Science.gov

Sample records for ac four-point impedance

  1. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  2. AC impedance analysis of polypyrrole thin films

    NASA Technical Reports Server (NTRS)

    Penner, Reginald M.; Martin, Charles R.

    1987-01-01

    The AC impedance spectra of thin polypyrrole films were obtained at open circuit potentials from -0.4 to 0.4 V vs SCE. Two limiting cases are discussed for which simplified equivalent circuits are applicable. At very positive potentials, the predominantly nonfaradaic AC impedance of polypyrrole is very similar to that observed previously for finite porous metallic films. Modeling of the data with the appropriate equivalent circuit permits effective pore diameter and pore number densities of the oxidized film to be estimated. At potentials from -0.4 to -0.3 V, the polypyrrole film is essentially nonelectronically conductive and diffusion of polymer oxidized sites with their associated counterions can be assumed to be linear from the film/substrate electrode interface. The equivalent circuit for the polypyrrole film at these potentials is that previously described for metal oxide, lithium intercalation thin films. Using this model, counterion diffusion coefficients are determined for both semi-infinite and finite diffusion domains. In addition, the limiting low frequency resistance and capacitance of the polypyrrole thin fims was determined and compared to that obtained previously for thicker films of the polymer. The origin of the observed potential dependence of these low frequency circuit components is discussed.

  3. Equivalent circuit models for ac impedance data analysis

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1990-01-01

    A least-squares fitting routine has been developed for the analysis of ac impedance data. It has been determined that the checking of the derived equations for a particular circuit with a commercially available electronics circuit program is essential. As a result of the investigation described, three equivalent circuit models were selected for use in the analysis of ac impedance data.

  4. Equivalent Circuits For AC-Impedance Analysis Of Corrosion

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1992-01-01

    Report presents investigation of equivalent circuits for ac-impedance analysis of corrosion. Impedance between specimen and electrolyte measured as function of frequency. Data used to characterize corrosion electrochemical system in terms of equivalent circuit. Eleven resistor/capacitor equivalent-circuit models were analyzed.

  5. AC impedance study of degradation of porous nickel battery electrodes

    NASA Technical Reports Server (NTRS)

    Lenhart, Stephen J.; Macdonald, D. D.; Pound, B. G.

    1987-01-01

    AC impedance spectra of porous nickel battery electrodes were recorded periodically during charge/discharge cycling in concentrated KOH solution at various temperatures. A transmission line model (TLM) was adopted to represent the impedance of the porous electrodes, and various model parameters were adjusted in a curve fitting routine to reproduce the experimental impedances. Degradation processes were deduced from changes in model parameters with electrode cycling time. In developing the TLM, impedance spectra of planar (nonporous) electrodes were used to represent the pore wall and backing plate interfacial impedances. These data were measured over a range of potentials and temperatures, and an equivalent circuit model was adopted to represent the planar electrode data. Cyclic voltammetry was used to study the characteristics of the oxygen evolution reaction on planar nickel electrodes during charging, since oxygen evolution can affect battery electrode charging efficiency and ultimately electrode cycle life if the overpotential for oxygen evolution is sufficiently low.

  6. Characterization of flow-through electrode processes by AC impedance

    SciTech Connect

    Yuh, C.Y. ); Selman, J.R. )

    1993-04-01

    Flow-through porous electrodes, such as packed-bed and fluidized-bed electrodes, are attractive for electrowinning, electro-organic synthesis and flow-battery applications. The extensive surface area of the porous electrodes makes high volumetric reaction rate more possible than in a cell with smooth electrodes. Forced convection also enhances mass-transfer rate and hence reduces concentration polarization. AC-impedance method has been used successfully in characterizing a packed-bed flow-through electrode system. A macrohomogeneous model was developed to simulate the effect of structural, physical and flow parameters. The relative importance of kinetics and mass transfer can be inferred from the AC-impedance analysis. Kinetic information about copper deposition in supported cupric sulfate solution has been obtained successfully using this technique.

  7. Impedance, AC conductivity and dielectric behavior Adeninium Trichloromercurate (II)

    NASA Astrophysics Data System (ADS)

    Fersi, M. Amine; Chaabane, I.; Gargouri, M.

    2016-09-01

    In this work, we report the measurements impedance spectroscopy technique for the organic-inorganic hybrid compound (C5H6N5) HgCl3, 11/2H2O measured in the 209 Hz-5 MHz frequency range from 378 to 428 K. Besides, the Cole-Cole (Z″ versus Z‧) plots were well fitted to an equivalent circuit built up by a parallel combination of resistance (R), fractal capacitance (CPE) and capacitance (C). Furthermore, the AC conductivity was investigated as a function of temperature and frequency in the same range. The experiment results indicated that AC conductivity (σac) was proportional to σdc + A ωS . The obtained results are discussed in terms of the correlated barrier hopping (CBH) model. An agreement between the experimental and theoretical results suggests that the AC conductivity behavior of Adeninium Trichloromercurate (II) can be successfully explained by CBH model. The contribution of single polaron hopping to AC conductivity in a present alloy was also studied.

  8. ac impedance measurements of molten salt thermal batteries

    NASA Astrophysics Data System (ADS)

    Singh, Pritpal; Guidotti, Ronald A.; Reisner c, David

    Non-destructive testing of thermal batteries without activating them is a challenging proposition. Molten salt thermal batteries are activated by raising their temperature to above the melting point of the salt constituting the electrolyte. One approach that we have considered is to raise the temperature of the molten salt electrolyte to a temperature below the melting point so that the battery does not get activated yet may provide sufficient mobility of the ionic species to be able to obtain some useful ac impedance measurements. This hypothesis was put to the test for two Li(Si)/FeS 2 molten salt batteries with two electrolytes of different melting points—a standard LiCl-KCl eutectic that melts at 352 °C and a LiBr-KBr-LiCl eutectic with a melting point of 319 °C. ac impedance measurements as a function of frequency and temperature below the melting point are presented for single cells and batteries.

  9. HVDC-AC system interaction from AC harmonics. Volume 1. Harmonic impedance calculations. Final report

    SciTech Connect

    Breuer, G D; Chow, J H; Lindh, C B; Miller, N W; Numrich, F H; Price, W W; Turner, A E; Whitney, R R

    1982-09-01

    Improved methods are needed to characterize ac system harmonic behavior for ac filter design for HVDC systems. The purpose of this General Electric Company RP1138 research is to evaluate the present filter design practice and to investigate methods for calculating system harmonic impedances. An overview of ac filter design for HVDC systems and a survey of literature related to filter design have been performed. Two methods for calculating system harmonic impedances have been investigated. In the measurement method, an instrumentation system for measuring system voltage and current has been assembled. Different schemes of using the measurements to calculate system harmonic impedances have been studied. In the analytical method, a procedure to include various operating conditions has been proposed. Computer programs for both methods have been prepared, and the results of the measurement and analytical methods analyzed. A conclusion of the project is that the measurement and analytical methods both provided reasonable results. There are correlations between the measured and analytical results for most harmonics, although there are discrepancies between the assumptions used in the two methods. A sensitivity approach has been proposed to further correlate the results. From the results of the analysis, it is recommended that both methods should be tested further. For the measurement method, more testing should be done to cover different system operating conditions. In the analytical method, more detailed models for representing system components should be studied. In addition, alternative statistical and sensitivity approaches should be attempted.

  10. AC impedance electrochemical modeling of lithium-ion positive electrodes.

    SciTech Connect

    Dees, D.; Gunen, E.; Abraham, D.; Jansen, A.; Prakash, J.; Chemical Engineering; IIT

    2004-01-01

    Under Department of Energy's Advanced Technology Development Program,various analytical diagnostic studies are being carried out to examine the lithium-ion battery technology for hybrid electric vehicle applications, and a series of electrochemical studies are being conducted to examine the performance of these batteries. An electrochemical model was developed to associate changes that were observed in the post-test analytical diagnostic studies with the electrochemical performance loss during testing of lithium ion batteries. While both electrodes in the lithium-ion cell have been studied using a similar electrochemical model, the discussion here is limited to modeling of the positive electrode. The positive electrode under study has a composite structure made of a layered nickel oxide (LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}) active material, a carbon black and graphite additive for distributing current, and a PVDF binder all on an aluminum current collector. The electrolyte is 1.2M LiPF{sub 6} dissolved in a mixture of EC and EMC and a Celgard micro-porous membrane is used as the separator. Planar test cells (positive/separator/negative) were constructed with a special fixture and two separator membranes that allowed the placement of a micro-reference electrode between the separator membranes [1]. Electrochemical studies including AC impedance spectroscopy were then conducted on the individual electrodes to examine the performance and ageing effects in the cell. The model was developed by following the work of Professor Newman at Berkeley [2]. The solid electrolyte interface (SEI) region, based on post-test analytical results, was assumed to be a film on the oxide and an oxide layer at the surface of the oxide. A double layer capacity was added in parallel with the Butler-Volmer kinetic expression. The pertinent reaction, thermodynamic, and transport equations were linearized for a small sinusoidal perturbation [3]. The resulting system of differential

