Science.gov

Sample records for ac field strength

  1. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  2. Airborne field strength monitoring

    NASA Astrophysics Data System (ADS)

    Bredemeyer, J.; Kleine-Ostmann, T.; Schrader, T.; Münter, K.; Ritter, J.

    2007-06-01

    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper.

  3. AC Magnetic Field Frequency Dependence of Magnetoacoustic Emission

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Wincheski, B.; Fulton, J. P.; DeNale, R.

    1992-01-01

    Our recent study has proved a strong correlation between the low-frequency AC applied magnetic field amplitude dependence of the asymmetry of the magnetoacoustic emission (MAE) burst and the strength of the domain wall-defect interaction in iron-base ferromagnets. For the present study the AC magnetic field frequency dependence of the asymmetry has been investigated in the range of 1 to 200 Hz. When represented by the third moment of the rectified acoustic emission pulses, the asymmetry becomes a bell-shaped function of frequency with its center located around 25 Hz. This experiment has been performed with low carbon, high yield stress steel specimens of three different levels of domain wall-defect interaction strength. The results show that the increase in the interaction strength causes a vertical down shift of the asymmetry in the entire frequency range investigated.

  4. Manipulating Flames with AC Electric Fields

    NASA Astrophysics Data System (ADS)

    Bishop, Kyle

    2013-11-01

    Time-oscillating electric fields applied to plasmas present in flames create steady flows of gas capable of shaping, directing, enhancing, or even extinguishing flames. Interestingly, electric winds induced by AC electric fields can be stronger that those due to static fields of comparable magnitude. Furthermore, unlike static fields, the electric force due to AC fields is localized near the surface of the flame. Consequently, the AC response depends only on the local field at the surface of the flame - not on the position of the electrodes used to generate the field. These results suggest that oscillating electric fields can be used to manipulate and control combustion processes at a distance. To characterize and explain these effects, we investigate a simple experimental system comprising a laminar methane-air flame positioned between two parallel-plate electrodes. We quantify both the electric and hydrodynamic response of the flame as a function of frequency and magnitude of the applied field. A theoretical model shows how steady gas flows emerge from the time-averaged electrical force due to the field-induced motion of ions generated within the flame and by their disappearance by recombination. These results provide useful insights into the application of AC fields to direct combustion processes.

  5. AC Electrostatic Field Study : Final Report.

    SciTech Connect

    Lebby, Gary L.

    1990-08-28

    The phenomenon of fast transients propagating to the outer sheath of a gas insulated substation (GIS) during switching and disconnect operations as well as the distortion of the electric field gradient around an electric transmission line in the presence of field measuring equipment are examples of electrostatic and electromagnetic field problems that are very much on the minds of both power engineers and maintenance personnel alike. Maintenance personnel working on high voltage equipment want to know the areas that have the highest electric field strength gradients and they want to reduce the risk of being shocked when touching a conventionally 60 Hz grounded GIS enclosure due to fast transients initiated by faults and switching operations. In studying these phenomena during the performance period of this grant, tower configurations for the electric field strength gradient measurements were tested with the ESURF3D program acquired from BPA and gas insulated substation test pole (GISTP) models were tested using the Alternative Transients Program (ATP) version Electromagnets Transients Program (EMTP). The results of these two modeling paradigms are presented in this report not as the last word on these subjects, but as a couple of the many ways one can approach two classical electromagnetic waves problems. 19 refs., 13 figs., 3 tabs.

  6. Nonlinear magnetization relaxation of superparamagnetic nanoparticles in superimposed ac and dc magnetic bias fields

    NASA Astrophysics Data System (ADS)

    Titov, Serguey V.; Déjardin, Pierre-Michel; El Mrabti, Halim; Kalmykov, Yuri P.

    2010-09-01

    The nonlinear ac response of the magnetization M(t) of a uniaxially anisotropic superparamagnetic nanoparticle subjected to both ac and dc bias magnetic fields of arbitrary strengths and orientations is determined by averaging Gilbert’s equation augmented by a random field with Gaussian white-noise properties in order to calculate exactly the relevant statistical averages. It is shown that the magnetization dynamics of the uniaxial particle driven by a strong ac field applied at an angle to the easy axis of the particle (so that the axial symmetry is broken) alters drastically leading to different nonlinear effects due to coupling of the thermally activated magnetization reversal mode with the precessional modes of M(t) via the driving ac field.

  7. Magnetic Field Strengths in Photodissociation Regions

    NASA Astrophysics Data System (ADS)

    Balser, Dana S.; Anish Roshi, D.; Jeyakumar, S.; Bania, T. M.; Montet, Benjamin T.; Shitanishi, J. A.

    2016-01-01

    We measure carbon radio recombination line (RRL) emission at 5.3 {{GHz}} toward four H ii regions with the Green Bank Telescope to determine the magnetic field strength in the photodissociation region (PDR) that surrounds the ionized gas. Roshi suggests that the non-thermal line widths of carbon RRLs from PDRs are predominantly due to magneto-hydrodynamic waves, thus allowing the magnetic field strength to be derived. We model the PDR with a simple geometry and perform the non-LTE radiative transfer of the carbon RRL emission to solve for the PDR physical properties. Using the PDR mass density from these models and the carbon RRL non-thermal line width we estimate total magnetic field strengths of B∼ 100{--}300 μ {{G}} in W3 and NGC 6334A. Our results for W49 and NGC 6334D are less well constrained with total magnetic field strengths between B∼ 200{--}1000 μ {{G}}. H i and OH Zeeman measurements of the line of sight magnetic field strength ({B}{{los}}), taken from the literature, are between a factor of ∼ 0.5{--}1 of the lower bound of our carbon RRL magnetic field strength estimates. Since | {B}{{los}}| ≤slant B, our results are consistent with the magnetic origin of the non-thermal component of carbon RRL widths.

  8. Strength of field compacted clayey embankments

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Lovell, C. W.

    1982-02-01

    The shearing behavior of a plastic Indiana clay (St. Croix) was studied for both laboratory and field compaction. This interim report deals with the field compacted phase. The strength tests were performed by unconsolidated undrained (UU) and saturated consolidated undrained (CIU) triaxials. These were run at various confining pressures to approximate the end of construction and long term conditions at several embankment depths.

  9. Validity of Field Tests of Upper Body Muscular Strength.

    ERIC Educational Resources Information Center

    Pate, Russell, R; And Others

    1993-01-01

    Examined the validity of field tests of elementary students' upper body muscular strength and endurance. Field tests were found to be moderately valid measures of weight-relative muscular strength but not of absolute strength and muscular endurance. (SM)

  10. Achievable field strength in reverberation chambers

    NASA Astrophysics Data System (ADS)

    Eulig, N.; Enders, A.; Krauthäuser, H. G.; Nitsch, J.

    2003-05-01

    Feldvariable Kammern (FVK, engl.: modestirred- chamber) werden unter anderem für EMV-Störfestigkeitsprüfungen verwendet. Ein häufig genanntes Argument, das die Einführung dieser Kammern als normgerechte Prüfumgebung vorantreiben soll, ist eine hohe Feldstärke, die im Vergleich zu anderen Testumgebungen mit relativ moderaten HF-Leistungen erreicht werden kann. Besonders für sicherheitskritische Geräte, wie Komponenten aus der Avionik- oder KFZ-Industrie, sind heutzutage Testfeldstärken von mehreren 100 V/m notwendig. Derart hohe Feldstärken können in Umgebungen, die ein ebenes Wellenfeld erzeugen oder nachbilden, nur mit großen HFLeistungen generiert werden. Durch die Resonanzeigenschaften einer FVK können demgegenüber mit sehr viel weniger Leistung und damit Verstärkeraufwand vergleichbare Werte der Feldstärke erzeugt werden. Allerdings sinkt mit zunehmendem Volumen die erreichbare Feldstärke bei gleicher Speiseleistung. Idealerweise sollen Feldvariable Kammern bei möglichst niedrigen Frequenzen für EMVTests nutzbar sein, was jedoch ein großes Kammervolumen erfordert. Das Problem, bei niedrigen Frequenzen hohe Feldstärken erzeugen zu können, relativiert deshalb den Vorteil von FVKn gegenüber bekannten Testumgebungen bei niedrigen Testfrequenzen. Der Posterbeitrag erläutert, welche Feldstärken in verschieden großen Feldvariablen Kammern beim Einspeisen einer bestimmten hochfrequenten Leistung erreicht werden können. Anhand dieser Ergebnisse wird aufgezeigt, oberhalb welcher Grenzfrequenz eine Anwendung von FVKn nur sinnvoll erscheint. Mode-stirred chambers (MSCs) can be used for radiated immunity tests in EMC testing. Advantageous compared to conventional test methods is the high field strength which can here be generated with less RF-Power. This point is often the main argument for pushing the standardization of MSCs as an other EMC testing environment. Especially for safety-critical electronic equipment like

  11. Critical field measurements in superconductors using ac inductive techniques

    NASA Astrophysics Data System (ADS)

    Campbell, S. A.; Ketterson, J. B.; Crabtree, G. W.

    1983-09-01

    The ac in-phase and out-of-phase response of type II superconductors is discussed in terms of dc magnetization curves. Hysteresis in the dc magnetization is shown to lead to a dependence of the ac response on the rate at which an external field is swept. This effect allows both Hc1 and Hc2 to be measured by ac techniques. A relatively simple mutual inductance bridge for making such measurements is described in the text, and factors affecting bridge sensitivity are discussed in the Appendix. Data for the magnetic superconductor ErRh4B4 obtained using this bridge are reported.

  12. 47 CFR 90.671 - Field strength limits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Field strength limits. 90.671 Section 90.671... 896-901/935-940 Mhz Band § 90.671 Field strength limits. The predicted or measured field strength at... all bordering MTA licensees agree to a higher field strength. MTA licensees are also required...

  13. 47 CFR 24.236 - Field strength limits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Field strength limits. 24.236 Section 24.236... SERVICES Broadband PCS § 24.236 Field strength limits. The predicted or measured median field strength at... to a higher field strength....

  14. Aligned Immobilization of Proteins Using AC Electric Fields.

    PubMed

    Laux, Eva-Maria; Knigge, Xenia; Bier, Frank F; Wenger, Christian; Hölzel, Ralph

    2016-03-01

    Protein molecules are aligned and immobilized from solution by AC electric fields. In a single-step experiment, the enhanced green fluorescent proteins are immobilized on the surface as well as at the edges of planar nanoelectrodes. Alignment is found to follow the molecules' geometrical shape with their longitudinal axes parallel to the electric field. Simultaneous dielectrophoretic attraction and AC electroosmotic flow are identified as the dominant forces causing protein movement and alignment. Molecular orientation is determined by fluorescence microscopy based on polarized excitation of the proteins' chromophores. The chromophores' orientation with respect to the whole molecule supports X-ray crystal data. PMID:26779699

  15. Exchange anisotropy determined by magnetic field dependence of ac susceptibility

    NASA Astrophysics Data System (ADS)

    Rodríguez-Suárez, R. L.; Vilela Leão, L. H.; de Aguiar, F. M.; Rezende, S. M.; Azevedo, A.

    2003-10-01

    ac susceptibility measurements of ferromagnetic/antiferromagnetic (FM/AF) bilayers are usually performed as a function of the temperature. In this work we describe measurements of transverse biased ac susceptibility (χt) of FM/AF bilayers as a function of the applied magnetic field H0. The measurements were carried out at room temperature by means of an ac magneto-optical Kerr effect susceptometer. The χt-1(H0) dependence, at the saturation magnetization regime, exhibits a linear behavior with the applied field parallel and perpendicular to the exchange bias direction. The linear extrapolation of χt-1 versus H0 cuts the abscissa at asymmetrical values of field due to the exchange bias coupling. The inverse susceptibility is calculated in the saturation regime by a model, which takes into account the free energy of both layers plus a term corresponding to the interfacial coupling. The exchange coupling field (HE) and uniaxial anisotropy (HU) are extracted from the best fit to the experimental results. The results obtained are crosschecked by those obtained from ferromagnetic resonance (FMR) and dc magnetometry. The measurements of the exchange bias and the uniaxial field in all of the three analyzed bilayers gave values that are consistently lower when measured by FMR than those obtained by ac and dc magnetometry. It is argued that the apparently discrepant values of HE and HU, obtained by different techniques, might be explained by existence of unstable AF grains at the AF/FM interface.

  16. Interplanetary Magnetic Field Strength 1902-1906

    NASA Astrophysics Data System (ADS)

    Svalgaard, L.; Cliver, E. W.

    2006-05-01

    Using geomagnetic measurements made by Robert F. Scott at Discovery Hut in the Antarctic polar cap 1902- 1903 and by Roald Amundsen at Gjøahavn in the Arctic polar cap 1903-1906 we determine the strength of the cross polar cap equivalent current. This quantity is controlled by the interplanetary electric field, E, (essentially the product VB of solar wind speed V and IMF strength B). Comparison with modern data from contemporary polar cap stations at similar latitudes and locations and from spacecraft yields the conversion factor from the variation measured on the ground to the electric field E. Our geomagnetic activity indices IDV and IHV measure B and BV22, respectively, thus allowing both B and V to be determined since at least 1882. Their product VB agrees well with VB determined from the early polar cap data, providing an important independent confirmation of the validity of all three methods. We find that B during 1902-1906 was ~6 nT, comparable to present day values ~100 years later.

  17. 47 CFR 73.686 - Field strength measurements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... where the field strength is being measured for a building taller than one-story, elevate the testing...) above the ground. In situations where the field strength is being measured for a building taller...

  18. ``Superfast'' and ``Hyperfast'' Electrophoresis in DC and AC Electric Fields

    NASA Astrophysics Data System (ADS)

    Demekhin, Evgeny; Korovyakovsky, Alex

    2006-11-01

    Movement of a small conducting spherical granule in an electrolyte solution under force of DC and AC fields is considered. The problem is described by strongly coupled nonlinear PDE system. The fact that it has two small parameters, the ratio of the ion double layer to the diffusion layer and the ratio of the diffusion layer to the granule's diameter, makes the problem unique and extremely difficult to solve. This is the reason why only solutions for some particular cases have been known. In this work for the first time, combining asymptotic and numerical methods, a complete theory of electrophoresis in DC and AC fields is developed. By special decomposition method the system is transformed to new variables. Analytical solution in the inner region results in the nonlinear Smoluchowski slip velocity. In the intermediate region convection-diffusion equation is solved numerically. In tern, the intermediate solution is matched with the outer solution of Laplace equation to complete the statement. For a strong DC field (``superfast'' electrophoresis) the theory predicts, in agreement with experiments, the granule's velocity to be proportional to the granule's size and squared external field; there is a large elongated vortex behind the granule and a small one near its equator. There is an excellent agreement with available experimental data. Granule's velocity for AC field becomes even larger than for DC, it has a maximum with respect to the field's frequency (``hyperfast'' electrophoresis).

  19. 47 CFR 90.689 - Field strength limits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Field strength limits. 90.689 Section 90.689...-824/851-869 Mhz Band § 90.689 Field strength limits. (a) For purposes of implementing §§ 90.689... or measured field strength at any location on the border of the EA-based service area for...

  20. 47 CFR 73.314 - Field strength measurements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Field strength measurements. 73.314 Section 73... BROADCAST SERVICES FM Broadcast Stations § 73.314 Field strength measurements. (a) Except as provided for in... concerning the amendment of such technical standards. Persons making field strength measurements for...

  1. 47 CFR 73.314 - Field strength measurements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Field strength measurements. 73.314 Section 73... BROADCAST SERVICES FM Broadcast Stations § 73.314 Field strength measurements. (a) Except as provided for in... concerning the amendment of such technical standards. Persons making field strength measurements for...

  2. 47 CFR 24.236 - Field strength limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Field strength limits. 24.236 Section 24.236 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PERSONAL COMMUNICATIONS SERVICES Broadband PCS § 24.236 Field strength limits. The predicted or measured median field strength...

  3. 47 CFR 73.311 - Field strength contours.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Field strength contours. 73.311 Section 73.311... Broadcast Stations § 73.311 Field strength contours. (a) Applications for FM broadcast authorizations must show the field strength contours required by FCC Form 301 or FCC Form 340, as appropriate. (b)...

  4. 47 CFR 73.311 - Field strength contours.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Field strength contours. 73.311 Section 73.311... Broadcast Stations § 73.311 Field strength contours. (a) Applications for FM broadcast authorizations must show the field strength contours required by FCC Form 301 or FCC Form 340, as appropriate. (b)...

  5. 47 CFR 73.311 - Field strength contours.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Field strength contours. 73.311 Section 73.311... Broadcast Stations § 73.311 Field strength contours. (a) Applications for FM broadcast authorizations must show the field strength contours required by FCC Form 301 or FCC Form 340, as appropriate. (b)...

  6. 47 CFR 73.311 - Field strength contours.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Field strength contours. 73.311 Section 73.311... Broadcast Stations § 73.311 Field strength contours. (a) Applications for FM broadcast authorizations must show the field strength contours required by FCC Form 301 or FCC Form 340, as appropriate. (b)...

  7. 47 CFR 73.311 - Field strength contours.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Field strength contours. 73.311 Section 73.311... Broadcast Stations § 73.311 Field strength contours. (a) Applications for FM broadcast authorizations must show the field strength contours required by FCC Form 301 or FCC Form 340, as appropriate. (b)...

  8. Electrohydrodynamic instabilities in thin viscoelastic films: AC and DC fields

    NASA Astrophysics Data System (ADS)

    Espin, Leonardo; Corbett, Andrew; Kumar, Satish; Kumar Research Group Team

    2012-11-01

    Electrohydrodynamic instabilities in thin liquid films are a promising route for the self-assembly of well-defined topographical features on the surfaces of materials. Here, we study the effect of viscoelasticity on these instabilities under the influence of AC and DC electric fields. Viscoelasticity is incorporated via a Jeffreys model and both perfect and leaky dielectric materials are considered. In the case of DC fields, asymptotic methods are employed to shed light on the nature of a singularity that arises when solvent viscosity is neglected (i.e., the Maxwell-fluid limit). In the case of AC fields, we apply a numerical procedure based on Floquet theory to determine the maximum growth rate and corresponding wavenumber as a function of the oscillation amplitude and frequency. Elasticity is found to increase both the maximum growth rate and the corresponding wavenumber, with the effects being the most pronounced when the oscillation period is comparable to the fluid relaxation time.

  9. AC Electric Field Communication for Human-Area Networking

    NASA Astrophysics Data System (ADS)

    Kado, Yuichi; Shinagawa, Mitsuru

    We have proposed a human-area networking technology that uses the surface of the human body as a data transmission path and uses an AC electric field signal below the resonant frequency of the human body. This technology aims to achieve a “touch and connect” intuitive form of communication by using the electric field signal that propagates along the surface of the human body, while suppressing both the electric field radiating from the human body and mutual interference. To suppress the radiation field, the frequency of the AC signal that excites the transmitter electrode must be lowered, and the sensitivity of the receiver must be raised while reducing transmission power to its minimally required level. We describe how we are developing AC electric field communication technologies to promote the further evolution of a human-area network in support of ubiquitous services, focusing on three main characteristics, enabling-transceiver technique, application-scenario modeling, and communications quality evaluation. Special attention is paid to the relationship between electro-magnetic compatibility evaluation and regulations for extremely low-power radio stations based on Japan's Radio Law.

  10. Extending membrane pore lifetime with AC fields: A modeling study

    NASA Astrophysics Data System (ADS)

    Garner, Allen L.; Bogdan Neculaes, V.

    2012-07-01

    AC (sinusoidal) fields with frequencies from kilohertz to gigahertz have been used for gene delivery. To understand the impact of AC fields on electroporation dynamics, we couple a nondimensionalized Smoluchowski equation to an exact representation of the cell membrane voltage obtained solving the Laplace equation. The slope of the pore energy function, dφ/dr, with respect to pore radius is critical in predicting pore dynamics in AC fields because it can vary from positive, inducing pore shrinkage, to negative, driving pore growth. Specifically, the net sign of the integral of dφ/dr over time determines whether the average pore size grows (negative), shrinks (positive), or oscillates (zero) indefinitely about a steady-state radius, rss. A simple analytic relationship predicting the amplitude of the membrane voltage necessary for this behavior agrees well with simulation for frequencies from 500 kHz to 5 MHz for rss < 10 nm. For larger pore size (rss > 10 nm), dφ/dr oscillates about a negative value, suggesting that a net creation of pores may be necessary to maintain a constant pore size. In both scenarios, the magnitude of rss depends only upon the amplitude of the membrane voltage and not directly upon the applied field frequency other than the relationship between the amplitudes of the applied field and membrane voltage.

  11. 47 CFR 73.683 - Field strength contours and presumptive determination of field strength at individual locations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Field strength contours and presumptive determination of field strength at individual locations. 73.683 Section 73.683 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Television Broadcast Stations § 73.683 Field strength...

  12. 47 CFR 73.683 - Field strength contours and presumptive determination of field strength at individual locations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., subscriber, and local market contained in 47 CFR 76.66(a) apply to this paragraph (f). ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Field strength contours and presumptive... Stations § 73.683 Field strength contours and presumptive determination of field strength at...

  13. Interpretation of Solar Magnetic Field Strength Observations

    NASA Astrophysics Data System (ADS)

    Ulrich, R. K.; Bertello, L.; Boyden, J. E.; Webster, L.

    2009-03-01

    This study based on longitudinal Zeeman effect magnetograms and spectral line scans investigates the dependence of solar surface magnetic fields on the spectral line used and the way the line is sampled to estimate the magnetic flux emerging above the solar atmosphere and penetrating to the corona from magnetograms of the Mt. Wilson 150-foot tower synoptic program (MWO). We have compared the synoptic program λ5250 Å line of Fe i to the line of Fe i at λ5233 Å since this latter line has a broad shape with a profile that is nearly linear over a large portion of its wings. The present study uses five pairs of sampling points on the λ5233 Å line. Line profile observations show that the determination of the field strength from the Stokes V parameter or from line bisectors in the circularly polarized line profiles lead to similar dependencies on the spectral sampling of the lines, with the bisector method being the less sensitive. We recommend adoption of the field determined with the line bisector method as the best estimate of the emergent photospheric flux and further recommend the use of a sampling point as close to the line core as is practical. The combination of the line profile measurements and the cross-correlation of fields measured simultaneously with λ5250 Å and λ5233 Å yields a formula for the scale factor δ -1 that multiplies the MWO synoptic magnetic fields. By using ρ as the center-to-limb angle (CLA), a fit to this scale factor is δ -1=4.15-2.82sin 2( ρ). Previously δ -1=4.5-2.5sin 2( ρ) had been used. The new calibration shows that magnetic fields measured by the MDI system on the SOHO spacecraft are equal to 0.619±0.018 times the true value at a center-to-limb position 30°. Berger and Lites (2003, Solar Phys. 213, 213) found this factor to be 0.64±0.013 based on a comparison using the Advanced Stokes Polarimeter.

  14. AC-field-induced quantum phase transitions in density of states

    NASA Astrophysics Data System (ADS)

    Yang, Kai-Hua; Liu, Kai-Di; Wang, Huai-Yu; Qin, Chang-Dong

    2016-02-01

    We investigate the joint effects of the intralead electron interaction and an external alternating gate voltage on the time-averaged local density of states (DOSs) of a quantum dot coupled to two Luttinger-liquid leads in the Kondo regime. A rich dependence of the DOSs on the driving amplitude and intralead interaction is demonstrated. We show that the feature is quite different for different interaction strengths in the presence of the ac field. It is shown that the photon-assisted transport processes cause an additional splitting of the Kondo peak or dip, which exhibits photon-assisted single-channel (1CK) or two-channel Kondo (2CK) physics behavior. The phase transition between photon-assisted 1CK and 2CK physics occurs when the interaction strength is moderately strong. The inelastic channels associated with photon-assisted electron tunneling can dominate electron transport for weak interaction when the ac amplitude is greater than the frequency by one order of magnitude. In the limit of strong interaction the DOSs scale as a power-law behavior which is strongly affected by the ac field.

  15. 47 CFR 90.771 - Field strength limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... transmit frequencies, of EA and Regional licensees may not exceed a predicted 38 dBu field strength at their EA or REAG border. The predicted 38 dBu field strength is calculated using the F(50,50) field... antenna height differential. (b) Licensees will be permitted to exceed the predicted 38 dBu field...

  16. Lipid Bilayer Vesicle Dynamics in AC Electric Fields

    NASA Astrophysics Data System (ADS)

    McConnell, Lane; Vlahovska, Petia; Miksis, Michael

    2014-11-01

    Vesicles are closed, fluid-filled lipid bilayers which are mechanically similar to biological cells and which undergo shape transitions in the presence of electric fields. Here we model the vesicle membrane as an infinitely thin, capacitive, area-incompressible interface with the surrounding fluids acting as charge-advecting leaky dielectrics. We then implement the boundary integral method to numerically investigate the dynamics of a vesicle in various AC electric field profiles. Our numerical results are then compared with recent small deformation theory and experimental data. We also note our observation of a new theoretical vesicle behavior that has yet to be observed experimentally.

  17. PERMANENT MAGNET DESIGNS WITH LARGE VARIATIONS IN FIELD STRENGTH.

    SciTech Connect

    GUPTA,R.

    2004-01-21

    The use of permanent magnets has been investigated as an option for electron cooling ring for the proposed luminosity upgrade of RHIC. Several methods have been developed that allow a large variation in field strength. These design concepts were verified with computer simulations using finite element codes. It will be shown that the field uniformity is maintained while the field strength is mechanically adjusted.

  18. Modeling of Nanoparticle-Mediated Electric Field Enhancement Inside Biological Cells Exposed to AC Electric Fields

    NASA Astrophysics Data System (ADS)

    Tiwari, Pawan K.; Kang, Sung Kil; Kim, Gon Jun; Choi, Jun; Mohamed, A.-A. H.; Lee, Jae Koo

    2009-08-01

    We present in this article the effect of alternating electric field at kilohertz (kHz) and megahertz (MHz) frequencies on the biological cells in presence and absence of nanoparticles. The induced electric field strength distribution in the region around cell membrane and nucleus envelope display different behavior at kHz and MHz frequencies. The attachment of gold nanoparticles (GNPs), especially gold nanowires around the surface of nucleus induce enhanced electric field strengths. The induced field strengths are dependent on the length of nanowire and create varying field regions when the length of nanowire is increased from 2 to 4 µm. The varying nanowire length increased the induced field strengths inside nucleoplasm and region adjacent to the nucleus in the cytoplasm. We investigated a process of electrostatic disruption of nucleus membrane when the induced electric field strength across the nucleus exceeds its tensile strength.

  19. Collapse of DNA in a.c. electric fields

    PubMed Central

    Zhou, Chunda; Reisner, Walter W.; Staunton, Rory J.; Ashan, Amir; Austin, Robert H.; Riehn, Robert

    2013-01-01

    We report that double-stranded DNA collapses in presence of a.c. electric fields at frequencies of a few hundred Hertz, and does not stretch as commonly assumed. In particular, we show that confinement-stretched DNA can collapse to about one quarter of its equilibrium length. We propose that this effect is based on finite relaxation times of the counterion cloud, and the subsequent partitioning of the molecule into mutually attractive units. We discuss alternative models of those attractive units. PMID:21770604

  20. 47 CFR 73.686 - Field strength measurements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... where the field strength is being measured for a building taller than one-story, elevate the testing...) above the ground. In situations where the field strengthis being measured for a building taller than...

  1. 47 CFR 18.305 - Field strength limits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Field strength limits. 18.305 Section 18.305 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL INDUSTRIAL, SCIENTIFIC, AND MEDICAL EQUIPMENT Technical Standards § 18.305 Field strength limits. (a) ISM equipment operating on a frequency specified in §...

  2. 47 CFR 18.305 - Field strength limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Field strength limits. 18.305 Section 18.305 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL INDUSTRIAL, SCIENTIFIC, AND MEDICAL EQUIPMENT Technical Standards § 18.305 Field strength limits. (a) ISM equipment operating on a frequency specified in §...

  3. 47 CFR 18.305 - Field strength limits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Field strength limits. 18.305 Section 18.305 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL INDUSTRIAL, SCIENTIFIC, AND MEDICAL EQUIPMENT Technical Standards § 18.305 Field strength limits. (a) ISM equipment operating on a frequency specified in §...

  4. 47 CFR 18.305 - Field strength limits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Field strength limits. 18.305 Section 18.305 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL INDUSTRIAL, SCIENTIFIC, AND MEDICAL EQUIPMENT Technical Standards § 18.305 Field strength limits. (a) ISM equipment operating on a frequency specified in §...

  5. 47 CFR 73.184 - Groundwave field strength graphs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Groundwave field strength graphs. 73.184 Section 73.184 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.184 Groundwave field strength graphs. (a) Graphs 1 to 20 show, for each of 20 frequencies,...

  6. Field-dependence of AC susceptibility in titanomagnetites

    USGS Publications Warehouse

    Jackson, M.; Moskowitz, B.; Rosenbaum, J.; Kissel, Catherie

    1998-01-01

    AC susceptibility measurements as a function of field amplitude Hac and of frequency show a strong field dependence for a set of synthetic titanomagnetites (Fe3-xTixO4) and for certain basalts from the SOH-1 Hawaiian drill hole and from Iceland. In-phase susceptibility is constant below fields of about 10-100 A/m, and then increases by as much as a factor of two as Hsc is increased to 2000 A/m. Both the initial field-independent susceptibilities and field-dependence of susceptibility are systematically related to composition: initial susceptibility is 3 SI for a single-crystal sphere of TMO (x = 0) and decreases with increasing titanium content; field-dependence is nearly zero for TM0 and increases systematically to a maximum near TM60 (x = 0.6). This field dependence can in some cases be mistaken for frequency dependence, and leaf to incorrect interpretations of magnetic grain size and composition when titanomagnetite is present.

  7. Keratinocyte galvanotaxis in combined DC and AC electric fields supports an electromechanical transduction sensing mechanism.

    PubMed

    Hart, Francis X; Laird, Mhairi; Riding, Aimie; Pullar, Christine E

    2013-02-01

    Sedentary keratinocytes at the edge of a skin wound migrate into the wound, guided by the generation of an endogenous electric field (EF) generated by the collapse of the transepithelial potential. The center of the wound quickly becomes more negative than the surrounding tissue and remains the cathode of the endogenous EF until the wound is completely re-epithelialized. This endogenous guidance cue can be studied in vitro. When placed in a direct current (DC) EF of physiological strength, 100 V/m, keratinocytes migrate directionally toward the cathode in a process known as galvanotaxis. Although a number of membrane-bound (e.g., epidermal growth factor receptor (EGFR), integrins) and cytosolic proteins (cAMP, ERK, PI3K) are known to play a role in the downstream signaling mechanisms underpinning galvanotaxis, the initial sensing mechanism for this response is not understood. To investigate the EF sensor, we studied the migration of keratinocytes in a DC EF of 100 V/m, alternating current (AC) EFs of 40 V/m at either 1.6 or 160 Hz, and combinations of DC and AC EFs. In the AC EFs alone, keratinocytes migrated randomly. The 1.6 Hz AC EF combined with the DC EF suppressed the direction of migration but had no effect on speed. In contrast, the 160 Hz AC EF combined with the DC EF did not affect the direction of migration but increased the migration speed compared to the DC EF alone. These results can be understood in terms of an electromechanical transduction model, but not an electrodiffusion/osmosis or a voltage-gated channel model. PMID:22907479

  8. AC magnetic field losses in BSCCO-2223 superconducting tapes

    SciTech Connect

    Lelovic, M.; Mench, S.; Deis, T.

    1997-09-01

    The AC magnetic losses at power frequencies (60 Hz) were investigated for mono- and multifilament Ag-sheathed (Bi, Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} (BSCCO-2223) tapes with similar transport critical current (I{sub c}) values at 77 K. The multifilament sample exhibited higher losses than the monofilament under the same conditions. Loss peaks are discussed in terms of intergranular, intragranular and eddy current losses. Because of BSCCO`s anisotropy, field orientation has a large effect on the magnitude of these peaks, even at relatively small angles. Losses for fields applied parallel to the c-axis of the textured BSCCO grains are larger by more than one order of magnitude than those applied perpendicular.

  9. Test Results of the AC Field Measurements of Fermilab Booster Corrector Magnets

    SciTech Connect

    DiMarco, E.Joseph; Harding, D.J.; Kashikhin, V.S.; Kotelnikov, S.K.; Lamm, M.J.; Makulski, A.; Nehring, R.; Orris, D.F.; Schlabach, P.; Sylvester, C.; Tartaglia, Michael Albert; /Fermilab

    2008-06-25

    Multi-element corrector magnets are being produced at Fermilab that enable correction of orbits and tunes through the entire cycle of the Booster, not just at injection. The corrector package includes six different corrector elements--normal and skew orientations of dipole, quadrupole, and sextupole--each independently powered. The magnets have been tested during typical AC ramping cycles at 15Hz using a fixed coil system to measure the dynamic field strength and field quality. The fixed coil is comprised of an array of inductive pick-up coils around the perimeter of a cylinder which are sampled simultaneously at 100 kHz with 24-bit ADC's. The performance of the measurement system and a summary of the field results are presented and discussed.

  10. Spontaneous Radiation Emission from Short, High Field Strength Insertion Devices

    SciTech Connect

    Geoffrey Krafft

    2005-09-15

    Since the earliest papers on undulaters were published, it has been known how to calculate the spontaneous emission spectrum from ''short'' undulaters when the magnetic field strength parameter is small compared to unity, or in ''single'' frequency sinusoidal undulaters where the magnetic field strength parameter is comparable to or larger than unity, but where the magnetic field amplitude is constant throughout the undulater. Fewer general results have been obtained in the case where the insertion device is both short, i.e., the magnetic field strength parameter changes appreciably throughout the insertion device, and the magnetic field strength is high enough that ponderomotive effects, radiation retardation, and harmonic generation are important physical phenomena. In this paper a general method is presented for calculating the radiation spectrum for short, high-field insertion devices. It is used to calculate the emission from some insertion device designs of recent interest.

  11. Hierarchical assembly of anisotropic particles in AC electric fields

    NASA Astrophysics Data System (ADS)

    Torres Diaz, Isaac; Rupp, Bradley; Hua, Xiaoqing; Yang, Yuguang; Bevan, Michael A.

    Hierarchical microstructures composed of colloids are of great interest for technological applications and advanced materials such as metamaterials and microfluidic devices. The dynamics of spherical colloidal particles has been analyzed previously for several systems, and has led to the control of the formation of perfect crystals using AC electric fields. However, spherical particles do not have a dependence on its orientation as anisotropic particles. Recently, researchers reported experiments showing the capabilities of anisotropic particles to assemble in different configurations, yet a detailed understanding of the mechanism and control is lacking. This work shows both theoretical and experimental results of the control of a colloidal system composed of anisotropic colloidal particles with a tri-axial ellipsoidal shape subjected to a non-uniform electric field close to a planar wall. We show that particles pack into different structures and orientations as a function of the applied electric field amplitude and frequency by taking into account dipole-field, dipole-dipole, and colloidal interactions. This analysis provides a theoretical framework for the equilibrium and non-equilibrium structures that can be formed via field mediated interaction, which are validated by experimental microscopy results, and can ultimately be used to engineer the hierarchical assembly of anisotropic particles.

  12. External dc bias field effects in the nonlinear ac stationary response of permanent dipoles in a uniaxial potential

    NASA Astrophysics Data System (ADS)

    Wei, Nijun; Coffey, William T.; Déjardin, Pirre-Michel; Kalmykov, Yuri P.

    External dc bias field effects on the nonlinear dielectric relaxation and dynamic Kerr effect of a system of permanent dipoles in a uniaxial mean field potential are studied via the rotational Brownian motion model. Postulated in terms of the infinite hierarchy of differential-recurrence equations for the statistical moments (the expectation value of the Legendre polynomials), the dielectric and Kerr effect ac stationary responses may be evaluated for arbitrary dc bias field strength via perturbation theory in the ac field. We have given two complementary approaches for treating the nonlinear effects. The first is based on perturbation theory allowing one to calculate the nonlinear ac stationary responses using powerful matrix methods. The second approach based on the accurate two-mode approximation [D.A. Garanin, Phys. Rev. E. 54, 3250 (1996)] effectively generalizes the existing results for dipolar systems in superimposed ac and dc fields to a mean field potential. The results apply both to nonlinear dielectric relaxation and dynamic Kerr effect of nematics and to magnetic birefringence relaxation of ferrofluids. Furthermore, the given methods of the solution of infinite hierarchies of multi-term recurrence relations are quite general and can be applied to analogous nonlinear response problems.

  13. Electrohydrodynamics of suspension of liquid drops in AC fields

    NASA Astrophysics Data System (ADS)

    Abdul Halim, Md.; Esmaeeli, Asghar

    2012-11-01

    Manipulation of liquid drops by an externally applied electric field is currently the focus of increased attention because of its relevance in a broad range of industrial processes. The effect of a uniform DC electric field on a solitary drop is well studied; however, less is know about the impact of electric field on suspension of liquid drops, and very little information is available on the impact of AC field on a single or a suspension of drops. Here we report the results of Direct Numerical Simulations of electrohydrodynamics of suspension of liquid drops. The governing equations are solved using a front tracking/finite difference technique, in conjunction with Taylor's leaky dielectric model. The imposed electric potential comprises of two parts, a time-independent base and a time-dependent part. The goal is to explore the relative importance of these two components in setting the statistically steady state behavior of the suspension. To this end, we report the results of three sets of simulations, where (i) the time-dependent part act as a perturbation on the base potential, (ii) the two components are of the same order, and (iii) the time-dependent part is much larger than the base potential. The problem is studied as a function of the governing nondimensional parameters.

  14. Absorption of ac fields in amorphous indium-oxide films

    NASA Astrophysics Data System (ADS)

    Ovadyahu, Z.

    2014-08-01

    Absorption data from applied ac fields in Anderson-localized amorphous indium-oxide (InxO) films are shown to be frequency and disorder dependent. The absorption shows a roll-off at a frequency which is much lower than the electron-electron scattering rate of the material when it is in the diffusive regime. This is interpreted as evidence for discreteness of the energy spectrum of the deeply localized regime. This is consistent with recent many-body localization scenarios. As the metal-insulator transition is approached, the absorption shifts to higher frequencies. Comparing with the previously obtained results on the crystalline version of indium-oxide (In2O3-x) implies a considerably higher inelastic electron-phonon scattering rate in the amorphous material. The range over which the absorption versus frequency decreases may indicate that a wide distribution of localization length is a common feature in these systems.

  15. Pulsar Emission Geometry and Accelerating Field Strength

    NASA Technical Reports Server (NTRS)

    DeCesar, Megan E.; Harding, Alice K.; Miller, M. Coleman; Kalapotharakos, Constantinos; Parent, Damien

    2012-01-01

    The high-quality Fermi LAT observations of gamma-ray pulsars have opened a new window to understanding the generation mechanisms of high-energy emission from these systems, The high statistics allow for careful modeling of the light curve features as well as for phase resolved spectral modeling. We modeled the LAT light curves of the Vela and CTA I pulsars with simulated high-energy light curves generated from geometrical representations of the outer gap and slot gap emission models. within the vacuum retarded dipole and force-free fields. A Markov Chain Monte Carlo maximum likelihood method was used to explore the phase space of the magnetic inclination angle, viewing angle. maximum emission radius, and gap width. We also used the measured spectral cutoff energies to estimate the accelerating parallel electric field dependence on radius. under the assumptions that the high-energy emission is dominated by curvature radiation and the geometry (radius of emission and minimum radius of curvature of the magnetic field lines) is determined by the best fitting light curves for each model. We find that light curves from the vacuum field more closely match the observed light curves and multiwavelength constraints, and that the calculated parallel electric field can place additional constraints on the emission geometry

  16. Effects of low-intensity AC and/or DC electromagnetic fields on cell attachment and induction of apoptosis

    SciTech Connect

    Blumenthal, N.C.; Ricci, J.; Breger, L.; Zychlinsky, A.; Solomon, H.; Chen, G.G.; Kuznetsov, D.; Dorfman, R.

    1997-05-01

    Rat tendon fibroblast (RTF) and rat bone marrow (RBM) osteoprogenitor cells were cultured and exposed to AC and/or DC magnetic fields in a triaxial Helmholtz coil in an incubator for up to 13 days. The AC fields were at 60 and 1,000 Hz and up to 0.25 mT peak to peak, and the DC fields were up to 0.25 mT. At various combinations of field strengths and frequencies, AC and/or DC fields resulted in extensive detachment of preattached cells and prevented the normal attachment of cells not previously attached to substrates. In addition, the fields resulted in altered cell morphologies. When RTF and RBM cells were removed from the fields after several days of exposure, they partially reattached and assumed more normal morphologies. An additional set of experiments described in the Appendix corroborates these findings and also shows that low-frequency EMF also initiates apoptosis, i.e., programmed cell death, at the onset of cell detachment. Taken together, these results suggest that the electromagnetic fields result in significant alterations in cell metabolism and cytoskeleton structure. Further work is required to determine the relative effect of the electric and magnetic fields on these phenomena. The research has implications for understanding the role of fields in affecting bone healing in fracture nonunions, in cell detachment in cancer metastasis, and in the effect of EMF on organisms generally.

  17. SOIL STRENGTH SENSING FOR QUANTIFYING WITHIN-FIELD VARIABILITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Within-field variations in soil strength can significantly affect crop growth and yield by changing the hydrologic characteristics of the soil and its suitability as a medium for root growth. The purpose of this study was to relate soil strength, as measured with a cone penetrometer, to soil and la...

  18. 47 CFR 73.184 - Groundwave field strength graphs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the CFR, nor will they be included in the Commission's automated rules system. For information on... versus distance used to plot Graphs 1 to 20 are available in tabular form. For information on obtaining... strength at 1 kilometer. This is accomplished by plotting the measured field strengths on transparent...

  19. 47 CFR 73.184 - Groundwave field strength graphs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the CFR, nor will they be included in the Commission's automated rules system. For information on... versus distance used to plot Graphs 1 to 20 are available in tabular form. For information on obtaining... strength at 1 kilometer. This is accomplished by plotting the measured field strengths on transparent...

  20. Constructive and destructive interferences of Stark resonances induced by an ac field in atomic hydrogen

    SciTech Connect

    Pawlak, Mariusz; Bylicki, Miroslaw; Moiseyev, Nimrod; Sindelka, Milan

    2010-12-15

    We study theoretically the problem of a hydrogen atom exposed both to a static dc field and to a monochromatic ac field. We show that, in the presence of an ac field, a constructive (or destructive) interference occurs between the excited (Rydberg) Stark resonance states and the hydrogenic ground state. This mechanism is responsible for dramatic enhancement (or suppression) of the corresponding photoionization rates.

  1. AC Electric Field Activated Shape Memory Polymer Composite

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.

    2011-01-01

    Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.

  2. Microchip Electrophoresis at Elevated Temperatures and High Separation Field Strengths

    PubMed Central

    Mitra, Indranil; Marczak, Steven P.; Jacobson, Stephen C.

    2014-01-01

    We report free-solution microchip electrophoresis performed at elevated temperatures and high separation field strengths. We used microfluidic devices with 11-cm long separation channels to conduct separations at temperatures between 22 (ambient) and 45 °C and field strengths from 100 to 1000 V/cm. To evaluate separation performance, N-glycans were used as a model system and labeled with 8-aminopyrene-1,3,6-trisulfonic acid to impart charge for electrophoresis and render them fluorescent. Typically, increased diffusivity at higher temperatures leads to increased axial dispersion and poor separation performance; however, we demonstrate that sufficiently high separation field strengths can be used to offset the impact of increased diffusivity in order to maintain separation efficiency. Efficiencies for these free-solution separations are the same at temperatures of 25, 35, and 45 °C with separation field strengths ≥500 V/cm. PMID:24114979

  3. Physical processes at high field strengths

    SciTech Connect

    Rhodes, C.K.

    1986-01-01

    Measurements of the radiation produced by the high field interaction with the rare gases have revealed the presence of both copious harmonic production and fluorescence. The highest harmonic observed was the seventeenth (14.6 rm) in Ne, the shortest wavelength ever produced by that means. Strong fluorescence was seen in Ar, Kr, and Xe with the shortest wavelengths observed being below 10 nm. Furthermore, radiation from inner-shell excited configurations in Xe, specifically the 4d/sup 9/5s5p ..-->.. 4d/sup 10/5s manifold at approx. 17.7 nm, was detected. The behaviors of the rare gases with respect to multiquantum ionization, harmonic production, and fluorescence were found to be correlated so that the materials fell into two groups, He and Ne in one and Ar, Kr, and Xe in the other. These experimental findings, in alliance with other studies on inner-shell decay processes, give evidence for a role of atomic correlations in a direct nonlinear process of inner-shell excitation. It is expected that an understanding of these high-field processes will enable the generation of stimulated emission in the x-ray range. 59 refs., 6 figs., 5 tabs.

  4. Universal features of particle motion in ac electric fields

    NASA Astrophysics Data System (ADS)

    Niemeyer, L.; Seeger, M.

    2015-11-01

    Mobile particles present as contaminants in high voltage gas insulated switchgear (GIS) may constitute a risk for insulation failure. The understanding of their motion in the electric field of the insulation gap is therefore essential for quality control in manufacturing, commissioning and in service monitoring. Published research on particle motion in ac electric fields has shown that this rather complex process depends on numerous parameters, many of which remain unknown under practical conditions. This renders modelling, generalization of experimental data and practical application difficult. The scope of this paper therefore is to develop a unified description of particle motion which minimizes the number of controlling parameters, enables the comparison of experimental data and allows simple interpretation relations to be derived. This is achieved by making the controlling equations dimensionless with an appropriate choice of reference values and by using simplifying assumptions for the specific conditions prevailing in GIS. The resulting generalized description of the process can then be summarized in the form of 2D patterns (dynamic maps). Approximate scaling relations are derived between specific features of these patterns and particle-related parameters. A reference case is discussed in detail. The non-linear character of the equation of motion suggests that the particle motion may be a deterministic process with chaotic features. This is confirmed by a preliminary chaos-theoretical analysis of the process.

  5. Rapid magnetic microfluidic mixer utilizing AC electromagnetic field.

    PubMed

    Wen, Chih-Yung; Yeh, Cheng-Peng; Tsai, Chien-Hsiung; Fu, Lung-Ming

    2009-12-01

    This paper presents a novel simple micromixer based on stable water suspensions of magnetic nanoparticles (i.e. ferrofluids). The micromixer chip is built using standard microfabrication and simple soft lithography, and the design can be incorporated as a subsystem into any chemical microreactor or a miniaturized biological sensor. An electromagnet driven by an AC power source is used to induce transient interactive flows between a ferrofluid and Rhodamine B. The alternative magnetic field causes the ferrofluid to expand significantly and uniformly toward Rhodamine B, associated with a great number of extremely fine fingering structures on the interface in the upstream and downstream regions of the microchannel. These pronounced fingering patterns, which have not been observed by other active mixing methods utilizing only magnetic force, increase the mixing interfacial length dramatically. Along with the dominant diffusion effects occurring around the circumferential regions of the fine finger structures, the mixing efficiency increases significantly. The miscible fingering instabilities are observed and applied in the microfluidics for the first time. This work is carried with a view to developing functionalized ferrofluids that can be used as sensitive pathogen detectors and the present experimental results demonstrate that the proposed micromixer has excellent mixing capabilities. The mixing efficiency can be as high as 95% within 2.0 s and a distance of 3.0 mm from the inlet of the mixing channel, when the applied peak magnetic field is higher than 29.2 Oe and frequency ranges from 45 to 300 Hz. PMID:19921677

  6. Concentrating membrane proteins using asymmetric traps and AC electric fields.

    PubMed

    Cheetham, Matthew R; Bramble, Jonathan P; McMillan, Duncan G G; Krzeminski, Lukasz; Han, Xiaojun; Johnson, Benjamin R G; Bushby, Richard J; Olmsted, Peter D; Jeuken, Lars J C; Marritt, Sophie J; Butt, Julea N; Evans, Stephen D

    2011-05-01

    Membrane proteins are key components of the plasma membrane and are responsible for control of chemical ionic gradients, metabolite and nutrient transfer, and signal transduction between the interior of cells and the external environment. Of the genes in the human genome, 30% code for membrane proteins (Krogh et al. J. Mol. Biol.2001, 305, 567). Furthermore, many FDA-approved drugs target such proteins (Overington et al. Nat. Rev. Drug Discovery 2006, 5, 993). However, the structure-function relationships of these are notably sparse because of difficulties in their purification and handling outside of their membranous environment. Methods that permit the manipulation of membrane components while they are still in the membrane would find widespread application in separation, purification, and eventual structure-function determination of these species (Poo et al. Nature 1977, 265, 602). Here we show that asymmetrically patterned supported lipid bilayers in combination with AC electric fields can lead to efficient manipulation of charged components. We demonstrate the concentration and trapping of such components through the use of a "nested trap" and show that this method is capable of yielding an approximately 30-fold increase in the average protein concentration. Upon removal of the field, the material remains trapped for several hours as a result of topographically restricted diffusion. Our results indicate that this method can be used for concentrating and trapping charged membrane components while they are still within their membranous environment. We anticipate that our approach could find widespread application in the manipulation and study of membrane proteins. PMID:21476549

  7. Fokker-Planck equation with arbitrary dc and ac fields: continued fraction method.

    PubMed

    Lee, Chee Kong; Gong, Jiangbin

    2011-07-01

    The continued fraction method (CFM) is used to solve the Fokker-Planck equation with arbitrary dc and ac fields. With an appropriate choice of basis functions, the Fokker-Planck equation is converted into a set of linear algebraic equations with short-ranged coupling and then CFM is implemented to obtain numerical solutions with high efficiency. Both a proposed perturbative CFM and the numerically exact matrix CFM are used to study the nonlinear response of driven systems, with their results compared to assess the validity regime of the perturbative approach. The proposed perturbative CFM approach needs scalar quantities only and hence is more efficient within its validity regime. Two nonlinear systems of different nature are used as examples: molecular dipole (rotational Brownian motion) and particle in a periodic potential (translational Brownian motion). The associated full dynamics is presented in the compact form of hysteresis loops. It is observed that as the strength of an AC driving field increases, pronounced nonlinear effects are manifested in the deformation of the hysteresis loops. PMID:21867110

  8. Absorption of ac fields in amorphous indium-oxide films

    SciTech Connect

    Ovadyahu, Z.

    2014-08-20

    Absorption data from applied ac fields in Anderson-localized amorphous indium-oxide (In{sub x}O) films are shown to be frequency and disorder dependent. The absorption shows a roll-off at a frequency which is much lower than the electron-electron scattering rate of the material when it is in the diffusive regime. This is interpreted as evidence for discreteness of the energy spectrum of the deeply localized regime. This is consistent with recent many-body localization scenarios. As the metal-insulator transition is approached, the absorption shifts to higher frequencies. Comparing with the previously obtained results on the crystalline version of indium-oxide (In{sub 2}O{sub 3−x}) implies a considerably higher inelastic electron-phonon scattering rate in the amorphous material. The range over which the absorption versus frequency decreases may indicate that a wide distribution of localization length is a common feature in these systems.

  9. Particle Agglomeration in Bipolar Barb Agglomerator Under AC Electric Field

    NASA Astrophysics Data System (ADS)

    Huang, Chao; Ma, Xiuqin; Sun, Youshan; Wang, Meiyan; Zhang, Changping; Lou, Yueya

    2015-04-01

    The development of an efficient technology for removing fine particles in flue gas is essential as the haze is becoming more and more serious. To improve agglomeration effectiveness of fine particles, a dual zone electric agglomeration device consisting of a charging chamber and an agglomeration chamber with bipolar barb electrodes was developed. The bipolar barb electric agglomerator with a polar distance of 200 mm demonstrates good agglomeration effectiveness for particles with a size less than 8.0 μm under applied AC electric field. An optimal condition for achieving better agglomeration effectiveness was found to be as follows: flue gas flow velocity of 3.00 m/s, particle concentration of 2.00 g/m3, output voltage of 35 kV and length of the barb of 16 mm. In addition, 4.0-6.0 μm particles have the best effectiveness with the variation of particle volume occupancy of -3.2. supported by the Key Technology R&D Program of Hebei, China (No. 13211207D)

  10. Minimum Field Strength Simulator for Proton Density Weighted MRI

    PubMed Central

    Chen, Weiyi; Nayak, Krishna S.

    2016-01-01

    Objective To develop and evaluate a framework for simulating low-field proton-density weighted MRI acquisitions based on high-field acquisitions, which could be used to predict the minimum B0 field strength requirements for MRI techniques. This framework would be particularly useful in the evaluation of de-noising and constrained reconstruction techniques. Materials and Methods Given MRI raw data, lower field MRI acquisitions can be simulated based on the signal and noise scaling with field strength. Certain assumptions are imposed for the simulation and their validity is discussed. A validation experiment was performed using a standard resolution phantom imaged at 0.35 T, 1.5 T, 3 T, and 7 T. This framework was then applied to two sample proton-density weighted MRI applications that demonstrated estimation of minimum field strength requirements: real-time upper airway imaging and liver proton-density fat fraction measurement. Results The phantom experiment showed good agreement between simulated and measured images. The SNR difference between simulated and measured was ≤ 8% for the 1.5T, 3T, and 7T cases which utilized scanners with the same geometry and from the same vendor. The measured SNR at 0.35T was 1.8- to 2.5-fold less than predicted likely due to unaccounted differences in the RF receive chain. The predicted minimum field strength requirements for the two sample applications were 0.2 T and 0.3 T, respectively. Conclusions Under certain assumptions, low-field MRI acquisitions can be simulated from high-field MRI data. This enables prediction of the minimum field strength requirements for a broad range of MRI techniques. PMID:27136334

  11. Absorption and Attenuation Coefficients Using the WET Labs ac-s in the Mid-Atlantic Bight: Field Measurements and Data Analysis

    NASA Technical Reports Server (NTRS)

    Ohi, Nobuaki; Makinen, Carla P.; Mitchell, Richard; Moisan, Tiffany A.

    2008-01-01

    Ocean color algorithms are based on the parameterization of apparent optical properties as a function of inherent optical properties. WET Labs underwater absorption and attenuation meters (ac-9 and ac-s) measure both the spectral beam attenuation [c (lambda)] and absorption coefficient [a (lambda)]. The ac-s reports in a continuous range of 390-750 nm with a band pass of 4 nm, totaling approximately 83 distinct wavelengths, while the ac-9 reports at 9 wavelengths. We performed the ac-s field measurements at nine stations in the Mid-Atlantic Bight from water calibrations to data analysis. Onboard the ship, the ac-s was calibrated daily using Milli Q-water. Corrections for the in situ temperature and salinity effects on optical properties of water were applied. Corrections for incomplete recovery of the scattered light in the ac-s absorption tube were performed. The fine scale of spectral and vertical distributions of c (lambda) and a (lambda) were described from the ac-s. The significant relationships between a (674) and that of spectrophotometric analysis and chlorophyll a concentration of discrete water samples were observed.

  12. Technique for Predicting the RF Field Strength Inside an Enclosure

    NASA Technical Reports Server (NTRS)

    Hallett, M.; Reddell, J.

    1998-01-01

    This Memorandum presents a simple analytical technique for predicting the RF electric field strength inside an enclosed volume in which radio frequency radiation occurs. The technique was developed to predict the radio frequency (RF) field strength within a launch vehicle's fairing from payloads launched with their telemetry transmitters radiating and to the impact of the radiation on the vehicle and payload. The RF field strength is shown to be a function of the surface materials and surface areas. The method accounts for RF energy losses within exposed surfaces, through RF windows, and within multiple layers of dielectric materials which may cover the surfaces. This Memorandum includes the rigorous derivation of all equations and presents examples and data to support the validity of the technique.

  13. Resonant transport through a carbon nanotube junction exposed to an ac field.

    PubMed

    Shafranjuk, S E

    2011-12-14

    The electron transport through a carbon nanotube (CNT) double barrier junction exposed to an external electromagnetic field is studied. The electron spectrum in the quantum well (QW) formed by the junction bears relativistic features. We examine how the ac field affects the level quantization versus the ac field parameters and chirality. We find that the transport through the junction changes dramatically versus the ac field frequency and amplitude. These changes are pronounced in the junction's differential conductance, which allows judgment about the role of relativistic effects in the CNT QW structures. PMID:22109843

  14. Dual AC Dipole Excitation for the Measurement of Magnetic Multipole Strength from Beam Position Monitor Data

    SciTech Connect

    M. Spata, G.A. Krafft

    2011-09-01

    An experiment was conducted at Jefferson Lab's Continuous Electron Beam Accelerator Facility to develop a technique for characterizing the nonlinear fields of the beam transport system. Two air-core dipole magnets were simultaneously driven at two different frequencies to provide a time-dependent transverse modulation of the electron beam. Fourier decomposition of beam position monitor data was then used to measure the amplitude of these frequencies at different positions along the beamline. For a purely linear transport system one expects to find solely the frequencies that were applied to the dipoles with amplitudes that depend on the phase advance of the lattice. In the presence of nonlinear fields one expects to also find harmonics of the driving frequencies that depend on the order of the nonlinearity. The technique was calibrated using one of the sextupole magnets in a CEBAF beamline and then applied to a dipole to measure the sextupole and octupole strength of the magnet. A comparison is made between the beam-based measurements, results from TOSCA and data from our Magnet Measurement Facility.

  15. Patterns driven by combined ac and dc electric fields in nematic liquid crystals.

    PubMed

    Krekhov, Alexei; Decker, Werner; Pesch, Werner; Eber, Nándor; Salamon, Péter; Fekete, Balázs; Buka, Agnes

    2014-05-01

    The effect of superimposed ac and dc electric fields on the formation of electroconvection and flexoelectric patterns in nematic liquid crystals was studied. For selected ac frequencies, an extended standard model of the electrohydrodynamic instabilities was used to characterize the onset of pattern formation in the two-dimensional parameter space of the magnitudes of the ac and dc electric field components. Numerical as well as approximate analytical calculations demonstrate that depending on the type of patterns and on the ac frequency, the combined action of ac and dc fields may either enhance or suppress the formation of patterns. The theoretical predictions are qualitatively confirmed by experiments in most cases. Some discrepancies, however, seem to indicate the need to extend the theoretical description. PMID:25353815

  16. Dynamic Resistance of YBCO-Coated Conductors in Applied AC Fields with DC Transport Currents and DC Background Fields

    SciTech Connect

    Duckworth, Robert C; Zhang, Yifei; Ha, Tam T; Gouge, Michael J

    2011-01-01

    In order to predict heat loads in future saturable core fault-current-limiting devices due to ac fringing fields, dynamic resistance in YBCO-coated conductors was measured at 77 K in peak ac fields up to 25 mT at 60 Hz and in dc fields up to 1 T. With the sample orientation set such that the conductor face was either parallel or perpendicular to the ac and dc applied fields, the dynamic resistance was measured at different fractions of the critical current to determine the relationship between the dc transport current and the applied fields. With respect to field orientation, the dynamic resistance for ac fields that were perpendicular to the conductor face was significantly higher than when the ac fields were parallel to the conductor face. It was also observed that the dynamic resistance: (1) increased with increasing fraction of the dc transport current to the critical current, (2) was proportional to the inverse of the critical current, and (3) demonstrated a linear dependence with the applied ac field once a threshold field was exceeded. This functional behavior was consistent with a critical state model for the dynamic resistance, but discrepancies in absolute value of the dynamic resistance suggested that further theoretical development is needed.

  17. Frequency characteristics of field electron emission from long carbon nanofilaments/nanotubes in a weak AC electric field

    NASA Astrophysics Data System (ADS)

    Izrael'yants, K. R.; Orlov, A. P.; Musatov, A. L.; Blagov, E. V.

    2016-05-01

    Frequency characteristics of field electron emission from long carbon nanofilaments/nanotubes in strong dc and weak ac electric fields have been investigated. A series of narrow peaks with a quality factor of up to 1100 has been discovered in the frequency range of hundreds of kilohertz. The analysis has shown that these peaks are probably associated with mechanical oscillations of the carbon nanofilaments/nanotubes driven by the ac electric field.

  18. Magnetic drug targeting: biodistribution and dependency on magnetic field strength

    NASA Astrophysics Data System (ADS)

    Alexiou, Ch.; Schmidt, A.; Klein, R.; Hulin, P.; Bergemann, Ch.; Arnold, W.

    2002-11-01

    "Magnetic drug targeting," a model of locoregional chemotherapy showed encouraging results in treatment of VX2-squamous cell carcinoma in rabbits. In the present study we investigated the biokinetic behavior of Iod [123]-labelled ferrofluids in vivo and showed in vitro that the ferrofluid concentration is dependent on the magnetic field strength.

  19. 47 CFR 90.671 - Field strength limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-901, and 935-940 MHz Bands Policies Governing the Licensing and Use of Mta-Based Smr Systems in the... any location on the border of the MTA service area for MTA licensees shall not exceed 40 dBuV/m unless all bordering MTA licensees agree to a higher field strength. MTA licensees are also required...

  20. C/NOFS Observations of AC Electric Field Fields Associated with Equatorial Spread-F

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Liebrecht, C.

    2009-01-01

    The Vector Electric Field Investigation (VEFI) on the C/NOFS equatorial satellite provides a unique data set in which to acquire detailed knowledge of irregularities associated with the equatorial ionosphere and in particular with spread-F depletions. We present vector AC electric field observations, primarily gathered within the ELF band (1 Hz to 250 Hz) on C/NOFS that address a variety of key questions regarding how plasma irregularities, from meter to kilometer scales, are created and evolve. The data will be used to explore the anisotropy/isotropy of the waves, their wavelength and phase velocity, as well as their spectral distributions. When analyzed in conjunction with the driving DC electric fields and detailed plasma number density measurements, the combined data reveal important information concerning the instability mechanisms themselves. We also present high resolution, vector measurements of intense lower hybrid waves that have been detected on numerous occasions by the VEFI burst memory VLF electric field channels.

  1. Magnetic Resonance Field Strength Effects on Diffusion Measures and Brain Connectivity Networks

    PubMed Central

    Zhan, Liang; Mueller, Bryon A.; Jahanshad, Neda; Jin, Yan; Lenglet, Christophe; Yacoub, Essa; Sapiro, Guillermo; Ugurbil, Kamil; Harel, Noam; Toga, Arthur W.; Lim, Kelvin O.

    2013-01-01

    Abstract The quest to map brain connectivity is being pursued worldwide using diffusion imaging, among other techniques. Even so, we know little about how brain connectivity measures depend on the magnetic field strength of the scanner. To investigate this, we scanned 10 healthy subjects at 7 and 3 tesla—using 128-gradient high-angular resolution diffusion imaging. For each subject and scan, whole-brain tractography was used to estimate connectivity between 113 cortical and subcortical regions. We examined how scanner field strength affects (i) the signal-to-noise ratio (SNR) of the non-diffusion-sensitized reference images (b0); (ii) diffusion tensor imaging (DTI)-derived fractional anisotropy (FA), mean, radial, and axial diffusivity (MD/RD/AD), in atlas-defined regions; (iii) whole-brain tractography; (iv) the 113×113 brain connectivity maps; and (v) five commonly used network topology measures. We also assessed effects of the multi-channel reconstruction methods (sum-of-squares, SOS, at 7T; adaptive recombine, AC, at 3T). At 7T with SOS, the b0 images had 18.3% higher SNR than with 3T-AC. FA was similar for most regions of interest (ROIs) derived from an online DTI atlas (ICBM81), but higher at 7T in the cerebral peduncle and internal capsule. MD, AD, and RD were lower at 7T for most ROIs. The apparent fiber density between some subcortical regions was greater at 7T-SOS than 3T-AC, with a consistent connection pattern overall. Suggesting the need for caution, the recovered brain network was apparently more efficient at 7T, which cannot be biologically true as the same subjects were assessed. Care is needed when comparing network measures across studies, and when interpreting apparently discrepant findings. PMID:23205551

  2. Development and application of setup for ac magnetic field in neutron scattering experiments.

    PubMed

    Klimko, Sergey; Zhernenkov, Kirill; Toperverg, Boris P; Zabel, Hartmut

    2010-10-01

    We report on a new setup developed for neutron scattering experiments in periodically alternating magnetic fields at the sample position. The assembly consisting of rf generator, amplifier, wide band transformer, and resonance circuit. It allows to generate homogeneous ac magnetic fields over a volume of a few cm(3) and variable within a wide range of amplitudes and frequencies. The applicability of the device is exemplified by ac polarized neutron reflectometry (PNR): a new method established to probe remagnetization kinetics in soft ferromagnetic films. Test experiments with iron films demonstrate that the ac field within the accessible range of frequencies and amplitudes produces a dramatic effect on the PNR signal. This shows that the relevant ac field parameters generated by the device match well with the scales involved in the remagnetization processes. Other possible applications of the rf unit are briefly discussed. PMID:21034083

  3. Development and application of setup for ac magnetic field in neutron scattering experiments

    SciTech Connect

    Klimko, Sergey; Zhernenkov, Kirill; Toperverg, Boris P.; Zabel, Hartmut

    2010-10-15

    We report on a new setup developed for neutron scattering experiments in periodically alternating magnetic fields at the sample position. The assembly consisting of rf generator, amplifier, wide band transformer, and resonance circuit. It allows to generate homogeneous ac magnetic fields over a volume of a few cm{sup 3} and variable within a wide range of amplitudes and frequencies. The applicability of the device is exemplified by ac polarized neutron reflectometry (PNR): a new method established to probe remagnetization kinetics in soft ferromagnetic films. Test experiments with iron films demonstrate that the ac field within the accessible range of frequencies and amplitudes produces a dramatic effect on the PNR signal. This shows that the relevant ac field parameters generated by the device match well with the scales involved in the remagnetization processes. Other possible applications of the rf unit are briefly discussed.

  4. 47 CFR 73.683 - Field strength contours and presumptive determination of field strength at individual locations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., subscriber, and local market contained in 47 CFR 76.66(a) apply to this paragraph (f). ... at distances beyond about 48.3 kilometers (30 miles). Theory would indicate that the field strengths..., 445 12th St., SW., Reference Information Center, Room CY-A257, Washington, DC, or at the FCC's...

  5. 47 CFR 73.683 - Field strength contours and presumptive determination of field strength at individual locations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... definitions of satellite carrier, subscriber, and local market contained in 47 CFR 76.66(a) apply to this... at distances beyond about 48.3 kilometers (30 miles). Theory would indicate that the field strengths...) propagation prediction model. Guidance for use of the ILLR model for these purposes is provided in...

  6. Inhomogeneous superconductor in an a.c. field: Application to the pseudogap region

    SciTech Connect

    Ovchinnikov, Yu.N.; Kresin, V.Z.

