-Lewis, F. D.; Singha, K.

    2006-05-01

    Remote, non-invasive detection of voids is a challenging problem for environmental and engineering investigations in karst terrain. Many geophysical methods including gravity, electrical, electromagnetic, magnetic, and seismic have potential to detect voids in the subsurface; lithologic heterogeneity and method- specific sources of noise, however, can mask the geophysical signatures of voids. New developments in automated, autonomous geophysical monitoring technology now allow for void detection using differential geophysics. We propose automated collection of electrical resistivity measurements over time. This dynamic approach exploits changes in subsurface electrical properties related to void growth or water-table fluctuation in order to detect voids that would be difficult or impossible to detect using static imaging approaches. We use a series of synthetic modeling experiments to demonstrate the potential of difference electrical resistivity tomography for finding (1) voids that develop vertically upward under a survey line (e.g., an incipient sinkhole); (2) voids that develop horizontally toward a survey line (e.g., a tunnel); and (3) voids that are influenced by changing hydrologic conditions (e.g., void saturation and draining). Synthetic datasets are simulated with a 3D finite-element model, but the inversion assumes a 2D forward model to mimic conventional practice. The results of the synthetic modeling experiments provide insights useful for planning and implementing field-scale monitoring experiments using electrical methods.

  6. Electrical resistivity characterization of anisotropy in the Biscayne Aquifer.

    PubMed

    Yeboah-Forson, Albert; Whitman, Dean

    2014-01-01

    Electrical anisotropy occurs when electric current flow varies with azimuth. In porous media, this may correspond to anisotropy in the hydraulic conductivity resulting from sedimentary fabric, fractures, or dissolution. In this study, a 28-electrode resistivity imaging system was used to investigate electrical anisotropy at 13 sites in the Biscayne Aquifer of SE Florida using the rotated square array method. The measured coefficient of electrical anisotropy generally ranged from 1.01 to 1.12 with values as high as 1.36 found at one site. The observed electrical anisotropy was used to estimate hydraulic anisotropy (ratio of maximum to minimum hydraulic conductivity) which ranged from 1.18 to 2.83. The largest values generally were located on the Atlantic Coastal Ridge while the lowest values were in low elevation areas on the margin of the Everglades to the west. The higher values of anisotropy found on the ridge may be due to increased dissolution rates of the oolitic facies of the Miami formation limestone compared with the bryozoan facies to the west. The predominate trend of minimum resistivity and maximum hydraulic conductivity was E-W/SE-NW beneath the ridge and E-W/SW-NE farther west. The anisotropy directions are similar to the predevelopment groundwater flow direction as indicated in published studies. This suggests that the observed anisotropy is related to the paleo-groundwater flow in the Biscayne Aquifer. PMID:24033332

  7. Effect of electric field configuration on streamer and partial discharge phenomena in a hydrocarbon insulating liquid under AC stress

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Liu, Q.; Wang, Z. D.

    2016-05-01

    This paper concerns pre-breakdown phenomena, including streamer characteristics from a fundamental perspective and partial discharge (PD) measurements from an industrial perspective, in a hydrocarbon insulating liquid. The aim was to investigate the possible changes of the liquid’s streamer and PD characteristics and their correlations when the uniformity of the AC electric field varies. In the experiments, a plane-to-plane electrode system incorporating a needle protrusion was used in addition to a needle-to-plane electrode system. When the applied electric field became more uniform, fewer radial branches occurred and streamer propagation towards the ground electrode was enhanced. The transition from streamer propagation dominated breakdown in divergent fields to streamer initiation dominated breakdown in uniform fields was evidenced. Relationships between streamer and PD characteristics were established, which were found to be electric field dependent. PD of the same apparent charge would indicate longer streamers if the electric field is more uniform.

  8. Development of a Landslide Monitoring System using Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Hen-Jones, R. M.; Hughes, P. N.; Glendinning, S.; Gunn, D.; Chambers, J.; Stirling, R.

    2015-12-01

    Current assessments of slope stability rely on the use of point sensors, the results of which are often difficult to interpret, have relatively high associated installation and maintenance costs, and do not provide large-area coverage. A new system is currently under development, based on the use of integrated geophysical - geotechnical sensors to monitor ground water conditions via electrical resistivity tomography. This study presents the results of an in-situ electrical resistivity tomography survey, gathered over a two year investigation period at a full-scale clay test embankment in Northumberland, UK. The 3D resistivity array comprised 288 electrodes, at 0.7m grid spacing, covering an area of approximately 90 m2. The first year of investigation involved baseline data collection, followed by a second year which saw a series of deliberate interventions targeted at weakening the slope, to determine whether corresponding geotechnical property changes would be reflected in resistivity images derived from ERT. These interventions included the manual extension of four tension cracks already present in the slope, and the installation of a sprinkler system, eight months later. Laboratory methods were employed to derive a system of equations for relating resistivity to geotechnical parameters more directly relevant to slope stability, including moisture content, suction and shear strength. These equations were then applied to resistivity data gathered over the baseline and intervention periods, yielding geotechnical images of the subsurface which compared well with in-situ geotechnical point sensors. During the intervention period, no slope movement was recorded, however, tensiometers at 0.5 m and 1.0 m depths showed elevated pore pressures, with positive pressures being recorded at depths less than 0.5 m. Resistivity images were successful in capturing the extension of the tension cracks, and in identifying the development of a potential shear failure plane as water

  9. Electrical resistivity of K-based liquid binaries

    NASA Astrophysics Data System (ADS)

    Vora, A. M.

    2006-08-01

    The study of the electrical resistivity of alkali K-based liquid binaries, viz, K 1-x Na x, K 1-x Rb x, and K 1-x Cs x have been made by well recognized model potential. The most recent local field correction functions due to Farid et al. (F) and Sarkar et al. (S) are used for the first time in the study of electrical resistivity of liquid binary mixtures and found suitable for such study. The results due to the inclusion of Sarkar et al.’s local field correction function are found superior to those obtained due to Farid et al.’s local field correction function. The present results compare well the experimental data.

  10. Thermal conductivity and electrical resistivity of porous material

    NASA Technical Reports Server (NTRS)

    Koh, J. C. Y.; Fortini, A.

    1971-01-01

    Thermal conductivity and electrical resistivity of porous materials, including 304L stainless steel Rigimesh, 304L stainless steel sintered spherical powders, and OFHC sintered spherical powders at different porosities and temperatures are reported and correlated. It was found that the thermal conductivity and electrical resistivity can be related to the solid material properties and the porosity of the porous matrix regardless of the matrix structure. It was also found that the Wiedermann-Franz-Lorenz relationship is valid for the porous materials under consideration. For high conductivity materials, the Lorenz constant and the lattice component of conductivity depend on the material and are independent of the porosity. For low conductivity, the lattice component depends on the porosity as well.

  11. Electrical resistivity of V-Cr-Ti alloys

    SciTech Connect

    Zinkle, S.J.; Gubbi, A.N.; Eatherly, W.S.

    1997-04-01

    Room temperature electrical resistivity measurements have been performed on vanadium alloys containing 3-6%Cr and 3-6%Ti in order to evaluate the microstructural stability of these alloys. A nonlinear dependence on Cr and Ti concentration was observed, which suggests that either short range ordering or solute precipitation (perhaps in concert with interstitial solute clustering) has occurred in V-6Cr-6Ti.

  12. Negative differential electrical resistance of a rotational organic nanomotor

    PubMed Central

    Sadeghi, Hatef; Sangtarash, Sara; Al-Galiby, Qusiy; Sparks, Rachel

    2015-01-01

    Summary A robust, nanoelectromechanical switch is proposed based upon an asymmetric pendant moiety anchored to an organic backbone between two C60 fullerenes, which in turn are connected to gold electrodes. Ab initio density functional calculations are used to demonstrate that an electric field induces rotation of the pendant group, leading to a nonlinear current–voltage relation. The nonlinearity is strong enough to lead to negative differential resistance at modest source–drain voltages. PMID:26734524

  13. Uncertainty analysis for common Seebeck and electrical resistivity measurement systems.

    PubMed

    Mackey, Jon; Dynys, Frederick; Sehirlioglu, Alp

    2014-08-01

    This work establishes the level of uncertainty for electrical measurements commonly made on thermoelectric samples. The analysis targets measurement systems based on the four probe method. Sources of uncertainty for both electrical resistivity and Seebeck coefficient were identified and evaluated. Included are reasonable estimates on the magnitude of each source, and cumulative propagation of error. Uncertainty for the Seebeck coefficient includes the cold-finger effect which has been quantified with thermal finite element analysis. The cold-finger effect, which is a result of parasitic heat transfer down the thermocouple probes, leads to an asymmetric over-estimation of the Seebeck coefficient. A silicon germanium thermoelectric sample has been characterized to provide an understanding of the total measurement uncertainty. The electrical resistivity was determined to contain uncertainty of ±7.0% across any measurement temperature. The Seebeck coefficient of the system is +1.0%/-13.1% at high temperature and ±1.0% near room temperature. The power factor has a combined uncertainty of +7.3%/-27.0% at high temperature and ±7.5% near room temperature. These ranges are calculated to be typical values for a general four probe Seebeck and resistivity measurement configuration. PMID:25173324

  14. Complex electrical resistance tomography of a subsurface PCE plume

    SciTech Connect

    Ramirez, A.; Daily, W,; LeBrecque, D.

    1996-01-01

    A controlled experiment was conducted to evaluate the performance of complex electrical resistivity tomography (CERT) for detecting and delineating free product dense non-aqueous phase liquid (DNAPL) in the subsurface. One hundred ninety liters of PCE were released at a rate of 2 liters per hour from a point 0.5 m below ground surface. The spill was conducted within a double walled tank where saturated layers of sand, bentonite and a sand/bentonite mixture were installed. Complex electrical resistance measurements were performed. Data were taken before the release, several times during, and then after the PCE was released. Magnitude and phase were measured at 1 and 64 Hz. Data from before the release were compared with those during the release for the purpose of imaging the changes in conductivity resulting from the plume. Conductivity difference tomographs showed a decrease in electrical conductivity as the DNAPL penetrated the soil. A pancake-shaped anomaly developed on the top of a bentonite layer at 2 m depth. The anomaly grew in magnitude and extent during the release and borehole television surveys data confirmed the anomaly to be free-product PCE whose downward migration was stopped by the low permeability clay. The tomographs clearly delineated the plume as a resistive anomaly.

  15. Detecting Damage in Ceramic Matrix Composites Using Electrical Resistance

    NASA Technical Reports Server (NTRS)

    Smith, Craig E.; Gyekenyesi, Andrew

    2011-01-01

    The majority of damage in SiC/SiC ceramic matrix composites subjected to monotonic tensile loads is in the form of distributed matrix cracks. These cracks initiate near stress concentrations, such as 90 deg fiber tows or large matrix pores and continue to accumulate with additional stress until matrix crack saturation is achieved. Such damage is difficult to detect with conventional nondestructive evaluation techniques (immersion ultrasonics, x-ray, etc.). Monitoring a specimen.s electrical resistance change provides an indirect approach for monitoring matrix crack density. Sylramic-iBN fiber- reinforced SiC composites with a melt infiltrated (MI) matrix were tensile tested at room temperature. Results showed an increase in resistance of more than 500% prior to fracture, which can be detected either in situ or post-damage. A relationship between resistance change and matrix crack density was also determined.

  16. Detecting Cracks in Ceramic Matrix Composites by Electrical Resistance

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Gyekenyesi, Andrew

    2011-01-01

    The majority of damage in SiC/SiC ceramic matrix composites subjected to monotonic tensile loads is in the form of distributed matrix cracks. These cracks initiate near stress concentrations, such as 90o fiber tows or large matrix pores and continue to accumulate with additional stress until matrix crack saturation is achieved. Such damage is difficult to detect with conventional nondestructive evaluation techniques (immersion ultrasonics, x-ray, etc.). Monitoring a specimen.s electrical resistance change provides an indirect approach for monitoring matrix crack density. Sylramic-iBN fiber- reinforced SiC composites with a melt infiltrated (MI) matrix were tensile tested at room temperature. Results showed an increase in resistance of more than 500% prior to fracture, which can be detected either in situ or post-damage. A relationship between resistance change and matrix crack density was also determined.

  17. Electrical resistivity tomography investigations on a paleoseismological trenching study

    NASA Astrophysics Data System (ADS)

    Berge, Meriç Aziz

    2014-10-01

    Two-dimensional electrical resistivity tomography (ERT) investigation was performed in a paleoseismological trenching study. Data acquisition strategies such as the selection of electrode configuration and electrode intervals of ERT application were investigated in this paper. The ERT results showed that the Wenner and Wenner-Schlumberger arrays yielded similar results for subsurface characteristics whereas the DD array provided slightly different results. The combined usage of these arrays produced satisfactory images of the subsurface resistivity distribution. In addition, the electrode spacing tests revealed that a suitable interpretation of subsurface geology can be obtained from a 5 m electrode interval. However, a suitable trenching location defined by successful 2D resistivity models was obtained for 1 m electrode spacing. Therefore, the comparison of the trench and ERT results was also possible. The results of trenching and ERT studies substantially support each other.

  18. Rolling resistance of electric vehicle tires from track tests

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.; Slavik, R. J.

    1982-01-01

    Special low-rolling-resistance tires were made for DOE's ETV-1 electric vehicle. Tests were conducted on these tires and on a set of standard commercial automotive tires to determine the rolling resistance as a function of time during both constant-speed tires and SAE J227a driving cycle tests. The tests were conducted on a test track at ambient temperatures that ranged from 15 to 32 C (59 to 89 F) and with tire pressures of 207 to 276 kPa (30 to 40 psi). At a contained-air temperature of 38 C (100 F) and a pressure of 207 kPa (30 psi) the rolling resistances of the electric vehicle tires and the standard commercial tires, respectively, were 0.0102 and 0.0088 kilogram per kilogram of vehicle weight. At a contained-air temperature of 38 C (100 F) and a pressure of 276 kPa (40 psi) the rolling resistances were 0.009 and 0.0074 kilogram per kilogram of vehicle weight, respectively.

  19. Causal Analysis of the Inadvertent Contact with an Uncontrolled Electrical Hazardous Energy Source (120 Volts AC)

    SciTech Connect

    David E. James; Dennis E. Raunig; Sean S. Cunningham

    2014-10-01

    On September 25, 2013, a Health Physics Technician (HPT) was performing preparations to support a pneumatic transfer from the HFEF Decon Cell to the Room 130 Glovebox in HFEF, per HFEF OI 3165 section 3.5, Field Preparations. This activity involves an HPT setting up and climbing a portable ladder to remove the 14-C meter probe from above ball valve HBV-7. The HPT source checks the meter and probe and then replaces the probe above HBV-7, which is located above Hood ID# 130 HP. At approximately 13:20, while reaching past the HBV-7 valve position indicator switches in an attempt to place the 14-C meter probe in the desired location, the HPT’s left forearm came in contact with one of the three sets of exposed terminals on the valve position indication switches for HBV 7. This resulted in the HPT receiving an electrical shock from a 120 Volt AC source. Upon moving the arm, following the electrical shock, the HPT noticed two exposed electrical connections on a switch. The HPT then notified the HFEF HPT Supervisor, who in turn notified the MFC Radiological Controls Manager and HFEF Operations Manager of the situation. Work was stopped in the area and the hazard was roped off and posted to prevent access to the hazard. The HPT was escorted by the HPT Supervisor to the MFC Dispensary and then preceded to CFA medical for further evaluation. The individual was evaluated and released without any medical restrictions. Causal Factor (Root Cause) A3B3C01/A5B2C08: - Knowledge based error/Attention was given to wrong issues - Written Communication content LTA, Incomplete/situation not covered The Causal Factor (root cause) was attention being given to the wrong issues during the creation, reviews, verifications, and actual performance of HFEF OI-3165, which covers the need to perform the weekly source check and ensure placement of the probe prior to performing a “rabbit” transfer. This resulted in the hazard not being identified and mitigated in the procedure. Work activities

  20. Efficacy of Genetically Modified Bt Toxins Alone and in Combinations Against Pink Bollworm Resistant to Cry1Ac and Cry2Ab

    PubMed Central

    Tabashnik, Bruce E.; Fabrick, Jeffrey A.; Unnithan, Gopalan C.; Yelich, Alex J.; Masson, Luke; Zhang, Jie; Bravo, Alejandra; Soberón, Mario

    2013-01-01

    Evolution of resistance in pests threatens the long-term efficacy of insecticidal proteins from Bacillus thuringiensis (Bt) used in sprays and transgenic crops. Previous work showed that genetically modified Bt toxins Cry1AbMod and Cry1AcMod effectively countered resistance to native Bt toxins Cry1Ab and Cry1Ac in some pests, including pink bollworm (Pectinophora gossypiella). Here we report that Cry1AbMod and Cry1AcMod were also effective against a laboratory-selected strain of pink bollworm resistant to Cry2Ab as well as to Cry1Ab and Cry1Ac. Resistance ratios based on the concentration of toxin killing 50% of larvae for the resistant strain relative to a susceptible strain were 210 for Cry2Ab, 270 for Cry1Ab, and 310 for Cry1Ac, but only 1.6 for Cry1AbMod and 2.1 for Cry1AcMod. To evaluate the interactions among toxins, we tested combinations of Cry1AbMod, Cry1Ac, and Cry2Ab. For both the resistant and susceptible strains, the net results across all concentrations tested showed slight but significant synergism between Cry1AbMod and Cry2Ab, whereas the other combinations of toxins did not show consistent synergism or antagonism. The results suggest that the modified toxins might be useful for controlling populations of pink bollworm resistant to Cry1Ac, Cry2Ab, or both. PMID:24244692

  1. Disruption of a Cadherin Gene Associated with Resistance to Cry1Ac δ-Endotoxin of Bacillus thuringiensis in Helicoverpa armigera

    PubMed Central

    Xu, Xinjun; Yu, Liangying; Wu, Yidong

    2005-01-01

    A laboratory strain (GY) of Helicoverpa armigera (Hübner) was established from surviving larvae collected from transgenic cotton expressing a Bacillus thuringiensis var. kurstaki insecticidal protein (Bt cotton) in Gaoyang County, Hebei Province, People's Republic of China, in 2001. The GYBT strain was derived from the GY strain through 28 generations of selection with activated Cry1Ac delivered by diet surface contamination. When resistance to Cry1Ac in the GYBT strain increased to 564-fold after selection, we detected high levels of cross-resistance to Cry1Aa (103-fold) and Cry1Ab (>46-fold) in the GYBT strain with reference to those in the GY strain. The GYBT strain had a low level of cross-resistance to B. thuringiensis var. kurstaki formulation (Btk) (5-fold) and no cross-resistance to Cry2Aa (1.4-fold). Genetic analysis showed that Cry1Ac resistance in the GYBT strain was controlled by one autosomal and incompletely recessive gene. The cross-resistance pattern and inheritance mode suggest that the Cry1Ac resistance in the GYBT strain of H. armigera belongs to “mode 1,” the most common type of lepidopteran resistance to B. thuringiensis toxins. A cadherin gene was cloned and sequenced from both the GY and GYBT strains. Disruption of the cadherin gene by a premature stop codon was associated with a high level of Cry1Ac resistance in H. armigera. Tight linkage between Cry1Ac resistance and the cadherin locus was observed in a backcross analysis. Together with previous evidence found with Heliothis virescens and Pectinophora gossypiella, our results confirmed that the cadherin gene is a preferred target for developing DNA-based monitoring of B. thuringiensis resistance in field populations of lepidopteran pests. PMID:15691952

  2. Dielectric properties and study of AC electrical conduction mechanisms by non-overlapping small polaron tunneling model in Bis(4-acetylanilinium) tetrachlorocuprate(II) compound

    NASA Astrophysics Data System (ADS)

    Abkari, A.; Chaabane, I.; Guidara, K.

    2016-09-01

    In the present work, the synthesis and characterization of the Bis(4-acetylanilinium) tetrachlorocuprate(II) compound are presented. The structure of this compound is analyzed by X-ray diffraction which confirms the formation of single phase and is in good agreement the literature. Indeed, the Thermo gravimetric Analysis (TGA) shows that the decomposition of the compound is observed in the range of 420-520 K. However, the differential thermal analysis (DTA) indicates the presence of a phase transition at T=363 k. Furthermore, the dielectric properties and AC conductivity were studied over a temperature range (338-413 K) and frequency range (200 Hz-5 MHz) using complex impedance spectroscopy. Dielectric measurements confirmed such thermal analyses by exhibiting the presence of an anomaly in the temperature range of 358-373 K. The complex impedance plots are analyzed by an electrical equivalent circuit consisting of resistance, constant phase element (CPE) and capacitance. The activation energy values of two distinct regions are obtained from log σT vs 1000/T plot and are found to be E=1.27 eV (T<363 K) and E=1.09 eV (363 Kac conductivity, σac, has been analyzed by Jonscher's universal power law σ(ω)=σdc+Aωs. The value of s is to be temperature-dependent, which has a tendency to increase with temperature and the non-overlapping small polaron tunneling (NSPT) model is the most applicable conduction mechanism in the title compound. Complex impedance spectra of [C8H10NO]2CuCl4 at different temperatures.

  3. Electrical resistivity tomography to delineate greenhouse soil variability

    NASA Astrophysics Data System (ADS)

    Rossi, R.; Amato, M.; Bitella, G.; Bochicchio, R.

    2013-03-01

    Appropriate management of soil spatial variability is an important tool for optimizing farming inputs, with the result of yield increase and reduction of the environmental impact in field crops. Under greenhouses, several factors such as non-uniform irrigation and localized soil compaction can severely affect yield and quality. Additionally, if soil spatial variability is not taken into account, yield deficiencies are often compensated by extra-volumes of crop inputs; as a result, over-irrigation and overfertilization in some parts of the field may occur. Technology for spatially sound management of greenhouse crops is therefore needed to increase yield and quality and to address sustainability. In this experiment, 2D-electrical resistivity tomography was used as an exploratory tool to characterize greenhouse soil variability and its relations to wild rocket yield. Soil resistivity well matched biomass variation (R2=0.70), and was linked to differences in soil bulk density (R2=0.90), and clay content (R2=0.77). Electrical resistivity tomography shows a great potential in horticulture where there is a growing demand of sustainability coupled with the necessity of stabilizing yield and product quality.

  4. Connection equation and shaly-sand correction for electrical resistivity

    USGS Publications Warehouse

    Lee, Myung W.

    2011-01-01

    Estimating the amount of conductive and nonconductive constituents in the pore space of sediments by using electrical resistivity logs generally loses accuracy where clays are present in the reservoir. Many different methods and clay models have been proposed to account for the conductivity of clay (termed the shaly-sand correction). In this study, the connectivity equation (CE), which is a new approach to model non-Archie rocks, is used to correct for the clay effect and is compared with results using the Waxman and Smits method. The CE presented here requires no parameters other than an adjustable constant, which can be derived from the resistivity of water-saturated sediments. The new approach was applied to estimate water saturation of laboratory data and to estimate gas hydrate saturations at the Mount Elbert well on the Alaska North Slope. Although not as accurate as the Waxman and Smits method to estimate water saturations for the laboratory measurements, gas hydrate saturations estimated at the Mount Elbert well using the proposed CE are comparable to estimates from the Waxman and Smits method. Considering its simplicity, it has high potential to be used to account for the clay effect on electrical resistivity measurement in other systems.

  5. Study on AC-DC Electrical Conductivities in Warm Dense Matter Generated by Pulsed-power Discharge with Isochoric Vessel

    NASA Astrophysics Data System (ADS)

    Sasaki, Toru; Ohuchi, Takumi; Takahashi, Takuya; Kawaguchi, Yoshinari; Saito, Hirotaka; Miki, Yasutoshi; Takahashi, Kazumasa; Kikuchi, Takashi; Aso, Tsukasa; Harada, Nob.

    2016-03-01

    To observe AC and DC electrical conductivity in warm dense matter (WDM), we have demonstrated to apply the spectroscopic ellipsometry for a pulsed-power discharge with isochoric vessel. At 10 μs from the beginning of discharge, the generated parameters by using pulsed-power discharge with isochoric vessel are 0.1 ρ s (ρ s: solid density) of density and 4000 K of temperature, respectively. The DC electrical conductivity for above parameters is estimated to be 104 S/m. In order to measure the AC electrical conductivity, we have developed a four-detector spectroscopic ellipsometer with a multichannel spectrometer. The multichannel spectrometer, in which consists of a 16-channel photodiode array, a two-stages voltage adder, and a flat diffraction grating, has 10 MHz of the frequency response with covered visible spectrum. For applying the four-detector spectroscopic ellipsometer, we observe the each observation signal evolves the polarized behavior compared to the ratio as I 1/I 2.

  6. Road load simulator tests of the Gould phase 1 functional model silicon controlled rectifier ac motor controller for electric vehicles

    NASA Technical Reports Server (NTRS)

    Gourash, F.

    1984-01-01

    The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.

  7. Road load simulator tests of the Gould phase 1 functional model silicon controlled rectifier ac motor controller for electric vehicles

    NASA Astrophysics Data System (ADS)

    Gourash, F.

    1984-02-01

    The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.

  8. Resistance of Trichoplusia ni to Bacillus thuringiensis toxin Cry1Ac is independent of alteration of the cadherin-like receptor for Cry toxins.

    PubMed

    Zhang, Xin; Tiewsiri, Kasorn; Kain, Wendy; Huang, Lihua; Wang, Ping

    2012-01-01

    Alteration of binding sites for Bacillus thuringiensis (Bt) toxins in insect midgut is the major mechanism of high-level resistance to Bt toxins in insects. The midgut cadherin is known to be a major binding protein for Bt Cry1A toxins and linkage of Bt-resistance to cadherin gene mutations has been identified in lepidopterans. The resistance to Bt toxin Cry1Ac evolved in greenhouse populations of Trichoplusia ni has been identified to be associated with the down-regulation of an aminopeptidase N (APN1) gene by a trans-regulatory mechanism and the resistance gene has been mapped to the locus of an ABC transporter (ABCC2) gene. However, whether cadherin is also involved with Cry1Ac-resistance in T. ni requires to be understood. Here we report that the Cry1Ac-resistance in T. ni is independent of alteration of the cadherin. The T. ni cadherin cDNA was cloned and the cadherin sequence showed characteristic features known to cadherins from Lepidoptera. Various T. ni cadherin gene alleles were identified and genetic linkage analysis of the cadherin alleles with Cry1Ac-resistance showed no association of the cadherin gene with the Cry1Ac-resistance in T. ni. Analysis of cadherin transcripts showed no quantitative difference between the susceptible and Cry1Ac-resistant T. ni larvae. Quantitative proteomic analysis of midgut BBMV proteins by iTRAQ-2D-LC-MS/MS determined that there was no quantitative difference in cadherin content between the susceptible and the resistant larvae and the cadherin only accounted for 0.0014% (mol%) of the midgut BBMV proteins, which is 1/300 of APN1 in molar ratio. The cadherin from both the susceptible and resistant larvae showed as a 200-kDa Cry1Ac-binding protein by toxin overlay binding analysis, and nano-LC-MS/MS analysis of the 200-kDa cadherin determined that there is no quantitative difference between the susceptible and resistant larvae. Results from this study indicate that the Cry1Ac-resistance in T. ni is independent of cadherin

  9. Resistance of Trichoplusia ni to Bacillus thuringiensis Toxin Cry1Ac Is Independent of Alteration of the Cadherin-Like Receptor for Cry Toxins

    PubMed Central

    Zhang, Xin; Tiewsiri, Kasorn; Kain, Wendy; Huang, Lihua; Wang, Ping

    2012-01-01

    Alteration of binding sites for Bacillus thuringiensis (Bt) toxins in insect midgut is the major mechanism of high-level resistance to Bt toxins in insects. The midgut cadherin is known to be a major binding protein for Bt Cry1A toxins and linkage of Bt-resistance to cadherin gene mutations has been identified in lepidopterans. The resistance to Bt toxin Cry1Ac evolved in greenhouse populations of Trichoplusia ni has been identified to be associated with the down-regulation of an aminopeptidase N (APN1) gene by a trans-regulatory mechanism and the resistance gene has been mapped to the locus of an ABC transporter (ABCC2) gene. However, whether cadherin is also involved with Cry1Ac-resistance in T. ni requires to be understood. Here we report that the Cry1Ac-resistance in T. ni is independent of alteration of the cadherin. The T. ni cadherin cDNA was cloned and the cadherin sequence showed characteristic features known to cadherins from Lepidoptera. Various T. ni cadherin gene alleles were identified and genetic linkage analysis of the cadherin alleles with Cry1Ac-resistance showed no association of the cadherin gene with the Cry1Ac-resistance in T. ni. Analysis of cadherin transcripts showed no quantitative difference between the susceptible and Cry1Ac-resistant T. ni larvae. Quantitative proteomic analysis of midgut BBMV proteins by iTRAQ-2D-LC-MS/MS determined that there was no quantitative difference in cadherin content between the susceptible and the resistant larvae and the cadherin only accounted for 0.0014% (mol%) of the midgut BBMV proteins, which is 1/300 of APN1 in molar ratio. The cadherin from both the susceptible and resistant larvae showed as a 200-kDa Cry1Ac-binding protein by toxin overlay binding analysis, and nano-LC-MS/MS analysis of the 200-kDa cadherin determined that there is no quantitative difference between the susceptible and resistant larvae. Results from this study indicate that the Cry1Ac-resistance in T. ni is independent of cadherin

  10. Reservoir characterization combining elastic velocities and electrical resistivity measurements

    NASA Astrophysics Data System (ADS)

    Gomez, Carmen Teresa

    2009-12-01

    The elastic and electric parameters of rocks that can be obtained from seismic and electromagnetic data depend on porosity, texture, mineralogy, and fluid. However, seismic data seldom allow us to accurately quantify hydrocarbon saturation. On the other hand, in the case of common reservoir rocks (i.e., sandstones and carbonates), resistivity strongly depends on porosity and saturation. Therefore, the recent progress of controlled-source-electromagnetic (CSEM) methods opens new possibilities in identifying and quantifying potential hydrocarbon reservoirs, although its resolution is much lower than that of seismic data. Hence, a combination of seismic and CSEM data arguably offers a powerful means of finally resolving the problem of remote sensing of saturation. The question is how to combine the two data sources (elastic data and electrical resistivity data) to better characterize a reservoir. To address this question, we introduce the concept of P-wave impedance and resistivity templates as a tool to estimate porosity and saturation from well log data. Adequate elastic and resistivity models, according to the lithology, cementation, fluid properties must be chosen to construct these templates. These templates can be upscaled to seismic and CSEM scale using Backus average for seismic data, and total resistance for CSEM data. We also measured velocity and resistivity in Fontainebleau samples in the laboratory. Fontainebleau formation corresponds to clean sandstones (i.e., low clay content). We derived an empirical relation between these P-wave velocity and resistivity at 40MPa effective pressure, which is around 3 km depth at normal pressure gradients. We were not able to test if this relation could be used at well or field data scales (once appropriate upscaling was applied), since we did not have a field dataset over a stiff sandstone reservoir. A relationship between velocity and resistivity laboratory data was also found for a set of carbonates. This expression

  11. Using electrical resistance probes for moisture determination in switchgrass windrows

    SciTech Connect

    Chesser Jr., G. D.; Davis, J. D.; Purswell, J. L.; Lemus, R.

    2011-08-01

    Determining moisture levels in windrowed biomass is important for both forage producers and researchers. Energy crops such as switchgrass have been troublesome when using the standard methods set for electrical resistance meters. The objectives of this study were to i) develop the methodologies needed to measure MC in switchgrass using electrical resistance meters, ii) to determine the effects of pressure and probe orientation on MC measurement and iii) to generate MC calibration equations for electrical resistance meters using switchgrass in the senescence growth stage. Two meters (Meter 1, Farmex HT-PRO; Meter 2, Delmhorst F-2000) were selected based on commercial availability. A forage compression apparatus was designed and constructed with on-farm materials and methods to provide a simple system of applying pressure achievable by any forage producer or researcher in the field. Two trials were performed to test four levels of moisture contents (10, 20, 30, and 40%), five pressures (0, 1.68, 3.11, 4.55, 6.22 kN/m 2; 0, 35, 65, 95, 130 lb/ft 2), and two probe orientations (axial and transverse) in a 4x5x2 factorial design. Results indicated that meter accuracy increased as pressure increased. Regression models accounted for 91% and 81% of the variation for Meter 1 and Meter 2 at a pressure of 4.55 kN/m 2 (95 lb/ft 2) and a transverse probe orientation. Calibration equations were developed for both meters to improve moisture measurement accuracy for farmers and researchers in the field.

  12. A fully automated precise electrical resistance measurement system

    SciTech Connect

    Marhas, M.K.; Balakrishnan, K.; Ganesan, V.; Srinivasan, R.

    1996-08-01

    A fully automated precise electrical resistance measurement system for more than one sample has been constructed. Conventional four-probe measurements with van der Pauw and Montgomery configurations are possible with this system. Resistance measurements in the range of a few {mu}{Omega} to a few G{Omega} are possible for six samples at a time from room temperature down to liquid-helium or liquid-nitrogen temperatures with a temperature control accuracy of better than 10 mK. The design features of the system with special reference to the low-noise switching methods of currents and voltages are described in detail. Precision of the results thus obtained using this system are highlighted for a few superconducting and semiconducting samples. {copyright} {ital 1996 American Institute of Physics.}

  13. AC Electric Field-Induced Trapping of Microparticles in Pinched Microconfinements.

    PubMed

    Dey, Ranabir; Shaik, Vaseem Akram; Chakraborty, Debapriya; Ghosal, Sandip; Chakraborty, Suman

    2015-06-01

    The trapping of charged microparticles under confinement in a converging-diverging microchannel, under a symmetric AC field of tunable frequency, is studied. We show that at low frequencies, the trapping characteristics stem from the competing effects of positive dielectrophoresis and the linear electrokinetic phenomena of electroosmosis and electrophoresis. It is found, somewhat unexpectedly, that electroosmosis and electrophoresis significantly affect the concentration profile of the trapped analyte, even for a symmetric AC field. However, at intermediate frequencies, the microparticle trapping mechanism is predominantly a consequence of positive dielectrophoresis. We substantiate our experimental results for the microparticle concentration distribution, along the converging-diverging microchannel, with a detailed theoretical analysis that takes into account all of the relevant frequency-dependent electrokinetic phenomena. This study should be useful in understanding the response of biological components such as cells to applied AC fields. Moreover, it will have potential applications in the design of efficient point-of-care diagnostic devices for detecting biomarkers and also possibly in some recent strategies in cancer therapy using AC fields. PMID:25954982

  14. Optical device with low electrical and thermal resistance Bragg reflectors

    SciTech Connect

    Lear, K.L.

    1996-10-22

    A compound-semiconductor optical device and method are disclosed. The optical device is provided with one or more asymmetrically-graded heterojunctions between compound semiconductor layers for forming a distributed Bragg reflector mirror having an improved electrical and thermal resistance. Efficient light-emitting devices such as light-emitting diodes, resonant-cavity light-emitting diodes, and vertical-cavity surface-emitting lasers may be formed according to the present invention, which may be applied to the formation of resonant-cavity photodetectors. 16 figs.

  15. Optical device with low electrical and thermal resistance bragg reflectors

    SciTech Connect

    Lear, Kevin L.

    1996-01-01

    A compound-semiconductor optical device and method. The optical device is provided with one or more asymmetrically-graded heterojunctions between compound semiconductor layers for forming a distributed Bragg reflector mirror having an improved electrical and thermal resistance. Efficient light-emitting devices such as light-emitting diodes, resonant-cavity light-emitting diodes, and vertical-cavity surface-emitting lasers may be formed according to the present invention, which may be applied to the formation of resonant-cavity photodetectors.

  16. Electrical Resistivity and Negative Magnetoresistance in (SNBry)x Crystal

    NASA Astrophysics Data System (ADS)

    Kaneto, Keiichi; Sasa, Shigehiko; Yoshino, Katsumi; Inuishi, Yoshio

    1980-11-01

    Electrical resistivity, magnetoresistance and their temperature dependences in (SNBry)x are measured for various quantity of y. By bromination, negative magnetoresistance is enhanced at 4.2 K and also appears even at 77 K, at which temperature negative magnetoresistance is not observed in undoped (SN)x. These features are remarkable for the samples heavily doped and just after doping, and are abated by pumping bromine from (SNBry)x for a few days. The possible origins for the anomalous negative magnetoresistance are discussed taking the surface state of fiber bundles or crystal due to adsorped bromine into consideration.

  17. Building Better Electrodes for Electrical Resistivity and Induced Polarization Data

    NASA Astrophysics Data System (ADS)

    Adkins, P. L.; La Brecque, D. J.

    2007-12-01

    In the third year of a project to understand and mitigate the systematic noise in resistivity and induced polarization measurements, we put a significant effort into understanding and developing better electrodes. The simple metal electrodes commonly used for both transmitting and receiving of electrical geophysical data are likely the Achilles" heal of the resistivity method. Even stainless steel, a commonly used electrode material because of its durability, showed only average results in laboratory tests for electrode noise. Better results have been found with non-polarizing metal-metal salt electrodes, which are widely used as surface electrodes and in IP surveys. But although they produce small measurement errors, they are not durable enough for in-situ borehole resistivity surveys, and often contain compounds that are toxic to the environment. They are also very seldom used as transmitters. In laboratory studies, we are exploring other materials and configurations for low-noise compound electrodes that will be nontoxic, inexpensive, and durable and can be used as both transmitters and receivers. Testing of the electrical noise levels of electrodes is an arduous task involving repeated measurements under varying conditions at field scales. Thus it is important to find methods of sorting out likely candidates from the mass of possible electrode configurations and construction methods. Testing of electrode impedance versus current density appears to provide simple criteria for predicting the suitability of electrodes. The best electrodes show relatively low overall contact impedance, relatively small changes in impedance with increased current density, and relatively small changes in impedance with time. Furthermore it can be shown that resistivity and induced polarization performance of electrodes is strongly correlated, so that methods of finding electrodes with low impedance and good direct current performance usually provide better quality induced

  18. Efficacy of genetically modified Bt toxins alone and in combinations against pink bollworm resistant to Cry1Ac and Cry2Ab

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evolution of resistance in pests threatens the long-term success of transgenic crops that produce insecticidal proteins from Bacillus thuringiensis (Bt). Previous work showed that genetically modified Bt toxins Cry1AbMod and Cry1AcMod effectively countered resistance to native Bt toxins Cry1Ab and ...

  19. Downregulation and mutation of a Cadherin gene associated with Cry1Ac resistance in the Asian Corn Borer, Ostrinia furnacalis (Guenée).

    PubMed

    Jin, Tingting; Chang, Xue; Gatehouse, Angharad M R; Wang, Zhenying; Edwards, Martin G; He, Kanglai

    2014-09-01

    Development of resistance in target pests is a major threat to long-term use of transgenic crops expressing Bacillus thuringiensis (Bt) Cry toxins. To manage and/or delay the evolution of resistance in target insects through the implementation of effective strategies, it is essential to understand the basis of resistance. One of the most important mechanisms of insect resistance to Bt crops is the alteration of the interactions between Cry toxins and their receptors in the midgut. A Cry1Ac-selected strain of Asian corn borer (ACB), Ostrinia furnacalis, a key pest of maize in China, evolved three mutant alleles of a cadherin-like protein (OfCAD) (MPR-r1, MPR-r2 and MPR-r3), which mapped within the toxin-binding region (TBR). Each of the three mutant alleles possessed two or three amino acid substitutions in this region, especially Thr1457→Ser. In highly resistant larvae (ACB-Ac200), MPR-r2 had a 26-amino acid residue deletion in the TBR, which resulted in reduced binding of Cry1Ac compared to the MPR from the susceptible strain, suggesting that the number of amino acid deletions influences the level of resistance. Furthermore, downregulation of OfCAD gene (ofcad) transcription was observed in the Cry1Ac resistant strain, ACB-Ac24, suggesting that Cry1Ac resistance in ACB is associated with the downregulation of the transcript levels of the cadherin-like protein gene. The OfCAD identified from ACB exhibited a high degree of similarity to other members of the cadherin super-family in lepidopteran species. PMID:25216082

  20. MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in diamondback moth.

    PubMed

    Guo, Zhaojiang; Kang, Shi; Chen, Defeng; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhu, Xun; Baxter, Simon W; Zhou, Xuguo; Jurat-Fuentes, Juan Luis; Zhang, Youjun

    2015-04-01

    Insecticidal crystal toxins derived from the soil bacterium Bacillus thuringiensis (Bt) are widely used as biopesticide sprays or expressed in transgenic crops to control insect pests. However, large-scale use of Bt has led to field-evolved resistance in several lepidopteran pests. Resistance to Bt Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.), was previously mapped to a multigenic resistance locus (BtR-1). Here, we assembled the 3.15 Mb BtR-1 locus and found high-level resistance to Cry1Ac and Bt biopesticide in four independent P. xylostella strains were all associated with differential expression of a midgut membrane-bound alkaline phosphatase (ALP) outside this locus and a suite of ATP-binding cassette transporter subfamily C (ABCC) genes inside this locus. The interplay between these resistance genes is controlled by a previously uncharacterized trans-regulatory mechanism via the mitogen-activated protein kinase (MAPK) signaling pathway. Molecular, biochemical, and functional analyses have established ALP as a functional Cry1Ac receptor. Phenotypic association experiments revealed that the recessive Cry1Ac resistance was tightly linked to down-regulation of ALP, ABCC2 and ABCC3, whereas it was not linked to up-regulation of ABCC1. Silencing of ABCC2 and ABCC3 in susceptible larvae reduced their susceptibility to Cry1Ac but did not affect the expression of ALP, whereas suppression of MAP4K4, a constitutively transcriptionally-activated MAPK upstream gene within the BtR-1 locus, led to a transient recovery of gene expression thereby restoring the susceptibility in resistant larvae. These results highlight a crucial role for ALP and ABCC genes in field-evolved resistance to Cry1Ac and reveal a novel trans-regulatory signaling mechanism responsible for modulating the expression of these pivotal genes in P. xylostella. PMID:25875245

  1. MAPK Signaling Pathway Alters Expression of Midgut ALP and ABCC Genes and Causes Resistance to Bacillus thuringiensis Cry1Ac Toxin in Diamondback Moth

    PubMed Central

    Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhu, Xun; Baxter, Simon W.; Zhou, Xuguo; Jurat-Fuentes, Juan Luis; Zhang, Youjun

    2015-01-01

    Insecticidal crystal toxins derived from the soil bacterium Bacillus thuringiensis (Bt) are widely used as biopesticide sprays or expressed in transgenic crops to control insect pests. However, large-scale use of Bt has led to field-evolved resistance in several lepidopteran pests. Resistance to Bt Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.), was previously mapped to a multigenic resistance locus (BtR-1). Here, we assembled the 3.15 Mb BtR-1 locus and found high-level resistance to Cry1Ac and Bt biopesticide in four independent P. xylostella strains were all associated with differential expression of a midgut membrane-bound alkaline phosphatase (ALP) outside this locus and a suite of ATP-binding cassette transporter subfamily C (ABCC) genes inside this locus. The interplay between these resistance genes is controlled by a previously uncharacterized trans-regulatory mechanism via the mitogen-activated protein kinase (MAPK) signaling pathway. Molecular, biochemical, and functional analyses have established ALP as a functional Cry1Ac receptor. Phenotypic association experiments revealed that the recessive Cry1Ac resistance was tightly linked to down-regulation of ALP, ABCC2 and ABCC3, whereas it was not linked to up-regulation of ABCC1. Silencing of ABCC2 and ABCC3 in susceptible larvae reduced their susceptibility to Cry1Ac but did not affect the expression of ALP, whereas suppression of MAP4K4, a constitutively transcriptionally-activated MAPK upstream gene within the BtR-1 locus, led to a transient recovery of gene expression thereby restoring the susceptibility in resistant larvae. These results highlight a crucial role for ALP and ABCC genes in field-evolved resistance to Cry1Ac and reveal a novel trans-regulatory signaling mechanism responsible for modulating the expression of these pivotal genes in P. xylostella. PMID:25875245

  2. Electric characterization of (Sr, Sr-Ba, Ba) M-type ferrites by AC measurements[Alternating Current

    SciTech Connect

    Huanosta-Tera, A.; Lira-Hueso, R. de; Perez-Orta, O.; Palomares-Sanchez, S.A.; Ponce-Castaneda, S.; Mirabal-Garcia, M.