  11. Age-related changes in ac-impedance spectroscopy studies of normal human dentine: further investigations.

    PubMed

    Eldarrat, A H; High, A S; Kale, G M

    2010-01-01

    One of the age-related changes occurring in dentine structure is the formation of peritubular dentine on the inner walls of dentinal tubules leading to complete closure of tubules. Ac-impedance is safe, fast and non-invasive technique. In the last decade, the popularity of the technique has increased in dental research. Several investigators have used the technique to detect tooth cracks and caries. The results of in vitro studies showed that ac-impedance technique was more advanced for caries detection than visual and radiographic methods. However, other studies demonstrated that the accuracy of impedance measurements can be affected by many factors such as remineralization after tooth eruption. A study has been published on effect of age on impedance measurements by the authors for two age groups by employing ac-impedance spectroscopy. Therefore, the aim of this study was to demonstrate the importance of this technique by conducting further investigations on dentine samples of wider age groups. Dentine samples were prepared from extracted sound third molars of known patient age. The ac-impedance measurements were carried out over a wide range of frequency. After performing all electrical measurements, dentine samples were examined under SEM to correlate the electrical measurements with their structure. Impedance measurements showed that there were differences in impedance between young and old dentine. One-way ANOVA of the means of resistance and capacitance for all age groups (20, 25, 30, 40 and 50 years old dentine) revealed a significant difference (ANOVA, P < 0.0001) as a function of age. Applying Tukey's post hoc test, to the same data showed that this difference was due to the 50 years old dentine for resistance and was due to the 40 and 50 years old dentine for capacitance which were statistically different to all other groups. SEM investigation of dentine samples showed that young dentine is characterized by open dentinal tubules distributed all over the

  12. Potentiostatic and ac impedance studies of the hydrogen electrodes used in Ni/H2 batteries

    NASA Technical Reports Server (NTRS)

    Le Helloco, Jean-Guy; Bojkov, Hristo; Parthasarathy, Arvind; Srinivasan, Supramaniam; Appleby, A. J.

    1992-01-01

    In a study of electrode activity for hydrogen evolution and hydrogen ionization, knowledge of the detailed kinetics and of the surface coverage by adsorbed hydrogen is essential. In the Ni/H2 battery, the hydrogen electrode is subjected to high hydrogen pressure; elucidation of the variation of kinetic parameters with hydrogen pressure is therefore of interest. Potentiostatic and ac impedance spectroscopic techniques were used in the present study. The equivalent circuit of the reaction, the kinetic parameters, and their pressure dependence have been determined.

  13. Study of metal corrosion using ac impedance techniques in the STS launch environment

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.

    1989-01-01

    AC impedance measurements were performed to investigate the corrosion resistance of 19 alloys under conditions similar to the STS launch environment. The alloys were: Zirconium 702, Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, Inconel 600, 7Mo + N, Ferralium 255, Inco Alloy G-3, 20Cb-3, SS 904L, Inconel 825, SS 304LN, SS 316L, SS 317L, ES 2205, SS 304L, Hastelloy B-2, and Monel 400. AC impedance data were gathered for each alloy after one hour immersion time in each of the following three electrolyte solutions: 3.55 percent NaCl, 3.55 percent NaCl-0.1N HCl, and 3.55 percent NaCl-1.0N HCl. The data were analyzed qualitatively using the Nyquist plot and quantitatively using the Bode plot. Polarization resistance, Rp, values were obtained using the Bode plot. Zirconium 702 was the most corrosion resistant alloy in the three electrolytes. The ordering of the other alloys according the their resistance to corrosion varied as the concentration of hydrochloric acid in the electrolyte increased. The corrosion resistance of Zirconium 702 and Ferralium 255 increased as the concentration of hydrochloric acid in the electrolyte increased. The corrosion resistance of the other 17 alloys decreased as the concentration of the hyrdochloric acid in the electrolyte increased.

  14. Four-point potential drop measurements for materials characterization

    NASA Astrophysics Data System (ADS)

    Bowler, Nicola

    2011-01-01

    The technique of measuring the voltage difference (potential drop) between two of the four electrodes of a four-point probe, in order to determine conductivity or surface resistivity of a test piece, is well established in the direct-current (dc) or quasi-dc regime. The technique finds wide usage in the semiconductor industry for the purpose of measuring surface resistivity of semiconductors, and also in the measurement of conductivity of metals, particularly of ferromagnetic metals for which conductivity cannot be easily measured using eddy-current nondestructive evaluation (NDE). In these applications, the conductivity of the test piece is deduced from an analytic formula that depends on the geometry of the probe and test piece. Such a formula requires, as an input, the measured value of the potential drop. Several analytical expressions exist for a variety of test-piece geometries and probe arrangements. Recently, it has been shown that broadband measurements of the potential drop, known as 'alternating current potential drop' (ac PD) measurements, can be used not only to obtain the conductivity of a test piece, but also its linear permeability μ. The beauty of this measurement is that the two parameters are completely decoupled in the quasi-static regime. In fact, μ does not appear in the quasi-static expression for σ. Hence, σ may be obtained from low-frequency ac PD measurements and then μ may be deduced as the frequency increases beyond the quasi-static regime, once σ is known. In this review, both dc and ac solutions that are useful in determining the conductivity of metals and semiconductors, and the permeability of ferromagnetic conductors, are summarized. In particular, flat test pieces with arbitrary thickness are considered. At the next level of complexity, a solution for a half-space coated with a surface layer is given, along with a discussion of the use of the four-point potential drop method for determining thickness of a surface layer, such

  15. An electrochemical study of corrosion protection by primer-topcoat systems on 4130 steel with ac impedance and dc methods

    NASA Technical Reports Server (NTRS)

    Mendrek, M. J.; Higgins, R. H.; Danford, M. D.

    1988-01-01

    To investigate metal surface corrosion and the breakdown of metal protective coatings, the ac impedance method is applied to six systems of primer coated and primer topcoated 4130 steel. Two primers were used: a zinc-rich epoxy primer and a red lead oxide epoxy primer. The epoxy-polyamine topcoat was used in four of the systems. The EG and G-PARC Model 368 ac impedance measurement system, along with dc measurements with the same system using the polarization resistance method, were used to monitor changing properties of coated 4230 steel disks immersed in 3.5 percent NaCl solutions buffered at pH 5.4 over periods of 40 to 60 days. The corrosion system can be represented by an electronic analog called an equivalent circuit consisting of resistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for the resistors and capacitors, that can be assigned in the equivalent circuit following a least-squares analysis of the data, describe changes that occur on the corroding metal surface and in the protective coatings. Two equivalent circuits have been determined that predict the correct Bode phase and magnitude of the experimental sample at different immersion times. The dc corrosion current density data are related to equivalent circuit element parameters. Methods for determining corrosion rate with ac impedance parameters are verified by the dc method.

  16. AC impedance spectroscopy studies on solid-state sintered zinc aluminum oxide (ZnAl2O4) ceramics

    NASA Astrophysics Data System (ADS)

    Kumar, B. Rajesh; Rao, T. Subba

    2012-07-01

    In the present investigation Zinc Aluminum Oxide (ZnAl2O4) is prepared by solid-state reaction technique. Dielectric constant (ɛ'), dielectric loss(tan δ), ac conductivity (σac) as a function of temperature are studied by varying frequencies from 100 Hz to 1MHz using an impedance analyzer. The dielectric constant and dielectric loss increases gradually with an increase of temperature, but it decreases with increase of frequency. The ac conductivity (σac) also increases with increases of frequency. The transition peaks for ZnAl2O4 are observed at 490°C, 510°C, 520°C for the frequencies 1 KHz, 10 KHz and 100 KHz. No transition peaks are found for the frequency 100 Hz and 1 MHz because of high conductive loss.

  17. Compliance measurements of chevron notched four point bend specimen

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony; Bubsey, Raymond; Ghosn, Louis J.

    1994-01-01

    The experimental stress intensity factors for various chevron notched four point bend specimens are presented. The experimental compliance is verified using the analytical solution for a straight through crack four point bend specimen and the boundary integral equation method for one chevron geometry. Excellent agreement is obtained between the experimental and analytical results. In this report, stress intensity factors, loading displacements and crack mouth opening displacements are reported for different crack lengths and different chevron geometries, under four point bend loading condition.

  18. Label-free whole blood cell differentiation based on multiple frequency AC impedance and light scattering analysis in a micro flow cytometer.

    PubMed

    Simon, Peter; Frankowski, Marcin; Bock, Nicole; Neukammer, Jörg

    2016-06-21

    We developed a microfluidic sensor for label-free flow cytometric cell differentiation by combined multiple AC electrical impedance and light scattering analysis. The measured signals are correlated to cell volume, membrane capacity and optical properties of single cells. For an improved signal to noise ratio, the microfluidic sensor incorporates two electrode pairs for differential impedance detection. One-dimensional sheath flow focusing was implemented, which allows single particle analysis at kHz count rates. Various monodisperse particles and differentiation of leukocytes in haemolysed samples served to benchmark the microdevice applying combined AC impedance and side scatter analyses. In what follows, we demonstrate that AC impedance measurements at selected frequencies allow label-free discrimination of platelets, erythrocytes, monocytes, granulocytes and lymphocytes in whole blood samples involving dilution only. Immunofluorescence staining was applied to validate the results of the label-free cell analysis. Reliable differentiation and enumeration of cells in whole blood by AC impedance detection have the potential to support medical diagnosis for patients with haemolysis resistant erythrocytes or abnormally sensitive leucocytes, i.e. for patients suffering from anaemia or leukaemia.