    2002-02-01

    The behavior of an inhomogeneous superconductor in an external a.c. field is studied. General equations describing the a.c. response are formulated. Special attention is paid to the case of a layered conductor containing superconducting ''islands''. A system of this type displays ''pseudogap'' properties. The surface impedance Z is evaluated. It is shown that the ReZ {ne} |ImZ| and their difference {Delta}Z {proportional_to} {omega}{sup -1/2}, {omega} is the frequency of the a.c. field.

  7. Effect of Interfacial Resistance on AC Loss as a Function of Applied AC Field in YBCO Filamentary Conductors

    SciTech Connect

    Duckworth, Robert C; List III, Frederick Alyious; Zhang, Yifei

    2009-01-01

    To reduce ac loss in Y-Ba-Cu-O (YBCO) coated conductors while maintaining current sharing between filaments, an attempt was made to introduce an interfacial resistance between the YBCO filaments and a continuous silver cap layer. The YBCO filaments were produced via laser scribing of MOCVD YBCO films deposited on standard Ion Beam Assisted Deposition (IBAD) templates. After laser scribing, the filaments were exposed to air at room temperature to degrade the YBCO surface. A three micron thick silver cap layer was then and each sample was oxygen annealed at different temperature to produce different interface resistance at the interface between the silver and YBCO. Measurements of the ac loss was measured as a function of applied perpendicular field and frequency revealed a correlation between the reduction in coupling loss and the oxygen annealing temperature.

  8. Magnetic flux penetration into twisted multifilamentary coated superconductors subjected to ac transverse magnetic fields

    NASA Astrophysics Data System (ADS)

    Amemiya, Naoyuki; Sato, Susumu; Ito, Takeshi

    2006-12-01

    ac losses in superconductors are generated by the magnetic flux and current penetration into them. To reveal the magnetic flux and current penetration processes in twisted multifilamentary coated superconductors in which the thin superconductor layer is subdivided into filaments and then twisted as a whole for ac loss reduction, a theoretical model for electromagnetic field analysis was developed based on the power law E-J (electric-field-current-density) characteristic for the superconductor and a thin strip approximation of the conductor. The developed theoretical model was implemented into a numerical code using the finite element method to calculate and visualize the current and magnetic flux distributions. The magnetization losses in twisted multifilamentary coated superconductors exposed to ac transverse magnetic fields were calculated from the temporal evolutions of the current distribution to demonstrate the effect of the twisted multifilamentary architecture on ac loss reduction.

  9. Calorimetric method of ac loss measurement in a rotating magnetic field.

    PubMed

    Ghoshal, P K; Coombs, T A; Campbell, A M

    2010-07-01

    A method is described for calorimetric ac-loss measurements of high-T(c) superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines. PMID:20687748

  10. Calorimetric method of ac loss measurement in a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Ghoshal, P. K.; Coombs, T. A.; Campbell, A. M.

    2010-07-01

    A method is described for calorimetric ac-loss measurements of high-Tc superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.

  11. Calorimetric method of ac loss measurement in a rotating magnetic field

    SciTech Connect

    Ghoshal, P. K.; Coombs, T. A.; Campbell, A. M.

    2010-07-15

    A method is described for calorimetric ac-loss measurements of high-T{sub c} superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.

  12. HF radio field strength and total propagation invariants

    NASA Astrophysics Data System (ADS)

    Tsedilina, E. E.

    1994-01-01

    This paper investigates the relationship between measured field strengths, observed over two midlatitude long-distance paths, and total adiabatic invariants calculated for all possible propagation channels, for equinoxes and for low and high solar activity. Communication channel invariants or channel volumes of all types of channels have been calculated for a frequency of 15 MHz using the EMI-81 ionospheric model for both simple channels (F, E, FE) made up of conventional hop trajectories (Fh, Eh) refracted by ionospheric layers, and ricochet, or chordal, trajectories (Fr, Er, FE) which propagate in stratification ducts within the ionospheric layers, or combinations of these channels. It is shown that under night and twilight (day-night) conditions the field strength, in general, is proportional to the total channel volume: E approximately = (I(sub Sigma))(sup n), where n = 0.5 to 2. This indicates the strong influence of multiple scattering by irregularities on the processes of capture, loss, and radio wave propagation in ionospheric waveguide channels. This is in accordance with the results of using ray diffusion theory and adiabatic approximation, where the horizontal character of the waveguide channel varies slowly in relation to the oscillation of the ray within the duct. Greater field strengths observed during sunset, when the terminator was moving along the path, are explained by the influence of the larger wave channel volumes at this time in comparison with other periods.

  13. Electric field in an AC dielectric barrier discharge overlapped with a nanosecond pulse discharge

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin M.; Shkurenkov, Ivan; Adamovich, Igor V.; Lempert, Walter R.

    2016-08-01

    The effect of ns discharge pulses on the AC barrier discharge in hydrogen in plane-to-plane geometry is studied using time-resolved measurements of the electric field in the plasma. The AC discharge was operated at a pressure of 300 Torr at frequencies of 500 and 1750 Hz, with ns pulses generated when the AC voltage was near zero. The electric field vector is measured by ps four-wave mixing technique, which generates coherent IR signal proportional to the square of electric field. Absolute calibration was done using an electrostatic (sub-breakdown) field applied to the discharge electrodes, when no plasma was generated. The results are compared with one-dimensional kinetic modeling of the AC discharge and the nanosecond pulse discharge, predicting behavior of both individual micro-discharges and their cumulative effect on the electric field distribution in the electrode gap, using stochastic averaging based on the experimental micro-discharge temporal probability distribution during the AC period. Time evolution of the electric field in the AC discharge without ns pulses, controlled by a superposition of random micro-discharges, exhibits a nearly ‘flat top’ distribution with the maximum near breakdown threshold, reproduced quite well by kinetic modeling. Adding ns pulse discharges on top of the AC voltage waveform changes the AC discharge behavior in a dramatic way, inducing transition from random micro-discharges to a more regular, near-1D discharge. In this case, reproducible volumetric AC breakdown is produced at a well-defined moment after each ns pulse discharge. During the reproducible AC breakdown, the electric field in the plasma exhibits a sudden drop, which coincides in time with a well-defined current pulse. This trend is also predicted by the kinetic model. Analysis of kinetic modeling predictions shows that this effect is caused by large-volume ionization and neutralization of surface charges on the dielectrics by ns discharge pulses. The present

  14. Biaxial Flexural Strength of Poled Lead Zirconate Titanate under High Electric Field with Extended Field Range

    SciTech Connect

    Zhang, Kewei; Zeng, Fan W; Wang, Hong; Lin, Hua-Tay

    2013-01-01

    In the present work, as-received poled lead zirconate titanate, or PZT 5A, was examined using ball-on-ring (BoR) mechanical testing coupled with an electric field. Electric fields in the range of 4Ec (Ec, coercive field) with controlled loading paths were applied, and mechanical tests at a substantial number of characteristic electric field levels were conducted. Commercial electronic liquid FC-40 was used to prevent the setup from dielectric breakdown under a high electric field. Weibull strength distribution was used to interpret the mechanical strength data. The data showed that the strength levels of the PZT-5A tested under OC (open circuit) in air and in FC-40 were almost the same. It was further revealed that , for the studied cases, the effect of loading history on the biaxial flexural strength of the PZT was significant in -Ec, but not in OC or zero field as well as 4Ec . An asymmetry V curve was observed for the characteristic strength-electric field graph, and the bottom of V curve was located near the negative coercive field. Microscopy analysis showed that surface-located volume-distributed flaws were the strength limiter and responsible for the failure of the tested PZT under electromechanical loadings.

  15. Study of effect of AC and DC magnetic fields on growth of Pisum sativum seeds

    NASA Astrophysics Data System (ADS)

    Bahar, Mahmood; Yasaie Mehrjardi, Yasaman; Sojoodi, Jaleh; Bayani, Hosien; Kazem Salem, Mohammad

    2013-08-01

    This paper concentrates on the effect of the AC and DC magnetic fields on plant growth. The effect of AC magnetic field with intensities of 2.25, 1.66 and 1.49 mT and DC magnetic field with intensities of 3.6, 2.41 and 2.05 mT in exposure durations of 2, 4, 6, 8, 10 and 12 min on two groups of dry and wet Pisum sativum seedlings was studied. In each experiment 10 seeds were used; the experiments were repeated three times for each group and there was a sham exposed group for comparison purposes. The light cycle was 12 h light/12 h darkness and the temperature was 25 ± 1° C. The index of growth is considered to be the root and stem elongation on the sixth day. It was observed that AC magnetic field has a positive effect on the growth in all durations and intensities. Moreover, it is highlighted that during the experiments, the mean growth of dry seedlings significantly increased by a factor of 11 in AC magnetic field with the lowest intensity of 1.49 mT (p < 0.05). It was also shown that AC magnetic fields had a more positive effect on the growth of plants in comparison to DC magnetic fields.

  16. Acquisition of Cry1Ac Protein by Non-Target Arthropods in Bt Soybean Fields

    PubMed Central

    Yu, Huilin; Romeis, Jörg; Li, Yunhe; Li, Xiangju; Wu, Kongming

    2014-01-01

    Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac content using enzyme-linked immunosorbent assay (ELISA). Among the 22 species/taxa for which three samples were analysed, toxin concentration was highest in the grasshopper Atractomorpha sinensis and represented about 50% of the concentration in soybean leaves. Other species/taxa did not contain detectable toxin or contained a concentration that was between 1 and 10% of that detected in leaves. These Cry1Ac-positive arthropods included a number of mesophyll-feeding Hemiptera, a cicadellid, a curculionid beetle and, among the predators, a thomisid spider and an unidentified predatory bug belonging to the Anthocoridae. Within an arthropod species/taxon, the Cry1Ac content sometimes varied between life stages (nymphs/larvae vs. adults) and sampling dates (before, during, and after flowering). Our study is the first to provide information on Cry1Ac-expression levels in soybean plants and Cry1Ac concentrations in non-target arthropods in Chinese soybean fields. The data will be useful for assessing the risk of non-target arthropod exposure to Cry1Ac in soybean. PMID:25110881

  17. Achieving High Performance in AC-Field Driven Organic Light Sources

    PubMed Central

    Xu, Junwei; Carroll, David L.; Smith, Gregory M.; Dun, Chaochao; Cui, Yue

    2016-01-01

    Charge balance in organic light emitting structures is essential to simultaneously achieving high brightness and high efficiency. In DC-driven organic light emitting devices (OLEDs), this is relatively straight forward. However, in the newly emerging, capacitive, field-activated AC-driven organic devices, charge balance can be a challenge. In this work we introduce the concept of gating the compensation charge in AC-driven organic devices and demonstrate that this can result in exceptional increases in device performance. To do this we replace the insulator layer in a typical field-activated organic light emitting device with a nanostructured, wide band gap semiconductor layer. This layer acts as a gate between the emitter layer and the voltage contact. Time resolved device characterization shows that, at high-frequencies (over 40 kHz), the semiconductor layer allows for charge accumulation in the forward bias, light generating part of the AC cycle and charge compensation in the negative, quiescent part of the AC cycle. Such gated AC organic devices can achieve a non-output coupled luminance of 25,900 cd/m2 with power efficiencies that exceed both the insulator-based AC devices and OLEDs using the same emitters. This work clearly demonstrates that by realizing balanced management of charge, AC-driven organic light emitting devices may well be able to rival today’s OLEDs in performance. PMID:27063414

  18. Achieving High Performance in AC-Field Driven Organic Light Sources.

    PubMed

    Xu, Junwei; Carroll, David L; Smith, Gregory M; Dun, Chaochao; Cui, Yue

    2016-01-01

    Charge balance in organic light emitting structures is essential to simultaneously achieving high brightness and high efficiency. In DC-driven organic light emitting devices (OLEDs), this is relatively straight forward. However, in the newly emerging, capacitive, field-activated AC-driven organic devices, charge balance can be a challenge. In this work we introduce the concept of gating the compensation charge in AC-driven organic devices and demonstrate that this can result in exceptional increases in device performance. To do this we replace the insulator layer in a typical field-activated organic light emitting device with a nanostructured, wide band gap semiconductor layer. This layer acts as a gate between the emitter layer and the voltage contact. Time resolved device characterization shows that, at high-frequencies (over 40 kHz), the semiconductor layer allows for charge accumulation in the forward bias, light generating part of the AC cycle and charge compensation in the negative, quiescent part of the AC cycle. Such gated AC organic devices can achieve a non-output coupled luminance of 25,900 cd/m(2) with power efficiencies that exceed both the insulator-based AC devices and OLEDs using the same emitters. This work clearly demonstrates that by realizing balanced management of charge, AC-driven organic light emitting devices may well be able to rival today's OLEDs in performance. PMID:27063414

  19. Achieving High Performance in AC-Field Driven Organic Light Sources

    NASA Astrophysics Data System (ADS)

    Xu, Junwei; Carroll, David L.; Smith, Gregory M.; Dun, Chaochao; Cui, Yue

    2016-04-01

    Charge balance in organic light emitting structures is essential to simultaneously achieving high brightness and high efficiency. In DC-driven organic light emitting devices (OLEDs), this is relatively straight forward. However, in the newly emerging, capacitive, field-activated AC-driven organic devices, charge balance can be a challenge. In this work we introduce the concept of gating the compensation charge in AC-driven organic devices and demonstrate that this can result in exceptional increases in device performance. To do this we replace the insulator layer in a typical field-activated organic light emitting device with a nanostructured, wide band gap semiconductor layer. This layer acts as a gate between the emitter layer and the voltage contact. Time resolved device characterization shows that, at high-frequencies (over 40 kHz), the semiconductor layer allows for charge accumulation in the forward bias, light generating part of the AC cycle and charge compensation in the negative, quiescent part of the AC cycle. Such gated AC organic devices can achieve a non-output coupled luminance of 25,900 cd/m2 with power efficiencies that exceed both the insulator-based AC devices and OLEDs using the same emitters. This work clearly demonstrates that by realizing balanced management of charge, AC-driven organic light emitting devices may well be able to rival today’s OLEDs in performance.

  20. Acquisition of Cry1Ac protein by non-target arthropods in Bt soybean fields.

    PubMed

    Yu, Huilin; Romeis, Jörg; Li, Yunhe; Li, Xiangju; Wu, Kongming

    2014-01-01

    Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac content using enzyme-linked immunosorbent assay (ELISA). Among the 22 species/taxa for which three samples were analysed, toxin concentration was highest in the grasshopper Atractomorpha sinensis and represented about 50% of the concentration in soybean leaves. Other species/taxa did not contain detectable toxin or contained a concentration that was between 1 and 10% of that detected in leaves. These Cry1Ac-positive arthropods included a number of mesophyll-feeding Hemiptera, a cicadellid, a curculionid beetle and, among the predators, a thomisid spider and an unidentified predatory bug belonging to the Anthocoridae. Within an arthropod species/taxon, the Cry1Ac content sometimes varied between life stages (nymphs/larvae vs. adults) and sampling dates (before, during, and after flowering). Our study is the first to provide information on Cry1Ac-expression levels in soybean plants and Cry1Ac concentrations in non-target arthropods in Chinese soybean fields. The data will be useful for assessing the risk of non-target arthropod exposure to Cry1Ac in soybean. PMID:25110881

  1. Controlling flow direction in nanochannels by electric field strength

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Zhao, Tianshou; Li, Zhigang

    2015-08-01

    Molecular dynamics simulations are conducted to study the flow behavior of CsF solutions in nanochannels under external electric fields E . It is found that the channel surface energy greatly affects the flow behavior. In channels of high surface energy, water molecules, on average, move in the same direction as that of the electric field regardless of the strength of E . In low surface energy channels, however, water transports in the opposite direction to the electric field at weak E and the flow direction is changed when E becomes sufficiently large. The direction change of water flow is attributed to the coupled effects of different water-ion interactions, inhomogeneous water viscosity, and ion distribution changes caused by the electric field. The flow direction change observed in this work may be employed for flow control in complex micro- or nanofluidic systems.

  2. Resonant tunneling of interacting electrons in an AC electric field

    SciTech Connect

    Elesin, V. F.

    2013-11-15

    The problem of the effect of electron-electron interaction on the static and dynamic properties of a double-barrier nanostructure (resonant tunneling diode (RTD)) is studied in terms of a coherent tunneling model, which includes a set of Schrödinger and Poisson equations with open boundary conditions. Explicit analytical expressions are derived for dc and ac potentials and reduced (active and reactive) currents in the quasi-classical approximation over a wide frequency range. These expressions are used to analyze the frequency characteristics of RTD. It is shown that the interaction can radically change the form of these expressions, especially in the case of a hysteretic I-V characteristic. In this case, the active current and the ac potentials can increase sharply at both low and high frequencies. For this increase to occur, it is necessary to meet quantum regime conditions and to choose a proper working point in the I-V characteristic of RTD. The possibility of appearance of specific plasma oscillations, which can improve the high-frequency characteristics of RTD, is predicted. It is found that the active current can be comparable with the resonant dc current of RTD.

  3. Dielectronic recombination as a function of electric field strength

    NASA Technical Reports Server (NTRS)

    Reisenfeld, Daniel B.

    1992-01-01

    Dielectronic recombination (DR) is the dominant recombination mechanism at coronal temperatures and densities. We present a procedure for calculating DR rate coefficients as a function of electric field strength and apply this method to carbon ions. We focus on the competing effects of enhancement by plasma microfields and rate decrease through collisional excitation and ionization. We find that, in the case of C(3+), a significant rate enhancement results, leading to a reinterpretation of C IV emission-line intensities in the sun and late-type stars. We further consider how macroscopic electric fields, in particular motional electric fields, can affect DR rate coefficients, demonstrating dramatic rate increases for a number of the carbon ions.

  4. Efficacy of an AC sinusoidal electric field for apoptosis induction in lung carcinoma cells (A549)

    NASA Astrophysics Data System (ADS)

    Park, Hyoun-Hyang; Lee, Seung S.; Hoon Lee, Dae

    2012-08-01

    An AC sinusoidal electric field was applied to lung carcinoma cells for the induction of apoptosis. The occurrence of apoptosis was determined by analysis of Annexin V/PI and DNA fragmentation. Additional evidence of apoptosis was confirmed by caspase-3 cleavage and disruption of mitochondrial membrane potential. These results demonstrated that the expression of apoptosis can be controlled by varying the magnitude and the duration of the field, and that the application of an AC electric field can stimulate the apoptosis via mitochondria-mediated pathway.

  5. Field of Bachelor's Degree in the United States: 2009. American Community Survey Reports. ACS-18

    ERIC Educational Resources Information Center

    Siebens, Julie; Ryan, Camille L.

    2012-01-01

    This report provides information on fields of bachelor's degrees in the United States using data from the 2009 American Community Survey (ACS). It includes estimates of fields of bachelor's degree by demographic characteristics including age, sex, race, Hispanic origin, nativity, and educational attainment. This report also looks at geographic and…

  6. Relationship between ADP-induced platelet-fibrin clot strength and anti-platelet responsiveness in ticagrelor treated ACS patients

    PubMed Central

    Li, Dan-Dan; Wang, Xu-Yun; Xi, Shao-Zhi; Liu, Jia; Qin, Liu-An; Jing, Jing; Yin, Tong; Chen, Yun-Dai

    2016-01-01

    Background Ticagrelor provides enhanced antiplatelet efficacy but increased risk of bleeding and dyspnea. This study aimed to display the relationship between ADP-induced platelet-fibrin clot strength (MAADP) and clinical outcomes in acute coronary syndrome (ACS) patients treated by ticagrelor. Methods Consecutive Chinese-Han patients with ACS who received maintenance dose of ticagrelor on top of aspirin were recruited. After 5-day ticagrelor maintenance treatment, MAADP measured by thrombelastography (TEG) were recorded for the evaluation of ticagrelor anti-platelet reactivity. Pre-specified cutoffs of MAADP > 47 mm for high on-treatment platelet reactivity (HTPR) and MAADP < 31 mm for low on-treatment platelet reactivity (LTPR) were applied for evaluation. The occurrences of primary ischemic cardiovascular events (including a composite of cardiac death, non-fatal myocardial infarction and stroke), the Thrombolysis in Myocardial Infarction (TIMI) defined bleeding events, and ticagrelor related dyspnea were recorded after a follow-up of three months. Results Overall, 176 ACS patients (Male: 79.55%, Age: 59.91 ± 10.54 years) under ticagrelor maintenance treatment were recruited. The value of MAADP ranged from 4.80% to 72.90% (21.27% ± 12.07% on average), with the distribution higher skewed towards the lower values. Using the pre-specific cutoffs for HTPR and LTPR, seven patients (3.98%) were identified as HTPR and 144 patients (81.82%) as LTPR. After a follow-up of three months in 172 patients, major cardiovascular events occurred in no patient, but TIMI bleeding events in 81 (47.09%) with major bleedings in three patients. All patients with major bleedings were classified as LTPR. Ticagrelor related dyspnea occurred in 31 (18.02%) patients, with 30 (21.28%) classified as LTPR and no one as HTPR (P = 0.02). Conclusions In ticagrelor treated ACS patients, MAADP measured by TEG might be valuable for the prediction of major bleeding and ticagrelor related dyspnea

  7. Physical aspects of magnetic hyperthermia: Low-frequency ac field absorption in a magnetic colloid

    NASA Astrophysics Data System (ADS)

    L. Raikher, Yu.; Stepanov, V. I.

    2014-11-01

    A uniaxially anisotropic superparamagnetic particle suspended in a viscous fluid and subjected to an ac field is considered. Consistently taking into account both internal (Néel) and external (Brownian) magnetic relaxations, a simple expression for the dynamic susceptibility is obtained. This result, with regard to the ac field energy absorption, is compared to the common heuristic approach. This is done for a model polydisperse colloid containing maghemite nanoparticles, which are assumed to posses either bulk or surface magnetic anisotropy. It is shown that viscous losses caused by the particle motion in a fluid matrix make important contribution to the full magnetic response of a ferrocolloid and, thus, its ability to absorb the ac field energy. The obtained exact expression, which takes in both dissipation mechanisms, paves the way to correct optimization of the nanoparticle-mediated heating effect.

  8. Encouragement of Enzyme Reaction Utilizing Heat Generation from Ferromagnetic Particles Subjected to an AC Magnetic Field

    PubMed Central

    Suzuki, Masashi; Aki, Atsushi; Mizuki, Toru; Maekawa, Toru; Usami, Ron; Morimoto, Hisao

    2015-01-01

    We propose a method of activating an enzyme utilizing heat generation from ferromagnetic particles under an ac magnetic field. We immobilize α-amylase on the surface of ferromagnetic particles and analyze its activity. We find that when α-amylase/ferromagnetic particle hybrids, that is, ferromagnetic particles, on which α-amylase molecules are immobilized, are subjected to an ac magnetic field, the particles generate heat and as a result, α-amylase on the particles is heated up and activated. We next prepare a solution, in which α-amylase/ferromagnetic particle hybrids and free, nonimmobilized chitinase are dispersed, and analyze their activities. We find that when the solution is subjected to an ac magnetic field, the activity of α-amylase immobilized on the particles increases, whereas that of free chitinase hardly changes; in other words, only α-amylase immobilized on the particles is selectively activated due to heat generation from the particles. PMID:25993268

  9. Fiber - Optic Devices as Temperature Sensors for Temperature Measurements in AC Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Rablau, Corneliu; Lafrance, Joseph; Sala, Anca

    2007-10-01

    We report on the investigation of several fiber-optic devices as potential sensors for temperature measurements in AC magnetic fields. Common temperature sensors, such as thermocouples, thermistors or diodes, will create random and/or systematic errors when placed in a magnetic field. A DC magnetic field is susceptible to create a systematic offset to the measurement, while in an AC magnetic field of variable frequency random errors which cannot be corrected for can also be introduced. Fiber-Bragg-gratings and thin film filters have an inherent temperature dependence. Detrimental for their primary applications, the same dependence allows one to use such devices as temperature sensors. In an AC magnetic field, they present the advantage of being immune to electromagnetic interference. Moreover, for fiber-Bragg-gratings, the shape factor and small mass of the bare-fiber device make it convenient for temperature measurements on small samples. We studied several thin-film filters and fiber-Bragg-gratings and compared their temperature measurement capabilities in AC magnetic fields of 0 to 150 Gauss, 0 to 20 KHz to the results provided by off-the-shelf thermocouples and thermistor-based temperature measurement systems.

  10. MAGNETIC FIELDS IN INTERSTELLAR CLOUDS FROM ZEEMAN OBSERVATIONS: INFERENCE OF TOTAL FIELD STRENGTHS BY BAYESIAN ANALYSIS

    SciTech Connect

    Crutcher, Richard M.; Wandelt, Benjamin; Heiles, Carl; Falgarone, Edith

    2010-12-10

    The only direct measurements of interstellar magnetic field strengths depend on the Zeeman effect, which samples the line-of-sight component B{sub z} of the magnetic vector. In this paper, we use a Bayesian approach to analyze the observed probability density function (PDF) of B{sub z} from Zeeman surveys of H I, OH, and CN spectral lines in order to infer a density-dependent stochastic model of the total field strength B in diffuse and molecular clouds. We find that at n < 300 cm{sup -3} (in the diffuse interstellar medium sampled by H I lines), B does not scale with density. This suggests that diffuse clouds are assembled by flows along magnetic field lines, which would increase the density but not the magnetic field strength. We further find strong evidence for B in molecular clouds being randomly distributed between very small values and a maximum that scales with volume density n as B {proportional_to} n {sup 0.65} for n>300 cm{sup -3}, with an uncertainty at the 50% level in the power-law exponent of about {+-}0.05. This break-point density could be interpreted as the average density at which parsec-scale clouds become self-gravitating. Both the uniform PDF of total field strengths and the scaling with density suggest that magnetic fields in molecular clouds are often too weak to dominate the star formation process. The stochasticity of the total field strength B implies that many fields are so weak that the mass/flux ratio in many clouds must be significantly supercritical. A two-thirds power law comes from isotropic contraction of gas too weakly magnetized for the magnetic field to affect the morphology of the collapse. On the other hand, our study does not rule out some clouds having strong magnetic fields with critical mass/flux ratios.

  11. ACS Flat Field Corrections from Observations of 47 Tucanae

    NASA Astrophysics Data System (ADS)

    Mack, J.; Bohlin, R. C.; Gilliland, R. L.; van der Marel, R.; Blakeslee, J. P.; de Marchi, G.

    2002-12-01

    The uniformity of the WFC and HRC detector response has been assessed using multiple dithered pointings of 47 Tucanae. By placing the same stars over different portions of the detector and measuring relative changes in brightness, low frequency spatial variations in the response of each detector have been measured. The original WFC and HRC laboratory flat fields produce photometric errors of 5 to 18 percent from corner-to-corner. The required low-order correction (L-flat) has been applied to the lab flats, and new flat fields have been delivered for use in the calibration pipeline. Initial results suggest the photometric response for a given star is now the same to 1 for any position in the field of view. As a further test, the improved flat fields are compared with observations of the bright earth at UV wavelengths (F330W) and with skyflats from ERO data at long wavelengths (F775W).

  12. Superposition of an AC field improves the discrimination between peptides in nanopore analysis.

    PubMed

    Jakova, Elisabet; Lee, Jeremy S

    2015-07-21

    In standard nanopore analysis a constant DC voltage is used to electrophoretically drive small molecules and peptides towards a pore. Superposition of an AC voltage at particular frequencies causes molecules to oscillate as they approach the pore which can alter the event parameters, the blockade current (I) and blockade time (T). Four peptides with similar structures were studied. Alpha-helical peptides A10 (FmocDDA10KK), A14, A18 and retro-inverso A10. It was shown that the ratio of translocations to bumping events could be manipulated by a combination of AC voltages and frequencies. In particular, A10 could be studied without interference from retro-inverso A10. Similarly, a large, intrinsically disordered protein of 140 amino acids, α-synuclein, which translocates the pore readily in a DC field could be prevented from doing so by application of an AC field of 200 mV at 100 MHz. PMID:25699656

  13. OH Zeeman Studies of Magnetic Field Strengths in Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Thompson, Kristen L.; Troland, Thomas H.; Heiles, Carl E.

    2016-01-01

    Although stars have long been known to form in the gravitational collapse of molecular clouds, the details of the formation process are not well understood. There are many questions surrounding the formation mechanism of the clouds and the timescales on which they collapse. Star formation within the Galaxy has been found to be extremely inefficient, with stars forming at only 1-3% of the expected rate. Multiple theories addressing this inefficiency have emerged, placing varying degrees of emphasis on the magnetic fields and turbulence within the interstellar medium. One major difference in leading theories is the strength of the magnetic fields permeating the clouds and the extent to which they can provide support against cloud collapse. One way to determine the effect of magnetic fields is to determine the ratio between the gravitational and magnetic energies, called the mass-to-flux ratio, within the clouds to determine whether they are magnetically subcritical or supercritical. Much work has been done to determine this ratio in the cores of molecular clouds, but little is currently known about the fields in the envelopes of the clouds where most of the mass resides. We present the results of an extensive observational survey aimed at characterizing the fields in molecular clouds as a whole. We use the Arecibo telescope to determine mass-to-flux ratios in clouds distributed throughout the sky via the Zeeman effect in 18 cm OH absorption lines. This statistical study provides magnetic field and mass-to-flux results for 41 clouds located along 22 lines-of-sight. We find the first evidence for subcritical molecular gas along individual lines-of-sight, and a statistical analysis suggests that the mass-to-flux ratio in the envelopes of molecular clouds is approximately critical overall.

  14. Study of DC and AC electric field effect on Pisum sativum seeds growth

    NASA Astrophysics Data System (ADS)

    Mahmood, Bahar; Jaleh, Sojoodi; Yasaman, Yasaie

    2014-07-01

    In this research the effect of electric field on two groups of wet and dry Pisum sativum seeds growth was studied. To generate the required electric field a parallel-plate capacitor with round copper plates of 30 cm diameter was used. The experiments were performed once in fixed exposure duration of 8 min in variable DC electric field of 0.25-1.5 kV/m. The other experiments were performed in variable fields of 50-125 kV/m in fixed exposure duration of 8 min, in two groups of AC and DC electric fields. The experiments were repeated three times. In each experiment 10 seeds were used and there was a sham exposed group for comparison, too. After application of electric field, the seeds were kept for six days in the same growth chamber with the temperature of 25 ± 1 °C and 12 h light/12 h darkness. On the 6th day length of stems and height of roots were measured. After doing statistical analysis, in low intensities of DC electric field, the highest significant increase of mean growth (The average of stem length and the height of roots) was seen in 1.5 kV/m in wet seeds. In high intensities of DC and AC electric fields, the highest significant increase of mean growth was seen in AC electric field of 100 kV/m in wet seeds.

  15. 47 CFR 73.153 - Field strength measurements in support of applications or evidence at hearings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Field strength measurements in support of... (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.153 Field strength..., groundwave field strength measurements will take precedence over theoretical values, provided...

  16. 47 CFR 73.153 - Field strength measurements in support of applications or evidence at hearings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Field strength measurements in support of... (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.153 Field strength..., groundwave field strength measurements will take precedence over theoretical values, provided...

  17. Spin resonance strength of a localized rf magnetic field

    NASA Astrophysics Data System (ADS)

    Lee, S. Y.

    2006-07-01

    Spin-resonance strength produced by a localized rf field has been a focus of recent publications [V. S. Morozov , Phys. Rev. ST Accel. Beams 7, 024002 (2004).PRABFM1098-440210.1103/PhysRevSTAB.7.024002; M. A. Leonova (to be published).; T. Roser, in Handbook of Accelerator Physics and Engineering, edited by A. W. Chao and M. Tigner (World Scientific, Singapore, 1999), p. 151.; M. Bai, W. W. MacKay, and T. Roser, Phys. Rev. ST Accel. Beams 8, 099001 (2005).PRABFM1098-440210.1103/PhysRevSTAB.8.099001; V. S. Morozov , Phys. Rev. ST Accel. Beams 8, 099002 (2005).PRABFM1098-440210.1103/PhysRevSTAB.8.099002]. This paper discusses the debated factor of 2, and provides a formula to calculate the component enhanced by the induced betatron motion.

  18. AC Electric Field-Induced Trapping of Microparticles in Pinched Microconfinements.

    PubMed

    Dey, Ranabir; Shaik, Vaseem Akram; Chakraborty, Debapriya; Ghosal, Sandip; Chakraborty, Suman

    2015-06-01

    The trapping of charged microparticles under confinement in a converging-diverging microchannel, under a symmetric AC field of tunable frequency, is studied. We show that at low frequencies, the trapping characteristics stem from the competing effects of positive dielectrophoresis and the linear electrokinetic phenomena of electroosmosis and electrophoresis. It is found, somewhat unexpectedly, that electroosmosis and electrophoresis significantly affect the concentration profile of the trapped analyte, even for a symmetric AC field. However, at intermediate frequencies, the microparticle trapping mechanism is predominantly a consequence of positive dielectrophoresis. We substantiate our experimental results for the microparticle concentration distribution, along the converging-diverging microchannel, with a detailed theoretical analysis that takes into account all of the relevant frequency-dependent electrokinetic phenomena. This study should be useful in understanding the response of biological components such as cells to applied AC fields. Moreover, it will have potential applications in the design of efficient point-of-care diagnostic devices for detecting biomarkers and also possibly in some recent strategies in cancer therapy using AC fields. PMID:25954982

  19. Applied AC and DC magnetic fields cause alterations in the mitotic cycle of early sea urchin embryos

    SciTech Connect

    Levin, M.; Ernst, S.G.

    1995-09-01

    This study demonstrates that exposure to 60 Hz magnetic fields (3.4--8.8 mt) and magnetic fields over the range DC-600 kHz (2.5--6.5 mT) can alter the early embryonic development of sea urchin embryos by inducing alterations in the timing of the cell cycle. Batches of fertilized eggs were exposed to the fields produced by a coil system. Samples of the continuous cultures were taken and scored for cell division. The times of both the first and second cell divisions were advanced by ELF AC fields and by static fields. The magnitude of the 60 Hz effect appears proportional to the field strength over the range tested. the relationship to field frequency was nonlinear and complex. For certain frequencies above the ELF range, the exposure resulted in a delay of the onset of mitosis. The advance of mitosis was also dependent on the duration of exposure and on the timing of exposure relative to fertilization.

  20. AC current distribution and losses in multifilamentary superconductors exposed to longitudinal magnetic field

    SciTech Connect

    Le Naour, S.; Lacaze, A.; Laumond, Y.; Estop, P.; Verhaege, T.

    1996-07-01

    The current distribution and also AC losses, in a multifilamentary superconductor carrying a transport current, are influenced by the self and the external magnetic field. By using the Maxwell equations, a model has been developed in order to calculate the temporal evolution of current distribution in a single wire exposed or not to external magnetic field. This model is based on the actual relationship of electrical field E with current density J and takes into account the twist pitch of the wire. AC losses are calculated by adding all local losses through the cross section. This paper presents calculations of the influence of the cable twist coupled with the longitudinal magnetic field, and also gives some ideas how to decrease losses.

  1. Stability of the ACS CCD: geometry, flat fielding, photometry

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido

    2002-07-01

    A moderately crowded stellar field, located 6' West of the centre of the cluster 47 Tuc, is observed repeatedly {every three weeks with the WFC, every other month with the HRC} in various filters, spending 1 orbit per epoch. Different filters will be used every time, so that over the course of the year all filters will have been employed at least twice. The most common filters will be checked more frequently. The same field has been observed in the course of the SMOV phase and the positions and magnitudes of the most prominent stars have been accurately measured. Although the field is neither a proper astrometric nor a proper photometric standard one, the positions and magnitudes of the objects in it can be used to monitor any local and large scale variations in the platescale and sensitivity of the detectors. It should be noted that for the filters which have already been used during the SMOV phase it will be sufficient to take one single image, without CR-SPLIT, since the exposure time is always short {20-30 sec} and there will be so many stars that the few of them which are affected by cosmic rays can be discarded as outliers in the photometry. For narrow and medium band filters not exercised on this target in the SMOV phase, however, a baseline will have to be set. This expenditure of time will apply to the current cycle only. At variance with the approach used in SMOV, there is no need for large telescope slews to place the same objects on opposite sides of the detectors, thence allowing the programme to remain compact and efficient. All exposure level parameters are set to their default values, except for the amplifier gain of the WFC exposures in the F606W band, which will be collected with the gain value of 2 for the WFC for compatibility with the SMOV observations. The exposure time is typically 30 seconds for the WFC, 60 sec for the HRC. No attempt will be made to attain a predefined or the same orientation on the sky amongst different epochs. Typically

  2. Numerical and theoretical evaluations of AC losses for single and infinite numbers of superconductor strips with direct and alternating transport currents in external AC magnetic field

    NASA Astrophysics Data System (ADS)

    Kajikawa, K.; Funaki, K.; Shikimachi, K.; Hirano, N.; Nagaya, S.

    2010-11-01

    AC losses in a superconductor strip are numerically evaluated by means of a finite element method formulated with a current vector potential. The expressions of AC losses in an infinite slab that corresponds to a simple model of infinitely stacked strips are also derived theoretically. It is assumed that the voltage-current characteristics of the superconductors are represented by Bean’s critical state model. The typical operation pattern of a Superconducting Magnetic Energy Storage (SMES) coil with direct and alternating transport currents in an external AC magnetic field is taken into account as the electromagnetic environment for both the single strip and the infinite slab. By using the obtained results of AC losses, the influences of the transport currents on the total losses are discussed quantitatively.

  3. Metamaterial magnetoinductive lens performance as a function of field strength.

    PubMed

    Algarín, José M; Freire, Manuel J; Breuer, Felix; Behr, Volker C

    2014-10-01

    Metamaterials are artificial composites that exhibit exotic electromagnetic properties, as the ability of metamaterial slabs to behave like lenses with sub-wavelength resolution for the electric or the magnetic field. In previous works, the authors investigated magnetic resonance imaging (MRI) applications of metamaterial slabs that behave like lenses for the radiofrequency magnetic field. In particular, the authors investigated the ability of MRI metamaterial lenses to increase the signal-to-noise ratio (SNR) of surface coils, and to localize the field of view (FOV) of the coils, which is of interest for parallel MRI (pMRI) applications. A metamaterial lens placed between a surface coil and the tissue enhances the sensitivity of the coil. Although the metamaterial lens introduces losses which add to the losses of the tissue, the enhancement of the sensitivity can compensate these additional losses and the SNR of the coil is increased. In a previous work, an optimization procedure was followed to find a metamaterial structure with minimum losses that will maximize the SNR. This structure was termed magnetoinductive (MI) lens by the authors. The properties of surface coils in the presence of MI lenses were investigated in previous works at the proton frequency of 1.5 T systems. The different frequency dependence of the losses in both the MI lenses and the tissue encouraged us to investigate the performance of MI lenses at different frequencies. Thus, in the present work, the SNR and the pMRI ability of MI lenses are investigated as a function of field strength. A numerical analysis is carried out with an algorithm developed by the authors to predict the SNR behavior of a surface coil loaded with a MI lens at the proton frequencies of 0.5 T, 1.5 T and 3 T systems. The results show that, at 0.5 T, there is a gain in the SNR for short distances, but the SNR is highly degraded at deeper distances. However, at 1.5 T and 3T, the MI lenses provide a gain in the SNR up to a

  4. Experimental observation and theoretical modeling of the effect of magnetic field on the strength of molybdenum under ramp wave compression

    NASA Astrophysics Data System (ADS)

    Ding, Jow; Alexander, C.; Asay, James

    2013-06-01

    A new experimental technique has been developed at Sandia National Labs to study the dynamic material strength at high pressures using ``magnetically applied pressure shear (MAPS)'' ramp waves. In order to apply sufficient shear traction to the test sample, the driver must have substantial strength. Molybdenum was selected for this reason along with its good electrical conductivity. It was observed that an imposed magnetic field of around 10 Tesla induced some annealing on molybdenum. Furthermore, when subjected directly to magnetohydrodynamic loading as encountered for the driver material, molybdenum exhibited an apparently stiff response and did not show a discernible elastic plastic transition. To better understand the experiments and establish a predictive capability for molybdenum, a tentative strength model that incorporates the possible magnetic effects including magnetic diffusion, Joule heating, and the coupling between the magnetic field and material strength has been developed. Experimental observations and the model will be discussed. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. AC electric field induced droplet deformation in a microfluidic T-junction.

    PubMed

    Xi, Heng-Dong; Guo, Wei; Leniart, Michael; Chong, Zhuang Zhi; Tan, Say Hwa

    2016-08-01

    We present for the first time an experimental study on the droplet deformation induced by an AC electric field in droplet-based microfluidics. It is found that the deformation of the droplets becomes stronger with increasing electric field intensity and frequency. The measured electric field intensity dependence of the droplet deformation is consistent with an early theoretical prediction for stationary droplets. We also proposed a simple equivalent circuit model to account for the frequency dependence of the droplet deformation. The model well explains our experimental observations. In addition, we found that the droplets can be deformed repeatedly by applying an amplitude modulation (AM) signal. PMID:27173587

  6. Propagation of magnetic avalanches in Mn12Ac at high field sweep rates.

    PubMed

    Decelle, W; Vanacken, J; Moshchalkov, V V; Tejada, J; Hernández, J M; Macià, F

    2009-01-16

    Time-resolved measurements of the magnetization reversal in single crystals of Mn12Ac in pulsed magnetic fields, at magnetic field sweep rates from 1.5 kT/s up to 7 kT/s, suggest a new process that cannot be scaled onto a deflagrationlike propagation driven by heat diffusion. The sweep rate dependence of the propagation velocity, increasing from a few 100 m/s up to the speed of sound in Mn12Ac, indicates the existence of two new regimes at the highest sweep rates, with a transition around 4 kT/s that can be understood as a magnetic deflagration-to-detonation transition. PMID:19257315

  7. ac-Field-induced fluid pumping in microsystems with asymmetric temperature gradients.

    PubMed

    Holtappels, Moritz; Stubbe, Marco; Gimsa, Jan

    2009-02-01

    We present two different designs of electrohydrodynamic micropumps for microfluidic systems. The micropumps have no movable parts, and their simple design allows for fabrication by microsystems technology. The pumps are operated by ac voltages from 1 to 60 V and were tested with aqueous solutions in the conductivity range of 1-112 mS m(-1). The pump effect is induced by an ac electric field across a fluid medium with an inhomogeneous temperature distribution. It is constant over a wide range of the ac field frequency with a conductivity-dependent drop-off at high frequencies. The temperature-dependent conductivity and permittivity distributions in the fluid induce space charges that interact with the electric field and induce fluid motion. The temperature distribution can be generated either by Joule heating in the medium or by external heating. We present experimental results obtained with two prototypes featuring Joule heating and external heating by a heating filament. Experimental and numerical results are compared with an analytical model. PMID:19391842

  8. Theoretical study of electromagnetic electron cyclotron waves in the presence of AC field in Uranian magnetosphere

    NASA Astrophysics Data System (ADS)

    Pandey, R. S.; Kaur, Rajbir

    2015-10-01

    Electromagnetic electron cyclotron (EMEC) waves with temperature anisotropy in the magnetosphere of Uranus have been studied in present work. EMEC waves are investigated using method of characteristic solution by kinetic approach, in presence of AC field. In 1986, Voyager 2 encounter with Uranus revealed that magnetosphere of Uranus exhibit non-Maxwellian high-energy tail distribution. So, the dispersion relation, real frequency and growth rate are evaluated using Lorentzian Kappa distribution function. Effect of temperature anisotropy, AC frequency and number density of particles is found. The study is also extended to oblique propagation of EMEC waves in presence and absence of AC field. Through comprehensive mathematical analysis it is found that when EMEC wave propagates parallel to intrinsic magnetic field of Uranus, its growth is more enhanced than in case of oblique propagation. Results are also discussed in context to magnetosphere of Earth and also gives theoretical explanation to existence of high energetic particles observed by Voyager 2 in the magnetosphere of Uranus. The results can present a further insight into the nature of electron-cyclotron instability condition for the whistler mode waves in the outer radiation belts of Uranus or other space plasmas.

  9. Super-resolution high sensitivity AC Magnetic Field Imaging with NV Centers in Diamond

    NASA Astrophysics Data System (ADS)

    Bauch, Erik; Jaskula, Jean-Christophe; Trifonov, Alexei; Walsworth, Ronald

    2015-05-01

    The Nitrogen-Vacancy center in diamond (NV center), a defect consisting of a nitrogen atom next to a missing atom, has been successfully applied to sense magnetic field, electric field, temperature and can also be used as fluorescence marker and single photon emitter. We will present super-resolution imaging of NV centers and simultaneous sensing of AC magnetic fields with high sensitivity. To demonstrate the applicability of super-resolution magnetic field imaging, we resolve several NV centers with an optical resolution smaller than 20 nm and probe locally the gradient of a externally applied magnetic field. Additionally, we demonstrate the detection of magnetic field signals from 1H protons with subdiffraction image resolution. We will also show that our super-resolution magnetometer will benefit from a new readout method based on a spin-to-charge mapping that we have developed to increase the readout contrast.

  10. Isokinetic Leg Flexion and Extension Strength of Elite Adolescent Female Track and Field Athletes.

    ERIC Educational Resources Information Center

    Housh, Terry J.; And Others

    1984-01-01

    Adolescent female track-and-field athletes were measured to compare isokinetic strength of leg flexion and extension movements. Throwers, jumpers, middle-distance runners, and sprinters participated in the study. Throwers were found to be stronger in absolute strength, but there were no significant differences in relative strength. Results are…

  11. Analysis of resistance to Cry1Ac in field-collected pink bollworm, Pectinophora gossypiella (Lepidoptera:Gelechiidae), populations.

    PubMed

    Ojha, Abhishek; Sree, K Sowjanya; Sachdev, Bindiya; Rashmi, M A; Ravi, K C; Suresh, P J; Mohan, Komarlingam S; Bhatnagar, Raj K

    2014-01-01

    High survivorship of pink bollworrm, Pectinophora gossypiella in bolls of Bollgard® cotton hybrids and resistance to Cry1Ac protein, expressed in Bollgard cotton were reported in field-populations collected from the state of Gujarat (western India) in 2010. We have found Cry1Ac-resistance in pink bollworm populations sourced from Bollgard and non-Bt cotton fields in the adjoining states of Maharashtra and Madhya Pradesh in Central India. Further, we observed reduced binding of labeled Cry1Ac protein to receptors localized on the brush-border membrane of pink bollworm larval strains with high tolerance to Cry1Ac. These strains were sourced from Bollgard and conventional cotton fields. A pooled Cry1Ac-resistant strain, further selected on Cry1Ac diet also showed significantly reduced binding to Cry1Ac protein. The reduced binding of Cry1Ac to receptors could be an underlying mechanism for the observed resistance in pink bollworm populations feeding on Bollgard hybrids. PMID:25523173

  12. Spin superconductivity and ac-Josephson effect in Graphene system under strong magnetic field

    NASA Astrophysics Data System (ADS)

    Liu, Haiwen; Jiang, Hua; Sun, Qing-Feng; Xie, X. C.; Collaborative Innovation Center of Quantum Matter, Beijing, China Collaboration

    We study the spin superconductivity in Graphene system under strong magnetic field. From the microscopically Gor'kov method combined with the Aharonov-Casher effect, we derive the effective Landau-Ginzburg free energy and analyze the time evolution of order parameter, which is confirmed to be the off-diagonal long range order. Meanwhile, we compare the ground state of spin superconductivity to the canted-antiferromagnetic state, and demonstrate the equivalence between these two states. Moreover, we give out the pseudo-field flux quantization condition of spin supercurrent, and propose an experimental measurable ac-Josephson effect of spin superconductivity in this system.

  13. Dynamic melting and impurity particle tracking in continuously adjustable AC magnetic field

    NASA Astrophysics Data System (ADS)

    Bojarevics, V.; Pericleous, K.

    2016-07-01

    The analysis of semi-levitation melting is extended to account for the presence of particles (impurities, broken metal dendrite agglomerates, bubbles) during the full melting cycle simulated numerically using the pseudo-spectral schemes. The AC coil is dynamically moving with the melt front progress, while the generated Joule heat serves to enhance the melting rate. The electromagnetic force is decomposed into the time average and the oscillating parts. The time average effects on the particle transport are investigated previously using approximations derived for a locally uniform magnetic field. This paper presents expressions for the skin-layer type of the AC force containing also the pulsating part which contributes to the particle drag by the ‘history’ and ‘added mass’ contributions. The intense turbulence in the bulk of molten metal additionally contributes to the particle dispersion. The paper attempts to demonstrate the importance of each of the mentioned effects onto the particle transport during the melting until the final pouring stage. The method could be extended to similar AC field controlled melting/solidification processes.

  14. A Field Test for Upper Body Strength and Endurance.

    ERIC Educational Resources Information Center

    Nelson, Jack K.; And Others

    1991-01-01

    Researchers studied the reliability of the modified push-up test in measuring upper body strength and endurance in elementary through college students. It also examined the accuracy of partner scoring. The test proved much easier to administer than the regular floor push-up. It was valid and reliable for all students and suitable for partner…

  15. The ac and dc electric field meters developed for the US Department of Energy

    NASA Technical Reports Server (NTRS)

    Kirkham, H.; Johnston, A.; Jackson, S.; Sheu, K.

    1987-01-01

    Two space-potential electric field meters developed at the Jet Propulsion Laboratory under the auspices of the U.S. Department of Energy are described. One of the meters was designed to measure dc fields, the other ac fields. Both meters use fiber optics to couple a small measuring probe to a remote readout device, so as to minimize field perturbation due to the presence of the probe. By using coherent detection, it has been possible to produce instruments whose operating range extends from about 10 V/m up to about 2.5 kV/cm, without the need for range switching on the probe. The electrical and mechanical design of both meters are described in detail. Data from laboratory tests are presented, as well as the results of the tests at the National Bureau of Standards and the Electric Power Research Institute's High Voltage Transmission Research Facility.

  16. SOIL BIN AND FIELD TESTS OF AN ON-THE-GO SOIL STRENGTH PROFILE SENSOR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    n on-the-go soil strength profile sensor (SSPS) was previously developed to measure the within-field spatial variability in soil strength at 5 evenly-spaced depths up to 50 cm. In this paper, performance of the SSPS was evaluated using soil bin and field data. First, the SSPS was tested in a soil bi...

  17. 47 CFR 2.1053 - Measurements required: Field strength of spurious radiation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Measurements required: Field strength of spurious radiation. 2.1053 Section 2.1053 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL... Procedures Certification § 2.1053 Measurements required: Field strength of spurious radiation....

  18. 47 CFR 2.1053 - Measurements required: Field strength of spurious radiation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Measurements required: Field strength of spurious radiation. 2.1053 Section 2.1053 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL... Procedures Certification § 2.1053 Measurements required: Field strength of spurious radiation....

  19. 47 CFR 2.1053 - Measurements required: Field strength of spurious radiation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Measurements required: Field strength of spurious radiation. 2.1053 Section 2.1053 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL... Procedures Certification § 2.1053 Measurements required: Field strength of spurious radiation....

  20. 47 CFR 2.1053 - Measurements required: Field strength of spurious radiation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Measurements required: Field strength of spurious radiation. 2.1053 Section 2.1053 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL... Procedures Certification § 2.1053 Measurements required: Field strength of spurious radiation....

  1. 47 CFR 2.1053 - Measurements required: Field strength of spurious radiation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Measurements required: Field strength of spurious radiation. 2.1053 Section 2.1053 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL... Procedures Certification § 2.1053 Measurements required: Field strength of spurious radiation....

  2. Optical Field-Strength Polarization of Two-Mode Single-Photon States

    ERIC Educational Resources Information Center

    Linares, J.; Nistal, M. C.; Barral, D.; Moreno, V.

    2010-01-01

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of…

  3. 47 CFR 73.61 - AM directional antenna field strength measurements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false AM directional antenna field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.61 AM directional antenna field strength measurements. (a) Each AM station using a directional antenna with monitoring point...

  4. 47 CFR 73.61 - AM directional antenna field strength measurements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false AM directional antenna field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.61 AM directional antenna field strength measurements. (a) Each AM station using a directional antenna with monitoring point...

  5. 47 CFR 73.61 - AM directional antenna field strength measurements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false AM directional antenna field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.61 AM directional antenna field strength measurements. (a) Each AM station using a directional antenna with monitoring point...

  6. 47 CFR 73.61 - AM directional antenna field strength measurements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false AM directional antenna field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.61 AM directional antenna field strength measurements. (a) Each AM station using a directional antenna with monitoring point...

  7. 47 CFR 73.61 - AM directional antenna field strength measurements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false AM directional antenna field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.61 AM directional antenna field strength measurements. (a) Each AM station using a directional antenna with monitoring point...

  8. 47 CFR 27.804 - Field strength limits at WMTS facility.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Field strength limits at WMTS facility. 27.804 Section 27.804 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 1.4 GHz Band § 27.804 Field strength limits at WMTS facility....

  9. 47 CFR 27.804 - Field strength limits at WMTS facility.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Field strength limits at WMTS facility. 27.804 Section 27.804 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 1.4 GHz Band § 27.804 Field strength limits at WMTS facility....

  10. 47 CFR 73.151 - Field strength measurements to establish performance of directional antennas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Field strength measurements to establish performance of directional antennas. 73.151 Section 73.151 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.151 Field strength measurements to establish...

  11. 47 CFR 73.151 - Field strength measurements to establish performance of directional antennas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Field strength measurements to establish performance of directional antennas. 73.151 Section 73.151 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.151 Field strength measurements to establish...

  12. Hot electrons injection in carbon nanotubes under the influence of quasi-static ac-field

    NASA Astrophysics Data System (ADS)

    Amekpewu, M.; Mensah, S. Y.; Musah, R.; Mensah, N. G.; Abukari, S. S.; Dompreh, K. A.

    2016-07-01

    The theory of hot electrons injection in carbon nanotubes (CNTs) where both dc electric field (Ez), and a quasi-static ac field exist simultaneously (i.e. when the frequency ω of ac field is much less than the scattering frequency v (ω ≪ v or ωτ ≪ 1, v =τ-1) where τ is relaxation time) is studied. The investigation is done theoretically by solving semi-classical Boltzmann transport equation with and without the presence of the hot electrons source to derive the current densities. Plots of the normalized current density versus dc field (Ez) applied along the axis of the CNTs in the presence and absence of hot electrons reveal ohmic conductivity initially and finally negative differential conductivity (NDC) provided ωτ ≪ 1 (i.e. quasi- static case). With strong enough axial injection of the hot electrons, there is a switch from NDC to positive differential conductivity (PDC) about Ez ≥ 75 kV / cm and Ez ≥ 140 kV / cm for a zigzag CNT and an armchair CNT respectively. Thus, the most important tough problem for NDC region which is the space charge instabilities can be suppressed due to the switch from the NDC behaviour to the PDC behaviour predicting a potential generation of terahertz radiations whose applications are relevance in current-day technology, industry, and research.

  13. Self-field ac losses in biaxially aligned Y{endash}Ba{endash}Cu{endash}O tape conductors

    SciTech Connect

    Iijima, Y.; Hosaka, M.; Sadakata, N.; Saitoh, T.; Kohno, O.; Takeda, K.

    1997-11-01

    Self-field ac losses were measured by the conventional ac four-probe method in biaxially aligned Y{endash}Ba{endash}Cu{endash}O tapes using polycrystalline Hastelloy tapes with textured yttria-stabilized-zirconia buffer layers. The ac losses increased in proportion to the fourth power of transport current in the high J{sub c} sample, and agreed well with Norris{close_quote} equation for thin strip conductors. However, the low J{sub c} sample had rather higher losses than Norris{close_quote} prediction, suggesting excessive magnetic flux penetration caused by percolated current paths. The results confirmed Norris{close_quote} prediction of the low ac losses for thin strip conductors, and indicated the importance of removing percolated structures of current paths to avoid higher ac losses than the theoretical predictions based on uniform conductors. {copyright} {ital 1997 American Institute of Physics.}

  14. Stretching of long DNA molecules in the microvortex induced by laser and ac electric field

    NASA Astrophysics Data System (ADS)

    Nakano, Michihiko; Kurita, Hirofumi; Komatsu, Jun; Mizuno, Akira; Katsura, Shinji

    2006-09-01

    A microvortex is generated around an infrared laser focus where an intense ac electric field is applied. The authors used this optoelectrostatic microvortex for stretching individual long DNAs. When λ-or T4-phage DNA molecules were introduced into the optoelectrostatic microvortex, they were stretched around the laser focus. In addition, especially for longer T4 DNA molecules, it was possible to keep it in stretching form for more than 30s. Using this method, length of DNA molecules can be measured without fixing to a substrate. This method can be applied to DNA molecules longer than about 10μm.

  15. Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Jordan, Andreas; Scholz, Regina; Wust, Peter; Fähling, Horst; Felix, Roland

    1999-07-01

    The story of hyperthermia with small particles in AC magnetic fields started in the late 1950s, but most of the studies were unfortunately conducted with inadequate animal systems, inexact thermometry and poor AC magnetic field parameters, so that any clinical implication was far behind the horizon. More than three decades later, it was found, that colloidal dispersions of superparamagnetic (subdomain) iron oxide nanoparticles exhibit an extraordinary specific absorption rate (SAR [ W/ g]), which is much higher at clinically tolerable H 0 f combinations in comparison to hysteresis heating of larger multidomain particles. This was the renaissance of a cancer treatment method, which has gained more and more attention in the last few years. Due to the increasing number of randomized clinical trials preferentially in Europe with conventional E-field hyperthermia systems, the general medical and physical experience in hyperthermia application is also rapidly growing. Taking this increasing clinical experience carefully into account together with the huge amount of new biological data on heat response of cells and tissues, the approach of magnetic fluid hyperthermia (MFH) is nowadays more promising than ever before. The present contribution reviews the current state of the art and some of the future perspectives supported by advanced methods of the so-called nanotechnology.

  16. AC transport in p-Ge/GeSi quantum well in high magnetic fields

    SciTech Connect

    Drichko, I. L.; Malysh, V. A.; Smirnov, I. Yu.; Golub, L. E.; Tarasenko, S. A.; Suslov, A. V.; Mironov, O. A.; Kummer, M.; Känel, H. von

    2014-08-20

    The contactless surface acoustic wave technique is implemented to probe the high-frequency conductivity of a high-mobility p-Ge/GeSi quantum well structure in the regime of integer quantum Hall effect (IQHE) at temperatures 0.3–5.8 K and magnetic fields up to 18 T. It is shown that, in the IQHE regime at the minima of conductivity, holes are localized and ac conductivity is of hopping nature and can be described within the “two-site” model. The analysis of the temperature and magnetic-field-orientation dependence of the ac conductivity at odd filing factors enables us to determine the effective hole g-factor, |g{sub zz}|≈4.5. It is shown that the in-plane component of the magnetic field leads to a decrease in the g-factor as well as increase in the cyclotron mass, which is explained by orbital effects in the complex valence band of germanium.

  17. Enhancement of the thermoelectric figure of merit in a quantum dot due to external ac field

    NASA Astrophysics Data System (ADS)

    Chen, Qiao; Wang, Zhi-yong; Xie, Zhong-Xiang

    2013-08-01

    We investigate the figure of merit of a quantum dot (QD) system irradiated with an external microwave filed by nonequilibrium Green's function (NGF) technique. Results show that the frequency of microwave field influence the figure of merit ZT significantly. At low temperature, a sharp peak can be observed in the figure of merit ZT as the frequency of ac field increases. As the frequency varies, several zero points and resonant peaks emerge in the figure of merit ZT. By adjusting the frequency of the microwave field, we can obtain high ZT. The figure of merit ZT increases with the decreasing of linewidth function Γ. In addition, Wiedemann-Franz law does not hold, particularly in the low frequency region due to multi-photon emission and absorption. Some novel thermoelectric properties are also found in two-level QD system.

  18. Orientation and Pearl-Chain Formation of Paramecia Induced by AC Electric Field

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Toyomasa; Tanji, Ayafumi; Yagi, Hiroshi

    1987-11-01

    Paramecium deciliated with ethanol is able to orient itself in a parallel (positive orientation) or perpendicular direction (negative orientation) to an AC electric field, depending upon the applied frequency. We found that this turnover frequency is between 1 and 10 MHz in a non-electrolyte solution for the cells. The cells also aggregate with one another by the mutual dielectrophoresis in the electric field, provided the distance between the two cells is shorter than about half their length. The two critical field intensities for the orientation and for the aggregation cannot be clearly distinguished. Consequently, when the cell density in the solution is sufficiently high, a positive or negative pearl-chain of the cells is formed, depending upon the applied frequency.

  19. Influence of the ac magnetic field frequency on the magnetoimpedance of amorphous wire

    NASA Astrophysics Data System (ADS)

    Chen, A. P.; García, C.; Zhukov, A.; Domínguez, L.; Blanco, J. M.; González, J.

    2006-05-01

    Experimental and theoretical studies on the influence of ac magnetic field frequency on the axial diagonal (ζzz) and off-diagonal (ζphiz) components of the magnetoimpedance (MI) tensor in (Co0.94Fe0.06)72.5Si12.5B15 amorphous wires have been performed. The frequency (f) of an ac current flowing along the wire was varied from 1 to 20 MHz with the current amplitude less than 15 mA. In order to enhance the ζphiz component, the amorphous wire was submitted to torsion annealing for developing and preserving a helical magnetic anisotropy in the surface of the wire. The experimental measurements show that the value of the impedance is proportional to the square-root of the ac current frequency, \\sqrt f , in the vicinity of Hex < HK and this increase is due to the contribution of the resistance (real part of the impedance). The measurements also indicate that the peaks of the MI curve shift slightly towards higher field values with increasing f. In a theoretical study the magnetoimpedance expressions ζzz and ζphiz have been deduced using the Faraday law in combination with the solutions of the Maxwell and Landau-Lifshitz-Gilbert (LLG) equations. By analysing quantitatively the spectra of ζzz and ζphiz, the phenomenon of the shift in the peaks of the MI curve with f has been considered as a characteristic of the helical anisotropy in the domain structure of the wire surface.

  20. Yang-Mills field theory in an axial field-strength gauge

    NASA Astrophysics Data System (ADS)

    Tyburski, Lawrence

    1984-02-01

    We introduce what we call an axial field-strength gauge as an alternative to the conventional Coulomb gauge in the Yang-Mills field theory. This new gauge does not share the pathologies that were shown to exist in the Coulomb gauge by Gribov and Mandelstam. We apply this new gauge to the calculation, in two special cases, of the energy possessed by sources J1,20 interacting in the presence of a background field produced by a source J30, which is assumed to be of order g-1, in the limit g goes to zero, where g is the coupling constant. In the case in which the charge density J30 consists of two infinite uniform parallel plates bearing charge densities equal in magnitude but opposite in sign, we find that the potential energy possessed by two point particles bearing charge densities J1,20 grows linearly in proportion to the distance between them at large distances when the two particles are separated along a line parallel to the background field. This is a confining potential.

  1. A fast parallel code for calculating energies and oscillator strengths of many-electron atoms at neutron star magnetic field strengths in adiabatic approximation

    NASA Astrophysics Data System (ADS)

    Engel, D.; Klews, M.; Wunner, G.

    2009-02-01

    We have developed a new method for the fast computation of wavelengths and oscillator strengths for medium-Z atoms and ions, up to iron, at neutron star magnetic field strengths. The method is a parallelized Hartree-Fock approach in adiabatic approximation based on finite-element and B-spline techniques. It turns out that typically 15-20 finite elements are sufficient to calculate energies to within a relative accuracy of 10-5 in 4 or 5 iteration steps using B-splines of 6th order, with parallelization speed-ups of 20 on a 26-processor machine. Results have been obtained for the energies of the ground states and excited levels and for the transition strengths of astrophysically relevant atoms and ions in the range Z=2…26 in different ionization stages. Catalogue identifier: AECC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3845 No. of bytes in distributed program, including test data, etc.: 27 989 Distribution format: tar.gz Programming language: MPI/Fortran 95 and Python Computer: Cluster of 1-26 HP Compaq dc5750 Operating system: Fedora 7 Has the code been vectorised or parallelized?: Yes RAM: 1 GByte Classification: 2.1 External routines: MPI/GFortran, LAPACK, PyLab/Matplotlib Nature of problem: Calculations of synthetic spectra [1] of strongly magnetized neutron stars are bedevilled by the lack of data for atoms in intense magnetic fields. While the behaviour of hydrogen and helium has been investigated in detail (see, e.g., [2]), complete and reliable data for heavier elements, in particular iron, are still missing. Since neutron stars are formed by the collapse of the iron cores of massive stars, it may be assumed that their atmospheres contain an iron plasma. Our objective is to fill the gap

  2. 47 CFR 90.771 - Field strength limits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MOBILE RADIO SERVICES Regulations Governing Licensing and Use of Frequencies in the 220-222 MHz Band... antenna height differential. (b) Licensees will be permitted to exceed the predicted 38 dBu field...

  3. 47 CFR 90.771 - Field strength limits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MOBILE RADIO SERVICES Regulations Governing Licensing and Use of Frequencies in the 220-222 MHz Band... antenna height differential. (b) Licensees will be permitted to exceed the predicted 38 dBu field...

  4. 47 CFR 90.771 - Field strength limits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MOBILE RADIO SERVICES Regulations Governing Licensing and Use of Frequencies in the 220-222 MHz Band... antenna height differential. (b) Licensees will be permitted to exceed the predicted 38 dBu field...

  5. 47 CFR 90.771 - Field strength limits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MOBILE RADIO SERVICES Regulations Governing Licensing and Use of Frequencies in the 220-222 MHz Band... antenna height differential. (b) Licensees will be permitted to exceed the predicted 38 dBu field...

  6. Large-field-strength short-period undulator design

    NASA Astrophysics Data System (ADS)

    Varfolomeev, A. A.; Ivanchenkov, S. N.; Khlebnikov, A. S.; Pellegrini, C.; Baranov, G. A.; Michailov, V. I.

    1992-07-01

    A high-quality strong-field hybrid undulator has been designed for an infrared FEL project to be performed at UCLA. The primary magnetic flux is provided by C-shaped vanadium-permendur yokes and SmCo5 magnets. An additional magnetic flux is supplied by thin NdFeB magnet blocks placed between the yoke poles. This magnet geometry provides a high saturation limit for the magnetic field in the gap area. With the 15 mm period and 5 mm gap a peak on-axis field of 7.3 kG has been achieved. The undulator contains 40 periods. The high accuracy of the yoke poles alignment along with the ability to move the thin permanent magnet blocks provides an on-axis magnetic field accuracy better than 0.5%.

  7. Comparisons of 76Hz transverse and radial magnetic field strength components received in Connecticut

    NASA Astrophysics Data System (ADS)

    Bannister, P. R.

