Science.gov

Sample records for ac flow tests

  1. ac power control in the Core Flow Test Loop

    SciTech Connect

    McDonald, D.W.

    1980-01-01

    This work represents a status report on a development effort to design an ac power controller for the Core Flow Test Loop. The Core Flow Test Loop will be an engineering test facility which will simulate the thermal environment of a gas-cooled fast-breeder reactor. The problems and limitations of using sinusoidal ac power to simulate the power generated within a nuclear reactor are addressed. The transformer-thyristor configuration chosen for the Core Flow Test Loop power supply is presented. The initial considerations, design, and analysis of a closed-loop controller prototype are detailed. The design is then analyzed for improved performance possibilities and failure modes are investigated at length. A summary of the work completed to date and a proposed outline for continued development completes the report.

  2. Data qualification summary for 1985 L-Area AC Flow Tests

    SciTech Connect

    Edwards, T.B.; Eghbali, D.A.; Liebmann, M.L.; Shine, E.P.

    1992-03-01

    The 1985 L-Area AC Flow Tests were conducted to provide an extended data base for upgrading the reactor system models employed in predicting normal process water flows. This report summarizes the results of the recently completed, formal, technical review of the data from the 1985 L-Area AC Flow Tests as detailed in document SCS-CMAS-910045. The purpose of that review was to provide corroborating technical information as to the quality (fitness for use) of these experimental data. Reference [1] required three volumes to fully document the results of that Data Qualification process. This report has been prepared to provide the important conclusions from that process in a manageable and understandable format. Consult reference [1] if any additional information or detail is needed. This report provides highlights from that study: an overview of the tests and data, a description of the instrumentation used, an explanation of the data qualification methods employed to review the data, and the important conclusions reached from the study. Reference 1: Edwards, T.B., D.A. Eghbali, M.L. Liebmann, and E.P. Shine, [open quotes]Data Qualification for 1985 L-Area AC Flow Tests,[close quotes] SCS-CMAS-910045, December 31, 1991.

  3. Data qualification summary for 1985 L-Area AC Flow Tests

    SciTech Connect

    Edwards, T.B.; Eghbali, D.A.; Liebmann, M.L.; Shine, E.P.

    1992-03-01

    The 1985 L-Area AC Flow Tests were conducted to provide an extended data base for upgrading the reactor system models employed in predicting normal process water flows. This report summarizes the results of the recently completed, formal, technical review of the data from the 1985 L-Area AC Flow Tests as detailed in document SCS-CMAS-910045. The purpose of that review was to provide corroborating technical information as to the quality (fitness for use) of these experimental data. Reference [1] required three volumes to fully document the results of that Data Qualification process. This report has been prepared to provide the important conclusions from that process in a manageable and understandable format. Consult reference [1] if any additional information or detail is needed. This report provides highlights from that study: an overview of the tests and data, a description of the instrumentation used, an explanation of the data qualification methods employed to review the data, and the important conclusions reached from the study. Reference 1: Edwards, T.B., D.A. Eghbali, M.L. Liebmann, and E.P. Shine, {open_quotes}Data Qualification for 1985 L-Area AC Flow Tests,{close_quotes} SCS-CMAS-910045, December 31, 1991.

  4. Large aperture ac interferometer for optical testing.

    PubMed

    Moore, D T; Murray, R; Neves, F B

    1978-12-15

    A 20-cm clear aperture modified Twyman-Green interferometer is described. The system measures phase with an AC technique called phase-lock interferometry while scanning the aperture with a dual galvanometer scanning system. Position information and phase are stored in a minicomputer with disk storage. This information is manipulated with associated software, and the wavefront deformation due to a test component is graphically displayed in perspective and contour on a CRT terminal. PMID:20208642

  5. Dielectrophoretic particle-particle interaction under AC electrohydrodynamic flow conditions.

    PubMed

    Lee, Doh-Hyoung; Yu, Chengjie; Papazoglou, Elisabeth; Farouk, Bakhtier; Noh, Hongseok M

    2011-09-01

    We used the Maxwell stress tensor method to understand dielectrophoretic particle-particle interactions and applied the results to the interpretation of particle behaviors under alternating current (AC) electrohydrodynamic conditions such as AC electroosmosis (ACEO) and electrothermal flow (ETF). Distinct particle behaviors were observed under ACEO and ETF. Diverse particle-particle interactions observed in experiments such as particle clustering, particles keeping a certain distance from each other, chain and disc formation and their rotation, are explained based on the numerical simulation data. The improved understanding of particle behaviors in AC electrohydrodynamic flows presented here will enable researchers to design better particle manipulation strategies for lab-on-a-chip applications. PMID:21823132

  6. Characterization of flow-through electrode processes by AC impedance

    SciTech Connect

    Yuh, C.Y. ); Selman, J.R. )

    1993-04-01

    Flow-through porous electrodes, such as packed-bed and fluidized-bed electrodes, are attractive for electrowinning, electro-organic synthesis and flow-battery applications. The extensive surface area of the porous electrodes makes high volumetric reaction rate more possible than in a cell with smooth electrodes. Forced convection also enhances mass-transfer rate and hence reduces concentration polarization. AC-impedance method has been used successfully in characterizing a packed-bed flow-through electrode system. A macrohomogeneous model was developed to simulate the effect of structural, physical and flow parameters. The relative importance of kinetics and mass transfer can be inferred from the AC-impedance analysis. Kinetic information about copper deposition in supported cupric sulfate solution has been obtained successfully using this technique.

  7. Resonant AC power system proof-of-concept test program

    NASA Technical Reports Server (NTRS)

    Wappes, Loran J.

    1986-01-01

    Proof-of-concept testing was performed on a 20-kHz, resonant power system breadboard from 1981 through 1985. The testing began with the evaluation of a single, 1.0-kW resonant inverter and progressed to the testing of breadboard systems with higher power levels and more capability. The final breadboard configuration tested was a 25.0-kW breadboard with six inverters providing power to three user-interface modules over a 50-meter, 20-kHz bus. The breadboard demonstrated the ability to synchronize multiple resonant inverters to power a common bus. Single-phase and three-phase 20-kHz power distribution was demonstrated. Simple conversion of 20-kHz to dc and variable-frequency ac was demonstrated as was bidirectional power flow between 20-kHz and dc. Steady state measurements of efficiency, power-factor tolerance, and conducted emissions and conducted susceptibility were made. In addition, transient responses were recorded for such conditions as start up, shut down, load changes. The results showed the 20-kHz resonant system to be a desirable technology for a spacecraft power management and distribution system with multiple users and a utility-type bus.

  8. Resonant AC power system proof-of-concept test program

    NASA Astrophysics Data System (ADS)

    Wappes, Loran J.

    1986-10-01

    Proof-of-concept testing was performed on a 20-kHz, resonant power system breadboard from 1981 through 1985. The testing began with the evaluation of a single, 1.0-kW resonant inverter and progressed to the testing of breadboard systems with higher power levels and more capability. The final breadboard configuration tested was a 25.0-kW breadboard with six inverters providing power to three user-interface modules over a 50-meter, 20-kHz bus. The breadboard demonstrated the ability to synchronize multiple resonant inverters to power a common bus. Single-phase and three-phase 20-kHz power distribution was demonstrated. Simple conversion of 20-kHz to dc and variable-frequency ac was demonstrated as was bidirectional power flow between 20-kHz and dc. Steady state measurements of efficiency, power-factor tolerance, and conducted emissions and conducted susceptibility were made. In addition, transient responses were recorded for such conditions as start up, shut down, load changes. The results showed the 20-kHz resonant system to be a desirable technology for a spacecraft power management and distribution system with multiple users and a utility-type bus.

  9. Initial Tests of an AC Dipole for the Tevatron

    SciTech Connect

    Miyamoto, R.; Kopp, S.; Jansson, A.; Syphers, M.

    2006-11-20

    The AC dipole is a device to diagnose transverse motions of a beam. It can achieve large-amplitude oscillations without two inevitable problems of conventional kicker/pinger magnets: decoherence and emittance growth. While not the first synchrotron to operate with an AC dipole, the Tevatron can now make use of its recently upgraded BPM system, providing unprecedented resolution for use with an AC dipole, to measure both linear and nonlinear properties of the accelerator. Plans are to provide AC dipole systems for both transverse degrees of freedom. Preliminary tests have been done using an audio power amplifier with an existing vertical pinger magnet, producing oscillation amplitudes up to 2{sigma} at 150 GeV. In this paper, we will present the configuration of this system. We also show the analysis of a first few data sets, including the direct measurement of beta functions at BPM locations.

  10. Initial Tests of an AC Dipole for the Tevatron

    NASA Astrophysics Data System (ADS)

    Miyamoto, R.; Jansson, A.; Kopp, S.; Syphers, M.

    2006-11-01

    The AC dipole is a device to diagnose transverse motions of a beam. It can achieve large-amplitude oscillations without two inevitable problems of conventional kicker/pinger magnets: decoherence and emittance growth. While not the first synchrotron to operate with an AC dipole, the Tevatron can now make use of its recently upgraded BPM system, providing unprecedented resolution for use with an AC dipole, to measure both linear and nonlinear properties of the accelerator. Plans are to provide AC dipole systems for both transverse degrees of freedom. Preliminary tests have been done using an audio power amplifier with an existing vertical pinger magnet, producing oscillation amplitudes up to 2σ at 150 GeV. In this paper, we will present the configuration of this system. We also show the analysis of a first few data sets, including the direct measurement of beta functions at BPM locations.

  11. Initial tests of an AC dipole for the Tevatron

    SciTech Connect

    Miyamoto, R.; Jansson, A.; Kopp, S.; Syphers, M.; /Fermilab

    2006-06-01

    The AC dipole is a device to diagnose transverse motions of a beam. It can achieve large-amplitude oscillations without two inevitable problems of conventional kicker/pinger magnets: decoherence and emittance growth. While not the first synchrotron to operate with an AC dipole, the Tevatron can now make use of its recently upgraded BPM system, providing unprecedented resolution for use with an AC dipole, to measure both linear and nonlinear properties of the accelerator. Plans are to provide AC dipole systems for both transverse degrees of freedom. Preliminary tests have been done using an audio power amplifier with an existing vertical pinger magnet, producing oscillation amplitudes up to 2{sigma} at 150 GeV. In this paper, we will present the configuration of this system. We also show the analysis of a first few data sets, including the direct measurement of beta functions at BPM locations.

  12. Microfluidic flow-focusing in ac electric fields.

    PubMed

    Tan, Say Hwa; Semin, Benoît; Baret, Jean-Christophe

    2014-03-21

    We demonstrate the control of droplet sizes by an ac voltage applied across microelectrodes patterned around a flow-focusing junction. The electrodes do not come in contact with the fluids to avoid electrochemical effects. We found several regimes of droplet production in electric fields, controlled by the connection of the chip, the conductivity of the dispersed phase and the frequency of the applied field. A simple electrical modelling of the chip reveals that the effective voltage at the tip of the liquid to be dispersed controls the production mechanism. At low voltages (≲ 600 V), droplets are produced in dripping regime; the droplet size is a function of the ac electric field. The introduction of an effective capillary number that takes into account the Maxwell stress can explain the dependance of droplet size with the applied voltage. At higher voltages (≳ 600 V), jets are observed. The stability of droplet production is a function of the fluid conductivity and applied field frequency reported in a set of flow diagrams. PMID:24401868

  13. On-Chip AC self-test controller

    DOEpatents

    Flanagan, John D.; Herring, Jay R.; Lo, Tin-Chee

    2009-09-29

    A system for performing AC self-test on an integrated circuit that includes a system clock for normal operation is provided. The system includes the system clock, self-test circuitry, a first and second test register to capture and launch test data in response to a sequence of data pulses, and a logic circuit to be tested. The self-test circuitry includes an AC self-test controller and a clock splitter. The clock splitter generates the sequence of data pulses including a long data capture pulse followed by an at speed data launch pulse and an at speed data capture pulse followed by a long data launch pulse. The at speed data launch pulse and the at speed data capture pulse are generated for a common cycle of the system clock.

  14. Test plan for performance testing of the Eaton AC-3 electric vehicle

    SciTech Connect

    Crumley, R.L.; Heiselmann, H.W.

    1985-04-01

    An alternating current (ac) propulsion system for an electric vehicle has been developed and tested by the Eaton Corporation. The test bed vehicle is a modified 1981 Mercury Lynx. The test plan has been prepared specifically for the third modification to this test bed and identified as the Eaton AC-3. The scope of the EG and G testing at INEL to be done on the Eaton AC-3 will include coastdown and dynamometer tests but will not include environmental, on-road, or track testing. Coastdown testing will be performed in accordance with SAE J-1263 (SAE Recommended Practice for Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques).

  15. Performance testing of the AC propulsion ELX electric vehicle

    NASA Astrophysics Data System (ADS)

    Kramer, W. E.; MacDowall, R. D.; Burke, A. F.

    1994-06-01

    Performance testing of the AC Propulsion ELX electric vehicle is described. Test data are presented and analyzed. The ELX vehicle is the first of a series of electric vehicles of interest to the California Air Resources Board. The test series is being conducted under a Cooperative Research and Development Agreement (CRADA) between the US Department of energy and the California Air Resources Board. The tests which were conducted showed that the AC Propulsion ELX electric vehicle has exceptional acceleration and range performance. When the vehicle's battery was fully charged, the vehicle can accelerate from 0 to 96 km/h in about 10 seconds. Energy consumption and range tests using consecutive FUDS and HWFET Driving cycles (the all-electric cycle) indicate that the energy economy of the AC Propulsion ELX electric vehicle with regenerative braking is 97 W(center dot)h/km, with a range of 153 km (95 miles). Computer simulations performed using the SIMPLEV Program indicate that the vehicle would have a range of 327 km (203 miles) on the all-electric cycle if the lead acid batteries were replaced with NiMH batteries having an energy density of 67 W(center dot)h/kg. Comparisons of FUDS test data with and without regenerative braking indicated that regenerative braking reduced the energy consumption of the ELX vehicle by approximately 25%.

  16. Performance testing of the AC propulsion ELX electric vehicle

    SciTech Connect

    Kramer, W.E.; MacDowall, R.D.; Burke, A.F.

    1994-06-01

    Performance testing of the AC Propulsion ELX electric vehicle is described. Test data are presented and analyzed. The ELX vehicle is the first of a series of electric vehicles of interest to the California Air Resources Board. The test series is being conducted under a Cooperative Research and Development Agreement (CRADA) between the US Department of energy and the California Air Resources Board. The tests which were conducted showed that the AC Propulsion ELX electric vehicle has exceptional acceleration and range performance. when the vehicle`s battery was fully charged, the vehicle can accelerate from 0 to 96 km/h in about 10 seconds. Energy consumption and range tests using consecutive FUDS and HWFET Driving cycles (the all-electric cycle) indicate that the energy economy of the AC Propulsion ELX electric vehicle with regenerative braking is 97 W{center_dot}h/km, with a range of 153 km (95 miles). Computer simulations performed using the SIMPLEV Program indicate that the vehicle would have a range of 327 km (203 miles) on the all-electric cycle if the lead acid batteries were replaced with NiMH batteries having an energy density of 67 W{center_dot}h/kg. Comparisons of FUDS test data with and without regenerative braking indicated that regenerative braking reduced the energy consumption of the ELX vehicle by approximately 25%.

  17. RG flow of AC conductivity in soft wall model of QCD

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Neha; Siwach, Sanjay

    2016-03-01

    We study the Renormalization Group (RG) flow of AC conductivity in soft wall model of holographic QCD. We consider the charged black hole metric and the explicit form of AC conductivity is obtained at the cutoff surface. We plot the numerical solution of conductivity flow as a function of radial coordinate. The equation of gauge field is also considered and the numerical solution is obtained for AC conductivity as a function of frequency. The results for AC conductivity are also obtained for different values of chemical potential and Gauss-Bonnet couplings.

  18. Fluorescent Particles For Flow Testing

    NASA Technical Reports Server (NTRS)

    Bonnell, Jeremy L.; Stern, Susan M.; Torkelson, Jan R.

    1995-01-01

    Small alumina spheres coated with fluorescent dye used in flow testing of transparent plastic model of check valve. Entrained fluroescent particles make flows visible. After completion of flow test, particles remaining in valve easily detectable and removed for measurement of their sizes.

  19. Testing of a First Order AC Magnetic Susceptometer

    NASA Astrophysics Data System (ADS)

    Fukuda, Ryan; Sunny, Smitha; Ho, Pei-Chun

    2011-11-01

    A first-order AC magnetic susceptometer has been constructed and tested to find the magnetic response of strongly correlated electron materials. The instrument works by using a primary coil to apply a small AC magnetic field of .104 Oe to a sample with a cylindrical coil space of length .635 cm and diameter .355 cm. A lock-in amplifier is used to monitor the induced voltage from a set of secondary coils. By coupling a temperature-controlled system with this instrument, the change in the magnetic signal with respect to temperature is measured. Monitoring the signal changes may indicate the temperature that causes the material to transition to either a ferromagnetic, anti-ferromagnetic, or superconducting state. A 122.47 mg Gd polycrystal was used to test our susceptometer. The data qualitatively agrees with the previous results of magnetization vs. temperature of Gd single crystals by Nigh et al. [1]: there is a steep increase in the pick-up signal at 300 K where Gd becomes ferromagnetic and a peak at 210 K [1]. This susceptometer will be used for our future investigation of magnetic properties of rare earth compounds and nanoparticles in the temperature range of 10 K to 300 K. [4pt] [1] H. E. Nigh, S. Legvold, and F. H. Spedding, Physical Review 132, 1092 (1963)

  20. Debris-flow runout predictions based on the average channel slope (ACS)

    USGS Publications Warehouse

    Prochaska, A.B.; Santi, P.M.; Higgins, J.D.; Cannon, S.H.

    2008-01-01

    Prediction of the runout distance of a debris flow is an important element in the delineation of potentially hazardous areas on alluvial fans and for the siting of mitigation structures. Existing runout estimation methods rely on input parameters that are often difficult to estimate, including volume, velocity, and frictional factors. In order to provide a simple method for preliminary estimates of debris-flow runout distances, we developed a model that provides runout predictions based on the average channel slope (ACS model) for non-volcanic debris flows that emanate from confined channels and deposit on well-defined alluvial fans. This model was developed from 20 debris-flow events in the western United States and British Columbia. Based on a runout estimation method developed for snow avalanches, this model predicts debris-flow runout as an angle of reach from a fixed point in the drainage channel to the end of the runout zone. The best fixed point was found to be the mid-point elevation of the drainage channel, measured from the apex of the alluvial fan to the top of the drainage basin. Predicted runout lengths were more consistent than those obtained from existing angle-of-reach estimation methods. Results of the model compared well with those of laboratory flume tests performed using the same range of channel slopes. The robustness of this model was tested by applying it to three debris-flow events not used in its development: predicted runout ranged from 82 to 131% of the actual runout for these three events. Prediction interval multipliers were also developed so that the user may calculate predicted runout within specified confidence limits. ?? 2008 Elsevier B.V. All rights reserved.

  1. Numerical study of dc-biased ac-electrokinetic flow over symmetrical electrodes.

    PubMed

    Yang Ng, Wee; Ramos, Antonio; Cheong Lam, Yee; Rodriguez, Isabel

    2012-03-01

    This paper presents a numerical study of DC-biased AC-electrokinetic (DC-biased ACEK) flow over a pair of symmetrical electrodes. The flow mechanism is based on a transverse conductivity gradient created through incipient Faradaic reactions occurring at the electrodes when a DC-bias is applied. The DC biased AC electric field acting on this gradient generates a fluid flow in the form of vortexes. To understand more in depth the DC-biased ACEK flow mechanism, a phenomenological model is developed to study the effects of voltage, conductivity ratio, channel width, depth, and aspect ratio on the induced flow characteristics. It was found that flow velocity on the order of mm/s can be produced at higher voltage and conductivity ratio. Such rapid flow velocity is one of the highest reported in microsystems technology using electrokinetics. PMID:22662084

  2. Numerical study of dc-biased ac-electrokinetic flow over symmetrical electrodes

    PubMed Central

    Yang Ng, Wee; Ramos, Antonio; Cheong Lam, Yee; Rodriguez, Isabel

    2012-01-01

    This paper presents a numerical study of DC-biased AC-electrokinetic (DC-biased ACEK) flow over a pair of symmetrical electrodes. The flow mechanism is based on a transverse conductivity gradient created through incipient Faradaic reactions occurring at the electrodes when a DC-bias is applied. The DC biased AC electric field acting on this gradient generates a fluid flow in the form of vortexes. To understand more in depth the DC-biased ACEK flow mechanism, a phenomenological model is developed to study the effects of voltage, conductivity ratio, channel width, depth, and aspect ratio on the induced flow characteristics. It was found that flow velocity on the order of mm/s can be produced at higher voltage and conductivity ratio. Such rapid flow velocity is one of the highest reported in microsystems technology using electrokinetics. PMID:22662084

  3. Analysis of flow reversal test

    SciTech Connect

    Cheng, L.Y.; Tichler, P.R.

    1996-03-01

    A series of tests has been conducted to measure the dryout power associated with a flow transient whereby the coolant in a heated channel undergoes a change in flow direction. An analysis of the test was made with the aid of a system code, RELAP5. A dryout criterion was developed in terms of a time-averaged void fraction calculated by RELAP5 for the heated channel. The dryout criterion was also compared with several CHF correlations developed for the channel geometry.

  4. Capillary flow solder wettability test

    SciTech Connect

    Vianco, P.T.; Rejent, J.A.

    1996-01-01

    A test procedure was developed to assess the capillary flow wettability of solders inside of a confined geometry. The test geometry was comprised of two parallel plates with a controlled gap of constant thickness (0.008 cm, 0.018 cm, 0.025 cm, and 0.038 cm). Capillary flow was assessed by: (1) the meniscus or capillary rise of the solder within the gap, (2) the extent of void formation in the gap, and (3) the time-dependence of the risen solder film. Tests were performed with the lead-free solders.

  5. SUBMERGED GRAVEL SCRUBBER DEMONSTRATION AS A PASSIVE AIR CLEANER FOR CONTAINMENT VENTING AND PURGING WITH SODIUM AEROSOLS -- CSTF TESTS AC7 - AC10

    SciTech Connect

    HILLIARD, R K.; MCCORMACK, J D.; POSTMA, A K.

    1981-11-01

    Four large-scale air cleaning tests (AC7 - AC10) were performed in the Containment Systems Test Facility (CS'lF) to demonstrate the performance of a Submerged Gravel Scrubber for cleaning the effluent gas from a vented and purged breeder reactor containment vessel. The test article, comprised of a Submerged Gravel Scrubber (SGS) followed by a high efficiency fiber demister, had a design gas flow rate of 0.47 m{sup 3}/s (1000 ft{sup 3}/min) at a pressure drop of 9.0 kPa (36 in. H{sub 2}O). The test aerosol was sodium oxide, sodium hydroxide, or sodium carbonate generated in the 850-m{sup 3} CSTF vessel by continuously spraying sodium into the air-filled vessel while adding steam or carbon dioxide. Approximately 4500 kg (10,000 lb) of sodium was sprayed over a total period of 100 h during the tests. The SGS/Demister system was shown to be highly efficient (removing ~99.98% of the entering sodium aerosol mass), had a high mass loading capacity, and operated in a passive manner, with no electrical requirement. Models for predicting aerosol capture, gas cooling, and pressure drop are developed and compared with experimental results.

  6. AC fog withstand test on contaminated insulators by steam fog

    SciTech Connect

    Arai, J.N.

    1982-11-01

    This paper describes the results of an investigation into how steam fog parameters affect the withstand voltage of artificially contaminated insulators by the fog withstand method. Established the correlation between the steam flow rate and liquid water content of the fog. The fog withstand voltage showed a lower value with little dispersion at about 3 to 10 g/m/sup 3/ of the maximum liquid water content. The minimum fog withstand voltage agreed well with the minimum flashover voltage obtained under natural conditions. The authors suggest that, for the fog withstand test using steam fog, the ideal fog condition would be about 3 to 7 g/m/sup 3/ of the maximum liquid water content of the fog.

  7. Transport of particles and microorganisms in microfluidic channels using rectified ac electro-osmotic flow

    PubMed Central

    Wu, Wen-I; Selvaganapathy, P. Ravi; Ching, Chan Y.

    2011-01-01

    A new method is demonstrated to transport particles, cells, and other microorganisms using rectified ac electro-osmotic flows in open microchannels. The rectified flow is obtained by synchronous zeta potential modulation with the driving potential in the microchannel. Experiments were conducted to transport both neutral, charged particles, and microorganisms of various sizes. A maximum speed of 50 μm∕s was obtained for 8 μm polystyrene beads, without any electrolysis, using a symmetrical square waveform driving electric field of 5 V∕mm at 10 Hz and a 360 V gate potential with its polarity synchronized with the driving potential (phase lag=0°). PMID:21522497

  8. System and component design and test of a 10 hp, 18,000 rpm AC dynamometer utilizing a high frequency AC voltage link, part 1

    NASA Technical Reports Server (NTRS)

    Lipo, Thomas A.; Alan, Irfan

    1991-01-01

    Hard and soft switching test results conducted with one of the samples of first generation MOS-controlled thyristor (MCTs) and similar test results with several different samples of second generation MCT's are reported. A simple chopper circuit is used to investigate the basic switching characteristics of MCT under hard switching and various types of resonant circuits are used to determine soft switching characteristics of MCT under both zero voltage and zero current switching. Next, operation principles of a pulse density modulated converter (PDMC) for three phase (3F) to 3F two-step power conversion via parallel resonant high frequency (HF) AC link are reviewed. The details for the selection of power switches and other power components required for the construction of the power circuit for the second generation 3F to 3F converter system are discussed. The problems encountered in the first generation system are considered. Design and performance of the first generation 3F to 3F power converter system and field oriented induction moter drive based upon a 3 kVA, 20 kHz parallel resonant HF AC link are described. Low harmonic current at the input and output, unity power factor operation of input, and bidirectional flow capability of the system are shown via both computer and experimental results. The work completed on the construction and testing of the second generation converter and field oriented induction motor drive based upon specifications for a 10 hp squirrel cage dynamometer and a 20 kHz parallel resonant HF AC link is discussed. The induction machine is designed to deliver 10 hp or 7.46 kW when operated as an AC-dynamo with power fed back to the source through the converter. Results presented reveal that the proposed power level requires additional energy storage elements to overcome difficulties with a peak link voltage variation problem that limits reaching to the desired power level. The power level test of the second generation converter after the

  9. Mechanism and flow measurement of AC electrowetting propulsion on free surface

    NASA Astrophysics Data System (ADS)

    Yuan, Junqi; Cho, Sung Kwon

    2015-03-01

    A free surface in contact with a floating object can be vertically oscillated by applying an alternating current electrowetting-on-dielectric (AC EWOD). The oscillation of the free surface generates a propelling force on the centimeter-sized floating object. This paper describes a propulsion mechanism in free-surface oscillation along with its experimental results. Flow visualizations, wave patterns measured by the free-surface synthetic schlieren method, and PIV measurements show that the oscillation generates a capillary Stokes drift on the water surface and two counter-rotating spiral underwater vortices, leading to an ejecting flow (streaming flow) normal to the wall of the boat. The momentum of the ejecting flow produces a reaction force on the wall and ultimately propels the floating boat. The propulsion speed of the boat highly depends on the amplitude, frequency, and shape of the AC EWOD signal. Curve fittings based on the Stokes drift well match the experimental measurements of propulsion speed. The width of the EWOD electrode also has significant effects on the boat speed.

  10. Heat-transfer enhancement in AC electro-osmotic micro-flows

    NASA Astrophysics Data System (ADS)

    Liu, Z. P.; Speetjens, M. F. M.; Frijns, A. J. H.; van Steenhoven, A. A.

    2012-11-01

    Heat transfer in micro-flows is essential to emerging technologies as advanced microelectronics cooling systems and chemical processes in lab-on-a-chip applications. The present study explores the potential of AC electro-osmotic (ACEO) flow forcing, a promising technique for the actuation and manipulation of micro-flows, for heat-transfer enhancement. Subjects of investigation include the 3D flow structure due to ACEO forcing via an array of electrodes in a micro-channel by way of 3D velocity measurements. Presence and properties of vortical structures of the 3D flow are quantified in laboratory experiments. Typical outcomes of the experimental study result from a number of 3D particle trajectories obtained by using 3D micro-Particle-Tracking Velocimetry (3D μ-PTV). The steady nature of the flow enables combination of results from a series of measurements into one dense data set. This facilitates accurate evaluation of quantities relevant for heat transfer by data-processing methods. The primary circulation is given above one half of an electrode in terms of the spanwise component of vorticity. The outline of the vortex boundary is determined via the eigenvalues of the strain-rate tensor. To estimate convective heat transfer, wall shear rate above one half of an electrode is quantitatively analyzed as function of voltage amplitude and frequency. These results yield first insights into the characteristics of 3D ACEO flows and ways to exploit and manipulate them for heat-transfer enhancement.

  11. Finite element analysis of current flowing patterns and AC loss in the multifilament strand

    NASA Astrophysics Data System (ADS)

    Ta, Wurui; Li, Yingxu; Gao, Yuanwen

    2013-12-01

    Intrinsic current flow and field distribution scheme under the imposed low current injection and the applied weak field is meaningful to interpret Ic degradation and AC loss in a strand that performs as a normal composite conductor. A 2D finite element (FE) transport model is built in COMSOL to identify the various transverse resistance components and reveal the interrelation among them. Then the transverse resistivity components are taken as the basic electrical components in a 3D composite strand model. The 3D model follows the realistic trajectories of twisted filaments in strand composite and experimental material properties. To address the potential/current map in the stationary transport, the FE model is thoroughly analyzed for the short-sample and long-sample strand, imposed by two in-plane steady current injections and a potential boundary condition at one strand end with the other end grounded, respectively. The results show that the short-sample longitudinal current is uniform with little resistivity loss, and flows from the positive source and converges to the negative one in the cross section with different paths and current proportions between filaments and matrix. However, for the long-sample, there is a serious reduction in electric potential along the strand axis and the currents mostly concentrate on filaments. The time-varying problem is also implemented by computing AC loss induced by a relatively far-away alternating line current. It is discussed where appropriate that the effect of the twist pitch and contact resistivity on the pattern and magnitude of the current flow and AC loss.

  12. Testing the frozen flow approximation

    NASA Technical Reports Server (NTRS)

    Lucchin, Francesco; Matarrese, Sabino; Melott, Adrian L.; Moscardini, Lauro

    1993-01-01

    We investigate the accuracy of the frozen-flow approximation (FFA), recently proposed by Matarrese, et al. (1992), for following the nonlinear evolution of cosmological density fluctuations under gravitational instability. We compare a number of statistics between results of the FFA and n-body simulations, including those used by Melott, Pellman & Shandarin (1993) to test the Zel'dovich approximation. The FFA performs reasonably well in a statistical sense, e.g. in reproducing the counts-in-cell distribution, at small scales, but it does poorly in the crosscorrelation with n-body which means it is generally not moving mass to the right place, especially in models with high small-scale power.

  13. Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow

    SciTech Connect

    Ji, Jianlong; Li, Pengwei; Sang, Shengbo Zhang, Wendong Li, Gang; Hu, Jie; Zhou, Zhaoying Yang, Xing; Dong, Hualai

    2014-03-15

    Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and UV–vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA) models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electric field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO) flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS) activity, using 4-mercaptopyridine (4-MP) as model molecules.

  14. Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow

    NASA Astrophysics Data System (ADS)

    Ji, Jianlong; Li, Pengwei; Sang, Shengbo; Zhang, Wendong; Zhou, Zhaoying; Yang, Xing; Dong, Hualai; Li, Gang; Hu, Jie

    2014-03-01

    Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and UV-vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA) models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electric field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO) flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS) activity, using 4-mercaptopyridine (4-MP) as model molecules.

  15. 40 CFR 86.167-17 - AC17 Air Conditioning Emissions Test Procedure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.167-17 AC17 Air Conditioning...-conditioning cycle, a 30-minute soak period under simulated solar heat, followed by measurement of emissions over an SC03 drive cycle and a Highway Fuel Economy Driving Schedule (HFET) drive cycle. The vehicle...

  16. Resource Prospector Propulsion Cold Flow Test

    NASA Technical Reports Server (NTRS)

    Williams, Hunter; Pederson, Kevin; Dervan, Melanie; Holt, Kimberly; Jernigan, Frankie; Trinh, Huu; Flores, Sam

    2014-01-01

    For the past year, NASA Marshall Space Flight Center and Johnson Space Center have been working on a government version of a lunar lander design for the Resource Prospector Mission. A propulsion cold flow test system, representing an early flight design of the propulsion system, has been fabricated. The primary objective of the cold flow test is to simulate the Resource Prospector propulsion system operation through water flow testing and obtain data for anchoring analytical models. This effort will also provide an opportunity to develop a propulsion system mockup to examine hardware integration to a flight structure. This paper will report the work progress of the propulsion cold flow test system development and test preparation. At the time this paper is written, the initial waterhammer testing is underway. The initial assessment of the test data suggests that the results are as expected and have a similar trend with the pretest prediction. The test results will be reported in a future conference.

  17. AC electrified jets in a flow-focusing device: Jet length scaling.

    PubMed

    Castro-Hernández, Elena; García-Sánchez, Pablo; Alzaga-Gimeno, Javier; Tan, Say Hwa; Baret, Jean-Christophe; Ramos, Antonio

    2016-07-01

    We use a microfluidic flow-focusing device with integrated electrodes for controlling the production of water-in-oil drops. In a previous work, we reported that very long jets can be formed upon application of AC fields. We now study in detail the appearance of the long jets as a function of the electrical parameters, i.e., water conductivity, signal frequency, and voltage amplitude. For intermediate frequencies, we find a threshold voltage above which the jet length rapidly increases. Interestingly, this abrupt transition vanishes for high frequencies of the signal and the jet length grows smoothly with voltage. For frequencies below a threshold value, we previously reported a transition from a well-behaved uniform jet to highly unstable liquid structures in which axisymmetry is lost rather abruptly. These liquid filaments eventually break into droplets of different sizes. In this work, we characterize this transition with a diagram as a function of voltage and liquid conductivity. The electrical response of the long jets was studied via a distributed element circuit model. The model allows us to estimate the electric potential at the tip of the jet revealing that, for any combination of the electrical parameters, the breakup of the jet occurs at a critical value of this potential. We show that this voltage is around 550 V for our device geometry and choice of flow rates.

  18. AC electrified jets in a flow-focusing device: Jet length scaling.

    PubMed

    Castro-Hernández, Elena; García-Sánchez, Pablo; Alzaga-Gimeno, Javier; Tan, Say Hwa; Baret, Jean-Christophe; Ramos, Antonio

    2016-07-01

    We use a microfluidic flow-focusing device with integrated electrodes for controlling the production of water-in-oil drops. In a previous work, we reported that very long jets can be formed upon application of AC fields. We now study in detail the appearance of the long jets as a function of the electrical parameters, i.e., water conductivity, signal frequency, and voltage amplitude. For intermediate frequencies, we find a threshold voltage above which the jet length rapidly increases. Interestingly, this abrupt transition vanishes for high frequencies of the signal and the jet length grows smoothly with voltage. For frequencies below a threshold value, we previously reported a transition from a well-behaved uniform jet to highly unstable liquid structures in which axisymmetry is lost rather abruptly. These liquid filaments eventually break into droplets of different sizes. In this work, we characterize this transition with a diagram as a function of voltage and liquid conductivity. The electrical response of the long jets was studied via a distributed element circuit model. The model allows us to estimate the electric potential at the tip of the jet revealing that, for any combination of the electrical parameters, the breakup of the jet occurs at a critical value of this potential. We show that this voltage is around 550 V for our device geometry and choice of flow rates. PMID:27375826

  19. Flow-through devices for the ac electrokinetic construction of microstructured materials

    NASA Astrophysics Data System (ADS)

    Flores-Rodriguez, N.; Markx, G. H.

    2006-02-01

    With the aid of computer simulation, flow-through devices have been devised for the continuous construction of microstructured materials using non-uniform ac electric fields. Particles can be concentrated and guided along channels defined by non-uniform electric fields generated between microelectrodes. The resulting streams of particles emanating from the microelectrode structures can subsequently be immobilized to form materials with particles embedded in defined locations. Experiments with latex beads with a diameter of 6 µm, suspended in high purity low-melting agarose at a concentration of 0.75% and temperatures over 60 °C, showed that a linear stream of particles can be created by the combined application of negative dielectrophoresis and hydrodynamic flow forces. By guiding the stream of particles onto a conveyor, it was then possible to create a continuous film of agarose containing latex beads in defined positions. Potential applications of the method in the creation of biomaterials such as tissues and biofilms are discussed.

  20. Method and system for an on-chip AC self-test controller

    DOEpatents

    Flanagan, John D.; Herring, Jay R.; Lo, Tin-Chee

    2008-09-30

    A method and system for performing AC self-test on an integrated circuit that includes a system clock for use during normal operation are provided. The method includes applying a long data capture pulse to a first test register in response to the system clock, applying an at speed data launch pulse to the first test register in response to the system clock, inputting the data from the first register to a logic path in response to applying the at speed data launch pulse to the first test register, applying an at speed data capture pulse to a second test register in response to the system clock, inputting the logic path output to the second test register in response to applying the at speed data capture pulse to the second test register, and applying a long data launch pulse to the second test register in response to the system clock.

  1. LADEE Propulsion System Cold Flow Test

    NASA Technical Reports Server (NTRS)

    Williams, Jonathan Hunter; Chapman, Jack M.; Trinh, Hau, P.; Bell, James H.

    2013-01-01

    Lunar Atmosphere and Dust Environment Explorer (LADEE) is a NASA mission that will orbit the Moon. Its main objective is to characterize the atmosphere and lunar dust environment. The spacecraft development is being led by NASA Ames Research Center and scheduled for launch in 2013. The LADEE spacecraft will be operated with a bi-propellant hypergolic propulsion system using MMH and NTO as the fuel and oxidizer, respectively. The propulsion system utilizes flight-proven hardware on major components. The propulsion layout is composed of one 100-lbf main thruster and four 5-lbf RCS thrusters. The propellants are stored in four tanks (two parallel-connected tanks per propellant component). The propellants will be pressurized by regulated helium. A simulated propulsion system has been built for conducting cold flow test series to characterize the transient fluid flow of the propulsion system feed lines and to verify the critical operation modes, such as system priming, waterhammer, and crucial mission duty cycles. Propellant drainage differential between propellant tanks will also be assessed. Since the oxidizer feed line system has a higher flow demand than the fuel system does, the cold flow test focuses on the oxidizer system. The objective of the cold flow test is to simulate the LADEE propulsion fluid flow operation through water cold flow test and to obtain data for anchoring analytical models. The models will be used to predict the transient and steady state flow behaviors in the actual flight operations. The test activities, including the simulated propulsion test article, cold flow test, and analytical modeling, are being performed at NASA Marshall Space Flight Center. At the time of the abstract submission, the test article checkout is being performed. The test series will be completed by November, 2012

  2. Method and system for an on-chip AC self-test controller

    DOEpatents

    Flanagan, John D.; Herring, Jay R.; Lo, Tin-Chee

    2006-06-06

    A method for performing AC self-test on an integrated circuit, including a system clock for use during normal operation. The method includes applying a long data capture pulse to a first test register in response to the system clock, and further applying at an speed data launch pulse to the first test register in response to the system clock. Inputting the data from the first register to a logic path in response to applying the at speed data launch pulse to the first test register. Applying at speed data capture pulse to a second test register in response to the system clock. Inputting the output from the logic path to the second test register in response to applying the at speed data capture pulse to the second register. Applying a long data launch pulse to the second test register in response to the system clock.

  3. Quantifiable Lateral Flow Assay Test Strips

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As easy to read as a home pregnancy test, three Quantifiable Lateral Flow Assay (QLFA) strips used to test water for E. coli show different results. The brightly glowing control line on the far right of each strip indicates that all three tests ran successfully. But the glowing test line on the middle left and bottom strips reveal their samples were contaminated with E. coli bacteria at two different concentrations. The color intensity correlates with concentration of contamination.

  4. Interleukin-10 promotor -592A/C polymorphism is associated with slow coronary flow in Han Chinese

    PubMed Central

    Shi, Gui-Liang; Cai, Xing-Xing; Su, Ya-Min; Chen, Chu; Deng, Xin-Tao; Pan, Hai-Yan; Fan, Meng-Kan; Zhu, Jian-Hua; Pan, Min

    2015-01-01

    An accumulating body of evidence suggests that slow coronary flow (SCF) phenomenon seems to be an early-form of atherosclerosis and low-grade inflammation plays a major role in the atherosclerotic vascular processes. Interleukin (IL)-10 is a multifunctional cytokine involved in both innate and adaptive immune response. The aim of the present study is to investigate the association of IL-10 gene -592A/C polymorphism with SCF in Han Chinese. 250 patients who underwent coronary angiography and had angiographically normal coronary arteries of varying coronary flow rates without any atherosclerotic lesion were enrolled in this study. Patients who had thrombolysis in myocardial infarction frame counts (TFC) above the normal cutoffs were considered to have SCF and those within normal limits were considered to have normal coronary flow (NCF). The PCR-based restriction fragment length polymorphism (PCR-RFLP) technique was used to assess the genotypes frequencies. The distribution of the IL-10 -592A/C genotypes (AA, AC, and CC) was 46.34%, 41.46%, and 12.20% in the NCF group, and 66.51%, 28.71%, and 4.78% in SCF subjects, respectively (P = 0.0280). The frequency of the A allele in the SCF group was significantly higher than that in the NCF group (80.86% vs. 67.07%, P = 0.0054). Compared with the CC genotype, the AA genotype had increased risk of SCF in both unadjusted and adjusted analyses. In SCF patients, the average serum IL-10 levels in AA genotype were statistically lower than in AC + CC genotype (P = 0.0000). These findings suggest that IL-10 -592A/C polymorphism is associated with SCF and the A allele has increased risk for SCF in Han Chinese. PMID:26097597

  5. Resonant AC power system proof-of-concept test program, volume 2, appendix 1

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This report contains two volumes. The main text (Volume 1) summarizes the tests results and gives a detailed discussion of the response of three early, first generation configurations of ac power system IRAD breadboards to the contracted tests imposed on them. It explains photographs, measurements, and data calculations, as well as any observed anomalies or lessons learned. This volume (No 2, Appendix 1, Test Results and Data), published under separate cover, includes all of the data taken on the 1.0 kW single-phase; 5.0 kW three-phase; and 25.0-kW three-phase system breadboards. The format of this data is raw, i.e., it is a direct copy of the data sheets for the test data notebook.

  6. Development and Testing of Automatically Generated ACS Flight Software for the MAP Spacecraft

    NASA Technical Reports Server (NTRS)

    ODonnell, James R., Jr.; McComas, David C.; Andrews, Stephen F.

    1998-01-01

    By integrating the attitude determination and control system (ACS) analysis and design, flight software development, and flight software testing processes, it is possible to improve the overall spacecraft development cycle, as well as allow for more thorough software testing. One of the ways to achieve this integration is to use code-generation tools to automatically generate components of the ACS flight software directly from a high-fidelity (HiFi) simulation. In the development of the Microwave Anisotropy Probe (MAP) spacecraft, currently underway at the NASA Goddard Space Flight Center, approximately 1/3 of the ACS flight software was automatically generated. In this paper, we will examine each phase of the ACS subsystem and flight software design life cycle: analysis, design, and testing. In the analysis phase, we scoped how much software we would automatically generate and created the initial interface. The design phase included parallel development of the HiFi simulation and the hand-coded flight software components. Everything came together in the test phase, in which the flight software was tested, using results from the HiFi simulation as one of the bases of comparison for testing. Because parts of the spacecraft HiFi simulation were converted into flight software, more care needed to be put into its development and configuration control to support both the HiFi simulation and flight software. The components of the HiFi simulation from which code was generated needed to be designed based on the fact that they would become flight software. This process involved such considerations as protecting against mathematical exceptions, using acceptable module and parameter naming conventions, and using an input/output interface compatible with the rest of the flight software. Maintaining good configuration control was an issue for the HiFi simulation and the flight software, and a way to track the two systems was devised. Finally, an integrated test approach was

  7. Characterization of Flow Bench Engine Testing

    NASA Astrophysics Data System (ADS)

    Voris, Alex; Riley, Lauren; Puzinauskas, Paul

    2015-11-01

    This project was an attempt at characterizing particle image velocimetry (PIV) and swirl-meter test procedures. The flow direction and PIV seeding were evaluated for in-cylinder steady state flow of a spark ignition engine. For PIV seeding, both wet and dry options were tested. The dry particles tested were baby powder, glass particulate, and titanium dioxide. The wet particles tested were fogs created with olive oil, vegetable oil, DEHS, and silicon oil. The seeding was evaluated at 0.1 and 0.25 Lift/Diameter and at cylinder pressures of 10, 25 and 40 inches of H2O. PIV results were evaluated through visual and fluid momentum comparisons. Seeding particles were also evaluated based on particle size and cost. It was found that baby powder and glass particulate were the most effective seeding options for the current setup. The oil fogs and titanium dioxide were found to deposit very quickly on the mock cylinder and obscure the motion of the particles. Based on initial calculations and flow measurements, the flow direction should have a negligible impact on PIV and swirl-meter results. The characterizations found in this project will be used in future engine research examining the effects of intake port geometry on in-cylinder fluid motion and exhaust gas recirculation tolerances. Thanks to NSF site grant #1358991.

  8. Resource Prospector Propulsion System Cold Flow Testing

    NASA Technical Reports Server (NTRS)

    Williams, Hunter; Holt, Kim; Addona, Brad; Trinh, Huu

    2015-01-01

    Resource Prospector (RP) is a NASA mission being led by NASA Ames Research Center with current plans to deliver a scientific payload package aboard a rover to the lunar surface. As part of an early risk reduction activity, Marshall Space Flight Center (MSFC) and Johnson Space Flight Center (JSC) have jointly developed a government-version concept of a lunar lander for the mission. The spacecraft consists of two parts, the lander and the rover which carries the scientific instruments. The lander holds the rover during launch, cruise, and landing on the surface. Following terminal descent and landing the lander portion of the spacecraft become dormant after the rover embarks on the science mission. The lander will be equipped with a propulsion system for lunar descent and landing, as well as trajectory correction and attitude control maneuvers during transit to the moon. Hypergolic propellants monomethyl hydrazine and nitrogen tetroxide will be used to fuel sixteen 70-lbf descent thrusters and twelve 5-lbf attitude control thrusters. A total of four metal-diaphragm tanks, two per propellant, will be used along with a high-pressure composite-overwrapped pressure vessel for the helium pressurant gas. Many of the major propulsion system components are heritage missile hardware obtained by NASA from the Air Force. In parallel with the flight system design activities, a simulated propulsion system based on flight drawings was built for conducting a series of water flow tests to characterize the transient fluid flow of the propulsion system feed lines and to verify the critical operation modes such as system priming, waterhammer, and crucial mission duty cycles. The primary objective of the cold flow testing was to simulate the RP propulsion system fluid flow operation through water flow testing and to obtain data for anchoring analytical models. The models will be used to predict the transient and steady state flow behaviors in the actual flight operations. All design and

  9. SSME hot gas manifold flow comparison test

    NASA Technical Reports Server (NTRS)

    Cox, G. B., Jr.; Dill, C. C.

    1988-01-01

    An account is given of the High Pressure Fuel Turbopump (HPFT) component of NASA's Alternate Turbopump Development effort, which is aimed at the proper aerodynamic integration of the current Phase II three-duct SSME Hot Gas Manifold (HGM) and the future 'Phase II-plus' two-duct HGM. Half-scale water flow tests of both HGM geometries were conducted to provide initial design data for the HPFT. The results reveal flowfield results and furnish insight into the performance differences between the two HGM flowpaths. Proper design of the HPFT can potentially secure significant flow improvements in either HGM configuration.

  10. System for conveniently providing load testing termination of an AC power source having at least one battery

    NASA Astrophysics Data System (ADS)

    Morell, Wilbert J., III

    1995-05-01

    An AC uninterruptible power source is disclosed that provides multiphase power output signals for actual use and a selectable single phase power output signal for use in testing. The AC uninterruptible power source further comprises at least one battery. The single phase output signal is connected to a dummy load by means of a power switch of the break before make type. The invention further includes the dummy load as preferably having metering capabilities to measure the frequency, current, and voltage parameters of the single phase output signal. The arrangement of the present invention allows for the single phase output to be mated to the dummy load without the need of removing input power to the AC uninterruptible power source so as to reduce, or even eliminate, transient caused failures to the AC uninterruptible power source and to its sensitive load equipment which the power source services.

  11. A system for conveniently providing load testing termination of an AC power source having at least one battery

    NASA Astrophysics Data System (ADS)

    Morrell, Wilbert J., III

    1994-10-01

    An AC uninterruptible power source is disclosed that provides multi-phase power output signals for actual use and a selectable single phase power output signal for use in testing. The AC uninterruptible power source further comprises at least one battery. The single phase output signal is connected to a dummy load by means of a power switch of the break-before-make type. The invention further includes the dummy load as preferably having metering capabilities to measure the frequency, current, and voltage parameters of the single phase output signal. The arrangement of the present invention allows for the single phase output to be mated to the dummy load without the need of removing input power to the AC uninterruptible power source so as to reduce, or even eliminate, transient caused failures to the AC uninterruptible power source and to its sensitive load equipment which the power source services.

  12. Wing Leading Edge Joint Laminar Flow Tests

    NASA Technical Reports Server (NTRS)

    Drake, Aaron; Westphal, Russell V.; Zuniga, Fanny A.; Kennelly, Robert A., Jr.; Koga, Dennis J.

    1996-01-01

    An F-104G aircraft at NASA's Dryden Flight Research Center has been equipped with a specially designed and instrumented test fixture to simulate surface imperfections of the type likely to be present near the leading edge on the wings of some laminar flow aircraft. The simulated imperfections consisted of five combinations of spanwise steps and gaps of various sizes. The unswept fixture yielded a pressure distribution similar to that of some laminar flow airfoils. The experiment was conducted at cruise conditions typical for business-jets and light transports: Mach numbers were in the range 0.5-0.8, and unit Reynolds numbers were 1.5-2.5 million per foot. Skin friction measurements indicated that laminar flow was often maintained for some distance downstream of the surface imperfections. Further work is needed to more precisely define transition location and to extend the experiments to swept-wing conditions and a broader range of imperfection geometries.

  13. Test Results of the AC Field Measurements of Fermilab Booster Corrector Magnets

    SciTech Connect

    DiMarco, E.Joseph; Harding, D.J.; Kashikhin, V.S.; Kotelnikov, S.K.; Lamm, M.J.; Makulski, A.; Nehring, R.; Orris, D.F.; Schlabach, P.; Sylvester, C.; Tartaglia, Michael Albert; /Fermilab

    2008-06-25

    Multi-element corrector magnets are being produced at Fermilab that enable correction of orbits and tunes through the entire cycle of the Booster, not just at injection. The corrector package includes six different corrector elements--normal and skew orientations of dipole, quadrupole, and sextupole--each independently powered. The magnets have been tested during typical AC ramping cycles at 15Hz using a fixed coil system to measure the dynamic field strength and field quality. The fixed coil is comprised of an array of inductive pick-up coils around the perimeter of a cylinder which are sampled simultaneously at 100 kHz with 24-bit ADC's. The performance of the measurement system and a summary of the field results are presented and discussed.

  14. Sultan - forced flow, high field test facility

    SciTech Connect

    Horvath, I.; Vecsey, G.; Weymuth, P.; Zellweger, J.

    1981-09-01

    Three European laboratories: CNEN (Frascati, I) ECN (Petten, NL) and SIN (Villigen, CH) decided to coordinate their development efforts and to install a common high field forced flow test facility at Villigen Switzerland. The test facility SULTAN (Supraleiter Testanlage) is presently under construction. As a first step, an 8T/1m bore solenoid with cryogenic periphery will be ready in 1981. The cryogenic system, data acquisition system and power supplies which are contributed by SIN are described. Experimental feasibilities, including cooling, and instrumentation are reviewed. Progress of components and facility construction is described. Planned extension of the background field up to 12T by insert coils is outlined. 5 refs.

  15. Scaled Rocket Testing in Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Dufrene, Aaron; MacLean, Matthew; Carr, Zakary; Parker, Ron; Holden, Michael; Mehta, Manish

    2015-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was strongly based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Detailed base heating results are outside of the scope of the current work, rather test methodology and techniques are presented along with broader applicability toward scaled rocket testing in supersonic and hypersonic flow.

  16. The effect of heat treatment and test parameters on the aqueous stress corrosion cracking of D6AC steel

    NASA Technical Reports Server (NTRS)

    Gilbreath, W. P.; Adamson, M. J.

    1974-01-01

    The crack growth behavior of D6AC steel as a function of stress intensity, stress and corrosion history and test technique, under sustained load in natural seawater, 3.3 percent NaCl solution, distilled water, and high humidity air was investigated. Reported investigations of D6AC were considered with emphasis on thermal treatment, specimen configuration, fracture toughness, crack-growth rates, initiation period, threshold, and the extension of corrosion fatigue data to sustained load conditions. Stress history effects were found to be most important in that they controlled incubation period, initial crack growth rates, and apparent threshold.

  17. AC Clean Fog tests on non-ceramic insulating materials and a comparison with porcelain

    SciTech Connect

    De La O, A.; Gorur, R.S.; Chang, J. . Dept. of Electrical Engineering)

    1994-10-01

    AC Clean Fog tests were performed on non-ceramic materials used for outdoor high voltage insulators, namely, Room and High Temperature Vulcanizing (RTV and HTV) silicone rubber, and ethylene propylene rubber (EPR), with porcelain used as the reference. The steam input rate was varied upwards from the value standardized for porcelain insulators. Results indicate that higher steam input rates produce a significant reduction in the flashover voltage of silicone rubber family materials, although it is always higher than that obtained for EPR and porcelain. For EPR, the reduction is less and is similar to that established for porcelain. The mechanisms involved have been examined. The trend in the results is found to be consistent for different formulations and insulator geometries of the generic polymer (e.g. silicone rubber, EPR) evaluated. A new, simple method for consistently applying uniform contamination on silicone rubber (both RTV and HTV) is described, without the use of extensive physical or chemical treatments, or prior conditioning by dry band arcing.

  18. Air flow testing on aerodynamic truck

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This photograph illustrates a standard passenger van modified at the Dryden Flight Research Center to investigate the aerodynamics of trucks. The resulting vehicle--re-fashioned with sheet metal--resembled a motor home, with rounded vertical corners on the vehicle's front and rear sections. For subsequent tests, researchers installed a 'boat tail' structure, shown in the photograph. During a decade spanning the 1970s and 1980s, Dryden researchers conducted tests to determine the extent to which adjustments in the shape of trucks reduced aerodynamic drag and improved efficiency. During the tests, the vehicle's sides were fitted with tufts, or strings, that showed air flow. The investigators concluded that rounding the vertical corners front and rear reduced drag by 40 percent, yet decreased the vehicle's internal volume by only 1.3 percent. Rounding both the vertical and horizontal corners cut drag by 54 percent, resulting in a three percent loss of internal volume. A second group of tests added a faired underbody and a boat tail, the latter feature resulting in drag reduction of about 15 percent.

  19. Here are considerations in evaluating Russian flow tests, reservoir performance

    SciTech Connect

    Krug, J.A. ); Connelly, W. )

    1992-12-28

    Flow test data contain some of the most important information for evaluation of a field. As part of the Russian evaluation process, research wells are extensively tested. Three types of well tests are conducted: drillstem tests, production flow test (if the well flows to the surface), and rising head test (if the well will not flow to the surface). Drillstem tests are run in the open hole across potential pay zones. After casing is run, wells are flow tested with multiple-rate tests, and the bottom hole pressures are recorded during the build-up periods. Results of the tests are summarized in test reports, on net pay maps, and on logs. The results from these tests include reservoir pressure, reservoir temperature, formation permeability, productivity index, and damage ratio. This paper reports that this information provides the basis for estimating production capacities and future reservoirs.

  20. Optimization of the AC-gradient method for velocity profile measurement and application to slow flow

    NASA Astrophysics Data System (ADS)

    Kartäusch, Ralf; Helluy, Xavier; Jakob, Peter Michael; Fidler, Florian

    2014-11-01

    This work presents a spectroscopic method to measure slow flow. Within a single shot the velocity distribution is acquired. This allows distinguishing rapidly between single velocities within the sampled volume with a high sensitivity. The technique is based on signal acquisition in the presence of a periodic gradient and a train of refocussing RF pulses. The theoretical model for trapezoidal bipolar pulse shaped gradients under consideration of diffusion and the outflow effect is introduced. A phase correction technique is presented that improves the spectral accuracy. Therefore, flow phantom measurements are used to validate the new sequence and the simulation based on the theoretical model. It was demonstrated that accurate parabolic flow profiles can be acquired and flow variations below 200 μm/s can be detected. Three post-processing methods that eliminate static background signal are also presented for applications in which static background signal dominates. Finally, this technique is applied to flow measurement of a small alder tree demonstrating a typical application of in vivo plant measurements.

  1. Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters

    NASA Technical Reports Server (NTRS)

    Jentink, Henk W.; Bogue, Rodney K.

    2005-01-01

    Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.

  2. Counter-Flow Cooling Tower Test Cell

    NASA Astrophysics Data System (ADS)

    Dvořák, Lukáš; Nožička, Jiří

    2014-03-01

    The article contains a design of a functional experimental model of a cross-flow mechanical draft cooling tower and the results and outcomes of measurements. This device is primarily used for measuring performance characteristics of cooling fills, but with a simple rebuild, it can be used for measuring other thermodynamic processes that take part in so-called wet cooling. The main advantages of the particular test cell lie in the accuracy, size, and the possibility of changing the water distribution level. This feature is very useful for measurements of fills of different heights without the influence of the spray and rain zone. The functionality of this test cell has been verified experimentally during assembly, and data from the measurement of common film cooling fills have been compared against the results taken from another experimental line. For the purpose of evaluating the data gathered, computational scripts were created in the MATLAB numerical computing environment. The first script is for exact calculation of the thermal balance of the model, and the second is for determining Merkel's number via Chebyshev's method.

  3. Simulation of fluid flow induced by opposing ac magnetic fields in a continuous casting mold

    SciTech Connect

    Chang, F.C.; Hull, J.R.; Beitelman, L.

    1995-07-01

    A numerical simulation was performed for a novel electromagnetic stirring system employing two rotating magnetic fields. The system controls stirring flow in the meniscus region of a continuous casting mold independently from the stirring induced within the remaining volume of the mold by a main electromagnetic stirrer (M-EMS). This control is achieved by applying to the meniscus region an auxiliary electromagnetic field whose direction of rotation is opposite to that of the main magnetic field produced by the M-EMS. The model computes values and spatial distributions of electromagnetic parameters and fluid flow in the stirred pools of mercury in cylindrical and square geometries. Also predicted are the relationships between electromagnetics and fluid flows pertinent to a dynamic equilibrium of the opposing stirring swirls in the meniscus region. Results of the numerical simulation compared well with measurements obtained from experiments with mercury pools.

  4. 46 CFR 162.018-7 - Flow rating tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Safety Relief Valves, Liquefied Compressed Gas § 162.018-7 Flow rating tests. (a) Flow rating of valves shall be conducted in accordance with UG-131 of section VIII of... 46 Shipping 6 2010-10-01 2010-10-01 false Flow rating tests. 162.018-7 Section 162.018-7...