    2000-02-01

    Considering the electrical conductivity in ceramics, necessary reference should be given to dynamic processes occurring as a function of frequency and temperature. Although the most immediate interest in ferrites lies in their magnetic properties, technological applications require a wider knowledge of general physical properties as well. This is especially applicable when the materials are studied as a function of composition or when adding different modifiers. In this report, the authors present results of the ac and dc electric characteristics of a family of magneto-plumbite-type hexaferrites, where Ba gradually substitutes Sr in the Ba{sub x}Sr{sub 1{minus}x}Fe{sub 12}O{sub 19} compound (0 {le} x {le} 1). The results were determined over a wide range of frequencies and temperatures.

  3. Electric-field-driven resistive switching in dissipative Hubbard model

    NASA Astrophysics Data System (ADS)

    Li, Jiajun; Aron, Camille; Kotliar, Gabriel; Han, Jong

    Understanding of solids driven out of equilibrium by external fields has been one of the central goals in condensed matter physics for the past century and is relevant to nanotechnology applications such as resistive transitions. We study how strongly correlated electrons on a dissipative lattice evolve from equilibrium when driven by a constant electric field, focusing on the extent of the linear regime and hysteretic non-linear effects at higher fields. We access the non-equilibrium steady states, non-perturbatively in both the field and the electronic interactions, by means of a non-equilibrium dynamical mean-field theory in the Coulomb gauge. The linear response regime is limited by Joule heating effects and breaks down at fields orders of magnitude smaller than the quasi-particle energy scale. For large electronic interactions, strong but experimentally accessible electric fields can induce a resistive switching by driving the strongly correlated metal into a Mott insulator. Hysteretic I- V curves suggest that the non-equilibrium current is carried through a spatially inhomogeneous metal-insulator mixed state.

  4. Electrical Resistivity of natural Marcasite at High-pressures

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Gopalakrishnarao

    2013-06-01

    Marcasite is considered to be a common iron sulfide in reducing Martian sediments and may enclose microbial remains during growth and hence study of marcasite may have significance in the search for fossil life on Mars. The high-pressure phase stability investigations of marcasite are useful in understanding the sulfide mineralogy of Martian surface, affected by meteorite impacts. The sulfides were characterized by electron microprobe micro analyses (EPMA), powder X-ray diffraction, DTA, and FTIR spectroscopic measurements. The samples were powdered using a porcelain mortar and pestle. The chemical composition of the sample was determined by an electron probe micro-analyzer (EPMA). High-pressure electrical resistivity measurements were carried out on natural marcasite, and marcasite rich samples (Marcasite 95 mol % pyrite 5 mol %) up to 7 GPa. Marcasite sample shows a discontinuous decrease in the electrical resistivity at 5. 2 (+/- 0.5) GPa indicating a first order phase transition. The Differential thermal analyses and the Fourier transform infrared spectroscopic measurements on the pressure quenched sample shows the characteristics of pyrite, indicating the pressure induced marcasite-to -pyrite transition of the natural marcasite at 5. 2 (+/- 0.5) GPa. The observation of marcasite to pyrite phase transition may be useful in estimating the pressure experienced by shock events on the Martian surface as well as the meteorites where marcasite- pyrite phases coexist. Financial support from CSIR-SHORE-PSC0205.

  5. THE VARIATION OF ELECTRICAL RESISTANCE WITH APPLIED POTENTIAL

    PubMed Central

    Blinks, L. R.

    1930-01-01

    Electrical resistance and polarization were measured during the passage of direct current across a single layer of protoplasm in the cells of Valonia ventricosa impaled upon capillaries. These were correlated with five stages of the P.D. existing naturally across the protoplasm, as follows: 1. A stage of shock after impalement, when the P.D. drops from 5 mv. to zero and then slowly recovers. There is very little effective resistance in the protoplasm, and polarization is slight. 2. The stage of recovery and normal P.D., with values from 8 to 25 mv. (inside positive). The average is 15 mv. At first there is little or no polarization when small potentials are applied in either direction across the protoplasm, nor when very large currents pass outward (from sap to sea water). But when the positive current passes inward there is a sudden response at a critical applied potential ranging from 0.5 to 2.0 volts. The resistance then apparently rises as much as 10,000 ohms in some cases, and the rise occurs more quickly in succeeding applications after the first. When the potential is removed there is a back E.M.F. displayed. Later there is also an effect of such inward currents which persists into the first succeeding outward flow, causing a brief polarization at the first application of the reverse potential. Still later this polarization occurs at every exposure, and at increasingly lower values of applied potentials. Finally there is a "constant" state reached in which the polarization occurs with currents of either direction, and the apparent resistance is nearly uniform over a considerable range of applied potential. 3. A state of increased P.D.; to 100 mv. (inside positive) in artificial sap; and to 35 or 40 mv. in dilute sea water or 0.6 M MgSO4. The polarization response and apparent resistance are at first about as in sea water, but later decrease. 4. A reversed P.D., to 50 mv. (outside positive) produced by a variety of causes, especially by dilute sea water, and

  6. Effect of nanosilica on optical, electric modulus and AC conductivity of polyvinyl alcohol/polyaniline films

    NASA Astrophysics Data System (ADS)

    El-Sayed, Somyia; Abel-Baset, Tarob; Elfadl, Azza Abou; Hassen, Arafa

    2015-05-01

    Nanosilica (NS) was synthesized by a sol-gel method and mixed with 0.98 polyvinyl alcohol (PVA)/0.02 polyaniline (PANI) in different amounts to produce nanocomposite films. High-resolution transmission electron microscopy (HR-TEM) revealed the average particle size of the NS to be ca. 15 nm. Scanning electron microscopy (SEM) showed that the NS was well-dispersed on the surface of the PVA/PNAI films. The Fourier transform infrared (FTIR) spectra of the samples showed a significant change in the intensity of the characteristic peak of the functional groups in the composite films with the amount of NS added. The absorbance and refractive index (n) of the composites were studied in the UV-vis range, and the optical energy band gap, Eg, and different optical parameters were calculated. The dielectric loss modulus, M″ and ac conductivity, σac, of the samples were studied within 300-425 K and 0.1 kHz-5 MHz, respectively. Two relaxation peaks were observed in the frequency dependence of the dielectric loss modulus, M″. The behavior of σac(f) for the composite films indicated that the conduction mechanism was correlated barrier hopping (CBH). The results of this work are discussed and compared with those of previous studies of similar composites.

  7. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) at an ambient temperature of 104 °F (40 °C). (8) Monitor the electric current through the power... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of...

  8. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) at an ambient temperature of 104 °F (40 °C). (8) Monitor the electric current through the power... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of...

  9. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) at an ambient temperature of 104 °F (40 °C). (8) Monitor the electric current through the power... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of...

  10. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) at an ambient temperature of 104 °F (40 °C). (8) Monitor the electric current through the power... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of...

  11. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) at an ambient temperature of 104 °F (40 °C). (8) Monitor the electric current through the power... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of...

  12. Electrical resistivity imaging study of near-surface infiltration

    NASA Astrophysics Data System (ADS)

    Lampousis, Angelos

    High resolution electrical resistivity images (ERI method) were obtained during vadose zone infiltration experiments on agricultural soils in cooperation with Cornell University's Agricultural Stewardship Program, Cooperative Extension of Suffolk County, Extension Education Center, Riverhead, New York [ as well as Cornell University's Long Island Horticultural Research & Extension Center (LIHREC) in Riverhead, New York]. One natural soil was also studied. Infiltration was monitored by means of image analysis of two-dimensional array resistivity generated by a Syscal Kid Switch resistivity system (Griffiths et al., 1990). The data was inverted with the computer program RES2DINV (Loke, 2004). The agricultural soils considered were Riverhead sandy loam (RdA), Haven loam (HaA), and Bridgehampton silt loam (BgA). The natural site was located in the Catskill Mountains of New York State. The soils there are classified as Schoharie silty clay loam. The electrical images of the three sites were compared against established soil properties, including particle size distribution, available water capacity, and soluble salts (from the literature), as well as against site-specific soil samples and penetrometer data, which were collected along with the geophysical measurements. This research evaluates the potential of acquiring high resolution, non-destructive measurements of infiltration in the uppermost 1.5 meter of the vadose zone. The results demonstrate that resistivity differences can detect infiltration in soils typical of the north-eastern United States. Temporal and spatial variations of soil water content in the upper 1.5 meters (relevant to agriculture) of the subsurface can be monitored successfully and non-destructively with ERI. The sensitivity of the method is higher in subsurface environments that demonstrate high overall apparent resistivity values (e.g. high sand content). Under conditions of increased soil heterogeneity, instead of the formation of a continuous

  13. Monitoring Damage Accumulation in Ceramic Matrix Composites Using Electrical Resistivity

    NASA Technical Reports Server (NTRS)

    Smith, Craig E.; Morscher, Gregory N.; Xia, Zhenhai H.

    2008-01-01

    The electric resistance of woven SiC fiber reinforced SiC matrix composites were measured under tensile loading conditions. The results show that the electrical resistance is closely related to damage and that real-time information about the damage state can be obtained through monitoring of the resistance. Such self-sensing capability provides the possibility of on-board/in-situ damage detection and accurate life prediction for high-temperature ceramic matrix composites. Woven silicon carbide fiber-reinforced silicon carbide (SiC/SiC) ceramic matrix composites (CMC) possess unique properties such as high thermal conductivity, excellent creep resistance, improved toughness, and good environmental stability (oxidation resistance), making them particularly suitable for hot structure applications. In specific, CMCs could be applied to hot section components of gas turbines [1], aerojet engines [2], thermal protection systems [3], and hot control surfaces [4]. The benefits of implementing these materials include reduced cooling air requirements, lower weight, simpler component design, longer service life, and higher thrust [5]. It has been identified in NASA High Speed Research (HSR) program that the SiC/SiC CMC has the most promise for high temperature, high oxidation applications [6]. One of the critical issues in the successful application of CMCs is on-board or insitu assessment of the damage state and an accurate prediction of the remaining service life of a particular component. This is of great concern, since most CMC components envisioned for aerospace applications will be exposed to harsh environments and play a key role in the vehicle s safety. On-line health monitoring can enable prediction of remaining life; thus resulting in improved safety and reliability of structural components. Monitoring can also allow for appropriate corrections to be made in real time, therefore leading to the prevention of catastrophic failures. Most conventional nondestructive

  14. Fabrication of an Electrically-Resistive, Varistor-Polymer Composite

    PubMed Central

    Ahmad, Mansor Bin; Fatehi, Asma; Zakaria, Azmi; Mahmud, Shahrom; Mohammadi, Sanaz A.

    2012-01-01

    This study focuses on the fabrication and electrical characterization of a polymer composite based on nano-sized varistor powder. The polymer composite was fabricated by the melt-blending method. The developed nano-composite was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FeSEM), and energy-dispersive X-ray spectroscopy (EDAX). The XRD pattern revealed the crystallinity of the composite. The XRD study also showed the presence of secondary phases due to the substitution of zinc by other cations, such as bismuth and manganese. The TEM picture of the sample revealed the distribution of the spherical, nano-sized, filler particles throughout the matrix, which were in the 10–50 nm range with an average of approximately 11 nm. The presence of a bismuth-rich phase and a ZnO matrix phase in the ZnO-based varistor powder was confirmed by FeSEM images and EDX spectra. From the current-voltage curves, the non-linear coefficient of the varistor polymer composite with 70 wt% of nano filler was 3.57, and its electrical resistivity after the onset point was 861 KΩ. The non-linear coefficient was 1.11 in the sample with 100 wt% polymer content. Thus, it was concluded that the composites established a better electrical non-linearity at higher filler amounts due to the nano-metric structure and closer particle linkages. PMID:23443085

  15. Introducing AC inductive reactance with a power tool

    NASA Astrophysics Data System (ADS)

    Bryant, Wesley; Baker, Blane

    2016-09-01

    The concept of reactance in AC electrical circuits is often non-intuitive and difficult for students to grasp. In order to address this lack of conceptual understanding, classroom exercises compare the predicted resistance of a power tool, based on electrical specifications, to measured resistance. Once students discover that measured resistance is smaller than expected, they are asked to explain these observations using previously studied principles of magnetic induction. Exercises also introduce the notion of inductive reactance and impedance in AC circuits and, ultimately, determine self-inductance of the motor windings within the power tool.

  16. Resistance of Trichoplusia ni populations selected by Bacillus thuringiensis sprays to cotton plants expressing pyramided Bacillus thuringiensis toxins Cry1Ac and Cry2Ab.

    PubMed

    Kain, Wendy; Song, Xiaozhao; Janmaat, Alida F; Zhao, Jian-Zhou; Myers, Judith; Shelton, Anthony M; Wang, Ping

    2015-03-01

    Two populations of Trichoplusia ni that had developed resistance to Bacillus thuringiensis sprays (Bt sprays) in commercial greenhouse vegetable production were tested for resistance to Bt cotton (BollGard II) plants expressing pyramided Cry1Ac and Cry2Ab. The T. ni colonies resistant to Bacillus thuringiensis serovar kurstaki formulations were not only resistant to the Bt toxin Cry1Ac, as previously reported, but also had a high frequency of Cry2Ab-resistant alleles, exhibiting ca. 20% survival on BollGard II foliage. BollGard II-resistant T. ni strains were established by selection with BollGard II foliage to further remove Cry2Ab-sensitive alleles in the T. ni populations. The BollGard II-resistant strains showed incomplete resistance to BollGard II, with adjusted survival values of 0.50 to 0.78 after 7 days. The resistance to the dual-toxin cotton plants was conferred by two genetically independent resistance mechanisms: one to Cry1Ac and one to Cry2Ab. The 50% lethal concentration of Cry2Ab for the resistant strain was at least 1,467-fold that for the susceptible T. ni strain. The resistance to Cry2Ab in resistant T. ni was an autosomally inherited, incompletely recessive monogenic trait. Results from this study indicate that insect populations under selection by Bt sprays in agriculture can be resistant to multiple Bt toxins and may potentially confer resistance to multitoxin Bt crops. PMID:25480752

  17. Resistance of Trichoplusia ni Populations Selected by Bacillus thuringiensis Sprays to Cotton Plants Expressing Pyramided Bacillus thuringiensis Toxins Cry1Ac and Cry2Ab

    PubMed Central

    Kain, Wendy; Song, Xiaozhao; Janmaat, Alida F.; Zhao, Jian-Zhou; Myers, Judith; Shelton, Anthony M.

    2014-01-01

    Two populations of Trichoplusia ni that had developed resistance to Bacillus thuringiensis sprays (Bt sprays) in commercial greenhouse vegetable production were tested for resistance to Bt cotton (BollGard II) plants expressing pyramided Cry1Ac and Cry2Ab. The T. ni colonies resistant to Bacillus thuringiensis serovar kurstaki formulations were not only resistant to the Bt toxin Cry1Ac, as previously reported, but also had a high frequency of Cry2Ab-resistant alleles, exhibiting ca. 20% survival on BollGard II foliage. BollGard II-resistant T. ni strains were established by selection with BollGard II foliage to further remove Cry2Ab-sensitive alleles in the T. ni populations. The BollGard II-resistant strains showed incomplete resistance to BollGard II, with adjusted survival values of 0.50 to 0.78 after 7 days. The resistance to the dual-toxin cotton plants was conferred by two genetically independent resistance mechanisms: one to Cry1Ac and one to Cry2Ab. The 50% lethal concentration of Cry2Ab for the resistant strain was at least 1,467-fold that for the susceptible T. ni strain. The resistance to Cry2Ab in resistant T. ni was an autosomally inherited, incompletely recessive monogenic trait. Results from this study indicate that insect populations under selection by Bt sprays in agriculture can be resistant to multiple Bt toxins and may potentially confer resistance to multitoxin Bt crops. PMID:25480752

  18. Observation of infiltration experiments with time lapse electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Noell, Ursula; Ganz, Christina; Altfelder, Sven; Günther, Thomas; Duijnisveld, Wilhelmus; Grissemann, Christoph

    2010-05-01

    analysed quantitatively. For the first experiment this calculation shows one day after the infiltration about 40% of the infiltrated water being lost to the groundwater. For the second experiment the quantitative interpretation takes into account the increased conductivity of the infiltrating tracer solution compared to the pore water of the vadose zone before infiltration. Another infiltration experiment is done on Loess. Due to the low infiltration rate only about 9l of water could be infiltrated within about 3 h (38mm/h). The time lapse ERT clearly reveals the water remaining close to surface and no sign of resistivity change due to the infiltration is observed to penetrate deeper than 30cm. At this depth the plough pan seems to inhibit the infiltration. The analysis shows the high sensitivity of the ERT method. Although the original water content is quite high and therefore the resistivity changes due to water content changes are small (the flat part of the Archie function) the time lapse ERT inversion depicts the changes of resistivity quite clearly. The experiments show the advantages of ERT measurements to observe the infiltration process in real time. However, the interpretation of such measurements still poses difficulties mainly due to the limited resolution and the ill posedness of the inversion problem of electrical resistivity tomography (ERT). These problems are investigated further in order to advance the applicability of the method to infiltration problems showing signs of preferential flow.

  19. Temperature and mixing effects on electrical resistivity of carbon fiber enhanced concrete

    NASA Astrophysics Data System (ADS)

    Chang, Christiana; Song, Gangbing; Gao, Di; Mo, Y. L.

    2013-03-01

    In this paper, the effect of temperature and mixing procedure on the electrical resistivity of carbon fiber enhanced concrete is investigated. Different compositions of concrete containing varying concentrations of carbon fiber into normal and self-consolidating concrete (SCC) were tested under DC electrical loading over the temperature range -10 to 20 °C. The electrical resistivity of the bulk samples was calculated and compared against temperature. It was observed that there is an inverse exponential relationship between resistivity and temperature which follows the Arrhenius relationship. The bulk resistivity decreased with increasing fiber concentration, though data from SCC indicates a saturation limit beyond which electrical resistivity begins to drop. The activation energy of the bulk electrically conductive concrete was calculated and compared. While SCC exhibited the lowest observed electrical resistance, the activation energy was similar amongst SCC and surfactant enhanced concrete, both of which were lower than fiber dispersed in normal concrete.

  20. Resistive graphene humidity sensors with rapid and direct electrical readout

    NASA Astrophysics Data System (ADS)

    Smith, Anderson D.; Elgammal, Karim; Niklaus, Frank; Delin, Anna; Fischer, Andreas C.; Vaziri, Sam; Forsberg, Fredrik; Råsander, Mikael; Hugosson, Håkan; Bergqvist, Lars; Schröder, Stephan; Kataria, Satender; Östling, Mikael; Lemme, Max C.

    2015-11-01

    We demonstrate humidity sensing using a change of the electrical resistance of single-layer chemical vapor deposited (CVD) graphene that is placed on top of a SiO2 layer on a Si wafer. To investigate the selectivity of the sensor towards the most common constituents in air, its signal response was characterized individually for water vapor (H2O), nitrogen (N2), oxygen (O2), and argon (Ar). In order to assess the humidity sensing effect for a range from 1% relative humidity (RH) to 96% RH, the devices were characterized both in a vacuum chamber and in a humidity chamber at atmospheric pressure. The measured response and recovery times of the graphene humidity sensors are on the order of several hundred milliseconds. Density functional theory simulations are employed to further investigate the sensitivity of the graphene devices towards water vapor. The interaction between the electrostatic dipole moment of the water and the impurity bands in the SiO2 substrate leads to electrostatic doping of the graphene layer. The proposed graphene sensor provides rapid response direct electrical readout and is compatible with back end of the line (BEOL) integration on top of CMOS-based integrated circuits.We demonstrate humidity sensing using a change of the electrical resistance of single-layer chemical vapor deposited (CVD) graphene that is placed on top of a SiO2 layer on a Si wafer. To investigate the selectivity of the sensor towards the most common constituents in air, its signal response was characterized individually for water vapor (H2O), nitrogen (N2), oxygen (O2), and argon (Ar). In order to assess the humidity sensing effect for a range from 1% relative humidity (RH) to 96% RH, the devices were characterized both in a vacuum chamber and in a humidity chamber at atmospheric pressure. The measured response and recovery times of the graphene humidity sensors are on the order of several hundred milliseconds. Density functional theory simulations are employed to further

  1. Effect of crop plants on fitness costs associated with resistance to Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in cabbage loopers

    PubMed Central

    Wang, Ran; Tetreau, Guillaume; Wang, Ping

    2016-01-01

    Fitness costs associated with resistance to Bacillus thuringiensis (Bt) toxins critically impact the development of resistance in insect populations. In this study, the fitness costs in Trichoplusia ni strains associated with two genetically independent resistance mechanisms to Bt toxins Cry1Ac and Cry2Ab, individually and in combination, on four crop plants (cabbage, cotton, tobacco and tomato) were analyzed, in comparison with their near-isogenic susceptible strain. The net reproductive rate (R0) and intrinsic rate of increase (r) of the T. ni strains, regardless of their resistance traits, were strongly affected by the host plants. The ABCC2 gene-linked mechanism of Cry1Ac resistance was associated with relatively low fitness costs, while the Cry2Ab resistance mechanism was associated with higher fitness costs. The fitness costs in the presence of both resistance mechanisms in T. ni appeared to be non-additive. The relative fitness of Bt-resistant T. ni depended on the specific resistance mechanisms as well as host plants. In addition to difference in survivorship and fecundity, an asynchrony of adult emergence was observed among T. ni with different resistance mechanisms and on different host plants. Therefore, mechanisms of resistance and host plants available in the field are both important factors affecting development of Bt resistance in insects. PMID:26868936

  2. Electrically resistive coating for remediation (regeneration) of a diesel particulate filter and method

    DOEpatents

    Phelps, Amanda C.; Kirby, Kevin K.; Gregoire, Daniel J.

    2012-02-14

    A resistively heated diesel particulate filter (DPF). The resistively heated DPF includes a DPF having an inlet surface and at least one resistive coating on the inlet surface. The at least one resistive coating is configured to substantially maintain its resistance in an operating range of the DPF. The at least one resistive coating has a first terminal and a second terminal for applying electrical power to resistively heat up the at least one resistive coating in order to increase the temperature of the DPF to a regeneration temperature. The at least one resistive coating includes metal and semiconductor constituents.

  3. Can we quantify local groundwater recharge using electrical resistivity tomography?

    NASA Astrophysics Data System (ADS)

    Noell, U.; Günther, T.; Ganz, C.; Lamparter, A.

    2012-04-01

    Electrical resistivity tomography (ERT) has become a common tool to observe flow processes within the saturated/unsaturated zones. While it is still doubtful whether the method can reliably yield quantitative results the qualitative success has been shown in "numerous" examples. To quantify the rate of rainfall which reaches the groundwater table is still a problematic venture due to a sad combination of several physical and mathematical obstacles that may lead to huge errors. In 2007 an infiltration experiment was performed and observed using 3D array ERT. The site is located close to Hannover, Germany, on a well studied sandy soil. The groundwater table at this site was at a depth of about 1.3 m. The inversion results of the ERT data yield reliably looking pictures of the infiltration process. Later experiments nearby using tracer fluid and combined TDR and resistivity measurements in the subsurface strongly supported the assumption that the resistivity pictures indeed depict the water distributions during infiltration reliably. The quantitative interpretation shows that two days after infiltration about 40% of the water has reached the groundwater. However, the question remains how reliable this quantitative interpretation actually is. The first obstacle: The inversion of the ERT data gives one possible resistivity distribution within the subsurface that can explain the data. It is not necessarily the right one and the result depends on the error model and the inversion parameters and method. For these measurements we assume the same error for every single quadrupole (3%), applied the Gauss-Newton method and minimum length constraints in order to reduce the smoothing to a minimum (very small lambda). Numerical experiments showed little smoothing using this approach, and smoothing must be suppressed if preferential flow is to be seen. The inversion showed artefacts of minor amplitude compared with other inversion parameter settings. The second obstacle: The

  4. Material morphology and electrical resistivity differences in EPDM rubbers.

    SciTech Connect

    Yang, Nancy Y. C.; Domeier, Linda A.

    2008-03-01

    Electrical resistance anomalies noted in EPDM gaskets have been attributed to zinc-enriched surface sublayers, about 10-{micro}m thick, in the sulfur cured rubber material. Gasket over-compression provided the necessary connector pin contact and was also found to cause surprising morphological changes on the gasket surfaces. These included distributions of zinc oxide whiskers in high pressure gasket areas and cone-shaped features rich in zinc, oxygen, and sulfur primarily in low pressure protruding gasket areas. Such whiskers and cones were only found on the pin side of the gaskets in contact with a molded plastic surface and not on the back side in contact with an aluminum surface. The mechanisms by which such features are formed have not yet been defined.

  5. Antimicrobial Peptide P60.4Ac-Containing Creams and Gel for Eradication of Methicillin-Resistant Staphylococcus aureus from Cultured Skin and Airway Epithelial Surfaces.

    PubMed

    Haisma, Elisabeth M; Göblyös, Anikó; Ravensbergen, Bep; Adriaans, Alwin E; Cordfunke, Robert A; Schrumpf, Jasmijn; Limpens, Ronald W A L; Schimmel, Kirsten J M; den Hartigh, Jan; Hiemstra, Pieter S; Drijfhout, Jan Wouter; El Ghalbzouri, Abdoelwaheb; Nibbering, Peter H

    2016-07-01

    We previously found the LL-37-derived peptide P60.4Ac to be effective against methicillin-resistant Staphylococcus aureus (MRSA) on human epidermal models (EMs). The goal of this study was to identify the preferred carrier for this peptide for topical application on skin and mucosal surfaces. We prepared P60.4Ac in three formulations, i.e., a water-in-oil cream with lanolin (Softisan 649), an oil-in-water cream with polyethylene glycol hexadecyl ether (Cetomacrogol), and a hydroxypropyl methylcellulose (hypromellose) 4000 gel. We tested the antimicrobial efficacy of the peptide in these formulations against mupirocin-resistant and -sensitive MRSA strains on EMs and bronchial epithelial models (BEMs). The cytotoxic effects of formulated P60.4Ac on these models were determined using histology and WST-1 and lactate dehydrogenase assays. Moreover, we assessed the stability of the peptide in these formulations with storage for up to 3 months. Killing of MRSA by P60.4Ac in the two creams was less effective than that by P60.4Ac in the hypromellose gel. In agreement with those findings, P60.4Ac in the hypromellose gel was highly effective in eradicating the two MRSA strains from EMs. We found that even 0.1% (wt/wt) P60.4Ac in the hypromellose gel killed >99% of the viable planktonic bacteria and >85% of the biofilm-associated bacteria on EMs. Hypromellose gels containing 0.1% and 0.5% (wt/wt) P60.4Ac effectively reduced the numbers of viable MRSA cells from BEMs by >90%. No cytotoxic effects of P60.4Ac in the hypromellose gel with up to 2% (wt/wt) P60.4Ac on keratinocytes in EMs and in the hypromellose gel with up to 0.5% (wt/wt) P60.4Ac on epithelial cells in BEMs were observed. High-performance liquid chromatography analysis showed that P60.4Ac was stable in the Softisan cream and the hypromellose gel but not in the Cetomacrogol cream. We conclude that P60.4Ac formulated in hypromellose gel is both stable and highly effective in eradicating MRSA from colonized EMs and

  6. Infiltration front monitoring using 3D Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Oxarango, Laurent; Audebert, Marine; Guyard, Helene; Clement, Remi

    2016-04-01

    The electrical resistivity tomography (ERT) geophysical method is commonly used to identify the spatial distribution of electrical resisitivity in the soil at the field scale. Recent progress in commercial acquisition systems allows repeating fast acquisitions (10 min) in order to monitor a 3D dynamic phenomenon. Since the ERT method is sensitive to moisture content variations, it can thus be used to delineate the infiltration shape during water infiltration. In heterogeneous conditions, the 3D infiltration shape is a crucial information because it could differ significantly from the homogeneous behavior. In a first step, the ERT method is validated at small scale (<1m) studying a suction infiltrometer test. The experiment is carried out in a pit filled with a homogenous silty-sandy soil. It is instrumented by 17 resistivity probes and 3 commercial capacitive moisture content probes to provide local measurements of the moisture content variation. The Multiple Inversion and Clustering Strategy (MICS) (Audebert et al 2014) is used to delineate the infiltration patern. A satisfying agreement between infiltration delineation and sensor measurements is obtained with a few centimeter accuracy on the moisture front location. In a second step, the same methodology is applied at a larger scale (> 10m). Two examples of leachate injection monitoring in municipal solid waste landfills are used to put forward benefits and limitations of the ERT-MICS method. Effective infiltration porosities in a range between 3% and 8% support the assumption of a flow in heterogeneous media. Audebert, M., R. Clément, N. Touze-Foltz, T. Günther, S. Moreau, and C. Duquennoi (2014), Time-lapse ERT interpretation methodology for leachate injection monitoring based on multiple inversions and a clustering strategy (MICS), Journal of Applied Geophysics, 111, 320-333. Keywords: ERT, infiltration front, field survey

  7. Physical and electrical models for interpreting AC and DC transport measurements in polymer solar cells

    NASA Astrophysics Data System (ADS)

    McIntyre, Max; Tzolov, Marian; Cossel, Raquel; Peeler, Seth

    We have fabricated and studied bulk heterojunction solar cells using a mixture of the low bandgap material PCPDTBT and PCBM-C60. Our transport studies show that the devices in dark have good rectification and they respond to AC voltage as a simple RC circuit. The illumination causes an additional contribution to the impedance, which varies with the level of illumination. One proposed model is that photo-generated charges can become trapped in potential wells. These charges then follow a Debye relaxation process, which contributes to a varying dielectric constant. Another proposed model is based on a RC circuit model with two capacitors which can describe the varying capacitance behavior. The physical mechanism for this model is that photo-generated charges become accumulated at the interface between PCPDTBT and PCBM-C60 and form an additional layer of charge. We will show that our circuit models and their analogous physical models can predict the AC and DC responses of polymer solar cells.

  8. Physics-Based Modeling of Electric Operation, Heat Transfer, and Scrap Melting in an AC Electric Arc Furnace

    NASA Astrophysics Data System (ADS)

    Opitz, Florian; Treffinger, Peter

    2016-04-01

    Electric arc furnaces (EAF) are complex industrial plants whose actual behavior depends upon numerous factors. Due to its energy intensive operation, the EAF process has always been subject to optimization efforts. For these reasons, several models have been proposed in literature to analyze and predict different modes of operation. Most of these models focused on the processes inside the vessel itself. The present paper introduces a dynamic, physics-based model of a complete EAF plant which consists of the four subsystems vessel, electric system, electrode regulation, and off-gas system. Furthermore the solid phase is not treated to be homogenous but a simple spatial discretization is employed. Hence it is possible to simulate the energy input by electric arcs and fossil fuel burners depending on the state of the melting progress. The model is implemented in object-oriented, equation-based language Modelica. The simulation results are compared to literature data.

  9. Low-thermal-resistance, high-electrical-isolation heat intercept connection

    SciTech Connect

    Niemann, R.C.; Gonczy, J.D.; Nicol, T.H.

    1993-07-01

    A method for providing a low-thermal-resistance, high-electrical-isolation heat intercept connection is presented. Electrical conductors often require the removal of heat produced from their normal operation. The heat can be removed by mechanical connection to a refrigeration source. Such connections require both effective heat removal (low thermal resistance) and effective electrical isolation (high electrical resistance and high dielectric strength). Such connections should be straightforward to fabricate and provide reliable performance that is independent of operating temperature. The connection method described here involves clamping, by thermal interference fit, an electrically insulating cylinder between an outer metallic ring and an inner metallic disk.

  10. Low-thermal-resistance, high-electrical-isolation heat intercept connection

    SciTech Connect

    Niemann, R.C.; Gonczy, J.D. ); Nicol, T.H. )

    1993-01-01

    A method for providing a low-thermal-resistance, high-electrical-isolation heat intercept connection is presented. Electrical conductors often require the removal of heat produced from their normal operation. The heat can be removed by mechanical connection to a refrigeration source. Such connections require both effective heat removal (low thermal resistance) and effective electrical isolation (high electrical resistance and high dielectric strength). Such connections should be straightforward to fabricate and provide reliable performance that is independent of operating temperature. The connection method described here involves clamping, by thermal interference fit, an electrically insulating cylinder between an outer metallic ring and an inner metallic disk.

  11. Monitoring Permeable Reactive Barriers using Electrical Resistance Tomography

    SciTech Connect

    Ramirez, A; Bratton, W; Maresca, J; Daily, W; Dickerson, W

    2003-12-08

    An electrical resistivity tomography (ERT) method is being evaluated as a measurement tool to determine the integrity of permeable reactive barriers (PRBs) during and after construction of the barrier and as a monitoring tool to determine the long-term operational health of the barrier. The method is novel because it inserts the electrodes directly into the barrier itself. Numerical modeling calculations indicate that the ERT method can detect flaws (voids) in the barrier as small as 0.11 m{sup 2} (0.33 m x 0.33 m) when the aspect ratio of the electrodes are 2:1. Laboratory measurements indicate that the change in resistance over time of the iron-filling mixture used to create the PRB is sufficient for ERT to monitor the long-term health of the barrier. The use of this ERT method allows for the cost-effective installation of the barrier, especially when the vadose zone is large, because borehole installation methods, rather than trenching methods, can be used.

  12. Electrical resistivity tomography study of Taal volcano hydrothermal system, Philippines

    NASA Astrophysics Data System (ADS)

    Fikos, I.; Vargemezis, G.; Zlotnicki, J.; Puertollano, J. R.; Alanis, P. B.; Pigtain, R. C.; Villacorte, E. U.; Malipot, G. A.; Sasai, Y.

    2012-10-01

    Taal volcano (311 m in altitude) is located in The Philippines (14°N, 121°E) and since 1572 has erupted 33 times, causing more than 2,000 casualties during the most violent eruptions. In March 2010, the shallow structures in areas where present-day surface activity takes place were investigated by DC resistivity surveys. Electrical resistivity tomography (ERT) lines were performed above the two identified hydrothermal areas located on the northern flank of the volcano and in the Main Crater, respectively. Due to rough topography, deep valleys, and dense vegetation, most measurements were collected using a remote method based on a laboratory-made equipment. This allowed retrieval of information down to a depth of 250 m. ERTs results detail the outlines of the two geothermal fields defined by previous self-potential, CO2 soil degassing, ground temperature, and magnetic mapping (Harada et al. Japan Acad Sci 81:261-266, 2005; Zlotnicki et al. Bull Volcanol 71:29-49, 2009a, Phys Chem Earth 34:294-408, 2009b). Hydrothermal fluids originate mainly from inside the northern part of the Main Crater at a depth greater than the bottom of the Crater Lake, and flow upward to the ground surface. Furthermore, water from the Main Crater Lake infiltrates inside the surrounding geological formations. The hydrothermal fluids, outlined by gas releases and high temperatures, cross the crater rim and interact with the northern geothermal field located outside the Main Crater.

  13. Investigations of discontinuous permafrost using electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Lewkowicz, Antoni

    2016-04-01

    We have used electrical resistivity tomography (ERT) extensively over the past five years to examine frozen ground characteristics at natural and disturbed sites within the discontinuous permafrost zones of northern Canada. Examples of pure research include investigations to delimit permafrost patch size, to examine changes in permafrost conditions at altitudinal treeline, and to assess permafrost thickness in palsa bogs. Applied research has included hazard mapping where ERT, in association with boreholes, has been used to characterize permafrost conditions in different terrain units at Yukon communities as part of planning for climate change adaptation. ERT has also been used to examine temporal change through repeated surveys at sites equipped with permanent arrays. Rapid change is occurring at sites which were subject to recent forest fire in the Northwest Territories. Gradual reductions in average resistivity at sites along the Alaska Highway in Yukon and northern British Columbia indicate progressive increases in unfrozen moisture while ground temperatures at the same sites have increased only very slightly. We conclude that ERT should become a standard technique for the investigation of discontinuous permafrost sites and should be incorporated as a monitoring technique within international programs such as the Global Terrestrial Network for Permafrost.

  14. Applications of electrical resistance tomography to subsurface environmental restoration

    SciTech Connect

    Ramirez, A.L.; Daily, W.D.

    1994-11-15

    We are developing a new imaging technique, Electrical Resistance Tomography (ERT), to map subsurface liquids as flow occurs during natural or clean-up processes and to map geologic structure. Natural processes (such as surface water infiltrating the vadose zone) and man-induced processes (such as tank leaks and clean-up processes such as steam injection), can create changes in a soil`s electrical properties that are readily measured. We have conducted laboratory and a variety of field experiments to investigate the capabilities and limitations of ERT for imaging underground structures and processes. In the last four years we have used ERT to successfully monitor several field processes including: a subsurface steam injection process (for VOC removal), an air injection process (below the water table) for VOC removal, water infiltration through the vadose zone, radio-frequency heating, ohmic heating, and tank and pond leaks. The information derived from ERT can be used by remediation projects to: detect and locate leaks, determine the effectiveness of clean-up processes, select appropriate clean-up alternatives, and to verify the installation and performance of subsurface barriers.

  15. High temperature setup for measurements of Seebeck coefficient and electrical resistivity of thin films using inductive heating.

    PubMed

    Adnane, L; Williams, N; Silva, H; Gokirmak, A

    2015-10-01

    We have developed an automated setup for simultaneous measurement of Seebeck coefficient S(T) and electrical resistivity ρ(T) of thin film samples from room temperature to ∼650 °C. S and ρ are extracted from current-voltage (I-V) measurements obtained using a semiconductor parameter analyzer and temperature measurements obtained using commercial thermocouples. The slope and the x-axis intercept of the I-V characteristics represent the sample conductance G and the Seebeck voltage, respectively. The measured G(T) can be scaled to ρ(T) by the geometry factor obtained from the room temperature resistivity measurement of the film. The setup uses resistive or inductive heating to control the temperature and temperature gradient on the sample. Inductive heating is achieved with steel plates that surround the test area and a water cooled copper pipe coil underneath that generates an AC magnetic field. The measurements can be performed using resistive heating only or inductive heating only, or a combination of both depending on the desired heating ranges. Inductive heating provides a more uniform heating of the test area, does not require contacts to the sample holder, can be used up to the Curie temperature of the particular magnetic material, and the temperature gradients can be adjusted by the relative positions of the coil and sample. Example results obtained for low doped single-crystal silicon with inductive heating only and with resistive heating only are presented. PMID:26520996

  16. Composite rod insulators for ac power lines; Electrical performance of various designs at a coastal testing station

    SciTech Connect

    Houlgate, R.G.; Swift, D.A. )

    1990-10-01

    The electrical performance of thirty-six composite insulators - of four commercial types for each AC system level of 34.5 kV, 230 kV and 500 kV - has been determined at the CEGB insulator testing station, Brighton, England. The weathershed materials were epoxy-resin, ethylene propylene rubber and silicone rubber; half of the 230 kV insulators had no stress rings. Surface leakage current was recorded for surge levels of 25 mA, 150 mA and 500 mA; a special technique was developed to obtain the flashover statistics of the 500 kV insulators, thereby enabling performance of the composite insulator to be quantified relative to that of a string of cap and pin porcelain insulators of anti-fog design, the deterioration of the insulators was observed by making regular visual inspections. The practical consequences of the findings and the causes of the degradation are discussed.