    1986-03-01

    Since June 1970, we have made extremely low frequency (ELF) measurements of the transverse horizontal magnetic field strength, H sub phi, received in Connecticut. Occasionally, we also have measured either the vertical electric field strength, E sub v, or the radial horizontal magnetic field strength, H sub rho. The AN/BSR-1 ELF receivers are located at the Naval Underwater Systems Center (NUSC), at New London, CT. The transmission source for these farfield (1.6-Mm range) measurements is the U.S. Navy's ELF Wisconsin Test Facility (WTF), located in the Chequamegon National Forest in north-central Wisconsin. The results of 136 days of radial magnetic field measurements taken from November 1977 through June 1984 are discussed in this report. The main result is that during disturbed propagation conditions, the radial and transverse magnetic field strength daily plots (versus GMT) are usually dissimilar (in both amplitude and relative phase).

  8. STRENGTH PROPERTIES OF POLED PZT SUBJECTED TO BIAXIAL FLEXURAL LOADING IN HIGH ELECTRIC FIELD

    SciTech Connect

    Wang, Hong; Lin, Hua-Tay; Wereszczak, Andrew A

    2010-01-01

    Failure of poled PZT has been experimentally studied using ball-on-ring (BoR) biaxial flexure strength tests with an electric field concurrently applied. The as-received and aged PZTs were tested in high electric fields of -3 to 4 times the coercive field. Both the sign and the magnitude of electric field had a significant effect on the strength of poled PZT. A surface flaw type with a depth of around 18 m was identified as the strength limiter and responsible for the failure of the tested PZT. With a value of 0.76 MPa m1/2 in the open circle condition, the fracture toughness of the poled PZT was affected by an applied electric field just as the strength was affected. These results and observations have the potential to serve probabilistic reliability analysis and design optimization of multilayer PZT piezo actuators.

  9. Field Evolved Resistance in Helicoverpa armigera (Lepidoptera: Noctuidae) to Bacillus thuringiensis Toxin Cry1Ac in Pakistan

    PubMed Central

    Alvi, Anwaar H. K.; Sayyed, Ali H.; Naeem, Muhammad; Ali, Muhammad

    2012-01-01

    Helicoverpa armigera (Hübner) is one of the most destructive pests of several field and vegetable crops, with indiscriminate use of insecticides contributing to multiple instances of resistance. In the present study we assessed whether H. armigera had developed resistance to Bt cotton and compared the results with several conventional insecticides. Furthermore, the genetics of resistance was also investigated to determine the inheritance to Cry1Ac resistance. To investigate the development of resistance to Bt cotton, and selected foliar insecticides, H. armigera populations were sampled in 2010 and 2011 in several cotton production regions in Pakistan. The resistance ratios (RR) for Cry1Ac, chlorpyrifos, profenofos, cypermethrin, spinosad, indoxacarb, abamectin and deltamethrin were 580-fold, 320-, 1110-, 1950-, 200-, 380, 690, and 40-fold, respectively, compared with the laboratory susceptible (Lab-PK) population. Selection of the field collected population with Cry1Ac in 2010 for five generations increased RR to 5440-fold. The selection also increased RR for deltamethrin, chlorpyrifos, profenofos, cypermethrin, spinosad, indoxacarb, abamectin to 125-folds, 650-, 2840-, 9830-, 370-, 3090-, 1330-fold. The estimated LC50s for reciprocal crosses were 105 µg/ml (Cry1Ac-SEL female × Lab-PK male) and 81 g µg/ml (Lab-PK female × Cry1Ac-SEL male) suggesting that the resistance to Cry1Ac was autosomal; the degree of dominance (DLC) was 0.60 and 0.57 respectively. Mixing of enzyme inhibitors significantly decreased resistance to Cry1Ac suggesting that the resistance to Cry1Ac and other insecticides tested in the present study was primarily metabolic. Resistance to Cry1Ac was probably due to a single but unstable factor suggesting that crop rotation with non-Bt cotton or other crops could reduce the selection pressure for H. armigera and improve the sustainability of Bt cotton. PMID:23077589

  10. Field evolved resistance in Helicoverpa armigera (Lepidoptera: Noctuidae) to Bacillus thuringiensis toxin Cry1Ac in Pakistan.

    PubMed

    Alvi, Anwaar H K; Sayyed, Ali H; Naeem, Muhammad; Ali, Muhammad

    2012-01-01

    Helicoverpa armigera (Hübner) is one of the most destructive pests of several field and vegetable crops, with indiscriminate use of insecticides contributing to multiple instances of resistance. In the present study we assessed whether H. armigera had developed resistance to Bt cotton and compared the results with several conventional insecticides. Furthermore, the genetics of resistance was also investigated to determine the inheritance to Cry1Ac resistance. To investigate the development of resistance to Bt cotton, and selected foliar insecticides, H. armigera populations were sampled in 2010 and 2011 in several cotton production regions in Pakistan. The resistance ratios (RR) for Cry1Ac, chlorpyrifos, profenofos, cypermethrin, spinosad, indoxacarb, abamectin and deltamethrin were 580-fold, 320-, 1110-, 1950-, 200-, 380, 690, and 40-fold, respectively, compared with the laboratory susceptible (Lab-PK) population. Selection of the field collected population with Cry1Ac in 2010 for five generations increased RR to 5440-fold. The selection also increased RR for deltamethrin, chlorpyrifos, profenofos, cypermethrin, spinosad, indoxacarb, abamectin to 125-folds, 650-, 2840-, 9830-, 370-, 3090-, 1330-fold. The estimated LC(50s) for reciprocal crosses were 105 µg/ml (Cry1Ac-SEL female × Lab-PK male) and 81 g µg/ml (Lab-PK female × Cry1Ac-SEL male) suggesting that the resistance to Cry1Ac was autosomal; the degree of dominance (D(LC)) was 0.60 and 0.57 respectively. Mixing of enzyme inhibitors significantly decreased resistance to Cry1Ac suggesting that the resistance to Cry1Ac and other insecticides tested in the present study was primarily metabolic. Resistance to Cry1Ac was probably due to a single but unstable factor suggesting that crop rotation with non-Bt cotton or other crops could reduce the selection pressure for H. armigera and improve the sustainability of Bt cotton. PMID:23077589

  11. ac losses and field and current density distribution during a full cycle of a stack of superconducting tapes

    NASA Astrophysics Data System (ADS)

    Yuan, Weijia; Campbell, A. M.; Coombs, T. A.

    2010-05-01

    Starting from an existing model by Clem et al., this paper has analyzed how the current density and magnetic field distribution of a stack of superconducting tapes with ac transport currents or applied fields will change in a full cycle. This paper assumes when the ac current or field starts to change in the other direction, a new penetrated region will begin to penetrate from the superconductor surface. If we assume Jc is constant in the critical region, this paper demonstrates that the Claassen formula (7) can be used to calculate the exact ac losses. If Jc depends on local Bz, we can use Eq. (9) to quickly predict the ac losses. This approach does not need to calculate a complete ac cycle. This saves considerably computation time while gives a result which is in close agreement with that calculated from a complete ac cycle. The calculation method can be applied for calculating a superconducting pancake coil if the coil radius is much larger than the tape width.

  12. Coherence-population-trapping transients induced by an ac magnetic field

    NASA Astrophysics Data System (ADS)

    Margalit, L.; Rosenbluh, M.; Wilson-Gordon, A. D.

    2012-06-01

    Coherent-population-trapping transients induced by an ac magnetic field are investigated theoretically for a realistic three-level Λ system in the D1 line of 87Rb. The contributions to the transient probe absorption from the various subsystems that compose the realistic atomic system are examined and the absorption of each Λ subsystem is compared to that of a simple Λ system. The population redistribution due to optical pumping is shown to be the dominant cause of the difference between the contributions of the various subsystems to the oscillatory character of the probe absorption. We also discuss the series of transients that reappear every half-cycle time of a modulated magnetic field when the system is in two-photon resonance, and we study the transient behavior as a function of the probe detuning. The effect of a buffer gas on the amplitude and shape of the transients is considered.

  13. Accelerated Detection of Viral Particles by Combining AC Electric Field Effects and Micro-Raman Spectroscopy

    PubMed Central

    Tomkins, Matthew Robert; Liao, David Shiqi; Docoslis, Aristides

    2015-01-01

    A detection method that combines electric field-assisted virus capture on antibody-decorated surfaces with the “fingerprinting” capabilities of micro-Raman spectroscopy is demonstrated for the case of M13 virus in water. The proof-of-principle surface mapping of model bioparticles (protein coated polystyrene spheres) captured by an AC electric field between planar microelectrodes is presented with a methodology for analyzing the resulting spectra by comparing relative peak intensities. The same principle is applied to dielectrophoretically captured M13 phage particles whose presence is indirectly confirmed with micro-Raman spectroscopy using NeutrAvidin-Cy3 as a labeling molecule. It is concluded that the combination of electrokinetically driven virus sampling and micro-Raman based signal transduction provides a promising approach for time-efficient and in situ detection of viruses. PMID:25580902

  14. AC electric field induced dielectrophoretic assembly behavior of gold nanoparticles in a wide frequency range

    NASA Astrophysics Data System (ADS)

    Liu, Weiyu; Wang, Chunhui; Ding, Haitao; Shao, Jinyou; Ding, Yucheng

    2016-05-01

    In this work, we focus on frequency-dependence of pearl chain formations (PCF) of gold nanoparticles driven by AC dielectrophoresis (DEP), especially in a low field-frequency range, where induced double-layer charging effect at ideally polarizable surfaces on particle DEP behavior and surrounding liquid motion need not be negligible. As field frequency varies, grown features of DEP assembly structures ranging from low-frequency non-bridged gap to high-frequency single gold nanoparticle-made nanowires bridging the electrodes are demonstrated experimentally. Specifically, at 10 kHz, a kind of novel channel-like structure with parallel opposing banks is formed at the center of interelectrode gap. In stark contrast, at 1 MHz, thin PCF with diameter of 100 nm is created along the shortest distance of the isolation spacing. Moreover, a particular conductive path of nanoparticle chains is produced at 1 MHz in a DEP device embedded with multiple floating electrodes. A theoretical framework taking into account field-induced double-layer polarization at both the particle/electrolyte and electrode/electrolyte interface is developed to correlate these experimental observations with induced-charge electrokinetic (ICEK) phenomenon. And a RC circuit model is helpful in accounting for the formation of this particular non-bridged channel-like structure induced by a low-frequency AC voltage. As compared to thin PCF formed at high field frequency that effectively short circuits the electrode pair, though it is difficult for complete PCF bridging to occur at low frequency, the non-bridged conducting microstructure has potential to further miniaturize the size of electrode gap fabricated by standard micromachining process and may find useful application in biochemical sensing.

  15. Human aquaporin 4 gating dynamics in dc and ac electric fields: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Garate, J.-A.; English, Niall J.; MacElroy, J. M. D.

    2011-02-01

    Water self-diffusion within human aquaporin 4 has been studied using molecular dynamics (MD) simulations in the absence and presence of external ac and dc electric fields. The computed diffusive (pd) and osmotic (pf) permeabilities under zero-field conditions are (0.718 ± 0.24) × 10-14 cm3 s-1 and (2.94 ± 0.47) × 10-14 cm3 s-1, respectively; our pf agrees with the experimental value of (1.50 ± 0.6) × 10-14 cm3 s-1. A gating mechanism has been proposed in which side-chain dynamics of residue H201, located in the selectivity filter, play an essential role. In addition, for nonequilibrium MD in external fields, it was found that water dipole orientation within the constriction region of the channel is affected by electric fields (e-fields) and that this governs the permeability. It was also found that the rate of side-chain flipping motion of residue H201 is increased in the presence of e-fields, which influences water conductivity further.

  16. Dynamical mass generation in QED with magnetic fields: Arbitrary field strength and coupling constant

    SciTech Connect

    Rojas, Eduardo; Ayala, Alejandro; Bashir, Adnan; Raya, Alfredo

    2008-05-01

    We study the dynamical generation of masses for fundamental fermions in quenched quantum electrodynamics, in the presence of magnetics fields of arbitrary strength, by solving the Schwinger-Dyson equation for the fermion self-energy in the rainbow approximation. We employ the Ritus eigenfunction formalism which provides a neat solution to the technical problem of summing over all Landau levels. It is well known that magnetic fields catalyze the generation of fermion mass m for arbitrarily small values of electromagnetic coupling {alpha}. For intense fields it is also well known that m{proportional_to}{radical}(eB). Our approach allows us to span all regimes of parameters {alpha} and eB. We find that m{proportional_to}{radical}(eB) provided {alpha} is small. However, when {alpha} increases beyond the critical value {alpha}{sub c} which marks the onslaught of dynamical fermion masses in vacuum, we find m{proportional_to}{lambda}, the cutoff required to regularize the ultraviolet divergences. Our method permits us to verify the results available in literature for the limiting cases of eB and {alpha}. We also point out the relevance of our work for possible physical applications.

  17. Probing High-Velocity Transient-Field Strength Using Heavy-ions Traversing Fe and Gd

    SciTech Connect

    Fiori, E.; Georgiev, G.; Cabaret, S.; Lozeva, R.; Jungclaus, A.; Modamio, V.; Walker, J.; Balabanski, D. L.; Blazhev, A.; Clement, E.; Grevy, S.; Stodel, C.; Thomas, J. C.; Danchev, M.; Daugas, J. M.; Hass, M.; Kumar, V.; Leske, J.; Pietralla, N.

    2009-08-26

    The transient field strength for {sup 76}Ge ions, passing through iron and gadolinium layers at velocities approxZv{sub 0}, has been measured. Although a sizeable value has been obtained for Gd, a vanishing strength has been observed in Fe.

  18. 47 CFR 5.87 - Frequencies for field strength surveys or equipment demonstrations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Frequencies for field strength surveys or equipment demonstrations. 5.87 Section 5.87 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL... strength surveys or equipment demonstrations. (a) Authorizations issued under §§ 5.3 (e) and (f) of...

  19. Magnetic diode for measurement of magnetic-field strength

    SciTech Connect

    Fedotov, S.I.; Zalkind, V.M.

    1988-02-01

    The accuracy of fabrication and assembly of the elements of the magnetic systems of thermonuclear installations of the stellarator type is checked by study of the topography of the confining magnetic field and is determined by the space resolution and accuracy of the measuring apparatus. A magnetometer with a galvanomagnetic sensor is described that is used to adjust the magnetic system of the Uragan-3 stellarator. The magnetometer measure magnetic-field induction in the range of 6 x 10/sup -7/-10/sup -2/ T with high space resolution.

  20. ON A POSSIBLE EXPLANATION OF THE LONG-TERM DECREASE IN SUNSPOT FIELD STRENGTH

    SciTech Connect

    Nagovitsyn, Yury A.; Pevtsov, Alexei A.; Livingston, William C. E-mail: apevtsov@nso.edu

    2012-10-10

    Recent studies revealed a controversy in long-term variations in sunspot field strengths. On one hand, the sunspot field strengths computed by averaging both large and small sunspots and pores show a gradual decrease over the declining phase of solar Cycle 23 and the rising phase of Cycle 24. On the other hand, the strongest sunspot field strengths demonstrate only solar cycle variations with no long-term decline. Here, we investigate the field strength and area properties of sunspots in an attempt to reconcile the presence of both tendencies in recent sunspot field strength measurements. First, we analyze the data set from Penn and Livingston, and we show that in addition to the previously reported long-term decline, the data show the solar cycle variation when only sunspots with the strongest magnetic fields are included. Next, we investigate the variations in the number of sunspots of different sizes, and we find a negative correlation between the numbers of small and large sunspots. Finally, we show that during the period of 1998-2011, the number of large sunspots gradually decreased, while the number of small sunspots steadily increased. We suggest that this change in the fraction of small and large sunspots (perhaps, due to changes in the solar dynamo) can explain the gradual decline in average sunspot field strength as observed by Penn and Livingston.

  1. A fast parallel code for calculating energies and oscillator strengths of many-electron atoms at neutron star magnetic field strengths in adiabatic approximation

    NASA Astrophysics Data System (ADS)

    Engel, D.; Klews, M.; Wunner, G.

    2009-02-01

    We have developed a new method for the fast computation of wavelengths and oscillator strengths for medium-Z atoms and ions, up to iron, at neutron star magnetic field strengths. The method is a parallelized Hartree-Fock approach in adiabatic approximation based on finite-element and B-spline techniques. It turns out that typically 15-20 finite elements are sufficient to calculate energies to within a relative accuracy of 10-5 in 4 or 5 iteration steps using B-splines of 6th order, with parallelization speed-ups of 20 on a 26-processor machine. Results have been obtained for the energies of the ground states and excited levels and for the transition strengths of astrophysically relevant atoms and ions in the range Z=2…26 in different ionization stages. Catalogue identifier: AECC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3845 No. of bytes in distributed program, including test data, etc.: 27 989 Distribution format: tar.gz Programming language: MPI/Fortran 95 and Python Computer: Cluster of 1-26 HP Compaq dc5750 Operating system: Fedora 7 Has the code been vectorised or parallelized?: Yes RAM: 1 GByte Classification: 2.1 External routines: MPI/GFortran, LAPACK, PyLab/Matplotlib Nature of problem: Calculations of synthetic spectra [1] of strongly magnetized neutron stars are bedevilled by the lack of data for atoms in intense magnetic fields. While the behaviour of hydrogen and helium has been investigated in detail (see, e.g., [2]), complete and reliable data for heavier elements, in particular iron, are still missing. Since neutron stars are formed by the collapse of the iron cores of massive stars, it may be assumed that their atmospheres contain an iron plasma. Our objective is to fill the gap

  2. PUTTING CORONAL SEISMOLOGY ESTIMATES OF THE MAGNETIC FIELD STRENGTH TO THE TEST

    SciTech Connect

    De Moortel, I.; Pascoe, D. J.

    2009-07-10

    The magnetic field strength inside a model coronal loop is 'estimated' using coronal seismology, to examine the reliability of magnetic field strengths derived from observed, transverse coronal loop oscillations. Three-dimensional numerical simulations of the interaction of an external pressure pulse with a coronal loop (modeled as a three-dimensional density enhancement inside a two-dimensional magnetic arcade) are analyzed and the 'observed' properties of the excited transverse loop oscillations are used to derive the value of the local magnetic field strength, following the method of Nakariakov and Ofman. Due to the (unexpected) change in periodicity, the magnetic field derived from our 'observed' oscillation is substantially different from the actual (input) magnetic field value (approximately 50%). Coronal seismology can derive useful information about the local magnetic field, but the combined effect of the loop curvature, the density ratio, and aspect ratio of the loop appears to be more important than previously expected.

  3. On the Relationship Between G-Band Bright Point Dynamics and Their Magnetic Field Strengths

    NASA Astrophysics Data System (ADS)

    Yang, Yunfei; Li, Qiang; Ji, Kaifan; Feng, Song; Deng, Hui; Wang, Feng; Lin, Jiaben

    2016-04-01

    G-band bright points (GBPs) are regarded as good manifestations of magnetic flux concentrations. We aim to investigate the relation between the dynamic properties of GBPs and their longitudinal magnetic field strengths. High spatial and temporal resolution observations were recorded simultaneously with G-band filtergrams and Narrow-band Filter Imager (NFI) Stokes I and V images with Hinode/ Solar Optical Telescope. The GBPs are automatically identified and tracked in the G-band images, and the corresponding longitudinal magnetic field strength of each GBP is extracted from the calibrated NFI magnetograms by a point-to-point method. After categorizing the GBPs into five groups by their longitudinal magnetic field strengths, we analyzed the dynamics of each group of GBPs. The results suggest that with increasing longitudinal magnetic field strengths of GBPs correspond to a decrease in their horizontal velocities and motion ranges as well as by showing more complex motion paths. This suggests that magnetic elements showing weaker magnetic field strengths move faster and farther along straighter paths, while stronger elements move more slowly in more erratic paths within a smaller region. The dynamic behaviors of GBPs with different longitudinal magnetic field strengths can be explained by that the stronger flux concentrations withstand the convective flows much better than weaker ones.

  4. Mesoscopic turbulence and local order in Janus particles self-propelling under an ac electric field

    NASA Astrophysics Data System (ADS)

    Nishiguchi, Daiki; Sano, Masaki

    2015-11-01

    To elucidate mechanisms of mesoscopic turbulence exhibited by active particles, we experimentally study turbulent states of nonliving self-propelled particles. We realize an experimental system with dense suspensions of asymmetrical colloidal particles (Janus particles) self-propelling on a two-dimensional surface under an ac electric field. Velocity fields of the Janus particles in the crowded situation can be regarded as a sort of turbulence because it contains many vortices and their velocities change abruptly. Correlation functions of their velocity field reveal the coexistence of polar alignment and antiparallel alignment interactions, which is considered to trigger mesoscopic turbulence. Probability distributions of local order parameters for polar and nematic orders indicate the formation of local clusters with particles moving in the same direction. A broad peak in the energy spectrum of the velocity field appears at the spatial scales where the polar alignment and the cluster formation are observed. Energy is injected at the particle scale and conserved quantities such as energy could be cascading toward the larger clusters.

  5. Mesoscopic turbulence and local order in Janus particles self-propelling under an ac electric field.

    PubMed

    Nishiguchi, Daiki; Sano, Masaki

    2015-11-01

    To elucidate mechanisms of mesoscopic turbulence exhibited by active particles, we experimentally study turbulent states of nonliving self-propelled particles. We realize an experimental system with dense suspensions of asymmetrical colloidal particles (Janus particles) self-propelling on a two-dimensional surface under an ac electric field. Velocity fields of the Janus particles in the crowded situation can be regarded as a sort of turbulence because it contains many vortices and their velocities change abruptly. Correlation functions of their velocity field reveal the coexistence of polar alignment and antiparallel alignment interactions, which is considered to trigger mesoscopic turbulence. Probability distributions of local order parameters for polar and nematic orders indicate the formation of local clusters with particles moving in the same direction. A broad peak in the energy spectrum of the velocity field appears at the spatial scales where the polar alignment and the cluster formation are observed. Energy is injected at the particle scale and conserved quantities such as energy could be cascading toward the larger clusters. PMID:26651697

  6. Deformation and Interaction of Droplet Pairs in a Microchannel Under ac Electric Fields

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Song, Yongxin; Li, Dongqing; Hu, Guoqing

    2015-08-01

    The deformation and interaction of a droplet pair in an electric field determine the success of droplet coalescence. Electric intensity and initial droplet separation are crucial parameters in this process. In this work, a combined theoretical and numerical analysis is performed to study the electrohydrodynamics of confined droplet pairs in a rectangular microchannel under ac electric fields. We develop a theoretical model to predict the relationship between critical electric intensity and droplet separation. A geometrical model relating the initial droplet separation to the cone angle is also established to determine the critical separation for partial coalescence. These models are validated by comparisons with existing experimental observations. According to the initial separation and electric intensity, five regimes of droplet interactions are classified by direct numerical simulations, namely noncoalescence, coalescence, partial coalescence, ejection after coalescence, and ejection with partial coalescence. According to their controlling mechanisms, the five regimes are distinguished by three well-defined boundaries. The detailed dynamics of the partial coalescence phenomenon is resolved when the droplet separation exceeds the critical value. A dynamic liquid bridge between the droplets is sustained by the competition between surface tension and electric stress. The dynamics of ejected microjets at the exterior ends are also addressed to show their responses to the oscillating electric field. The full understanding of the droplet dynamics under electric fields can be used to predict the droplet fusion behaviors and thus to facilitate the design of droplet-based microfluidic devices.

  7. Standard and nonstandard nematic electrohydrodynamic convection in the presence of asymmetric ac electric fields

    NASA Astrophysics Data System (ADS)

    Low, Jonathan; Hogan, S. John

    2008-10-01

    In planar nematic electrohydrodynamic convection (EHC), a microscopic liquid crystal cell is driven by a homogeneous ac electric field, which, if strong enough, causes the fluid to destabilize into a regular pattern-forming state. We consider asymmetric electric fields E(t)=E(t+T)≠-E(t+T/2) , which leads to the possibility of three different types of instabilities at onset: conductive, dielectric, and subharmonic. The first two are already well known as they are easily produced when the system is driven by symmetric electric fields; the third can only occur when the electric field symmetry is broken. We present theoretical results on EHC using linear stability analysis and Floquet theory. We consider rigid and free boundary conditions, extending the model to two Fourier modes in the vertical plane, the inclusion of flexoelectricity, and using standard (nematic electric conductivity σa>0 and dielectric anisotorpy γa<0 ) and nonstandard (σa<0) material parameters. We make full use of a three-dimensional linear model where two mutually perpendicular planar wave numbers q and p can be varied. Our results show that there is a qualitative difference between the boundary conditions used, which is also dependent on how many vertical Fourier modes were used in the model. We have obtained threshold values favoring oblique rolls in subharmonic and dielectric regimes in parameter space. For the nonstandard EHC parameter values, both conduction and subharmonic regimes disappear and only the dielectric threshold exists.

  8. The effect of dissipation on the torque and force experienced by nanoparticles in an AC field

    NASA Astrophysics Data System (ADS)

    Claro, F.; Fuchs, R.; Robles, P.; Rojas, R.

    2015-09-01

    We discuss the force and torque acting on spherical particles in an ensemble in the presence of a uniform AC electric field. We show that for a torque causing particle rotation to appear the particle must be absorptive. Our proof includes all electromagnetic excitations, which in the case of two or more particles gives rise to one or more resonances in the spectrum of force and torque depending on interparticle distance. Several peaks are found in the force and torque between two spheres at small interparticle distances, which coalesce to just one as the separation grows beyond three particle radii. We also show that in the presence of dissipation the force on each particle is nonconservative and may not be derived from the classical interaction potential energy as has been done in the past.

  9. Study on technology of high-frequency pulsed magnetic field strength measurement.

    PubMed

    Chen, Yi-Mei; Liu, Zhi-Peng; Yin, Tao

    2012-01-01

    High-frequency transient weak magnetic field is always involved in researches about biomedical engineering field while common magnetic-field sensors cannot work properly at frequencies as high as MHz. To measure the value of MHz-level weak pulsed magnetic-field strength accurately, this paper designs a measurement and calibration method for pulsed magnetic-field. In this paper, a device made of Nonferromagnetic material was independently designed and applied to pulsed magnetic field measurement. It held an accurately relative position between the magnetic field generating coil and the detecting coil. By applying a sinusoidal pulse to the generator, collecting the induced electromotive force of the detector, the final magnetic field strength was worked out through algorithms written in Matlab according to Faraday's Law. Experiments were carried out for measurement and calibration. Experiments showed that, under good stability and consistency, accurate measurement of magnetic-field strength of a sinepulse magnetic-field can be achieved, with frequency at 0.5, 1, 1.5 MHz and strength level at micro-Tesla. Calibration results carried out a measuring relative error about 2.5%. PMID:23366106

  10. Magnetite reveals ambient field strength at low temperatures

    NASA Astrophysics Data System (ADS)

    Smirnov, Alexei V.; Tarduno, John A.

    Magnetite (Fe3O4) is the most important and oldest known magnetic mineral on Earth (Figure l). We have come a long way from the magnetite loadstone compasses of ancient China; magnetite and titanomagnetite have been established as the principal carriers of geologically important remanent magnetizations in rocks, the study of which led to the plate tectonic paradigm. We now recognize that magnetite plays an important role in the biosphere. Some organisms contain intra-cellular particles of Fe3O4 that they use for spatial orientation and navigation. When preserved in rocks, these particles—called "magnetofossils"— can provide important insight into the origin and development of life here, and perhaps, on other planets [e.g., Thomas-Keprta et al., 2000]. Magnetite is now used in the medical field and in nanotechnology research. Nanoparticles of magnetite are used as a contrasting agent in magnetic resonance imaging and are being developed to deliver site-specific drugs for the treatment of cancer [Alexiou et al., 2000]. Such applications add to a long list of industrial uses of magnetite that range from magnetic ink to magnetic recording media.

  11. High-Resolution ac Measurements of the Hall Effect in Organic Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Yi, H. T.; Podzorov, V.

    2016-03-01

    We describe a high resolving power technique for Hall-effect measurements, efficient in determining Hall mobility and carrier density in organic field-effect transistors and other low-mobility systems. We utilize a small low-frequency ac magnetic field (Brms<0.25 T ) and a phase-sensitive (lock-in) detection of Hall voltage, with the necessary corrections for Faraday induction. This method significantly enhances the signal-to-noise ratio and eliminates the necessity of using high magnetic fields in Hall-effect studies. With the help of this method, we are able to obtain the Hall mobility and carrier density in organic transistors with a mobility as low as μ ˜0.3 cm2 V-1 s-1 by using a compact desktop apparatus and low magnetic fields. We find a good agreement between Hall-effect and electric-field-effect measurements, indicating that, contrary to the common belief, certain organic semiconductors with mobilities below 1 cm2 V-1 s-1 can still exhibit a fully developed, band-semiconductor-like Hall effect, with the Hall mobility and carrier density matching those obtained in longitudinal transistor measurements. This suggests that, even when μ <1 cm2 V-1 s-1 , charges in organic semiconductors can still behave as delocalized coherent carriers. This technique paves the way to ubiquitous Hall-effect studies in a wide range of low-mobility materials and devices, where it is typically very difficult to resolve the Hall effect even in very high dc magnetic fields.

  12. EFFECTS OF MAGNETIC FIELD STRENGTH AND ORIENTATION ON MOLECULAR CLOUD FORMATION

    SciTech Connect

    Heitsch, Fabian; Hartmann, Lee W.; Stone, James M.

    2009-04-10

    We present a set of numerical simulations addressing the effects of magnetic field strength and orientation on the flow-driven formation of molecular clouds. Fields perpendicular to the flows sweeping up the cloud can efficiently prevent the formation of massive clouds but permit the buildup of cold, diffuse filaments. Fields aligned with the flows lead to substantial clouds, whose degree of fragmentation and turbulence strongly depends on the background field strength. Adding a random field component leads to a 'selection effect' for molecular cloud formation: high column densities are only reached at locations where the field component perpendicular to the flows is vanishing. Searching for signatures of colliding flows should focus on the diffuse, warm gas, since the cold gas phase making up the cloud will have lost the information about the original flow direction because the magnetic fields redistribute the kinetic energy of the inflows.

  13. Technique for Predicting the Radio Frequency Field Strength Inside an Enclosure

    NASA Technical Reports Server (NTRS)

    Hallett, Michael P.; Reddell, Jerry P.

    1997-01-01

    This technical memo represents a simple analytical technique for predicting the Radio Frequency (RF) field inside an enclosed volume in which radio frequency occurs. The technique was developed to predict the RF field strength within a launch vehicle fairing in which some payloads desire to launch with their telemetry transmitter radiating. This technique considers both the launch vehicle and the payload aspects.

  14. 47 CFR 73.189 - Minimum antenna heights or field strength requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Minimum antenna heights or field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.189 Minimum antenna heights or field..., frequency, or transmitter location must also request authority to install a new antenna system or to...

  15. 47 CFR 73.189 - Minimum antenna heights or field strength requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Minimum antenna heights or field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.189 Minimum antenna heights or field..., frequency, or transmitter location must also request authority to install a new antenna system or to...

  16. 47 CFR 73.189 - Minimum antenna heights or field strength requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Minimum antenna heights or field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.189 Minimum antenna heights or field..., frequency, or transmitter location must also request authority to install a new antenna system or to...

  17. 47 CFR 73.189 - Minimum antenna heights or field strength requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Minimum antenna heights or field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.189 Minimum antenna heights or field..., frequency, or transmitter location must also request authority to install a new antenna system or to...

  18. 47 CFR 73.189 - Minimum antenna heights or field strength requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Minimum antenna heights or field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.189 Minimum antenna heights or field..., frequency, or transmitter location must also request authority to install a new antenna system or to...

  19. Dependence of Brownian and Néel relaxation times on magnetic field strength

    SciTech Connect

    Deissler, Robert J. Wu, Yong; Martens, Michael A.

    2014-01-15

    Purpose: In magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS) the relaxation time of the magnetization in response to externally applied magnetic fields is determined by the Brownian and Néel relaxation mechanisms. Here the authors investigate the dependence of the relaxation times on the magnetic field strength and the implications for MPI and MPS. Methods: The Fokker–Planck equation with Brownian relaxation and the Fokker–Planck equation with Néel relaxation are solved numerically for a time-varying externally applied magnetic field, including a step-function, a sinusoidally varying, and a linearly ramped magnetic field. For magnetic fields that are applied as a step function, an eigenvalue approach is used to directly calculate both the Brownian and Néel relaxation times for a range of magnetic field strengths. For Néel relaxation, the eigenvalue calculations are compared to Brown's high-barrier approximation formula. Results: The relaxation times due to the Brownian or Néel mechanisms depend on the magnitude of the applied magnetic field. In particular, the Néel relaxation time is sensitive to the magnetic field strength, and varies by many orders of magnitude for nanoparticle properties and magnetic field strengths relevant for MPI and MPS. Therefore, the well-known zero-field relaxation times underestimate the actual relaxation times and, in particular, can underestimate the Néel relaxation time by many orders of magnitude. When only Néel relaxation is present—if the particles are embedded in a solid for instance—the authors found that there can be a strong magnetization response to a sinusoidal driving field, even if the period is much less than the zero-field relaxation time. For a ferrofluid in which both Brownian and Néel relaxation are present, only one relaxation mechanism may dominate depending on the magnetic field strength, the driving frequency (or ramp time), and the phase of the magnetization relative to the

  20. Edge pinch instability of liquid metal sheet in a transverse high-frequency ac magnetic field.

    PubMed

    Priede, Jānis; Etay, Jacqueline; Fautrelle, Yves

    2006-06-01

    We analyze the linear stability of the edge of a thin liquid metal layer subject to a transverse high-frequency ac magnetic field. The layer is treated as a perfectly conducting liquid sheet that allows us to solve the problem analytically for both a semi-infinite geometry with a straight edge and a thin disk of finite radius. It is shown that the long-wave perturbations of a straight edge are monotonically unstable when the wave number exceeds the critical value k(c) = F0/(gamma l0), which is determined by the linear density of the electromagnetic force F0 acting on the edge, the surface tension gamma, and the effective arclength of edge thickness l0. Perturbations with wavelength shorter than critical are stabilized by the surface tension, whereas the growth rate of long-wave perturbations reduces as similar to k for k --> 0. Thus, there is the fastest growing perturbation with the wave number k max = 2/3 k(c). When the layer is arranged vertically, long-wave perturbations are stabilized by the gravity, and the critical perturbation is characterized by the capillary wave number k(c) = square root of (g rho/gamma), where g is the acceleration due to gravity and rho is the density of metal. In this case, the critical linear density of electromagnetic force is F(0,c) = 2k(c)l0 gamma, which corresponds to the critical current amplitude I(0,c) = 4 square root of (pi k(c) l0L gamma/mu 0) when the magnetic field is generated by a straight wire at the distance L directly above the edge. By applying the general approach developed for the semi-infinite sheet, we find that a circular disk of radius R0 placed in a transverse uniform high-frequency ac magnetic field with the induction amplitude B0 becomes linearly unstable with respect to exponentially growing perturbation with the azimuthal wave number m = 2 when the magnetic Bond number exceeds Bm(c) = B(0)2 R(0)2 / (2 mu 0 l0 gamma) = 3 pi. For Bm > Bm(c), the wave number of the fastest growing perturbation is m(max) = [2

  1. Optimization of electric field strength for DNA sequencing in capillary gel electrophoresis

    NASA Astrophysics Data System (ADS)

    Luckey, John A.; Smith, Lloyd M.

    1993-06-01

    Since its development, capillary gel electrophoresis has demonstrated the ability to separate DNA sequencing reactions at speeds roughly 25 times as great as conventional slab gel electrophoresis. These increased speeds are the result of using the more efficient dissipation of Joule heating by capillaries. However, to date there have been no studies which quantitate the advantages of disadvantages in operating these gels at high electric field strength. This work addresses this question by investigating the band-broadening of DNA sequencing reactions as they are separated through a fixed distance of gel at field strengths ranging from 50 V/cm to 400 V/cm. It is found that the bandwidths of DNA fragments do decrease with the higher field strengths due to a reduction in diffusional broadening. However, at sufficiently high electric field strengths, the bands begin to broaden again under the influence of an increasing thermal gradient across the diameter of the capillary. The result is an optimum electric field strength in the intermediate range of 100 - 250 V/cm depending on the length of fragments being separated. The relative importance of diffusion and thermal gradients are discussed and used to generate an equation that models the observed band broadening of DNA in capillary gel electrophoresis (CGE).

  2. Single-step electrical field strength screening to determine electroporation induced transmembrane transport parameters.

    PubMed

    Blumrosen, Gadi; Abazari, Alireza; Golberg, Alexander; Yarmush, Martin L; Toner, Mehmet

    2016-09-01

    The design of effective electroporation protocols for molecular delivery applications requires the determination of transport parameters including diffusion coefficient, membrane resealing, and critical electric field strength for electroporation. The use of existing technologies to determine these parameters is time-consuming and labor-intensive, and often results in large inconsistencies in parameter estimation due to variations in the protocols and setups. In this work, we suggest using a set of concentric electrodes to screen a full range of electric field strengths in a single test to determine the electroporation-induced transmembrane transport parameters. Using Calcein as a fluorescent probe, we developed analytical methodology to determine the transport parameters based on the electroporation-induced pattern of fluorescence loss from cells. A monolayer of normal human dermal fibroblast (NHDF) cells were pre-loaded with Calcein and electroporated with an applied voltage of 750V with 10 and 50 square pulses with 50μs duration. Using our analytical model, the critical electric field strength for electroporation was found for the 10 and 50 pulses experiments. An inverse correlation between the field strength and the molecular transport time decay constant, and a direct correlation between field strength and the membrane permeability were observed. The results of this work can simplify the development of electroporation-assisted technologies for research and therapies. PMID:27263825

  3. Post-Flash Calibration Darks for the Advanced Camera for Surveys Wide Field Channel (ACS/WFC)

    NASA Astrophysics Data System (ADS)

    Ogaz, S.; Anderson, J.; Golimowski, D.

    2015-06-01

    We present a summary and analysis of the changes made to the ACS/WFC dark reference files. As of January 15, 2015 the ACS team has begun to produce post- flashed dark reference files for the Wide Field Channel (WFC). This change was made to combat the charge transfer efficiency (CTE) losses caused by radiation damage that the two WFC CCDs have suffered since being put into orbit by artificially increasing the background in the dark images. This has resulted in several changes to the reference file pipeline, and an improved calibration dark.

  4. In vitro cytotoxicity of Selol-loaded magnetic nanocapsules against neoplastic cell lines under AC magnetic field activation

    NASA Astrophysics Data System (ADS)

    Falqueiro, A. M.; Siqueira-Moura, M. P.; Jardim, D. R.; Primo, F. L.; Morais, P. C.; Mosiniewicz-Szablewska, E.; Suchocki, P.; Tedesco, A. C.

    2012-04-01

    The goals of this study are to evaluate invitro compatibility of magnetic nanomaterials and their therapeutic potential against cancer cells. Highly stable ionic magnetic fluid sample (maghemite, γ-Fe2O3) and Selol were incorporated into polymeric nanocapsules by nanoprecipitation method. The cytotoxic effect of Selol-loaded magnetic nanocapsules was assessed on murine melanoma (B16-F10) and oral squamous cell carcinoma (OSCC) cell lines following AC magnetic field application. The influence of different nanocapsules on cell viability was investigated by colorimetric MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. In the absence of AC magnetic field Selol-loaded magnetic nanocapsules, containing 100 µg/mL Selol plus 5 × 1012 particle/mL, showed antitumoral activity of about 50% on B16-F10 melanoma cells while OSCC carcinoma cells demonstrated drug resistance at all concentrations of Selol and magnetic fluid (range of 100-500 µg/mL Selol and 5 × 1012-2.5 × 1013 particle/mL). On the other hand, under AC applied fields (1 MHz and 40 Oe amplitude) B16-F10 cell viability was reduced down to 40.5% (±3.33) at the highest concentration of nanoencapsulated Selol. The major effect, however, was observed on OSCC cells since the cell viability drops down to about 33.3% (±0.38) under application of AC magnetic field. These findings clearly indicate that the Selol-loaded magnetic nanocapsules present different toxic effects on neoplastic cell lines. Further, the cytotoxic effect was maximized under AC magnetic field application on OSCC, which emphasizes the effectiveness of the magnetohyperthermia approach.

  5. Thermodynamics of the Mn12-ac molecule in a skew magnetic field at T \\gtrsim 21 K

    NASA Astrophysics Data System (ADS)

    Rojas, Onofre; Thomaz, M. T.; Corrêa Silva, E. V.; de Souza, S. M.

    2009-01-01

    We derive the high-temperature expansion of the Helmholtz free energy of the quantum and classical models for the Mn12-ac molecule in the presence of a skew magnetic field, including the transverse term in the Hamiltonians, for T \\gtrsim 21 K. In this region of temperature, we show that the transverse term can give a measurable contribution to the x component of the magnetization. We obtain the specific heat per site of a powder sample of Mn12-ac under a constant magnetic field. For strong skew magnetic fields (h/D>1), the specific heat differs up to 20% from its value of a crystal sample under purely longitudinal magnetic fields. Finally, we obtain that in the limit T \\rightarrow \\infty , the values of the classical and quantum specific heat differ; in particular, for \\vec {h}= \\vec 0 this difference is 0.96%.

  6. Relaxation Analysis of Porous Media at High Magnetic Field Strengths: The Influence of Internal Gradients

    NASA Astrophysics Data System (ADS)

    Mitchell, J.; Chandrasekera, T. C.; Roberts, S. T.; Holland, D. J.; Blake, A.; Fordham, E. J.; Gladden, L. F.

    2011-03-01

    The strengths of surface interaction in catalytic materials or wettability in oil-field reservoir rocks can be assessed based on the ratio of nuclear magnetic resonance (NMR) relaxation times T1/T2. It is often desirable to measure these relaxation times at intermediate or high magnetic field strengths (B0⩾1 T) in order to retain chemical shift information and improve the signal-to-noise ratio. However, T2 relaxation is influenced by diffusion through internal magnetic field gradients. These internal gradients, caused by the magnetic susceptibility contrast between liquid and solid, scale with increasing field strength and result in the observation of an effective T2,eff relaxation time. Here, we discuss a method by which the "true" surface relaxivity dominated T2 can be recovered using the example of materials relevant to liquid-phase catalysis. This method extends the range of magnetic field strengths available for use in porous media studies. We consider the use of T2,eff—T2,eff exchange experiments as an alternative probe of pore size in high-field relaxation analysis of oil reservoir rocks. We also show prelilminary results from a NMR grain size measurement utilizing Bayesian analysis of single point imaging k-space data.

  7. Study of the Dependence on Magnetic Field and Bias Voltage of an AC-Biased TES Microcalorimeter

    NASA Technical Reports Server (NTRS)

    Bandler, Simon

    2011-01-01

    At SRON we are studying the performance of a Goddard Space Flight Center single pixel TES microcalorimeter operated in the AC bias configuration. For x-ray photons at 6keV the AC biased pixel shows a best energy resolution of 3.7eV, which is about a factor of 2 worse than the energy resolution observed in identical DC-biased pixels. To better understand the reasons of this discrepancy, we investigated the detector performance as a function of temperature, bias working point and applied magnetic field. A strong periodic dependence of the detector noise on the TES AC bias voltage is measured. We discuss the results in the framework of the recent weak-link behaviour observed inTES microcalorimeters.

  8. Production Of Multi-magnetron Plasma By Using Polyphase Ac Glow Discharge In An Improved Multi-pole Magnetic Field

    NASA Astrophysics Data System (ADS)

    Matsumoto, Kazunori; Motoki, Kentaro; Miyamoto, Masahiro; Uetani, Yasuhiro

    1998-10-01

    Effects of an improved multi-pole magnetic field on a plasma production generated by a polyphase ac glow discharge with multiple electrodes have been investigated. Conventional configuration of the multi-pole magnetic filed has been modified to suppress plasma losses at both ends of the chamber due to ExB drift motion. The modified multi-pole magnetic field has enabled us to produce a multiple magnetron-plasma at a considerably low pressure less than mTorr. The low temperature plasma has been widely used as the fine processing technology of a dry etching and as the thin film formation technology of a sputtering coating. Large-scale plasmas which can be generated at a low gas-pressure have been desired for more wider dry etching and greater sputter coating. The purpose of this study is to develop a large-scale and low-cost plasma generator by using a polyphase ac power source with the low frequency. In this session, we will present the experimental result as to a multiple magnetron-plasma generated in the modified twenty-four poles magnetic field by using the twenty-four-phase ac power source with the commercial electric power frequency of 60Hz. The ac power is supplied to twenty-four electrodes which are fixed to the water-cooled chamber-wall through sheet insulators so that the electrodes can be cooled indirectly.

  9. Coulomb field strength measurement by electro-optic spectral decoding system at the CALIFES beam line

    NASA Astrophysics Data System (ADS)

    Pan, R.; Jamison, S. P.; Lefevre, T.; Gillespie, W. A.

    2016-06-01

    Electro-optic (EO) techniques are increasingly used for longitudinal bunch profile measurements. A bunch profile monitor, based on electro-optic spectral decoding (EOSD), has been developed and demonstrated on the CALIFES beam line at CERN. The EO response is analysed using a frequency domain description, and two methods for extraction of absolute Coulomb field strengths from the electron bunch are demonstrated. Measurements at field strengths up to 1.3 MV/m agree with the expectation based on independent charge measurements.

  10. Registration of weak ULF/ELF oscillations of the surface electric field strength

    NASA Astrophysics Data System (ADS)

    Boldyrev, A. I.; Vyazilov, A. E.; Ivanov, V. N.; Kemaev, R. V.; Korovin, V. Ya.; Melyashinskii, A. V.; Pamukhin, K. V.; Panov, V. N.; Shvyrev, Yu. N.

    2016-07-01

    Measurements of the atmospheric electric field strength made by an electrostatic fluxmeter with a unique threshold sensitivity for such devices (6 × 10-2-10-3 V m-1 Hz-1/2 in the 10-3-25 Hz frequency range) and wide dynamic (120 dB) and spectral (0-25 Hz) ranges, are presented. The device parameters make it possible to observe the electric component of global electromagnetic Schumann resonances and long-period fluctuations in the atmospheric electric field strength.

  11. Effects of AC/DC magnetic fields, frequency, and nanoparticle aspect ratio on cellular transfection of gene vectors

    NASA Astrophysics Data System (ADS)

    Ford, Kris; Mair, Lamar; Fisher, Mike; Rowshon Alam, Md.; Juliano, Rudolph; Superfine, Richard

    2008-10-01

    In order to make non-viral gene delivery a useful tool in the study and treatment of genetic disorders, it is imperative that these methodologies be further refined to yield optimal results. Transfection of magnetic nanoparticles and nanorods are used as non-viral gene vectors to transfect HeLa EGFP-654 cells that stably express a mutated enhanced green fluorescent protein (EGFP) gene. We deliver antisense oligonucleotides to these cells designed to correct the aberrant splicing caused by the mutation in the EGFP gene. We also transfect human bronchial endothelial cells and immortalized WI-38 lung cells with pEGFP-N1 vectors. To achieve this we bind the genes to magnetic nanoparticles and nanorods and introduce magnetic fields to effect transfection. We wish to examine the effects of magnetic fields on the transfection of these particles and the benefits of using alternating (AC) magnetic fields in improving transfection rates over direct (DC) magnetic fields. We specifically look at the frequency dependence of the AC field and particle aspect ratio as it pertains to influencing transfection rate. We posit that the increase in angular momentum brought about by the AC field and the high aspect ratio of the nanorod particles, is vital to generating the force needed to move the particle through the cell membrane.

  12. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength

    NASA Astrophysics Data System (ADS)

    Raaijmakers, A. J. E.; Raaymakers, B. W.; Lagendijk, J. J. W.

    2008-02-01

    Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems.

  13. Oblique electromagnetic electron cyclotron waves for Kappa distribution with AC field in planetary magnetospheres

    NASA Astrophysics Data System (ADS)

    Pandey, R. S.; Kaur, Rajbir

    2015-08-01

    The dispersion relation for obliquely propagating relativistic electromagnetic electron cyclotron (EMEC) waves in collision-less magnetoplasma is obtained. Investigations for EMEC waves in magnetosphere of Jupiter, Saturn and Uranus have been done, in presence of perpendicular AC electric field for Kappa distribution function. The relativistic temporal growth rate is calculated using method of characteristic solution. Using the data provided by spacecrafts like Cassini, Voyager 1 and 2, while exploring the magnetosphere of Jupiter, Saturn and Uranus, is used to plot graphs showing growth rate being effected by various parameters. Comprehensive parametric analysis have been done at different radial distances of the planets. It is concluded that beside huge difference in magnetospheric configuration, temperature anisotropy remains the main source of energy in case of Jupiter and Uranus. While studying EMEC waves in magnetosphere of Saturn, it is inferred that growth rate attains maximum magnitude when angle of propagation increases. Also, the results and its interpretations explain how the growth of EMEC wave modifies in different magnetospheric conditions.

  14. Generation of liquid metal structures of high aspect ratio by application of an ac magnetic field

    NASA Astrophysics Data System (ADS)

    Andreev, Oleg; Pothérat, Alban; Thess, André

    2010-06-01

    We study how the shape of parts obtained through the LASER cladding process can be controlled by application of an ac magnetic field by means of two simple physical models: a numerical and an experimental one. More specifically, we show that straight metallic joints of high aspect ratio can be obtained by using inductors of triangular cross-section that concentrate electromagnetic forces at the bottom of the joint. The effect is first demonstrated on a numerical model for an infinitely long joint such as: we illustrate how the joint shape can be controlled by varying the inclination of the inductor and for a magnetic Bond number Bom=60 (which measures the ratio of electromagnetic to capillary forces), we obtain a joint of aspect ratio up to 7.2. We further find that inductor angles in the range 15°-25° lead to joint side faces that are close to vertical. These findings are then verified experimentally by placing a liquid metal drop in a purpose built inductor of triangular cross-section. We find a good agreement between the theoretical prediction of our two-dimensional model and the real three-dimensional drop. For the highest magnetic Bond number our generator could deliver, Bom=20.19, we achieved a drop aspect ratio of 2.73.

  15. Accurate 2d finite element calculations for hydrogen in magnetic fields of arbitrary strength

    NASA Astrophysics Data System (ADS)

    Schimeczek, C.; Wunner, G.

    2014-02-01

    Recent observations of hundreds of hydrogen-rich magnetic white dwarf stars with magnetic fields up to 105 T (103 MG) have called for more comprehensive and accurate databases for wavelengths and oscillator strengths of the H atom in strong magnetic fields for all states evolving from the field-free levels with principal quantum numbers n≤10. We present a code to calculate the energy eigenvalues and wave functions of such states which is capable of covering the entire regime of field strengths B=0 T to B˜109 T. We achieve this high flexibility by using a two-dimensional finite element expansion of the wave functions in terms of B-splines in the directions parallel and perpendicular to the magnetic field, instead of using asymptotically valid basis expansions in terms of spherical harmonics or Landau orbitals. We have paid special attention to the automation of the program such that the data points for the magnetic field strengths at which the energy of a given state are calculated can be selected automatically. Furthermore, an elaborate method for varying the basis parameters is applied to ensure that the results reach a pre-selected precision, which also can be adjusted freely. Energies and wave functions are stored in a convenient format for further analysis, e.g. for the calculation of transition energies and oscillator strengths. The code has been tested to work for 300 states with an accuracy of better than 10-6 Rydberg across several symmetry subspaces over the entire regime of magnetic field strengths.

  16. 47 CFR 90.359 - Field strength limits for EA-licensed LMS systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Field strength limits for EA-licensed LMS systems. 90.359 Section 90.359 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Intelligent Transportation Systems Radio...

  17. 47 CFR 90.359 - Field strength limits for EA-licensed LMS systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Field strength limits for EA-licensed LMS systems. 90.359 Section 90.359 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Intelligent Transportation Systems Radio...

  18. 47 CFR 90.359 - Field strength limits for EA-licensed LMS systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Field strength limits for EA-licensed LMS systems. 90.359 Section 90.359 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Intelligent Transportation Systems Radio...

  19. Strength of the Archean geomagnetic field and effectiveness of magnetic shielding from the young active Sun

    NASA Astrophysics Data System (ADS)

    Tarduno, J. A.

    2008-05-01

    The strength of Earth's early magnetic field is important for understanding the evolution of the core, surface environment, atmosphere and life. Paleointensity analyses of single silicate crystals indicate that the strength of the geomagnetic field 3.2 billion years ago was within 50% of the modern value (Tarduno et al., 2007), but for even earlier times it is unknown. Two ideas have been offered: (1) the geomagnetic field started shortly after core formation, and the subsequent field strength has been within a factor of 2-3 of the modern value since its initiation; (2) the field was at null values ~3.9 billion years ago and commenced thereafter. The latter scenario relies on a hypothesis to explain the amount and isotopic composition of nitrogen found in soils of the Moon; this lunar nitrogen may have been derived from Earth's atmosphere via the solar wind (Ozima et al., 2005) in the absence of geomagnetic field that would otherwise shield atmospheric erosion. The possibility of a delayed dynamo onset (Labrosse et al., 2007) will be discussed, as will our efforts to address the presence/absence of the geomagnetic field between 3.2 and 3.9 billion years ago using the terrestrial rock record. The available constraints on ancient magnetic shielding will be reviewed in light of the radiation and particle flux associated with the active young Sun. (References: Labrosse et al., A crystallizing dense magma ocean at the base of the Earth's mantle, Nature, 450, 866-868, 2007; Ozima, M., et al., Terrestrial nitrogen and noble gases in lunar soils, Nature, 436, 655-659, 2005; Tarduno, J.A. et al., Geomagnetic field strength 3.2 billion years ago recorded by single silicate crystals, Nature, 446, 657-660, 2007.)

  20. The Orbiting Standards Platform. [combined satellite signal source and field strength meter

    NASA Technical Reports Server (NTRS)

    Dougherty, H. T.; Estin, A. J.; Morgan, W. L.; Woodruff, J. J.

    1978-01-01

    The Orbiting Standards Platform (OSP) is a combination satellite signal source and field strength meter which will make possible highly accurate, truly far-field measurements of large aperture antenna gain, pattern, sidelobes, and polarization as well as system G/T and EIRP. These measurements may be used to initially characterize earth station equipment and for the subsequent monitoring of its performance. This paper describes a technical-feasibility study of the OSP.

  1. Analyze and experiment on AC magnetic field's effect to fiber optic gyroscopes in compact stabilization control systems

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Mao, Yao; Tian, Jing; Li, Zhijun

    2015-10-01

    Fiber optic gyroscopes (FOG) are getting more and more attention in areas such as stabilization control systems as they are all solid state and have a wide bandwidth. In stabilization systems that require wide bandwidth control, motors are usually used as actuating mechanism for active disturbance restrain. Voice coil motors (VCMs) are usually used in compact stabilization systems that require large torque and fast response. However, AC magnetic field, which can affect the output of FOG due to Faraday effect, will be generated during operation of VCMs. The frequency range affected by the AC magnetic field to the FOG's output is the same as VCMs drive signal frequency range, which is also exactly the stabilization system's working range. Therefore the effect of the AC magnetic field to FOGs must be evaluated to verify the feasibility of a stable system design that uses both FOGs and VCMs. In this article, the basic structure and operating principle of stabilization system is introduced. The influence of AC magnetic field to FOG is theoretically analyzed. The magnetic field generated by VCMs is numerically simulated based on the theory deduction of the magnetic field near energized wires. To verify the influence of the VCM generated magnetic field to the FOGs in practical designs, a simplified random fiber coil model is built for it's hard to accurately test the exact polarize axis's twisting rate in a fiber coil. The influence to the FOG's output of different random coil model is simulated and the result shows a same trend that the influence of the VCM's magnetic field to the FOG is reduced as the distance between the VCM and the FOG increasing. The influence of a VCM to a FOG with the same parameters is experimentally tested. In the Fourier transformed FOG data the same frequency point as the VCM drive signal frequency can be read. The result fit simulated result that as the distance increases, the influence decreases. The amplitude of the frequency point is just

  2. The attenuation of the levitation force of HTS bulk exposed to AC magnetic field on the above NdFeB guideway

    NASA Astrophysics Data System (ADS)

    Liu, Minxian; Wang, Yan

    2012-01-01

    In the present High Temperature Superconducting (HTS) maglev vehicle system, the air gaps between the adjacent permanent magnets make the magnetic fields above the NdFeB guideway non-uniform. So it is required to study the characteristics of levitation force of the HTS bulk affected by the non-uniform applied magnetic fields along the moving direction. In this paper, we have studied the characteristics of the levitation force relaxation by an experiment in which AC magnetic field generated by an electromagnet is used to simulate the time-varying magnetic field caused by the inhomogeneity of the NdFeB guideway. From the experiment results, it is found that the levitation force is attenuated with the application of the AC field, and the attenuation is increased with the amplitude of the AC field, but the attenuation is almost independent of the frequency the AC magnetic field.

  3. The magnetisation profiles and ac magnetisation losses in a single layer YBCO thin film caused by travelling magnetic field waves

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Coombs, Timothy

    2015-05-01

    This paper studies the magnetisation and ac magnetisation losses caused by a travelling magnetic wave on a single-layer YBCO thin film. This work provides thorough investigations on how the critical magnetic field gradient has been changed by the application of a travelling wave. Several conditions were studied such as zero-field cooling (ZFC), field cooling (FC) and a delta-shaped trapped field. It was found that the travelling wave tends to attenuate the existing critical magnetic field gradients in all these conditions. This interesting magnetic behaviour can be well predicted by the finite element (FEM) software with the E-J power law and Maxwell’s equations. The numerical simulations show that the existing critical current density has been compromised after applying the travelling wave. The magnetisation profile caused by the travelling wave is very different from the standing wave, while the magnetisation based on the standing wave can be interpreted by the Bean model and constant current density assumption. Based on the numerical method, which has reliability that has been solidly proven in the study, we have extended the study to the ac magnetisation losses. Comparisons were made between the travelling wave and the standing wave for this specific YBCO sample. It was found that by applying the magnetic wave of the same amplitude, the ac magnetisation loss caused by the travelling wave is about 1/3 of that caused by the standing wave. These results are helpful in understanding the general magnetism problems and ac magnetisation loss in the travelling magnetic wave conditions such as inside a high temperature superconducting (HTS) rotating machine, etc.

  4. New OH Zeeman Measurements of Magnetic Field Strengths in Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Bourke, Tyler L.; Myers, Philip C.; Robinson, Garry; Hyland, A. R.

    2001-06-01

    We present the results of a new survey of 23 molecular clouds for the Zeeman effect in OH undertaken with the Australia Telescope National Facility Parkes 64 m radio telescope and the National Radio Astronomy Observatory Green Bank 43 m radio telescope. The Zeeman effect was clearly detected in the cloud associated with the H II region RCW 38, with a field strength of 38+/-3 μG, and possibly detected in a cloud associated with the H II region RCW 57, with a field strength of -203+/-24 μG. The remaining 21 measurements give formal upper limits to the magnetic field strength, with typical 1 σ sensitivities less than 20 μG. For 22 of the molecular clouds we are also able to determine the column density of the gas in which we have made a sensitive search for the Zeeman effect. We combine these results with previous Zeeman studies of 29 molecular clouds, most of which were compiled by Crutcher, for a comparison of theoretical models with the data. This comparison implies that if the clouds can be modeled as initially spherical with uniform magnetic fields and densities that evolve to their final equilibrium state assuming flux freezing, then the typical cloud is magnetically supercritical, as was found by Crutcher. If the clouds can be modeled as highly flattened sheets threaded by uniform perpendicular fields, then the typical cloud is approximately magnetically critical, in agreement with Shu et al., but only if the true values of the field for the nondetections are close to the 3 σ upper limits. If instead these values are significantly lower (for example, similar to the 1 σ limits), then the typical cloud is generally magnetically supercritical. When all observations of the Zeeman effect are considered, the single-dish detection rate of the OH Zeeman effect is relatively low. This result may be due to low mean field strengths, but a more realistic explanation may be significant field structure within the beam. As an example, for clouds associated with H II

  5. Estimating the daytime Equatorial Ionization Anomaly strength from electric field proxies

    NASA Astrophysics Data System (ADS)

    Stolle, C.; Manoj, C.; Lühr, H.; Maus, S.; Alken, P.

    2008-09-01

    The Equatorial Ionization Anomaly (EIA) is a significant feature of the low-latitude ionosphere. During daytime, the eastward electric field drives a vertical plasma fountain at the magnetic equator creating the EIA. Since the eastward electric field is also the driving force for the Equatorial Electrojet (EEJ), the latter is positively correlated with the EIA strength. We investigate the correlation between the zonal electric field and the EIA in the Peruvian sector and compare the results with correlations of the EEJ versus EIA strength. Analyzing 5 years of Challenging Minisatellite Payload (CHAMP) electron density measurements, plasma drift readings from the Jicamarca Unattended Long-term Investigations of the Ionosphere and Atmosphere (JULIA) radar, and magnetic field observations at Huancayo and Piura, we find the EEJ strength and the zonal electric field to be suitable proxies for the EIA intensity. Both analyses reveal high correlation coefficients of cc > 0.8. A typical response time of the EIA to variations in the zonal electric field is ˜1-2 h, and it is ˜2-4 h after EEJ strength variations. Quantitative expressions are provided, which directly relate the EIA parameters to both proxies. From these relations, we infer that an EIA develops also during weak Counter Electrojets (CEJs), but no EIA forms when the vertical plasma drift is zero. For positive EEJ magnetic signatures to form, a minimum eastward electric field of 0.2 mV/m is required on average. The above-mentioned delay between EIA and EEJ variations of ˜3 h is further confirmed by the investigation of the EIA response to transitions from CEJ to EEJ, e.g., during late morning hours.

  6. Simultaneous ac and dc magnetic field measurements in residential areas: Implications for resonance theories of biological effects

    SciTech Connect

    Wong, P.S.; Sastre, A.

    1995-10-01

    The goal of this study was to obtain data that could be used to evaluate the applicability of ``resonance`` theories of biological effects in residential settings. The authors first describe a measurement system which allows the study of ac and dc magnetic fields simultaneously in space and in time. Sample measurements were taken near two power lines, two objects and in two residential homes. The results show that the earth`s (dc) magnetic field was unaffected near power lines. The compass orientation of the power line influenced the relative values of the ac components parallel and perpendicular to the dc field. The electric heating system greatly affected the ac field levels in the home, causing the levels to increase from less than 1 mG to a maximum of 7.5 mG during heating. The magnitudes of the dc field in the two homes varied from about 380 to 650 mG, with the larger variations near metallic or magnetic objects such as the refrigerator or a metallic air duct. The earth`s field was elevated above its natural level within a distance of 8 feet from a subcompact passenger car, e.g., the level changed from about 540 to 1,100 mG beside the headlight. A steel chair changed the earth`s field by up to 60 mG within a distance of one foot. These results suggest that some of the narrow ``resonances`` described in laboratory studies may be difficult to observe against the variations in do field amplitude and direction resulting from the presence of everyday metallic objects.

  7. The relation between umbral magnetic field strength and area density of umbral dots

    NASA Astrophysics Data System (ADS)

    Ferguson, Sierra; Beck, Christian

    2015-01-01

    Interiors of sunspots are modeled either as a monolithic block of magnetic flux or groups of flux bundles. Umbral dots (UDs) - small bright grains inside the dark umbra - are harder to explain in the monolithic model, but they fit into the group of flux bundle model as field-free intrusions that push magnetic field lines aside due to their convective nature. The goal of this project was to determine if there is a relationship between the UD density and the area of the umbra as well as the magnetic field strength of the umbra. Routines were developed in IDL that located the UDs and then would find the respective areas and magnetic field strength of the umbrae. These routines can be applied to both numerical simulations and observational data. Our findings show that there is an indication of correlation between the UD density and the umbral area, but there is no clear indication of a correlation with the UD density and the magnetic field strength. The simulations show a significantly larger UD density than the observations This work is carried out through the National Solar Observatory Summer Research Assistantship (SRA) Program. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.

  8. Friction behavior of magnetorheological fluids with different material types and magnetic field strength

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Lee, Kwang-Hee; Lee, Chul-Hee

    2016-01-01

    Magnetorheological (MR) fluid is a type of a smart material that can control its mechanical properties under a magnetic field. Iron particles in MR fluid form chain structures in the direction of an applied magnetic field, which is known as MR effect, resulting in variation of stiffness, shear modulus, damping and tribological characteristics of MR fluid. As MR effect depends on the density of particles in the fluid or the strength of a magnetic field, the experiments are conducted to evaluate the friction property under reciprocating motion by changing the types of MR fluid and the strength of a magnetic field. The material of aluminum, brass, and steel are chosen for specimen as they are the most common material in mechanical applications. The surfaces of specimen are also observed by optical microscope before and after experiments to compare the surfaces with test conditions. The comparing results show that the friction coefficient increases as the strength of a magnetic field increases in regardless of types of MR fluid or the material. Also the density of particle in MR fluid affects the friction characteristic. The results from this research can be used to improve the performance of mechanical applications using MR fluid.

  9. Measurements of magnetic fluxes and field strengths in the photospheric network

    NASA Technical Reports Server (NTRS)

    Tarbell, T. D.; Title, A. M.

    1977-01-01

    Digital pictures of an active-region network cell are presented in five quantities measured simultaneously: continuum intensity, line-center intensity, equivalent width, magnetogram signal, and magnetic-field strength. These maps are derived from computer analysis of circularly polarized line profiles of Fe I 5250.2-A; spectral and spatial resolution are 1/40 A and 1.5 arcsec, respectively. Measured Zeeman splittings show the existence of strong magnetic fields (1000-1800 G) at nearly all points with a magnetogram signal exceeding 125 G. The mean and rms deviation of the field strengths change by less than 20% over a factor-of-four range of fluxes. From the significant disparity between measured fluxes and field strengths, it is concluded that large flux patches (up to 4 arcsec across) consist of closely-packed unresolved filaments. The smallest filaments must be less than 0.7 arcsec in diameter. The dark component of the photospheric network, which appears to contain sizable transverse fields, is also observed.

  10. White-light corona and solar polar magnetic field strength over solar cycles

    NASA Astrophysics Data System (ADS)

    Rušin, V.; Saniga, M.; Komžík, R.

    2014-10-01

    We discuss the large-scale structure of the solar corona, in particular its helmet streamers, as observed during total solar eclipses around maxima of solar cycles and make its comparison with solar polar magnetic field strength as observed by the Wilcox Solar Observatory (WSO) since 1976. Even though the magnetic field strength at the solar poles around cycle minima decreased minimally twice in the last forty years, distributions of helmet streamers around the Sun in different cycles around cycle maxima remain nearly the same. This indicates that large-scale magnetic structures governing the shape and evolution of helmet streamers must be of a different nature than those related with solar polar fields.