  5. 46 CFR 162.018-7 - Flow rating tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Safety Relief Valves, Liquefied Compressed Gas § 162.018-7 Flow rating tests. (a) Flow rating of valves shall be conducted in accordance with UG-131 of section VIII of... 46 Shipping 6 2011-10-01 2011-10-01 false Flow rating tests. 162.018-7 Section 162.018-7...

  6. Max Launch Abort System (MLAS) Pad Abort Test Vehicle (PATV) II Attitude Control System (ACS) Integration and Pressurization Subsystem Dynamic Random Vibration Analysis

    NASA Technical Reports Server (NTRS)

    Ekrami, Yasamin; Cook, Joseph S.

    2011-01-01

    In order to mitigate catastrophic failures on future generation space vehicles, engineers at the National Aeronautics and Space Administration have begun to integrate a novel crew abort systems that could pull a crew module away in case of an emergency at the launch pad or during ascent. The Max Launch Abort System (MLAS) is a recent test vehicle that was designed as an alternative to the baseline Orion Launch Abort System (LAS) to demonstrate the performance of a "tower-less" LAS configuration under abort conditions. The MLAS II test vehicle will execute a propulsive coast stabilization maneuver during abort to control the vehicles trajectory and thrust. To accomplish this, the spacecraft will integrate an Attitude Control System (ACS) with eight hypergolic monomethyl hydrazine liquid propulsion engines that are capable of operating in a quick pulsing mode. Two main elements of the ACS include a propellant distribution subsystem and a pressurization subsystem to regulate the flow of pressurized gas to the propellant tanks and the engines. The CAD assembly of the Attitude Control System (ACS) was configured and integrated into the Launch Abort Vehicle (LAV) design. A dynamic random vibration analysis was conducted on the Main Propulsion System (MPS) helium pressurization panels to assess the response of the panel and its components under increased gravitational acceleration loads during flight. The results indicated that the panels fundamental and natural frequencies were farther from the maximum Acceleration Spectral Density (ASD) vibrations which were in the range of 150-300 Hz. These values will direct how the components will be packaged in the vehicle to reduce the effects high gravitational loads.

  7. Tests Of Shear-Flow Model For Acoustic Impedance

    NASA Technical Reports Server (NTRS)

    Parrot, Tony L.; Watson, Willie R.; Jones, Michael G.

    1992-01-01

    Tests described in report conducted to validate two-dimensional shear-flow analytical model for determination of acoustic impedance of acoustic liner in grazing-incidence, grazing-flow environment by use of infinite-waveguide method. Tests successful for both upstream and downstream propagations. Work has potential for utility in testing of engine ducts in commercial aircraft.

  8. Road load simulator tests of the Gould Phase I functional model silicon controlled rectifier ac motor controller for electric vehicles

    SciTech Connect

    Gourash, F.

    1984-02-01

    This report presents the test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.

  9. Road load simulator tests of the Gould phase 1 functional model silicon controlled rectifier ac motor controller for electric vehicles

    NASA Technical Reports Server (NTRS)

    Gourash, F.

    1984-01-01

    The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.

  10. Analysis of Flow Angularity Repeatability Tests in the NTF

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J.

    2006-01-01

    An extensive data base of flow angularity repeatability measurements from four NTF check standard model tests is analyzed for statistical consistency and to characterize the results for prediction of angle-of-attack uncertainty for customer tests. A procedure for quality assurance for flow angularity measurements during customer tests is also presented. The efficacy of the procedure is tested using results from a customer test.

  11. Oscillating-flow regenerator test rig

    NASA Technical Reports Server (NTRS)

    Wood, J. G.; Gedeon, D. R.

    1994-01-01

    This report summarizes work performed in setting up and performing tests on a regenerator test rig. An earlier status report presented test results, together with heat transfer correlations, for four regenerator samples (two woven screen samples and two felt metal samples). Lessons learned from this testing led to improvements to the experimental setup, mainly instrumentation as well as to the test procedure. Given funding and time constraints for this project it was decided to complete as much testing as possible while the rig was set up and operational, and to forego final data reduction and analysis until later. Additional testing was performed on several of the previously tested samples as well an on five newly fabricated samples. The following report is a summary of the work performed at OU, with many of the final test results included in raw data form.

  12. The equilibrium geometry of A@C60: A test case for conventional density functional theory

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Ai, Yuejie; Song, Xiuneng; Wang, Chuankui; Luo, Yi

    2014-01-01

    Potential energy surfaces (PESs) along the reaction pathway towards the center of CC bond between two six membered rings for ten different endohedral fullerenes A@C60 (A = H, C, O, S, N, P, He, Ne, Ar, Kr) have been studied by density functional theory (DFT) and Hartree-Fock (HF) method. The results show that no suitable method can consistently describe the interaction between atom A and carbon cage. The dispersion corrected DFT methods fail to describe the equilibrium geometry and PES of the complexes with light atoms. Nevertheless, the inclusion of the dispersion stabilizes the system as reflected by interaction energies (IEs) between atom A and C60.

  13. Oscillating flow loss test results in Stirling engine heat exchangers

    NASA Technical Reports Server (NTRS)

    Koester, G.; Howell, S.; Wood, G.; Miller, E.; Gedeon, D.

    1990-01-01

    The results are presented for a test program designed to generate a database of oscillating flow loss information that is applicable to Stirling engine heat exchangers. The tests were performed on heater/cooler tubes of various lengths and entrance/exit configurations, on stacked and sintered screen regenerators of various wire diameters and on Brunswick and Metex random fiber regenerators. The test results were performed over a range of oscillating flow parameters consistent with Stirling engine heat exchanger experience. The tests were performed on the Sunpower oscillating flow loss rig which is based on a variable stroke and variable frequency linear drive motor. In general, the results are presented by comparing the measured oscillating flow losses to the calculated flow losses. The calculated losses are based on the cycle integration of steady flow friction factors and entrance/exit loss coefficients.

  14. Capillary flow solderability test for printed wiring boards

    SciTech Connect

    Hosking, F.M.; Yost, F.G.; Hernandez, C.L.; Sackinger, S.J.

    1994-04-01

    This report describes a new technique for evaluating capillary flow solderability on printed circuit boards. The test involves the flow of molten solder from a pad onto different-sized conductor lines. It simulates the spreading dynamics of either plated-through-hole (PTH) or surface mount technology (SMT) soldering. A standard procedure has been developed for the test. Preliminary experiments were conducted and the results demonstrate test feasibility. Test procedures and results are presented in this report.

  15. Label-free whole blood cell differentiation based on multiple frequency AC impedance and light scattering analysis in a micro flow cytometer.

    PubMed

    Simon, Peter; Frankowski, Marcin; Bock, Nicole; Neukammer, Jörg

    2016-06-21

    We developed a microfluidic sensor for label-free flow cytometric cell differentiation by combined multiple AC electrical impedance and light scattering analysis. The measured signals are correlated to cell volume, membrane capacity and optical properties of single cells. For an improved signal to noise ratio, the microfluidic sensor incorporates two electrode pairs for differential impedance detection. One-dimensional sheath flow focusing was implemented, which allows single particle analysis at kHz count rates. Various monodisperse particles and differentiation of leukocytes in haemolysed samples served to benchmark the microdevice applying combined AC impedance and side scatter analyses. In what follows, we demonstrate that AC impedance measurements at selected frequencies allow label-free discrimination of platelets, erythrocytes, monocytes, granulocytes and lymphocytes in whole blood samples involving dilution only. Immunofluorescence staining was applied to validate the results of the label-free cell analysis. Reliable differentiation and enumeration of cells in whole blood by AC impedance detection have the potential to support medical diagnosis for patients with haemolysis resistant erythrocytes or abnormally sensitive leucocytes, i.e. for patients suffering from anaemia or leukaemia.

  16. NASA Flight Tests Explore Supersonic Laminar Flow

    NASA Video Gallery

    In partnership with Aerion Corporation of Reno, Nevada, NASA's Dryden Flight Research Center’s tested supersonic airflow over a small experimental airfoil design on its F-15B Test Bed aircraft du...

  17. Assessment of the National Transonic Facility for Laminar Flow Testing

    NASA Technical Reports Server (NTRS)

    Crouch, Jeffrey D.; Sutanto, Mary I.; Witkowski, David P.; Watkins, A. Neal; Rivers, Melissa B.; Campbell, Richard L.

    2010-01-01

    A transonic wing, designed to accentuate key transition physics, is tested at cryogenic conditions at the National Transonic Facility at NASA Langley. The collaborative test between Boeing and NASA is aimed at assessing the facility for high-Reynolds number testing of configurations with significant regions of laminar flow. The test shows a unit Reynolds number upper limit of 26 M/ft for achieving natural transition. At higher Reynolds numbers turbulent wedges emanating from the leading edge bypass the natural transition process and destroy the laminar flow. At lower Reynolds numbers, the transition location is well correlated with the Tollmien-Schlichting-wave N-factor. The low-Reynolds number results suggest that the flow quality is acceptable for laminar flow testing if the loss of laminar flow due to bypass transition can be avoided.

  18. Results of no-flow rotary drill bit comparison testing

    SciTech Connect

    WITWER, K.S.

    1998-11-30

    This document describes the results of testing of a newer rotary sampling bit and sampler insert called the No-Flow System. This No-Flow System was tested side by side against the currently used rotary bit and sampler insert, called the Standard System. The two systems were tested using several ''hard to sample'' granular non-hazardous simulants to determine which could provide greater sample recovery. The No-Flow System measurably outperformed the Standard System in each of the tested simulants.

  19. Separate Flow Nozzle Test Status Meeting

    NASA Technical Reports Server (NTRS)

    Saiyed, Naseem H. (Editor)

    2000-01-01

    NASA Glenn, in partnership with US industry, completed an exhaustive experimental study on jet noise reduction from separate flow nozzle exhaust systems. The study developed a data base on various bypass ratio nozzles, screened quietest configurations and acquired pertinent data for predicting the plume behavior and ultimately its corresponding jet noise. Several exhaust system configurations provided over 2.5 EPNdB jet noise reduction at take-off power. These data were disseminated to US aerospace industry in a conference hosted by NASA GRC whose proceedings are shown in this report.

  20. Test flow disturbances in an expansion tube

    NASA Technical Reports Server (NTRS)

    Paull, A.; Stalker, R. J.

    1992-01-01

    The operation of an expansion tube is investigated theoretically with emphasis on the factors that have limited the utility of the expansion tube in the past. It is shown why the window of steady test conditions is narrow and how this window can be expanded so that these facilities can be used in a variety of hypersonic research. The theoretical predictions are supported by centerline Pitot pressure measurements using air as the test gas.

  1. Flow Simulation of Solid Rocket Motors. 1; Injection Induced Water-Flow Tests from Porous Media

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Yeh, Y. P.; Smith, A. W.; Heaman, J. P.

    1999-01-01

    Prior to selecting a proper porous material for use in simulating the internal port flow of a solid rocket motor (SRM), in cold-flow testing, the flow emerging from porous materials is experimentally investigated. The injection-flow emerging from a porous matrix always exhibits a lumpy velocity profile that is spatially stable and affects the development of the longitudinal port flow. This flow instability, termed pseudoturbulence, is an inherent signature of the porous matrix and is found to generally increase with the wall porosity and with the injection flow rate. Visualization studies further show that the flow from porous walls made from shaving-type material (sintered stainless-steel) exhibits strong recirculation zones that are conspicuously absent in walls made from nodular or spherical material (sintered bronze). Detailed flow visualization observations and hot-film measurements are reported from tests of injection-flow and a coupled cross-flow from different porous wall materials. Based on the experimental data, discussion is provided on the choice of suitable material for SRM model testing while addressing the consequences and shortcomings from such a test.

  2. Flight tests of a supersonic natural laminar flow airfoil

    NASA Astrophysics Data System (ADS)

    Frederick, M. A.; Banks, D. W.; Garzon, G. A.; Matisheck, J. R.

    2015-06-01

    A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80 inch (203 cm) chord and 40 inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The test article was designed with a leading edge sweep of effectively 0° to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate that the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, was similar to that of subsonic natural laminar flow wings.

  3. Flight Tests of a Supersonic Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Frederick, Michael A.; Banks, Daniel W.; Garzon, G. A.; Matisheck, J. R.

    2015-01-01

    A flight-test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80-inch (203 cm) chord and 40-inch (102 cm) span article mounted on the centerline store location of an F-15B airplane (McDonnell Douglas Corporation, now The Boeing Company, Chicago, Illinois). The test article was designed with a leading edge sweep of effectively 0 deg to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2-D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, were similar to that of subsonic natural laminar flow wings.

  4. Flow tests of the Willis Hulin well

    SciTech Connect

    Randolph, P.L.; Hayden, C.G.; Rogers, L.A.

    1992-02-01

    The Hulin well was tested between 20,100 and 20,700 feet down in layers of brine-saturated clean sand with occasional intervening layers of shale. The characteristics of the brine and gas were determined in this interval and an initial determination of the reservoir properties were made.

  5. 46 CFR 162.018-7 - Flow rating tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Safety Relief Valves, Liquefied Compressed Gas § 162.018-7 Flow rating tests. (a) Flow rating of valves shall be conducted in accordance with UG-131 of section VIII of... the Commanding Officer, USCG Marine Safety Center. (b)...

  6. 46 CFR 162.018-7 - Flow rating tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Safety Relief Valves, Liquefied Compressed Gas § 162.018-7 Flow rating tests. (a) Flow rating of valves shall be conducted in accordance with UG-131 of section VIII of... the Commanding Officer, USCG Marine Safety Center. (b)...

  7. 46 CFR 162.018-7 - Flow rating tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Safety Relief Valves, Liquefied Compressed Gas § 162.018-7 Flow rating tests. (a) Flow rating of valves shall be conducted in accordance with UG-131 of section VIII of... the Commanding Officer, USCG Marine Safety Center. (b)...

  8. Ambient Test Rig (ATR) flow studies: A laminar flow, reduced entrainment electrostatic precipitator

    SciTech Connect

    Not Available

    1988-10-01

    Results of flow testing on a Reduced Entrainment Precipitator Ambient Test Rig are presented. The Reduced Entrainment Precipitator concept involves drawing a portion of the main precipitator flow through hollow, porous collecting plates. The purposes of flow through porous collecting plates ( side flow'') are to provide a dust layer clamping force, and to reduce turbulence with the precipitator. Achievement of these goals should reduce re-entrainment, and result in increased precipitator efficiency. The increased efficiency should be especially evident at higher precipitator main flow velocities. Flow tests conducted included pilot tube velocity traverses, smoke (turbulence) visualization, and measurements of turbulence and velocity with a (fast-response) hot-wire anemometer. 12 refs., 13 figs.

  9. Flight Tests of a Supersonic Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Frederick, M. A.; Banks, D. W.; Garzon, G. A.; Matisheck, J. R.

    2014-01-01

    A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80-inch (203 cm) chord and 40-inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The wing was designed with a leading edge sweep of effectively 0 deg to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2-D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, were similar to that of subsonic natural laminar flow wings.

  10. 40 CFR 1066.845 - AC17 air conditioning efficiency test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... voluntary procedure for measuring the net impact of air conditioner operation on CO2 emissions. See 40 CFR... solar heating is disabled for certain test intervals as described in this section. (d) Interior air... tests according to 40 CFR 86.132-00(a) through (g). If the vehicle has been tested within the last...

  11. Composite rod insulators for ac power lines; Electrical performance of various designs at a coastal testing station

    SciTech Connect

    Houlgate, R.G.; Swift, D.A. )

    1990-10-01

    The electrical performance of thirty-six composite insulators - of four commercial types for each AC system level of 34.5 kV, 230 kV and 500 kV - has been determined at the CEGB insulator testing station, Brighton, England. The weathershed materials were epoxy-resin, ethylene propylene rubber and silicone rubber; half of the 230 kV insulators had no stress rings. Surface leakage current was recorded for surge levels of 25 mA, 150 mA and 500 mA; a special technique was developed to obtain the flashover statistics of the 500 kV insulators, thereby enabling performance of the composite insulator to be quantified relative to that of a string of cap and pin porcelain insulators of anti-fog design, the deterioration of the insulators was observed by making regular visual inspections. The practical consequences of the findings and the causes of the degradation are discussed.

  12. Private and Commercial Pilot; Heliocoptor. Flight Test Guide, Part 61 Revised, AC 61-59.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    This flight test guide assists the applicant and his instructor in preparing for the Private or Commercial Pilot Rotocraft Certificate with Helicopter Rating under Part 61 (revised) of Federal Aviation Regulations. It contains information and guidance concerning the pilot operations, procedures, and maneuvers relevant to the flight test required…

  13. Turbine Air-Flow Test Rig CFD Results for Test Matrix

    NASA Technical Reports Server (NTRS)

    Wilson, Josh

    2003-01-01

    This paper presents the Turbine Air-Flow Test (TAFT) rig computational fluid dynamics (CFD) results for test matrix. The topics include: 1) TAFT Background; 2) Design Point CFD; 3) TAFT Test Plan and Test Matrix; and 4) CFD of Test Points. This paper is in viewgraph form.

  14. AC magnetohydrodynamic microfluidic switch

    SciTech Connect

    Lemoff, A V; Lee, A P

    2000-03-02

    A microfluidic switch has been demonstrated using an AC Magnetohydrodynamic (MHD) pumping mechanism in which the Lorentz force is used to pump an electrolytic solution. By integrating two AC MHD pumps into different arms of a Y-shaped fluidic circuit, flow can be switched between the two arms. This type of switch can be used to produce complex fluidic routing, which may have multiple applications in {micro}TAS.

  15. Flammable gas interlock spoolpiece flow response test plan and procedure

    SciTech Connect

    Schneider, T.C., Fluor Daniel Hanford

    1997-02-13

    The purpose of this test plan and procedure is to test the Whittaker electrochemical cell and the Sierra Monitor Corp. flammable gas monitors in a simulated field flow configuration. The sensors are used on the Rotary Mode Core Sampling (RMCS) Flammable Gas Interlock (FGI), to detect flammable gases, including hydrogen and teminate the core sampling activity at a predetermined concentration level.

  16. Analytical flow/thermal modeling of combustion gas flows in Redesigned Solid Rocket Motor test joints

    NASA Technical Reports Server (NTRS)

    Woods, G. H.; Knox, E. C.; Pond, J. E.; Bacchus, D. L.; Hengel, J. E.

    1992-01-01

    A one-dimensional analytical tool, TOPAZ (Transient One-dimensional Pipe flow AnalyZer), was used to model the flow characteristics of hot combustion gases through Redesigned Solid Rocket Motor (RSRM) joints and to compute the resultant material surface temperatures and o-ring seal erosion of the joints. The capabilities of the analytical tool were validated with test data during the Seventy Pound Charge (SPC) motor test program. The predicted RSRM joint thermal response to ignition transients was compared with test data for full-scale motor tests. The one-dimensional analyzer is found to be an effective tool for simulating combustion gas flows in RSRM joints and for predicting flow and thermal properties.

  17. Flow tests of the Gladys McCall well

    SciTech Connect

    Randolph, P.L.; Hayden, C.G.; Rogers, L.A. )

    1992-04-01

    This report pulls together the data from all of the geopressured-geothermal field research conducted at the Gladys McCall well. The well produced geopressured brine containing dissolved natural gas from the Lower Miocene sands at a depth of 15,150 to 16,650 feet. More than 25 million barrels of brine and 727 million standard cubic feet of natural gas were produced in a series of flow tests between December 1982 and October 1987 at various brine flow rates up to 28,000 barrels per day. Initial short-term flow tests for the Number 9 Sand found the permeability to be 67 to 85 md (millidarcies) for a brine volume of 85 to 170 million barrels. Initial short-term flow tests for the Number 8 Sand found a permeability of 113 to 132 md for a reservoir volume of 430 to 550 million barrels of brine. The long-term flow and buildup test of the Number 8 Sand found that the high-permeability reservoir connected to the wellbore (measured by the short-term flow test) was connected to a much larger, low-permeability reservoir. Numerical simulation of the flow and buildup tests required this large connected reservoir to have a volume of about 8 billion barrels (two cubic miles of reservoir rock) with effective permeabilities in the range of 0.2 to 20 md. Calcium carbonate scale formation in the well tubing and separator equipment was a problem. During the first 2 years of production, scale formation was prevented in the surface equipment by injection of an inhibitor upstream of the choke. Starting in 1985, scale formation in the production tubing was successfully prevented by injecting inhibitor pills'' directly into the reservoir. Corrosion and/or erosion of surface piping and equipment, as well as disposal well tubing, was also significant.

  18. Hanford Tank Farms Waste Certification Flow Loop Test Plan

    SciTech Connect

    Bamberger, Judith A.; Meyer, Perry A.; Scott, Paul A.; Adkins, Harold E.; Wells, Beric E.; Blanchard, Jeremy; Denslow, Kayte M.; Greenwood, Margaret S.; Morgen, Gerald P.; Burns, Carolyn A.; Bontha, Jagannadha R.

    2010-01-01

    A future requirement of Hanford Tank Farm operations will involve transfer of wastes from double shell tanks to the Waste Treatment Plant. As the U.S. Department of Energy contractor for Tank Farm Operations, Washington River Protection Solutions anticipates the need to certify that waste transfers comply with contractual requirements. This test plan describes the approach for evaluating several instruments that have potential to detect the onset of flow stratification and critical suspension velocity. The testing will be conducted in an existing pipe loop in Pacific Northwest National Laboratory’s facility that is being modified to accommodate the testing of instruments over a range of simulated waste properties and flow conditions. The testing phases, test matrix and types of simulants needed and the range of testing conditions required to evaluate the instruments are described

  19. Comparing Recent Organizing Templates for Test Content between ACS Exams in General Chemistry and AP Chemistry

    ERIC Educational Resources Information Center

    Holme, Thomas

    2014-01-01

    Two different versions of "big ideas" rooted content maps have recently been published for general chemistry. As embodied in the content outline from the College Board, one of these maps is designed to guide curriculum development and testing for advanced placement (AP) chemistry. The Anchoring Concepts Content Map for general chemistry…

  20. Ground vibration test of the laminar flow control JStar airplane

    NASA Technical Reports Server (NTRS)

    Kehoe, M. W.; Cazier, F. W., Jr.; Ellison, J. F.

    1985-01-01

    A ground vibration test was conducted on a Lockheed JetStar airplane that had been modified for the purpose of conducting laminar flow control experiments. The test was performed prior to initial flight flutter tests. Both sine-dwell and single-point-random excitation methods were used. The data presented include frequency response functions and a comparison of mode frequencies and mode shapes from both methods.

  1. Mass-Flow-Meter Leak-Testing System

    NASA Technical Reports Server (NTRS)

    Sorensen, Eric B.; Polidori, Andre V.; Heman, Joe R.; Dresser, Holland L.; Hellum, John

    1996-01-01

    Improved leak-testing system incorporates mass-flow meter as primary sensor for measurement of leakage rate. System easier to use and more reliable and enables leak tests to be completed in less time. Produces test data more plentiful, more accurate, and better suited to leak detection and diagnosis. Operates over range of test conditions, including pressures from atmospheric to 1,000 psi, temperatures from 50 to 120 degrees F and volumes from less than 1 in.(sup3) to 22 in.(sup3). Sensitive enough to measure absorbed gas seeping from O-ring seals after test pressure released.

  2. Design verification and cold-flow modeling test report

    SciTech Connect

    Not Available

    1993-07-01

    This report presents a compilation of the following three test reports prepared by TRW for Alaska Industrial Development and Export Authority (AIDEA) as part of the Healy Clean Coal Project, Phase 1 Design of the TRW Combustor and Auxiliary Systems, which is co-sponsored by the Department of Energy under the Clean Coal Technology 3 Program: (1) Design Verification Test Report, dated April 1993, (2) Combustor Cold Flow Model Report, dated August 28, 1992, (3) Coal Feed System Cold Flow Model Report, October 28, 1992. In this compilation, these three reports are included in one volume consisting of three parts, and TRW proprietary information has been excluded.

  3. Flow Visualization of Liquid Hydrogen Line Chilldown Tests

    NASA Technical Reports Server (NTRS)

    Rame, Enrique; Hartwig, Jason W.; McQuillen John B.

    2014-01-01

    We present experimental measurements of wall and fluid temperature during chill-down tests of a warm cryogenic line with liquid hydrogen. Synchronized video and fluid temperature measurements are used to interpret stream temperature profiles versus time. When cold liquid hydrogen starts to flow into the warm line, a sequence of flow regimes, spanning from all-vapor at the outset to bubbly with continuum liquid at the end can be observed at a location far downstream of the cold inlet. In this paper we propose interpretations to the observed flow regimes and fluid temperature histories for two chilldown methods, viz. trickle (i.e. continuous) flow and pulse flow. Calculations of heat flux from the wall to the fluid versus wall temperature indicate the presence of the transition/nucleate boiling regimes only. The present tests, run at typical Reynolds numbers of approx O(10 (exp 5)), are in sharp contrast to similar tests conducted at lower Reynolds numbers where a well-defined film boiling region is observed.

  4. 40 CFR 86.162-00 - Approval of alternative air conditioning test simulations and descriptions of AC1 and AC2.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete Heavy-Duty Vehicles; Test... grains of water/pound of dry air. Paragraph (a) of this section discusses the procedure by which a... during a SC03 air conditioning test cycle while operating in an environmental test cell as described...

  5. Countercurrent Flow of Molten Glass and Air during Siphon Tests

    SciTech Connect

    Guerrero, H.N.

    2001-01-16

    Siphon tests of molten glass were performed to simulate potential drainage of a radioactive waste melter, the Defense Waste Processing Facility (DWPF) at the Savannah River Site. Glass is poured from the melter through a vertical downspout that is connected to the bottom of the melter through a riser. Large flow surges have the potential of completely filling the downspout and creating a siphon effect that has the potential for complete draining of the melter. Visual observations show the exiting glass stream starts as a single-phase pipe flow, constricting into a narrow glass stream. Then a half-spherical bubble forms at the exit of the downspout. The bubble grows, extending upwards into the downspout, while the liquid flows counter-currently to one side of the spout. Tests were performed to determine what are the spout geometry and glass properties that would be conducive to siphoning, conditions for terminating the siphon, and the total amount of glass drained.

  6. VERIFICATION TESTING OF WET-WEATHER FLOW TECHNOLOGIES

    EPA Science Inventory

    As part of the USEPA's ETV Program, the Wet-Weather Flow (WWF) Technologies Pilot Program verifies the performance of commercial-ready technologies by generating quality-assured data using test protocols developed with broad-based stakeholder input. The availability of a credible...

  7. Investigation of Spiral Bevel Gear Condition Indicator Validation Via AC-29-2C Using Damage Progression Tests

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.

    2014-01-01

    This report documents the results of spiral bevel gear rig tests performed under a NASA Space Act Agreement with the Federal Aviation Administration (FAA) to support validation and demonstration of rotorcraft Health and Usage Monitoring Systems (HUMS) for maintenance credits via FAA Advisory Circular (AC) 29-2C, Section MG-15, Airworthiness Approval of Rotorcraft (HUMS) (Ref. 1). The overarching goal of this work was to determine a method to validate condition indicators in the lab that better represent their response to faults in the field. Using existing in-service helicopter HUMS flight data from faulted spiral bevel gears as a "Case Study," to better understand the differences between both systems, and the availability of the NASA Glenn Spiral Bevel Gear Fatigue Rig, a plan was put in place to design, fabricate and test comparable gear sets with comparable failure modes within the constraints of the test rig. The research objectives of the rig tests were to evaluate the capability of detecting gear surface pitting fatigue and other generated failure modes on spiral bevel gear teeth using gear condition indicators currently used in fielded HUMS. Nineteen final design gear sets were tested. Tables were generated for each test, summarizing the failure modes observed on the gear teeth for each test during each inspection interval and color coded based on damage mode per inspection photos. Gear condition indicators (CI) Figure of Merit 4 (FM4), Root Mean Square (RMS), +/- 1 Sideband Index (SI1) and +/- 3 Sideband Index (SI3) were plotted along with rig operational parameters. Statistical tables of the means and standard deviations were calculated within inspection intervals for each CI. As testing progressed, it became clear that certain condition indicators were more sensitive to a specific component and failure mode. These tests were clustered together for further analysis. Maintenance actions during testing were also documented. Correlation coefficients were

  8. In vitro heart valve testing: steady versus pulsatile flow.

    PubMed

    Black, M M; Hose, D R; Lamb, C J; Lawford, P V; Ralph, S J

    1994-03-01

    The design of artificial heart valves has traditionally been based on the development of a prototype device which was then subjected to extensive laboratory testing in order to confirm its suitability for clinical use. In the past the in vitro assessment of a valve's performance was based principally on the measurement of parameters such as pressure difference, regurgitation and, more recently, energy losses. Such measurements can be defined as being at the 'macro' level and rarely show any clinically significant differences amongst currently available prostheses. The analytical approach to flow through heart valves has previously been hampered by difficulties experienced in solving the relevant equations of flow particularly in the case of pulsatile conditions. Computational techniques are now available which enable appropriate solutions to be obtained for these problems and consequently provide an opportunity for detailed examination of the 'micro' level of flow disturbances exhibited by the different valves. This present preliminary study is designed to illustrate the use of such an analytical approach to the flow through prosthetic valves. A single topic has been selected for this purpose which is the comparative value of steady versus pulsatile flow testing. A bileaflet valve was chosen for the analysis and a mathematical model of this valve in the aortic position of the Sheffield Pulse Duplicator was created. The theoretical analysis was carried out using a commercially available Computational Fluid Dynamics package, namely, FIDAP, on a SUN MICROSYSTEMS 10-30 workstation.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. National Fuel Cell Bus Program: Accelerated Testing Evaluation Report #2, Alameda-Contra Costa Transit District (AC Transit) and Appendices

    SciTech Connect

    Eudy, L.; Chandler, K.

    2010-06-01

    This is an evaluation of hydrogen fuel cell transit buses operating at AC Transit in revenue service since March 20, 2006, comparing similar diesel buses operating from the same depot. It covers November 2007 through February 2010. Results include implementation experience, fueling station operation, evaluation results at AC Transit (bus usage, availability, fuel economy, maintenance costs, and road calls), and a summary of achievements and challenges encountered during the demonstration.

  10. National Fuel Cell Bus Program: Accelerated Testing Evaluation Report and Appendices, Alameda-Contra Costa Transit District (AC Transit)

    SciTech Connect

    Chandler, K.; Eudy, L.

    2009-01-01

    This is an evaluation of hydrogen fuel cell transit buses operating at AC Transit in revenue service since March 20, 2006 compared to similar diesel buses operating from the same depot. This evaluation report includes results from November 2007 through October 2008. Evaluation results include implementation experience, fueling station operation, fuel cell bus operations at Golden Gate Transit, and evaluation results at AC Transit (bus usage, availability, fuel economy, maintenance costs, and roadcalls).

  11. Flow-Field Survey in the Test Region of the SR-71 Aircraft Test Bed Configuration

    NASA Technical Reports Server (NTRS)

    Mizukami, Masashi; Jones, Daniel; Weinstock, Vladimir D.

    2000-01-01

    A flat plate and faired pod have been mounted on a NASA SR-71A aircraft for use as a supersonic flight experiment test bed. A test article can be placed on the flat plate; the pod can contain supporting systems. A series of test flights has been conducted to validate this test bed configuration. Flight speeds to a maximum of Mach 3.0 have been attained. Steady-state sideslip maneuvers to a maximum of 2 deg have been conducted, and the flow field in the test region has been surveyed. Two total-pressure rakes, each with two flow-angle probes, have been placed in the expected vicinity of an experiment. Static-pressure measurements have been made on the flat plate. At subsonic and low supersonic speeds with no sideslip, the flow in the surveyed region is quite uniform. During sideslip maneuvers, localized flow distortions impinge on the test region. Aircraft sideslip does not produce a uniform sidewash over the test region. At speeds faster than Mach 1.5, variable-pressure distortions were observed in the test region. Boundary-layer thickness on the flat plate at the rake was less than 2.1 in. For future experiments, a more focused and detailed flow-field survey than this one would be desirable.

  12. Flow and diffusion of high-stakes test scores

    NASA Astrophysics Data System (ADS)

    Marder, M.; Bansal, D.

    2009-10-01

    We apply visualization and modeling methods for convective and diffusive flows to public school mathematics test scores from Texas. We obtain plots that show the most likely future and past scores of students, the effects of random processes such as guessing, and the rate at which students appear in and disappear from schools. We show that student outcomes depend strongly upon economic class, and identify the grade levels where flows of different groups diverge most strongly. Changing the effectiveness of instruction in one grade naturally leads to strongly nonlinear effects on student outcomes in subsequent grades.

  13. Cold Flow Plume Entrainment Test Final Report NTF Test Number 2456

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; McDaniels, David; Mishtawy, Jason; Ramachandran, Narayanan; Hammad, Khaled J.

    2005-01-01

    As part of the Space Shuttle Return to Flight (RTF) program, Marshall Space Flight Center (MSFC) performed computational fluid dynamics (CFD) analysis to define the velocity flowfields around the Shuttle stack at liftoff. These CFD predicted velocity flowfields were used in debris transport analysis (DTA). High speed flows such as plumes induce or 'entrain' mass from the surrounding environment. Previous work had shown that CFD analysis over-predicts plume induced flows. Therefore, the DTA would tend to 1) predict more debris impacts, and 2) the debris velocity (and kinetic energy) of those impacts would be too high. At a November, 2004 peer-review it was recommended that the Liftoff DTA team quantify the uncertainty in the DTA caused by the CFD's over prediction of plume induced flow. To do so, the Liftoff DTA team needed benchmark quality data for plume induced flow to quantify the CFD accuracy and its effect on the DTA. MSFC's Nozzle Test Facility (NTF) conducted the "Nozzle Induced Flows test, P#2456" to obtain experimental data for plume induced flows for nozzle flow exhausting into q quiescent freestream. Planning for the test began in December, 2004 and the experimental data was obtained in February and March of 2005. The funding for this test was provided by MSFC's Space Shuttle Propulsion Systems Integration and Engineering office.

  14. Measurements of Turbulent Flow Field in Separate Flow Nozzles with Enhanced Mixing Devices - Test Report

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2002-01-01

    As part of the Advanced Subsonic Technology Program, a series of experiments was conducted at NASA Glenn Research Center on the effect of mixing enhancement devices on the aeroacoustic performance of separate flow nozzles. Initial acoustic evaluations of the devices showed that they reduced jet noise significantly, while creating very little thrust loss. The explanation for the improvement required that turbulence measurements, namely single point mean and RMS statistics and two-point spatial correlations, be made to determine the change in the turbulence caused by the mixing enhancement devices that lead to the noise reduction. These measurements were made in the summer of 2000 in a test program called Separate Nozzle Flow Test 2000 (SFNT2K) supported by the Aeropropulsion Research Program at NASA Glenn Research Center. Given the hot high-speed flows representative of a contemporary bypass ratio 5 turbofan engine, unsteady flow field measurements required the use of an optical measurement method. To achieve the spatial correlations, the Particle Image Velocimetry technique was employed, acquiring high-density velocity maps of the flows from which the required statistics could be derived. This was the first successful use of this technique for such flows, and shows the utility of this technique for future experimental programs. The extensive statistics obtained were likewise unique and give great insight into the turbulence which produces noise and how the turbulence can be modified to reduce jet noise.

  15. Fluid flow measurements of Test Series A and B for the Small Scale Seal Performance Tests

    SciTech Connect

    Peterson, E.W.; Lagus, P.L.; Lie, K.

    1987-12-01

    The degree of waste isolation achieved by a repository seal system is dependent upon the fluid flow characteristics, or permeability, of the seals. In order to obtain meaningful, site-specific data on the performance of various possible seal system components, a series of in situ experiments called the Small Scale Seal Performance Tests (SSSPT) are being conducted at the Waste Isolation Pilot Plant (WIPP). This report contains the results of gas flow, tracer penetration, and brine flow tests conducted on concrete seals in vertical (Test Series A) and horizontal (Test Series B) configurations. The test objectives were to evaluate the seal performance and to determine if there existed scaling effects which could influence future SSSPT designs. 3 refs., 77 figs.

  16. Flap survey test of a combined surface blowing model: Flow measurements at static flow conditions

    NASA Technical Reports Server (NTRS)

    Fukushima, T.

    1978-01-01

    The Combined Surface Blowing (CSB) V/STOL lift/propulsion system consists of a blown flap system which deflects the exhaust from a turbojet engine over a system of flaps deployed at the trailing edge of the wing. Flow measurements consisting of velocity measurements using split film probes and total measure surveys using a miniature Kiel probe were made at control stations along the flap systems at two spanwise stations, the centerline of the nozzle and 60 percent of the nozzle span outboard of the centerline. Surface pressure measurements were made in the wing cove and the upper surface of the first flap element. The test showed a significant flow separation in the wing cove. The extent of the separation is so large that the flow into the first flap takes place only at the leading edge of the flap. The velocity profile measurements indicate that large spanwise (3 dimensional) flow may exist.

  17. Universal Verification Methodology Based Register Test Automation Flow.

    PubMed

    Woo, Jae Hun; Cho, Yong Kwan; Park, Sun Kyu

    2016-05-01

    In today's SoC design, the number of registers has been increased along with complexity of hardware blocks. Register validation is a time-consuming and error-pron task. Therefore, we need an efficient way to perform verification with less effort in shorter time. In this work, we suggest register test automation flow based UVM (Universal Verification Methodology). UVM provides a standard methodology, called a register model, to facilitate stimulus generation and functional checking of registers. However, it is not easy for designers to create register models for their functional blocks or integrate models in test-bench environment because it requires knowledge of SystemVerilog and UVM libraries. For the creation of register models, many commercial tools support a register model generation from register specification described in IP-XACT, but it is time-consuming to describe register specification in IP-XACT format. For easy creation of register model, we propose spreadsheet-based register template which is translated to IP-XACT description, from which register models can be easily generated using commercial tools. On the other hand, we also automate all the steps involved integrating test-bench and generating test-cases, so that designers may use register model without detailed knowledge of UVM or SystemVerilog. This automation flow involves generating and connecting test-bench components (e.g., driver, checker, bus adaptor, etc.) and writing test sequence for each type of register test-case. With the proposed flow, designers can save considerable amount of time to verify functionality of registers. PMID:27483924

  18. Analysis of Alcove 8/Niche 3 Flow and Transport Tests

    SciTech Connect

    H.H. Liu

    2006-09-01

    The purpose of this report is to document analyses of the Alcove 8/Niche 3 flow and transport tests, with a focus on the large-infiltration-plot tests and compare pre-test model predictions with the actual test observations. The tests involved infiltration that originated from the floor of Alcove 8 (located in the Enhanced Characterization of Repository Block (ECRB) Cross Drift) and observations of seepage and tracer transport at Niche 3 (located in the Main Drift of the Exploratory Studies Facility (ESF)). The test results are relevant to drift seepage and solute transport in the unsaturated zone (UZ) of Yucca Mountain. The main objective of this analysis was to evaluate the modeling approaches used and the importance of the matrix diffusion process by comparing simulation and actual test observations. The pre-test predictions for the large plot test were found to differ from the observations and the reasons for the differences were documented in this report to partly address CR 6783, which concerns unexpected test results. These unexpected results are discussed and assessed with respect to the current baseline unsaturated zone radionuclide transport model in Sections 6.2.4, 6.3.2, and 6.4.

  19. Jet-Surface Interaction Test: Flow Measurements Results

    NASA Technical Reports Server (NTRS)

    Brown, Cliff; Wernet, Mark

    2014-01-01

    Modern aircraft design often puts the engine exhaust in close proximity to the airframe surfaces. Aircraft noise prediction tools must continue to develop in order to meet the challenges these aircraft present. The Jet-Surface Interaction Tests have been conducted to provide a comprehensive quality set of experimental data suitable for development and validation of these exhaust noise prediction methods. Flow measurements have been acquired using streamwise and cross-stream particle image velocimetry (PIV) and fluctuating surface pressure data acquired using flush mounted pressure transducers near the surface trailing edge. These data combined with previously reported far-field and phased array noise measurements represent the first step toward the experimental data base. These flow data are particularly applicable to development of noise prediction methods which rely on computational fluid dynamics to uncover the flow physics. A representative sample of the large flow data set acquired is presented here to show how a surface near a jet affects the turbulent kinetic energy in the plume, the spatial relationship between the jet plume and surface needed to generate surface trailing-edge noise, and differences between heated and unheated jet flows with respect to surfaces.

  20. Flammable gas interlock spoolpiece flow response test report

    SciTech Connect

    Schneider, T.C., Fluor Daniel Hanford

    1997-03-24

    The purpose of this test report is to document the testing performed under the guidance of HNF-SD-WM-TC-073, {ital Flammable Gas Interlock Spoolpiece Flow Response Test Plan and Procedure}. This testing was performed for Lockheed Martin Hanford Characterization Projects Operations (CPO) in support of Rotary Mode Core Sampling jointly by SGN Eurisys Services Corporation and Numatec Hanford Company. The testing was conducted in the 305 building Engineering Testing Laboratory (ETL). NHC provides the engineering and technical support for the 305 ETL. The key personnel identified for the performance of this task are as follows: Test responsible engineering manager, C. E. Hanson; Flammable Gas Interlock Design Authority, G. P. Janicek; 305 ETL responsible manager, N. J. Schliebe; Cognizant RMCS exhauster engineer, E. J. Waldo/J. D. Robinson; Cognizant 305 ETL engineer, K. S. Witwer; Test director, T. C. Schneider. Other support personnel were supplied, as necessary, from 305/306 ETL. The testing, on the flammable Gas Interlock (FGI) system spoolpiece required to support Rotary Mode Core Sampling (RMCS) of single shell flammable gas watch list tanks, took place between 2-13-97 and 2-25-97.

  1. On cavity flow permeability testing of a sandstone.

    PubMed

    Selvadurai, P A; Selvadurai, A P S

    2007-01-01

    This paper describes a laboratory experiment designed to measure the bulk permeability of a cuboidal sample of sandstone measuring approximately 450 mm(2) in plan area and 508 mm in height. The relatively large dimensions of the sandstone specimen allow the determination of the permeability of the material by creating a central cavity that can be pressurized to maintain a constant flow rate. The paper describes the experimental details and the test procedure, and discusses the computational and analytic approaches that have been used to interpret the test results.

  2. Facility for cold flow testing of solid rocket motor models

    NASA Astrophysics Data System (ADS)

    Bacchus, D. L.; Hill, O. E.; Whitesides, R. Harold

    1992-02-01

    A new cold flow test facility was designed and constructed at NASA Marshall Space Flight Center for the purpose of characterizing the flow field in the port and nozzle of solid propellant rocket motors (SRM's). A National Advisory Committee was established to include representatives from industry, government agencies, and universities to guide the establishment of design and instrumentation requirements for the new facility. This facility design includes the basic components of air storage tanks, heater, submicron filter, quiet control valve, venturi, model inlet plenum chamber, solid rocket motor (SRM) model, exhaust diffuser, and exhaust silencer. The facility was designed to accommodate a wide range of motor types and sizes from small tactical motors to large space launch boosters. This facility has the unique capability of testing ten percent scale models of large boosters such as the new Advanced Solid Rocket Motor (ASRM), at full scale motor Reynolds numbers. Previous investigators have established the validity of studying basic features of solid rocket motor development programs include the acquisition of data to (1) directly evaluate and optimize the design configuration of the propellant grain, insulation, and nozzle; and (2) provide data for validation of the computational fluid dynamics, (CFD), analysis codes and the performance analysis codes. A facility checkout model was designed, constructed, and utilized to evaluate the performance characteristics of the new facility. This model consists of a cylindrical chamber and converging/diverging nozzle with appropriate manifolding to connect it to the facility air supply. It was designed using chamber and nozzle dimensions to simulate the flow in a 10 percent scale model of the ASRM. The checkout model was recently tested over the entire range of facility flow conditions which include flow rates from 9.07 to 145 kg/sec (20 to 320 Ibm/sec) and supply pressure from 5.17 x 10 exp 5 to 8.27 x 10 exp 6 Pa. The

  3. The dipole flow test: A new single-borehole test for aquifer characterization

    SciTech Connect

    Kabala, Z.J. )

    1993-01-01

    A new single-borehole measurement technique for confined aquifers, the dipole flow test, yields the vertical distributions of the horizontal hydraulic conductivity, the vertical hydraulic conductivity, and the specific storativity when applied to different borehole intervals. The test utilizes straddle packers to isolate two chambers in the borehole, pressure transducers to monitor drawdown in them, and a small pump to create a dipole flow pattern in the aquifer by pumping water at a constant rate from the aquifer into one chamber, transferring it within the well to the next chamber, and finally injecting it back to the aquifer. A mathematical model describing the drawdown in each chamber is derived for the transient as well as the steady state cases. The aquifer parameters may be estimated from data produced by the dipole flow test alone or in conjunction with conventional pumping tests. The dipole flow regime reaches a steady state relatively quickly, especially in well permeable aquifers. A robust computational methodology for estimating the aquifer parameters, suitable for automatization, is based on the Newton-Raphson algorithm applied to a system of up to three nonlinear equations, each describing the well drawdown at a different judiciously chosen time. Due to the relatively small drawdown it invokes, the dipole flow test may be applicable to unconfined aquifers as well.

  4. Three-phase ac-to-ac series-resonant power converter with a reduced number of thyristors

    SciTech Connect

    Klaassens, J.B.; de Beer, F. )

    1991-07-01

    This paper reports that ac-ac series-resonant converters have been proven to be functional and useful. Power pulse modulation with internal frequencies of tens of kHz and suited for multikilowatt power levels is applied to a series-resonant converter system for generating synthesized multiphase bipolar waveforms with reversible power flow and flow distortion. The use of a series-resonant circuit for power transfer and control obtains natural current commutation of the thyristors and the prevention of excessive stresses on components. Switches are required which have bidirectional current conduction and voltage blocking ability. The conventional series-resonant ac-ac converter applies a total for 24 anti-parallel thyristors. An alternative circuit configuration for the series-resonant ac-ac converter with only 12 thyristors is also presented. The alternative power circuit has three neutrals, related to the polyphase source, the load and the converter, which may be interconnected. If they are connected, the high-frequency component of the source and load currents will flow through the connection between the neutrals. The test results of a converter system generating three-phase sinusoidal input and output waveforms have demonstrated the significant aspects of this type of power interfaces.

  5. Lateral flow-based antibody testing for Chlamydia trachomatis.

    PubMed

    Gwyn, Sarah; Mitchell, Alexandria; Dean, Deborah; Mkocha, Harran; Handali, Sukwan; Martin, Diana L

    2016-08-01

    We describe here a lateral flow-based assay (LFA) for the detection of antibodies against immunodominant antigen Pgp3 from Chlamydia trachomatis, the causative agent of urogenital chlamydia infection and ocular trachoma. Optimal signal detection was achieved when the gold-conjugate and test line contained Pgp3, creating a dual sandwich capture assay. The LFA yielded positive signals with serum and whole blood but not with eluted dried blood spots. For serum, the agreement of the LFA with the non-reference multiplex assay was 96%, the specificity using nonendemic pediatric sera was 100%, and the inter-rater agreement was κ=0.961. For whole blood, the agreement of LFA with multiplex was 81.5%, the specificity was 100%, and the inter-rater agreement was κ=0.940. The LFA was tested in a field environment and yielded similar results to those from laboratory-based testing. These data show the successful development of a lateral flow assay for detection of antibodies against Pgp3 with reliable use in field settings, which would make antibody-based testing for trachoma surveillance highly practical, especially after cessation of trachoma elimination programs. PMID:27208400

  6. 42 CFR 84.93 - Gas flow test; open-circuit apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Gas flow test; open-circuit apparatus. 84.93...-Contained Breathing Apparatus § 84.93 Gas flow test; open-circuit apparatus. (a) A static-flow test will be performed on all open-circuit apparatus. (b) The flow from the apparatus shall be greater than 200...

  7. 42 CFR 84.93 - Gas flow test; open-circuit apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Gas flow test; open-circuit apparatus. 84.93...-Contained Breathing Apparatus § 84.93 Gas flow test; open-circuit apparatus. (a) A static-flow test will be performed on all open-circuit apparatus. (b) The flow from the apparatus shall be greater than 200...

  8. 42 CFR 84.93 - Gas flow test; open-circuit apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Gas flow test; open-circuit apparatus. 84.93...-Contained Breathing Apparatus § 84.93 Gas flow test; open-circuit apparatus. (a) A static-flow test will be performed on all open-circuit apparatus. (b) The flow from the apparatus shall be greater than 200...

  9. 42 CFR 84.93 - Gas flow test; open-circuit apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Gas flow test; open-circuit apparatus. 84.93...-Contained Breathing Apparatus § 84.93 Gas flow test; open-circuit apparatus. (a) A static-flow test will be performed on all open-circuit apparatus. (b) The flow from the apparatus shall be greater than 200...

  10. Parametric Testing of Chevrons on Single Flow Hot Jets

    NASA Technical Reports Server (NTRS)

    Bridges, James; Brown, Clifford A.

    2004-01-01

    A parametric family of chevron nozzles have been studied, looking for relationships between chevron geometric parameters, flow characteristics, and far-field noise. Both cold and hot conditions have been run at acoustic Mach number 0.9. Ten models have been tested, varying chevron count, penetration, length, and chevron symmetry. Four comparative studies were defined from these datasets which show: that chevron length is not a major impact on either flow or sound; that chevron penetration increases noise at high frequency and lowers it at low frequency, especially for low chevron counts; that chevron count is a strong player with good low frequency reductions being achieved with high chevron count without strong high frequency penalty; and that chevron asymmetry slightly reduces the impact of the chevron. Finally, it is shown that although the hot jets differ systematically from the cold one, the overall trends with chevron parameters is the same.

  11. Testing of models of flow-induced hemolysis in blood flow through hypodermic needles.

    PubMed

    Chen, Yangsheng; Kent, Timothy L; Sharp, M Keith

    2013-03-01

    Hemolysis caused by flow in hypodermic needles interferes with a number of tests on blood samples drawn by venipuncture, including assays for metabolites, electrolytes, and enzymes, causes discomfort during dialysis sessions, and limits transfusion flow rates. To evaluate design modifications to address this problem, as well as hemolysis issues in other cardiovascular devices, computational fluid dynamics (CFD)-based prediction of hemolysis has potential for reducing the time and expense for testing of prototypes. In this project, three CFD-integrated blood damage models were applied to flow-induced hemolysis in 16-G needles and compared with experimental results, which demonstrated that a modified needle with chamfered entrance increased hemolysis, while a rounded entrance decreased hemolysis, compared with a standard needle with sharp entrance. After CFD simulation of the steady-state velocity field, the time histories of scalar stress along a grid of streamlines were calculated. A strain-based cell membrane failure model and two empirical power-law blood damage models were used to predict hemolysis on each streamline. Total hemolysis was calculated by weighting the predicted hemolysis along each streamline by the flow rate along each streamline. The results showed that only the strain-based blood damage model correctly predicted increased hemolysis in the beveled needle and decreased hemolysis in the rounded needle, while the power-law models predicted the opposite trends. PMID:23419169

  12. Flight Tests of a Supersonic Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Frederick, Mike; Banks, Dan; Garzon, Andres; Matisheck, Jason

    2014-01-01

    IR thermography was used to characterize the transition front on a S-NLF test article at chord Reynolds numbers in excess of 30 million Changes in transition due to Mach number, Reynolds number, and surface roughness were investigated - Regions of laminar flow in excess of 80% chord at chord Reynolds numbers greater than 14 million IR thermography clearly showed the transition front and other flow features such as shock waves impinging upon the surface A series of parallel oblique shocks, of yet unknown origin, were found to cause premature transition at higher Reynolds numbers. NASA has a current goal to eliminate barriers to the development of practical supersonic transport aircraft Drag reduction through the use of supersonic natural laminar flow (S-NLF) is currently being explored as a means of increasing aerodynamic efficiency - Tradeoffs work best for business jet class at M<2 Conventional high-speed designs minimize inviscid drag at the expense of viscous drag - Existence of strong spanwise pressure gradient leads to crossflow (CF) while adverse chordwise pressure gradients amplifies and Tollmien-Schlichting (TS) instabilities Aerion Corporation has patented a S-NLF wing design (US Patent No. 5322242) - Low sweep to control CF - dp/dx < 0 on both wing surfaces to stabilize TS - Thin wing with sharp leading edge to minimize wave drag increase due to reduction in sweep NASA and Aerion have partnered to study S-NLF since 1999 Series of S-NLF experiments flown on the NASA F-15B research test bed airplane Infrared (IR) thermography used to characterize transition - Non-intrusive, global, good spatial resolution - Captures significant flow features well

  13. Development of a hardware-based AC microgrid for AC stability assessment

    NASA Astrophysics Data System (ADS)

    Swanson, Robert R.

    As more power electronic-based devices enable the development of high-bandwidth AC microgrids, the topic of microgrid power distribution stability has become of increased interest. Recently, researchers have proposed a relatively straightforward method to assess the stability of AC systems based upon the time-constants of sources, the net bus capacitance, and the rate limits of sources. In this research, a focus has been to develop a hardware test system to evaluate AC system stability. As a first step, a time domain model of a two converter microgrid was established in which a three phase inverter acts as a power source and an active rectifier serves as an adjustable constant power AC load. The constant power load can be utilized to create rapid power flow transients to the generating system. As a second step, the inverter and active rectifier were designed using a Smart Power Module IGBT for switching and an embedded microcontroller as a processor for algorithm implementation. The inverter and active rectifier were designed to operate simultaneously using a synchronization signal to ensure each respective local controller operates in a common reference frame. Finally, the physical system was created and initial testing performed to validate the hardware functionality as a variable amplitude and variable frequency AC system.

  14. Preliminary Results of Testing of Flow Effects on Evaporator Scaling

    SciTech Connect

    Hu, M.Z.

    2002-02-15

    This investigation has focused on the effects of fluid flow on solids deposition from solutions that simulate the feed to the 2H evaporator at the Savannah River Site. Literature studies indicate that the fluid flow (or shear) affects particle-particle and particle-surface interactions and thus the phenomena of particle aggregation in solution and particle deposition (i.e., scale formation) onto solid surfaces. Experimental tests were conducted with two configurations: (1) using a rheometer to provide controlled shear conditions and (2) using controlled flow of reactive solution through samples of stainless steel tubing. All tests were conducted at 80 C and at high silicon and aluminum concentrations, 0.133 M each, in solutions containing 4 M sodium hydroxide and 1 A4 each of sodium nitrate and sodium nitrite. Two findings from these experiments are important for consideration in developing approaches for reducing or eliminating evaporator scaling problems: (1) The rheometer tests suggested that for the conditions studied, maximum solids deposition occurs at a moderate shear rate, approximately 12 s{sup -1}. That value is expected to be on the order of shear rates that will occur in various parts of the evaporator system; for instance, a 6 gal/min single-phase liquid flow through the 2-in. lift or gravity drain lines would result in a shear rate of approximately 16 s{sup -1}. These results imply that engineering approaches aimed at reducing deposits through increased mixing would need to generate shear near all surfaces significantly greater than 12 s{sup -1}. However, further testing is needed to set a target value for shear that is applicable to evaporator operation. This is because the measured trend is not statistically significant at the 95% confidence interval due to variability in the results. In addition, testing at higher temperatures and lower concentrations of aluminum and silicon would more accurately represent conditions in the evaporator. Without

  15. Corrosion erosion test of SS316 in flowing Pb Bi

    NASA Astrophysics Data System (ADS)

    Kikuchi, K.; Kurata, Y.; Saito, S.; Futakawa, M.; Sasa, T.; Oigawa, H.; Wakai, E.; Miura, K.

    2003-05-01

    Corrosion tests of austenitic stainless tube were done under flowing Pb-Bi conditions for 3000 h at 450 °C. Specimens were 316SS produced as a tubing form with 13.8 mm outer diameter, 2 mm thickness and 40 cm length. During operation, maximum temperature, temperature difference and flow velocity of Pb-Bi at the specimen were kept at 450, 50 °C, and 1 m/s, respectively. After the test, specimen and components of the loop were cut and examined by optical microscope, SEM, EDX, WDX and X-ray diffraction. Pb-Bi adhered on the surface of the specimen even after Pb-Bi was drained out to the storage tank from the circulating loop. Results differed from a stagnant corrosion test in that the specimen surface became rough and the corrosion rate was maximally 0.1 mm/3000 h. Mass transfer from the high temperature to the lower temperature area was observed: crystals of Fe-Cr were found on the tube surface in the low-temperature region. The sizes of crystals varied from 0.1 to 0.2 mm. The depositing crystals were ferrite grains and the chemical composition ratio (mass%) of Fe to Cr was 9:1.

  16. Multiphase pumps and flow meters -- Status of field testing

    SciTech Connect

    Skiftesvik, P.K.; Svaeren, J.A.

    1995-12-31

    With the development and qualification of multiphase pumps and multiphase flow meters, two new tools have been made available to the oil and gas industry for enhanced production from existing installations or new field developments. This paper presents an overview of the major achievements gained from various test installations carried out the last years using equipment qualified by Framo Engineering AS. The experience from the extensive Field Verification Programmes as described shows that multiphase pumps and meters can operate in various and often harsh well environments providing significant well stream pressure boost or acceptable phase accuracy measurements of oil, water and gas.

  17. Road load simulator tests of the Gould phase 1 functional model silicon controlled rectifier ac motor controller for electric vehicles. Final Report

    SciTech Connect

    Gourash, F.

    1984-02-01

    The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.

  18. Dai nippon printing co., ltd, Medi-Ca AC for enumeration of aerobic bacteria. Performance tested method 041302.

    PubMed

    Okochi, Norihiko; Yamazaki, Mamoru; Kiso, Shoichi; Kinoshita, Mai; Okita, Yurie; Kazama, Keisuke; Saito, Rui

    2014-01-01

    A ready-made dry medium method for aerobic count, the MediCa AC method, was compared to the AOAC Official Method 966.23, Microbiological Methods, for seven different heat-processed meat matrixes: cooked roast beef, Chinese barbecued pork (barbecued pork seasoned with honey-based sauce), bacon, cooked ham, frankfurter (made from beef and pork), and boiled and cooked pork sausage. The 95% confidence interval for the mean difference between the two methods at each contamination level for each matrix fell within the range of -0.50 to 0.50, and no statistical difference was observed at all three contamination levels for five matrixes. These results demonstrate that the Medi-Ca AC method is a reasonable alternative to the AOAC 966.23 method for cooked meat products.

  19. Compatibility tests of steels in flowing liquid lead-bismuth

    NASA Astrophysics Data System (ADS)

    Barbier, F.; Benamati, G.; Fazio, C.; Rusanov, A.

    2001-06-01

    The behaviour of steels exposed to flowing Pb-55Bi was evaluated. The materials tested are the two austenitic steels AISI 316L and 1.4970, and the six martensitic steels Optifer IVc, T91, Batman 27, Batman 28, EP823 and EM10 which were exposed to flowing Pb-55Bi for 1000, 2000 and 3000 h and at two temperatures (573 and 743 K). The corrosion tests were conducted in the non-isothermal loop of IPPE-Obninsk under a controlled oxygen level (10 -6 wt%). The compatibility study showed that at a lower temperature, a very thin oxide layer (<1 μm) was formed on the steels. At higher temperature, austenitic steels also exhibited a thin oxide layer sufficient to prevent their dissolution in the melt. A thicker oxide, which grew according to a parabolic law, was observed on the surface of the martensitic steels. The oxidation resistance behaviour of the martensitic steels was correlated with their alloying elements.

  20. Uninstrumented assembly airflow testing in the Annular Flow Distribution facility

    SciTech Connect

    Kielpinski, A.L.