  17. Estimation of tree root distribution using electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Schmaltz, Elmar; Uhlemann, Sebastian

    2016-04-01

    Trees influence soil-mantled slopes mechanically by anchoring in the soil with coarse roots. Forest-stands play an important role in mechanical reinforcement to reduce the susceptibility to slope failures. However, the effect of stabilisation of roots is connected with the distribution of roots in the ground. The architecture and distribution of tree roots is diverse and strongly dependent on species, plant age, stand density, relief, nutrient supply as well as climatic and pedologic conditions. Particularly trees growing on inclined slopes show shape-shifting root systems. Geophysical techniques are commonly used to non-invasively study hydrological and geomorphological subsurface properties, by imaging contrasting physical properties of the ground. This also poses the challenge for geophysical imaging of root systems, as properties, such as electrical resistivity, of dry and wet roots fall within the range of soils. The objective of this study is whether electrical resistivity tomography (ERT) allows a reliable reproduction of root systems of alone-standing trees on diverse inclined slopes. In this regard, we set the focus on the branching of secondary roots of two common walnut trees (Juglans regia L.) that were not disturbed in the adjacencies and thus expected to develop their root systems unhindered. Walnuts show a taproot-cordate root system with a strong tap-root in juvenile age and a rising cordate rooting with increasing age. Hence, mature walnuts can exhibit a root system that appears to be deformed or shifted respectively when growing at hillslope locations. We employed 3D ERT centred on the tree stem, comprising dipole-dipole measurements on a 12-by-41 electrode grid with 0.5 m and 1.0m electrode spacing in x- and y-direction respectively. Data were inverted using a 3D smoothness constrained non-linear least-squares algorithm. First results show that the general root distribution can be estimated from the resistivity models and that shape

  18. Advances in the application of in situ electrical resistance heating

    SciTech Connect

    Smith, Gregory J.; Beyke, Gregory

    2007-07-01

    Electrical Resistance Heating (ERH) is an aggressive in situ thermal remediation technology that was developed by the U.S. Department of Energy from the original oil production technology to enhance vapor extraction remediation technologies in low permeability soils. Soil and groundwater are heated by the passage of electrical current through saturated and unsaturated soil between electrodes, not by the electrodes themselves. It is the resistance to the flow of electrical current that results in increased subsurface temperatures, and this is typically applied to the boiling point of water. It is estimated that more than 75 ERH applications have been performed. Capacity to perform these projects has increased over the years, and as many as 15 to 20 of these applications now being performed at any given time, mainly in North America, with some European applications. While the main focus has been to vaporize volatile organic compounds, as one would expect other semi-volatile and non-volatile organic compounds have also been encountered, resulting in observations of chemical and physical reactions that have not been normally incorporated into environmental restoration projects. One such reaction is hydrolysis, which is slow under normal groundwater temperatures, becomes very rapid under temperatures that can easily be achieved using ERH. As a result, these chemical and physical reactions are increasing the applicability of ERH in environmental restoration projects, treating a wider variety of compounds and utilizing biotic and abiotic mechanisms to reduce energy costs. For the treatment of oil and coal tar residues from manufactured gas plants, a process TRS has called steam bubble floatation is used to physically remove the coal and oil tar from the soils for collection using conventional multi-phase collection methods. Heat-enhanced hydrolysis has been used to remediate dichloromethane from soils and groundwater at a site in Illinois, while heat-enhanced biotic and

  19. An improved FEM model for computing transport AC loss in coils made of RABiTS YBCO coated conductors for electric machines

    NASA Astrophysics Data System (ADS)

    Ainslie, Mark D.; Rodriguez-Zermeno, Victor M.; Hong, Zhiyong; Yuan, Weijia; Flack, Timothy J.; Coombs, Timothy A.

    2011-04-01

    AC loss can be a significant problem for any applications that utilize or produce an AC current or magnetic field, such as an electric machine. The authors investigate the electromagnetic properties of high temperature superconductors with a particular focus on the AC loss in superconducting coils made from YBCO coated conductors for use in an all-superconducting electric machine. This paper presents an improved 2D finite element model for the cross-section of such coils, based on the H formulation. The model is used to calculate the transport AC loss of a racetrack-shaped coil using constant and magnetic field-dependent critical current densities, and the inclusion and exclusion of a magnetic substrate, as found in RABiTS (rolling-assisted biaxially textured substrate) YBCO coated conductors. The coil model is based on the superconducting stator coils used in the University of Cambridge EPEC Superconductivity Group's all-superconducting permanent magnet synchronous motor design. To validate the modeling results, the transport AC loss of a stator coil is measured using an electrical method based on inductive compensation by means of a variable mutual inductance. Finally, the implications of the findings on the performance of the motor are discussed.

  20. AC electric field induced dielectrophoretic assembly behavior of gold nanoparticles in a wide frequency range

    NASA Astrophysics Data System (ADS)

    Liu, Weiyu; Wang, Chunhui; Ding, Haitao; Shao, Jinyou; Ding, Yucheng

    2016-05-01

    In this work, we focus on frequency-dependence of pearl chain formations (PCF) of gold nanoparticles driven by AC dielectrophoresis (DEP), especially in a low field-frequency range, where induced double-layer charging effect at ideally polarizable surfaces on particle DEP behavior and surrounding liquid motion need not be negligible. As field frequency varies, grown features of DEP assembly structures ranging from low-frequency non-bridged gap to high-frequency single gold nanoparticle-made nanowires bridging the electrodes are demonstrated experimentally. Specifically, at 10 kHz, a kind of novel channel-like structure with parallel opposing banks is formed at the center of interelectrode gap. In stark contrast, at 1 MHz, thin PCF with diameter of 100 nm is created along the shortest distance of the isolation spacing. Moreover, a particular conductive path of nanoparticle chains is produced at 1 MHz in a DEP device embedded with multiple floating electrodes. A theoretical framework taking into account field-induced double-layer polarization at both the particle/electrolyte and electrode/electrolyte interface is developed to correlate these experimental observations with induced-charge electrokinetic (ICEK) phenomenon. And a RC circuit model is helpful in accounting for the formation of this particular non-bridged channel-like structure induced by a low-frequency AC voltage. As compared to thin PCF formed at high field frequency that effectively short circuits the electrode pair, though it is difficult for complete PCF bridging to occur at low frequency, the non-bridged conducting microstructure has potential to further miniaturize the size of electrode gap fabricated by standard micromachining process and may find useful application in biochemical sensing.

  1. Influence of temperature on the electric, dielectric and AC conductivity properties of nano-crystalline zinc substituted cobalt ferrite synthesized by solution combustion technique

    NASA Astrophysics Data System (ADS)

    Rani, Ritu; Kumar, Gagan; Batoo, Khalid M.; Singh, M.

    2014-06-01

    Cobalt-zinc nanoferrites with formulae Co ZnFeO, where x = 0.0, 0.1, 0.2 and 0.3, have been synthesized by solution combustion technique. The variation of DC resistivity with temperature shows the semiconducting behavior of all nanoferrites. The dielectric properties such as dielectric constant (') and dielectric loss tangent (tan are investigated as a function of temperature and frequency. Dielectric constant and loss tangent are found to be increasing with an increase in temperature while with an increase in frequency both, ' and tan , are found to be decreasing. The dielectric properties have been explained on the basis of space charge polarization according to Maxwell-Wagner's two-layer model and the hopping of charge between Fe and Fe. Further, a very high value of dielectric constant and a low value of tan are the prime achievements of the present work. The AC electrical conductivity ( is studied as a function of temperature as well as frequency and is observed to be increasing with the increase in temperature and frequency.

  2. Electrical Resistance Tomography Field Trials to Image CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Newmark, R.

    2003-12-01

    , telluric noise can be comparable to the signal levels during periods of geomagnetic activity. Finally, instrumentation stability over long periods is necessary to follow trends in reservoir behavior for several years. Solutions to these and other problems will be presented along with results from the first two years of work at a producing field undergoing CO2 flood. If electrical resistance tomography (ERT) imaging can be performed using existing well casings as long electrodes, it will substantially reduce the cost to monitor CO2 sequestration. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  3. Time dependence of electrical bioimpedance on porcine liver and kidney under a 50 Hz ac current

    NASA Astrophysics Data System (ADS)

    Spottorno, J.; Multigner, M.; Rivero, G.; Álvarez, L.; de la Venta, J.; Santos, M.

    2008-03-01

    The purpose of this work is to study the changes of the bioimpedance from its 'in vivo' value to the values measured in a few hours after the excision from the body. The evolution of electrical impedance with time after surgical extraction has been studied on two porcine organs: the liver and the kidney. Both in vivo and ex vivo measurements of electrical impedance, measuring its real and imaginary components, have been performed. The in vivo measurements have been carried out with the animal anaesthetized. The ex vivo measurements have been made more than 2 h after the extraction of the organ. The latter experiment has been carried out at two different stabilized temperatures: at normal body temperature and at the standard preservation temperature for transplant surgery. The measurements show a correlation between the biological evolution and the electrical bioimpedance of the organs, which increases from its in vivo value immediately after excision, multiplying its value by 2 in a few hours.

  4. Identification of boundaries in the cometary environment from AC electric field measurements

    NASA Astrophysics Data System (ADS)

    Mogilevsky, M.; Mikhailov, Y.; Molchanov, O.; Grard, R.; Pedersen, A.; Trotignon, J. G.; Beghin, C.; Formisano, V.; Shapiro, V.; Shevchenko, V.

    1986-12-01

    Electric fields are measured with the AVP-V experiment in the frequency range 8 Hz - 300 kHz. The field amplitude increases significantly, first at a distance of 2×105km, then at distances of 1.2 - 1.5×105km, and 5 - 7×104km from the nucleus. These phenomena have been observed both on VEGA-1 and VEGA-2. The electric field measurements are compared with data obtained from dust and plasma experiments; possible mechanisms responsible for the existence of these boundaries are discussed.

  5. Evaluation of semiconductor devices for Electric and Hybrid Vehicle (EHV) ac-drive applications, volume 2

    NASA Technical Reports Server (NTRS)

    Lee, F. C.; Chen, D. Y.; Jovanic, M.; Hopkins, D. C.

    1985-01-01

    Test data of switching times characterization of bipolar transistors, of field effect transistor's switching times on-resistance and characterization, comparative data of field effect transistors, and test data of field effect transistor's parallel operation characterization are given. Data is given in the form of graphs.

  6. Electrical Resistivity Imaging to Quantify Spatial Soil Heterogeneity

    NASA Astrophysics Data System (ADS)

    Guber, A. K.; Hadzick, Z. L.; Garzio, A.; Pachepsky, Y. A.; Hill, R. L.; Rowland, R. A.; Golovko, L. A.

    2008-12-01

    Electrical resistivity (ER) sounding is increasingly being used as non-invasive technique to reveal and map soil heterogeneity. The objective of this work was to evaluate effects of soil properties on the electric resistivity and to observe these effects in spatial context in coarse-textured soil. The studied soil had the sandy loam texture. The 20x20-m study plot was located at the ARS Beltsville OPE3 site. Relationship between ER, bulk density, and soil water contents was first studied in disturbed 80-cm3 soil samples taken at 10 depths with 20 cm increment. Soil water contents were brought to 6 predefined levels in each sample and were in the range from air dry to 0.27g g-1. Soil bulk density varied in the range from 1.28 to 1.45 g cm-3. The ER in soil samples decreased as the gravimetric water content increased. The ER decrease became more pronounced as bulk density decreased. Next, soil samples were taken at field water contents from 10 depths at 12 locations. Particle size distributions, pH, water content and ER were measured in each sample. Bulk density values in part of the soil profiles below 80 cm ranged from 1.5 to 1.8 g cm- 3 and no dependence between ER and water content could be established in this soil layer where the lowest values of ER were recorded. The increased conductivity of the soil solid phase could be a possible reason for that since soil in this part of the profile had pH values two or more units less than in the upper part. The lowest sand contents corresponded to highest ER values in this soil layer. Finally, the vertical electrical sounding (LandMapper ERM-02) was used to infer spatial distribution of soil resistivity along a 9-m transect for different dates when soil was dry and when it was relatively uniformly wetted with long low- intensity rain. The Wenner-Shlumberger array with 31-electrodes spaced 30-cm apart was used. Soil temperature and water content with multisensor capacitance probes (SENTEC) were monitored at 10 depths down

  7. Electrical Experiments. VT-214-12-2. Part II. A-C Across the Line Control.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational Education.

    Designed for high school electronics students, this second document in a series of six electrical learning activity packages focuses on alternating current across-the-line control. An introductory section gives the objective for the activities, an introduction, and an outline of the content. The remainder of the activity book is comprised of…

  8. Inc A/C Plasmids are Prevalent in Multidrug-Resistant Salmonella enterica Isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteria plasmids are fragments of extra-chromosomal double stranded deoxyribonucleic acid (DNA) that can contain a variety of genes beneficial to the host organism like antibiotic resistance. The objective of this study was to characterize a collection of 437 Salmonella enterica isolates from diff...

  9. Direct simulation of phase delay effects on induced-charge electro-osmosis under large ac electric fields.

    PubMed

    Sugioka, Hideyuki

    2016-08-01

    The standard theory of induced-charge electro-osmosis (ICEO) often overpredicts experimental values of ICEO velocities. Using a nonsteady direct multiphysics simulation technique based on the coupled Poisson-Nernst-Planck and Stokes equations for an electrolyte around a conductive cylinder subject to an ac electric field, we find that a phase delay effect concerning an ion response provides a fundamental mechanism for electrokinetic suppression. A surprising aspect of our findings is that the phase delay effect occurs even at much lower frequencies (e.g., 50 Hz) than the generally believed charging frequency of an electric double layer (typically, 1 kHz) and it can decrease the electrokinetic velocities in one to several orders. In addition, we find that the phase delay effect may also cause a change in the electrokinetic flow directions (i.e., flow reversal) depending on the geometrical conditions. We believe that our findings move toward a more complete understanding of complex experimental nonlinear electrokinetic phenomena. PMID:27627362

  10. Electrical properties of Cu/a-BaTiO3/Cu capacitors studied in dc and ac regimes

    NASA Astrophysics Data System (ADS)

    El Kamel, F.; Gonon, P.; Radnóczi, G.

    2009-04-01

    Electrical properties of Cu/a-BaTiO3/Cu capacitors have been investigated in both dc and ac regimes as a function of temperature. A clear correlation is found between the temperature dependence of dc leakage currents and the temperature variation of the dielectric relaxation, showing that these measurement techniques are probing the same defects. Using either of these two techniques, we were able to detect at least three types of electrical active defects. Oxygen vacancy diffusion takes place at high temperature with an activation energy of around 1 eV. The diffusion of copper creates ionic defects in the a-BaTiO3 layer, which introduces two other contributions to the conduction process. The first is related to the motion of ionic species (ionic conduction, thermally activated with an activation energy of 0.3 eV). In addition, it has been argued that the presence of copper ions introduces a discrete set of shallow traps within the bandgap, resulting in a n-type conductivity (electronic conduction). The traps depth and their effective density are 0.45 eV and 4×1016 cm-3, respectively.

  11. Predicting and tracking spatiotemporal moments in electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Ward, W. O. C.; Wilkinson, P. B.; Chambers, J.; Bai, L.

    2015-12-01

    Visualisation is an invaluable tool in the study of near sub-surface processes, whether by mathematical modelling or by geophysical imaging. Quantitative analysis can further assist interpretation of the ongoing physical processes, and it is clear that any reliable model should take direct observations into account. Using electrical resistivity tomography (ERT), localised areas can be surveyed to produce 2-D and 3-D time-lapse images. This study investigates combining quantitative results obtained via ERT with spatio-temporal motion models in tracer experiments to interpret and predict fluid flow. As with any indirect imaging technique, ERT suffers specific issues with resolution and smoothness as a result of its inversion process. In addition, artefacts are typical in the resulting volumes. Mathematical models are also a source of uncertainty - and in combining these with ERT images, a trade-off must be made between the theoretical and the observed. Using computational imaging, distinct regions of stable resistivity can be directly extracted from a time-slice of an ERT volume. The automated nature, as well the potential for more than one region-of-interest, means that multiple regions can be detected. Using Kalman filters, it is possible to convert the detections into a process state, taking into account pre-defined models and predicting progression. In consecutive time-steps, newly detected features are assigned, where possible, to existing predictions to create tracks that match the tracer model. Preliminary studies looked at a simple motion model, tracking the centre of mass of a tracer plume with assumed constant velocity and mean resistivity. Extending the model to factor in spatial distribution of the plume, an oriented semi-axis is used to represent the centralised second-order moment, with an increasing factor of magnitude to represent the plume dispersion. Initial results demonstrate the efficacy of the approach, significantly improving reliability as the

  12. Electric-field-modulated nonvolatile resistance switching in VO₂/PMN-PT(111) heterostructures.

    PubMed

    Zhi, Bowen; Gao, Guanyin; Xu, Haoran; Chen, Feng; Tan, Xuelian; Chen, Pingfan; Wang, Lingfei; Wu, Wenbin

    2014-04-01

    The electric-field-modulated resistance switching in VO2 thin films grown on piezoelectric (111)-0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 (PMN-PT) substrates has been investigated. Large relative change in resistance (10.7%) was observed in VO2/PMN-PT(111) hererostructures at room temperature. For a substrate with a given polarization direction, stable resistive states of VO2 films can be realized even when the applied electric fields are removed from the heterostructures. By sweeping electric fields across the heterostructure appropriately, multiple resistive states can be achieved. These stable resistive states result from the different stable remnant strain states of substrate, which is related to the rearrangements of ferroelectric domain structures in PMN-PT(111) substrate. The resistance switching tuned by electric field in our work may have potential applications for novel electronic devices. PMID:24634978

  13. Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum).

    PubMed

    Bi, Ran; Schlaak, Michael; Siefert, Eike; Lord, Richard; Connolly, Helen

    2011-04-01

    The combined use of electrokinetic remediation and phytoremediation to decontaminate soil polluted with heavy metals has been demonstrated in a laboratory-scale experiment. The plants species selected were rapeseed and tobacco. Three kinds of soil were used: un-contaminated soil from forest area (S1), artificially contaminated soil with 15mgkg(-1) Cd (S2) and multi-contaminated soil with Cd, Zn and Pb from an industrial area (S3). Three treatment conditions were applied to the plants growing in the experimental vessels: control (no electrical field), alternating current electrical field (AC, 1Vcm(-1)) and direct current electrical field (DC, 1Vcm(-1)) with switching polarity every 3h. The electrical fields were applied for 30d for rapeseed and 90d for tobacco, each experiment had three replicates. After a total of 90d growth for rapeseed and of 180d for tobacco, the plants were harvested. The pH variation from anode to cathode was eliminated by switching the polarity of the DC field. The plants reacted differently under the applied electrical field. Rapeseed biomass was enhanced under the AC field and no negative effect was found under DC field. However, no enhancement of the tobacco biomass under the AC treatment was found. The DC field had a negative influence on biomass production on tobacco plants. In general, Cd content was higher in both species growing in S2 treated with AC field compared to the control. Metal uptake (Cd, Cu, Zn and Pb) per rapeseed plant shoot was enhanced by the application of AC field in all soils. PMID:21237480

  14. Frequency-dependent electrodeformation of giant phospholipid vesicles in AC electric field

    PubMed Central

    2010-01-01

    A model of vesicle electrodeformation is described which obtains a parametrized vesicle shape by minimizing the sum of the membrane bending energy and the energy due to the electric field. Both the vesicle membrane and the aqueous media inside and outside the vesicle are treated as leaky dielectrics, and the vesicle itself is modeled as a nearly spherical shape enclosed within a thin membrane. It is demonstrated (a) that the model achieves a good quantitative agreement with the experimentally determined prolate-to-oblate transition frequencies in the kilohertz range and (b) that the model can explain a phase diagram of shapes of giant phospholipid vesicles with respect to two parameters: the frequency of the applied alternating current electric field and the ratio of the electrical conductivities of the aqueous media inside and outside the vesicle, explored in a recent paper (S. Aranda et al., Biophys J 95:L19–L21, 2008). A possible use of the frequency-dependent shape transitions of phospholipid vesicles in conductometry of microliter samples is discussed. PMID:21886342

  15. Research on nonlinear feature of electrical resistance of acupuncture points.

    PubMed

    Wei, Jianzi; Mao, Huijuan; Zhou, Yu; Wang, Lina; Liu, Sheng; Shen, Xueyong

    2012-01-01

    A highly sensitive volt-ampere characteristics detecting system was applied to measure the volt-ampere curves of nine acupuncture points, LU9, HT7, LI4, PC6, ST36, SP6, KI3, LR3, and SP3, and corresponding nonacupuncture points bilaterally from 42 healthy volunteers. Electric currents intensity was increased from 0 μA to 20 μA and then returned to 0 μA again. The results showed that the volt-ampere curves of acupuncture points had nonlinear property and magnetic hysteresis-like feature. On all acupuncture point spots, the volt-ampere areas of the increasing phase were significantly larger than that of the decreasing phase (P < 0.01). The volt-ampere areas of ten acupuncture point spots were significantly smaller than those of the corresponding nonacupuncture point spots when intensity was increase (P < 0.05 ~ P < 0.001). And when intensity was decrease, eleven acupuncture point spots showed the same property as above (P < 0.05 ~ P < 0.001), while two acupuncture point spots showed opposite phenomenon in which the areas of two acupuncture point spots were larger than those of the corresponding nonacupuncture point spots (P < 0.05 ~ P < 0.01). These results show that the phenomenon of low skin resistance does not exist to all acupuncture points. PMID:23346191

  16. Measuring turbulence in a flotation cell using electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Meng, Jun; Xie, Weiguo; Runge, Kym; Bradshaw, Dee

    2015-11-01

    Measuring turbulence in an industrial flotation environment has long been problematic due to the opaque, aggressive, and abrasive three-phase environment in a flotation cell. One of the promising measurement techniques is electrical resistance tomography (ERT). By measuring the conductivity distribution across a measurement area, ERT has been adopted by many researchers to monitor and investigate many processes involving multiphase flows. In the research outlined in this paper, a compact ERT probe was built and then used to measure the conductivity distribution within a 60 l flotation cell operated with water and air. Two approaches were then developed to process the ERT data and estimate turbulence-related parameters. One is a conductivity variance method and the other is based on the Green-Kubo relations. Both rely on and use the fluctuation in the ERT measurement caused by bubbles moving through the measurement area changing the density of the fluid. The results from both approaches were validated by comparing the results produced by the ERT probe in a 60l flotation cell operated at different air rates and impeller speeds to that measured using an alternative turbulence measurement device. The second approach is considered superior to the first as the first requires the development of auxiliary information which would not usually be known for a new system.

  17. Electrical resistance sensors record spring flow timing, Grand Canyon, Arizona

    USGS Publications Warehouse

    Adams, E.A.; Monroe, S.A.; Springer, A.E.; Blasch, K.W.; Bills, D.J.

    2006-01-01

    Springs along the south rim of the Grand Canyon, Arizona, are important ecological and cultural resources in Grand Canyon National Park and are discharge points for regional and local aquifers of the Coconino Plateau. This study evaluated the applicability of electrical resistance (ER) sensors for measuring diffuse, low-stage (<1.0 cm) intermittent and ephemeral flow in the steep, rocky spring-fed tributaries of the south rim. ER sensors were used to conduct a baseline survey of spring flow timing at eight sites in three spring-fed tributaries in Grand Canyon. Sensors were attached to a nearly vertical rock wall at a spring outlet and were installed in alluvial and bedrock channels. Spring flow timing data inferred by the ER sensors were consistent with observations during site visits, with flow events recorded with collocated streamflow gauging stations and with local precipitation gauges. ER sensors were able to distinguish the presence of flow along nearly vertical rock surfaces with flow depths between 0.3 and 1.0 cm. Laboratory experiments confirmed the ability of the sensors to monitor the timing of diffuse flow on impervious surfaces. A comparison of flow patterns along the stream reaches and at springs identified the timing and location of perennial and intermittent flow, and periods of increased evapotranspiration.

  18. Visualizing Moisture Storage in Basin Lysimeters Using Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Schnabel, W.; Munk, J.; Lee, W.

    2010-12-01

    Electrical resistivity tomography (ERT) was utilized to evaluate soil moisture in two large (10m x 20m x 2m) basin lysimeters over a four-year period in Anchorage, Alaska. The lysimeters were intended to test the efficacy of two competing landfill cover designs, thus water balance information was collected over the entire experimental period. The first lysimeter contained a thin (0.5m) layer of compacted soil within its 2m depth and was planted with local grasses. The second lysimeter contained no compacted soil layer and was planted with deep-rooting woody vegetation to maximize moisture removal via evapotranspiration. After four years of observation, 291mm of moisture percolated through the compacted soil lysimeter compared to 201mm in the evapotranspiration lysimeter. This presentation describes the observed water balance results, discusses efficacy of utilizing compacted soils versus evapotranspiration as the primary means of minimizing infiltration into engineered soil systems, and demonstrates the use of ERT as a technique for visualizing soil moisture storage.

  19. Sinkhole detection using electrical resistivity tomography in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Youssef, Ahmed M.; El-Kaliouby, Hesham; Zabramawi, Yasser A.

    2012-12-01

    Karst phenomena exist in different areas in the Kingdom of Saudi Arabia, causing serious environmental problems that affect urban development and infrastructure (buildings, roads and highways). One of the most important problems are sinkholes, which most of the time consist of unfilled voids. These sinkholes are formed as a result of the chemical leaching of carbonate and evaporite formations by percolating water. Field investigations show that there are many surface expressions of sinkholes in the area; some appear on the ground surface and others are hidden in the subsurface. Geophysical data were collected at the study area using two-dimensional electrical resistivity tomography (ERT) with different electrode spacings to delineate buried sinkholes and associated subsurface cavities. Our findings indicated that the dipole-dipole method using an electrode spacing of 1 m was successful in detecting a known subsurface sinkhole. According to the ERT method the detected sinkhole depth ranges from 2 to 4 m, its height ranges from 2 to 4 m, and its width ranges from 5 to 7 m. Field observation has verified the geophysical data, especially along the profile A-A\\. Finally, closely spaced ERT profiles were successful in determining the three-dimensional volume of the subsurface sinkhole.

  20. Electrical resistance sensors record spring flow timing, Grand Canyon, Arizona.

    PubMed

    Adams, Eric A; Monroe, Stephen A; Springer, Abraham E; Blasch, Kyle W; Bills, Donald J

    2006-01-01

    Springs along the south rim of the Grand Canyon, Arizona, are important ecological and cultural resources in Grand Canyon National Park and are discharge points for regional and local aquifers of the Coconino Plateau. This study evaluated the applicability of electrical resistance (ER) sensors for measuring diffuse, low-stage (<1.0 cm) intermittent and ephemeral flow in the steep, rocky spring-fed tributaries of the south rim. ER sensors were used to conduct a baseline survey of spring flow timing at eight sites in three spring-fed tributaries in Grand Canyon. Sensors were attached to a nearly vertical rock wall at a spring outlet and were installed in alluvial and bedrock channels. Spring flow timing data inferred by the ER sensors were consistent with observations during site visits, with flow events recorded with collocated streamflow gauging stations and with local precipitation gauges. ER sensors were able to distinguish the presence of flow along nearly vertical rock surfaces with flow depths between 0.3 and 1.0 cm. Laboratory experiments confirmed the ability of the sensors to monitor the timing of diffuse flow on impervious surfaces. A comparison of flow patterns along the stream reaches and at springs identified the timing and location of perennial and intermittent flow, and periods of increased evapotranspiration. PMID:16961484

  1. Electrical Characteristics, Electrode Sheath and Contamination Layer Behavior of a Meso-Scale Premixed Methane-Air Flame Under AC/DC Electric Fields

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Yan, Limin; Zhang, Hao; Li, Guoxiu

    2016-05-01

    Electrical characteristics of a nozzle-attached meso-scale premixed methane-air flame under low-frequency AC (0-4300 V, 0-500 Hz) and DC (0-3300 V) electric fields were studied. I-V curves were measured under different experimental conditions to estimate the magnitude of the total current 100-102 μA, the electron density 1015-1016 m‑3 and further the power dissipation ≤ 0.7 W in the reaction zone. At the same time, the meso-scale premixed flame conductivity 10‑4-10‑3 Ω‑1·m‑1 as a function of voltage and frequency was experimentally obtained and was believed to represent a useful order-of magnitude estimate. Moreover, the influence of the collision sheath relating to Debye length (31–98 μm) and the contamination layer of an active electrode on measurements was discussed, based on the combination of simulation and theoretical analysis. As a result, the electrode sheath dimension was evaluated to less than 0.5 mm, which indicated a complex effect of the collision sheath on the current measurements. The surface contamination effect of an active electrode was further analyzed using the SEM imaging method, which showed elements immigration during the contamination layer formation process. supported by National Natural Science Foundation of China (No. 51376021), and the Fundamental Research Fund for Major Universities (No. 2013JBM079)

  2. Advanced single permanent magnet axipolar ironless stator ac motor for electric passenger vehicles

    NASA Technical Reports Server (NTRS)

    Beauchamp, E. D.; Hadfield, J. R.; Wuertz, K. L.

    1983-01-01

    A program was conducted to design and develop an advanced-concept motor specifically created for propulsion of electric vehicles with increased range, reduced energy consumption, and reduced life-cycle costs in comparison with conventional systems. The motor developed is a brushless, dc, rare-earth cobalt, permanent magnet, axial air gap inductor machine that uses an ironless stator. Air cooling is inherent provided by the centrifugal-fan action of the rotor poles. An extensive design phase was conducted, which included analysis of the system performance versus the SAE J227a(D) driving cycle. A proof-of-principle model was developed and tested, and a functional model was developed and tested. Full generator-level testing was conducted on the functional model, recording electromagnetic, thermal, aerodynamic, and acoustic noise data. The machine demonstrated 20.3 kW output at 1466 rad/s and 160 dc. The novel ironless stator demonstated the capability to continuously operate at peak current. The projected system performance based on the use of a transistor inverter is 23.6 kW output power at 1466 rad/s and 83.3 percent efficiency. Design areas of concern regarding electric vehicle applications include the inherently high windage loss and rotor inertia.

  3. AC electric field for rapid assembly of nanostructured polyaniline onto microsized gap for sensor devices.

    PubMed

    La Ferrara, Vera; Rametta, Gabriella; De Maria, Antonella

    2015-07-01

    Interconnected network of nanostructured polyaniline (PANI) is giving strong potential for enhancing device performances than bulk PANI counterparts. For nanostructured device processing, the main challenge is to get prototypes on large area by requiring precision, low cost and high rate assembly. Among processes meeting these requests, the alternate current electric fields are often used for nanostructure assembling. For the first time, we show the assembly of nanostructured PANI onto large electrode gaps (30-60 μm width) by applying alternate current electric fields, at low frequencies, to PANI particles dispersed in acetonitrile (ACN). An important advantage is the short assembly time, limited to 5-10 s, although electrode gaps are microsized. That encouraging result is due to a combination of forces, such as dielectrophoresis (DEP), induced-charge electrokinetic (ICEK) flow and alternate current electroosmotic (ACEO) flow, which speed up the assembly process when low frequencies and large electrode gaps are used. The main achievement of the present study is the development of ammonia sensors created by direct assembling of nanostructured PANI onto electrodes. Sensors exhibit high sensitivity to low gas concentrations as well as excellent reversibility at room temperature, even after storage in air. PMID:26009866

  4. Electrical resistivity imaging for unknown bridge foundation depth determination

    NASA Astrophysics Data System (ADS)

    Arjwech, Rungroj

    Unknown bridge foundations pose a significant safety risk due to stream scour and erosion. Records from older structures may be non-existent, incomplete, or incorrect. Nondestructive and inexpensive geophysical methods have been identified as suitable to investigate unknown bridge foundations. The objective of the present study is to apply advanced 2D electrical resistivity imaging (ERI) in order to identify depth of unknown bridge foundations. A survey procedure is carried out in mixed terrain water and land environments with rough topography. A conventional resistivity survey procedure is used with the electrodes installed on the stream banks. However, some electrodes must be adapted for underwater use. Tests were conducted in one laboratory experimentation and at five field experimentations located at three roadway bridges, a geotechnical test site, and a railway bridge. The first experimentation was at the bridges with the smallest foundations, later working up in size to larger drilled shafts and spread footings. Both known to unknown foundations were investigated. The geotechnical test site is used as an experimental site for 2D and 3D ERI. The data acquisition is carried out along 2D profile with a linear array in the dipole-dipole configuration. The data collections have been carried out using electrodes deployed directly across smaller foundations. Electrodes are deployed in proximity to larger foundations to image them from the side. The 2D ERI can detect the presence of a bridge foundation but is unable to resolve its precise shape and depth. Increasing the spatial extent of the foundation permits better image of its shape and depth. Using electrode < 1 m to detect a slender foundation < 1 m in diameter is not feasible. The 2D ERI method that has been widely used for land surface surveys presently can be adapted effectively in water-covered environments. The method is the most appropriate geophysical method for determination of unknown bridge foundations

  5. A one-dimensional model of solid-earth electrical resistivity beneath Florida

    USGS Publications Warehouse

    Blum, Cletus; Love, Jeffrey J.; Pedrie, Kolby; Bedrosian, Paul A.; Rigler, E. Joshua

    2015-01-01

    An estimated one-dimensional layered model of electrical resistivity beneath Florida was developed from published geological and geophysical information. The resistivity of each layer is represented by plausible upper and lower bounds as well as a geometric mean resistivity. Corresponding impedance transfer functions, Schmucker-Weidelt transfer functions, apparent resistivity, and phase responses are calculated for inducing geomagnetic frequencies ranging from 10−5 to 100 hertz. The resulting one-dimensional model and response functions can be used to make general estimates of time-varying electric fields associated with geomagnetic storms such as might represent induction hazards for electric-power grid operation. The plausible upper- and lower-bound resistivity structures show the uncertainty, giving a wide range of plausible time-varying electric fields.

  6. Thermal Expansion and Electrical Resistivity Studies of Nickel and ARMCO Iron at High Temperatures

    NASA Astrophysics Data System (ADS)

    Palchaev, D. K.; Murlieva, Zh. Kh.; Gadzhimagomedov, S. H.; Iskhakov, M. E.; Rabadanov, M. Kh.; Abdulagatov, I. M.

    2015-11-01

    The electrical resistance, ρ (T), and thermal expansion coefficient, β (T), of nickel and ARMCO iron have been simultaneously measured over a wide temperature range from (300 to 1100) K. The well-known standard four-probe potentiometric method was used for measurements of the electrical resistance. The thermal expansion coefficient was measured using the quartz dilatometer technique. Both techniques were combined in the same apparatus for simultaneous measurements of the electrical resistance and TEC for the same specimen. The combined expanded uncertainty of the electrical resistance and thermal expansion coefficient measurements at the 95 % confidence level with a coverage factor of k = 2 is estimated to be 0.5 % and (1.5 to 4.0) %, respectively. The distinct ρ (T) scattering contribution (phonon ρ _{ph}, magnetic ρ m, and residual ρ S) terms were separated and extracted from the measured total resistivity. The physical nature and details of the temperature dependence of the electrical resistance of solid materials and correct estimations of the contributions of various scattering mechanisms to the measured total resistivity were discussed in terms of the anharmonic effect. We experimentally found simple, universal, physically based, semiempirical linear correlations between the kinetic coefficient (electrical resistance) and a thermodynamic (equilibrium) property, the thermal expansion coefficient, of solid materials. The developed, physically based, correlation model has been successfully applied for nanoscale materials (ferromagnetic nickel nanowire). A new s-d-exchange interaction energy determination technique has been proposed.

  7. Electrical Properties of Materials for Elevated Temperature Resistance Strain Gage Application. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen

    1987-01-01

    The objective was to study the electrical resistances of materials that are potentially useful as resistance strain gages at 1000 C. Transition metal carbides and nitrides, boron carbide and silicon carbide were selected for the experimental phase of this research. Due to their low temperature coefficient of resistance and good stability, TiC, ZrC, B sub 4 C and beta-SiC are suggested as good candidates for high temperature resistance strain gage applications.

  8. Corrosion-resistant, electrically-conductive plate for use in a fuel cell stack

    DOEpatents

    Carter, J. David; Mawdsley, Jennifer R.; Niyogi, Suhas; Wang, Xiaoping; Cruse, Terry; Santos, Lilia

    2010-04-20

    A corrosion resistant, electrically-conductive, durable plate at least partially coated with an anchor coating and a corrosion resistant coating. The corrosion resistant coating made of at least a polymer and a plurality of corrosion resistant particles each having a surface area between about 1-20 m.sup.2/g and a diameter less than about 10 microns. Preferably, the plate is used as a bipolar plate in a proton exchange membrane (PEMFC) fuel cell stack.

  9. Electrical resistivity of some Zintl phase and the precursors

    SciTech Connect

    Wolfe, L.

    1990-09-21

    Resistivity measurements have been performed for electric characterization of the compounds Ba{sub 5}Sb{sub 3} and Ba{sub 5}Sb{sub 3}Cl, both with the Mn{sub 5}Si{sub 3} structure type, along with Ca{sub 5}Bi{sub 3} and Ca{sub 5}Bi{sub 3}F, both with the {beta}-Yb{sub 5}Sb{sub 3} structure type. These measurements were taken as a function of temperature using the four probe method on pressed polycrystalline pellets of the compounds. A sealed apparatus was developed for containing these air-sensitive compounds throughout the experiments. By a simple electron count, one extra electron in both Ba{sub 5}Sb{sub 3} and Ca{sub 5}Bi{sub 3} should occupy a conduction band, giving these compounds a metallic character. In the cases of Ba{sub 5}Sb{sub 3}Cl and Ca{sub 5}Bi{sub 3}F, the extra electron should bond to the halide, both filling the valence band and giving rise to semiconducting character. Ca{sub 5}Bi{sub 3}, Ca{sub 5}Bi{sub 3}F, and Ba{sub 5}Sb{sub 3}Cl were found to comply with the electron count prediction. Ba{sub 5}Sb{sub 3}, however, was found to be a semiconductor (E{sub g} = 0.30 eV) with a larger band gap than its corresponding chloride (E{sub g} = 0.09 eV).

  10. Chromium-modified a-C films with advanced structural, mechanical and corrosive-resistant characteristics

    NASA Astrophysics Data System (ADS)

    Ming, Miao Yi; Jiang, Xiaohong; Piliptsou, D. G.; Zhuang, Yuzhao; Rogachev, A. V.; Rudenkov, A. S.; Balmakou, A.

    2016-08-01

    To improve structural, mechanical and chemical properties of diamond-like carbon films, we developed amorphous carbon chromium-modified composite films fabricated by means of cathode magnetic filtered arc deposition. The properties were analyzed by Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy for the purpose of the structure characterization, elemental analysis and topology examination. Moreover, we also assessed residual stress, the coefficient of friction, hardness, the elastic modulus and corrosion parameters through X-ray double-crystal surface profilometry, tribo-testing, nanoindenter-testing, as well as contact angle measurements and potentiodynamic polarization analysis. As a result of a comparative analysis, we revealed a substantial improvement in the characteristics of developed composite films in comparison with amorphous carbon films. For example, Cr-modification is resulted, in greater integrated performance, toughness and corrosion resistance; the residual stress was reduced substantially.

  11. Measurement and modelling of moisture-electrical resistivity relationship of fine-grained unsaturated soils and electrical anisotropy

    NASA Astrophysics Data System (ADS)

    Merritt, A. J.; Chambers, J. E.; Wilkinson, P. B.; West, L. J.; Murphy, W.; Gunn, D.; Uhlemann, S.

    2016-01-01

    A methodology for developing resistivity-moisture content relationships of materials associated with a clayey landslide is presented. Key elements of the methodology include sample selection and preparation, laboratory measurement of resistivity with changing moisture content, and the derivation of models describing the relationship between resistivity and moisture content. Laboratory resistivity measurements show that the techniques utilised (samples and square array) have considerable potential as a means of electropetrophysical calibration of engineering soils and weak rock. Experimental electrical resistivity results show a hierarchy of values dependent on sample lithology, with silty clay exhibiting the lowest resistivities, followed by siltstones and sands, which return the highest resistivities. In addition, finer grained samples show a greater degree of anisotropy between measurement orientations than coarser grained samples. However, suitability of results in light of issues such as sample cracking and electrical conduction must be identified and accounted for if the results are to be accurately up-scaled to inverted model resistivity results. The existence of directional anisotropy makes model calibration curve selection more difficult due to variability in the range of measured laboratory resistances. The use of larger measurement array size means that experimental data will be more representative of bulk lithological properties. In addition, use of electrodes with a relatively high surface area (wide diameter) help maintain low contact resistances and repeat measurement error, relative to narrow electrodes. Variation exists between the fit of experimental data and petrophysical models. Model fit is best for clay-dominated samples but fits less well for sand-dominated samples. Waxman-Smits equation is appropriately applied in this investigation as all samples have considerable clay mineral content, as is shown in non-negligible CEC results. The

  12. Fabrication of intermetallic coatings for electrical insulation and corrosion resistance on high-temperature alloys

    SciTech Connect

    Park, J.-H.; Cho, W.D.

    1996-11-01

    Several intermetallic films were applied to high-temperature alloys (V alloys and 304, 316 stainless steels) to provide electrical insulation and corrosion resistance. Alloy grain growth at 1000 C for the V-5Cr-5Ti alloy was investigated to determine stability of the alloy substrate during coating formation by CVD or metallic vapor processes at 800-850 C. Film layers were examined by optical and scanning electron microscopy and by electron-energy-dispersive and XRD analysis; they were also tested for electrical resistivity and corrosion resistance. Results elucidated the nature of the coatings, which provided both electrical insulation and high-temperature corrosion protection.

  13. Resistive memory effects in BiFeO3 single crystals controlled by transverse electric fields

    NASA Astrophysics Data System (ADS)

    Kawachi, S.; Kuroe, H.; Ito, T.; Miyake, A.; Tokunaga, M.

    2016-04-01

    The effects of electric fields perpendicular to the c-axis of the trigonal cell in single crystals of BiFeO3 are investigated through magnetization and resistance measurements. Magnetization and resistance exhibit hysteretic changes under applied electric fields, which can be ascribed to the reorientation of the magnetoelectric domains. Samples are repetitively switched between high- and low-resistance states by changing the polarity of the applied electric fields over 20 000 cycles at room temperature. These results demonstrate the potential of BiFeO3 for use in non-volatile memory devices.

  14. A novel design of DC-AC electrical machine rotary converter for hybrid solar and wind energy applications

    NASA Astrophysics Data System (ADS)

    Mohammed, K. G.; Ramli, A. Q.; Amirulddin, U. A. U.

    2013-06-01

    This paper proposes the design of a new bi-directional DC-AC rotary converter machine to convert a d.c. voltage to three-phase voltage and vice-versa using a two-stage energy conversion machine. The rotary converter consists of two main stages which are combined into single frame. These two stages are constructed from three main electromagnetic components. The first inner electromagnetic component represents the input stage that enables the DC power generated by solar energy from photo-voltaic cells to be transformed by the second and third components electro-magnetically to produce multi-phase voltages at the output stage. At the same time, extra kinetic energy from wind, which is sufficiently available, can be added to existing torque on the second electromagnetic component. Both of these input energies will add up to the final energy generated at the output terminals. Therefore, the machine will be able to convert solar and wind energies to the output terminals simultaneously. If the solar energy is low, the available wind energy will be able to provide energy to the output terminals and at the same time charges the batteries which are connected as backup system. At this moment, the machine behaves as wind turbine. The energy output from the machine benefits from two energy sources which are solar and wind. At night when the solar energy is not available and also the load is low, the wind energy is able to charge the batteries and at the same time provides output electrical power to the remaining the load. Therefore, the proposed system will have high usage of available renewable energy as compared to separated wind or solar systems. MATLAB codes are used to calculate the required dimensions, the magnetic and electrical circuits parameters to design of the new bi-directional rotary converter machine.