  11. Angular Dependence of Transport AC Losses in Superconducting Wire with Position-Dependent Critical Current Density in a DC Magnetic Field

    NASA Astrophysics Data System (ADS)

    Su, Xing-liang; Xiong, Li-ting; Gao, Yuan-wen; Zhou, You-he

    2013-07-01

    Transport AC losses play a very important role in high temperature superconductors (HTSs), which usually carry AC transport current under applied magnetic field in typical application-like conditions. In this paper, we propose the analytical formula for transport AC losses in HTS wire by considering critical current density of both inhomogeneous and anisotropic field dependent. The angular dependence of critical current density is described by effective mass theory, and the HTS wire has inhomogeneous distribution cross-section of critical current density. We calculate the angular dependence of normalized AC losses under different DC applied magnetic fields. The numerical results of this formula agree well with the experiment data and are better than the results of Norris formula. This analytical formula can explain the deviation of experimental transport current losses from the Norris formula and apply to calculate transport AC losses in realistic practical condition.

  12. Calorimetric AC loss measurement of MgB2 superconducting tape in an alternating transport current and direct magnetic field

    NASA Astrophysics Data System (ADS)

    See, K. W.; Xu, X.; Horvat, J.; Cook, C. D.; Dou, S. X.

    2012-11-01

    Applications of MgB2 superconductors in electrical engineering have been widely reported, and various studies have been made to define their alternating current (AC) losses. However, studies on the transport losses with an applied transverse DC magnetic field have not been conducted, even though this is one of the favored conditions in applications of practical MgB2 tapes. Methods and techniques used to characterize and measure these losses have so far been grouped into ‘electrical’ and ‘calorimetric’ approaches with external conditions set to resemble the application conditions. In this paper, we present a new approach to mounting the sample and employ the calorimetric method to accurately determine the losses in the concurrent application of AC transport current and DC magnetic fields that are likely to be experienced in practical devices such as generators and motors. This technique provides great simplification compared to the pickup coil and lock-in amplifier methods and is applied to a long length (˜10 cm) superconducting tape. The AC loss data at 20 and 30 K will be presented in an applied transport current of 50 Hz under external DC magnetic fields. The results are found to be higher than the theoretical predictions because of the metallic fraction of the tape that contributes quite significantly to the total losses. The data, however, will allow minimization of losses in practical MgB2 coils and will be used in the verification of numerical coil models.

  13. A new estimate of average dipole field strength for the last five million years

    NASA Astrophysics Data System (ADS)

    Cromwell, G.; Tauxe, L.; Halldorsson, S. A.

    2013-12-01

    The Earth's ancient magnetic field can be approximated by a geocentric axial dipole (GAD) where the average field intensity is twice as strong at the poles than at the equator. The present day geomagnetic field, and some global paleointensity datasets, support the GAD hypothesis with a virtual axial dipole moment (VADM) of about 80 ZAm2. Significant departures from GAD for 0-5 Ma are found in Antarctica and Iceland where paleointensity experiments on massive flows (Antarctica) (1) and volcanic glasses (Iceland) produce average VADM estimates of 41.4 ZAm2 and 59.5 ZAm2, respectively. These combined intensities are much closer to a lower estimate for long-term dipole field strength, 50 ZAm2 (2), and some other estimates of average VADM based on paleointensities strictly from volcanic glasses. Proposed explanations for the observed non-GAD behavior, from otherwise high-quality paleointensity results, include incomplete temporal sampling, effects from the tangent cylinder, and hemispheric asymmetry. Differences in estimates of average magnetic field strength likely arise from inconsistent selection protocols and experiment methodologies. We address these possible biases and estimate the average dipole field strength for the last five million years by compiling measurement level data of IZZI-modified paleointensity experiments from lava flows around the globe (including new results from Iceland and the HSDP-2 Hawaii drill core). We use the Thellier Gui paleointensity interpreter (3) in order to apply objective criteria to all specimens, ensuring consistency between sites. Specimen level selection criteria are determined from a recent paleointensity investigation of modern Hawaiian lava flows where the expected magnetic field strength was accurately recovered when following certain selection parameters. Our new estimate of average dipole field strength for the last five million years incorporates multiple paleointensity studies on lava flows with diverse global and

  14. Effect of low transverse magnetic field on the confinement strength in a quasi-1D wire

    SciTech Connect

    Kumar, Sanjeev; Thomas, K. J.; Smith, L. W.; Farrer, I.; Ritchie, D. A.; Jones, G. A. C.; Griffiths, J.; Pepper, M.

    2013-12-04

    Transport measurements in a quasi-one dimensional (1D) quantum wire are reported in the presence of low transverse magnetic field. Differential conductance shows weak quantised plateaus when the 2D electrons are squeezed electrostatically. Application of a small transverse magnetic field (0.2T) enhances the overall degree of quantisation due to the formation of magneto-electric subbands. The results show the role of magnetic field to fine tune the confinement strength in low density wires when interaction gives rise to double row formation.

  15. Field strength prediction behind lossy dielectric obstacles by using the UTD

    NASA Astrophysics Data System (ADS)

    van Dooren, G. A. J.; Herben, M. H. A. J.

    1993-05-01

    A comparison is made between the measured and theoretically predicted field strength in the shadow region of a lossy dielectric obstacle. The field is measured along a cylindrical arc behind the obstacle at a frequency of 50 GHz. The theoretical model uses the uniform theory of diffraction including corner, edge-to-edge, and edge-to-corner diffraction, heuristically extended to include effects of nonperfect conductivity. The agreement between the measured and theoretically derived results is excellent for both orthogonal polarizations considered. The field behind a lossy block-shaped obstacle proves to be less polarization dependent than behind a perfectly conducting one.

  16. Longitudinally polarized single-cycle terahertz pulses generated with high electric field strengths

    NASA Astrophysics Data System (ADS)

    Cliffe, M. J.; Graham, D. M.; Jamison, S. P.

    2016-05-01

    We demonstrate the generation of single-cycle longitudinally polarized terahertz pulses with field amplitudes in excess of 11 kV/cm using the interferometric recombination of two linearly polarized terahertz beams. High field strength transversely polarized pulses were generated by optical rectification in a matched pair of magnesium-oxide doped stoichiometric lithium niobate (MgO:SLN) crystals with a reversal in the χ333 ( 2 ) orientation. The discontinuity in χ333 ( 2 ) produces a polarity flip in the transverse field; the longitudinal field produced as a consequence of the transverse field discontinuity was measured in the far-field. Both the spatial and temporal profiles of the measured longitudinally polarized terahertz radiation were consistent with the propagation of the transverse discontinuity.

  17. Reproduction, growth, and development of rats during chronic exposure to multiple field strengths of 60-Hz electric fields

    SciTech Connect

    Rommereim, D.N.; Rommereim, R.L.; Sikov, M.R.; Buschbom, R.L.; Anderson, L.E. )

    1990-04-01

    A study with multiple exposure groups and large group sizes was performed to establish whether exposure to 60-Hz electric fields would result in reproductive and developmental toxicity. A response model was developed from previous results and tested in groups of rats exposed to electric fields at various field strengths. Female rats were mated, and sperm-positive animals randomly distributed among four groups: sham-exposed or exposed to 10, 65, or 130 kV/m, 60-Hz vertical electric fields. Animals were exposed for 19 hr/day throughout the experiment. During gestation, exposure to the higher field strengths resulted in slightly depressed weight gains of dams. Offspring were born in the field and remained with their dams through the suckling period. Numbers of pups per litter and pup mortality did not differ among the exposure groups. Dams exposed at 65 kV/m lost slightly more weight through the lactation period than the control group. Male pups exposed to higher field strengths gained slightly less weight from 4 to 21 days of age than did sham-exposed animals. At weaning, two F1 females per litter (randomly selected) continued on the same exposure regimen were mated at 11 weeks of age to unexposed males, and euthanized at 20 days of gestation. Uterine contents were evaluated, and all live fetuses were weighed and examined for external, visceral, and skeletal malformations. Fertility and gestational weight gain of F1 females were not affected by exposure, nor was prenatal viability or fetal body weight. No significant increase in the incidence of litters with malformations was observed. Although no developmental toxicity was detected, exposures produced physical changes in the dams, evidenced as a rust-colored deposit on the muzzle and ears (chromodacryorrhea) that increased in incidence and severity at 65 and 130 kV/m.

  18. ARE THERE DIFFERENCES IN STRENGTH TESTS USING ISOKINETIC DYNAMOMETRY BETWEEN FIELD AND INDOOR PROFESSIONAL SOCCER PLAYERS?

    PubMed Central

    de Aguiar Leonardi, Adriano Barros; Martinelli, Mauro Olivio; Junior, Aires Duarte

    2015-01-01

    Objective: The objective of this study was to conduct a comparative analysis on isokinetic strength assessments between field and indoor male professional soccer players and correlate the findings with the higher levels of injury risk described in the literature. Methods: We analyzed 16 field soccer players and 15 indoor soccer players. All these professionals were male. Isokinetic muscle strength assessments were made on their knees. Results: The mean weight was 81.81 kg for field soccer and 80.33 kg for indoor soccer. The right and left peak extensor torque left and right for field soccer and indoor soccer were, respectively, 302.50 and 313.31 Nm and 265.20 and 279.80 Nm, and for flexors, 178 and 184.88 Nm and 158.27 and 154 Nm. The peak torque rates according to body weight for the left and right extensors for field soccer and indoor soccer were, respectively, 3.84 and 3.7 Nm/kg and 3.32 and 3.52 Nm/kg, and for flexors, 2.17 and 2.26 Nm/kg and 1.98 and 1.93 Nm/kg. The balance relationships between flexors and extensors on the right and left sides for field soccer and indoor soccer were, respectively, 59.81 and 59.44% and 60.47% and 54.80%. The relationships for extensors between the right and left sides for field soccer and indoor soccer were, respectively, 11.44 and 9.20%, and for the flexors, 7.31 and 8.80%. Conclusions: In accordance with international parameters, comparative analysis on isokinetic strength assessments between field and indoor male professional soccer players before the season showed that there was muscle balance and low probability of injury. There were no statistically significant differences in the parameters analyzed between the players of the two types of soccer. PMID:27042649

  19. Effect of electric field configuration on streamer and partial discharge phenomena in a hydrocarbon insulating liquid under AC stress

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Liu, Q.; Wang, Z. D.

    2016-05-01

    This paper concerns pre-breakdown phenomena, including streamer characteristics from a fundamental perspective and partial discharge (PD) measurements from an industrial perspective, in a hydrocarbon insulating liquid. The aim was to investigate the possible changes of the liquid’s streamer and PD characteristics and their correlations when the uniformity of the AC electric field varies. In the experiments, a plane-to-plane electrode system incorporating a needle protrusion was used in addition to a needle-to-plane electrode system. When the applied electric field became more uniform, fewer radial branches occurred and streamer propagation towards the ground electrode was enhanced. The transition from streamer propagation dominated breakdown in divergent fields to streamer initiation dominated breakdown in uniform fields was evidenced. Relationships between streamer and PD characteristics were established, which were found to be electric field dependent. PD of the same apparent charge would indicate longer streamers if the electric field is more uniform.

  20. Spatial offset of test field elements from surround elements affects the strength of motion aftereffects.

    PubMed

    Harris, John; Sullivan, Daniel; Oakley, Madeleine

    2008-01-01

    Static movement aftereffects (MAEs) were measured after adaptation to vertical square-wave luminance gratings drifting horizontally within a central window in a surrounding stationary vertical grating. The relationship between the stationary test grating and the surround was manipulated by varying the alignment of the stationary stripes in the window and those in the surround, and the type of outline separating the window and the surround [no outline, black outline (invisible on black stripes), and red outline (visible throughout its length)]. Offsetting the stripes in the window significantly increased both the duration and ratings of the strength of MAEs. Manipulating the outline had no significant effect on either measure of MAE strength. In a second experiment, in which the stationary test fields alone were presented, participants judged how segregated the test field appeared from its surround. In contrast to the MAE measures, outline as well as offset contributed to judged segregation. In a third experiment, in which test-stripe offset was systematically manipulated, segregation ratings rose with offset. However, MAE strength was greater at medium than at either small or large (180 degrees phase shift) offsets. The effects of these manipulations on the MAE are interpreted in terms of a spatial mechanism which integrates motion signals along collinear contours of the test field and surround, and so causes a reduction of motion contrast at the edges of the test field. PMID:18773724

  1. DNA- and AC electric field-assisted assembly of two-dimensional colloidal photonic crystals and their controlled defect insertion

    NASA Astrophysics Data System (ADS)

    Kim, Sejong

    Photonic crystals (PC) are structures in which the refractive index is a periodic function in space. The ability of photonic crystals to localize and manipulate electromagnetic waves has attracted considerable attention from the scientific community. The self-assembly of monodisperse micrometer scale colloidal spheres into hexagonal closed-packed colloidal crystals provides a simple, fast, and cheap materials chemistry approach to PCs. Employing DNA supramolecular recognition, 2-dimensional (2D) photonic crystal monolayer was fabricated with monodisperse polystyrene colloidal microspheres. Amine-terminated DNA oligomers were covalently attached onto carboxy-decorated microspheres and enabled their DNA-functionalization while preserving their colloidal stability and organization properties. Following a capillary-force-assisted organization of DNA-decorated microspheres into close-packed 2D opaline arrays, the first monolayer was immobilized by DNA hybridization. Insertion of vacancies at predetermined sites within the lattice of colloidal crystals is a prerequisite in order to realize high-quality, opaline-based photonic devices. The previously obtained DNA-hybridization type binding of 2D-opaline arrays provides a heat-sensitive "adhesive" between substrate and microspheres within a surrounding aqueous medium that enables tuning the hybridization strength of DNA linker as well as a mechanism to facilitate the removal of unbound microspheres. Focusing a laser beam onto a single microsphere of the opaline array induces localized heating that enables the microsphere to detach, leaving behind vacancies. By repeating this process, line vacancies were successfully obtained. The effects of salt concentration, laser power, light-absorbing dyes, DNA length and refractive index mismatch were investigated and found to correlate with heat-induced DNA dehybridization. In addition, AC (alternating current) electrokinetic force was also utilized to obtain assembly of colloidal

  2. Decay Characteristics of Levitation Force of YBCO Bulk Exposed to AC Magnetic Field above NdFeB Guideway

    NASA Astrophysics Data System (ADS)

    Liu, Minxian; Lu, Yiyun; Wang, Suyu; Ma, Guangtong

    2011-04-01

    The superconducting maglev vehicle is one of the most promising applications of HTS bulks. In such a system, the nonuniformity of the magnetic field along the movement direction above the NdFeB guideway is inevitable due to the assembly error and inhomogeneity of the material property of the NdFeB magnet. So it is required to study the characteristics of levitation force of the bulks affected by the non-uniform applied magnetic fields along the moving direction. In this paper, we will study the characteristics of the levitation force relaxation between the HTS bulk and the NdFeB guideway by an experiment in which AC external magnetic field generated by an electromagnet is used to simulate the time-varying external magnetic field caused by the inhomogeneity of the guideway. From the experimental results, it has found that the levitation force is decreasing with the application of the AC external magnetic field, and the decay increasing with the amplitude of the applied magnetic field and is almost independent of the frequency.

  3. Superconductor-Mediated Modification of Gravity? AC Motor Experiments with Bulk YBCO Disks in Rotating Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Koczor, Ronald J.; Roberson, Rick

    1998-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of large bulk-processed high-temperature superconductors. Podkietnov, et al (Podkietnov, E. and Nieminen, R. (1992) A Possibility of Gravitational Force Shielding by Bulk YBa2 Cu3 O7-x Superconductor, Physica C, C203:441-444.) have indicated that rotating AC fields play an essential role in their observed distortion of combined gravity and barometric pressure readings. We report experiments on large (15 cm diameter) bulk YBCO ceramic superconductors placed in the core of a three-phase, AC motor stator. The applied rotating field produces up to a 12,000 revolutions per minute magnetic field. The field intensity decays rapidly from the maximum at the outer diameter of the superconducting disk (less than 60 Gauss) to the center (less than 10 Gauss). This configuration was applied with and without a permanent DC magnetic field levitating the superconducting disk, with corresponding gravity readings indicating an apparent increase in observed gravity of less than 1 x 10(exp -6)/sq cm, measured above the superconductor. No effect of the rotating magnetic field or thermal environment on the gravimeter readings or on rotating the superconducting disk was noted within the high precision of the observation. Implications for propulsion initiatives and power storage flywheel technologies for high temperature superconductors will be discussed for various spacecraft and satellite applications.

  4. Field strength prediction for mobile radio with the aid of a topographic data bank

    NASA Astrophysics Data System (ADS)

    Lorenz, R. W.

    Okumura's classical study (1968) and numerous measurements in Germany are used to develop a field strength prediction method for mobile radio. A topographic data bank is developed that contains information on the altitude above sea level and the environmental clutter for areas of 100 x 150 sq m. The work is restricted to quasi-smooth terrain, and special attention is paid to the influence of environmental clutter and the range of field strength fluctuations. The prediction errors are indicated and values for the local probabilities are listed for two different kinds of built-up areas, forests and open terrain. Some discrepancies between measured values and the predicted values of the Okumura model are also explained.

  5. Hydrophilic quantum dots stability against an external low-strength electric field

    NASA Astrophysics Data System (ADS)

    Goftman, Valentina V.; Pankratov, Vladislav A.; Markin, Alexey V.; Ginste, Dries Vande; De Saeger, Sarah; Goryacheva, Irina Yu.

    2016-02-01

    Since the stability of nanobiolabels plays a key role in their application, we thoroughly investigated how an external, low-strength electric field impacts on the fluorescent properties of hydrophilic quantum dots (QDs). Two fundamentally different approaches were applied to make the QDs water-soluble, i.e. ligand exchange (namely silica covering) and encapsulation with an amphiphilic polymer. It is shown that, even under a low-strength electric field, the polymer-coated QDs could lose 90% of their brightness because of the weak interaction between the QD's surface and the polymeric molecule. Silica-covered QDs, on the contrary, stay bright and stable owing to the covalently attached dense silica shell. These findings, which are clearly explained and illustrated in the present paper, are of critical importance in the context of hydrophilic QDs' bioapplication.

  6. Electromagnetic field strength prediction in an urban environment: A useful tool for the planning of LMSS

    NASA Technical Reports Server (NTRS)

    Vandooren, G. A. J.; Herben, M. H. A. J.; Brussaard, G.; Sforza, M.; Poiaresbaptista, J. P. V.

    1993-01-01

    A model for the prediction of the electromagnetic field strength in an urban environment is presented. The ray model, that is based on the Uniform Theory of Diffraction (UTD), includes effects of the non-perfect conductivity of the obstacles and their surface roughness. The urban environment is transformed into a list of standardized obstacles that have various shapes and material properties. The model is capable of accurately predicting the field strength in the urban environment by calculating different types of wave contributions such as reflected, edge and corner diffracted waves, and combinations thereof. Also, antenna weight functions are introduced to simulate the spatial filtering by the mobile antenna. Communication channel parameters such as signal fading, time delay profiles, Doppler shifts and delay-Doppler spectra can be derived from the ray-tracing procedure using post-processing routines. The model has been tested against results from scaled measurements at 50 GHz and proves to be accurate.

  7. Electron swarm coefficients and the limiting field strength of SF6-N2O mixtures

    NASA Astrophysics Data System (ADS)

    Basurto, E.; Hernández-Ávila, J. L.; Juárez, A. M.; de Urquijo, J.

    2013-09-01

    The electron drift velocities and the effective ionization coefficients have been measured with a pulsed Townsend apparatus for the SF6-N2O mixtures (1-75% SF6) over the combined density-normalized electric field strength, E/N, from 130 to 420 Td (1 Townsend = 10-17 V cm2). Strong electron detachment effects have been observed for gas pressure mixtures above 1 Torr due mostly to NO-, arising as a dissociation product of N2O. In contrast, the influence of detachment due to the negative ions from SF6 is shown to be very small. It has been found that the limiting electric field strength, E/Nlim, of the SF6-N2O mixture is slightly superior (25-5%) to that of SF6-N2 for SF6 amounts of 0-50%, respectively.

  8. Development and testing of passive tracking markers for different field strengths and tracking speeds.

    PubMed

    Peeters, J M; Seppenwoolde, J-H; Bartels, L W; Bakker, C J G

    2006-03-21

    Susceptibility markers for passive tracking need to be small in order to maintain the shape and mechanical properties of the endovascular device. Nevertheless, they also must have a high magnetic moment to induce an adequate artefact at a variety of scan techniques, tracking speeds and, preferably, field strengths. Paramagnetic markers do not satisfy all of these requirements. Ferro- and ferrimagnetic materials were therefore investigated with a vibrating sample magnetometer and compared with the strongly paramagnetic dysprosium oxide. Results indicated that the magnetic behaviour of stainless steel type AISI 410 corresponds the best with ideal marker properties. Markers with different magnetic moments were constructed and tested in in vitro and in vivo experiments. The appearance of the corresponding artefacts was field strength independent above magnetic saturation of 1.5 T. Generally, the contrast-to-noise ratio decreased at increasing tracking speed and decreasing magnetic moment. Device depiction was most consistent at a frame rate of 20 frames per second. PMID:16510948

  9. NOTE: Development and testing of passive tracking markers for different field strengths and tracking speeds

    NASA Astrophysics Data System (ADS)

    Peeters, J. M.; Seppenwoolde, J.-H.; Bartels, L. W.; Bakker, C. J. G.

    2006-03-01

    Susceptibility markers for passive tracking need to be small in order to maintain the shape and mechanical properties of the endovascular device. Nevertheless, they also must have a high magnetic moment to induce an adequate artefact at a variety of scan techniques, tracking speeds and, preferably, field strengths. Paramagnetic markers do not satisfy all of these requirements. Ferro- and ferrimagnetic materials were therefore investigated with a vibrating sample magnetometer and compared with the strongly paramagnetic dysprosium oxide. Results indicated that the magnetic behaviour of stainless steel type AISI 410 corresponds the best with ideal marker properties. Markers with different magnetic moments were constructed and tested in in vitro and in vivo experiments. The appearance of the corresponding artefacts was field strength independent above magnetic saturation of 1.5 T. Generally, the contrast-to-noise ratio decreased at increasing tracking speed and decreasing magnetic moment. Device depiction was most consistent at a frame rate of 20 frames per second.

  10. EFFECTS OF ELECTRIC FIELD ON THE BIAXIAL STRENGTH OF POLED PZT

    SciTech Connect

    Wang, Hong; Wereszczak, Andrew A

    2008-01-01

    The mechanical integrity of piezoelectric ceramics plays a crucial role in the performance and design of lead zirconate titanate (PZT) piezo stack actuators especially as PZT actuators become physically larger and are sought to operate under harsher conditions. The reliable design of such systems demands additional consideration of a number of issues that include electro-mechanical coupling as well as strength-size scaling. This study addresses some of those issues through the use of ball-on-ring (BoR) equibiaxial flexure strength tests of two PZT piezo ceramics. The BoR biaxial flexure tests were conducted with two PZT materials under different electric fields. Fracture surfaces and failure initiations were analyzed using optical and scanning electronic microscopy. The effects of electric fields on the two-parameter Weibull distribution are discussed. These results will serve as input data for future probabilistic reliability analysis of multilayer PZT piezo actuators.

  11. Role of peroxide in AC electrical field exposure effects on Friend murine erythroleukemia cells during dielectrophoretic manipulations

    PubMed Central

    Wang, Xujing; Yang, Jun; Gascoyne, Peter R.C.

    2009-01-01

    The effects of AC field exposure on the viability and proliferation of mammalian cells under conditions appropriate for their dielectrophoretic manipulation and sorting were investigated using DS19 murine erythroleukemia cells as a model system. The frequency range 100 Hz-10 MHz and medium conductivities of 10 mS/m, 30 mS/m and 56 mS/m were studied for fields generated by applying signals of up to 7V peak to peak (p-p) to a parallel electrode array having equal electrode widths and gaps of 100 μm. Between 1 kHz and 10 MHz, cell viability after up to 40 min of field exposure was found to be above 95% and cells were able to proliferate. However, cell growth lag phase was extended with decreasing field frequency and with increasing voltage, medium conductivity and exposure duration. Modified growth behavior was not passed on to the next cell passage, indicating that field exposure did not cause permanent alterations in cell proliferation characteristics. Cell membrane potentials induced by field exposure were calculated and shown to be well below values typically associated with cell damage. Furthermore, medium treated by field exposure and then added to untreated cells produced the same modifications of growth as exposing cells directly, and these modifications occurred only when the electrode polarization voltage exceeded a threshold of ~0.4 V p-p. These findings suggested that electrochemical products generated during field exposure were responsible for the changes in cell growth. Finally, it was found that hydrogen peroxide was produced when sugar-containing media were exposed to fields and that normal cell growth could be restored by addition of catalase to the medium, whether or not field exposure occurred in the presence of cells. These results show that AC fields typically used for dielectrophoretic manipulation and sorting of cells do not damage DS19 cells and that cell alterations arising from electrochemical effects can be completely mitigated. PMID

  12. Magnetic field strength influence on the reactive magnetron sputter deposition of Ta2O5

    NASA Astrophysics Data System (ADS)

    Hollerweger, R.; Holec, D.; Paulitsch, J.; Rachbauer, R.; Polcik, P.; Mayrhofer, P. H.

    2013-08-01

    Reactive magnetron sputtering enables the deposition of various thin films to be used for protective as well as optical and electronic applications. However, progressing target erosion during sputtering results in increased magnetic field strengths at the target surface. Consequently, the glow discharge, the target poisoning, and hence the morphology, crystal structure and stoichiometry of the prepared thin films are influenced. Therefore, these effects were investigated by varying the cathode current Im between 0.50 and 1.00 A, the magnetic field strength B between 45 and 90 mT, and the O2/(Ar + O2) flow rate ratio Γ between 0% and 100%. With increasing oxygen flow ratio a substoichiometric TaOx oxide forms at the metallic Ta target surface which further transfers to a non-conductive tantalum pentoxide Ta2O5, impeding a stable dc glow discharge. These two transition zones (from Ta to TaOx and from TaOx to Ta2O5) shift to higher oxygen flow rates for increasing target currents. In contrast, increasing the magnetic field strength (e.g., due to sputter erosion) mainly shifts the TaOx to Ta2O5 transition to lower oxygen flow rates while marginally influencing the Ta to TaOx transition. To allow for a stable dc glow discharge (and to suppress the formation of non-conductive Ta2O5 at the target) even at Γ = 100% either a high target current (Im ⩾ 1 A) or a low magnetic field strength (B ⩽ 60 mT) is necessary. These conditions are required to prepare stoichiometric and fully crystalline Ta2O5 films.

  13. Study of the Dependency on Magnetic Field and Bias Voltage of an AC-Biased TES Microcalorimeter

    NASA Technical Reports Server (NTRS)

    Gottardi, L.; Bruijn, M.; denHartog, R.; Hoevers, H.; deKorte, P.; vanderKuur, J.; Linderman, M.; Adams, J.; Bailey, C.; Bandler, S.; Chervenak, J.; Eckart, M.; Finkbeiner, F.; Kelley, R.; Kilbourne, C.; Porter, F.; Sadlier, J.; Smith, S.

    2012-01-01

    At SRON we are studying the performance of a Goddard Space Flight Center single pixel TES microcalorimeter operated in an AC bias configuration. For x-ray photons at 6 keV the pixel shows an x-ray energy resolution Delta E(sub FWHM) = 3.7 eV, which is about a factor 2 worse than the energy resolution observed in an identical DC-biased pixel. In order to better understand the reasons for this discrepancy we characterized the detector as a function of temperature, bias working point and applied perpendicular magnetic field. A strong periodic dependency of the detector noise on the TES AC bias voltage is measured. We discuss the results in the framework of the recently observed weak-link behaviour of a TES microcalorimeter.

  14. Theoretical investigation on the performance of DNA electrophoresis under programmed step electric field strength: Two-step condition.

    PubMed

    Ni, Yi; Liu, Chenchen; Chen, Qinmiao; Zhu, Xifang; Dou, Xiaoming

    2015-10-01

    Programmed step electric field strength is a simple-to-use technique that has already been reported to be effective to enhance the efficiency or speed of DNA electrophoresis. However, a global understanding and the details of this technique are still vague. In this paper, we investigated the influence of programmed step electric field strength by theoretical calculation and concentrated on a basic format named as two-step electric field strength. Both subtypes of two-step electric field strength conditions were considered. The important parameters, such as peak spacing, peak width, resolution, and migration time, were calculated in theory to understand the performance of DNA electrophoresis under programmed step electric field strength. The influence of two-step electric field strength on DNA electrophoresis was clearly revealed on a diagram of resolution versus migration time. Both resolution and speed of DNA electrophoresis under two-step electric field strength conditions are simply expressed by the shape of curves in the diagram. The possible shapes of curve were explored by calculation and shown in this paper. The subtype II of two-step electric field strength brings drastic variation on the resolution. Its limitations of enhancement and deterioration of resolution were predicted in theory. PMID:26289302

  15. Resolution Improvements in in Vivo1H NMR Spectra with Increased Magnetic Field Strength

    NASA Astrophysics Data System (ADS)

    Gruetter, Rolf; Weisdorf, Sally A.; Rajanayagan, Vasantham; Terpstra, Melissa; Merkle, Hellmut; Truwit, Charles L.; Garwood, Michael; Nyberg, Scott L.; Ugurbil, Kâmil

    1998-11-01

    The measurement of cerebral metabolites using highly homologous localization techniques and similar shimming methods was performed in the human brain at 1.5 and 4 T as well as in the dog and rat brain at 9.4 T. In rat brain, improved resolution was achieved by shimming all first- and second-order shim coils using a fully adiabatic FASTMAP sequence. The spectra showed a clear improvement in spectral resolution for all metabolite resonances with increased field strength. Changes in cerebral glutamine content were clearly observed at 4 T compared to 1.5 T in patients with hepatic encephalopathy. At 9.4 T, glutamine H4 at 2.46 ppm was fully resolved from glutamate H4 at 2.37 ppm, as was the potential resonance from γ-amino-butyric acid at 2.30 ppm and N-acetyl-aspartyl-glutamate at 2.05 ppm. Singlet linewidths were found to be as low as 6 Hz (0.015 ppm) at 9.4 T, indicating a substantial decrease in ppm linewidth with field strength. Furthermore, the methylene peak of creatine was partially resolved from phosphocreatine, indicating a close to 1:1 relationship in gray matter. We conclude that increasing the magnetic field strength increases spectral resolution also for1H NMR, which can lead to more than linear sensitivity gains.

  16. Dispersal of G-band Bright Points at Different Longitudinal Magnetic Field Strengths

    NASA Astrophysics Data System (ADS)

    Yang, Yunfei; Ji, Kaifai; Feng, Song; Deng, Hui; Wang, Feng; Lin, Jiaben

    2015-09-01

    G-band bright points (GBPs) are thought to be the foot-points of magnetic flux tubes. The aim of this paper is to investigate the relation between the diffusion regimes of GBPs and the associated longitudinal magnetic field strengths. Two high resolution observations of different magnetized environments were acquired with the Hinode/Solar Optical Telescope. Each observation was recorded simultaneously with G-band filtergrams and Narrow-band Filter Imager (NFI) Stokes I and V images. GBPs are identified and tracked automatically, and then categorized into several groups by their longitudinal magnetic field strengths, which are extracted from the calibrated NFI magnetograms using a point-by-point method. The Lagrangian approach and the distribution of diffusion indices approach are adopted separately to explore the diffusion regime of GBPs for each group. It is found that the values of diffusion index and diffusion coefficient both decrease exponentially with the increasing longitudinal magnetic field strengths whichever approach is used. The empirical formulas deduced from the fitting equations are proposed to describe these relations. Stronger elements tend to diffuse more slowly than weak elements, independently of the magnetic flux of the surrounding medium. This may be because the magnetic energy of stronger elements is not negligible compared with the kinetic energy of the gas, and therefore the flows cannot perturb them so easily.

  17. Carboxylated magnetic nanoparticles as MRI contrast agents: Relaxation measurements at different field strengths

    NASA Astrophysics Data System (ADS)

    Jedlovszky-Hajdú, Angéla; Tombácz, Etelka; Bányai, István; Babos, Magor; Palkó, András

    2012-09-01

    At the moment the biomedical applications of magnetic fluids are the subject of intensive scientific interest. In the present work, magnetite nanoparticles (MNPs) were synthesized and stabilized in aqueous medium with different carboxylic compounds (citric acid (CA), polyacrylic acid (PAA), and sodium oleate (NaOA)), in order to prepare well stabilized magnetic fluids (MFs). The magnetic nanoparticles can be used in the magnetic resonance imaging (MRI) as contrast agents. Magnetic resonance relaxation measurements of the above MFs were performed at different field strengths (i.e., 0.47, 1.5 and 9.4 T) to reveal the field strength dependence of their magnetic responses, and to compare them with that of ferucarbotran, a well-known superparamagnetic contrast agent. The measurements showed characteristic differences between the tested magnetic fluids stabilized by carboxylic compounds and ferucarbotran. It is worthy of note that our magnetic fluids have the highest r2 relaxivities at the field strength of 1.5 T, where the most of the MRI works in worldwide.

  18. Quantitatively probing the magnetic behavior of individual nanoparticles by an AC field-modulated magnetic force microscopy.

    PubMed

    Li, Xiang; Lu, Wei; Song, Yiming; Wang, Yuxin; Chen, Aiying; Yan, Biao; Yoshimura, Satoru; Saito, Hitoshi

    2016-01-01

    Despite decades of advances in magnetic imaging, obtaining direct, quantitative information with nanometer scale spatial resolution remains an outstanding challenge. Current approaches, for example, Hall micromagnetometer and nitrogen-vacancy magnetometer, are limited by highly complex experimental apparatus and a dedicated sample preparation process. Here we present a new AC field-modulated magnetic force microscopy (MFM) and report the local and quantitative measurements of the magnetic information of individual magnetic nanoparticles (MNPs), which is one of the most iconic objects of nanomagnetism. This technique provides simultaneously a direct visualization of the magnetization process of the individual MNPs, with spatial resolution and magnetic sensitivity of about 4.8 nm and 1.85 × 10(-20) A m(2), respectively, enabling us to separately estimate the distributions of the dipolar fields and the local switching fields of individual MNPs. Moreover, we demonstrate that quantitative magnetization moment of individual MNPs can be routinely obtained using MFM signals. Therefore, it underscores the power of the AC field-modulated MFM for biological and biomedical applications of MNPs and opens up the possibility for directly and quantitatively probing the weak magnetic stray fields from nanoscale magnetic systems with superior spatial resolution. PMID:26932357

  19. Quantitatively probing the magnetic behavior of individual nanoparticles by an AC field-modulated magnetic force microscopy

    PubMed Central

    Li, Xiang; Lu, Wei; Song, Yiming; Wang, Yuxin; Chen, Aiying; Yan, Biao; Yoshimura, Satoru; Saito, Hitoshi

    2016-01-01

    Despite decades of advances in magnetic imaging, obtaining direct, quantitative information with nanometer scale spatial resolution remains an outstanding challenge. Current approaches, for example, Hall micromagnetometer and nitrogen-vacancy magnetometer, are limited by highly complex experimental apparatus and a dedicated sample preparation process. Here we present a new AC field-modulated magnetic force microscopy (MFM) and report the local and quantitative measurements of the magnetic information of individual magnetic nanoparticles (MNPs), which is one of the most iconic objects of nanomagnetism. This technique provides simultaneously a direct visualization of the magnetization process of the individual MNPs, with spatial resolution and magnetic sensitivity of about 4.8 nm and 1.85 × 10−20 A m2, respectively, enabling us to separately estimate the distributions of the dipolar fields and the local switching fields of individual MNPs. Moreover, we demonstrate that quantitative magnetization moment of individual MNPs can be routinely obtained using MFM signals. Therefore, it underscores the power of the AC field-modulated MFM for biological and biomedical applications of MNPs and opens up the possibility for directly and quantitatively probing the weak magnetic stray fields from nanoscale magnetic systems with superior spatial resolution. PMID:26932357

  20. Quantitatively probing the magnetic behavior of individual nanoparticles by an AC field-modulated magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Lu, Wei; Song, Yiming; Wang, Yuxin; Chen, Aiying; Yan, Biao; Yoshimura, Satoru; Saito, Hitoshi

    2016-03-01

    Despite decades of advances in magnetic imaging, obtaining direct, quantitative information with nanometer scale spatial resolution remains an outstanding challenge. Current approaches, for example, Hall micromagnetometer and nitrogen-vacancy magnetometer, are limited by highly complex experimental apparatus and a dedicated sample preparation process. Here we present a new AC field-modulated magnetic force microscopy (MFM) and report the local and quantitative measurements of the magnetic information of individual magnetic nanoparticles (MNPs), which is one of the most iconic objects of nanomagnetism. This technique provides simultaneously a direct visualization of the magnetization process of the individual MNPs, with spatial resolution and magnetic sensitivity of about 4.8 nm and 1.85 × 10-20 A m2, respectively, enabling us to separately estimate the distributions of the dipolar fields and the local switching fields of individual MNPs. Moreover, we demonstrate that quantitative magnetization moment of individual MNPs can be routinely obtained using MFM signals. Therefore, it underscores the power of the AC field-modulated MFM for biological and biomedical applications of MNPs and opens up the possibility for directly and quantitatively probing the weak magnetic stray fields from nanoscale magnetic systems with superior spatial resolution.

  1. High field strength following the Kauai R-N geomagnetic reversal

    SciTech Connect

    Paul, H.A. . Dept. of Geology)

    1993-04-01

    The paleomagnetism of superposed lava flows on Kauai, Hawaii shows that the ancient geomagnetic field was unusually strong following a reverse-to-normal polarity transition that occurred about 4 million years ago. Paleointensities were determined by a standard experimental procedure (Thelliers' method) that recreates the process of remanence acquisition in volcanic rocks. This experiment makes it possible to infer the strength of the geomagnetic field present with each lava flow formed, thus producing an accurate picture of the ancient field's behavior after the reversal. Samples from 10 volcanic units yielded virtual dipole moments (VDMs) ranging from 7.4 [times] 10[sup 22] Am[sup 2] to 14.5 [times] 10[sup 22] Am[sup 2] with an average of 11.1[times]10[sup 22] Am[sup 2]. This value is high in comparisons to the average VDM for the past 5 m.y., approximately 8.7[times]10[sup 22] Am[sup 2]. In contrast to the highly variable dipole moment observed following a 15 m.y. old reversal at Steen s Mountain, Oregon, the field following the Kauai transition was relatively steady. Surprisingly, the maximum dipole moments following the two reversals were nearly equal. This similarity hints that high field strength may be a systematic feature of the geodynamo immediately following a polarity reversal.

  2. CORRELATIONS OF PLASMA DENSITY AND MAGNETIC FIELD STRENGTH IN THE HELIOSHEATH

    SciTech Connect

    Gutynska, O.; Safrankova, J.; Nemecek, Z.; Richardson, J. D.

    2010-10-20

    The crossing of the termination shock (TS) by Voyager 2 in 2007 at 84 AU allows a comparison of fluctuations in different heliosheath regions. The Letter concentrates on MHD waves that exhibit a significant correlation between the magnetic field strength and plasma density. The correlations between both quantities were computed on 2 hr time intervals in the frequency range of 1 x 10{sup -4} to 4 x 10{sup -3} Hz. We separate the data into two regions with different magnetic field behavior; the post-TS region with many crossings of the current sheet and the unipolar region where the magnetic field direction remains nearly constant. We find that typical correlation coefficients in these regions are about 0.55-0.65, larger than in Earth's magnetosheath. The largest correlations occur when the spectrum of magnetic field fluctuations is dominated by low frequencies.

  3. Resonant vibration of a droplet located on a superhydrophobic surface under the vertical and horizontal ac field

    NASA Astrophysics Data System (ADS)

    Higashiyama, Y.; Ohuchi, T.; Sugimoto, T.

    2015-10-01

    A water droplet under an ac electric field with resonant frequency changes drastically its shape repeating extension and shrinkage, alternatively. To develop an electrostatic mixing method of small amount of liquid, resonant vibrating motion of a water droplet was investigated. Both horizontal and vertical fields were applied to the droplet placed on a super-hydrophobic plate with a contact angle of 150 degrees. From the video images of the droplet, the degree of deformation of the droplet shape was evaluated by deformation rate. Under the two-directional electric field, the deformation ratio at shrinkage was increased significantly. The height of the droplet varies from 1.2 to 1.8 times larger than that of the original droplet during vibrating motion. Furthermore, the deformation rate at shrinkage varies with time periodically due to rotating motion of the droplet. The vertical electric field might be effective to cause the turbulent flow inside of the droplet.

  4. Refining the Search for Suitable KBOs: Calibration of the HST/ACS Wide Field Camera Ramp Filters.

    NASA Astrophysics Data System (ADS)

    Trafton, Laurence M.

    2014-11-01

    After the New Horizons flyby of Pluto, the spacecraft will travel on to fly by one or more KBO objects. These are yet to be determined; searches are currently underway to locate suitable candidates. Once some candidates are identified, further observations are likely in order to decide on the actual targets; e.g., spectra or narrow-band observations vs. rotational phase to determine the presence of frozen volatiles. With its wide field, clear and broad band B and I filters, and its suite of medium band filters (9% FWHM), the ACS WFC camera on board HST is useful for searches over the CCD wavelength range. Moreover, its suite of narrow band (2%) ramp filters, which are also distributed over this wavelength range, are potentially useful for identifying the signature of spectral features, such as solid methane bands, for KBOs as dim as V = +25. However, the transmission of these ramp filters is uncertain since it was never calibrated. We report the calibration of 9 ACS/WFC ramp filters at 15 selected central wavelengths. A comparison of the calibrated transmissions to the existing uncalibrated ramp filters is presented. Corrective flats have been submitted for insertion into the ACS data reduction pipeline.This program was supported through HST-AR-10981.01-A.

  5. Effect of excitation field strength on magnetic Barkhausen noise profile in case carburized EN 36 steel

    NASA Astrophysics Data System (ADS)

    Blaow, M. M.; Shaw, B. A.

    2015-03-01

    The sensitivity of magnetic Barkhausen noise (MBN) profile to changes in the excitation field strength has been investigated in case carburized EN36 steel. In general, the 0.5 mm case depth EN 36 steel specimen induces a double peak profile indicative of inhomogeneity through the detected depth in the magnetized landscape. Various excitation field amplitudes have been applied to the electromagnet to generate various excitation fields on the specimen surface. Excitation field at the lowest level induced an MBN emission of two peaks of equivalent heights at low current value. The first peak occurs at lower field than the second peak in each half magnetization cycle. As the excitation field increases, the height of both peaks increased but the second peak, at higher field, increases in a higher rate than that of the first peak at lower field. Beyond certain magnetizing voltage, both peaks heights began to saturate and no further increase in the MBN intensity has been noticed. The results are discussed on the basis of the available theories on MBN.

  6. Macroscopic orientation effects in broadline NMR-spectra of model membranes at high magnetic field strength

    PubMed Central

    Brumm, T.; Möps, A.; Dolainsky, C.; Brückner, S.; Bayerl, T. M.

    1992-01-01

    The partial orientation of multilamellar vesicles (MLV) in high magnetic fields has been studied and a method to prevent such effects is herewith proposed. The orientation effect was measured with 2H-, 31P-NMR and electron microscopy on MLVs of dipalmitoyl phosphatidylcholine with 30 mol% cholesterol. We present the first freeze—etch electron microscopy data obtained from MLV samples that were frozen directly in the NMR magnet at a field strength of 9.4 Tesla. These experiments clearly show that the MLVs adopt an ellipsoidal (but not a cylindrical) shape in the magnetic field. Best fit 31P-NMR lineshape calculations assuming an ellipsoidal distribution of molecular director axes to the experimentally obtained spectra provide a quantitative measure of the average semiaxis ratio of the ellipsoidal MLVs and its change with temperature. The application of so-called spherical supported vesicles (SSV) is found to prevent any partial orientation effects so that undistorted NMR powder pattern of the bilayer can be measured independently of magnetic field strength and temperature. The usefulness of SSVs is further demonstrated by a direct comparison of spectral data such as 31P-and 2H-NMR lineshapes and relaxation times as well as 2H-NMR dePaked spectra obtained for both model systems. These experiments show that spectral data obtained from partially oriented MLVs are not unambiguous to interpret, in particular, if an external parameter such as temperature is varied. ImagesFIGURE 1 PMID:19431822

  7. Double perovskite structure: a vibrational and luminescence investigation providing a perspective on crystal field strength.

    PubMed

    Li, Wenyu; Ning, Lixin; Tanner, Peter A

    2012-07-12

    The luminescence spectra of Eu(3+) doped in a series of double perovskite lattices Ba(2)LnMO(6) (Ln = Y, Gd; M = Nb, Ta) have been recorded at room temperature and 10 K. Together with FT-IR and FT-Raman spectra and aided by DFT vibrational energy calculations, assignments have been made for the crystal field levels of the (5)D(J) (J = 0,1) and (7)F(J) (J = 0-2) multiplets. The luminescence spectra are consistent with monoclinic symmetry of these systems. The crystal field parameters from the fitting of the energy level data set of Ba(2)YNbO(6):Eu(3+) enable the crystal field strength to be calculated, and the order of magnitude is Cl(-) < O(2-) < F(-) for the EuX(6)(n-) (n = 6 for halogen, 9 for oxide) moieties. For these systems, an empirical linear relationship between crystal field strength and electronegativity of ligand X has been found. By contrast, the nephelauxetic series from the depression of the Slater parameter F(2) is Cl(-) ≈ O(2-) > F(-) > free ion for these systems. PMID:22703165

  8. Influence of the strength of polarizing electric field on free relaxation of electric birefringence in poly(butyl-isocyanate) solutions

    NASA Astrophysics Data System (ADS)

    Tsvetkov, N. V.; Mikhailova, M. E.; Lebedeva, E. V.; Lezov, A. A.; Rogozhin, V. B.; Rotinyan, T. A.

    2016-03-01

    Free relaxation of electric birefringence in tetrachloromethane solution of high molecular weight poly(butyl-isocyanate) was studied. The effect of electric field strength on the average relaxation time was observed. The relaxation spectrum was analyzed using the Rouse and Zimm theories. With increase in the electric field strength, the contribution of fast (deformation) relaxation modes also increased significantly. It is assumed that certain changes in intramolecular mobility occur under the influence of electric field.

  9. Experimental observation of further frequency upshift from dc to ac radiation converter with perpendicular dc magnetic field

    PubMed

    Higashiguchi; Yugami; Gao; Niiyama; Sasaki; Takahashi; Ito; Nishida

    2000-11-20

    A frequency upshift of a short microwave pulse is generated by the interaction between a relativistic underdense ionization front and a periodic electrostatic field with a perpendicular dc magnetic field. When the dc magnetic field is applied, further frequency upshift of 3 GHz is observed with respect to an unmagnetized case which has typically a GHz range. The radiation frequency depends on both the plasma density and the strength of the dc magnetic field, i.e., the plasma frequency and the cyclotron frequency. The frequency of the emitted radiation is in reasonable agreement with the theoretical values. PMID:11082591

  10. Digital tabulation of historical sunspot field strength measurements from the Mount Wilson Observatory

    NASA Astrophysics Data System (ADS)

    Pevtsov, Alexei; Tlatov, Andrey; Bertello, Luca; Ulrich, Roger

    2015-08-01

    Direct (manual) measurements of magnetic fields in sunspots based on Zeeman effect represent the longest magnetic observations pertinent to the Sun. Regular (daily) observations started in about 1917 and continue till present. The data consist of daily drawings of sunspots with the corresponding field strength and polarity measurements handwritten on these drawings. All the drawings are now scanned to digital images (JPEG format). However, the lack of tabulated data severely limits the use of this unique data set. Here we report on status and the results of several recent projects aimed at the digital tabulation of MWO drawings. While the individual projects are funded independently by the American (USA) and Russian funding agencies, the groups collaborate closely with each other to achieve a common goal - creation of tabulated data set contacting magnetic field and sunspot position information derived from the drawings. The collaboration is coordinated by the IAU working group on Coordination of Synoptic Observations of the Sun.

  11. Field_ac: a research project on ocean modelling in coastal areas. The experience in the Catalan Sea.

    NASA Astrophysics Data System (ADS)

    Grifoll, Manel; Pallarès, Elena; Tolosana-Delgado, Raimon; Fernandez, Juan; Lopez, Jaime; Mosso, Cesar; Hermosilla, Fernando; Espino, Manuel; Sanchez-Arcilla, Agustín

    2013-04-01

    The EU founded Field_ac project has investigated during the last three years methods and strategies for improving operational services in coastal areas. The objective has been to generate added value for shelf and regional scale predictions from GMES Marine Core Services. In this sense the experience in the Catalan Sea site has allowed to combine high-resolution numerical modeling tools nested into regional GMES services, data from intensive field campaigns or local observational networks and remote sensing products. Multi-scale coupled models have been implemented to evaluate different temporal and spatial scales of the dominant physical processes related with waves, currents, continental/river discharges or sediment transport. In this sense the experience of the Field_ac project in the Catalan Sea has permit to "connect" GMES marine core service results to the coastal (local) anthropogenic forcing (e.g. causes of morphodynamic evolution and ecosystem degradation) and will support a knowledge-based assessment of decisions in the coastal zone. This will contribute to the implementation of EU directives (e.g., the Water Framework Directive for water quality at beaches near harbour entrances or the Risk or Flood Directives for waves and sea-level at beach/river-mouth scales).

  12. Dc to ac field conversion due to leaky-wave excitation in a plasma slab behind an ionization front

    NASA Astrophysics Data System (ADS)

    Kostin, V. A.; Vvedenskii, N. V.

    2015-03-01

    We present a way for generating coherent tunable electromagnetic radiation through dc to ac field conversion by an ionization front. The conversion is caused by the excitation of leaky waves behind the transversely limited ionization front propagating in a uniform electrostatic field. This differs significantly from the well-known dc-to-ac-radiation-converter models which consider Doppler-like frequency conversion by a transversely unlimited ionization front propagating in a spatially periodic electric field. We explore the dispersion properties and excitation of these leaky waves radiated through the transverse plasma boundary at the Cherenkov angle to the direction of propagation of a superluminal ionization front as dependent on the parameters of the plasma produced and on the speed of the ionization front. It is shown that not only the center frequency but also the duration and waveform of the generated pulse may significantly depend on the speed of the ionization front. The results indicate the possibility of using such converters based on planar photoconductive antennas to create sources of microwave and terahertz radiation with controllable waveforms that are transformed from video to radio pulse when the angle of incident ionizing radiation is tuned.

  13. Direction detectable static magnetic field imaging by frequency-modulated magnetic force microscopy with an AC magnetic field driven soft magnetic tip

    NASA Astrophysics Data System (ADS)

    Saito, Hitoshi; Ito, Ryoichi; Egawa, Genta; Li, Zhenghua; Yoshimura, Satoru

    2011-04-01

    Direction detectable static magnetic field imaging, which directly distinguishes the up and down direction of static perpendicular magnetic field from a sample surface and the polarity of magnetic charges on the surface, was demonstrated for CoCrPt-SiO2 perpendicular magnetic recording media based on a frequency-modulated magnetic force microscopy (FM-MFM), which uses a frequency modulation of the cantilever oscillation induced by an alternating force from the tip-sample magnetic interaction. In this study, to generate the alternating force, we used a NiFe soft magnetic tip driven by the ac magnetic field of a soft ferrite core and imaged the direction and the amplitude of the static magnetic field from the recorded bits. This method enables measurement of the static magnetic field near a sample surface, which is masked by short range forces of the surface. The present method will be effective in analyzing the microscopic magnetic domain structure of hard magnetic samples.

  14. Geomagnetic field strength 3.2 billion years ago recorded by single silicate crystals.

    PubMed

    Tarduno, John A; Cottrell, Rory D; Watkeys, Michael K; Bauch, Dorothy

    2007-04-01

    The strength of the Earth's early geomagnetic field is of importance for understanding the evolution of the Earth's deep interior, surface environment and atmosphere. Palaeomagnetic and palaeointensity data from rocks formed near the boundary of the Proterozoic and Archaean eons, some 2.5 Gyr ago, show many hallmarks of the more recent geomagnetic field. Reversals are recorded, palaeosecular variation data indicate a dipole-dominated morphology and available palaeointensity values are similar to those from younger rocks. The picture before 2.8 Gyr ago is much less clear. Rocks of the Archaean Kaapvaal craton (South Africa) are among the best-preserved, but even they have experienced low-grade metamorphism. The variable acquisition of later magnetizations by these rocks is therefore expected, precluding use of conventional palaeointensity methods. Silicate crystals from igneous rocks, however, can contain minute magnetic inclusions capable of preserving Archaean-age magnetizations. Here we use a CO2 laser heating approach and direct-current SQUID magnetometer measurements to obtain palaeodirections and intensities from single silicate crystals that host magnetite inclusions. We find 3.2-Gyr-old field strengths that are within 50 per cent of the present-day value, indicating that a viable magnetosphere sheltered the early Earth's atmosphere from solar wind erosion. PMID:17410173

  15. Spatial electron density and electric field strength measurements in microwave cavity experiments

    NASA Technical Reports Server (NTRS)

    Peters, M.; Whitehair, S.; Asmussen, J.; Kerber, H.; Rogers, J.

    1984-01-01

    Measurements of electron density and electric field strength have been made in an argon plasma contained in a resonant microwave cavity at 2.45 GHz. Spatial measurements of electron density, n sub e, are correlated with fluorescence observations of the discharge. Measurements of n sub e were made with Stark broadening and compared with n sub e calculated from measured plasma conductivity. Additional measurements of n sub e as a function of pressure and in mixtures of argon and oxygen are presented for pressures from 10 Torr to 1 atm. Measurements in flowing gases and in static systems are presented. In addition, limitations of these measurements are identified.

  16. Determining the neutron star surface magnetic field strength of two Z sources

    NASA Astrophysics Data System (ADS)

    Ding, Guoqiang; Huang, Chunping; Wang, Yanan

    2013-02-01

    From the extreme position of disk motion, we infer the neutron star (NS) surface magnetic field strength (B 0) of Z-source GX 17+2 and Cyg X-2. The inferred B 0 of GX 17+2 and Cyg X-2 are ~(1-5)×108 G and ~(1-3)×108 G, respectively, which are not inferior to that of millisecond X-ray pulsars or atoll sources. It is likely that the NS magnetic axis of Z sources is parallel to the axis of rotation, which could result in the lack of pulsations in these sources.

  17. Spatial electron density and electric field strength measurements in microwave cavity experiments

    NASA Technical Reports Server (NTRS)

    Peters, M.; Rogers, J.; Whitehair, S.; Asmussen, J.; Kerber, R.

    1984-01-01

    Measurements of electron density and electric field strength have been made in an argon plasma contained in a resonant microwave cavity at 2.45 GHz. Spatial measurements of electron density, n sub e, are correlated with fluorescence observations of the discharge. Measurements of n sub e were made with Stark broadening and compared with n sub 3 calculated from measured plasma conductivity. Additional measurements of n sub 3 as a function of pressure and in mixtures of argon and oxygen are presented for pressures from 10 Torr to 1 atm. Measurements in flowing gases and in static systems are presented. In addition, limitations of these measurements are identified.

  18. Limits on the Strength of the Vestan Magnetic Field Using Dawn's GRaND Instrument

    NASA Astrophysics Data System (ADS)

    Villarreal, Michaela; Russell, Christopher; Prettyman, Tom; Yamashita, Naoyuki

    2015-04-01

    The well known HED meteorites have long been thought to have originated from Vesta and this interpretation was confirmed by Dawn's visit to Vesta in 2012. Fu et al. (2012) analyzed the HED meteorite Allan Hills ALHA81001 in particular and determined that the remanent magnetization of the meteorite likely formed in the presence of crustal fields about 12 microteslas. The Dawn spacecraft was not equipped with a magnetometer to confirm these results. However, the photomultiplier tube associated with the Bismuth Germanate (BGO) scintillator that is part of Dawn's Gamma Ray and Neutron Detector (GRaND) instrument is known to be sensitive to strong magnetic fields. The gain of the photomultiplier tube varies with both the magnitude and direction of the present magnetic field. Due to the arrangement of the photomultiplier tube, it is most sensitive along one axis. Fortunately, the defined axes of the photomultiplier tube are well aligned with the coordinate system defined for the spacecraft. Using position data, we can monitor how the output of the photomultiplier tube changes as the sensitive axis varies in position with respect to the surface. Here we attempt to use the variation of the gain of the photomultiplier tube as Dawn orbits Vesta as a proxy for any crustal fields that may be present. The photomultiplier tube is sensitive to field strengths greater than 0.5 mT, allowing us to put constraints on the Vestan crustal fields.

  19. Suppression of drinking by exposure to a high-strength static magnetic field.

    PubMed

    Houpt, Thomas A; Cassell, Jennifer A; Riccardi, Christina; Kwon, Bumsup; Smith, James C

    2007-01-30

    High-strength static magnetic fields of 7 T and above have been shown to have both immediate and delayed effects on rodents, such as the induction of locomotor circling and the acquisition of conditioned taste aversions. In this study, the acute effects of magnet field exposure on drinking were examined. Exposure to a 14.1-T magnetic field for as little as 5 min significantly decreased the amount of a glucose and saccharin solution (G+S) consumed by water-deprived rats over 10 min. The decreased intake could be accounted for largely, but not entirely, by an increase in the latency of magnet-exposed rats to initiate drinking. When intake was measured for 10-60 min after the initiation of drinking, thus controlling for increased latency, magnet-exposed rats still consumed less G+S than sham-exposed rats. The increased latency was not due simply to an inability of magnet-exposed rats to reach the elevated sipper tube of the G+S bottle, providing rats with long tubes that could be reached without raising their heads normalized intake but latency was still increased. The increased latency and decreased intake appeared to be secondary to somatic effects of magnet exposure, however, because during intraoral infusions magnet-exposed rats consumed the same amount of G+S with the same latency to reject as sham-exposed rats. The suppression of drinking by magnetic field exposure is consistent with the acute effects of other aversive stimuli, such as whole-body rotation, on short-term ingestion. These results add to the evidence that high-static strength magnetic fields can have behavioral effects on rodents. PMID:17055009

  20. Control over Janus micromotors by the strength of a magnetic field

    NASA Astrophysics Data System (ADS)

    Baraban, Larysa; Makarov, Denys; Schmidt, Oliver G.; Cuniberti, Gianaurelio; Leiderer, Paul; Erbe, Artur

    2013-01-01

    For transportation of molecules or biological cells using artificial motors, the control over their motion, i.e. direction and speed of transfer, is important. Here, we demonstrate that modification of the velocity and orientation of a magnetic Janus particle can be efficiently controlled by tuning the strength of an applied homogeneous magnetic field. Interestingly, by keeping the same orientation of the magnetic field but changing its magnitude not only the velocity of capped particles can be altered but even their direction of motion can be reversed. We put forth a simple qualitative model, which allows us to explain this intriguing observation.For transportation of molecules or biological cells using artificial motors, the control over their motion, i.e. direction and speed of transfer, is important. Here, we demonstrate that modification of the velocity and orientation of a magnetic Janus particle can be efficiently controlled by tuning the strength of an applied homogeneous magnetic field. Interestingly, by keeping the same orientation of the magnetic field but changing its magnitude not only the velocity of capped particles can be altered but even their direction of motion can be reversed. We put forth a simple qualitative model, which allows us to explain this intriguing observation. Electronic supplementary information (ESI) available: Videos (1-3) describe the behavior of the magnetic Janus micromotors at different magnetic fields applied. The magnetic field is always applied along the positive direction of the y-axis. All the movies are recorded at the same frame rate of 21 images per second. Experiments were performed at 30 wt% of hydrogen peroxide in aqueous solution. Video 1 shows the motion of the Janus micromotors when a small magnetic field is applied (B = 0.2 mT). The particle is propelled in the direction ``opposite to the cap'' with a velocity of about 6 μm s-1. Video 2 displays the motion of the same Janus bead when an intermediately strong

  1. Inductive heat property of Fe3O4/polymer composite nanoparticles in an ac magnetic field for localized hyperthermia.

    PubMed

    Zhao, Dong-Lin; Zhang, Hai-Long; Zeng, Xian-Wei; Xia, Qi-Sheng; Tang, Jin-Tian

    2006-12-01

    The magnetite (Fe(3)O(4)) nanoparticles were prepared by coprecipitation of Fe(3+) and Fe(2+) with an aqueous NaOH solution. The Fe(3)O(4)/polyaniline (PANI) magnetic composite nanoparticles with a core-shell structure with a diameter of 30-50 nm were prepared via an in situ polymerization of aniline in an aqueous solution containing the Fe(3)O(4) magnetic fluid. The inductive heat property of Fe(3)O(4)/PANI composite nanoparticles in an alternating current (ac) magnetic field was investigated. The potential of Fe(3)O(4)/PANI nanoparticles was evaluated for localized hyperthermia treatment of cancers. The saturation magnetization, M(s), and coercivity, H(c), are 50.05 emu g(-1) and 137 Oe for Fe(3)O(4) nanoparticles and 26.34 emu g(-1) and 0 Oe for Fe(3)O(4)/PANI composite nanoparticles, respectively. Exposed in the ac magnetic field for 29 min, the temperatures of physiological saline suspensions containing Fe(3)O(4) nanoparticles or Fe(3)O(4)/PANI composite nanoparticles are 63.6 degrees C and 52.4 degrees C, respectively. The Fe(3)O(4)/PANI composite nanoparticles would be useful as good thermoseeds for localized hyperthermia treatment of cancers. PMID:18458406

  2. National surveys of radiofrequency field strengths from radio base stations in Africa

    PubMed Central

    Joyner, Ken H.; Van Wyk, Marthinus J.; Rowley, Jack T.

    2014-01-01

    The authors analysed almost 260 000 measurement points from surveys of radiofrequency (RF) field strengths near radio base stations in seven African countries over two time frames from 2001 to 2003 and 2006 to 2012. The results of the national surveys were compared, chronological trends investigated and potential exposures compared by technology and with frequency modulation (FM) radio. The key findings from thes data are that irrespective of country, the year and mobile technology, RF fields at a ground level were only a small fraction of the international human RF exposure recommendations. Importantly, there has been no significant increase in typical measured levels since the introduction of 3G services. The mean levels in these African countries are similar to the reported levels for countries of Asia, Europe and North America using similar mobile technologies. The median level for the FM services in South Africa was comparable to the individual but generally lower than the combined mobile services. PMID:24044904

  3. Image analysis of atmospheric corrosion of field exposure high strength aluminium alloys

    NASA Astrophysics Data System (ADS)

    Tao, Lei; Song, Shizhe; Zhang, Xiaoyun; Zhang, Zheng; Lu, Feng

    2008-08-01

    The corrosion morphology image acquisition system which can be used in the field was established. In Beijing atmospheric corrosion exposure station, the image acquisition system was used to capture the early stage corrosion morphology of five types of high strength aluminium alloy specimens. After the denoise treatment, wavelet-based image analysis method was applied to decompose the improved images and energies of sub-images were extracted as character information. Based on the variation of image energy values, the corrosion degree of aluminium alloy specimens was qualitatively and quantitatively analyzed. The conclusion was basically identical with the result based on the corrosion weight loss. This method is supposed to be effective to analysis and quantify the corrosion damage from image of field exposure aluminium alloy specimens.

  4. Field strength variations of LF radio waves prior to earthquakes in central Italy

    NASA Astrophysics Data System (ADS)

    Bella, F.; Biagi, P. F.; Caputo, M.; Cozzi, E.; Della Monica, G.; Ermini, A.; Plastino, W.; Sgrigna, V.

    The electric field strength of the LF radio broadcasting RMC (Principality of Monaco) which operates at 216 kHz has been recorded since January 1991 by two receivers in central Italy. During the monitoring period we observed two evident attenuations of the field strength in one receiver, with durations of 6-10 days. The geomagnetic and ionospheric observations carried out in the same time interval do not seem able to explain the attenuation of the radio signal. An analysis of the seismic activity occurring in the area between transmitter and receiver has revealed that some days after the attenuations the energy released by earthquakes reaches a maximum. The observed attenuation might therefore be precursors of earthquakes. We also checked meteorological conditions and found that advections of warm air occurred during both the two anomalous periods. It seems possible that these conditions can help the action of preseismic effects in generating irregularities in the vertical gradient of the tropospheric radio refractivity able to produce defocusing of LF radiobroadcast propagation.

  5. Initial experience of using high field strength intraoperative MRI for neurosurgical procedures.

    PubMed

    Raheja, Amol; Tandon, Vivek; Suri, Ashish; Sarat Chandra, P; Kale, Shashank S; Garg, Ajay; Pandey, Ravindra M; Kalaivani, Mani; Mahapatra, Ashok K; Sharma, Bhawani S

    2015-08-01

    We report our initial experience to optimize neurosurgical procedures using high field strength intraoperative magnetic resonance imaging (IOMRI) in 300 consecutive patients as high field strength IOMRI rapidly becomes the standard of care for neurosurgical procedures. Three sequential groups (groups A, B, C; n=100 each) were compared with respect to time management, complications and technical difficulties to assess improvement in these parameters with experience. We observed a reduction in the number of technical difficulties (p<0.001), time to induction (p<0.001) and total anesthesia time (p=0.007) in sequential groups. IOMRI was performed for neuronavigation guidance (n=252) and intraoperative validation of extent of resection (EOR; n=67). Performing IOMRI increased the EOR over and beyond the primary surgical attempt in 20.5% (29/141) and 18% (11/61) of patients undergoing glioma and pituitary surgery, respectively. Overall, EOR improved in 59.7% of patients undergoing IOMRI (40/67). Intraoperative tractography and real time navigation using re-uploaded IOMRI images (accounting for brain shift) helps in intraoperative planning to reduce complications. IOMRI is an asset to neurosurgeons, helping to augment the EOR, especially in glioma and pituitary surgery, with no significant increase in morbidity to the patient. PMID:26077939

  6. CORONAL SEISMOLOGY USING EIT WAVES: ESTIMATION OF THE CORONAL MAGNETIC FIELD STRENGTH IN THE QUIET SUN

    SciTech Connect

    West, M. J.; Zhukov, A. N.; Dolla, L.; Rodriguez, L.

    2011-04-01

    Coronal EIT waves have been observed for many years. The nature of EIT waves is still contentious, however, there is strong evidence that some of them might be fast magnetosonic waves, or at least have a fast magnetosonic wave component. The fast magnetosonic wave speed is formed from two components; the Alfven speed (magnetic) and the sound speed (thermal). By making measurements of the wave speed, coronal density and temperature it is possible to calculate the quiet-Sun coronal magnetic field strength through coronal seismology. In this paper, we investigate an EIT wave observed on 2009 February 13 by the SECCHI/EUVI instruments on board the STEREO satellites. The wave epicenter was observed at disk center in the STEREO B (Behind) satellite. At this time, the STEREO satellites were separated by approximately 90 deg., and as a consequence the STEREO A (Ahead) satellite observed the wave on the solar limb. These observations allowed us to make accurate speed measurements of the wave. The background coronal density was derived through Hinode/Extreme-ultraviolet Imaging Spectrometer observations of the quiet Sun and the temperature was estimated through the narrow temperature response in the EUVI bandpasses. The density, temperature, and speed measurements allowed us to estimate the quiet-Sun coronal magnetic field strength to be approximately 0.7 {+-} 0.7 G.