    1992-02-01

    During the Emergency Cooling System phase of a postulated large-break loss of coolant accident (ECS-LOCA), air enters the primary loop and is pumped down the reactor assemblies. One of the experiments performed to support the analysis of this accident was the Annular Flow Distribution (AFD) experiment, conducted in a facility built for this purpose at Babcock and Wilcox Alliance Research Center in Alliance, Ohio. As part of this experiment, a large body of airflow data were acquired in a prototypical mockup of the Mark 22 reactor assembly. This assembly was known as the AFD (or the I-AFD here) reference assembly. The I-AFD assembly was fully prototypical, having been manufactured in SRS`s production fabrication facility. Similar Mark 22 mockup assemblies were tested in several test facilities in the SRS Heat Transfer Laboratory (HTL). Discrepancies were found. The present report documents further work done to address the discrepancy in airflow measurements between the AFD facility and HTL facilities. The primary purpose of this report is to disseminate the data from the U-AFD test, and to compare these test results to the I-AFD data and the U-AT data. A summary table of the test data and the B&W data transmittal letter are included as an attachment to this report. The full data transmittal volume from B&W (including time plots of the various instruments) is included as an appendix to this report. These data are further analyzed by comparing them to two other HTL tests, namely, SPRIHTE 1 and the Single Assembly Test Stand (SATS).

  1. 42 CFR 84.94 - Gas flow test; closed-circuit apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Gas flow test; closed-circuit apparatus. 84.94...-Contained Breathing Apparatus § 84.94 Gas flow test; closed-circuit apparatus. (a) Where oxygen is supplied by a constant-flow device only, the rate of flow shall be at least 3 liters per minute for the...

  2. 42 CFR 84.94 - Gas flow test; closed-circuit apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Gas flow test; closed-circuit apparatus. 84.94...-Contained Breathing Apparatus § 84.94 Gas flow test; closed-circuit apparatus. (a) Where oxygen is supplied by a constant-flow device only, the rate of flow shall be at least 3 liters per minute for the...

  3. Laminar flow control leading edge glove flight test article development

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.; Mcnay, D. E.; Thelander, J. A.

    1984-01-01

    A laminar flow control (LFC) flight test article was designed and fabricated to fit into the right leading edge of a JetStar aircraft. The article was designed to attach to the front spar and fill in approx. 70 inches of the leading edge that are normally occupied by the large slipper fuel tank. The outer contour of the test article was constrained to align with an external fairing aft of the front spar which provided a surface pressure distribution over the test region representative of an LFC airfoil. LFC is achieved by applying suction through a finely perforated surface, which removes a small fraction of the boundary layer. The LFC test article has a retractable high lift shield to protect the laminar surface from contamination by airborne debris during takeoff and low altitude operation. The shield is designed to intercept insects and other particles that could otherwise impact the leading edge. Because the shield will intercept freezing rain and ice, a oozing glycol ice protection system is installed on the shield leading edge. In addition to the shield, a liquid freezing point depressant can be sprayed on the back of the shield.

  4. AC and DC power transmission

    SciTech Connect

    Not Available

    1985-01-01

    The technical and economic assessment of AC and DC transmission systems; long distance transmission, cable transmission, system inter-connection, voltage support, reactive compensation, stabilisation of systems; parallel operation of DC links with AC systems; comparison between alternatives for particular schemes. Design and application equipment: design, testing and application of equipment for HVDC, series and shunt static compensated AC schemes, including associated controls. Installations: overall design of stations and conductor arrangements for HVDC, series and shunt static AC schemes including insulation co-ordination. System analysis and modelling.

  5. Field Test of a DHW Distribution System: Temperature and Flow Analyses (Presentation)

    SciTech Connect

    Barley, C. D.; Hendron, B.; Magnusson, L.

    2010-05-13

    This presentation discusses a field test of a DHW distribution system in an occupied townhome. It includes measured fixture flows and temperatures, a tested recirculation system, evaluated disaggregation of flow by measured temperatures, Aquacraft Trace Wizard analysis, and comparison.

  6. 30 CFR 75.152 - Tests of air flow; qualified person.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of air flow; qualified person. 75.152....152 Tests of air flow; qualified person. A person is a qualified person within the meaning of the provisions of Subpart D—Ventilation of this part requiring that tests of air flow be made by a...

  7. 30 CFR 75.152 - Tests of air flow; qualified person.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests of air flow; qualified person. 75.152....152 Tests of air flow; qualified person. A person is a qualified person within the meaning of the provisions of Subpart D—Ventilation of this part requiring that tests of air flow be made by a...

  8. 30 CFR 75.152 - Tests of air flow; qualified person.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests of air flow; qualified person. 75.152....152 Tests of air flow; qualified person. A person is a qualified person within the meaning of the provisions of Subpart D—Ventilation of this part requiring that tests of air flow be made by a...

  9. 30 CFR 75.152 - Tests of air flow; qualified person.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tests of air flow; qualified person. 75.152....152 Tests of air flow; qualified person. A person is a qualified person within the meaning of the provisions of Subpart D—Ventilation of this part requiring that tests of air flow be made by a...

  10. ac bidirectional motor controller

    NASA Technical Reports Server (NTRS)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  11. Aeroacoustic Characteristics of Model Jet Test Facility Flow Conditioners

    NASA Technical Reports Server (NTRS)

    Kinzie, Kevin W.; Henderson, Brenda S.; Haskin, Harry H.

    2005-01-01

    An experimental investigation of flow conditioning devices used to suppress internal rig noise in high speed, high temperature experimental jet facilities is discussed. The aerodynamic and acoustic characteristics of a number of devices including pressure loss and extraneous noise generation are measured. Both aerodynamic and acoustic characteristics are strongly dependent on the porosity of the flow conditioner and the closure ratio of the duct system. For unchoked flow conditioners, the pressure loss follows conventional incompressible flow models. However, for choked flow conditioners, a compressible flow model where the duct and flow conditioner system is modeled as a convergent-divergent nozzle can be used to estimate pressure loss. Choked flow conditioners generate significantly more noise than unchoked conditioners. In addition, flow conditioners with small hole diameters or sintered metal felt material generate less self-noise noise compared to flow conditioners with larger holes.

  12. Tevatron AC dipole system

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is an oscillating dipole magnet which can induce large amplitude oscillations without the emittance growth and decoherence. These properties make it a good tool to measure optics of a hadron synchrotron. The vertical AC dipole for the Tevatron is powered by an inexpensive high power audio amplifier since its operating frequency is approximately 20 kHz. The magnet is incorporated into a parallel resonant system to maximize the current. The use of a vertical pinger magnet which has been installed in the Tevatron made the cost relatively inexpensive. Recently, the initial system was upgraded with a more powerful amplifier and oscillation amplitudes up to 2-3{sigma} were achieved with the 980 GeV proton beam. This paper discusses details of the Tevatron AC dipole system and also shows its test results.

  13. Cinematics and sticking of heart valves in pulsatile flow test.

    PubMed

    Köhler, J; Wirtz, R

    1991-05-01

    The aim of the project was to develop laboratory test devices for studies of the cinematics and sticking behaviour of technical valve protheses. The second step includes testing technical valves of different types and sizes under static and dynamic conditions. A force-deflection balance was developed in order to load valve rims by static radial forces until sticking or loss of a disc (sticking- and clamping-mould point) with computer-controlled force deflection curves. A second deflection device was developed and used for prosthetic valves in the aortic position of a pulsatile mock circulation loop with simultaneous video-cinematography. The stiffness of technical valve rims varied between 0.20 (St. Jude) and about 1.0 N/micron (metal rim valves). The stiffness decreased significantly with increasing valve size. Sticking under pulsatile flow conditions was in good agreement with the static deflection measurements. Hence, valve sticking with increasing danger of thrombus formation is more likely with a less stiff valve rim. In the case of forces acting perpendicularly to the pendulum axis, the clamping mould-point of the valve can be reached, followed by disc dislodgement. PMID:1864654

  14. THE EFFECT OF WATER (VAPOR-PHASE) AND CARBON ON ELEMENTAL MERCURY REMOVAL IN A FLOW REACTOR

    EPA Science Inventory

    The paper gives results of studying the effect of vapor-phase moisture on elemental mercury (Hgo) removal by activated carbon (AC) in a flow reactor. tests involved injecting AC into both a dry and a 4% moisture nitrogen (N2) /Hgo gas stream. A bituminous-coal-based AC (Calgon WP...

  15. Oscillatory Flow Testing in a Sandbox - Towards Oscillatory Hydraulic Tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Lim, D.; Cupola, F.; Cardiff, M. A.

    2014-12-01

    Detailed knowledge of subsurface hydraulic properties is important for predicting groundwater flow and contaminant transport. The spatial variation of hydraulic properties in the shallow subsurface has been extensively studied in the past two decades. A recent approach to characterize subsurface properties is hydraulic tomography, in which pressure data from multiple constant-rate pumping tests is inverted using a numerical model. Many laboratory sandbox studies have explored the performance of hydraulic tomography under different controlled conditions and shown that detailed heterogeneity information can be extracted (Liu et al., 2002, Illman et al., 2007, 2008, 2010a, 2010b, Liu et al., 2007, 2008, Xiang et al., 2009, Yin and Illman, 2009, Liu and Kitanidis, 2011, Berg and Illman, 2011a). Recently, Cardiff et al. (2013) proposed a modified approach of Oscillatory Hydraulic Tomography (OHT) - in which periodic pumping signals of different frequencies are used for aquifer stimulation - to characterize aquifer properties. The potential advantages of OHT over traditional hydraulic tomography include: 1) no net injection or extraction of water; 2) little movement of existing contamination; 3) minimal impact of model boundary conditions; and 4) robust extraction of oscillatory signals from noisy data. To evaluate the premise of OHT, we built a highly-instrumented 2-D laboratory sandbox and record pressure responses to periodic pumping tests. In our setup, the laboratory sandbox is filled with sand of known hydraulic properties, and we measure aquifer responses at a variety of testing frequencies. The signals recorded are processed using Fourier-domain analysis, and compared against expected results under linear (Darcian) theory. The responses are analyzed using analytical and numerical models, which provide key insights as to: 1) how "effective" hydraulic properties estimated using homogeneous models are associated with aquifer heterogeneity; and 2) how OHT is able to

  16. The sympathetic release test: a test used to assess thermoregulation and autonomic control of blood flow.

    PubMed

    Tansey, E A; Roe, S M; Johnson, C J

    2014-03-01

    When a subject is heated, the stimulation of temperature-sensitive nerve endings in the skin, and the raising of the central body temperature, results in the reflex release of sympathetic vasoconstrictor tone in the skin of the extremities, causing a measurable temperature increase at the site of release. In the sympathetic release test, the subject is gently heated by placing the feet and calves in a commercially available foot warming pouch or immersing the feet and calves in warm water and wrapping the subject in blankets. Skin blood flow is estimated from measurements of skin temperature in the fingers. Normally skin temperature of the fingers is 65-75°F in cool conditions (environmental temperature: 59-68°F) and rises to 85-95°F during body heating. Deviations in this pattern may mean that there is abnormal sympathetic vasoconstrictor control of skin blood flow. Abnormal skin blood flow can substantially impair an individual's ability to thermoregulate and has important clinical implications. During whole body heating, the skin temperature from three different skin sites is monitored and oral temperature is monitored as an index of core temperature. Students determine the fingertip temperature at which the reflex release of sympathetic activity occurs and its maximal attainment, which reflects the vasodilating capacity of this cutaneous vascular bed. Students should interpret typical sample data for certain clinical conditions (Raynaud's disease, peripheral vascular disease, and postsympathectomy) and explain why there may be altered skin blood flow in these disorders.

  17. 42 CFR 84.94 - Gas flow test; closed-circuit apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Gas flow test; closed-circuit apparatus. 84.94...-Contained Breathing Apparatus § 84.94 Gas flow test; closed-circuit apparatus. (a) Where oxygen is supplied... rated service time of the apparatus. (b) Where constant flow is used in conjunction with demand...

  18. 42 CFR 84.94 - Gas flow test; closed-circuit apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Gas flow test; closed-circuit apparatus. 84.94...-Contained Breathing Apparatus § 84.94 Gas flow test; closed-circuit apparatus. (a) Where oxygen is supplied... rated service time of the apparatus. (b) Where constant flow is used in conjunction with demand...

  19. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Procedures for air flow tests of micronaire reading... of the United States for Fiber Fineness and Maturity § 28.603 Procedures for air flow tests of...) Air flow instrument complete with accessories to measure the fineness and maturity, in combination,...

  20. Oscillating-flow loss test results in rectangular heat exchanger passages

    NASA Technical Reports Server (NTRS)

    Wood, J. Gary

    1991-01-01

    Test results of oscillating flow losses in rectangular heat exchanger passages of various aspect ratios are given. This work was performed in support of the design of a free-piston Stirling engine (FPSE) for a dynamic space power conversion system. Oscillating flow loss testing was performed using an oscillating flow rig, which was based on a variable stroke and variable frequency linear drive motor. Tests were run over a range of oscillating flow parameters encompassing the flow regimes of the proposed engine design. Test results are presented in both tabular and graphical form and are compared against analytical predictions.

  1. EFFECTS OF TEST TEMPERATURE ON FLOW OF METALLIC GLASSES

    SciTech Connect

    A.S. NOURI; Y. LIU; P. WESSELING; J. LEWANDOWSKI

    2006-04-12

    Micro-hardness experiments were conducted over a range of temperatures using a Nikon QM micro-hardness machine on a number of metallic glass (e.g. Zr-, Fe-, Al-) systems. Although high micro-hardness was exhibited at room temperature, significant hardness reductions were exhibited near the glass transition temperature, T{sub g}. The effects of changes in test temperature on the micro-hardness will be reported. The effects of exposure time on the hardness evolution at a given temperature will also be summarized to illustrate some of the differences in behavior of the systems shown. The extreme softening near T{sub g}, characteristic of bulk metallic glass systems, enables the exploration of novel deformation processing. In order to develop deformation processing windows, the evaluation of bulk metallic glass mechanical properties under quasi-static conditions and the determination of flow properties at different temperatures and strain rates are reported. The use of such information to create layered/composite bulk metallic glasses will be summarized.

  2. Nanoscale zero-valent iron/AC as heterogeneous Fenton catalysts in three-dimensional electrode system.

    PubMed

    Zhang, Chao; Zhou, Lei; Yang, Jie; Yu, Xinmin; Jiang, Yonghai; Zhou, Minghua

    2014-01-01

    In the present work, nanoscale zero-valent iron/activated carbon (NZVI/AC) was investigated as heterogeneous Fenton catalyst in three-dimensional (3D) electrode system for methyl orange (MO) degradation. Some important operating parameters such as cathodic potential, pH, and O₂ flow rate were investigated, exhibiting good decolorization. The mineralization of MO was significantly improved by 20-35% compared to two-dimensional (2D) AC system at the optimum conditions. Although the TOC removal of AC was higher than NZVI/AC due to its good adsorption capacity initially, heterogeneous Fenton catalysis played a more and more important roles in the following test. After eight runs, NZVI/AC still exhibited excellent catalytic properties with low iron leaching. Further, a relatively comprehensive mechanism of NZVI/AC as particle electrodes in 3D system was proposed.

  3. F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Fischer, Michael C.

    1999-01-01

    The F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment was part of the NASA High-Speed Research Program. The goal of the experiment was to demonstrate extensive laminar flow, to validate computational fluid dynamics (CFD) codes and design methodology, and to establish laminar flow control design criteria. Topics include the flight test hardware and design, airplane modification, the pressure and suction distributions achieved, the laminar flow achieved, and the data analysis and code correlation.

  4. Smart licensing and environmental flows: Modeling framework and sensitivity testing

    NASA Astrophysics Data System (ADS)

    Wilby, R. L.; Fenn, C. R.; Wood, P. J.; Timlett, R.; Lequesne, T.

    2011-12-01

    Adapting to climate change is just one among many challenges facing river managers. The response will involve balancing the long-term water demands of society with the changing needs of the environment in sustainable and cost effective ways. This paper describes a modeling framework for evaluating the sensitivity of low river flows to different configurations of abstraction licensing under both historical climate variability and expected climate change. A rainfall-runoff model is used to quantify trade-offs among environmental flow (e-flow) requirements, potential surface and groundwater abstraction volumes, and the frequency of harmful low-flow conditions. Using the River Itchen in southern England as a case study it is shown that the abstraction volume is more sensitive to uncertainty in the regional climate change projection than to the e-flow target. It is also found that "smarter" licensing arrangements (involving a mix of hands off flows and "rising block" abstraction rules) could achieve e-flow targets more frequently than conventional seasonal abstraction limits, with only modest reductions in average annual yield, even under a hotter, drier climate change scenario.

  5. The application of flow cytometry to histocompatibility testing.

    PubMed

    Horsburgh, T; Martin, S; Robson, A J

    2000-03-01

    Flow cytometry is a powerful technique that enables the sensitive and quantitative detection of both cellular antigens and bound biological moieties. This article reviews how flow cytometry is increasingly being used as histocompatibility laboratories for the analysis of antibody specificity and HLA antigen expression. A basic description of flow cytometry principles and standardisation is given, together with an outline of clinical application in the areas of pre-transplant cross-matching, antibody screening, post-transplant antibody monitoring and HLA-B27 detection. It is concluded that flow cytometry is a useful multi-parametric analytical tool, yielding clinical benefit especially in the identification of patients at risk of early transplant rejection. PMID:10834606

  6. Columbia University flow instability experimental program: Volume 3. Single tube parallel flow tests

    SciTech Connect

    Dougherty, T.; Maciuca, C.; McAssey, E.V. Jr.; Reddy, D.G.; Yang, B.W.

    1990-06-01

    The coolant in the Savannah River Site (SRS) production nuclear reactor assemblies is circulated as a subcooled liquid under normal operating conditions. This coolant is evenly distributed throughout multiple annular flow channels with a uniform pressure profile across each coolant flow channel. During the postulated Loss of Coolant Accident (LOCA), which is initiated by a hypothetical guillotine pipe break, the coolant flow through the reactor assemblies is significantly reduced. The flow reduction and accompanying power reduction (after shutdown is initiated) occur in the first 1--2 seconds of the LOCA. This portion of the LOCA is referred to as the Flow Instability phase. A series of down flow experiments have been conducted on three different size single tubes. The objective of these experiments was to determine the effect of a parallel flow path on the occurrence of flow instability. In all cases, it has been shown that the point of flow instability (OFI) determined under controlled flow operation does not change when operating in a controlled pressure drop mode (parallel path operation).

  7. Identification of a nonlinear groundwater flow at a slug test in fractured rock and its influence on the test

    NASA Astrophysics Data System (ADS)

    Ji, S.; Koh, Y.

    2013-12-01

    Many laboratory and numerical studies reported that a groundwater flow through a fracture at sufficiently high Reynolds numbers does not obey the cubic law which assumes a linear relation between the hydraulic gradient and the flux. Most of them observed that the transitions from a linear to nonlinear flow arose at the Reynolds numbers greater than 10. A slug test is one of the common hydraulic tests, and used for estimation of the hydraulic properties of an aquifer by analyzing the recovery after a sudden change in hydraulic pressure. In this study, we conducted a series of slug tests with various initial head displacements at an experimental borehole at KAERI's (Korea Atomic Energy Research Institute) underground research tunnel whose host rock is Jurassic granite. The Reynolds number at a fracture during slug tests was calculated using the geophysical logging data and slug test results, and the nonlinear flow regime at slug tests was identified. From changes in the Reynolds number during the tests and estimates of the hydraulic properties from the tests, the influence of a nonlinear flow on a slug test was discussed. Our results indicate that the nonlinearity of groundwater flow at a slug test became more severe and the estimated hydraulic conductivity decreased as the initial head displacement increased.

  8. Testing and Performance Verification of a High Bypass Ratio Turbofan Rotor in an Internal Flow Component Test Facility

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Podboy, Gary G.; Miller, Christopher J.; Thorp, Scott A.

    2009-01-01

    A 1/5 scale model rotor representative of a current technology, high bypass ratio, turbofan engine was installed and tested in the W8 single-stage, high-speed, compressor test facility at NASA Glenn Research Center (GRC). The same fan rotor was tested previously in the GRC 9x15 Low Speed Wind Tunnel as a fan module consisting of the rotor and outlet guide vanes mounted in a flight-like nacelle. The W8 test verified that the aerodynamic performance and detailed flow field of the rotor as installed in W8 were representative of the wind tunnel fan module installation. Modifications to W8 were necessary to ensure that this internal flow facility would have a flow field at the test package that is representative of flow conditions in the wind tunnel installation. Inlet flow conditioning was designed and installed in W8 to lower the fan face turbulence intensity to less than 1.0 percent in order to better match the wind tunnel operating environment. Also, inlet bleed was added to thin the casing boundary layer to be more representative of a flight nacelle boundary layer. On the 100 percent speed operating line the fan pressure rise and mass flow rate agreed with the wind tunnel data to within 1 percent. Detailed hot film surveys of the inlet flow, inlet boundary layer and fan exit flow were compared to results from the wind tunnel. The effect of inlet casing boundary layer thickness on fan performance was quantified. Challenges and lessons learned from testing this high flow, low static pressure rise fan in an internal flow facility are discussed.

  9. Operational evaluation of a proppeller test stand in the quiet flow facility at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Block, P. J. W.

    1982-01-01

    Operational proof tests of a propeller test stand (PTS) in a quiet flow facility (QFF) are presented. The PTS is an experimental test bed for acoustic propeller research in the quiet flow environment of the QFF. These proof tests validate thrust and torque predictions, examine the repeatability of measurements on the PTS, and determine the effect of applying artificial roughness to the propeller blades. Since a thrusting propeller causes an open jet to contract, the potential flow core was surveyed to examine the magnitude of the contraction. These measurements are compared with predicted values. The predictions are used to determine operational limitations for testing a given propeller design in the QFF.

  10. Experimental testing of flexible barriers for containment of debris flows

    USGS Publications Warehouse

    DeNatale, Jay S.; Iverson, Richard M.; Major, Jon J.; LaHusen, Richard G.; Fliegel, Gregg L.; Duffy, John D.

    1999-01-01

    In June 1996, six experiments conducted at the U.S. Geological Survey Debris Flow Flume demonstrated that flexible, vertical barriers constructed of wire rope netting can stop small debris flows. All experimental debris flows consisted of water-saturated gravelly sand with less than two percent finer sediment by weight. All debris flows had volumes of about 10 cubic meters, masses of about 20 metre tons, and impact velocities of 5 to 9 meters per second. In four experiments, the debris flow impacted pristine, unreformed barriers of varying design; in the other two experiments, the debris flow impacted barriers already loaded with sediment from a previous flow. Differences in barrier design led to differences in barrier performance. Experiments were conducted with barriers constructed of square-mesh wire-rope netting with 30centimeter, 20centimeter, and 15 centimeter mesh openings as well as 30centimeter diameter interlocking steel rings. In all cases, sediment cascading downslope at the leading edge of the debris flows tended to spray through the nets. Nets fitted with finer-mesh chain link or chicken wire liners contained more sediment than did unlined nets, and a ring net fitted with a synthetic silt screen liner contained nearly 100 percent of the sediment. Irreversible net displacements of up to 2 meters and friction brake engagement on the support and anchor cables dissipated some of the impact energy. However, substantial forces developed in the steel support columns and the lateral and tie-back anchor cables attached to these columns. As predicted by elementary mechanics, the anchor cables experienced larger tensile forces when the support columns were hinged at the base rather than bolted rigidly to the foundation. Measured loads in the lateral anchor cables exceeded those in the tie-back anchor cables and the load cell capacity of 45 kilo-Newtons. Measurements also indicated that the peak loads in the tie- back anchors were highly transient and occurred at

  11. 30 CFR 75.152 - Tests of air flow; qualified person.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tests of air flow; qualified person. 75.152 Section 75.152 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Qualified and Certified Persons § 75.152 Tests of air flow; qualified person....

  12. Development, testing and application of DrainFlow: A fully distributed integrated surface-subsurface flow model for drainage study

    NASA Astrophysics Data System (ADS)

    Shokri, Ali; Bardsley, William Earl

    2016-06-01

    Hydrological and hydrogeological investigation of drained land is a complex and integrated procedure. The scale of drainage studies may vary from a high-resolution small scale project through to comprehensive catchment or regional scale investigations. This wide range of scales and integrated system behaviour poses a significant challenge for the development of suitable drainage models. Toward meeting these requirements, a fully distributed coupled surface-subsurface flow model titled DrainFlow has been developed and is described. DrainFlow includes both the diffusive wave equation for surface flow components (overland flow, open drain, tile drain) and Richard's equation for saturated/unsaturated zones. To overcome the non-linearity problem created from switching between wet and dry boundaries, a smooth transitioning technique is introduced to buffer the model at tile drains and at interfaces between surface and subsurface flow boundaries. This gives a continuous transition between Dirichlet and Neumann boundary conditions. DrainFlow is tested against five well-known integrated surface-subsurface flow benchmarks. DrainFlow as applied to some synthetic drainage study examples is quite flexible for changing all or part of the model dimensions as required by problem complexity, problem scale, and data availability. This flexibility enables DrainFlow to be modified to allow for changes in both scale and boundary conditions, as often encountered in real-world drainage studies. Compared to existing drainage models, DrainFlow has the advantage of estimating actual infiltration directly from the partial differential form of Richard's equation rather than through analytical or empirical infiltration approaches like the Green and Ampt equation.

  13. Testing MODFLOW-LGR for simulating flow around buried Quaternary valleys - synthetic test cases

    NASA Astrophysics Data System (ADS)

    Vilhelmsen, T. N.; Christensen, S.

    2009-12-01

    In this study the Local Grid Refinement (LGR) method developed for MODFLOW-2005 (Mehl and Hill, 2005) is utilized to describe groundwater flow in areas containing buried Quaternary valley structures. The tests are conducted as comparative analysis between simulations run with a globally refined model, a locally refined model, and a globally coarse model, respectively. The models vary from simple one layer models to more complex ones with up to 25 model layers. The comparisons of accuracy are conducted within the locally refined area and focus on water budgets, simulated heads, and simulated particle traces. Simulations made with the globally refined model are used as reference (regarded as “true” values). As expected, for all test cases the application of local grid refinement resulted in more accurate results than when using the globally coarse model. A significant advantage of utilizing MODFLOW-LGR was that it allows increased numbers of model layers to better resolve complex geology within local areas. This resulted in more accurate simulations than when using either a globally coarse model grid or a locally refined model with lower geological resolution. Improved accuracy in the latter case could not be expected beforehand because difference in geological resolution between the coarse parent model and the refined child model contradicts the assumptions of the Darcy weighted interpolation used in MODFLOW-LGR. With respect to model runtimes, it was sometimes found that the runtime for the locally refined model is much longer than for the globally refined model. This was the case even when the closure criteria were relaxed compared to the globally refined model. These results are contradictory to those presented by Mehl and Hill (2005). Furthermore, in the complex cases it took some testing (model runs) to identify the closure criteria and the damping factor that secured convergence, accurate solutions, and reasonable runtimes. For our cases this is judged to

  14. Low-flow operation and testing of pumps in nuclear plants

    SciTech Connect

    Greenstreet, W.L.

    1989-01-01

    Low-flow operation of centrifugal pumps introduces hydraulic instability and other factors that can cause damage to these machines. The resulting degradation has been studied and recorded for pumps in electric power plants. The objectives of this paper are to (1) describe the damage-producing phenomena, including their sources and consequences; (2) relate these observations to expectations for damage caused by low-flow operation of pumps in nuclear power plants; and (3) assess the utility of low-flow testing. Hydraulic behavior during low-flow operation is reviewed for a typical centrifugal pump stage, and the damage-producing mechanisms are described. Pump monitoring practices, in conjunction with pump performance characteristics, are considered; experience data are reviewed; and the effectiveness of low-flow surveillance monitoring is examined. Degradation caused by low-flow operation is shown to be an important factor, and low-flow surveillance testing is shown to be inadequate. 18 refs., 5 figs., 4 tabs.

  15. Numerical Calibration of Mass Flow Plug for Inlet Testing

    NASA Technical Reports Server (NTRS)

    Sasson, Jonathan; Barnhart, Paul; Davis, David O.

    2015-01-01

    A simple control volume model has been developed to calculate the discharge coefficient through a mass flow plug (MFP) and validated with a calibration experiment. The maximum error of the model within the operating region of the MFP is 0.54%. The control volume analysis developed work is comprised of a sequence of flow calculations through the MFP. The model uses the MFP geometry and operating pressure and temperature to couple continuity, momentum, energy, an equation of state, and wall shear. The discharge coefficient calculation also includes the effects of boundary layer growth, including the reduction in cross-sectional flow area as characterized by the boundary layer displacement thickness. The last calculation in the sequence uses an integral method to calculate the growth of the boundary layer, from which the displacement thickness is then determined. The result of these successive calculations is an accurate one-dimension model of the velocity, pressure, and temperature through the MFP. For comparison, a computational fluid dynamic (CFD) calibration is shown, which when compared to the presented numerical model, had a lower accuracy with a maximum error of 1.35% in addition to being slower by a factor of 100."

  16. Pre-test CFD Calculations for a Bypass Flow Standard Problem

    SciTech Connect

    Rich Johnson

    2011-11-01

    The bypass flow in a prismatic high temperature gas-cooled reactor (HTGR) is the flow that occurs between adjacent graphite blocks. Gaps exist between blocks due to variances in their manufacture and installation and because of the expansion and shrinkage of the blocks from heating and irradiation. Although the temperature of fuel compacts and graphite is sensitive to the presence of bypass flow, there is great uncertainty in the level and effects of the bypass flow. The Next Generation Nuclear Plant (NGNP) program at the Idaho National Laboratory has undertaken to produce experimental data of isothermal bypass flow between three adjacent graphite blocks. These data are intended to provide validation for computational fluid dynamic (CFD) analyses of the bypass flow. Such validation data sets are called Standard Problems in the nuclear safety analysis field. Details of the experimental apparatus as well as several pre-test calculations of the bypass flow are provided. Pre-test calculations are useful in examining the nature of the flow and to see if there are any problems associated with the flow and its measurement. The apparatus is designed to be able to provide three different gap widths in the vertical direction (the direction of the normal coolant flow) and two gap widths in the horizontal direction. It is expected that the vertical bypass flow will range from laminar to transitional to turbulent flow for the different gap widths that will be available.

  17. Seismic monitoring of a flow test in the Salton Sea Geothermal Field

    SciTech Connect

    Jarpe, S.P.; Kasameyer, P.W.; Johnston, C.

    1989-06-01

    The purpose of this seismic monitoring project was to characterize in detail the micro-seismic activity related to the flow-injection test in the Salton Sea Geothermal Field. Our goal was to determine if any sources of seismic energy related to the test were observable at the surface, using both conventional seismic network techniques and relatively newer array techniques. These methods allowed us to detect and locate both impulsive microearthquakes and continuous sources of seismic energy. Our network, which was sensitive enough to be triggered by magnitude 0.0 or larger events, found no impulsive microearthquakes in the vicinity of the flow test in the 8 month period before the test and only one event during the flow test. We have observed some continuous seismic noise sources that may be attributed to the flow test. 4 refs., 4 figs.

  18. Rayleigh Scattering for Measuring Flow in a Nozzle Testing Facility

    NASA Technical Reports Server (NTRS)

    Gomez, Carlos R.; Panda, Jayanta

    2006-01-01

    A molecular Rayleigh-scattering-based air-density measurement system was built in a large nozzle-and-engine-component test facility for surveying supersonic plumes from jet-engine exhaust. A molecular Rayleigh-scattering-based air-density measurement system was built in a large nozzle-and-enginecomponent test facility for surveying supersonic plumes from jet-engine exhaust

  19. Test of pressure transducer for measuring cotton-mass flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, a cotton harvester yield monitor was developed based on the relationship between air pressure and the mass of seed cotton conveyed. The sensor theory was verified by laboratory tests. The sensor was tested on a cotton picker with seed cotton at two moisture contents, 5.9% and 8.5% we...

  20. Validation of non-Darcian flow effects in slug tests conducted in fractured rock boreholes

    NASA Astrophysics Data System (ADS)

    Quinn, Patryk M.; Parker, Beth L.; Cherry, John A.

    2013-04-01

    SummaryA series of rising and falling head slug tests with different initial applied head differentials (ΔHo) were conducted in open fractured dolostone and sandstone boreholes using straddle packers isolating specific depth intervals (1.5 m length) to examine the influence of non-Darcian flow. The open holes were developed and inspected using video and acoustic televiewing (ATV) to ensure that evidence of skin effects due to drilling were absent. The transmissivity (T) values obtained from both the rising and falling head slug tests were very similar at low initial applied head; however, the T values were progressively smaller at larger ΔHo, suggesting error due to non-Darcian flow. Non-Darcian flow behavior was confirmed by constant head step tests conducted in the same test intervals where the injection rate (Q) vs. applied head (dH) relationship became non-linear at relatively low injection rates, and the non-Darcian data also resulted in lower T values. For a series of slug tests conducted at different ΔHo, non-Darcian flow effects gradually increased as ΔHo increased, consistent with the trends for constant head step tests conducted in the same test intervals. To maintain Darcian flow conditions in the fractured dolostone and sandstone tested in this study, ΔHo must be kept small, generally less than 0.2 m. This study demonstrates that by conducting both "stepped" slug tests and constant head step tests, the Darcian flow assumption for both types of tests can be rigorously validated. However, when only slug tests are conducted, it is necessary to conduct a series of "stepped" slug tests, including tests with small applied head differentials, to avoid errors due to non-Darcian flow.

  1. Well-test analysis for non-Newtonian fluid flow

    SciTech Connect

    Vongvuthipornchai, S.

    1985-01-01

    This dissertation examines pressure behavior subsequent to the injection of a non-Newtonian power-law pseudoplastic fluid. Responses at an unfractured well and at a well intercepting a planar fracture or a finite-conductivity fracture are studied. A rigorous examination of both injection and falloff responses is presented. Two approximate solutions for the transient (radial) flow presented in the literature are examined. The use of these solutions to analyze falloff data and correction factors needed are investigated. The influence of injection time on falloff data is documented. The influence of wellbore storage and skin on pressure responses is considered. The effective wellbore radius concept is used to combine the wellbore storage constant and the skin factor. Infinite-conductivity and uniform-flux idealizations are used to examine responses at wells intercepting planar fractures. Procedures to identify flow regimes are discussed. The solutions presented here may be used to determine fluid mobility, fracture half-length and the power-law index. Procedures to analyze pressure data during pseudoradial flow are also discussed. The effective wellbore radius concept is used to relate the skin factor with fracture half-length. Also, the utility of the pressure derivative techniques and the influence of injection time on the ability to analyze falloff data are documented. Lastly, pressure responses at a well intercepting a finite-conductivity fracture are examined. The parameters that govern the well response are identified. The solutions presented here may be used to obtain fracture half-length, fluid mobility and fracture conductivity, provided that the power-law index is known. All solutions were obtained by using standard finite-difference techniques.

  2. [Flow field test on the tangential section of polypropylene tubular membrane module annular gap in rotating linear tangential flow].

    PubMed

    Wang, Chengduan; Chen, Wenmei; Li, Jianming; Jiang, Guangming

    2002-07-01

    A new type of polypropylene tubular membrane apparatus of rotating cross flow was designed to study experimentally the flow field characteristics of the tangential section of the membrane annular gap. The authors designed rotary linear tangential flow tubular membrane separator and its test system for the first time. Through the system, the flow field of rotary linear tangential flow with the advanced Particle Image Velocimetry (PIV) was tested for the first time. A lot of streamlines and vorticity maps of the tangential section of separator in different operation conditions were obtained. The velocity distribution characteristics were analyzed quantitatively: 1. At non-vortex area, no matter how the operation parameters change, the velocity near to rotary tangential flow entrance was higher than the velocity far from entrance at the same radial coordinates. At vortex area, generally the flow velocity of inner vortex was lower than the outer vortex. At the vortex center, the velocity was lowest, the tangential velocity were equal to zero generally. At the vortex center zone, the tangential velocity was less than the axial velocity. 2. Under test operations, the tangential velocity and axial velocity of vortices borders are 1-2 times of average axial velocity of membrane module annular gap. The maximum tangential velocity and axial velocity of ellipse vortices were 2-6 times of average axial velocity of membrane module annular gap. 3. The vortices that are formed on the tangential section, there existed mass transfer between inner and outer parts of fluid. Much fluid of outer vortices got into the inner ones, which was able to prevent membrane tube from particles blocking up very soon. PMID:12371104

  3. Thermal mixing tests in a semiannular downcomer with interacting flows from cold legs: International Agreement Report

    SciTech Connect

    Tuomisto, H; Mustonen, P

    1986-10-01

    This report describes the test facility and test program for studying thermal mixing of high-pressure injection (HPI) water in the two-fifths scale model of three cold legs, semiannular downcomer and lower plenum of a pressurized water reactor. This test series has been carried out by mutual agreement on the pressurized thermal shock (PTS) information exchange between the US Nuclear Regulation Commission and Imatran Voima Oy. The test facility was originally designed to model the Finnish Loviisa plant but it was redesigned and modified for this test program. The facility can be operated at atmospheric pressure with loop and HPI flows from different cold legs in the area of interest to PTS. Transparent materials were used to allow flow visualization during the tests. The choice of transparent materials limit the upper temperature to 75/sup 0/C. The full buoyancy effect was induced by salt addition and the HPI temperature was used as a tracer. The test matrix consists of 20 tests. The varied parameters were flow rates and the number and configuration of cold legs with HPI and loop flows. Four tests were done with decreasing loop flow temperature to simulate primary flows during steam line breaks.

  4. Core Dynamics Analysis for Reactivity Insertion and Loss of Coolant Flow Tests Using the High Temperature Engineering Test Reactor

    NASA Astrophysics Data System (ADS)

    Takamatsu, Kuniyoshi; Nakagawa, Shigeaki; Takeda, Tetsuaki

    Safety demonstration tests using the High Temperature Engineering Test Reactor (HTTR) are in progress to verify its inherent safety features and improve the safety technology and design methodology for High-temperature Gas-cooled Reactors (HTGRs). The reactivity insertion test is one of the safety demonstration tests for the HTTR. This test simulates the rapid increase in the reactor power by withdrawing the control rod without operating the reactor power control system. In addition, the loss of coolant flow tests has been conducted to simulate the rapid decrease in the reactor power by tripping one, two or all out of three gas circulators. The experimental results have revealed the inherent safety features of HTGRs, such as the negative reactivity feedback effect. The numerical analysis code, which was named-ACCORD-, was developed to analyze the reactor dynamics including the flow behavior in the HTTR core. We have modified this code to use a model with four parallel channels and twenty temperature coefficients. Furthermore, we added another analytical model of the core for calculating the heat conduction between the fuel channels and the core in the case of the loss of coolant flow tests. This paper describes the validation results for the newly developed code using the experimental results. Moreover, the effect of the model is formulated quantitatively with our proposed equation. Finally, the pre-analytical result of the loss of coolant flow test by tripping all gas circulators is also discussed.

  5. Development of Flow Boiling and Condensation Experiment on the International Space Station- Normal and Low Gravity Flow Boiling Experiment Development and Test Results

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Hall, Nancy R.; Hasan, Mohammad M.; Wagner, James D.; May, Rochelle L.; Mackey, Jeffrey R.; Kolacz, John S.; Butcher, Robert L.; Frankenfield, Bruce J.; Mudawar, Issam; Konichi, Chris; Hyounsoon, Lee

    2013-01-01

    Flow boiling and condensation have been identified as two key mechanisms for heat transport that are vital for achieving weight and volume reduction as well as performance enhancement in future space systems. Since inertia driven flows are demanding on power usage, lower flows are desirable. However, in microgravity, lower flows are dominated by forces other than inertia (like the capillary force). It is of paramount interest to investigate limits of low flows beyond which the flow is inertial enough to be gravity independent. One of the objectives of the Flow Boiling and Condensation Flight Experiment sets to investigate these limits for flow boiling and condensation. A two-phase flow loop consisting of a Flow Boiling Module and two Condensation Modules has been developed to experimentally study flow boiling condensation heat transfer in the reduced gravity environment provided by the reduced gravity platform. This effort supports the development of a flow boiling and condensation facility for the International Space Station (ISS). The closed loop test facility is designed to deliver the test fluid, FC-72 to the inlet of any one of the test modules at specified thermodynamic and flow conditions. The zero-g-aircraft tests will provide subcooled and saturated flow boiling critical heat flux and flow condensation heat transfer data over wide range of flow velocities. Additionally, these tests will verify the performance of all gravity sensitive components, such as evaporator, condenser and accumulator associated with the two-phase flow loop. We will present in this paper the breadboard development and testing results which consist of detailed performance evaluation of the heater and condenser combination in reduced and normal gravity. We will also present the design of the reduced gravity aircraft rack and the results of the ground flow boiling heat transfer testing performed with the Flow Boiling Module that is designed to investigate flow boiling heat transfer and

  6. An evaluation of pressure and flow measurement in the Molten Salt Test Loop (MSTL) system.

    SciTech Connect

    Gill, David Dennis; Kolb, William J.; Briggs, Ronald J.

    2013-07-01

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL allows customers and researchers to test components in flowing, molten nitrate salt at plant-like conditions for pressure, flow, and temperature. An important need in thermal storage systems that utilize molten salts is for accurate flow and pressure measurement at temperatures above 535ÀC. Currently available flow and pressure instrumentation for molten salt is limited to 535ÀC and even at this temperature the pressure measurement appears to have significant variability. It is the design practice in current Concentrating Solar Power plants to measure flow and pressure on the cold side of the process or in dead-legs where the salt can cool, but this practice wont be possible for high temperature salt systems. For this effort, a set of tests was conducted to evaluate the use of the pressure sensors for flow measurement across a device of known flow coefficient Cv. To perform this task, the pressure sensors performance was evaluated and was found to be lacking. The pressure indicators are severely affected by ambient conditions and were indicating pressure changes of nearly 200psi when there was no flow or pressure in the system. Several iterations of performance improvement were undertaken and the pressure changes were reduced to less than 15psi. The results of these pressure improvements were then tested for use as flow measurement. It was found that even with improved pressure sensors, this is not a reliable method of flow measurement. The need for improved flow and pressure measurement at high temperatures remains and will need to be solved before it will be possible to move to high temperature thermal storage systems with molten salts.

  7. Flow Quality Studies of the NASA Glenn Research Center Icing Research Tunnel Circuit (1995 Tests)

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Kee-Bowling, Bonnie A.; Gonsalez, Jose C.

    2000-01-01

    The purpose of conducting the flow-field surveys described in this report was to more fully document the flow quality in several areas of the tunnel circuit in the NASA Glenn Research Center Icing Research Tunnel. The results from these surveys provide insight into areas of the tunnel that were known to exhibit poor flow quality characteristics and provide data that will be useful to the design of flow quality improvements and a new heat exchanger for the facility. An instrumented traversing mechanism was used to survey the flow field at several large cross sections of the tunnel loop over the entire speed range of the facility. Flow-field data were collected at five stations in the tunnel loop, including downstream of the fan drive motor housing, upstream and downstream of the heat exchanger, and upstream and downstream of the spraybars located in the settling chamber upstream of the test section. The data collected during these surveys greatly expanded the data base describing the flow quality in each of these areas. The new data matched closely the flow quality trends recorded from earlier tests. Data collected downstream of the heat exchanger and in the settling chamber showed how the configuration of the folded heat exchanger affected the pressure, velocity, and flow angle distributions in these areas. Smoke flow visualization was also used to qualitatively study the flow field in an area downstream of the drive fan and in the settling chamber/contraction section.

  8. Fluctuating Pressure Data from 2-D Nozzle Cold Flow Tests (Dual Bell)

    NASA Technical Reports Server (NTRS)

    Nesman, Tomas E.

    2001-01-01

    Rocket engines nozzle performance changes as a vehicle climbs through the atmosphere. An altitude compensating nozzle, ACN, is intended to improve on a fixed geometry bell nozzle that performs at optimum at only one trajectory point. In addition to nozzle performance, nozzle transient loads are an important consideration. Any nozzle experiences large transient toads when shocks pass through the nozzle at start and shutdown. Additional transient toads will occur at transitional flow conditions. The objectives of cold flow nozzle testing at MSFC are CFD benchmark / calibration and Unsteady flow / sideloads. Initial testing performed with 2-D inserts to 14" transonic wind tunnel. Recent review of 2-D data in preparation for nozzle test facility 3-D testing. This presentation shows fluctuating pressure data and some observations from 2-D dual-bell nozzle cold flow tests.

  9. Bentonite borehole plug flow testing with five water types

    SciTech Connect

    Gaudette, M.V.; Daemen, J.J.K.

    1988-04-01

    The hydraulic conductivity has been determined of plugs constructed with commercial precompressed bentonite pellets. Bentonite has been hydrated and tested with waters of five different chemical compositions, including one groundwater (Ogallala aquifer, Texas). The groundwater contained a significant amount of solids: waters prepared in the laboratory did not. Prepared waters used for testing included distilled water, a high (1000 ppM) and a low (45 ppM) calcium solution, and a 39 ppM sodium water. Uncompacted plugs were constructed by dropping bentonite tablets into waterfilled cylinders, or by mixing powdered bentonite with preselected water volumes in order to obtain controlled initial water contents. The hydraulic conductivity of all plugs tested with all waters would result in a classification of practically impervious, by conventional soil mechanics standards. Variations of several orders of magnitude of the hydraulic conductivity are observed.

  10. Design and Implementation of a Characterization Test Rig for Evaluating High Bandwidth Liquid Fuel Flow Modulators

    NASA Technical Reports Server (NTRS)

    Saus, Joseph R.; Chang, Clarence T.; DeLaat, John C.; Vrnak, Daniel R.

    2010-01-01

    A test rig was designed and developed at the NASA Glenn Research Center (GRC) for the purpose of characterizing high bandwidth liquid fuel flow modulator candidates to determine their suitability for combustion instability control research. The test rig is capable of testing flow modulators at up to 600 psia supply pressure and flows of up to 2 gpm. The rig is designed to provide a quiescent flow into the test section in order to isolate the dynamic flow modulations produced by the test article. Both the fuel injector orifice downstream of the test article and the combustor are emulated. The effect of fuel delivery line lengths on modulator dynamic performance can be observed and modified to replicate actual fuel delivery systems. For simplicity, water is currently used as the working fluid, although future plans are to use jet fuel. The rig is instrumented for dynamic pressures and flows and a high-speed data system is used for dynamic data acquisition. Preliminary results have been obtained for one candidate flow modulator.

  11. Field testing the hypothesis of Darcian flow through a carbonate aquifer.

    USGS Publications Warehouse

    Hickey, J.J.

    1984-01-01

    The acceptability of the hypothesis of Darcian flow through a semiconfined carbonate aquifer was tested prior to running a multiple-day aquifer test in Pinellas County, Florida. The approach used to test the hypothesis was to run a number of hour-long aquifer tests at different discharges with drawdown measured at the same time during each test in two observation wells, one at 35 feet and the other at 733 feet from the pumped well. The hypothesis of Darcian flow through the semiconfined carbonate aquifer was deemed acceptable.-from Author

  12. 10 CFR 431.264 - Uniform test method for the measurement of flow rate for commercial prerinse spray valves.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Valves Test Procedures § 431.264 Uniform test method for the measurement of flow rate for commercial..., the water consumption flow rate of commercial prerinse spray valves. (b) Testing and Calculations. The test procedure to determine the water consumption flow rate for prerinse spray valves, expressed...

  13. 10 CFR 431.264 - Uniform test method for the measurement of flow rate for commercial prerinse spray valves.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Valves Test Procedures § 431.264 Uniform test method for the measurement of flow rate for commercial..., the water consumption flow rate of commercial prerinse spray valves. (b) Testing and Calculations. The test procedure to determine the water consumption flow rate for prerinse spray valves, expressed...

  14. Phase 2: HGM air flow tests in support of HEX vane investigation

    NASA Technical Reports Server (NTRS)

    Cox, G. B., Jr.; Steele, L. L.; Eisenhart, D. W.

    1993-01-01

    Following the start of SSME certification testing for the Pratt and Whitney Alternate Turbopump Development (ATD) High Pressure Oxidizer Turbopump (HPOTP), cracking of the leading edge of the inner HEX vane was experienced. The HEX vane, at the inlet of the oxidizer bowl in the Hot Gas Manifold (HGM), accepts the HPOTP turbine discharge flow and turns it toward the Gaseous Oxidizer Heat Exchanger (GOX HEX) coil. The cracking consistently initiated over a specific circumferential region of the hex vane, with other circumferential locations appearing with increased run time. Since cracking had not to date been seen with the baseline HPOTP, a fluid-structural interaction involving the ATD HPOTP turbine exit flowfield and the HEX inner vane was suspected. As part of NASA contract NAS8-36801, Pratt and Whitney conducted air flow tests of the ATD HPOTP turbine turnaround duct flowpath in the MSFC Phase 2 HGM air flow model. These tests included HEX vane strain gages and additional fluctuating pressure gages in the turnaround duct and HEX vane flowpath area. Three-dimensional flow probe measurements at two stations downstream of the turbine simulator exit plane were also made. Modifications to the HPOTP turbine simulator investigated the effects on turbine exit flow profile and velocity components, with the objective of reproducing flow conditions calculated for the actual ATD HPOTP hardware. Testing was done at the MSFC SSME Dynamic Fluid Air Flow (Dual-Leg) Facility, at air supply pressures between 50 and 250 psia. Combinations of turbine exit Mach number and pressure level were run to investigate the effect of flow regime. Information presented includes: (1) Descriptions of turbine simulator modifications to produce the desired flow environment; (2) Types and locations for instrumentation added to the flow model for improved diagnostic capability; (3) Evaluation of the effect of changes to the turbine simulator flowpath on the turbine exit flow environment; and (4

  15. Cerebral blood flow response pattern during balloon test occlusion of the internal carotid artery

    SciTech Connect

    Witt, J.P.; Yonas, H.; Jungreis, C.

    1994-05-01

    To evaluate the risk of temporary or permanent internal carotid artery occlusion. In 156 patients intraarterial balloon test occlusion in combination with a stable xenon-enhanced CT cerebral blood flow study was performed before radiologic or surgical treatment. All 156 patients passed the clinical balloon test occlusion and underwent a xenon study in combination with a second balloon test. Quantitative flow data were analyzed for absolute changes as well as changes in symmetry. Fourteen patients exhibited reduced flow values between 20 and 30 mL/100 g per minute, an absolute decrease in flow, and significant asymmetry in the middle cerebral artery territory during balloon test occlusion. These patients would be considered at high risk for cerebral infarction if internal carotid artery occlusion were to be performed. With one exception they belonged to a group (class I) of 61 patients who showed bilateral or ipsilateral flow decrease and significant asymmetry with lower flow on the side of occlusion. The other 95 patients, who showed a variety of cerebral blood flow response patterns including ipsilateral or bilateral flow increase, were at moderate (class II) or low (class III) stroke risk. In contrast to these findings, exclusively qualitative flow analysis failed to identify the patients at high risk: a threshold with an asymmetry index of 10% revealed only 16% specificity whereas an asymmetry index of 45% showed only 61% sensitivity for detection of low flow areas (<30 mL/100 g per minute). For achieving a minimal hemodynamic related-stroke rate associated with permanent clinical internal carotid artery occlusion we suggest integration of a thorough analysis of quantitative cerebral blood flow data before and during balloon test occlusion. 68 refs., 5 figs., 2 tabs.

  16. Selection Tests of MnZn and NiZn Ferrites for Mu2e 300 kHz and 5.1 MHz AC Dipoles

    SciTech Connect

    Bourkland, K.; Elementi, L.; Feher, S.; Harding, D.J.; Kashikhin, V.S.; Makarov, A.; Pfeffer, H.; Velev, G.V.; Mulushev, E.; Iedmeska, I.; Venturini, M.; /Pisa U.

    2011-09-09

    Mu2e, a charged lepton flavor violation (CLFV) experiment is planned to start at Fermilab late in this decade. The proposed experiment will search for neutrinoless muon to electron conversions with unprecedented sensitivity, better than 6 x 10{sup -17 }at 90% CL. To achieve this sensitivity the incoming proton beam must be highly suppressed during the window for detecting the muon decays. The current proposal for beam extinction is based on a collimator design with two dipoles running at {approx}300 kHz and 5.1 MHz and synchronized to the proton bunch spacing. The appropriate choice of ferrite material for the magnet yoke is a critical step in the overall design of the dipoles and their reliable operation at such high frequencies over the life of the experiment. This choice, based on a series of the thermal and magnetic measurements of the ferrite samples, is discussed in the paper. Additionally, the first results from the testing at 300 kHz of a prototype AC dipole are presented.

  17. A Study of a Network-Flow Algorithm and a Noncorrecting Algorithm for Test Assembly.

    ERIC Educational Resources Information Center

    Armstrong, R. D.; And Others

    1996-01-01

    When the network-flow algorithm (NFA) and the average growth approximation algorithm (AGAA) were used for automated test assembly with American College Test and Armed Services Vocational Aptitude Battery item banks, results indicate that reasonable error in item parameters is not harmful for test assembly using NFA or AGAA. (SLD)

  18. Flow for Exercise Adherence: Testing an Intrinsic Model of Health Behavior

    ERIC Educational Resources Information Center

    Petosa, R. Lingyak; Holtz, Brian

    2013-01-01

    Background: Health behavior theory generally does not include intrinsic motivation as a determinate of health practices. Purpose: The purpose of this study was to test the flow theory of exercise adherence. Flow theory posits that exercise can be intrinsically rewarding if the experiences of self/time transcendence and control/mastery are achieved…

  19. 42 CFR 84.94 - Gas flow test; closed-circuit apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Gas flow test; closed-circuit apparatus. 84.94 Section 84.94 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.94 Gas flow...

  20. 42 CFR 84.93 - Gas flow test; open-circuit apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Gas flow test; open-circuit apparatus. 84.93 Section 84.93 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.93 Gas flow...

  1. In vitro blood flow model with physiological wall shear stress for hemocompatibility testing-An example of coronary stent testing.

    PubMed

    Engels, Gerwin Erik; Blok, Sjoerd Leendert Johannes; van Oeveren, Willem

    2016-01-01

    Hemocompatibility of blood contacting medical devices has to be evaluated before their intended application. To assess hemocompatibility, blood flow models are often used and can either consist of in vivo animal models or in vitro blood flow models. Given the disadvantages of animal models, in vitro blood flow models are an attractive alternative. The in vitro blood flow models available nowadays mostly focus on generating continuous flow instead of generating a pulsatile flow with certain wall shear stress, which has shown to be more relevant in maintaining hemostasis. To address this issue, the authors introduce a blood flow model that is able to generate a pulsatile flow and wall shear stress resembling the physiological situation, which the authors have coined the "Haemobile." The authors have validated the model by performing Doppler flow measurements to calculate velocity profiles and (wall) shear stress profiles. As an example, the authors evaluated the thrombogenicity of two drug eluting stents, one that was already on the market and one that was still under development. After identifying proper conditions resembling the wall shear stress in coronary arteries, the authors compared the stents with each other and often used reference materials. These experiments resulted in high contrast between hemocompatible and incompatible materials, showing the exceptional testing capabilities of the Haemobile. In conclusion, the authors have developed an in vitro blood flow model which is capable of mimicking physiological conditions of blood flow as close as possible. The model is convenient in use and is able to clearly discriminate between hemocompatible and incompatible materials, making it suitable for evaluating the hemocompatible properties of medical devices. PMID:27435456

  2. Computer tomography of flows external to test models

    NASA Technical Reports Server (NTRS)

    Prikryl, I.; Vest, C. M.

    1982-01-01

    Computer tomographic techniques for reconstruction of three-dimensional aerodynamic density fields, from interferograms recorded from several different viewing directions were studied. Emphasis is on the case in which an opaque object such as a test model in a wind tunnel obscures significant regions of the interferograms (projection data). A method called the Iterative Convolution Method (ICM), existing methods in which the field is represented by a series expansions, and analysis of real experimental data in the form of aerodynamic interferograms are discussed.

  3. PIV characterization of high-Reynolds flow in turbine test facility

    NASA Astrophysics Data System (ADS)

    Chikishev, L. M.; Gobyzov, O. A.; Sharaborin, D. K.; Kravtsov, Z. D.; Dulin, V. M.; Bilsky, A. V.; Markovich, D. M.

    2016-10-01

    This paper reports on application of Stereo Particle Image Velocimetry (Stereo PIV) to measure flow characteristics at high-Reynolds number flow in turbine test facility. The test rig "TS-2" at The Central Institute of Aviation Motors was operated at the pressure up to 2.5 bar, temperature 450°C and flow rates up to 36 kg/s. The main goal of the study was to characterize turbulence intensity and to estimate turbulence integral scale using correlation functions in a test rig immediately before the low pressure aviation turbine. It was found that for different operation pressure (from 1.44 to 2.5 bar) and different flow configuration (with or without turbulent screens) the local turbulence intensity at the inlet of low pressure turbine is about 20 %, but the turbulence integral scale is strongly dependent on the turbine test facility configuration.

  4. A flight test of laminar flow control leading-edge systems

    NASA Technical Reports Server (NTRS)

    Fischer, M. C.; Wright, A. S., Jr.; Wagner, R. D.

    1983-01-01

    NASA's program for development of a laminar flow technology base for application to commercial transports has made significant progress since its inception in 1976. Current efforts are focused on development of practical reliable systems for the leading-edge region where the most difficult problems in applying laminar flow exist. Practical solutions to these problems will remove many concerns about the ultimate practicality of laminar flow. To address these issues, two contractors performed studies, conducted development tests, and designed and fabricated fully functional leading-edge test articles for installation on the NASA JetStar aircraft. Systems evaluation and performance testing will be conducted to thoroughly evaluate all system capabilities and characteristics. A simulated airline service flight test program will be performed to obtain the operational sensitivity, maintenance, and reliability data needed to establish that practical solutions exist for the difficult leading-edge area of a future commercial transport employing laminar flow control.

  5. Experimental onset of flow instability testing by Creare, Inc. Book 1

    SciTech Connect

    Coutts, D.A.

    1992-11-01

    Flow excursions can occur during subcooled heated flow if the supply system is not adequate to meet the heated channel pressure demand. Available experimental flow instability (FI) data for ribbed annuli such as used in the SRS production reactors is very limited. Creare Inc. completed a series of FI tests which included two annular geometries; one of these included metallic ribs which separated the annulus into four sub-channels. This report summarizes the results of the onset of flow instability (OFI) testing which was completed by Creare in support of the SRS Reactor Restart Program. A copy of the final test report has been attached and the archival locations for the supporting documentation and electronic test data is also included. The purpose of this report is to: Archive the Creare Program data; inspect the data which has been archived; review the results presented by Creare; and evaluate if the Creare Program data may be used in critical applications.

  6. Numerical tests of constitutive laws for dense granular flows.

    PubMed

    Lois, Gregg; Lemaître, Anaël; Carlson, Jean M

    2005-11-01

    We numerically and theoretically study the macroscopic properties of dense, sheared granular materials. In this process we first consider an invariance in Newton's equations, explain how it leads to Bagnold's scaling, and discuss how it relates to the dynamics of granular temperature. Next we implement numerical simulations of granular materials in two different geometries--simple shear and flow down an incline--and show that measurements can be extrapolated from one geometry to the other. Then we observe nonaffine rearrangements of clusters of grains in response to shear strain and show that fundamental observations, which served as a basis for the shear transformation zone (STZ) theory of amorphous solids [M. L. Falk and J. S. Langer, Phys. Rev. E. 57, 7192 (1998); M.R.S. Bull 25, 40 (2000)], can be reproduced in granular materials. Finally we present constitutive equations for granular materials as proposed by Lemaître [Phys. Rev. Lett. 89, 064303 (2002)], based on the dynamics of granular temperature and STZ theory, and show that they match remarkably well with our numerical data from both geometries.