  15. Frequency Domain Analysis of Beat-Less Control Method for Converter-Inverter Driving Systems Applied to AC Electric Cars

    NASA Astrophysics Data System (ADS)

    Kimura, Akira

    In inverter-converter driving systems for AC electric cars, the DC input voltage of an inverter contains a ripple component with a frequency that is twice as high as the line voltage frequency, because of a single-phase converter. The ripple component of the inverter input voltage causes pulsations on torques and currents of driving motors. To decrease the pulsations, a beat-less control method, which modifies a slip frequency depending on the ripple component, is applied to the inverter control. In the present paper, the beat-less control method was analyzed in the frequency domain. In the first step of the analysis, transfer functions, which revealed the relationship among the ripple component of the inverter input voltage, the slip frequency, the motor torque pulsation and the current pulsation, were derived with a synchronous rotating model of induction motors. An analysis model of the beat-less control method was then constructed using the transfer functions. The optimal setting of the control method was obtained according to the analysis model. The transfer functions and the analysis model were verified through simulations.

  16. Shape change and physical properties of giant phospholipid vesicles prepared in the presence of an AC electric field.

    PubMed

    Mathivet, L; Cribier, S; Devaux, P F

    1996-03-01

    Giant unilamellar vesicles with diameters ranging from 10 to 60 microns were obtained by the swelling of phospholipid bilayers in water in the presence of an AC electric field. This technique leads to a homogeneous population of perfectly spherical and unilamellar vesicles, as revealed by phase-contrast optical microscopy and freeze-fracture electron microscopy. Freshly prepared vesicles had a high surface tension with no visible surface undulations. Undulations started spontaneously after several hours of incubation or were triggered by the application of a small osmotic pressure. Partially deflated giant vesicles could undergo further shape change if asymmetrical bilayers were formed by adding lyso compounds to the external leaflet or by imposing a transmembrane pH gradient that selectively accumulates on one leaflet phosphatidylglycerol. Fluorescence photobleaching with 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled phospholipids or labeled dextran trapped within the vesicles enabled the measurement of the membrane continuity in the dumbbell-shaped vesicles. In all instances phospholipids diffused from one lobe to the other, but soluble dextran sometimes was unable to traverse the neck. This suggests that the diameter of the connecting neck may be variable. PMID:8785271

  17. An Ultra-Precise System for Electrical Resistivity Tomography Measurements

    SciTech Connect

    LaBrecque, Douglas J; Adkins, Paula L

    2008-12-09

    The objective of this research was to determine the feasibility of building and operating an ERT system that will allow measurement precision that is an order of magnitude better than existing systems on the market today and in particular if this can be done without significantly greater manufacturing or operating costs than existing commercial systems. Under this proposal, we performed an estimation of measurement errors in galvanic resistivity data that arise as a consequence of the type of electrode material used to make the measurements. In our laboratory, measurement errors for both magnitude and induced polarization (IP) were estimated using the reciprocity of data from an array of electrodes as might be used for electrical resistance tomography using 14 different metals as well as one non-metal - carbon. In a second phase of this study, using archival data from two long-term ERT surveys, we examined long-term survivability of electrodes over periods of several years. The survey sites were: the Drift Scale Test at Yucca Mountain, Nevada (which was sponsored by the U. S. Department of Energy as part of the civilian radioactive waste management program), and a water infiltration test at a site adjacent to the New Mexico Institute of Mines and Technology in Socorro, New Mexico (sponsored by the Sandia/Tech vadose program). This enabled us to compare recent values with historical values and determine electrode performance over the long-term as well as the percentage of electrodes that have failed entirely. We have constructed a prototype receiver system, made modifications and revised the receiver design. The revised prototype uses a new 24 bit analog to digital converter from Linear Technologies with amplifier chips from Texas Instruments. The input impedance of the system will be increased from 107 Ohms to approximately 1010 Ohms. The input noise level of the system has been decreased to approximately 10 Nanovolts and system resolution to about 1 Nanovolt at

  18. Spin Fluctuation Effect on Electrical Resistivity of La0.8Ca0.2MnO3 Manganite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Choudhary, K. K.

    2015-04-01

    The electrical resistivity ρ(T) of La0.8C0.2MnO3 manganite nanoparticles (particle size 18 nm and 70 nm) significantly depends on temperature and size of nanoparticles. ρ(T) of 70 nm La0.8C0.2MnO3 manganite exhibits metallic phase in low temperature regime (T < 250 K), develops a maxima near 250 K and decrease with T at high temperatures (250 K < T < 300 K). However, the ρ(T) of 18 nm La0.8C0.2MnO3 manganite shows insulating phase in overall temperature regime, where resistivity decrease with temperature. The resistivity in metallic phase is theoretically analyzed by considering the strong spin fluctuations effect which is modelled using Drude-Lorentz type function. In addition to the spin fluctuation-induced contribution the electron-phonon and electron-electron ρe-e(T) = BT2 contributions are also incorporated for complete understanding of experimental data. The contributions to the resistivity by inherent acoustic phonons (ρac) as well as high frequency optical phonons (ρop) were estimated using Bloch-Gruneisen [BG] model of resistivity. It is observed that the resistivity contribution due to electron-electron interaction shows typical quadratic temperature dependence. Resistivity in Semiconducting/insulating phase is discussed with small polaron conduction (SPC) model. Finally the theoretically calculated resistivity compared with experimental data which found consistent in wide range of temperature.

  19. Electrical Resistivity Imaging for Studying Dynamics of Vadose Zone Processes

    NASA Astrophysics Data System (ADS)

    Mitchell, V.; Pidlisecky, A.; Knight, R. J.

    2010-12-01

    Determining the spatial distribution of subsurface hydrologic properties is critical to developing efficient groundwater management strategies. Electrical resistivity imaging (ERI) provides continuous maps of the subsurface electrical conductivity, which can be related to water content, making it particularly useful to groundwater studies. We present an application of ERI to monitoring infiltration in the top 20 m of the subsurface at the Harkins Slough Recharge Pond, located in an agricultural region on the northern California coast. The purpose of the recharge pond is two-fold: to store diverted storm-flow run-off to meet groundwater delivery demands and to replenish underlying aquifers, which have been overdrawn for several decades, allowing saltwater intrusion. Operators of the pond have rights to divert 2.5e6 m3 of surface water to the pond each year, but decreasing infiltration rates during diversion reduces the operational efficiency, only allowing infiltration of ~1e6 m3 each year. It is hypothesized that deposition of fine-sediments from diverted water, run-off from adjacent fields, and/or microbial activity reduce the hydraulic conductivity over time by clogging pore spaces. As part of an effort to better understand the hydrologic processes controlling infiltration to improve operational efficiency of the recharge pond we conducted time-lapse ERI experiments to monitor infiltration processes beneath the pond during the winters of 2008-2009 and 2009-2010. Each year measurements were made using four 3-m long permanent probes installed in the base of the pond in a T-shape configuration, with 20 m between each probe. The probes allow for monitoring of the conductivity profile to a depth of 2 m; the top meter of each probe monitors bulk conductivity of the pond water. In addition, a number of surface electrodes were laid out in lines between the four probes. In 2008-2009, 20-m lines were used. In 2009-2010, three lines of lengths 10 m, 65 m, and 75 m were

  20. Using electrical resistivity imaging to understand surface coal mine hydrogeology

    NASA Astrophysics Data System (ADS)

    Hester, E. T.; Greer, B. M.; Burbey, T. J.; Zipper, C. E.

    2015-12-01

    Understanding the hydrology of disturbed lands is important given the increasing human footprint on earth. Surface coal mining has caused significant land-use change in central Appalachia in the past few decades. The mining process breaks up overburden rock above coal seams, and then replaces that material at the mine location and in adjacent unmined valleys (valley fills). The freshly exposed rock surfaces undergo weathering which often alters water quality and ultimately aquatic communities in effluent streams. One of the most common water quality effects is increased total dissolved solids (TDS), which is usually measured via its surrogate, specific conductance (SC). The SC of valley fill effluent is a function of fill construction methods, materials, and age. Yet hydrologic studies that relate these variables to water quality are sparse due to the difficulty of implementing traditional hydrologic measurements in fill material. We tested the effectiveness of electrical resistivity imaging (ERI) to monitor subsurface geologic patterns and hydrologic flow paths in a test-case valley fill. We paired ERI with artificial rainfall experiments to track infiltrated water as it moved through the valley fill material. Results indicate that ERI can be used to identify the subsurface geologic structure and track advancing wetting fronts or preferential flow paths. We observed that the upper portion of the fill profile contains significant fines, while the deeper profile is primarily composed of large rocks and void spaces. The artificial rainfall experiments revealed that water ponded on the surface of compacted areas until it reached preferential flow paths, where it infiltrated quickly and deeply. We observed water moving from the surface down to >10 m depth within 75 minutes. In sum, vertical and lateral preferential flow paths were evident at both shallow (through compacted layers) and deep (among boulders) locations. Such extensive preferential flow suggests that a

  1. Fracture network characterisation of a landslide by electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Szalai, S.; Szokoli, K.; Novák, A.; Tóth, Á.; Metwaly, M.; Prácser, E.

    2014-06-01

    In contrary to most of the landslide studies which concentrate to the sliding surface in this paper the fracture system of a loess landslide is investigated. The continuity and geometry, orientation and dip of the major fractures are crucial parameters for assessing rock stability and landslide evolution. Rain infiltrating moreover easily into the rock mass through fractures providing lubrication for the material to slide, and increases the self-mass of the material increasing the slumping rate. Fracture maps enable beside of the characterisation of the fractured area the delineation of the endangered area of slow-moving landslides in due time and getting information about its inner structure. For constructing such maps Electrical Resistivity Tomography (ERT) measurements have been carried out using different geoelectric configurations. In spite of the high density of the fractures and their changing physical parameters in function of their water content - which make the interpretation rather difficult - a number of fractures have been detected and more or less well localised. On the basis of the present research the application of the Schlumberger and the Pole-Dipole arrays is recommended to fulfil the aim of the study. The optimised Stummer array is at the same time the only array which presents conductive anomalies (supposedly water filled fractures), as well, and indicates that fractures elongate deep downwards. Because these features seem to be realistic based on field observations or theoretical considerations the Stummer array may be a very good tool for completing e.g. P-Dp measurements. The study area could have been divided by all arrays into differently fractured zones, which assists a lot in understanding the landslide structure and evolution. It was shown, moreover, that in the still passive area there are thick fractures, too, verifying its dangerousness, as well. The ERT results enabled localising the rupture surfaces of future slumps which proved to

  2. Composite Materials with Distinctive Behaviors under High Electric Fields: I - Material Switches to 'High Resistive' State

    NASA Technical Reports Server (NTRS)

    Javadi, H.

    1994-01-01

    Electrically conductive silver filled epoxy ECF-563 preform, sandwiched between gold contact pads exhibits intermittent current-voltage characteristics with switching to 'high resistive' state under applied bias voltage.

  3. Temperature dependence of electrical resistivity measurements: A useful infiltration tracer?

    NASA Astrophysics Data System (ADS)

    Pidlisecky, A.; Knight, R.

    2008-12-01

    As part of an ongoing monitoring project, three resistivity probes were installed to a depth of 2m below a seasonal infiltration pond on the central coast of California. The probes were instrumented with 35 resistivity electrodes and 5 temperature loggers. They were designed to monitor the change in bulk resistivity beneath the pond during infiltration. The pond was filled in January 2008 and resistivity measurements were made on each probe every hour for a period of 4 months. In addition to changes in bulk resistivity, we observed diurnal fluctuations in the apparent resistivity signal due to the temperature dependence of in-situ resistivity. By processing the resistivity data, using a band pass filter, we can recover a time-depth section of pseudo- temperature data. We refer to these data as pseudo-temperature because they can be treated as a surrogate for temperature in terms of phase but not amplitude. These pseudo-temperature sections can be used as a tracer to calculate 1D infiltration rates. When compared with in-situ temperature loggers, we see good agreement. Moreover, we note that the resistivity fluctuations correspond to temperature variations that are less than one degree Celsius. The use of the temperature dependence of measured resistivity is a promising field technique. The pseudo-temperature data may prove more robust than using traditional temperature probes given that the larger sampling volume of the resistivity measurement will limit the influence local flow path perturbations caused by probe installation. Future research will involve extending this approach to 2D tomography in hopes of providing us with a technique for obtaining spatially exhaustive estimates of near-surface infiltration rates.

  4. Effects of Contact Resistance on Electrical Conductivity Measurements of SiC-Based Materials

    SciTech Connect

    Youngblood, Gerald E.; Thomsen, Edwin C.; Henager, Charles H.

    2012-04-17

    A combination 2/4-probe method was used to measure electrical resistances across a pure, monolithic CVD-SiC disc sample with contact resistance at the SiC/metallic electrode interfaces. By comparison of the almost simultaneous 2/4-probe measurements, the specific contact resistance and its temperature dependence were determined for two types (sputtered gold and porous nickel) electrodes from RT to ~700°C. The specific contact resistance values (Rc) behaved similarly for each type of metallic electrode: Rc >~1000 Ω-cm2 at RT, decreasing continuously to ~1-10 Ω-cm2 at 700°C. The temperature dependence of the inverse Rc indicated thermally activated electrical conduction across the SiC/metallic interface with an apparent activation energy of ~0.3 eV. For the flow channel insert application in a fusion reactor blanket, contact resistance potentially could reduce the transverse electrical conductivity by ~1/2.

  5. Modeling the electrical resistivity of deformation processed metal-metal composites

    SciTech Connect

    Tian, Liang; Anderson, Iver; Riedemann, Trevor; Russell, Alan

    2014-09-01

    Deformation processed metal–metal (matrix–reinforcement) composites (DMMCs) are high-strength, high-conductivity in situ composites produced by severe plastic deformation. The electrical resistivity of DMMCs is rarely investigated mechanistically and tends to be slightly higher than the rule-of-mixtures prediction. In this paper, we analyze several possible physical mechanisms (i.e. phonons, interfaces, mutual solution, grain boundaries, dislocations) responsible for the electrical resistivity of DMMC systems and how these mechanisms could be affected by processing conditions (i.e. temperature, deformation processing). As an innovation, we identified and assembled the major scattering mechanisms for specific DMMC systems and modeled their electrical resistivity in combination. From this analysis, it appears that filament coarsening rather than dislocation annihilation is primarily responsible for the resistivity drop observed in these materials after annealing and that grain boundary scattering contributes to the resistivity at least at the same magnitude as does interface scattering.

  6. Change Of Electrical Resistivity Depending On Water Saturation Of The Concrete Samples

    NASA Astrophysics Data System (ADS)

    Sabbaǧ, Nevbahar; Uyanık, Osman

    2016-04-01

    In this study, the changes of electrical apparent resistivity values depending on the water saturation of cubic concrete samples which designed according to different strength were investigated. For this purpose, 3 different concrete design as poor, middle and good strength 150x150x150mm dimensions 9 for each design cubic samples were prepared. After measuring the weight of the prepared samples, in oven were dried at 105 ° C for 24 hours and then the dry weights were measured. Then the samples were placed into the curing pool and saturated weight of the samples were measured in specific time periods during the 90 day take out from the curing pool and the water content were calculated at each stage of these processes. The water content of the samples were obtained during 90 days specific points in time and as well as electrical apparent resistivity method of the different surfaces of the samples the potential difference measurements made by electrical resistivity method and electrical apparent resistivity values of the samples were calculated. Depending on time obtained from this study with respect to time curves of the water content and the apparent resistivity values were constructed. Results showed that the electrical apparent resistivity values increased depends on the water content. This study was supported with OYP05277-DR-14 Project No. by SDU and State Hydraulic Works 13th Regional/2012-01 Project No. Keywords: Concrete, cubic sample, Resistivity, water content, time

  7. Electrical contact resistance degradation of a hot-switched simulated metal MEMS contact.

    SciTech Connect

    Dugger, Michael Thomas; Dickrell, Daniel John, III

    2005-03-01

    Electrical contact resistance testing was performed by hot-switching a simulated gold-platinum metal microelectromechanical systems contact. The experimental objective was to determine the sensitivity of the contact resistance degradation to current level and environment. The contact resistance increased sharply after 100 hot-switched cycles in air. Hot-switching at a reduced current and in nitrogen atmosphere curtailed contact resistance degradation by several orders of magnitude. The mechanism responsible for the resistance degradation was found to be arc-induced decomposition of adsorbed surface contaminants.

  8. High voltage AC/AC electrochemical capacitor operating at low temperature in salt aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Abbas, Qamar; Béguin, François

    2016-06-01

    We demonstrate that an activated carbon (AC)-based electrochemical capacitor implementing aqueous lithium sulfate electrolyte in 7:3 vol:vol water/methanol mixture can operate down to -40 °C with good electrochemical performance. Three-electrode cell investigations show that the faradaic contributions related with hydrogen chemisorption in the negative AC electrode are thermodynamically unfavored at -40 °C, enabling the system to work as a typical electrical double-layer (EDL) capacitor. After prolonged floating of the AC/AC capacitor at 1.6 V and -40°C, the capacitance, equivalent series resistance and efficiency remain constant, demonstrating the absence of ageing related with side redox reactions at this temperature. Interestingly, when temperature is increased back to 24 °C, the redox behavior due to hydrogen storage reappears and the system behaves as a freshly prepared one.

  9. Electrical Resistivity of Natural Diamond and Diamond Films Between Room Temperature and 1200 C: Status Update

    NASA Technical Reports Server (NTRS)

    Vandersande, Jan W.; Zoltan, L. D.

    1993-01-01

    The electrical resistivity of diamond films has been measured between room temperature and 1200 C. The films were grown by either microwave Plasma CVD or combustion flame at three different places. The resistivities of the current films are compared to those measured for both natural IIa diamond and films grown only one to two years ago.

  10. Silicone oil contamination and electrical contact resistance degradation of low-force gold contacts.

    SciTech Connect

    Dugger, Michael Thomas; Dickrell, Daniel John, III

    2006-02-01

    Hot-switched low-force gold electrical contact testing was performed using a nanomechanical test apparatus to ascertain the sensitivity of simulated microelectromechanical systems (MEMS) contact to silicone oil contamination. The observed cyclic contact resistance degradation was dependent on both closure rate and noncontact applied voltage. The decomposition of silicone oil from electrical arcing was hypothesized as the degradation mechanism.

  11. Monitoring a pilot CO2 injection experiment in a shallow aquifer using 3D cross-well electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Yang, X.; Lassen, R. N.; Looms, M. C.; Jensen, K. H.

    2014-12-01

    Three dimensional electrical resistance tomography (ERT) was used to monitor a pilot CO2 injection experiment at Vrøgum, Denmark. The purpose was to evaluate the effectiveness of the ERT method for monitoring the two opposing effects from gas-phase and dissolved CO2 in a shallow unconfined siliciclastic aquifer. Dissolved CO2 increases water electrical conductivity (EC) while gas phase CO2 reduce EC. We injected 45kg of CO2 into a shallow aquifer for 48 hours. ERT data were collected for 50 hours following CO2 injection. Four ERT monitoring boreholes were installed on a 5m by 5m square grid and each borehole had 24 electrodes at 0.5 m electrode spacing at depths from 1.5 m to 13 m. ERT data were inverted using a difference inversion algorithm for bulk EC. 3D ERT successfully detected the CO2 plume distribution and growth in the shallow aquifer. We found that the changes of bulk EC were dominantly positive following CO2 injection, indicating that the effect of dissolved CO2 overwhelmed that of gas phase CO2. The pre-injection baseline resistivity model clearly showed a three-layer structure of the site. The electrically more conductive glacial sand layer in the northeast region are likely more permeable than the overburden and underburden and CO2 plumes were actually confined in this layer. Temporal bulk EC increase from ERT agreed well with water EC and cross-borehole ground penetrating radar data. ERT monitoring offers a competitive advantage over water sampling and GPR methods because it provides 3D high-resolution temporal tomographic images of CO2 distribution and it can also be automated for unattended operation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. LLNL IM release#: LLNL-PROC-657944.

  12. Observation of multi-scale oscillation of laminar lifted flames with low-frequency AC electric fields

    SciTech Connect

    Ryu, S.K.; Kim, Y.K.; Kim, M.K.; Won, S.H.; Chung, S.H.

    2010-01-15

    The oscillation behavior of laminar lifted flames under the influence of low-frequency AC has been investigated experimentally in coflow jets. Various oscillation modes were existed depending on jet velocity and the voltage and frequency of AC, especially when the AC frequency was typically smaller than 30 Hz. Three different oscillation modes were observed: (1) large-scale oscillation with the oscillation frequency of about 0.1 Hz, which was independent of the applied AC frequency, (2) small-scale oscillation synchronized to the applied AC frequency, and (3) doubly-periodic oscillation with small-scale oscillation embedded in large-scale oscillation. As the AC frequency decreased from 30 Hz, the oscillation modes were in the order of the large-scale oscillation, doubly-periodic oscillation, and small-scale oscillation. The onset of the oscillation for the AC frequency smaller than 30 Hz was in close agreement with the delay time scale for the ionic wind effect to occur, that is, the collision response time. Frequency-doubling behavior for the small-scale oscillation has also been observed. Possible mechanisms for the large-scale oscillation and the frequency-doubling behavior have been discussed, although the detailed understanding of the underlying mechanisms will be a future study. (author)

  13. Electrical resistance of human soft tissue sarcomas: an ex vivo study on surgical specimens.

    PubMed

    Campana, L G; Cesari, M; Dughiero, F; Forzan, M; Rastrelli, M; Rossi, C R; Sieni, E; Tosi, A L

    2016-05-01

    This paper presents a study about electrical resistance, which using fixed electrode geometry could be correlated to the tissue resistivity, of different histological types of human soft tissue sarcomas measured during electroporation. The same voltage pulse sequence was applied to the tumor mass shortly after surgical resection by means of a voltage pulse generator currently used in clinical practice for electrochemotherapy that uses reversible electroporation. The voltage pulses were applied by means of a standard hexagonal electrode composed by seven, 20-mm-long equispaced needles. Irrespective of tumor size, the electrode applies electric pulses to the same volume of tissue. The resistance value was computed from the voltage and current recorded by the pulse generator, and it was correlated with the histological characteristics of the tumor tissue which was assessed by a dedicated pathologist. Some differences in resistance values, which could be correlated to a difference in tissue resistivity, were noticed according to sarcoma histotype. Lipomatous tumors (i.e., those rich in adipose tissue) displayed the highest resistance values (up to 1700 Ω), whereas in the other soft tissue sarcomas, such as those originating from muscle, nerve sheath, or fibrous tissue, the electrical resistance measured was between 40 and 110 Ω. A variability in resistance was found also within the same histotype. Among lipomatous tumors, the presence of myxoid tissue between adipocytes reduced the electrical resistance (e.g., 50-100 Ω). This work represents the first step in order to explore the difference in tissue electrical properties of STS. These results may be used to verify whether tuning electric field intensity according to the specific STS histotype could improve tissue electroporation and ultimately treatment efficacy. PMID:26324245

  14. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    DOEpatents

    Daily, W.D.; Laine, D.L.; Laine, E.F.

    1997-08-26

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid though the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution. 6 figs.

  15. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    DOEpatents

    Daily, William D.; Laine, Daren L.; Laine, Edwin F.

    2001-01-01

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner or between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid through the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution.

  16. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    DOEpatents

    Daily, William D.; Laine, Daren L.; Laine, Edwin F.

    1997-01-01

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid though the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution.

  17. The influence of electrode and separator thickness on the cell resistance of symmetric cellulose-polypyrrole-based electric energy storage devices

    NASA Astrophysics Data System (ADS)

    Tammela, Petter; Olsson, Henrik; Strømme, Maria; Nyholm, Leif

    2014-12-01

    The influence of the cell design of symmetric polypyrrole and cellulose-based electric energy storage devices on the cell resistance was investigated using chronopotentiometric and ac impedance measurements with different separator and electrode thicknesses. The cell resistance was found to be dominated by the electrolyte and current collector resistances while the contribution from the composite electrode material was negligible. Due to the electrolyte within the porous electrodes thin separators could be used in combination with thick composite electrodes without loss of performance. The paper separator contributed with a resistance of ˜1.5 Ω mm-1 in a 1.0 M NaNO3 electrolyte and the tortuosity value for the separator was about 2.5. The contribution from the graphite foil current collectors was about ˜0.4-1.1 Ω and this contribution could not be reduced by using platinum foil current collectors due to larger contact resistances. The introduction of chopped carbon fibres into the electrode material or the application of pressure across the cells, however, decreased the charge transfer resistance significantly. As the present results demonstrate that cells with higher charge storage capacities but with the same cell resistance can be obtained by increasing the electrode thickness, the development of paper based energy storage devices is facilitated.

  18. The influence of electrode and separator thickness on the cell resistance of symmetric cellulose-polypyrrole-based electric energy storage devices

    NASA Astrophysics Data System (ADS)

    Tammela, Petter; Olsson, Henrik; Strømme, Maria; Nyholm, Leif

    2014-12-01

    The influence of the cell design of symmetric polypyrrole and cellulose-based electric energy storage devices on the cell resistance was investigated using chronopotentiometric and ac impedance measurements with different separator and electrode thicknesses. The cell resistance was found to be dominated by the electrolyte and current collector resistances while the contribution from the composite electrode material was negligible. Due to the electrolyte within the porous electrodes thin separators could be used in combination with thick composite electrodes without loss of performance. The paper separator contributed with a resistance of ∼1.5 Ω mm-1 in a 1.0 M NaNO3 electrolyte and the tortuosity value for the separator was about 2.5. The contribution from the graphite foil current collectors was about ∼0.4-1.1 Ω and this contribution could not be reduced by using platinum foil current collectors due to larger contact resistances. The introduction of chopped carbon fibres into the electrode material or the application of pressure across the cells, however, decreased the charge transfer resistance significantly. As the present results demonstrate that cells with higher charge storage capacities but with the same cell resistance can be obtained by increasing the electrode thickness, the development of paper based energy storage devices is facilitated.

  19. Experimental and theoretical study of AC electrical conduction mechanisms of Organic-inorganic hybrid compound Bis (4-acetylanilinium) tetrachlorocadmiate (II)

    NASA Astrophysics Data System (ADS)

    Jellibi, A.; Chaabane, I.; Guidara, K.

    2016-06-01

    A new organic-inorganic bis (4-acetylaniline) tetrachlorocadmate [C8H10NO]2[CdCl4] can be obtained by slow evaporation at room temperature and characterized by X-ray powder diffraction. It crystallized in an orthorhombic system (Cmca space group). The material electrical properties were characterized by impedance spectroscopy technique in the frequency range from 209 Hz-5 MHz and temperature 413 to 460 K. Besides, the impedance plots show semicircle arcs at different temperatures and an electrical equivalent circuit has been proposed to interpret the impedance results. The circuits consist of the parallel combination of a resistance (R), capacitance (C) and fractal capacitance (CPE). The variation of the exponent s as a function of temperature suggested that the conduction mechanism in Bis (4-acetylanilinium) tetrachlorocadmiate compound is governed by two processes which can be ascribed to a hopping transport mechanism: correlated barrier hopping (CBH) model below 443 K and the small polaron tunneling (SPT) model above 443 K.

  20. Modeling the electrical resistance of gold film conductors on uniaxially stretched elastomeric substrates

    NASA Astrophysics Data System (ADS)

    Cao, Wenzhe; Görrn, Patrick; Wagner, Sigurd

    2011-05-01

    The electrical resistance of gold film conductors on polydimethyl siloxane substrates at stages of uniaxial stretching is measured and modeled. The surface area of a gold conductor is assumed constant during stretching so that the exposed substrate takes up all strain. Sheet resistances are calculated from frames of scanning electron micrographs by numerically solving for the electrical potentials of all pixels in a frame. These sheet resistances agree sufficiently well with values measured on the same conductors to give credence to the model of a stretchable network of gold links defined by microcracks.

  1. Percolation of gallium dominates the electrical resistance of focused ion beam deposited metals

    SciTech Connect

    Faraby, H.; DiBattista, M.; Bandaru, P. R.

    2014-04-28

    Metal deposition through focused ion beam (FIB) based systems is thought to result in material composed of the primary metal from the metallo-organic precursor in addition to carbon, oxygen, and gallium. We determined, through electrical resistance and chemical composition measurements on a wide range of FIB deposited platinum and tungsten lines, that the gallium ion (Ga{sup +}) concentration in the metal lines plays the dominant role in controlling the electrical resistivity. Effective medium theory, based on McLachlan's formalisms, was used to describe the relationship between the Ga{sup +} concentration and the corresponding resistivity.

  2. Electrical Resistance of Ceramic Matrix Composites for Damage Detection and Life-Prediction

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Morscher, Gregory N.; Xia, Zhenhai

    2008-01-01

    The electric resistance of woven SiC fiber reinforced SiC matrix composites were measured under tensile loading conditions. The results show that the electrical resistance is closely related to damage and that real-time information about the damage state can be obtained through monitoring of the resistance. Such self-sensing capability provides the possibility of on-board/in-situ damage detection or inspection of a component during "down time". The correlation of damage with appropriate failure mechanism can then be applied to accurate life prediction for high-temperature ceramic matrix composites.

  3. Influence of Ultraviolet/Ozonolysis Treatment of Nanocarbon Filler on the Electrical Resistivity of Epoxy Composites.

    PubMed

    Perets, Yulia; Matzui, Lyudmila; Vovchenko, Lyudmila; Ovsiienko, Irina; Yakovenko, Olena; Lazarenko, Oleksandra; Zhuravkov, Alexander; Brusylovets, Oleksii

    2016-12-01

    In the present work, we have investigated concentration and temperature dependences of electrical conductivity of graphite nanoplatelets/epoxy resin composites. The content of nanocarbon filler is varied from 0.01 to 0.05 volume fraction. Before incorporation into the epoxy resin, the graphite nanoplatelets were subjected to ultraviolet ozone treatment at 20-min ultraviolet exposure. The electric resistance of the samples was measured by two- or four-probe method and teraohmmeter E6-13. Several characterization techniques were employed to identify the mechanisms behind the improvements in the electrical properties, including SEM and FTIR spectrum analysis.It is established that the changes of the relative intensities of the bands in FTIR spectra indicate the destruction of the carboxyl group -COOH and group -OH. Electrical conductivity of composites has percolation character and graphite nanoplatelets (ultraviolet ozone treatment for 20 min) addition which leads to a decrease of percolation threshold 0.005 volume fraction and increase values of electrical conductivity (by 2-3 orders of magnitude) above the percolation threshold in comparison with composite materials-graphite nanoplatelets/epoxy resin. The changes of the value and behavior of temperature dependences of the electrical resistivity of epoxy composites with ultraviolet/ozone-treated graphite nanoparticles have been analyzed within the model of effective electrical conductivity. The model takes into account the own electrical conductivity of the filler and the value of contact electric resistance between the filler particles of the formation of continuous conductive pathways. PMID:27550050

  4. Resistance and internal electric field in cloud-to-ground lightning channel

    SciTech Connect

    Cen, Jianyong; Yuan, Ping Xue, Simin; Wang, Xuejuan

    2015-02-02

    Cloud-to-ground lightning with six return strokes has been recorded by slitless spectrograph and the system of fast antenna and slow antenna. The physical parameters of the discharge channel have been obtained based on the combination of spectra and synchronous radiated electric field. The resistance and internal electric field of the channel are studied as the focus in this paper. The results show that the resistances per unit length of the lightning channel are in the order of 10{sup −2}–10{sup −1 }Ω/m and the internal electric field strengths are in the order of 10{sup 3 }V/m.

  5. Electrical resistance of CNT-PEEK composites under compression at different temperatures

    PubMed Central

    2011-01-01

    Electrically conductive polymers reinforced with carbon nanotubes (CNTs) have generated a great deal of scientific and industrial interest in the last few years. Advanced thermoplastic composites made of three different weight percentages (8%, 9%, and 10%) of multiwalled CNTs and polyether ether ketone (PEEK) were prepared by shear mixing process. The temperature- and pressure-dependent electrical resistance of these CNT-PEEK composites have been studied and presented in this paper. It has been found that electrical resistance decreases significantly with the application of heat and pressure. PMID:21711952

  6. Relating permeability and electrical resistivity in fractures using random resistor network models

    NASA Astrophysics Data System (ADS)

    Kirkby, Alison; Heinson, Graham; Krieger, Lars

    2016-03-01

    We use random resistor network models to explore the relationship between electrical resistivity and permeability in a fracture filled with an electrically conductive fluid. Fluid flow and current are controlled by both the distribution and the volume of pore space. Therefore, the aperture distribution of fractures must be accurately modeled in order to realistically represent their hydraulic and electrical properties. We have constructed fracture surface pairs based on characteristics measured on rock samples. We use these to construct resistor networks with variable hydraulic and electrical resistance in order to investigate the changes in both properties as a fault is opened. At small apertures, electrical conductivity and permeability increase moderately with aperture until the fault reaches its percolation threshold. Above this point, the permeability increases by 4 orders of magnitude over a change in mean aperture of less than 0.1 mm, while the resistivity decreases by up to a factor of 10 over this aperture change. Because permeability increases at a greater rate than matrix to fracture resistivity ratio, the percolation threshold can also be defined in terms of the matrix to fracture resistivity ratio, M. The value of M at the percolation threshold, MPT, varies with the ratio of rock to fluid resistivity, the fault spacing, and the fault offset. However, MPT is almost always less than 10. Greater M values are associated with fractures above their percolation threshold. Therefore, if such M values are observed over fluid-filled fractures, it is likely that they are open for fluid flow.

  7. Cross-section electrical resistance tomography of La Soufrière of Guadeloupe lava dome

    NASA Astrophysics Data System (ADS)

    Lesparre, Nolwenn; Grychtol, Bartłomiej; Gibert, Dominique; Komorowski, Jean-Christophe; Adler, Andy

    2014-06-01

    The electrical resistivity distribution at the base of La Soufrière of Guadeloupe lava dome is reconstructed by using transmission electrical resistivity data obtained by injecting an electrical current between two electrodes located on opposite sides of the volcano. Several pairs of injection electrodes are used in order to constitute a data set spanning the whole range of azimuths, and the electrical potential is measured along a cable covering an angular sector of ≈120° along the basis of the dome. The data are inverted to perform a slice electrical resistivity tomography (SERT) with specific functions implemented in the EIDORS open source package dedicated to electrical impedance tomography applied to medicine and geophysics. The resulting image shows the presence of highly conductive regions separated by resistive ridges. The conductive regions correspond to unconsolidated material saturated by hydrothermal fluids. Two of them are associated with partial flank collapses and may represent large reservoirs that could have played an important role during past eruptive events. The resistive ridges may represent massive andesite and are expected to constitute hydraulic barriers.

  8. Electrical resistivity tomography at the search of groundwater near Anapa town in the south of Russia.

    NASA Astrophysics Data System (ADS)

    Kvon, Dina; Vladimir, Shevnin; Boris, Nikulin; Albert, Ryjov; Alexey, Skobelev

    2013-04-01

    Electrical resistivity tomography at the search of groundwater near Anapa town in the south of Russia. Kvon D. A.(1)*, Shevnin V.A.(1), Nikulin B. A.(1), Ryjov A. A.(2), Skobelev A. O.(1) (1)Geophysical dept., Faculty of Geology, Moscow state university; (2)VSEGINGEO Due to acute shortage of fresh drinking water near Anapa town (not far from the Black Sea), geophysical investigations were performed for searching and mapping aquifers in the area, where, according to rare wells exist probability to find fresh underground water. Geophysical explorations were carried out by Electrical resistivity tomography (ERT) method and water resistivity measurements. The resistivity of fresh groundwater is 15 Ohm.m, its salinity is 0.4 g/l. The structure of the area has been obtained by previous geological and hydrogeological studies and boreholes drilling. Geological structure of the area consists of two parts: the upper part of cross-section presented by loose lacustrine-alluvial sediments of Upper Pleistocene - Holocene, the lower part presented by hard rocs of carbonate-flysch formation of Upper Cretaceous age consisted of marl and limestone. Prospective areas to find underground water are: water-bearing horizon of upper Pleistocene-Holocene sediments, which is presented by gravel layer (base layer of modern lacustrine-alluvial sediments), and fractured zones in hard rocks of the carbonate-flysch formation of Maastricht age (Supseh formation). Analysis of rocks' resistivity obtained from Electrical resistivity tomography followed by calculation of rock resistivity on known petrophysical parameters (in Petrowin program created by A. A. Ryjov) [Shevnin et al., 2007]. The calculation showed that there is low clay content in carbonate rocks of the studied area, and the rock is limestone, not marl. Measurement of rock samples with X-ray radiometric method showed high calcium content (30-35%) or 75-87.5% limestone. This fact shows that flysch formation of the area is mainly

  9. Design and performance of low-thermal-resistance, high-electrical-isolation heat intercept connections

    NASA Astrophysics Data System (ADS)

    Niemann, R. C.; Gonczy, J. D.; Phelan, P. E.; Nicol, T. H.

    Electrical conductors often require the removal of heat produced by normal operation. The heat can be removed by mechanical connection of the conductor to a refrigeration source. Such connections require both effective heat removal (low thermal resistance) and effective electrical isolation (high electrical resistance and high dielectric strength). Fabrication of these connections should be straightforward, and performance must be reliable and independent of operating temperature. The connection method described here involves clamping (by thermal interference fit) an electrically insulating cylinder between an outer metallic ring and an inner metallic disc. Material candidates for insulating cylinders include composites, e.g. epoxy/fibreglass, and ceramics, e.g. alumina. Design factors, including geometry, materials and thermal contact resistance are discussed. The design, construction experience and performance measurements of a heat intercept connection in a high-temperature superconducting lead assembly is presented.

  10. Results of Electrical Resistivity Data Collected near the Town of Guernsey, Platte County, Wyoming

    USGS Publications Warehouse

    McDougal, Robert R.; Abraham, Jared D.; Bisdorf, Robert J.

    2004-01-01

    As part of a study to investigate subsurface geologic conditions as they relate to ground-water flow in an abandoned landfill near the town of Guernsey, Wyoming, geophysical direct current (DC) resistivity data were collected. Eight vertical resistivity soundings and eight horizontal resistivity profiles were made using single channel and multi-channel DC instruments. Data collected in the field were converted from apparent resistivity to inverted resistivity with depth using a numerical inversion of the data. Results of the inverted resistivity data are presented as horizontal profiles and as profiles derived from the combined horizontal profile and vertical sounding data. The data sets collected using the single-channel and multi-channel DC systems provided for the resistivity investigation to extend to greater depth. Similarity of the electrical properties of the bedrock formations made interpretation of the resistivity profiles more difficult. High resistivity anomalies seen in the profiles are interpreted as quartzite lenses and as limestone or metadolomite structures in the eastern part of the study area. Terrace gravels were mapped as resistive where dry and less resistive in the saturated zone. The DC resistivity methods used in this study illustrate that multi-electrode DC resistivity surveying and more traditional methodologies can be merged and used to efficiently map anomalies of hydrologic interest in geologically complex terrain.

  11. High definition cross-well electrical resistivity imaging using seismoelectric focusing and image-guided inversion

    NASA Astrophysics Data System (ADS)

    Sava, P.; Revil, A.; Karaoulis, M.

    2014-08-01

    We propose a new, simple and efficient method to image electrical resistivity between a set of wells. Our procedure consists of two steps: first, we map the interfaces between various subsurface formations using seismoelectric conversions; second, we derive the formation resistivity using image-guided cross-well electric tomography. In the first step, we focus seismic energy at a set of points located on a regular grid between wells, which enables us to map the geological formations in terms of heterogeneities in electrical, hydraulic and/or seismic properties. The density of the scanning points (i.e. the seismoelectric image resolution) is related to the wavelength of the seismic impulse used to scan the formations. Each time the seismic energy is focused at a point, the resulting electrical potential burst (equivalent to the one generated by a volumetric seismic source) is recorded remotely at a set of electrodes positioned in wells (the reference electrode can be located on the ground surface or far enough to be considered at infinity). We construct a high-resolution `seismoelectric' image by assigning the electrical potential simulated at these fixed electrodes to the location of the seismic focus. In a follow-up step, the structure of this image is used in image-guided inversion to improve electrical resistivity tomography between the two wells. The structural information from the seismoelectric image is used to impose constraints on the model covariance matrix used in the inversion of the electrical resistivity data. This approach offers new perspectives in recovering fine structure of resistivity (high definition resistivity tomography) between the wells, which cannot be resolved through conventional cross-well resistivity or from seismic tomography alone.

  12. Unconventional drop in the electrical resistance of chromium metal thin films at low temperature

    NASA Astrophysics Data System (ADS)

    Ohashi, M.; Ohashi, K.; Sawabu, M.; Miyagawa, M.; Kubota, T.; Takanashi, K.

    2016-09-01

    We studied the electrical resistance of single-crystal and polycrystalline chromium films. The ρ (T) curve of single-crystal films decrease with decreasing temperature and show humps at around 300 K consistent with the bulk chromium being an itinerant antiferromagnet. In the polycrystalline films, on the other hand, the ρ (T) curves deviate from those of the bulk chromium. Moreover, we observed sudden decrease in the resistance around 1.5 K. Although previous studies suggested that chromium films become superconductive (Schmidt et al. (1972) [12]), it is difficult to conclude whether a superconducting transition occurs because the electrical resistivity is not zero in all films. No anomaly was detected by resistance measurements around room temperature, and the sudden decrease in the resistance at low temperature may be attributed to the suppression of antiferromagnetic interaction by thinning down the chromium element.

  13. Determining the involvement of two aminopeptidase Ns in the resistance of Plutella xylostella to the Bt toxin Cry1Ac: cloning and study of in vitro function.