  19. Evaluation of the electrode performance for PAFC by using acid absorption, acceleration and ac-impedance measurement

    SciTech Connect

    Kim, Chang-Soo; Song, Rak-Hyun; Choi, Byung-Woo

    1996-12-31

    In PAFC, the degradation on cathode electrode caused by carbon corrosion, platinum dissolution and growth is especially severe. An acceleration test is a good technique for evaluating the degradation of electrode performance, because it does not need long time. Coleman et al used thermal cycling and on-off cycling as an acceleration test. Song et al showed that hydrogen shortage decreased the electrode performance more rapidly than that of air shortage in gas shortage test. Honji et al reported that the rate of coarsening of Pt particle is rapid in open circuit potential and this is one of major causes on the performance degradation of electrode. The cathode performance has been studied by using acid absorption, acceleration and ac-impedance measurements as functions of the polytetrafluoroethylene (PTFE) contents and sintering temperatures of the electrode.

  20. AC impedance modelling study on porous electrodes of proton exchange membrane fuel cells using an agglomerate model

    NASA Astrophysics Data System (ADS)

    Gerteisen, Dietmar; Hakenjos, Alex; Schumacher, Jürgen O.

    A one-dimensional model of the PEM fuel cell cathode is developed to analyse ac impedance spectra and polarisation curves. The porous gas diffusion electrode is assumed to consist of a network of dispersed catalyst (Pt/C) forming spherically shaped agglomerated zones that are filled with electrolyte. The coupled differential equation system describes: ternary gas diffusion in the backing (O2 , N2 , water vapour), Fickian diffusion and Tafel kinetics for the oxygen reduction reaction (ORR) inside the agglomerates, proton migration with ohmic losses and double-layer charging in the electrode. Measurements are made of a temperature-controlled fuel cell with a geometric area of 1.4 cm × 1.4 cm. Lateral homogeneity is ensured by using a high stoichiometry of λmin . The model predicts the behaviour of measured polarisation curves and impedance spectra. It is found that a better humidification of the electrode leads to a higher volumetric double-layer capacity. The catalyst layer resistance shows the same behaviour depending on the humidification as the membrane resistance. Model parameters, e.g. Tafel slope, ionic resistance and agglomerate radius are varied. A sensitivity analysis of the model parameters is conducted.

  1. Use of AC Impedance Analysis to Study Membrane Changes Related to Acid Secretion in Amphibian Gastric Mucosa

    PubMed Central

    Clausen, Chris; Machen, Terry E.; Diamond, Jared M.

    1983-01-01

    We have applied transepithelial AC impedance techniques to gastric mucosa to reconcile ultrastructural and electrophysiological findings about gastric acid secretion and the mucosal barrier. By fitting impedance data measured at different HCl secretion rates to equivalent circuit models, we extracted capacitances and resistances (as measures of membrane area and ionic conductance, respectively) for the apical and basolateral membranes. The impedance measurements were found to be incompatible with earlier equivalent circuit models that modeled membrane electrical properties as lumped circuits based on one or two cell types. A distributed circuit model was developed that assumed only one dominant electrical pathway (i.e., one cell type), but that incorporated electrical effects arising from long and narrow membrane-lined structures present in the epithelium (e.g., gastric crypts, tubulovesicles, lateral intercellular spaces). This morphologically based model was found to represent the measured data accurately, and to yield values for membrane capacitances consistent with morphometric measurements of membrane areas. The main physiological conclusions from this analysis were as follows: (a) The dominant transepithelial current pathway may reside in the oxyntic cells. (b) The transepithelial conductance increase associated with the onset of acid secretion is entirely due to increased conductance of the apical membrane. This is in turn due entirely to increased area of this membrane, resulting from incorporation of tubulovesicular membrane. (c) When membrane conductances are normalized to actual membrane area by use of membrane capacitances, it turns out that acid secretion is not associated with a change in specific ionic conductance (change in conductance per unit area) at either the apical or basolateral membrane. (d) The puzzlingly low value of transepithelial resistance (≤400 Ω-cm2) arises because there are hundreds or thousands of square centimeters of actual

  2. Corrosion behaviour of galvanized steel and electroplating steel in aqueous solution: AC impedance study and XPS

    NASA Astrophysics Data System (ADS)

    Lebrini, M.; Fontaine, G.; Gengembre, L.; Traisnel, M.; Lerasle, O.; Genet, N.

    2008-08-01

    The efficiency of a new triazole derivative, namely, 2-{(2-hydroxyethyl)[(4-methyl-1 H-1,2,3-benzotriazol-1-yl)methyl]amino}ethanol (TTA) has been studied for corrosion inhibition of galvanized steel and electroplating steel in aqueous solution. Corrosion inhibition was studied using electrochemical impedance spectroscopy (EIS). These studies have shown that TTA was a very good inhibitor. Data obtained from EIS show a frequency distribution and therefore a modelling element with frequency dispersion behaviour, a constant phase element (CPE) has been used. The corrosion behaviour of galvanized steel and electroplating steel in aqueous solution was also investigated in the presence of 4-methyl-1 H-benzotriazole (TTA unsubstituted) by EIS. These studies have shown that the ability of the molecule to adsorb on the steel surface was dependent on the group in triazole ring substituent. X-ray photoelectron spectroscopy surface analysis with TTA shows that it chemisorbed on surface of galvanized steel and electroplating steel.

  3. Determination of the Si-conducting polymer interfacial properties using A-C impedance techniques

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, G.; Di Stefano, Salvador; Moacanin, Jovan

    1985-01-01

    A study was made of the interfacial properties of poly(pyrrole) (PP) deposited electrochemically onto single crystal p-Si surfaces. The interfacial properties are dependent upon the counterions. The formation of 'quasi-ohmic' and 'nonohmic' contacts, respectively, of PP(ClO4) and PP films doped with other counterions (BF4 and para-toluene sulfonate) with p-Si, are explained in terms of the conductivity of these films and the flat band potential, V(fb), of PP relative to that of p-Si. The PP film seems to passivate or block intrinsic surface states present on the p-Si surface. The differences in the impedance behavior of para-toluene sulfonate doped and ClO4 doped PP are compared.

  4. A Mathematical Study of the Game "Twenty-Four Points".

    ERIC Educational Resources Information Center

    Shi, Yixun

    1999-01-01

    Presents a mathematical analysis of the game "twenty-four points" that aims to apply arithmetic operations on the four numbers to reach a specific number. This game can improve children's ability to do mental arithmetic. (ASK)

  5. Generalized four-point characterization method using capacitive and ohmic contacts.

    PubMed

    Kim, Brian S; Zhou, Wang; Shah, Yash D; Zhou, Chuanle; Işık, N; Grayson, M

    2012-02-01

    In this paper, a four-point characterization method is developed for samples that have either capacitive or ohmic contacts. When capacitive contacts are used, capacitive current- and voltage-dividers result in a capacitive scaling factor not present in four-point measurements with only ohmic contacts. From a circuit equivalent of the complete measurement system, one can determine both the measurement frequency band and capacitive scaling factor for various four-point characterization configurations. This technique is first demonstrated with a discrete element four-point test device and then with a capacitively and ohmically contacted Hall bar sample over a wide frequency range (1 Hz-100 kHz) using lock-in measurement techniques. In all the cases, data fit well to a circuit simulation of the entire measurement system, and best results are achieved with large area capacitive contacts and a high input-impedance preamplifier stage. An undesirable asymmetry offset in the measurement signal is described which can arise due to asymmetric voltage contacts. PMID:22380109

  6. Four-point function in the IOP matrix model

    NASA Astrophysics Data System (ADS)

    Michel, Ben; Polchinski, Joseph; Rosenhaus, Vladimir; Suh, S. Josephine

    2016-05-01

    The IOP model is a quantum mechanical system of a large- N matrix oscillator and a fundamental oscillator, coupled through a quartic interaction. It was introduced previously as a toy model of the gauge dual of an AdS black hole, and captures a key property that at infinite N the two-point function decays to zero on long time scales. Motivated by recent work on quantum chaos, we sum all planar Feynman diagrams contributing to the four-point function. We find that the IOP model does not satisfy the more refined criteria of exponential growth of the out-of-time-order four-point function.

  7. Decreasing Aggression Using Four-Point Restraints and Symbol Programs.

    ERIC Educational Resources Information Center

    Bluestone, Michael A.

    Physical aggression among institutionalized mentally retarded persons arouses great social concern. To examine the effectiveness of four-point mechanical restraints and a positive adaptive symbol program in the reduction of high frequency, high intensity aggression, three institutionalized severely mentally retarded adolescents (2 females, 1 male)…

  8. Fully articulated four-point-bend loading fixture

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony M. (Inventor)

    1991-01-01

    A fully articulated four-point bend loading fixture for Modulus of Rupture (MOR) and fracture toughness specimens utilizes an upper loading plate in combination with a lower loading plate. The lower plate has a pair of spring loaded ball bearings which seat in V-shaped grooves located in the upper plate. The ball bearings are carried in the arms of the lower plate. A load is applied to the specimen through steel rollers, one large roller and one smaller roller each located on both the upper and lower plates. The large rollers have needle roller bearings which enable a single loading roller to rotate relative to the plate to which it is attached.

  9. Four-point-bend fatigue of AA 2026 aluminum alloys

    NASA Astrophysics Data System (ADS)

    Li, J. X.; Zhai, T.; Garratt, M. D.; Bray, G. H.

    2005-09-01

    High-cycle fatigue tests were carried out on a newly developed high-strength AA 2026 Al alloy, which was in the form of extrusion bars with square and rectangular cross sections, using a self-aligning four-point-bend rig at room temperature, 15 Hz, and R = 0.1, in lab air. The fatigue strength of the square and rectangular bars was measured to be 85 and 90 pct of their yield strength, respectively, more than twice that of the predecessor to the 2026 alloy (the AA 2024 Al alloy). Fatigue cracks were found to be always initiated at large Θ' (Al7Cu2(Fe,Mn)) particles and to propagate predominantly in a crystallographic mode in the AA 2026 alloy. The fatigue fractographies of the square and rectangular extrusion bars were found to be markedly different, due to their different grain structures (fibril and layered, respectively). Fracture steps on the crack face were found in both of these extrusion bars. Since the 2026 alloy was purer in terms of Fe and Si content, it contained much less coarse particles than in a 2024 alloy. This partially accounted for the superior fatigue strength of the 2026 alloy.