  7. Models, assumptions, and experimental tests of flows near magnetized boundaries

    NASA Astrophysics Data System (ADS)

    Siddiqui, M. Umair

    2015-11-01

    We present a history of research on the magnetized plasma boundary and recent first measurements of particle flows in such structures in laboratory plasmas using multi-dimensional laser-induced fluorescence (LIF). Our measurements show that the canonical model for this boundary proposed in 1982 [Chodura, Phys. Fluids (1982)] is inaccurate for systems where the ion-neutral collision length is less than at least 4 times the ion gyro radius. Rather, our measurements validate more sophisticated plasma boundary fluid models that take neutral collisions into account [Riemann, Phys. Plasmas (1994); Ahedo, Phys. Plasmas (1997); Siddiqui et al., Phys. Plasmas (2014)]. In light of these results, we show that both three-dimensional ion and neutral velocity distribution functions are strongly affected near the boundary. We discuss effects of these perturbed distributions on wall loading and erosion in experiments and applications such as divertor tokamak scrape-off layers and Hall thrusters. Finally, we propose modern definitions of the oft-used term, ``magnetic presheath.'' This work is supported by U.S. National Science Foundation grant number PHY-1360278.

  8. Experiment 2074: post-drilling reservoir flow testing through EE-3A first revision

    SciTech Connect

    Brown, Donald W.; Robinson, Bruce A.

    1987-11-20

    As previously outlined in memorandum ESS-4-87-305 (11/12/87), EE-3A will be pressurized with the Kobe pumps for the next week, and then a sequence of reservoir flow tests and logs will be conducted for a one to two week period beginning Tuesday, 12/1/87. The purpose of this memorandum is to better define this flow test and sequence of logs, organized as a "formal" experiment.

  9. A mercury flow meter for ion thruster testing. [response time, thermal sensitivity

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1973-01-01

    The theory of operation of the thermal flow meter is presented, and a theoretical model is used to determine design parameters for a device capable of measuring mercury flows in the range of 0 to 5 gm/hr. Flow meter construction is described. Tests performed using a positive displacement mercury pump as well as those performed with the device in the feed line of an operating thruster are discussed. A flow meter response time of about a minute and a sensitivity of about 10 mv/gm/hr are demonstrated. Additional work to relieve a sensitivity of the device to variations in ambient temperature is indicated to improve its quantitative performance.

  10. Hot-Film and Hot-Wire Anemometry for a Boundary Layer Active Flow Control Test

    NASA Technical Reports Server (NTRS)

    Lenahan, Keven C.; Schatzman, David M.; Wilson, Jacob Samuel

    2013-01-01

    Unsteady active flow control (AFC) has been used experimentally for many years to minimize bluff-body drag. This technology could significantly improve performance of rotorcraft by cleaning up flow separation. It is important, then, that new actuator technologies be studied for application to future vehicles. A boundary layer wind tunnel was constructed with a 1ft-x-3ft test section and unsteady measurement instrumentation to study how AFC manipulates the boundary layer to overcome adverse pressure gradients and flow separation. This unsteady flow control research requires unsteady measurement methods. In order to measure the boundary layer characteristics, both hot-wire and hot-film Constant Temperature Anemometry is used. A hot-wire probe is mounted in the flow to measure velocity while a hot-film array lays on the test surface to measure skin friction. Hot-film sensors are connected to an anemometer, a Wheatstone bridge circuit with an output that corresponds to the dynamic flow response. From this output, the time varying flow field, turbulence, and flow reversal can be characterized. Tuning the anemometers requires a fan test on the hot-film sensors to adjust each output. This is a delicate process as several variables drastically affect the data, including control resistance, signal input, trim, and gain settings.

  11. [Discussion on testing of flow rate of infusion device about industry standard].

    PubMed

    Hua, Songhe

    2014-07-01

    Carried on the exploration testing of flow rate of infusion device about industry standard YY 0451-2010. Engaged in flow rate experiments adopting different method that are provided by new and old industry standard for samples of the same type. Compared with the result of the dangerous coefficient by calculating the test data, the old standard can be more sensitive to reflect the situation of product flow rate, so it can be applied to conventional control of the products. The method which provided by the new industry standard is suitable for evaluating periodicity the level of product contaminated. PMID:25330614

  12. Standard test case for a low-speed, turbulent junction vortex flow

    NASA Technical Reports Server (NTRS)

    Pierce, F. J.

    1991-01-01

    The mean flow structure upstream, around within, and in the near wake of a turbulent junction or horseshoe vortex is reported for an incompressible subsonic flow. Measurements of the primitive variables of velocity and pressure are reported on all surfaces bounding the region of the vortex flow and on three transverse and one streamwise plane within the flowfield itself for comparisons between the measured and any calculated flow variables. Detailed surface flow visualizations and some direct force measurements of surface shear stress are also available. The data is a highly detailed, coherent, self-consistent set offered to the computational fluid mechanics community as a standard test case for the evaluation of the capability of numerical solvers intended for predicting the flowfield in such a complex, separated, three-dimensional turbulent flow. This data base is available for copying to user supplied tapes or for transmission via BITNET, as well as in two National Technical Information Service (NTIS) reports.

  13. Miravalles Geothermal Project: Portable Well Flow Test Equipment and Procedures Manual

    SciTech Connect

    1980-05-01

    The well flow test program has been designed to facilitate the gathering of information, with portable test equipment, from various wells with regard to their capability of flow, the quality of steam produced at various back pressures, the composition and quantity of noncondensable gases flashed from the wells and the composition and quantity of solids in the well's liquid streams (brine). The test program includes procedures for obtaining the following basic flow data pertinent to the plant power cycle design: (1) Effluent steam and brine flows, pressures and temperatures; (2) Noncondensable and dissolved gas contents in steam and brine; (3) H{sub s}S content in gases formed; and (4) Solids content and chemical analysis of steam and brine.

  14. High-resolution Digital Mapping of Historical Lava Flows as a Test-bed for Lava Flow Models

    NASA Astrophysics Data System (ADS)

    Pyle, D. M.; Parks, M.; Nomikou, P.; Mather, T. A.; Simou, E.; Kalnins, L. M.; Paulatto, M.; Watts, A. B.

    2013-12-01

    eruption volume and pre-eruption interval, which will in turn improve our capacity to forecast the size and duration of future dome-forming events at Santorini. The new topographic dataset, and the detailed historical accounts of the eruptions which formed those lava flows, offers a tremendous opportunity to test the current generation of lava flow models.

  15. Water Flow Testing and Unsteady Pressure Analysis of a Two-Bladed Liquid Oxidizer Pump Inducer

    NASA Technical Reports Server (NTRS)

    Schwarz, Jordan B.; Mulder, Andrew; Zoladz, Thomas

    2011-01-01

    The unsteady fluid dynamic performance of a cavitating two-bladed oxidizer turbopump inducer was characterized through sub-scale water flow testing. While testing a novel inlet duct design that included a cavitation suppression groove, unusual high-frequency pressure oscillations were observed. With potential implications for inducer blade loads, these high-frequency components were analyzed extensively in order to understand their origins and impacts to blade loading. Water flow testing provides a technique to determine pump performance without the costs and hazards associated with handling cryogenic propellants. Water has a similar density and Reynolds number to liquid oxygen. In a 70%-scale water flow test, the inducer-only pump performance was evaluated. Over a range of flow rates, the pump inlet pressure was gradually reduced, causing the flow to cavitate near the pump inducer. A nominal, smooth inducer inlet was tested, followed by an inlet duct with a circumferential groove designed to suppress cavitation. A subsequent 52%-scale water flow test in another facility evaluated the combined inducer-impeller pump performance. With the nominal inlet design, the inducer showed traditional cavitation and surge characteristics. Significant bearing loads were created by large side loads on the inducer during synchronous cavitation. The grooved inlet successfully mitigated these loads by greatly reducing synchronous cavitation, however high-frequency pressure oscillations were observed over a range of frequencies. Analytical signal processing techniques showed these oscillations to be created by a rotating, multi-celled train of pressure pulses, and subsequent CFD analysis suggested that such pulses could be created by the interaction of rotating inducer blades with fluid trapped in a cavitation suppression groove. Despite their relatively low amplitude, these high-frequency pressure oscillations posed a design concern due to their sensitivity to flow conditions and

  16. Borehole flowmeter measurements of horizontal groundwater flow before and during an aquifer test in central Indiana

    NASA Astrophysics Data System (ADS)

    Lampe, D. C.

    2009-12-01

    Horizontal borehole flowmeters will be used by the U.S. Geological Survey’s Indiana Water Science Center during an aquifer test in an outwash aquifer adjacent to the White River in central Indiana to determine directions and velocities of horizontal groundwater flow. Borehole flowmeters will provide point measurements of horizontal groundwater flow direction and velocity in four observation wells installed around the producing well. The point flow directions and velocities will be used to evaluate whether the aquifer test induces flow from the direction of nearby hydrologic boundaries: a river, and two adjacent tributaries, and/or from normally upgradient parts of the outwash aquifer system. Final calculations of flow velocity in the formation will include a correction factor based on laboratory flowmeter data. Correction factor data will be collected in the same type of well screen as the observation wells that is emplaced in a laboratory simulator packed with sand from the outwash aquifer and operated at known flow volumes and directions. Flowmeter-based groundwater flow directions and velocities that are made before and during the aquifer test, in combination with recorded water-level fluctuations, will be evaluated to understand groundwater/surface-water interactions and sources of groundwater to the producing well.

  17. Investigation of the Flow-Induced Vibration in the E2 Test Facility

    NASA Technical Reports Server (NTRS)

    Castillo, Luciano

    2001-01-01

    An investigation of flow induced vibration due to coupling between the fluid flow and the propellants lines (LOX and RP-1) was performed. Various flow rate conditions were studied to check whether flow induced vibration was possible due to vortex shedding in both valves and pipe lines. Resonance test was conducted for all segments of the LOX-feedline for the preburner under test. In addition, critical values of frequency and velocity are calculated using a mass damping model. A simple chart characterizing the relation between frequency and velocity is developed for each component; i.e. propellant lines, valves and flow meters. It was found that flow induced vibration occurs for various segments with flow rates of 113 lb/s, 275 lb/s and 40 lb/s. Even more interesting using critical conditions for buckling, it was found that the valve or pipe may collapse for a flow rate of 275 lb/s and valve height of 10% of pipe diameter. Furthermore, two models for the acoustic pressure acting on the segments particularly for the valve are proposed.

  18. Investigation of the Flow-Induced Vibration in the E2 Test Facility

    NASA Technical Reports Server (NTRS)

    Castillo, Luciano

    2001-01-01

    An investigation of flow induced vibration due to coupling between the fluid flow and the propellants lines (LOX and RP-1) was performed. Various flow rate conditions were studied to check whether flow induced vibration was possible due to vortex shedding in both valves and pipe lines. Resonances test was conducted for all segments of the LOX-feedline for the preburner under test. In addition, critical values of frequency and velocity are calculated using a mass damping model. A simple chart characterizing the relation between frequency and velocity is developed for each component; i.e. propellant lines, valves and flow meters. It was found that flow induced vibration occurs for various segments with flow rates of 113 1b/s, 275 lb/s and 40 lb/s. Even more interesting using critical conditions for buckling, it was found that the valve or pipe may collapse for a flow rate of 275 lb/s and valve height of 10% of pipe diameter. Furthermore, two models for the acoustic pressure acting on the segments particularly for the valve are proposed.

  19. Tracer Tests in the Fractured Rock to Investigate Preferential Groundwater Flow

    NASA Astrophysics Data System (ADS)

    Chan, W.; Chung, L.; Lee, T.; Liu, C.; Chia, Y.; Teng, M.

    2012-12-01

    Hydraulic tests are often used to obtain hydraulic conductivity in the aquifer. Test results usually reflect the average hydraulic conductivity in the surrounding strat. However, in fractured rock, groundwater flows primarily through a few fractures. Saltwater tracer test can be used to detect the direction of groundwater flow, but it was difficult to know the hydraulic connectivity between fractures. In this study, we use a variety of field tests, including tracer test, hydraulic test, and heat-pulse flowmeter test, to locate the permeable fractures and detect the hydraulic connections between boreholes. There are eight test wells and two observation wells on field experimental site in central Taiwan. Geological survey results show that there are at least three sets of joint planes. In order to realize the location of the preferential pathway of groundwater flow, heat-pulse flowmeter measurement was adopted to identify the depth of permeable fractures. Multi-well pumping test was also performed to investigate the hydraulic connectivity between these wells. Tracer tests were then used to detect the hydraulic connectivity of permeable fractures between two wells. Injection of nano zero valent iron in one well and and collection of iron tracer with a magnet array in the other well can specifically locate the permeable fracture and determine the connectivity. Saltwater tracer test result can be used to support that of nano-iron tracer test, and verify the relationship between well water conductivity increases and rock fracture location. The results show that tracer test is a useful tool to investigate the preferential groundwater flow in the fractured rock, but it is essential to flush the mud in fractures prior to the test.

  20. Promoted Ignition and Burning Tests of Stainless Steel in Flowing and Nonflowing Oxygen

    NASA Technical Reports Server (NTRS)

    Forsyth, Elliot T.; Maes, Miguel; Stoltzfus, Joel M.; Bachelier, Frederic

    2003-01-01

    The Industry-Sponsored Metals Combustion Test Program 96-1 was coordinated through Wendell Hull & Associates, Inc. on behalf of several contributing companies, and all design and testing was performed at the NASA White Sands Test Facility. Phase I of this test program studied the threshold pressure for self-sustained burning of various types and sizes of stain less steel rods in nonflowing oxygen, as observed in Standard Test Method for Determining the Combustion Behavior of Metallic Materials in Oxygen-Enriched Atmospheres (ASTM G 124-95). Phase II studied the ignition and propagation of burning of 316L stainless steel rods and pipe in flowing gaseous oxygen. The test sample configurations were chosen to replicate previous promoted ignition and burning tests as well as to represent geometries and cross-sectional thicknesses common in industrial piping applications. The gas pressw'es and velocities for the test matrix were selected to generally compare with CGA G-4.4 guidelines for the use of stain less steel in oxygen service. This paper summarizes the results from the Phase I nonflowing oxygen tests and presents in detail the results of the Phase II flowing oxygen tests. The maximum sample burn-length is shown as a function of test pressure in Phase 1 and also as a function of gas velocity in Phase IT. These results indicate that flowing oxygen, under the given test conditions, significantly affects maximum sample burn length as compared to nonflowing oxygen. Supplementary flowing oxygen test data on stainless steel rods from a follow-up test program are consistent with these results and are presented herein.

  1. Evaluation of a Rapid Lateral Flow Point-of-Care Test for Detection of Cryptosporidium

    PubMed Central

    Fleece, Molly E.; Heptinstall, Jack; Khan, Shaila S.; Kabir, Mamum; Herbein, Joel; Haque, Rashidul; Petri, William A.

    2016-01-01

    A new rapid lateral flow fecal antigen detection test for Cryptosporidium was evaluated using diarrheal stool samples from a cohort of children in Bangladesh. The test had a sensitivity of 100% and a specificity of 94% when compared with enzyme-linked immunosorbent assay antigen detection. PMID:27573629

  2. Space Launch System Base Heating Test: Environments and Base Flow Physics

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Knox, Kyle; Seaford, Mark; Dufrene, Aaron

    2016-01-01

    NASA MSFC and CUBRC designed and developed a 2% scale SLS propulsive wind tunnel test program to investigate base flow effects during flight from lift-off to MECO. This type of test program has not been conducted in 40+ years during the NASA Shuttle Program. Dufrene et al paper described the operation, instrumentation type and layout, facility and propulsion performance, test matrix and conditions and some raw results. This paper will focus on the SLS base flow physics and the generation and results of the design environments being used to design the thermal protection system.

  3. Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)

    NASA Technical Reports Server (NTRS)

    Forbes, John C.; Xenofos, George D.; Farrow, John L.; Tyler, Tom; Williams, Robert; Sargent, Scott; Moharos, Jozsef

    2004-01-01

    To support development of the Boeing-Rocketdyne RS84 rocket engine, a full-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrumentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors.

  4. Closed-loop flow test Miravalles Geothermal Field well log results

    SciTech Connect

    Dennis, B.; Eden, G.; Lawton, R.

    1992-10-01

    The Instituto Costarricense de Electricidad (ICE) conducted a closed-loop flow test in the Miravalles Geothermal Field. The closed-loop test was started in May and ran through August of 1990. The effluent from the production well PG-11 was carried by a pipeline through a monitor station to the injection well PG-2. Before starting the long-term flow test in May, cold-water injection experiments were performed in each well to determine the pressure and temperature response. A series of downhole measurements were made in each well to obtain background information. The downhole measurements were repeated in August just before terminating the flow test to evaluate the results.

  5. Closed-loop flow test Miravalles Geothermal Field well log results

    SciTech Connect

    Dennis, B.; Eden, G.; Lawton, R.

    1992-01-01

    The Instituto Costarricense de Electricidad (ICE) conducted a closed-loop flow test in the Miravalles Geothermal Field. The closed-loop test was started in May and ran through August of 1990. The effluent from the production well PG-11 was carried by a pipeline through a monitor station to the injection well PG-2. Before starting the long-term flow test in May, cold-water injection experiments were performed in each well to determine the pressure and temperature response. A series of downhole measurements were made in each well to obtain background information. The downhole measurements were repeated in August just before terminating the flow test to evaluate the results.

  6. Pre-test estimates of temperature decline for the LANL Fenton Hill Long-Term Flow Test

    SciTech Connect

    Robinson, B.A.; Kruger, P.

    1992-06-01

    Pre-test predications for the Long-Term Flow Test (LTFT) of the experimental Hot Dry Rock (HDR) reservoir at Fenton Hill were made using two models. Both models are dependent on estimates of the ``effective`` reservoir volume accessed by the fluid and the mean fracture spacing (MFS) of major joints for fluid flow. The effective reservoir volume was estimated using a variety of techniques, and the range of values for the MFS was set through experience in modeling the thermal cooldown of other experimental HDR reservoirs. The two pre-test predictions for cooldown to 210{degrees}C (a value taken to compare the models) from initial temperature of 240{degrees}C are 6.1 and 10.7 years. Assuming that a minimum of 10{degrees}C is required to provide an unequivocal indication of thermal cooldown, both models predict that the reservoir will not exhibit observable cooldown for at least two years.

  7. Report on the testing of the no-flow push bit

    SciTech Connect

    Witwer, K.S.

    1996-10-09

    Testing was carried out in the Engineering Testing Laboratory, 305 Building- 300 Area, during June, July and August of 1996. This testing was to develop and proof test a new sampler insert which would prevent purge gas from flowing through a push-mode core drilling bit - and subsequently prevent rotation of the Rotary Mode Core Sampling System (RMCSS) when the push bit was used. The testing involved push-mode sampling with both a new push mode insert and a rotary insert in a push mode bit into two simulants. A total of sixty final test runs showed that the inserts are sucessful in preventing purge flow and hence in preventing rotation with a push-mode bit installed.

  8. Test Data of Flow Field of Shuttle SRM Nozzle Joint with Bond Defects, Using Unheated Air

    NASA Technical Reports Server (NTRS)

    Hair, Leroy M.; McAnally, James V.; Hengel, John E.

    1989-01-01

    The nozzle-to-case joint on the Shuttle SRM (as redesigned after the Challenger accident) features an adhesive sealant filling and bonding the joint, with a wiper O-ring to prevent the adhesive from reaching and disabling the closure O-ring. Flawless implementation of that joint design would ensure that hot, corrosive propellant combustion gases never reach the closure O-ring. However, understanding the flow field related to bonding defects is prudent. A comprehensive test program was conducted to quantify such flow fields and associated heating environments. A two-dimensional, full-scale model represented 65 inches of the nozzle joint, using unheated air as the test medium, in a blowdown mode. Geometry variations modeled RSRM assembly tolerances, and two types of bonding defects: pullaways and blowholes. A range of the magnitude of each type defect was tested. Also a range of operational parameters was tested, representative of the RSRM flow environment, including duplication of RSRM Mach and Reynolds numbers. Extensive instrumentation was provided to quantify pressures, heat rates, and velocities. The resulting data established that larger geometric defects cause larger pressure and larger heating, at the closure O-ring region. Velocity trends were not so straight-forward. Variations in assembly tolerances did not generally affect flow fields or heating. Operational parameters affected flow fields and heating as might be expected, increasing density or velocity increased heating. Complete details of this test effort are presented.

  9. Development of a robust procedure for assessing powder flow using a commercial avalanche testing instrument.

    PubMed

    Hancock, Bruno C; Vukovinsky, Kim E; Brolley, Barry; Grimsey, Ian; Hedden, David; Olsofsky, Angela; Doherty, Rebecca A

    2004-09-01

    The objectives of this work were to develop a robust procedure for assessing powder flow using a commercial avalanche testing instrument and to define the limits of its performance. To achieve this a series of powdered pharmaceutical excipients with a wide range of flow properties was characterized using such an instrument (Aeroflow, TSI Inc., St. Paul, MN, USA). The experimental conditions (e.g., sample size, rotation speed) were rationally selected and systematically evaluated so that an optimal standard-operating-procedure could be identified. To evaluate the inherent variability of the proposed methodology samples were tested at multiple sites, using different instruments and operators. The ranking of the flow properties of the powders obtained was also compared with that obtained using a conventional shear-cell test. As a result of these experiments a quick, simple, and rugged procedure for determining the flow properties of pharmaceutical powders in their dilated state was developed. This procedure gave comparable results when performed at four different testing sites and was able to reproducibly rank the flow properties of a series of common pharmaceutical excipient powders. The limits of the test method to discriminate between different powder samples were determined, and a positive correlation with the results of a benchmark method (the simplified shear cell) was obtained.

  10. Flight test and numerical simulation of transonic flow around YAV-8B Harrier II wing

    NASA Technical Reports Server (NTRS)

    Gea, Lie-Mine; Chyu, Wei J.; Stortz, Michael W.; Roberts, Andrew C.; Chow, Chuen-Yen

    1991-01-01

    A computational fluid dynamics (CFD) method is used to study the aerodynamics of the YAV-8B Harrier II wing in the transonic region. A numerical procedure is developed to compute the flow field around the complicated wing-pylon-fairing geometry. The surface definition of the wing and pylons were obtained from direct measurement using theodolite triangulation. A thin-layer Navier-Stokes code with the Chimera technique is used to compute flow solutions. The computed pressure distributions at several span stations are compared with flight test data and show good agreement. Computed results are correlated with flight test data that show the flow is severely separated in the vicinity of the wing-pylon junction. Analysis shows that shock waves are induced by pylon swaybrace fairings, that the flow separation is much stronger at the outboard pylon and that the separation is caused mainly by the crossflow passing the geometry of wing-pylon junction.

  11. Wind Tunnel Test Results for Gas Flows Inside Axisymmetric Cavities on Cylindric Bodies with Nose Cones

    NASA Technical Reports Server (NTRS)

    Shvets, A. L.; Gilinsky, M.; Blankson, I. M.

    2004-01-01

    Experimental test results of air flow inside and at the cylindrical cavity located on axisymmetric body are presented. These tests were conducted in the wind tunnel A-7 of Institute of Mechanics at Moscow State University. Pressure distribution along the cavities and optical measurements were obtained. Dependence of these characteristics of length of a cavity in the range: L/D = 0.5 - 14 and free stream Mach in the range: M(sub infinity) = 0.6 - 3.0 was determined. Flow structure inside the cavity, cause of flow regime change, separation zones geometry and others were studied. In particular, the flow modes of with open and closed separation zones are determined.

  12. Results mixed from pulsating flow tests of orifice-plate meters

    SciTech Connect

    Arasi, J.A. )

    1992-10-05

    This paper reports that laboratory tests on several commercially available orifice-plate meters for use in pulsating flow indicate that none yields acceptable accuracy. These tests suggested, however, that if the objective of monitoring pulsating flow is to indicate or quantify pulsation magnitudes for comparisons, then at least two instruments are acceptable. Use of such meters, particularly in low flow rate gathering systems, can be a viable alternative to attempting to reduce the intensity (amplitude and frequency) of pulsation by expensive installation and maintenance of chokes and bottles. Phillips Petroleum Co. set out to find a meter that would be sensitive enough to measure pulsating hydrocarbon flows with acceptable accuracy using the orifice plate. Several orifice measurement systems were simultaneously investigated at the Southwest Research Institute, San Antonio (SwRI).

  13. SRM Internal Flow Tests and Computational Fluid Dynamic Analysis. Volume 4; Cold Flow Analyses and CFD Analysis Capability Development

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An evaluation of the effect of model inlet air temperature drift during a test run was performed to aid in the decision on the need for and/or the schedule for including heaters in the SRMAFTE. The Sverdrup acceptance test data was used to determine the drift in air temperature during runs over the entire range of delivered flow rates and pressures. The effect of this temperature drift on the model Reynolds number was also calculated. It was concluded from this study that a 2% change in absolute temperature during a test run could be adequately accounted for by the data analysis program. A handout package of these results was prepared and presented to ED35 management.

  14. Construction and demolition waste: Comparison of standard up-flow column and down-flow lysimeter leaching tests.

    PubMed

    Butera, Stefania; Hyks, Jiri; Christensen, Thomas H; Astrup, Thomas F

    2015-09-01

    Five samples of construction and demolition waste (C&DW) were investigated in order to quantify leaching of inorganic elements under percolation conditions according to two different experimental setups: standardised up-flow saturated columns (<4mm particle size) and unsaturated, intermittent down-flow lysimeters (<40mm particle size). While standardised column tests are meant primarily to provide basic information on characteristic leaching properties and mechanisms and not to reproduce field conditions, the lysimeters were intended to mimic the actual leaching conditions when C&DW is used in unbound geotechnical layers. In practice, results from standardised percolation tests are often interpreted as estimations of actual release from solid materials in percolation scenarios. In general, the two tests yielded fairly similar results in terms of cumulative release at liquid-to-solid ratio (L/S) 10l·kgTS; however, significant differences were observed for P, Pb, Ba, Mg and Zn. Further differences emerged in terms of concentration in the early eluates (L/S<5l·kg(-1)TS) for Al, As, Ba, Cd, Cu, DOC, Mg, Mn, Ni, P, Pb, Sb, Se, Si, Zn. Observed differences between tests are likely to be due to differences in pH related to crushing and exposure of fresh particle surfaces, as well as in equilibrium conditions. In the case of C&DW, the standardised column tests, which are more practical, are considered to acceptably describe cumulative releases at L/S 10l·kg(-1)TS in percolation scenarios. However, when the focus is on estimation of initial concentrations for (for example) risk assessment, data from standardised column tests may not be fully applicable, and data from lysimeters may be used for validation purposes. Se, Cr and, to a lesser extent, SO4 and Sb were leaching from C&DW in critical amounts compared with existing limit values. PMID:26031330

  15. Research on optical fiber flow test method with non-intrusion

    NASA Astrophysics Data System (ADS)

    Shang, Ying; Liu, Xiaohui; Wang, Chang; Zhao, Wenan

    2014-06-01

    In the field of oil well logging, real-time monitoring of the fluid flow parameter provides a scientific basis for oil and gas optimization exploration and increase in reservoir recovery, so a non-intrusive flow test method based on turbulent vibration was proposed. The specific length of the sensor fiber wound tightly around the outer wall of the pipe was connected with the optical fiber gratings at both ends, and the sensor fiber and the optical fiber gratings composed the flow sensing unit. The dynamic pressure was generated by the turbulence when fluid flows through the pipe, and the dynamic pressure resulted in the light phase shift of the sensor fiber. The phase information was demodulated by the fiber optic interferometer technology, time division multiplexing technology, and phase generated carrier modulation and demodulation techniques. The quadratic curve relationship between the phase change and flow rate was found by experimental data analysis, and the experiment confirmed the feasibility of the optical fiber flow test method with non-intrusion and achieved the real-time monitoring of the fluid flow.

  16. Flow tests of a single fuel element coolant channel for a compact fast reactor for space power

    NASA Technical Reports Server (NTRS)

    Springborn, R. H.

    1971-01-01

    Water flow tests were conducted on a single-fuel-element cooling channel for a nuclear concept to be used for space power. The tests established a method for measuring coolant flow rate which is applicable to water flow testing of a complete mockup of the reference reactor. The inlet plenum-to-outlet plenum pressure drop, which approximates the overall core pressure drop, was measured and correlated with flow rate. This information can be used for reactor coolant flow and heat transfer calculations. An analytical study of the flow characteristics was also conducted.

  17. Fluid Structure Interaction in a Cold Flow Test and Transient CFD Analysis of Out-of-Round Nozzles

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph; Brown, Andrew; McDaniels, David; Wang, Ten-See

    2010-01-01

    This viewgraph presentation describes two nozzle fluid flow interactions. They include: 1) Cold flow nozzle tests with fluid-structure interaction at nozzle separated flow; and 2) CFD analysis for nozzle flow and side loads of nozzle extensions with various out-of-round cases.

  18. Effect of flow leakage on the benchmarking of FLOWTRAN with Mark-22 mockup flow excursion test data from Babcock and Wilcox

    SciTech Connect

    Chen, Kuo-Fu.

    1992-10-01

    This report presents a revised analysis of the Babcock and Wilcox (B and W) downflow flow excursion tests that accounts for leakage between flow channels in the test assembly. Leak rates were estimated by comparing results from the downflow tests with those for upflow tests conducted using an identical assembly with some minor modifications. The upflow test assembly did not contain leaks. This revised analyses shows that FLOWTRAN with the SRS working criterion conservatively predicts onset of flow instability without using a local peaking factor to model heat transfer variations near the ribs.

  19. Seismic monitoring of the June, 1988 Salton Sea Scientific Drilling Program flow/injection test

    SciTech Connect

    Jarpe, S.P.; Kasameyer, P.W.; Hutchings, L.J.; Hauk, T.F.

    1988-10-04

    The purpose of the seismic monitoring project was to characterize in detail the micro-seismic activity related to the Salton Sea Scientific Drilling Program (SSSDP) flow-injection test in the Salton Sea Geothermal Field. Our goal was to determine if any sources of seismic energy related to the test were observable at the surface. We deployed our recording stations so that we could detect and locate both impulsive microearthquakes and continuous seismic noise energy. Our network, which was sensitive enough to be triggered by magnitude 0.0 or larger events, found no impulsive microearthquakes in the vicinity of the flow test in the 8 month period before the test and only one event during the flow test. This event has provided the opportunity to compare the detection and location capabilities of small networks and arrays in a geothermal environment. At present, we are carefully scanning all of the data that we collected during the flow test for evidence of anomalous seismic noise sources and for impulsive events smaller than the network detection threshold (magnitude 0.0). 8 refs., 4 figs.

  20. Characterization Of Flow Stress Of Different AA6082 Alloys By Means Of Hot Torsion Test

    SciTech Connect

    Donati, Lorenzo; El Mehtedi, Mohamad

    2011-05-04

    FEM simulations are become the most powerful tools in order to optimize the different aspects of the extrusion process and an accurate flow stress definition of the alloy is a prerequisite for a reliable effectiveness of the simulation. In the paper the determination of flow stress by means of hot torsion test is initially presented and discussed: the several approximations that are usually introduced in flow stress computation are described and computed for an AA6082 alloy in order to evidence the final effect on curves shapes. The procedure for regressing the parameters of the sinhyperbolic flow stress definition is described in detailed and applied to the described results. Then four different alloys, extracted by different casting batches but all namely belonging to the 6082 class, were hot torsion tested in comparable levels of temperature and strain rate up to specimen failure. The results are analyzed and discussed in order to understand if a mean flow stress behavior can be identified for the whole material class at the different tested conditions or if specific testing conditions (chemical composition of the alloy, specimen shape, etc) influence the materials properties to a higher degree.

  1. Continuous-flow stirred-tank reactor 20-L demonstration test: Final report

    SciTech Connect

    Lee, D.D.; Collins, J.L.

    2000-02-01

    One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test using the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required.

  2. Changing cerebral blood flow in normal pressure hydrocephalus after the tap test can predict clinical improvement

    PubMed Central

    Sedighi, Behnaz; Shafiee, Kaveh; Seifaldini, Rostam; Abdi, As'ad

    2014-01-01

    Background: We studied the role of cerebrospinal fluid (CSF) tap test at idiopathic normal pressure hydrocephalus (INPH) in improving cerebral blood flow velocity indices by transcranial Doppler (TCD) sonography. Methods: Twelve patients with assumed INPH were included in the study. The CSF tap test and INPH grading score was carried out according to the standard protocol. TCD was performed before and after the tap test for assessing blood flow in middle cerebral and anterior cerebral arteries. Results: Five INPH patients (41.7%) had clinical improvement as defined by at least one point reduction in INPH grading scale. The baseline TCD parameters of the middle cerebral artery were significantly higher compared with the control, and those parameters were decreased after tap test in those who improved. Conclusion: Our study showed that improvement in INPH grading score after CSF tap test might correlate with changing in TCD parameter in MCA and TCD parameter might be useful for shunt response in these patients. PMID:25632339

  3. Underground Test Area Subproject Phase I Data Analysis Task. Volume VI - Groundwater Flow Model Documentation Package

    SciTech Connect

    1996-11-01

    Volume VI of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the groundwater flow model data. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  4. ACS: ALMA Common Software

    NASA Astrophysics Data System (ADS)

    Chiozzi, Gianluca; Šekoranja, Matej

    2013-02-01

    ALMA Common Software (ACS) provides a software infrastructure common to all ALMA partners and consists of a documented collection of common patterns and components which implement those patterns. The heart of ACS is based on a distributed Component-Container model, with ACS Components implemented as CORBA objects in any of the supported programming languages. ACS provides common CORBA-based services such as logging, error and alarm management, configuration database and lifecycle management. Although designed for ALMA, ACS can and is being used in other control systems and distributed software projects, since it implements proven design patterns using state of the art, reliable technology. It also allows, through the use of well-known standard constructs and components, that other team members whom are not authors of ACS easily understand the architecture of software modules, making maintenance affordable even on a very large project.

  5. Test Outline for Flutter Analysis of Rectangular Panels in Rarefied Flow Conditions

    NASA Technical Reports Server (NTRS)

    Akl, Fred A.

    1996-01-01

    Jet plume impingement forces acting on large flexible space structures may precipitate dynamically unstable behavior during space flights. Typical operating conditions in space involve rarefied gas flow regimes which are intrinsically distinct from continuum gas flow and are normally modeled using the kinetic theory of gas flow. Docking and undocking operations of the Space Shuttle with the Russian Mir space laboratory represent a scenario in which the stability boundaries of solar panels may be of interest. Extensive literature review of research work on the dynamic stability of rectangular panels in rarefied gas flow conditions indicated the lack of published reports dealing with this phenomenon. A recently completed preliminary study for NASA JSC dealing with the mathematical analysis of the stability of two-degree-of-freedom elastically supported rigid panels under the effect of rarefied gas flow was reviewed. A test plan outline is prepared for the purpose of conducting a series of experiments on four rectangular rigid test articles in a vacuum chamber under the effect of continuous and pulsating Nitrogen jet plumes. The purpose of the test plan is to gather enough data related to a number of key parameters to allow the validation of the two-degree-of-freedom mathematical model. The hardware required careful design to select a very lightweight material while satisfying rigidity and frequency requirements within the constraints of the test environment. The data to be obtained from the vacuum chamber tests can be compared with the predicted behavior of the theoretical two-degree-of-freedom model. Using the data obtained in this study, further research can identify the limitations of the mathematical model. In addition modifications to the mathematical model can be made, if warranted, to accurately predict the behavior of rigid panels under rarefied gas flow regimes.

  6. Nanoscale Capillary Flows in Alumina: Testing the Limits of Classical Theory.

    PubMed

    Lei, Wenwen; McKenzie, David R

    2016-07-21

    Anodic aluminum oxide (AAO) membranes have well-formed cylindrical channels, as small as 10 nm in diameter, in a close packed hexagonal array. The channels in AAO membranes simulate very small leaks that may be present for example in an aluminum oxide device encapsulation. The 10 nm alumina channel is the smallest that has been studied to date for its moisture flow properties and provides a stringent test of classical capillary theory. We measure the rate at which moisture penetrates channels with diameters in the range of 10 to 120 nm with moist air present at 1 atm on one side and dry air at the same total pressure on the other. We extend classical theory for water leak rates at high humidities by allowing for variable meniscus curvature at the entrance and show that the extended theory explains why the flow increases greatly when capillary filling occurs and enables the contact angle to be determined. At low humidities our measurements for air-filled channels agree well with theory for the interdiffusive flow of water vapor in air. The flow rate of water-filled channels is one order of magnitude less than expected from classical capillary filling theory and is coincidentally equal to the helium flow rate, validating the use of helium leak testing for evaluating moisture flows in aluminum oxide leaks. PMID:27336652

  7. Testing geodynamic models of lowermost mantle flow with a regional shear wave splitting data set

    NASA Astrophysics Data System (ADS)

    Ford, H. A.; Long, M. D.

    2015-12-01

    Global flow models rely on a number of assumptions, including composition, temperature, viscosity, and deformation mechanism. In the upper mantle, flow models and their associated assumptions can be tested and refined with observations of seismic anisotropy, which is treated as a proxy for flow direction. Beneath the transition zone, direct observations of seismic anisotropy are scarce, except for in the lowermost ~250 km of the mantle. In this study, we utilize a comprehensive, previously published (Ford et al., 2015) shear wave splitting study in order to test a three-dimensional global geodynamic flow model (Walker et al., 2011). Our study focuses on a region of the lowermost mantle along the eastern edge of the African Superplume beneath the Afar region. We find that our observations are fit by a model which invokes slip along the (010) plane of post-perovskite with flow directed down and to the southwest. Critically, we demonstrate the ability of a regional data set to interrogate models of lower mantle flow.

  8. Ultra high bypass Nacelle aerodynamics inlet flow-through high angle of attack distortion test

    NASA Technical Reports Server (NTRS)

    Larkin, Michael J.; Schweiger, Paul S.

    1992-01-01

    A flow-through inlet test program was conducted to evaluate inlet test methods and determine the impact of the fan on inlet separation when operating at large angles of attack. A total of 16 model configurations of approximately 1/6 scale were tested. A comparison of these flow-through results with powered data indicates the presence of the fan increased separation operation 3 degrees to 4 degrees over the flow through inlet. Rods and screens located at the fan face station, that redistribute the flow, achieved simulation of the powered-fan results for separation angle of attack. Concepts to reduce inlet distortion and increase angle of attack capability were also evaluated. Vortex generators located on the inlet surface increased inlet angle of attack capability up to 2 degrees and reduced inlet distortion in the separated region. Finally, a method of simulating the fan/inlet aerodynamic interaction using blockage sizing method has been defined. With this method, a static blockage device used with a flow-through model will approximate the same inlet onset of separation angle of attack and distortion pattern that would be obtained with an inlet model containing a powered fan.

  9. Forced Flow Flame Spreading Test: Preliminary Findings From the USMP-3 Shuttle Mission

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt R.; Greenberg, Paul S.; Pettegrew, Richard D.; Tien, James S.; Ferkul, Paul V.; Shih, Hsin-Yi

    1998-01-01

    The Forced Flow Flame spreading Test (FFFT) is a study of flame spreading over solid fuels in very low-speed air flows. The FFFT experiment is part of research entitled Solid Inflammability Boundary at Low Speeds, (SIBAL) intended for operations on the Space Station. In the FFFT experiment, a series of 15 experiments conducted aboard the space shuttle during the United States Microgravity Payload (USMP-3) mission provided information about the structure and spreading characteristics of flames in low-speed, concurrent flows. The test samples included flat sheets of cellulose and cast cylinders of cellulose, burned in air at velocities of approximately 1 to 8 cm/sec. The test results have been successfully compared to theoretical predictions of the SIBAL program, a fundamentally based numerical simulation of concurrent flow flame spread. Additionally, some guidance for the design characteristics of the SIBAL flight experiment have been obtained including some verification of the theoretical predictions of flame size versus the required size of the SIBAL flow duct, and the effect of the presence of thermocouples in the vicinity of near-limit flames in microgravity.

  10. Flow in a discrete slotted nozzle with massive injection. [water table tests

    NASA Technical Reports Server (NTRS)

    Perkins, H. C.

    1974-01-01

    An experimental investigation has been conducted to determine the effect of massive wall injection on the flow characteristics in a slotted nozzle. Some of the experiments were performed on a water table with a slotted-nozzle test section. This has 45 deg and 15 deg half angles of convergence and divergence, respectively, throat radius of 2.5 inches, and throat width of 3 inches. The hydraulic analogy was employed to qualitatively extend the results to a compressible gas flow through the nozzle. Experimental results from the water table include contours of constant Froude and Mach number with and without injection. Photographic results are also presented for the injection through slots of CO2 and Freon-12 into a main-stream air flow in a convergent-divergent nozzle in a wind tunnel. Schlieren photographs were used to visualize the flow, and qualititative agreement between the results from the gas tunnel and water table is good.

  11. Design, testing, and model validation of an MR squeeze-flow vibration damper

    NASA Astrophysics Data System (ADS)

    Sims, Neil D.; Stanway, Roger; Johnson, Andrew R.; Mellor, Phillip

    2001-07-01

    Ongoing research at the University of Sheffield is currently concerned with the design and construction of magneto- rheological (MR) squeeze-flow vibration damper. Previous work has demonstrated the feasibility of employing such a device as the key component in a controllable vibration isolator. The work also demonstrated the inadequacies of existing mathematical models which do not account for the observed behavior of MR fluids in squeeze flow. In parallel with investigations into the behavior of MR dampers, a collaborative programme between the Universities of Liverpool and Sheffield is also in progress. Here attention is focussed on ER fluids in squeeze-flow and a new test facility has been constructed for use in the development and validation of mathematical models. It is anticipated that this collaborative programme will assist in the development of both ER and MR squeeze-flow models. In this paper, the authors present a summary of progress to date.

  12. Sampling Point Compliance Tests for 325 Building at Set-Back Flow Conditions

    SciTech Connect

    Ballinger, Marcel Y.; Glissmeyer, John A.; Barnett, J. Matthew; Recknagle, Kurtis P.; Yokuda, Satoru T.

    2011-05-31

    The stack sampling system at the 325 Building (Radiochemical Processing Laboratory [RPL]) was constructed to comply with the American National Standards Institute’s (ANSI’s) Guide to Sampling Airborne Radioactive Materials in Nuclear Facilities (ANSI N13.1-1969). This standard provided prescriptive criteria for the location of radionuclide air-sampling systems. In 1999, the standard was revised (Sampling and Monitoring Releases of Airborne Radioactive Substances From the Stacks and Ducts of Nuclear Facilities [ANSI/Health Physics Society [HPS] 13.1-1999]) to provide performance-based criteria for the location of sampling systems. Testing was conducted for the 325 Building stack to determine whether the sampling system would meet the updated criteria for uniform air velocity and contaminant concentration in the revised ANSI/HPS 13.1-1999 standard under normal operating conditions (Smith et al. 2010). Measurement results were within criteria for all tests. Additional testing and modeling was performed to determine whether the sampling system would meet criteria under set-back flow conditions. This included measurements taken from a scale model with one-third of the exhaust flow and computer modeling of the system with two-thirds of the exhaust flow. This report documents the results of the set-back flow condition measurements and modeling. Tests performed included flow angularity, uniformity of velocity, gas concentration, and particle concentration across the duct at the sampling location. Results are within ANSI/HPS 13.1-1999 criteria for all tests. These tests are applicable for the 325 Building stack under set-back exhaust flow operating conditions (980 - 45,400 cubic feet per minute [cfm]) with one fan running. The modeling results show that criteria are met for all tests using a two-fan configuration exhaust (flow modeled at 104,000 cfm). Combined with the results from the earlier normal operating conditions, the ANSI/HPS 13.1-1999 criteria for all tests

  13. Study and application of a high-pressure water jet multi-functional flow test system.

    PubMed

    Shi, Huaizhong; Li, Gensheng; Huang, Zhongwei; Li, Jingbin; Zhang, Yi

    2015-12-01

    As the exploration and development of oil and gas focus more and more on deeper formation, hydraulic issues such as high-pressure water jet rock breaking, wellbore multiphase flow law, cuttings carrying efficiency, and hydraulic fracturing technique during the drilling and completion process have become the key points. To accomplish related researches, a high-pressure water jet multi-functional flow test system was designed. The following novel researches are carried out: study of high-pressure water jet characteristics under confining pressure, wellbore multiphase flow regime, hydraulic pressure properties of down hole tools during jet fracturing and pulsed cavitation jet drilling, and deflector's friction in radial jet drilling. The validity and feasibility of the experimental results provided by the system with various test modules have proved its importance in the research of the high-pressure water jet and well completion technology. PMID:26724077

  14. Model-Invariant Hybrid Computations of Separated Flows for RCA Standard Test Cases

    NASA Technical Reports Server (NTRS)

    Woodruff, Stephen

    2016-01-01

    NASA's Revolutionary Computational Aerosciences (RCA) subproject has identified several smooth-body separated flows as standard test cases to emphasize the challenge these flows present for computational methods and their importance to the aerospace community. Results of computations of two of these test cases, the NASA hump and the FAITH experiment, are presented. The computations were performed with the model-invariant hybrid LES-RANS formulation, implemented in the NASA code VULCAN-CFD. The model- invariant formulation employs gradual LES-RANS transitions and compensation for model variation to provide more accurate and efficient hybrid computations. Comparisons revealed that the LES-RANS transitions employed in these computations were sufficiently gradual that the compensating terms were unnecessary. Agreement with experiment was achieved only after reducing the turbulent viscosity to mitigate the effect of numerical dissipation. The stream-wise evolution of peak Reynolds shear stress was employed as a measure of turbulence dynamics in separated flows useful for evaluating computations.

  15. Fiber Bragg grating tether used to measure drag forces in neutral buoyancy flow tank tests.

    PubMed

    Wade, S A; Jolley, W; Fouras, A

    2008-06-01

    The drag exerted on neutrally buoyant tethered spheres in a flow tank was measured as a function of flow rate. A unique solution to the problem was achieved using an optical fiber including a Bragg grating sensor as part of the tether. Measurements of the strain on the tether taken at flow rates between 0.14 and 0.33 m/s, were used to determine drag forces for spheres with diameters ranging from 40 to 100 mm. Vortex-induced vibration was observed in tests performed at Reynolds numbers from 5 x 10(3) to 4.5 x 10(4). The drag coefficients for these tests were found to range from 0.51 to 0.77.

  16. Study and application of a high-pressure water jet multi-functional flow test system.

    PubMed

    Shi, Huaizhong; Li, Gensheng; Huang, Zhongwei; Li, Jingbin; Zhang, Yi

    2015-12-01

    As the exploration and development of oil and gas focus more and more on deeper formation, hydraulic issues such as high-pressure water jet rock breaking, wellbore multiphase flow law, cuttings carrying efficiency, and hydraulic fracturing technique during the drilling and completion process have become the key points. To accomplish related researches, a high-pressure water jet multi-functional flow test system was designed. The following novel researches are carried out: study of high-pressure water jet characteristics under confining pressure, wellbore multiphase flow regime, hydraulic pressure properties of down hole tools during jet fracturing and pulsed cavitation jet drilling, and deflector's friction in radial jet drilling. The validity and feasibility of the experimental results provided by the system with various test modules have proved its importance in the research of the high-pressure water jet and well completion technology.

  17. Study and application of a high-pressure water jet multi-functional flow test system

    NASA Astrophysics Data System (ADS)

    Shi, Huaizhong; Li, Gensheng; Huang, Zhongwei; Li, Jingbin; Zhang, Yi

    2015-12-01

    As the exploration and development of oil and gas focus more and more on deeper formation, hydraulic issues such as high-pressure water jet rock breaking, wellbore multiphase flow law, cuttings carrying efficiency, and hydraulic fracturing technique during the drilling and completion process have become the key points. To accomplish related researches, a high-pressure water jet multi-functional flow test system was designed. The following novel researches are carried out: study of high-pressure water jet characteristics under confining pressure, wellbore multiphase flow regime, hydraulic pressure properties of down hole tools during jet fracturing and pulsed cavitation jet drilling, and deflector's friction in radial jet drilling. The validity and feasibility of the experimental results provided by the system with various test modules have proved its importance in the research of the high-pressure water jet and well completion technology.

  18. Characterization of scale-dependent dispersivity in fractured formations through a divergent flow tracer test.

    PubMed

    Sharifi Haddad, Amin; Hassanzadeh, Hassan; Abedi, Jalal; Chen, Zhangxin; Ware, Antony

    2015-04-01

    Scale-dependency of dispersivity has been reported from field tracer tests. We present a simple methodology for characterization of dispersivity as a linear function of scale around an injection well using divergent flow tracer test data conducted in fractured formations. Results show that the slope of this linear dispersivity function can be estimated using tracer concentration measurements in a monitoring well. The characterized dispersivity function has applications in modeling of field-scale transport processes in fractured formations. PMID:24660811

  19. Flow rate testing of valves used with the 500 gallon collapsible drum

    NASA Astrophysics Data System (ADS)

    Perdue, William D.

    1992-04-01

    This report covers the test and evaluation of four couplings/valves used with the 500-gallon collapsible drum: the existing poppet valve, a new redesigned poppet valve, a Carter refuel/defuel valve that works in conjunction with the single point refueling nozzle, and a Kamvalok dry-break coupling valve. The purpose of this testing was to determine maximum flow capability of each valve design and identify any new characteristics that may impact performance of the FARE system.

  20. NASA Ares I Launch Vehicle First Stage Roll Control System Cold Flow Development Test Program Overview

    NASA Technical Reports Server (NTRS)

    Butt, Adam; Popp, Christopher G.; Holt, Kimberly A.; Pitts, Hank M.

    2010-01-01

    The Ares I launch vehicle is the selected design, chosen to return humans to the moon, Mars, and beyond. It is configured in two inline stages: the First Stage is a Space Shuttle derived five-segment Solid Rocket Booster and the Upper Stage is powered by a Saturn V derived J-2X engine. During launch, roll control for the First Stage (FS) is handled by a dedicated Roll Control System (RoCS) located on the connecting Interstage. That system will provide the Ares I with the ability to counteract induced roll torque while any induced yaw or pitch moments are handled by vectoring of the booster nozzle. This paper provides an overview of NASA s Ares I FS RoCS cold flow development test program including detailed test objectives, types of tests run to meet those objectives, an overview of the results, and applicable lessons learned. The test article was built and tested at the NASA Marshall Space Flight Center in Huntsville, AL. The FS RoCS System Development Test Article (SDTA) is a full scale, flight representative water flow test article whose primary objective was to obtain fluid system performance data to evaluate integrated system level performance characteristics and verify analytical models. Development testing and model correlation was deemed necessary as there is little historical precedent for similar large flow, pulsing systems such as the FS RoCS. The cold flow development test program consisted of flight-similar tanks, pressure regulators, and thruster valves, as well as plumbing simulating flight geometries, combined with other facility grade components and structure. Orifices downstream of the thruster valves were used to simulate the pressure drop through the thrusters. Additional primary objectives of this test program were to: evaluate system surge pressure (waterhammer) characteristics due to thruster valve operation over a range of mission duty cycles at various feed system pressures, evaluate temperature transients and heat transfer in the

  1. The Sympathetic Release Test: A Test Used to Assess Thermoregulation and Autonomic Control of Blood Flow

    ERIC Educational Resources Information Center

    Tansey, E. A.; Roe, S. M.; Johnson, C. J.

    2014-01-01

    When a subject is heated, the stimulation of temperature-sensitive nerve endings in the skin, and the raising of the central body temperature, results in the reflex release of sympathetic vasoconstrictor tone in the skin of the extremities, causing a measurable temperature increase at the site of release. In the sympathetic release test, the…

  2. Flow-Visualization Techniques Used at High Speed by Configuration Aerodynamics Wind-Tunnel-Test Team

    NASA Technical Reports Server (NTRS)

    Lamar, John E. (Editor)

    2001-01-01

    This paper summarizes a variety of optically based flow-visualization techniques used for high-speed research by the Configuration Aerodynamics Wind-Tunnel Test Team of the High-Speed Research Program during its tenure. The work of other national experts is included for completeness. Details of each technique with applications and status in various national wind tunnels are given.

  3. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Procedures for air flow tests of micronaire reading... micronaire reading. In determining in terms of micronaire readings, the fiber fineness and maturity, in... cotton in terms of micronaire reading on the curvilinear scale adopted in September 1950 by...

  4. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Procedures for air flow tests of micronaire reading... micronaire reading. In determining in terms of micronaire readings, the fiber fineness and maturity, in... cotton in terms of micronaire reading on the curvilinear scale adopted in September 1950 by...

  5. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Procedures for air flow tests of micronaire reading... micronaire reading. In determining in terms of micronaire readings, the fiber fineness and maturity, in... cotton in terms of micronaire reading on the curvilinear scale adopted in September 1950 by...

  6. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Procedures for air flow tests of micronaire reading... micronaire reading. In determining in terms of micronaire readings, the fiber fineness and maturity, in... cotton in terms of micronaire reading on the curvilinear scale adopted in September 1950 by...

  7. Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)

    NASA Technical Reports Server (NTRS)

    Xenofos, George; Forbes, John; Farrow, John; Williams, Robert; Tyler, Tom; Sargent, Scott; Moharos, Jozsef

    2003-01-01

    To support development of the Boeing-Rocketdyne RS84 rocket engine, a fill-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrUmentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors. The test rig provided steady and unsteady pressure data necessary to validate the computational fluid dynamics (CFD) code. The rig also helped characterize the turbine blade loading conditions. Test and CFD analysis results are to be presented in another JANNAF paper.

  8. Single element injector cold flow testing for STME swirl coaxial injector element design

    NASA Technical Reports Server (NTRS)

    Hulka, J.; Schneider, J. A.

    1993-01-01

    An oxidizer-swirled coaxial element injector is being investigated for application in the Space Transportation Main Engine (STME). Single element cold flow experiments were conducted to provide characterization of the STME injector element for future analysis, design, and optimization. All tests were conducted to quiescent, ambient backpressure conditions. Spray angle, circumferential spray uniformity, dropsize, and dropsize distribution were measured in water-only and water/nitrogen flows. Rupe mixing efficiency was measured using water/sucrose solution flows with a large grid patternator for simple comparative evaluation of mixing. Factorial designs of experiment were used for statistical evaluation of injector geometrical design features and propellant flow conditions on mixing and atomization. Increasing the free swirl angle of the liquid oxidizer had the greatest influence on increasing the mixing efficiency. The addition of gas assistance had the most significant effect on reducing oxidizer droplet size parameters and increasing droplet size distribution. Increasing the oxidizer injection velocity had the greatest influence for reducing oxidizer droplet size parameters and increasing size distribution for non-gas assisted flows. Single element and multi-element subscale hot fire testing are recommended to verify optimized designs before committing to the STME design.

  9. A comparison of measured and predicted test flow in an expansion tube with air and oxygen test gases

    NASA Technical Reports Server (NTRS)

    Aaggard, K. V.; Goad, W. K.

    1975-01-01

    Simultaneous time-resolved measurements of temperature, density, pitot pressure, and wall pressure in both air and O2 test gases were obtained in the Langley pilot model expansion tube. These tests show nonequilibrium chemical and vibrational relaxation significantly affect the test-flow condition. The use of an electromagnetic device to preopen the secondary diaphragm before the arrival of the primary shock wave resulted in an improvement in the agreement between the measured pitot pressure and the value inferred from measured density and interface velocity. Boundary-layer splitter plates used to reduce the wall boundary layer show that this disagreement in the measured and inferred pitot pressures is not a result of boundary-layer effects.

  10. Orifice In-flow Efficiency Tests. Volume 1: Test Results. Volume 2: Application to Shuttle Venting During Entry

    NASA Technical Reports Server (NTRS)

    Haukohl, J.; Forkois, J. L.; Robertson, S. J.

    1972-01-01

    An investigation was made of the capability for computing internal pressures throughout flight for compartments located within space shuttle vehicles. A test program was conducted at a 6 x 6 foot supersonic wind tunnel to determine orifice efficiencies for the flow of air into a compartment from a flowing external stream. Measurements were made over a Mach number range of 0.7 to 1.9 for varying orifice geometry, vent orientation, vent plate thickness, flat plate boundary layer thickness, and pressure ratio across the vent plate. A computer program developed for outflow venting was modified for use in computing compartment pressures for inflow conditions. Results from both the outflow and inflow computer programs are included. A user's manual and program listing of the inflow venting program are also included.

  11. Flow-Log Analysis for Hydraulic Characterization of Selected Test Wells at the Indian Point Energy Center, Buchanan, New York

    USGS Publications Warehouse

    Williams, John H.

    2008-01-01

    Flow logs from 24 test wells were analyzed as part of the hydraulic characterization of the metamorphosed and fractured carbonate bedrock at the Indian Point Energy Center in Buchanan, New York. The flow logs were analyzed along with caliper, optical- and acoustic-televiewer, and fluid-resistivity and temperature logs to determine the character and distribution of fracture-flow zones and estimate their transmissivities and hydraulic heads. Many flow zones were associated with subhorizontal to shallow-dipping fractured zones, southeast-dipping bedding fractures, northwest-dipping conjugate fractures, or combinations of bedding and conjugate fractures. Flow-log analysis generally provided reasonable first-order estimates of flow-zone transmissivity and head differences compared with the results of conventional hydraulic-test analysis and measurements. Selected results of an aquifer test and a tracer test provided corroborating information in support of the flow-log analysis.

  12. Columbia University flow instability experimental program: Volume 7. Single tube tests, critical heat flux test program

    SciTech Connect

    Dougherty, T.; Maciuca, C.; McAssey, E.V. Jr.; Reddy, D.G.; Yang, B.W.

    1992-09-01

    This report deals with critical heat flux (CHF) measurements in vertical down flow of water at low pressures in a round Inconel tube, 96 inches long and 0.62 inch inside diameter. A total of 28 CHF points were obtained. These data were found to correlate linearly with the single variable q, defined as the heat flux required to raise the enthalpy from the inlet value to the saturation value. These results were compared to the published results of Swedish investigators for vertical upflow of water at low pressures in round tubes of similar diameters and various lengths. The parameter q depends on the inlet enthalpy and is a nonlocal variable, thus this correlation is nonlocal unless the coefficients depend upon tube length in a particular prescribed manner. For the low pressure Swedish data, the coefficients are practically independent of length and hence the correlation is nonlocal. In the present investigation only one length was employed, so it is not possible to determine whether the correlation for these data is local or nonlocal, although there is reason to believe that it is local. The same correlation was applied to a large data base (thousands of CHF points) compiled from the published data of a number of groups and found to apply, with reasonable accuracy over a wide range of conditions, yielding sometimes local and sometimes nonlocal correlations. The basic philosophy of data analysis here was not to generate a single correlation which would reproduce all data, but to search for correlations which apply adequately over some range and which might have some mechanistic significance. The tentative conclusion is that at least two mechanisms appear operative, leading to two types of correlations, one local, the other nonlocal.

  13. Flight calibration tests of a nose-boom-mounted fixed hemispherical flow-direction sensor

    NASA Technical Reports Server (NTRS)

    Armistead, K. H.; Webb, L. D.

    1973-01-01

    Flight calibrations of a fixed hemispherical flow angle-of-attack and angle-of-sideslip sensor were made from Mach numbers of 0.5 to 1.8. Maneuvers were performed by an F-104 airplane at selected altitudes to compare the measurement of flow angle of attack from the fixed hemispherical sensor with that from a standard angle-of-attack vane. The hemispherical flow-direction sensor measured differential pressure at two angle-of-attack ports and two angle-of-sideslip ports in diametrically opposed positions. Stagnation pressure was measured at a center port. The results of these tests showed that the calibration curves for the hemispherical flow-direction sensor were linear for angles of attack up to 13 deg. The overall uncertainty in determining angle of attack from these curves was plus or minus 0.35 deg or less. A Mach number position error calibration curve was also obtained for the hemispherical flow-direction sensor. The hemispherical flow-direction sensor exhibited a much larger position error than a standard uncompensated pitot-static probe.