    PubMed

    Chang, Xiaoli; Wu, Qingjun; Wang, Shaoli; Wang, Ran; Yang, Zhongxia; Chen, Defeng; Jiao, Xiaoguo; Mao, Zhenchuan; Zhang, Youjun

    2012-02-01

    The cloning, expression in vitro, and characterization of two aminopeptidase Ns (APN5s and APN2s) isolated from the midgut of Cry1Ac-resistant (R) and susceptible (S) strains of Plutella xylostella larvae are presented in this paper. The deduced amino acid sequences of APN5s included C-terminal GPI-modification sites, the gluzincin aminopeptidase motif GATEN, and three N-glycosylated sites; those of APN2s had no GPI-modification sites, had gluzincin aminopeptidase motif GAMEN, and had four N-glycosylated sites. O-glycosylated sites were not predicted for either APN. Because APN2R and APN2S cDNAs contained the same nucleotides, only full-length cDNAs encoding APN5R and APN5S were expressed in Trichoplusia ni cells. Far-Western blotting showed that the expressed receptor APN5 bound to the Cry1Ac toxin. An enzyme-specific activity experiment also showed that APN5 genes were expressed in T. ni cells. ELISA revealed no differences in the binding of expression proteins from the resistant and susceptible strain with Cry1Ac. PMID:22371317

  14. Electrical resistivity surveys in Prospect Gulch, San Juan County, Colorado

    USGS Publications Warehouse

    McDougal, Robert R.

    2006-01-01

    Prospect Gulch is a major source of naturally occurring and mining related metals to Cement Creek, a tributary of the upper Animas River in southwestern Colorado. Efforts to improve water quality in the watershed have focused on Prospect Gulch because many of its abandoned mines and are located on federal lands. Information on sources and pathways of metals, and related ground-water flow, will be useful to help prioritize and develop remediation strategies. It has been shown that the occurrence of sulfate, aluminum, iron, zinc and other metals associated with historical mining and the natural weathering of pyritic rock is substantial. In this study, direct current resistivity surveys were conducted to determine the subsurface resistivity distribution and to identify faults and fractures that may act as ground-water conduits or barriers to flow. Five lines of resistivity data were collected in the vicinity of Prospect Gulch, and cross-section profiles were constructed from the field data using a two-dimensional inversion algorithm. The conductive anomalies in the profiles are most likely caused by wet or saturated rocks and sediments, clay rich deposits, or high TDS ground water. Resistive anomalies are likely bedrock, dry surficial and sub-surface deposits, or deposits of ferricrete.

  15. The combined effect of electrical stimulation and resistance isometric contraction on muscle atrophy in rat tibialis anterior muscle.

    PubMed

    Fujita, Naoto; Murakami, Shinichiro; Arakawa, Takamitsu; Miki, Akinori; Fujino, Hidemi

    2011-05-01

    Electrical stimulation has been used to prevent muscle atrophy, but this method is different in many previous studies, appropriate stimulation protocol is still not decided. Although resistance exercise has also been shown to be an effective countermeasure on muscle atrophy, almost previous studies carried out an electrical stimulation without resistance. It was hypothesized that electrical stimulation without resistance is insufficient to contract skeletal muscle forcefully, and the combination of electrical stimulation and forceful resistance contraction is more effective than electrical stimulation without resistance to attenuate muscle atrophy. This study investigated the combined effects of electrical stimulation and resistance isometric contraction on muscle atrophy in the rat tibialis anterior muscle. The animals were divided into control, hindlimb unloading (HU), hindlimb unloading plus electrical stimulation (ES), and hindlimb unloading plus the combination of electrical stimulation and resistance isometric contraction (ES+IC). Electrical stimulation was applied to the tibialis anterior muscle percutaneously for total 240 sec per day. In the ES+IC group, the ankle joint was fixed to produce resistance isometric contraction during electrical stimulation. After 7 days, the cross-sectional areas of each muscle fiber type in the HU group decreased. Those were prevented in the ES+IC group rather than the ES group. The expression of heat shock protein 72 was enhanced in the ES and ES+IC groups. These results indicated that although electrical stimulation is effective to prevent muscle atrophy, the combination of electrical stimulation and isometric contraction have further effect. PMID:21619551

  16. Simultaneous electrical resistivity and mass uptake measurements in bromine intercalated fibers

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.

    1986-01-01

    Changes in mass and electrical resistivity of several types of pitch-based and vapor-grown graphite fibers were monitored during reaction with bromine. The observed threshold pressure dependent reaction suggested that the fibers were intercalated. In the fully brominated compound, the mass was increased by 44 percent and the resistivity was improved by a factor of 17. In the residue compound, the mass was increased by 22 percent and the resistivity was improved by a factor of 5. Fibers possessing different degrees of graphitization had surprisingly similar changes in both mass and resistivity.

  17. Assessment of groundwater vulnerability to leachate infiltration using electrical resistivity method

    NASA Astrophysics Data System (ADS)

    Mosuro, G. O.; Omosanya, K. O.; Bayewu, O. O.; Oloruntola, M. O.; Laniyan, T. A.; Atobi, O.; Okubena, M.; Popoola, E.; Adekoya, F.

    2016-02-01

    This aim of this work is to assess the degree of leachate infiltration at a dumpsite in Agbara industrial estate, Southwestern Nigeria using electrical resistivity techniques. Around the dumpsite were 45 vertical electrical sounding (VES) stations and 3 electrical resistivity tomography profiles. Current electrode spread varied from 300 to 600 m for the electrical sounding. Electrode configuration includes Schlumberger and Wenner array for sounding and profiling. The state of leachate contamination was tested using parameters such as aquifer vulnerability index, overburden protective capacity and longitudinal unit conductance (Si) derived from the apparent resistivity values. Four principal geoelectric layers inferred from the VES data include the topsoil, sand, clayey sand, and clay/shale. Resistivity values for these layers vary from 3 to 1688, 203 to 3642 123 to 388, and 67 to 2201 Ω m with corresponding thickness of 0.8-2.4, 2.5-140, 3-26 m and infinity, respectively. The leachate plume occurs at a maximum depth of 10 m on the 2-D inverse models of real electrical resistivity with an average depth of infiltration being 6 m in the study area. The correlation between longitudinal conductance and overburden protective capacity show that aquifers around the dumpsite have poor protective capacity and are vulnerable to leachate contamination. Leachate infiltration is favored by the absence of lithological barriers such as clay which in the study area are either mixed with sand or positioned away from the aquifer.

  18. Experimental determination of the electrical resistivity of iron at Earth’s core conditions

    NASA Astrophysics Data System (ADS)

    Ohta, Kenji; Kuwayama, Yasuhiro; Hirose, Kei; Shimizu, Katsuya; Ohishi, Yasuo

    2016-06-01

    Earth continuously generates a dipole magnetic field in its convecting liquid outer core by a self-sustained dynamo action. Metallic iron is a dominant component of the outer core, so its electrical and thermal conductivity controls the dynamics and thermal evolution of Earth’s core. However, in spite of extensive research, the transport properties of iron under core conditions are still controversial. Since free electrons are a primary carrier of both electric current and heat, the electron scattering mechanism in iron under high pressure and temperature holds the key to understanding the transport properties of planetary cores. Here we measure the electrical resistivity (the reciprocal of electrical conductivity) of iron at the high temperatures (up to 4,500 kelvin) and pressures (megabars) of Earth’s core in a laser-heated diamond-anvil cell. The value measured for the resistivity of iron is even lower than the value extrapolated from high-pressure, low-temperature data using the Bloch–Grüneisen law, which considers only the electron–phonon scattering. This shows that the iron resistivity is strongly suppressed by the resistivity saturation effect at high temperatures. The low electrical resistivity of iron indicates the high thermal conductivity of Earth’s core, suggesting rapid core cooling and a young inner core less than 0.7 billion years old. Therefore, an abrupt increase in palaeomagnetic field intensity around 1.3 billion years ago may not be related to the birth of the inner core.

  19. Experimental determination of the electrical resistivity of iron at Earth's core conditions.

    PubMed

    Ohta, Kenji; Kuwayama, Yasuhiro; Hirose, Kei; Shimizu, Katsuya; Ohishi, Yasuo

    2016-06-01

    Earth continuously generates a dipole magnetic field in its convecting liquid outer core by a self-sustained dynamo action. Metallic iron is a dominant component of the outer core, so its electrical and thermal conductivity controls the dynamics and thermal evolution of Earth's core. However, in spite of extensive research, the transport properties of iron under core conditions are still controversial. Since free electrons are a primary carrier of both electric current and heat, the electron scattering mechanism in iron under high pressure and temperature holds the key to understanding the transport properties of planetary cores. Here we measure the electrical resistivity (the reciprocal of electrical conductivity) of iron at the high temperatures (up to 4,500 kelvin) and pressures (megabars) of Earth's core in a laser-heated diamond-anvil cell. The value measured for the resistivity of iron is even lower than the value extrapolated from high-pressure, low-temperature data using the Bloch-Grüneisen law, which considers only the electron-phonon scattering. This shows that the iron resistivity is strongly suppressed by the resistivity saturation effect at high temperatures. The low electrical resistivity of iron indicates the high thermal conductivity of Earth's core, suggesting rapid core cooling and a young inner core less than 0.7 billion years old. Therefore, an abrupt increase in palaeomagnetic field intensity around 1.3 billion years ago may not be related to the birth of the inner core. PMID:27251282

  20. DNA- and AC electric field-assisted assembly of two-dimensional colloidal photonic crystals and their controlled defect insertion

    NASA Astrophysics Data System (ADS)

    Kim, Sejong

    Photonic crystals (PC) are structures in which the refractive index is a periodic function in space. The ability of photonic crystals to localize and manipulate electromagnetic waves has attracted considerable attention from the scientific community. The self-assembly of monodisperse micrometer scale colloidal spheres into hexagonal closed-packed colloidal crystals provides a simple, fast, and cheap materials chemistry approach to PCs. Employing DNA supramolecular recognition, 2-dimensional (2D) photonic crystal monolayer was fabricated with monodisperse polystyrene colloidal microspheres. Amine-terminated DNA oligomers were covalently attached onto carboxy-decorated microspheres and enabled their DNA-functionalization while preserving their colloidal stability and organization properties. Following a capillary-force-assisted organization of DNA-decorated microspheres into close-packed 2D opaline arrays, the first monolayer was immobilized by DNA hybridization. Insertion of vacancies at predetermined sites within the lattice of colloidal crystals is a prerequisite in order to realize high-quality, opaline-based photonic devices. The previously obtained DNA-hybridization type binding of 2D-opaline arrays provides a heat-sensitive "adhesive" between substrate and microspheres within a surrounding aqueous medium that enables tuning the hybridization strength of DNA linker as well as a mechanism to facilitate the removal of unbound microspheres. Focusing a laser beam onto a single microsphere of the opaline array induces localized heating that enables the microsphere to detach, leaving behind vacancies. By repeating this process, line vacancies were successfully obtained. The effects of salt concentration, laser power, light-absorbing dyes, DNA length and refractive index mismatch were investigated and found to correlate with heat-induced DNA dehybridization. In addition, AC (alternating current) electrokinetic force was also utilized to obtain assembly of colloidal

  1. Physical Modelling on Detecting Buried Object Using Electrical Resistivity Imaging (ERI)

    NASA Astrophysics Data System (ADS)

    Hazreek, Z. A. M.; Nizam, Z. M.; Azhar, A. T. S.; Aziman, M.; Shaylinda, M. Z. N.

    2016-07-01

    This study focused on the evaluation of electrical resistivity method (ERM) for buried object detection and its relationship due to the different stiffness of material. In the past, the conventional method to detect the buried structure was face some limitation due to the time and cost. For example, previous approach related to the trial and error excavation has always expose to some risky outcome due to the uncertainties of the buried object location. Hence, this study introduced an alternative technique with particular reference to resistivity method to detect and evaluate the buried object with different strength of stiffness. The experiment was performed based on field miniature model (small scale study) using soil trial embankment made by lateritic soil and various concrete cube strengths (grade 20, 25 and 30) representing buried object with different conditions. 2D electrical resistivity test (electrical resistivity imaging) was perform using ABEM Terrameter SAS4000 during the data acquisition while the raw data was process using RES2DINV software. It was found that the electrical resistivity method was able to detect the buried concrete structures targeted based on the contrast of the electrical resistivity image produced. Moreover, three different strength of concrete cube were able to be differentiated based on the electrical resistivity values (ERV) obtained. This study found that the ERV of concrete cube for grade 20, 25 and 30 were 170 Ωm, 227 Ωm and 503 Ωm, respectively. Hence, this study shows that the ERV has a strong relationship with different stiffness of material thus applicable to be a useful alternative tool in underground structure detection.

  2. INORGANIC PLUME DELINEATION USING SURFACE HIGH RESOLUTION ELECTRICAL RESISTIVITY AT THE BC CRIBS & TRENCHES SITE HANFORD

    SciTech Connect

    BENECKE, M.W.

    2007-05-29

    A surface resistivity survey was conducted on the Hanford Site over a waste disposal trench that received a large volume of liquid inorganic waste. The objective of the survey was to map the extent of the plume that resulted from the disposal activities approximately 50 years earlier. The survey included six resistivity transects of at least 200m, where each transect provided two-dimensional profile information of subsurface electrical properties. The results of the survey indicated that a low resistivity plume resides at a depth of approximately 25-44 m below ground surface. The target depth was calibrated with borehole data of pore-water electrical conductivity. Due to the high correlation of the pore-water electrical conductivity to nitrate concentration and the high correlation of measured apparent resistivity to pore-water electrical conductivity, inferences were made that proposed the spatial distribution of the apparent resistivity was due to the distribution of nitrate. Therefore, apparent resistivities were related to nitrate, which was subsequently rendered in three dimensions to show that the nitrate likely did not reach the water table and the bounds of the highest concentrations are directly beneath the collection of waste sites.

  3. Permanent electrical resistivity measurements for monitoring water circulation in clayey landslides

    NASA Astrophysics Data System (ADS)

    Gance, J.; Malet, J.-P.; Supper, R.; Sailhac, P.; Ottowitz, D.; Jochum, B.

    2016-03-01

    Landslides developed on clay-rich slopes are controlled by the soil water regime and the groundwater circulation. Spatially-distributed and high frequency observations of these hydrological processes are important for improving our understanding and prediction of landslide triggering. This work presents observed changes in electrical resistivity monitored at the Super-Sauze clayey landslide with the GEOMON 4D resistivity instrument installed permanently on-site for a period of one year. A methodological framework for processing the raw measurement is proposed. It includes the filtering of the resistivity dataset, the correction of the effects of non-hydrological factors (sensitivity of the device, sensitivity to soil temperature and fluid conductivity, presence of fissures in the topsoil) on the filtered resistivity values. The interpretation is based on a statistical analysis to define possible relationships between the rainfall characteristics, the soil hydrological observations and the soil electrical resistivity response. During the monitoring period, no significant relationships between the electrical response and the measured hydrological parameters are evidenced. We discuss the limitations of the method due to the effect of heat exchange between the groundwater, the vadose zone water and the rainwater that hides the variations of resistivity due to variations of the soil water content. We demonstrate that despite the absence of hydrogeophysical information for the vadose zone, the sensitivity of electrical resistivity monitoring to temperature variations allows imaging water fluxes in the saturated zone and highlighting the existence of matrix and preferential flows that does not occur at the same time and for the same duration. We conclude on the necessity to combine electrical resistivity measurements with distributed soil temperature measurements.

  4. Fabrication of intermetallic coatings for electrical and corrosion resistance on high-temperature alloys

    SciTech Connect

    Park, J.H.; Cho, W.D.

    1994-10-01

    Several intermetallic films were fabricated to high-temperature alloys (V-alloys and 304 and 316 stainless steels) to provide electrical insulation and corrosion resistance. Alloy grain-growth behavior at 1000{degrees}C for the V-5Cr-5Ti was investigated to determine the stability of alloy substrate during coating formation by chemical vapor deposition (CVD) or metallic vapor processes at 800-850{degrees}C. Film layers were examined by optical and scanning electron microscopy and by electron-energy-dispersive and X-ray diffraction analysis and tested for electrical resistivity and corrosion resistance. The results elucidated the nature of the coatings, which provided both electrical insulation and high-temperature corrosion protection.

  5. Understanding Electrical Conduction States in WO3 Thin Films Applied for Resistive Random-Access Memory

    NASA Astrophysics Data System (ADS)

    Ta, Thi Kieu Hanh; Pham, Kim Ngoc; Dao, Thi Bang Tam; Tran, Dai Lam; Phan, Bach Thang

    2016-05-01

    The electrical conduction and associated resistance switching mechanism of top electrode/WO3/bottom electrode devices [top electrode (TE): Ag, Ti; bottom electrode (BE): Pt, fluorine-doped tin oxide] have been investigated. The direction of switching and switching ability depended on both the top and bottom electrode material. Multiple electrical conduction mechanisms control the leakage current of such switching devices, including trap-controlled space-charge, ballistic, Ohmic, and Fowler-Nordheim tunneling effects. The transition between electrical conduction states is also linked to the switching (SET-RESET) process. This is the first report of ballistic conduction in research into resistive random-access memory. The associated resistive switching mechanisms are also discussed.

  6. Delineating the Groundwater Recharge Zone in the Pingtung Plan , Taiwan with Electrical Resistivity Surveys

    NASA Astrophysics Data System (ADS)

    Wu, C.; Chang, P.; Chang, L.; Chen, J.; Huang, C.

    2012-12-01

    In this study we used the two-dimensional electrical resistivity imaging (ERI) method, as well as the core records of monitoring wells to help determine the groundwater recharge zone in Pingtung plain in southwestern Taiwan. Pingtung fluvial plain is one of the major groundwater resources in Taiwan which is composed of several alluvial fans deriving from the uplifted mountain area to the east and north of the plain. The thick gravel layer constitutes the main recharge area of the upper alluvial fans and the conductive clay sediments dominate most of the lower fans. With the core records, we found that, the gravel layers have higher resistivity (mostly over 200 Ohm-m) and the resistivities of the clayey layers are low (about 1~10 Ohm-m). Therefore with the resistivity surveys we can have more confidences for determining the boundary of the groundwater recharge area in the area in-between the monitoring wells. In the past two years, we have finished 24 two-dimensional electrical resistivity imaging profile lines from Meinong to Fangliao, the lines are oriented in the east-west direction, and each line was about 400 meters long. With the inverted results, we are able to characterize two major alluvial systems and their recharge zones in the Pingtung fluvial plain. The resistivities we measured almost are consistent to the core records of monitoring wells except for the Wanluan site, which shows thick gravel layer in the drilling records but has low resistivity in the nearby resistivity survey. A reasonable explanation is that the electrical resistivity is sensitive to clayey materials with lower resistivities. The intercalated clay within the gravel layers is not shown in the churn drilling records.

  7. Electrical resistivity investigations at Memphis, and Bolivar, Tennessee

    USGS Publications Warehouse

    Spicer, H. Cecil

    1948-01-01

    This geophysical investigation was undertaken upon request of Elliott M. Cushing of the Ground Water Division Office at Memphis, Tennessee. The field work was performed during the period March 13 to 28, 1947; the apparent resistivity curves were interpreted during November and December; and the report was written subsequent to the interpretation of the curves. The writer is grateful to Elliott M. Cushing and his staff for the splendid cooperation and generous assistance extended to him in obtaining the measurements. It is also a pleasure to acknowledge the assistance of George J. Edwards in obtaining the field measurements.

  8. Fracture Surface Area Effects on Fluid Extraction and the Electrical Resistivity of Geothermal Reservoir Rocks

    SciTech Connect

    Roberts, J J; Detwiler, R L; Ralph, W; Bonner, B

    2002-05-09

    Laboratory measurements of the electrical resistivity of fractured analogue geothermal reservoir rocks were performed to investigate the resistivity contrast caused by active boiling and to determine the effects of variable fracture dimensions and surface area on water extraction. Experiments were performed at confining pressures up to 10 h4Pa (100 bars) and temperatures to 170 C. Fractured samples show a larger resistivity change at the onset of boiling than intact samples. Monitoring the resistivity of fractured samples as they equilibrate to imposed pressure and temperature conditions provides an estimate of fluid migration into and out of the matrix. Measurements presented are an important step toward using field electrical methods to quantitatively search for fractures, infer saturation, and track fluid migration in geothermal reservoirs.

  9. An electrically resistive sheet of glial cells for amplifying signals of neuronal extracellular recordings

    NASA Astrophysics Data System (ADS)

    Matsumura, R.; Yamamoto, H.; Niwano, M.; Hirano-Iwata, A.

    2016-01-01

    Electrical signals of neuronal cells can be recorded non-invasively and with a high degree of temporal resolution using multielectrode arrays (MEAs). However, signals that are recorded with these devices are small, usually 0.01%-0.1% of intracellular recordings. Here, we show that the amplitude of neuronal signals recorded with MEA devices can be amplified by covering neuronal networks with an electrically resistive sheet. The resistive sheet used in this study is a monolayer of glial cells, supportive cells in the brain. The glial cells were grown on a collagen-gel film that is permeable to oxygen and other nutrients. The impedance of the glial sheet was measured by electrochemical impedance spectroscopy, and equivalent circuit simulations were performed to theoretically investigate the effect of covering the neurons with such a resistive sheet. Finally, the effect of the resistive glial sheet was confirmed experimentally, showing a 6-fold increase in neuronal signals. This technique feasibly amplifies signals of MEA recordings.

  10. Stochastic Inversion of Electrical Resistivity Changes Using a Markov Chain, Monte Carlo Approach

    SciTech Connect

    Ramirez, A; Nitao, J; Hanley, W; Aines, R; Glaser, R; Sengupta, S; Dyer, K; Hickling, T; Daily, W

    2004-09-21

    We describe a stochastic inversion method for mapping subsurface regions where the electrical resistivity is changing. The technique combines prior information, electrical resistance data and forward models to produce subsurface resistivity models that are most consistent with all available data. Bayesian inference and a Metropolis simulation algorithm form the basis for this approach. Attractive features include its ability to: (1) provide quantitative measures of the uncertainty of a generated estimate and, (2) allow alternative model estimates to be identified, compared and ranked. Methods that monitor convergence and summarize important trends of the posterior distribution are introduced. Results from a physical model test and a field experiment were used to assess performance. The stochastic inversions presented provide useful estimates of the most probable location, shape, and volume of the changing region, and the most likely resistivity change. The proposed method is computationally expensive, requiring the use of extensive computational resources to make its application practical.

  11. Investigations of temperature dependences of electrical resistivity and specific heat capacity of metals

    NASA Astrophysics Data System (ADS)

    Eser, Erhan; Koç, Hüseyin

    2016-07-01

    In this study, we calculated the electrical resistivity and heat capacities of some ideal metals (Cu, Pt, and Pd) using a method that it employs the statistical model and Debye functions. The method is used to provide a simple and reliable analytical procedure for wide temperature range. The results obtained for the electrical resistivity and heat capacity have been compared with the results in literature. The results obtained at low temperature are in excellent agreement with experimental and theoretical results. Finally the used approximation and analytical method are a useful approach to calculate thermophysical properties of metals.

  12. Temperature dependent electrical resistivity of gallium and antimony in a liquid form

    NASA Astrophysics Data System (ADS)

    Prajapati, A. V.; Sonvane, Y. A.; Thakor, P. B.

    2016-05-01

    Present paper deals with the effects of temperature variation on the electrical resistivity (Ω) of liquid Gallium (Ga), and Antimony (Sb). We have used a new parameter free pseudopotential with a Zeeman formula for finding it. To see the effects of screening Farid et al local field correction function is used with the Charged Hard Sphere (CHS) reference system. Analysis and comparison between the plotted graphs, based on present computed data and other experimental data defines and conclude that our newly constructed model potential is an effective one to produce the data for the temperature dependent electrical resistivity of some liquid semiconductors.

  13. Electrical resistivity well-logging system with solid-state electronic circuitry

    USGS Publications Warehouse

    Scott, James Henry; Farstad, Arnold J.

    1977-01-01

    An improved 4-channel electrical resistivity well-logging system for use with a passive probe with electrodes arranged in the 'normal' configuration has been designed and fabricated by Westinghouse Electric Corporation to meet technical specifications developed by the U.S. Geological Survey. Salient features of the system include solid-state switching and current regulation in the transmitter circuit to produce a constant-current source square wave, and synchronous solid-state switching and sampling of the potential waveform in the receiver circuit to provide an analog dc voltage proportions to the measured resistivity. Technical specifications and design details are included in this report.

  14. Thermo-Electromotive Force and Electrical Resistivity of Hydrogenated VT1-0 Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Lider, A.; Larionov, V.; Kroening, M.; Kudiiarov, V.

    2016-06-01

    The method for measuring the structure transition of hydrogenated titanium from one state to another is suggested. The method is based on the comparison of thermo-electromotive force (thermo-emf), DC electrical resistance and the results of X-ray diffraction analysis. X-ray diffraction analysis is applied for identifying the quantity of defects in titanium structure. The authors have also identified the identical dependence of thermo-electromotive force and electrical resistivity on hydrogen concentration in titanium. The effect can be used for hydrogenated titanium structure control.

  15. Electrical resistivity and specific heat of La 2-XSr XNiO 4+δ

    NASA Astrophysics Data System (ADS)

    Matsushita, Akiyuki; Matsumoto, Takehiko; Takayanagi, Shigeru; Mōri, Nobuo

    1990-08-01

    Specific heat and electrical resistivity were measured on La 2-XSr XNiO 4+δ with various Sr concentrations as a function of temerature. The behaviors of electrical resistivity and lattice constants show a marked change at X⋃0.5 (Xc). The specific heat shows a hump at about 6K in C/T vs. T 2 plot for all of samples annealed in air. For the samples annealed in hydrogen no hump is observed. The relationship between Xc and interstitial oxygen defect is discussed.

  16. Thermal conductivity, electrical resistivity, and thermopower of aerospace alloys from 4 to 300 K.

    NASA Technical Reports Server (NTRS)

    Hust, J. G.; Weitzel, D. H.; Powell, R. L.

    1971-01-01

    Measurement of thermal conductivity, electrical resistivity, and thermopower for several aerospace alloys: titanium alloy A110-AT, aluminum alloy 7039, Inconel 718, and Hastelloy X. Tables and graphs of the measured properties and Lorenz ratio are presented over the range from 4 to 300 K. Comparisons to other measurements and theoretical analysis of the data are included. The uncertainties of the property data are estimated as 0.7 to 2.5% for thermal conductivity, 0.25% in electrical resistivity, and about 0.1 microvolt/K in thermopower.

  17. High pressure and temperature electrical resistivity of iron and implications for planetary cores (Invited)

    NASA Astrophysics Data System (ADS)

    Deng, L.; Seagle, C. T.; Fei, Y.; Shahar, A.

    2013-12-01

    Electrical resistivity measurements of polycrystalline iron have been performed at 5, 7 and 15 GPa and in the temperature range 293-2200 K by employing a four-wired method. The kinks in electrical resistivity associated with solid iron phase transitions and the solid to liquid transition were clearly observed upon increasing temperature. Geometry corrections due to volume variations with pressure and temperature were applied to the entire data set. High pressure and temperature thermal conductivity were calculated by fitting resistivity data through the Wiedemann-Franz law. The temperature dependences of electrical resistivity and thermal conductivity for α, γ and ɛ solid iron have been determined at high pressure conditions. Our study provides the first experimental constraint on the heat flux conducted at Mercury's outmost core, estimated to be 0.29-0.36 TW, assuming an adiabatic core. Extrapolations of our data to Martian outer core conditions yield a series of heat transport parameters (eg. electrical resistivity, thermal conductivity and heat flux), which are in reasonable comparison with various geophysical estimates.

  18. Acidic Barren Slope Profiling using Electrical Resistivity Imaging (ERI) at Ayer Hitam area Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Azhar, A. T. S.; Hazreek, Z. A. M.; Aziman, M.; Haimi, D. S.; Hafiz, Z. M.

    2016-04-01

    Recently, non-destructive method such as the electrical resistivity technique has become increasingly popular in engineering, environmental, mining and archeological studies nowadays. This method was popular in subsurface profiling due to its ability to replicate the images of the subsurface indirectly. The soil slope found in Batu Pahat, specifically in Ayer Hitam, is known to be problematic due to its barren condition. This location is believed to contain futile soil due to its difficulty in supporting the growth of vegetations. In the past, acidic barren slope assessment using non-destructive method was rarely being used due to several reasons related to the equipment and knowledge constraints. Hence, this study performed an electrical resistivity imaging using ABEM Terrameter LS in order to investigate the acidic barren slope conditions. Field data acquisition was based on Schlumberger and Wenner arrays while RES2DINV software was used to analyze and generate a 2-D model of the problematic subsurface profile. Based on electrical resistivity results, it was found that the acidic barren slope studied consists of two main zones representing residual soil (electrical resistivity value = 10 - 600 Ωm) and shale (electrical resistivity value = 20 - 2000 Ωm). The results of resistivity value were correlated with the physical mapping and the in situ mackintosh probe test for verification purposes. It was found that the maximum depth of the mackintosh probe test was 1.8 m due to its ground penetration limitation. However, the results of the resistivity section managed to achieve greater depth up to 40 m. Hence, the correlation between electrical resistivity and mackintosh probe results can only be performed at certain depth of the acidic barren slope profile in contrast with the physical mapping which able to define the whole section of the barren soil slope structure. Finally, a good match of electrical resistivity results calibrated with mackintosh and physical

  19. Evaluation of physico-mechanical properties of clayey soils using electrical resistivity imaging technique

    NASA Astrophysics Data System (ADS)

    Kibria, Golam

    Resistivity imaging (RI) is a promising approach to obtaining continuous profile of soil subsurface. This method offers simple technique to identify moisture variation and heterogeneity of the investigated area. However, at present, only qualitative information of subsurface can be obtained using RI. A study on the quantification of geotechnical properties has become important for rigorous use of this method in the evaluation of geohazard potential and construction quality control of landfill liner system. Several studies have been performed to describe electrical resistivity of soil as a function of pore fluid conductivity and surface conductance. However, characterization tests on pore water and surface charge are not typically performed in a conventional geotechnical investigation. The overall objective of this study is to develop correlations between geotechnical parameters and electrical resistivity of soil, which would provide a mean to estimate geotechnical properties from RI. As a part of the study, multiple regression analyses were conducted to develop practically applicable models correlating resistivity with influential geotechnical parameters. The soil samples considered in this study were classified as highly plastic clay (CH) and low plasticity clay (CL) according to Unified Soil Classification System (USCS). Based on the physical tests, scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDS) analysis, kaolinite was identified as the dominant mineral with some traces of magnesium, calcium, potassium, and iron. Electrical resistivity tests were conducted on compacted clays and undisturbed samples under varied geotechnical conditions. The experimental results indicated that the degree of saturation substantially influenced electrical resistivity. Electrical resistivity decreased as much as 11 times from initial value for the increase of degree of saturation from 23 to 100% in the laboratory tests on compacted clays. In case of

  20. Electrical Resistivity Study of a Pleistocene Riverbed in Saltville, VA

    NASA Astrophysics Data System (ADS)

    Herman, R. B.; Whisonant, R. C.

    2008-05-01

    A shallow capacitively coupled resistivity survey was performed in Saltville, VA, in an area of suspected buried Pleistocene river deposits. Previous excavations in the sediments beneath the Saltville valley floor had been performed to recover late Pleistocene megafaunal remains and possible Clovis-age human artifacts. These digs encountered a zone, one to two meters deep, of gravel-sized rock fragments, including some boulders up to 75 cm. in diameter. These large clasts are rounded, show some imbrication (shingle-like overlapping indicative of current flow), and have been interpreted as river channel deposits. Carbon 14 dates from the megafaunal bones within and just above the gravel bed yielded dates of 14,500 years BP. Resistivity signals in a number of locations were consistent with cobbles and boulders deposited in a river channel. These signals are generally bowl- shaped areas with large circular (2-d scans) anomalies near the center, and smaller circular anomalies tapering out towards both sides. The bowl-shaped anomalies are within 3 meters of the surface. With several lines imaged in this survey a rough path of the riverbed, along with a number of branchings is traceable in the survey area. An exploratory hole confirmed the presence of a layer of rounded cobbles and boulders 1.3 meters deep beneath one of the survey lines.

  1. Degree of dispersion of latex particles in cement paste, as assessed by electrical resistivity measurement

    SciTech Connect

    Fu, X.; Chung, D.D.L.

    1996-12-31

    The degree of dispersion of latex particles in latex-modified cement paste was assessed by measurement of the volume electrical resistivity and modeling this resistivity in terms of latex and cement phases that are partly in series and partly in parallel. The assessment was best at low values of the latex-cement ratio; it underestimated the degree of latex dispersion when the latex/cement ratio was high, especially > 0.2.

  2. Electron Acceleration by Cascading Reconnection in the Solar Corona. II. Resistive Electric Field Effects

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Büchner, J.; Bárta, M.; Gan, W.; Liu, S.

    2016-08-01

    We investigate electron acceleration by electric fields induced by cascading reconnections in current sheets trailing coronal mass ejections via a test particle approach in the framework of the guiding-center approximation. Although the resistive electric field is much weaker than the inductive electric field, the electron acceleration is still dominated by the former. Anomalous resistivity η is switched on only in regions where the current carrier’s drift velocity is large enough. As a consequence, electron acceleration is very sensitive to the spatial distribution of the resistive electric fields, and electrons accelerated in different segments of the current sheet have different characteristics. Due to the geometry of the 2.5-dimensional electromagnetic fields and strong resistive electric field accelerations, accelerated high-energy electrons can be trapped in the corona, precipitating into the chromosphere or escaping into interplanetary space. The trapped and precipitating electrons can reach a few MeV within 1 s and have a very hard energy distribution. Spatial structure of the acceleration sites may also introduce breaks in the electron energy distribution. Most of the interplanetary electrons reach hundreds of keV with a softer distribution. To compare with observations of solar flares and electrons in solar energetic particle events, we derive hard X-ray spectra produced by the trapped and precipitating electrons, fluxes of the precipitating and interplanetary electrons, and electron spatial distributions.

  3. Characterization of Contact and Bulk Thermal Resistance of Laminations for Electric Machines

    SciTech Connect

    Cousineau, J. Emily; Bennion, Kevin; DeVoto, Doug; Mihalic, Mark; Narumanchi, Sreekant

    2015-06-30

    The ability to remove heat from an electric machine depends on the passive stack thermal resistances within the machine and the convective cooling performance of the selected cooling technology. This report focuses on the passive thermal design, specifically properties of the stator and rotor lamination stacks. Orthotropic thermal conductivity, specific heat, and density are reported. Four materials commonly used in electric machines were tested, including M19 (29 and 26 gauge), HF10, and Arnon 7 materials.

  4. On the Modeling of Electrical Effects Experienced by Space Explorers During Extra Vehicular Activities: Intracorporal Currents, Resistances, and Electric Fields

    NASA Technical Reports Server (NTRS)

    Cela, Carlos J.; Loizos, Kyle; Lazzi, Gianluca; Hamilton, Douglas; Lee, Raphael C.

    2011-01-01

    Recent research has shown that space explorers engaged in Extra Vehicular Activities (EVAs) may be exposed, under certain conditions, to undesired electrical currents. This work focuses on determining whether these undesired induced electrical currents could be responsible for involuntary neuromuscular activity in the subjects, possibly caused by either large diameter peripheral nerve activation or reflex activity from cutaneous afferent stimulation. An efficient multiresolution variant of the admittance method along with a millimeter-resolution model of a male human body were used to calculate induced electric fields, resistance between contact electrodes used to simulate the potential exposure condition, and currents induced in the human body model. Results show that, under realistic exposure conditions using a 15V source, current density magnitudes and total current injected are well above previously reported startle reaction thresholds. This indicates that, under the considered conditions, the subjects could experience involuntary motor response.

  5. Domain Motion of Ferroelectricity of Bi2SrTa2O9 Single Crystals under an AC-Voltage Electric Field

    NASA Astrophysics Data System (ADS)

    Machida, Akio; Nagasawa, Naomi; Ami, Takaaki; Suzuki, Masayuki

    1999-02-01

    A novel phenomenon, which increases the remanent polarization of Bi2SrTa2O9 single crystals, a promising candidate for ferroelectric random access memories (FeRAM), has been identified. The single crystals, grown in vapor phases using the self-flux method, have a composition characterized asBixSryTa2O9 (x=2.08±0.09, y=1.04±0.06). Incontrast to BixSryTa2O9 (x=1.91±0.05, y=1.27±0.08) single crystals grown by the self-flux method, the coercive field of the present single crystals is smaller. Observing optical anisotropy in the c-plane, we found that this material has a paraelectric phase, which might originate from the partial distortion of the crystal. After voltage was applied, the paraelectric phase disappeared and the crystal became a ferroelectric domain structure. Measuring the electrical properties in the c-plane, the remanent polarization of the Bi2SrTa2O9 single crystal was increased by applying ac-voltage. One-hour annealing over the Curie temperature also produced a paraelectric phase in the crystal but it was confirmed that this paraelectric phase can also be decreased by applying ac-voltage. Using this ac-voltage application, we can clearly observe the domain structure of BiSTa single crystal for the first time.

  6. Mechanical flexible and electric fatigue resistant behavior of relaxor ferroelectric terpolymer

    NASA Astrophysics Data System (ADS)

    Fang, Fei; Yang, Wei; Yang, Wen

    2009-08-01

    Uniaxial tension and polarization evolution under cyclic electric field are investigated for poly(vinylidene fluoride-trifluorethylene-chlorofluoroethylene) terpolymer films prepared by different annealing conditions. The stress-strain behavior of the terpolymer film exhibits that of polymeric elastomers, with its fracture strain reaching 680%. Structure analysis demonstrates that the polymer chains undergo reorientation, and conformational change from nonpolar to polar phase takes place during uniaxial tension. Under cyclic electric field, the terpolymer film exhibits a narrow polarization loop typical of a ferroelectric relaxor. Conformational change from nonpolar to polar phase also occurs upon the electric field, and it reverses to the nonpolar phase when the field is removed. As the cycle number accumulates, the terpolymer film demonstrates excellent resistance to electric fatigue. Compared to the film annealed at 115 °C, the terpolymer film annealed at 100 °C has a larger volume fraction of crystallite/amorphous interfaces and shows better mechanical flexibility as well as electric fatigue resistance. The mechanical flexible and electric fatigue resistant terpolymer films hold promises for many applications, ranging from embedded sensors and actuators to flexible memory devices.

  7. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  8. A theoretical study of electrical and thermal response in resistance spot welding

    SciTech Connect

    Na, S.J.; Park, S.W.

    1996-08-01

    The effect of contact resistance including constriction and contamination resistance has been a major hurdle for the thermoelectrical analysis of the resistance spot welding process. In this paper, a simple model was suggested and used for calculating the electrical and thermal response of the resistance spot welding process to investigate the influence of contacting forces on the formation of weld nuggets. The electrode surface of the contact interface was assumed to be axisymmetric and its microasperities to have a trapezoidal cross-section. These microasperities were considered as the one-dimensional contact resistance elements in the finite element formulation. The contamination film was assumed to be a nonconducting oxide layer, which is very brittle, so that it is broken to some number of pieces when a contacting pressure is being applied. The crushed films were assumed to be distributed at regular intervals and to conserve their size and number during the welding process. The simulation results revealed that the proposed model can be successfully used to predict the effect of the contact resistance on the electrical and thermal response of the resistance spot welding process.

  9. Application of electrical resistivity tomography technique for investigation of landslides: a case from Turkey

    NASA Astrophysics Data System (ADS)

    Drahor, Mahmut G.; Göktürkler, Gökhan; Berge, Meriç A.; Kurtulmuş, T. Özgür

    2006-05-01

    Electrical resistivity imaging is a widely used tool in near surface geophysical surveys for investigation of various geological, environmental and engineering problems including landslide. In this study, an electrical resistivity tomography (ERT) survey was conducted in a landslide area, located in the Söke district of Aydın, Turkey. In 2003, the Neogene-aged units on the slope next to a newly built school building became unstable due to an excavation work and moved after a heavy rainfall. The resulting landslide partly covered the school. The authors carried out a 2-D resistivity survey along three profiles over the landslide mass using a Wenner configuration. It yielded useful information about the geometry and characteristics of the landslide. In addition, a 2-D synthetic resistivity modelling study was carried out to understand the response of the resistivity method to a landslide problem before the field surveys. Eight boreholes were also drilled in the landslide area. Both the drilling and resistivity results indicated the presence of a fault in the site. Also, the resistivity data from the line measured along the axis of the landslide revealed the surface of rupture.

  10. Electrical Resistivity Tomography in the characterisation of wetting patterns of historical masonry

    NASA Astrophysics Data System (ADS)

    López-González, Laura; Gomez-Heras, Miguel; Ortiz de Cosca, Raquel Otero; García-Morales, Soledad

    2016-04-01

    Electrical Resistivity Tomography (ERT) is a geophysical technique widely used to identify subsurface structures based on electrical resistivity measurements made at the surface. In recent years this technique has been used for surveying historic buildings and characterise the subsurface of walls by using non-invasive EKG electrodes. This methods is used to locate wet areas based on the lower electrical resistivity wet materials have in relation to dry ones. A good knowledge of the wetting patterns of historic buildings during, for example, rainfalls is crucial to understand the decay processes that take place in the building and plan interventions. This paper presents results of transects of Electric Resistivity Tomography of walls of the Monastery of Santa Maria de Mave (Palencia, Spain), a 9th century Romanesque building, during rainfall. ERT transects were performed with a GeoTom device (Geolog2000) in areas with and without buttresses to understand how this architectural detail affected the wetting dynamics of the building. The ERT results were integrated with other resistivity-based techniques and Thermohygrometric survey in a GIS and showed how lower resistivity surface measurements ERT correspond with areas of higher humidity. Resistivity-based techniques measured and evaporation focal points take in the interior of the building mark the outer ground level. The highest moisture content measurements do not always correspond to the visibly most damaged areas of the wall. The consecutive ERT transects show the wall getting wetter as rainfall progresses. The comparison of the measurements obtained of a wall affected by water obtained with GIS mapping, allowed to quickly studying the development of moisture in the wall over time, which is essential for a correct diagnosis of the building. Research funded by Madrid's Regional Government project Geomateriales 2 S2013/MIT-2914

  11. A study of the deposition of carbide coatings on graphite fibers. [to increase electrical resistance

    NASA Technical Reports Server (NTRS)

    Suplinskas, R. J.; Henze, T. W.