  10. Synthesis and characterization of cancrinite-type zeolite, and its ionic conductivity study by AC impedance analysis

    NASA Astrophysics Data System (ADS)

    Kriaa, A.; Ben Saad, K.; Hamzaoui, A. H.

    2012-12-01

    The synthesis of cancrinite in the system NaOH-SiO2-Al2O3-NaHCO3-H2O was performed, according to methods described in the literature, in an autoclave under hydrothermal conditions at T = 473 K. The electrical properties of cancrinite-type zeolite pellets were investigated by complex impedance spectroscopy in the temperature range 465-800°C. The effect of temperature on impedance parameters was studied using an impedance analyzer in a wide frequency range (1 Hz to 13 MHz). The real and imaginary parts of complex impedance trace semicircles in the complex plane are plotted. The bulk resistance of the material decreases with rise in temperature. This exhibits a typical negative temperature coefficient of resistance (NTCR) behavior of the material. The results of bulk electrical conductivity and its activation energy are presented. The modulus analysis suggests that the electrical transport processes in the material are very likely to be of electronic nature. Relaxation frequencies follow an Arrhenius behavior with activation energy values not comparable to those found for the electrical conductivity.

  11. Carbon Nanotube-Based Supercapacitors with Excellent ac Line Filtering and Rate Capability via Improved Interfacial Impedance.

    PubMed

    Rangom, Yverick; Tang, Xiaowu Shirley; Nazar, Linda F

    2015-07-28

    We report the fabrication of high-performance, self-standing composite sp(2)-carbon supercapacitor electrodes using single-walled carbon nanotubes (CNTs) as conductive binder. The 3-D mesoporous mesh architecture of CNT-based composite electrodes grants unimpaired ionic transport throughout relatively thick films and allows superior performance compared to graphene-based devices at an ac line frequency of 120 Hz. Metrics of 601 μF/cm(2) with a -81° phase angle and a rate capability (RC) time constant of 199 μs are obtained for thin carbon films. The free-standing carbon films were obtained from a chlorosulfonic acid dispersion and interfaced to stainless steel current collectors with various surface treatments. CNT electrodes were able to cycle at 200 V/s and beyond, still showing a characteristic parallelepipedic cyclic votammetry shape at 1 kV/s. Current densities are measured in excess of 6400 A/g, and the electrodes retain more than 98% capacity after 1 million cycles. These promising results are attributed to a reduction of series resistance in the film through the CNT conductive network and especially to the surface treatment of the stainless steel current collector. PMID:26046685

  12. Carbon Nanotube-Based Supercapacitors with Excellent ac Line Filtering and Rate Capability via Improved Interfacial Impedance.

    PubMed

    Rangom, Yverick; Tang, Xiaowu Shirley; Nazar, Linda F

    2015-07-28

    We report the fabrication of high-performance, self-standing composite sp(2)-carbon supercapacitor electrodes using single-walled carbon nanotubes (CNTs) as conductive binder. The 3-D mesoporous mesh architecture of CNT-based composite electrodes grants unimpaired ionic transport throughout relatively thick films and allows superior performance compared to graphene-based devices at an ac line frequency of 120 Hz. Metrics of 601 μF/cm(2) with a -81° phase angle and a rate capability (RC) time constant of 199 μs are obtained for thin carbon films. The free-standing carbon films were obtained from a chlorosulfonic acid dispersion and interfaced to stainless steel current collectors with various surface treatments. CNT electrodes were able to cycle at 200 V/s and beyond, still showing a characteristic parallelepipedic cyclic votammetry shape at 1 kV/s. Current densities are measured in excess of 6400 A/g, and the electrodes retain more than 98% capacity after 1 million cycles. These promising results are attributed to a reduction of series resistance in the film through the CNT conductive network and especially to the surface treatment of the stainless steel current collector.

  13. AC impedance analysis of ionic and electronic conductivities in electrode mixture layers for an all-solid-state lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Siroma, Zyun; Sato, Tomohiro; Takeuchi, Tomonari; Nagai, Ryo; Ota, Akira; Ioroi, Tsutomu

    2016-06-01

    The ionic and electronic effective conductivities of an electrode mixture layers for all-solid-state lithium-ion batteries containing Li2Ssbnd P2S5 as a solid electrolyte were investigated by AC impedance measurements and analysis using a transmission-line model (TLM). Samples containing graphite (graphite electrodes) or LiNi0.5Co0.2Mn0.3O2 (NCM electrodes) as the active material were measured under a "substrate | sample | bulk electrolyte | sample | substrate" configuration (ion-electron connection) and a "substrate | sample | substrate" configuration (electron-electron connection). Theoretically, if the electronic resistance is negligibly small, which is the case with our graphite electrodes, measurement with the ion-electron connection should be effective for evaluating ionic conductivity. However, if the electronic resistance is comparable to the ionic resistance, which is the case with our NCM electrodes, the results with the ion-electron connection may contain some inherent inaccuracy. In this report, we theoretically and practically demonstrate the advantage of analyzing the results with the electron-electron connection, which gives both the ionic and electronic conductivities. The similarity of the behavior of ionic conductivity with the graphite and NCM electrodes confirms the reliability of this analysis.

  14. Impedance and AC conductivity study of nano crystalline, fine grained multiferroic bismuth ferrite (BiFeO3), synthesized by microwave sintering

    NASA Astrophysics Data System (ADS)

    Kolte, Jayant; Salame, Paresh H.; Daryapurkar, A. S.; Gopalan, P.

    2015-09-01

    In this paper, major reduction in sintering time,temperautre and significant improvement over final density of sitnered sample is reported for the microwave sintered nanocrystalline BiFeO3 (BFO) ceramic. Also, different sintering time and temperatures have been used to tailor the grain size and the final density of the resulting BFO ceramics synthesized from phase pure BFO nanoparticles ( d ¯ ≈ 10 n m ). Microwave sintering resulted in reducing the sintering time substantially (by 1h), and has resulted in submicron sized grains and high resistivity ˜1.8 GΩ-cm. The AC conductivity is seen to follow the Jonscher's power law behavior, suggesting correlated barrier hopping (CBH) mechanism in the sample. The role of oxygen vacancies at high temperature, due to volatility of bismuth, in dielectric and conductivity behavior is also discussed. Further, the sample displayed dielectric anomaly near magnetic transition temperature (˜180 °C) indicating bearing of magnetic moments on the dielectric properties. Using Impedance Spectroscopy (IS) we have established, the electrical heterogeneity of the ceramic BFO reavealing semiconducting nature of grains and insulating nature of grain boundary. This, formation of network of insulating grain boundaries and semiconducting grains could lead to formation of internal barrier layer capacitance (IBLC) leading to high dielectric constant in microwave sintered BFO.

  15. Absence of three-loop four-point ultraviolet divergences in N=4 supergravity.

    PubMed

    Bern, Zvi; Davies, Scott; Dennen, Tristan; Huang, Yu-tin

    2012-05-18

    We compute the coefficient of the potential three-loop four-point ultraviolet divergence in pure N=4 supergravity and show that it vanishes, contrary to expectations from symmetry arguments. The recently uncovered duality between color and kinematics is used to greatly streamline the calculation. We comment on all-loop cancellations hinting at further surprises awaiting discovery at higher loops.

  16. The investigation of dielectric properties and ac conductivity of new ceramic diphosphate Ag0.6Na0.4FeP2O7 using impedance spectroscopy method

    NASA Astrophysics Data System (ADS)

    Nasri, S.; Megdiche, M.; Gargouri, M.

    2016-10-01

    In this paper, Ag0.6Na0.4FeP2O7 has been synthesized by solid state reaction method. The ceramic compound was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrational spectroscopy and impedance measurements. In fact, the investigated sample has shown single phase type monoclinic structure with P21/C space group. The frequency-dependent electrical data are analyzed in the frame-work of conductivity and electric modulus formalisms. The real and imaginary parts of complex impedance are well fitted to equivalent circuit model based on the Z-View-software. Besides, the observed frequency dependence of conductivity is found to obey Jonscher's universal law. The temperature dependence of both ac conductivity and the parameter s is reasonably well interpreted by the correlated barrier hopping (CBH). The theoretical fitting between the proposed model and the experimental data showed good agreement. The contribution of single polaron and bipolaron hopping to a.c. conductivity in present compound is also studied. The ionic conductivity is discussed on the basis of the structural characteristics of the sample.