  14. Gas flow analysis during thermal vacuum test of a spacecraft. [self contamination of IMP spacecraft

    NASA Technical Reports Server (NTRS)

    Scialdone, J. J.

    1974-01-01

    The self-contamination of the IMP-H spacecraft, while it was undergoing thermal and solar vacuum tests, has been investigated in conjunction with the outgassing evaluation and detection of molecular flow anomalies occurring in the test chamber. The pressures indicated by two tubulated ionization gauges were used to calculate flow kinetics in the vacuum chamber. The fluxes of emitted molecules and chamber wall reflected molecules were monitored during the entire test. Representative equations and graphs are presented. Test results indicate that from 3 to 9 of every 100 emitted molecules returned to the spacecraft surface; that self-contamination by noncondensable gases was more severe than that by condensable gases; and that outgassing of the spacecraft was approximately 1.18 x 0.01 g/s after 10 hours and 1.18 x 0.001 after 90 hours of vacuum exposure. Testing deficiencies have been identified, and the type and location of instruments required to measure the outgassing, the degree of contamination, and return flow are discussed.

  15. Nature and extent of lava-flow aquifers beneath Pahute Mesa, Nevada Test Site

    SciTech Connect

    Prothro, L.B.; Drellack, S.L. Jr.

    1997-09-01

    Work is currently underway within the Underground Test Area subproject of the US Department of Energy/Nevada Operations Office Environmental Restoration Program to develop corrective action plans in support of the overall corrective action strategy for the Nevada Test Site as established in the Federal Facility Agreement and Consent Order (FFACO, 1996). A closure plan is currently being developed for Pahute Mesa, which has been identified in the FFACO as consisting of the Western and Central Pahute Mesa Corrective Action Units. Part of this effort requires that hydrogeologic data be compiled for inclusion in a regional model that will be used to predict a contaminant boundary for these Corrective Action Units. Hydrogeologic maps have been prepared for use in the model to define the nature and extent of aquifers and confining units that might influence the flow of contaminated groundwater from underground nuclear tests conducted at Pahute Mesa. Much of the groundwater flow beneath Pahute Mesa occurs within lava-flow aquifers. An understanding of the distribution and hydraulic character of these important hydrogeologic units is necessary to accurately model groundwater flow beneath Pahute Mesa. This report summarizes the results of a study by Bechtel Nevada geologists to better define the hydrogeology of lava-flow aquifers at Pahute Mesa. The purpose of this study was twofold: (1) aid in the development of the hydrostratigraphic framework for Pahute Mesa, and (2) provide information on the distribution and hydraulic character of lava-flow aquifers beneath Pahute Mesa for more accurate computer modeling of the Western and Central Pahute Mesa Corrective Action Units.

  16. Inlet Flow Test Calibration for a Small Axial Compressor Facility. Part 1: Design and Experimental Results

    NASA Technical Reports Server (NTRS)

    Miller, D. P.; Prahst, P. S.

    1994-01-01

    An axial compressor test rig has been designed for the operation of small turbomachines. The inlet region consisted of a long flowpath region with two series of support struts and a flapped inlet guide vane. A flow test was run to calibrate and determine the source and magnitudes of the loss mechanisms in the inlet for a highly loaded two-stage axial compressor test. Several flow conditions and IGV angle settings were established in which detailed surveys were completed. Boundary layer bleed was also provided along the casing of the inlet behind the support struts and ahead of the IGV. A detailed discussion of the flowpath design along with a summary of the experimental results are provided in Part 1.

  17. Brief Communication: A new testing field for debris flow warning systems and algorithms

    NASA Astrophysics Data System (ADS)

    Arattano, M.; Coviello, V.; Cavalli, M.; Comiti, F.; Macconi, P.; Marchi, L.; Theule, J.; Crema, S.

    2015-03-01

    Early warning systems (EWSs) are among the measures adopted for the mitigation of debris flow hazards. EWSs often employ algorithms that require careful and long testing to grant their effectiveness. A permanent installation has been so equipped in the Gadria basin (Eastern Italian Alps) for the systematic test of event-EWSs. The installation is conceived to produce didactic videos and host informative visits. The populace involvement and education is in fact an essential step in any hazard mitigation activity and it should envisaged in planning any research activity. The occurrence of a debris flow in the Gadria creek, in the summer of 2014, allowed a first test of the installation and the recording of an informative video on EWSs.

  18. The NASA Juncture Flow Experiment: Goals, Progress, and Preliminary Testing (Invited)

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Neuhart, Danny H.; Kegerise, Michael A.

    2016-01-01

    NASA has been working toward designing and conducting a juncture flow experiment on a wing-body aircraft configuration. The experiment is planned to provide validation-quality data for CFD that focuses on the onset and progression of a separation bubble near the wing-body juncture trailing edge region. This paper describes the goals and purpose of the experiment. Although currently considered unreliable, preliminary CFD analyses of several different configurations are shown. These configurations have been subsequently tested in a series of "risk-reduction" wind tunnel tests, in order to help down-select to a final configuration that will attain the desired flow behavior. The risk-reduction testing at the higher Reynolds number has not yet been completed (at the time of this writing), but some results from one of the low-Reynolds-number experiments are shown.

  19. Testing and benchmarking of a three-dimensional groundwater flow and solute transport model

    SciTech Connect

    Sims, P.N.; Andersen, P.F.; Faust, C.R.; Stephenson, D.E.

    1988-12-31

    A three-dimensional finite-difference model was developed to simulate groundwater flow and solute transport. The model is intended for application to a variety of groundwater resource and solute migration evaluations, including several complex sites at the Savannah River Plant (SRP). Because the model, FTWORK, is relatively new, there is a need to provide confidence in the model results. Methodologies that test models include comparisons with analytical solutions, comparisons with empirical data, and checking that conservation properties hold. Another level of testing is the comparison of one code against another. This paper describes the testing and benchmarking procedure used to verify the validate FTWORK.

  20. Field Test Results from a 10 kW Wind Turbine with Active Flow Control

    NASA Astrophysics Data System (ADS)

    Rice, Thomas; Bychkova, Veronika; Taylor, Keith; Clingman, Dan; Amitay, Michael

    2015-11-01

    Active flow control devices including synthetic jets and dynamic vortex generators were tested on a 10 kW wind turbine at RPI. Previous work has shown that load oscillations caused by dynamic stall could be modified through the use of active flow control by injecting momentum into the flow field near the leading edge of a dynamically pitching model. In this study, this work has been extended to its logical conclusion, field-testing active flow control on a real wind turbine. The blades in the current study have a 0.28m chord and 3.05m span, no twist or taper, and were retrofitted with six synthetic jets on one blade and ten dynamic vortex generators on a second blade. The third blade of this turbine was not modified, in order to serve as a control. Strain gauges were installed on each blade to measure blades' deflection. A simple closed loop control was demonstrated and preliminary results indicate reduced vibrational amplitude. Future testing will be conducted on a larger scale, 600kW machine at NREL, incorporating information collected during this study.

  1. Pneumatic testing in 45-degree-inclined boreholes in ash-flow tuff near Superior, Arizona

    USGS Publications Warehouse

    LeCain, G.D.

    1995-01-01

    Matrix permeability values determined by single-hole pneumatic testing in nonfractured ash-flow tuff ranged from 5.1 to 20.3 * 1046 m2 (meters squared), depending on the gas-injection rate and analysis method used. Results from the single-hole tests showed several significant correlations between permeability and injection rate and between permeability and test order. Fracture permeability values determined by cross-hole pneumatic testing in fractured ash-flow tuff ranged from 0.81 to 3.49 * 1044 m2, depending on injection rate and analysis method used. Results from the cross-hole tests monitor intervals showed no significant correlation between permeability and injection rate; however, results from the injection interval showed a significant correlation between injection rate and permeability. Porosity estimates from the 'cross-hole testing range from 0.8 to 2.0 percent. The maximum temperature change associated with the pneumatic testing was 1.2'(2 measured in the injection interval during cross-hole testing. The maximum temperature change in the guard and monitor intervals was O.Ip C. The maximum error introduced into the permeability values due to temperature fluctuations is approximately 4 percent. Data from temperature monitoring in the borehole indicated a positive correlation between the temperature decrease in the injection interval during recovery testing and the gas-injection rate. The thermocouple psychrometers indicated that water vapor was condensing in the boreholes during testing. The psychrometers in the guard and monitor intervals detected the drier injected gas as an increase in the dry bulb reading. The relative humidity in the test intervals was always higher than the upper measurement limit of the psychrometers. Although the installation of the packer system may have altered the water balance of the borehole, the gas-injection testing resulted in minimal or no changes in the borehole relative humidity.

  2. Computational investigation of the discharge coefficient of bellmouth flow meters in engine test facilities

    NASA Astrophysics Data System (ADS)

    Sebourn, Charles Lynn

    2002-11-01

    In this thesis computation of the discharge coefficient of bellmouth flow meters installed in engine test facilities is presented. The discharge coefficient is a critical parameter for accurately calculating flow rate in any flow meter which operates by means of creating a pressure differential. Engine airflow is a critical performance parameter and therefore, it is necessary for engine test facilities to accurately measure airflow. In this report the author investigates the use of computational fluid dynamics using finite difference methods to calculate the flow in bellmouth flow meters and hence the discharge coefficient at any measurement station desired. Experimental boundary layer and core flow data was used to verify the capability of the WIND code to calculate the discharge coefficient accurately. Good results were obtained for Reynolds numbers equal to or greater than about three million which is the primary range of interest. After verifying the WIND code performance, results were calculated for a range of Reynolds numbers and Mach numbers. Also the variation in discharge coefficient as a function of measurement location was examined. It is demonstrated that by picking the proper location for pressure measurement, sensitivity to measurement location can be minimized. Also of interest was the effect of bellmouth geometry. Calculations were performed to investigate the effect of duct to bellmouth diameter ratio and the eccentricity of the bellmouth contraction. In general the effects of the beta ratio were seen to be quite small. For the eccentricity, the variation in discharge coefficient was as high as several percent for axial locations less than half a diameter downstream from the throat. The second portion of the thesis examined the effect of a turbofan engine stationed just downstream of the bellmouth flow meter. The study approximated this effect by examining a single fan stage installed in the duct. This calculation was performed by making use of a

  3. Non-Flow-Through Fuel Cell System Test Results and Demonstration on the SCARAB Rover

    NASA Technical Reports Server (NTRS)

    Scheidegger, Brianne, T.; Burke, Kenneth A.; Jakupca, Ian J.

    2012-01-01

    This paper describes the results of the demonstration of a non-flow-through PEM fuel cell as part of a power system on the SCARAB rover. A 16-cell non-flow-through fuel cell stack from Infinity Fuel Cell and Hydrogen, Inc. was incorporated into a power system designed to act as a range extender by providing power to the rover s hotel loads. This work represents the first attempt at a ground demonstration of this new technology aboard a mobile test platform. Development and demonstration were supported by the Office of the Chief Technologist s Space Power Systems Project and the Advanced Exploration System Modular Power Systems Project.

  4. Tevatron optics measurements using an AC dipole

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is a device to study beam optics of hadron synchrotrons. It can produce sustained large amplitude oscillations with virtually no emittance growth. A vertical AC dipole for the Tevatron is recently implemented and a maximum oscillation amplitude of 2{sigma} (4{sigma}) at 980 GeV (150 GeV) is achieved [1]. When such large oscillations are measured with the BPM system of the Tevatron (20 {micro}m resolution), not only linear but even nonlinear optics can be directly measured. This paper shows how to measure {beta} function using an AC dipole and the result is compared to the other measurement. The paper also shows a test to detect optics changes when small changes are made in the Tevatron. Since an AC dipole is nondestructive, it allows frequent measurements of the optics which is necessary for such an test.

  5. Evaluation of groundwater flow and transport at the Shoal underground nuclear test: An interim report

    SciTech Connect

    Pohll, G.; Chapman, J.; Hassan, A.; Papelis, C.; Andricevic, R.; Shirley, C.

    1998-07-01

    Since 1962, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive materials in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site, but a limited number of experiments were conducted in other locations. One of these is the subject of this report, the Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada. The Shoal test consisted of a 12-kiloton-yield nuclear detonation which occurred on October 26, 1963. Project Shoal was part of studies to enhance seismic detection of underground nuclear tests, in particular, in active earthquake areas. Characterization of groundwater contamination at the Project Shoal Area is being conducted by the US Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) with the State of Nevada Department of Environmental Protection and the US Department of Defense (DOD). This order prescribes a Corrective Action Strategy (Appendix VI), which, as applied to underground nuclear tests, involves preparing a Corrective Action Investigation Plan (CAIP), Corrective Action Decision Document (CADD), Corrective Action Plan, and Closure Report. The scope of the CAIP is flow and transport modeling to establish contaminant boundaries that are protective of human health and the environment. This interim report describes the current status of the flow and transport modeling for the PSA.

  6. Space Launch System Base Heating Test: Environments and Base Flow Physics

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Knox, Kyle S.; Seaford, C. Mark; Dufrene, Aaron T.

    2016-01-01

    The NASA Space Launch System (SLS) vehicle is composed of four RS-25 liquid oxygen-hydrogen rocket engines in the core-stage and two 5-segment solid rocket boosters and as a result six hot supersonic plumes interact within the aft section of the vehicle during flight. Due to the complex nature of rocket plume-induced flows within the launch vehicle base during ascent and a new vehicle configuration, sub-scale wind tunnel testing is required to reduce SLS base convective environment uncertainty and design risk levels. This hot-fire test program was conducted at the CUBRC Large Energy National Shock (LENS) II short-duration test facility to simulate flight from altitudes of 50 kft to 210 kft. The test program is a challenging and innovative effort that has not been attempted in 40+ years for a NASA vehicle. This paper discusses the various trends of base convective heat flux and pressure as a function of altitude at various locations within the core-stage and booster base regions of the two-percent SLS wind tunnel model. In-depth understanding of the base flow physics is presented using the test data, infrared high-speed imaging and theory. The normalized test design environments are compared to various NASA semi-empirical numerical models to determine exceedance and conservatism of the flight scaled test-derived base design environments. Brief discussion of thermal impact to the launch vehicle base components is also presented.

  7. Regional groundwater flow and tritium transport modeling and risk assessment of the underground test area, Nevada Test Site, Nevada

    SciTech Connect

    1997-10-01

    The groundwater flow system of the Nevada Test Site and surrounding region was evaluated to estimate the highest potential current and near-term risk to the public and the environment from groundwater contamination downgradient of the underground nuclear testing areas. The highest, or greatest, potential risk is estimated by assuming that several unusually rapid transport pathways as well as public and environmental exposures all occur simultaneously. These conservative assumptions may cause risks to be significantly overestimated. However, such a deliberate, conservative approach ensures that public health and environmental risks are not underestimated and allows prioritization of future work to minimize potential risks. Historical underground nuclear testing activities, particularly detonations near or below the water table, have contaminated groundwater near testing locations with radioactive and nonradioactive constituents. Tritium was selected as the contaminant of primary concern for this phase of the project because it is abundant, highly mobile, and represents the most significant contributor to the potential radiation dose to humans for the short term. It was also assumed that the predicted risk to human health and the environment from tritium exposure would reasonably represent the risk from other, less mobile radionuclides within the same time frame. Other contaminants will be investigated at a later date. Existing and newly collected hydrogeologic data were compiled for a large area of southern Nevada and California, encompassing the Nevada Test Site regional groundwater flow system. These data were used to develop numerical groundwater flow and tritium transport models for use in the prediction of tritium concentrations at hypothetical human and ecological receptor locations for a 200-year time frame. A numerical, steady-state regional groundwater flow model was developed to serve as the basis for the prediction of the movement of tritium from the

  8. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. 84.155 Section... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type... shall not exceed 25 mm. (1 inch) of water-column height when the air flow into the...

  9. A system for conducting flow-through toxicity tests with larval fish

    SciTech Connect

    Diamond, S.A.; Oris, J.T.; Guttman, S.I.

    1995-08-01

    Assessment of toxicological effects in aquatic systems commonly include larval fish 96-h LC50 determinations. The LC50 tests are conducted using static renewal as well as flow-through methods. However, in the case of chemicals with high vapor pressures or fugacity, static renewal methods may produce inconsistent results arising from the pulsed nature of exposure. In addition, in exposures involving these types of compounds, the fluctuation in concentration that can occur between renewals is unlike most exposure scenarios in nature. For these reasons, flow-through systems are often preferable. The authors report here on an inexpensive, easily constructed, flow-through system for toxicant exposure of small organisms. Data are presented to illustrate the capacity of the system to maintain uniform toxicant concentrations relative to static renewal methods.

  10. UNSATURATED FLOW IN A CENTRIFUGAL FIELD: MEASUREMENT OF HYDRAULIC CONDUCTIVITY AND TESTING OF DARCY'S LAW.

    USGS Publications Warehouse

    Nimmo, J.R.; Rubin, J.; Hammermeister, D.P.

    1987-01-01

    A method has been developed to establish steady flow of water in unsaturated soil sample spinning in a centrifuge. Theoretical analysis predicts moisture conditions in the sample that depend strongly on soil type and certain operating parameter. For Oakley sand, measurements of flux, water content, and matric potential during and after centrifugation verify that steady state flow can be achieved. Experiments have confirmed the theoretical prediction of a nearly uniform moisture distribution for this medium and have demonstrated that the flow can be effectively one-dimensional. The method was used for steady state measurements of hydraulic conductivity K for relatively dry soil, giving values at low as 7. 6 multiplied by 10** minus **1**1 m/s with data obtained in a few hours. Darcy's law was tested by measuring K for different centrifugal driving forces but with the same water content.

  11. Graphical method for determining the coefficient of consolidation cv from a flow-pump permeability test

    USGS Publications Warehouse

    Morin, Roger H.; Olsen, Harold W.; Nelson, Karl R.; Gill, James D.

    1989-01-01

    A graphical method has been developed for determining the coefficient of consolidation from the transient phases of a flow-pump permeability test. The flow pump can be used to infuse fluid into or withdraw fluid from a laboratory sediment specimen at a constant volumetric rate in order to obtain data that can be used to calculate permeability using Darcy's law. Representative type-curve solutions to the associated forced-flow and pressure-decay models are derived. These curves provide the basis for graphically evaluating the permeability k, the coefficient of consolidation cv, and the coefficient of volume change mv. The curve-matching technique is easy and rapid. Values of k, cv and mv for a laterally confined kaolinite specimen were determined by this graphical method and appear to be in reasonably good agreement with numerically derived estimates (within 20%). Discrepancies between the two sets of results seem to be largely a function of data quality.

  12. Cold Flow Testing for Liquid Propellant Rocket Injector Scaling and Throttling

    NASA Technical Reports Server (NTRS)

    Kenny, Jeremy R.; Moser, Marlow D.; Hulka, James; Jones, Gregg

    2006-01-01

    Scaling and throttling of combustion devices are important capabilities to demonstrate in development of liquid rocket engines for NASA's Space Exploration Mission. Scaling provides the ability to design new injectors and injection elements with predictable performance on the basis of test experience with existing injectors and elements, and could be a key aspect of future development programs. Throttling is the reduction of thrust with fixed designs and is a critical requirement in lunar and other planetary landing missions. A task in the Constellation University Institutes Program (CUIP) has been designed to evaluate spray characteristics when liquid propellant rocket engine injectors are scaled and throttled. The specific objectives of the present study are to characterize injection and primary atomization using cold flow simulations of the reacting sprays. These simulations can provide relevant information because the injection and primary atomization are believed to be the spray processes least affected by the propellant reaction. Cold flow studies also provide acceptable test conditions for a university environment. Three geometric scales - 1/4- scale, 1/2-scale, and full-scale - of two different injector element types - swirl coaxial and shear coaxial - will be designed, fabricated, and tested. A literature review is currently being conducted to revisit and compile the previous scaling documentation. Because it is simple to perform, throttling will also be examined in the present work by measuring primary atomization characteristics as the mass flow rate and pressure drop of the six injector element concepts are reduced, with corresponding changes in chamber backpressure. Simulants will include water and gaseous nitrogen, and an optically accessible chamber will be used for visual and laser-based diagnostics. The chamber will include curtain flow capability to repress recirculation, and additional gas injection to provide independent control of the

  13. Validation Analysis of the Groundwater Flow and Transport Model of the Central Nevada Test Area

    SciTech Connect

    A. Hassan; J. Chapman; H. Bekhit; B. Lyles; K. Pohlmann

    2006-09-30

    The Central Nevada Test Area (CNTA) is a U.S. Department of Energy (DOE) site undergoing environmental restoration. The CNTA is located about 95 km northeast of Tonopah, Nevada, and 175 km southwest of Ely, Nevada (Figure 1.1). It was the site of the Faultless underground nuclear test conducted by the U.S. Atomic Energy Commission (DOE's predecessor agency) in January 1968. The purposes of this test were to gauge the seismic effects of a relatively large, high-yield detonation completed in Hot Creek Valley (outside the Nevada Test Site [NTS]) and to determine the suitability of the site for future large detonations. The yield of the Faultless underground nuclear test was between 200 kilotons and 1 megaton (DOE, 2000). A three-dimensional flow and transport model was created for the CNTA site (Pohlmann et al., 1999) and determined acceptable by DOE and the Nevada Division of Environmental Protection (NDEP) for predicting contaminant boundaries for the site.

  14. Laboratory Tests of Multiplex Detection of PCR Amplicons Using the Luminex 100 Flow Analyzer

    SciTech Connect

    Venkateswaran, K.S.; Nasarabadi, S.; Langlois, R.G.

    2000-05-05

    Lawrence Livermore National Laboratory (LLNL) demonstrated the power of flow cytometry in detecting the biological agents simulants at JFT III. LLNL pioneered in the development of advanced nucleic acid analyzer (ANM) for portable real time identification. Recent advances in flow cytometry provide a means for multiplexed nucleic acid detection and immunoassay of pathogenic microorganisms. We are presently developing multiplexed immunoassays for the simultaneous detection of different simulants. Our goal is to build an integrated instrument for both nucleic acid analysis and immuno detection. In this study we evaluated the Luminex LX 100 for concurrent identification of more than one PCR amplified product. ANAA has real-time Taqman fluorescent detection capability for rapid identification of field samples. However, its multiplexing ability is limited by the combination of available fluorescent labels. Hence integration of ANAA with flow cytometry can give the rapidity of ANAA amplification and the multiplex capability of flow cytometry. Multiplexed flow cytometric analysis is made possible using a set of fluorescent latex microsphere that are individually identified by their red and infrared fluorescence. A green fluorochrome is used as the assay signal. Methods were developed for the identification of specific nucleic acid sequences from Bacillus globigii (Bg), Bacillus thuringensis (Bt) and Erwinia herbicola (Eh). Detection sensitivity using different reporter fluorochromes was tested with the LX 100, and also different assay formats were evaluated for their suitability for rapid testing. A blind laboratory trial was carried out December 22-27, 1999 to evaluate bead assays for multiplex identification of Bg and Bt PCR products. This report summarizes the assay development, fluorochrome comparisons, and the results of the blind trial conducted at LLNL for the laboratory evaluation of the LX 100 flow analyzer.

  15. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  16. Multiple well-shutdown tests and site-scale flow simulation in fractured rocks.

    PubMed

    Tiedeman, Claire R; Lacombe, Pierre J; Goode, Daniel J

    2010-01-01

    A new method was developed for conducting aquifer tests in fractured-rock flow systems that have a pump-and-treat (P&T) operation for containing and removing groundwater contaminants. The method involves temporary shutdown of individual pumps in wells of the P&T system. Conducting aquifer tests in this manner has several advantages, including (1) no additional contaminated water is withdrawn, and (2) hydraulic containment of contaminants remains largely intact because pumping continues at most wells. The well-shutdown test method was applied at the former Naval Air Warfare Center (NAWC), West Trenton, New Jersey, where a P&T operation is designed to contain and remove trichloroethene and its daughter products in the dipping fractured sedimentary rocks underlying the site. The detailed site-scale subsurface geologic stratigraphy, a three-dimensional MODFLOW model, and inverse methods in UCODE_2005 were used to analyze the shutdown tests. In the model, a deterministic method was used for representing the highly heterogeneous hydraulic conductivity distribution and simulations were conducted using an equivalent porous media method. This approach was very successful for simulating the shutdown tests, contrary to a common perception that flow in fractured rocks must be simulated using a stochastic or discrete fracture representation of heterogeneity. Use of inverse methods to simultaneously calibrate the model to the multiple shutdown tests was integral to the effectiveness of the approach.

  17. Heat extracted from the long term flow test in the Fenton Hill HDR reservoir

    SciTech Connect

    Kruger, Paul; Robinson, Bruce

    1994-01-20

    A long-term flow test was carried out in the Fenton Hill HDR Phase-2 reservoir for 14 months during 1992-1993 to examine the potential for supplying thermal energy at a sustained rate as a commercial demonstration of HDR technology. The test was accomplished in several segments with changes in mean flowrate due to pumping conditions. Re-test estimates of the extractable heat content above a minimum useful temperature were based on physical evidence of the size of the Fenton Hill reservoir. A numerical model was used to estimate the extent of heat extracted during the individual flow segments from the database of measured production data during the test. For a reservoir volume of 6.5x10{sup 6}m{sup 3}, the total heat content above a minimum temperature of 150{degree} C was 1.5x10{sup 15}J. For the total test period at the three sustained mean flowrates, the integrated heat extracted was 0.088x10{sup 15}J, with no discernable temperature decline of the produced fluid. The fraction of energy extracted above the abandonment temperature was 5.9%. On the basis of a constant thermal energy extraction rate, the lifetime of the reservoir (without reservoir growth) to the abandonment temperature would be 13.3 years, in good agreement with the pre-test estimate of 15.0 years for the given reservoir volume.

  18. Test technique development in interference free testing, flow visualization, and remote control model technology at Langley's Unitary Plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Corlett, W. A.

    1979-01-01

    A metric half-span model is considered as a means of mechanical support for a wind-tunnel model which allows measurement of aerodynamic forces and moments without support interference or model distortion. This technique can be applied to interference-free propulsion models. The vapor screen method of flow visualization at supersonic Mach numbers is discussed. The use of smoke instead of water vapor as a medium to produce the screen is outlined. Vapor screen data are being used in the development of analytical vortex tracking programs. Test results for a remote control model system are evaluated. Detailed control effectiveness and cross-coupling data were obtained with a single run. For the afterbody tail configuration, tested control boundaries at several roll orientations were established utilizing the facility's on-line capability to 'fly' the model in the wind tunnel.

  19. Design and Testing of a Shell-Flow Hollow-Fiber Venting Gas Trap

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Cross, Cindy; Hansen, Scott; Vogel, Matthew; Dillon, Paul

    2013-01-01

    A Venting Gas Trap (VGT) was designed, built, and tested at NASA Johnson Space Center to eliminate dissolved and free gas from the circulating coolant loop of the Orion Environmental Control Life Support System. The VGT was downselected from two different designs. The VGT has robust operation, and easily met all the Orion requirements, especially size and weight. The VGT has a novel design with the gas trap made of a five-layer spiral wrap of porous hydrophobic hollow fibers that form a cylindrically shaped curtain terminated by a dome-shaped distal plug. Circulating coolant flows into the center of the cylindrical curtain and flows between the hollow fibers, around the distal plug, and exits the VGT outlet. Free gas is forced by the coolant flow to the distal plug and brought into contact with hollow fibers. The proximal ends of the hollow fibers terminate in a venting chamber that allows for rapid venting of the free gas inclusion, but passively limits the external venting from the venting chamber through two small holes in the event of a long-duration decompression of the cabin. The VGT performance specifications were verified in a wide range of flow rates, bubble sizes, and inclusion volumes. Long-duration and integrated Orion human tests of the VGT are also planned for the coming year.

  20. Design, testing and two-dimensional flow modeling of a multiple-disk fan

    SciTech Connect

    Engin, Tahsin; Oezdemir, Mustafa; Cesmeci, Sevki

    2009-11-15

    A multiple-disk Tesla type fan has been designed, tested and analyzed two-dimensionally using the conservation of angular momentum principle. Experimental results showed that such multiple-disk fans exhibited exceptionally low performance characteristics, which could be attributed to the low viscosity, tangential nature of the flow, and large mechanical energy losses at both suction and discharge sections that are comparable to the total input power. By means of theoretical analysis, local and overall shearing stresses on the disk surfaces have been determined based on tangential and radial velocity distributions of the air flow of different volume flow rates at prescribed disk spaces and rotational speeds. Then the total power transmitted by rotating disks to air flow, and the power acquired by the air flow in the gap due to transfer of angular momentum have been obtained by numerically integrating shearing stresses over the disk surfaces. Using the measured shaft and hydraulic powers, these quantities were utilized to evaluate mechanical energy losses associated with the suction and discharge sections of the fan. (author)

  1. Velocimetry modalities for secondary flows in a curved artery test section

    NASA Astrophysics Data System (ADS)

    Bulusu, Kartik V.; Elkins, Christopher J.; Banko, Andrew J.; Plesniak, Michael W.; Eaton, John K.

    2014-11-01

    Secondary flow structures arise due to curvature-related centrifugal forces and pressure imbalances. These flow structures influence wall shear stress and alter blood particle residence times. Magnetic resonance velocimetry (MRV) and particle image velocimetry (PIV) techniques were implemented independently, under the same physiological inflow conditions (Womersley number = 4.2). A 180-degree curved artery test section with curvature ratio (1/7) was used as an idealized geometry for curved arteries. Newtonian blood analog fluids were used for both MRV and PIV experiments. The MRV-technique offers the advantage of three-dimensional velocity field acquisition without requiring optical access or flow markers. Phase-averaged, two-dimensional, PIV-data at certain cross-sectional planes and inflow phases were compared to phase-averaged MRV-data to facilitate the characterization of large-scale, Dean-type vortices. Coherent structures detection methods that included a novel wavelet decomposition-based approach to characterize these flow structures was applied to both PIV- and MRV-data. The overarching goal of this study is the detection of motific, three-dimensional shapes of secondary flow structures using MRV techniques with guidance obtained from high fidelity, 2D-PIV measurements. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-0828903, and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  2. ACS CCD Stability Monitor

    NASA Astrophysics Data System (ADS)

    Grogin, Norman

    2012-10-01

    A moderately crowded stellar field in the cluster 47 Tuc {6 arcmin West of the cluster core} is observed every four months with the WFC. The first visit exercises the full suite of broad and narrow band imaging filters and sub-array modes; following visits observe with only the six most popular Cycle 18 filters in full-frame mode. The positions and magnitudes of objects will be used to monitor local and large scale variations in the plate scale and the sensitivity of the detectors and to derive an independent measure of the detector CTE. One exposure in each sub-array mode with the WFC will allow us to verify that photometry obtained in full-frame and in sub-array modes are repeatable to better than 1%. This test is important for the ACS Photometric Cross-Calibration program, which uses sub-array exposures. This program may receive additional orbits to investigate ORIENT-dependent geometric distortion, which motivates the ORIENT and BETWEEN requirement on the first visit.

  3. Improvement of Subsonic Basic Research Tunnel Flow Quality as Applied to Wall Mounted Testing

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.

    1995-01-01

    A survey to determine the characteristics of a boundary layer that forms on the wall of the Subsonic Basic Research Tunnel has been performed. Early results showed significant differences in the velocity profiles as measured spanwise across the wall. An investigation of the flow in the upstream contraction revealed the presence of a separation bubble at the beginning of the contraction which caused much of the observed unsteadiness. Vortex generators were successfully applied to the contraction inlet to alleviate the separation. A final survey of the wall boundary layer revealed variations in the displacement and momentum thicknesses to be less than +/- 5% for all but the most upper portion of the wall. The flow quality was deemed adequate to continue the planned follow-on tests to help develop the semi-span test technique.

  4. Brief Communication: A new testing field for debris flow warning systems

    NASA Astrophysics Data System (ADS)

    Arattano, M.; Coviello, V.; Cavalli, M.; Comiti, F.; Macconi, P.; Theule, J.; Crema, S.

    2015-07-01

    A permanent field installation for the systematic test of debris flow warning systems and algorithms has been equipped on the eastern Italian Alps. The installation was also designed to produce didactic videos and it may host informative visits. The populace education is essential and should be envisaged in planning any research on hazard mitigation interventions: this new installation responds to this requirement and offers an example of integration between technical and informative needs. The occurrence of a debris flow in 2014 allowed the first tests of a new warning system under development and to record an informative video on its performances. This paper will provide a description of the installation and an account of the first technical and informative results obtained.

  5. Oscillating-Flow Regenerator Test Rig: Hardware and Theory With Derived Correlations for Screens and Felts

    NASA Technical Reports Server (NTRS)

    Gedeon, D.; Wood, J. G.

    1996-01-01

    A number of wire mesh and metal felt test samples, with a range of porosities, yield generic correlations for friction factor, Nusselt number, enhanced axial conduction ratio, and overall heat flux ratio. This information is directed primarily toward stirling cycle regenerator modelers, but will be of use to anyone seeking to better model fluid flow through these porous materials. Behind these results lies an oscillating-flow test rig, which measures pumping dissipation and thermal energy transport in sample matrices, and several stages of data-reduction software, which correlate instantaneous values for the above dimensionless groups. Within the software, theoretical model reduces instantaneous quantifies from cycle-averaged measurables using standard parameter estimation techniques.

  6. Development and testing of highway storm-sewer flow measurement and recording system

    USGS Publications Warehouse

    Kilpatrick, F.A.; Kaehrle, W.R.; Hardee, Jack; Cordes, E.H.; Landers, M.N.

    1985-01-01

    A comprehensive study and development of measuring instruments and techniques for measuring all components of flow in a storm-sewer drainage system was undertaken by the U.S. Geological Survey under the sponsorship of the Federal Highway Administration. The study involved laboratory and field calibration and testing of measuring flumes, pipe insert meters, weirs, electromagnetic velocity meters as well as the development and calibration of pneumatic-bubbler pressure transducer head measuring systems. Tracer-dilution and acoustic flow meter measurements were used in field verification tests. A single micrologger was used to record data from all the above instruments as well as from a tipping-bucket rain gage and also to activate on command the electromagnetic velocity meter and tracer-dilution systems. (Author 's abstract)

  7. THEORETICAL ANALYSIS OF THE TRANSIENT PRESSURE RESPONSE FROM A CONSTANT FLOW RATE HYDRAULIC CONDUCTIVITY TEST.

    USGS Publications Warehouse

    Morin, Roger H.; Olsen, Harold W.

    1987-01-01

    Incorporating a flow pump into a conventional triaxial laboratory system allows fluid to be supplied to or withdrawn from the base of a sediment sample at small and constant rates. An initial transient record of hydraulic head versus time is observed which eventually stabilizes to a constant steady state gradient across the sample; values of hydraulic conductivity can subsequently be determined from Darcy's law. In this paper, analytical methods are presented for determining values of specific storage and hydraulic conductivity from the initial transient phase of such a constant flow rate test. These methods are based on a diffusion equation involving pore pressure and are analogous to those used to describe the soil consolidation process and also to interpret aquifer properties from pumping tests.

  8. An analytical verification test for numerically simulated convective flow above a thermally heterogeneous surface

    NASA Astrophysics Data System (ADS)

    Shapiro, A.; Fedorovich, E.; Gibbs, J. A.

    2015-06-01

    An analytical solution of the Boussinesq equations for the motion of a viscous stably stratified fluid driven by a surface thermal forcing with large horizontal gradients (step changes) is obtained. This analytical solution is one of the few available for wall-bounded buoyancy-driven flows. The solution can be used to verify that computer codes for Boussinesq fluid system simulations are free of errors in formulation of wall boundary conditions and to evaluate the relative performances of competing numerical algorithms. Because the solution pertains to flows driven by a surface thermal forcing, one of its main applications may be for testing the no-slip, impermeable wall boundary conditions for the pressure Poisson equation. Examples of such tests are presented.

  9. Aft-End Flow of a Large-Scale Lifting Body During Free-Flight Tests

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Fisher, David F.

    2006-01-01

    Free-flight tests of a large-scale lifting-body configuration, the X-38 aircraft, were conducted using tufts to characterize the flow on the aft end, specifically in the inboard region of the vertical fins. Pressure data was collected on the fins and base. Flow direction and movement were correlated with surface pressure and flight condition. The X-38 was conceived to be a rescue vehicle for the International Space Station. The vehicle shape was derived from the U.S. Air Force X-24 lifting body. Free-flight tests of the X-38 configuration were conducted at the NASA Dryden Flight Research Center at Edwards Air Force Base, California from 1997 to 2001.

  10. ac electroosmosis in rectangular microchannels.

    PubMed

    Campisi, Michele; Accoto, Dino; Dario, Paolo

    2005-11-22

    Motivated by the growing interest in ac electroosmosis as a reliable no moving parts strategy to control fluid motion in microfluidic devices for biomedical applications, such as lab-on-a-chip, we study transient and steady-state electrokinetic phenomena (electroosmosis and streaming currents) in infinitely extended rectangular charged microchannels. With the aid of Fourier series and Laplace transforms we provide a general formal solution of the problem, which is used to study the time-dependent response to sudden ac applied voltage differences in case of finite electric double layer. The Debye-Huckel approximation has been adopted to allow for an algebraic solution of the Poisson-Boltzmann problem in Fourier space. We obtain the expressions of flow velocity profiles, flow rates, streaming currents, as well as expressions of the complex hydraulic and electrokinetic conductances. We analyze in detail the dependence of the electrokinetic conductance on the extension of linear dimensions relative to the Debye length, with an eye on finite electric double layer effects. PMID:16351310

  11. Performance evaluation of pyrochlore ceramic waste forms by single pass flow through testing

    NASA Astrophysics Data System (ADS)

    Zhao, P.; Bourcier, W. L.; Esser, B. K.; Shaw, H. F.

    2000-07-01

    Titanate-based ceramic waste forms for the disposal of nuclear wastes have been the subjects of numerous studies over the past decades. In order to assess the performance of this ceramic in a potential Yucca Mountain high-level waste (HLW) repository, it is necessary to understand the kinetics and mechanisms of corrosion of the ceramic under repository conditions. To this end, we are conducting single pass flow-through (SPFT) dissolution tests on ceramics relevant to Pu disposition.

  12. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  13. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  14. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  15. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  16. 40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the flow rate cut-off test, download the archived data from the test sampler and verify that the... recording at intervals not to exceed 5 minutes. (4) Flow measurement adaptor (40 CFR part 50, appendix L.... (7) Teflon sample filter, as specified in section 6 of 40 CFR part 50, appendix L (if required)....

  17. Flow testing of the Newberry 2 research drillhole, Newberry volcano, Oregon

    USGS Publications Warehouse

    Ingebritsen, S.E.; Carothers, W.W.; Mariner, R.H.; Gudmundsson, J.S.; Sammel, E.A.

    1986-01-01

    A 20 hour flow test of the Newberry 2 research drillhole at Newberry Volcano produced about 33,000 kilograms of fluid. The flow rate declined from about 0.8 kilograms per sec to less than 0.3 kilograms per sec during the course of the test. The mass ratio of liquid water to vapor was about 3:2 at the separator and stayed fairly constant throughout the test. The vapor phase was about half steam and half CO2 by weight. The average enthalpy of the steam/water mixture at the separator was about 1 ,200 kilojoules per kilogram. Because of the low flow rate and the large temperature gradient into the surrounding rocks, heat loss from the wellbore was high; a simple conductive model gives overall losses of about 1,200 kilojoules per kilogram of H2O produced. The actual heat loss may have been even higher due to convective effects, and it is likely that the fluid entering the bottom of the wellbore was largely or entirely steam and CO2. (Author 's abstract)

  18. Serology with ML Flow test in health professionals from three different states of Brazil*

    PubMed Central

    Calado, Karla Lucena Sampaio; Magnanini, Mônica Maria Ferreira; de Moura, Rodrigo Scaliante; Gallo, Maria Eugenia Noviski; Bührer-Sékula, Samira; de Oliveira, Maria Leide Wand-Del-Rey

    2013-01-01

    BACKGROUND In highly endemic countries, transmission and sub-clinical infection of leprosy are likely and the disease manifests itself in individuals without any known close contact with a leprosy patient. Health workers are social contacts belonging to the same network (the Health System) and some of them share the same social environment (nursing assistants) as patients with known patients and / or carriers. OBJECTIVE To identify ML Flow seropositivity among health professionals. METHODS We conducted a cross-sectional study using a serological survey with the ML Flow test in 450 health professionals (doctors, nurses and nursing assistants), in order to detect seropositivity in areas of high and low endemicity in municipalities from three Brazilian states (RJ, MS and RS). RESULTS The results showed general 16% seropositivity, higher in low endemic areas, regardless of whether there was direct care for leprosy patients. Paradoxically, a statistical association was observed between the area studied and seropositivity, as the place with the lowest endemicity (CA) had the highest seropositivity rate (p = 0.033). CONCLUSION The authors suggest these results are associated with a presence of an unspecified link to bovine serum albumin (BSA), carrier of PGL-1 in the ML Flow test, and recommend expanded seroepidemiological research utilizing tests with human and bovine albumin. PMID:24474100

  19. Flowing along the edge: Spinning up black holes in AdS spacetimes with test particles

    NASA Astrophysics Data System (ADS)

    Rocha, Jorge V.; Santarelli, Raphael

    2014-03-01

    We investigate the consequences of throwing point particles into odd-dimensional Myers-Perry black holes in asymptotically anti-de Sitter (AdS) backgrounds. We restrict our attention to the case in which the angular momenta of the background geometry are all equal. This process allows us to test the generalization of the weak cosmic censorship conjecture to asymptotically AdS spacetimes in higher dimensions. We find no evidence for overspinning in D =5,7,9 and 11 dimensions. Instead, test particles carrying the maximum possible angular momentum that still fall into an extremal rotating black hole generate a flow along the curve of extremal solutions.

  20. An analytical verification test for numerically simulated convective flow above a thermally heterogeneous surface

    NASA Astrophysics Data System (ADS)

    Shapiro, A.; Fedorovich, E.; Gibbs, J. A.

    2015-03-01

    An analytical solution of the Boussinesq equations for the motion of a viscous stably stratified fluid driven by a surface thermal forcing with large horizontal gradients (step changes) is obtained. The solution can be used to verify that computer codes for Boussinesq fluid system simulations are free of errors in formulation of wall boundary conditions, and to evaluate the relative performances of competing numerical algorithms. Because the solution pertains to flows driven by a surface thermal forcing, one of its main applications may be for testing the no-slip, impermeable wall boundary conditions for the pressure Poisson equation. Examples of such tests are presented.

  1. Experimental testing procedures and dynamic model validation for vanadium redox flow battery storage system

    NASA Astrophysics Data System (ADS)

    Baccino, Francesco; Marinelli, Mattia; Nørgård, Per; Silvestro, Federico

    2014-05-01

    The paper aims at characterizing the electrochemical and thermal parameters of a 15 kW/320 kWh vanadium redox flow battery (VRB) installed in the SYSLAB test facility of the DTU Risø Campus and experimentally validating the proposed dynamic model realized in Matlab-Simulink. The adopted testing procedure consists of analyzing the voltage and current values during a power reference step-response and evaluating the relevant electrochemical parameters such as the internal resistance. The results of different tests are presented and used to define the electrical characteristics and the overall efficiency of the battery system. The test procedure has general validity and could also be used for other storage technologies. The storage model proposed and described is suitable for electrical studies and can represent a general model in terms of validity. Finally, the model simulation outputs are compared with experimental measurements during a discharge-charge sequence.

  2. Isolation of sequences flanking Ac insertion sites by Ac casting.

    PubMed

    Wang, Dafang; Peterson, Thomas

    2013-01-01

    Localizing Ac insertions is a fundamental task in studying Ac-induced mutation and chromosomal rearrangements involving Ac elements. Researchers may sometimes be faced with the situation in which the sequence flanking one side of an Ac/Ds element is known, but the other flank is unknown. Or, a researcher may have a small sequence surrounding the Ac/Ds insertion site and needs to obtain additional flanking genomic sequences. One way to rapidly clone unknown Ac/Ds flanking sequences is via a PCR-based method termed Ac casting. This approach utilizes the somatic transposition activity of Ac during plant development, and provides an efficient means for short-range genome walking. Here we describe the principle of Ac casting, and show how it can be applied to isolate Ac macrotransposon insertion sites.

  3. Grout long radius flow testing to support Saltstone disposal Unit 5 design

    SciTech Connect

    Stefanko, D. B.; Langton, C. A.; Serrato, M. G.; Brooks, T. E. II; Huff, T. H.

    2013-02-24

    The Saltstone Facility, located within the Savannah River Site (SRS) near Aiken, South Carolina, consists of two facility segments: The Saltstone Production Facility (SPF) and the Saltstone Disposal Facility (SDF). The SPF receives decontaminated legacy low level sodium salt waste solution that is a byproduct of prior nuclear material processing. The salt solution is mixed with cementitious materials to form a grout slurry known as “Saltstone”. The grout is pumped to the SDF where it is placed in a Saltstone Disposal Unit (SDU) to solidify. SDU 6 is referred to as a “mega vault” and is currently in the design stage. The conceptual design for SDU 6 is a single cell, cylindrical geometry approximately 114.3 meters in diameter by 13.1 meter high and is larger than previous cylindrical SDU designs, 45.7 meters in diameter by 7.01 meters high (30 million gallons versus 2.9 million gallons of capacity). Saltstone slurry will be pumped into the new waste disposal unit through roof openings at a projected flow rate of about 34.1 cubic meters per hour. Nine roof openings are included in the design to discharge material into the SDU with an estimated grout pour radius of 22.9 to 24.4 meters and initial drop height of 13.1 meters. The conceptual design for the new SDU does not include partitions to limit the pour radius of the grout slurry during placement other than introducing material from different pour points. This paper addresses two technical issues associated with the larger diameter of SDU 6; saltstone flow distance in a tank 114.3 meters in diameter and quality of the grout. A long-radius flow test scaled to match the velocity of an advancing grout front was designed to address these technology gaps. The emphasis of the test was to quantify the flow distance and to collect samples to evaluate cured properties including compressive strength, porosity, density, and saturated hydraulic conductivity. Two clean cap surrogate mixes (saltstone premix plus water

  4. Shuttle Return-to-Flight IH-108 Aerothermal Test at CUBRC - Flow Field Calibration and CFD

    NASA Technical Reports Server (NTRS)

    Lau, Kei Y.; Holden, Michael

    2010-01-01

    This paper discusses one specific aspect of the Shuttle Retrun-To-Flight IH-108 Aerothermal Test at CUBRC, the test flow field calibration. It showed the versatility of the CUBRC LENS II wind tunnel for an aerothermal test with unique and demanding requirements. CFD analyses were used effectively to extend the test range at the low end of the Mach range. It demonstrated how ground test facility and CFD synergy can be utilitzed iteratively to enhance the confidence in the fedility of both tools. It addressed the lingering concerns of the aerothermal community on use of inpulse facility and CFD analysis. At the conclusion of the test program, members from the NASA Marshall (MSFC), CUBRC and USA (United Space Alliance) Consultants (The Grey Beards) were asked to independently verify the flight scaling data generated by Boeing for flight certification of the re-designed external tank (ET) components. The blind test comparison showed very good results. A more comprehensive discussion of the topics in this paper can be found in Chapter 6 of Reference [1]. The overall aspect of the test program has been discussed in an AIAA paper by Tim Wadhams [2]. The Shuttle Ascent Stack performance and related issues discussed in the Report [1] are not included in this paper. No ITAR data is included in this paper.

  5. SRM Internal Flow Tests and Computational Fluid Dynamic Analysis. Volume 2; RSRM Full Scale Motor Analyses

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The purpose of the RSRM Nozzle Slag Ejection Precursor Test is to investigate the effect that slag ejection from the RSRM nozzle has on the chamber pressure and trust of the SRB's. In past firings of the Reusable Solid Rocket Motor (RSRM) both static test and flight motors have shown small pressure perturbations occurring primarily between 65 and 80 seconds. A joint NASA/Thiokol team investigation concluded that the cause of the pressure perturbations was the periodic ingestion and ejection of molten aluminum oxide slag from the cavity around the submerged nozzle nose which tends to trap and collect individual aluminum oxide droplets from the approach flow. The conclusions of the team were supported by numerous data and observations from special tests including high speed photographic films, real time radiography, plume calorimeters, accelerometers, strain gauges, nozzle TVC system force gauges, and motor pressure and thrust data. A simplistic slag ballistics model was formulated to relate a given pressure perturbation to a required slag quantity. Also, a cold flow model using air and water was developed to provide data on the relationship between the slag flow rate and the chamber pressure increase. Both the motor and the cold flow model exhibited low frequency oscillations in conjunction with periods of slag ejection. Motor and model frequencies were related to scaling parameters. The data indicate that there is a periodicity to the slag entrainment and ejection phenomena which is possibly related to organized oscillations from instabilities in the dividing streamline shear layer which impinges on the underneath surface of the nozzle.

  6. Long-term durability testing of ceramic cross-flow filter. Final report, September 29, 1987--December 31, 1992

    SciTech Connect

    Lippert, T.E.; Smeltzer, E.E.; Alvin, M.A.; Bachovchin, D.M.

    1993-08-01

    Long term durability testing of the cross flow filter is described. Two high temperature, high pressure test facilities were built and operated. The facilities were designed to simulate dirty gas environments typical of Pressurized Fluidized Bed Combustion (PFBC) and coal gasification. Details of the design and operation of the test facilities and filter testing results are described.

  7. Design, Validation, and Testing of a Hot-Film Anemometer for Hypersonic Flow

    NASA Astrophysics Data System (ADS)

    Sheplak, Mark

    The application of constant-temperature hot-film anemometry to hypersonic flow has been reviewed and extended in this thesis. The objective of this investigation was to develop a measurement tool capable of yielding continuous, high-bandwidth, quantitative, normal mass-flux and total -temperature measurements in moderate-enthalpy environments. This research has produced a probe design that represents a significant advancement over existing designs, offering the following improvements: (1) a five-fold increase in bandwidth; (2) true stagnation-line sensor placement; (3) a two order-of-magnitude decrease in sensor volume; and (4) over a 70% increase in maximum film temperature. These improvements were achieved through substrate design, sensor placement, the use of high-temperature materials, and state -of-the-art microphotolithographic fabrication techniques. The experimental study to characterize the probe was performed in four different hypersonic wind tunnels at NASA-Langley Research Center. The initial test consisted of traversing the hot film through a Mach 6, flat-plate, turbulent boundary layer in air. The detailed static-calibration measurements that followed were performed in two different hypersonic flows: a Mach 11 helium flow and Mach 6 air flow. The final test of this thesis consisted of traversing the probe through the Mach 6 wake of a 70^ circ blunt body. The goal of this test was to determine the state (i.e., laminar or turbulent) of the wake. These studies indicate that substrate conduction effects result in instrumentation characteristics that prevent the hot-film anemometer from being used as a quantitative tool. The extension of this technique to providing quantitative information is dependent upon the development of lower thermal-conductivity substrate materials. However, the probe durability, absence of strain gauging, and high bandwidth represent significant improvements over the hot-wire technique for making qualitative measurements. Potential

  8. Performance of laminar-flow leading-edge test articles in cloud encounters

    NASA Technical Reports Server (NTRS)

    Davis, Richard E.; Maddalon, Dal V.; Wagner, Richard D.

    1987-01-01

    An extensive data bank of concurrent measurements of laminar flow (LF), particle concentration, and aircraft charging state was gathered for the first time. From this data bank, 13 flights in the simulated airline service (SAS) portion were analyzed to date. A total of 6.86 hours of data at one-second resolution were analyzed. An extensive statistical analysis, for both leading-edge test articles, shows that there is a significant effect of cloud and haze particles on the extent of laminar flow obtained. Approximately 93 percent of data points simulating LFC flight were obtained in clear air conditions; approximately 7 percent were obtained in cloud and haze. These percentages are consistent with earlier USAF and NASA estimates and results. The Hall laminar flow loss criteria was verified qualitatively. Larger particles and higher particle concentrations have a more marked effect on LF than do small particles. A particle spectrometer of a charging patch are both acceptable as diagnostic indicators of the presence of particles detrimental to laminar flow.

  9. Performance tests of a gas blending system based on mass-flow controllers

    NASA Technical Reports Server (NTRS)

    Evans, A., Jr.

    1981-01-01

    The system provides many of the gas mixtures required for calibrating analytical instruments used in engine exhaust gas analysis and is capable of blending from one to four additive gases with either of two carrier gases in concentrations from 20 ppm to 50%. Two mixtures can be flowing simultaneously. Performance tests were made to determine the stability accuracy of the system while it was in limited use for a period of 2 years. The accuracy of the blender was measured by comparing binary mixtures from the blender with National Bureau of Standards standard reference materials. Analytical instruments were used to make these comparisons. The expected accuracy of 2% was obtained in some of the tests, by the majority showed a systematic biAs of -5%. Although these tests revealed subtle instabilities in the flow controllers that contributed to the random scatter of data, the accuracy of wet test meters and bubble flowmeters used for calibration is marginal for this purpose. A simple procedure is recommended that should enable the full potential of the system to be realized.

  10. Estimating kinetic mass transfer by resting-period measurements in flow-interruption tracer tests

    SciTech Connect

    Gong, R; Lu, C; Wu, Wei-min; Cheng, H.; Gu, Baohua; Watson, David B; Criddle, Craig; Kitanidis, Peter K.; Brooks, Scott C; Jardine, Philip M; Luo, Jian

    2010-06-01

    Flow-interruption tracer test is an effective approach to identify kinetic mass transfer processes for solute transport in subsurface media. By switching well pumping and resting, one may alter the dominant transport mechanism and generate special concentration patterns for identifying kinetic mass transfer processes. In the present research, we conducted three-phase (i.e., pumping, resting, and pumping) field-scale flow-interruption tracer tests using a conservative tracer bromide in a multiple-well system installed at the US Department of Energy Site, Oak Ridge, TN. A novel modeling approach based on the resting-period measurements was developed to estimate the mass transfer parameters. This approach completely relied on the measured breakthrough curves without requiring detailed aquifer characterization and solving transport equations in nonuniform, transient flow fields. Additional measurements, including hydraulic heads and tracer concentrations in large pumping wells, were taken to justify the assumption that mass transfer processes dominated concentration change during resting periods. The developed approach can be conveniently applied to any linear mass transfer model. Both first-order and multirate mass transfer models were applied to analyze the breakthrough curves at various monitoring wells. The multirate mass transfer model was capable of jointly fitting breakthrough curve behavior, showing the effectiveness and flexibility for incorporating aquifer heterogeneity and scale effects in upscaling effective mass transfer models.

  11. Estimating kinetic mass transfer by resting-period measurements in flow-interruption tracer tests.

    PubMed

    Gong, R; Lu, C; Wu, W-M; Cheng, H; Gu, B; Watson, D B; Criddle, C S; Kitanidis, P K; Brooks, S C; Jardine, P M; Luo, J

    2010-09-20

    Flow-interruption tracer test is an effective approach to identify kinetic mass transfer processes for solute transport in subsurface media. By switching well pumping and resting, one may alter the dominant transport mechanism and generate special concentration patterns for identifying kinetic mass transfer processes. In the present research, we conducted three-phase (i.e., pumping, resting, and pumping) field-scale flow-interruption tracer tests using a conservative tracer bromide in a multiple-well system installed at the US Department of Energy Site, Oak Ridge, TN. A novel modeling approach based on the resting-period measurements was developed to estimate the mass transfer parameters. This approach completely relied on the measured breakthrough curves without requiring detailed aquifer characterization and solving transport equations in nonuniform, transient flow fields. Additional measurements, including hydraulic heads and tracer concentrations in large pumping wells, were taken to justify the assumption that mass transfer processes dominated concentration change during resting periods. The developed approach can be conveniently applied to any linear mass transfer model. Both first-order and multirate mass transfer models were applied to analyze the breakthrough curves at various monitoring wells. The multirate mass transfer model was capable of jointly fitting breakthrough curve behavior, showing the effectiveness and flexibility for incorporating aquifer heterogeneity and scale effects in upscaling effective mass transfer models.

  12. Transonic flight test of a laminar flow leading edge with surface excrescences

    NASA Technical Reports Server (NTRS)

    Zuniga, Fanny A.; Drake, Aaron; Kennelly, Robert A., Jr.; Koga, Dennis J.; Westphal, Russell V.

    1994-01-01

    A flight experiment, conducted at NASA Dryden Flight Research Center, investigated the effects of surface excrescences, specifically gaps and steps, on boundary-layer transition in the vicinity of a leading edge at transonic flight conditions. A natural laminar flow leading-edge model was designed for this experiment with a spanwise slot manufactured into the leading-edge model to simulate gaps and steps like those present at skin joints of small transonic aircraft wings. The leading-edge model was flown with the flight test fixture, a low-aspect ratio fin mounted beneath an F-104G aircraft. Test points were obtained over a unit Reynolds number range of 1.5 to 2.5 million/ft and a Mach number range of 0.5 to 0.8. Results for a smooth surface showed that laminar flow extended to approximately 12 in. behind the leading edge at Mach number 0.7 over a unit Reynolds number range of 1.5 to 2.0 million/ft. The maximum size of the gap-and-step configuration over which laminar flow was maintained consisted of two 0.06-in. gaps with a 0.02-in. step at a unit Reynolds number of 1.5 million/ft.

  13. Test-Retest Repeatability of Myocardial Blood Flow Measurements using Rubidium-82 Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Efseaff, Matthew

    Rubidium-82 positron emission tomography (PET) imaging has been proposed for routine myocardial blood flow (MBF) quantification. Few studies have investigated the test-retest repeatability of this method. Same-day repeatability of rest MBF imaging was optimized with a highly automated analysis program using image-derived input functions and a dual spillover correction (SOC). The effects of heterogeneous tracer infusion profiles and subject hemodynamics on test-retest repeatability were investigated at rest and during hyperemic stress. Factors affecting rest MBF repeatability included gender, suspected coronary artery disease, and dual SOC (p < 0.001). The best repeatability coefficient for same-day rest MBF was 0.20 mL/min/g using a six-minute scan-time, iterative reconstruction, dual SOC, resting rate-pressure-product (RPP) adjustment, and a left atrium image-derived input function. The serial study repeatabilities of the optimized protocol in subjects with homogeneous RPPs and tracer infusion profiles was 0.19 and 0.53 mL/min/g at rest and stress, and 0.95 for stress / rest myocardial flow reserve (MFR). Subjects with heterogeneous tracer infusion profiles and hemodynamic conditions had significantly less repeatable MBF measurements at rest, stress, and stress/rest flow reserve (p < 0.05).

  14. DEMONSTRATION OF SPLIT-FLOW VENTILATION AND RECIR CULATION AS FLOW-REDUCTION METHODS IN AN AIR FORCE PAINT SPRAY BOOTH - VOLUME I. MAIN REPORT, APPENDICES A-C

    EPA Science Inventory

    During a series of painting operations in a horizontal-flow paint spray booth at Travis AFB, CA, baseline concentrations of four classes of toxic airborne pollutants were measured at 24 locations across a plane immediately forward of the exhaust filters, in the exhaust duct, and ...

  15. Status of Proof-Of-Concept testing at the Coal-Fired-Flow Facility, 1993

    SciTech Connect

    Attig, R.C.; Chapman, J.N.; Johanson, N.R.