  7. New Evidence For Proton Cyclotron Resonance In a Magnetar Strength Field From SGR 1806-20

    NASA Technical Reports Server (NTRS)

    Parke, William; Ibrahim, Alaa I.; Swank, Jean H.

    2002-01-01

    A great deal of evidence has recently been gathered in favor of the picture that Soft Gamma Repeaters and Anomalous X-Ray Pulsars are powered by ultra-strong magnetic fields (B greater than 10(exp 14) G; i.e. magnetars). Nevertheless, present determination of the magnetic field in such magnetar candidates has been indirect and model dependent. A key prediction concerning magnetars is the detection of ion cyclotron resonance features, which would offer a decisive diagnostic of the field strength. Here we present the detection of a 5 keV absorption feature in a variety of bursts from the Soft Gamma Repeater SGR 1806-20, confirming our initial discovery and establishing the presence of the feature in the source's burst spectra. The line feature is well explained as proton cyclotron resonance in an ultra-strong magnetic field, offering a direct measurement of SGR 1806-20's magnetic field (B approx. 10(exp 15) G) and a clear evidence of a magnetar. Together with the source's spin-down rate, the feature also provides the first measurement of the gravitational redshift, mass and radius of a magnetar.

  8. Palaeomagnetic field strength variations suggest a Mesoproterozoic age of inner core nucleation

    NASA Astrophysics Data System (ADS)

    Paterson, G. A.; Biggin, A. J.; Piispa, E. J.; Pesonen, L. J.; Holme, R. T.; Veikkolainen, T.; Tauxe, L.

    2015-12-01

    The Earth's inner core grows by the freezing of liquid iron at its surface. The point in history at which this process initiated marks a step-change in the thermal evolution of the planet. Recent computational and experimental studies have presented radically differing estimates of the thermal conductivity of the Earth's core with resulting widely ranged dates of inner core nucleation (from less than 0.5 to nearly 2 billion years). Some of these raise serious challenges to explaining how the dynamo responsible for generating the geomagnetic field has been sustained over the whole of observed Earth history. The nucleation of the core leads to a different convective regime, and might be expected to produce different magnetic field structures, producing an observable signal in the palaeomagnetic record and allowing the date of inner-core nucleation to be estimated directly. Previous studies searching for this signature have been hampered by the paucity of palaeomagnetic intensity measurements, by the lack of an effective means of assessing their reliability, and by shorter timescale geomagnetic variations. Here we examine results from an expanded Precambrian database of palaeomagnetic intensity measurements selected using a new set of reliability criteria. Our analysis provides the first intensity-based support for the dominant dipolarity of the time-averaged Precambrian field, a crucial requirement for palaeomagnetic reconstructions of continents. We also present the first firm evidence for the existence of very long-term variations in geomagnetic strength. The most prominent and robust transition in the record is an increase in both average field strength and variability observed to occur between 1 and 1.5 billion years ago. This observation is most readily explained by the nucleation of the inner core occurring during this interval; the timing would tend to favour a modest value of core thermal conductivity and a more conventional thermal evolution of the Earth.

  9. Examining the Magnetic Field Strength and the Horizontal and Vertical Motions in an Emerging Active Region

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hsien; Chen, Yu-Che

    2016-03-01

    Earlier observational studies have used the time evolution of emerging magnetic flux regions at the photosphere to infer their subsurface structures, assuming that the flux structure does not change significantly over the near-surface layer. In this study, we test the validity of this assumption by comparing the horizontal and vertical motions of an emerging active region. The two motions would be correlated if the emerging structure is rigid. The selected active region (AR) NOAA 11645 is not embedded in detectable preexisting magnetic field. The observed horizontal motion is quantified by the separation of the two AR polarities and the width of the region. The vertical motion is derived from the magnetic buoyancy theory. Our results show that the separation of the polarities is fastest at the beginning with a velocity of {≈ }4 Mm hr^{-1} and decreases to ≤ 1 Mm hr^{-1} after the main growing phase of flux emergence. The derived thick flux-tube buoyant velocity is between 1 and 3 Mm hr^{-1}, while the thin flux-tube approximation results in an unreasonably high buoyant velocity, consistent with the expectation that the approximation is inappropriate at the surface layer. The observed horizontal motion is not found to directly correlate with either the magnetic field strength or the derived buoyant velocities. However, the percentage of the horizontally oriented fields and the temporal derivatives of the field strength and the buoyant velocity show some positive correlations with the separation velocity. The results of this study imply that the assumption that the emerging active region is the cross section of a rising flux tube whose structure can be considered rigid as it rises through the near-surface layer should be taken with caution.

  10. Reproduction, growth, and development of rats during exposure to electric fields at multiple strengths

    SciTech Connect

    Anderson, L.E. )

    1991-11-01

    A study with multiple exposure groups and large group sizes was performed to establish whether exposure to 60-Hz electric fields would result in reproductive and development toxicity. Female rats were mated, and sperm-positive animals randomly distributed among four groups: sham-exposed, or exposed to 10, 65, or 130 kV/m, 60-Hz vertical electric fields. During gestation, exposure to the higher field strengths resulted in slightly depressed weight gains of dams. Numbers ofpups per litter and pup mortality did not differ among the exposure groups. Dams exposed at 65 kV/m lost slightly more weight through the lactation period than the control group. Male pups exposed to high field strengths gained slightly less weight from 4 to 21 days of age than did sham exposed animals. At weaning, two F{sub 1} females per litter continued on the same exposure regimen, were mated at 11 weeks of age to unexposed males, and sacrificed at 20 days of gestation. Fertility and gestational weight gain of F{sub 1} females were not affected by exposure, nor was prenatal viability or fetal body weight. No significant increase in the incidence of litters with malformations was observed. Although no developmental toxicity was detected, exposures produced physical changes in the dams, evidenced as a rust-colored deposit on the muzzle and ears (chromodacryorrhea) that increased in incidence and severity at 65 and 130 kV/m. Incidence of chromodacryorrhea was not significantly different between sham-exposed rats and those exposed at 10 kV/m. 29 refs., 10 figs., 7 tabs.

  11. HST/ACS Observations of RR Lyrae Stars in Six Ultra-Deep Fields of M31

    NASA Technical Reports Server (NTRS)

    Jeffery, E. J.; Smith, E.; Brown, T. M.; Sweigart, A. V.; Kalirai, J. S.; Ferguson, H. C.; Guhathakurta, P.; Renzini, A.; Rich, R. M.

    2010-01-01

    We present HST/ACS observations of RR Lyrae variable stars in six ultra deep fields of the Andromeda galaxy (M31), including parts of the halo, disk, and giant stellar stream. Past work on the RR Lyrae stars in M31 has focused on various aspects of the stellar populations that make up the galaxy s halo, including their distances and metallicities. This study builds upon this previous work by increasing the spatial coverage (something that has been lacking in previous studies) and by searching for these variable stars in constituents of the galaxy not yet explored. Besides the 55 RR Lyrae stars we found in our initial field located 11kpc from the galactic nucleus, we find additional RR Lyrae stars in four of the remaining five ultra deep fields as follows: 21 in the disk, 24 in the giant stellar stream, 3 in the halo field 21kpc from the galactic nucleus, and 5 in one of the halo fields at 35kpc. No RR Lyrae were found in the second halo field at 35kpc. The RR Lyrae populations of these fields appear to mostly be of Oosterhoff I type, although the 11kpc field appears to be intermediate or mixed. We will discuss the properties of these stars including period and reddening distributions. We calculate metallicities and distances for the stars in each of these fields using different methods and compare the results, to an extent that has not yet been done. We compare these methods not just on RR Lyrae in our M31 fields, but also on a data set of Milky Way field RR Lyrae stars.

  12. HST/ACS OBSERVATIONS OF RR LYRAE STARS IN SIX ULTRA-DEEP FIELDS OF M31

    SciTech Connect

    Jeffery, E. J.; Smith, E.; Brown, T. M.; Kalirai, J. S.; Ferguson, H. C.; Sweigart, A. V.; Rich, R. M.

    2011-05-15

    We present HST/ACS observations of RR Lyrae variable stars in six ultra-deep fields of the Andromeda galaxy (M31), including parts of the halo, disk, and giant stellar stream. Past work on the RR Lyrae stars in M31 has focused on various aspects of the stellar populations that make up the galaxy's halo, including their distances and metallicities. This study builds upon this previous work by increasing the spatial coverage (something that has been lacking in previous studies) and by searching for these variable stars in constituents of the galaxy not yet explored. Besides the 55 RR Lyrae stars we found in our initial field located 11 kpc from the galactic nucleus, we find additional RR Lyrae stars in four of the remaining five ultra-deep fields as follows: 21 in the disk, 24 in the giant stellar stream, three in the halo field 21 kpc from the galactic nucleus, and five in one of the halo fields at 35 kpc. No RR Lyrae stars were found in the second halo field at 35 kpc. The RR Lyrae populations of these fields appear to be mostly of Oosterhoff I type, although the 11 kpc field appears to be intermediate or mixed. We will discuss the properties of these stars including period and reddening distributions. We calculate metallicities and distances for the stars in each of these fields using different methods and compare the results, to an extent that has not yet been done. We compare these methods not just on RR Lyrae stars in our M31 fields, but also on a data set of Milky Way field RR Lyrae stars.

  13. Monte Carlo characterization of skin doses in 6 MV transverse field MRI-linac systems: Effect of field size, surface orientation, magnetic field strength, and exit bolus

    SciTech Connect

    Oborn, B. M.; Metcalfe, P. E.; Butson, M. J.; Rosenfeld, A. B.

    2010-10-15

    Purpose: The main focus of this work is to continue investigations into the Monte Carlo predicted skin doses seen in MRI-guided radiotherapy. In particular, the authors aim to characterize the 70 {mu}m skin doses over a larger range of magnetic field strength and x-ray field size than in the current literature. The effect of surface orientation on both the entry and exit sides is also studied. Finally, the use of exit bolus is also investigated for minimizing the negative effects of the electron return effect (ERE) on the exit skin dose. Methods: High resolution GEANT4 Monte Carlo simulations of a water phantom exposed to a 6 MV x-ray beam (Varian 2100C) have been performed. Transverse magnetic fields of strengths between 0 and 3 T have been applied to a 30x30x20 cm{sup 3} phantom. This phantom is also altered to have variable entry and exit surfaces with respect to the beam central axis and they range from -75 deg. to +75 deg. The exit bolus simulated is a 1 cm thick (water equivalent) slab located on the beam exit side. Results: On the entry side, significant skin doses at the beam central axis are reported for large positive surface angles and strong magnetic fields. However, over the entry surface angle range of -30 deg. to -60 deg., the entry skin dose is comparable to or less than the zero magnetic field skin dose, regardless of magnetic field strength and field size. On the exit side, moderate to high central axis skin dose increases are expected except at large positive surface angles. For exit bolus of 1 cm thickness, the central axis exit skin dose becomes an almost consistent value regardless of magnetic field strength or exit surface angle. This is due to the almost complete absorption of the ERE electrons by the bolus. Conclusions: There is an ideal entry angle range of -30 deg. to -60 deg. where entry skin dose is comparable to or less than the zero magnetic field skin dose. Other than this, the entry skin dose increases are significant, especially at

  14. Magnetic Field Strength in an Intermediate-velocity Ionized Filament in the First Galactic Quadrant

    NASA Astrophysics Data System (ADS)

    Stil, J. M.; Hryhoriw, A.

    2016-08-01

    We investigate the magnetic field in an intermediate-velocity filament for which the Hα intensity in the WHAM survey correlates with excess Faraday rotation of extragalactic radio sources over the length of the filament from b ≈ 20° to b ≈ 55°. The density-weighted mean magnetic field is 2.8 +/- 0.8 μ {{G}}, derived from rotation measures and an empirical relation between Hα emission measure and dispersion measure from Berkhuijsen et al. In view of the uncertainties in the derived magnetic field strength, we propose an alternative use of the available data, rotation measure, and emission measure, to derive a lower limit to the Alfvén speed, weighted by electron density {n}e3/2. We find lower limits to the Alfvén speed that are comparable to or larger than the sound speed in a {10}4 {{K}} plasma, and conclude that the magnetic field is dynamically important. We discuss the role of intermediate-velocity gas as a locus of Faraday rotation in the interstellar medium, and propose that this lower limit to the Alfvén speed may also be applicable to Faraday rotation by galaxy clusters.

  15. Surface magnetic field strengths: New tests of magnetoconvective models of M dwarfs

    SciTech Connect

    MacDonald, James; Mullan, D. J. E-mail: mullan@udel.edu

    2014-05-20

    Precision modeling of M dwarfs has become worthwhile in recent years due to the increasingly precise values of masses and radii which can be obtained from eclipsing binary studies. In a recent paper, Torres has identified four prime M dwarf pairs with the most precise empirical determinations of masses and radii. The measured radii are consistently larger than standard stellar models predict by several percent. These four systems potentially provide the most challenging tests of precision evolutionary models of cool dwarfs at the present time. We have previously modeled M dwarfs in the context of a criterion due to Gough and Tayler in which magnetic fields inhibit the onset of convection according to a physics-based prescription. In the present paper, we apply our magnetoconvective approach to the four prime systems in the Torres list. Going a step beyond what we have already modeled in CM Dra (one of the four Torres systems), we note that new constraints on magnetoconvective models of M dwarfs are now available from empirical estimates of magnetic field strengths on the surfaces of these stars. In the present paper, we consider how well our magnetoconvective models succeed when confronted with this new test of surface magnetic field strengths. Among the systems listed by Torres, we find that plausible magnetic models work well for CM Dra, YY Gem, and CU Cnc. (The fourth system in Torres's list does not yet have enough information to warrant magnetic modeling.) Our magnetoconvection models of CM Dra, YY Gem, and CU Cnc yield predictions of the magnetic fluxes on the stellar surface which are consistent with the observed correlation between magnetic flux and X-ray luminosity.

  16. Tools and Setups for Experiments with AC and Rotating Magnetic Fields

    ERIC Educational Resources Information Center

    Ponikvar, D.

    2010-01-01

    A rotating magnetic field is the basis for the transformation of electrical energy to mechanical energy. School experiments on the rotating magnetic field are rare since they require the use of specially prepared mechanical setups and/or relatively large, three-phase power supplies to achieve strong magnetic fields. This paper proposes several…

  17. Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum).

    PubMed

    Bi, Ran; Schlaak, Michael; Siefert, Eike; Lord, Richard; Connolly, Helen

    2011-04-01

    The combined use of electrokinetic remediation and phytoremediation to decontaminate soil polluted with heavy metals has been demonstrated in a laboratory-scale experiment. The plants species selected were rapeseed and tobacco. Three kinds of soil were used: un-contaminated soil from forest area (S1), artificially contaminated soil with 15mgkg(-1) Cd (S2) and multi-contaminated soil with Cd, Zn and Pb from an industrial area (S3). Three treatment conditions were applied to the plants growing in the experimental vessels: control (no electrical field), alternating current electrical field (AC, 1Vcm(-1)) and direct current electrical field (DC, 1Vcm(-1)) with switching polarity every 3h. The electrical fields were applied for 30d for rapeseed and 90d for tobacco, each experiment had three replicates. After a total of 90d growth for rapeseed and of 180d for tobacco, the plants were harvested. The pH variation from anode to cathode was eliminated by switching the polarity of the DC field. The plants reacted differently under the applied electrical field. Rapeseed biomass was enhanced under the AC field and no negative effect was found under DC field. However, no enhancement of the tobacco biomass under the AC treatment was found. The DC field had a negative influence on biomass production on tobacco plants. In general, Cd content was higher in both species growing in S2 treated with AC field compared to the control. Metal uptake (Cd, Cu, Zn and Pb) per rapeseed plant shoot was enhanced by the application of AC field in all soils. PMID:21237480

  18. Mean-field approximation for a Bose-Hubbard dimer with complex interaction strength

    NASA Astrophysics Data System (ADS)

    Graefe, Eva-Maria; Liverani, Chiara

    2013-11-01

    In the limit of large particle numbers and low densities systems of cold atoms can be effectively described as macroscopic single-particle systems in a mean-field approximation. In the case of a Bose-Hubbard system, modelling bosons on a discrete lattice with on-site interactions, this yields a discrete nonlinear Schrödinger equation of Gross-Pitaevskii type. It has been recently shown that the correspondence between the Gross-Pitaevskii equation and the Bose-Hubbard system breaks down for complex extensions. In particular, for a Bose-Hubbard dimer with complex on-site energy the mean-field approximation yields a generalized complex nonlinear Schrödinger equation. Conversely, a Gross-Pitaevskii equation with complex on-site energies arises as the mean-field approximation of many-particle Lindblad dynamics rather than a complex extension of the Bose-Hubbard system. Here we address the question of how the mean-field description is modified in the presence of a complex-valued particle interaction term for a Bose-Hubbard dimer. We derive the mean-field equations of motion leading to nonlinear dissipative Bloch dynamics, related to a nontrivial complex generalization of the nonlinear Schrödinger equation. The resulting dynamics are analysed in detail. It is shown that depending on the parameter values there can be up to six stationary states, and for small values of the interaction strength there are limit cycles. Furthermore, we show how a Gross-Pitaevskii equation with a complex interaction term can be derived as the mean-field approximation of a Bose-Hubbard dimer with an additional Lindblad term modelling two-particle losses.

  19. An investigation on the field strength and loading rate dependences of the hysteretic dynamics of magnetorheological dampers

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Chen, Zhangwei; Wang, Linxiang

    2015-02-01

    This paper is an extended study on the model of the hysteretic dynamics of magnetorheological dampers based on a phenomenological phase transition theory (Wang and Kamath in Smart Mater. Struct. 15(6):1725-1733, 2006). It is demonstrated that, by appropriately choosing model parameters, the frequency dependence of the hysteretic dynamics can be captured very well by the model based on phase transition theory. Whilst by introducing an appropriate rescaling coefficient to account for the strength of the magnetized particle chains with various magnetic field strengths, the field strength dependence of the hysteretic dynamics can also be captured very well by the same differential equation with the same set of model parameters. There are in total eight model parameters introduced for capturing the hysteretic dynamics, including its dependence on the loading rate and field strength.

  20. MAGNETIC FIELD STRENGTH IN THE UPPER SOLAR CORONA USING WHITE-LIGHT SHOCK STRUCTURES SURROUNDING CORONAL MASS EJECTIONS

    SciTech Connect

    Kim, R.-S.; Gopalswamy, N.; Cho, K.-S.; Yashiro, S.; Moon, Y.-J.

    2012-02-20

    To measure the magnetic field strength in the solar corona, we examined 10 fast ({>=}1000 km s{sup -1}) limb coronal mass ejections(CMEs) that show clear shock structures in Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph images. By applying the piston-shock relationship to the observed CME's standoff distance and electron density compression ratio, we estimated the Mach number, Alfven speed, and magnetic field strength in the height range 3-15 solar radii (R{sub s} ). The main results from this study are as follows: (1) the standoff distance observed in the solar corona is consistent with those from a magnetohydrodynamic model and near-Earth observations; (2) the Mach number as a shock strength is in the range 1.49-3.43 from the standoff distance ratio, but when we use the density compression ratio, the Mach number is in the range 1.47-1.90, implying that the measured density compression ratio is likely to be underestimated owing to observational limits; (3) the Alfven speed ranges from 259 to 982 km s{sup -1} and the magnetic field strength is in the range 6-105 mG when the standoff distance is used; (4) if we multiply the density compression ratio by a factor of two, the Alfven speeds and the magnetic field strengths are consistent in both methods; and (5) the magnetic field strengths derived from the shock parameters are similar to those of empirical models and previous estimates.

  1. Dynamical features and electric field strengths of double layers driven by currents. [in auroras

    NASA Technical Reports Server (NTRS)

    Singh, N.; Thiemann, H.; Schunk, R. W.

    1985-01-01

    In recent years, a number of papers have been concerned with 'ion-acoustic' double layers. In the present investigation, results from numerical simulations are presented to show that the shapes and forms of current-driven double layers evolve dynamically with the fluctuations in the current through the plasma. It is shown that double layers with a potential dip can form even without the excitation of ion-acoustic modes. Double layers in two-and one-half-dimensional simulations are discussed, taking into account the simulation technique, the spatial and temporal features of plasma, and the dynamical behavior of the parallel potential distribution. Attention is also given to double layers in one-dimensional simulations, and electrical field strengths predicted by two-and one-half-dimensional simulations.

  2. POSSIBLE CONSTRAINTS ON EXOPLANET MAGNETIC FIELD STRENGTHS FROM PLANET-STAR INTERACTION

    SciTech Connect

    Scharf, Caleb A.

    2010-10-20

    A small percentage of normal stars harbor giant planets that orbit within a few tenths of an astronomical unit. At such distances, the potential exists for significant tidal and magnetic field interaction resulting in energy dissipation that may manifest as changes within the stellar corona. We examine the X-ray emission of stars hosting planets and find a positive correlation between X-ray luminosity and the projected mass of the most closely orbiting exoplanets. We investigate possible systematics and observational biases that could mimic or confuse this correlation but find no strong evidence for any, especially for planets more massive than {approx}0.1 M{sub J} . Luminosities and upper limits are consistent with the interpretation that there is a lower floor to stellar X-ray emission dependent on close-in planetary mass. Under the hypothesis that this is a consequence of planet-star magnetic field interaction, and energy dissipation, we estimate a possible field strength increase of a factor of {approx}8 between planets of 1 and 10 M{sub J} . Intriguingly, this is consistent with recent geodynamo scaling law predictions. The high-energy photon emission of planet-star systems may therefore provide unique access to the detailed magnetic, and hence geodynamic, properties of exoplanets.

  3. A low-cost, high-field-strength magnetic resonance imaging-compatible actuator.

    PubMed

    Secoli, Riccardo; Robinson, Matthew; Brugnoli, Michele; Rodriguez y Baena, Ferdinando

    2015-03-01

    To perform minimally invasive surgical interventions with the aid of robotic systems within a magnetic resonance imaging scanner offers significant advantages compared to conventional surgery. However, despite the numerous exciting potential applications of this technology, the introduction of magnetic resonance imaging-compatible robotics has been hampered by safety, reliability and cost concerns: the robots should not be attracted by the strong magnetic field of the scanner and should operate reliably in the field without causing distortion to the scan data. Development of non-conventional sensors and/or actuators is thus required to meet these strict operational and safety requirements. These demands commonly result in expensive actuators, which mean that cost effectiveness remains a major challenge for such robotic systems. This work presents a low-cost, high-field-strength magnetic resonance imaging-compatible actuator: a pneumatic stepper motor which is controllable in open loop or closed loop, along with a rotary encoder, both fully manufactured in plastic, which are shown to perform reliably via a set of in vitro trials while generating negligible artifacts when imaged within a standard clinical scanner. PMID:25833997

  4. Sensitivity Reach of the Neutron EDM Experiment: The Electric Field Strength

    SciTech Connect

    Hennings-Yeomans, R.; Cooper, M.; Currie, S. A.; Makela, M. F.; Ramsey, J. C.; Tajima, S.; Womack, T. L.; Long, J. C.; Stanislaus, S.

    2010-08-04

    The search for an electric dipole moment of the neutron tests physics beyond the Standard Model such as new sources of CP-violation and Supersymmetry. The nEDM experiment aims to improve the sensitivity on the current limit of the electric dipole moment of the neutron to <10{sup -27} e{center_dot}cm. The experiment will use a flux of Ultra Cold Neutrons (UCNs) produced and stored in a bath of superfluid He-II. A change in precession frequency is expected for a non-zero EDM when an electric field is applied parallel and antiparallel to a magnetic field across the neutron storage cell. A dominant parameter in terms of reducing the statistical uncertainty of this measurement is the strength of the applied electric field. An experiment to measure if superfluid He-II can sustain up to 50 kV/cm for a volume and electrode spacings comparable to the nEDM experiment has been constructed at Los Alamos National Laboratory. It consists in a large-area parallel plate capacitor immersed in a 200 liter central volume inside a suitable cryostat that in turn is connected to a dilution refrigerator unit. A description of test runs and the status of the experiment is presented.

  5. Sensitivity Reach of the Neutron EDM Experiment: The Electric Field Strength

    NASA Astrophysics Data System (ADS)

    Hennings-Yeomans, R.; Cooper, M.; Currie, S. A.; Makela, M. F.; Ramsey, J. C.; Tajima, S.; Womack, T. L.; Long, J. C.; Stanislaus, S.

    2010-08-01

    The search for an electric dipole moment of the neutron tests physics beyond the Standard Model such as new sources of CP-violation and Supersymmetry. The nEDM experiment aims to improve the sensitivity on the current limit of the electric dipole moment of the neutron to <10-27 eṡcm. The experiment will use a flux of Ultra Cold Neutrons (UCNs) produced and stored in a bath of superfluid He-II. A change in precession frequency is expected for a non-zero EDM when an electric field is applied parallel and antiparallel to a magnetic field across the neutron storage cell. A dominant parameter in terms of reducing the statistical uncertainty of this measurement is the strength of the applied electric field. An experiment to measure if superfluid He-II can sustain up to 50 kV/cm for a volume and electrode spacings comparable to the nEDM experiment has been constructed at Los Alamos National Laboratory. It consists in a large-area parallel plate capacitor immersed in a 200 liter central volume inside a suitable cryostat that in turn is connected to a dilution refrigerator unit. A description of test runs and the status of the experiment is presented.

  6. FR II radio galaxies at low frequencies – I. Morphology, magnetic field strength and energetics

    PubMed Central

    Harwood, Jeremy J.; Croston, Judith H.; Intema, Huib T.; Stewart, Adam J.; Ineson, Judith; Hardcastle, Martin J.; Godfrey, Leith; Best, Philip; Brienza, Marisa; Heesen, Volker; Mahony, Elizabeth K.; Morganti, Raffaella; Murgia, Matteo; Orrú, Emanuela; Röttgering, Huub; Shulevski, Aleksandar; Wise, Michael W.

    2016-01-01

    Due to their steep spectra, low-frequency observations of Fanaroff–Riley type II (FR II) radio galaxies potentially provide key insights in to the morphology, energetics and spectrum of these powerful radio sources. However, limitations imposed by the previous generation of radio interferometers at metre wavelengths have meant that this region of parameter space remains largely unexplored. In this paper, the first in a series examining FR IIs at low frequencies, we use LOFAR (LOw Frequency ARray) observations between 50 and 160 MHz, along with complementary archival radio and X-ray data, to explore the properties of two FR II sources, 3C 452 and 3C 223. We find that the morphology of 3C 452 is that of a standard FR II rather than of a double-double radio galaxy as had previously been suggested, with no remnant emission being observed beyond the active lobes. We find that the low-frequency integrated spectra of both sources are much steeper than expected based on traditional assumptions and, using synchrotron/inverse-Compton model fitting, show that the total energy content of the lobes is greater than previous estimates by a factor of around 5 for 3C 452 and 2 for 3C 223. We go on to discuss possible causes of these steeper-than-expected spectra and provide revised estimates of the internal pressures and magnetic field strengths for the intrinsically steep case. We find that the ratio between the equipartition magnetic field strengths and those derived through synchrotron/inverse-Compton model fitting remains consistent with previous findings and show that the observed departure from equipartition may in some cases provide a solution to the spectral versus dynamical age disparity. PMID:27284270

  7. FR II radio galaxies at low frequencies - I. Morphology, magnetic field strength and energetics

    NASA Astrophysics Data System (ADS)

    Harwood, Jeremy J.; Croston, Judith H.; Intema, Huib T.; Stewart, Adam J.; Ineson, Judith; Hardcastle, Martin J.; Godfrey, Leith; Best, Philip; Brienza, Marisa; Heesen, Volker; Mahony, Elizabeth K.; Morganti, Raffaella; Murgia, Matteo; Orrú, Emanuela; Röttgering, Huub; Shulevski, Aleksandar; Wise, Michael W.

    2016-06-01

    Due to their steep spectra, low-frequency observations of Fanaroff-Riley type II (FR II) radio galaxies potentially provide key insights in to the morphology, energetics and spectrum of these powerful radio sources. However, limitations imposed by the previous generation of radio interferometers at metre wavelengths have meant that this region of parameter space remains largely unexplored. In this paper, the first in a series examining FR IIs at low frequencies, we use LOFAR (LOw Frequency ARray) observations between 50 and 160 MHz, along with complementary archival radio and X-ray data, to explore the properties of two FR II sources, 3C 452 and 3C 223. We find that the morphology of 3C 452 is that of a standard FR II rather than of a double-double radio galaxy as had previously been suggested, with no remnant emission being observed beyond the active lobes. We find that the low-frequency integrated spectra of both sources are much steeper than expected based on traditional assumptions and, using synchrotron/inverse-Compton model fitting, show that the total energy content of the lobes is greater than previous estimates by a factor of around 5 for 3C 452 and 2 for 3C 223. We go on to discuss possible causes of these steeper-than-expected spectra and provide revised estimates of the internal pressures and magnetic field strengths for the intrinsically steep case. We find that the ratio between the equipartition magnetic field strengths and those derived through synchrotron/inverse-Compton model fitting remains consistent with previous findings and show that the observed departure from equipartition may in some cases provide a solution to the spectral versus dynamical age disparity.

  8. Volcanic sanidinites: an example for the mobilization of high field strength elements (HFSE) in magmatic systems

    NASA Astrophysics Data System (ADS)

    Aßbichler, Donjá; Heuss-Aßbichler, Soraya; Müller, Dirk; Kunzmann, Thomas

    2016-04-01

    In earth science the mobility of high field strength elements (HFSE) is generally discussed in context of hydrothermal processes. Recent investigations mainly address processes in (late) magmatic-, metamorphic- and submarine hydrothermal systems. They have all in common that H2O is main solvent. The transport of HFSE is suggested to be favored by volatiles, like boron, fluorine, phosphate and sulfate (Jiang et al., 2005). In this study processes in magmatic system are investigated. Sanidinites are rare rocks of igneous origin and are found as volcanic ejecta of explosive volcanoes. They consist mainly of sanidine and minerals of the sodalite group. The very porous fabric of these rocks is an indication of their aggregation from a gaseous magmatic phase. The large sanidine crystals (up to several centimeters) are mostly interlocking, creating large cavities between some crystals. In these pores Zr crystallizes as oxide (baddeleyite, ZrO2) or silicate (zircon, ZrSiO4). The euhedral shape of these minerals is a further indication of their formation out of the gas phase. Furthermore, bubbles in glass observed in some samples are evidence for gas-rich reaction conditions during the formation of the sanidinites. The formation of sanidinites is suggested to be an example for solvothermal processes in natural systems. Solvothermal processes imply the solvation, transport and recrystallization of elements in a gas phase. Results obtained from whole rock analysis from sanidinites from Laacher See (Germany) show a positive correlation between LOI, sulfate, Cl, and Na with the HFSE like Zr. Na-rich conditions seem to ameliorate the solvothermal transport of Zr. All these features point to the formation of sanidinites in the upper part of a magma chamber, where fluid consisting of SO3 and Cl compounds in addition to H2O, CO2 and HFSE (high field strength elements) like Zr accumulate.

  9. Linearity of the Faraday-rotation-type ac magnetic-field sensor with a ferrimagnetic or ferromagnetic rotator film

    NASA Astrophysics Data System (ADS)

    Mori, Hiroshi; Asahara, Yousuke

    1996-03-01

    We analyze the linearity and modulation depth of ac magnetic-field sensors or current sensors, using a ferrimagnetic or ferromagnetic film as the Faraday rotator and employing the detection of only the zeroth-order optical diffraction component from the rotator. It is theoretically shown that for this class of sensor the condition of a constant modulation depth and that of a constant ratio error give an identical series of curves for the relationship between Faraday rotation angle greater than or equals V and polarizer/analyzer relative angle Phi . We give some numerical examples to demonstrate the usefulness of the result with reference to a rare-earth iron garnet film as the rotator.

  10. Further constraints for the Plio-Pleistocene geomagnetic field strength: New results from the Los Tuxtlas volcanic field (Mexico)

    NASA Astrophysics Data System (ADS)

    Alva-Valdivia, L. M.; Goguitchaichvili, A.; Urrutia-Fucugauchi, J.

    2001-09-01

    A rock-magnetic, paleomagnetic and paleointensity study was carried out on 13 Plio-Pleistocene volcanic flows from the Los Tuxtlas volcanic field (Trans Mexican Volcanic Belt) in order to obtain some decisive constraints for the geomagnetic field strength during the Plio-Pleistocene time. The age of the volcanic units, which yielded reliable paleointensity estimates, lies between 2.2 and 0.8 Ma according to the available K/Ar radiometric data. Thermomagnetic investigations reveal that remanence is carried in most cases by Ti-poor titanomagnetite, resulting from oxy-exsolution that probably occurred during the initial flow cooling. Unblocking temperature spectra and relatively high coercivity point to 'small' pseudo-single domain magnetic grains for these (titano)magnetites. Single-component, linear demagnetization plots were observed in most cases. Six flows yield reverse polarity magnetization, five flows are normally magnetized, and one flow shows intermediate polarity magnetization. Evidence of a strong lightning-produced magnetization overprint was detected for one site. The mean pole position obtained in this study is Plat = 83.7°, Plong = 178.1°, K = 36, A95 = 8.1°, N =10 and the corresponding mean paleodirection is I = 31.3°, D = 352°, k = 37, a95 = 8.2°, which is not significantly different from the expected direction estimated from the North American apparent polar wander path. Thirty-nine samples were pre-selected for Thellier palaeointensity experiments because of their stable remanent magnetization and relatively weak-within-site dispersion. Only 21 samples, coming from four individual basaltic lava flows, yielded reliable paleointensity estimates with the flow-mean virtual dipole moments (VDM) ranging from 6.4 to 9.1 × 1022 Am2. Combining the coeval Mexican data with the available comparable quality Pliocene paleointensity results yield a mean VDM of 6.4 × 1022 Am2, which is almost 80% of the present geomagnetic axial dipole. Reliable

  11. 47 CFR 1.544 - Application for broadcast station to conduct field strength measurements and for experimental...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Application for broadcast station to conduct field strength measurements and for experimental operation. 1.544 Section 1.544 Telecommunication... General Filing Requirements § 1.544 Application for broadcast station to conduct field...

  12. Identification of boundaries in the cometary environment from AC electric field measurements

    NASA Astrophysics Data System (ADS)

    Mogilevsky, M.; Mikhailov, Y.; Molchanov, O.; Grard, R.; Pedersen, A.; Trotignon, J. G.; Beghin, C.; Formisano, V.; Shapiro, V.; Shevchenko, V.

    1986-12-01

    Electric fields are measured with the AVP-V experiment in the frequency range 8 Hz - 300 kHz. The field amplitude increases significantly, first at a distance of 2×105km, then at distances of 1.2 - 1.5×105km, and 5 - 7×104km from the nucleus. These phenomena have been observed both on VEGA-1 and VEGA-2. The electric field measurements are compared with data obtained from dust and plasma experiments; possible mechanisms responsible for the existence of these boundaries are discussed.

  13. Constraining strength/depth profiles using laboratory experiments and field structural observations

    NASA Astrophysics Data System (ADS)

    Evans, B.

    2012-04-01

    Strength/depth profiles are often used as standard models to constrain treatments of lithosphere-scale geodynamics. Such profiles have virtue because they are motivated by our understanding of inelastic deformation of rocks, and because they can be used in complex numerical calculations. But, by attempting to construct simple, generic mechanical models, often while lacking detailed descriptions of the sub-surface, such treatments may ignore important issues, including spatial heterogeneities in rock composition, in strain displacements, or in other thermodynamic parameters, including temperature, fluid pressure and composition. Further, these profiles usually assume constitutive equations that reflect combinations of a simple yield criterion with steady-state creep. Thus, transient mechanical behavior is neglected. Fortunately, a plethora of recent laboratory, field structural, and computational studies may now be used to shed light on mechanical behavior at a much broader range of temperature, pressure, strain rates, and strain. For example, new experiments provide a description of creep in minerals at pressures greater than 2 GPa, of friction at seismic velocities, and of strains larger than 5. Observations of field microstructures, coupled with mechanical descriptions gleaned from laboratory experiments and theoretical treatments of the thermodynamics and mechanics of deformation, provide important insights into the way that localization occurs in natural shear zones. Finally, Earth scientists have gained an improved understanding of the subtle, yet important, interplay among fluids, transport properties, and rock deformation, which are capable of producing rich patterns of deformation. Among several important and challenging issues that need work is spatial scaling of properties; it is particularly important to consider differences in length scales that are embedded in the various techniques of field and global geophysics, field geology, and experiments. Our

  14. Review of russian literature on biological action of DC and low-frequency AC magnetic fields.

    PubMed

    Zhadin, M N

    2001-01-01

    This review considers the Russian scientific literature on the influence of weak static and of low-frequency alternating magnetic fields on biological systems. The review covers the most interesting works and the main lines of investigation during the period 1900 to the present. Shown here are the historical roots, beginning with the ideas of V. Vernadsky and A. Chizhevsky, which led in the field of Russian biology to an increasing interest in magnetic fields, based on an intimate connection between solar activity and life on the Earth, and which determined the peculiar development of Russian magnetobiology. The variety of studies on the effects of magnetic storms and extremely low-frequency, periodic variations of the geomagnetic field on human beings and animals as well as on social phenomena are described. The diverse experiments involving artificial laboratory magnetic fields acting on different biological entities under different conditions are also considered. A series of theoretical advances are reviewed that have paved the way for a step-by-step understanding of the mechanisms of magnetic field effects on biological systems. The predominantly unfavorable influence of magnetic fields on living beings is shown, but the cases of favorable influence of magnetic fields on human beings and lower animals are demonstrated as well. The majority of Russian investigations in this area of science has been unknown among the non-Russian speaking audience for many reasons, primarily because of a language barrier. Therefore, it is hoped that this review may be of interest to the international scientific community. PMID:11122491

  15. A slowly rotating coil system for AC field measurements of Fermilab booster correctors

    SciTech Connect

    Velev, G.; DiMarco, J.; Harding, David J.; Kashikhin, V.; Lamm, Michael J.; Schlabach, P.; Tartaglia, Michael Albert; Tompkins, John C.; /Fermilab

    2007-06-01

    A method for measurement of rapidly changing magnetic fields has been developed and applied to the testing of new room temperature corrector packages designed for the Fermilab Booster Synchrotron. The method is based on fast digitization of a slowly rotating tangential coil probe, with analysis combining the measured coil voltages across a set of successive magnet current cycles. This paper presents results on the field quality measured for the normal and skew dipole, quadrupole, and sextupole elements in several of these corrector packages.

  16. Radial transport of large-scale magnetic fields in accretion disks. I. Steady solutions and an upper limit on the vertical field strength

    SciTech Connect

    Okuzumi, Satoshi; Takeuchi, Taku; Muto, Takayuki

    2014-04-20

    Large-scale magnetic fields are key ingredients of magnetically driven disk accretion. We study how large-scale poloidal fields evolve in accretion disks, with the primary aim of quantifying the viability of magnetic accretion mechanisms in protoplanetary disks. We employ a kinematic mean-field model for poloidal field transport and focus on steady states where inward advection of a field balances with outward diffusion due to effective resistivities. We analytically derive the steady-state radial distribution of poloidal fields in highly conducting accretion disks. The analytic solution reveals an upper limit on the strength of large-scale vertical fields attainable in steady states. Any excess poloidal field will diffuse away within a finite time, and we demonstrate this with time-dependent numerical calculations of the mean-field equations. We apply this upper limit to large-scale vertical fields threading protoplanetary disks. We find that the maximum attainable strength is about 0.1 G at 1 AU, and about 1 mG at 10 AU from the central star. When combined with recent magnetic accretion models, the maximum field strength translates into the maximum steady-state accretion rate of ∼10{sup –7} M {sub ☉} yr{sup –1}, in agreement with observations. We also find that the maximum field strength is ∼1 kG at the surface of the central star provided that the disk extends down to the stellar surface. This implies that any excess stellar poloidal field of strength ≳ kG can be transported to the surrounding disk. This might in part resolve the magnetic flux problem in star formation.

  17. Influence of magnetic field strength on potential well in the ionization stage of a double stage Hall thruster

    SciTech Connect

    Yu Daren; Song Maojiang; Liu Hui; Zhang Xu; Li Hong

    2012-07-15

    Similar to a single stage Hall thruster, the magnetic field, which controls electron trajectory and electric field distribution, is the most important factor determining the performance of a double stage Hall thruster. Especially, a potential well, which is helpful to reduce the ion loss on the thruster walls, is shaped in the ionization stage due to the existence of an annular magnetic field topology there. In this paper, the influence of magnetic field strength in the ionization stage on the potential well is researched with both experiments and particle-in-cell simulations. It is found that the depth of potential well increases with the magnetic field strength as a result of enhanced magnetic confinement and lowered electron conductivity. Consequently, the plasma density as well as the ion current entering the acceleration stage increases. However, an excessive magnetic field strength leads to an excess of ion loss on the walls of the acceleration stage. Therefore, there is an appropriate magnetic field strength in the ionization stage that results in a proper potential well and consequently an optimal performance of a double stage Hall thruster.

  18. Influence of Critical Current Density on Guidance Force Decay of HTS Bulk Exposed to AC Magnetic Field Perturbation in a Maglev Vehicle System

    NASA Astrophysics Data System (ADS)

    Longcai, Zhang; Jianguo, Kong

    2012-07-01

    Superconducting maglev vehicle is one of the most promising applications of HTS bulks. In such a system, the HTS bulks are always exposed to AC external magnetic field, which is generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, we studied the guidance force decay of the YBCO bulk over the NdFdB guideway used in the High-temperature superconducting maglev vehicle system with the application of the AC external magnetic field, and calculated the guidance force decay as a function of time based on an analytic model. In this paper, we investigated the influence of the critical current density on the guidance force decay of HTS bulk exposed to AC field perturbation in the maglev vehicle system and try to adopt a method to suppress the decay. From the results, it was found that the guidance force decay rate was higher for the bulk with lower critical current density. Therefore, we could suppress the guidance force decay of HTS bulk exposed to AC external magnetic field perturbation in the maglev vehicle system by improving critical current density of the bulk.

  19. Simulation of fluid flow induced by opposing ac magnetic fields in a continuous casting mold

    SciTech Connect

    Chang, F.C.; Hull, J.R.; Beitelman, L.

    1995-07-01

    A numerical simulation was performed for a novel electromagnetic stirring system employing two rotating magnetic fields. The system controls stirring flow in the meniscus region of a continuous casting mold independently from the stirring induced within the remaining volume of the mold by a main electromagnetic stirrer (M-EMS). This control is achieved by applying to the meniscus region an auxiliary electromagnetic field whose direction of rotation is opposite to that of the main magnetic field produced by the M-EMS. The model computes values and spatial distributions of electromagnetic parameters and fluid flow in the stirred pools of mercury in cylindrical and square geometries. Also predicted are the relationships between electromagnetics and fluid flows pertinent to a dynamic equilibrium of the opposing stirring swirls in the meniscus region. Results of the numerical simulation compared well with measurements obtained from experiments with mercury pools.

  20. AC field measurements of Fermilab Booster correctors using a rotating coil system

    SciTech Connect

    Velev, G.V.; DiMarco, J.; Harding, D.J.; Kashikhin, V.; Lamm, M.; Makulski, A.; Orris, D.; Schlabach, P.; Sylvester, C.; Tartaglia, M.; Tompkins, J.; /Fermilab

    2006-07-01

    The first prototype of a new corrector package for the Fermilab Booster Synchrotron is presently in production. This water-cooled package includes normal and skew dipole, quadrupole and sextupole elements to control orbit, tune and chromaticity of the beam over the full range of Booster energies (0.4-8 GeV). These correctors operate at the 15 Hz excitation cycle of the main synchrotron magnets, but must also make more rapid excursions, in some cases even switching polarity in approximately 1 ms at transition crossing. To measure the dynamic field changes during operation, a new method based on a relatively slow rotating coil system is proposed. The method pieces together the measured voltages from successive current cycles to reconstruct the field harmonics. This paper describes the method and presents initial field quality measurements from a Tevatron corrector.

  1. The performance of interventional loopless MRI antennae at higher magnetic field strengths.

    PubMed

    El-Sharkawy, AbdEl-Monem M; Qian, Di; Bottomley, Paul A

    2008-05-01

    Interventional, "loopless antenna" MRI detectors are currently limited to 1.5 T. This study investigates whether loopless antennae offer signal-to-noise ratio (SNR) and field-of-view (FOV) advantages at higher fields, and whether device heating can be controlled within safe limits. The absolute SNR performance of loopless antennae from 0.5 to 5 T is investigated both analytically, using electromagnetic (EM) dipole antenna theory, and numerically with the EM method of moments, and found to vary almost quadratically with field strength depending on the medium's electrical properties, the noise being dominated by direct sample conduction losses. The prediction is confirmed by measurements of the absolute SNR of low-loss loopless antennae fabricated for 1.5, 3, and 4.7 T, immersed in physiologically comparable saline. Gains of 3.8 +/- 0.2- and 9.7 +/- 0.3-fold in SNR, and approximately 10- and 50-fold gains in the useful FOV area are observed at 3 and 4.7 T, respectively, compared to 1.5 T. Heat testing of a 3 T biocompatible nitinol-antenna fabricated with a redesigned decoupling circuit shows maximum heating of approximately 1 degrees C for MRI operating at high MRI exposure levels. Experiments in the rabbit aorta confirm the SNR and FOV advantages of the 3 T antenna versus an equivalent commercial 1.5 T device in vivo. This work is the first to study the performance of experimental internal MRI detectors above 1.5 T. The large SNR and FOV gains realized present a major opportunity for high-resolution imaging of vascular pathology and MRI-guided intervention. PMID:18561676

  2. A Fast-sampling, Planar Array for Measuring the AC Field of Fermilab Pulsed Extraction Magnets

    SciTech Connect

    DiMarco, E.Joseph; Johnstone, C.; Kiemschies, O.; Kotelnikov, S.K.; Lamm, M.J.; Makulski, A.; Nehring, R.; Orris, D.F.; Russell, A.D.; Tartaglia, Michael Albert; Velev, G.; /Fermilab

    2008-06-25

    A system employing a planar array of inductive pick-up coils has been developed for measurements of the rapidly changing dipole field in pulsed extraction magnets for the Fermilab MuCool project. The magnets are of C-type and deigned to support a peak field of 0.65 T during 8.33 millisecond half-sine pulse at a 15 Hz repetition rate. The coils of the measurement system are fabricated on a single, 97.5 mm wide, 2-layer circuit board. The array of coils is simultaneously sampled at data rates of up to 100 kHz with 10 kHz bandwidth using 24-bit ADC's. A detailed overview of the system and data analysis is presented, along with a characterization of results and system performance.

  3. A highly optimized code for calculating atomic data at neutron star magnetic field strengths using a doubly self-consistent Hartree-Fock-Roothaan method

    NASA Astrophysics Data System (ADS)

    Schimeczek, C.; Engel, D.; Wunner, G.

    2012-07-01

    account the shielding of the core potential for outer electrons by inner electrons, and an optimal finite-element decomposition of each individual longitudinal wave function. These measures largely enhance the convergence properties compared to the previous code, and lead to speed-ups by factors up to two orders of magnitude compared with the implementation of the Hartree-Fock-Roothaan method used by Engel and Wunner in [D. Engel, G. Wunner, Phys. Rev. A 78 (2008) 032515]. New version program summaryProgram title: HFFER II Catalogue identifier: AECC_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECC_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: v 55 130 No. of bytes in distributed program, including test data, etc.: 293 700 Distribution format: tar.gz Programming language: Fortran 95 Computer: Cluster of 1-13 HP Compaq dc5750 Operating system: Linux Has the code been vectorized or parallelized?: Yes, parallelized using MPI directives. RAM: 1 GByte per node Classification: 2.1 External routines: MPI/GFortran, LAPACK, BLAS, FMlib (included in the package) Catalogue identifier of previous version: AECC_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 302 Does the new version supersede the previous version?: Yes Nature of problem: Quantitative modellings of features observed in the X-ray spectra of isolated magnetic neutron stars are hampered by the lack of sufficiently large and accurate databases for atoms and ions up to the last fusion product, iron, at strong magnetic field strengths. Our code is intended to provide a powerful tool for calculating energies and oscillator strengths of medium-Z atoms and ions at neutron star magnetic field strengths with sufficient accuracy in a routine way to create such databases. Solution method: The

  4. Reprint of: Coulomb field strength measurement by electro-optic spectral decoding system at the CALIFES beam line

    NASA Astrophysics Data System (ADS)

    Pan, R.; Jamison, S. P.; Lefevre, T.; Gillespie, W. A.

    2016-09-01

    Electro-optic (EO) techniques are increasingly used for longitudinal bunch profile measurements. A bunch profile monitor, based on electro-optic spectral decoding (EOSD), has been developed and demonstrated on the CALIFES beam line at CERN. The EO response is analysed using a frequency domain description, and two methods for extraction of absolute Coulomb field strengths from the electron bunch are demonstrated. Measurements at field strengths up to 1.3 MV/m agree with the expectation based on independent charge measurements.

  5. Semiclassical circular strings in AdS{sub 5} and 'long' gauge field strength operators

    SciTech Connect

    Park, I.Y.; Tirziu, A.; Tseytlin, A.A.

    2005-06-15

    We consider circular strings rotating with equal spins S{sub 1}=S{sub 2}=S in two orthogonal planes in AdS{sub 5} and suggest that they may be dual to long gauge-theory operators built out of self-dual components of gauge field strength. As was found in hep-th/0404187, the one-loop anomalous dimensions of the such gauge-theory operators are described by an antiferromagnetic XXX{sub 1} spin chain and scale linearly with length L>>1. We find that in the case of rigid rotating string both the classical energy E{sub 0} and the 1-loop string correction E{sub 1} depend linearly on the spin S (within the stability region of the solution). This supports the identification of the rigid rotating string with the gauge-theory operator corresponding to the maximal-spin (ferromagnetic) state of the XXX{sub 1} spin chain. The energy of more general rotating and pulsating strings also happens to scale linearly with both the spin and the oscillation number. Such solutions should be dual to other lower-spin states of the spin chain, with the antiferromagnetic ground state presumably corresponding to the string pulsating in two planes with no rotation.

  6. The 1983-84 Connecticut 45-Hz-band field-strength measurements

    NASA Astrophysics Data System (ADS)

    Bannister, P. R.

    1986-03-01

    Extremely low frequency (ELF) measurements are made of the transverse horizontal magnetic field strength received in Connecticut. The AN/BSR-1 receiver consists of an AN/UYK-20 minicomputer, a signal timing and interface unit (STIU), a rubidium frequency time standard, two magnetic tape recorders, and a preamplifier. The transmission source of these farfield (1.6-Mm range) measurements is the U.S. Navy's ELF Wisconsin Test Facility (WTF), located in the Chequamegon National Forest in north central Wisconsin, about 8 km south of the village of Clam Lake. The WTF consists of two 22.5-km antennas; one of which is situated approximately in the north-south (NS) direction and the other approximately in the east-west (EW) direction. Each antenna is grounded at both ends. The electrical axis of the WTF EW antenna is 11 deg east of north at 45 Hz and 14 deg east of north at 75Hz. The electrical axis of the WTF NS antenna is 11 deg east of north at 45 Hz and 14 deg east of north at 75 Hz. The WTF array can be steered electrically. Its radiated power is approximately 0.5 W at 45 Hz and 1 W at 75 Hz. This report will compare results of 45 Hz band data taken during 1983 to 1984 with previous 45 Hz band measurements.

  7. Electrochemical properties of columns in capillary electrochromatography. I. Ohm's law, resistivity and field strength.

    PubMed

    Henry, Michael P; Ratnayake, Chitra K

    2005-06-24

    The most commonly used type of column in capillary electrochromatography (CEC) consists of a packed segment and an open (but buffer-filled) segment. The two segments differ importantly in two respects: firstly, their electrical resistivity; and secondly, their zeta potentials at a multitude of solid-liquid interfaces. Determination of the magnitude of these properties for each segment cannot be made using only results from the column as a whole. Instead, measurements of resistivity and zeta potentials of an entirely open, unpacked column can be used in conjunction with those of the CEC column to determine the electrochemical nature of both segments. This review of basic electrochemical properties will describe simple procedures that can be used to determine resistance, resistivity, conductivity, conductance, and field strength in each segment. In addition, it will be shown how the properties of each segment add together to give the same properties of the CEC column as a whole. The equations so derived will be applied to data from the literature and conclusions drawn from the results. PMID:16038292

  8. Dependence of streamer density on electric field strength on positive electrode

    NASA Astrophysics Data System (ADS)

    Koki, Nakamura; Takahumi, Okuyama; Wang, Douyan; Takao, N.; Hidenori, Akiyama; Kumamoto University Collaboration

    2015-09-01

    Pulsed streamer discharge plasma, a type of non-thermal plasma, is known as generation method of reactive radicals and ozone and treatment of exhausted gas. From our previous research, the distance between electrodes has been considered a very important parameter for applications using pulsed streamer discharge. However, how the distance between electrodes affects the pulsed discharge hasn't been clarified. In this research, the propagation process of pulsed streamer discharge in a wire-plate electrode was observed using an ICCD camera for 4 electrodes having different distance between electrodes. The distance between electrodes was changeable at 45 mm, 40 mm, 35 mm, and 30 mm. The results show that, when the distance between electrodes was shortened, applied voltage with a pulse duration of 100 ns decreased from 80 to 60.3 kV. Conversely, discharge current increased from 149 to 190 A. Streamer head velocity became faster. On the other hand, Streamer head density at onset time of streamer head propagation didn't change. This is considered due to the electric field strength of streamer head at that time, in result, it was about 14 kV/mm under each distance between electrodes.

  9. Nuclear magnetic resonance relaxation and diffusion in the presence of internal gradients: the effect of magnetic field strength.

    PubMed

    Mitchell, J; Chandrasekera, T C; Johns, M L; Gladden, L F; Fordham, E J

    2010-02-01

    It is known that internal magnetic field gradients in porous materials, caused by susceptibility differences at the solid-fluid interfaces, alter the observed effective Nuclear Magnetic Resonance transverse relaxation times T2,eff. The internal gradients scale with the strength of the static background magnetic field B0. Here, we acquire data at various magnitudes of B0 to observe the influence of internal gradients on T2-T2 exchange measurements; the theory discussed and observations made are applicable to any T2-T2 analysis of heterogeneous materials. At high magnetic field strengths, it is possible to observe diffusive exchange between regions of local internal gradient extrema within individual pores. Therefore, the observed exchange pathways are not associated with pore-to-pore exchange. Understanding the significance of internal gradients in transverse relaxation measurements is critical to interpreting these results. We present the example of water in porous sandstone rock and offer a guideline to determine whether an observed T2,eff relaxation time distribution reflects the pore size distribution for a given susceptibility contrast (magnetic field strength) and spin echo separation. More generally, we confirm that for porous materials T1 provides a better indication of the pore size distribution than T2,eff at high magnetic field strengths (B0>1 T), and demonstrate the data analysis necessary to validate pore size interpretations of T2,eff measurements. PMID:20365625

  10. Electro-phoretic rotation and orientation of polarizable spheroidal particles in AC fields

    NASA Astrophysics Data System (ADS)

    Miloh, Touvia; Goldstein, Ben Weis

    2015-02-01

    A theoretical study is provided for determining the angular rotation rate of an ideally polarized (metallic) spheroidal particle freely suspended in a symmetric electrolyte under general alternating current ambient electric excitations. In particular, we discuss cases of electro-rotation (ROT) and electro-orientation (EOR) of such nano/micro particles incited by two orthogonal electric field components which may be out of phase. The analysis is carried under the Poisson-Nernst-Planck approximation and the "weak" field model. The analytic expressions thus obtained are valid for a conducting prolate spheroid with arbitrary eccentricity including the limiting cases of isotropic spheres and infinitely long cylindrical rods. The total dipolophoretic (DIP) angular velocity is decomposed from contributions due to dielectrophoresis (DEP) induced by the dipole-moment within the particle and by the induced-charge electrophoresis (ICEP) mechanism near the conducting surface. It is demonstrated that the explicit expressions for the DIP angular velocities reduce to the well-known ROT solution for the sphere as well as to the recently found expressions (based on slender-body approximation) for both ROT and EOR of metal nanowires [Arcenegui et al., "Electro-orientation and electrorotation of metal nanowires," Phys. Rev. E 88(6), 063018 (2013)]. Some comparisons with available experimental data are also provided for slender spheroidal geometries including a detailed discussion of DEP and ICEP effects and their relative contributions to the overall DIP rotational velocity.

  11. AC electric field for rapid assembly of nanostructured polyaniline onto microsized gap for sensor devices.

    PubMed

    La Ferrara, Vera; Rametta, Gabriella; De Maria, Antonella

    2015-07-01

    Interconnected network of nanostructured polyaniline (PANI) is giving strong potential for enhancing device performances than bulk PANI counterparts. For nanostructured device processing, the main challenge is to get prototypes on large area by requiring precision, low cost and high rate assembly. Among processes meeting these requests, the alternate current electric fields are often used for nanostructure assembling. For the first time, we show the assembly of nanostructured PANI onto large electrode gaps (30-60 μm width) by applying alternate current electric fields, at low frequencies, to PANI particles dispersed in acetonitrile (ACN). An important advantage is the short assembly time, limited to 5-10 s, although electrode gaps are microsized. That encouraging result is due to a combination of forces, such as dielectrophoresis (DEP), induced-charge electrokinetic (ICEK) flow and alternate current electroosmotic (ACEO) flow, which speed up the assembly process when low frequencies and large electrode gaps are used. The main achievement of the present study is the development of ammonia sensors created by direct assembling of nanostructured PANI onto electrodes. Sensors exhibit high sensitivity to low gas concentrations as well as excellent reversibility at room temperature, even after storage in air. PMID:26009866

  12. Frequency-dependent electrodeformation of giant phospholipid vesicles in AC electric field

    PubMed Central

    2010-01-01

    A model of vesicle electrodeformation is described which obtains a parametrized vesicle shape by minimizing the sum of the membrane bending energy and the energy due to the electric field. Both the vesicle membrane and the aqueous media inside and outside the vesicle are treated as leaky dielectrics, and the vesicle itself is modeled as a nearly spherical shape enclosed within a thin membrane. It is demonstrated (a) that the model achieves a good quantitative agreement with the experimentally determined prolate-to-oblate transition frequencies in the kilohertz range and (b) that the model can explain a phase diagram of shapes of giant phospholipid vesicles with respect to two parameters: the frequency of the applied alternating current electric field and the ratio of the electrical conductivities of the aqueous media inside and outside the vesicle, explored in a recent paper (S. Aranda et al., Biophys J 95:L19–L21, 2008). A possible use of the frequency-dependent shape transitions of phospholipid vesicles in conductometry of microliter samples is discussed. PMID:21886342

  13. Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry)

    NASA Astrophysics Data System (ADS)

    Garaio, Eneko; Sandre, Olivier; Collantes, Juan-Mari; Garcia, Jose Angel; Mornet, Stéphane; Plazaola, Fernando

    2015-01-01

    Magnetic nanoparticles (NPs) are intensively studied for their potential use for magnetic hyperthermia, a treatment that has passed a phase II clinical trial against severe brain cancer (glioblastoma) at the end of 2011. Their heating power, characterized by the ‘specific absorption rate (SAR)’, is often considered temperature independent in the literature, mainly because of the difficulties that arise from the measurement methodology. Using a dynamic magnetometer presented in a recent paper, we measure here the thermal dependence of SAR for superparamagnetic iron oxide (maghemite) NPs of four different size-ranges corresponding to mean diameters around 12 nm, 14 nm, 15 nm and 16 nm. The article reports a parametrical study extending from 10 to 60 {}^\\circ C in temperature, from 75 to 1031 kHz in frequency, and from 2 to 24 kA m-1 in magnetic field strength. It was observed that SAR values of smaller NPs decrease with temperature whereas for the larger sample (16 nm) SAR values increase with temperature. The measured variation of SAR with temperature is frequency dependent. This behaviour is fully explained within the scope of linear response theory based on Néel and Brown relaxation processes, using independent magnetic measurements of the specific magnetization and the magnetic anisotropy constant. A good quantitative agreement between experimental values and theoretical values is confirmed in a tri-dimensional space that uses as coordinates the field strength, the frequency and the temperature.

  14. DC-like Phase Space Manipulation and Particle Acceleration Using Chirped AC Fields

    SciTech Connect

    P.F. Schmit and N.J. Fisch

    2009-06-17

    Waves in plasmas can accelerate particles that are resonant with the wave. A DC electric field also accelerates particles, but without a resonance discrimination, which makes the acceleration mechanism profoundly different. We investigate the effect on a Hamiltonian distribution of an accelerating potential waveform, which could, for example, represent the average ponderomotive effect of two counterpropagating electromagnetic waves. In particular, we examine the apparent DC-like time-asymptotic response of the distribution in regimes where the potential structure is accelerated adiabatically. A highly resonant population within the distribution is always present, and we characterize its nonadiabatic response during wave-particle resonance using an integral method in the noninertial reference frame moving with the wave. Finally, we show that in the limit of infinitely slow acceleration of the wave, these highly resonant particles disappear and the response

  15. Survey of Processing Methods for High Strength High Conductivity Wires for High Field Magnet Applications

    SciTech Connect

    Han, K.; Embury, J.D.

    1998-10-01

    This paper will deal with the basic concepts of attaining combination of high strength and high conductivity in pure materials, in-situ composites and macrocomposites. It will survey current attainments, and outline where some future developments may lie in developing wire products that are close to the theoretical strength of future magnet applications.

  16. Long-range doublon transfer in a dimer chain induced by topology and ac fields.

    PubMed

    Bello, M; Creffield, C E; Platero, G

    2016-01-01

    The controlled transfer of particles from one site of a spatial lattice to another is essential for many tasks in quantum information processing and quantum communication. In this work we study how to induce long-range transfer between the two ends of a dimer chain, by coupling states that are localized just on the chain's end-points. This has the appealing feature that the transfer occurs only between the end-points - the particle does not pass through the intermediate sites-making the transfer less susceptible to decoherence. We first show how a repulsively bound-pair of fermions, known as a doublon, can be transferred from one end of the chain to the other via topological edge states. We then show how non-topological surface states of the familiar Shockley or Tamm type can be used to produce a similar form of transfer under the action of a periodic driving potential. Finally we show that combining these effects can produce transfer by means of more exotic topological effects, in which the driving field can be used to switch the topological character of the edge states, as measured by the Zak phase. Our results demonstrate how to induce long range transfer of strongly correlated particles by tuning both topology and driving. PMID:26932406

  17. Long-range doublon transfer in a dimer chain induced by topology and ac fields

    NASA Astrophysics Data System (ADS)

    Bello, M.; Creffield, C. E.; Platero, G.

    2016-03-01

    The controlled transfer of particles from one site of a spatial lattice to another is essential for many tasks in quantum information processing and quantum communication. In this work we study how to induce long-range transfer between the two ends of a dimer chain, by coupling states that are localized just on the chain’s end-points. This has the appealing feature that the transfer occurs only between the end-points - the particle does not pass through the intermediate sites-making the transfer less susceptible to decoherence. We first show how a repulsively bound-pair of fermions, known as a doublon, can be transferred from one end of the chain to the other via topological edge states. We then show how non-topological surface states of the familiar Shockley or Tamm type can be used to produce a similar form of transfer under the action of a periodic driving potential. Finally we show that combining these effects can produce transfer by means of more exotic topological effects, in which the driving field can be used to switch the topological character of the edge states, as measured by the Zak phase. Our results demonstrate how to induce long range transfer of strongly correlated particles by tuning both topology and driving.

  18. Long-range doublon transfer in a dimer chain induced by topology and ac fields

    PubMed Central

    Bello, M.; Creffield, C. E.; Platero, G.

    2016-01-01

    The controlled transfer of particles from one site of a spatial lattice to another is essential for many tasks in quantum information processing and quantum communication. In this work we study how to induce long-range transfer between the two ends of a dimer chain, by coupling states that are localized just on the chain’s end-points. This has the appealing feature that the transfer occurs only between the end-points – the particle does not pass through the intermediate sites–making the transfer less susceptible to decoherence. We first show how a repulsively bound-pair of fermions, known as a doublon, can be transferred from one end of the chain to the other via topological edge states. We then show how non-topological surface states of the familiar Shockley or Tamm type can be used to produce a similar form of transfer under the action of a periodic driving potential. Finally we show that combining these effects can produce transfer by means of more exotic topological effects, in which the driving field can be used to switch the topological character of the edge states, as measured by the Zak phase. Our results demonstrate how to induce long range transfer of strongly correlated particles by tuning both topology and driving. PMID:26932406

  19. SQUID sensor with additional compensation module for operation in an AC applied field

    NASA Astrophysics Data System (ADS)

    Della Penna, S.; Cianflone, F.; Del Gratta, C.; Erné, S. N.; Granata, C.; Pasquarelli, A.; Pentiricci, A.; Pizzella, V.; Russo, M.; Romani, G. L.

    2006-06-01

    A possible implementation of an in-vivo SQUID susceptometer able to estimate the liver iron concentration of humans uses a low frequency applied field together with a lock-in detection. The room-temperature magnetising coils and the detection coils are designed to minimize their mutual coupling. Nevertheless, deviation from ideal behaviour causes a residual signal in the detection coil, with an amplitude significantly larger than the patient's. In addition low frequency noise is added by any relative displacement of the magnetising and sensing coils. Thus, we designed a SQUID sensor using a compact compensating module to be used in a multichannel SQUID susceptometer. The sensor consists of two second order axial gradiometers, wounded one inside the other on the same support. The sensing channel is larger than the compensation channel which is only sensitive to the residual signal. Each gradiometer is coupled to a dc SQUID with parallel washer configuration. The output of the compensation channel is A/D converted and is processed by an adaptive algorithm running on a real time unit. The compensation signal is coupled to the sensing channel by an additional feedback loop. The performances of a prototype module will be presented.

  20. Cavities of Weak Magnetic Field Strength in the Wake of FTEs: Results from Global Magnetospheric MHD Simulations

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M. M.; Sibeck, D. G.; Hesse, M.; Wang, Y.; Rastaetter, L.; Toth, G.; Ridley, A.