  17. Conductivity of individual particles measured by a microscopic four-point-probe method

    PubMed Central

    Sun, Ling; Wang, Jianjun; Bonaccurso, Elmar

    2013-01-01

    We introduce a technique for measuring the conductivity of individual hybrid metal, semiconducting core-shell and full-metal conducting particles by a microscopic four-point probe (μ-4PP) method. The four-point probe geometry allows for minimizing contact resistances between electrodes and particles. By using a focused ion beam we fabricate platinum nanoleads between four microelectrodes on a silicon chip and an individual particle, and determine the particle's conductivity via sensitive current and voltage measurements. Up to sixteen particles can be taken up by each chip, which allows for multiple conductivity measurements by simply multiplexing the electric contacts connected to a multimeter. Although, for demonstration, we used full Au (conducting) and Ag-coated latex particles (semiconducting) of a few micrometers in diameter, the method can be applied to other types of conducting or semiconducting particles of different diameters. PMID:23771149

  18. On the ABJM four-point amplitude at three loops and BDS exponentiation

    NASA Astrophysics Data System (ADS)

    Bianchi, Marco S.; Leoni, Matias

    2014-11-01

    We study the three-loop four-point amplitude in ABJM theory. We determine the dual conformal invariant integrals with highest number of propagators and fix their coefficients by two-particle cuts. Evaluating such a combination of integrals in dimensional regularization we provide evidence for exponentiation of the amplitude, including the finite terms. In addition we show that the three-loop amplitude can be expressed in terms of classical polylogarithms of uniform degree of transcendentality.

  19. Manifest Ultraviolet Behavior in the Three-Loop Four-Point Amplitude of N=8 Supergravity

    SciTech Connect

    Bern, Z.; Carrasco, J.J.M.; Dixon, L.J.; Johansson, H.; Roiban, R.; /Penn State U.

    2008-09-03

    Using the method of maximal cuts, we obtain a form of the three-loop four-point scattering amplitude of N = 8 supergravity in which all ultraviolet cancellations are made manifest. The Feynman loop integrals that appear have a graphical representation with only cubic vertices, and numerator factors that are quadratic in the loop momenta, rather than quartic as in the previous form. This quadratic behavior reflects cancellations beyond those required for finiteness, and matches the quadratic behavior of the three-loop four-point scattering amplitude in N = 4 super-Yang-Mills theory. By direct integration we confirm that no additional cancellations remain in the N = 8 supergravity amplitude, thus demonstrating that the critical dimension in which the first ultraviolet divergence occurs at three loops is D{sub c} = 6. We also give the values of the three-loop divergences in D = 7, 9, 11. In addition, we present the explicitly color-dressed three-loop four-point amplitude of N = 4 super-Yang-Mills theory.

  20. Manifest ultraviolet behavior for the three-loop four-point amplitude of N=8 supergravity

    SciTech Connect

    Bern, Z.; Carrasco, J. J. M.; Johansson, H.; Dixon, L. J.; Roiban, R.

    2008-11-15

    Using the method of maximal cuts, we obtain a form of the three-loop four-point scattering amplitude of N=8 supergravity in which all ultraviolet cancellations are made manifest. The Feynman loop integrals that appear have a graphical representation with only cubic vertices, and numerator factors that are quadratic in the loop momenta, rather than quartic as in the previous form. This quadratic behavior reflects cancellations beyond those required for finiteness, and matches the quadratic behavior of the three-loop four-point scattering amplitude in N=4 super-Yang-Mills theory. By direct integration we confirm that no additional cancellations remain in the N=8 supergravity amplitude, thus demonstrating that the critical dimension in which the first ultraviolet divergence occurs at three loops is D{sub c}=6. We also give the values of the three-loop divergences in D=7, 9, 11. In addition, we present the explicitly color-dressed three-loop four-point amplitude of N=4 super-Yang-Mills theory.

  1. The properties of thin-section, four-point-contact ball bearings in space

    NASA Technical Reports Server (NTRS)

    Rowntree, R. A.

    1985-01-01

    Thin section, four-point-contact ball bearings are increasinly employed in spacecraft mechanisms because of the potential advantages they offer. However, litte was previously known of their torque, thermal conductance and stiffness properties at conditions anticipated for their use in space. An investigation of these properties are described. It was found that frictional (Coulomb) torque, thermal conductance and stiffness all show marked dependence on the bearing preload, the housing design, the bearing external fit (i.e., free fit or interference) and on the thermal gradient across the races. Optimum bearing performance is achieved only if these properties are well understood. The necessary data to understand these properties are provided.

  2. A four-point clinical criteria distinguishes immune thrombocytopenia from acute lymphoblastic leukaemia.

    PubMed

    Lum, S H; How, S J; Ariffin, H; Krishnan, S

    2016-02-01

    Immune thrombocytopenia is the most common diagnosis of isolated thrombocytopenia. The dilemma encountered by paediatricians is missing diagnosis of acute leukaemia in children with isolated thrombocytopenia. We demonstrated childhood ITP could be diagnosed using a four point clinical criteria without missing a diagnosis of acute leukaemia. Hence, bone marrow examination is not necessary in children with typical features compatible with ITP prior to steroid therapy. This can encourage paediatricians to choose steroid therapy, which is cheaper and non-blood product, as first line platelet elevating therapy in children with significant haemorrhage. PMID:27130741

  3. Automatized channel for resistivity measurements in layered materials by four-point probe technique

    NASA Astrophysics Data System (ADS)

    Gryaznov, A. O.; Savchenko, S. S.; Vokhmintsev, A. S.; Weinstein, I. A.

    2016-09-01

    An automatized channel for measuring the resistivity in materials by the four-point probe technique was developed. The installation was based on Cascade Microtech MPS150 microprobe station, National Instruments PXIe-4143 power supply unit and PXI-4072 digital multimeter. Registration modes of surface and bulk specific resistance for samples with positioning the probes in a line or at square vertices were implemented. Measurements under corresponding modes were carried out for metallic, semiconducting bulk samples and thin coatings. Conductive and optical properties of 10, 20 and 30 nm Au layers formed on quartz glass by magnetron sputtering were investigated.

  4. Determination of piezo-optic coefficients of crystals by means of four-point bending.

    PubMed

    Krupych, Oleg; Savaryn, Viktoriya; Krupych, Andriy; Klymiv, Ivan; Vlokh, Rostyslav

    2013-06-10

    A technique developed recently for determining piezo-optic coefficients (POCs) of isotropic optical media, which represents a combination of digital imaging laser interferometry and a classical four-point bending method, is generalized and applied to a single-crystalline anisotropic material. The peculiarities of measuring procedures and data processing for the case of optically uniaxial crystals are described in detail. The capabilities of the technique are tested on the example of canonical nonlinear optical crystal LiNbO3. The high precision achieved in determination of the POCs for isotropic and anisotropic materials testifies that the technique should be both versatile and reliable.

  5. Compression After Impact Testing of Sandwich Structures Using the Four Point Bend Test

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Gregory, Elizabeth; Jackson, Justin; Kenworthy, Devon

    2008-01-01

    For many composite laminated structures, the design is driven by data obtained from Compression after Impact (CAI) testing. There currently is no standard for CAI testing of sandwich structures although there is one for solid laminates of a certain thickness and lay-up configuration. Most sandwich CAI testing has followed the basic technique of this standard where the loaded ends are precision machined and placed between two platens and compressed until failure. If little or no damage is present during the compression tests, the loaded ends may need to be potted to prevent end brooming. By putting a sandwich beam in a four point bend configuration, the region between the inner supports is put under a compressive load and a sandwich laminate with damage can be tested in this manner without the need for precision machining. Also, specimens with no damage can be taken to failure so direct comparisons between damaged and undamaged strength can be made. Data is presented that demonstrates the four point bend CAI test and is compared with end loaded compression tests of the same sandwich structure.

  6. Effect of counterions on the formation of ohmic contact between p-Si and poly(pyrrole) film - An ac impedance analysis

    NASA Technical Reports Server (NTRS)

    Nagsubramanian, G.; Distefano, S.; Moacanin, J.

    1986-01-01

    Conditions under which poly(pyrrole) (PP) films form ohmic contact with single-crystal p-Si are described. Counterions affect both the conductivity and flatband potential, V(FB), values of poly(pyrrole). While paratoluene-sulfonate-doped PP acts like a switch, the impedance behavior of PP films doped with ClO4(-), BF4(-), or PF6(-) allows evaluation of the V(FB) of these films. The formation of 'quasi-ohmic' and 'nonohmic' contacts, respectively, of PP (ClO4) and PP films doped with other counterions, with p-Si, are explained in terms of conductivity of these films and V(FB) of PP films with respect to that of p-Si. PP film seems to passivate or block intrinsic surface states present on p-Si surface.

  7. Modeling of transient two-component flow using a four-point implicit method

    NASA Technical Reports Server (NTRS)

    Wiggert, D. C.; Martin, C. S.; Naghash, M.; Rao, P. V.

    1983-01-01

    The four-point, centered implicit scheme that is extensively used in open channel flow simulation is shown to be applicable to rapid and slow pressure transient problems in conduits with nearly single phase and two-phase flows. It is only necessary to choose the proper weighting factor value, theta, of the Courant number. For rapid pressure transients such as waterhammer, the implicit method can yield reasonable results with limited numerical dispersion and attenuation if theta is only slightly greater than the critical value of 0.5. For slower pressure gradients in single and two-phase flows, reasonable numerical solutions may be achieved for Courant number values as high as 20.

  8. Measurements of Wavenumber Spectra in the Solar Wind Using Four-Point Data from Cluster

    NASA Astrophysics Data System (ADS)

    Narita, Y.; Glassmeier, K.; Treumann, R. A.; Goldstein, M. L.

    2006-12-01

    Energy spectra of the solar wind fluctuations have been extensively investigated by a number of spacecraft for almost four decades, but the analyses were made primarily on the basis of single point measurements. We determine energy spectra of the magnetic field fluctuations directly in the wavenumber domain using four-point measurements from the Cluster spacecraft. The wavenumber spectra exhibit features that are reminiscent of turbulence: an inertial range with the spectral slope approximately -5/3 at smaller wavenumbers; and a dissipation range at larger wavenumbers. This justifies the use of the frequency spectra in the earlier studies. Furthermore, we attempt to determine the spectra in the parallel and perpendicular direction to the mean magnetic field and also those of three invariants in ideal magnetohydrodymanics: total energy, cross helicity, and magnetic helicity using both velocity (from PEACE) and magnetic field measurements (FGM) on four spacecraft.