    1993-06-01

    Proof-of-concept (POC) testing, and collection and evaluation of data continued at the Coal-Fired-Flow Facility during the past year. Following four preliminary tests firing Rosebud coal in 1991 to establish base conditions for the Rosebud coal POC tests, three POC tests were run in 1992, and a fourth test early in 1993. Major equipment additions or modifications included installation of a wet electrostatic precipitator (ESP), which replaced a badly deteriorated venturi. This component also provides improved capability to meet Tennessee pollution regulations while operating the dry ESP and/or baghouse off design, or if one of these two control devices does not function properly. Improvements were also made to the dry ESP prior to the 1993 test, which appear to have improved the performance of this equipment. This paper will present an overview of the major results obtained during the Rosebud coal POC tests, including the performance of the dry and wet electrostatic precipitators. Differences between the Rosebud and Illinois coals will be described, but it is emphasized that these observations are based on incomplete results for the Rosebud coal.

  16. Shuttle Return-to-Flight IH-108 Aerothermal Test at CUBRC - Flow Field Calibration and CFD

    NASA Technical Reports Server (NTRS)

    Lau, Kei Y.; Holden, M. S.

    2011-01-01

    This paper discusses one specific aspect of the Shuttle Retrun-To-Flight IH-108 Aerothermal Test at Calspan-University of Buffalo Research Center (CUBRC), the test flow field calibration. It showed the versatility of the CUBRC Large Energy National Shock Tunnel (LENS) II wind tunnel for an aerothermal test with unique and demanding requirements. CFD analyses were used effectively to extend the test range at the low end of the Mach range. It demonstrated how ground test facility and CFD synergy can be utilitzed iteratively to enhance the confidence in the fedility of both tools. It addressed the lingering concerns of the aerothermal community on use of inpulse facility and CFD analysis. At the conclusion of the test program, members from the NASA Marshall (MSFC), CUBRC and USA (United Space Alliance) Consultants (The Grey Beards) were asked to independently verify the flight scaling data generated by Boeing for flight certification of the re-designed external tank (ET) components. The blind test comparison showed very good results.

  17. Simulator test to study hot-flow problems related to a gas cooled reactor

    NASA Technical Reports Server (NTRS)

    Poole, J. W.; Freeman, M. P.; Doak, K. W.; Thorpe, M. L.

    1973-01-01

    An advance study of materials, fuel injection, and hot flow problems related to the gas core nuclear rocket is reported. The first task was to test a previously constructed induction heated plasma GCNR simulator above 300 kW. A number of tests are reported operating in the range of 300 kW at 10,000 cps. A second simulator was designed but not constructed for cold-hot visualization studies using louvered walls. A third task was a paper investigation of practical uranium feed systems, including a detailed discussion of related problems. The last assignment resulted in two designs for plasma nozzle test devices that could be operated at 200 atm on hydrogen.

  18. CFD Validation with LDV Test Data for Payload/Fairing Internal Flow

    NASA Technical Reports Server (NTRS)

    Kandula, max; Hammad, Khaled; Schallhorn, Paul

    2005-01-01

    Flowfield testing of a 1/5th scale model of a payload/fairing configuration, typical of an expendable launch vehicle, has been performed. Two-dimensional (planar) velocity measurements were carried out in four planes with the aid of Laser Doppler Velocimetry (LDV). Computational Fluid Dynamics (CFD) analysis results for the scale model flowfleld are compared with the test data. The CFD results are in general agreement with the test data. The ability of the CFD methodology in identifying the global flow features (including critical points such as vortex, saddle point, etc.) has been demonstrated. Practical problems and difficulties associated with the LDV method applied to the complex geometry under consideration have been summarized.

  19. A flow cytometric screening test for detergent-resistant surface antigens in monocytes.

    PubMed

    Wolf, Zsuzsanna; Orsó, Evelyn; Werner, Tobias; Boettcher, Alfred; Schmitz, Gerd

    2006-03-01

    Rafts resemble cholesterol- and glycosphingolipid-enriched, liquid-ordered plasma membrane microdomains, showing resistance to nonionic detergents, and are involved in various cellular processes. In the present study, we have tested surface antigens on resting and lipopolysaccharide (LPS)-stimulated human peripheral blood monocytes for their detergent resistance (i.e. raft-association), by flow cytometry. Constitutive (CD14, CD32, CD55), or LPS-induced (CD81) raft-association, and detergent solubility (i.e. exclusion of rafts) (CD71) of monocyte antigens in the presence of 0.01% Triton X-100 are clearly demonstrated. Flow cytometric detergent insolubility is a powerful tool for rapid screening the raft-association of monocyte antigens in a whole-blood assay.

  20. A glass fiber sheet-based electroosmotic lateral flow immunoassay for point-of-care testing.

    PubMed

    Oyama, Yuriko; Osaki, Toshihisa; Kamiya, Koki; Kawano, Ryuji; Honjoh, Tsutomu; Shibata, Haruki; Ide, Toru; Takeuchi, Shoji

    2012-12-21

    We have developed a quantitative immunoassay chip targeting point-of-care testing. To implement a lateral flow immunoassay, a glass fiber sheet was chosen as the material for the microfluidic channel in which the negative charge on the fiber surfaces efficiently generates the electroosmotic flow (EOF). The EOF, in turn, allows controllable bound/free separation of antigen/antibody interactions on the chip and enables precise determination of the antigen concentration. In addition, the defined size of the porous matrix was suitable for the filtration of undesired large particles. We confirmed the linear relationship between the concentration of analyte and the resulting fluorescence intensity from the immunoassay of two model analytes, C-reactive protein (CRP) and insulin, demonstrating that analyte concentration was quantitatively determined within the developed chip in 20 min. The limits of detection were 8.5 ng mL(-1) and 17 ng mL(-1) for CRP and insulin, respectively. PMID:23114383

  1. Recommendations for the evaluation of specimen stability for flow cytometric testing during drug development.

    PubMed

    Brown, Lynette; Green, Cherie L; Jones, Nicholas; Stewart, Jennifer J; Fraser, Stephanie; Howell, Kathy; Xu, Yuanxin; Hill, Carla G; Wiwi, Christopher A; White, Wendy I; O'Brien, Peter J; Litwin, Virginia

    2015-03-01

    The objective of this manuscript is to present an approach for evaluating specimen stability for flow cytometric methods used during drug development. While this approach specifically addresses stability assessment for assays to be used in clinical trials with centralized testing facilities, the concepts can be applied to any stability assessment for flow cytometric methods. The proposed approach is implemented during assay development and optimization, and includes suggestions for designing a stability assessment plan, data evaluation and acceptance criteria. Given that no single solution will be applicable in all scenarios, this manuscript offers the reader a roadmap for stability assessment and is intended to guide the investigator during both the method development phase and in the experimental design of the validation plan. PMID:25662815

  2. In vitro and in vivo testing of a novel, hyperelastic thin film nitinol flow diversion stent.

    PubMed

    Kealey, C P; Chun, Y J; Viñuela, F E; Mohanchandra, K P; Carman, G P; Viñuela, F; Levi, D S

    2012-04-01

    A flexible, low profile, flow diversion stent could replace endovascular coiling for the treatment of intracranial aneurysms. Micropatterned-thin film nitinol (TFN) is a novel biomaterial with high potential for use in next-generation endovascular devices. Recent advancements in micropatterning have allowed for fabrication of a hyperelastic thin film nitinol (HE-TFN). In this study, the authors describe in vitro and in vivo testing of novel HE-TFN based flow diverting stents. Two types of HE-TFN with expanded pores having long axes of 300 and 500 μm were used to fabricate devices. In vitro examination of the early thrombotic response in whole blood showed a possible mechanism for the device's function, whereby HE-TFN serves as a scaffold for blood product deposition. In vivo testing in swine demonstrated rapid occlusion of model wide-neck aneurysms. Average time to occlusion for the 300-μm device was 10.4 ± 5.5 min. (N = 5) and 68 ± 30 min for the 500-μm device (N = 5). All aneurysms treated with bare metal control stents remained patent after 240 min (N = 3). SEM of acutely harvested devices supported in vitro results, demonstrating that HE-TFN serves as a scaffold for blood product deposition, potentially enhancing its flow-diverting effect. Histopathology of devices after 42 days in vivo demonstrated a healthy neointima and endothelialization of the aneurysm neck region. HE-TFN flow-diverting stents warrant further investigation as a novel treatment for intracranial aneurysms.

  3. A Validation Process for the Groundwater Flow and Transport Model of the Faultless Nuclear Test at Central Nevada Test Area

    SciTech Connect

    Ahmed Hassan

    2003-01-01

    Many sites of groundwater contamination rely heavily on complex numerical models of flow and transport to develop closure plans. This has created a need for tools and approaches that can be used to build confidence in model predictions and make it apparent to regulators, policy makers, and the public that these models are sufficient for decision making. This confidence building is a long-term iterative process and it is this process that should be termed ''model validation.'' Model validation is a process not an end result. That is, the process of model validation cannot always assure acceptable prediction or quality of the model. Rather, it provides safeguard against faulty models or inadequately developed and tested models. Therefore, development of a systematic approach for evaluating and validating subsurface predictive models and guiding field activities for data collection and long-term monitoring is strongly needed. This report presents a review of model validation studies that pertain to groundwater flow and transport modeling. Definitions, literature debates, previously proposed validation strategies, and conferences and symposia that focused on subsurface model validation are reviewed and discussed. The review is general in nature, but the focus of the discussion is on site-specific, predictive groundwater models that are used for making decisions regarding remediation activities and site closure. An attempt is made to compile most of the published studies on groundwater model validation and assemble what has been proposed or used for validating subsurface models. The aim is to provide a reasonable starting point to aid the development of the validation plan for the groundwater flow and transport model of the Faultless nuclear test conducted at the Central Nevada Test Area (CNTA). The review of previous studies on model validation shows that there does not exist a set of specific procedures and tests that can be easily adapted and applied to determine the

  4. Self-healing mortar with pH-sensitive superabsorbent polymers: testing of the sealing efficiency by water flow tests

    NASA Astrophysics Data System (ADS)

    Gruyaert, Elke; Debbaut, Brenda; Snoeck, Didier; Díaz, Pilar; Arizo, Alejandro; Tziviloglou, Eirini; Schlangen, Erik; De Belie, Nele

    2016-08-01

    Superabsorbent polymers (SAPs) have potential to be used as healing agent in self-healing concrete due to their property to attract moisture from the environment and their capacity to promote autogenous healing. A possible drawback, however, is their uptake of mixing water during concrete manufacturing, resulting in an increased volume of macro-pores in the hardened concrete. To limit this drawback, newly developed SAPs with a high swelling and pH-sensitiveness were developed and tested within the FP7 project HEALCON. Evaluation of their self-sealing performance occurred through a water permeability test via water flow, a test method also developed within HEALCON. Three different sizes of the newly developed SAP were compared with a commercial SAP. Swelling tests in cement filtrate solution indicated that the commercial and in-house synthesized SAPs performed quite similar, but the difference between the swelling capacity at pH 9 and pH 13 is more pronounced for the self-synthesized SAPs. Moreover, in comparison to the commercial SAPs, less macro-pores are formed in the cement matrix of mixes with self-synthesized SAPs and the effect on the mechanical properties is lower, but not negligible, when using high amounts of SAPs. Although the immediate sealing effect of cracks in mortar was the highest for the commercial SAPs, the in-house made SAPs with a particle size between 400 and 600 μm performed the best with regard to crack closure (mainly CaCO3 precipitation) and self-sealing efficiency, after exposing the specimens to 28 wet-dry cycles. Some specimens could even withstand a water pressure of 2 bar.

  5. Self-healing mortar with pH-sensitive superabsorbent polymers: testing of the sealing efficiency by water flow tests

    NASA Astrophysics Data System (ADS)

    Gruyaert, Elke; Debbaut, Brenda; Snoeck, Didier; Díaz, Pilar; Arizo, Alejandro; Tziviloglou, Eirini; Schlangen, Erik; De Belie, Nele

    2016-08-01

    Superabsorbent polymers (SAPs) have potential to be used as healing agent in self-healing concrete due to their property to attract moisture from the environment and their capacity to promote autogenous healing. A possible drawback, however, is their uptake of mixing water during concrete manufacturing, resulting in an increased volume of macro-pores in the hardened concrete. To limit this drawback, newly developed SAPs with a high swelling and pH-sensitiveness were developed and tested within the FP7 project HEALCON. Evaluation of their self-sealing performance occurred through a water permeability test via water flow, a test method also developed within HEALCON. Three different sizes of the newly developed SAP were compared with a commercial SAP. Swelling tests in cement filtrate solution indicated that the commercial and in-house synthesized SAPs performed quite similar, but the difference between the swelling capacity at pH 9 and pH 13 is more pronounced for the self-synthesized SAPs. Moreover, in comparison to the commercial SAPs, less macro-pores are formed in the cement matrix of mixes with self-synthesized SAPs and the effect on the mechanical properties is lower, but not negligible, when using high amounts of SAPs. Although the immediate sealing effect of cracks in mortar was the highest for the commercial SAPs, the in-house made SAPs with a particle size between 400 and 600 μm performed the best with regard to crack closure (mainly CaCO3 precipitation) and self-sealing efficiency, after exposing the specimens to 28 wet–dry cycles. Some specimens could even withstand a water pressure of 2 bar.

  6. The lateral flow card test: an alternative method for the detection of Trichinella infection in swine.

    PubMed

    Patrascu, I; Gamble, H R; Sofronic-Milosavljevic, L; Radulescu, R; Andrei, A; Ionescu, V; Timoceanu, V; Boireau, P; Cuperlovic, K; Djordjevic, M; Murrell, K D; Noeckler, K; Pozio, E

    2001-06-01

    A novel lateral flow card (TS-Card pork) test was developed for the serological detection of Trichinella infected pigs. Based on extensive studies performed in Romania during 1999-2000 this test proved to be highly specific sensitive, rapid (3-12 minutes) and easy to use (no need for laboratory facilities). It can be used both for the detection of Trichinella infection in carcasses and for epizooliological studies using a variety of samples including whole or dried blood, serum, or tissue fluids. The TS-Card pork test, used as a screening test, can be the foundation of an on-farm or field based inspection system to significantly improve food safety in countries with a high prevalence of Trichinella in pigs or other food animal species. The results presented are also promising for application of the test in an on-line laboratory based inspection system since the speed of the test allows sufficient time to rail out suspected hog carcasses during the slaughter process. PMID:11484368

  7. Results of Tests Performed on the Acoustic Quiet Flow Facility Three-Dimensional Model Tunnel

    NASA Technical Reports Server (NTRS)

    Barna, P. S.

    1995-01-01

    The test results briefly described in this report were obtained on the three-dimensional 1:48 scale tunnel modeled on the design proposed by Messrs. D.S.M.A. Corporation. More particularly, while the test chamber dimensions were indeed scaled down in the ration of 1:48, including the contraction and the collector as well, the duct system itself leading to and from the chamber was adapted to suit laboratory conditions and space limitations. Earlier tests with the two-dimensional model showed that blowing mode was preferred as against the suction mode, hence all tests were performed with blowing only. At the exit of the contraction the maximum airspeed attained with the 1 HP blower unit was about 200 ft/sec. This airspeed may be increased in future if desired. The test results show that pressure recovery in the diffuser was about 34 percent due to the large blockage at its entrance. Velocity traverses taken across the diffuser entrance explain the reason for this blockage. Recirculation, studied with both, hot-wire anemometry and flow-visualization techniques, was largely affected by the design of the test chamber itself and the amount of vent-air admitted to the chamber. Vent-air helped to decrease the level of turbulence.

  8. ICFT: An initial closed-loop flow test of the Fenton Hill Phase II HDR reservoir

    SciTech Connect

    Dash, Z.V.; Aguilar, R.G.; Dennis, B.R.; Dreesen, D.S.; Fehler, M.C.; Hendron, R.H.; House, L.S.; Ito, H.; Kelkar, S.M.; Malzahn, M.V.

    1989-02-01

    A 30-day closed-loop circulation test of the Phase II Hot Dry Rock reservoir at Fenton Hill, New Mexico, was conducted to determine the thermal, hydraulic, chemical, and seismic characteristics of the reservoir in preparation for a long-term energy-extraction test. The Phase II heat-extraction loop was successfully tested with the injection of 37,000 m/sup 3/ of cold water and production of 23,300 m/sup 3/ of hot water. Up to 10 MW/sub t/ was extracted when the production flow rate reached 0.0139 m/sup 3//s at 192/degree/C. By the end of the test, the water-loss rate had decreased to 26% and a significant portion of the injected water was recovered; 66% during the test and an additional 20% during subsequent venting. Analysis of thermal, hydraulic, geochemical, tracer, and seismic data suggests the fractured volume of the reservoir was growing throughout the test. 19 refs., 64 figs., 19 tabs.

  9. Research on regulating technique of material flow for 2-person and 30-day integrated CELSS test

    NASA Astrophysics Data System (ADS)

    Guo, Shuangsheng; Dong, Wenping; Ai, Weidang; Feng, Hongqi; Tang, Yongkang; Huang, Zhide; Shen, Yunze; Ren, Jin; Qin, Lifeng; Zeng, Gu; Zhang, Lihong; Zhu, Jingtao; Fei, Jinxue; Xu, Guoxin

    2014-07-01

    A man-plant integration test was processed using the CELSS integration experiment platform in which 4 kinds of plants were grown (Lactuca sativa L var. Dasusheng, L. sativa L var. Youmaicai, Gynura bicolor and Cichorium endivia L) to exchange material with 2 persons in order to research the dynamic changing laws and balanced regulation of air and water between man and plant in an inclosed system. In the test the material flow was measured so that the dynamically changing laws and balanced regulation of air and water between man and plant in the closed system were mostly mastered. The material closure degree of air, water and food reached 100%, 90% and 13.9% respectively with the whole system closure degree up to 95.1%. Meanwhile, it was proved that a 13.5 m2 planting area could meet the demand of one person for O2 in the system, and the energy efficiency ratio of which reached 59.56 g/(kW m2 day). The material flow dynamic balance-regulating technology was initially mastered between man and plant through the test. The interaction was realized among man, plant and environment in the closed system, which is of great significance to the advancement of long-term manned environment control and life support technology for China.

  10. Non-Antithrombotic Medical Options in ACS: Old Agents and New Lines on the Horizon

    PubMed Central

    Soukoulis, Victor; Boden, William E.; Smith, Sidney C.; O'Gara, Patrick T.

    2014-01-01

    Acute coronary syndromes (ACS) constitute a spectrum of clinical presentations ranging from unstable angina and non-ST-segment elevation myocardial infarction to ST-segment myocardial infarction. Myocardial ischemia in this context occurs as a result of an abrupt decrease in coronary blood flow and resultant imbalance in the myocardial oxygen supply-demand relationship. Coronary blood flow is further compromised by other mechanisms that increase coronary vascular resistance or reduce coronary driving pressure. The goals of treatment are to decrease myocardial oxygen demand, increase coronary blood flow and oxygen supply, and limit myocardial injury. Treatments are generally divided into “disease-modifying” agents or interventions that improve hard clinical outcomes and other strategies that can reduce ischemia. In addition to traditional drugs such as beta-blockers and inhibitors of the reninangiotensin-aldosterone system, newer agents have expanded the number of molecular pathways targeted for treatment of ACS. Ranolazine, trimetazidine, nicorandil, and ivabradine are medications that have been shown to reduce myocardial ischemia through diverse mechanisms and have been tested in limited fashion in patients with ACS. Attenuating the no-reflow phenomenon and reducing the injury compounded by acute reperfusion after a period of coronary occlusion are active areas of research. Additionally, interventions aimed at ischemic pre- and post-conditioning may be useful means by which to limit myocardial infarct size. Trials are also underway to examine altered metabolic and oxygen-related pathways in ACS. This review will discuss traditional and newer anti-ischemic therapies for patients with ACS, exclusive of revascularization, anti-thrombotic agents, and the use of high-intensity statins. PMID:24902977

  11. AC-3 audio coder

    NASA Astrophysics Data System (ADS)

    Todd, Craig

    1995-12-01

    AC-3 is a system for coding up to 5.1 channels of audio into a low bit-rate data stream. High quality may be obtained with compression ratios approaching 12-1 for multichannel audio programs. The high compression ratio is achieved by methods which do not increase decoder memory, and thus cost. The methods employed include: the transmission of a high frequency resolution spectral envelope; and a novel forward/backward adaptive bit allocation algorithm. In order to satisfy practical requirements of an emissions coder, the AC-3 syntax includes a number of features useful to broadcasters and consumers. These features include: loudness uniformity between programs; dynamic range control; and broadcaster control of downmix coefficients. The AC-3 coder has been formally selected for inclusion of the U.S. HDTV broadcast standard, and has been informally selected for several additional applications.

  12. Simulated-airline-service flight tests of laminar-flow control with perforated-surface suction system

    NASA Technical Reports Server (NTRS)

    Maddalon, Dal V.; Braslow, Albert L.

    1990-01-01

    The effectiveness and practicality of candidate leading edge systems for suction laminar flow control transport airplanes were investigated in a flight test program utilizing a modified JetStar airplane. The leading edge region imposes the most severe conditions on systems required for any type of laminar flow control. Tests of the leading edge systems, therefore, provided definitive results as to the feasibility of active laminar flow control on airplanes. The test airplane was operated under commercial transport operating procedures from various commercial airports and at various seasons of the year.

  13. System and method for determining stator winding resistance in an AC motor using motor drives

    DOEpatents

    Lu, Bin; Habetler, Thomas G; Zhang, Pinjia

    2013-02-26

    A system and method for determining the stator winding resistance of AC motors is provided. The system includes an AC motor drive having an input connectable to an AC source and an output connectable to an input terminal of an AC motor, a pulse width modulation (PWM) converter having switches therein to control current flow and terminal voltages in the AC motor, and a control system connected to the PWM converter. The control system generates a command signal to cause the PWM converter to control an output of the AC motor drive corresponding to an input to the AC motor, selectively generates a modified command signal to cause the PWM converter to inject a DC signal into the output of the AC motor drive, and determines a stator winding resistance of the AC motor based on the DC signal of at least one of the voltage and current.

  14. Test of a new heat-flow equation for dense-fluid shock waves.

    PubMed

    Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon

    2010-09-21

    Using a recently proposed equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, we model shockwave propagation in the dense Lennard-Jones fluid. Disequilibrium among the three components of temperature, namely, the difference between the kinetic temperature in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, gives rise to a new transport (equilibration) mechanism not seen in usual one-dimensional heat-flow situations. The modification of the heat-flow equation was tested earlier for the case of strong shock waves in the ideal gas, which had been studied in the past and compared to Navier-Stokes-Fourier solutions. Now, the Lennard-Jones fluid, whose equation of state and transport properties have been determined from independent calculations, allows us to study the case where potential, as well as kinetic contributions are important. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations under strong shock wave conditions, compared to Navier-Stokes.

  15. Testing of RANS Turbulence Models for Stratified Flows Based on DNS Data

    NASA Technical Reports Server (NTRS)

    Venayagamoorthy, S. K.; Koseff, J. R.; Ferziger, J. H.; Shih, L. H.

    2003-01-01

    In most geophysical flows, turbulence occurs at the smallest scales and one of the two most important additional physical phenomena to account for is strati cation (the other being rotation). In this paper, the main objective is to investigate proposed changes to RANS turbulence models which include the effects of stratifi- cation more explicitly. These proposed changes were developed using a DNS database on strati ed and sheared homogenous turbulence developed by Shih et al. (2000) and are described more fully in Ferziger et al. (2003). The data generated by Shih, et al. (2000) (hereinafter referred to as SKFR) are used to study the parameters in the k- model as a function of the turbulent Froude number, Frk. A modified version of the standard k- model based on the local turbulent Froude number is proposed. The proposed model is applied to a stratified open channel flow, a test case that differs significantly from the flows from which the modified parameters were derived. The turbulence modeling and results are discussed in the next two sections followed by suggestions for future work.

  16. F-111 natural laminar flow glove flight test data analysis and boundary layer stability analysis

    NASA Technical Reports Server (NTRS)

    Runyan, L. J.; Navran, B. H.; Rozendaal, R. A.

    1984-01-01

    An analysis of 34 selected flight test data cases from a NASA flight program incorporating a natural laminar flow airfoil into partial wing gloves on the F-111 TACT airplane is given. This analysis determined the measured location of transition from laminar to turbulent flow. The report also contains the results of a boundary layer stability analysis of 25 of the selected cases in which the crossflow (C-F) and Tollmien-Schlichting (T-S) disturbance amplification factors are correlated with the measured transition location. The chord Reynolds numbers for these cases ranges from about 23 million to 29 million, the Mach numbers ranged from 0.80 to 0.85, and the glove leading-edge sweep angles ranged from 9 deg to 25 deg. Results indicate that the maximum extent of laminar flow varies from 56% chord to 9-deg sweep on the upper surface, and from 51% chord at 16-deg sweep to 6% chord at 25-deg sweep on the lower. The results of the boundary layer stability analysis indicate that when both C-F and T-S disturbances are amplified, an interaction takes place which reduces the maximum amplification factor of either type of disturbance that can be tolerated without causing transition.

  17. Groundwater flow characterization in a fractured bedrock aquifer using active DTS tests in sealed boreholes

    NASA Astrophysics Data System (ADS)

    Coleman, Thomas I.; Parker, Beth L.; Maldaner, Carlos H.; Mondanos, Michael J.

    2015-09-01

    In recent years, wireline temperature profiling methods have evolved to offer new insight into fractured rock hydrogeology. Important advances in wireline temperature logging in boreholes make use of active line source heating alone and then in combination with temporary borehole sealing with flexible impervious fabric liners to eliminate the effects of borehole cross-connection and recreate natural flow conditions. Here, a characterization technique was developed based on combining fiber optic distributed temperature sensing (DTS) with active heating within boreholes sealed with flexible borehole liners. DTS systems provide a temperature profiling method that offers significantly enhanced temporal resolution when compared with conventional wireline trolling-based techniques that obtain a temperature-depth profile every few hours. The ability to rapidly and continuously collect temperature profiles can better our understanding of transient processes, allowing for improved identification of hydraulically active fractures and determination of relative rates of groundwater flow. The advantage of a sealed borehole environment for DTS-based investigations is demonstrated through a comparison of DTS data from open and lined conditions for the same borehole. Evidence for many depth-discrete active groundwater flow features under natural gradient conditions using active DTS heat pulse testing is presented along with high resolution geologic and geophysical logging and hydraulic datasets. Implications for field implementation are discussed.

  18. Test of a new heat-flow equation for dense-fluid shock waves.

    PubMed

    Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon

    2010-09-21

    Using a recently proposed equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, we model shockwave propagation in the dense Lennard-Jones fluid. Disequilibrium among the three components of temperature, namely, the difference between the kinetic temperature in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, gives rise to a new transport (equilibration) mechanism not seen in usual one-dimensional heat-flow situations. The modification of the heat-flow equation was tested earlier for the case of strong shock waves in the ideal gas, which had been studied in the past and compared to Navier-Stokes-Fourier solutions. Now, the Lennard-Jones fluid, whose equation of state and transport properties have been determined from independent calculations, allows us to study the case where potential, as well as kinetic contributions are important. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations under strong shock wave conditions, compared to Navier-Stokes. PMID:20866140

  19. Waterhammer Modeling for the Ares I Upper Stage Reaction Control System Cold Flow Development Test Article

    NASA Technical Reports Server (NTRS)

    Williams, Jonathan H.

    2010-01-01

    The Upper Stage Reaction Control System provides three-axis attitude control for the Ares I launch vehicle during active Upper Stage flight. The system design must accommodate rapid thruster firing to maintain the proper launch trajectory and thus allow for the possibility to pulse multiple thrusters simultaneously. Rapid thruster valve closure creates an increase in static pressure, known as waterhammer, which propagates throughout the propellant system at pressures exceeding nominal design values. A series of development tests conducted in the fall of 2009 at Marshall Space Flight Center were performed using a water-flow test article to better understand fluid performance characteristics of the Upper Stage Reaction Control System. A subset of the tests examined waterhammer along with the subsequent pressure and frequency response in the flight-representative system and provided data to anchor numerical models. This thesis presents a comparison of waterhammer test results with numerical model and analytical results. An overview of the flight system, test article, modeling and analysis are also provided.

  20. Three-Dimensionally Printed Microfluidic Cross-flow System for Ultrafiltration/Nanofiltration Membrane Performance Testing.

    PubMed

    Wardrip, Nathaniel C; Arnusch, Christopher J

    2016-01-01

    Minimization and management of membrane fouling is a formidable challenge in diverse industrial processes and other practices that utilize membrane technology. Understanding the fouling process could lead to optimization and higher efficiency of membrane based filtration. Here we show the design and fabrication of an automated three-dimensionally (3-D) printed microfluidic cross-flow filtration system that can test up to 4 membranes in parallel. The microfluidic cells were printed using multi-material photopolymer 3-D printing technology, which used a transparent hard polymer for the microfluidic cell body and incorporated a thin rubber-like polymer layer, which prevents leakages during operation. The performance of ultrafiltration (UF), and nanofiltration (NF) membranes were tested and membrane fouling could be observed with a model foulant bovine serum albumin (BSA). Feed solutions containing BSA showed flux decline of the membrane. This protocol may be extended to measure fouling or biofouling with many other organic, inorganic or microbial containing solutions. The microfluidic design is especially advantageous for testing materials that are costly or only available in small quantities, for example polysaccharides, proteins, or lipids due to the small surface area of the membrane being tested. This modular system may also be easily expanded for high throughput testing of membranes.

  1. Three-Dimensionally Printed Microfluidic Cross-flow System for Ultrafiltration/Nanofiltration Membrane Performance Testing.

    PubMed

    Wardrip, Nathaniel C; Arnusch, Christopher J

    2016-01-01

    Minimization and management of membrane fouling is a formidable challenge in diverse industrial processes and other practices that utilize membrane technology. Understanding the fouling process could lead to optimization and higher efficiency of membrane based filtration. Here we show the design and fabrication of an automated three-dimensionally (3-D) printed microfluidic cross-flow filtration system that can test up to 4 membranes in parallel. The microfluidic cells were printed using multi-material photopolymer 3-D printing technology, which used a transparent hard polymer for the microfluidic cell body and incorporated a thin rubber-like polymer layer, which prevents leakages during operation. The performance of ultrafiltration (UF), and nanofiltration (NF) membranes were tested and membrane fouling could be observed with a model foulant bovine serum albumin (BSA). Feed solutions containing BSA showed flux decline of the membrane. This protocol may be extended to measure fouling or biofouling with many other organic, inorganic or microbial containing solutions. The microfluidic design is especially advantageous for testing materials that are costly or only available in small quantities, for example polysaccharides, proteins, or lipids due to the small surface area of the membrane being tested. This modular system may also be easily expanded for high throughput testing of membranes. PMID:26968008

  2. Fast response vanes for sensing flow patterns in helicopter rotor environment. [wind tunnel tests of modified helicopter rotary wing

    NASA Technical Reports Server (NTRS)

    Barna, P. S.; Crossman, G. R.

    1974-01-01

    Wind tunnel experiments were conducted on four small-scale flow-direction vanes for the determination of aerodynamic response. The tests were further extended to include a standard sized low-inertia vane currently employed in aircraft flight testing. The four test vanes had different aspect ratios and were about 35 percent of the surface area of the standard vane. The test results indicate satisfactory damping and frequency response for all vanes tested and compare favorably with the standard design.

  3. Non invasive blood flow measurement in cerebellum detects minimal hepatic encephalopathy earlier than psychometric tests

    PubMed Central

    Felipo, Vicente; Urios, Amparo; Giménez-Garzó, Carla; Cauli, Omar; Andrés-Costa, Maria-Jesús; González, Olga; Serra, Miguel A; Sánchez-González, Javier; Aliaga, Roberto; Giner-Durán, Remedios; Belloch, Vicente; Montoliu, Carmina

    2014-01-01

    AIM: To assess whether non invasive blood flow measurement by arterial spin labeling in several brain regions detects minimal hepatic encephalopathy. METHODS: Blood flow (BF) was analyzed by arterial spin labeling (ASL) in different brain areas of 14 controls, 24 cirrhotic patients without and 16 cirrhotic patients with minimal hepatic encephalopathy (MHE). Images were collected using a 3 Tesla MR scanner (Achieva 3T-TX, Philips, Netherlands). Pulsed ASL was performed. Patients showing MHE were detected using the battery Psychometric Hepatic Encephalopathy Score (PHES) consisting of five tests. Different cognitive and motor functions were also assessed: alterations in selective attention were evaluated using the Stroop test. Patients and controls also performed visuo-motor and bimanual coordination tests. Several biochemical parameters were measured: serum pro-inflammatory interleukins (IL-6 and IL-18), 3-nitrotyrosine, cGMP and nitrates+nitrites in plasma, and blood ammonia. Bivariate correlations were evaluated. RESULTS: In patients with MHE, BF was increased in cerebellar hemisphere (P = 0.03) and vermis (P = 0.012) and reduced in occipital lobe (P = 0.017). BF in cerebellar hemisphere was also increased in patients without MHE (P = 0.02). Bimanual coordination was impaired in patients without MHE (P = 0.05) and much more in patients with MHE (P < 0.0001). Visuo-motor coordination was impaired only in patients with MHE (P < 0.0001). Attention was slightly affected in patients without MHE and more strongly in patients with MHE (P < 0.0001). BF in cerebellar hemisphere and vermis correlated with performance in most tests of PHES [(number connection tests A (NCT-A), B (NCT-B)and line tracing test] and in the congruent task of Stroop test. BF in frontal lobe correlated with NCT-A. Performance in bimanual and visuomotor coordination tests correlated only with BF in cerebellar hemisphere. BF in occipital lobe correlates with performance in the PHES battery and with

  4. Manipulating Flames with AC Electric Fields

    NASA Astrophysics Data System (ADS)

    Bishop, Kyle

    2013-11-01

    Time-oscillating electric fields applied to plasmas present in flames create steady flows of gas capable of shaping, directing, enhancing, or even extinguishing flames. Interestingly, electric winds induced by AC electric fields can be stronger that those due to static fields of comparable magnitude. Furthermore, unlike static fields, the electric force due to AC fields is localized near the surface of the flame. Consequently, the AC response depends only on the local field at the surface of the flame - not on the position of the electrodes used to generate the field. These results suggest that oscillating electric fields can be used to manipulate and control combustion processes at a distance. To characterize and explain these effects, we investigate a simple experimental system comprising a laminar methane-air flame positioned between two parallel-plate electrodes. We quantify both the electric and hydrodynamic response of the flame as a function of frequency and magnitude of the applied field. A theoretical model shows how steady gas flows emerge from the time-averaged electrical force due to the field-induced motion of ions generated within the flame and by their disappearance by recombination. These results provide useful insights into the application of AC fields to direct combustion processes.

  5. Use of Melt Flow Rate Test in Reliability Study of Thermoplastic Encapsulation Materials in Photovoltaic Modules

    SciTech Connect

    Moseley, J.; Miller, D.; Shah, Q.-U.-A. S. J.; Sakurai, K.; Kempe, M.; Tamizhmani, G.; Kurtz, S.

    2011-10-01

    Use of thermoplastic materials as encapsulants in photovoltaic (PV) modules presents a potential concern in terms of high temperature creep, which should be evaluated before thermoplastics are qualified for use in the field. Historically, the issue of creep has been avoided by using thermosetting polymers as encapsulants, such as crosslinked ethylene-co-vinyl acetate (EVA). Because they lack crosslinked networks, however, thermoplastics may be subject to phase transitions and visco-elastic flow at the temperatures and mechanical stresses encountered by modules in the field, creating the potential for a number of reliability and safety issues. Thermoplastic materials investigated in this study include PV-grade uncured-EVA (without curing agents and therefore not crosslinked); polyvinyl butyral (PVB); thermoplastic polyurethane (TPU); and three polyolefins (PO), which have been proposed for use as PV encapsulation. Two approaches were used to evaluate the performance of these materials as encapsulants: module-level testing and a material-level testing.

  6. Theoretical Evaluation of the Transient Response of Constant Head and Constant Flow-Rate Permeability Tests

    USGS Publications Warehouse

    Zhang, M.; Takahashi, M.; Morin, R.H.; Esaki, T.

    1998-01-01

    A theoretical analysis is presented that compares the response characteristics of the constant head and the constant flowrate (flow pump) laboratory techniques for quantifying the hydraulic properties of geologic materials having permeabilities less than 10-10 m/s. Rigorous analytical solutions that describe the transient distributions of hydraulic gradient within a specimen are developed, and equations are derived for each method. Expressions simulating the inflow and outflow rates across the specimen boundaries during a constant-head permeability test are also presented. These solutions illustrate the advantages and disadvantages of each method, including insights into measurement accuracy and the validity of using Darcy's law under certain conditions. The resulting observations offer practical considerations in the selection of an appropriate laboratory test method for the reliable measurement of permeability in low-permeability geologic materials.

  7. The Mach number of the cosmic flow - A critical test for current theories

    NASA Technical Reports Server (NTRS)

    Ostriker, Jeremiah P.; Suto, Yusushi

    1990-01-01

    A new cosmological, self-contained test using the ratio of mean velocity and the velocity dispersion in the mean flow frame of a group of test objects is presented. To allow comparison with linear theory, the velocity field must first be smoothed on a suitable scale. In the context of linear perturbation theory, the Mach number M(R) which measures the ratio of power on scales larger than to scales smaller than the patch size R, is independent of the perturbation amplitude and also of bias. An apparent inconsistency is found for standard values of power-law index n = 1 and cosmological density parameter Omega = 1, when comparing values of M(R) predicted by popular models with tentative available observations. Nonstandard models based on adiabatic perturbations with either negative n or small Omega value also fail, due to creation of unacceptably large microwave background fluctuations.

  8. Radiofrequency Ablation (RFA): Development of a Flow Model for Bovine Livers for Extensive Bench Testing

    SciTech Connect

    Lubienski, Andreas Bitsch, Rudi G.; Lubienski, Katrin; Kauffmann, Guenter; Duex, Markus

    2006-12-15

    Purpose. To develop a flow model for bovine livers for extensive bench testing of technical improvements or procedure-related developments of radiofrequency ablation excluding animal experiments. Methods. The perfusion of bovine livers directly from the slaughterhouse was simulated in a liver perfusion tank developed for the experimental work. The liver perfusion medium used was a Tyrode solution prepared in accordance with physiologic criteria (as for liver transplants) which was oxygenated by an oxygenator and heated to 36.5 deg. C. Portal vein circulation was regulated via a flow- and pressure-controlled pump and arterial circulation using a dialysis machine. Flow rate and pressure were adjusted as for the physiology of a human liver converted to bovine liver conditions. The fluid discharged from the liver was returned into the perfusion system through the vena cava. Extendable precision swivel arms with the radiofrequency probe attached were mounted on the liver perfusion tank. RFA was conducted with the RF3000 generator and a 2 cm LeVeen needle (Boston Scientific, Ratingen, Germany) in a three-dimensional grid for precise localization of the generated thermolesions. Results. Four bovine livers weighing 8.4 {+-} 0.4 kg each were prepared, connected to the perfusion system, and consecutively perfused for the experiments. Mean arterial flow was 569 {+-} 43 ml/min, arterial pressure 120 mmHg, portovenous flow 1440 {+-} 305 ml/min, and portal pressure 10 mmHg. Macroscopic evaluation after the experiments revealed no thrombi within the hepatic vessels. A total of 136 RF thermolesions were generated with an average number of 34 per liver. Mean RF duration was 2:59 {+-} 2:01 min:sec with an average baseline impedance of 28.2 {+-} 3.4 ohms. The mean diameter of the thermolesions along the puncture channel was 22.98 {+-} 4.34 mm and perpendicular to the channel was 23.27 {+-} 4.82 mm. Conclusion. Extracorporeal perfusion of bovine livers with consecutive standardized RF

  9. Design, fabrication and testing of an air-breathing micro direct methanol fuel cell with compound anode flow field

    NASA Astrophysics Data System (ADS)

    Wang, Luwen; Zhang, Yufeng; Zhao, Youran; An, Zijiang; Zhou, Zhiping; Liu, Xiaowei

    2011-10-01

    An air-breathing micro direct methanol fuel cell (μDMFC) with a compound anode flow field structure (composed of the parallel flow field and the perforated flow field) is designed, fabricated and tested. To better analyze the effect of the compound anode flow field on the mass transfer of methanol, the compound flow field with different open ratios (ratio of exposure area to total area) and thicknesses of current collectors is modeled and simulated. Micro process technologies are employed to fabricate the end plates and current collectors. The performances of the μDMFC with a compound anode flow field are measured under various operating parameters. Both the modeled and the experimental results show that, comparing the conventional parallel flow field, the compound one can enhance the mass transfer resistance of methanol from the flow field to the anode diffusion layer. The results also indicate that the μDMFC with an anode open ratio of 40% and a thickness of 300 µm has the optimal performance under the 7 M methanol which is three to four times higher than conventional flow fields. Finally, a 2 h stability test of the μDMFC is performed with a methanol concentration of 7 M and a flow velocity of 0.1 ml min-1. The results indicate that the μDMFC can work steadily with high methanol concentration.

  10. POTENTIAL EFFECTS OF FAULTS ON GROUNDWATER FLOW FOR THE YUCCA FLAT BASIN, NEVADA TEST SITE, NEVADA

    NASA Astrophysics Data System (ADS)

    Dickerson, R. P.; Fryer, W.

    2009-12-01

    The permeability changes resulting from finely comminuted material in fault cores and the fractured and brecciated rock in fault damage zones allows faults to channelize groundwater flow along the plane of the fault. The efficiency of faults as permeability structures depends on fault zone width, fault offset, depth at which the fault developed, type of faulted rock, extent of secondary mineralization, and fault orientation within current stress field. Studies of faulted volcanic rocks at Yucca Mountain, Nevada, indicate that fault zone width and brecciation increase with fault offset, that faulted welded tuff is more permeable than nonwelded or bedded tuff, and that non-hydrothermal secondary mineralization commonly diminishes fracture permeability. These results are applied to the groundwater conceptual flow model for Yucca Flat (YF) on the Nevada Test Site (NTS). Yucca Flat contains Tertiary volcanic rocks similar to thoise at Yucca Mountain deposited on Paleozoic carbonate rocks whose thickness is increased by local thrust-faults. The YF basin contains north-striking normal faults and is bordered by southwest-striking strike-slip faults to the south and east. Fault permeability values derived from faulted volcanic rocks at Yucca Mountain suggests that major normal faults in Yucca Flat potentially manifest permeability values along the fault plane equal to the highest values determined for volcanic aquifers. Numerous minor faults not assigned specific permeability values are assumed to imbue the basin with a hydraulic anisotropy favoring fault-parallel flow. In this scenario groundwater flows generally from north to south in the Yucca Flat basin, even as the head gradient is primarily towards the centrally located Yucca Fault, which acts as the main subsurface drainage feature within the basin. Studies show that the regional stress field has rotated clockwise such that southwest-striking strike-slip faults are currently under tension. In this scenario these

  11. Instrument sequentially samples ac signals from several accelerometers

    NASA Technical Reports Server (NTRS)

    Chapman, C. P.

    1967-01-01

    Scanner circuit sequentially samples the ac signals from accelerometers used in conducting noise vibration tests, and provides a time-averaged output signal. The scanner is used in conjunction with other devices for random noise vibration tests.

  12. Nanopeptamers for the Development of Small-Analyte Lateral Flow Tests with a Positive Readout

    PubMed Central

    Vanrell, Lucía; Gonzalez-Techera, Andrés; Hammock, Bruce D; Gonzalez-Sapienza, Gualberto

    2014-01-01

    There is a great demand for rapid tests that can be used on-site for the detection of small analytes, such as pesticides, persistent organic pollutants, explosives, toxins, medicinal and abused drugs, hormones, etc. Dipsticks and lateral flow devices, which are simple and provide a visual readout, may be the answer, but the available technology for these compounds requires a competitive format that loses sensitivity and produces readings inversely proportional to the analyte concentration, which is counterintuitive and may lead to potential misinterpretation of the result. In this work, protein-multipeptide constructs composed of anti-immunocomplex peptides selected from phage libraries and streptavidin/avidin as core protein, were used for direct detection of small compounds in a non-competitive two-site immunoassay format that performs with increased sensitivity and positive readout. These constructs that we termed “Nanopeptamers” allow the development of rapid point-of-use tests with a positive visual endpoint of easy interpretation. As proof of concept, lateral flow assays for the herbicides molinate and clomazone were developed and their performance was characterized with field samples. PMID:23214940

  13. Nanopeptamers for the development of small-analyte lateral flow tests with a positive readout.

    PubMed

    Vanrell, Lucía; Gonzalez-Techera, Andrés; Hammock, Bruce D; Gonzalez-Sapienza, Gualberto

    2013-01-15

    There is a great demand for rapid tests that can be used on-site for the detection of small analytes, such as pesticides, persistent organic pollutants, explosives, toxins, medicinal and abused drugs, hormones, etc. Dipsticks and lateral flow devices, which are simple and provide a visual readout, may be the answer, but the available technology for these compounds requires a competitive format that loses sensitivity and produces readings inversely proportional to the analyte concentration, which is counterintuitive and may lead to potential misinterpretation of the result. In this work, protein-multipeptide constructs composed of anti-immunocomplex peptides selected from phage libraries and streptavidin/avidin as core protein were used for direct detection of small compounds in a noncompetitive two-site immunoassay format that performs with increased sensitivity and positive readout. These constructs that we termed "nanopeptamers" allow the development of rapid point-of-use tests with a positive visual end point of easy interpretation. As proof of concept, lateral flow assays for the herbicides molinate and clomazone were developed and their performance was characterized with field samples.

  14. Chlorine-36 data at Yucca Mountain: Statistical tests of conceptual models for unsaturated-zone flow

    USGS Publications Warehouse

    Campbell, K.; Wolfsberg, A.; Fabryka-Martin, J.; Sweetkind, D.

    2003-01-01

    An extensive set of chlorine-36 (36Cl) data has been collected in the Exploratory Studies Facility (ESF), an 8-km-long tunnel at Yucca Mountain, Nevada, for the purpose of developing and testing conceptual models of flow and transport in the unsaturated zone (UZ) at this site. At several locations, the measured values of 36Cl/Cl ratios for salts leached from rock samples are high enough to provide strong evidence that at least a small component of bomb-pulse 36Cl, fallout from atmospheric testing of nuclear devices in the 1950s and 1960s, was measured, implying that some fraction of the water traveled from the ground surface through 200-300 m of unsaturated rock to the level of the ESF during the last 50 years. These data are analyzed here using a formal statistical approach based on log-linear models to evaluate alternative conceptual models for the distribution of such fast flow paths. The most significant determinant of the presence of bomb-pulse 36Cl in a sample from the welded Topopah Spring unit (TSw) is the structural setting from which the sample was collected. Our analysis generally supports the conceptual model that a fault that cuts through the nonwelded Paintbrush tuff unit (PTn) that overlies the TSw is required in order for bomb-pulse 36Cl to be transmitted to the sample depth in less than 50 years. Away from PTn-cutting faults, the ages of water samples at the ESF appear to be a strong function of the thickness of the nonwelded tuff between the ground surface and the ESF, due to slow matrix flow in that unit. ?? 2002 Elsevier Science B.V. All rights reserved.

  15. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  16. Inlet flow test calibration for a small axial compressor rig. Part 2: CFD compared with experimental results

    NASA Technical Reports Server (NTRS)

    Miller, D. P.; Prahst, P. S.

    1995-01-01

    An axial compressor test rig has been designed for the operation of small turbomachines. A flow test was run to calibrate and determine the source and magnitudes of the loss mechanisms in the compressor inlet for a highly loaded two-stage axial compressor test. Several flow conditions and inlet guide vane (IGV) angle settings were established, for which detailed surveys were completed. Boundary layer bleed was also provided along the casing of the inlet behind the support struts and ahead of the IGV. Several computational fluid dynamics (CFD) calculations were made for selected flow conditions established during the test. Good agreement between the CFD and test data were obtained for these test conditions.

  17. NASA/MSFC's Calculation for Test Case 1a of ATAC-FSDC Workshop on After-body and Nozzle Flows

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.

    2006-01-01

    Mr. Ruf of NASA/MSFC executed the CHEM computational fluid dynamics (CFD) code to provide a prediction of the test case 1 a for the ATAC-FSDC Workshop on After-body and Nozzle Flows. CHEM is used extensively at MSFC for a wide variety of fluid dynamic problems. These problems include; injector element flows, nozzle flows, feed line flows, turbomachinery flows, solid rocket motor internal flows, plume vehicle flow interactions, etc.

  18. Evaluation of GenoFlow DR-MTB Array Test for Detection of Rifampin and Isoniazid Resistance in Mycobacterium tuberculosis

    PubMed Central

    Molina-Moya, B.; Kazdaglis, G.; Lacoma, A.; Prat, C.; Gómez, A.; Villar-Hernández, R.; García-García, E.; Haba, L.; Maldonado, J.; Samper, S.; Ruiz-Manzano, J.; Ausina, V.

    2016-01-01

    The aim of this study was to evaluate the GenoFlow DR-MTB array test (DiagCor Bioscience, Hong Kong) on 70 cultured isolates and 50 sputum specimens. The GenoFlow array test showed good sensitivity and specificity compared to the phenotypic Bactec 460TB. This array accurately detected mutations in rpoB, katG, and inhA associated with resistance to rifampin and isoniazid. PMID:26865688

  19. Evaluation of GenoFlow DR-MTB Array Test for Detection of Rifampin and Isoniazid Resistance in Mycobacterium tuberculosis.

    PubMed

    Molina-Moya, B; Kazdaglis, G; Lacoma, A; Prat, C; Gómez, A; Villar-Hernández, R; García-García, E; Haba, L; Maldonado, J; Samper, S; Ruiz-Manzano, J; Ausina, V; Domínguez, J

    2016-04-01

    The aim of this study was to evaluate the GenoFlow DR-MTB array test (DiagCor Bioscience, Hong Kong) on 70 cultured isolates and 50 sputum specimens. The GenoFlow array test showed good sensitivity and specificity compared to the phenotypic Bactec 460TB. This array accurately detected mutations inrpoB,katG, andinhAassociated with resistance to rifampin and isoniazid. PMID:26865688

  20. Groundwater Flow Systems at the Nevada Test Site, Nevada: A Synthesis of Potentiometric Contours, Hydrostratigraphy, and Geologic Structures

    USGS Publications Warehouse

    Fenelon, Joseph M.; Sweetkind, Donald S.; Laczniak, Randell J.

    2010-01-01

    Contaminants introduced into the subsurface of the Nevada Test Site by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. The potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by groundwater transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the hydraulic-head distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. A map of the hydraulic-head distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped and discussed in general terms as being one of two types: alluvial-volcanic, or carbonate. Both aquifer types are subdivided and mapped as independent regional and local aquifers, based on the continuity of their component rock. Groundwater-flow directions, approximated from potentiometric contours that were developed from the hydraulic-head distribution, are indicated on the maps and discussed for each of the regional aquifers and for selected local aquifers. Hydraulic heads vary across the study area and are interpreted to range in altitude from greater than 5,000 feet in a regional alluvial-volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,300 feet in regional alluvial-volcanic and carbonate aquifers in the southwestern part of the study area. Flow directions throughout the study area are dominantly south-southwest with some local deviations. Vertical hydraulic

  1. Groundwater Flow Systems at the Nevada Test Site, Nevada: A Synthesis of Potentiometric Contours, Hydrostratigraphy, and Geologic Structures

    SciTech Connect

    Fenelon, Joseph M.; Sweetkind, Donald S.; Laczniak, Randell J.

    2010-01-25

    Contaminants introduced into the subsurface of the Nevada Test Site by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. The potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by groundwater transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the hydraulic-head distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. A map of the hydraulic-head distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped and discussed in general terms as being one of two types: alluvial-volcanic, or carbonate. Both aquifer types are subdivided and mapped as independent regional and local aquifers, based on the continuity of their component rock. Groundwater-flow directions, approximated from potentiometric contours that were developed from the hydraulic-head distribution, are indicated on the maps and discussed for each of the regional aquifers and for selected local aquifers. Hydraulic heads vary across the study area and are interpreted to range in altitude from greater than 5,000 feet in a regional alluvial-volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,300 feet in regional alluvial-volcanic and carbonate aquifers in the southwestern part of the study area. Flow directions throughout the study area are dominantly south-southwest with some local deviations. Vertical hydraulic

  2. THREE-DIMENSIONAL IGNITION AND GROWTH REACTIVE FLOW MODELING OF PRISM FAILURE TESTS ON PBX 9502

    SciTech Connect

    Garcia, M L; Tarver, C M

    2006-06-20

    The Ignition and Growth reactive flow model for shock initiation and detonation of solid explosives based on triaminotirnitrobenzene (TATB) is applied to three-dimensional detonation wave propagation. The most comprehensive set of three-dimensional detonation wave propagation data is that measured using the trapezoidal prism test. In this test, a PBX 9501 (95% HMX, 2.5% Estane, and 2.5% BDNPA/F) line detonator initiates a detonation wave along the trapezoidal face of a PBX 9502 (95% TATB and 5% Kel-F binder) prism. The failure thickness, which has been shown experimentally to be roughly half of the failure diameter of a long cylindrical charge, is measured after 50 mm of detonation wave propagation by impact with an aluminum witness plate. The effects of confinement impedance on the PBX 9502 failure thickness have been measured using air (unconfined), water, PMMA, magnesium, aluminum, lead, and copper placed in contact with the rectangular faces of the prism parallel to the direction of detonation propagation. These prism test results are modeled using the two-dimensional PBX 9502 Ignition and Growth model parameters determined by calculating failure diameter and tested on recent corner turning experiments. Good agreement between experimentally measured and calculated prism failure thicknesses for unconfined and confined PBX 9502 is reported.

  3. Study and development of an air conditioning system operating on a magnetic heat pump cycle (design and testing of flow directors)

    NASA Technical Reports Server (NTRS)

    Wang, Pao-Lien

    1992-01-01

    This report describes the fabrication, design of flow director, fluid flow direction analysis and testing of flow director of a magnetic heat pump. The objectives of the project are: (1) to fabricate a demonstration magnetic heat pump prototype with flow directors installed; and (2) analysis and testing of flow director and to make sure working fluid loops flow through correct directions with minor mixing. The prototype was fabricated and tested at the Development Testing Laboratory of Kennedy Space Center. The magnetic heat pump uses rear earth metal plates rotate in and out of a magnetic field in a clear plastic housing with water flowing through the rotor plates to provide temperature lift. Obtaining the proper water flow direction has been a problem. Flow directors were installed as flow barriers between separating point of two parallel loops. Function of flow directors were proven to be excellent both analytically and experimentally.

  4. Performance and test section flow characteristics of the National Full-Scale Aerodynamics Complex 80- by 120-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Zell, Peter T.

    1993-01-01

    Results from the performance and test section flow calibration of the 80- by 120-Foot Wind Tunnel are presented. Measurements indicating the 80- by 120-ft test section flow quality were obtained throughout the tunnel operational envelope and for atmospheric wind speeds up to approximately 20 knots. Tunnel performance characteristics and a dynamic pressure system calibration were also documented during the process of mapping the test section flow field. Experimental results indicate that the test section flow quality is relatively insensitive to dynamic pressure and the level of atmospheric winds experienced during the calibration. The dynamic pressure variation in the test section is within +/-75 percent of the average. The axial turbulence intensity is less than 0.5 percent up to the maximum test section speed of 100 knots, and the vertical and lateral flow angle variations are within +/-5 deg and +/-7 deg, respectively. Atmospheric winds were found to affect the pressure distribution in the test section only at high ratios of wind speed to test section speed.

  5. Analysis and Down Select of Flow Passages for Thermal Hydraulic Testing of a SNAP Derived Reactor

    NASA Technical Reports Server (NTRS)

    Godfroy, T. J.; Sadasivan, P.; Masterson, S.

    2007-01-01

    As past of the Vision for Space Exploration, man will return to the moon. To enable safe and productive time on the lunar surface will require adequate power resources. To provide the needed power and to give mission planners all landing site possibilities, including a permanently dark crater, a nuclear reactor provides the most options. Designed to be l00kWt providing approx. 25kWe this power plants would be very effective in delivering dependable, site non-specific power to crews or robotic missions on the lunar surface. An affordable reference reactor based upon the successful SNAP program of the 1960's and early 1970's has been designed by Los Alamos National Laboratory that will meet such a requirement. Considering current funding, environmental, and schedule limitations this lunar surface power reactor will be tested using non-nuclear simulators to simulate the heat from fission reactions. Currently a 25kWe surface power SNAP derivative reactor is in the early process of design and testing with collaboration between Los Alamos National Laboratory, Idaho National Laboratory, Glenn Research Center, Marshall Space Flight Center, and Sandia National Laboratory to ensure that this new design is affordable and can be tested using non-nuclear methods as have proven so effective in the past. This paper will discuss the study and down selection of a flow passage concept for a approx. 25kWe lunar surface power reactor. Several different flow passages designs were evaluated using computational fluid dynamics to determine pressure drop and a structural assessment to consider thermal and stress of the passage walls. The reactor design basis conditions are discussed followed by passage problem setup and results for each concept. A recommendation for passage design is made with rationale for selection.

  6. An independent test of thermal subsidence and asthenosphere flow beneath the Argentine Basin

    NASA Astrophysics Data System (ADS)

    Hohertz, Warren L.; Carlson, Richard L.

    1998-09-01

    We have used primary precision depth recorder and single channel seismic data from three cruises of the R/V Conrad to test thermal subsidence and asthenosphere flow models for seafloor depth versus age in the Argentine Basin in the western South Atlantic. We found a region in the west central part of the basin where anomalously shallow depths, that can not be explained by any simple thermal or dynamic model, are associated with a local free-air gravity anomaly. Elsewhere, over ages ranging from 1 to 104 Ma, there is no evidence of the "flattening" of the depth/age trend that is characteristic of the plate cooling model for the thermal subsidence of the oceanic lithosphere. The halfspace thermal subsidence model accounts for nearly 98% of the variance of seafloor depth, but the slope, b=425±10 m Ma -1/2, implies improbably high mantle temperatures and/or low mantle densities. Moreover, there is some systematic misfit between the data and the halfspace model. A thermal subsidence model in which initial conditions vary with age accounts for the misfit, but also requires an implausible variation of mantle temperature and/or density. Alternatively, a model that includes the effect of induced flow in the asthenosphere eliminates the misfit and yields a reasonable rate of thermal subsidence b=330±20 m Ma -1/2. That the mantle temperature ( Tm˜1150±70)°C implied by the subsidence rate is slightly lower than normal is consistent with the hypothesis that this region has not been affected by hot spots or mantle plumes. The viscosity of the asthenosphere derived from the model (3-4 × 10 19 Pa s) is high, but consistent with viscosities estimated from plate dynamics models when the low mantle temperature is taken into account. Finally, the PMS flow model is consistent with measured heat flow in the region. These results lend weight to the hypothesis that the bathymetry of the Argentine Basin is influenced by induced flow in the asthenosphere, as well as by halfspace

  7. Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Godfroy, Thomas J.

    2008-01-01

    A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 5 psi, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.5 GPM.

  8. Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor

    SciTech Connect

    Polzin, Kurt A.; Godfroy, Thomas J.

    2008-01-21

    A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 34.5 kPa, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.114 m{sup 3}/hr.