    2009-01-01

    We use the global magnetohydrodynamic (MHD) code BATS-R-US to model multipoint observations of Flux Transfer Event (FTE) signatures. Simulations with high spatial and temporal resolution predict that cavities of weak magnetic field strength protruding into the magnetosphere trail FTEs. These predictions are consistent with recently reported multi-point Cluster observations of traveling magnetopause erosion regions (TMERs).

  1. Exceeding the limit of dynamics studies on biomolecules using high spin-lock field strengths with a cryogenically cooled probehead.

    PubMed

    Ban, David; Gossert, Alvar D; Giller, Karin; Becker, Stefan; Griesinger, Christian; Lee, Donghan

    2012-08-01

    Internal motions in the microsecond timescale have been proposed to play an active part in a protein's biological function. Nuclear magnetic resonance (NMR) relaxation dispersion is a robust method sensitive to this timescale with atomic resolution. However, due to technical limitations, the observation of motions faster than ∼40 μs for ¹⁵N nuclei was not possible. We show that with a cryogenically cooled NMR probehead, a high spin-lock field strength can be generated that is able to detect motions as fast as 25 μs. We apply this high spin-lock field strength in an NMR experiment used for characterizing dynamical processes. An on-resonance rotating-frame transverse relaxation experiment was implemented that allows for the detection of a 25 μs process from a dispersion curve, and transverse relaxation rates were compared at low and high spin-lock field strengths showing that at high field strengths contributions from chemical exchange with lifetimes up to 25 μs can be removed. Due to the increase in sensitivity towards fast motion, relaxation dispersion for a residue that undergoes smaller chemical shift variations due to dynamics was identified. This technique reduces the previously inaccessible window between the correlation time and the relaxation dispersion window that covers four orders of magnitude by a factor of 2. PMID:22743535

  2. Density matrix solutions for the susceptibilities of a three-level system with arbitrary relaxation rates and field strengths

    NASA Technical Reports Server (NTRS)

    Ryan, J. C.; Lawandy, N. M.

    1986-01-01

    The susceptibilities for a three-level system with arbitrary pump and signal field strengths are derived for arbitrary longitudinal and transverse relaxation rates. The results are of interest in connection with the calculation of the Raman gain in systems where resonance enhancement plays a dominant role.

  3. Direct simulation of phase delay effects on induced-charge electro-osmosis under large ac electric fields.

    PubMed

    Sugioka, Hideyuki

    2016-08-01

    The standard theory of induced-charge electro-osmosis (ICEO) often overpredicts experimental values of ICEO velocities. Using a nonsteady direct multiphysics simulation technique based on the coupled Poisson-Nernst-Planck and Stokes equations for an electrolyte around a conductive cylinder subject to an ac electric field, we find that a phase delay effect concerning an ion response provides a fundamental mechanism for electrokinetic suppression. A surprising aspect of our findings is that the phase delay effect occurs even at much lower frequencies (e.g., 50 Hz) than the generally believed charging frequency of an electric double layer (typically, 1 kHz) and it can decrease the electrokinetic velocities in one to several orders. In addition, we find that the phase delay effect may also cause a change in the electrokinetic flow directions (i.e., flow reversal) depending on the geometrical conditions. We believe that our findings move toward a more complete understanding of complex experimental nonlinear electrokinetic phenomena. PMID:27627362

  4. Shape change and physical properties of giant phospholipid vesicles prepared in the presence of an AC electric field.

    PubMed

    Mathivet, L; Cribier, S; Devaux, P F

    1996-03-01

    Giant unilamellar vesicles with diameters ranging from 10 to 60 microns were obtained by the swelling of phospholipid bilayers in water in the presence of an AC electric field. This technique leads to a homogeneous population of perfectly spherical and unilamellar vesicles, as revealed by phase-contrast optical microscopy and freeze-fracture electron microscopy. Freshly prepared vesicles had a high surface tension with no visible surface undulations. Undulations started spontaneously after several hours of incubation or were triggered by the application of a small osmotic pressure. Partially deflated giant vesicles could undergo further shape change if asymmetrical bilayers were formed by adding lyso compounds to the external leaflet or by imposing a transmembrane pH gradient that selectively accumulates on one leaflet phosphatidylglycerol. Fluorescence photobleaching with 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled phospholipids or labeled dextran trapped within the vesicles enabled the measurement of the membrane continuity in the dumbbell-shaped vesicles. In all instances phospholipids diffused from one lobe to the other, but soluble dextran sometimes was unable to traverse the neck. This suggests that the diameter of the connecting neck may be variable. PMID:8785271

  5. Observation of multi-scale oscillation of laminar lifted flames with low-frequency AC electric fields

    SciTech Connect

    Ryu, S.K.; Kim, Y.K.; Kim, M.K.; Won, S.H.; Chung, S.H.

    2010-01-15

    The oscillation behavior of laminar lifted flames under the influence of low-frequency AC has been investigated experimentally in coflow jets. Various oscillation modes were existed depending on jet velocity and the voltage and frequency of AC, especially when the AC frequency was typically smaller than 30 Hz. Three different oscillation modes were observed: (1) large-scale oscillation with the oscillation frequency of about 0.1 Hz, which was independent of the applied AC frequency, (2) small-scale oscillation synchronized to the applied AC frequency, and (3) doubly-periodic oscillation with small-scale oscillation embedded in large-scale oscillation. As the AC frequency decreased from 30 Hz, the oscillation modes were in the order of the large-scale oscillation, doubly-periodic oscillation, and small-scale oscillation. The onset of the oscillation for the AC frequency smaller than 30 Hz was in close agreement with the delay time scale for the ionic wind effect to occur, that is, the collision response time. Frequency-doubling behavior for the small-scale oscillation has also been observed. Possible mechanisms for the large-scale oscillation and the frequency-doubling behavior have been discussed, although the detailed understanding of the underlying mechanisms will be a future study. (author)

  6. MAGNETIC FIELD STRENGTH FLUCTUATIONS IN THE HELIOSHEATH: VOYAGER 1 OBSERVATIONS DURING 2009

    SciTech Connect

    Burlaga, L. F.; Ness, N. F. E-mail: nfnudel@yahoo.com

    2012-01-01

    We analyze the ''microscale fluctuations'' of the magnetic field strength B on a scale of several hours observed by Voyager1 (V1) in the heliosheath during 2009. The microscale fluctuations of B range from coherent to stochastic structures. The amplitude of microscale fluctuations of B during 1 day is measured by the standard deviation (SD) of 48 s averages of B. The distribution of the daily values of SD is lognormal. SD(t) from day of year (DOY) 1 to 331, 2009, is very intermittent. SD(t) has a 1/f or 'pink noise' spectrum on scales from 1 to 100 days, and it has a broad multifractal spectrum f({alpha}) with 0.57 {<=} {alpha} {<=} 1.39. The time series of increments SD(t + {tau}) - SD(t) has a pink noise spectrum with {alpha}' = 0.88 {+-} 0.14 on scales from 1 to 100 days. The increments have a Tsallis (q-Gaussian) distribution on scales from 1 to 165 days, with an average q = 1.75 {+-} 0.12. The skewness S and kurtosis K have Gaussian and lognormal distributions, respectively. The largest spikes in K(t) and S(t) are often associated with a change in B across a data gap and with identifiable physical structures. The 'turbulence' observed by V1 during 2009 was weakly compressible on average but still very intermittent, highly variable, and highly compressible at times. The turbulence observed just behind the termination shock by Voyager 2 was twice as strong. These observations place strong constraints on any model of 'turbulence' in the heliosheath.

  7. Magnetic Field Strength Fluctuations in the Heliosheath: Voyager 1 Observations during 2009

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Ness, N. F.

    2011-01-01

    We analyze the "microscale fluctuations" of the magnetic field strength Beta on a scale of several hours observed by Voyager I (VI) in the heliosheath during 2009. The microscale fluctuations of Beta range from coherent to stochastic structures. The amplitude of microscale fluctuations of Beta during 1 day is measured by the standard deviation (SD) of 48 s averages of B. The distribution of the daily values of SD is lognormal. SD(t) from day of year (DOY) I to 331, 2009, is very intermittent. SD(t) has a 1/f or "pink noise" spectrum on scales from I to 100 days, and it has a broad multi fractal spectrum f(alpha) with 0.57 much < alpha much < 1.39. The time series of increments SD(t + r) - SD(t) has a pink noise spectrum with alpha' = 0.88 +/- 0.14 on scales from 1 to 100 days. The increments have a Tsallis (q-Gaussian) distribution on scales from 1 to 165 days, with an average q = 1.75 +/- 0.12. The skewness S and kurtosis K have Gaussian and lognormal distributions, respectively. The largest spikes in K(t) and Set) are often associated with a change in Beta across a data gap and with identifiable physical structures. The "turbulence" observed by VI during 2009 was weakly compressible on average but still very intermittent, highly variable, and highly compressible at times. The turbulence observed just behind the termination shock by Voyager 2 was twice as strong. These observations place strong constraints on any model of "turbulence" in the heliosheath.

  8. Magnetic Field Strength Fluctuations in the Heliosheath: Voyager 1 Observations During 2009

    NASA Technical Reports Server (NTRS)

    Brulaga, L. F.; Ness, N. F.

    2012-01-01

    We analyze the microscale fluctuations of the magnetic field strength B on a scale of several hours observed by Voyager1 (V1) in the heliosheath during 2009. The microscale fluctuations of B range from coherent to stochastic structures. The amplitude of microscale fluctuations of B during 1 day is measured by the standard deviation (SD) of 48 s averages of B. The distribution of the daily values of SD is lognormal. SD(t) from day of year (DOY) 1 to 331, 2009, is very intermittent. SD(t) has a 1/f or "pink noise" spectrum on scales from 1 to 100 days, and it has a broad multifractal spectrum f(alpha) with 0.57 less than or equal to alpha less than or equal to 1.39. The time series of increments SD(t + tau) -- SD(t) has a pink noise spectrum with alpha(1) = 0.88 plus or minus 0.14 on scales from 1 to 100 days. The increments have a Tsallis (q-Gaussian) distribution on scales from 1 to 165 days, with an average q = 1.75 plus or minus 0.12. The skewness S and kurtosis K have Gaussian and lognormal distributions, respectively. The largest spikes in K(t) and S(t) are often associated with a change in B across a data gap and with identifiable physical structures. The "turbulence" observed by V1 during 2009 was weakly compressible on average but still very intermittent, highly variable, and highly compressible at times. The turbulence observed just behind the termination shock by Voyager 2 was twice as strong. These observations place strong constraints on any model of turbulence in the heliosheath.

  9. BIPOLAR JETS LAUNCHED FROM MAGNETICALLY DIFFUSIVE ACCRETION DISKS. I. EJECTION EFFICIENCY VERSUS FIELD STRENGTH AND DIFFUSIVITY

    SciTech Connect

    Sheikhnezami, Somayeh; Fendt, Christian; Porth, Oliver; Vaidya, Bhargav; Ghanbari, Jamshid E-mail: fendt@mpia.de

    2012-09-20

    We investigate the launching of jets and outflows from magnetically diffusive accretion disks. Using the PLUTO code, we solve the time-dependent resistive magnetohydrodynamic equations taking into account the disk and jet evolution simultaneously. The main question we address is which kind of disks launch jets and which kind of disks do not? In particular, we study how the magnitude and distribution of the (turbulent) magnetic diffusivity affect mass loading and jet acceleration. We apply a turbulent magnetic diffusivity based on {alpha}-prescription, but also investigate examples where the scale height of diffusivity is larger than that of the disk gas pressure. We further investigate how the ejection efficiency is governed by the magnetic field strength. Our simulations last for up to 5000 dynamical timescales corresponding to 900 orbital periods of the inner disk. As a general result, we observe a continuous and robust outflow launched from the inner part of the disk, expanding into a collimated jet of superfast-magnetosonic speed. For long timescales, the disk's internal dynamics change, as due to outflow ejection and disk accretion the disk mass decreases. For magnetocentrifugally driven jets, we find that for (1) less diffusive disks, (2) a stronger magnetic field, (3) a low poloidal diffusivity, or (4) a lower numerical diffusivity (resolution), the mass loading of the outflow is increased-resulting in more powerful jets with high-mass flux. For weak magnetization, the (weak) outflow is driven by the magnetic pressure gradient. We consider in detail the advection and diffusion of magnetic flux within the disk and we find that the disk and outflow magnetization may substantially change in time. This may have severe impact on the launching and formation process-an initially highly magnetized disk may evolve into a disk of weak magnetization which cannot drive strong outflows. We further investigate the jet asymptotic velocity and the jet rotational velocity in

  10. Limiting field strength and electron swarm coefficients of the CF3I-SF6 gas mixture

    NASA Astrophysics Data System (ADS)

    de Urquijo, J.; Mitrani, A.; Ruíz-Vargas, G.; Basurto, E.

    2011-08-01

    We have measured the electron drift velocity, longitudinal diffusion, and the effective ionization coefficients in the gaseous mixture of CF3I-SF6 over the density-normalized electric field intensity E/N, from 375 to 500 Td (1 Td = 10-17 V cm2). A pulsed Townsend technique was used. Overall, the gas mixture compositions were varied from 50 to 90% CF3I. We have found that the limiting field strength E/Nlim of the CF3I-SF6 mixture is superior to that of CF3I-N2, and always higher than that of SF6. Moreover, over the whole mixture range, the range of the limiting field strength for the CF3I-SF6 mixture is 360-437 Td, these limits corresponding for pure SF6 and CF3I, respectively.

  11. Correlation of the 27-day variation of cosmic rays to the interplanetary magnetic field strength

    NASA Astrophysics Data System (ADS)

    Sabbah, I.

    2001-08-01

    We analyze cosmic ray data as well as interplanetary magnetic field (IMF) data, to examine the relation and correlation between their 27-day variations during the time interval 1965-1995. The amplitude of the 27day variation of galactic cosmic rays is linearly correlated with: the IMF strength (B), the z-component (Bz) of the IMF vector and the product of the solar wind speed (V) times B (VB). It is well correlated with the heliospheric current sheet tiltangle.Thecross-correlationfunctionofthe27-daycosmic ray variation versus the solar wind speed shows a negative correlation. The solar wind speed leads the cosmic ray variation by 2 years. The 27-day variation of cosmic rays is correlated with the variation in both the xand y-components of the IMF, it lags with 3-5 years. 1. Introduction Galactic cosmic rays are modulated (modified) through their propagation in the heliosphere by the effect of the large scale structure of the interplanetary medium. A wavy structured neutralcurrentsheet(NCS) separatesthe heliosphereintotwo regions of opposite magnetic polarity. During positive magnetic phase, the interplanetary magnetic field (IMF) is directed away from the Sun above the NCS and toward the Sun south of it. During negative magnetic phase the IMF direction is reversed. The angle between the Sun's equatorial plane and the NCS is referred as the tilt angle R, of the neutral sheet. It exhibits a solar activity dependence, R is small near sunspot minimum and large near solar maximum. The 27-day variations of galactic cosmic rays have been related to the changing position of the interplanetary NCS (Swinson and Yasue, 1992; Valdes-Galicia and Dorman, 1997). Here we examine the effect of the interplanetary parameters upon the 27-day variation of galactic cosmic rays during the last three solar cycles. 2. Solar Cycle Dependance We used hourly averaged cosmic ray counts observed with neutron monitors at Deep River (DR) and Huancayo (HU) and muon surface telescope at Nagoya (NA

  12. AC losses and heat removal in three-dimensional winding pack of Samsung superconducting test facility under pulsed magnetic field operation

    NASA Astrophysics Data System (ADS)

    Wang, Qiuliang; Seong Yoon, Cheon; Baang, Sungkeun; Kim, Myungkyu; Park, Hyunki; Kim, Yongjin; Lee, Sangil; Kim, Keeman

    2001-04-01

    The Samsung superconducting test facility (SSTF) will be operated under the highly pulsed field to simulate the operating conditions of KSTAR. An analysis has been performed to study the transient heat removal characteristics and temperature margin for the main, blip and compensating coils in the SSTF. This method is based on a quasi-three-dimensional model, which the thermal coupling of turn-to-turn, pancake-to-pancake and channel-to-channel is taken into account, to simulate the conductor temperature rise and the thermal expansion of supercritical helium due to the high AC losses under the pulsed field. The local AC losses, which include coupling loss, eddy current loss and hysteresis loss in the cable-in-conduit conductor, are estimated. The temperature margin, mass flow rate, distribution of AC losses are studied under the given operating scenario. The mass flow reduction and peak temperature rise depending on the inlet pressure and inlet position of CICC are studied. It is shown that the initial mass flow rate remarkably influences on the peak temperature of superconducting strands. The large mass flow rate can reduce the temperature rise when the inlet of helium is located at the high field region. By contrast, because of heat induced flow to improve the cooling condition of the superconducting strands, the small initial mass flow rate results in the low peak temperature in strands when the inlet of helium is located at the low field region.

  13. Dielectric strength, swelling and weight loss of the ITER Toroidal Field Model Coil insulation after low temperature reactor irradiation

    NASA Astrophysics Data System (ADS)

    Humer, K.; Weber, H. W.; Hastik, R.; Hauser, H.; Gerstenberg, H.

    2000-04-01

    The insulation system for the Toroidal Field Model Coil of ITER is a fiber reinforced plastic (FRP) laminate, which consists of a combined Kapton/R-glass-fiber reinforcement tape, vacuum-impregnated with an epoxy DGEBA system. Pure disk shaped laminates, FRP/stainless-steel sandwiches, and conductor insulation prototypes were irradiated at 5 K in a fission reactor up to a fast neutron fluence of 10 22 m -2 ( E>0.1 MeV) to investigate the radiation induced degradation of the dielectric strength of the insulation system. After warm-up to room temperature, swelling, weight loss, and the breakdown strength were measured at 77 K. The sandwich swells by 4% at a fluence of 5×10 21 m-2 and by 9% at 1×10 22 m-2. The weight loss of the FRP is 2% at 1×10 22 m-2. The dielectric strength remained unchanged over the whole dose range.

  14. The high field strength element budget of atmospheric aerosols (puy de Dôme, France)

    NASA Astrophysics Data System (ADS)

    Vlastelic, Ivan; Suchorski, Krzysztof; Sellegri, Karine; Colomb, Aurélie; Nauret, François; Bouvier, Laetitia; Piro, Jean-Luc

    2015-10-01

    High field strength elements (HFSE), including Zr, Hf, Nb, Ta and Ti have low solubility in aqueous fluids and partition into dense and resistant minerals. HFSE proved useful in studying terrestrial weathering and sediment transport, but little is known about their behavior during atmospheric processes, which play an important role in global sedimentary cycles. The atmospheric budget of HFSE is evaluated from the sequential dissolution of aerosol samples collected between 2011 and 2014 at puy de Dôme (1465 m elevation, French Massif Central). Aerosols were sampled during nighttime, while the site is generally located above the planetary boundary layer. Systematic, partial recovery of HFSE during gentle dissolution of aerosols indicates that resistant minerals are ubiquitous in air samples. Total dissolution of aerosols in pressure vessels reveals that Zr and Hf occur on average in sub-crustal abundance, which is consistent with the sampling site being dominantly influenced by oceanic air masses depleted in zircons. Conversely, zircon excess occasionally occurs in continental air masses, in particular those originating from northern Africa. Overall, the Hf/Nd ratio, a proxy for zircon fractionation, varies from 0.26 to 3.94 times the Upper Continental Crust (UCC) value, encompassing the range of worldwide loess. This wide compositional range is consistent with (1) the occurrence of coarse zircons (10-30 μm) in dust source, with possible local enrichments relative to bulk UCC in residual wind-winnowed soils, and (2) gravitational settling of coarse zircons during long-distance (>ca. 1000 km) transport. Niobium and Ta are systematically more abundant (by a mean factor of ∼3) in puy de Dôme aerosols than expected from average crustal or soil concentrations. The volume-weighted average Nb/Ta ratio of 15.5 ± 2.6 (1σ) is also higher than in bulk UCC (11.4-13.3). The positive Nb-Ta anomaly of free troposphere aerosols unlikely reflects a net Nb-Ta enrichment but

  15. Role of Magnetic Field Strength and Numerical Resolution in Simulations of the Heat-flux-driven Buoyancy Instability

    NASA Astrophysics Data System (ADS)

    Avara, Mark J.; Reynolds, Christopher S.; Bogdanović, Tamara

    2013-08-01

    The role played by magnetic fields in the intracluster medium (ICM) of galaxy clusters is complex. The weakly collisional nature of the ICM leads to thermal conduction that is channeled along field lines. This anisotropic heat conduction profoundly changes the instabilities of the ICM atmosphere, with convective stabilities being driven by temperature gradients of either sign. Here, we employ the Athena magnetohydrodynamic code to investigate the local non-linear behavior of the heat-flux-driven buoyancy instability (HBI) relevant in the cores of cooling-core clusters where the temperature increases with radius. We study a grid of two-dimensional simulations that span a large range of initial magnetic field strengths and numerical resolutions. For very weak initial fields, we recover the previously known result that the HBI wraps the field in the horizontal direction, thereby shutting off the heat flux. However, we find that simulations that begin with intermediate initial field strengths have a qualitatively different behavior, forming HBI-stable filaments that resist field-line wrapping and enable sustained vertical conductive heat flux at a level of 10%-25% of the Spitzer value. While astrophysical conclusions regarding the role of conduction in cooling cores require detailed global models, our local study proves that systems dominated by the HBI do not necessarily quench the conductive heat flux.

  16. Effect of electrode geometry on field strength in plastic microfluidic devices and application to cell membrane permeabilization

    NASA Astrophysics Data System (ADS)

    Chooljian, Marc; Paredes, Jacobo; Liepmann, Dorian

    2014-11-01

    We have developed a method that allows embedding of electrodes in up to 3 walls of a plastic microfluidic channel. Electric field strength and homogeneity of various electrode geometries is analyzed theoretically and experimentally by evaluating the efficiency of on-chip lysis of cells. Electric field-mediated disruption of membranes is an important tool in diagnostics, basic biology, and synthetic biology due to the ability to permeabilize the cell membrane without changing the chemical composition of the buffer. Typically, fields of the required magnitude are applied to the cell by discharging a capacitor through a mixture of cells in a cuvette, resulting in a transient high-voltage pulse. We demonstrate that is possible to substitute a spatially varied DC electric field along a microchannel and to control the timing of the pulses by changing the electrode spacing and the flow rate. Homogeneity of the field with respect to the cross section of the channel is key to achieving critical field strength regardless of the cell's lateral position in the channel. A comparison of 2D versus 3D electrode geometries on the efficiency of electroporation and on side-effects arising due to the electric field (recirculating flows and hydrolysis) is presented.

  17. Atomic-level Pseudo-degeneracy of Atomic Levels Giving Transitions Induced by Magnetic Fields, of Importance for Determining the Field Strengths in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Li, Wenxian; Yang, Yang; Tu, Bingsheng; Xiao, Jun; Grumer, Jon; Brage, Tomas; Watanabe, Tetsuya; Hutton, Roger; Zou, Yaming

    2016-08-01

    We present a measured value for the degree of pseudo-degeneracy between two fine-structure levels in Fe9+ from line intensity ratios involving a transition induced by an external magnetic field. The extracted fine-structure energy difference between the 3{p}43d{}4{D}5/2 and {}4{D}7/2 levels, where the latter is the upper state for the magnetic-field induced line, is needed in our recently proposed method to measure magnetic-field strengths in the solar corona. The intensity of the 3{p}43d{}4{D}7/2\\to 3{p}5{}2{P}3/2 line at 257.262 Å is sensitive to the magnetic field external to the ion. This sensitivity is in turn strongly dependent on the energy separation in the pseudo-degeneracy through the mixing induced by the external magnetic field. Our measurement, which uses an Electron Beam Ion Trap with a known magnetic-field strength, indicates that this energy difference is 3.5 cm‑1. The high abundance of Fe9+ and the sensitivity of the line’s transition probability to field strengths below 0.1 T opens up the possibility of diagnosing coronal magnetic fields. We propose a new method to measure the magnetic field in the solar corona, from similar intensity ratios in Fe9+. In addition, the proposed method to use the line ratio of the blended line 3{p}43d{}4{D}7/{2,5/2}\\to 3{p}5{}2{P}3/2 with another line from Fe x as the density diagnostic should evaluate the effect of the magnetic-field-induced transition line.

  18. Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy

    NASA Astrophysics Data System (ADS)

    Shubitidze, Fridon; Kekalo, Katsiaryna; Stigliano, Robert; Baker, Ian

    2015-03-01

    Magnetic nanoparticles (MNPs), referred to as the Dartmouth MNPs, which exhibit high specific absorption rate at low applied field strength have been developed for hyperthermia therapy applications. The MNPs consist of small (2-5 nm) single crystals of gamma-Fe2O3 with saccharide chains implanted in their crystalline structure, forming 20-40 nm flower-like aggregates with a hydrodynamic diameter of 110-120 nm. The MNPs form stable (>12 months) colloidal solutions in water and exhibit no hysteresis under an applied quasistatic magnetic field, and produce a significant amount of heat at field strengths as low as 100 Oe at 99-164 kHz. The MNP heating mechanisms under an alternating magnetic field (AMF) are discussed and analyzed quantitatively based on (a) the calculated multi-scale MNP interactions obtained using a three dimensional numerical model called the method of auxiliary sources, (b) measured MNP frequency spectra, and (c) quantified MNP friction losses based on magneto-viscous theory. The frequency responses and hysteresis curves of the Dartmouth MNPs are measured and compared to the modeled data. The specific absorption rate of the particles is measured at various AMF strengths and frequencies, and compared to commercially available MNPs. The comparisons demonstrate the superior heating properties of the Dartmouth MNPs at low field strengths (<250 Oe). This may extend MNP hyperthermia therapy to deeper tumors that were previously non-viable targets, potentially enabling the treatment of some of the most difficult cancers, such as pancreatic and rectal cancers, without damaging normal tissue.

  19. Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy

    PubMed Central

    Stigliano, Robert; Baker, Ian

    2015-01-01

    Magnetic nanoparticles (MNPs), referred to as the Dartmouth MNPs, which exhibit high specific absorption rate at low applied field strength have been developed for hyperthermia therapy applications. The MNPs consist of small (2–5 nm) single crystals of gamma-Fe2O3 with saccharide chains implanted in their crystalline structure, forming 20–40 nm flower-like aggregates with a hydrodynamic diameter of 110–120 nm. The MNPs form stable (>12 months) colloidal solutions in water and exhibit no hysteresis under an applied quasistatic magnetic field, and produce a significant amount of heat at field strengths as low as 100 Oe at 99–164 kHz. The MNP heating mechanisms under an alternating magnetic field (AMF) are discussed and analyzed quantitatively based on (a) the calculated multi-scale MNP interactions obtained using a three dimensional numerical model called the method of auxiliary sources, (b) measured MNP frequency spectra, and (c) quantified MNP friction losses based on magneto-viscous theory. The frequency responses and hysteresis curves of the Dartmouth MNPs are measured and compared to the modeled data. The specific absorption rate of the particles is measured at various AMF strengths and frequencies, and compared to commercially available MNPs. The comparisons demonstrate the superior heating properties of the Dartmouth MNPs at low field strengths (<250 Oe). This may extend MNP hyperthermia therapy to deeper tumors that were previously non-viable targets, potentially enabling the treatment of some of the most difficult cancers, such as pancreatic and rectal cancers, without damaging normal tissue. PMID:25825545

  20. Long-term Trends in Interplanetary Magnetic Field Strength and Solar Wind Structure during the 20th Century

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cliver, E. W.; Cane, H. V.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    Lockwood et al have recently reported an approximately 40% increase in the radial component of the interplanetary magnetic field (IMF) at Earth between 1964 and 1996. We argue that this increase does not constitute a secular trend but is largely the consequence of lower than average fields during solar cycle 20 (1964-1976) in comparison with surrounding cycles. For times after 1976 the average IMF strength has actually decreased slightly. Examination of the cosmic ray intensity, an indirect measure of the IMF strength, over the last five solar cycles (19-23) also indicates that cycle averages of the IMF strength have been relatively constant since approximately 1954. We also consider the origin of the well-documented increase in the geomagnetic alphaalpha index that occurred primarily during the first half of the twentieth century. We surmise that the coronal mass ejection (CME) rate for recent solar cycles was approximately twice as high as that for solar cycles 100 years ago. However, this change in the CME rate and the accompanying increase in 27-day recurrent storm activity reported by others are unable to account completely for the increase in alphaalpha. Rather, the CMEs and recurrent high-speed streams at the beginning of the twentieth century must have been embedded in a background of slow solar wind that was less geoeffective (having, for example, lower IMF strength and/or flow speed) than its modern counterpart.

  1. Correlation between the Gamma-Ray Luminosity and the Light Cylinder Magnetic Field Strength of Fermi-LAT Pulsars

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang-Nan; Yi, Shuxu; Hou, Xian; Li, Jian

    2015-08-01

    We analyze statistically the differences between gamma-ray loud and quiet samples of the radio pulsars that have been searched with the Fermi satellite. Among many pulsar parameters considered in this paper, our Kolmogorov-Smirnov test shows that the distributions of magnetic field strength at the light cylinder of the two samples are the most inconsistent, but that of radio spectral index are the least discrepant. Significant correlations are found between the gamma-ray luminosity and magnetic field strength at the light cylinder of Fermi-LAT pulsars in the Second Fermi Large Area Telescope Catalog of Gamma-ray pulsars, for normal pulsars and millisecond pulsars respectively. Using the above correlations, we give a list of gamma-ray pulsar candidates with their predicted gamma-ray energy flux.

  2. Aggregate tensile strength and friability characteristics of furrow and sprinkler irrigated fields in Southern Idaho

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural crops grown in southern Idaho are furrow or sprinkler irrigated. Therefore, the soil experiences several wetting and drying cycles each growing season that can contribute to changes in aggregate tensile strength and friability. The objective of the research was to evaluate the influence...

  3. Relationship of magnetic field strength and brightness of fine-structure elements in the solar temperature minimum region

    NASA Technical Reports Server (NTRS)

    Cook, J. W.; Ewing, J. A.

    1990-01-01

    A quantitative relationship was determined between magnetic field strength (or magnetic flux) from photospheric magnetograph observations and the brightness temperature of solar fine-structure elements observed at 1600 A, where the predominant flux source is continuum emission from the solar temperature minimum region. A Kitt Peak magnetogram and spectroheliograph observations at 1600 A taken during a sounding rocket flight of the High Resolution Telescope and Spectrograph from December 11, 1987 were used. The statistical distributions of brightness temperature in the quiet sun at 1600 A, and absolute value of magnetic field strength in the same area were determined from these observations. Using a technique which obtains the best-fit relationship of a given functional form between these two histogram distributions, a quantitative relationship was determined between absolute value of magnetic field strength B and brightness temperature which is essentially linear from 10 to 150 G. An interpretation is suggested, in which a basal heating occurs generally, while brighter elements are produced in magnetic regions with temperature enhancements proportional to B.

  4. Estimations of the magnetic field strength in the torus of IC 5063 using near-infrared polarimetry

    NASA Astrophysics Data System (ADS)

    Lopez-Rodriguez, E.; Packham, C.; Young, S.; Elitzur, M.; Levenson, N. A.; Mason, R. E.; Ramos Almeida, C.; Alonso-Herrero, A.; Jones, T. J.; Perlman, E.

    2013-05-01

    An optically and geometrically thick torus obscures the central engine of active galactic nuclei (AGN) from some lines of sight. From a magnetohydrodynamical framework, the torus can be considered to be a particular region of clouds surrounding the central engine where the clouds are dusty and optically thick. In this framework, the magnetic field plays an important role in the creation, morphology and evolution of the torus. If the dust grains within the clouds are assumed to be aligned by paramagnetic alignment, then the ratio of the intrinsic polarization and visual extinction, P(per cent)/Av, is a function of the magnetic field strength. To estimate the visual extinction through the torus and constrain the polarization mechanisms in the nucleus of the type 2 AGN, IC 5063, we developed a polarization model to fit both the total and polarized flux in a 1.2-arcsec (˜263 pc) aperture. The polarization model is consistent with the nuclear polarization observed at Kn (2.0-2.3 μm) being produced by dichroic absorption from aligned dust grains with a visual extinction through the torus of 48 ± 2 mag. We estimated the intrinsic polarization arising from dichroic absorption to be P^{{dic}}_{{{K_n}}} = 12.5 ± 2.7 per cent. We consider the physical conditions and environment of the gas and dust for the torus of IC 5063. Then, through paramagnetic alignment, we estimate a magnetic field strength in the range of 12-128 mG in the near-infrared emitting regions of the torus of IC 5063. Alternatively, we estimate the magnetic field strength in the plane of the sky using the Chandrasekhar-Fermi method. The minimum magnetic field strength in the plane of the sky is estimated to be 13 and 41 mG depending of the conditions within the torus of IC 5063. These techniques afford the chance to make a survey of AGN, to investigate the effects of magnetic field strength on the torus, accretion and interaction to the host galaxy.

  5. Ionic strength effect on molecular structure of hyaluronic acid investigated by flow field-flow fractionation and multiangle light scattering.

    PubMed

    Kim, Bitnara; Woo, Sohee; Park, Young-Soo; Hwang, Euijin; Moon, Myeong Hee

    2015-02-01

    This study describes the effect of ionic strength on the molecular structure of hyaluronic acid (HA) in an aqueous solution using flow field-flow fractionation and multiangle light scattering (FlFFF-MALS). Sodium salts of HA (NaHA) raw materials (∼2 × 10(6) Da) dispersed in different concentrations of NaCl prepared by repeated dilution/ultrafiltration procedures were examined in order to study conformational changes in terms of the relationship between the radius of gyration and molecular weight (MW) and molecular weight distribution (MWD) of NaHA in solution. This was achieved by varying the ionic strength of the carrier solution used in a frit-inlet asymmetrical FlFFF (FIAF4) channel. Experiments showed that the average MW of NaHA increased as the ionic strength of the NaHA solution decreased due to enhanced entanglement or aggregation of HA molecules. Relatively large molecules (greater than ∼5 MDa) did not show a large increase in RMS radius value as the NaCl concentration decreased. Conversely, smaller species showed larger changes, suggesting molecular expansion at lower ionic strengths. When the ionic strength of the FlFFF carrier solution was decreased, the HA species in a salt-rich solution (0.2 M NaCl) underwent rapid molecular aggregation during FlFFF separation. However, when salt-depleted HA samples (I = 4.66∼0.38 mM) were analyzed with FFF carrier solutions of a high ionic strength, the changes in both molecular structure and size were somewhat reversible, although there was a delay in correction of the molecular structure. PMID:25542570

  6. Effect of magnetic field strength on the alignment of α''-Fe16N2 nanoparticle films

    NASA Astrophysics Data System (ADS)

    Kartikowati, Christina W.; Suhendi, Asep; Zulhijah, Rizka; Ogi, Takashi; Iwaki, Toru; Okuyama, Kikuo

    2016-01-01

    Aligning the magnetic orientation is one strategy to improve the magnetic performance of magnetic materials. In this study, well-dispersed single-domain core-shell α''-Fe16N2/Al2O3 nanoparticles (NPs) were aligned by vertically applying magnetic fields with various strengths to a Si wafer substrate followed by fixation with resin. X-ray diffraction indicated that the alignment of the easy c-axis of the α''-Fe16N2 crystal and the magnetic orientation of the NPs depended upon the applied magnetic field. Magnetic analysis demonstrated that increasing the magnetic field strength resulted in hysteresis loops approaching a rectangular form, implying a higher magnetic coercivity, remanence, and maximum energy product. The same tendency was also observed when a horizontal magnetic field was applied. The fixation of the easy c-axis alignment of each nanoparticle caused by Brownian rotation under the magnetic field, instead of Néel rotation, was the reason for the enhancement in the magnetic performance. These results on the alignment of the magnetic orientation of α''-Fe16N2 NPs suggest the practical application of high-performance permanent bulk magnets from well-dispersed single-domain α''-Fe16N2/Al2O3 NPs.

  7. Effect of magnetic field strength on the alignment of α''-Fe16N2 nanoparticle films.

    PubMed

    Kartikowati, Christina W; Suhendi, Asep; Zulhijah, Rizka; Ogi, Takashi; Iwaki, Toru; Okuyama, Kikuo

    2016-02-01

    Aligning the magnetic orientation is one strategy to improve the magnetic performance of magnetic materials. In this study, well-dispersed single-domain core-shell α''-Fe16N2/Al2O3 nanoparticles (NPs) were aligned by vertically applying magnetic fields with various strengths to a Si wafer substrate followed by fixation with resin. X-ray diffraction indicated that the alignment of the easy c-axis of the α''-Fe16N2 crystal and the magnetic orientation of the NPs depended upon the applied magnetic field. Magnetic analysis demonstrated that increasing the magnetic field strength resulted in hysteresis loops approaching a rectangular form, implying a higher magnetic coercivity, remanence, and maximum energy product. The same tendency was also observed when a horizontal magnetic field was applied. The fixation of the easy c-axis alignment of each nanoparticle caused by Brownian rotation under the magnetic field, instead of Néel rotation, was the reason for the enhancement in the magnetic performance. These results on the alignment of the magnetic orientation of α''-Fe16N2 NPs suggest the practical application of high-performance permanent bulk magnets from well-dispersed single-domain α''-Fe16N2/Al2O3 NPs. PMID:26758175

  8. Influence of applied magnetic field strength and frequency response of pick-up coil on the magnetic barkhausen noise profile

    NASA Astrophysics Data System (ADS)

    Vashista, M.; Moorthy, V.

    2013-11-01

    The influence of applied magnetic field strength and frequency response of the pick-up coil on the shape of Magnetic Barkhausen Noise (MBN) profile have been studied. The low frequency MBN measurements have been carried out using 5 different MBN pick-up coils at two different ranges of applied magnetic field strengths on quenched and tempered (QT) and case-carburised and tempered (CT) 18CrNiMo7 steel bar samples. The MBN pick-up coils have been designed to obtain different frequency response such that the peak frequency response varies from ˜4 kHz to ˜32 kHz and the amplitude of low frequency signals decreases gradually. At lower applied magnetic field strength of ±14,000 A/m, all the pick-up coils produced a single peak MBN profile for both QT and CT sample. However, at higher applied magnetic field strength of ±22,000 A/m, the MBN profile showed two peaks for both QT and CT samples for pick-up coils with peak frequency response up to ˜17 kHz. Also, there is systematic reduction in peak 2 for QT sample and asymmetric reduction in the heights of peak 1 and peak 2 for CT sample with increase in peak frequency response of the pick-up coils. The decreasing sensitivity of pick-up coils with increasing peak frequency response to MBN signal generation is indicated by the gradual reduction in width of MBN profile and height of peak 2 in the QT sample. The drastic reduction in peak 1 as compared to peak 2 in the CT sample shows the effect of decreasing low frequency response of the pick-up coils on lowering skin-depth of MBN signal detection. This study clearly suggests that it is essential to optimise both maximum applied magnetic field strength and frequency response of the MBN pick-up coil for maximising the shape of the MBN profile for appropriate correlation with the magnetisation process and hence the material properties.

  9. On the importance of body posture and skin modelling with respect to in situ electric field strengths in magnetic field exposure scenarios

    NASA Astrophysics Data System (ADS)

    Schmid, Gernot; Hirtl, Rene

    2016-06-01

    The reference levels and maximum permissible exposure values for magnetic fields that are currently used have been derived from basic restrictions under the assumption of upright standing body models in a standard posture, i.e. with arms laterally down and without contact with metallic objects. Moreover, if anatomical modelling of the body was used at all, the skin was represented as a single homogeneous tissue layer. In the present paper we addressed the possible impacts of posture and skin modelling in scenarios of exposure to a 50 Hz uniform magnetic field on the in situ electric field strength in peripheral tissues, which must be limited in order to avoid peripheral nerve stimulation. We considered different body postures including situations where body parts form large induction loops (e.g. clasped hands) with skin-to-skin and skin-to-metal contact spots and compared the results obtained with a homogeneous single-layer skin model to results obtained with a more realistic two-layer skin representation consisting of a low-conductivity stratum corneum layer on top of a combined layer for the cellular epidermis and dermis. Our results clearly indicated that postures with loops formed of body parts may lead to substantially higher maximum values of induced in situ electric field strengths than in the case of standard postures due to a highly concentrated current density and in situ electric field strength in the skin-to-skin and skin-to-metal contact regions. With a homogeneous single-layer skin, as is used for even the most recent anatomical body models in exposure assessment, the in situ electric field strength may exceed the basic restrictions in such situations, even when the reference levels and maximum permissible exposure values are not exceeded. However, when using the more realistic two-layer skin model the obtained in situ electric field strengths were substantially lower and no violations of the basic restrictions occurred, which can be explained by the

  10. On the importance of body posture and skin modelling with respect to in situ electric field strengths in magnetic field exposure scenarios.

    PubMed

    Schmid, Gernot; Hirtl, Rene

    2016-06-21

    The reference levels and maximum permissible exposure values for magnetic fields that are currently used have been derived from basic restrictions under the assumption of upright standing body models in a standard posture, i.e. with arms laterally down and without contact with metallic objects. Moreover, if anatomical modelling of the body was used at all, the skin was represented as a single homogeneous tissue layer. In the present paper we addressed the possible impacts of posture and skin modelling in scenarios of exposure to a 50 Hz uniform magnetic field on the in situ electric field strength in peripheral tissues, which must be limited in order to avoid peripheral nerve stimulation. We considered different body postures including situations where body parts form large induction loops (e.g. clasped hands) with skin-to-skin and skin-to-metal contact spots and compared the results obtained with a homogeneous single-layer skin model to results obtained with a more realistic two-layer skin representation consisting of a low-conductivity stratum corneum layer on top of a combined layer for the cellular epidermis and dermis. Our results clearly indicated that postures with loops formed of body parts may lead to substantially higher maximum values of induced in situ electric field strengths than in the case of standard postures due to a highly concentrated current density and in situ electric field strength in the skin-to-skin and skin-to-metal contact regions. With a homogeneous single-layer skin, as is used for even the most recent anatomical body models in exposure assessment, the in situ electric field strength may exceed the basic restrictions in such situations, even when the reference levels and maximum permissible exposure values are not exceeded. However, when using the more realistic two-layer skin model the obtained in situ electric field strengths were substantially lower and no violations of the basic restrictions occurred, which can be explained by the

  11. Upper bound on the magnetic field strength in the quark core of a strongly-magnetized compact star

    NASA Astrophysics Data System (ADS)

    Isayev, Alexander; Yang, Jongmann

    2014-09-01

    Two types of strongly-magnetized compact stars, represented by magnetized strange quark stars and magnetized hybrid stars, are considered. In each case, there exists an upper bound H max on the magnetic field strength in the interior of a compact star. For a magnetized strange quark star, H max is determined by the magnetic field at which the upper bound on the bag pressure from the absolute stability window of magnetized strange quark matter (SQM) vanishes, assuming the Massachusetts Institute of Technology bag model description of SQM. For a hybrid star, H max is represented by the critical magnetic field for the occurrence of a longitudinal (along the magnetic field) instability in the quark core, at which the longitudinal pressure in magnetized SQM vanishes.

  12. Automated ac galvanomagnetic measurement system

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Espy, P. N.

    1985-01-01

    An automated, ac galvanomagnetic measurement system is described. Hall or van der Pauw measurements in the temperature range 10-300 K can be made at a preselected magnetic field without operator attendance. Procedures to validate sample installation and correct operation of other system functions, such as magnetic field and thermometry, are included. Advantages of ac measurements are discussed.

  13. Manipulating single annealed polyelectrolyte under alternating current electric fields: Collapse versus accumulation

    PubMed Central

    Wang, Shengqin; Zhu, Yingxi

    2012-01-01

    Effective manipulation and understanding of the structural and dynamic behaviors of a single polyelectrolyte (PE) under alternating current (AC) electric fields are of great scientific and technological importance because of its intimate relevance to emerging bionanotechnology. In this work, we employ fluorescence correlation spectroscopy (FCS) to study the conformational and AC-electrokinetic behaviors of a model annealed PE, poly(2-vinyl pyridine) (P2VP) under both spatially uniform and non-uniform AC fields at a single molecule level. Under spatially uniform AC-fields, we observe a gradual and continuous coil-to-globule conformational transition (CGT) of single P2VP at varied AC-frequency when a critical AC-field strength is exceeded, in contrast to the pH-induced abrupt CGT in the absence of AC-fields. On the contrary, under spatially non-uniform AC-fields, we observe field-driven net flow and accumulation of P2VP near high AC-field regions due to combined AC electro-osmosis and dielectrophoresis but surprisingly no conformational change. Thus, distinct AC-electric polarization effect on single annealed PE subject to AC-field homogeneity is suggested. PMID:22655024

  14. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  15. Role of Magnetic Field Strength and Numerical Resolution in Simulations of the Heat-flux Driven Buoyancy Instability

    NASA Astrophysics Data System (ADS)

    Avara, Mark J.; Reynolds, C. S.; Bogdanovic, T.

    2013-04-01

    The role played by magnetic fields in the intracluster medium (ICM) of galaxy clusters is complex. The weakly collisional nature of the ICM leads to thermal conduction that is channeled along field lines. This anisotropic heat conduction profoundly changes the stability of the ICM atmosphere, with convective stabilities being driven by temperature gradients of either sign. We employ the Athena magnetohydrodynamic code to investigate the local non-linear behavior of the heat-flux driven buoyancy instability (HBI), relevant in the cores of cooling-core clusters where the temperature increases with radius. We study a grid of 2-d simulations that span a large range of initial magnetic field strengths and numerical resolutions. For very weak initial fields, we recover the previously known result that the HBI wraps the field in the horizontal direction thereby shutting off the heat flux. However, we find that simulations which begin with intermediate initial field strengths have a qualitatively different behavior, forming HBI-stable filaments that resist field-line wrapping and enable sustained vertical conductive heat flux at a level of 10-25% of the Spitzer value. We explain the presence and persistence of these filaments in terms of the linear stability of the HBI and the total energetics of the plasma. A complimentary 3-d simulation of high resolution confirms the presence of sustained filaments and shows they can be formed in the ideal MHD regime, even without anisotropic viscosity, previously thought to be necessary. While astrophysical conclusions regarding the role of conduction in cooling cores require detailed global models and a better understanding of conduction in the ICM, our local study proves that systems dominated by HBI do not necessarily quench the conductive heat flux.

  16. Rieger-type Periodicity during Solar Cycles 14–24: Estimation of Dynamo Magnetic Field Strength in the Solar Interior

    NASA Astrophysics Data System (ADS)

    Gurgenashvili, Eka; Zaqarashvili, Teimuraz V.; Kukhianidze, Vasil; Oliver, Ramon; Ballester, Jose Luis; Ramishvili, Giorgi; Shergelashvili, Bidzina; Hanslmeier, Arnold; Poedts, Stefaan

    2016-07-01

    Solar activity undergoes a variation over timescales of several months known as Rieger-type periodicity, which usually occurs near maxima of sunspot cycles. An early analysis showed that the periodicity appears only in some cycles and is absent in other cycles. But the appearance/absence during different cycles has not been explained. We performed a wavelet analysis of sunspot data from the Greenwich Royal Observatory and the Royal Observatory of Belgium during cycles 14–24. We found that the Rieger-type periods occur in all cycles, but they are cycle dependent: shorter periods occur during stronger cycles. Our analysis revealed a periodicity of 185–195 days during the weak cycles 14–15 and 24 and a periodicity of 155–165 days during the stronger cycles 16–23. We derived the dispersion relation of the spherical harmonics of the magnetic Rossby waves in the presence of differential rotation and a toroidal magnetic field in the dynamo layer near the base of the convection zone. This showed that the harmonics of fast Rossby waves with m = 1 and n = 4, where m (n) indicates the toroidal (poloidal) wavenumbers, perfectly fit with the observed periodicity. The variation of the toroidal field strength from weaker to stronger cycles may lead to the different periods found in those cycles, which explains the observed enigmatic feature of the Rieger-type periodicity. Finally, we used the observed periodicity to estimate the dynamo field strength during cycles 14–24. Our estimations suggest a field strength of ∼40 kG for the stronger cycles and ∼20 kG for the weaker cycles.

  17. The dependence of potential well formation on the magnetic field strength and electron injection current in a polywell device

    SciTech Connect

    Cornish, S. Gummersall, D.; Carr, M.; Khachan, J.

    2014-09-15

    A capacitive probe has been used to measure the plasma potential in a polywell device in order to observe the dependence of potential well formation on magnetic field strength, electron injection current, and polywell voltage bias. The effectiveness of the capacitive probe in a high energy electron plasma was determined by measuring the plasma potential of a planar diode with an axial magnetic field. The capacitive probe was translated along the axis of one of the field coils of the polywell, and the spatial profile of the potential well was measured. The confinement time of electrons in the polywell was estimated with a simple analytical model which used the experimentally observed potential well depths, as well as a simulation of the electron trajectories using particle orbit theory.

  18. Analytical solutions of the Schroedinger equation for a two-dimensional exciton in magnetic field of arbitrary strength

    SciTech Connect

    Hoang-Do, Ngoc-Tram; Hoang, Van-Hung; Le, Van-Hoang

    2013-05-15

    The Feranchuk-Komarov operator method is developed by combining with the Levi-Civita transformation in order to construct analytical solutions of the Schroedinger equation for a two-dimensional exciton in a uniform magnetic field of arbitrary strength. As a result, analytical expressions for the energy of the ground and excited states are obtained with a very high precision of up to four decimal places. Especially, the precision is uniformly stable for the whole range of the magnetic field. This advantage appears due to the consideration of the asymptotic behaviour of the wave-functions in strong magnetic field. The results could be used for various physical analyses and the method used here could also be applied to other atomic systems.

  19. AC evidence of a field tuned 2D superconductor-metal transition in a low-disorder InOx film

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Pan, Lidong; Wen, Jiajia; Kim, Minsoo; Ganapathy, Sambandamurthy; Armitage, Peter

    2013-03-01

    Employing microwave spectroscopy, we investigated the field tuned quantum phase transition between the superconducting and the resistive states in a low-disorder amorphous InOx film in the frequency range of 0.05 to 16 GHz. Our AC measurements are explicitly sensitive to the critical slowing down of the characteristic frequency scales approaching a transition. The relevant frequency scale of superconducting fluctuations approaches zero at a field Bsm far below the field Bcross where different isotherms of resistance as a function of magnetic field cross each other. The phase stiffness at the lowest frequency vanishes from the superconducting side at B ~Bsm , while the high frequency limit extrapolates to zero near Bcross. Our data are consistent with a scenario where Bsm is the true quantum critical point for a transition from a superconductor to an anomalous metal, while Bcross only signifies a crossover to a regime where superconducting correlations make a vanishing contribution to both AC and DC transport measurements in the low-disorder limit.

  20. Feasibility of normal tissue dose reduction in radiotherapy using low strength magnetic field

    PubMed Central

    Shin, Youngseob; Jung, In-Hye; Kwak, Jungwon

    2015-01-01

    Purpose Toxicity of mucosa is one of the major concerns of radiotherapy (RT), when a target tumor is located near a mucosal lined organ. Energy of photon RT is transferred primarily by secondary electrons. If these secondary electrons could be removed in an internal cavity of mucosal lined organ, the mucosa will be spared without compromising the target tumor dose. The purpose of this study was to present a RT dose reduction in near target inner-surface (NTIS) of internal cavity, using Lorentz force of magnetic field. Materials and Methods Tissue equivalent phantoms, composed with a cylinder shaped internal cavity, and adjacent a target tumor part, were developed. The phantoms were irradiated using 6 MV photon beam, with or without 0.3 T of perpendicular magnetic field. Two experimental models were developed: single beam model (SBM) to analyze central axis dose distributions and multiple beam model (MBM) to simulate a clinical case of prostate cancer with rectum. RT dose of NTIS of internal cavity and target tumor area (TTA) were measured. Results With magnetic field applied, bending effect of dose distribution was visualized. The depth dose distribution of SBM showed 28.1% dose reduction of NTIS and little difference in dose of TTA with magnetic field. In MBM, cross-sectional dose of NTIS was reduced by 33.1% with magnetic field, while TTA dose were the same, irrespective of magnetic field. Conclusion RT dose of mucosal lined organ, located near treatment target, could be modulated by perpendicular magnetic field. PMID:26484306

  1. Domain Motion of Ferroelectricity of Bi2SrTa2O9 Single Crystals under an AC-Voltage Electric Field

    NASA Astrophysics Data System (ADS)

    Machida, Akio; Nagasawa, Naomi; Ami, Takaaki; Suzuki, Masayuki

    1999-02-01

    A novel phenomenon, which increases the remanent polarization of Bi2SrTa2O9 single crystals, a promising candidate for ferroelectric random access memories (FeRAM), has been identified. The single crystals, grown in vapor phases using the self-flux method, have a composition characterized asBixSryTa2O9 (x=2.08±0.09, y=1.04±0.06). Incontrast to BixSryTa2O9 (x=1.91±0.05, y=1.27±0.08) single crystals grown by the self-flux method, the coercive field of the present single crystals is smaller. Observing optical anisotropy in the c-plane, we found that this material has a paraelectric phase, which might originate from the partial distortion of the crystal. After voltage was applied, the paraelectric phase disappeared and the crystal became a ferroelectric domain structure. Measuring the electrical properties in the c-plane, the remanent polarization of the Bi2SrTa2O9 single crystal was increased by applying ac-voltage. One-hour annealing over the Curie temperature also produced a paraelectric phase in the crystal but it was confirmed that this paraelectric phase can also be decreased by applying ac-voltage. Using this ac-voltage application, we can clearly observe the domain structure of BiSTa single crystal for the first time.

  2. An experimental study on the effects of temperature and magnetic field strength on the magnetorheological fluid stability and MR effect.

    PubMed

    Rabbani, Yahya; Ashtiani, Mahshid; Hashemabadi, Seyed Hassan

    2015-06-14

    In this study, the stability and rheological properties of a suspension of carbonyl iron microparticles (CIMs) in silicone oil were investigated within a temperature range of 10 to 85 °C. The effect of adding two hydrophobic (stearic and palmitic) acids on the stability and magnetorheological effect of a suspension of CIMs in silicone oil was studied. According to the results, for preparing a stable and efficient magnetorheological (MR) fluid, additives should be utilized. Therefore, 3 wt% of stearic acid was added to the MR fluid which led to an enhancement of the fluid stability over 92% at 25 °C. By investigating shear stress variation due to the changes in the shear rate for acid-based MR fluids, the maximum yield stress was obtained by fitting the Bingham plastic rheological model at high shear rates. Based on the existing correlations of yield stress and either temperature or magnetic field strength, a new model was fitted to the experimental data to monitor the simultaneous effect of magnetic field strength and temperature on the maximum yield stress. The results demonstrated that as the magnetic field intensified or the temperature decreased, the maximum yield stress increased dramatically. In addition, when the MR fluid reached its magnetic saturation, the viscosity of fluid depended only on the shear rate. PMID:25940850

  3. High-field-strength MR imaging and metallic biomedical implants: an ex vivo evaluation of deflection forces.

    PubMed

    Shellock, F G; Crues, J V

    1988-08-01

    Ferromagnetic biomedical implants are considered a contraindication for MR imaging primarily because of the potential hazards associated with their movement or dislodgment. Many metallic biomedical implants are composed of nonferromagnetic materials and do not present a danger to patients during MR imaging. Therefore, to evaluate the ferromagnetic qualities of 36 different metallic biomedical implants (four aneurysm clips, six hemostatic clips, four dental implants, seven prosthetic heart valves, eight orthopedic prostheses, one artificial urinary sphincter, three contraceptive diaphragms, and three cerebral ventricular shunt tube connectors) not previously evaluated with a high-field-strength MR system, we measured deflection forces at the portal of the magnet of a 1.5-T MR system. Fourteen of the 36 metallic biomedical implants were determined to be ferromagnetic as indicated by their deflection in the static magnetic field. However, only the four aneurysm clips (Drake, Mayfield, McFadden, and Sundt-Kees) had sufficient ferromagnetism to warrant exclusion of patients with these implants from imaging with a 1.5-T MR system because of the possibility of movement or displacement. The calculated deflection forces for these aneurysm clips were comparable with previously reported values of certain aneurysm clips that have been designated to present a risk for patients undergoing MR imaging. Patients with 32 of 36 metallic biomedical implants tested can be safely imaged with high-field-strength MR systems. PMID:3260731

  4. The electric field strength in orifice-like nanopores of ultrathin membranes.

    PubMed

    Getpreecharsawas, Jirachai; McGrath, James L; Borkholder, David A

    2015-01-30

    Here we show that the electric field inside an ultrathin membrane is weaker than conventional theory would predict, and that the reduced field is predictive of measured electroosmotic flow rates. Our theoretical analysis shows that the electric field inside a charged nanopore is affected by end effects and dependent on the Dukhin number Du when the pore length-to-diameter aspect ratio λ is less than 80 for Du ≪ 1 or 300 for Du ≫ 1. The electric field follows an unconventional scaling law; it no longer scales uniformly with the thickness of membrane, but with the local value of λ for each nanopore. PMID:25557214

  5. Can Images Obtained With High Field Strength Magnetic Resonance Imaging Reduce Contouring Variability of the Prostate?

    SciTech Connect

    Usmani, Nawaid; Sloboda, Ron; Kamal, Wafa; Ghosh, Sunita; Pervez, Nadeem; Pedersen, John; Yee, Don; Danielson, Brita; Murtha, Albert; Amanie, John; Monajemi, Tara

    2011-07-01

    Purpose: The objective of this study is to determine whether there is less contouring variability of the prostate using higher-strength magnetic resonance images (MRI) compared with standard MRI and computed tomography (CT). Methods and Materials: Forty patients treated with prostate brachytherapy were accrued to a prospective study that included the acquisition of 1.5-T MR and CT images at specified time points. A subset of 10 patients had additional 3.0-T MR images acquired at the same time as their 1.5-T MR scans. Images from each of these patients were contoured by 5 radiation oncologists, with a random subset of patients repeated to quantify intraobserver contouring variability. To minimize bias in contouring the prostate, the image sets were placed in folders in a random order with all identifiers removed from the images. Results: Although there was less interobserver contouring variability in the overall prostate volumes in 1.5-T MRI compared with 3.0-T MRI (p < 0.01), there was no significant differences in contouring variability in the different regions of the prostate between 1.5-T MRI and 3.0-T MRI. MRI demonstrated significantly less interobserver contouring variability in both 1.5-T and 3.0-T compared with CT in overall prostate volumes (p < 0.01, p = 0.01), with the greatest benefits being appreciated in the base of the prostate. Overall, there was less intraobserver contouring variability than interobserver contouring variability for all of the measurements analyzed. Conclusions: Use of 3.0-T MRI does not demonstrate a significant improvement in contouring variability compared with 1.5-T MRI, although both magnetic strengths demonstrated less contouring variability compared with CT.

  6. An estimate of the magnetic field strength associated with a solar coronal mass ejection from low frequency radio observations

    SciTech Connect

    Sasikumar Raja, K.; Ramesh, R.; Hariharan, K.; Kathiravan, C.; Wang, T. J.

    2014-11-20

    We report ground based, low frequency heliograph (80 MHz), spectral (85-35 MHz), and polarimeter (80 and 40 MHz) observations of drifting, non-thermal radio continuum associated with the 'halo' coronal mass ejection that occurred in the solar atmosphere on 2013 March 15. The magnetic field strengths (B) near the radio source were estimated to be B ≈ 2.2 ± 0.4 G at 80 MHz and B ≈ 1.4 ± 0.2 G at 40 MHz. The corresponding radial distances (r) are r ≈ 1.9 R {sub ☉} (80 MHz) and r ≈ 2.2 R {sub ☉} (40 MHz).

  7. WE-G-18C-05: Characterization of Cross-Vendor, Cross-Field Strength MR Image Intensity Variations

    SciTech Connect

    Paulson, E; Prah, D

    2014-06-15

    Purpose: Variations in MR image intensity and image intensity nonuniformity (IINU) can challenge the accuracy of intensity-based image segmentation and registration algorithms commonly applied in radiotherapy. The goal of this work was to characterize MR image intensity variations across scanner vendors and field strengths commonly used in radiotherapy. Methods: ACR-MRI phantom images were acquired at 1.5T and 3.0T on GE (450w and 750, 23.1), Siemens (Espree and Verio, VB17B), and Philips (Ingenia, 4.1.3) scanners using commercial spin-echo sequences with matched parameters (TE/TR: 20/500 ms, rBW: 62.5 kHz, TH/skip: 5/5mm). Two radiofrequency (RF) coil combinations were used for each scanner: body coil alone, and combined body and phased-array head coils. Vendorspecific B1- corrections (PURE/Pre-Scan Normalize/CLEAR) were applied in all head coil cases. Images were transferred offline, corrected for IINU using the MNI N3 algorithm, and normalized. Coefficients of variation (CV=σ/μ) and peak image uniformity (PIU = 1−(Smax−Smin)/(Smax+Smin)) estimates were calculated for one homogeneous phantom slice. Kruskal-Wallis and Wilcoxon matched-pairs tests compared mean MR signal intensities and differences between original and N3 image CV and PIU. Results: Wide variations in both MR image intensity and IINU were observed across scanner vendors, field strengths, and RF coil configurations. Applying the MNI N3 correction for IINU resulted in significant improvements in both CV and PIU (p=0.0115, p=0.0235). However, wide variations in overall image intensity persisted, requiring image normalization to improve consistency across vendors, field strengths, and RF coils. These results indicate that B1- correction routines alone may be insufficient in compensating for IINU and image scaling, warranting additional corrections prior to use of MR images in radiotherapy. Conclusions: MR image intensities and IINU vary as a function of scanner vendor, field strength, and RF coil

  8. Ac magnetotransport in La 0.7Sr 0.3Mn 0.95Fe 0.05O 3 at low dc magnetic fields

    NASA Astrophysics Data System (ADS)

    Barik, S. K.; Mahendiran, R.

    2011-12-01

    We report the ac electrical response of La 0.7Sr 0.3Mn 1- xFe xO 3(x=0.05) as a function of temperature, magnetic field (H) and frequency of radio frequency ( rf) current ( f=0.1-20 MHz). The ac impedance (Z) was measured while rf current directly passes through the sample as well as in a coil surrounding the sample. It is found that with increasing frequency of the rf current, Z(T) shows an abrupt increase accompanied by a peak at the ferromagnetic Curie temperature. The peak decreases in magnitude and shifts down with increasing value of H. We find a magnetoimpedance of ΔZ/Z=-21% for ΔH=500 Oe at f=1 MHz around room temperature when the rf current flows directly through the sample and ΔZ/Z=-65.9% when the rf current flows through a coil surrounding the sample. It is suggested that the magnetoimpedance observed is a consequence of suppression of transverse permeability which enhances skin depth for current flow. Our results indicate that the magnetic field control of high frequency impedance of manganites is more useful than direct current magnetoresistance for low-field applications.

  9. VLF Radio Field Strength Measurement of power line carrier system in San Diego, California

    NASA Technical Reports Server (NTRS)

    Mertel, H. K.

    1981-01-01

    The radio frequency interference (RFI) potential was evaluated for a Powerline Carriet (PLC) installed in San Diego which monitors the performance of an electrical power system. The PLC system generated 30 amperes at 5.79 kHz. The RF radiations were measured to be (typically) 120 dBuV/m at the beginning of the 12 kV powerline and 60 dBuV/m at the end of the powerline. The RF fields varied inversely as the distance squared. Measurements were also performed with a 45 kHz PLC system. The RF fields were of similar amplitude.

  10. WAVFLD: A program to compute ionospheric height gain functions and field strengths at VLF

    NASA Astrophysics Data System (ADS)

    Ferguson, J. A.; Hitney, L. R.

    1987-11-01

    Implementation of a full-wave fields program developed for calculations at ELF is described. The program incorporates modifications to the original code for use at VLF, including allowance for multiple modes. Other changes relate to improving compatibility of the basic program setup with that of other programs in the Defense Nuclear Agency repertoire.

  11. Smaller Forbush Decreases in Solar Cycle 24: Effect of the Weak CME Field Strength?

    NASA Astrophysics Data System (ADS)

    Thakur, N.

    2015-12-01

    A Forbush decrease (FD) is a sudden depression in the intensity of galactic cosmic ray (GCR) background, followed by a gradual recovery. One of the major causes of FDs is the presence of magnetic structures such as magnetic clouds (MCs) or corotating interaction regions (CIRs) that have enhanced magnetic field, which can scatter particles away reducing the observed GCR intensity. Recent work (Gopalswamy et al. 2014, GRL 41, 2673) suggests that coronal mass ejections (CMEs) are expanding anomalously in solar cycle 24 due to the reduced total pressure in the ambient medium. One of the consequences of the anomalous expansion is the reduced magnetic content of MCs, so we expect subdued FDs in cycle 24. In this paper, we present preliminary results from a survey of FDs during MC events in cycle 24 in comparison with those in cycle 23. We find that only ~17% FDs in cycle 24 had an amplitude >3%, as compared to ~31% in cycle 23. This result is consistent with the difference in the maximum magnetic field intensities (Bmax) of MCs in the two cycles: only ~ 10% of MCs in cycle 24 have Bmax>20nT, compared to 22% in cycle 23, confirming that MCs of cycle 24 have weaker magnetic field content. Therefore, we suggest that weaker magnetic field intensity in the magnetic clouds of cycle 24 has led to FDs with smaller amplitudes.

  12. On the use of antenna weight functions in field strength prediction and interference reduction

    NASA Astrophysics Data System (ADS)

    van de Griendt, M. A. J.; van Dooren, G. A. J.

    1993-10-01

    In this paper two methods for calculating the received electromagnetic field by a single-parabolic reflector antenna in the shadow region behind a finite-width screen are proposed and analysed. The first one is referred to as the far-field approach and treats the obstacle and reflector antenna diffraction separately. The antenna simply is replaced by a point source having the receiving properties of the reflector antenna considered. The second method is called the near-field approach and considers the combined effect of obstacle and antenna diffraction. It is shown that considerable differences between the results of both methods may exist, even for an obstacle-antenna separation large compared to the Rayleigh distance of the antenna, and both for a CW and broadband analysis of the communications channel. It is concluded that the near-field method gives the best results and can be applied to many practical problems such as interference reduction and searching the optimal position of VSATs in urban environments.

  13. Direct Experimental Observation of a Practical AC Zeeman Force

    NASA Astrophysics Data System (ADS)

    Fancher, Charles; Pyle, Andrew; Rotunno, Andrew; Du, Shuangli; Aubin, Seth

    2016-05-01

    We present measurements of the spin-dependent AC Zeeman force produced by microwave magnetic near-field gradients on an atom chip. We measure the AC Zeeman force on ultracold 87 Rb atoms by observing its effect on the motion of atoms in free-fall and on those confined in a trap. We have studied the force as a function of microwave frequency detuning from a hyperfine transition at 6.8 GHz at several magnetic field strengths and have observed its characteristic bipolar and resonant features predicted by two-level dressed atom theory. We find that the force is several times the strength of gravity in our setup, and that it can be targeted to a specific hyperfine transition while leaving other hyperfine states and transitions relatively unaffected. We find that our measurements are reasonably consistent with theory and are working towards a parameter-free comparison. AC Zeeman potentials offer the possibility of targeting qualitatively different trapping potentials to different spin states, a capability currently absent from the toolbox of atomic quantum control techniques. In particular, an AC Zeeman potential could be used as the beamsplitter for a spin-dependent atom interferometer or for engineering a quantum gate. Work supported by AFOSR and W&M, and in part by AFRL.