  9. The conductivity of Bi(111) investigated with nanoscale four point probes

    NASA Astrophysics Data System (ADS)

    Wells, J. W.; Handrup, K.; Kallehauge, J. F.; Gammelgaard, L.; Bøggild, P.; Balslev, M. B.; Hansen, J. E.; Petersen, P. R. E.; Hofmann, Ph.

    2008-09-01

    The room temperature conductance of Bi(111) was measured using microscopic four point probes with a contact spacing down to 500 nm. The conductance is remarkably similar to that of the bulk, indicating that surface scattering is not a major mechanism for restricting the mobility at this length scale. Also, the high density of electronic surface states on Bi(111) does not appear to have a major influence on the measured conductance. The lower limit for the resistivity due to electronic surface states is found to be around 5 Ω. With such a value for the surface resistivity, surface conduction should not be a significant factor to inhibit the observation of the predicted semiconductor to semimetal transition for thin films of Bi.

  10. Electrical four-point probing of spherical metallic thin films coated onto micron sized polymer particles

    NASA Astrophysics Data System (ADS)

    Pettersen, Sigurd R.; Stokkeland, August Emil; Kristiansen, Helge; Njagi, John; Redford, Keith; Goia, Dan V.; Zhang, Zhiliang; He, Jianying

    2016-07-01

    Micron-sized metal-coated polymer spheres are frequently used as filler particles in conductive composites for electronic interconnects. However, the intrinsic electrical resistivity of the spherical thin films has not been attainable due to deficiency in methods that eliminate the effect of contact resistance. In this work, a four-point probing method using vacuum compatible piezo-actuated micro robots was developed to directly investigate the electric properties of individual silver-coated spheres under real-time observation in a scanning electron microscope. Poly(methyl methacrylate) spheres with a diameter of 30 μm and four different film thicknesses (270 nm, 150 nm, 100 nm, and 60 nm) were investigated. By multiplying the experimental results with geometrical correction factors obtained using finite element models, the resistivities of the thin films were estimated for the four thicknesses. These were higher than the resistivity of bulk silver.

  11. Reduction of positional errors in a four-point probe resistance measurement

    NASA Astrophysics Data System (ADS)

    Worledge, D. C.

    2004-03-01

    A method for reducing resistance errors due to inaccuracy in the positions of the probes in a collinear four-point probe resistance measurement of a thin film is presented. By using a linear combination of two measurements which differ by interchange of the I- and V- leads, positional errors can be eliminated to first order. Experimental data measured using microprobes show a substantial reduction in absolute error from 3.4% down to 0.01%-0.1%, and an improvement in precision by a factor of 2-4. The application of this technique to the current-in-plane tunneling method to measure electrical properties of unpatterned magnetic tunnel junction wafers is discussed.

  12. Dynamics of graphite fiber intercalation: In situ resistivity measurements with a four point probe

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.

    1984-01-01

    The dynamics of ferric chloride intercalation of single graphite fibers were studied, in situ, using a four point dc bridge. Measurements before, during and after the intercalation showed that the intercalation occurred within minutes at 200 C. Changes in fiber resistivity after exposure to air suggested hydration of the graphite intercalation compound. Deintercalation of the ferric chloride was initiated at temperatures in excess of 400 C. cycling the intercalant into and out of the graphite fiber gave no improvements in fiber resistivity. The activation energy of the ferric chloride intercalation reaction was found to be 17 + or - 4 kcal/mol 1 consistent with the concept of a preliminary nucleation step in the intercalation reaction.

  13. Four-point Bend Testing of Irradiated Monolithic U-10Mo Fuel

    SciTech Connect

    Rabin, B. H.; Lloyd, W. R.; Schulthess, J. L.; Wright, J. K.; Lind, R. P.; Scott, L.; Wachs, K. M.

    2015-03-01

    This paper presents results of recently completed studies aimed at characterizing the mechanical properties of irradiated U-10Mo fuel in support of monolithic base fuel qualification. Mechanical properties were evaluated in four-point bending. Specimens were taken from fuel plates irradiated in the RERTR-12 and AFIP-6 Mk. II irradiation campaigns, and tests were conducted in the Hot Fuel Examination Facility (HFEF) at Idaho National Laboratory (INL). The monolithic fuel plates consist of a U-10Mo fuel meat covered with a Zr diffusion barrier layer fabricated by co-rolling, clad in 6061 Al using a hot isostatic press (HIP) bonding process. Specimens exhibited nominal (fresh) fuel meat thickness ranging from 0.25 mm to 0.64 mm, and fuel plate average burnup ranged from approximately 0.4 x 1021 fissions/cm3 to 6.0 x 1021 fissions/cm3. After sectioning the fuel plates, the 6061 Al cladding was removed by dissolution in concentrated NaOH. Pre- and post-dissolution dimensional inspections were conducted on test specimens to facilitate accurate analysis of bend test results. Four-point bend testing was conducted on the HFEF Remote Load Frame at a crosshead speed of 0.1 mm/min using custom-designed test fixtures and calibrated load cells. All specimens exhibited substantially linear elastic behavior and failed in a brittle manner. The influence of burnup on the observed slope of the stress-strain curve and the calculated fracture strength is discussed.

  14. Composite laminate failure parameter optimization through four-point flexure experimentation and analysis

    DOE PAGES

    Nelson, Stacy; English, Shawn; Briggs, Timothy

    2016-05-06

    Fiber-reinforced composite materials offer light-weight solutions to many structural challenges. In the development of high-performance composite structures, a thorough understanding is required of the composite materials themselves as well as methods for the analysis and failure prediction of the relevant composite structures. However, the mechanical properties required for the complete constitutive definition of a composite material can be difficult to determine through experimentation. Therefore, efficient methods are necessary that can be used to determine which properties are relevant to the analysis of a specific structure and to establish a structure's response to a material parameter that can only be definedmore » through estimation. The objectives of this paper deal with demonstrating the potential value of sensitivity and uncertainty quantification techniques during the failure analysis of loaded composite structures; and the proposed methods are applied to the simulation of the four-point flexural characterization of a carbon fiber composite material. Utilizing a recently implemented, phenomenological orthotropic material model that is capable of predicting progressive composite damage and failure, a sensitivity analysis is completed to establish which material parameters are truly relevant to a simulation's outcome. Then, a parameter study is completed to determine the effect of the relevant material properties' expected variations on the simulated four-point flexural behavior as well as to determine the value of an unknown material property. This process demonstrates the ability to formulate accurate predictions in the absence of a rigorous material characterization effort. Finally, the presented results indicate that a sensitivity analysis and parameter study can be used to streamline the material definition process as the described flexural characterization was used for model validation.« less

  15. Electron Impedances

    SciTech Connect

    P Cameron

    2011-12-31

    It is only recently, and particularly with the quantum Hall effect and the development of nanoelectronics, that impedances on the scale of molecules, atoms and single electrons have gained attention. In what follows the possibility that characteristic impedances might be defined for the photon and the single free electron is explored is some detail, the premise being that the concepts of electrical and mechanical impedances are relevant to the elementary particle. The scale invariant quantum Hall impedance is pivotal in this exploration, as is the two body problem and Mach's principle.

  16. Mechanistic insights into UV-induced electron transfer from PCBM to titanium oxide in inverted-type organic thin film solar cells using AC impedance spectroscopy.

    PubMed

    Kuwabara, Takayuki; Iwata, Chiaki; Yamaguchi, Takahiro; Takahashi, Kohshin

    2010-08-01

    An inverted organic bulk-heterojunction solar cell containing amorphous titanium oxide (TiOx) as an electron collection electrode with the structure ITO/TiO(x)/[6,6]-phenyl C(61) butyric acid methyl ester (PCBM): regioregular poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxylenethiophene):poly(4-styrene sulfonic acid)/Au (TiO(x) cell) was fabricated. Its complicated photovoltaic properties were investigated by photocurrent-voltage and alternating current impedance spectroscopy measurements. The TiO(x) cell required a significant amount of time (approximately 60 min) to reach its maximum power conversion efficiency (PCE) of 2.6%. To investigate the reason for this slow photoresponse, we investigated the influences of UV light and water molecules adsorbed on the TiO(x) layer. Surface treatment of the TiO(x) cell with water induced a rapid photoresponse and enhanced the performance, giving a PCE of 2.97%. However, the durability of the treated cell was considerably inferior that of the untreated cell because of UV-induced photodegradation. The cause of the rapid photoresponse of the treated cell was attributed to the formation of hydrogen bonds between adsorbed water molecules and carbonyl oxygen atoms in PCBM close to the TiO(x) surface. When the TiO(x) surface was positively charged by UV-induced holes, the carbonyl oxygen in PCBM close to the TiO(x) surface can quickly join to the TiO(x) surface, rapidly transporting photogenerated electrons from PCBM to TiO(x) in competition with the photocatalyzed degradation. The experimental results suggested that the slow photoresponse of the untreated TiO(x) cell was because the morphology of the photoactive organic layer changed gradually upon irradiation to improve the transport of photocarriers at the TiO(x)/PCBM:P3HT interface.

  17. Clay mineral variations in Four-Point Bayou, Terrebonne Parish, Louisiana

    SciTech Connect

    Baxter, P.; Ferrell, R.E.