    1979-01-01

    The chemical vapor deposition of boron carbide and silicon carbide on graphite fibers to increase their electrical resistance was studied. Silicon carbide coatings were applied without degradation of the mechanical properties of the filaments. These coatings typically added 1000 ohms to the resistance of a filament as measured between two mercury pools. When SiC-coated filaments were oxidized by refluxing in boiling phosphoric acid, average resistance increased by an additional 1000 ohms; in addition resistance increases as high as 150 K ohms and breakdown voltages as high as 17 volts were noted. Data on boron carbide coatings indicated that such coatings would not be effective in increasing resistance, and would degrade the mechanical properties.

  12. Electrical resistivity image of the South Atlantic continental margin derived from onshore and offshore magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Kapinos, G.; Weckmann, U.; Jegen-Kulcsar, M.; Meqbel, N.; Neska, A.; Katjiuongua, T. T.; Hoelz, S.; Ritter, O.

    2016-01-01

    We present a deep electrical resistivity image from the passive continental margin in Namibia. The approximately 700 km long magnetotelluric profile follows the Walvis Ridge offshore, continues onshore across the Kaoko Mobile Belt and reaches onto the Congo Craton. Two-dimensional inversion reveals moderately resistive material offshore, atypically low for oceanic lithosphere, reaching depths of 15-20 km. Such moderate resistivities are consistent with seismic P wave velocity models, which suggest up to 35 km thick crust. The Neoproterozoic rocks of the Kaoko Mobile Belt are resistive, but NNW-striking major shear-zones are imaged as subvertical, conductive structures in the upper and middle crust. Since the geophysical imprint of the shear zones is intact, opening of the South Atlantic in the Cretaceous did not alter the middle crust. The transition into the cratonic region coincides with a deepening of the high-resistive material to depths of more than 60 km.

  13. Abnormal drop in electrical resistivity with impurity doping of single-crystal Ag

    PubMed Central

    Kim, Ji Young; Oh, Min-Wook; Lee, Seunghun; Cho, Yong Chan; Yoon, Jang-Hee; Lee, Geun Woo; Cho, Chae-Ryong; Park, Chul Hong; Jeong, Se-Young

    2014-01-01

    Resistivity is an intrinsic feature that specifies the electrical properties of a material and depends on electron-phonon scattering near room temperature. Reducing the resistivity of a metal to its potentially lowest value requires eliminating grain boundaries and impurities, but to date few studies have focused on reducing the intrinsic resistivity of a pure metal itself. We could reduce the intrinsic resistivity of single-crystal Ag, which has an almost perfect structure, by impurity doping it with Cu. This paper presents our results: resistivity was reduced to 1.35 μΩ·cm at room temperature after 3 mol% Cu-doping of single-crystal Ag. Various mechanisms were examined in an attempt to explain the abnormal behavior. PMID:24965478

  14. Effects of four entomopathogenic nematode species on fitness costs of pink bollworm resistance to Bacillus thuringiensis toxin Cry1Ac

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evolution of resistance by pests can reduce the efficacy of transgenic crops that produce insecticidal toxins from the bacterium Bacillus thuringiensis (Bt). However, fitness costs can slow the evolution of resistance. We tested whether four species of entomopathogenic nematodes (Steinernematidae ...

  15. Aerodynamic resistance reduction of electric and hybrid vehicles

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The generation of an EHV aerodynamic data base was initiated by conducting full-scale wind tunnel tests on 16 vehicles. Zero-yaw drag coefficients ranged from a high of 0.58 for a boxey delivery van and an open roadster to a low of about 0.34 for a current 4-passenger prototype automobile which was designed with aerodynamics as an integrated parameter. Characteristic effects of aspect ratio or fineness ratio which might appear if electric vehicle shape proportions were to vary significantly from current automobiles were identified. Some preliminary results indicate a 5 to 10% variation in drag over the range of interest. Effective drag coefficient wind-weighting factors over J227a driving cycles in the presence of annual mean wind fields were identified. Such coefficients, when properly weighted, were found to be from 5 to 65% greater than the zero-yaw drag coefficient in the cases presented. A vehicle aerodynamics bibliography of over 160 entries, in six general categories is included.

  16. Electrical resistivity characterization and defect detection on a geosynthetic clay liner (GCL) on an experimental site

    NASA Astrophysics Data System (ADS)

    Sirieix, C.; Fernández Martínez, J. L.; Riss, J.; Genelle, F.

    2013-03-01

    In this paper we analyze the onsite characterization of a geosynthetic clay liner (GCL) that serves to ensure the impermeability of a landfill cap by DC electrical methods. The imaging of the GCL geoelectrical properties is a challenging problem because it is a very thin (between 4 and 7 mm thick) and resistive layer (from 100,000 to 2,000,000 Ω·m) depending on meteorological conditions and aging. We compare results obtained using electrical resistivity tomography (ERT) using two different kinds of arrays (dipole-dipole DD and Wenner-Schlumberger) on an experimental site with engineered defects. To confirm these results and to find the real onsite GCL resistivity we have performed sampling of the posterior distribution of this parameter using vertical electrical sounding (VES) inversions. Different VES methods were extracted from ERT with DD array and converted into a Schlumberger array. As a main conclusion the dipole-dipole array provides a better resistivity resolution of the defects than the Wenner-Schlumberger array. On ERT images, the defect detection seems to be impossible if the GCL has very high resistivity, as it happened when it was put in place. Taking into account the equivalence rules, the inversions are in both cases (ERT and VES) compatible. The GCL resistivity estimated from PSO (particle swarm optimization) varies from 3.0 105 to 1.106 Ω·m depending on saturation conditions during the twenty first months of its placing. Then, the resistivity dropped to 4.104-9.104 Ω·m, indicating a probable chemical damage of the GCL due to aging. Finally the fact that the VES inversions are solved via PSO sampling allows for the detection of a very thin and resistive layer and opens the possibility of performing micro VES surveys along the landfill to detect possible GCL defects.

  17. Ion Permeability of Artificial Membranes Evaluated by Diffusion Potential and Electrical Resistance Measurements

    ERIC Educational Resources Information Center

    Shlyonsky, Vadim

    2013-01-01

    In the present article, a novel model of artificial membranes that provides efficient assistance in teaching the origins of diffusion potentials is proposed. These membranes are made of polycarbonate filters fixed to 12-mm plastic rings and then saturated with a mixture of creosol and "n"-decane. The electrical resistance and potential…

  18. High School Students' Understanding of Resistance in Simple Series Electric Circuits.

    ERIC Educational Resources Information Center

    Liegeois, Laurent; Mullet, Etienne

    2002-01-01

    Studies the understanding that 8-12 grade high school students were able to develop with regard to the interrelationships between resistance, potential difference, and current concepts (Ohm's law). Explores the immediate effects of exposure to electricity courses on the intuitive mastery of these relationships. (Contains 32 references.)…

  19. Time lapse electrical resistivity and induced polarization monitoring of near-surface CO2 injection

    NASA Astrophysics Data System (ADS)

    Allègre, V.; Kremer, T.; Williard, E.; Schmutz, M.; Maineult, A. J.

    2013-12-01

    Field experiments were carried out to investigate the efficiency and the reliability of electrical geophysical methods to detect and monitor CO2 leakages at field scale. Each test consisted of injecting CO2 for approximately four hours at five meters depth, corresponding to a cumulative mass of gas of around six kilograms. Electrical resistivity tomography and temporal induced polarization were acquired at the surface before, during and after injections along profiles centered to the injection well. Time lapse measurements were compared to a reference acquisition performed before the injection. We observe that both methods are sensitive to variations in terms of gas saturation, the chargeability measurements being more sensitive to the presence of CO2 than electrical resistivity. During the injection, an increase of chargeability and a decrease of the measured resistivity are observed at depth in the vinicity of the injection well. Afterwards, the medium equilibrates and retrieves its original state, corresponding to the reference acquisition. The temporal variations of electrical resistivity and induced polarization responses are interpreted in terms of gas dissolution and water/gas saturation.

  20. Electrical resistance determination of actual contact area of cold welded metal joints

    NASA Technical Reports Server (NTRS)

    Hordon, M. J.

    1970-01-01

    Method measures the area of the bonded zone of a compression weld by observing the electrical resistance of the weld zone while the load changes from full compression until the joint ruptures under tension. The ratio of bonding force to maximum tensile load varies considerably.

  1. Electrical resistivity sounding to study water content distribution in heterogeneous soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electrical resistivity (ER) sounding is increasingly being used as non-invasive technique to reveal and map soil heterogeneity. The objective of this work was to assess ER sounding applicability to study soil water distribution in spatially heterogeneous soils. The 30x30-m study plot was located at ...

  2. Concerning Proposed Superconducting Fluctuations in the Electrical Resistivity of Bulk Aluminum

    NASA Astrophysics Data System (ADS)

    Barnard, B. R.; Bass, J.; Caplin, A. D.; Dalimin, M. N. B.

    1980-03-01

    Bulk superconducting fluctuation contributions to rounding of the electrical resistivity of Al just above Tc are demonstrated to be at least 5 to 10 times smaller than claimed recently by Sinvani, Levy, and Greenfield. Metallurgical artifacts provide a more plausible explanation for all of the measured rounding.

  3. Electrical stress-induced instability of amorphous indium-gallium-zinc oxide thin-film transistors under bipolar ac stress

    SciTech Connect

    Lee, Sangwon; Jeon, Kichan; Park, Jun-Hyun; Kim, Sungchul; Kong, Dongsik; Kim, Dong Myong; Kim, Dae Hwan; Kim, Sangwook; Kim, Sunil; Hur, Jihyun; Park, Jae Chul; Song, Ihun; Kim, Chang Jung; Park, Youngsoo; Jung, U-In

    2009-09-28

    Bipolar ac stress-induced instability of amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors is comparatively investigated with that under a positive dc gate bias stress. While the positive dc gate bias stress-induced threshold voltage shift ({delta}V{sub T}) is caused by the charge trapping into the interface/gate dielectric as reported in previous works, the dominant mechanism of the ac stress-induced {delta}V{sub T} is observed to be due to the increase in the acceptorlike deep states of the density of states (DOS) in the a-IGZO active layer. Furthermore, it is found that the variation of deep states in the DOS makes a parallel shift in the I{sub DS}-V{sub GS} curve with an insignificant change in the subthreshold slope, as well as the deformation of the C{sub G}-V{sub G} curves.

  4. Characterization and monitoring of subsurface processes using parallel computing and electrical resistivity imaging

    SciTech Connect

    Johnson, Timothy C.; Truex, Michael J.; Wellman, Dawn M.; Marble, Justin

    2011-12-01

    This newsletter discusses recent advancement in subsurface resistivity characterization and monitoring capabilities. The BC Cribs field desiccation treatability test resistivity monitoring data is use an example to demonstrate near-real time 3D subsurface imaging capabilities. Electrical resistivity tomography (ERT) is a method of imaging the electrical resistivity distribution of the subsurface. An ERT data collection system consists of an array of electrodes, deployed on the ground surface or within boreholes, that are connected to a control unit which can access each electrode independently (Figure 1). A single measurement is collected by injecting current across a pair of current injection electrodes (source and sink), and measuring the resulting potential generated across a pair of potential measurement electrodes (positive and negative). An ERT data set is generated by collecting many such measurements using strategically selected current and potential electrode pairs. This data set is then processed using an inversion algorithm, which reconstructs an estimate (or image) of the electrical conductivity (i.e. the inverse of resistivity) distribution that gave rise to the measured data.

  5. An experimentally validated contactless acoustic energy transfer model with resistive-reactive electrical loading

    NASA Astrophysics Data System (ADS)

    Shahab, S.; Gray, M.; Erturk, A.

    2015-04-01

    This paper investigates analytical modeling and experimental validation of Ultrasonic Acoustic Energy Transfer (UAET) for low-power electricity transfer to exploit in wireless applications ranging from medical implants to underwater sensor systems. A piezoelectric receiver bar is excited by incident acoustic waves originating from a source of known strength located at a specific distance from the receiver. The receiver is a free-free piezoelectric cylinder operating in the 33- mode of piezoelectricity with a fundamental resonance frequency above the audible frequency range. In order to extract the electrical power output, the piezoelectric receiver bar is shunted to a generalized resistive-reactive circuit. The goal is to quantify the electrical power delivered to the load (connected to the receiver) in terms of the source strength. Experimental validations are presented along with parameter optimization studies. Sensitivity of the electrical power output to the excitation frequency in the neighborhood of the receiver's underwater resonance frequency, source-to-receiver distance, and source-strength level are reported. Resistive and resistive-reactive electrical loading cases are discussed for performance enhancement and frequency-wise robustness. Simulations and experiments reveal that the presented multiphysics analytical model for UAET can be used to predict the coupled system dynamics with very good accuracy.

  6. AC loss in superconducting tapes and cables

    NASA Astrophysics Data System (ADS)

    Oomen, Marijn Pieter

    High-temperature superconductors are developed for use in power-transmission cables, transformers and motors. The alternating magnetic field in these devices causes AC loss, which is a critical factor in the design. The study focuses on multi-filament Bi-2223/Ag tapes exposed to a 50-Hz magnetic field at 77 K. The AC loss is measured with magnetic, electric and calorimetric methods. The results are compared to theoretical predictions based mainly on the Critical-State Model. The loss in high- temperature superconductors is affected by their characteristic properties: increased flux creep, high aspect ratio and inhomogeneties. Filament intergrowths and a low matrix resistivity cause a high coupling-current loss especially when the filaments are fully coupled. When the wide side of the tape is parallel to the external magnetic field, the filaments are decoupled by twisting. In a perpendicular field the filaments can be decoupled only by combining a short twist pitch with a transverse resistivity much higher than that of silver. The arrangement of the inner filaments determines the transverse resistivity. Ceramic barriers around the filaments cause partial decoupling in perpendicular magnetic fields at power frequencies. The resultant decrease in AC loss is greater than the accompanying decrease in critical current. With direct transport current in alternating magnetic field, the transport-current loss is well described with a new model for the dynamic resistance. The Critical- State Model describes well the magnetisation and total AC loss in parallel magnetic fields, at transport currents up to 0.7 times the critical current. When tapes are stacked face-to-face in a winding, the AC-loss density in perpendicular fields is greatly decreased due to the mutual shielding of the tapes. Coupling currents between the tapes in a cable cause an extra AC loss, which is reduced by a careful cable design. The total AC loss in complex devices with many tapes is generally well

  7. Electrical resistance and transport numbers of ion-exchange membranes used in electrodialytic soil remediation

    SciTech Connect

    Hansen, H.K.; Ottosen, L.M.; Villumsen, A.

    1999-08-01

    Electrodialytic soil remediation is a recently developed method to decontaminate heavy metal polluted soil using ion-exchange membranes. In this method one side of the ion-exchange membrane is in direct contact with the polluted soil. It is of great importance to known if this contact with the soil causes damage to the membrane. This work presents the result of transport number and electrical resistance measurements done on four sets of ion-exchange membranes (Ionics, Inc CR67 HMR412 cation-exchange membranes and Ionics, Inc AR204 SXZR anion-exchange membranes), which have been used in four different electrodialytic soil remediation experiments. The experiments showed that after the use in electrodialytic soil remediation, the ion-exchange membranes had transport numbers in the same magnitude as new membranes. The electrical resistance for six membranes did not differ from that of new membranes, whereas two membranes showed a slightly increased resistance.

  8. Post-remediation evaluation of a LNAPL site using electrical resistivity imaging.

    PubMed

    Halihan, Todd; Paxton, Stanley; Graham, Ivy; Fenstemaker, Thomas; Riley, Matt

    2005-04-01

    Present understanding of the earth's subsurface is most often derived from samples at discrete points (wells) and interpolations or models that interpret the space between these points. Electrical resistivity imaging techniques have produced an improved capability to map contaminants (especially NAPLs--NonAqueous Phase Liquids) away from traditional wells using actual field data. Electrical resistivity image data, confirmed by drilling, have demonstrated that LNAPL (Light NAPL--less dense than water, such as gasoline) contaminants exist outside of a delineated and remediated area in Golden, Oklahoma. The data also demonstrate that LNAPL exists between monitoring and remediation wells which indicate low contaminant levels when sampled. Additionally, the electrical images provided the drilling location with the highest concentration of hydrocarbon ever found on the site, even after two phases of remediation work had been performed, although the sampling protocols varied. The results indicate that current methods of post-remediation site characterization are inadequate for complete site characterization. PMID:15798793

  9. Structure-property relationships in Waspaloy via small angle scattering and electrical resistivity measurements

    SciTech Connect

    Whelchel, R.; Gerhardt, Dr. Rosario; Littrell, Ken

    2010-01-01

    The mechanical properties in superalloys are controlled by the distribution of the {gamma}{prime} precipitate phase. Electrical measurements have been shown to be sensitive to certain aspects of the precipitation process and show promise for predicting the evolving microstructural state in superalloys. Aging experiments were conducted on Waspaloy samples for temperatures between 600 and 950 C for times ranging from 2min to 500h. Particle size distributions were obtained by modeling of small angle scattering (SAS) data, whereas, small precipitate size information, strain, and lattice mismatch data were obtained from X-ray diffraction. The microstructural information was then used to create a figure of merit of electron scattering intended to correlate electrical properties to the precipitate microstructure. The proposed figure of merit shows an empirical correlation with the electrical resistivity data, demonstrating the sensitivity of the resistivity measurements to the precipitation process and coarsening behavior.

  10. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  11. Subsurface electrical resistivity structure around the Noubi fault system, central Japan, by MT survey

    NASA Astrophysics Data System (ADS)

    Omura, K.; Matsuda, T.; Yamada, R.

    2009-12-01

    Subsurface electrical resistivity around active faults is an important property to investigate the position and the geometry of the faults, the scale of the fracture zones related to the fault activity, and the amount of water and/or clay minerals in fault zones. We performed MT (magnetotelluric) surveys with remote reference method across the Noubi active fault system, central Japan, in order to image the electrical resistivity structure in and around the faults, and to obtain fundamental information on the earthquake generation mechanism. The Noubi fault system, about 80 km long, activated at 1891 Noubi Earthquake, consisting of the Nukumi, the Neodani, and the Umehara faults, which slipped left laterally by 1 - 7 m at the 1891 earthquake. Seismological and geomorphologic studies revealed different features between these three faults; the amount of lateral slip of the Neodani fault was larger than those of the Nukumi and the Umehara fault at 1891 Noubi earthquake (Matsuda, 1974; Mikumo and Ando, 1976); the average recurrence intervals of activation of the Nukumi and the Neodani fault were shorter than that of the Umehara fault (The Headquarters for Earthquake Research Promotion, 2005). Survey areas are mainly covered by the Mino sedimentary complex formed in the Jurassic - Cretaceous period that consists of mudstone, sandstone, limestone, basalt, chart, and siliceous mudstone. But the Hida belt that consists of metamorphic and granitic rocks covers northeast area of the Nukumi fault. Three survey lines of about 20 km length were set crossing normal to the surface fault traces of the Nukumi, Neodani and Umehara faults. And 10 - 12 MT measurement sites were arranged with the same interval on the survey lines. We measured two components of electric field and three components of magnetic field by a 'MTU-5' system made by Phoenix Geophysics Ltd. at three different sampling frequencies to cover frequency bands of 0.0003 - 317 Hz of electric and magnetic field. Applying

  12. Electrical resistance response of polyaniline films to water, ethanol, and nitric acid solution

    NASA Astrophysics Data System (ADS)

    Yin, Hong-Xing; Li, Meng-Meng; Yang, H.; Long, Yun-Ze; Sun, Xin

    2010-08-01

    This paper reports on electrical resistance vs. aging time for the response of polyaniline films under exposure to water, ethanol and nitric acid (HNO3) solution. Camphor sulfonic acid-doped polyaniline films were prepared by a “doping-dedoping-redoping" method, the morphology and microstructures of the films were characterized by a scanning electron microscope and an x-ray diffractometer, the electrical resistance was measured by a four-probe method. It was found that a lower amount of water molecules infiltrating the film can decrease the film's resistance possibly due to an enhancement of charge carrier transfer between polyaniline chains, whereas excessive water molecules can swell inter-chain distances and result in a quick increase of resistance. The resistance of the film under exposure to ethanol increases and becomes much larger than the original value. However, HNO3 solution can decrease the film's resistance sharply possibly owing to doping effect of protonic acid. These results can help to understand the conduction mechanism in polyaniline films, and also indicate that the films have potential application in chemical sensors.

  13. Monitoring six-phase ohmic heating of contaminated soils using electrical resistance tomography

    SciTech Connect

    Ramirez, A.L.; Daily, W.D.

    1994-09-01

    Electrical resistance tomography (ERT) was used to monitor six-phase ohmic heating used for the insitu remediation of volatile organic compounds from subsurface water and soil at the Savannah River Site, near Aiken, South Carolina. The changes in electrical conductivity caused by six-phase ohmic-heating in a clay layer located in the vadose zone were monitored during a period of approximately 2 months, before, during and after heating. From an array of electrodes located in 4 boreholes, we collected electrical resistivity data between five pairs of adjacent holes pairs. This data was used to calculate tomographs which showed the electrical conductivity changes along five vertical planes. The difference tomographs show the combined effects of moisture redistribution and heating caused by six-phase heating and vapor extraction. The tomographs show that most of the clay layer increased in electrical conductivity during the first 3 weeks of the 4 week long heating phase. At this time, the electrical conductivities near the center of the heating array were twice as large as the pre-heat conductivities. Then the electrical conductivity started to decrease for portions of the clay layer closest to the vapor extraction well. We propose that the conductivity decreases are due to the removal of moisture by the heating and vacuum extraction. Parts of the clay layer near the extraction well reached electrical conductivities as low as 40% of the pre-heating values. We propose that these regions of lower than ambient electrical conductivities are indicators of regions where the vapor removal by vacuum extraction was most effective. At the end of the heating phase, our estimates suggest that the clay saturation may have dropped to as low as 10% based on the observed conductivity changes.

  14. Relationships among low frequency (2 Hz) electrical resistivity, porosity, clay content and permeability in reservoir sandstones

    NASA Astrophysics Data System (ADS)

    Han, Tongcheng; Best, Angus I.; Sothcott, Jeremy; North, Laurence J.; MacGregor, Lucy M.

    2015-01-01

    The improved interpretation of marine controlled source electromagnetic (CSEM) data requires knowledge of the inter-relationships between reservoir parameters and low frequency electrical resistivity. Hence, the electrical resistivities of 67 brine (35 g/l) saturated sandstone samples with a range of petrophysical properties (porosity from 2% to 29%, permeability from 0.0001 mD to 997.49 mD and volumetric clay content from 0 to 28%) were measured in the laboratory at a frequency of 2 Hz using a four-electrode circumferential resistivity method with an accuracy of ± 2%. The results show that sandstones with porosity higher than 9% and volumetric clay content up to 22% behave like clean sandstones and follow Archie's law for a brine concentration of 35 g/l. By contrast, at this brine salinity, sandstones with porosity less than 9% and volumetric clay content above 10% behave like shaly sandstones with non-negligible grain surface conductivity. A negative, linear correlation was found between electrical resistivity and hydraulic permeability on a logarithmic scale. We also found good agreement between our experimental results and a clay pore blocking model based on pore-filling and load-bearing clay in a sand/clay mixture, variable (non-clay) cement fraction and a shaly sandstone resistivity model. The model results indicate a general transition in shaly sandstones from clay-controlled resistivity to sand-controlled resistivity at about 9% porosity. At such high brine concentrations, no discernible clay conduction effect was observed above 9% porosity.

  15. Effects of borehole design on complex electrical resistivity measurements: laboratory validation and numerical experiments

    NASA Astrophysics Data System (ADS)

    Treichel, A.; Huisman, J. A.; Zhao, Y.; Zimmermann, E.; Esser, O.; Kemna, A.; Vereecken, H.

    2012-12-01

    Geophysical measurements within a borehole are typically affected by the presence of the borehole. The focus of the current study is to quantify the effect of borehole design on broadband electrical impedance tomography (EIT) measurements within boreholes. Previous studies have shown that effects on the real part of the electrical resistivity are largest for boreholes with large diameters and for materials with a large formation factor. However, these studies have not considered the effect of the well casing and the filter gravel on the measurement of the real part of the electrical resistivity. In addition, the effect of borehole design on the imaginary part of the electrical resistivity has not been investigated yet. Therefore, the aim of this study is to investigate the effect of borehole design on the complex electrical resistivity using laboratory measurements and numerical simulations. In order to do so, we developed a high resolution two dimensional axisymmetric finite element model (FE) that enables us to simulate the effects of several key borehole design parameters (e.g. borehole diameter, thickness of PVC well casing) on the measurement process. For the material surrounding the borehole, realistic values for complex resistivity were obtained from a database of laboratory measurements of complex resistivity from the test site Krauthausen (Germany). The slotted PVC well casing is represented by an effective resistivity calculated from the water-filled slot volume and the PVC volume. Measurements with and without PVC well casing were made with a four-electrode EIT logging tool in a water-filled rain barrel. The initial comparison for the case that the logging tool was inserted in the PVC well casing showed a considerable mismatch between measured and modeled values. It was required to consider a complete electrode model instead of point electrodes to remove this mismatch. This validated model was used to investigate in detail how complex resistivity

  16. Electrical resistivity and porosity structure of the upper Biscayne Aquifer in Miami-Dade County, Florida

    NASA Astrophysics Data System (ADS)

    Whitman, Dean; Yeboah-Forson, Albert

    2015-12-01

    Square array electrical soundings were made at 13 sites in the Biscayne Aquifer distributed between 1 and 20 km from the shoreline. These soundings were modeled to investigate how resistivity varies spatially and with depth in the upper 15 m of the aquifer. Porosity was estimated from the modeled formation resistivity and observed pore fluid resistivity with Archie's Law. The models were used to interpolate resistivity and porosity surfaces at -2, -5, -8, and -15 m elevations. Modeled resistivity in the unsaturated zone is generally higher than 300 Ω m with the resistivity at sites with thick unsaturated zones greater than 1000 Ω m. Resistivity in the saturated zone ranges from 30 to 320 Ω m. At many sites in the western portions of the study area, resistivity is constant or increases with depth whereas sites in the center of the Atlantic Coastal Ridge exhibit a distinct low resistivity zone (ρ < 45 Ω m) at elevations ranging between -5 and -10 m. At one site near the shore of Biscayne Bay, the resistivity is less than 10 Ω m at -5 m elevation reflecting the presence of salt water in the aquifer. The estimated porosity ranges between 14% and 71% with modal values near 25%. The porosity structure varies both with depth and spatially. Western sites exhibit a high porosity zone at shallow depths best expressed in a NE-SW trending zone of 40-50% porosity situated near the western margin of the Atlantic Coastal Ridge. This zone roughly corresponds in depth with the Q5 chronostratigraphic unit of the Miami Fm. which constitutes the upper flow unit of the Biscayne Aquifer. The highest porosity (>50%) is seen at elevations below -5 m at sites in the center of the Atlantic Coastal Ridge and likely corresponds to solution features. The general NE-SW trend of the resistivity and porosity structure suggests a causal connection with the Pleistocene paleogeography and sedimentary environments.

  17. In situ detection method for obtaining permeability of Fe-based amorphous alloys: ac resistance measurement for Fe{sub 84}Nb{sub 7}B{sub 9}

    SciTech Connect

    Ichitsubo, Tetsu; Matsubara, Eiichiro; Tanaka, Satoshi; Nishiyama, Nobuyuki; Amiya, Kenji

    2005-01-17

    In this letter, we propose an in situ detection method for obtaining permeability of soft magnetic Fe-based amorphous alloys. The temperature dependence of ac resistance was measured at different frequencies during heat treatment of Fe{sub 84}Nb{sub 7}B{sub 9} amorphous alloys. A significant increase in the ac ({approx}1000 kHz) resistance appears at around 920 K during the heating process, which arises from the skin effect caused by a marked increase in sample permeability. This skin effect diminishes when the sample is heated to approximately 1100 K, which corresponds to the decrease in its permeability. Consequently, we note that the ac resistance measurement is useful for quick in situ assessment to achieve the soft magnetic property of an Fe-based amorphous alloy.

  18. Some considerations on electrical resistivity imaging for characterization of waterbed sediments

    NASA Astrophysics Data System (ADS)

    Orlando, Luciana

    2013-08-01

    The paper focuses on defining the performance and limits of ERI in the detection and sedimentary characterization of near-bottom thin layers. The analysis of the resolution of floating and submerged cables, and the effect of the accuracy of a priori information (resistivity and thickness) in the data inversion, is based on theory, models and actual data. Theoretical models show that the actual reconstruction of the near water-bottom sediments, in terms of geometry and resistivity, can be obtained only with the submerged cable, however, the data, unlike that acquired with the floating cable, require a priori information on water resistivity and thickness for the data inversion. Theoretical forward models based on wrong a priori water thickness and resistivity information influence the inverted model in different ways, depending on the under- and over-estimation of water resistivity and thickness, and the resistivity contrast of the water-solid layer; however a water-solid resistivity contrast of less than 2 and within 10% of error in water resistivity has no effect. Overestimating water resistivity depicts a ground similar to the actual ground in terms of resistivity, more so than the underestimation of water resistivity. Moreover, the data inversion is less influenced by water parameter error in the case of low resistivity contrast in the water-solid layer, than it is for high resistivity contrast. Wenner and Schlumberger arrays give comparable results, while a dipole-dipole array seems to be more sensitive to the accuracy of apparent resistivity measurements and a priori information on water. The theoretical considerations were validated by actual data acquired with a submerged cable on the Tiber River. The study has shown that if highly accurate measurements are made of water thickness and resistivity, then electrical resistivity imaging from the submerged cable can be used in addition to, or even to substitute, seismic data for the reconstruction of the features

  19. Novel activator of mannose-specific phosphotransferase system permease expression in Listeria innocua, identified by screening for pediocin AcH resistance.

    PubMed

    Xue, Junfeng; Hunter, Ian; Steinmetz, Tori; Peters, Adam; Ray, Bibek; Miller, Kurt W

    2005-03-01

    To identify genes that are important for class IIa bacteriocin interaction and resistance in Listeria species, transposon Tn917 knockout libraries were constructed for Listeria innocua strain Lin11 and screened for mutants that are resistant to pediocin AcH. A highly resistant mutant (G7) (MIC > 20 microg/ml; 1,000-fold less susceptible than the wild type), in which the transposon integrated into the putative promoter of the lin0142 gene, was isolated. lin0142 is located immediately upstream of the mpt operon (mptA/mptC/mptD) that encodes the mannose-specific phosphoenolpyruvate-dependent phosphotransferase system permease EIItMan, which serves as a docking protein for class IIa bacteriocins. The transcription of the mpt operon is known to be positively controlled by sigma54 factor and ManR (a sigma54-associated activator). Transcripts for lin0142 and mpt were undetectable in the G7 mutant, based on quantitative real-time reverse transcriptase PCR analysis. When the wild-type lin0142 gene was expressed at a 7.9-fold-elevated level in the mutant via a multicopy-number plasmid, the level of mpt mRNA became 70% higher than that in the wild-type strain. In addition, the complementation strain reverted back to the pediocin AcH-susceptible phenotype. The levels of manR and rpoN (sigma54) mRNAs were not directly influenced by the level of lin0142 transcription. lin0142 is the only one of the three mpt regulatory genes whose transcription is induced, albeit slightly (1.2-fold), by glucose. The combined results show that the lin0142 gene encodes a novel activator of the mpt operon. The Lin0142 protein contains a winged-helix DNA-binding motif and is distantly related to the Crp-Fnr family of transcription regulators. PMID:15746330

  20. Using resistant prey demonstrates that Bt plants producing Cry1Ac, Cry2Ab, and Cry1F have no negative effects on Geocoris punctipes and Orius insidiosus.

    PubMed

    Tian, Jun-Ce; Long, Li-Ping; Wang, Xiang-Ping; Naranjo, Steven E; Romeis, Jörg; Hellmich, Richard L; Wang, Ping; Shelton, Anthony M

    2014-02-01

    Geocoris punctipes (Say) and Orius insidiosus (Say) are generalist predators found in a wide range of crops, including cotton (Gossypium hirsutum L.) and maize (Zea mays L.), where they provide important biological control services by feeding on an array of pests, including eggs and small larvae of caterpillars. A high percentage of cotton and maize in the United States and several other countries are transgenic cultivars that produce one or more of the insecticidal Cry proteins of Bacillus thuringiensis Berliner (Bt). Here we quantify effects of three Cry proteins on the life history of these predators over two generations when they are exposed to these Cry proteins indirectly through their prey. To eliminate the confounding prey quality effects that can be introduced by Bt-susceptible prey, we used Cry1Ac/Cry2Ab-resistant Trichoplusia ni (Hübner) and Cry1 F-resistant Spodoptera frugiperda (J.E. Smith) in a series of tri-trophic studies. Survival, development, adult mass, fecundity, and fertility were similar when predators consumed larvae feeding on Cry1Ac/Cry2Ab cotton or Cry1 F maize compared with prey feeding on isogenic or near-isogenic cotton or maize. Repeated exposure of the same initial cohort over a second generation also resulted in no differences in life-history traits when feeding on non-Bt- or Bt-fed prey. Enzyme-linked immunosorbent assay showed that predators were exposed to Bt Cry proteins from their prey and that these proteins became increasingly diluted as they moved up the food chain. Results show a clear lack of effect of three common and widespread Cry proteins on these two important predator species. The use of resistant insects to eliminate prey quality effects provides a robust and meaningful assessment of exposure and hazard. PMID:24472212

  1. Effects of contact resistance on electrical conductivity measurements of SiC-based materials

    SciTech Connect

    Youngblood, G. E.; Thomsen, E. C.; Henager, C. H.

    2013-11-01

    A combination 2/4-probe method was used to measure electrical resistances across a pure, monolithic CVD-SiC disc sample with contact resistance at the SiC/metallic electrode interfaces. By comparison of the almost simultaneous 2/4-probe measurements, the specific contact resistance (Rc) and its temperature dependence were determined for two types (sputtered gold and porous nickel) electrodes from room temperature (RT) to ~973 K. The Rc-values behaved similarly for each type of metallic electrode: Rc > ~1000 Ω cm2 at RT, decreasing continuously to ~1–10 Ω cm2 at 973 K. The temperature dependence of the inverse Rc indicated thermally activated electrical conduction across the SiC/metallic interface with an apparent activation energy of ~0.3 eV. Finally, for the flow channel insert application in a fusion reactor blanket, contact resistance potentially could reduce the transverse electrical conductivity by about 50%.

  2. Long-term electrical resistivity monitoring of recharge-induced contaminant plume behavior

    NASA Astrophysics Data System (ADS)

    Gasperikova, Erika; Hubbard, Susan S.; Watson, David B.; Baker, Gregory S.; Peterson, John E.; Kowalsky, Michael B.; Smith, Meagan; Brooks, Scott

    2012-11-01

    Geophysical measurements, and electrical resistivity tomography (ERT) data in particular, are sensitive to properties that are related (directly or indirectly) to hydrological processes. The challenge is in extracting information from geophysical data at a relevant scale that can be used to gain insight about subsurface behavior and to parameterize or validate flow and transport models. Here, we consider the use of ERT data for examining the impact of recharge on subsurface contamination at the S-3 ponds of the Oak Ridge Integrated Field Research Challenge (IFRC) site in Tennessee. A large dataset of time-lapse cross-well and surface ERT data, collected at the site over a period of 12 months, is used to study time variations in resistivity due to changes in total dissolved solids (primarily nitrate). The electrical resistivity distributions recovered from cross-well and surface ERT data agrees well, and both of these datasets can be used to interpret spatiotemporal variations in subsurface nitrate concentrations due to rainfall, although the sensitivity of the electrical resistivity response to dilution varies with nitrate concentration. Using the time-lapse surface ERT data interpreted in terms of nitrate concentrations, we find that the subsurface nitrate concentration at this site varies as a function of spatial position, episodic heavy rainstorms (versus seasonal and annual fluctuations), and antecedent rainfall history. These results suggest that the surface ERT monitoring approach is potentially useful for examining subsurface plume responses to recharge over field-relevant scales.

  3. Rough surface electrical contact resistance considering scale dependent properties and quantum effects

    SciTech Connect

    Jackson, Robert L.; Crandall, Erika R.; Bozack, Michael J.

    2015-05-21

    The objective of this work is to evaluate the effect of scale dependent mechanical and electrical properties on electrical contact resistance (ECR) between rough surfaces. This work attempts to build on existing ECR models that neglect potentially important quantum- and size-dependent contact and electrical conduction mechanisms present due to the asperity sizes on typical surfaces. The electrical conductance at small scales can quantize or show a stepping trend as the contact area is varied in the range of the free electron Fermi wavelength squared. This work then evaluates if these effects remain important for the interface between rough surfaces, which may include many small scale contacts of varying sizes. The results suggest that these effects may be significant in some cases, while insignificant for others. It depends on the load and the multiscale structure of the surface roughness.

  4. Aging Effect on Oxygen-Sensitive Electrical Resistance of SrTiO3 Thin Films

    NASA Astrophysics Data System (ADS)

    Hara, Toru; Ishiguro, Takashi; Shinozaki, Kazuo

    2011-06-01

    Our previous studies showed that SrTiO3-based thin films can be used to detect trace amounts of oxygen. The sensitivity to oxygen of the films was attributed to the polaronic nature of SrTiO3. In this study, it was observed that the application of an electric field resulted in a decrease in electrical resistance (hereafter, the aging effect) possibly in the same way as a dc electrical degradation in ceramic capacitors, which is due to the demixing of the oxygen vacancies (the electrical migration of oxygen vacancies leading to their pileup at the interface between SrTiO3 and electrodes). The sensitivity to oxygen of the films was maintained even after aging.

  5. Reliable, Efficient and Cost-Effective Electric Power Converter for Small Wind Turbines Based on AC-link Technology

    SciTech Connect

    Darren Hammell; Mark Holveck; DOE Project Officer - Keith Bennett

    2006-08-01

    Grid-tied inverter power electronics have been an Achilles heel of the small wind industry, providing opportunity for new technologies to provide lower costs, greater efficiency, and improved reliability. The small wind turbine market is also moving towards the 50-100kW size range. The unique AC-link power conversion technology provides efficiency, reliability, and power quality advantages over existing technologies, and Princeton Power will adapt prototype designs used for industrial asynchronous motor control to a 50kW small wind turbine design.

  6. Temperature dependence of the electrical resistance of sound and carious teeth.

    PubMed

    Huysmans, M C; Longbottom, C; Christie, A M; Bruce, P G; Shellis, R P

    2000-07-01

    Temperature variations are expected to influence measurement error in electrical resistance of teeth. It was the aim of this study to determine the changes in electrical behavior of extracted human teeth due to temperature changes in the range of room temperature to intra-oral temperature. Nine extracted teeth were selected, and the occlusal or an approximal surface was chosen for measurement. Carious involvement of the surfaces ranged from sound to cavitated. Electrical impedance spectroscopy sweeps in a frequency range of about 100 kHz to 10 Hz were completed at selected temperatures between 22 degrees C and 40 degrees C. After fitting the data to equivalent circuits that yielded parameter values for components of the equivalent circuit, we calculated the dc bulk resistance (Rh). The temperature dependence of Rb of the surfaces with different carious involvement was very similar, and the mean drop of Rb from 20 to 35 degrees C was 45% (SD 2%). It was concluded that the electrical resistance of sound and carious tooth surfaces is inversely related to temperature. PMID:11005729

  7. Monitoring radio-frequency heating of contaminated soils using electrical resistance tomography

    SciTech Connect

    Ramirez, A.L.; Daily, W.D.

    1993-09-01

    Electrical resistance tomography (ERT) was used to monitor a radio-frequency heating process for the insitu remediation of volatile organic compounds from subsurface water and soil at the Savannah River Site, near Aiken, South Carolina. A dipole antenna located in a horizontal well in the unsaturated zone was used to heat a contaminated clay layer. The heat-induced changes were tomographically imaged by their effects on the formation electrical resistivity. The resistivity changes observed appear to be related to heating and vaporization of the pore water, formation of steam condensate, and infiltration of rainwater through the heated zones and adjacent areas. There is a clear asymmetry downward in the resistivity decreases associated with the heating process. The resistivity decreases observed in the vicinity of the heating well are believed to be caused by the heating and downward migration of warm water originally located within a radius of a few feet around the heating well; the magnitude of the change is between 10--20%. The decreasing resistivity implies an increasing rate of radio wave attenuation as heating progressed; therefore, the rate of energy deposition around the heating well increased while the penetration distance of the radio waves decreased. Saturation changes in the clay near the antenna during heating were estimated to be 50--55% based on the observed resistivity decreases. Resistivity changes observed at distances greater than 3 meters to one side of the antenna appear to be related to rainwater infiltration. We propose that gaps in near surface clay layers allow rainwater to migrate downward and reach the top of clay rich zone penetrated by the antenna borehole. The water may then accumulate along the top of the clay.

  8. Using Electrical Resistivity Tomography for Constraining a Hydrogeological Model in a Data Sparse Region

    NASA Astrophysics Data System (ADS)

    Foster, S.; Allen, D. M.

    2013-12-01

    Geological and hydrogeological data are often spatially limited in mountainous regions. In these settings, geophysical techniques can be used to constrain hydrogeological models by providing insight into the hydrostratigraphy and the continuity of units in the subsurface. This study we used electrical resistivity tomography coupled with a priori geological data from residential water wells to improve the accuracy and confidence of a hydrogeological model. The study area is situated within the mountainous Cowichan watershed in British Columbia, Canada. Throughout the watershed, unconsolidated deposits of variable thickness overlie bedrock. Based on available water well information, at high elevation, sediment thickness is on the order of a few metres, but within the valley bottom, sediment thickness can be up to 300 m. The unconsolidated deposits are heterogeneous due to a complex depositional environment that was controlled by glacial advances and recessions, most notably during the Fraser Glaciation. Six electrical resistivity transects of various lengths spanning 135 to 830 metres were conducted in an area of the watershed that is particularly data poor. The electrical resistivity transects were strategically placed, first, to make use of available lithology information from existing water wells in order to constrain the geophysical interpretation, and second, to contribute data to areas that lack subsurface lithological records. Electrical resistivity was measured using a AGI SuperSting R1 system, and data were processed using robust inversion software to identify stark geophysical contacts. The technique successfully delineated zones of conductive and resistive units that have been interpreted as aquitards (clay and till formations), aquifers (water bearing sand and gravel lenses), and bedrock based on dielectric contrast. Available surficial geology and bedrock geology maps, coupled with residential well drilling records, further assisted in mapping the

  9. Effects of four nematodes species on fitness costs of pink bollworm resistance to Bacillus thuringiensis toxin Cry1Ac

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evolution of resistance by pests can reduce efficacy of transgenic crops that produce insecticidal toxins from the bacterium Bacillus thuringiensis (Bt). In conjunction with refuges of non-Bt host plants, fitness costs can delay the evolution of resistance. Furthermore, fitness costs often vary wit...