  9. T-tail flutter: Potential-flow modelling, experimental validation and flight tests

    NASA Astrophysics Data System (ADS)

    Murua, Joseba; Martínez, Pablo; Climent, Héctor; van Zyl, Louw; Palacios, Rafael

    2014-11-01

    Flutter of T-tail configurations is caused by the aeroelastic coupling between the vertical fin and the horizontal stabiliser. The latter is mounted on the fin instead of the fuselage, and hence the arrangement presents distinct characteristics compared to other typical empennage setups; specifically, T-tail aeroelasticity is governed by inplane dynamics and steady aerodynamic loading, which are typically not included in flutter clearance methodologies based on the doublet lattice method. As the number of new aircraft featuring this tail configuration increases, there is a need for precise understanding of the phenomenon, appropriate tools for its prediction, and reliable benchmarking data. This paper addresses this triple challenge by providing a detailed explanation of T-tail flutter physics, describing potential-flow modelling alternatives, and presenting detailed numerical and experimental results to compensate for the shortage of reproducible data in the literature. A historical account of the main milestones in T-tail aircraft development is included, followed by a T-tail flutter research review that emphasises the latest contributions from industry as well as academia. The physical problem is dissected next, highlighting the individual and combined effects that drive the phenomenon. Three different methodologies, all based on potential-flow aerodynamics, are considered for T-tail subsonic flutter prediction: (i) direct incorporation of supplementary T-tail effects as additional terms in the flutter equations; (ii) a generalisation of the boundary conditions and air loads calculation on the double lattice; and (iii) a linearisation of the unsteady vortex lattice method with arbitrary kinematics. Comparison with wind-tunnel experimental results evidences that all three approaches are consistent and capture the key characteristics in the T-tail dynamics. The validated numerical models are then exercised in easy-to-duplicate canonical test cases. These

  10. Sensitivity of lateral flow tests to mixtures of saxitoxins and applications to shellfish and phytoplankton monitoring.

    PubMed

    Laycock, Maurice V; Donovan, Mary Anne; Easy, Dorothy J

    2010-01-01

    We have investigated some characteristics of antibodies in the lateral flow format for detecting paralytic shellfish poisoning (PSP) toxins and compared them with the mouse bioassay (MBA). The MBA is still the most reliable test for toxicity in shellfish because it provides an estimate of toxicity directly and can include more than one contaminant. Most other methods, including those involving antibodies, provide estimates of toxin concentration from which toxicity is implied or calculated using conversion factors. Antibody methods suffer from an additional deficiency as sensitivities to the different PSP analogues are unequal. Furthermore, these differences in cross-reactivity are unrelated to differences in specific toxicities. We have addressed the question of what is the toxicity of a sample at the limit of detection (LOD) of the Jellett Rapid Testing Ltd (JRT) lateral flow immunochromatographic (LFI) test. A way to calculate sensitivity to toxicity from toxin profiles is presented and used to examine a variety of PSP toxin mixtures. The calculated values for the sensitivity of the JRT (toxicity at the LOD) for separate PSP toxin analogues may vary over a wide range, but for complex mixtures, typical of natural samples, the range is much narrower. An analysis of PSP toxin profiles of 339 samples from Alaska, Britain, Canada (BC), and USA (Maine) shows the distribution of calculated toxicities at the LOD. The majority (76%) falls within the range 20-50 microg STX eq/100g with a mean at 32 microgSTXeq/100g which is similar to that of the MBA. Observed data from independent parallel studies with the JRT and MBA with a total of 3492 samples from regulatory laboratories in different countries in the period 2003-2007 show close agreement between the two methods. All samples that were found to be positive with the MBA were also positive with the JRT except for one which indicated a false negative rate of less than 0.03% of all samples tested. The JRT for PSP was

  11. Identification of groundwater flow parameters using reciprocal data from hydraulic interference tests

    NASA Astrophysics Data System (ADS)

    Marinoni, Marianna; Delay, Frederick; Ackerer, Philippe; Riva, Monica; Guadagnini, Alberto

    2016-08-01

    We investigate the effect of considering reciprocal drawdown curves for the characterization of hydraulic properties of aquifer systems through inverse modeling based on interference well testing. Reciprocity implies that drawdown observed in a well B when pumping takes place from well A should strictly coincide with the drawdown observed in A when pumping in B with the same flow rate as in A. In this context, a critical point related to applications of hydraulic tomography is the assessment of the number of available independent drawdown data and their impact on the solution of the inverse problem. The issue arises when inverse modeling relies upon mathematical formulations of the classical single-continuum approach to flow in porous media grounded on Darcy's law. In these cases, introducing reciprocal drawdown curves in the database of an inverse problem is equivalent to duplicate some information, to a certain extent. We present a theoretical analysis of the way a Least-Square objective function and a Levenberg-Marquardt minimization algorithm are affected by the introduction of reciprocal information in the inverse problem. We also investigate the way these reciprocal data, eventually corrupted by measurement errors, influence model parameter identification in terms of: (a) the convergence of the inverse model, (b) the optimal values of parameter estimates, and (c) the associated estimation uncertainty. Our theoretical findings are exemplified through a suite of computational examples focused on block-heterogeneous systems with increased complexity level. We find that the introduction of noisy reciprocal information in the objective function of the inverse problem has a very limited influence on the optimal parameter estimates. Convergence of the inverse problem improves when adding diverse (nonreciprocal) drawdown series, but does not improve when reciprocal information is added to condition the flow model. The uncertainty on optimal parameter estimates is

  12. The distributed-order fractional diffusion-wave equation of groundwater flow: Theory and application to pumping and slug tests

    NASA Astrophysics Data System (ADS)

    Su, Ninghu; Nelson, Paul N.; Connor, Sarah

    2015-10-01

    We present a distributed-order fractional diffusion-wave equation (dofDWE) to describe radial groundwater flow to or from a well, and three sets of solutions of the dofDWE for flow from a well for aquifer tests: one for pumping tests, and two for slug tests. The dofDWE is featured by two temporal orders of fractional derivatives, β1 and β2, which characterise small and large pores, respectively. By fitting the approximate solutions of the dofDWE to data from slug tests in the field, we determined the effective saturated hydraulic conductivity, Ke, transmissivity, Tf, and the order of fractional derivatives, β2 in one test and β2 and β1 in the second test. We found that the patterns of groundwater flow from a well during the slug tests at this site belong to the class of sub-diffusion with β2 < 1 and β1 < 1 using both the short-time and large-time solutions. We introduce the concept of the critical time to link Ke as a function of β2 and β1. The importance of the orders of fractional derivatives is obvious in the approximate solutions: for short time slug tests only the parameter β2 for flow in large pores is present while for long time slug tests the parameters β2 and β1 are present indicating both large and small pores are functioning.

  13. Hierarchical Testing with Automated Document Generation for Amanzi, ASCEM's Subsurface Flow and Reactive Transport Simulator

    NASA Astrophysics Data System (ADS)

    Moulton, J. D.; Steefel, C. I.; Yabusaki, S.; Castleton, K.; Scheibe, T. D.; Keating, E. H.; Freedman, V. L.

    2013-12-01

    The Advanced Simulation Capabililty for Environmental Management (ASCEM) program is developing an approach and open-source tool suite for standardized risk and performance assessments at legacy nuclear waste sites. These assessments use a graded and iterative approach, beginning with simplified highly abstracted models, and adding geometric and geologic complexity as understanding is gained. To build confidence in this assessment capability, extensive testing of the underlying tools is needed. Since the tools themselves, such as the subsurface flow and reactive-transport simulator, Amanzi, are under active development, testing must be both hierarchical and highly automated. In this presentation we show how we have met these requirements, by leveraging the python-based open-source documentation system called Sphinx with several other open-source tools. Sphinx builds on the reStructured text tool docutils, with important extensions that include high-quality formatting of equations, and integrated plotting through matplotlib. This allows the documentation, as well as the input files for tests, benchmark and tutorial problems, to be maintained with the source code under a version control system. In addition, it enables developers to build documentation in several different formats (e.g., html and pdf) from a single source. We will highlight these features, and discuss important benefits of this approach for Amanzi. In addition, we'll show that some of ASCEM's other tools, such as the sampling provided by the Uncertainty Quantification toolset, are naturally leveraged to enable more comprehensive testing. Finally, we will highlight the integration of this hiearchical testing and documentation framework with our build system and tools (CMake, CTest, and CDash).

  14. Statistical methods for the assessment of EQAPOL proficiency testing: ELISpot, Luminex, and Flow Cytometry.

    PubMed

    Rountree, Wes; Vandergrift, Nathan; Bainbridge, John; Sanchez, Ana M; Denny, Thomas N

    2014-07-01

    In September 2011 Duke University was awarded a contract to develop the National Institutes of Health/National Institute of Allergy and Infectious Diseases (NIH/NIAID) External Quality Assurance Program Oversight Laboratory (EQAPOL). Through EQAPOL, proficiency testing programs are administered for Interferon-γ (IFN-γ) Enzyme-linked immunosorbent spot (ELISpot), Intracellular Cytokine Staining Flow Cytometry (ICS) and Luminex-based cytokine assays. One of the charges of the EQAPOL program was to apply statistical methods to determine overall site performance. We utilized various statistical methods for each program to find the most appropriate for assessing laboratory performance using the consensus average as the target value. Accuracy ranges were calculated based on Wald-type confidence intervals, exact Poisson confidence intervals, or via simulations. Given the nature of proficiency testing data, which has repeated measures within donor/sample made across several laboratories; the use of mixed effects models with alpha adjustments for multiple comparisons was also explored. Mixed effects models were found to be the most useful method to assess laboratory performance with respect to accuracy to the consensus. Model based approaches to the proficiency testing data in EQAPOL will continue to be utilized. Mixed effects models also provided a means of performing more complex analyses that would address secondary research questions regarding within and between laboratory variability as well as longitudinal analyses. PMID:24456626

  15. Antibiotic Susceptibility Testing of the Gram-Negative Bacteria Based on Flow Cytometry.

    PubMed

    Saint-Ruf, Claude; Crussard, Steve; Franceschi, Christine; Orenga, Sylvain; Ouattara, Jasmine; Ramjeet, Mahendrasingh; Surre, Jérémy; Matic, Ivan

    2016-01-01

    Rapidly treating infections with adequate antibiotics is of major importance. This requires a fast and accurate determination of the antibiotic susceptibility of bacterial pathogens. The most frequently used methods are slow because they are based on the measurement of growth inhibition. Faster methods, such as PCR-based detection of determinants of antibiotic resistance, do not always provide relevant information on susceptibility, particularly that which is not genetically based. Consequently, new methods, such as the detection of changes in bacterial physiology caused by antibiotics using flow cytometry and fluorescent viability markers, are being explored. In this study, we assessed whether Alexa Fluor® 633 Hydrazide (AFH), which targets carbonyl groups, can be used for antibiotic susceptibility testing. Carbonylation of cellular macromolecules, which increases in antibiotic-treated cells, is a particularly appropriate to assess for this purpose because it is irreversible. We tested the susceptibility of clinical isolates of Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, to antibiotics from the three classes: β-lactams, aminoglycosides, and fluoroquinolones. In addition to AFH, we used TO-PRO®-3, which enters cells with damaged membranes and binds to DNA, and DiBAC4 (3), which enters cells with depolarized membranes. We also monitored antibiotic-induced morphological alterations of bacterial cells by analyzing light scattering signals. Although all tested dyes and light scattering signals allowed for the detection of antibiotic-sensitive cells, AFH proved to be the most suitable for the fast and reliable detection of antibiotic susceptibility.

  16. Pilot model expansion tunnel test flow properties obtained from velocity, pressure, and probe measurements

    NASA Technical Reports Server (NTRS)

    Friesen, W. J.; Moore, J. A.

    1973-01-01

    Velocity-profile, pitot-pressure, and supplemental probe measurements were made at the nozzle exist of an expansion tunnel (a modification to the Langley pilot model expansion tube) for a nozzle net condition of a nitrogen test sample with a velocity of 4.5 km/sec and a density 0.005 times the density of nitrogen at standard conditions, both with the nozzle initially immersed in a helium atmosphere and with the nozzle initially evacuated. The purpose of the report is to present the results of these measurements and some of the physical properties of the nitrogen test sample which can be inferred from the measured results. The main conclusions reached are that: the velocity profiles differ for two nozzle conditions; regions of the flow field can be found where the velocity is uniform to within 5 percent and constant for several hundred microseconds; the velocity of the nitrogen test sample is reduced due to passage through the nozzle; and the velocity profiles do not significantly reflect the large variations which occur in the inferred density profiles.

  17. Antibiotic Susceptibility Testing of the Gram-Negative Bacteria Based on Flow Cytometry

    PubMed Central

    Saint-Ruf, Claude; Crussard, Steve; Franceschi, Christine; Orenga, Sylvain; Ouattara, Jasmine; Ramjeet, Mahendrasingh; Surre, Jérémy; Matic, Ivan

    2016-01-01

    Rapidly treating infections with adequate antibiotics is of major importance. This requires a fast and accurate determination of the antibiotic susceptibility of bacterial pathogens. The most frequently used methods are slow because they are based on the measurement of growth inhibition. Faster methods, such as PCR-based detection of determinants of antibiotic resistance, do not always provide relevant information on susceptibility, particularly that which is not genetically based. Consequently, new methods, such as the detection of changes in bacterial physiology caused by antibiotics using flow cytometry and fluorescent viability markers, are being explored. In this study, we assessed whether Alexa Fluor® 633 Hydrazide (AFH), which targets carbonyl groups, can be used for antibiotic susceptibility testing. Carbonylation of cellular macromolecules, which increases in antibiotic-treated cells, is a particularly appropriate to assess for this purpose because it is irreversible. We tested the susceptibility of clinical isolates of Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, to antibiotics from the three classes: β-lactams, aminoglycosides, and fluoroquinolones. In addition to AFH, we used TO-PRO®-3, which enters cells with damaged membranes and binds to DNA, and DiBAC4 (3), which enters cells with depolarized membranes. We also monitored antibiotic-induced morphological alterations of bacterial cells by analyzing light scattering signals. Although all tested dyes and light scattering signals allowed for the detection of antibiotic-sensitive cells, AFH proved to be the most suitable for the fast and reliable detection of antibiotic susceptibility. PMID:27507962

  18. Polymethylmethacrylate (PMMA) Material Test Results for the Capillary Flow Experiments (CFE)

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Thesken, John C.; Bunnell, Charles T.

    2007-01-01

    In support of the Capillary Flow Experiments (CFE) program, several polymethylmethacrylate (PMMA) flight vessels were constructed. Some vessels used a multipiece design, which was chemically welded together. Due to questions regarding the effects of the experiment fluid (silicone oil) on the weld integrity, a series of tests were conducted to provide evidence of the adequacy of the current vessel design. Tensile tests were conducted on PMMA samples that were both in the as-received condition, and also aged in air or oil for up to 8 weeks. Both welded and unwelded samples were examined. Fracture of the joints was studied using notched tensile specimens and Brazilian disk tests. Results showed that aging had no effect on tensile properties. While the welded samples were weaker than the base parent material, the weld strength was found to be further degraded by bubbles in the weld zone. Finally a fracture analysis using the worst-case fracture conditions of the vessel was performed, and the vessel design was found to have a factor of three safety margin.

  19. Computer-assisted recording of tensile tests for the evaluation of serrated flow

    SciTech Connect

    Weinhandl, H.; Mitter, F.; Bernt, W.; Kumar, S.; Pink, E. . Erich-Schmid-Inst. fuer Festkoerperphysik)

    1994-12-01

    In a previous paper the authors pointed out the difficulties which arise in the evaluation of serrated flow curves when the applied tensile strain rates are just above normal''. The recording system of tensile testing machines which were built, say, twenty years ago, are not capable of recording the full size of the load drops due to the inertia of the recording pen. This handicap was then overcome by establishing correction factors which were determined from recording a small number of load drops with an oscilloscope. Modern testing machines are equipped with digital recording. The disadvantage of the common system is, however, their limited capacity, so that not enough space for data points is available. Consequently, the time intervals between data points are of the order of tenths of seconds. It will become obvious from the present results that such a time interval is too large for recording a correct serration size. This report is concerned with the recording of complete load-extension relations during tensile tests using a computer which is capable of storing the data at sufficiently small time intervals.

  20. Antibiotic Susceptibility Testing of the Gram-Negative Bacteria Based on Flow Cytometry.

    PubMed

    Saint-Ruf, Claude; Crussard, Steve; Franceschi, Christine; Orenga, Sylvain; Ouattara, Jasmine; Ramjeet, Mahendrasingh; Surre, Jérémy; Matic, Ivan

    2016-01-01

    Rapidly treating infections with adequate antibiotics is of major importance. This requires a fast and accurate determination of the antibiotic susceptibility of bacterial pathogens. The most frequently used methods are slow because they are based on the measurement of growth inhibition. Faster methods, such as PCR-based detection of determinants of antibiotic resistance, do not always provide relevant information on susceptibility, particularly that which is not genetically based. Consequently, new methods, such as the detection of changes in bacterial physiology caused by antibiotics using flow cytometry and fluorescent viability markers, are being explored. In this study, we assessed whether Alexa Fluor® 633 Hydrazide (AFH), which targets carbonyl groups, can be used for antibiotic susceptibility testing. Carbonylation of cellular macromolecules, which increases in antibiotic-treated cells, is a particularly appropriate to assess for this purpose because it is irreversible. We tested the susceptibility of clinical isolates of Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, to antibiotics from the three classes: β-lactams, aminoglycosides, and fluoroquinolones. In addition to AFH, we used TO-PRO®-3, which enters cells with damaged membranes and binds to DNA, and DiBAC4 (3), which enters cells with depolarized membranes. We also monitored antibiotic-induced morphological alterations of bacterial cells by analyzing light scattering signals. Although all tested dyes and light scattering signals allowed for the detection of antibiotic-sensitive cells, AFH proved to be the most suitable for the fast and reliable detection of antibiotic susceptibility. PMID:27507962

  1. Structural tests and development of a laminar flow control wing surface composite chordwise joint

    NASA Technical Reports Server (NTRS)

    Lineberger, L. B.

    1984-01-01

    The dramatic increases in fuel costs and the potential for periods of limited fuel availability provided the impetus to explore technologies to reduce transport aircraft fuel consumption. NASA sponsored the Aircraft Energy Efficiency (ACEE) program beginning in 1976 to develop technologies to improve fuel efficiency. The Lockheed-Georgia Company accomplished under NAS1-16235 Laminar-Flow-Control (LFC) Wing Panel Structural Design and Development (WSSD); design, manufacturing, and testing activities. An in-depth preliminary design of the baseline 1993 LFC wing was accomplished. A surface panel using the Lockheed graphite/epoxy integrated LFC wing box structural concept was designed. The concept was shown by analysis to be structurally efficient and cost effective. Critical details of the surface and surface joint was demonstrated by fabricating and testing complex, concept selection specimens. The Lockheed-Georgia Company accomplishments, Development of LFC Wind Surface Composite Structures (WSCS), are documented. Tests were conducted on two CV2 panels to verify the static tension and fatigue strength of LFC wing surface chordwise joints.

  2. Field scale test of multi-dimensional flow and morphodynamic simulations used for restoration design analysis

    USGS Publications Warehouse

    McDonald, Richard R.; Nelson, Jonathan M.; Fosness, Ryan L.; Nelson, Peter O.; Constantinescu, George; Garcia, Marcelo H.; Hanes, Dan

    2016-01-01

    Two- and three-dimensional morphodynamic simulations are becoming common in studies of channel form and process. The performance of these simulations are often validated against measurements from laboratory studies. Collecting channel change information in natural settings for model validation is difficult because it can be expensive and under most channel forming flows the resulting channel change is generally small. Several channel restoration projects designed in part to armor large meanders with several large spurs constructed of wooden piles on the Kootenai River, ID, have resulted in rapid bed elevation change following construction. Monitoring of these restoration projects includes post- restoration (as-built) Digital Elevation Models (DEMs) as well as additional channel surveys following high channel forming flows post-construction. The resulting sequence of measured bathymetry provides excellent validation data for morphodynamic simulations at the reach scale of a real river. In this paper we test the performance a quasi-three-dimensional morphodynamic simulation against the measured elevation change. The resulting simulations predict the pattern of channel change reasonably well but many of the details such as the maximum scour are under predicted.

  3. Local Flow Conditions for Propulsion Experiments on the NASA F-15B Propulsion Flight Test Fixture

    NASA Technical Reports Server (NTRS)

    Vachon, Michael J.; Moes, Timothy R.; Corda, Stephen

    2005-01-01

    Local flow conditions were measured underneath the National Aeronautics and Space Administration F-15B airplane to support development of future experiments on the Propulsion Flight Test Fixture (PFTF). The local Mach number and flow angles were measured using a conventional air data boom on a cone-cylinder mounted under the PFTF and compared with the airplane air data nose boom measurements. At subsonic flight speeds, the airplane and PFTF Mach numbers were approximately equal. Transonic Mach number values were up to 0.1 greater at the PFTF than the airplane, which is a counterintuitive result. The PFTF local supersonic Mach numbers were as much as 0.46 less than the airplane values. The maximum local Mach number at the PFTF was approximately 1.6 at an airplane Mach number near 2.0. The PFTF local angle of attack was negative at all Mach numbers, ranging from -3 to -8 degrees. When the airplane angle of sideslip was zero, the PFTF local value was zero between Mach 0.8 and Mach 1.1, -2 degrees between Mach 1.1 and Mach 1.5, and increased from zero to 1 degree from Mach 1.5 to Mach 2.0. Airplane inlet shock waves crossed the aerodynamic interface plane between Mach 1.85 and Mach 1.90.

  4. Microfluidic pumping optimization in microgrooved channels with ac electrothermal actuations

    NASA Astrophysics Data System (ADS)

    Du, E.; Manoochehri, Souran

    2010-01-01

    An optimization methodology is developed and applied to an ac electrothermal pump design with patterned microgrooved features. The microgrooved configuration can overcome the restrictions of the conventional planar configuration on pumping performance by diminishing fast backward flows and suppressing prolonged streamlines. At all frequency excitations (0.2-1000 MHz) and ion concentration conditions (5×10-3-0.1 M), the optimum microgrooved configuration generates much faster flow rate than planar configuration. This happens without additional increases in the maximum temperature values. The effects of elevated temperature on ac ET flow behavior is investigated and analyzed.

  5. AC power systems handbook

    SciTech Connect

    Whitaker, J.

    1991-01-01

    Transient disturbances are what headaches are made of. Whatever you call them-spikes, surges, are power bumps-they can take your equipment down and leave you with a complicated and expensive repair job. Protection against transient disturbances is a science that demands attention to detail. This book explains how the power distribution system works, what can go wrong with it, and how to protect a facility against abnormalities. system grounding and shielding are covered in detail. Each major method of transient protection is analyzed and its relative merits discussed. The book provides a complete look at the critical elements of the ac power system. Provides a complete look at the ac power system from generation to consumption. Discusses the mechanisms that produce transient disturbances and how to protect against them. Presents diagrams to facilitate system design. Covers new areas, such as the extent of the transient disturbance problem, transient protection options, and stand-by power systems.

  6. Linear Aerospike SR-71 Experiment (LASRE) dumps water after first in-flight cold flow test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The NASA SR-71A successfully completed its first cold flow flight as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California on March 4, 1998. During a cold flow flight, gaseous helium and liquid nitrogen are cycled through the linear aerospike engine to check the engine's plumbing system for leaks and to check the engine operating characterisitics. Cold-flow tests must be accomplished successfully before firing the rocket engine experiment in flight. The SR-71 took off at 10:16 a.m. PST. The aircraft flew for one hour and fifty-seven minutes, reaching a maximum speed of Mach 1.58 before landing at Edwards at 12:13 p.m. PST. 'I think all in all we had a good mission today,' Dryden LASRE Project Manager Dave Lux said. Flight crew member Bob Meyer agreed, saying the crew 'thought it was a really good flight.' Dryden Research Pilot Ed Schneider piloted the SR-71 during the mission. Lockheed Martin LASRE Project Manager Carl Meade added, 'We are extremely pleased with today's results. This will help pave the way for the first in-flight engine data-collection flight of the LASRE.' The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous

  7. High resolution gamma ray tomography scanner for flow measurement and non-destructive testing applications

    NASA Astrophysics Data System (ADS)

    Hampel, U.; Bieberle, A.; Hoppe, D.; Kronenberg, J.; Schleicher, E.; Sühnel, T.; Zimmermann, F.; Zippe, C.

    2007-10-01

    We report on the development of a high resolution gamma ray tomography scanner that is operated with a Cs-137 isotopic source at 662keV gamma photon energy and achieves a spatial image resolution of 0.2linepairs/mm at 10% modulation transfer function for noncollimated detectors. It is primarily intended for the scientific study of flow regimes and phase fraction distributions in fuel element assemblies, chemical reactors, pipelines, and hydrodynamic machines. Furthermore, it is applicable to nondestructive testing of larger radiologically dense objects. The radiation detector is based on advanced avalanche photodiode technology in conjunction with lutetium yttrium orthosilicate scintillation crystals. The detector arc comprises 320 single detector elements which are operated in pulse counting mode. For measurements at fixed vessels or plant components, we built a computed tomography scanner gantry that comprises rotational and translational stages, power supply via slip rings, and data communication to the measurement personal computer via wireless local area network.

  8. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests

    PubMed Central

    Wang, Yueke; Xing, Kefei; Deng, Wei; Zhang, Zelong

    2016-01-01

    A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF) for space instruments. A model for the system functional error rate (SFER) is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA) is presented. Based on experimental results of different ions (O, Si, Cl, Ti) under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10−3(error/particle/cm2), while the MTTF is approximately 110.7 h. PMID:27583533

  9. Three-dimensional Fast Flux Test Facility plenum model turbulent flow prediction and data comparison

    SciTech Connect

    Eyler, L.L.; Sawdye, R.W.

    1981-01-01

    Two- and three-dimensional numerical simulations of turbulent flow in a scaled Fast Flux Test Facility (FFTF) upper plenum model were performed using the TEMPEST hydrothermal code. A standard k-element of model was used to describe turbulence through an effective viscosity. Comparisons with previously reported mean velocity and turbulence field data measured in the plenum model and two-dimensional numerical simulations using the TEACH code were made. Predicted horizontal and vertical mean velocities and turbulent kinetic energy are shown to be in good agreement with available experimental data when inlet conditions of the dissipation of turbulent kinetic energy are appropriately prescribed. The three-dimensional quarter-symmetry simulation predicts the turbulent kinetic energy field significantly better than the two-dimensional centerplane simulations. These results lead to conclusions concerning deficiencies in the experimental data and the turbulence model.

  10. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests.

    PubMed

    He, Wei; Wang, Yueke; Xing, Kefei; Deng, Wei; Zhang, Zelong

    2016-01-01

    A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF) for space instruments. A model for the system functional error rate (SFER) is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA) is presented. Based on experimental results of different ions (O, Si, Cl, Ti) under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10-3(error/particle/cm2), while the MTTF is approximately 110.7 h. PMID:27583533

  11. Petrophysical properties, mineralogy, fractures, and flow tests in 25 deep boreholes at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Nelson, Philip H.; Kibler, Joyce E.

    2014-01-01

    As part of a site investigation for the disposal of radioactive waste, numerous boreholes were drilled into a sequence of Miocene pyroclastic flows and related deposits at Yucca Mountain, Nevada. This report contains displays of data from 25 boreholes drilled during 1979–1984, relatively early in the site investigation program. Geophysical logs and hydrological tests were conducted in the boreholes; core and cuttings analyses yielded data on mineralogy, fractures, and physical properties; and geologic descriptions provided lithology boundaries and the degree of welding of the rock units. Porosity and water content were computed from the geophysical logs, and porosity results were combined with mineralogy from x-ray diffraction to provide whole-rock volume fractions. These data were composited on plates and used by project personnel during the 1990s. Improvements in scanning and computer technology now make it possible to publish these displays.

  12. High resolution gamma ray tomography scanner for flow measurement and non-destructive testing applications

    SciTech Connect

    Hampel, U.; Bieberle, A.; Hoppe, D.; Kronenberg, J.; Schleicher, E.; Suehnel, T.; Zimmermann, F.; Zippe, C.

    2007-10-15

    We report on the development of a high resolution gamma ray tomography scanner that is operated with a Cs-137 isotopic source at 662 keV gamma photon energy and achieves a spatial image resolution of 0.2 line pairs/mm at 10% modulation transfer function for noncollimated detectors. It is primarily intended for the scientific study of flow regimes and phase fraction distributions in fuel element assemblies, chemical reactors, pipelines, and hydrodynamic machines. Furthermore, it is applicable to nondestructive testing of larger radiologically dense objects. The radiation detector is based on advanced avalanche photodiode technology in conjunction with lutetium yttrium orthosilicate scintillation crystals. The detector arc comprises 320 single detector elements which are operated in pulse counting mode. For measurements at fixed vessels or plant components, we built a computed tomography scanner gantry that comprises rotational and translational stages, power supply via slip rings, and data communication to the measurement personal computer via wireless local area network.

  13. Increased Ac excision (iae): Arabidopsis thaliana mutations affecting Ac transposition.

    PubMed

    Jarvis, P; Belzile, F; Page, T; Dean, C

    1997-05-01

    The maize transposable element Ac is highly active in the heterologous hosts tobacco and tomato, but shows very much reduced levels of activity in Arabidopsis. A mutagenesis experiment was undertaken with the aim of identifying Arabidopsis host factors responsible for the observed low levels of Ac activity. Seed from a line carrying a single copy of the Ac element inserted into the streptomycin phosphotransferase (SPT) reporter fusion, and which displayed typically low levels of Ac activity, were mutagenized using gamma rays. Nineteen mutants displaying high levels of somatic Ac activity, as judged by their highly variegated phenotypes, were isolated after screening the M2 generation on streptomycin-containing medium. The mutations fall into two complementation groups, iae1 and iae2, are unlinked to the SPT::Ac locus and segregate in a Mendelian fashion. The iae1 mutation is recessive and the iae2 mutation is semi-dominant. The iae1 and iae2 mutants show 550- and 70-fold increases, respectively, in the average number of Ac excision sectors per cotyledon. The IAE1 locus maps to chromosome 2, whereas the SPT::Ac reporter maps to chromosome 3. A molecular study of Ac activity in the iae1 mutant confirmed the very high levels of Ac excision predicted using the phenotypic assay, but revealed only low levels of Ac re-insertion. Analyses of germinal transposition in the iae1 mutant demonstrated an average germinal excision frequency of 3% and a frequency of independent Ac re-insertions following germinal excision of 22%. The iae mutants represents a possible means of improving the efficiency of Ac/Ds transposon tagging systems in Arabidopsis, and will enable the dissection of host involvement in Ac transposition and the mechanisms employed for controlling transposable element activity.

  14. Design and synthesis of 225Ac radioimmunopharmaceuticals.

    PubMed

    McDevitt, Michael R; Ma, Dangshe; Simon, Jim; Frank, R Keith; Scheinberg, David A

    2002-12-01

    The alpha-particle-emitting radionuclides 213Bi, 211At, 224Ra are under investigation for the treatment of leukemias, gliomas, and ankylosing spondylitis, respectively. 213Bi and 211At were attached to monoclonal antibodies and used as targeted immunotherapeutic agents while unconjugated 224Ra chloride selectively seeks bone. 225Ac possesses favorable physical properties for radioimmunotherapy (10d half-life and 4 net alpha particles), but has a history of unfavorable radiolabeling chemistry and poor metal-chelate stability. We selected functionalized derivatives of DOTA as the most promising to pursue from out of a group of potential 225Ac chelate compounds. A two-step synthetic process employing either MeO-DOTA-NCS or 2B-DOTA-NCS as the chelating moiety was developed to attach 225Ac to monoclonal antibodies. This method was tested using several different IgG systems. The chelation reaction yield in the first step was 93+/-8% radiochemically pure (n=26). The second step yielded 225Ac-DOTA-IgG constructs that were 95+/-5% radiochemically pure (n=27) and the mean percent immunoreactivity ranged from 25% to 81%, depending on the antibody used. This process has yielded several potential novel targeted 225Ac-labeled immunotherapeutic agents that may now be evaluated in appropriate model systems and ultimately in humans.

  15. Investigation of Spiral Bevel Gear Condition Indicator Validation via AC-29-2C Combining Test Rig Damage Progression Data with Fielded Rotorcraft Data

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.

    2015-01-01

    This is the final of three reports published on the results of this project. In the first report, results were presented on nineteen tests performed in the NASA Glenn Spiral Bevel Gear Fatigue Test Rig on spiral bevel gear sets designed to simulate helicopter fielded failures. In the second report, fielded helicopter HUMS data from forty helicopters were processed with the same techniques that were applied to spiral bevel rig test data. Twenty of the forty helicopters experienced damage to the spiral bevel gears, while the other twenty helicopters had no known anomalies within the time frame of the datasets. In this report, results from the rig and helicopter data analysis will be compared for differences and similarities in condition indicator (CI) response. Observations and findings using sub-scale rig failure progression tests to validate helicopter gear condition indicators will be presented. In the helicopter, gear health monitoring data was measured when damage occurred and after the gear sets were replaced at two helicopter regimes. For the helicopters or tails, data was taken in the flat pitch ground 101 rotor speed (FPG101) regime. For nine tails, data was also taken at 120 knots true airspeed (120KTA) regime. In the test rig, gear sets were tested until damage initiated and progressed while gear health monitoring data and operational parameters were measured and tooth damage progression documented. For the rig tests, the gear speed was maintained at 3500RPM, a one hour run-in was performed at 4000 in-lb gear torque, than the torque was increased to 8000 in-lbs. The HUMS gear condition indicator data evaluated included Figure of Merit 4 (FM4), Root Mean Square (RMS) or Diagnostic Algorithm 1(DA1), + 3 Sideband Index (SI3) and + 1 Sideband Index (SI1). These were selected based on their sensitivity in detecting contact fatigue damage modes from analytical, experimental and historical helicopter data. For this report, the helicopter dataset was reduced to

  16. Facility Activation and Characterization for IPD Oxidizer Turbopump Cold-Flow Testing at NASA Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Sass, J. P.; Raines, N. G.; Farner, B. R.; Ryan, H. M.

    2004-01-01

    The Integrated Powerhead Demonstrator (IPD) is a 250K lbf (1.1 MN) thrust cryogenic hydrogen/oxygen engine technology demonstrator that utilizes a full flow staged combustion engine cycle. The Integrated Powerhead Demonstrator (IPD) is part of NASA's Next Generation Launch Technology (NGLT) program, which seeks to provide safe, dependable, cost-cutting technologies for future space launch systems. The project also is part of the Department of Defense's Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program, which seeks to increase the performance and capability of today s state-of-the-art rocket propulsion systems while decreasing costs associated with military and commercial access to space. The primary industry participants include Boeing-Rocketdyne and GenCorp Aerojet. The intended full flow engine cycle is a key component in achieving all of the aforementioned goals. The IPD Program achieved a major milestone with the successful completion of the IPD Oxidizer Turbopump (OTP) cold-flow test project at the NASA John C. Stennis Space Center (SSC) E-1 test facility in November 2001. A total of 11 IPD OTP cold-flow tests were completed. Following an overview of the NASA SSC E-1 test facility, this paper addresses the facility aspects pertaining to the activation and the cold-flow testing of the IPD OTP. In addition, some of the facility challenges encountered during the test project are addressed.

  17. Performance tests for the NASA Ames Research Center 20 cm x 40 cm oscillating flow wind tunnel

    NASA Technical Reports Server (NTRS)

    Cook, W. J.; Giddings, T. A.

    1984-01-01

    An evaluation is presented of initial tests conducted to assess the performance of the NASA Ames 20 cm x 40 cm oscillating flow wind tunnel. The features of the tunnel are described and two aspects of tunnel operation are discussed. The first is an assessment of the steady mainstream and boundary layer flows and the second deals with oscillating mainstream and boundary layer flows. Experimental results indicate that in steady flow the test section mainstream velocity is uniform in the flow direction and in cross section. The freestream turbulence intensity is about 0.2 percent. With minor exceptions the steady turbulent boundary layer generated on the top wall of the test section exhibits the characteristics of a zero pressure gradient turbulent boundary layer generated on a flat plate. The tunnel was designed to generate sinusoidal oscillating mainstream flows. Experiments confirm that the tunnel produces sinusoidal mainstream velocity variations for the range of frequencies (up to 15 Hz). The results of this study demonstrate that the tunnel essentially produces the flows that it was designed to produce.

  18. Evaluation of cloud detection instruments and performance of laminar-flow leading-edge test articles during NASA Leading-Edge Flight-Test Program

    NASA Technical Reports Server (NTRS)

    Davis, Richard E.; Maddalon, Dal V.; Wagner, Richard D.; Fisher, David F.; Young, Ronald

    1989-01-01

    Summary evaluations of the performance of laminar-flow control (LFC) leading edge test articles on a NASA JetStar aircraft are presented. Statistics, presented for the test articles' performance in haze and cloud situations, as well as in clear air, show a significant effect of cloud particle concentrations on the extent of laminar flow. The cloud particle environment was monitored by two instruments, a cloud particle spectrometer (Knollenberg probe) and a charging patch. Both instruments are evaluated as diagnostic aids for avoiding laminar-flow detrimental particle concentrations in future LFC aircraft operations. The data base covers 19 flights in the simulated airline service phase of the NASA Leading-Edge Flight-Test (LEFT) Program.

  19. 40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS Procedures for Testing Physical (Design) and Performance Characteristics of Reference Methods and Class I and Class II Equivalent Methods for PM2.5 or PM10â2.5 § 53.53 Test for flow rate accuracy,...

  20. 40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS Procedures for Testing Physical (Design) and Performance Characteristics of Reference Methods and Class I and Class II Equivalent Methods for PM 2.5 or PM 10-2.5 § 53.53 Test for flow rate accuracy,...

  1. Standardized performance tests of collectors of solar thermal energy: An evacuated flatplate copper collector with a serpentine flow distribution

    NASA Technical Reports Server (NTRS)

    Johnson, S. M.

    1976-01-01

    Basic test results are given for a flat plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  2. Recent applications of AC electrokinetics in biomolecular analysis on microfluidic devices.

    PubMed

    Sasaki, Naoki

    2012-01-01

    AC electrokinetics is a generic term that refers to an induced motion of particles and fluids under nonuniform AC electric fields. The AC electric fields are formed by application of AC voltages to microelectrodes, which can be easily integrated into microfluidic devices by standard microfabrication techniques. Moreover, the magnitude of the motion is large enough to control the mass transfer on the devices. These advantages are attractive for biomolecular analysis on the microfluidic devices, in which the characteristics of small space and microfluidics have been mainly employed. In this review, I describe recent applications of AC electrokinetics in biomolecular analysis on microfluidic devices. The applications include fluid pumping and mixing by AC electrokinetic flow, and manipulation of biomolecules such as DNA and proteins by various AC electrokinetic techniques. Future prospects for highly functional biomolecular analysis on microfluidic devices with the aid of AC electrokinetics are also discussed.

  3. Comparison of wind tunnel test results at free stream Mach 0.7 with results from the Boeing TEA-230 subsonic flow method. [wing flow method tests

    NASA Technical Reports Server (NTRS)

    Mohn, L. W.

    1975-01-01

    The use of the Boeing TEA-230 Subsonic Flow Analysis method as a primary design tool in the development of cruise overwing nacelle configurations is presented. Surface pressure characteristics at 0.7 Mach number were determined by the TEA-230 method for a selected overwing flow-through nacelle configuration. Results of this analysis show excellent overall agreement with corresponding wind tunnel data. Effects of the presence of the nacelle on the wing pressure field were predicted accurately by the theoretical method. Evidence is provided that differences between theoretical and experimental pressure distributions in the present study would not result in significant discrepancies in the nacelle lines or nacelle drag estimates.

  4. A test bed for investigating the flow of outlet glaciers and ice streams embedded in the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Calov, Reinhard; Rückamp, Martin; Schlegel, Rebecca; Ganopolski, Andrey; Humbert, Angelika

    2016-04-01

    Here, we define a test bed for fast flow regions and its vicinity embedded in an ice sheet. This test bed is designed for outlet glaciers and ice streams of the Greenland ice sheet. It consists of a fine resolution part with a manufactured basal trough over which the professional software COMSOL (Multiphysics Modeling Software) operates as a full-Stokes model. Results by COMSOL are compared with coarse resolution simulations with the ice-sheet model SICOPOLIS operating in shallow-ice-approximation mode and using parameterizations of the fast flow effects. For simplification, in this preliminary approach, both models run in isothermal mode. Definition of surface mass balance follows the EISMINT intercomparison project with parameters adapted to the Greenland ice sheet. In particular, we inspect with this test bed upstream and lateral flow effects of ice streams and outlet glaciers. We present first simulations with this approach, although presentation of the test bed itself is the main emphasis of this presentation.

  5. Two phase liquid helium flow testing to simulate the operation of a cryocondensation pump in the D3-D tokamak

    NASA Astrophysics Data System (ADS)

    Laughon, G. J.; Baxi, C. B.; Campbell, G. L.; Mahdavi, M. A.; Makariou, C. C.; Smith, J. P.; Schaffer, M. J.; Schaubel, K. M.; Menon, M. M.

    1994-06-01

    A liquid helium-cooled cryocondensation pump has been installed in the D3-D tokamak fusion energy research experiment at General Atomics. The pump is located within the tokamak vacuum chamber beneath the divertor baffle plates and is utilized for plasma density and contamination control. Two-phase helium flows through the pump at 5 to 10 g/s utilizing the heat transfer and constant temperature characteristics of boiling liquid . helium. The pump is designed for a pumping speed of 32,000 1/s. Extensive testing was performed with a prototypical pump test fixture. Several pump geometries (simple tube, coaxial flow plug, and coaxial slotted insert) were tested, in an iterative process, to determine which was the most satisfactory for stable cryocondensation pumping. Results from the different tests illustrating the temperature distribution and flow characteristics for each configuration are presented.

  6. Two phase liquid helium flow testing to simulate the operation of a cryocondensation pump in the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Laughon, G. J.; Baxi, C. B.; Campbell, G. L.; Mahdavi, M. A.; Makariou, C. C.; Menon, M. M.; Smith, J. P.; Schaffer, M. J.; Schaubel, K. M.

    A liquid helium-cooled cryocondensation pump has been installed in the DIII=D tokamak fusion energy research experiment at General Atomics. The pump is located within the tokamak vacuum chamber beneath the divertor baffle plates and is utilized for plasma density and contamination control. Two-phase helium flows through the pump at 5 to 10 g/s utilizing the beat transfer and constant temperature characteristics of boiling liquid helium. The pump is designed for a pumping speed of 32,0001/s. Extensive testing was performed with a prototypical pump test fixture. Several pump geometries (simple tube, coaxial flow plug, and coaxial slotted insert) were tested, in an iterative process, to determine which was the most satisfactory for stable cryocondensation pumping. Results from the different tests illustrating the temperature distribution and flow characteristics for each configuration are presented.

  7. AC Electroosmotic Pumping in Nanofluidic Funnels.

    PubMed

    Kneller, Andrew R; Haywood, Daniel G; Jacobson, Stephen C

    2016-06-21

    We report efficient pumping of fluids through nanofluidic funnels when a symmetric AC waveform is applied. The asymmetric geometry of the nanofluidic funnel induces not only ion current rectification but also electroosmotic flow rectification. In the base-to-tip direction, the funnel exhibits a lower ion conductance and a higher electroosmotic flow velocity, whereas, in the tip-to-base direction, the funnel has a higher ion conductance and a lower electroosmotic flow velocity. Consequently, symmetric AC waveforms easily pump fluid through the nanofunnels over a range of frequencies, e.g., 5 Hz to 5 kHz. In our experiments, the nanofunnels were milled into glass substrates with a focused ion beam (FIB) instrument, and the funnel design had a constant 5° taper with aspect ratios (funnel tip width to funnel depth) of 0.1 to 1.0. We tracked ion current rectification by current-voltage (I-V) response and electroosmotic flow rectification by transport of a zwitterionic fluorescent probe. Rectification of ion current and electroosmotic flow increased with increasing electric field applied to the nanofunnel. Our results support three-dimensional simulations of ion transport and electroosmotic transport through nanofunnels, which suggest the asymmetric electroosmotic transport stems from an induced pressure at the junction of the nanochannel and nanofunnel tip. PMID:27230495

  8. Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests

    SciTech Connect

    Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

    2010-02-12

    Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative

  9. Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic Conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests

    USGS Publications Warehouse

    Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

    2010-01-01

    Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative

  10. [Preparation of HPLC test solutions for organic impurities in aluminum lakes of food red no. 40 (allura red AC) and food yellow no. 5 (sunset yellow FCF)].

    PubMed

    Tsuji, S; Umino, Y; Amakura, Y; Tonogai, Y

    2001-12-01

    The HPLC determination of organic impurities in Food Red No. 40 aluminum lakes (R-40Als) as directed by Japan's Specifications and Standards for Food Additives, 7th Ed. (JSFA-VII), has problems, such as reproducibility and low recovery. ICP analyses suggested that the problem was caused by the aluminum in the test solution. In the improved method for preparation of the test solution, aluminum was precipitated as a hydroxide gel by boiling with 1% aqueous ammonia. After centrifugation, the supernatant was used for the HPLC analysis of the organic impurities in the lakes. Recoveries of organic impurities were more than 85% from R-40Al spiked at the 0.1 and 1.0% levels of R-40. The proposed method was also adapted for Food Yellow No. 5 aluminum lakes.

  11. Analysing Thermal Response Test Data Affected by Groundwater Flow and Surface Temperature Change

    NASA Astrophysics Data System (ADS)

    Verdoya, Massimo; Imitazione, Gianmario; Chiozzi, Paolo; Orsi, Marco; Armadillo, Egidio

    2014-05-01

    Tests that record the underground temperature variation due to a constant heat injected into a borehole (or extracted from it) by means of a carrier fluid are routinely performed to infer subsurface thermal conductivity and borehole thermal resistance, which are needed to size geothermal heat pump systems. The most popular model to analyse temperature-time curves obtained from these tests is the infinite line source (ILS). This model gives appropriate estimations of thermal parameters only if particular hydro-geological conditions are fulfilled. Several flaws can however affect data interpretation with ILS, which is based on strong assumptions like those of a purely conductive heat transfer regime in a homogeneous medium, no vertical heat flow and infinite length of the borehole. Other drawbacks can arise from the difficulty in the proper thermal insulation of the test equipment, and consequently with oscillations of the carrier fluid temperature due to surface temperature changes. In this paper, we focused on the treatment of thermal response test data when both advection and periodic changes of surface temperature occur. We used a moving line source model to simulate temperature-time signals under different hypothesis of Darcy velocity and thermal properties. A random noise was added to the signal in order to mimic high frequency disturbances, possibly caused by equipment operating conditions and/or geological variability. The subsurface thermal conductivity, the Darcy velocity and the borehole thermal resistance were inferred by minimising the root mean square error between the synthetic dataset and the theoretical model. The optimisation was carried out with the Nelder-Mead algorithm, and thermal and hydraulic properties were determined by iterative reprocessing according to a trial-and-error procedure. The inferred thermal and hydraulic parameters are well consistent with the 'a priory' values, and the presence of noise in the synthetic data does not produce

  12. Sensitive immunochemical approaches for quantitative (FPIA) and qualitative (lateral flow tests) determination of gentamicin in milk.

    PubMed

    Beloglazova, N V; Shmelin, P S; Eremin, S A

    2016-01-01

    Three kinds of immunoassays for the determination of gentamicin in milk samples were developed and validated. First, a fast and easily-performed fluorescence polarization immunoassay was used for characterization of the employed polyclonal antibody. The calculated Kaff were (1.9±0.4)×10(9)М(-1) and (6.0±0.2)×10(6)М(-1) for the high- and low-affinity fractions respectively. The assay was characterized with a good sensitivity, the limit of detection being 5μgkg(-1). Two different kinds of detection labels, i.e. colloidal gold (CG) and quantum dots (QDs), were evaluated for use in lateral-flow format with respect to rapid visual on-site testing. The cut-off levels for both qualitative formats were selected based on the maximum level for gentamicin in milk established by the European Commission, 100μgkg(-1), resulting in a 10μgkg(-1) cut-off considering sample dilution. The intra-laboratory validation was performed with sterilized milk samples artificially spiked with gentamicin at concentrations less than, equal to, and greater than the cut-off level. It was shown that milk products could be analyzed without any sample preparation, except for dilution with the buffer solution. The rates of false-positive and false-negative results were below 5% for both labels. The different developed immunoassays were tested towards gentamicin determination in artificially-spiked and naturally contaminated milk samples.

  13. HDR opportunities and challenges beyond the long-term flow test

    SciTech Connect

    Duchane, D.V.

    1992-01-01

    The long term flow test (LTFT) of the world's largest, deepest, and hottest hot dry rock (HDR) reservoir currently underway at Fenton Hill, NM, is expected to demonstrate that thermal energy can be mined from hot rock within the earth on a sustainable basis with minimal water consumption. This test will simulate the operations of a commercial facility in some ways, but it will not show that energy from HDR can be produced at a variety of locations with different geological settings. Since the Fenton Hill system was designed as a research facility rather than strictly for production purposes, it will also not demonstrate economic viability, although it may well give indications of system modifications needed for economic HDR operations. A second production site must be constructed, ideally under the direction of the private geothermal community, to begin the process of proving that the vast HDR resources can be accessed on a worldwide scale. Finally, research and development work in areas such as reservoir interrogation, and system modeling must be accelerated to increase the competitiveness and geographical applications of HDR and the geothermal industry in general. This paper addresses the above issues in detail and outlines possible paths to future prosperity for the commercial geothermal industry.

  14. Re-evaluation of a subsurface injection experiment for testing flow and transport models

    SciTech Connect

    Fayer, M.J.; Lewis, R.E.; Engelman, R.E.; Pearson, A.L.; Murray, C.J.; Smoot, J.L. Lu, A.H.; Randall, P.R.; Wegener, W.H.

    1995-12-01

    The current preferred method for disposal of low-level radioactive waste (LLW) at the Hanford Site is to vitrify the wastes so they can be stored in a near-surface, shallow-land burial facility (Shord 1995). Pacific Northwest Laboratory (PNL) managed the PNL Vitrification Technology Development (PVTD) Project to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a disposal facility for the vitrified LLW. Vadose zone flow and transport models are recognized as necessary tools for baseline risk assessments of stored waste forms. The objective of the Controlled Field Testing task of the PVTD Project is to perform and analyze field experiments to demonstrate the appropriateness of conceptual models for the performance assessment. The most convincing way to demonstrate appropriateness is to show that the model can reproduce the movement of water and contaminants in the field. Before expensive new experiments are initiated, an injection experiment conducted at the Hanford Site in 1980 (designated the ``Sisson and the Lu experiment``) should be completely analyzed and understood. Briefly, in that test, a solution containing multiple tracers was injected at a single point into the subsurface sediments. The resulting spread of the water and tracers was monitored in wells surrounding the injection point. Given the advances in knowledge, computational capabilities, and models over the last 15 years, it is important to re-analyze the data before proceeding to other experiments and history-matching exercises.

  15. Multidimensional flow modeling of the compression test of a Gaede pump stage in the viscous regime

    NASA Astrophysics Data System (ADS)

    Giors, S.; Subba, F.

    2004-07-01

    Two-dimensional and three-dimensional models for a Gaede pump, based on the Navier-Stokes equations, are developed and a commercial Computational Fluid Dynamics code is used to solve them. We simulate a compression test in an outlet pressure range (30-2500 Pa) corresponding to the viscous laminar regime for an experimental pump. Experimental data are collected in order to validate the developed model. The pump tested is the high pressure stage of a commercial hybrid turbomolecular vacuum pump and can work in both transition and viscous regime, according to the operating pressure. The data show that the standard Couette-Poiseuille one-dimensional analytic model, developed by Helmer and Levi to describe the Gaede pump behavior and operating principle, has a limited accuracy when it is used as a design tool and not just as a physical model. The two-dimensional and the three-dimensional model results are compared with the experimental data showing an increasing level of agreement, with only a 10% maximum difference for the three-dimensional model in terms of compression ratio. The different flow structures shown by the models are critically analyzed to explain the different level of agreement. .

  16. Angiographic circulation time and cerebral blood flow during balloon test occlusion of the internal carotid artery

    PubMed Central

    Sato, Kenichi; Shimizu, Hiroaki; Inoue, Takashi; Fujimura, Miki; Matsumoto, Yasushi; Kondo, Ryushi; Endo, Hidenori; Sonoda, Yukihiko; Tominaga, Teiji

    2014-01-01

    Angiography-based balloon test occlusion (BTO) has been empirically used to predict tolerance to permanent carotid artery occlusion. We tested the hypothesis that the laterality of the hemispheric circulation time (HCT) of the contrast medium at cerebral angiography would reflect bilateral asymmetry of the cerebral blood flow (CBF) during BTO. Thirty-one consecutive patients who underwent BTO of the internal carotid artery were retrospectively analyzed. HCT was defined as the interval between the time-to-peak in the middle cerebral artery and the cortical veins calculated using time-density curve. The difference in HCT between the occluded and nonoccluded side was calculated at the carotid or dominant vertebral angiograms obtained during BTO. We estimated the correlation between the difference in HCT and bilateral asymmetry of the CBF, which was quantitatively determined by single-photon emission computed tomography. The HCT was 5.3±1.5 seconds and regional CBF was 41.3±11.3 mL/100 g per minute in the occluded side, compared with 3.6±0.9 seconds and 48.4±14.9 mL/100 g per minute in the nonoccluded side, respectively. The difference in HCT was strongly correlated with the asymmetry ratio of the CBF (r2=0.89, P<0.0001). Angiographically based measurement of the cerebral circulation time can provide valuable information concerning cerebral hemodynamics. PMID:24103905

  17. Columbia University Flow Instability Experimental Program, Volume 1. Single tube uniformly heated tests: Part 1, Technical discussion

    SciTech Connect

    Dougherty, T.; Maciuca, C.; McAssey, E.V. Jr.; Reddy, D.G.; Yang, B.W.

    1990-01-01

    An experimental program has been conducted to investigate flow instability in circular tubes under vertical down-flow conditions. The test section L/D ratio range was 86 to 270. The maximum test section surface heat flux was one million Btu/hr-ft{sup 2}. Over 1700 data points were obtained. The effect of flowrate, inlet temperature, exit pressure, and heat flux on the initiation of flow instability was determined. In addition, the data was used to evaluate various methods of predicting the onset of flow instability. Using the measured wall temperatures, surface temperatures and heat transfer coefficients have been obtained. Correlations for the heat transfer coefficient along the tube under both single and two phase conditions were developed.

  18. A regional test of global models for flow, rheology, and seismic anisotropy at the base of the mantle

    NASA Astrophysics Data System (ADS)

    Ford, Heather A.; Long, Maureen D.

    2015-08-01

    The study of flow patterns and seismic anisotropy in the lowermost mantle is fraught with uncertainties, given the limitations in our understanding of the physical properties of the lowermost mantle and the relationships between deformation and anisotropy. Here we use a set of SKS, SKKS, and ScS splitting measurements that sample the eastern edge of the African Large Low Shear Velocity Province to test predictions of seismic anisotropy derived from previously published 3D global mantle flow models and anisotropy modeling (Walker et al., 2011). The observations can be fit by a model that invokes flow directed to the southwest with a component of downwelling in our study region, and slip that occurs along the (0 1 0) plane of post-perovskite. Most importantly, we demonstrate the ability of a regional shear wave splitting data set to test the robustness of models for flow and deformation in the lowermost mantle.

  19. Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.

    1996-01-01

    The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the U.S. Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts supported through the U.S. Department of Energy program will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Test-generated contaminants have been introduced over large areas and at variable depths above and below the water table throughout NTS. Evaluating the risks associated with these byproducts of underground testing presupposes a knowledge of the source, transport, and potential receptors of these contaminants. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. Any assessment of the risk must rely in part on the current understanding of ground-water flow, and the assessment will be only as good as the understanding

  20. Design and testing of a unique randomized gravity, continuous flow bioreactor

    NASA Technical Reports Server (NTRS)

    Lassiter, Carroll B.

    1993-01-01

    A rotating, null gravity simulator, or Couette bioreactor was successfully used for the culture of mammalian cells in a simulated microgravity environment. Two limited studies using Lipomyces starkeyi and Streptomyces clavuligerus were also conducted under conditions of simulated weightlessness. Although these studies with microorganisms showed promising preliminary results, oxygen limitations presented significant limitations in studying the biochemical and cultural characteristics of these cell types. Microbial cell systems such as bacteria and yeast promise significant potential as investigative models to study the effects of microgravity on membrane transport, as well as substrate induction of inactive enzyme systems. Additionally, the smaller size of the microorganisms should further reduce the gravity induced oscillatory particle motion and thereby improve the microgravity simulation on earth. Focus is on the unique conceptual design, and subsequent development of a rotating bioreactor that is compatible with the culture and investigation of microgravity effects on microbial systems. The new reactor design will allow testing of highly aerobic cell types under simulated microgravity conditions. The described reactor affords a mechanism for investigating the long term effects of reduced gravity on cellular respiration, membrane transfer, ion exchange, and substrate conversions. It offers the capability of dynamically altering nutrients, oxygenation, pH, carbon dioxide, and substrate concentration without disturbing the microgravity simulation, or Couette flow, of the reactor. All progeny of the original cell inoculum may be acclimated to the simulated microgravity in the absence of a substrate or nutrient. The reactor has the promise of allowing scientists to probe the long term effects of weightlessness on cell interactions in plants, bacteria, yeast, and fungi. The reactor is designed to have a flow field growth chamber with uniform shear stress, yet transfer

  1. Construction, Modeling and Testing of a Low-Flow, Large-Diameter Aerosol Flow System for the Study of the Formation and Reactions of Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Ezell, M. J.; Johnson, S. N.; Yu, Y.; Pokkunuri, P.; Perraud, V.; Bruns, E.; Alexander, M.; Zelenyuk, A.; Dabdub, D.; Finlayson-Pitts, B. J.

    2008-12-01

    A unique, high-volume, low-flow, stainless steel aerosol flow system for the study of the formation and reactions of aerosols relevant to the troposphere has been constructed, modeled and experimentally tested. The total flow tube length is 7.3 m which includes a 1.2 m section used for mixing. The flow tube is equipped with ultraviolet lamps for photolysis. The diameter of 0.45 m results in a smaller surface to volume ratio than is found in many other flow systems and reduces the contribution of wall reactions. The latter is also reduced by frequent cleaning of the flow tube walls which is feasible due to the ease of disassembly of the flow tube. Flow systems present a major advantage over chamber studies in that continuous sampling under stable conditions over long periods of time is possible, increasing the amount of sample available for analysis and permitting a wide variety of analytical techniques to be applied simultaneously. In this system, the large volume (1000 L) and low flow speed (2 cm/minute) result in a residence time of nearly an hour; and equally spaced sampling ports allow for time-resolved measurements of aerosol and gas-phase products. The central features of this system have been modeled using computational fluid dynamics software and experimentally probed using inert gases and aerosols. Instrumentation attached directly to this flow system includes a NOx analyzer, an ozone analyzer, relative humidity and temperature probes, a scanning mobility particle sizer (SMPS) spectrometer, an aerodynamic particle sizer (APS) spectrometer, GC-MS, integrating nephelometer, and FTIR. Particles are collected using impactors and filters, and analyzed by a variety of techniques including FTIR, electrospray ionization mass spectrometry (ESI-MS), atmospheric pressure chemical ionization mass spectrometry (APCI-MS), GC-MS, HPLC-UV and HPLC-MS. In addition, for selected studies, an aerosol mass spectrometer (AMS), a single particle mass spectrometer (SPLAT II) and

  2. Static and Wind Tunnel Aero-Performance Tests of NASA AST Separate Flow Nozzle Noise Reduction Configurations

    NASA Technical Reports Server (NTRS)

    Mikkelsen, Kevin L.; McDonald, Timothy J.; Saiyed, Naseem (Technical Monitor)

    2001-01-01

    This report presents the results of cold flow model tests to determine the static and wind tunnel performance of several NASA AST separate flow nozzle noise reduction configurations. The tests were conducted by Aero Systems Engineering, Inc., for NASA Glenn Research Center. The tests were performed in the Channels 14 and 6 static thrust stands and the Channel 10 transonic wind tunnel at the FluiDyne Aerodynamics Laboratory in Plymouth, Minnesota. Facility checkout tests were made using standard ASME long-radius metering nozzles. These tests demonstrated facility data accuracy at flow conditions similar to the model tests. Channel 14 static tests reported here consisted of 21 ASME nozzle facility checkout tests and 57 static model performance tests (including 22 at no charge). Fan nozzle pressure ratio varied from 1.4 to 2.0, and fan to core total pressure ratio varied from 1.0 to 1.19. Core to fan total temperature ratio was 1.0. Channel 10 wind tunnel tests consisted of 15 tests at Mach number 0.28 and 31 tests at Mach 0.8. The sting was checked out statically in Channel 6 before the wind tunnel tests. In the Channel 6 facility, 12 ASME nozzle data points were taken and 7 model data points were taken. In the wind tunnel, fan nozzle pressure ratio varied from 1.73 to 2.8, and fan to core total pressure ratio varied from 1.0 to 1.19. Core to fan total temperature ratio was 1.0. Test results include thrust coefficients, thrust vector angle, core and fan nozzle discharge coefficients, total pressure and temperature charging station profiles, and boat-tail static pressure distributions in the wind tunnel.