    1987-05-01

    Cores of unconsolidated sediments from the Four-Point Bayou area, representing an interdistributary basin deposit less than 1000 years old, were examined for variations in clay mineralogy. Two specific environments of deposition, interpreted from grain-size analyses and sedimentary structures, were compared: a sand-rich natural levee deposit and an overlying clay-rich interdistributary bay. Analyses of the < 2 ..mu..m clay fraction using Schultz's method show smectite to be the predominant clay in both environments. The relative abundance of kaolinite:illite:smectite in the natural levee, near-channel deposits is 1:3:6. In bay deposits, it is 2:3:5. Hydraulic fractionation of clays during deposition should result in a high K/I ratio in natural levees and a low ratio in bay deposits, the reverse of what was observed. Kaolinite should have been enriched in natural levees at the expense of illite. Other processes must have been operative either at the time of deposition or during early diagenesis of these deposits. Possible mechanisms include localized redistribution and sorting or chemical equilibration with early pore fluids associated with saltwater intrusion. The mixing of clays from different sources could also account for the observed differences.

  18. The Complete Four-Loop Four-Point Amplitude in N

    SciTech Connect

    Bern, Z.; Carrasco, J.J.M.; Dixon, Lance J.; Johansson, H.; Roiban, R.; /Penn State U.

    2010-08-25

    We present the complete four-loop four-point amplitude in N = 4 super-Yang-Mills theory, for a general gauge group and general D-dimensional covariant kinematics, and including all non-planar contributions. We use the method of maximal cuts - an efficient application of the unitarity method - to construct the result in terms of 50 four-loop integrals. We give graphical rules, valid in D-dimensions, for obtaining various non-planar contributions from previously-determined terms. We examine the ultraviolet behavior of the amplitude near D = 11/2. The non-planar terms are as well-behaved in the ultraviolet as the planar terms. However, in the color decomposition of the three- and four-loop amplitude for an SU(N{sub c}) gauge group, the coefficients of the double-trace terms are better behaved in the ultraviolet than are the single-trace terms. The results from this paper were an important step toward obtaining the corresponding amplitude in N = 8 supergravity, which confirmed the existence of cancellations beyond those needed for ultraviolet finiteness at four loops in four dimensions. Evaluation of the loop integrals near D = 4 would permit tests of recent conjectures and results concerning the infrared behavior of four-dimensional massless gauge theory.

  19. Surface-adaptable all-metal micro-four-point probe with unique configuration

    NASA Astrophysics Data System (ADS)

    Kim, J. K.; Choi, Y. S.; Lee, D. W.

    2015-07-01

    In this paper, we propose a surface-adaptable all-metal micro-four-point probe (μ4PP) with a unique configuration. The μ4PP consists of four independent metallic sub-cantilevers with sharp Cu tips, and an SU-8 body structure to support the sub-cantilevers. The tip height is approximately 15 μm, and the tips are fabricated by anisotropic wet-etching of silicon followed by Cu electroplating. Each metallic cantilever connected to the SU-8 body structure acts as a flexible spring, so that the conducting tip can make gentle, non-destructive contact with fragile surfaces. To enhance the adhesion between the metallic sub-cantilevers and the SU-8 body, mushroom-shaped Cu structures were fabricated using an under-baked and under-exposed photolithography process. Various μ4PPs were designed and fabricated to verify their diverse range of applications, and preliminary experiments were performed using these fabricated μ4PPs. The resultant flexibility and reliability were experimentally confirmed on several samples, such as a polymer cantilever, a graphene flake, and curved metallic surfaces. We also expect that the proposed μ4PP will be suitable for measuring the anisotropic characteristics of crystal materials or the Hall effect in semiconductors.

  20. Reliable four-point flexion test and model for die-to-wafer direct bonding

    SciTech Connect

    Tabata, T. Sanchez, L.; Fournel, F.; Moriceau, H.

    2015-07-07

    For many years, wafer-to-wafer (W2W) direct bonding has been very developed particularly in terms of bonding energy measurement and bonding mechanism comprehension. Nowadays, die-to-wafer (D2W) direct bonding has gained significant attention, for instance, in photonics and microelectro-mechanics, which supposes controlled and reliable fabrication processes. So, whatever the stuck materials may be, it is not obvious whether bonded D2W structures have the same bonding strength as bonded W2W ones, because of possible edge effects of dies. For that reason, it has been strongly required to develop a bonding energy measurement technique which is suitable for D2W structures. In this paper, both D2W- and W2W-type standard SiO{sub 2}-to-SiO{sub 2} direct bonding samples are fabricated from the same full-wafer bonding. Modifications of the four-point flexion test (4PT) technique and applications for measuring D2W direct bonding energies are reported. Thus, the comparison between the modified 4PT and the double-cantilever beam techniques is drawn, also considering possible impacts of the conditions of measures such as the water stress corrosion at the debonding interface and the friction error at the loading contact points. Finally, reliability of a modified technique and a new model established for measuring D2W direct bonding energies is demonstrated.

  1. Acoustic emission responses of plasma sprayed ceramics during four point bend tests

    SciTech Connect

    Lin, Chung-Kwei; Leigh, S.H.; Berndt, C.C.

    1996-12-31

    Free standing ceramics including alumina-13 wt.% titania (AT13), alumina-3 wt.% titania (AT3), alumina-40 wt.% zirconia (AZ40), and calcia-stabilized zirconia (CSZ), were produced by water-stabilized plasma spraying. Four point bend tests were performed in the in-plane direction (i.e., spray direction) to obtain the modulus of rupture of the materials. In situ acoustic emission (AE) monitoring was used to detect cracking during the tests. The AE characteristics such as ring down counts, event duration, peak amplitude, and energy were recorded and analyzed to evaluate different cracking mechanisms. The AE responses versus time for individual tests were evaluated and two basic types of cracking mechanisms; i.e., catastrophic failure and microcracking before failure, can be observed. AT3 and AZ40 tend to exhibit microcracking before failure and CSZ shows catastrophic failure. However, both mechanisms can be observed for AT13. For the total AE responses, the amplitude distributions are skewed to the right and the energy distributions show multi-modal distributions. Micro-, transitional, and macro-cracks can be better distinguished by the energy distribution. The relative proportion of these cracks was also determined.

  2. Characterization of protein-immobilized polystyrene nanoparticles using impedance spectroscopy.

    PubMed

    Park, Soo-In; Lee, Sang-Yup

    2014-10-01

    A novel approach for characterization of non-conductive protein-immobilized nanoparticles using AC impedance spectroscopy combined with conductive atomic force microscopy was examined. As AC impedance spectroscopy can provide information on diverse electrical properties such as capacitance and inductance, it is applicable to the characterization of non-conductive substances. Several non-conductive protein-immobilized polystyrene nanoparticles were analyzed using AC impedance spectroscopy, and their impedance spectra were used as markers for nanoparticle identification. Analyses of impedance signals using an electrical circuit model established that the capacitance and inductance of each nanoparticle changed with the adsorbed protein and that impedance spectral differences were characteristic properties of the proteins. From this study, AC impedance spectroscopy was shown to be a useful tool for characterization of non-conductive nanoparticles and is expected to be applicable to the development of sensors for nanomaterials. PMID:25942903

  3. Least restrictive measures: alternatives to four-point restraints and seclusion.

    PubMed

    Morales, E; Duphorne, P L

    1995-10-01

    Following the review and discussion of alternative measures in the use of four-point restraints and seclusion on an acute psychiatric inpatient unit, the staff increased the use of "least restrictive" measures with aggressive patients. This involved increased attention to escalating behavior and using alternatives. Although early recognition did not guarantee success in every situation, patients were included in making choices and being in control of which option to take. When staff became more knowledgeable about the use of alternatives, they were more comfortable offering patients choices and did not wait until restraints and seclusion were necessary. It was beneficial to review the rationale for the use of seclusion and restraints with both patients and staff. Specific approaches for early recognition and intervention focused on verbal control, limit setting, and decreased stimulation. It is important that staff have a clear understanding of their range of treatment strategies from most to "least restrictive" measures during stressful times when patients become confused, angry, or frightened and may lose control. Patients must be made aware of their choices during this cycle and understand the consequences of their behavior. Planning educational inservice programs for staff to address this content and share approaches to specific situations can be effective. Staff debriefing following an incident is crucial to discuss reactions to the use of restraints and seclusion and to plan for the use of alternative measures in the future. All patients need a chance to express themselves. As staff we must take time to stop, look, and listen. We must be aware of our own thoughts and feelings and think of choices. What are the ¿least restrictive¿ measures? We need to work with patients in considering a range of measures without taking unnecessary risks or disregarding issues. We must work with our patients so that we all can learn a valuable lesson. Why not give our

  4. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  5. Analysis of pregnant occupant crash exposure and the potential effectiveness of four-point seatbelts in far side crashes.

    PubMed

    Duma, Stefan M; Moorcroft, David M; Gabler, Hampton C; Manoogian, Sarah M; Stitzel, Joel D; Duma, Greg G

    2006-01-01

    The purpose of this paper is to present the crash exposure patterns of pregnant occupants and to evaluate the effectiveness of restraint systems, including four-point seatbelts, in far side crashes. The NASS CDS database revealed that 53.0 % of pregnant occupants are exposed to frontal crashes while 13.5 % are exposed to far side impacts. Given that far side crashes were the second leading crash mode after frontal impacts, a previously validated MADYMO computer model of a 30 week pregnant occupant was utilized to investigate pregnant occupant biomechanics in far side crashes. Three impact speeds (5, 15, and 25 mph) were simulated with four restraint conditions: unbelted, lap-belt only, three-point belt, and a four-point belt. Direct abdominal contact from the shoulder strap of the three-point or four-point belt caused uterine-placental strain in contrast to the inertial loading induced strain in the lap-belt and unbelted cases. Overall, the three-point and four-point belt systems provide superior restraint effectiveness for the pregnant occupant compared to the lap-belt and no restraint cases. The four-point resulted in slightly better performance than the three-point belt by reducing the fetal injury risk and occupant excursion.