  10. Effects of Defoliating Insect Resistance QTLs and a crylAc Transgene in Soybean Near-Isogenic Lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Additional sources of resistance would be desirable to manage defoliating insect resistance to crystal proteins coded by transgenes from Bacillus thuringiensis (Bt) and to sustain the deployment of Bt crops. The objective of this study was to evaluate the effects and interactions of three soybean (G...

  11. Effects of entomopathogenic nematodes on the evolution of pink bollworm resistance to Bt toxin Cry1Ac.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The evolution of resistance by pests can reduce the efficacy of transgenic crops that produce insecticidal toxins from the bacterium Bacillus thuringiensis (Bt). Conversely, fitness costs may act to delay pest resistance to Bt. The entomopathogenic nematode Steinernema riobrave (Rhabditida: Steinern...

  12. Low-temperature phase transitions in {kappa}-(ET){sub 2}Cu[N(CN){sub 2}]Br: Evidence from specific heat and electrical resistivity

    SciTech Connect

    Kuo, Y.K.; Brill, J.W.; De Long, L.E.; Brock, C.P.

    1995-12-31

    Phase transition anomalies occurring at temperatures T{sub 1}=20.9 K and T{sub 2}=100.5 K in crystalline K-(ET){sub 2}Cu[N(CN){sub 2}]Br have been identified with ac calorimetry. T{sub 2} is unaffected by small stresses applied with vacuum grease, whereas the superconducting transition at T{sub c}=11.2 K is reduced to 10.5 K and T{sub 1} is slightly depressed to 20.7 K by these stresses. Electrical resistivity data exhibit normal state anomalies at 200 {plus_minus} 10 K, 99.9 K, 79.1 K and 19 {plus_minus} 1 K. These results are compared top previous DC magnetization and vibrating read measurements that suggest the existence of a field-induced magnetic transition and a high sensitivity of superconducting properties to small stresses and thermal cycling.

  13. Modeling and analysis of direct-current electrical resistivity in the Durham Triassic basin, North Carolina

    USGS Publications Warehouse

    Brown, C. Erwin

    1987-01-01

    Sixty-two Schlumberger electrical soundings were made in the Durham Triassic basin in an effort to determine basin structural geometry, depth of the sedimentary layers, and spatial distribution of individual rock facies. A digital computer program was used to invert the sounding curves of apparent resistivity versus distance to apparent resistivity versus depth. The apparent-resistivity-versus-depth data from the computer-modeling program were used to construct a geoelectric model of the basin that is believed to accurately represent the subsurface geology of the basin. The largest depth to basement in the basin along a resistivity profile (geoelectric section) was determined to be 1,800 m. A resistivity decrease was observed on certain soundings from depths of 100 to 1,000 m; below a 1,000-m depth, apparent resistivity increased to the bottom of the basin. Resistivity values for basement rocks were greater than 1,000 ohm-m and less than 350 ohm-m for the sedimentary layers in the basin. The data suggest that the basin contains a system of step faults near its eastern boundary. ?? 1987.

  14. ENVIRONMENTAL MONITORING OF LEAKS USING TIME LAPSED LONG ELECTRODE ELECTRICAL RESISTIVITY

    SciTech Connect

    MYERS DA; RUCKER DF; FINK JB; LOKE MH

    2009-12-16

    Highly industrialized areas pose challenges for surface electrical resistivity characterization due to metallic infrastructure. The infrastructure is typically more conductive than the desired targets and will mask the deeper subsurface information. These challenges may be minimized if steel-cased wells are used as long electrodes in the area near the target. We demonstrate a method of using long electrodes to electrically monitor a simulated leak from an underground storage tank with both synthetic examples and a field demonstration. The synthetic examples place a simple target of varying electrical properties beneath a very low resistivity layer. The layer is meant to replicate the effects of infrastructure. Both surface and long electrodes are tested on the synthetic domain. The leak demonstration for the field experiment is simulated by injecting a high conductivity fluid in a perforated well within the S tank farm at Hanford, and the resistivity measurements are made before and after the leak test. All data are processed in four dimensions, where a regularization procedure is applied in both the time and space domains. The synthetic test case shows that the long electrode ERM could detect relative changes in resistivity that are commensurate with the differing target properties. The surface electrodes, on the other hand, had a more difficult time matching the original target's footprint. The field results shows a lowered resistivity feature develop south of the injection site after cessation of the injections. The time lapsed regularization parameter has a strong influence on the differences in inverted resistivity between the pre and post injection datasets, but the interpretation of the target is consistent across all values of the parameter. The long electrode ERM method may provide a tool for near real-time monitoring of leaking underground storage tanks.

  15. Monitoring of olive oil mills' wastes using electrical resistivity tomography techniques

    NASA Astrophysics Data System (ADS)

    Simyrdanis, Kleanthis; Papadopoulos, Nikos; Kirkou, Stella; Sarris, Apostolos; Tsourlos, Panagiotis

    2014-08-01

    Olive oil mills' wastes (OOMW) are one of the byproducts of the oil production that can lead to serious environmental pollution when they are deposited in ponds dug on the ground surface. Electrical Resistivity Tomography (ERT) method can provide a valuable tool in order to monitor through time the physical flow of the wastes into the subsurface. ERT could potentially locate the electrical signature due to lower resistivity values resulting from the leakage of OOMW to the subsurface. For this purpose, two vertical boreholes were installed (12m depth, 9 m apart) in the vicinity of an existing pond which is filled with OOMW during the oil production period. The test site is situated in Saint Andreas village about 15km south of the city of Rethymno (Crete, Greece). Surface ERT measurements were collected along multiple lines in order to reconstruct the subsurface resistivity models. Data acquisition was performed with standard and optimized electrode configuration protocols. The monitoring survey includes the ERT data collection for a period of time. The study was initiated before the OOMW were deposited in the pond, so resistivity fluctuations are expected due to the flow of OOMW in the porous subsurface media through time. Preliminary results show the good correlation of the ERT images with the drilled geological formations and the identification of low resistivity subsurface zone that could be attributed to the flow of the wastes within the porous layers.

  16. Influence of plant roots on electrical resistivity measurements of cultivated soil columns

    NASA Astrophysics Data System (ADS)

    Maloteau, Sophie; Blanchy, Guillaume; Javaux, Mathieu; Garré, Sarah

    2016-04-01

    Electrical resistivity methods have been widely used for the last 40 years in many fields: groundwater investigation, soil and water pollution, engineering application for subsurface surveys, etc. Many factors can influence the electrical resistivity of a media, and thus influence the ERT measurements. Among those factors, it is known that plant roots affect bulk electrical resistivity. However, this impact is not yet well understood. The goals of this experiment are to quantify the effect of plant roots on electrical resistivity of the soil subsurface and to map a plant roots system in space and time with ERT technique in a soil column. For this research, it is assumed that roots system affect the electrical properties of the rhizosphere. Indeed the root activity (by transporting ions, releasing exudates, changing the soil structure,…) will modify the rhizosphere electrical conductivity (Lobet G. et al, 2013). This experiment is included in a bigger research project about the influence of roots system on geophysics measurements. Measurements are made on cylinders of 45 cm high and a diameter of 20 cm, filled with saturated loam on which seeds of Brachypodium distachyon (L.) Beauv. are sowed. Columns are equipped with electrodes, TDR probes and temperature sensors. Experiments are conducted at Gembloux Agro-Bio Tech, in a growing chamber with controlled conditions: temperature of the air is fixed to 20° C, photoperiod is equal to 14 hours, photosynthetically active radiation is equal to 200 μmol m‑2s‑1, and air relative humidity is fixed to 80 %. Columns are fully saturated the first day of the measurements duration then no more irrigation is done till the end of the experiment. The poster will report the first results analysis of the electrical resistivity distribution in the soil columns through space and time. These results will be discussed according to the plant development and other controlled factors. Water content of the soil will also be detailed

  17. Exploring electrical resistance: a novel kinesthetic model helps to resolve some misconceptions

    NASA Astrophysics Data System (ADS)

    Cottle, Dan; Marshall, Rick

    2016-09-01

    A simple ‘hands on’ physical model is described which displays analogous behaviour to some aspects of the free electron theory of metals. Using it students can get a real feel for what is going on inside a metallic conductor. Ohms Law, the temperature dependence of resistivity, the dependence of resistance on geometry, how the conduction electrons respond to a potential difference and the concepts of mean free path and drift speed of the conduction electrons can all be explored. Some quantitative results obtained by using the model are compared with the predictions of Drude’s free electron theory of electrical conduction.

  18. Characterization of Contact and Bulk Thermal Resistance of Laminations for Electric Machines

    SciTech Connect

    Cousineau, Emily; Bennion, Kevin; Devoto, Douglas; Naramanchi, Sreekant

    2015-07-06

    Thermal management for electric motors is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. The transition to more electrically dominant propulsion systems leads to higher-power duty cycles for electric-drive systems. Thermal constraints place significant limitations on how electric motors ultimately perform. As thermal management improves, there will be a direct trade-off among motor performance, efficiency, cost, and the sizing of electric motors to operate within the thermal constraints. During the development of thermal finite element analysis models and computational fluid dynamics models for electric motors, it was found that there was a lack of open literature detailing the thermal properties of key materials common in electric motors that are significant in terms of heat removal. The lack of available literature, coupled with the strong interest from industry in the passive-stack thermal measurement results, led to experiments to characterize the thermal contact resistance between motor laminations. We examined four lamination materials, including the commonly used 26 gauge and 29 gauge M19 materials, the HF10 and Arnon 7 materials. These latter two materials are thinner and reduce eddy currents responsible for core losses. We measured the thermal conductivity of the lamination materials and the thermal contact resistance between laminations in a stack, as well as investigated factors affecting contact resistance between laminations such as the contact pressure and surface finish. Lamination property data will be provided and we also develop a model to estimate the through-stack thermal conductivity for materials beyond those that were directly tested in this work. For example, at a clamping pressure of 138 kPa, the 29 gauge M19 material has a through-stack thermal conductivity of 1.68 W/m-K, and the contact resistance between laminations was measured to be 193 mm^2-K/W. The measured bulk

  19. Production of marker-free transgenic Jatropha curcas expressing hybrid Bacillus thuringiensis δ-endotoxin Cry1Ab/1Ac for resistance to larvae of tortrix moth (Archips micaceanus)

    PubMed Central

    2014-01-01

    Background The potential biofuel plant Jatropha curcas L. is affected by larvae of Archips micaceanus (Walker), a moth of the family Tortricidae. The hybrid Bacillus thuringiensis (Bt) δ-endotoxin protein Cry1Ab/1Ac confers resistance to lepidopteran insects in transgenic rice. Results Here, we report the production of a marker-free transgenic line of J. curcas (L10) expressing Cry1Ab/1Ac using Agrobacterium-mediated transformation and a chemically regulated, Cre/loxP-mediated DNA recombination system. L10 carries a single copy of marker-free T-DNA that contains the Cry1Ab/1Ac gene under the control of a maize phosphoenolpyruvate carboxylase gene promoter (P Pepc :Cry1Ab/1Ac:T Nos ). The P Pepc :Cry1Ab/1Ac:T Nos gene was highly expressed in leaves of L10 plants. Insecticidal bioassays using leaf explants of L10 resulted in 80-100% mortality of larvae of A. micaceanus at 4 days after infestation. Conclusion The results demonstrate that the hybrid Bt δ-endotoxin protein Cry1Ab/1Ac expressed in Jatropha curcas displays strong insecticidal activity to A. micaceanus. The marker-free transgenic J. curcas line L10 can be used for breeding of insect resistance to A. micaceanus. PMID:24808924

  20. Efficacy of low level electric current (A-C) for controlling quagga mussles in the Welland Canal

    SciTech Connect

    Fears, C.; Mackie, G.L.

    1995-06-01

    The efficacy of systems (for which patents are pending) which use low-voltage A-C currents for preventing settlement and attachment by zebra mussels were tested with steel rods and plates placed near the intake of a pulp and paper plant in the Welland Canal at Thorold, Ontario. Six racks made of 16 ft. (4.9 m), 2x4s (5.1 x 10.2 cm) were placed into the Welland Canal on August 5, 1994. One rack had 1/8th in (3.2 mm) diam x 12 in (30.5 cm) long steel rods, each separated by 2 in (5.1 cm) attached to pressure treated wood and concrete blocks and an A-C current of 16 v (or 8 v/in); rack 2 had steel rods of the same configuration but 12 v (or 6 v/in) was applied; rack 3 was identical to these but no current was applied and was used as a rod control. The remaining three racks had steel plates, each plate being 3 in (7.6 cm) wide X 24 in (61 cm) long X 1/4 in (6.4 mm) thick and separated by 2 in (5.1 cm); one had 12 v applied (or 6 v/in), another had 16 v applied (or 8 v/in), and the third had no current and was used as a plate control. The racks were placed on the upstream and downstream side of the intake at a depth of about 7 ft (2.1 m) where the mussels populations were heaviest (as determined by SCUBA diving). All mussels were quagga mussels (Dreissena bugensis). The racks were pulled in mid November after settlement was complete and the results showed: (1) complete prevention of settlement of both new recruits and translocators at 8 volts/in with steel rods on both wood and concrete surfaces and with steel plate trash bars; (2) partial prevention of settlement at 6 volts/in with steel rods on both wood and concrete surfaces and steel plates; and (3) that, at current kilowatt hr rates, total efficacy at 8 volts/in would cost approximately $10.80/day/1000 sq ft using rods to protect concrete walls and about $16.32/day/1000 sq ft to protect 3 in wide x 1/4 in thick trash bars. These costs can be reduced even further with pulse dosed AC currents.

  1. Comparison of a synergetic battery pack drive system to a pulse width modulated AC induction motor drive for an electric vehicle

    SciTech Connect

    Davis, A.; Salameh, Z.M.; Eaves, S.S.

    1999-06-01

    A new battery configuration technique and accompanying control circuitry, termed a Synergetic Battery Pack (SBP), is designed to work with Lithium batteries, and can be used as both an inverter for an electric vehicle AC induction motor drive and as a battery charger. In this paper, the performance of a Synergetic Battery Pack during motor drive operation is compared via computer simulation with a conventional motor drive which uses sinusoidal pulse width modulation (SPWM) to determine its effectiveness as a motor drive. The study showed that the drive efficiency was compatible with the conventional system, and offered a significant advantage in the lower frequency operating ranges. The voltage total harmonic distortion (THD) of the SBP was significantly lower than the PWM drive output, but the current THD was slightly higher due to the shape of the harmonic spectrum. In conclusion, the SBP is an effective alternative to a conventional drive, but the real advantage lies in its battery management capabilities and charger operation.

  2. Evaluation of changes in microstructure and mechanical performance of metals via electrical resistivity measurements

    NASA Astrophysics Data System (ADS)

    Omari, Mohammad Ahmad

    This work focuses on experimental study of cross-property connections that link up effective linear elastic and electrical conductive properties of heterogeneous materials. Such connections are especially useful when one property (electrical conductivity) is easier to measure than the other (elastic constants). Also, take advantages from the easy of measure electrical resistance to study the microstructural changes, and then compare results with different methods like microscopy and other published methods. Mechanical and electrical properties of different specimens under both fatigue and quasi-static loading were investigated, combined with the analysis of microstructural changes produced by such loading. Two different types of metals (stainless steel 304 and Titanium CP-2) have been cut from sheets and then subjected to two different type of loading: cyclic loading (up to 80000 cycles) at several values of maximal stress sigmamax and then quasi-static loading. At low values of sigmamax as well as at the low number of cycles no significant changes in mechanical properties and mild decrease in electrical conductivity (approximately uniform over the specimen) have been observed. The latter can be explained by generation cluster of new dislocations that can be seen in photo images in the form of black dots. As the number of cycles and sigmamax grow up, reduction in Young's modulus and in ultimate strength of the specimens take place. This reduction is accompanied by local decrease in electrical conductivity due to formation of the microcracks. Changes in Young's modulus and electrical conductivity at high values of sigma max. (higher than the yield limit) follow the theoretically predicted cross-property connection for microcracked materials. Qualitative correlation between strength reduction and maximum value of local resistivity across the specimen has been observed at qualitative level.

  3. Laboratory measurements of basalts electrical resistivity under deep oceanic crustal conditions

    NASA Astrophysics Data System (ADS)

    Violay, M. E.; Gibert, B.; Azais, P.; Pezard, P. A.; Flovenz, O. G.; Asmundsson, R.

    2009-12-01

    For sixty years, electrical resistivity soundings have been used to explore geothermal resources in Iceland. They have generally revealed two zones of high electrical conductivity, one at shallow depths (Flovenz et al., 1985) and another at 10-30 km depth (Beblo and Björnsson, 1978). The interpretation of these conductive zones in terms of composition and in-situ physical conditions is often ambiguous, as various parameters can explain these observations like temperature, partial melting, change in minerals and type of pore fluid. Accurate interpretations of resistivity data needed for geothermal exploration require laboratory measurements of electrical conductivities performed on rock samples at different conditions. We present here a method to measure electrical conductivity of rocks under deep crustal conditions for oceanic crustal rock, i.e. at temperatures up to 600°C, confining pressures up to 200 MPa and pore fluid pressures up to 50 MPa. The method has been developed in a internally heated, gas pressure apparatus (Paterson press). Electrical conductivity is measured on large cylindrical samples (15 to 22 mm in diameter and 10 to 15 mm in length) in a two parallel electrodes geometry. Such experiments require that the fluid saturated sample is sleeved in an impermeable and deformable jacket serving to separate the confining pressure medium (high pressure argon) from the pore fluid saturated sample. At temperature above 200°C a metal sleeve must be used, although it induces high leakage currents that could affect electrical measurements. The leakage currents are reduced using addition of 2 guard-ring parallel electrodes (Glover, 1995). The electrical impedance of basalt has been measured over a frequency range from 10 -1 to 106 Hertz. Five different types of low porosity basalts were selected to cover a range in alteration grade, from albitic to granulite facies. Application of this method will provide data on electrical conductivity of fresh and altered

  4. Electron scattering characteristics of polycrystalline metal transition films by in-situ electrical resistance measurements

    NASA Astrophysics Data System (ADS)

    Trindade, I. G.; Leitão, D.; Fermento, R.; Pogorelev, Y.; Sousa, J. B.

    2009-08-01

    In-situ electrical resistance measurements were performed to obtain the scattering characteristics of very thin polycrystalline metal transition magnetic alloys grown by ion beam deposition (IBD) on specific underlayers. The experimental curves show size effects at small film thicknesses and important differences between Co 85Fe 15 and Ni 81Fe 19 thin layers grown on identical underlayers of Ta70 Å/Ru13 Å. The largest difference was observed in Ni 81Fe 19 films grown on underlayers of amorphous Ta70 Å. The experimental curves of electrical resistivity/conductivity variation with layer thickness were well fit within the Mayadas and Shatzkes (M-S) model, assuming specific formulations for grain growth with layer thickness.

  5. Resistance oscillations of two-dimensional electrons in crossed electric and tilted magnetic fields

    NASA Astrophysics Data System (ADS)

    Mayer, William; Vitkalov, Sergey; Bykov, A. A.

    2016-06-01

    The effect of dc electric field on transport of highly mobile two-dimensional electrons is studied in wide GaAs single quantum wells placed in titled magnetic fields. The study shows that in perpendicular magnetic field resistance oscillates due to electric-field induced Landau-Zener transitions between quantum levels that correspond to geometric resonances between cyclotron orbits and periodic modulation of electron density of states. Magnetic field tilt inverts these oscillations. Surprisingly the strongest inverted oscillations are observed at a tilt corresponding to nearly absent modulation of the electron density of states in regime of magnetic breakdown of semiclassical electron orbits. This phenomenon establishes an example of quantum resistance oscillations due to Landau quantization, which occur in electron systems with a constant density of states.

  6. Specific heat and electrical resistivity of niobium measured by subsecond calorimetric technique

    NASA Astrophysics Data System (ADS)

    Maglić, K. D.; Perović, N. Lj.; Vuković, G. S.; Zeković, Lj. P.

    1994-09-01

    This paper presents results of measurements of specific heat and electrical resistivity of niobium from ambient temperature to the experimental limit of the equipment which is close to 2500 K. The study used a contact thermometry variant of the millisecond resolution pulse calorimetry developed at the Institute of Nuclear Sciences VINČA. In the experiments exceeding 1000 K, thermocouple thermometry was supplemented with parallel pyrometric temperature measurements. This, together with application of tungsten; rhenium thermocouple thermometry, increased the temperature range of measurements to 2500 K. In the range where two thermometries overlap, data on the specimen emittance were also generated. Novelties in the method, the results on electrical resistivity. specific heat, hemispherical total emittance and normal spectral emittance of niobium, and accuracies attained in different property measurements are discussed.

  7. A Novel Inductor-less DC-AC Cascaded H-bridge Multilevel Boost Inverter for Electric/Hybrid Electric Vehicle Applications

    SciTech Connect

    Du, Zhong; Ozpineci, Burak; Tolbert, Leon M; Chiasson, John N

    2007-01-01

    This paper presents an inductorless cascaded H- bridge multilevel boost inverter for EV and HEV applications. Currently available power inverter systems for HEVs use a DC- DC boost converter to boost the battery voltage for a traditional 3-phase inverter. The present HEV traction drive inverters have low power density, are expensive, and have low efficiency because they need a bulky inductor. An inductorless cascaded H-bridge multilevel boost inverter for EV and HEV applications is proposed in this paper. Traditionally, each H-bridge needs a DC power supply. The proposed inductorless cascaded H-bridge multilevel boost inverter uses a standard 3-leg inverter (one leg for each phase) and an H-bridge in series with each inverter leg which uses a capacitor as the DC power source. Fundamental switching scheme is used to do modulation control and to produce a 5-level phase voltage. Experiments show that the proposed inductorless DC-AC cascaded H-bridge multilevel boost inverter can output a boosted AC voltage.

  8. Electrical Resistivity Investigations of the Kurşunlu (Manisa/Turkey) Geothermal Area

    NASA Astrophysics Data System (ADS)

    Sarı, Coşkun; Timur, Emre

    2016-04-01

    It is of considerable importance to explore the geological structure around active faults, especially near-surface unconsolidated layers, to estimate the faults' activity. There are numerous case studies to investigate geothermal reservoirs and surrounding active faults using geophysical exploration methods; however, only a few cases have been verified in detail by comparison with other geological information. Electrical resistivity data provide a substantial contribution to the geophysical mapping and monitoring of geothermal reservoirs. We applied electrical methods, which can be effective for exploring to several hundred meters depth, to reveal geological structures covered by thick Quaternary alluvium formations. Geothermal activity around city of Manisa in Gediz Graben (Western Turkey) has been investigated by many researchers and many geothermal boreholes were drilled in order to produce electricity and for heating purposes. The Kurşunlu geothermal area is with the southern side of the Gediz Graben in 2 km west of Salihli, Manisa, Turkey. According to rising demand on thermal water around Salihli, geophysical studies were performed using the Vertical Electrical Sounding (VES) measurements at 16 stations around the area of Kurşunlu hot springs, and they were interpreted using both one and two-dimensional modelling. Vertical and horizontal resistivity sections were mapped, and it was determined that two low-resistivity layers exist both in the North (stations 1,2 and 4) and the South (stations 6 and 10) part of the survey area. As a result of the studies, the boundaries of the low-resistivity layer were mapped and test drilling locations were recommended.

  9. Electrical resistivity variations associated with earthquakes on the san andreas fault.

    PubMed

    Mazzella, A; Morrison, H F

    1974-09-01

    A 24 percent precursory change in apparent electrical resistivity was observed before a magnitude 3.9 earthquake of strike-slip nature on the San Andreas fault in central California. The experimental configuration and numerical calculations suggest that the change is associated with a volume at depth rather than some near-surface phenomenon. The character and duration of the precursor period agree well with those of other earthquake studies and support a dilatant earthquake mechanism model. PMID:17833697

  10. [Testing the electric resistance as an objective diagnostic test in dental pulp diseases].

    PubMed

    Constantin, I; Severineanu, V; Tudose, N

    1976-01-01

    The authors test by means of a measuring device of high precision the resistence of health or sick human pulpa, comparing it to them of gums, excluding in the same time the sensibility of the patient in question. The authors corroborate the obtained dates with clinical symptomatology and the histopathological photos, discussing the possibility of objective electrical test as an expedient in the diagnosis of pulpa-affections. PMID:137616

  11. Role of peroxide in AC electrical field exposure effects on Friend murine erythroleukemia cells during dielectrophoretic manipulations

    PubMed Central

    Wang, Xujing; Yang, Jun; Gascoyne, Peter R.C.

    2009-01-01

    The effects of AC field exposure on the viability and proliferation of mammalian cells under conditions appropriate for their dielectrophoretic manipulation and sorting were investigated using DS19 murine erythroleukemia cells as a model system. The frequency range 100 Hz-10 MHz and medium conductivities of 10 mS/m, 30 mS/m and 56 mS/m were studied for fields generated by applying signals of up to 7V peak to peak (p-p) to a parallel electrode array having equal electrode widths and gaps of 100 μm. Between 1 kHz and 10 MHz, cell viability after up to 40 min of field exposure was found to be above 95% and cells were able to proliferate. However, cell growth lag phase was extended with decreasing field frequency and with increasing voltage, medium conductivity and exposure duration. Modified growth behavior was not passed on to the next cell passage, indicating that field exposure did not cause permanent alterations in cell proliferation characteristics. Cell membrane potentials induced by field exposure were calculated and shown to be well below values typically associated with cell damage. Furthermore, medium treated by field exposure and then added to untreated cells produced the same modifications of growth as exposing cells directly, and these modifications occurred only when the electrode polarization voltage exceeded a threshold of ~0.4 V p-p. These findings suggested that electrochemical products generated during field exposure were responsible for the changes in cell growth. Finally, it was found that hydrogen peroxide was produced when sugar-containing media were exposed to fields and that normal cell growth could be restored by addition of catalase to the medium, whether or not field exposure occurred in the presence of cells. These results show that AC fields typically used for dielectrophoretic manipulation and sorting of cells do not damage DS19 cells and that cell alterations arising from electrochemical effects can be completely mitigated. PMID

  12. Imaging Rainfall Infiltration Processes with the Time-Lapse Electrical Resistivity Imaging Method

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Zhang, Gui-Bin; Chen, Chien-chih; Chang, Ping-Yu; Wang, Tzu-Pin; Yen, Horng-Yuan; Dong, Jia-Jyun; Ni, Chuen-Fa; Chen, Su-Chin; Chen, Chao-Wei; Jia, Zheng-yuan

    2016-02-01

    Electrical Resistivity Imaging (ERI) was carried out continuously for 10 days to map the subsurface resistivity distribution along a potentially hazardous hillslope at the Jieshou Junior High School in Taoyuan, Taiwan. The reliability of the inverted resistivity structures down to about 25 m depth was examined with synthetic modeling using the same electrode arrangements installed on land surface as in field surveys, together with a DOI (depth-of-investigation) index calculated from the ERI data. The subsurface resistivity distribution is consistent with results from well logging. These ERI recordings were taken daily and provided highly resolved imagery of the resistivity distribution underground and illustrated the dynamical fluid-flow behavior due to heavy rainfall infiltration. Using Archie's law, the resistivity distribution was transformed into a map of relative water saturation (RWS), which is strongly correlated with the rainfall infiltration process. We then found that the averaged RWS is significantly correlated with daily precipitation. Our observations indicate that time-lapse ERI is effective in monitoring subterraneous rainfall infiltration; moreover, the preferential flow paths can be delineated according to the changes in averaged RWS derived from the ERI data.

  13. Electrical resistance tomography of unsaturated flow and transport in Yucca Mountain

    SciTech Connect

    Buettner, H M; Bussod, G; Daily, W; Ramirez, A

    1998-12-28

    Electrical Resistance Tomography (ERT), a new geophysical imaging technique, was used to study the movement of a tracer through the test block at the Unsaturated Zone Transport Test (UZTT) at Busted Butte, Nevada. Data were collected four times starting in July and ending in early September, 1998. ERT baseline images show a resistivity structure which is consistent with the known lithology in the rear part of the test block. There appears to be a low resistivity region in the front half of the block, particularly near the bottom. Difference images from August 19 and September 9 show clear and consistent resistivity decreases in the region near injection holes 18, 20, and 21 which can be associated with the injection of conductive water. The images show very little effect in the region around the other injection holes, 23, and 24 through 27 where far less water was injected. Difference images from August 19 and September 9 show resistivity decreases which could be interpreted as water moving down into the block. This is the same region which has an anomalously low resistivity in the baseline image. These results should be considered preliminary, and are subject to further interpretation.

  14. Imaging Rainfall Infiltration Processes with the Time-Lapse Electrical Resistivity Imaging Method

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Zhang, Gui-Bin; Chen, Chien-chih; Chang, Ping-Yu; Wang, Tzu-Pin; Yen, Horng-Yuan; Dong, Jia-Jyun; Ni, Chuen-Fa; Chen, Su-Chin; Chen, Chao-Wei; Jia, Zheng-yuan

    2016-06-01

    Electrical Resistivity Imaging (ERI) was carried out continuously for 10 days to map the subsurface resistivity distribution along a potentially hazardous hillslope at the Jieshou Junior High School in Taoyuan, Taiwan. The reliability of the inverted resistivity structures down to about 25 m depth was examined with synthetic modeling using the same electrode arrangements installed on land surface as in field surveys, together with a DOI (depth-of-investigation) index calculated from the ERI data. The subsurface resistivity distribution is consistent with results from well logging. These ERI recordings were taken daily and provided highly resolved imagery of the resistivity distribution underground and illustrated the dynamical fluid-flow behavior due to heavy rainfall infiltration. Using Archie's law, the resistivity distribution was transformed into a map of relative water saturation (RWS), which is strongly correlated with the rainfall infiltration process. We then found that the averaged RWS is significantly correlated with daily precipitation. Our observations indicate that time-lapse ERI is effective in monitoring subterraneous rainfall infiltration; moreover, the preferential flow paths can be delineated according to the changes in averaged RWS derived from the ERI data.

  15. Characterization of subsurface stratigraphy along the lower American River floodplain using electrical resistivity, Sacramento, California, 2011

    USGS Publications Warehouse

    Burton, Bethany L.; Powers, Michael H.; Ball, Lyndsay B.

    2014-01-01

    In July 2011, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, completed a geophysical survey using electrical resistivity along an approximately 6-mile reach of the lower American River in Sacramento, California, to map near-surface lithological variations. This survey is a part of a manifold and comprehensive study of river-flow dynamics and geologic boundary-property knowledge necessary to estimate scour potential and levee erosion risk. Data were acquired on the left (south or west) bank between river mile 5 and 10.7 as well as a short section on the right bank from river mile 5.4 to 6. Thirteen direct-current resistivity profiles and approximately 8.3 miles of capacitively coupled resisistivity data were acquired along accessible areas of the floodplain between the levee and river bank. Capacitively coupled resistivity was used as a reconnaissance tool, because it allowed for greater spatial coverage of data but with lower resolution and depth of investigation than the DC resistivity method. The study area contains Pleistocene-age alluvial deposits, dominated by gravels, sands, silts, and clays, that vary in both lateral extent and depth. Several generations of lithologic logs were used to help interpret resistivity variations observed in the resistivity models.

  16. Joining characteristics of beta-titanium wires with electrical resistance welding.

    PubMed

    Iijima, Masahiro; Brantley, William A; Yuasa, Toshihiro; Kawashima, Isao; Mizoguchi, Itaru

    2008-05-01

    The goal of this research was to investigate the effects of different conditions for electrical resistance welding of beta-titanium orthodontic wires. Three electrode types were used with a range of power settings on an electrical resistance welding machine to join beta-titanium wires (Resolve, GAC International). Forces that caused bond failures for joined specimens were obtained with tensile loading, and the values were compared using one-way ANOVA and the Tukey test (alpha = 0.05). Metallurgical phases in the joint region were determined by micro-X-ray diffraction. Mean tensile forces for bond failure ranged from 5 to 20 kgf for the eight specimen groups and were dependent on electrode type and power setting. All X-ray diffraction peaks in the joint region were indexed to beta-titanium. Superior bond strength was achieved with the use of wide electrodes. The absence of phases other than beta-titanium in the joint area suggests that the electrical resistance welding may not adversely affect clinically important mechanical properties. Scanning microscope observations indicated that the localized permanent deformation and the formation of an undesirable equiaxed grain structure occurred with the use of narrow electrodes. PMID:17937410

  17. Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico

    SciTech Connect

    Dunbar, John

    2012-12-31

    Electrical methods offer a geophysical approach for determining the sub-bottom distribution of hydrate in deep marine environments. Methane hydrate is essentially non-conductive. Hence, sediments containing hydrate are more resistive than sediments without hydrates. To date, the controlled source electromagnetic (CSEM) method has been used in marine hydrates studies. This project evaluated an alternative electrical method, direct current resistivity (DCR), for detecting marine hydrates. DCR involves the injection of direct current between two source electrodes and the simultaneous measurement of the electric potential (voltage) between multiple receiver electrodes. The DCR method provides subsurface information comparable to that produced by the CSEM method, but with less sophisticated instrumentation. Because the receivers are simple electrodes, large numbers can be deployed to achieve higher spatial resolution. In this project a prototype seafloor DCR system was developed and used to conduct a reconnaissance survey at a site of known hydrate occurrence in Mississippi Canyon Block 118. The resulting images of sub-bottom resistivities indicate that high-concentration hydrates at the site occur only in the upper 50 m, where deep-seated faults intersect the seafloor. Overall, there was evidence for much less hydrate at the site than previously thought based on available seismic and CSEM data alone.

  18. Electrical resistivity tomography, VES and magnetic surveys for dam site characterization, Wukro, Northern Ethiopia

    NASA Astrophysics Data System (ADS)

    Haile, Tigistu; Atsbaha, Solomun

    2014-09-01

    Geophysical surveys involving the techniques of electrical resistivity imaging, electrical sounding and magnetics were employed to characterize the ground conditions at a proposed dam site at Hizaeti-Afras, Wukro, North Ethiopia. The techniques were utilized to map the depth to the competent formations, their relative suitability for foundation work and the presence and extent of weak zones in the subsurface. The work has mapped the different lithologic units of the subsurface and determined the depth to the basement rocks in the area. Through correlation of the inverse model resistivity sections of the imaging surveys, the geoelectric section of the sounding survey and the magnetic profile plots with available borehole lithologic logs, it is shown that the results very well supplement the geotechnical point data in addition to providing a wider coverage in mapping areas of weak ground that could otherwise be missed with widely spaced borehole information. The combined results of the survey show the proposed dam axis to be unsuitable. The power of the electrical resistivity imaging technique and its potential to map the shallow subsurface with adequate resolution are illustrated. The result is a strong suggestion that geophysical techniques can be used to assist and extrapolate borehole geotechnical data especially when large area is to be used for development of large infrastructure.

  19. Electric resistance welded pipe for use in chemical plants and petroleum refineries

    SciTech Connect

    Isfeld, B.

    1984-02-01

    Cost effective material has been and will continue to be of increasing importance in the design and construction of chemical plants and petroleum refineries. A large percentage of the cost incurred in such projects may be attributed to the pipe required to transport numerous liquids and gases at a variety of temperatures and pressures. Pipe was first manufactured with a longitudinal seam some 150 years ago. Since then, the processes employed have progressed to the point where high frequency electric resistance welding has proved the most effective in the manufacture of pipe suitable for oil and gas transmission. To more readily understand the suitability and reliability of electric resistance welded pipe, a discussion relating to the processes involved in its manufacture was presented. Attention was focussed on the weld seam and inspections performed to confirm its integrity. Mechanical properties of the weld seam were compared to those of the pipe body. Using high frequency electric resistance welding and modern inspection techniques, it is possible to produce pipe with a longitudinal weld seam that is virtuously indistinguishable from the parent metal chemically, mechanically, and visually. Furthermore, ASME/ANSI B31.3 Chemical Plant and Petroleum Refinery Piping approves the use of ERW pipe for a variety of applications at temperatures up to and including 593 degrees Celsius.

  20. Correlation between index properties and electrical resistivity of hydrocarbon contaminated periodic marine clays

    NASA Astrophysics Data System (ADS)

    Tiwari, P.; Shah, M. V.

    2015-09-01

    Hydrocarbon contamination is a measure issue of concern as it adversely affects the soil inherent properties viz. index properties and strength properties.The main objective of this research work is to determine Electrical resistivity to study and correlate with soil index properties and engineering propertiescontaminated with hydrocarbon at the rate of 3%, 6% and 9% for the period of 15, 30 45 and 60 days and compare it with the results obtained for non-contaminated marine clay. Electrical resistivity of virgin marine clay (bentonite which is expansive in nature) and hydrocarbon contaminated clay for each percent of contamination is obtained in the laboratory for each period and its co-relation with index properties and engineering properties is proposed. CEC, EDAX tests were performed to evaluate the effect of ions of montmorillonite clays and their penetrability into hydrocarbon- clay matrix. The correlations at the end of each period for each percentage of contamination thus enabled to integrate index properties of non-contaminated and hydrocarbon contaminated marine clays with Electrical resistivity.

  1. A method to investigate the electron scattering characteristics of ultrathin metallic films by in situ electrical resistance measurements

    SciTech Connect

    Trindade, I. G.; Sousa, J. B.; Fermento, R.; Leitao, D.

    2009-07-15

    In this article, a method to measure the electrical resistivity/conductivity of metallic thin films during layer growth on specific underlayers is described. The in situ monitoring of an underlayer electrical resistance, its change upon the incoming of new material atoms/molecules, and the growth of a new layer are presented. The method is easy to implement and allows obtaining in situ experimental curves of electrical resistivity dependence upon film thickness with a subatomic resolution, providing insight in film growth microstructure characteristics, specular/diffuse electron scattering surfaces, and optimum film thicknesses.

  2. Electrical resistivity measurements of brine saturated porous media near reservoir conditions: Awibengkok preliminary results

    SciTech Connect

    Bonner, B; Duba, A; Roberts, J

    1999-06-28

    Laboratory measurements of the electrical resistivity of rocks and synthetic rocks with confining pressures up to 100 bars and temperatures between 20 and 211 C were performed to further investigate how the pore-size distribution and capillarity affects boiling in porous media. Similar to previous measurements on samples from The Geysers, CA, we observed a gradual increase in resistivity when pore pressure was decreased below the phase-boundary pressure of free water, an indication that boiling is controlled not only by temperature and pressure, but also by pore size distribution. Other important phenomena observed were strong resistance fluctuations during boiling that may be chaotic, and salt deposition that caused sample cracking. If confirmed in further experiments, these results may lead to a new geophysical diagnostic for locating boiling in high permeability areas of geothermal reservoirs and for methods of permeability alteration.

  3. Electrical Resistivity Tomography Monitoring of Soil Remediation for a Garbage Dump

    NASA Astrophysics Data System (ADS)

    shi, X.; Luo, Z.; Zhang, Y.; Fu, Q.; Xu, Z.

    2011-12-01

    Electrical resistivity tomography (ERT) survey was firstly used to investigate the distribution of contaminated soil in a garbage dump area, Wuhan city, China. The result shows that sulfated soil resistivity is about 4 to 7 ohm-m, which is relatively lower than normal soil resistivity of about 15 to 25 ohm-m. The distribution of contaminated soil was delineated using ERT images. Then, ERT survey was carried out in this area for monitoring of remediation of contaminated soil and groundwater. Werner measurements with 60 electrodes of 1 m spacing were taken during the 9-well oxygen injection and nutrition liquid injection period. The difference of apparent resistivity between before gas injection and after gas injection was used to delineate the channel of gas and the trace of gas migration in the porous garbage dump. The electrical resitivity changes between before and after nutrition liquid injection were used to analyze the liquid migration and distribution. The dynamic procedures of gas and water migration are outlined. The results suggest that ERT is a powerful technique for monitoring of soil remediation.

  4. Monitoring crack development in fiber concrete beam by using electrical resistivity imaging

    NASA Astrophysics Data System (ADS)

    Wiwattanachang, N.; Giao, P. H.

    2011-10-01

    Accurate detection of damaged concrete zones plays an important role in selecting the proper remedial technique. This study presents results from an application of the electrical imaging method to monitor the development of cracks in fiber concrete beams. The study showed that resistivity measurements on the concrete specimens were able to detect the increase of concrete resistivity with the curing time that reached about 65 Ωm after 28 days of curing. A similar development trend of concrete compressive strength was also found. Two types of cracks were investigated, i.e., artificial cracks made of plastic sheets inserted in concrete and cracks developed during a four-step loading test. A mini-electric imaging survey with Wenner array was conducted on the tension face of the beams. To deal with the effect of the beam size new procedures to correct resistivity measurements before inversion were proposed and successfully applied in this study. The results indicated that both crack direction and depth could be accurately determined in the inverted resistivity sections.

  5. Effects of boiling on electrical resistivity of microporous rocks from the Geysers

    SciTech Connect

    Roberts, J.; Duba, A.; Bonner, B.; Kasameyer, P.

    1997-12-31

    In a laboratory study of cores from borehole SB-15-D in The Geysers geothermal area, we measured the electrical resistivity of metashale with and without pore-pressure control, with confining pressures up to 100 bars and temperatures between 20 and 150{degrees}C, to determine how the pore-size distribution and capillarity affected boiling. We observed a gradual increase in resistivity when the downstream pore pressure or confining pressure decreased below the phase boundary of free water. For the conditions of this experiment, boiling, as indicated by an increase in resistivity, is initiated at pore pressures of approximately 0.5 to 1 bar (0.05 to 0.1 MPa) below the free-water boiling curve, and it continues to increase gradually as pressure is lowered to atmospheric. A simple model of the effects of capillarity suggests that at 145{degrees}C, less than 15% of the pore water can boil in these rocks. If subsequent experiments bear out these preliminary observations, then boiling within a geothermal reservoir is controlled not just by pressure and temperature but also by pore-size distribution. Thus, it may be possible to determine reservoir characteristics by monitoring changes in electrical resistivity as reservoir conditions change.