  14. Electric field strength analysis of 216 and 270 kHz broadcast signals recorded during 9 years

    NASA Astrophysics Data System (ADS)

    Biagi, P. F.; Castellana, L.; Maggipinto, T.; Ermini, A.; Perna, G.; Capozzi, V.

    2006-08-01

    The electric field strength analysis of Czech Republic (CZE) (270 kHz) and Monte Carlo (MCO) (216 kHz) broadcast signals, collected with a 10 min sampling frequency by a receiver located in central Italy from 1996 to 2004, is presented. The distance from transmitter to receiver ranges from 515 km (MCO) to 818 km (CZE). The daytime data and the nighttime data were extracted and then in the daytime data the data collected in winter (21 December to 21 March) were separated from the data collected in summer (21 June to 21 September). Under the hypothesis that the simple addition of the ground wave and sky wave contributions holds, at first, the analysis was focused on the comparison between the experimental and theoretical values of these waves. The theoretical values were calculated by the ground wave (GRWAVE) algorithm and the wave hop theory, respectively. Ratios between the experimental and theoretical values ranging from a few tenths of decibels to some decibels were obtained. Then the analysis of the sunspots' influence on the sky wave propagation mode was performed, and the electric field strength of the two radio signals reveals a reduction of some decibels in sunspot maximum years with respect to the values during the sunspot minimum years. In addition, an influence of the sunspots also was recognized for the ground wave propagation mode.

  15. Imaging of relaxation times and microwave field strength in a microfabricated vapor cell

    NASA Astrophysics Data System (ADS)

    Horsley, Andrew; Du, Guan-Xiang; Pellaton, Matthieu; Affolderbach, Christoph; Mileti, Gaetano; Treutlein, Philipp

    2013-12-01

    We present a characterization technique for atomic vapor cells, combining time-domain measurements with absorption imaging to obtain spatially resolved information on decay times, atomic diffusion, and coherent dynamics. The technique is used to characterize a 5-mm-diameter, 2-mm-thick microfabricated Rb vapor cell, with N2 buffer gas, placed inside a microwave cavity. Time-domain Franzen and Ramsey measurements are used to produce high-resolution images of the population (T1) and coherence (T2) lifetimes in the cell, while Rabi measurements yield images of the σ-, π, and σ+ components of the applied microwave magnetic field. For a cell temperature of 90∘C, the T1 times across the cell center are found to be a roughly uniform 265μs, while the T2 times peak at around 350μs. We observe a “skin” of reduced T1 and T2 times around the edge of the cell due to the depolarization of Rb after collisions with the silicon cell walls. Our observations suggest that these collisions are far from being 100% depolarizing, consistent with earlier observations made with Na and glass walls. Images of the microwave magnetic field reveal regions of optimal field homogeneity, and thus coherence. Our technique is useful for vapor cell characterization in atomic clocks, atomic sensors, and quantum information experiments.

  16. Microparticles in a Collisional Rf Plasma Sheath under Hypergravity Conditions as Probes for the Electric Field Strength and the Particle Charge

    SciTech Connect

    Beckers, J.; Stoffels, W. W.; Dijk, J. van; Kroesen, G. M. W.; Ockenga, T.; Wolter, M.; Kersten, H.

    2011-03-18

    We used microparticles under hypergravity conditions, induced by a centrifuge, in order to measure nonintrusively and spatially resolved the electric field strength as well as the particle charge in the collisional rf plasma sheath. The measured electric field strengths demonstrate good agreement with the literature, while the particle charge shows decreasing values towards the electrode. We demonstrate that it is indeed possible to measure these important quantities without changing or disturbing the plasma.

  17. Local Electric Field Strength in a Hollow Cathode Determined by Stark Splitting of the 2S Level of Hydrogen Isotopes by Optogalvanic Spectroscopy

    SciTech Connect

    Perez, C.; Rosa, M. I. de la; Gruetzmacher, K.; Fuentes, L. M.; Gonzalo, A. B.

    2008-10-22

    In this work we present Doppler-free two-photon optogalvanic spectroscopy as a tool to measure the electric field strength in the cathode fall region of a hollow cathode discharge via the Stark splitting of the 2S level of atomic deuterium. The strong electric field strength present in the hollow cathode is determined for various discharge conditions which allows studying the corresponding variations of the cathode fall, and its changes with discharge operation time.

  18. Fiber-Optic Magnetic-Field-Strength Measurement System for Lightning Detection

    NASA Technical Reports Server (NTRS)

    Gurecki, Jay; Scully, Robert; Davis, Allen; Kirkendall, Clay; Bucholtz, Frank

    2011-01-01

    A fiber-optic sensor system is designed to measure magnetic fields associated with a lightning stroke. Field vector magnitudes are detected and processed for multiple locations. Since physical limitations prevent the sensor elements from being located in close proximity to highly conductive materials such as aluminum, the copper wire sensor elements (3) are located inside a 4-cubic-in. (.66-cubic-cm) plastic housing sensor head and connected to a fiber-optic conversion module by shielded cabling, which is limited to the shortest length feasible. The signal path between the conversion module and the avionics unit which processes the signals are fiber optic, providing enhanced immunity from electromagnetic radiation incident in the vicinity of the measurements. The sensors are passive, lightweight, and much smaller than commercial B-dot sensors in the configuration which measures a three-dimensional magnetic field. The system is expandable, and provides a standard-format output signal for downstream processing. Inside of the sensor head, three small search coils, each having a few turns on a circular form, are mounted orthogonally inside the non-metallic housing. The fiber-optic conversion module comprises three interferometers, one for each search coil. Each interferometer has a high bandwidth optical phase modulator that impresses the signal received from its search coil onto its output. The output of each interferometer travels by fiber optic cable to the avionics unit, and the search coil signal is recovered by an optical phase demodulator. The output of each demodulator is fed to an analog-to-digital converter, whose sampling rate is determined by the maximum expected rate of rise and peak signal magnitude. The output of the digital processor is a faithful reproduction of the coil response to the incident magnetic field. This information is provided in a standard output format on a 50-ohm port that can be connected to any number of data collection and processing

  19. High strength kiloampere Bi2Sr2CaCu2Ox cables for high-field magnet applications

    NASA Astrophysics Data System (ADS)

    Shen, Tengming; Li, Pei; Jiang, Jianyi; Cooley, Lance; Tompkins, John; McRae, Dustin; Walsh, Robert

    2015-06-01

    Multifilamentary Ag-sheathed Bi2Sr2CaCu2Ox (Bi-2212) wire can carry sufficient critical current density Jc for the development of powerful superconducting magnets. However, the range of its applications is limited by the low mechanical strength of the Ag/Bi-2212 strand. A potential solution is to cable Ag/Bi-2212 wire with high-strength materials that are compatible with the Bi-2212 heat treatment in an oxygen atmosphere. Past attempts have not always been successful, because the high-strength materials reacted with Bi-2212 wires, significantly reducing their Jc. We examined the nature of reactions occurring when Ag/Bi-2212 wires are heat-treated in direct contact with several commonly used high-strength alloys and a new Fe-Cr-Al alloy. INCONEL X750 and INCONEL 600 resulted in significant Jc loss, whereas Ni80-Cr caused little or no Jc loss; however, all of them formed chromium oxide that subsequently reacted with silver, creating cracks in the silver sheath. We found that Fe-Cr-Al did not show significant reactions with Ag/Bi-2212 strands. Scanning electron microscopy (SEM) and energy dispersive x-ray (EDS) examinations revealed that the Fe-Cr-Al alloy benefits from the formation of a uniform, crack-free, continuous alumina layer on its surface that does not react with Ag and that helps minimize the Cu loss found with INCONEL X750 and INCONEL 600. We fabricated prototype 6-around-1 cables with six Bi-2212 strands twisted and transposed around an Fe-Cr-Al alloy core coated with TiO2. After standard 1 bar melt processing, the cable retained 100% of the total current-carrying capability of its strands, and, after a 10 bar overpressure processing, the cable reached a total current of 1025 A at 4.2 K and 10 T. Tensile tests showed that Fe-Cr-Al becomes brittle after being cooled to 4.2 K, whereas INCONEL X750 remains ductile and retains a modulus of 183 GPa. We proposed new cable designs that take advantage of the chemical compatibility of Fe-Cr-Al and high strength of

  20. Study of the behavioral and biological effects of high-strength 60-Hz electric fields. Quarterly technical progress report number 10, 18 December 1982-18 March 1983

    SciTech Connect

    Not Available

    1983-04-20

    The objective of this contract is to use the baboon as a surrogate for the human in studies of the possible deleterious effects of exposure to high strength, 60 Hz electric fields. The specific aims of this contract are to (1) design and construct an exposure facility in which baboons can be exposed to an electric field up to 60 kV/m in intensity for experiments and (2) to develop computer models relating the fields and currents produced in both baboons and humans by exposure to high strength, 60 Hz electric fields.

  1. Microhardness, strength and strain field characterization of self-reacting friction stir and plug welds of dissimilar aluminum alloys

    NASA Astrophysics Data System (ADS)

    Horton, Karla Renee

    Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks. Friction plug welding is used to seal the exit hole that remains in a circumferential SR-FSW. This work reports on material properties and strain patterns developed in a SR-FSW with a friction plug weld. Specifically, this study examines the behavior of a SR-FSW formed between an AA2014-T6 plate on the advancing side and an AA2219-T87 plate on the retreating side and a SR-FSW (AA2014-T6 to AA2219-T87) with a 2219-T87 plug weld. This study presents the results of a characterization of the micro-hardness, joint strength, and strain field characterization of SR-FSW and FPW joints tested at room temperature and cryogenic temperatures. The initial weld microstructure analysis showed a nugget region with fine grains and a displaced weld seam from the advancing side past the thermo-mechanical affected zone (TMAZ) into the nugget region. The displaced material shared the same hardness as the parent material. Dynamic recrystallization was observed in the SR-FSW zone and the displaced weld seam region. The welds revealed a fine grain structure in the SR-FSW zone with a sharp demarcation seen on the advancing side and fairly diffuse flow observed on the retreating side. The parent material hardness is 145 HV700g with a drop in hardness starting at the HAZ to 130 HV700g. The hardness further drops in the TMAZ to118 HV700g with an increase representing a dispersed interface of AA2014-T6 material to 135 HV700g. The hardness then drops significantly within the nugget region to 85 HV700g followed by an increase through the retreating side TMAZ into the HAZ to 135 HV 700g. There was a sharp increase in the hardness value within

  2. Rotational Brownian dynamics simulations of non-interacting magnetized ellipsoidal particles in d.c. and a.c. magnetic fields

    NASA Astrophysics Data System (ADS)

    Sánchez, Jorge H.; Rinaldi, Carlos

    2009-10-01

    The rotational Brownian motion of magnetized tri-axial ellipsoidal particles (orthotropic particles) suspended in a Newtonian fluid, in the dilute suspension limit, under applied d.c. and a.c. magnetic fields was studied using rotational Brownian dynamics simulations. The algorithm describing the change in the suspension magnetization was obtained from the stochastic angular momentum equation using the fluctuation-dissipation theorem and a quaternion formulation of orientation space. Simulation results are in agreement with the Langevin function for equilibrium magnetization and with single-exponential relaxation from equilibrium at small fields using Perrin's effective relaxation time. Dynamic susceptibilities for ellipsoidal particles of different aspect ratios were obtained from the response to oscillating magnetic fields of different frequencies and described by Debye's model for the complex susceptibility using Perrin's effective relaxation time. Simulations at high equilibrium and probe fields indicate that Perrin's effective relaxation time continues to describe relaxation from equilibrium and response to oscillating fields even beyond the small field limit.

  3. Crystal Field Splitting is Limiting the Stability and Strength of Ultra-incompressible Orthorhombic Transition Metal Tetraborides

    PubMed Central

    Zhang, R. F.; Wen, X. D.; Legut, D.; Fu, Z. H.; Veprek, S.; Zurek, E.; Mao, H. K.

    2016-01-01

    The lattice stability and mechanical strengths of the supposedly superhard transition metal tetraborides (TmB4, Tm = Cr, Mn and Fe) evoked recently much attention from the scientific community due to the potential applications of these materials, as well as because of general scientific interests. In the present study, we show that the surprising stabilization of these compounds from a high symmetry to a low symmetry structure is accomplished by an in-plane rotation of the boron network, which maximizes the in-plane hybridization by crystal field splitting between d orbitals of Tm and p orbitals of B. Studies of mechanical and electronic properties of TmB4 suggest that these tetraborides cannot be intrinsically superhard. The mechanical instability is facilitated by a unique in-plane or out-of-plane weakening of the three-dimensional covalent bond network of boron along different shear deformation paths. These results shed a novel view on the origin of the stability and strength of orthorhombic TmB4, highlighting the importance of combinational analysis of a variety of parameters related to plastic deformation of the crystalline materials when attempting to design new ultra-incompressible, and potentially strong and hard solids. PMID:26976479

  4. Signal Amplification in Field Effect-Based Sandwich Enzyme-Linked Immunosensing by Tuned Buffer Concentration with Ionic Strength Adjuster.

    PubMed

    Kumar, Satyendra; Kumar, Narendra; Panda, Siddhartha

    2016-04-01

    Miniaturization of the sandwich enzyme-based immunosensor has several advantages but could result in lower signal strength due to lower enzyme loading. Hence, technologies for amplification of the signal are needed. Signal amplification in a field effect-based electrochemical immunosensor utilizing chip-based ELISA is presented in this work. First, the molarities of phosphate buffer saline (PBS) and concentrations of KCl as ionic strength adjuster were optimized to maximize the GOx glucose-based enzymatic reactions in a beaker for signal amplification measured by change in the voltage shift with an EIS device (using 20 μl of solution) and validated with a commercial pH meter (using 3 ml of solution). The PBS molarity of 100 μM with 25 mM KCl provided the maximum voltage shift. These optimized buffer conditions were further verified for GOx immobilized on silicon chips, and similar trends with decreased PBS molarity were obtained; however, the voltage shift values obtained on chip reaction were lower as compared to the reactions occurring in the beaker. The decreased voltage shift with immobilized enzyme on chip could be attributed to the increased Km (Michaelis-Menten constant) values in the immobilized GOx. Finally, a more than sixfold signal enhancement (from 8 to 47 mV) for the chip-based sandwich immunoassay was obtained by altering the PBS molarity from 10 to 100 μM with 25 mM KCl. PMID:26801818

  5. Crystal Field Splitting is Limiting the Stability and Strength of Ultra-incompressible Orthorhombic Transition Metal Tetraborides

    NASA Astrophysics Data System (ADS)

    Zhang, R. F.; Wen, X. D.; Legut, D.; Fu, Z. H.; Veprek, S.; Zurek, E.; Mao, H. K.

    2016-03-01

    The lattice stability and mechanical strengths of the supposedly superhard transition metal tetraborides (TmB4, Tm = Cr, Mn and Fe) evoked recently much attention from the scientific community due to the potential applications of these materials, as well as because of general scientific interests. In the present study, we show that the surprising stabilization of these compounds from a high symmetry to a low symmetry structure is accomplished by an in-plane rotation of the boron network, which maximizes the in-plane hybridization by crystal field splitting between d orbitals of Tm and p orbitals of B. Studies of mechanical and electronic properties of TmB4 suggest that these tetraborides cannot be intrinsically superhard. The mechanical instability is facilitated by a unique in-plane or out-of-plane weakening of the three-dimensional covalent bond network of boron along different shear deformation paths. These results shed a novel view on the origin of the stability and strength of orthorhombic TmB4, highlighting the importance of combinational analysis of a variety of parameters related to plastic deformation of the crystalline materials when attempting to design new ultra-incompressible, and potentially strong and hard solids.

  6. Crystal Field Splitting is Limiting the Stability and Strength of Ultra-incompressible Orthorhombic Transition Metal Tetraborides.

    PubMed

    Zhang, R F; Wen, X D; Legut, D; Fu, Z H; Veprek, S; Zurek, E; Mao, H K

    2016-01-01

    The lattice stability and mechanical strengths of the supposedly superhard transition metal tetraborides (TmB4, Tm = Cr, Mn and Fe) evoked recently much attention from the scientific community due to the potential applications of these materials, as well as because of general scientific interests. In the present study, we show that the surprising stabilization of these compounds from a high symmetry to a low symmetry structure is accomplished by an in-plane rotation of the boron network, which maximizes the in-plane hybridization by crystal field splitting between d orbitals of Tm and p orbitals of B. Studies of mechanical and electronic properties of TmB4 suggest that these tetraborides cannot be intrinsically superhard. The mechanical instability is facilitated by a unique in-plane or out-of-plane weakening of the three-dimensional covalent bond network of boron along different shear deformation paths. These results shed a novel view on the origin of the stability and strength of orthorhombic TmB4, highlighting the importance of combinational analysis of a variety of parameters related to plastic deformation of the crystalline materials when attempting to design new ultra-incompressible, and potentially strong and hard solids. PMID:26976479

  7. The Dependence of the Strength and Thickness of Field-Aligned Currents on Solar Wind and Ionospheric Parameters

    SciTech Connect

    Johnson, Jay R.; Wing, Simon

    2014-08-01

    Sheared plasma flows at the low-latitude boundary layer correlate well with early afternoon auroral arcs and eld-aligned currents [Sonnerup, 1980; Lundin and Evans, 1985]. We present a simple analytic model that relates solar wind and ionospheric parameters to the strength and thickness of field-aligned currents in a region of sheared velocity, such as the low latitude boundary layer. We compare the predictions of the model with DMSP observations and nd remarkably good scaling of the currents with solar wind and ionospheric parameters. The sheared boundary layer thickness is inferred to be around 3000km consistent with observational studies. The analytic model provides a simple way to organize data and to infer boundary layer structures from ionospheric data.

  8. Bi-component T2 * analysis of bound and pore bone water fractions fails at high field strengths.

    PubMed

    Seifert, Alan C; Wehrli, Suzanne L; Wehrli, Felix W

    2015-07-01

    Osteoporosis involves the degradation of the bone's trabecular architecture, cortical thinning and enlargement of cortical pores. Increased cortical porosity is a major cause of the decreased strength of osteoporotic bone. The majority of cortical pores, however, are below the resolution limit of MRI. Recent work has shown that porosity can be evaluated by MRI-based quantification of bone water. Bi-exponential T2 * fitting and adiabatic inversion preparation are the two most common methods purported to distinguish bound and pore water in order to quantify matrix density and porosity. To assess the viability of T2 * bi-component analysis as a method for the quantification of bound and pore water fractions, we applied this method to human cortical bone at 1.5, 3, 7 and 9.4 T, and validated the resulting pool fractions against micro-computed tomography-derived porosity and gravimetrically determined bone densities. We also investigated alternative methods: two-dimensional T1 -T2 * bi-component fitting by incorporation of saturation recovery, one- and two-dimensional fitting of Carr-Purcell-Meiboom-Gill (CPMG) echo amplitudes, and deuterium inversion recovery. The short-T2 * pool fraction was moderately correlated with porosity (R(2)  = 0.70) and matrix density (R(2)  = 0.63) at 1.5 T, but the strengths of these associations were found to diminish rapidly as the field strength increased, falling below R(2)  = 0.5 at 3 T. The addition of the T1 dimension to bi-component analysis only slightly improved the strengths of these correlations. T2 *-based bi-component analysis should therefore be used with caution. The performance of deuterium inversion recovery at 9.4 T was also poor (R(2)  = 0.50 vs porosity and R(2)  = 0.46 vs matrix density). The CPMG-derived short-T2 fraction at 9.4 T, however, was highly correlated with porosity (R(2)  = 0.87) and matrix density (R(2)  = 0.88), confirming the utility of this method for independent

  9. Bi-Component T2* Analysis of Bound and Pore Bone Water Fractions Fails at High Field Strengths

    PubMed Central

    Seifert, Alan C.; Wehrli, Suzanne L.; Wehrli, Felix W.

    2015-01-01

    Osteoporosis involves degradation of bone’s trabecular architecture, cortical thinning, and enlargement of cortical pores. Increased cortical porosity is a major cause of the decreased strength of osteoporotic bone. The majority of cortical pores, however, are below the resolution limit of MRI. Recent work has shown that porosity can be evaluated by MRI-based quantification of bone water. Bi-exponential T2* fitting and adiabatic inversion preparation are the two most common methods purported to distinguish bound and pore water in order to quantify matrix density and porosity. To assess the viability of T2* bi-component analysis as a method for quantifying bound and pore water fractions, we have applied this method to human cortical bone at 1.5T, 3T, 7T, and 9.4T, and validated the resulting pool fractions against μCT-derived porosity and gravimetrically-determined bone densities. We also investigated alternative methods: 2D T1–T2* bi-component fitting by incorporating saturation-recovery, 1D and 2D fitting of CPMG echo amplitudes, and deuterium inversion recovery. Short-T2* pool fraction was moderately correlated with porosity (R2 = 0.70) and matrix density (R2 = 0.63) at 1.5T, but the strengths of these associations were found to diminish rapidly as field strength increases, falling below R2 = 0.5 at 3T. Addition of the T1 dimension to bi-component analysis only slightly improved the strengths of these correlations. T2*-based bi-component analysis should therefore be used with caution. Performance of deuterium inversion-recovery at 9.4T was also poor (R2 = 0.50 versus porosity and R2 = 0.46 versus matrix density). CPMG-derived short-T2 fraction at 9.4T, however, is highly correlated with porosity (R2 = 0.87) and matrix density (R2 = 0.88), confirming the utility of this method for independent validation of bone water pools. PMID:25981785

  10. Influence of MRI field strength on clinical decision making in knee cartilage injury – A case study

    PubMed Central

    Cashman, Glenn; Attariwala, Raj

    2014-01-01

    Objective: To increase clinicians’ awareness of the differences in image resolution and potential diagnostic accuracy between small and large-field MR Scanners. To present an example of a clinical decision making challenge in how to proceed when knee MRI and clinical findings don’t agree. Clinical Features: A 38 year old female mountain biker presented with knee pain and clinical features strongly suggestive of a torn meniscus or loose bodies. An initial MRI using a small field strength (0.18T) scanner was reported as normal. Her clinical presentation was suspicious enough that a repeat MRI on a high-field (1.5T) scanner was ordered. The second MRI included high resolution 3D volumetric imaging which revealed cartilage damage and loose bodies. Intervention and Outcome: The patient was treated with arthroscopic surgery which confirmed the presence of meniscal and chondral injury and resulted in notable improvement in the patient’s symptoms. Conclusion: Clinicians should consider scanner quality and diagnostic accuracy before discounting strongly suggestive clinical history and examination findings when MRIs are reported as normal. PMID:25550664

  11. The dependence of the strength and thickness of field-aligned currents on solar wind and ionospheric parameters

    NASA Astrophysics Data System (ADS)

    Johnson, Jay R.; Wing, Simon

    2015-05-01

    Sheared plasma flows at the low-latitude boundary layer (LLBL) correlate well with early afternoon auroral arcs and upward field-aligned currents. We present a simple analytic model that relates solar wind and ionospheric parameters to the strength and thickness of field-aligned currents (Λ) in a region of sheared velocity, such as the LLBL. We compare the predictions of the model with DMSP observations and find remarkably good scaling of the upward region 1 currents with solar wind and ionospheric parameters in region located at the boundary layer or open field lines at 1100-1700 magnetic local time. We demonstrate that Λ ˜ nsw-0.5 and Λ ˜ L when Λ/L < 5 where L is the auroral electrostatic scale length. The sheared boundary layer thickness (Δm) is inferred to be around 3000 km, which appears to have weak dependence on Vsw. J∥ has dependencies on Δm, Σp, nsw, and Vsw. The analytic model provides a simple way to organize data and to infer boundary layer structures from ionospheric data.

  12. Orion’s Veil: Magnetic Field Strengths and Other Properties of a PDR in Front of the Trapezium Cluster

    NASA Astrophysics Data System (ADS)

    Troland, T. H.; Goss, W. M.; Brogan, C. L.; Crutcher, R. M.; Roberts, D. A.

    2016-07-01

    We present an analysis of physical conditions in the Orion Veil, an atomic photon-dominated region (PDR) that lies just in front (≈2 pc) of the Trapezium stars of Orion. This region offers an unusual opportunity to study the properties of PDRs, including the magnetic field. We have obtained 21 cm H i and 18 cm (1665 and 1667 MHz) OH Zeeman effect data that yield images of the line-of-sight magnetic field strength B los in atomic and molecular regions of the Veil. We find B los ≈ ‑50 to ‑75 μG in the atomic gas across much of the Veil (25″ resolution) and B los ≈ ‑350 μG at one position in the molecular gas (40″ resolution). The Veil has two principal H i velocity components. Magnetic and kinematical data suggest a close connection between these components. They may represent gas on either side of a shock wave preceding a weak-D ionization front. Magnetic fields in the Veil H i components are 3–5 times stronger than they are elsewhere in the interstellar medium where N(H) and n(H) are comparable. The H i components are magnetically subcritical (magnetically dominated), like the cold neutral medium, although they are about 1 dex denser. Comparatively strong fields in the Veil H i components may have resulted from low-turbulence conditions in the diffuse gas that gave rise to OMC-1. Strong fields may also be related to magnetostatic equilibrium that has developed in the Veil since star formation. We also consider the location of the Orion-S molecular core, proposing a location behind the main Orion H+ region.

  13. Comparison of AC losses, magnetic field/current distributions and critical currents of superconducting circular pancake coils and infinitely long stacks using coated conductors

    NASA Astrophysics Data System (ADS)

    Yuan, Weijia; Campbell, A. M.; Hong, Z.; Ainslie, M. D.; Coombs, T. A.

    2010-08-01

    A model is presented for calculating the AC losses, magnetic field/current density distribution and critical currents of a circular superconducting pancake coil. The assumption is that the magnetic flux lines will lie parallel to the wide faces of tapes in the unpenetrated area of the coil. Instead of using an infinitely long stack to approximate the circular coil, this paper gives an exact circular coil model using elliptic integrals. A new efficient numerical method is introduced to yield more accurate and fast computation. The computation results are in good agreement with the assumptions. For a small value of the coil radius, there is an asymmetry along the coil radius direction. As the coil radius increases, this asymmetry will gradually decrease, and the AC losses and penetration depth will increase, but the critical current will decrease. We find that if the internal radius is equal to the winding thickness, the infinitely long stack approximation overestimates the loss by 10% and even if the internal radius is reduced to zero, the error is still only 60%. The infinitely long stack approximation is therefore adequate for most practical purposes. In addition, the comparison result shows that the infinitely long stack approximation saves computation time significantly.

  14. Dynamic characteristics of double-barrier nanostructures with asymmetric barriers of finite height and widths in a strong ac electric field

    SciTech Connect

    Chuenkov, V. A.

    2013-12-15

    The theory of the interaction of a monoenergetic flow of injected electrons with a strong high-frequency ac electric field in resonant-tunneling diode (RTD) structures with asymmetric barriers of finite height and width is generalized. In the quasi-classical approximation, electron wavefunctions and tunneling functions in the quantum well and barriers are found. Analytical expressions for polarization currents in RTDs are derived in both the general case and in a number of limiting cases. It is shown that the polarization currents and radiation power in RTDs with asymmetric barriers strongly depend on the ratio of the probabilities of electron tunneling through the emitter and collector barriers. In the quantum mode, when δ = ε − ε{sub r} = ħω ≪ Γ (ε is the energy of electrons injected in the RTD, ħ is Planck’s constant, ω is the ac field frequency, ε{sub r} and Γ are the energy and width of the resonance level, respectively), the active polarization current in a field of E ≈ 2.8ħω/ea (e is the electron charge and a is the quantum-well width) reaches a maximum equal in magnitude to 84% of the direct resonant current, if the probability of electron tunneling through the emitter barrier is much higher than that through the collector barrier. The radiation-generation power at frequencies of ω = 10{sup 12}–10{sup 13} s{sup −1} can reach 10{sup 5}–10{sup 6} W/cm{sup 2} in this case.

  15. The influence of magnetic field strength in ionization stage on ion transport between two stages of a double stage Hall thruster

    SciTech Connect

    Yu Daren; Song Maojiang; Li Hong; Liu Hui; Han Ke

    2012-11-15

    It is futile for a double stage Hall thruster to design a special ionization stage if the ionized ions cannot enter the acceleration stage. Based on this viewpoint, the ion transport under different magnetic field strengths in the ionization stage is investigated, and the physical mechanisms affecting the ion transport are analyzed in this paper. With a combined experimental and particle-in-cell simulation study, it is found that the ion transport between two stages is chiefly affected by the potential well, the potential barrier, and the potential drop at the bottom of potential well. With the increase of magnetic field strength in the ionization stage, there is larger plasma density caused by larger potential well. Furthermore, the potential barrier near the intermediate electrode declines first and then rises up while the potential drop at the bottom of potential well rises up first and then declines as the magnetic field strength increases in the ionization stage. Consequently, both the ion current entering the acceleration stage and the total ion current ejected from the thruster rise up first and then decline as the magnetic field strength increases in the ionization stage. Therefore, there is an optimal magnetic field strength in the ionization stage to guide the ion transport between two stages.

  16. Crystal-field analysis and calculation of two-photon absorption line strengths of dicesium sodium hexachlorogadolinate(III).

    PubMed

    Duan, Chang-Kui; Tanner, Peter A

    2010-03-31

    The crystal-field energy level calculation of the 4f(7) ion Gd(3+) in the crystal Cs(2)NaGdCl(6) has fitted 45 levels with standard deviation 12 cm(-1), with the energy parameters being consistent with those from other studies. The resulting eigenvectors have been employed in the calculation of two-photon absorption (TPA) intensities of transitions from the electronic ground state (8)S(7/2) to the crystal-field levels of excited (6)P, (6)I and (6)D multiplet terms. The TPA line strengths are highly polarization dependent and exhibit striking differences for linearly polarized incident radiation compared with circularly polarized radiation. The relative intensities are compared with those available from previous experimental studies and some reassignments have been made. Good agreement of calculated and experimental TPA spectra is found, except for the intensity ratio of the transitions to (6)P(7/2) or (6)P(5/2) compared with that to (6)P(3/2), for linear and circular polarizations, where the calculation overestimates the ratio. Reasons for this disagreement are presented. PMID:21389490

  17. Modified Solenoid Coil That Efficiently Produces High Amplitude AC Magnetic Fields With Enhanced Uniformity for Biomedical Applications

    PubMed Central

    Bordelon, David E.; Goldstein, Robert C.; Nemkov, Valentin S.; Kumar, Ananda; Jackowski, John K.; DeWeese, Theodore L.; Ivkov, Robert

    2014-01-01

    In this paper, we describe a modified solenoid coil that efficiently generates high amplitude alternating magnetic fields (AMF) having field uniformity (≤10%) within a 125-cm3 volume of interest. Two-dimensional finite element analysis (2D-FEA) was used to design a coil generating a targeted peak AMF amplitude along the coil axis of ~100 kA/m (peak-to-peak) at a frequency of 150 kHz while maintaining field uniformity to >90% of peak for a specified volume. This field uniformity was realized by forming the turns from cylindrical sections of copper plate and by adding flux concentrating rings to both ends of the coil. Following construction, the field profile along the axes of the coil was measured. An axial peak field value of 95.8 ± 0.4 kA/m was measured with 650 V applied to the coil and was consistent with the calculated results. The region of axial field uniformity, defined as the distance over which field ≥90% of peak, was also consistent with the simulated results. We describe the utility of such a device for calorimetric measurement of nanoparticle heating for cancer therapy and for magnetic fluid hyperthermia in small animal models of human cancer. PMID:25392562

  18. Clinical field-strength MRI of amyloid plaques induced by low-level cholesterol feeding in rabbits.

    PubMed

    Ronald, John A; Chen, Yuanxin; Bernas, Lisa; Kitzler, Hagen H; Rogers, Kem A; Hegele, Robert A; Rutt, Brian K

    2009-05-01

    Two significant barriers have limited the development of effective treatment of Alzheimer's disease. First, for many cases the aetiology is unknown and likely multi-factorial. Among these factors, hypercholesterolemia is a known risk predictor and has been linked to the formation of beta-amyloid plaques, a pathological hallmark this disease. Second, standardized diagnostic tools are unable to definitively diagnose this disease prior to death; hence new diagnostic tools are urgently needed. Magnetic resonance imaging (MRI) using high field-strength scanners has shown promise for direct visualization of beta-amyloid plaques, allowing in vivo longitudinal tracking of disease progression in mouse models. Here, we present a new rabbit model for studying the relationship between cholesterol and Alzheimer's disease development and new tools for direct visualization of beta-amyloid plaques using clinical field-strength MRI. New Zealand white rabbits were fed either a low-level (0.125-0.25% w/w) cholesterol diet (n = 5) or normal chow (n = 4) for 27 months. High-resolution (66 x 66 x 100 microm(3); scan time = 96 min) ex vivo MRI of brains was performed using a 3-Tesla (T) MR scanner interfaced with customized gradient and radiofrequency coils. Beta-amyloid-42 immunostaining and Prussian blue iron staining were performed on brain sections and MR and histological images were manually registered. MRI revealed distinct signal voids throughout the brains of cholesterol-fed rabbits, whereas minimal voids were seen in control rabbit brains. These voids corresponded directly to small clusters of extracellular beta-amyloid-positive plaques, which were consistently identified as iron-loaded (the presumed source of MR contrast). Plaques were typically located in the hippocampus, parahippocampal gyrus, striatum, hypothalamus and thalamus. Quantitative analysis of the number of histologically positive beta-amyloid plaques (P < 0.0001) and MR-positive signal voids (P < 0.05) found in

  19. MRS thermometry calibration at 3 T: effects of protein, ionic concentration and magnetic field strength.

    PubMed

    Babourina-Brooks, Ben; Simpson, Robert; Arvanitis, Theodoros N; Machin, Graham; Peet, Andrew C; Davies, Nigel P

    2015-07-01

    MRS thermometry has been utilized to measure temperature changes in the brain, which may aid in the diagnosis of brain trauma and tumours. However, the temperature calibration of the technique has been shown to be sensitive to non-temperature-based factors, which may provide unique information on the tissue microenvironment if the mechanisms can be further understood. The focus of this study was to investigate the effects of varied protein content on the calibration of MRS thermometry at 3 T, which has not been thoroughly explored in the literature. The effects of ionic concentration and magnetic field strength were also considered. Temperature reference materials were controlled by water circulation and freezing organic fixed-point compounds (diphenyl ether and ethylene carbonate) stable to within 0.2 °C. The temperature was measured throughout the scan time with a fluoro-optic probe, with an uncertainty of 0.16 °C. The probe was calibrated at the National Physical Laboratory (NPL) with traceability to the International Temperature Scale 1990 (ITS-90). MRS thermometry measures were based on single-voxel spectroscopy chemical shift differences between water and N-acetylaspartate (NAA), Δ(H20-NAA), using a Philips Achieva 3 T scanner. Six different phantom solutions with varying protein or ionic concentration, simulating potential tissue differences, were investigated within a temperature range of 21-42 °C. Results were compared with a similar study performed at 1.5 T to observe the effect of field strengths. Temperature calibration curves were plotted to convert Δ(H20-NAA) to apparent temperature. The apparent temperature changed by -0.2 °C/% of bovine serum albumin (BSA) and a trend of 0.5 °C/50 mM ionic concentration was observed. Differences in the calibration coefficients for the 10% BSA solution were seen in this study at 3 T compared with a study at 1.5 T. MRS thermometry may be utilized to measure temperature and the tissue

  20. The use of field dependence of AC susceptibility for the interpretation of magnetic mineralogy and magnetic fabrics in the HSDP-2 basalts, Hawaii [rapid communication

    NASA Astrophysics Data System (ADS)

    Vahle, Carsten; Kontny, Agnes

    2005-09-01

    We applied the field dependence parameter χHd (%) = [( k300A/m - k30A/m) / k300A/m] × 100 given by de Wall for the subaerial and submarine basalts drilled by the 3109 m deep HSDP-2 borehole on Hawaii in order to verify the hypothesis that mainly composition controls the field dependence of AC susceptibility in titanomagnetite of natural occurrences. When we used this parameter, our data showed a significant scattering compared to data presented in earlier studies. In addition to composition, the effect of measurement temperature, grain size and anisotropy on the field dependent susceptibility were examined and found to be critical. The impact of grain size is weaker than the other effects. It cannot be totally excluded that the observed effects arise indirectly through an overlap of the other effects for the investigated basalts. The most important factor for the variation of field dependence is the degree of oxidation, causing a modification of the titanomagnetite composition or formation of titanomaghemite, and the mixing of Ti-rich with Ti-poor titanomagnetites, which strongly reduces the χHd parameter. Field dependence is not only related to titanomagnetite composition, especially for intermediate titanomagnetites with TCs between 100 and 300 °C. Temperature dependent susceptibility measurements at different field amplitudes for these intermediate types showed at constant geometry of the k( T) curve great differences in susceptibility, resulting in significant changes of the field dependence parameter over the temperature interval from - 100 to 260 °C. Therefore variations of the ambient measurement temperatures are able to influence the field dependence. The second important effect is the degree of particle shape and alignment, which controls the field dependence in different orientations especially for the intermediate titanomagnetite, which is intensively intergrown with elongated hemoilmenite grains. As a consequence, samples with higher degrees of

  1. Micromagnetic study of phase-locking in spin-transfer nano-oscillators driven by currents and ac fields

    NASA Astrophysics Data System (ADS)

    d'Aquino, M.; Serpico, C.; Bonin, R.; Bertotti, G.; Mayergoyz, I. D.

    2011-04-01

    The magnetization dynamics of a spin-transfer nano-oscillator is studied for a system subject to the combined action of dc spin-polarized electric current and microwave circularly polarized applied field. The uniform mode theory is developed for a spin-valve with an arbitrary orientation of the polarizer. The theory enables one to predict the control parameters for the synchronization between the magnetization self-oscillation and the external microwave field. Full micromagnetic simulations are performed with the predicted control parameters, and they demonstrate the hysteretic nature of the synchronization in very good agreement with the theory.

  2. SECTORS AND LARGE-SCALE MAGNETIC FIELD STRENGTH FLUCTUATIONS IN THE HELIOSHEATH NEAR 110 AU: VOYAGER 1, 2009

    SciTech Connect

    Burlaga, L. F.; Ness, N. F. E-mail: nfnudel@yahoo.co

    2010-12-10

    This paper describes observations of daily averages of the magnetic field strength B and the magnetic polarity measured by Voyager 1 (V1) in the heliosheath during 2009 between 108.5 and 112.1 AU and at heliographic latitude 34.{sup 0}4. A negative magnetic polarity sector was observed during 2009 DOY 43-255. A positive polarity sector was observed during 2009 DOY 256-365. We offer the hypothesis that the existence of the two sectors is the result of the displacement of the wavy heliospheric current sheet to the position of V1 as a result of northward flow in the heliosheath. The large size of the sectors is caused by the slow radial motion of the flow observed by V1 in the heliosheath. The distribution of B during 2009 was lognormal, in contrast to the Gaussian distributions observed by V1 in the heliosheath prior to 2009. The large-scale fluctuations of B, described by the distribution of increments of daily averages of B, have a Tsallis distribution with q = 1.6. The large-scale fluctuations of B observed by V1 during 2009 have a multifractal spectrum with the same parameters that V1 observed during 2005 close to the termination shock at 94 AU. These results suggest that the large-scale magnetic fluctuations of B are in a metastable equilibrium state in the heliosheath between 94 AU and 112.1 AU.

  3. Sectors and Large-Scale Magnetic Field Strength Fluctuations in the Heliosheath Near 110 AU: Voyager 1,2009

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Ness, N. F.

    2010-01-01

    This paper describes observations of daily averages of the magnetic field strength B and the magnetic polarity measured by Voyager 1 (V1) in the heliosheath during 2009 between 108.5 and 112.1 AU and at heliographic latitude 34. . 4. A negative magnetic polarity sector was observed during 2009 DOY 43.255. A positive polarity sector was observed during 2009 DOY 256.365. We offer the hypothesis that the existence of the two sectors is the result of the displacement of the wavy heliospheric current sheet to the position of V1 as a result of northward flow in the heliosheath. The large size of the sectors is caused by the slow radial motion of the flow observed by V1 in the heliosheath. The distribution of B during 2009 was lognormal, in contrast to the Gaussian distributions observed by V1 in the heliosheath prior to 2009. The large-scale fluctuations of B, described by the distribution of increments of daily averages of B, have a Tsallis distribution with q = 1.6. The large-scale fluctuations of B observed by V1 during 2009 have a multifractal spectrum with the same parameters that V1 observed during 2005 close to the termination shock at 94 AU. These results suggest that the large-scale magnetic fluctuations of B are in a metastable equilibrium state in the heliosheath between 94 AU and 112.1 AU.

  4. Binocular Neurons in Parastriate Cortex: Interocular ‘Matching’ of Receptive Field Properties, Eye Dominance and Strength of Silent Suppression

    PubMed Central

    Wang, Chun; Dreher, Bogdan

    2014-01-01

    Spike-responses of single binocular neurons were recorded from a distinct part of primary visual cortex, the parastriate cortex (cytoarchitectonic area 18) of anaesthetized and immobilized domestic cats. Functional identification of neurons was based on the ratios of phase-variant (F1) component to the mean firing rate (F0) of their spike-responses to optimized (orientation, direction, spatial and temporal frequencies and size) sine-wave-luminance-modulated drifting grating patches presented separately via each eye. In over 95% of neurons, the interocular differences in the phase-sensitivities (differences in F1/F0 spike-response ratios) were small (≤0.3) and in over 80% of neurons, the interocular differences in preferred orientations were ≤10°. The interocular correlations of the direction selectivity indices and optimal spatial frequencies, like those of the phase sensitivies and optimal orientations, were also strong (coefficients of correlation r ≥0.7005). By contrast, the interocular correlations of the optimal temporal frequencies, the diameters of summation areas of the excitatory responses and suppression indices were weak (coefficients of correlation r ≤0.4585). In cells with high eye dominance indices (HEDI cells), the mean magnitudes of suppressions evoked by stimulation of silent, extra-classical receptive fields via the non-dominant eyes, were significantly greater than those when the stimuli were presented via the dominant eyes. We argue that the well documented ‘eye-origin specific’ segregation of the lateral geniculate inputs underpinning distinct eye dominance columns in primary visual cortices of mammals with frontally positioned eyes (distinct eye dominance columns), combined with significant interocular differences in the strength of silent suppressive fields, putatively contribute to binocular stereoscopic vision. PMID:24927276

  5. Measurements on magnetized GdBCO pellets subjected to small transverse ac magnetic fields at very low frequency: Evidence for a slowdown of the magnetization decay

    NASA Astrophysics Data System (ADS)

    Fagnard, Jean-Francois; Kirsch, Sébastien; Morita, Mitsuru; Teshima, Hidekazu; Vanderheyden, Benoit; Vanderbemden, Philippe

    2015-05-01

    Due to their ability to trap large magnetic inductions, superconducting bulk materials can be used as powerful permanent magnets. The permanent magnetization of such materials, however, can be significantly affected by the application of several cycles of a transverse variable magnetic field. In this work, we study, at T = 77 K, the long term influence of transverse ac magnetic fields of small amplitudes (i.e. much smaller than the full penetration field) on the axial magnetization of a bulk single grain superconducting GdBCO pellet over a wide range of low frequencies (1 mHz-20 Hz). Thermocouples are placed against the pellet surface to probe possible self-heating of the material during the experiments. A high sensitivity cryogenic Hall probe is placed close to the surface to record the local magnetic induction normal to the surface. The results show first that, for a given number of applied triangular transverse cycles, higher values of dBapp/dt induce smaller magnetization decays. An important feature of practical interest is that, after a very large number of cycles which cause the loss of a substantial amount of magnetization (depending on the amplitude and the frequency of the field), the rate of the magnetization decay goes back to its initial value, corresponding to the relaxation of the superconducting currents due to flux creep only. In the amplitude and frequency range investigated, the thermocouples measurements and a 2D magneto-thermal modelling show no evidence of sufficient self-heating to affect the magnetization so that the effect of the transverse magnetic field cycles on the trapped magnetic moment is only attributed to a redistribution of superconducting currents in the volume of the sample and not to a thermal effect.

  6. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  7. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  8. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  9. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  10. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  11. Effect of electrical field strength applied by PEF processing and storage temperature on the outgrowth of yeasts and moulds naturally present in a fresh fruit smoothie.

    PubMed

    Timmermans, R A H; Nederhoff, A L; Nierop Groot, M N; van Boekel, M A J S; Mastwijk, H C

    2016-08-01

    Pulsed electrical field (PEF) technology offers an alternative to thermal pasteurisation of high-acid fruit juices, by extending the shelf life of food products, while retaining its fresh taste and nutritional value. Substantial research has been performed on the effect of electrical field strength on the inactivation kinetics of spoilage and pathogenic micro-organisms and on the outgrowth of spoilage micro-organisms during shelf life. However, studies on the effect of electrical field strength on the inactivation and outgrowth of surviving populations during shelf life are missing. In this study, we assessed the influence of electrical field strength applied by PEF processing and storage temperature on the outgrowth of surviving yeast and mould populations naturally present in fresh fruit smoothie in time. Therefore, an apple-strawberry-banana smoothie was treated in a continuous-flow PEF system (130L/h), using similar inlet and outlet conditions (preheating temperature 41°C, maximum temperature 58°C) to assure that the amount of energy across the different conditions was kept constant. Smoothies treated with variable electrical field strengths (13.5, 17.0, 20.0 and 24.0kV/cm) were compared to smoothies without treatment for outgrowth of yeasts and moulds. Outgrowth of yeasts and moulds stored at 4°C and 7°C was analysed by plating and visual observation and yeast growth was modelled using the modified logistic growth model (Zwietering model). Results showed that the intensity of the electrical field strength had an influence on the degree of inactivation of yeast cells, resulting in a faster outgrowth over time at lower electrical field strength. Outgrowth of moulds over time was not affected by the intensity of the electrical field strength used. Application of PEF introduces a trade-off between type of spoilage: in untreated smoothie yeasts lead to spoilage after 8days when stored at 4 or 7°C, whereas in PEF treated smoothie yeasts were (partly

  12. The Strength and Radial Profile of the Coronal Magnetic Field from the Standoff Distance of a Coronal Mass Ejection-Driven Shock

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat; Yashiro, Seiji

    2011-01-01

    We determine the coronal magnetic field strength in the heliocentric distance range 6-23 solar radii (Rs) by measuring the shock standoff distance and the radius of curvature of the flux rope during the 2008 March 25 coronal mass ejection imaged by white-light coronagraphs. Assuming the adiabatic index, we determine the Alfven Mach number, and hence the Alfven speed in the ambient medium using the measured shock speed. By measuring the upstream plasma density using polarization brightness images, we finally get the magnetic field strength upstream of the shock. The estimated magnetic field decreases from approximately 48 mG around 6 Rs to 8 mG at 23 Rs. The radial profile of the magnetic field can be described by a power law in agreement with other estimates at similar heliocentric distances.

  13. (19)F spin-lattice relaxation of perfluoropolyethers: Dependence on temperature and magnetic field strength (7.0-14.1T).

    PubMed

    Kadayakkara, Deepak K; Damodaran, Krishnan; Hitchens, T Kevin; Bulte, Jeff W M; Ahrens, Eric T

    2014-05-01

    Fluorine ((19)F) MRI of perfluorocarbon-labeled cells has become a powerful technique to track the migration and accumulation of cells in living organisms. It is common to label cells for (19)F MRI with nanoemulsions of perfluoropolyethers that contain a large number of chemically equivalent fluorine atoms. Understanding the mechanisms of (19)F nuclear relaxation, and in particular the spin-lattice relaxation of these molecules, is critical to improving experimental sensitivity. To date, the temperature and magnetic field strength dependence of spin-lattice relaxation rate constant (R1) for perfluoropolyethers has not been described in detail. In this study, we evaluated the R1 of linear perfluoropolyether (PFPE) and cyclic perfluoro-15-crown-5 ether (PCE) at three magnetic field strengths (7.0, 9.4, and 14.1T) and at temperatures ranging from 256-323K. Our results show that R1 of perfluoropolyethers is dominated by dipole-dipole interactions and chemical shift anisotropy. R1 increased with magnetic field strength for both PCE and PFPE. In the temperature range studied, PCE was in the fast motion regime (ωτc<1) at all field strengths, but for PFPE, R1 passed through a maximum, from which the rotational correlation time was estimated. The importance of these measurements for the rational design of new (19)F MRI agents and methods is discussed. PMID:24594752

  14. 19F Spin-lattice Relaxation of Perfluoropolyethers: Dependence on Temperature and Magnetic Field Strength (7.0-14.1T)

    PubMed Central

    Kadayakkara, Deepak K.; Damodaran, Krishnan; Hitchens, T. Kevin; Bulte, Jeff W.M.; Ahrens, Eric T.

    2014-01-01

    Fluorine (19F) MRI of perfluorocarbon labeled cells has become a powerful technique to track the migration and accumulation of cells in living organisms. It is common to label cells for 19F MRI with nanoemulsions of perfluoropolyethers that contain a large number of chemically equivalent fluorine atoms. Understanding the mechanisms of 19F nuclear relaxation, and in particular the spin-lattice relaxation of these molecules, is critical to improving experimental sensitivity. To date, the temperature and magnetic field strength dependence of spin-lattice relaxation rate constant (R1) for perfluoropolyethers has not been described in detail. In this study, we evaluated R1 of linear perfluoropolyether (PFPE) and cyclic perfluoro-15-crown-5 ether (PCE) at three magnetic field strengths (7.0, 9.4, and 14.1 T) and at temperatures ranging from 256-323K. Our results show that R1 of perfluoropolyethers is dominated by dipole-dipole interactions and chemical shift anisotropy. R1 increased with magnetic field strength for both PCE and PFPE. In the temperature range studied, PCE was in the fast motion regime (ωτc < 1) at all field strengths, but for PFPE, R1 passed through a maximum, from which the rotational correlation time was estimated. The importance of these measurements for the rational design of new 19F MRI agents and methods is discussed. PMID:24594752

  15. Using a Combination of Experimental and Computational Methods to Explore the Impact of Metal Identity and Ligand Field Strength on the Electronic Structure of Metal Ions

    ERIC Educational Resources Information Center

    Pernicone, Naomi C.; Geri, Jacob B.; York, John T.

    2011-01-01

    In this exercise, students apply a combination of techniques to investigate the impact of metal identity and ligand field strength on the spin states of three d[superscript 5] transition-metal complexes: Fe(acac)[subscript 3], K[subscript 3][Fe(CN)[subscript 6

  16. 19F spin-lattice relaxation of perfluoropolyethers: Dependence on temperature and magnetic field strength (7.0-14.1 T)

    NASA Astrophysics Data System (ADS)

    Kadayakkara, Deepak K.; Damodaran, Krishnan; Hitchens, T. Kevin; Bulte, Jeff W. M.; Ahrens, Eric T.

    2014-05-01

    Fluorine (19F) MRI of perfluorocarbon-labeled cells has become a powerful technique to track the migration and accumulation of cells in living organisms. It is common to label cells for 19F MRI with nanoemulsions of perfluoropolyethers that contain a large number of chemically equivalent fluorine atoms. Understanding the mechanisms of 19F nuclear relaxation, and in particular the spin-lattice relaxation of these molecules, is critical to improving experimental sensitivity. To date, the temperature and magnetic field strength dependence of spin-lattice relaxation rate constant (R1) for perfluoropolyethers has not been described in detail. In this study, we evaluated the R1 of linear perfluoropolyether (PFPE) and cyclic perfluoro-15-crown-5 ether (PCE) at three magnetic field strengths (7.0, 9.4, and 14.1 T) and at temperatures ranging from 256-323 K. Our results show that R1 of perfluoropolyethers is dominated by dipole-dipole interactions and chemical shift anisotropy. R1 increased with magnetic field strength for both PCE and PFPE. In the temperature range studied, PCE was in the fast motion regime (ωτc < 1) at all field strengths, but for PFPE, R1 passed through a maximum, from which the rotational correlation time was estimated. The importance of these measurements for the rational design of new 19F MRI agents and methods is discussed.

  17. Field Performance of Bt Eggplants (Solanum melongena L.) in the Philippines: Cry1Ac Expression and Control of the Eggplant Fruit and Shoot Borer (Leucinodes orbonalis Guenée).

    PubMed

    Hautea, Desiree M; Taylo, Lourdes D; Masanga, Anna Pauleen L; Sison, Maria Luz J; Narciso, Josefina O; Quilloy, Reynaldo B; Hautea, Randy A; Shotkoski, Frank A; Shelton, Anthony M

    2016-01-01

    Plants expressing Cry proteins from the bacterium, Bacillus thuringiensis (Bt), have become a major tactic for controlling insect pests in maize and cotton globally. However, there are few Bt vegetable crops. Eggplant (Solanum melongena) is a popular vegetable grown throughout Asia that is heavily treated with insecticides to control the eggplant fruit and shoot borer, Leucinodes orbonalis (EFSB). Herein we provide the first publicly available data on field performance in Asia of eggplant engineered to produce the Cry1Ac protein. Replicated field trials with five Bt eggplant open-pollinated (OP) lines from transformation event EE-1 and their non-Bt comparators were conducted over three cropping seasons in the Philippines from 2010-2012. Field trials documented levels of Cry1Ac protein expressed in plants and evaluated their efficacy against the primary target pest, EFSB. Cry1Ac concentrations ranged from 0.75-24.7 ppm dry weight with the highest in the terminal leaves (or shoots) and the lowest in the roots. Cry1Ac levels significantly increased from the vegetative to the reproductive stage. Bt eggplant lines demonstrated excellent control of EFSB. Pairwise analysis of means detected highly significant differences between Bt eggplant lines and their non-Bt comparators for all field efficacy parameters tested. Bt eggplant lines demonstrated high levels of control of EFSB shoot damage (98.6-100%) and fruit damage (98.1-99.7%) and reduced EFSB larval infestation (95.8-99.3%) under the most severe pest pressure during trial 2. Moths that emerged from larvae collected from Bt plants in the field and reared in their Bt eggplant hosts did not produce viable eggs or offspring. These results demonstrate that Bt eggplant lines containing Cry1Ac event EE-1 provide outstanding control of EFSB and can dramatically reduce the need for conventional insecticides. PMID:27322533

  18. Field Performance of Bt Eggplants (Solanum melongena L.) in the Philippines: Cry1Ac Expression and Control of the Eggplant Fruit and Shoot Borer (Leucinodes orbonalis Guenée)

    PubMed Central

    Hautea, Desiree M.; Taylo, Lourdes D.; Masanga, Anna Pauleen L.; Sison, Maria Luz J.; Narciso, Josefina O.; Quilloy, Reynaldo B.; Hautea, Randy A.; Shotkoski, Frank A.; Shelton, Anthony M.

    2016-01-01

    Plants expressing Cry proteins from the bacterium, Bacillus thuringiensis (Bt), have become a major tactic for controlling insect pests in maize and cotton globally. However, there are few Bt vegetable crops. Eggplant (Solanum melongena) is a popular vegetable grown throughout Asia that is heavily treated with insecticides to control the eggplant fruit and shoot borer, Leucinodes orbonalis (EFSB). Herein we provide the first publicly available data on field performance in Asia of eggplant engineered to produce the Cry1Ac protein. Replicated field trials with five Bt eggplant open-pollinated (OP) lines from transformation event EE-1 and their non-Bt comparators were conducted over three cropping seasons in the Philippines from 2010–2012. Field trials documented levels of Cry1Ac protein expressed in plants and evaluated their efficacy against the primary target pest, EFSB. Cry1Ac concentrations ranged from 0.75–24.7 ppm dry weight with the highest in the terminal leaves (or shoots) and the lowest in the roots. Cry1Ac levels significantly increased from the vegetative to the reproductive stage. Bt eggplant lines demonstrated excellent control of EFSB. Pairwise analysis of means detected highly significant differences between Bt eggplant lines and their non-Bt comparators for all field efficacy parameters tested. Bt eggplant lines demonstrated high levels of control of EFSB shoot damage (98.6–100%) and fruit damage (98.1–99.7%) and reduced EFSB larval infestation (95.8–99.3%) under the most severe pest pressure during trial 2. Moths that emerged from larvae collected from Bt plants in the field and reared in their Bt eggplant hosts did not produce viable eggs or offspring. These results demonstrate that Bt eggplant lines containing Cry1Ac event EE-1 provide outstanding control of EFSB and can dramatically reduce the need for conventional insecticides. PMID:27322533

  19. Comparison of Intravoxel Incoherent Motion Parameters across MR Imagers and Field Strengths: Evaluation in Upper Abdominal Organs.

    PubMed

    Barbieri, Sebastiano; Donati, Olivio F; Froehlich, Johannes M; Thoeny, Harriet C

    2016-06-01

    Purpose To determine the reproducibility of intravoxel incoherent motion (IVIM) parameters measured in upper abdominal organs with magnetic resonance (MR) imagers from different vendors and with different field strengths. Materials and Methods This prospective study was approved by the independent ethics committees of Kanton Bern and Kanton Zurich, and signed informed consent was obtained from all participants. Abdominal diffusion-weighted images in 10 healthy men (mean age, 37 years ± 8 [standard deviation]) were acquired by using 1.5- and 3.0-T MR imagers from three different vendors. Two readers independently delineated regions of interest that were used to measure IVIM parameters (diffusion coefficient [Dt], perfusion fraction [Fp], and pseudodiffusion coefficient [Dp]) in the left and right lobes of the liver, and in the pancreas, spleen, renal cortex, and renal medulla. Measurement reproducibility between readers was assessed with intraclass correlation coefficients (ICCs). Variability across MR imagers was analyzed by using between- and within-subject coefficients of variation (CVs) and analysis of variance (ANOVA). Results Between-reader reproducibility was high for Dt (ICC, 94.6%), intermediate for Fp (ICC, 81.7%), and low for Dp (ICC, 69.5%). Between- and within-subject CVs of Dt were relatively high (>20%) in the left lobe of the liver and relatively low (<10%) in the renal cortex and renal medulla. CVs generally exceeded 15% for Fp values and 20% for Dp. ANOVA indicated significant differences (P < .05) between MR imagers. Conclusion IVIM parameters in the upper abdomen may differ substantially across MR imagers. (©) RSNA, 2015 Online supplemental material is available for this article. PMID:26678455

  20. Mixed Brownian alignment and Néel rotations in superparamagnetic iron oxide nanoparticle suspensions driven by an ac field

    PubMed Central

    Shah, Saqlain A.; Reeves, Daniel B.; Ferguson, R. Matthew; Weaver, John B.

    2015-01-01

    Superparamagnetic iron oxide nanoparticles with highly nonlinear magnetic behavior are attractive for biomedical applications like magnetic particle imaging and magnetic fluid hyperthermia. Such particles display interesting magnetic properties in alternating magnetic fields and here we document experiments that show differences between the magnetization dynamics of certain particles in frozen and melted states. This effect goes beyond the small temperature difference (ΔT ~ 20 °C) and we show the dynamics to be a mixture of Brownian alignment of the particles and Néel rotation of their moments occurring in liquid particle suspensions. These phenomena can be modeled in a stochastic differential equation approach by postulating log-normal distributions and partial Brownian alignment of an effective anisotropy axis. We emphasize that precise particle-specific characterization through experiments and nonlinear simulations is necessary to predict dynamics in solution and optimize their behavior for emerging biomedical applications including magnetic particle imaging. PMID:26504371

  1. Hiding objects in AC magnetic fields of power grid frequency by two-shell ferromagnetic/superconducting cloak

    NASA Astrophysics Data System (ADS)

    Šouc, J.; Solovyov, M.; Gömöry, F.

    2016-07-01

    Performance of magnetic cloak made from commercially available materials has been tested by verifying its ability to suppress the magnetic signatures of metallic and ferromagnetic objects. The range of magnetic field amplitudes from 0.1 to 10 mT and frequencies around 50-60 Hz were used. The cloak combines the inner tube from high-temperature superconductor that should be cooled by liquid nitrogen, with the outer tube made from MnZn ferrite powder mixed in plastic matter. Superconductor is in the form of tapes wound in helical manner on a round former. Such design is promising when the objects with dimensions reaching several centimeters should be cloaked. Performance of the small model manufactured following this design was demonstrated by observing ˜20 times reduction of the magnetic signature of metallic or ferromagnetic objects.

  2. Change in the microhardness of nonmagnetic crystals after their exposure to the Earth's magnetic field and AC pump field in the EPR scheme

    NASA Astrophysics Data System (ADS)

    Alshits, V. I.; Darinskaya, E. V.; Koldaeva, M. V.; Petrzhik, E. A.

    2012-02-01

    Changes in the microhardness of ZnO, triglycine sulfate (TGS), and potassium acid phthalate (KAP) crystals after their exposure to crossed ultralow magnetic fields, i.e., the Earth's field B Earth ≈ 50 μT and the alternating-current field tilde B ≈ 3 μ T orthogonal to it, have been revealed. In ZnO crystals, the microhardness increases, whereas in TGS and KAP, it decreases. A maximum change (10-15%) is reached within 1-3 h after magnetic treatment; then, the microhardness gradually recovers to its initial value for the first day. After a sufficient pause, the effect is completely reproduced under the same conditions. The resonant frequency of the pump field tilde B corresponds to the EPR condition with a g-factor close to two. The magnetic memory exhibits a strong anisotropy: for each of the crystals, a direction is found, which, being coincident with the Earth's magnetic field vector B Earth, causes complete or partial suppression of the effect. In ZnO and TGS crystals, these are symmetry axes 6 and 2, respectively. In the KAP crystal, it is the direction in the cleavage plane orthogonal the 2 axis. Possible physical mechanisms of the observed phenomena have been discussed.

  3. Self-Rotation of Cells in an Irrotational AC E-Field in an Opto-Electrokinetics Chip

    PubMed Central

    Chau, Long-Ho; Liang, Wenfeng; Cheung, Florence Wing Ki; Liu, Wing Keung; Li, Wen Jung; Chen, Shih-Chi; Lee, Gwo-Bin

    2013-01-01

    The use of optical dielectrophoresis (ODEP) to manipulate microparticles and biological cells has become increasingly popular due to its tremendous flexibility in providing reconfigurable electrode patterns and flow channels. ODEP enables the parallel and free manipulation of small particles on a photoconductive surface on which light is projected, thus eliminating the need for complex electrode design and fabrication processes. In this paper, we demonstrate that mouse cells comprising melan-a cells, RAW 267.4 macrophage cells, peripheral white blood cells and lymphocytes, can be manipulated in an opto-electrokinetics (OEK) device with appropriate DEP parameters. Our OEK device generates a non-rotating electric field and exerts a localized DEP force on optical electrodes. Hitherto, we are the first group to report that among all the cells investigated, melan-a cells, lymphocytes and white blood cells were found to undergo self-rotation in the device in the presence of a DEP force. The rotational speed of the cells depended on the voltage and frequency applied and the cells' distance from the optical center. We discuss a possible mechanism for explaining this new observation of induced self-rotation based on the physical properties of cells. We believe that this rotation phenomenon can be used to identify cell type and to elucidate the dielectric and physical properties of cells. PMID:23320067

  4. Accuracy of Prediction Method of Cryogenic Tensile Strength for Austenitic Stainless Steels in ITER Toroidal Field Coil Structure

    NASA Astrophysics Data System (ADS)

    Sakurai, Takeru; Icuchi, Masahide; Nakahira, Masatake; Saito, Toru; Morimoto, Masaaki; Inagaki, Takashi; Hong, Yunseok; Matsui, Kunihiro; Hemmi, Tsutomu; Kajitani, Hideki; Koizumi, Norikiyo

    The Japan Atomic Energy Agency (JAEA) has developed the prediction method for yield stress and ultimate tensile strength at liquid helium temperature (4 K) using the quadratic curve as a function of the content of carbon and nitrogen. Prediction method was formulated based on the tensile strength data of materials with shape of rectangle. In this study, tensile strength of the forged materials with round bar and complex shape were obtained so as to compare with the predicted value. The accuracy of the prediction method was 10.2% of Yield Strength (YS), 2.5% of Ultimate Tensile Strength (UTS) when the prediction method was applied to round bar forged materials. By contrast, the accuracy about prediction method was 1.8% of YS, -0.8% of UTS when prediction method was applied to complex shape forged materials. It can be presumed the tendency of tensile strength other than materials with shape of rectangle. However, it was found accuracy of round bar is larger than other materials because of difference in the forging method."The views and opinions expressed herein do not necessarily reflect those of the ITER Organization"

  5. Dependences of Q-branch integrated intensity of linear-molecule pendular spectra on electric-field strength and rotational temperature and its potential applications

    PubMed Central

    Deng, Min; Wang, Hailing; Wang, Qin; Yin, Jianping

    2016-01-01

    We calculate the pendular-state spectra of cold linear molecules, and investigated the dependences of “Q-branch” integrated intensity of pendular spectra on both electric-field strength and molecular rotation-temperature. A new multi-peak structure in the “Q-branch” spectrum is appearing when the Stark interaction strength ω = μE/B equal to or larger than the critical value. Our study shows that the above results can be used not only to measure the electric-field vector and its spatial distribution in some electrostatic devices, such as the Stark decelerator, Stark velocity filter and electrostatic trap and so on, but also to survey the orientation degree of cold linear molecules in a strong electrostatic field. PMID:27231057

  6. Dependences of Q-branch integrated intensity of linear-molecule pendular spectra on electric-field strength and rotational temperature and its potential applications.

    PubMed

    Deng, Min; Wang, Hailing; Wang, Qin; Yin, Jianping

    2016-01-01

    We calculate the pendular-state spectra of cold linear molecules, and investigated the dependences of "Q-branch" integrated intensity of pendular spectra on both electric-field strength and molecular rotation-temperature. A new multi-peak structure in the "Q-branch" spectrum is appearing when the Stark interaction strength ω = μE/B equal to or larger than the critical value. Our study shows that the above results can be used not only to measure the electric-field vector and its spatial distribution in some electrostatic devices, such as the Stark decelerator, Stark velocity filter and electrostatic trap and so on, but also to survey the orientation degree of cold linear molecules in a strong electrostatic field. PMID:27231057

  7. Dependences of Q-branch integrated intensity of linear-molecule pendular spectra on electric-field strength and rotational temperature and its potential applications

    NASA Astrophysics Data System (ADS)

    Deng, Min; Wang, Hailing; Wang, Qin; Yin, Jianping

    2016-05-01

    We calculate the pendular-state spectra of cold linear molecules, and investigated the dependences of “Q-branch” integrated intensity of pendular spectra on both electric-field strength and molecular rotation-temperature. A new multi-peak structure in the “Q-branch” spectrum is appearing when the Stark interaction strength ω = μE/B equal to or larger than the critical value. Our study shows that the above results can be used not only to measure the electric-field vector and its spatial distribution in some electrostatic devices, such as the Stark decelerator, Stark velocity filter and electrostatic trap and so on, but also to survey the orientation degree of cold linear molecules in a strong electrostatic field.