  3. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  4. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  5. [Memory function in patients with Parkinson's disease: in relation to neuropsychological tests and cerebral blood flow].

    PubMed

    Shibuya, N; Tachibana, H; Kawabata, K; Sugita, M

    2001-03-01

    We conducted a neuropsychological comparison between Parkinson's disease (PD; n = 24) and healthy control subjects (n = 12) using Rey's auditory-verbal learning test (RAVLT) and the Rey-Osterrieth complex figure test (RCFT) assessing memory function. In addition, to determine the function of cortical and subcortical areas, we measured the regional cerebral blood flow (rCBF) using N-isopropyl-p[123I]-iodoamhetamine (123I-IMP) and single photon emission computed tomography (SPECT) and analyzed the relationships between brain regions and memory function. On the RAVLT, significant group differences in recall words were found on all learning trials between patients with PD and control subjects, whereas recognition, learning rate and forgetting rate were basically the same. In addition, the primacy/recency effect was statistically equal for both groups. Results suggest faulty retrieval mechanisms in PD, whereas encoding and retention procesess did not prove to be affected. There were significant correlations between perfusion of the prefrontal and parietal cortices and total number of free recall in five trials. On the RCFT, recalls after 30 sec and 30 min were impaired in patients with PD although no significant difference in accuracy scores obtained in copy was noted. A percent recall score calculated using the formula 100 x [1 - (copy-recall)/copy] was also decreased in patients with PD. There were significant correlations between perfusion of the occipital and parietal cortices and percent recall score. Our data suggest that auditory memory deficits based on the RAVLT in PD may be mainly related to frontal and parietal cortical dysfunction, while visual recall deficits based on the RCFT may be related to the parieto-occipital cortical dysfunction.

  6. HDR Opportunities and Challenges Beyond the Long-Term Flow Test

    SciTech Connect

    Duchane, David

    1992-03-24

    The long term flow test (LTFT) of the worlds largest, deepest, and hottest hot dry rock (HDR) reservoir currently underway at Fenton Hill, NM, is expected to demonstrate that thermal energy can be mined from hot rock within the earth on a sustainable basis with minimal water consumption. This test will simulate the operations of a commercial facility in some ways, but it will not show that energy from HDR can be produced at a variety of locations with different geological settings. Since the Fenton Hill system was designed as a research facility rather than strictly for production purposes, it will also not demonstrate economic viability, although it may well give indications of system modifications needed for economic HDR operations. A second production site must be constructed, ideally under the direction of the private geothermal community, to begin the process of proving that the vast HDR resources can be accessed on a worldwide scale. This facility should be designed and engineered to produce and market energy at competitive prices. At the same time, a wide variety of techniques to advance the state-of-the-art of HDR technology must be pursued to develop this infant technology rapidly to its maximum potential. A number of design and operational techniques have been conceived which may lead to improved economics in HDR systems. After careful technical and economic scrutiny, those showing merit should be vigorously pursued. Finally, research and development work in areas such as reservoir interrogation, and system modeling must be accelerated to increase the competitiveness and geographical applications of HDR and the geothermal industry in general. This paper addresses the above issues in detail and outlines possible paths to future prosperity for the commercial geothermal industry.

  7. Performance of a continuous flow ventricular assist device: magnetic bearing design, construction, and testing.

    PubMed

    Allaire, P; Hilton, E; Baloh, M; Maslen, E; Bearnson, G; Noh, D; Khanwilkar, P; Olsen, D

    1998-06-01

    A new centrifugal continuous flow ventricular assist device, the CFVAD III, which is fully magnetic bearing suspended, has been developed. It has only one moving part (the impeller), has no contact (magnetic suspension), is compact, and has minimal heating. A centrifugal impeller of 2 inch outer diameter is driven by a permanent magnet brushless DC motor. This paper discusses the design, construction, testing, and performance of the magnetic bearings in the unit. The magnetic suspension consists of an inlet side magnetic bearing and an outlet side magnetic bearing, each divided into 8 pole segments to control axial and radial displacements as well as angular displacements. The magnetic actuators are composed of several different materials to minimize size and weight while having sufficient load capacity to support the forces on the impeller. Flux levels in the range of 0.1 T are employed in the magnetic bearings. Self sensing electronic circuits (without physical sensors) are employed to determine the impellar position and provide the feedback control signal needed for the magnetic bearing control loops. The sensors provide position sensitivity of approximately 0.025 mm. A decentralized 5 axis controller has been developed using modal control techniques. Proportional integral derivative controls are used for each axis to levitate the magnetically supported impeller. PMID:9650668

  8. Science Operations for the 2008 NASA Lunar Analog Field Test at Black Point Lava Flow, Arizona

    NASA Technical Reports Server (NTRS)

    Garry W. D.; Horz, F.; Lofgren, G. E.; Kring, D. A.; Chapman, M. G.; Eppler, D. B.; Rice, J. W., Jr.; Nelson, J.; Gernhardt, M. L.; Walheim, R. J.

    2009-01-01

    Surface science operations on the Moon will require merging lessons from Apollo with new operation concepts that exploit the Constellation Lunar Architecture. Prototypes of lunar vehicles and robots are already under development and will change the way we conduct science operations compared to Apollo. To prepare for future surface operations on the Moon, NASA, along with several supporting agencies and institutions, conducted a high-fidelity lunar mission simulation with prototypes of the small pressurized rover (SPR) and unpressurized rover (UPR) (Fig. 1) at Black Point lava flow (Fig. 2), 40 km north of Flagstaff, Arizona from Oct. 19-31, 2008. This field test was primarily intended to evaluate and compare the surface mobility afforded by unpressurized and pressurized rovers, the latter critically depending on the innovative suit-port concept for efficient egress and ingress. The UPR vehicle transports two astronauts who remain in their EVA suits at all times, whereas the SPR concept enables astronauts to remain in a pressurized shirt-sleeve environment during long translations and while making contextual observations and enables rapid (less than or equal to 10 minutes) transfer to and from the surface via suit-ports. A team of field geologists provided realistic science scenarios for the simulations and served as crew members, field observers, and operators of a science backroom. Here, we present a description of the science team s operations and lessons learned.

  9. A-priori testing of sub-grid models for chemically reacting nonpremixed turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Jimenez, J.; Linan, A.; Rogers, M. M.; Higuera, F. J.

    1996-01-01

    The beta-assumed-pdf approximation of (Cook & Riley 1994) is tested as a subgrid model for the LES computation of nonpremixed turbulent reacting flows, in the limit of cold infinitely fast chemistry, for two plane turbulent mixing layers with different degrees of intermittency. Excellent results are obtained for the computation of integrals properties such as product mass fraction, and the model is applied to other quantities such as powers of the temperature and the pdf of the scalar itself. Even in these cases the errors are small enough to be useful in practical applications. The analysis is extended to slightly out of equilibrium problems such as the generation of radicals, and formulated in terms of the pdf of the scalar gradients. It is shown that the conditional gradient distribution is universal in a wide range of cases whose limits are established. Within those limits, engineering approximations to the radical concentration are also possible. It is argued that the experiments in this paper are essentially in the limit of infinite Reynolds number.

  10. Analysis of convergent flow tracer tests in a heterogeneous sandy box with connected gravel channels

    NASA Astrophysics Data System (ADS)

    Molinari, Antonio; Pedretti, D.; Fallico, C.

    2015-07-01

    We analyzed the behavior of convergent flow tracer tests performed in a 3-D heterogeneous sandbox in presence of connected gravel channels under laboratory-controlled conditions. We focused on the evaluation of connectivity metrics based on characteristic times calculated from experimental breakthrough curves (BTCs), and the selection of upscaling model parameters related to connectivity. A conservative compound was injected from several piezometers in the box, and depth-integrated BTCs were measured at the central pumping well. Results show that transport was largely affected by the presence of gravel channels, which generate anomalous transport behavior such as BTC tailing and double peaks. Connectivity indicators based on BTC peak times provided better information about the presence of connected gravel channels in the box. One of these indicators, β, was defined as the relative temporal separation of the BTCs peaks from the BTCs centers of mass. The mathematical equivalence between β and the capacity coefficient adopted in mass transfer-based formulations suggests how connectivity metrics could be directly embedded in mass transfer formulations. This finding is in line with previous theoretical studies and was corroborated by reproducing a few representative experimental BTCs using a 1-D semianalytical bimodal solution embedding a mass transfer term. Model results show a good agreement with experimental BTCs when the capacity coefficient was constrained by measured β. Models that do not embed adequate connectivity metrics or do not adequately reproduce connectivity showed poor matching with observed BTCs.

  11. In situ flow testing of a cement borehole seal in welded tuff

    SciTech Connect

    Crouthamel, D.R.; Fuenkajorn, K.; Daemen, J.J.K.

    1993-12-31

    Exploratory boreholes, shafts and tunnels drilled or excavated prior to or during the construction of a subsurface nuclear repository may create direct passages for radionuclide transport to the biosphere. Waste isolation at the Yucca Mountain repository suite will require that penetrations (boreholes, shafts, etc.) of the geological barrier be sealed, primarily to prevent excessive flow of groundwater and/or air into the emplaced wastes and to retard the migration of radionuclides to the accessible environment. Cement is being considered as part of multicomponent seals or plugs for the repository due to its relatively low permeability, high strength, longevity, and swelling capacity. Cement or concrete has long been used as a hydrological barrier in underground mines and in the oil and gas industry. However, insufficient tests data exists about the hydraulic performance of cement plugs under in-situ conditions (i.e. as affected by scale, and field installation and environment), and particularly about their long-term sealing effectiveness. The objectives of the research are to determine the hydraulic conductivities of the cement plug, host stuff, and their interface, and to identify the effects of size and field installation on the borehole plug performance.

  12. Development of Benchmark Experimental Transport and Multiphase Flow Data Sets to Test and Validate Pore-scale Numerical Simulators

    NASA Astrophysics Data System (ADS)

    Oostrom, M.; Wietsma, T. W.; Hess, N. J.

    2014-12-01

    Developing predictive models of multiphase flow and reactive transport and multiphase flow at the pore scale is a challenge common to diverse science areas. Increasingly, it has become more important in subsurface flow and transport research due to its relevance to research areas such as contaminant and colloidal transport and multiphase flow. Goals of pore-scale simulations include identification of key parameters and physicochemical processes controlling macroscopic phenomena, validation of continuum descriptions, and determination of appropriate forms of the continuum formulation for approximation of the pore-scale results. Numerical modeling of pore-scale (multiphase) flow and transport is an active research area. However, with the exception of a few studies, direct comparisons between pore-scale experiments and simulations have been limited. Some of the reasons experimental data have not been used extensively so far to test pore-scale models are related to quality and reproducibility issues with available micromodels. However, rapid advances in microfabrication and imaging have led to the development of experimental procedures ensuring high quality, reproducible results. Several of these advances have been implemented in the new microfluidics laboratory at the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). In this contribution, recently obtained benchmark data sets for nonreactive transport, reactive transport, and multiphase flow are discussed. The data sets are offered to pore-scale numerical modelers for testing and validation purposes.

  13. Identification of /sup 233/Ac

    SciTech Connect

    Chu, Y.Y.; Zhou, M.L.

    1983-09-01

    We report in this paper identification of the new isotope /sup 233/Ac. Uranium targets were irradiated with 28 GeV protons; after rapid retrieval of the target and separation of actinium from thorium, /sup 233/Ac was allowed to decay into the known /sup 233/Th daughter. Exhaustive chemical purification was employed to permit the identification of /sup 233/Th via its characteristic ..gamma.. radiations. The half-life derived for /sup 233/Ac from several experiments is 2.3 +- 0.3 min. The production cross section for /sup 233/Ac is 100 ..mu..b.

  14. SEM-EDS analysis of glass fibers corroded in physiological solutions by dynamic tests with variable flow rates.

    PubMed Central

    Lehuédé, P; de Meringo, A

    1994-01-01

    The dissolution of mineral fibers has been studied in simulated physiological fluids using a dynamic testing procedure. Fibers of different chemical composition and obtained by different processes with a mean diameter of about 1 micron, have been characterized with respect to their solubility under various test conditions of flow-rate. The surfaces were analyzed using scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction techniques. SEM examinations show the formation of various corrosion patterns: porous, gel-like outer layers; precipitation zones and even, in some cases, no modification of the surface aspect. EDS analyses performed on the fibers, on the fiber surface layers, or on the deposits show three types of chemical composition: areas enriched in Al, in Ca and P, or in Al, Ca, and P. These surface compositions can be found for the same type of fiber tested, depending on the flow rate of the solution. Surface changes depend strongly on the initial composition of the glass and on the test conditions, particularly the flow rate. It is of particular interest to characterize the remaining surfaces (if any) obtained at the end of the in vitro test run and to compare them with surface analysis of the recovered fibers from the in vivo tests to assess the validity of the in vitro tests. Images Figure 1. A Figure 1. A Figure 1. B Figure 1. B PMID:7882960

  15. NASA Ares I Launch Vehicle Upper Stage Reaction Control System (ReCS) Cold Flow Development Test Overview

    NASA Technical Reports Server (NTRS)

    Dervan, Melanie; Williams, Hunter; Holt, Kim; Sivak, Amy; Morris, Jon D.

    2010-01-01

    NASA s Ares I launch vehicle, consisting of a five segment solid rocket booster first stage and a liquid bi-propellant J2-X engine Upper Stage, is the vehicle that s been chosen to launch the Orion Crew Module, which will return humans to the Moon, Mars, and beyond. After First Stage booster separation, the Reaction Control System (ReCS), a monopropellant hydrazine system, will provide the Upper Stage element with three degrees of freedom control as needed. This paper provides an overview of the system level development testing that has taken place on the Ares I launch vehicle Upper Stage ReCS. The ReCS System Development Test Article (SDTA) was built as a flight representative water flow test article whose primary test objective was to obtain fluid system performance data to evaluate the integrate system performance characteristics and verify analytical models. Water is the industry standard for cold flow testing of hydrazine systems, because the densities are very close and the speeds of sound are well characterized. The completion of this development level test program was considered necessary to support the ReCS Critical Design Review. This paper will address the design approach taken in building the test article, the objectives of the test program, types of testing completed, general results, the ability of the program to meet the test objectives, and lessons learned

  16. Evaluation of ring shear testing as a characterization method for powder flow in small-scale powder processing equipment.

    PubMed

    Søgaard, Søren Vinter; Pedersen, Troels; Allesø, Morten; Garnaes, Joergen; Rantanen, Jukka

    2014-11-20

    Powder flow in small-scale equipment is challenging to predict. To meet this need, the impact of consolidation during powder flow characterization, the level of consolidation existing during discharge of powders from a tablet press hopper and the uncertainty of shear and wall friction measurements at small consolidation stresses were investigated. For this purpose, three grades of microcrystalline cellulose were used. Results showed that powder flow properties depend strongly on the consolidation during testing. The consolidation during discharge in terms of the major principal stress and wall normal stress were approximately 200 Pa and 114 Pa, respectively, in the critical transition from the converging to the lower vertical section of the hopper. The lower limit of consolidation for the shear and wall friction test was approximately 500 Pa and 200 Pa, respectively. At this consolidation level, the wall and shear stress resolution influences the precision of the measured powder flow properties. This study highlights the need for an improved experimental setup which would be capable of measuring the flow properties of powders under very small consolidation stresses with a high shear stress resolution. This will allow the accuracy, precision and applicability of the shear test to be improved for pharmaceutical applications.

  17. Axisymmetric Granular Collapse: a Transient 3D flow Test of Viscoplasticity

    NASA Astrophysics Data System (ADS)

    Kerswell, Rich; Lacaze, Laurent

    2008-11-01

    The collapse of a stationary cylinder of granular material onto a horizontal plan is a deceptively simple experiment rich in flow behaviour. Using 3-dimensional soft particle simulations, we reproduce the observed scaling laws for the maximum final runout and height of the deposit as a function of the initial aspect ratio. The flow simulations of this unsteady, largely axisymmetric flow are then used to confront a recently-introduced visco-plastic continuum theory (Jop, Forterre & Pouliquen, Nature, 441,727,2006) which has seen some success modelling steady, unidirectional flows.

  18. Flow Quality Surveys in the Settling Chamber of the NASA Glenn Icing Research Tunnel (2011 Tests)

    NASA Technical Reports Server (NTRS)

    Steen, Laura E.; VanZante, Judith Foss; Broeren, Andy P.; Kubiak, Mark J.

    2014-01-01

    In 2011, the heat exchanger and refrigeration plant for NASA Glenn Research Centers Icing Research Tunnel (IRT) were upgraded. Flow quality surveys were performed in the settling chamber of the IRT in order to understand the effect that the new heat exchanger had on the flow quality upstream of the spray bars. Measurements were made of the total pressure, static pressure, total temperature, airspeed, and flow angle (pitch and yaw). These measurements were directly compared to measurements taken in 2000, after the previous heat exchanger was installed. In general, the flow quality appears to have improved with the new heat exchanger.

  19. Flow Quality Surveys in the Settling Chamber of the NASA Glenn Icing Research Tunnel (2011 Tests)

    NASA Technical Reports Server (NTRS)

    Steen, Laura E.; VanZante, Judith Foss; Broeren, Andy P.; Kubiak, Mark J.

    2012-01-01

    In 2011, the heat exchanger and refrigeration plant for NASA Glenn Research Center's Icing Research Tunnel (IRT) were upgraded. Flow quality surveys were performed in the settling chamber of the IRT in order to understand the effect that the new heat exchanger had on the flow quality upstream of the spray bars. Measurements were made of the total pressure, static pressure, total temperature, airspeed, and flow angle (pitch and yaw). These measurements were directly compared to measurements taken in 2000, after the previous heat exchanger was installed. In general, the flow quality appears to have improved with the new heat exchanger.

  20. Report on flow tests Tuscarora, Nevada, 66-5, April 22, 1980, lithologic well and temperature depth data

    SciTech Connect

    1980-07-01

    Enthalpy Inc., of Santa Rose, California, was engaged by Amax Exploration Inc., of Denver, Colorado in April of 1980 to conduct flow tests on a geothermal prospect in Northern Nevada. The well site, Tuscarora 66-5, is located approximately 11 miles northeast of the town of Tuscarora within Independence Valley, Elko County, Nevada. The testing program was set up by Enthalpy Inc. and run by D. Ensrud of Enthalpy Inc. The initial tests included measuring temperature, pressure, total dissolved solids (T.D.S.) and pH of the fluid produced. These parameters were used to examine the well's mass flow and deliverability. The tests were terminated at 7:00 p.m. April 22, 1980 because of low temperatures. Subsurface surveys (pressure temperature) were run on April 21st and again on April 23rd.

  1. Production of AC-225 and application of the BI-213 daughter in cancer therapy

    NASA Astrophysics Data System (ADS)

    Koch, L.; Apostolidis, C.; Janssens, W.; Molinet, R.; van Geel, J.

    1999-01-01

    There are several ongoing medical trials to use Bi-213 conjugated to monoclonal antibodies to kill tumour-cells of various cancer types. The institute is supplying Ac-225 generators for the test and is itself engaged in in-vitro cytotoxicity tests. Nuclear reactions leading to Ac-225 are discussed. The present supply of Ac-225 stems from Th-229 decay obtained from aged U-233. From the possible alternative the reactions Ra-226 (p, 2n) Ac-225 is presently favoured. The fabrication of a Ac-225 for Bi-213 generator will be described.

  2. Test plan for evaluation of primary exhaust ventilation flow meters for double shell hydrogen watch list tanks

    SciTech Connect

    Willingham, W.E.

    1996-05-02

    This document is a plan for testing four different flow meters for use in the primary exhaust ventilation ducts of Double Shell Tanks on the hydrogen watch list that do not already have this capability. This currently includes tanks 241-AW-101, 241-AN-103, 241-AN-104, 241-AN-105, and 241-SY-103. The anticipated airflow velocity in these tanks range from 0.25 m/s(50 ft/min) to 1.78 m/s (350 ft/min). Past experiences at Hanford are forcing the evaluation and selection of instruments to be used at the low flow and relatively high humidity conditions found in these tanks. Based on the results of this test, a flow meter shall be chosen for installation in the primary exhaust ventilation ducts of the above mentioned waste tanks.

  3. Gate assisted Kelvin test structure to measure the electron and hole flows at the same nanowire contacts

    SciTech Connect

    Yuan, Hui E-mail: qli6@gmu.edu; Zhu, Hao; Badwan, Ahmad; Ioannou, Dimitris E.; Li, Qiliang E-mail: qli6@gmu.edu; Richter, Curt A.; Kirillov, Oleg

    2014-09-29

    A gate assisted Kelvin test structure based on Si nanowire field effect transistors has been designed and fabricated for the characterization of the transistor source/drain contacts. Because the Si nanowire field effect transistors exhibit ambipolar characteristics with electron current slightly lower than the hole current, we can select the type of carriers (electrons or holes) flowing through the same contacts and adjust the current by the applied gate voltage. In this way, we are able to measure the characteristics of the same contact with either pure electron or hole flow. In addition, we found that the nanowire contacts behave very differently depending on the current flow directions. This indicates that the source and drain contact resistance can be dramatically different. Such a gate assisted Kelvin Test structure will lead to future metrology and applications in nanoelectronics.

  4. Push-pull tests for the estimation of flow and transport processes in a fractured porous sandstone

    NASA Astrophysics Data System (ADS)

    Howar, J.; Wohnlich, S.

    2012-12-01

    Tracer experiments are a significant tool for the estimation of in situ flow and transport processes. But especially in fractured media it may not be possible to conduct conventional interwell tracer tests, since there is often only a limited amount of observation wells available and there is not always a verified hydraulic connection between the individual boreholes. Push-pull tests, also known as single-well injection-withdrawal (SWIW) tests, require only one borehole and are therefore an advantageous method for the hydraulic characterization of fault and fracture zones. Push-pull tests consist of a controlled injection phase where a tracer solution is being forced out into the rock from a borehole section and a production phase in which the flow field is reversed and the tracer is pumped back into the same borehole. Breakthrough curves (BTCs) obtained by measuring solute concentrations at the well during the extraction phase are used to determine transport relevant as well as intrinsic rock parameters. This is typically done by fitting the BTCs to a numerical model by adjusting the parameters of the model until a best fit is obtained. For the characterization of a fractured carboniferous sandstone, push-pull tests were carried out in shallow observation wells in the vicinity of the city of Bochum (Germany). A double packer system was used in order to isolate and investigate single fractures. Tests were carried out as multi-tracer tests, using tracer-cocktails consisting of fluorescent dyes with different diffusion and sorption properties. The following fluorescent tracers were used: Uranine, Amidorhodamine G and Tinopal CBS-X. By means of numerical simulations the effects of different flow and transport processes on the breakthrough curves were investigated. Furthermore, the calculation of parameter sensitivities shall help to understand to which extend the identification and quantification of flow and transport parameters is possible under different

  5. AC power generation from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Lobo, Fernanda Leite; Wang, Heming; Forrestal, Casey; Ren, Zhiyong Jason

    2015-11-01

    Microbial fuel cells (MFCs) directly convert biodegradable substrates to electricity and carry good potential for energy-positive wastewater treatment. However, the low and direct current (DC) output from MFC is not usable for general electronics except small sensors, yet commercial DC-AC converters or inverters used in solar systems cannot be directly applied to MFCs. This study presents a new DC-AC converter system for MFCs that can generate alternating voltage in any desired frequency. Results show that AC power can be easily achieved in three different frequencies tested (1, 10, 60 Hz), and no energy storage layer such as capacitors was needed. The DC-AC converter efficiency was higher than 95% when powered by either individual MFCs or simple MFC stacks. Total harmonic distortion (THD) was used to investigate the quality of the energy, and it showed that the energy could be directly usable for linear electronic loads. This study shows that through electrical conversion MFCs can be potentially used in household electronics for decentralized off-grid communities.

  6. Force and moment, flow-visualization, and boundary-layer tests on a shuttle orbiter model at Mach 6

    NASA Technical Reports Server (NTRS)

    Calloway, R. L.

    1981-01-01

    Force and moment, flow visualization, and boundary layer state tests were conducted using two 0.004 scale shuttle orbiter models. The force and moment tests were conducted for an angle of attack range from 20 to 40 deg and for Reynolds numbers based on reference length from 0.4 million to 3.6 million. Schlieren photographs were obtained for each angle of attack and Reynolds number. The boundary layer state tests, which were conducted using hot film sensors mounted in a separate model, were conducted over the same range of conditions as the force tests. Test results were combined to show that changes in the boundary layer on a typical hypersonic force test model affect measurement of the axial force coefficient and that the state of the local boundary layer is important for interpreting hypersonic aerodynamic test results.

  7. Test Problems for Reactive Flow HE Model in the ALE3D Code and Limited Sensitivity Study

    SciTech Connect

    Gerassimenko, M.

    2000-03-01

    We document quick running test problems for a reactive flow model of HE initiation incorporated into ALE3D. A quarter percent change in projectile velocity changes the outcome from detonation to HE burn that dies down. We study the sensitivity of calculated HE behavior to several parameters of practical interest where modeling HE initiation with ALE3D.

  8. Studies with the USF/NASA toxicity screening test method - Effect of air flow and effect of fabric dye

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Lopez, M. T.

    1976-01-01

    One sample each of commercial polyurethane and polychloroprene flexible foams were evaluated using the USF/NASA toxicity screening test method. Air flow rates of 0, 0.16, 16, and 48 ml/sec were used to determine the effect of air flow on relative toxicity. Time to first sign of incapacitation and time to death were substantially reduced with both polyurethane and polychloroprene flexible foams by the introduction of 16 to 48 ml/sec air flow. The relative toxicity rankings of these materials were not altered by changes in air flow. Under these test conditions, the polyurethane foam consistently appeared more toxic than the polychloroprene foam. Samples of six different colors from the same fabric were evaluated separately, using the USF/NASA toxicity screening test method, to determine the effect of fabric dye, if any. The material was an upholstery fabric, consisting of 46 percent cotton, 33 percent wool, and 21 percent nylon. There appeared to be no significant effect of fabric dye on relative toxicity, for this material under these test conditions.

  9. TESTING SOLIDS SETTING APPARATUSES FOR DESIGN AND OPERATION OF WET-WEATHER FLOW SOLIDS-LIQUID SEPARATION PROCESSES

    EPA Science Inventory

    This study was a side-by-side comparison of two settling evaluation methods: one traditional and one new. The project investigated whether these column tests were capable of capturing or representing the rapidly settling particles present in wet-weather flows (WWF). The report r...

  10. Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada

    SciTech Connect

    Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.

    1996-07-01

    The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the US Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. This report summarizes what is known and inferred about ground-water flow throughout the NTS region. The report identifies and updates what is known about some of the major controls on ground-water flow, highlights some of the uncertainties in the current understanding, and prioritizes some of the technical needs as related to the Environmental Restoration Program. 113 refs.

  11. Digital ac monitor

    DOEpatents

    Hart, G.W.; Kern, E.C. Jr.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer. 24 figs.

  12. Digital ac monitor

    DOEpatents

    Hart, George W.; Kern, Jr., Edward C.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer.

  13. Cooling Floor AC Systems

    NASA Astrophysics Data System (ADS)

    Jun, Lu; Hao, Ding; Hong, Zhang; Ce, Gao Dian

    The present HVAC equipments for the residential buildings in the Hot-summer-and-Cold-winter climate region are still at a high energy consuming level. So that the high efficiency HVAC system is an urgently need for achieving the preset government energy saving goal. With its advantage of highly sanitary, highly comfortable and uniform of temperature field, the hot-water resource floor radiation heating system has been widely accepted. This paper has put forward a new way in air-conditioning, which combines the fresh-air supply unit and such floor radiation system for the dehumidification and cooling in summer or heating in winter. By analyze its advantages and limitations, we found that this so called Cooling/ Heating Floor AC System can improve the IAQ of residential building while keep high efficiency quality. We also recommend a methodology for the HVAC system designing, which will ensure the reduction of energy cost of users.

  14. Automated Low-Cost Smartphone-Based Lateral Flow Saliva Test Reader for Drugs-of-Abuse Detection.

    PubMed

    Carrio, Adrian; Sampedro, Carlos; Sanchez-Lopez, Jose Luis; Pimienta, Miguel; Campoy, Pascual

    2015-01-01

    Lateral flow assay tests are nowadays becoming powerful, low-cost diagnostic tools. Obtaining a result is usually subject to visual interpretation of colored areas on the test by a human operator, introducing subjectivity and the possibility of errors in the extraction of the results. While automated test readers providing a result-consistent solution are widely available, they usually lack portability. In this paper, we present a smartphone-based automated reader for drug-of-abuse lateral flow assay tests, consisting of an inexpensive light box and a smartphone device. Test images captured with the smartphone camera are processed in the device using computer vision and machine learning techniques to perform automatic extraction of the results. A deep validation of the system has been carried out showing the high accuracy of the system. The proposed approach, applicable to any line-based or color-based lateral flow test in the market, effectively reduces the manufacturing costs of the reader and makes it portable and massively available while providing accurate, reliable results. PMID:26610513

  15. Automated Low-Cost Smartphone-Based Lateral Flow Saliva Test Reader for Drugs-of-Abuse Detection.

    PubMed

    Carrio, Adrian; Sampedro, Carlos; Sanchez-Lopez, Jose Luis; Pimienta, Miguel; Campoy, Pascual

    2015-11-24

    Lateral flow assay tests are nowadays becoming powerful, low-cost diagnostic tools. Obtaining a result is usually subject to visual interpretation of colored areas on the test by a human operator, introducing subjectivity and the possibility of errors in the extraction of the results. While automated test readers providing a result-consistent solution are widely available, they usually lack portability. In this paper, we present a smartphone-based automated reader for drug-of-abuse lateral flow assay tests, consisting of an inexpensive light box and a smartphone device. Test images captured with the smartphone camera are processed in the device using computer vision and machine learning techniques to perform automatic extraction of the results. A deep validation of the system has been carried out showing the high accuracy of the system. The proposed approach, applicable to any line-based or color-based lateral flow test in the market, effectively reduces the manufacturing costs of the reader and makes it portable and massively available while providing accurate, reliable results.

  16. Automated Low-Cost Smartphone-Based Lateral Flow Saliva Test Reader for Drugs-of-Abuse Detection

    PubMed Central

    Carrio, Adrian; Sampedro, Carlos; Sanchez-Lopez, Jose Luis; Pimienta, Miguel; Campoy, Pascual

    2015-01-01

    Lateral flow assay tests are nowadays becoming powerful, low-cost diagnostic tools. Obtaining a result is usually subject to visual interpretation of colored areas on the test by a human operator, introducing subjectivity and the possibility of errors in the extraction of the results. While automated test readers providing a result-consistent solution are widely available, they usually lack portability. In this paper, we present a smartphone-based automated reader for drug-of-abuse lateral flow assay tests, consisting of an inexpensive light box and a smartphone device. Test images captured with the smartphone camera are processed in the device using computer vision and machine learning techniques to perform automatic extraction of the results. A deep validation of the system has been carried out showing the high accuracy of the system. The proposed approach, applicable to any line-based or color-based lateral flow test in the market, effectively reduces the manufacturing costs of the reader and makes it portable and massively available while providing accurate, reliable results. PMID:26610513

  17. Determining Seed Cotton Mass Flow Rate by Pressure Drop Across the Blowbox: Gin Testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate measurement of the mass flow rate of seed cotton is needed for control and monitoring purposes in gins. A system was developed that accurately predicted mass flow rate based on the static pressure drop measured across the blowbox and the air velocity and temperature entering the blowbox usi...

  18. Determining Seed Cotton Mass Flow Rate by Pressure Drop Across a Blowbox: Gin Testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate measurement of the mass flow rate of seed cotton is needed for control and monitoring purposes in gins. A system was developed that accurately predicted mass flow rate based on the static pressure drop measured across the blowbox and the air velocity and temperature entering the blowbox. Ho...

  19. The Nature, Meaning, and Measure of Teacher Flow in Elementary Schools: A Test of Rival Hypotheses

    ERIC Educational Resources Information Center

    Beard, Karen Stansberry; Hoy, Wayne K.

    2010-01-01

    Purpose: This inquiry is the first comprehensive, empirical analysis of the nature and measurement of flow in elementary teachers. The clearest sign of flow is the merging of action and awareness, that is, the degree to which an activity becomes spontaneous and automatic and individuals lose conscious awareness of themselves as they perform a task…

  20. A HTS scanning magnet and AC operation

    NASA Astrophysics Data System (ADS)

    Hatanaka, K.; Nakagawa, J.; Fukuda, M.; Yorita, T.; Saito, T.; Sakemi, Y.; Kawaguchi, T.; Noda, K.

    2010-04-01

    A scanning magnet using high-temperature superconductor (HTS) wire was designed, built, and tested for its suitability as a beam scanner. After successful cooling tests, the magnet performance was studied using DC and AC currents. With DC current the magnet was successfully operated to generate designed field distributions and effective length. In AC mode, the magnet was operated at frequencies of 30-59 Hz and a temperature of 77 K as well as 10-20 Hz and 20 K. The power losses dissipated in the coils were measured and compared with the model calculations. The observed losses per cycle were independent of the frequency and the scaling law of the transport current was consistent with theoretical predictions for hysteretic losses in HTS wires.

  1. Fan noise reduction achieved by removing tip flow irregularities behind the rotor - forward arc test configurations

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Woodward, R. P.; Mackinnon, M. J.

    1984-01-01

    The noise source caused by the interaction of the rotor tip flow irregularities (vortices and velocity defects) with the downstream stator vanes was studied. Fan flow was removed behind a 0.508 meter (20 in.) diameter model turbofan through an outer wall slot between the rotor and stator. Noise measurements were made with far-field microphones positioned in an arc about the fan inlet and with a pressure transducer in the duct behind the stator. Little tone noise reduction was observed in the forward arc during flow removal; possibly because the rotor-stator interaction noise did not propagate upstream through the rotor. Noise reductions were maded in the duct behind the stator and the largest decrease occurred with the first increment of flow removal. This result indicates that the rotor tip flow irregularity-stator interaction is as important a noise producing mechanism as the normally considered rotor wake-stator interaction.

  2. Testing the channel flow model in the eastern Himalaya, eastern Bhutan: insights from preliminary thermobarometric data

    NASA Astrophysics Data System (ADS)

    Agustsson, K. S.; Gordon, S. M.; Long, S. P.; Seward, G. G.; Zeiger, K. J.; Penfold, M. L.

    2013-12-01

    The study of modern continent-continent collision provides insight into the links between the upper and lower crust, including the processes involved in the deep burial and exhumation of crustal rocks. Rocks of the Greater Himalayan Sequence (GHS), which were buried to mid- to lower-crustal levels, are exposed throughout the Himalayan orogenic belt, between the top-to-the-south Main Central Thrust and the top-to-the-north South Tibetan Detachment. The GHS consists of orthogneiss, metasedimentary rocks, and large-scale (>100 km2) leucogranite bodies. Within the Bhutan Himalaya, the top-to-the south Kakhtang Thrust (KT) separates the GHS into upper (GHSu) and lower (GHSl) structural levels. Previous studies have mapped the location of the KT by the crossing of the second sillimanite isograd and by a significant increase in the volume of crystallized melt. Previous work in Bhutan has mainly focused on the GHSl, whereas the extrusion of the higher-temperature GHSu has not been well studied, and there is little quantitative data describing the P-T history of these rocks. In order to test between different end-member models for the exhumation of the GHSu, including channel flow and critical taper, new thermobarometry data was collected from a transect of samples across the KT. The channel-flow model predicts that the GHSu would have achieved peak upper-amphibolite facies P-T conditions followed by retrograde, near-isothermal decompression. In contrast, the critical-taper model predicts near-isobaric cooling of the GHSu. The electron microprobe at UC-Santa Barbara was used to measure the composition of and test for zoning within garnet, plagioclase, and biotite. Garnets in all four samples are typically subhedral to euhedral and show relatively weak zonation and flat Mg, Fe, and Ca profiles. A few garnets do exhibit bell-shaped Mn and Ca profiles. In addition, a ca. 100 μm rim high in Mg, Ca and Mn but low in Fe is present on all garnets and is indicative of diffusional

  3. Information flows in the process of hypothesis testing, insights from Solomonoff inductive inference

    NASA Astrophysics Data System (ADS)

    Weijs, S. V.; van de Giesen, N.; Parlange, M. B.

    2012-04-01

    Hydrology is a science mostly dealing with making predictions about complex systems that are only partly observable. As a consequence, hydrology mainly deals with induction, i.e. the finding of general patterns and theories from observations. This is often done by sequentially forming plausible hypotheses, test them, and come up with other and improved hypotheses that might explain the data. In this presentation, we look at the information flows within this process and indicate possible problems with mixing prior and posterior information that could occur. This is remediated by a second approach, multi-model inference, where multiple hypotheses are simultaneously tested. A slightly complicating factor in hydrology is that all models are wrong. This leads to the zero prior problem, where a purely Bayesian approach is doomed to be forever stuck in wrong models, no matter how much information is gained from observations about models that were not in the prior. One part of the solution is to only consider hypotheses that make statements in probabilistic terms. These hypotheses are not being proven wrong by the data, but just more or less probable. This means that the error model should be given as part of the hypothesis and the likelihood completely defined by hypothesis and data. The solution of the zero prior problem lies in a universal prior, that gives a prior probability to all computable hypotheses, before seeing any data. Solomonoff's universal prior can be seen as a quantitative implementation of Occam's razor, based in algorithmic information theory. The prior probability of each model is inversely related to its complexity, as measured by its program length on a reference computer. The final predictions are a Bayesian mixture of outputs from all possible models. In Solomonoff induction, predictions are central, and hypotheses just a means to achieve good predictions. In the idealized case of infinite computational resources, the concept of hypothesis becomes

  4. An automatic AC/DC thermal voltage converter and AC voltage calibration system

    NASA Astrophysics Data System (ADS)

    Lentner, K. J.; Flach, D. R.; Bell, B. A.

    1985-10-01

    An automatic ac/dc difference calibration system is described which uses direct measurement of thermoelement emfs. In addition to ac/dc difference testing, the system can be used to measure some important characteristics of thermoelements, as well as to calibrate ac voltage calibrators and precision voltmeters. The system operates over a frquency range from 20 Hz to 100 kHz, covering the voltage range from 0.5 V to 1 kv. For all voltages the total measurement uncertainties expected (including the uncertainty of the specific reference thermal converters used) were 50 parts per million (ppm) at frequencies from 20 Hz to 20 kHz, inclusive, and 100 ppm at higher frequencies up to 100 kHz.

  5. Automatic ac/dc thermal voltage converter and ac voltage calibration system

    NASA Astrophysics Data System (ADS)

    Lentner, K. J.; Flach, D. R.; Bell, B. A.

    1984-11-01

    An automatic ac/dc difference calibration system is described which uses direct measurement of thermoelement emfs. In addition to ac/dc difference testing, the system can be used to measure some important characteristics of thermoelements, as well as to calibrate ac voltage calibrators and precision voltmeters. The system operates over a frequency range from 20 Hz to 100 kHz, covering the voltage range from 0.5 V to 1 kv. For all voltages the total measurement uncertainties expected (including the uncertainty of the specific reference thermal converters used) were 50 parts per million (ppm) at frequencies from 20 Hz to 20 kHz, inclusive, and 100 ppm at higher frequencies up to 100 kHz.

  6. Contaminant transfer and hydrodispersive parameters in basaltic lava flows: artificial tracer test and implications for long-term management

    NASA Astrophysics Data System (ADS)

    Bertrand, G.; Celle-Jeanton, H.; Huneau, F.; Baillieux, A.; Mauri, G.; Lavastre, V.; Undereiner, G.; Girolami, L.; Moquet, J. S.

    2015-10-01

    The aim of this paper is to evaluate the vulnerability after point source contamination and characterize water circulations in volcanic flows located in the Argnat basin volcanic system (Chaîne des Puys, French Massif Central) using a tracer test performed by injecting a iodide solution. The analysis of breakthrough curves allowed the hydrodispersive characteristics of the massive lava flows to be determined. Large Peclet numbers indicated a dominant advective transport. The multimodal feature of breakthrough curves combined with high values of mean velocity and low longitudinal dispersion coefficients indicated thatwater flows in an environment analogous to a fissure system, and only slightly interacts with a low porosity matrix (ne < 1%). Combining this information with lava flow stratigraphy provided by several drillings allowed a conceptual scheme of potential contaminant behaviour to be designed. Although lava flows are vulnerable to point source pollution due to the rapid transfer of water within fractures, the saturated scoriaceous layers located between massive rocks should suffice to strongly buffer the transit of pollution through dilution and longer transit times. This was consistent with the low recovery rate of the presented tracer test.

  7. Analytic and experimental evaluation of flowing air test conditions for selected metallics in a shuttle TPS application

    NASA Technical Reports Server (NTRS)

    Schaefer, J. W.; Tong, H.; Clark, K. J.; Suchsland, K. E.; Neuner, G. J.

    1975-01-01

    A detailed experimental and analytical evaluation was performed to define the response of TD nickel chromium alloy (20 percent chromium) and coated columbium (R512E on CB-752 and VH-109 on WC129Y) to shuttle orbiter reentry heating. Flight conditions important to the response of these thermal protection system (TPS) materials were calculated, and test conditions appropriate to simulation of these flight conditions in flowing air ground test facilities were defined. The response characteristics of these metallics were then evaluated for the flight and representative ground test conditions by analytical techniques employing appropriate thermochemical and thermal response computer codes and by experimental techniques employing an arc heater flowing air test facility and flat face stagnation point and wedge test models. These results were analyzed to define the ground test requirements to obtain valid TPS response characteristics for application to flight. For both material types in the range of conditions appropriate to the shuttle application, the surface thermochemical response resulted in a small rate of change of mass and a negligible energy contribution. The thermal response in terms of surface temperature was controlled by the net heat flux to the surface; this net flux was influenced significantly by the surface catalycity and surface emissivity. The surface catalycity must be accounted for in defining simulation test conditions so that proper heat flux levels to, and therefore surface temperatures of, the test samples are achieved.

  8. NASA Ames Laminar Flow Supersonic Wind Tunnel (LFSWT) Tests of a 10 deg Cone at Mach 1.6

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Laub, James A.

    1997-01-01

    This work is part of the ongoing qualification of the NASA Ames Laminar Flow Supersonic Wind Tunnel (LFSWT) as a low-disturbance (quiet) facility suitable for transition research. A 10 deg cone was tested over a range of unit Reynolds numbers (Re = 2.8 to 3.8 million per foot (9.2 to 12.5 million per meter)) and angles of incidence (O deg to 10 deg) at Mach 1.6. The location of boundary layer transition along the cone was measured primarily from surface temperature distributions, with oil flow interferometry and Schlieren flow visualization providing confirmation measurements. With the LFSWT in its normal quiet operating mode, no transition was detected on the cone in the test core, over the Reynolds number range tested at zero incidence and yaw. Increasing the pressure disturbance levels in the LFSWT test section by a factor of five caused transition onset on the cone within the test core, at zero incidence and yaw. When operating the LFSWT in its normal quiet mode, transition could only be detected in the test core when high angles of incidence (greater than 5 deg) for cones were set. Transition due to elevated pressure disturbances (Tollmien-Schlichting) and surface trips produced a skin temperature rise of order 4 F (2.2 C). Transition due to cross flows on the leeward side of the cone at incidence produced a smaller initial temperature rise of only order 2.5 F (1.4 C), which indicates a slower transition process. We can conclude that these cone tests add further proof that the LFSWT test core is normally low-disturbance (pressure fluctuations greater than 0.1%), as found by associated direct flow quality measurements discussed in this report. Furthermore, in a quiet test environment, the skin temperature rise is sensitive to the type of dominant instability causing transition. The testing of a cone in the LFSWT provides an excellent experiment for the development of advanced transition detection techniques.

  9. Direct Comparison of Flow-FISH and qPCR as Diagnostic Tests for Telomere Length Measurement in Humans

    PubMed Central

    Gutierrez-Rodrigues, Fernanda; Santana-Lemos, Bárbara A.; Scheucher, Priscila S.; Alves-Paiva, Raquel M.; Calado, Rodrigo T.

    2014-01-01

    Telomere length measurement is an essential test for the diagnosis of telomeropathies, which are caused by excessive telomere erosion. Commonly used methods are terminal restriction fragment (TRF) analysis by Southern blot, fluorescence in situ hybridization coupled with flow cytometry (flow-FISH), and quantitative PCR (qPCR). Although these methods have been used in the clinic, they have not been comprehensively compared. Here, we directly compared the performance of flow-FISH and qPCR to measure leukocytes' telomere length of healthy individuals and patients evaluated for telomeropathies, using TRF as standard. TRF and flow-FISH showed good agreement and correlation in the analysis of healthy subjects (R2 = 0.60; p<0.0001) and patients (R2 = 0.51; p<0.0001). In contrast, the comparison between TRF and qPCR yielded modest correlation for the analysis of samples of healthy individuals (R2 = 0.35; p<0.0001) and low correlation for patients (R2 = 0.20; p = 0.001); Bland-Altman analysis showed poor agreement between the two methods for both patients and controls. Quantitative PCR and flow-FISH modestly correlated in the analysis of healthy individuals (R2 = 0.33; p<0.0001) and did not correlate in the comparison of patients' samples (R2 = 0.1, p = 0.08). Intra-assay coefficient of variation (CV) was similar for flow-FISH (10.8±7.1%) and qPCR (9.5±7.4%; p = 0.35), but the inter-assay CV was lower for flow-FISH (9.6±7.6% vs. 16±19.5%; p = 0.02). Bland-Altman analysis indicated that flow-FISH was more precise and reproducible than qPCR. Flow-FISH and qPCR were sensitive (both 100%) and specific (93% and 89%, respectively) to distinguish very short telomeres. However, qPCR sensitivity (40%) and specificity (63%) to detect telomeres below the tenth percentile were lower compared to flow-FISH (80% sensitivity and 85% specificity). In the clinical setting, flow-FISH was more accurate, reproducible, sensitive, and specific in the

  10. Detection of IgG Anti-Leishmania Antigen by Flow Cytometry as a Diagnostic Test for Cutaneous Leishmaniasis

    PubMed Central

    Schriefer, Albert; Magalhães, Andréa; Meyer, Roberto; Glesby, Marshall J.; Carvalho, Edgar M.; Carvalho, Lucas P.

    2016-01-01

    Diagnosis of cutaneous leishmaniasis (CL) relies on clinical presentation, parasite isolation, histopathologic evaluation and positive Montenegro skin test. However, the low amounts of parasites in the lesion of these individuals make parasite isolation and histopatologic diagnosis unreliable, often leading to false-negative results. Also, 15% of people living in endemic areas have sub-clinical infection characterized by positive Montenegro skin test, which may contribute to misdiagnosis. Although the main Leishmania killing mechanism is through cell-mediated immune response, antibodies against Leishmania antigens are found in infected individuals. Here our goal was to develop a new serological technique using polystyrene microspheres sensitized with soluble Leishmania antigens as a tool for the detection of IgG in serum from CL patients by flow cytometry. To validate the assay we carried out a comparative test (ELISA) commonly used as a diagnostic test for parasitic diseases. To determine cross-reactivity we used serum from patients with Chagas disease, caused by a trypanosome that has several proteins with high homology to those of the Leishmania genus. We observed that the flow cytometry technique was more sensitive than the ELISA, but, less specific. Our results show that the flow cytometry serologic test can be used to confirm CL cases in L. braziliensis transmission areas, however, presence of Chagas disease has to be ruled out in these individuals. PMID:27622535

  11. Detection of IgG Anti-Leishmania Antigen by Flow Cytometry as a Diagnostic Test for Cutaneous Leishmaniasis.

    PubMed

    Pedral-Sampaio, Geraldo; Alves, Jessé S; Schriefer, Albert; Magalhães, Andréa; Meyer, Roberto; Glesby, Marshall J; Carvalho, Edgar M; Carvalho, Lucas P

    2016-01-01

    Diagnosis of cutaneous leishmaniasis (CL) relies on clinical presentation, parasite isolation, histopathologic evaluation and positive Montenegro skin test. However, the low amounts of parasites in the lesion of these individuals make parasite isolation and histopatologic diagnosis unreliable, often leading to false-negative results. Also, 15% of people living in endemic areas have sub-clinical infection characterized by positive Montenegro skin test, which may contribute to misdiagnosis. Although the main Leishmania killing mechanism is through cell-mediated immune response, antibodies against Leishmania antigens are found in infected individuals. Here our goal was to develop a new serological technique using polystyrene microspheres sensitized with soluble Leishmania antigens as a tool for the detection of IgG in serum from CL patients by flow cytometry. To validate the assay we carried out a comparative test (ELISA) commonly used as a diagnostic test for parasitic diseases. To determine cross-reactivity we used serum from patients with Chagas disease, caused by a trypanosome that has several proteins with high homology to those of the Leishmania genus. We observed that the flow cytometry technique was more sensitive than the ELISA, but, less specific. Our results show that the flow cytometry serologic test can be used to confirm CL cases in L. braziliensis transmission areas, however, presence of Chagas disease has to be ruled out in these individuals. PMID:27622535

  12. Flow tests of the Willis Hulin Well. Volume III. Final report for the period October 1985--October 1990

    SciTech Connect

    Randolph, P.L.; Hayden, C.G.; Rogers, L.A.

    1992-02-01

    The initial flow test of the Hulin well was done to obtain brine and gas samples and to get a first measure of the reservoir properties. The 20,602 to 20,690-foot interval was perforated and tested in two short-term draw-down and buildup tests. This zone had an initial pressure of 17,308 psia and temperature of 339 F. The total dissolved solids of 207,000 mg/L (mostly sodium chloride) is higher than for previously tested Gulf Coast geopressured-geothermal wells. The gas content in the brine of 31 to 32 SCF/STB indicates that the brine is at or near saturation with natural gas. The permeability, as deduced from the draw-down and buildup tests, is 13 md for the lower 80-foot-thick sand member. The duration of the tests was too short to determine the lateral extent of the reservoir; but declining measured values for static bottomhole pressure prior to each flow test suggests a relatively small reservoir. When the uppermost interval in the zone of interest (20,220 to 20,260 feet) was perforated such that flow from this zone would commingle with flow from the lower zone, little to no free gas was observed. It had been speculated before the test that there might be free gas in this upper zone. These speculations were generally deduced from logs after assuming the formation contained brine that had a salinity between 70,000 and 100,000 mg/L. The actual salinity was more than twice that number. it is now apparent that the amount of free gas, if any, is too small to make a significant contribution to production in a short-term test. This does not preclude the possibility of mobilization of gas by higher drawdown or coning down from an offsetting gas cap in one or more of the sand members. However, there was no evidence that this was occurring in this test. No measurements of the reservoir parameters, such as permeability, were made for the shallowest interval tested. But substantially lower drawdown for the commingled zones suggests either higher permeability or lower skin

  13. Capillary test specimen, system, and methods for in-situ visualization of capillary flow and fillet formation

    DOEpatents

    Hall, Aaron C.; Hosking, F. Michael ,; Reece, Mark

    2003-06-24

    A capillary test specimen, method, and system for visualizing and quantifying capillary flow of liquids under realistic conditions, including polymer underfilling, injection molding, soldering, brazing, and casting. The capillary test specimen simulates complex joint geometries and has an open cross-section to permit easy visual access from the side. A high-speed, high-magnification camera system records the location and shape of the moving liquid front in real-time, in-situ as it flows out of a source cavity, through an open capillary channel between two surfaces having a controlled capillary gap, and into an open fillet cavity, where it subsequently forms a fillet on free surfaces that have been configured to simulate realistic joint geometries. Electric resistance heating rapidly heats the test specimen, without using a furnace. Image-processing software analyzes the recorded images and calculates the velocity of the moving liquid front, fillet contact angles, and shape of the fillet's meniscus, among other parameters.

  14. The use of thick-walled hollow cylinder creep tests for evaluating flow criteria for rock salt

    SciTech Connect

    Morgan, H.S.; Wawersik, W.R.

    1990-01-01

    Finite element simulations of two laboratory creep tests on thick-walled hollow cylinders of rock salt are evaluated to determine if such bench-scale experiments can be used to establish applicability of either von Mises or Tresca stress measures and associated flow conditions. In the tests, the cylinders were loaded axially and pressurized both internally and externally to produce stress fields similar to those found around underground excavations in rock salt. Several different loading stages were used in each test. The simulations show that for each of two creep models studied, quite different deformations of the cylinders are predicted with the Mises and Tresca flow criteria, especially if friction between the cylinders and axial loading platens is ignored. When friction is included in the simulations, the differences in deformation are changed but are sill clearly distinguishable. 10 refs., 10 figs.

  15. Flow Quality Surveys in the Settling Chamber of the NASA Glenn Icing Research Tunnel (2011 Tests)

    NASA Technical Reports Server (NTRS)

    Steen, Laura E.; Van Zante, Judith Foss; Broeren, Andy P.; Kubiak, Mark J.

    2012-01-01

    In 2011, the heat exchanger and refrigeration plant for NASA Glenn Research Center's Icing Research Tunnel (IRT) were upgraded. Flow quality surveys were performed in the settling chamber of the IRT in order to understand the effect that the new heat exchanger had on the flow quality upstream of the spray bars. Measurements were made of the total pressure, static pressure, total temperature, airspeed, and ow angle (pitch and yaw). These measurements were directly compared to measurements taken in 2000, after the previous heat exchanger was installed. In general, the flow quality appears to have improved with the new heat exchanger.

  16. The state of the art of conventional flow visualization techniques for wind tunnel testing

    NASA Technical Reports Server (NTRS)

    Settles, G. S.

    1982-01-01

    Conventional wind tunnel flow visualization techniques which consist of surface flow methods, tracers, and optical methods are presented. Different surface flow methods are outlined: (1) liquid films (oil and fluorescent dye and UV lighting, renewable film via porous dispenser in model, volatile carrier fluid, cryogenic colored oil dots, oil film interferometry); (2) reactive surface treatment (reactive gas injection, reversible dye); (3) transition and heat transfer detectors (evaporation, sublimation, liquid crystals, phase change paints, IR thermography); and (4) tufts (fluorescent mini tufts, cryogenic suitability). Other methods are smoke wire techniques, vapor screens, and optical methods.

  17. Testing for asymmetrical gene flow in a Drosophila melanogaster body-size cline.

    PubMed Central

    Kennington, W Jason; Gockel, Julia; Partridge, Linda

    2003-01-01

    Asymmetrical gene flow is an important, but rarely examined genetic parameter. Here, we develop a new method for detecting departures from symmetrical migration between two populations using microsatellite data that are based on the difference in the proportion of private alleles. Application of this approach to data collected from wild-caught Drosophila melanogaster along a latitudinal body-size cline in eastern Australia revealed that asymmetrical gene flow could be detected, but was uncommon, nonlocalized, and occurred in both directions. We also show that, in contrast to the findings of a previous study, there is good evidence to suggest that the cline experiences significant levels of gene flow between populations. PMID:14573478

  18. A new Goodness-of-fit test for Frequency Analysis of Peak Flows in L-moment Framework

    NASA Astrophysics Data System (ADS)

    Basu, Bidroha; Srinivas Vemavarapu, Venkata

    2015-04-01

    Over the past two decades, L-moment based flood frequency analysis (FFA) procedure is being extensively used in hydrology for estimation of flood quantiles at target locations in river basins. The procedure is based on the assumption that (i) peak flows at a location constitute a sample drawn from one of the known frequency distributions such as Generalized extreme value (GEV), Generalized Pareto (GPA), and Pearson Type III (PE3), and (ii) the distribution can be identified using L-moment ratio diagram. Through Monte-Carlo simulation experiments it would be demonstrated that conventional L-moment goodness-of-fit (GOF) test, which is widely used for identifying the best-fit frequency distribution, may not be effective in identifying true distribution (population) corresponding to samples, when L-moments specified for sample generation belong to certain ranges. The ranges identified corresponding to various forms of frequency distributions would be presented and discussed. To overcome the limitation of L-moment GOF test, an alternate test would be presented, which examines the hypothesis that peak flow data follows GEV, GPA, PE3, Generalized Logistic or Generalized Normal distributions. The proposed test involves: (i) use of a transformation mechanism to map peak flows from the original space to a dimensionless space where the form of their frequency distribution does not change, (ii) estimation of location, scale and shape parameters of the hypothesized distribution using the transformed data, (iii) computation of deviation of the estimated parameters with respect to their population values that are determined based on analytic formulations proposed by the authors in a previous work, and (iv) considering the deviation as the basis to accept/reject the hypothesis that the chosen distribution is appropriate to fit the peak flow data. The proposed GOF test would be demonstrated to be effective compared to conventional L-moment GOF test through Monte-Carlo simulation

  19. Non-Flow-Through Fuel Cell System Test Results and Demonstration on the SCARAB Rover

    NASA Technical Reports Server (NTRS)

    Scheidegger, Brianne; Burke, Kenneth; Jakupca, Ian

    2012-01-01

    This presentation describes the results of the demonstration of a non-flow-through PEM fuel cell as part of a power system on the SCARAB rover at the NASA Glenn Research Center. A 16-cell non-flow-through fuel cell stack from Infinity Fuel Cell and Hydrogen, Inc. was incorporated into a power system designed to act as a range extender by providing power to the SCARAB rover s hotel loads. The power system, including the non-flow-through fuel cell technology, successfully demonstrated its goal as a range extender by powering hotel loads on the SCARAB rover, making this demonstration the first to use the non-flow-through fuel cell technology on a mobile platform.

  20. Tests of peak flow scaling in simulated self-similar river networks

    USGS Publications Warehouse

    Menabde, M.; Veitzer, S.; Gupta, V.; Sivapalan, M.

    2001-01-01

    The effect of linear flow routing incorporating attenuation and network topology on peak flow scaling exponent is investigated for an instantaneously applied uniform runoff on simulated deterministic and random self-similar channel networks. The flow routing is modelled by a linear mass conservation equation for a discrete set of channel links connected in parallel and series, and having the same topology as the channel network. A quasi-analytical solution for the unit hydrograph is obtained in terms of recursion relations. The analysis of this solution shows that the peak flow has an asymptotically scaling dependence on the drainage area for deterministic Mandelbrot-Vicsek (MV) and Peano networks, as well as for a subclass of random self-similar channel networks. However, the scaling exponent is shown to be different from that predicted by the scaling properties of the maxima of the width functions. ?? 2001 Elsevier Science Ltd. All rights reserved.