  6. Measurement of the electrical resistivity profile in the Madison Symmetric Torus

    NASA Astrophysics Data System (ADS)

    Anderson, Jay K.

    A two dimensional, toroidal equilibrium reconstruction code has been developed for the reversed field pinch. The parallel current density profile has been measured by incorporating several diagnostics into the code. A new fitting technique of derivatives of magnetic signals has been developed to determine the inductive electric field profile. During periods of low MHD activity, Ohm's law obeys its simplest form and the ratio of measured E and J profiles determines the plasma electrical resistivity profile. Presented is an upper bound of Zeff through spectroscopic measurements of bremsstrahlung and several pollutants in the near infrared wavelength region. This enables a comparison of the measured resistivity with Spitzer and neoclassical models. The computed resistivity profile is consistent with the Spitzer model and there is no need to invoke an anomaly factor when describing the resistivity in the reversed field pinch. The second primary result is that a bremsstrahlung measurement in MST is not feasible over the majority of MST operating conditions. An overwhelming emission continuum due to neutral particles and wall recycling complicates extraction of the relatively dim bremsstrahlung contribution. The standard definition of Zeff = SsnsZ 2sne is not sufficient to describe collisionality in the edge of MST due to the effects of non-fully stripped impurity ions.

  7. Noncontact technique for measuring the electrical resistivity and magnetic susceptibility of electrostatically levitated materials.

    PubMed

    Rustan, G E; Spyrison, N S; Kreyssig, A; Prozorov, R; Goldman, A I

    2012-10-01

    We describe the development of a new method for measuring the electrical resistivity and magnetic susceptibility of high temperature liquids and solids. The technique combines a tunnel diode oscillator with an electrostatic levitation furnace to perform noncontact measurements on spherical samples 2-3 mm in diameter. The tank circuit of the oscillator is inductively coupled to the sample, and measurements of the oscillator frequency as a function of sample temperature can be translated into changes in the sample's electrical resistivity and magnetic susceptibility. Particular emphasis is given on the need to improve the positional stability of the levitated samples, as well as the need to stabilize the temperature of the measurement coil. To demonstrate the validity of the technique, measurements have been performed on solid spheres of pure zirconium and low-carbon steel. In the case of zirconium, while absolute values of the resistivity were not determined, the temperature dependence of the resistivity was measured over the range of 640-1770 K and found to be in good agreement with literature data. In the case of low-carbon steel, the ferromagnetic-paramagnetic transition was clearly observable and, when combined with thermal data, appears to occur simultaneously with the solid-solid structural transition. PMID:23126782

  8. Corrosion resistance and electrical properties of carbon/chromium-titanium-nitride multilayer coatings on stainless steel

    NASA Astrophysics Data System (ADS)

    Feng, Kai; Li, Zhuguo; Lu, Fenggui; Huang, Jian; Cai, Xun; Wu, Yixiong

    2014-03-01

    High electrical conductivity and corrosion resistance are central to advances in wider application of metallic bipolar plates in polymer electrolyte membrane fuel cell (PEMFC). In this study, C/Cr-Ti-N multilayer coatings are deposited by physical vapor deposition and the effect of Cr:Ti ratio on the corrosion resistance and interfacial contact resistance (ICR) are systematically investigated. Scanning electron microscopy (SEM) result shows that the carbon layer is compact and uniform. Excellent corrosion resistance of 0.127 μA cm-2 current density at operating voltage in PEMFC cathode environment and low ICR of 2.03 mΩ-cm2 at compaction force of 150 N cm-2 are achieved when Cr:Ti ratio is 2:4 and 3:3, respectively. The significant enhancement in surface conductivity is probably because that the current comes from carbon paper is homogenized by two electrically conductive layers and flows to the passive film with much more contact area. After polarization, ICR increase to 3.07 mΩ-cm2 and 3.02 mΩ-cm2 in the simulated PEMFC cathode and anode environment, respectively. However, the Raman spectroscopy results disclose that the bonding type of top carbon film before and after polarization shows little difference. The results indicate that C/Cr-Ti-N multilayer coating with Cr:Ti ratio of 2:4 achieves the optimal composition.

  9. The data preprocessing in apparent resistivity pesudo-section construction of two-dimensional electrical resistivity tomography survey

    NASA Astrophysics Data System (ADS)

    Zhou, Q.

    2015-12-01

    Although three-dimensional (3-D) electrical resistivity tomography (ERT) survey has become a popular practice in the site characterization and process monitoring, the two-dimensional (2-D) ERT survey is still often used in the field. This is because that the 2-D ERT survey is relatively easy to do and the focus of site characterization is on the information of 2-D cross section, not necessarily of the 3-D subsurface structure. Examples of such practice include tunnel line and crossing fault survey. In these cases, depending on the property of surface soil to be surveyed, the 2-D ERT survey with pole-pole array may occasionally make us obtain quality good data, however it often gives us a suit of data set both with real and erroneous ones that incorporated the effects of electrode contact and not far enough far electrodes. Without preprocessing, the apparent resistivity pseudo-section constructed from this kind of data set may quite deviate from the real one and the information obtained from it may be misleading and even completely incorrect. In this study, we developed a method of far electrode dynamic correction that is appropriate for raw data preprocessing from 2-D pole-pole array ERT survey. Based on this method, we not only can find and delete the abnormal data points easily, but also can position the coordinates of far electrodes actually working in the field, thus delete the far electrode effects and make best use of the looked strange data points. The method also makes us to be able to judge the effects of electrode contact and avoid using such data points in the following apparent resistivity pseudo-section construction. With this preprocessing to the data set, the constructed apparent resistivity pseudo-section is demonstrated to be more approximate to the real one. This makes the following reversion calculation more robust. We'll introduce this far electrode dynamic correction method and show application examples in the meeting.

  10. Interplay between interaction and chiral anomaly: Anisotropy in the electrical resistivity of interacting Weyl metals

    NASA Astrophysics Data System (ADS)

    Jho, Yong-Soo; Kim, Ki-Seok

    2013-05-01

    We predict that long-range interactions give rise to anisotropy in the electrical resistivity of Weyl metals at low temperatures, where the electrical resistivity becomes much reduced when electric fields are applied to the direction of the momentum vector to connect two paired Weyl points. Performing the renormalization group analysis, we find that the distance between two Weyl points becomes enhanced logarithmically at low temperatures although the coupling constant of such interactions vanishes inverse-logarithmically. Considering the Adler-Bell-Jackiw anomaly, scattering between these two Weyl points becomes suppressed to increase electrical conductivity in the “longitudinal” direction, counter intuitive in the respect that interactions are expected to reduce metallicity. We also propose that the anomalous contribution in the Hall effect shows the logarithmic enhancement as a function of temperature, originating from the fact that the anomalous Hall coefficient turns out to be proportional to the distance between two paired Weyl points. Correlations with topological constraints allow unexpected and exotic transport properties.

  11. Electrical conduction in low-resistivity (quasiamorphous) Ag1-xCux alloys

    NASA Astrophysics Data System (ADS)

    Vancea, J.; Pukowietz, S.; Reiss, G.; Hoffmann, H.

    1987-06-01

    UHV-evaporated Ag1-xCux alloy films show a strong dependence of the crystallite sizes on the composition: In the middle of the concentration range, the mean grain size is smaller than 2 nm. The resistivity, however, is much lower than expected for such extremely-fine-grained materials (ρ<9 μΩ cm). The electrical transport parameters for these films were obtained from the thickness dependence of the conductivity without any a priori assumptions. It will be shown that the electrical transport in these alloys can be well understood as a limit of the reflection model for the electrical conductivity in polycrystalline metals [G. Reiss, J. Vancea, and H. Hoffmann, Phys. Rev. Lett. 56, 2100 (1986)].

  12. A simple apparatus for measuring electrical resistance of materials at high temperatures

    SciTech Connect

    Rao, G.V.; Sastry, V.S.; Radhakrishnan, T.S.; Seshagiri, V.

    1996-01-01

    Electrical resistance measurements in a wide temperature range are very important for understanding the physical properties of materials. It is often difficult to carry out the measurements at high temperatures since taking electrical leads reliably from specimens is a nontrivial problem. In this note we describe in detail a simple apparatus which can be used for studying any foil or pellet-shaped sample at temperatures up to 800{degree}C in vacuum or in an inert atmosphere. The apparatus uses spring loaded pins for electrical contact, obviating the need for silver paint or spot welding, thus avoiding any possible change in the properties of the sample. The springs used for loading are far removed from the high temperature zone; the load, therefore, remains unchanged during the experiment and the contacts remain uniformly reliable. {copyright} {ital 1996 American Institute of Physics.}

  13. Electrical carotid sinus stimulation: chances and challenges in the management of treatment resistant arterial hypertension.

    PubMed

    Chobanyan-Jürgens, Kristine; Jordan, Jens

    2015-09-01

    Treatment resistant arterial hypertension is associated with excess cardiovascular morbidity and mortality. Electrical carotid sinus stimulators engaging baroreflex afferent activity have been developed for such patients. Indeed, baroreflex mechanisms contribute to long-term blood pressure control by governing efferent sympathetic and parasympathetic activity. The first-generation carotid sinus stimulator applying bilateral bipolar stimulation reduced blood pressure in a controlled clinical trial but nevertheless failed to meet the primary efficacy endpoint. The second-generation device utilizes smaller unilateral unipolar electrodes, thus decreasing invasiveness of the implantation while saving battery. An uncontrolled clinical study suggested improvement in blood pressure with the second-generation device. We hope that these findings as well as preliminary observations suggesting cardiovascular and renal organ protection with electrical carotid sinus stimulation will be confirmed in properly controlled clinical trials. Meanwhile, we should find ways to better identify patients who are most likely to benefit from electrical carotid sinus stimulation. PMID:26208917

  14. Electrical Resistivity Monitoring for Leachate Distribution at Two Foot-and-Mouth- Disease (FMD) Burial Sites

    NASA Astrophysics Data System (ADS)

    Lee, S.; Kaown, D.; Lee, K.; Leem, K.; Ko, K.

    2011-12-01

    The main objective of this study was to provide the basic information on leachate distribution with time changes through the electrical resistivity monitoring for a certain period of time in the Foot-and-Mouth-Disease (FMD) burial facilities which is needed to prevent further soil and groundwater contamination and to build an effective plan for stabilization of the burial site. In this study, dipole-dipoles surveys were carried out around two FMD burial sites in Iceon-si, Gyeonggi-do. The FMD burial facility installed at Daewall-myeon is consists of one block but, at Yul-myeon, it is divided into 2 blocks named A and B blocks. Dipole-Dipole surveys with 8 lines at Yul-myeon and 3 lines at Daewall-myeon were carried out. The observed leachate distribution along survey lines was not clearly evident as time passes at Daewall-myeon site, but, at Yul-myeon site, the leachate distribution around the survey lines showed a decrease of resistivity around the burial facility. At and around A and B blocks of Yul-myeon site, interpretations of the survey data show low resistivity zones below 10 Ωm from a depth 3 m to 10 m and such low resistivity zones of the A block are thicker than the B block by about 5~10 m. From the geochemical data and resistivity survey at two FMD burial sites, it is inferred that the groundwater within a 50-meter radius around burial facilities of the Yul-myeon site are contaminated by leachate. The general resistivity distribution around the burial site is seemed affected by the leachate with high electrical conductivity. The detail distribution patterns can be explained by local distributions of soil and weathered rocks and associated leachate flow. This subject is supported by Brain Korea 21 and Korea Ministry of Environment as 'The GAIA Project (173-092-009)'.

  15. Determination of anisotropic karst features in the Biscayne Aquifer using multi electrical resistivity imaging techniques

    NASA Astrophysics Data System (ADS)

    Yeboah-Forson, A.; Whitman, D.

    2012-12-01

    The Biscayne Aquifer of Southeast Florida is characterized by limestone cavities and solution hole features that are often beneath the surface and are difficult to detect and quantify accurately. Electrical resistivity imaging (ERI) is often used to image the subsurface for detection of cavities and other karst features. A recent regional study of electrical anisotropy derived from rotated square array measurements measured coefficients of anisotropy of 1.12 or less. At one particular site however, the coefficient of anisotropy was found to be as high as 1.36 with the average minimum resistivity direction trending 105°. The highest values of anisotropy are found at squares array sizes equivalent to effective depths of 4-9m. The cause of this higher anisotropy and its associated orientation was investigated using a combination of azimuthal 2-D profiles and a 3-D tomography survey using a mixed dipole gradient array. Results indicate a low resistivity zone at a depth of 5-10 m in the saturated zone (10-40Ωm) trending 109° in the 2-D profiles and the presence of low resistivity zone (14-43Ωm) trending 90-105° in the 3-D model. This observed lower resistivity zone is at least 50% lower than the surrounding resistivity. Although further geophysical studies are planned at the site, the primary analysis from these three contrasting ERI techniques indicates that the cause of higher anisotropy might be due to the presence of a solution cavity oriented in the E-SE direction.

  16. Rainfall infiltration process in mountain headwater region using electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Ono, M.; Yamamiya, K.; Shimada, J.

    2008-12-01

    Many researchers have studied about the hydrological process, especially rainfall-runoff process, in the headwater region using multi hydrometric methods. Since the possibility has been recognized that bedrock groundwater has important role to play in the rainfall-runoff process, it is important to comprehend the rainfall infiltration process within fluctuations of bedrock groundwater. However, we would need many hydrological instruments to understand this process precisely. So we have applied electrical resistivity tomography (ERT) method to understand rainfall infiltration process in the area that is estimated the contribution of bedrock groundwater for rainfall-runoff processes. Resistivity changes with the saturation rate of the pore fluid in the subsurface material. So it is possible to estimate spatial and temporal distribution of subsurface water by using ERT. In this study, we will estimate rainfall infiltration process in mountain headwater region using resistivity method. The study area is the Mamushi-dani watershed in Shiranui, Kumamoto, Japan. We described the bedrock groundwater storage systems using resistivity method in this watershed previously. Resistivity has been observed at 2 measurement lines in slope areas of this watershed. Both measurement lines have 47m in length, 1m electrode spacing and 48 electrodes. We used the multi-electrode system, NEXT-400(Kowa Co. Ltd., Japan) for measuring apparent resistivity and the application software, E-tomo (Diaconsultant Co. Ltd., Japan) for inversion of apparent resistivity data. The observed resistivity data were compared with water head observed at borehole and specific discharge observed at foot of the watershed. Inverted resistivity profiles and observed hydrological data showed the interface between saturated and unsaturated zone. During rainfall occurs, resistivity in surface area gets lower than that before the rainfall and resistivity in some part of unsaturated area shows increasing tendency. Both

  17. Thermionic triode generates ac power

    NASA Technical Reports Server (NTRS)

    Kniazzeh, A. G. F.; Scharz, F. C.

    1970-01-01

    Electrostatic grid controls conduction cycle of thermionic diode to convert low dc output voltages to high ac power without undesirable power loss. An ac voltage applied to the grid of this new thermionic triode enables it to convert heat directly into high voltage electrical power.

  18. Frequency of alleles conferring resistance to the Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in Australian populations of Helicoverpa punctigera (Lepidoptera: Noctuidae) from 2002 to 2006.

    PubMed

    Downes, S; Parker, T L; Mahon, R J

    2009-04-01

    Helicoverpa punctigera and Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) are important pests of field and horticultural crops in Australia. The former is endemic to the continent, whereas the latter is also distributed in Africa and Asia. Although H. armigera rapidly developed resistance to virtually every group of insecticide used against it, there is only one report of resistance to an insecticide in H. punctigera. In 1996 the Australian cotton industry adopted Ingard, which expresses the Bacillus thuringiensis (Bt) toxin gene cry1Ac. In 2004/2005, Bollgard II (which expresses Cry1Ac and Cry2Ab) replaced Ingard and has subsequently been grown on 80% of the area planted to cotton, Gossypium hirsutum L. From 2002/2003 to 2006/2007, F2 screens were used to detect resistance to Cry1Ac or Cry2Ab. We detected no alleles conferring resistance to Cry1Ac; the frequency was < 0.0005 (n = 2,180 alleles), with a 95% credibility interval between 0 and 0.0014. However, during the same period, we detected alleles that confer resistance to Cry2Ab at a frequency of 0.0018 (n = 2,192 alleles), with a 95% credibility interval between 0.0005 and 0.0040. For both toxins, the experiment-wise detection probability was 94%, i.e., if there actually was a resistance allele in any tested lines, we would have detected it 94% of the time. The first isolation of Cry2Ab resistance in H. punctigera was before the widespread deployment of Bollgard II. This finding supports our published notion for H. armigera that alleles conferring resistance to Cry2Ab may be present at detectable frequencies in populations before selection by transgenic crops. PMID:19449655

  19. DUAL ALKALI ACCEPTANCE TEST AT LOUISVILLE GAS AND ELECTRIC COMPANY; VOLUME I. ACCEPTANCE TEST AND APPENDICES A-C

    EPA Science Inventory

    The report gives results of the completed acceptance test series run on the dual alkali system serving Louisville Gas and Electric Company's Cane Run Unit 6 boiler. This volume contains the process description and a discussion of the test results, operating history, and performan...

  20. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. A-C CONVENTIONAL MAGNETIC MOTOR CONTROL, PART I, UNIT 5, ASSIGNMENTS.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING ALTERNATING CURRENT CONVENTIONAL MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 10 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, STUDY REFERENCES, SUPPLEMENTARY…

  1. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. A-C CONVENTIONAL MAGNETIC MOTOR CONTROL, PART I, UNIT 5, INSTRUCTOR'S GUIDE.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR TEACHER USE IN DIRECTING INDIVIDUAL STUDY OF ALTERNATING CURRENT CONVENTIONAL MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 10 INSTRUCTOR'S SHEETS GIVES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, REFERENCES, AND…

  2. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. A-C CONVENTIONAL MAGNETIC MOTOR CONTROL, PART II, UNIT 6, INSTRUCTOR'S GUIDE.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR TEACHER USE IN DIRECTING INDIVIDUAL STUDY OF ALTERNATING CURRENT CONVENTIONAL MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 10 INSTRUCTOR'S SHEETS GIVES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, REFERENCES, SUPPLEMENTARY…

  3. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. A-C CONVENTIONAL MAGNETIC MOTOR CONTROL, PART II, UNIT 6, ASSIGNMENTS.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS STUDY GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING ALTERNATING CURRENT CONVENTIONAL MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 10 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, STUDY REFERENCES,…

  4. Investigation of degree of saturation in landfill liners using electrical resistivity imaging.

    PubMed

    Kibria, Golam; Hossain, Md Sahadat

    2015-05-01

    During construction of compacted clay liners and evapotranspiration (ET) covers, quality control involves laboratory and field tests in individual lifts. However, the available methods may be inadequate to determine non-uniform compaction conditions, poor bonding of lifts, and/or variable soil composition. Moreover, the applicability of the available methods is restricted, in many instances, when spatial variability of the subsurface is expected. Resistivity Imaging (RI) is a geophysical method employed to investigate a large area in a rapid and non-destructive way. High resistivity of clay liner soil is an indication of a low degree of saturation, high air-filled voids, and poor lift bonding. To utilize RI as a quality control tool in a landfill liner, it is important to determine the saturation condition of the compacted soils because compaction and permeability of liner soil are functions of degrees of saturation. The objective of the present study is to evaluate the degree of saturation of a municipal solid waste (MSW) landfill liner, using RI. Electrical resistivity tests were performed in the laboratory, at varied moisture contents and dry unit weights, on four types of soil samples, i.e., highly plastic clay (CH), low plastic clay (CL), Ca-bentonite, and kaolinite. According to the experimental results, electrical resistivity of the specimens decreased as much as 15.3 times of initial value with increase in the degrees of saturation from 23% to 100%. In addition, cation exchange capacity (CEC) substantially affected resistivity. A multiple linear regression (MLR) model was developed to correlate electrical resistivity with degree of saturation and CEC using experimental results. Additionally, RI tests were conducted on compacted clay liners to determine the degrees of saturation, and predicted degrees of saturation were compared with the in-situ density tests. The study results indicated that the developed model can be utilized for liner soils having CEC

  5. The `L' Array, a method to model 3D Electrical Resistivity Tomography (ERT) data

    NASA Astrophysics Data System (ADS)

    Chavez Segura, R. E.; Chavez-Hernandez, G.; Delgado, C.; Tejero-Andrade, A.

    2010-12-01

    The electrical resistivity tomography (ERT) is a method designed to calculate the distribution of apparent electrical resistivities in the subsoil by means of a great number of observations with the aim of determining an electrical image displaying the distribution of true resistivities in the subsoil. Such process can be carried out to define 2D or 3D models of the subsurface. For a 3D ERT, usually, the electrodes are placed in a squared grid keeping the distance between adjacent electrodes constant in the x and y directions. Another design employed, consists of a series of parallel lines whose space inter-lines must be smaller or equal to four times the electrode separation. The most common electrode arrays frequently employed for this type of studies are the pole-pole, pole-dipole and dipole-dipole. Unfortunately, ERT surface sampling schemes are limited by physical conditions or obstacles, like buildings, highly populated urban zones, and geologic/topographic features, where the lines of electrodes cannot be set. However, it is always necessary to characterize the subsoil beneath such anthropogenic or natural features. The ‘L’ shaped array has the main purpose to overcome such difficulties by surrounding the study area with a square of electrode lines. The measurements are obtained by switching automatically current and potential electrodes from one line to the other. Each observation adds a level of information, from one profile to the other. Once the total levels of data are completed, the opposite ‘L’ array can be measured following the same process. The complete square is computed after the parallel profiles are observed as well. At the end, the computed resistivities are combined to form a 3D matrix of observations. Such set of data can be inverted to obtain the true resistivity distribution at depth in the form of a working cube, which can be interpreted. The method was tested with theoretical models, which included a set of two resistive cubes

  6. Novel Pink Bollworm Resistance to the Bt Toxin:Cryl Ac: Effects on Mating, Oviposition, Larval Development, and Survival.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bt cotton plants are genetically engineered to produce insecticidal toxins from the Bacillus thuringiensis (Bt) bacterium and target key lepidopteran pests. At least four strains of pink bollworm, Pectinophora gossypiella (Saunders), have been selected in the laboratory for resistance to insecticid...

  7. AC solar cell

    SciTech Connect

    Schutten, H.P.; Benjamin, J.A.; Lade, R.W.

    1986-03-18

    An AC solar cell is described comprising: a pair of PN junction type solar cells connected in antiparallel between a pair of main terminals; and means for electrically directing light alternatingly without mechanical movement on the PN junctions to generate an alternating potential across the main terminals.

  8. Three dimensional modeling and inversion of Borehole-surface Electrical Resistivity Data

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Liu, D.; Liu, Y.; Qin, M.

    2013-12-01

    After a long time of exploration, many oil fields have stepped into the high water-cut period. It is sorely needed to determining the oil-water distribution and water flooding front. Borehole-surface electrical resistivity tomography (BSERT) system is a low-cost measurement with wide measuring scope and small influence on the reservoir. So it is gaining more and more application in detecting water flooding areas and evaluating residual oil distribution in oil fields. In BSERT system, current is connected with the steel casing of the observation well. The current flows along the long casing and transmits to the surface through inhomogeneous layers. Then received electric potential difference data on the surface can be used to inverse the deep subsurface resistivity distribution. This study presents the 3D modeling and inversion method of electrical resistivity data. In an extensive literature, the steel casing is treated as a transmission line current source with infinite small radius and constant current density. However, in practical multi-layered formations with different resistivity, the current density along the casing is not constant. In this study, the steel casing is modeled by a 2.5e-7 ohm-m physical volume that the casing occupies in the finite element mesh. Radius of the casing can be set to a little bigger than the true radius, and this helps reduce the element number and computation time. The current supply point is set on the center of the top surface of the physical volume. The homogeneous formation modeling result shows the same precision as the transmission line current source model. The multi-layered formation modeling result shows that the current density along the casing is high in the low-resistivity layer, and low in the high-resistivity layer. These results are more reasonable. Moreover, the deviated and horizontal well can be simulated as simple as the vertical well using this modeling method. Based on this forward modeling method, the

  9. The Behaviour of Laboratory Soil Electrical Resistivity Value under Basic Soil Properties Influences

    NASA Astrophysics Data System (ADS)

    Hazreek, Z. A. M.; Aziman, M.; Azhar, A. T. S.; Chitral, W. D.; Fauziah, A.; Rosli, S.

    2015-01-01

    Electrical resistivity method (ERM) was a popular indirect geophysical tools adopted in engineering, environmental and archaeological studies. In the past, results of the electrical resistivity value (ERV) were always subjected to a long discussion and debate among the related parties such as an engineers, geophysicists and geologists due to its lack of clarification and evidences in quantitative point of view. Most of the results produced in the past was always been justified using qualitative ways which difficult to be accept by certain parties. In order to reduce the knowledge gap between those parties, this study has performed a laboratory experiment of soil box resistivity test which supported by an additional basic geotechnical test as referred to particle size distribution test (d), moisture content test (w), density test (ρbulk) and Atterberg limit test (LL, PL and PI). The test was performed to establish a series of electrical resistivity value with different quantity of water content for Clayey SILT and Silty SAND soil. It was found that the ERV of Silty SAND (600 - 7300 Ωm) was higher than Clayey SILT (13 - 7700 Ωm) due to the different quantity of basic soil properties value obtained from the basic geotechnical test. This study was successfully demonstrated that the fluctuation of ERV has greatly influenced by the variations of the soil physical properties (d, w, ρbulk, LL, PL and PI). Hence, the confidence level of ERV interpretation will be increasingly meaningful since it able to be proved by others parameter generated by laboratory direct test.

  10. AC electrical characterisation and insight to charge transfer mechanisms in DNA molecular wires through temperature and UV effects.

    PubMed

    Kassegne, Sam; Wibowo, Denni; Chi, James; Ramesh, Varsha; Narenji, Alaleh; Khosla, Ajit; Mokili, John

    2015-06-01

    In this study, AC characterisation of DNA molecular wires, effects of frequency, temperature and UV irradiation on their conductivity is presented. λ-DNA molecular wires suspended between high aspect-ratio electrodes exhibit highly frequency-dependent conductivity that approaches metal-like behaviour at high frequencies (∼MHz). Detailed temperature dependence experiments were performed that traced the impedance response of λ-DNA until its denaturation. UV irradiation experiments where conductivity was lost at higher and longer UV exposures helped to establish that it is indeed λ-DNA molecular wires that generate conductivity. The subsequent renaturation of λ-DNA resulted in the recovery of current conduction, providing yet another proof of the conducting DNA molecular wire bridge. The temperature results also revealed hysteretic and bi-modal impedance responses that could make DNA a candidate for nanoelectronics components like thermal transistors and switches. Further, these experiments shed light on the charge transfer mechanism in DNA. At higher temperatures, the expected increase in thermal-induced charge hopping may account for the decrease in impedance supporting the 'charge hopping mechanism' theory. UV light, on the other hand, causes damage to GC base-pairs and phosphate groups reducing the path available both for hopping and short-range tunneling mechanisms, and hence increasing impedance--this again supporting both the 'charge hopping' and 'tunneling' mechanism theories. PMID:26023159

  11. Electrical Resistivity Imaging of Subterranean Void Space for Assessment of Endangered Species Habitat

    NASA Astrophysics Data System (ADS)

    Weissling, B. P.; White, K.

    2007-12-01

    The challenge of identifying and delineating subterranean habitat for endangered species in karst environments has been addressed through the application of near-surface geophysical techniques. Electrical resistivity imaging (ERI) in both galvanic DC and capacitance-coupled modes has been applied to the problem of imaging subsurface voids, potentially conducive to karst invertebrate habitat, in two distinctly different geologic, geophysical, and environmental settings. Surveys were conducted in extrusive volcanic terrain on the south shore of Kauai, Hawaii, a site known for lava tube formation, and in limestone karst terrain in central Texas. The two study sites were distinctly different in their geophysical settings in terms of surface layer and subsurface background resistivities, values at the Kauai site ranging from 1000 - 5000 ohm-meters and at the Texas site 100 - 800 ohm-meters, values reflecting differing lithology, porosity, and pore fluid content. An Advanced Geosciences Inc. (AGI) Supersting R8 DC resistivity system was the primary instrumentation utilized for both surveys, with a capacitance-coupled Geometrics Inc. OhmMapper TR-2 system utilized on the Kauai site for reconnaissance profiles. Opportunities existed for direct comparisons of Supersting and OhmMapper pseudo- section profiles. Supersting lines were acquired with a mixed array combining the horizontal resolution sensitivity of the dipole-dipole array with the vertical resolution sensitivity of the Inverse Schlumberger array. At both sites, surveys were conducted over known and mapped cave passage for validation of the techniques. Forward simulation modeling was conducted to verify resistivity anomaly signatures of known void spaces. Results were highly encouraging and serve to reinforce the karst-imaging capabilities of electrical resistivity, especially when mixed array types are utilized.

  12. Influence of processing history on the mechanical properties and electrical resistivity of polycarbonate - multi-walled carbon nanotubes nanocomposites

    NASA Astrophysics Data System (ADS)

    Choong, Gabriel Y. H.; De Focatiis, Davide S. A.

    2015-05-01

    In this work we investigate the effects of compounding temperature and secondary melt processing on the mechanical response and electrical behaviour of polycarbonate filled with 3 wt% carbon nanotubes. The nanocomposites were melt compounded in an industrial setting at a range of temperatures, and subsequently injection moulded or compression moulded. The surface hardness, uniaxial tensile properties and electrical resistivity were measured. Secondary melt processing is found to be the dominant process in determining the final mechanical properties and resistivity of these materials.

  13. Novel laboratory methods for determining the fine scale electrical resistivity structure of core

    NASA Astrophysics Data System (ADS)

    Haslam, E. P.; Gunn, D. A.; Jackson, P. D.; Lovell, M. A.; Aydin, A.; Prance, R. J.; Watson, P.

    2014-12-01

    High-resolution electrical resistivity measurements are made on saturated rocks using novel laboratory instrumentation and multiple electrical voltage measurements involving in principle a four-point electrode measurement but with a single, moving electrode. Flat, rectangular core samples are scanned by varying the electrode position over a range of hundreds of millimetres with an accuracy of a tenth of a millimetre. Two approaches are tested involving a contact electrode and a non-contact electrode arrangement. The first galvanic method uses balanced cycle switching of a floating direct current (DC) source to minimise charge polarisation effects masking the resistivity distribution related to fine scale structure. These contacting electrode measurements are made with high common mode noise rejection via differential amplification with respect to a reference point within the current flow path. A computer based multifunction data acquisition system logs the current through the sample and voltages along equipotentials from which the resistivity measurements are derived. Multiple measurements are combined to create images of the surface resistivity structure, with variable spatial resolution controlled by the electrode spacing. Fine scale sedimentary features and open fractures in saturated rocks are interpreted from the measurements with reference to established relationships between electrical resistivity and porosity. Our results successfully characterise grainfall lamination and sandflow cross-stratification in a brine saturated, dune bedded core sample representative of a southern North Sea reservoir sandstone, studied using the system in constant current, variable voltage mode. In contrast, in a low porosity marble, identification of open fracture porosity against a background very low matrix porosity is achieved using the constant voltage, variable current mode. This new system is limited by the diameter of the electrode that for practical reasons can only be

  14. Time-lapse electrical resistivity investigations for imaging the grouting injection in shallow subsurface cavities.

    PubMed

    Farooq, Muhammad; Park, Samgyu; Kim, Jung Ho; Song, Young Soo; Amjad Sabir, Mohammad; Umar, Muhammad; Tariq, Mohammad; Muhammad, Said

    2014-01-01

    The highway of Yongweol-ri, Muan-gun, south-western part of the South Korean Peninsula, is underlain by the abandoned of subsurface cavities, which were discovered in 2005. These cavities lie at shallow depths with the range of 5∼15 meters below the ground surface. Numerous subsidence events have repeatedly occurred in the past few years, damaging infrastructure and highway. As a result of continuing subsidence issues, the Korean Institute of Geosciences and Mineral Resources (KIGAM) was requested by local administration to resolve the issue. The KIGAM used geophysical methods to delineate subsurface cavities and improve more refined understanding of the cavities network in the study area. Cement based grouting has been widely employed in the construction industry to reinforce subsurface ground. In this research work, time-lapse electrical resistivity surveys were accomplished to monitor the grouting injection in the subsurface cavities beneath the highway, which have provided a quasi-real-time monitoring for modifying the subsurface cavities related to ground reinforcement, which would be difficult with direct methods. The results obtained from time-lapse electrical resistivity technique have satisfactory imaged the grouting injection experiment in the subsurface cavities beneath the highway. Furthermore, the borehole camera confirmed the presence of grouting material in the subsurface cavities, and hence this procedure increases the mechanical resistance of subsurface cavities below the highway. PMID:24578621

  15. Time-Lapse Electrical Resistivity Investigations for Imaging the Grouting Injection in Shallow Subsurface Cavities

    PubMed Central

    Farooq, Muhammad; Kim, Jung Ho; Song, Young Soo; Amjad Sabir, Mohammad; Umar, Muhammad; Tariq, Mohammad; Muhammad, Said

    2014-01-01

    The highway of Yongweol-ri, Muan-gun, south-western part of the South Korean Peninsula, is underlain by the abandoned of subsurface cavities, which were discovered in 2005. These cavities lie at shallow depths with the range of 5∼15 meters below the ground surface. Numerous subsidence events have repeatedly occurred in the past few years, damaging infrastructure and highway. As a result of continuing subsidence issues, the Korean Institute of Geosciences and Mineral Resources (KIGAM) was requested by local administration to resolve the issue. The KIGAM used geophysical methods to delineate subsurface cavities and improve more refined understanding of the cavities network in the study area. Cement based grouting has been widely employed in the construction industry to reinforce subsurface ground. In this research work, time-lapse electrical resistivity surveys were accomplished to monitor the grouting injection in the subsurface cavities beneath the highway, which have provided a quasi-real-time monitoring for modifying the subsurface cavities related to ground reinforcement, which would be difficult with direct methods. The results obtained from time-lapse electrical resistivity technique have satisfactory imaged the grouting injection experiment in the subsurface cavities beneath the highway. Furthermore, the borehole camera confirmed the presence of grouting material in the subsurface cavities, and hence this procedure increases the mechanical resistance of subsurface cavities below the highway. PMID:24578621

  16. Investigating Root Zone Soil Moisture Using Electrical Resistivity and Crop Modeling

    NASA Astrophysics Data System (ADS)

    Diker, K.; Van Dam, R. L.; Hyndman, D. W.; Kendall, A. D.; Bhardwaj, A. K.; Hamilton, S. K.; Basso, B.

    2011-12-01

    An accurate understanding of soil moisture variability is critical for agroecological modeling and for understanding the implications of climate change for agriculture. In recent years, electrical resistivity (ER) methods have successfully been used to characterize soil moisture in a range of environments, but there remains a need to better link these data to climate variability, soil textural properties, and vegetation and root dynamics. We present results for a novel ER measurement system at the Great Lakes Bioenergy Research Center (GLBRC) in southwest Michigan. Permanent multi-electrode arrays were installed beneath a range of annual and perennial biofuel crop types including corn, soybean, various grasses, and poplars. The ER arrays provide both high spatial resolution 2D and high temporal resolution 1D apparent resistivity data (4 week and 2 hour intervals, respectively). These data, along with a forward simulation of electrical resistivity in the soil column, are used to calibrate and refine root growth dynamics modules within the crop growth and soil hydrologic model SALUS (System Approach to Land Use Sustainability). Simulations are compared to 1D TDR-inferred soil moisture data. Variability in root zone dynamics among different biofuel cropping systems is explored. Total water use and efficiency, along with profile root water extraction, vary considerably among the crops.

  17. Imaging pathways in fractured rock using three-dimensional electrical resistivity tomography

    USGS Publications Warehouse

    Robinson, Judith; Slater, Lee; Johnson, Timothy B.; Shapiro, Allen M.; Tiedeman, Claire; Ntlargiannis, Dimitrios; Johnson, Carole D.; Day-Lewis, Frederick D.; Lacombe, Pierre; Imbrigiotta, Thomas; Lane, Jr., John W.

    2016-01-01

    Major challenges exist in delineating bedrock fracture zones because these cause abrupt changes in geological and hydrogeological properties over small distances. Borehole observations cannot sufficiently capture heterogeneity in these systems. Geophysical techniques offer the potential to image properties and processes in between boreholes. We used three-dimensional cross borehole electrical resistivity tomography (ERT) in a 9 m (diameter) × 15 m well field to capture high-resolution flow and transport processes in a fractured mudstone contaminated by chlorinated solvents, primarily trichloroethylene. Conductive (sodium bromide) and resistive (deionized water) injections were monitored in seven boreholes. Electrode arrays with isolation packers and fluid sampling ports were designed to enable acquisition of ERT measurements during pulsed tracer injections. Fracture zone locations and hydraulic pathways inferred from hydraulic head drawdown data were compared with electrical conductivity distributions from ERT measurements. Static ERT imaging has limited resolution to decipher individual fractures; however, these images showed alternating conductive and resistive zones, consistent with alternating laminated and massive mudstone units at the site. Tracer evolution and migration was clearly revealed in time-lapse ERT images and supported by in situ borehole vertical apparent conductivity profiles collected during the pulsed tracer test. While water samples provided important local information at the extraction borehole, ERT delineated tracer migration over spatial scales capturing the primary hydrogeological heterogeneity controlling flow and transport. The fate of these tracer injections at this scale could not have been quantified using borehole logging and/or borehole sampling methods alone.

  18. Electrical Resistivity Imaging of Seawater Intrusion into the Monterey Bay Aquifer System.

    PubMed

    Pidlisecky, A; Moran, T; Hansen, B; Knight, R

    2016-03-01

    We use electrical resistivity tomography to obtain a 6.8-km electrical resistivity image to a depth of approximately 150 m.b.s.l. along the coast of Monterey Bay. The resulting image is used to determine the subsurface distribution of saltwater- and freshwater-saturated sediments and the geologic controls on fluid distributions in the region. Data acquisition took place over two field seasons in 2011 and 2012. To maximize our ability to image both vertical and horizontal variations in the subsurface, a combination of dipole-dipole, Wenner, Wenner-gamma, and gradient measurements were made, resulting in a large final dataset of approximately 139,000 data points. The resulting resistivity section extends to a depth of 150 m.b.s.l., and is used, in conjunction with the gamma logs from four coastal monitoring wells to identify four dominant lithologic units. From these data, we are able to infer the existence of a contiguous clay layer in the southern portion of our transect, which prevents downward migration of the saltwater observed in the upper 25 m of the subsurface to the underlying freshwater aquifer. The saltwater and brackish water in the northern portion of the transect introduce the potential for seawater intrusion into the hydraulically connected freshwater aquifer to the south, not just from the ocean, but also laterally from north to south. PMID:26085452

  19. Dynamic characteristics of double-barrier nanostructures with asymmetric barriers of finite height and widths in a strong ac electric field

    SciTech Connect

    Chuenkov, V. A.

    2013-12-15

    The theory of the interaction of a monoenergetic flow of injected electrons with a strong high-frequency ac electric field in resonant-tunneling diode (RTD) structures with asymmetric barriers of finite height and width is generalized. In the quasi-classical approximation, electron wavefunctions and tunneling functions in the quantum well and barriers are found. Analytical expressions for polarization currents in RTDs are derived in both the general case and in a number of limiting cases. It is shown that the polarization currents and radiation power in RTDs with asymmetric barriers strongly depend on the ratio of the probabilities of electron tunneling through the emitter and collector barriers. In the quantum mode, when δ = ε − ε{sub r} = ħω ≪ Γ (ε is the energy of electrons injected in the RTD, ħ is Planck’s constant, ω is the ac field frequency, ε{sub r} and Γ are the energy and width of the resonance level, respectively), the active polarization current in a field of E ≈ 2.8ħω/ea (e is the electron charge and a is the quantum-well width) reaches a maximum equal in magnitude to 84% of the direct resonant current, if the probability of electron tunneling through the emitter barrier is much higher than that through the collector barrier. The radiation-generation power at frequencies of ω = 10{sup 12}–10{sup 13} s{sup −1} can reach 10{sup 5}–10{sup 6} W/cm{sup 2} in this case.

  20. Electrical Resistivity Tomography (ERT) Applied to Karst Carbonate Aquifers: Case Study from Amdoun, Northwestern Tunisia

    NASA Astrophysics Data System (ADS)

    Redhaounia, Belgacem; Ilondo, Batobo Ountsche; Gabtni, Hakim; Sami, Khomsi; Bédir, Mourad

    2016-04-01

    The Amdoun region is characterized by a high degree of karstification due to the climate impact (±1500 mm year-1) and the development of fracture network. Survey using electrical resistivity tomography (ERT) is deployed to provide a cost-effective characterization of the subsurface karst environments. A total of seven ERT profiles with lengths of 315 m were evaluated at the Béja governorate (NW Tunisia). The area represents a small syncline of Boudabbous limestone rocks (Lower Eocene), which is covered by a thin layer of clay. In this study, an ERT survey was conducted to examine the spatial distribution and shape of underground cavities in the karst area in Jebel Sabah anticline and Aïn Sallem-Zahret Medien syncline. In this study, geological, hydro-geological and electrical resistivity tomography (ERT) methods were applied to determine the geometry of the perched aquifer in the Amdoun region (NW Tunisia). The area is characterized by fractured and karstic limestone aquifer of Late Cretaceous (Abiod Fm.) and Lower Eocene (Boudabbous Fm.). The aquifers have a karstic functioning and drain aquifers of economical interest, despite some wells exploiting them. Seven resistivity profiles were conducted along the survey area at three sites. The orientation, extension and the degree of inclination of those profiles are shown in the location map. The correct resistivity data were interpreted using Earth Imager 2D software. The results of the interpreted geo-electrical sections showed that the resistivity of the carbonate aquifer varied between 2.5 to over 5794 Ωm. The thickness of the perched aquifer ranged from 15 to 50 m, while its depth from the surface lies between 10 and 60 m. The ERT not only provided precise near surface information, but was also very useful for establishing the 3D geometry and the position of several potential cavities and karts. The results show the presence of small to large isolated cavities at various depths. The low resistivity of cavities