  8. Electrical Characteristics, Electrode Sheath and Contamination Layer Behavior of a Meso-Scale Premixed Methane-Air Flame Under AC/DC Electric Fields

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Yan, Limin; Zhang, Hao; Li, Guoxiu

    2016-05-01

    Electrical characteristics of a nozzle-attached meso-scale premixed methane-air flame under low-frequency AC (0-4300 V, 0-500 Hz) and DC (0-3300 V) electric fields were studied. I-V curves were measured under different experimental conditions to estimate the magnitude of the total current 100-102 μA, the electron density 1015-1016 m‑3 and further the power dissipation ≤ 0.7 W in the reaction zone. At the same time, the meso-scale premixed flame conductivity 10‑4-10‑3 Ω‑1·m‑1 as a function of voltage and frequency was experimentally obtained and was believed to represent a useful order-of magnitude estimate. Moreover, the influence of the collision sheath relating to Debye length (31–98 μm) and the contamination layer of an active electrode on measurements was discussed, based on the combination of simulation and theoretical analysis. As a result, the electrode sheath dimension was evaluated to less than 0.5 mm, which indicated a complex effect of the collision sheath on the current measurements. The surface contamination effect of an active electrode was further analyzed using the SEM imaging method, which showed elements immigration during the contamination layer formation process. supported by National Natural Science Foundation of China (No. 51376021), and the Fundamental Research Fund for Major Universities (No. 2013JBM079)

  9. Attenuation of Mouse Melanoma by A/C Magnetic Field after Delivery of Bi-Magnetic Nanoparticles by Neural Progenitor Cells

    PubMed Central

    Rachakatla, Raja Shekar; Balivada, Sivasai; Seo, Gwi-Moon; Myers, Carl B; Wang, Hongwang; Samarakoon, Thilani N.; Dani, Raj; Pyle, Marla; Kroh, Franklin O.; Walker, Brandon; Leaym, Xiaoxuan; Koper, Olga B.; Chikan, Viktor; Bossmann, Stefan H.; Tamura, Masaaki; Troyer, Deryl L.

    2010-01-01

    Localized magnetic hyperthermia as a treatment modality for cancer has generated renewed interest, particularly if it can be targeted to the tumor site. We examined whether tumor-tropic neural progenitor cells (NPCs) could be utilized as cell delivery vehicles for achieving preferential accumulation of core/shell iron/iron oxide magnetic nanoparticles (MNPs) within a mouse model of melanoma. We developed aminosiloxane-porphyrin functionalized MNPs, evaluated cell viability and loading efficiency, and transplanted neural progenitor cells loaded with this cargo into mice with melanoma. NPCs were efficiently loaded with core/shell Fe/Fe3O4 MNPs with minimal cytotoxicity; the MNPs accumulated as aggregates in the cytosol. The NPCs loaded with MNPs could travel to subcutaneous melanomas, and after A/C (alternating current) magnetic field (AMF) exposure, the targeted delivery of MNPs by the cells resulted in a measurable regression of the tumors. The tumor attenuation was significant (p<0.05) a short time (24 hours) after the last of three AMF exposures. PMID:21058696

  10. Effective AC needleless and collectorless electrospinning for yarn production.

    PubMed

    Pokorny, P; Kostakova, E; Sanetrnik, F; Mikes, P; Chvojka, J; Kalous, T; Bilek, M; Pejchar, K; Valtera, J; Lukas, D

    2014-12-28

    Nanofibrous materials are essential components for a wide range of applications, particularly in the fields of medicine and material engineering. These include protective materials, sensors, cosmetics, hygiene, filtration and energy storage. The most widely used and researched technology in these fields is electrospinning. This method for producing fibers yields highly promising results thanks to its versatility and simplicity. Electrospinning is employed in multiple forms, among which needle and needleless direct current (DC) variants are the most distinctive. The former is based on the generation of just one single jet from a nozzle; hence this fabrication process is not very productive. The latter uses the destabilization of free liquid surfaces by means of an electric field, which enhances the throughput since it produces numerous jets, emitted from the surfaces of rollers, spheres, strings and spirals. However, although some progress in total producibility has been achieved, the efficiency of the DC method still remains relatively low. A further drawback of DC electrospinning is that both variants need a collector, which makes it difficult to combine DC electrospinning easily with other technologies due to the presence of the high field strength within the entire spinning zone. This paper describes our experiments with AC electrospinning. We show that alternating current (AC) electrospinning based on a needleless spinning-electrode provides a highly productive smoke-like aerogel composed of nanofibers. This aerogel rises rapidly from the electrode like a thin plume of smoke, without any need for a collector. Our work shows that AC needleless electrospinning gains its efficiency and collector-less feature thanks to the creation of a perpetually charge-changing virtual counter-electrode composed of the nanofibers emitted. High-speed camera recordings demonstrate the formation mechanism of the nanofibrous plume, which is wafted by an electric wind. This wind

  11. Reduction of bone strength

    NASA Technical Reports Server (NTRS)

    Bingham, Cindy

    1990-01-01

    Viewgraphs on reduction of bone strength are presented. WEHI 231 B growth rates, experimental chambers used to apply the electric field to the cell cultures, and a mouse suspended by rotating cuff in electromagnetic field are shown.

  12. Investigation of Spiral Bevel Gear Condition Indicator Validation via AC-29-2C Using Fielded Rotorcraft HUMS Data

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Wade, Daniel R.; Antolick, Lance J.; Thomas, Josiah

    2014-01-01

    This report presents the analysis of gear condition indicator data collected on a helicopter when damage occurred in spiral bevel gears. The purpose of the data analysis was to use existing in-service helicopter HUMS flight data from faulted spiral bevel gears as a Case Study, to better understand the differences between HUMS data response in a helicopter and a component test rig, the NASA Glenn Spiral Bevel Gear Fatigue Rig. The reason spiral bevel gear sets were chosen to demonstrate differences in response between both systems was the availability of the helicopter data and the availability of a test rig that was capable of testing spiral bevel gear sets to failure. The objective of the analysis presented in this paper was to re-process helicopter HUMS data with the same analysis techniques applied to the spiral bevel rig test data. The damage modes experienced in the field were mapped to the failure modes created in the test rig. A total of forty helicopters were evaluated. Twenty helicopters, or tails, experienced damage to the spiral bevel gears in the nose gearbox. Vibration based gear condition indicators data was available before and after replacement. The other twenty tails had no known anomalies in the nose gearbox within the time frame of the datasets. These twenty tails were considered the baseline dataset. The HUMS gear condition indicators evaluated included gear condition indicators (CI) Figure of Merit 4 (FM4), Root Mean Square (RMS) or Diagnostic Algorithm 1 (DA1) and +/- 3 Sideband Index (SI3). Three additional condition indicators, not currently calculated on-board, were calculated from the archived data. These three indicators were +/- 1 Sideband Index (SI1), the DA1 of the difference signal (DiffDA1) and the peak-to-peak of the difference signal (DP2P). Results found the CI DP2P, not currently available in the on-board HUMS, performed the best, responding to varying levels of damage on thirteen of the fourteen helicopters evaluated. Two

  13. Progressive Supranuclear Palsy: High-Field-Strength MR Microscopy in the Human Substantia Nigra and Globus Pallidus

    PubMed Central

    Foroutan, Parastou; Murray, Melissa E.; Fujioka, Shinsuke; Schweitzer, Katherine J.; Dickson, Dennis W.; Wszolek, Zbigniew K.

    2013-01-01

    Purpose: To characterize changes in the magnetic resonance (MR) relaxation properties of progressive supranuclear palsy (PSP) and tissue from neurologically normal brains by using high-resolution (21.1-T, 900-MHz) MR microscopy of postmortem human midbrain and basal ganglia. Materials and Methods: This HIPAA-compliant study was approved by the institutional review board at the Mayo Clinic and informed consent was obtained. Postmortem tissue from age-matched PSP (n = 6) and control (n = 3) brains was imaged by using three-dimensional fast low-angle shot MR imaging with isotropic resolution of 50 μm. Relaxation times and parametric relaxation maps were generated from spin-echo and gradient-recalled-echo sequences. MR findings were correlated with histologic features by evaluating the presence of iron by using Prussian blue and ferritin and microglia burden as determined by a custom-designed color deconvolution algorithm. T2 and T2*, signal intensities, percent pixels (that could not be fitted in a pixel-by-pixel regression analysis due to severe hypointensity), and histologic data (total iron, ferritin, and microglia burden) were statistically analyzed by using independent sample t tests (P < .05). Results: PSP specimens showed higher iron burden in the cerebral peduncles and substantia nigra than did controls. However, only the putamen was significantly different, and it correlated with a decrease of T2* compared with controls (−48%; P = .043). Similarly, substantia nigra showed a significant decrease of T2* signal in PSP compared with controls (−57%; P = .028). Compared with controls, cerebral peduncles showed increased T2 (38%; P = .026) and T2* (34%; P = .014), as well as higher T2 signal intensity (57%; P = .049). Ferritin immunoreactivity was the opposite from iron burden and was significantly lower compared with controls in the putamen (−74%; P = .025), red nucleus (−61%; P = .018), and entire basal ganglia section (−63%; P = .016). Conclusion: High-field-strength

  14. Pulsed electromagnetic fields partially preserve bone mass, microarchitecture, and strength by promoting bone formation in hindlimb-suspended rats.

    PubMed

    Jing, Da; Cai, Jing; Wu, Yan; Shen, Guanghao; Li, Feijiang; Xu, Qiaoling; Xie, Kangning; Tang, Chi; Liu, Juan; Guo, Wei; Wu, Xiaoming; Jiang, Maogang; Luo, Erping

    2014-10-01

    A large body of evidence indicates that pulsed electromagnetic fields (PEMF), as a safe and noninvasive method, could promote in vivo and in vitro osteogenesis. Thus far, the effects and underlying mechanisms of PEMF on disuse osteopenia and/or osteoporosis remain poorly understood. Herein, the efficiency of PEMF on osteoporotic bone microarchitecture, bone strength, and bone metabolism, together with its associated signaling pathway mechanism, was systematically investigated in hindlimb-unloaded (HU) rats. Thirty young mature (3-month-old), male Sprague-Dawley rats were equally assigned to control, HU, and HU + PEMF groups. The HU + PEMF group was subjected to daily 2-hour PEMF exposure at 15 Hz, 2.4 mT. After 4 weeks, micro-computed tomography (µCT) results showed that PEMF ameliorated the deterioration of trabecular and cortical bone microarchitecture. Three-point bending test showed that PEMF mitigated HU-induced reduction in femoral mechanical properties, including maximum load, stiffness, and elastic modulus. Moreover, PEMF increased serum bone formation markers, including osteocalcin (OC) and N-terminal propeptide of type 1 procollagen (P1NP); nevertheless, PEMF exerted minor inhibitory effects on bone resorption markers, including C-terminal crosslinked telopeptides of type I collagen (CTX-I) and tartrate-resistant acid phosphatase 5b (TRAcP5b). Bone histomorphometric analysis demonstrated that PEMF increased mineral apposition rate, bone formation rate, and osteoblast numbers in cancellous bone, but PEMF caused no obvious changes on osteoclast numbers. Real-time PCR showed that PEMF promoted tibial gene expressions of Wnt1, LRP5, β-catenin, OPG, and OC, but did not alter RANKL, RANK, or Sost mRNA levels. Moreover, the inhibitory effects of PEMF on disuse-induced osteopenia were further confirmed in 8-month-old mature adult HU rats. Together, these results demonstrate that PEMF alleviated disuse-induced bone loss by promoting skeletal anabolic activities

  15. Multi-site study of diffusion metric variability: effects of site, vendor, field strength, and echo time on regions-of-interest and histogram-bin analyses

    NASA Astrophysics Data System (ADS)

    Helmer, K. G.; Chou, M.-C.; Preciado, R. I.; Gimi, B.; Rollins, N. K.; Song, A.; Turner, J.; Mori, S.

    2016-03-01

    It is now common for magnetic-resonance-imaging (MRI) based multi-site trials to include diffusion-weighted imaging (DWI) as part of the protocol. It is also common for these sites to possess MR scanners of different manufacturers, different software and hardware, and different software licenses. These differences mean that scanners may not be able to acquire data with the same number of gradient amplitude values and number of available gradient directions. Variability can also occur in achievable b-values and minimum echo times. The challenge of a multi-site study then, is to create a common protocol by understanding and then minimizing the effects of scanner variability and identifying reliable and accurate diffusion metrics. This study describes the effect of site, scanner vendor, field strength, and TE on two diffusion metrics: the first moment of the diffusion tensor field (mean diffusivity, MD), and the fractional anisotropy (FA) using two common analyses (region-of-interest and mean-bin value of whole brain histograms). The goal of the study was to identify sources of variability in diffusion-sensitized imaging and their influence on commonly reported metrics. The results demonstrate that the site, vendor, field strength, and echo time all contribute to variability in FA and MD, though to different extent. We conclude that characterization of the variability of DTI metrics due to site, vendor, field strength, and echo time is a worthwhile step in the construction of multi-center trials.

  16. Comparing Simulations of Rising Flux Tubes Through the Solar Convection Zone with Observations of Solar Active Regions: Constraining the Dynamo Field Strength

    NASA Astrophysics Data System (ADS)

    Weber, M. A.; Fan, Y.; Miesch, M. S.

    2013-10-01

    We study how active-region-scale flux tubes rise buoyantly from the base of the convection zone to near the solar surface by embedding a thin flux tube model in a rotating spherical shell of solar-like turbulent convection. These toroidal flux tubes that we simulate range in magnetic field strength from 15 kG to 100 kG at initial latitudes of 1∘ to 40∘ in both hemispheres. This article expands upon Weber, Fan, and Miesch ( Astrophys. J. 741, 11, 2011) (Article 1) with the inclusion of tubes with magnetic flux of 1020 Mx and 1021 Mx, and more simulations of the previously investigated case of 1022 Mx, sampling more convective flows than the previous article, greatly improving statistics. Observed properties of active regions are compared to properties of the simulated emerging flux tubes, including: the tilt of active regions in accordance with Joy's Law as in Article 1, and in addition the scatter of tilt angles about the Joy's Law trend, the most commonly occurring tilt angle, the rotation rate of the emerging loops with respect to the surrounding plasma, and the nature of the magnetic field at the flux tube apex. We discuss how these diagnostic properties constrain the initial field strength of the active-region flux tubes at the bottom of the solar convection zone, and suggest that flux tubes of initial magnetic field strengths of ≥ 40 kG are good candidates for the progenitors of large (1021 Mx to 1022 Mx) solar active regions, which agrees with the results from Article 1 for flux tubes of 1022 Mx. With the addition of more magnetic flux values and more simulations, we find that for all magnetic field strengths, the emerging tubes show a positive Joy's Law trend, and that this trend does not show a statistically significant dependence on the magnetic flux.

  17. Enhanced capture of magnetic microbeads using combination of reduced magnetic field strength and sequentially switched electroosmotic flow--a numerical study.

    PubMed

    Das, Debarun; Al-Rjoub, Marwan F; Banerjee, Rupak K

    2015-05-01

    Magnetophoretic immunoassay is a widely used technique in lab-on-chip systems for detection and isolation of target cells, pathogens, and biomolecules. In this method, target pathogens (antigens) bind to specific antibodies coated on magnetic microbeads (mMBs) which are then separated using an external magnetic field for further analysis. Better capture of mMB is important for improving the sensitivity and performance of magnetophoretic assay. The objective of this study was to develop a numerical model of magnetophoretic separation in electroosmotic flow (EOF) using magnetic field generated by a miniaturized magnet and to evaluate the capture efficiency (CE) of the mMBs. A finite-volume solver was used to compute the trajectory of mMBs under the coupled effects of EOF and external magnetic field. The effect of steady and time varying (switching) electric fields (150-450 V/cm) on the CE was studied under reduced magnetic field strength. During switching, the electric potential at the inlet and outlet of the microchannel was reversed or switched, causing reversal in flow direction. The CE was a function of the momentum of the mMB in EOF and the applied magnetic field strength. By switching the electric field, CE increased from 75% (for steady electric field) to 95% for lower electric fields (150-200 V/cm) and from 35% to 47.5% for higher electric fields (400-450 V/cm). The CE was lower at higher EOF electric fields because the momentum of the mMB overcame the external magnetic force. Switching allowed improved CE due to the reversal and decrease in EOF velocity and increase in mMB residence time under the reduced magnetic field strength. These improvements in CE, particularly at higher electric fields, made sequential switching of EOF an efficient separation technique of mMBs for use in high throughput magnetophoretic immunoassay devices. The reduced size of the magnet, along with the efficient mMB separation technique of switching can lead to the development

  18. Scaling submillimeter single-cycle transients toward megavolts per centimeter field strength via optical rectification in the organic crystal OH1.

    PubMed

    Ruchert, Clemens; Vicario, Carlo; Hauri, Christoph P

    2012-03-01

    We present the generation of high-power single-cycle terahertz (THz) pulses in the organic salt crystal 2-[3-(4-hydroxystyryl)-5.5-dimethylcyclohex-2-enylidene]malononitrile or OH1. Broadband THz radiation with a central frequency of 1.5 THz (λ(c)=200 μm) and high electric field strength of 440 kV/cm is produced by optical rectification driven by the signal of a powerful femtosecond optical parametric amplifier. A 1.5% pump to THz energy conversion efficiency is reported, and pulse energy stability better than 1% RMS is achieved. An approach toward the realization of higher field strength is discussed. PMID:22378431

  19. Kerr electro-optic field mapping study of the effect of charge injection on the impulse breakdown strength of transformer oil

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zahn, M.

    2013-10-01

    The smart use of charge injection to improve breakdown strength in transformer oil is demonstrated in this paper. Hypothetically, bipolar homo-charge injection with reduced electric field at both electrodes may allow higher voltage operation without insulation failure, since electrical breakdown usually initiates at the electrode-dielectric interfaces. To find experimental evidence, the applicability and limitation of the hypothesis is first analyzed. Impulse breakdown tests and Kerr electro-optic field mapping measurements are then conducted with different combinations of parallel-plate aluminum and brass electrodes stressed by millisecond duration impulse. It is found that the breakdown voltage of brass anode and aluminum cathode is ˜50% higher than that of aluminum anode and brass cathode. This can be explained by charge injection patterns from Kerr measurements under a lower voltage, where aluminum and brass electrodes inject negative and positive charges, respectively. This work provides a feasible approach to investigating the effect of electrode material on breakdown strength.

  20. SCHEME FOR INCORPORATING DC MAGNETIC FIELDS INTO EPIDEMIOLOGICAL STUDIES OF EMF EXPOSURE

    EPA Science Inventory

    Experimental data on calcium-ion release in chicken brain tissue suggest that biological effects of electric and magnetic fields (EMFs) are concentrated at certain combinations of DC magnetic field strength and "critical" AC magnetic field frequencies. e hypothesize that "active"...

  1. Stimulation of chondrogenic differentiation of adult human bone marrow-derived stromal cells by a moderate-strength static magnetic field.

    PubMed

    Amin, Harsh D; Brady, Mariea Alice; St-Pierre, Jean-Philippe; Stevens, Molly M; Overby, Darryl R; Ethier, C Ross

    2014-06-01

    Tissue-engineering strategies for the treatment of osteoarthritis would benefit from the ability to induce chondrogenesis in precursor cells. One such cell source is bone marrow-derived stromal cells (BMSCs). Here, we examined the effects of moderate-strength static magnetic fields (SMFs) on chondrogenic differentiation in human BMSCs in vitro. Cells were cultured in pellet form and exposed to several strengths of SMFs for various durations. mRNA transcript levels of the early chondrogenic transcription factor SOX9 and the late marker genes ACAN and COL2A1 were determined by reverse transcription-polymerase chain reaction, and production of the cartilage-specific macromolecules sGAG, collage type 2 (Col2), and proteoglycans was determined both biochemically and histologically. The role of the transforming growth factor (TGF)-β signaling pathway was also examined. Results showed that a 0.4 T magnetic field applied for 14 days elicited a strong chondrogenic differentiation response in cultured BMSCs, so long as TGF-β3 was also present, that is, a synergistic response of a SMF and TGF-β3 on BMSC chondrogenic differentiation was observed. Further, SMF alone caused TGF-β secretion in culture, and the effects of SMF could be abrogated by the TGF-β receptor blocker SB-431542. These data show that moderate-strength magnetic fields can induce chondrogenesis in BMSCs through a TGF-β-dependent pathway. This finding has potentially important applications in cartilage tissue-engineering strategies. PMID:24506272

  2. Efficacy of Soybean's Event DAS-81419-2 Expressing Cry1F and Cry1Ac to Manage Key Tropical Lepidopteran Pests Under Field Conditions in Brazil.

    PubMed

    Marques, L H; Castro, B A; Rossetto, J; Silva, O A B N; Moscardini, V F; Zobiole, L H S; Santos, A C; Valverde-Garcia, P; Babcock, J M; Rule, D M; Fernandes, O A

    2016-08-01

    Bacillus thuringiensis (Bt) event DAS-81419-2 (Conkesta technology) in soybean, Glycine max (L.) Merrill, expresses Cry1F and Cry1Ac proteins to provide protection from feeding by several lepidopteran pests. A total of 27 field experiments across nine locations were conducted from 2011 to 2015 in southern and central Brazil to characterize the efficacy of DAS-81419-2 soybean infested with Anticarsia gemmatalis Hübner (Lepidoptera: Erebidae), Chrysodeixis includens (Walker) (Lepidoptera: Noctuidae), Heliothis virescens (F.) (Lepidoptera: Noctuidae), and Spodoptera cosmioides (Walker) (Lepidoptera: Noctuidae) during vegetative (V4) and reproductive (R2 and R4) crop developmental stages. The efficacy of DAS-81419-2 was compared to that of a non-Bt isogenic variety managed with or without applications of commercial foliar insecticides for lepidopteran control. DAS-81419-2 soybean consistently experienced defoliation levels of 0.5% or less (compared with 20.05-56.74% in the non-Bt, nonsprayed treatment) and larval survival of < 0.1% in all four species across the vegetative and reproductive plant stages evaluated. The efficacy of DAS-81419-2 was significantly higher than commercial foliar insecticides applied to the non-Bt variety. DAS-81419-2 soybeans containing two highly effective Bt proteins are expected to be a more robust IRM tool compared to single-trait Bt technologies. The consistent efficacy of DAS-81419-2 soybeans across years, locations, and crop stages suggests that it will be a valuable product for management of hard-to-control key lepidopteran pests in South American soybean production. PMID:27401112

  3. Coronal Magnetic Field Strength from Decameter Zebra-Pattern Observations: Complementarity with Band-Splitting Measurements of an Associated Type II Burst

    NASA Astrophysics Data System (ADS)

    Stanislavsky, A. A.; Konovalenko, A. A.; Koval, A. A.; Dorovskyy, V. V.; Zarka, P.; Rucker, H. O.

    2015-01-01

    A zebra pattern and a type II burst with band splitting were analyzed to study the coronal magnetic field in the height range of 1.9 - 2 solar radii. To this aim we used an extremely sensitive telescope (the Ukrainian decameter radio telescope, UTR-2) with a low-noise, high-dynamic-range spectrometer for the observations below 32 MHz. Based on the analysis of the spectral structures, the field strength obtained is 0.43 G. The value was found by fitting two different field indicators together under the assumptions that the shock wave front was perpendicular to the radial direction, and the radio emission of the type II burst was in the fundamental frequency. The result is compared to and agrees with coronal magnetic-field models.

  4. Kinetic parameters, collision rates, energy exchanges and transport coefficients of non-thermal electrons in premixed flames at sub-breakdown electric field strengths

    NASA Astrophysics Data System (ADS)

    Bisetti, Fabrizio; El Morsli, Mbark

    2014-01-01

    The effects of an electric field on the collision rates, energy exchanges and transport properties of electrons in premixed flames are investigated via solutions to the Boltzmann kinetic equation. The case of high electric field strength, which results in high-energy, non-thermal electrons, is analysed in detail at sub-breakdown conditions. The rates of inelastic collisions and the energy exchange between electrons and neutrals in the reaction zone of the flame are characterised quantitatively. The analysis includes attachment, ionisation, impact dissociation, and vibrational and electronic excitation processes. Our results suggest that Townsend breakdown occurs for E/N = 140 Td. Vibrational excitation is the dominant process up to breakdown, despite important rates of electronic excitation of CO, CO2 and N2 as well as impact dissociation of O2 being apparent from 50 Td onwards. Ohmic heating in the reaction zone is found to be negligible (less than 2% of peak heat release rate) up to breakdown field strengths for realistic electron densities equal to 1010 cm-3. The observed trends are largely independent of equivalence ratio. In the non-thermal regime, electron transport coefficients are insensitive to mixture composition and approximately constant across the flame, but are highly dependent on the electric field strength. In the thermal limit, kinetic parameters and transport coefficients vary substantially across the flame due to the spatially inhomogeneous concentration of water vapour. A practical approach for identifying the plasma regime (thermal versus non-thermal) in studies of electric field effects on flames is proposed.

  5. Virgo cluster and field dwarf ellipticals in 3D - I. On the variety of stellar kinematic and line-strength properties

    NASA Astrophysics Data System (ADS)

    Ryś, Agnieszka; Falcón-Barroso, Jesús; van de Ven, Glenn

    2013-02-01

    We present the first large-scale stellar kinematic and line-strength maps for dwarf elliptical galaxies (nine in the Virgo cluster and three in the field environment) obtained with the SAURON (Spectrographic Areal Unit for Research on Optical Nebulae) integral-field unit. No two galaxies in our sample are alike: we see that the level of rotation is not tied to flattening (we have, e.g., round rotators and flattened non-rotators); we observe kinematic twists in one Virgo and one field object; we discover large-scale kinematically decoupled components in two field galaxies; we see varying gradients in line-strength maps, from nearly flat to strongly peaked in the centre. The great variety of morphological, kinematic and stellar population parameters seen in our data points to a formation scenario in which properties are shaped stochastically. A combined effect of ram-pressure stripping and galaxy harassment is the most probable explanation. We show the need for a comprehensive analysis of kinematic, dynamical and stellar population properties which will enable us to place dwarf ellipticals and processes that govern their evolution in the wider context of galaxy formation.

  6. How accurately can subject-specific finite element models predict strains and strength of human femora? Investigation using full-field measurements.

    PubMed

    Grassi, Lorenzo; Väänänen, Sami P; Ristinmaa, Matti; Jurvelin, Jukka S; Isaksson, Hanna

    2016-03-21

    Subject-specific finite element models have been proposed as a tool to improve fracture risk assessment in individuals. A thorough laboratory validation against experimental data is required before introducing such models in clinical practice. Results from digital image correlation can provide full-field strain distribution over the specimen surface during in vitro test, instead of at a few pre-defined locations as with strain gauges. The aim of this study was to validate finite element models of human femora against experimental data from three cadaver femora, both in terms of femoral strength and of the full-field strain distribution collected with digital image correlation. The results showed a high accuracy between predicted and measured principal strains (R(2)=0.93, RMSE=10%, 1600 validated data points per specimen). Femoral strength was predicted using a rate dependent material model with specific strain limit values for yield and failure. This provided an accurate prediction (<2% error) for two out of three specimens. In the third specimen, an accidental change in the boundary conditions occurred during the experiment, which compromised the femoral strength validation. The achieved strain accuracy was comparable to that obtained in state-of-the-art studies which validated their prediction accuracy against 10-16 strain gauge measurements. Fracture force was accurately predicted, with the predicted failure location being very close to the experimental fracture rim. Despite the low sample size and the single loading condition tested, the present combined numerical-experimental method showed that finite element models can predict femoral strength by providing a thorough description of the local bone mechanical response. PMID:26944687

  7. A Laboratory Study to Determine the Effect of Field Strength and Magnetic Susceptibility on the NMR Estimated Water Content in Unconsolidated Sediments

    NASA Astrophysics Data System (ADS)

    Keating, K.; Grunewald, E. D.; Walsh, D. O.

    2015-12-01

    Geophysical nuclear magnetic resonance (NMR) well logging data can provide direct information about subsurface water content. While NMR water content estimates are known to be accurate in low magnetic susceptibility materials, it has often been assumed that NMR measurements cannot be used in high magnetic susceptibility materials due to internal magnetic field inhomogeneities that arise due to magnetic susceptibility contrasts in the material. In this study we compare the NMR estimated water content using laboratory measurements made at two low magnetic field strengths (with Larmor frequencies of 275 kHz and 2 MHz) on both synthetic and natural unconsolidated sediments with a range of magnetic susceptibility values. NMR measurements were collected on seven water-saturated materials with magnetic susceptibility values spanning three orders of magnitude (3.6x10-6 SI to 7.0 x10-3 SI). T2 relaxation time data was collected with echo times, tE, ranging from 200 to 3000 μs. The results show that for the materials with low magnetic susceptibilities (< 5x10-4 SI), the total water content was accurately estimated at both field strengths. For the materials with high magnetic susceptibilities (> 5x10-4 SI) the water content was more accurately estimated using the data collected at 275 kHz (> 80% detected at tE = 400 μs) than the data collected at 2 MHz (< 40% detected at tE = 400 μs). Furthermore, the 275 kHz data showed water content underestimation errors increased only slightly with increased tE, compared to substantial increases in errors for the 2 MHz data as tE was increased. This finding suggests that there is an advantage for collecting measurements at lower field strengths even for long tE. We explain the differences in the water content estimates at the two field strengths by considering the shape of the echoes and the coil and pulse bandwidths, and find excellent agreement with the range of collected NMR data.

  8. ACS Quicklook PDF products

    NASA Astrophysics Data System (ADS)

    Suchkov, Anatoly

    1999-12-01

    This report details the features of the ACS quicklook PDF products produced by the HST data pipeline. The requirements closely follow the design of paper products recommended by the Data Quality Committee, with appropriate changes required to fully support ACS.

  9. Multi-site study of diffusion metric variability: characterizing the effects of site, vendor, field strength, and echo time using the histogram distance

    NASA Astrophysics Data System (ADS)

    Helmer, K. G.; Chou, M.-C.; Preciado, R. I.; Gimi, B.; Rollins, N. K.; Song, A.; Turner, J.; Mori, S.

    2016-03-01

    MRI-based multi-site trials now routinely include some form of diffusion-weighted imaging (DWI) in their protocol. These studies can include data originating from scanners built by different vendors, each with their own set of unique protocol restrictions, including restrictions on the number of available gradient directions, whether an externally generated list of gradient directions can be used, and restrictions on the echo time (TE). One challenge of multi-site studies is to create a common imaging protocol that will result in a reliable and accurate set of diffusion metrics. The present study describes the effect of site, scanner vendor, field strength, and TE on two common metrics: the first moment of the diffusion tensor field (mean diffusivity, MD), and the fractional anisotropy (FA). We have shown in earlier work that ROI metrics and the mean of MD and FA histograms are not sufficiently sensitive for use in site characterization. Here we use the distance between whole brain histograms of FA and MD to investigate within- and between-site effects. We concluded that the variability of DTI metrics due to site, vendor, field strength, and echo time could influence the results in multi-center trials and that histogram distance is sensitive metrics for each of these variables.

  10. Effect of magnetic field strength on deposition rate and energy flux in a dc magnetron sputtering system

    SciTech Connect

    Ekpe, Samuel D.; Jimenez, Francisco J.; Field, David J.; Davis, Martin J.; Dew, Steven K.

    2009-11-15

    Variations in the magnetic field strongly affect the plasma parameters in a magnetron sputtering system. This in turn affects the throughput as well as the energy flux to the substrate. The variation in the magnetic field in this study, for a dc magnetron process, is achieved by shifting the magnet assembly slightly away from the target. Measurements of the plasma parameters show that while the electron density at the substrate increases with decrease in magnetic field, the electron temperature decreases. The cooling of the electron temperature is consistent with results reported elsewhere. The deposition rate per input magnetron power is found to increase slightly with the decrease in magnetic field for the process conditions considered in this study. Results suggest that the energy flux to the substrate tends to show a general decrease with the shift in the magnet assembly.

  11. The application and field experience of high strength 12% Cr centrifugally cast pipe for gas gathering system

    SciTech Connect

    Yoshitake, A.; Teraoka, M.; Torigoe, T.; Amako, S.

    1995-10-01

    Centrifugal cast method is one of the processes to provide high quality seamless pipe. The advantages of the process are (1) heavy wall pipe can be manufactured (2) relatively flexible in material selection for manufacturing pipe. For sweet corrosion environment caused by CO{sub 2} where carbon steels can not be used, centrifugally cast 12% Cr martensitic stainless steel pipes and fittings have been developed. One of the key factors of this material applied to pipeline is the weldability, especially high hardness of the welds or its heat affected zone which causes for brittle rupture as well as stress corrosion cracking of the pipeline. Cast 12% Cr pipe which has high strength with low hardness even at the weld joint has been developed. Besides of the development of straight pipe, several types of fittings have been developed. These pipes and fittings have been used for natural gas gathering lines and booster compression lines in sweet corrosion service.

  12. Superconductor coil geometry and ac losses

    NASA Technical Reports Server (NTRS)

    Pierce, T. V., Jr.; Zapata, R. N.

    1976-01-01

    An empirical relation is presented which allows simple computation of volume-averaged winding fields from central fields for coils of small rectangular cross sections. This relation suggests that, in certain applications, ac-loss minimization can be accomplished by use of low winding densities, provided that hysteresis losses are independent of winding density. The ac-loss measurements on coils wound of twisted multifilamentary composite superconductors show no significant dependence on ac losses on winding density, thus permitting the use of winding density as an independent design parameter in loss minimization.

  13. Fast quantifying collision strength index of ethylene-vinyl acetate copolymer coverings on the fields based on near infrared hyperspectral imaging techniques

    PubMed Central

    Chen, Y. M.; Lin, P.; He, Y.; He, J. Q.; Zhang, J.; Li, X. L.

    2016-01-01

    A novel strategy based on the near infrared hyperspectral imaging techniques and chemometrics were explored for fast quantifying the collision strength index of ethylene-vinyl acetate copolymer (EVAC) coverings on the fields. The reflectance spectral data of EVAC coverings was obtained by using the near infrared hyperspectral meter. The collision analysis equipment was employed to measure the collision intensity of EVAC materials. The preprocessing algorithms were firstly performed before the calibration. The algorithms of random frog and successive projection (SP) were applied to extracting the fingerprint wavebands. A correlation model between the significant spectral curves which reflected the cross-linking attributions of the inner organic molecules and the degree of collision strength was set up by taking advantage of the support vector machine regression (SVMR) approach. The SP-SVMR model attained the residual predictive deviation of 3.074, the square of percentage of correlation coefficient of 93.48% and 93.05% and the root mean square error of 1.963 and 2.091 for the calibration and validation sets, respectively, which exhibited the best forecast performance. The results indicated that the approaches of integrating the near infrared hyperspectral imaging techniques with the chemometrics could be utilized to rapidly determine the degree of collision strength of EVAC. PMID:26875544

  14. Fast quantifying collision strength index of ethylene-vinyl acetate copolymer coverings on the fields based on near infrared hyperspectral imaging techniques

    NASA Astrophysics Data System (ADS)

    Chen, Y. M.; Lin, P.; He, Y.; He, J. Q.; Zhang, J.; Li, X. L.

    2016-02-01

    A novel strategy based on the near infrared hyperspectral imaging techniques and chemometrics were explored for fast quantifying the collision strength index of ethylene-vinyl acetate copolymer (EVAC) coverings on the fields. The reflectance spectral data of EVAC coverings was obtained by using the near infrared hyperspectral meter. The collision analysis equipment was employed to measure the collision intensity of EVAC materials. The preprocessing algorithms were firstly performed before the calibration. The algorithms of random frog and successive projection (SP) were applied to extracting the fingerprint wavebands. A correlation model between the significant spectral curves which reflected the cross-linking attributions of the inner organic molecules and the degree of collision strength was set up by taking advantage of the support vector machine regression (SVMR) approach. The SP-SVMR model attained the residual predictive deviation of 3.074, the square of percentage of correlation coefficient of 93.48% and 93.05% and the root mean square error of 1.963 and 2.091 for the calibration and validation sets, respectively, which exhibited the best forecast performance. The results indicated that the approaches of integrating the near infrared hyperspectral imaging techniques with the chemometrics could be utilized to rapidly determine the degree of collision strength of EVAC.

  15. Fast quantifying collision strength index of ethylene-vinyl acetate copolymer coverings on the fields based on near infrared hyperspectral imaging techniques.

    PubMed

    Chen, Y M; Lin, P; He, Y; He, J Q; Zhang, J; Li, X L

    2016-01-01

    A novel strategy based on the near infrared hyperspectral imaging techniques and chemometrics were explored for fast quantifying the collision strength index of ethylene-vinyl acetate copolymer (EVAC) coverings on the fields. The reflectance spectral data of EVAC coverings was obtained by using the near infrared hyperspectral meter. The collision analysis equipment was employed to measure the collision intensity of EVAC materials. The preprocessing algorithms were firstly performed before the calibration. The algorithms of random frog and successive projection (SP) were applied to extracting the fingerprint wavebands. A correlation model between the significant spectral curves which reflected the cross-linking attributions of the inner organic molecules and the degree of collision strength was set up by taking advantage of the support vector machine regression (SVMR) approach. The SP-SVMR model attained the residual predictive deviation of 3.074, the square of percentage of correlation coefficient of 93.48% and 93.05% and the root mean square error of 1.963 and 2.091 for the calibration and validation sets, respectively, which exhibited the best forecast performance. The results indicated that the approaches of integrating the near infrared hyperspectral imaging techniques with the chemometrics could be utilized to rapidly determine the degree of collision strength of EVAC. PMID:26875544

  16. A Robust Method to Predict the Near-Sun and Interplanetary Magnetic Field Strength of Coronal Mass Ejections: Parametric and Case Studies

    NASA Astrophysics Data System (ADS)

    Patsourakos, Spiros; Georgoulis, Manolis K.

    2016-07-01

    Predicting the near-Sun, and particularly the Interplanetary (IP), magnetic field structure of Coronal Mass Ejections (CMEs) and interplanetary counterparts (ICMEs) is a topic of intense research activity. This is because Earth-directed CMEs with strong southward magnetic fields are responsible for the most powerful geomagnetic storms. We have recently developed a simple two-tier method to predict the magnetic field strength of CMEs in the outer corona and in the IP medium, using as input the magnetic-helicity budget of the source solar active region and stereoscopic coronagraphic observations. Near-Sun CME magnetic fields are obtained by utilizing the principle of magnetic helicity conservation of flux-rope CMEs for coronagraphic observations. Interplanetary propagation of the inferred values is achieved by employing power-law prescriptions of the radial evolution of the CME-ICME magnetic fields. We hereby present a parametric study of our method, based on the observed statistics of input parameters, to infer the anticipated range of values for the near-Sun and interplanetary CME-ICME magnetic fields. This analysis is complemented by application of our method to several well-observed major CME-ICME events.

  17. Membrane tubulation from giant lipid vesicles in alternating electric fields.

    PubMed

    Antonova, K; Vitkova, V; Meyer, C

    2016-01-01

    We report on the formation of tubular membrane protrusions from giant unilamellar vesicles in alternating electric fields. The construction of the experimental chamber permitted the application of external AC fields with strength of dozens of V/mm and kHz frequency during relatively long time periods (several minutes). Besides the vesicle electrodeformation from quasispherical to prolate ellipsoidal shape, the formation of long tubular membrane protrusions with length of up to several vesicle diameters, arising from the vesicular surface in the field direction, was registered and analyzed. The threshold electric field at which the electro-induced protrusions appeared was lower than the field strengths inducing membrane electroporation. PMID:26871107

  18. Field evaluation of soybean engineered with a synthetic cry1Ac transgene for resistance to corn earworm, soybean looper, velvetbean caterpillar (Lepidoptera: Noctuidae), and lesser cornstalk borer (Lepidoptera: Pyralidae).

    PubMed

    Walker, D R; All, J N; McPherson, R M; Boerma, H R; Parrott, W A

    2000-06-01

    A transgenic line of the soybean 'Jack', Glycine max (L.) Merrill, expressing a synthetic cry1Ac gene from Bacillus thuringiensis variety kurstaki (Jack-Bt), was evaluated for resistance to four lepidopteran pests in the field. Jack-Bt and genotypes serving as susceptible and resistant controls were planted in field cages and artificially infested with larvae of corn earworm, Helicoverpa zea (Boddie), and velvetbean caterpillar, Anticarsia gemmatalis (Hübner), in 1996, 1997, and 1998, and also with soybean looper, Pseudoplusia includens (Walker), in 1996. Susceptible controls included Jack (1996-1998), 'Cobb' (1996), and Jack-HPH (1996). GatIR 81-296 was used as the resistant control in all 3 yr. Compared with untransformed Jack, Jack-Bt showed three to five times less defoliation from corn earworm and eight to nine times less damage from velvetbean caterpillar. Defoliation of GatIR 81-296 was intermediate between that of Jack and Jack-Bt for corn earworm, and similar to that of Jack for velveltbean caterpillar. Jack-Bt exhibited significant, but lower resistance to soybean looper. Jack-Bt also showed four times greater resistance than Jack to natural infestations of lesser cornstalk borer, Elasmopalpus lignosellus (Zeller), in conventional field plots at two locations in 1998. Data from these experiments suggest that expression of this cry1Ac construct in soybean should provide adequate levels of resistance to several lepidopteran pests under field conditions. PMID:10902306

  19. Cooling Floor AC Systems

    NASA Astrophysics Data System (ADS)

    Jun, Lu; Hao, Ding; Hong, Zhang; Ce, Gao Dian

    The present HVAC equipments for the residential buildings in the Hot-summer-and-Cold-winter climate region are still at a high energy consuming level. So that the high efficiency HVAC system is an urgently need for achieving the preset government energy saving goal. With its advantage of highly sanitary, highly comfortable and uniform of temperature field, the hot-water resource floor radiation heating system has been widely accepted. This paper has put forward a new way in air-conditioning, which combines the fresh-air supply unit and such floor radiation system for the dehumidification and cooling in summer or heating in winter. By analyze its advantages and limitations, we found that this so called Cooling/ Heating Floor AC System can improve the IAQ of residential building while keep high efficiency quality. We also recommend a methodology for the HVAC system designing, which will ensure the reduction of energy cost of users.

  20. The Correlation Between Electron Density and Temperature in Low and High Strength Crustal Magnetic Field Regions at Mars

    NASA Astrophysics Data System (ADS)

    Chamandy, T.; Andersson, L.; Fowler, C. M.; Ergun, R.; Connerney, J. E. P.; Brain, D. A.

    2015-12-01

    The Langmuir Probe and Waves Instrument (LPW) onboard the MAVEN spacecraft is the first Langmuir probe to map out the upper atmosphere of Mars. The instrument provides measurements (amongst other variables) of electron density (Ne) and temperature (Te). The overarching scientific goal of MAVEN is to determining how Mars lost its atmosphere and to understand the physical processes governing this escape and the above quantities play a crucial role in understanding this. Ne and Te information is critical for determining the efficiency of the different photochemical reaction rates and thereby in understanding the upper atmospheric composition. Understanding the upper atmosphere allows the MAVEN mission to calculate escape rates. Photochemical reactions and collisions dominate below the exobase region (~150-~180 km). Above the exobase, particles with energies greater than the Mars gravity well can escape. On the dayside solar EUV heats the atmosphere at lower altitudes and produces the ionosphere. It is of great interest to understand the how the electron density and temperature correlate. The presented study therefore shows the correlation between Ne and Te. This study investigates how different solar zenith angles affect these quantities and evaluates if closed magnetic field lines (as expected to occur over crustal magnetic fields) change the correlation between the two. Many previous studies have shown that crustal fields affect the plasma at high altitudes. In this study we present how the magnetic field influences the photochemical and the plasma processes close to the exobase via analyzing Ne and Te.

  1. The Effect of Shock Stress and Field Strength on Shock-Induced Depoling of Normally Poled PZT 95/5

    SciTech Connect

    CHHABILDAS,LALIT C.; FURNISH,MICHAEL D.; MONTGOMERY,STEPHEN T.; SETCHELL,ROBERT E.

    1999-09-01

    Shock-induced depoling of the ferroelectric ceramic PZT 95/5 is utilized in a number of pulsed power devices. Several experimental and theoretical efforts are in progress in order to improve numerical simulations of these devices. In this study we have examined the shock response of normally poled PZT 95/5 under uniaxial strain conditions. On each experiment the current produced in an external circuit and the transmitted waveform at a window interface were recorded. The peak electrical field generated within the PZT sample was varied through the choice of external circuit resistance. Shock pressures were varied from 0.6 to 4.6 GPa, and peak electrical fields were varied from 0.2 to 37 kV/cm. For a 2.4 GPa shock and the lowest peak field, a nearly constant current governed simply by the remanent polarization and the shock velocity was recorded. Both decreasing the shock pressure and increasing the electrical field resulted in reduced current generation, indicating a retardation of the depoling kinetics.

  2. Quantum wells on 3C-SiC/NH-SiC heterojunctions. Calculation of spontaneous polarization and electric field strength in experiments

    SciTech Connect

    Sbruev, I. S.; Sbruev, S. B.

    2010-10-15

    The results of experiments with quantum wells on 3C-SiC/4H-SiC and 3C-SiC/6H-SiC heterojunctions obtained by various methods are reconsidered. Spontaneous polarizations, field strengths, and energies of local levels in quantum wells on 3C-SiC/NH-SiC heterojunctions were calculated within a unified model. The values obtained are in agreement with the results of all considered experiments. Heterojunction types are determined. Approximations for valence band offsets on heterojunctions between silicon carbide polytypes and the expression for calculating local levels in quantum wells on the 3C-SiC/NH-SiC heterojunction are presented. The spontaneous polarizations and field strengths induced by spontaneous polarization on 3C-SiC/4H-SiC and 3C-SiC/6H-SiC heterojunctions were calculated as 0.71 and 0.47 C/m{sup 2} and 0.825 and 0.55 MV/cm, respectively.

  3. In-situ investigation of the influence of the long-term shear strength of faults on the regional stress field in a granite rock mass

    NASA Astrophysics Data System (ADS)

    Figueiredo, Bruno; Cornet, Francois; Lamas, Luís; Muralha, José

    2016-04-01

    A case study is presented to show how stress field measurements may be used to assess the long-term rheological behaviour of an equivalent geo-material. The example concerns a granitic rock mass at the km3 scale, where an underground hydropower scheme including a new 10 km long power conduit and a powerhouse complex will be constructed. For design of the underground cavern and hydraulic pressure tunnel, several in situ stress measurements were carried out, using hydraulic borehole testing, overcoring and flat jack techniques. A first continuum mechanics model, with a homogenous material, was developed to integrate the several in situ test results and to assess the regional stress field. This model is based on elasticity and relaxation of the elastic properties measured through laboratory tests conducted on cores. Results of integration show that the long-term behavior of this granite rock mass differs markedly from the short-term behaviour as defined by laboratory tests. This suggests that the in-situ stress field depends mostly on the softer material that fills up the faults and hence results from the shear stress relaxation over a large number of pre-existing fractures and faults. A second continuum mechanics model, with consideration of two fault planes located nearby the hydraulic tests, was studied. This model is based on elasticity for the overall rock mass, with the elastic properties extracted from laboratory measurements, and visco-elasticity with small long-term shear strength for the two fault planes. Results show that the overall granite rock mass may be viewed as a combination of stiff elastic blocks separated by soft low strength material, leading to a fairly large scale homogeneous axisymmetrical stress field with vertical axis. Advantages and limitations of the two modelling approaches are discussed.

  4. Amplifiable DNA from Gram-negative and Gram-positive bacteria by a low strength pulsed electric field method

    PubMed Central

    Vitzthum, Frank; Geiger, Georg; Bisswanger, Hans; Elkine, Bentsian; Brunner, Herwig; Bernhagen, Jürgen

    2000-01-01

    An efficient electric field-based procedure for cell disruption and DNA isolation is described. Isoosmotic suspensions of Gram-negative and Gram-positive bacteria were treated with pulsed electric fields of <60 V/cm. Pulses had an exponential decay waveform with a time constant of 3.4 µs. DNA yield was linearly dependent on time or pulse number, with several thousand pulses needed. Electrochemical side-effects and electrophoresis were minimal. The lysates contained non-fragmented DNA which was readily amplifiable by PCR. As the method was not limited to samples of high specific resistance, it should be applicable to physiological fluids and be useful for genomic and DNA diagnostic applications. PMID:10734214

  5. Instability of thermoremanence and the problem of estimating the ancient geomagnetic field strength from non-single-domain recorders

    PubMed Central

    Shaar, Ron; Tauxe, Lisa

    2015-01-01

    Data on the past intensity of Earth’s magnetic field (paleointensity) are essential for understanding Earth’s deep interior, climatic modeling, and geochronology applications, among other items. Here we demonstrate the possibility that much of available paleointensity data could be biased by instability of thermoremanent magnetization (TRM) associated with non-single-domain (SD) particles. Paleointensity data are derived from experiments in which an ancient TRM, acquired in an unknown field, is replaced by a laboratory-controlled TRM. This procedure is built on the assumption that the process of ancient TRM acquisition is entirely reproducible in the laboratory. Here we show experimental results violating this assumption in a manner not expected from standard theory. We show that the demagnetization−remagnetization relationship of non-SD specimens that were kept in a controlled field for only 2 y show a small but systematic bias relative to sister specimens that were given a fresh TRM. This effect, likely caused by irreversible changes in micromagnetic structures, leads to a bias in paleointensity estimates. PMID:26305946

  6. Electric field strength and focality in electroconvulsive therapy and magnetic seizure therapy: a finite element simulation study

    NASA Astrophysics Data System (ADS)

    Deng, Zhi-De; Lisanby, Sarah H.; Peterchev, Angel V.

    2011-02-01

    We present the first computational study comparing the electric field induced by various electroconvulsive therapy (ECT) and magnetic seizure therapy (MST) paradigms. Four ECT electrode configurations (bilateral, bifrontal, right unilateral, and focal electrically administered seizure therapy) and three MST coil configurations (circular, cap, and double cone) were modeled. The model incorporated a modality-specific neural activation threshold. ECT (0.3 ms pulse width) and MST induced the maximum electric field of 2.1-2.5 V cm-1 and 1.1-2.2 V cm-1 in the brain, corresponding to 6.2-7.2 times and 1.2-2.3 times the neural activation threshold, respectively. The MST electric field is more confined to the superficial cortex compared to ECT. The brain volume stimulated was much larger with ECT (up to 100%) than with MST (up to 8.2%). MST with the double-cone coil was the most focal, and bilateral ECT was the least focal. Our results suggest a possible biophysical explanation of the reduced side effects of MST compared to ECT. Our results also indicate that the conventional ECT pulse amplitude (800-900 mA) is much higher than necessary for seizure induction. Reducing the ECT pulse amplitude should be explored as a potential means of diminishing side effects.

  7. Instability of thermoremanence and the problem of estimating the ancient geomagnetic field strength from non-single-domain recorders.

    PubMed

    Shaar, Ron; Tauxe, Lisa

    2015-09-01

    Data on the past intensity of Earth's magnetic field (paleointensity) are essential for understanding Earth's deep interior, climatic modeling, and geochronology applications, among other items. Here we demonstrate the possibility that much of available paleointensity data could be biased by instability of thermoremanent magnetization (TRM) associated with non-single-domain (SD) particles. Paleointensity data are derived from experiments in which an ancient TRM, acquired in an unknown field, is replaced by a laboratory-controlled TRM. This procedure is built on the assumption that the process of ancient TRM acquisition is entirely reproducible in the laboratory. Here we show experimental results violating this assumption in a manner not expected from standard theory. We show that the demagnetization-remagnetization relationship of non-SD specimens that were kept in a controlled field for only 2 y show a small but systematic bias relative to sister specimens that were given a fresh TRM. This effect, likely caused by irreversible changes in micromagnetic structures, leads to a bias in paleointensity estimates. PMID:26305946

  8. Strength Testing.

    ERIC Educational Resources Information Center

    Londeree, Ben R.

    1981-01-01

    Postural deviations resulting from strength and flexibility imbalances include swayback, scoliosis, and rounded shoulders. Screening tests are one method for identifying strength problems. Tests for the evaluation of postural problems are described, and exercises are presented for the strengthening of muscles. (JN)

  9. Electro-optic characteristics of fringe-field-switching mode with controllable anchoring strength of liquid crystal alignment

    NASA Astrophysics Data System (ADS)

    Lin, T.-C.; Chang, K.-H.; Song, Y.; Hsieh, C.; Lo, C.-C.; Lee, C.; Lien, S.-C. Alan; Hasebe, H.; Takatsu, H.; Chien, L.-C.

    2015-11-01

    A photoalignment technique used in preparation of fringe-field-switching (FFS) mode cells is presented. The azimuthal anchoring energy (AAE) of photoalignment is controllable by tuning the UV exposure and if the value of AAE is as strong as that of the rubbing method. The electro-optical properties of FFS cells are optimized with different electrode configurations and high quality dark states of various types of cells are achieved to create the high contrast ratio. The great thermal stability shown after applying voltage and heat confirms that photoalignment is suitable for FFS mode applications.

  10. The dependence of coronal hole size on large scale magnetic field strength. [using a mathematical model of the photosphere

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Steinolfson, R. S.

    1980-01-01

    The importance of mathematical models of the coronal structure for studies of coronal energetics, to simulate global flows of the solar wind, and to obtain reliable solar terrestrial predictions is discussed. Previous coronal models, including an example of a coronal MHD flow model, are reviewed. The development of a coronal model which is a logical extension of earlier models and which allows a closer relationship to the photospheric magnetic field as it is observed daily is described. The calculations are outlined. The assumptions of the model are: axisymmetric flow with no rotation, resulting in two dimensional flow in a meridional plane; zero viscosity and infinite electrical conductivity; polytropic, single fluid flow; and no momentum addition.

  11. (Re-)Constraining the Cosmic-Ray Acceleration Efficiency and Magnetic Field Strength in the Northeast Rims of RCW 86

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroya

    2014-09-01

    Accurate determination of SNR's shock velocity and magnetic filed is essential to reveal the mechanism of cosmic-ray acceleration. A previous velocity measurement with Chandra for the SNR RCW 86 northeast rim revealed that a substantial fraction of the postshock pressure is produced by the accelerated particles. However, there are disagreement with a H-alpha-measured velocity, and large uncertainty in the X-ray measurement itself, since the observation dates of the two Chandra datasets that were used for the proper motion measurement were not well separated with each other. We thus propose an additional observation of this region to measure the expansion velocity accurately. We will also constrain the magnetic field by searching for short-time variability in the synchrotron X-ray flux.

  12. Electric Field Mediated Droplet Centering

    SciTech Connect

    Bei, Z.-M.; Jones, T.B.; Tucker-Schwartz, A.; Harding, D.R.

    2010-03-12

    Double emulsion droplets subjected to a uniform ac electric field self-assemble into highly concentric structures via the dipole/dipole force if the outer droplet has a higher dielectric constant than the suspending liquid. The dielectric constant of the inner droplet has no influence. To minimize field-induced droplet distortion, the liquids must be density matched to ~0.1%. Centering of ~3 to 6 mm diameter droplets is achieved within ~60 s for field strengths of ~10^4 V_rms /m in liquids of viscosity ~10 cP. Effective centering depends strongly on frequency if the outer shell is conductive.

  13. Characterizing the Effect of Temperature and Magnetic Field Strengths on the Complex Shear Modulus Properties of Magnetorheological (mr) Fluids

    NASA Astrophysics Data System (ADS)

    Chooi, W. W.; Oyadiji, S. O.

    When a magnetic field is applied across MR fluids, a yield stress is developed, and their rheological properties can then be categorized into two distinct regimes; pre-yield and post-yield. This paper concerns the viscoelastic behaviour of MR fluids in the pre-yield region. Oscillatory tests were carried out to determine the complex shear modulus properties of MR fluids between the temperature range of -20°C and +50°C. The test results show that the storage modulus and loss modulus increased in value as the excitation frequency was increased from 5Hz to 50Hz. The complex modulus was also found to be influenced by changes in temperature; the higher the temperature, the lower the complex modulus. This is consistent with the behaviour of viscoelastic polymers. The sets of temperature-dependent and frequency-dependent data were subsequently condensed using the method of reduced variables into master curves of complex modulus which effectively extended the frequency coverage of the data at the reference temperature.

  14. Engaging Teachers and Students in Solar Research: How do Sunspots Evolve? Studying the Morphology and Magnetic Field Strength of Sunspots Over Time

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; Pichotta, J.; Plymate, C.; Stobie, E.

    2008-05-01

    Astronomy Research Based Science Education (A-RBSE) is a multi-year teacher professional development program sponsored by NSF and administered through the National Optical Astronomy Observatory (NOAO). The program reaches the formal education community through a national audience of well-trained high-school teachers. Every year, a new cohort of teachers prepare for research through an on-line course in the spring. In the summer they conduct astronomy research at NOAO, working with astronomer-mentors to gather and analyze their data. They then return to their classrooms and engage their students in inquiry-based astronomy research using this authentic data. Solar is one of five research areas in the A-RBSE program. Maps of magnetic field strength around active regions are taken with the National Solar Observatory (NSO) McMath-Pierce telescope using 1.565 um, g=3 (Zeeman split) Fe I spectral lines. The field strengths are then compared with the sunspots' sizes over time. The NSO IR Array Camera and Infrared Adaptive Optics are used with the telescope's Main Spectrograph. Data have been taken about twice yearly since 2003. A-RBSE teachers travel to the telescope and participate in the data collection as part of the summer research course. At other times of the year, veteran A-RBSE teachers plus a couple of their students can propose for more telescope time for data collection. Once in the classroom, after analyzing the data, students have often compared the magnetograms, Dopplergrams and intensitygrams to glean a more in-depth model of the morphology and environment of active regions. Presentations on their solar research have been made at science fairs, NSTA, AAS, ASP and AGU meetings. Student and teacher have also published their results in the RBSE Journal. The poster presentation will elucidate on the IR solar database and software used in the A-RBSE program. For more information, visit http://www.noao.edu/education/arbse/.

  15. Fast high-throughput screening of angiotensin-converting enzyme insertion/deletion polymorphism by variable programmed electric field strength-based microchip electrophoresis.

    PubMed

    Sun, Yucheng; Kim, Su-Kang; Zhang, Peng; Woo, Nain; Kang, Seong Ho

    2016-08-15

    An insertion (I)/deletion (D) polymorphism in angiotensin-converting enzyme (ACE) has been associated with susceptibility to various diseases in numerous studies. Traditionally, slab gel electrophoresis (SGE) after polymerase chain reaction (PCR) has been used to genotype this ACE I/D polymorphism. In this study, single- and multi-channel microchip electrophoresis (ME) methods based on variable programmed electric field strength (PEFS) (i.e., low constant, high constant, (+)/(-) staircase, and random electric field strengths) were developed for fast high-throughput screening of this specific polymorphism. The optimum PEFS conditions were set as 470V/cm for 0-9s, 129V/cm for 9-13s, 470V/cm for 13-13.9s, 294V/cm for 13.9-16s, and 470V/cm for 16-20s for single-channel ME, and 615V/cm for 0-22.5s, 231V/cm for 22.5-28.5s, and 615V/cm for 28.5-40s for multi-channel ME, respectively. In the multi-channel PEFS-ME, target ACE I/D polymorphism DNA fragments (D=190bp and I=490bp) were identified within 25s without loss of resolving power, which was ∼300 times faster than conventional SGE. In addition, PCR products of the ACE gene from human blood samples were detected after only 10 cycles by multi-channel PEFS-ME, but not by SGE. This parallel detection multichannel-based PEFS-ME method offers a powerful tool for fast high-throughput ACE I/D polymorphism screening with high sensitivity. PMID:27322633

  16. Linear mode conversion of Langmuir/z-mode waves to radiation in plasmas with various magnetic field strength

    SciTech Connect

    Kim, Eun-Hwa; Johnson, Jay R.; Cairns, Iver H.

    2013-12-15

    Linear mode conversion of Langmuir/z waves to electromagnetic radiation near the plasma and upper hybrid frequency in the presence of density gradients is potentially relevant to type II and III solar radio bursts, ionospheric radar experiments, pulsars, and continuum radiation for planetary magnetospheres. Here, we study mode conversion in warm, magnetized plasmas using a numerical electron fluid simulation code when the density gradient has a wide range of angle, δ, to the ambient magnetic field, B{sub 0}, for a range of incident Langmuir/z wavevectors. Our results include: (1) Left-handed polarized ordinary (oL) and right-handed polarized extraordinary (xR) mode waves are produced in various ranges of δ for Ω{sub 0} = (ωL/c){sup 1/3}(ω{sub ce}/ω) < 1.5, where ω{sub ce} is the (angular) electron cyclotron frequency, ω is the angular wave frequency, L is the length scale of the (linear) density gradient, and c is the speed of light; (2) the xR mode is produced most strongly in the range, 40° < δ < 60°, for intermediately magnetized plasmas with Ω{sub 0} = 1.0 and 1.5, while it is produced over a wider range, 0° ≤ δ ≤ 90°, for weakly magnetized plasmas with Ω{sub 0} = 0.1 and 0.7; (3) the maximum total conversion efficiencies for wave power from the Langmuir/z mode to radiation are of order 50%–99% and the corresponding energy conversion efficiencies are 5%–14% (depending on the adiabatic index γ and β = T{sub e}/m{sub e}c{sup 2}, where T{sub e} is the electron temperature and m{sub e} is the electron) for various Ω{sub 0}; (4) the mode conversion window becomes wider as Ω{sub 0} and δ increase. Hence, the results in this paper confirm that linear mode conversion under these conditions can explain the weak total circular polarization of interplanetary type II and III solar radio bursts because a strong xR mode can be generated via linear mode conversion near δ ∼ 45°.

  17. SU-E-T-590: Optimizing Magnetic Field Strengths with Matlab for An Ion-Optic System in Particle Therapy Consisting of Two Quadrupole Magnets for Subsequent Simulations with the Monte-Carlo Code FLUKA

    SciTech Connect

    Baumann, K; Weber, U; Simeonov, Y; Zink, K

    2015-06-15

    Purpose: Aim of this study was to optimize the magnetic field strengths of two quadrupole magnets in a particle therapy facility in order to obtain a beam quality suitable for spot beam scanning. Methods: The particle transport through an ion-optic system of a particle therapy facility consisting of the beam tube, two quadrupole magnets and a beam monitor system was calculated with the help of Matlab by using matrices that solve the equation of motion of a charged particle in a magnetic field and field-free region, respectively. The magnetic field strengths were optimized in order to obtain a circular and thin beam spot at the iso-center of the therapy facility. These optimized field strengths were subsequently transferred to the Monte-Carlo code FLUKA and the transport of 80 MeV/u C12-ions through this ion-optic system was calculated by using a user-routine to implement magnetic fields. The fluence along the beam-axis and at the iso-center was evaluated. Results: The magnetic field strengths could be optimized by using Matlab and transferred to the Monte-Carlo code FLUKA. The implementation via a user-routine was successful. Analyzing the fluence-pattern along the beam-axis the characteristic focusing and de-focusing effects of the quadrupole magnets could be reproduced. Furthermore the beam spot at the iso-center was circular and significantly thinner compared to an unfocused beam. Conclusion: In this study a Matlab tool was developed to optimize magnetic field strengths for an ion-optic system consisting of two quadrupole magnets as part of a particle therapy facility. These magnetic field strengths could subsequently be transferred to and implemented in the Monte-Carlo code FLUKA to simulate the particle transport through this optimized ion-optic system.

  18. ACS Data Handbook v.6.0

    NASA Astrophysics Data System (ADS)

    Gonzaga, S.; et al.

    2011-03-01

    ACS was designed to provide a deep, wide-field survey capability from the visible to near-IR using the Wide Field Camera (WFC), high resolution imaging from the near-UV to near-IR with the now-defunct High Resolution Camera (HRC), and solar-blind far-UV imaging using the Solar Blind Camera (SBC). The discovery efficiency of ACS's Wide Field Channel (i.e., the product of WFC's field of view and throughput) is 10 times greater than that of WFPC2. The failure of ACS's CCD electronics in January 2007 brought a temporary halt to CCD imaging until Servicing Mission 4 in May 2009, when WFC functionality was restored. Unfortunately, the high-resolution optical imaging capability of HRC was not recovered.

  19. Utilizing Biopsychosocial and Strengths-Based Approaches Within the Field of Child Health: What We Know and Where We Can Grow

    PubMed Central

    Black, Jessica M.; Hoeft, Fumiko

    2015-01-01

    We continue to increase our understanding of the experiences and settings that contribute to positive developmental outcomes in childhood, and those that confer greater risk. Although the mechanisms by which the risk and protective factors affect developmental outcomes need to be further elucidated through research, converging findings from the field of child health (spanning both physical and mental health) indicate that a biopsychosocial approach is useful. Here, we examine the evidence that early experiences confer both risk and protective processes on biopsychosocial development in childhood, and touch on some implications for the life course. Although this interdisciplinary field of research has already garnered substantial attention, here we aim to highlight the opportunity to use a strengths-based approach with the biopsychosocial model, with particular focus on children who experience prolonged stress. We close with consideration for future directions with an emphasis on policy and practice in clinical and educational settings to improve well-being in these early stages of the life course. PMID:25732011

  20. Nonlinear ac stationary response and dynamic magnetic hysteresis of quantum uniaxial superparamagnets

    NASA Astrophysics Data System (ADS)

    Kalmykov, Yuri P.; Titov, Serguey V.; Coffey, William T.

    2015-11-01

    The nonlinear ac stationary response of uniaxial paramagnets and superparamagnets—nanoscale solids or clusters with spin number S ˜100-104 —in superimposed uniform ac and dc bias magnetic fields of arbitrary strength, each applied along the easy axis of magnetization, is determined by solving the evolution equation for the reduced density matrix represented as a finite set of three-term differential-recurrence relations for its diagonal matrix elements. The various harmonic components arising from the nonlinear response of the magnetization, dynamic magnetic hysteresis loops, etc., are then evaluated via matrix continued fractions indicating a pronounced dependence of the response on S arising from the quantum spin dynamics, which differ markedly from the magnetization dynamics of classical nanomagnets. In the linear response approximation, the results concur with existing solutions.