  6. A test of bosonization at the level of four-point functions in Chern-Simons vector models

    NASA Astrophysics Data System (ADS)

    Bedhotiya, Akshay; Prakash, Shiroman

    2015-12-01

    We study four-point functions in Chern-Simons vector models in the large N limit. We compute the four-point function of the scalar primary to all orders in the `t Hooft coupling λ = N/k in U ( N ) k Chern-Simons theory coupled to a fundamental fermion, in both the critical and non-critical theory, for a particular case of the external momenta. These theories cover the entire 3-parameter "quasi-boson" and 2-parameter "quasi-fermion" families of 3-dimensional quantum field theories with a slightly-broken higher spin symmetry. Our results are consistent with the celebrated bosonization duality, as we explicitly verify by calculating four-point functions in the free critical and non-critical bosonic theories.

  7. Two-Point Stretchable Electrode Array for Endoluminal Electrochemical Impedance Spectroscopy Measurements of Lipid-Laden Atherosclerotic Plaques.

    PubMed

    Packard, René R Sevag; Zhang, XiaoXiao; Luo, Yuan; Ma, Teng; Jen, Nelson; Ma, Jianguo; Demer, Linda L; Zhou, Qifa; Sayre, James W; Li, Rongsong; Tai, Yu-Chong; Hsiai, Tzung K

    2016-09-01

    Four-point electrode systems are commonly used for electric impedance measurements of biomaterials and tissues. We introduce a 2-point system to reduce electrode polarization for heterogeneous measurements of vascular wall. Presence of endoluminal oxidized low density lipoprotein (oxLDL) and lipids alters the electrochemical impedance that can be measured by electrochemical impedance spectroscopy (EIS). We developed a catheter-based 2-point micro-electrode configuration for intravascular deployment in New Zealand White rabbits. An array of 2 flexible round electrodes, 240 µm in diameter and separated by 400 µm was microfabricated and mounted on an inflatable balloon catheter for EIS measurement of the oxLDL-rich lesions developed as a result of high-fat diet-induced hyperlipidemia. Upon balloon inflation, the 2-point electrode array conformed to the arterial wall to allow deep intraplaque penetration via alternating current (AC). The frequency sweep from 10 to 300 kHz generated an increase in capacitance, providing distinct changes in both impedance (Ω) and phase (ϕ) in relation to varying degrees of intraplaque lipid burden in the aorta. Aortic endoluminal EIS measurements were compared with epicardial fat tissue and validated by intravascular ultrasound and immunohistochemistry for plaque lipids and foam cells. Thus, we demonstrate a new approach to quantify endoluminal EIS via a 2-point stretchable electrode strategy.

  8. Two-Point Stretchable Electrode Array for Endoluminal Electrochemical Impedance Spectroscopy Measurements of Lipid-Laden Atherosclerotic Plaques.

    PubMed

    Packard, René R Sevag; Zhang, XiaoXiao; Luo, Yuan; Ma, Teng; Jen, Nelson; Ma, Jianguo; Demer, Linda L; Zhou, Qifa; Sayre, James W; Li, Rongsong; Tai, Yu-Chong; Hsiai, Tzung K

    2016-09-01

    Four-point electrode systems are commonly used for electric impedance measurements of biomaterials and tissues. We introduce a 2-point system to reduce electrode polarization for heterogeneous measurements of vascular wall. Presence of endoluminal oxidized low density lipoprotein (oxLDL) and lipids alters the electrochemical impedance that can be measured by electrochemical impedance spectroscopy (EIS). We developed a catheter-based 2-point micro-electrode configuration for intravascular deployment in New Zealand White rabbits. An array of 2 flexible round electrodes, 240 µm in diameter and separated by 400 µm was microfabricated and mounted on an inflatable balloon catheter for EIS measurement of the oxLDL-rich lesions developed as a result of high-fat diet-induced hyperlipidemia. Upon balloon inflation, the 2-point electrode array conformed to the arterial wall to allow deep intraplaque penetration via alternating current (AC). The frequency sweep from 10 to 300 kHz generated an increase in capacitance, providing distinct changes in both impedance (Ω) and phase (ϕ) in relation to varying degrees of intraplaque lipid burden in the aorta. Aortic endoluminal EIS measurements were compared with epicardial fat tissue and validated by intravascular ultrasound and immunohistochemistry for plaque lipids and foam cells. Thus, we demonstrate a new approach to quantify endoluminal EIS via a 2-point stretchable electrode strategy. PMID:26857007

  9. Impedance Scaling and Impedance Control

    NASA Astrophysics Data System (ADS)

    Chou, W.; Griffin, J.

    1997-05-01

    When a machine becomes really large, such as the Really Large Hadron Collider (RLHC),(G. W. Foster and E. Malamud, Fermilab-TM-1976 (June, 1996).) of which the circumference could reach the order of megameters, beam instability could be an essential bottleneck. This paper studies the scaling of the instability threshold vs. machine size when the coupling impedance scales in a ``normal'' way. It is shown that the beam would be intrinsically unstable for the RLHC. As a possible solution to this problem, it is proposed to introduce local impedance inserts for controlling the machine impedance. In the longitudinal plane, this could be done by using a heavily detuned rf cavity (e.g., a biconical structure), which could provide large imaginary impedance with the right sign (i.e., inductive or capacitive) while keeping the real part small. In the transverse direction, a carefully designed variation of the cross section of a beam pipe could generate negative impedance that would partially compensate the transverse impedance in one plane.

  10. Application of alternating current impedance to fuel cell modeling

    SciTech Connect

    Springer, T.E.

    1999-05-02

    AC impedance has provided a useful diagnostic tool in the Los Alamos polymer electrolyte fuel cell (PEFC) program. The author reviews the techniques he has used in ac impedance modeling. These techniques include equation implementation, model simplification and verification, least squares fitting, application of two-dimensional Laplace equation solvers handling complex interfacial boundary conditions, and interpretation of impedance features. The separate features of the complete electrode model are explained by analytic examples.

  11. Experimental investigation of fatigue behavior of carbon fiber composites using fully-reversed four-point bending test

    NASA Astrophysics Data System (ADS)

    Amiri, Ali

    Carbon fiber reinforced polymers (CFRP) have become an increasingly notable material for use in structural engineering applications. Some of their advantages include high strength-to-weight ratio, high stiffness-to-weight ratio, and good moldability. Prediction of the fatigue life of composite laminates has been the subject of various studies due to the cyclic loading experienced in many applications. Both theoretical studies and experimental tests have been performed to estimate the endurance limit and fatigue life of composite plates. One of the main methods to predict fatigue life is the four-point bending test. In most previous works, the tests have been done in one direction (load ratio, R, > 0). In the current work, we have designed and manufactured a special fixture to perform a fully reversed bending test (R = -1). Static four-point bending tests were carried out on three (0°/90°)15 and (± 45°)15 samples to measure the mechanical properties of CFRP. Testing was displacement-controlled at the rate of 10 mm/min until failure. In (0°/90°)15 samples, all failed by cracking/buckling on the compressive side of the sample. While in (± 45°)15 all three tests, no visual fracture or failure of the samples was observed. 3.4 times higher stresses were reached during four-point static bending test of (0° /90°)15 samples compared to (± 45°)15. Same trend was seen in literature for similar tests. Four-point bending fatigue tests were carried out on (0° /90°)15 sample with stress ratio, R = -1 and frequency of 5 Hz. Applied maximum stresses were approximately 45%, 56%, 67%, 72% and 76% of the measured yield stress for (0° /90°)15 samples. There was visible cracking through the thickness of the samples. The expected downward trend in fatigue life with increasing maximum applied stress was observed in S-N curves of samples. There appears to be a threshold for ‘infinite’ life, defined as 1.7 million cycles in the current work, at a maximum stress of about

  12. Development of micro-four-point probe in a scanning tunneling microscope for in situ electrical transport measurement

    SciTech Connect

    Ge, Jian-Feng; Liu, Zhi-Long; Gao, Chun-Lei; Qian, Dong; Liu, Canhua E-mail: jfjia@sjtu.edu.cn; Jia, Jin-Feng E-mail: jfjia@sjtu.edu.cn

    2015-05-15

    Electrons at surface may behave differently from those in bulk of a material. Multi-functional tools are essential in comprehensive studies on a crystal surface. Here, we developed an in situ microscopic four-point probe (4PP) transport measurement system on the basis of a scanning tunneling microscope (STM). In particular, convenient replacement between STM tips and micro-4PPs enables systematic investigations of surface morphology, electronic structure, and electrical transport property of a same sample surface. Performances of the instrument are demonstrated with high-quality STM images, tunneling spectra, and low-noise electrical I-V characteristic curves of a single-layer FeSe film grown on a conductive SrTiO{sub 3} surface.

  13. Four-Point Analysis of Molecular Fluctuations in Sucrose Benzoate Near the Glass Transition by Fourier Imaging Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Utterback, James; Cook, Jasper; Marcus, Andrew

    2010-03-01

    Glass-forming liquids exhibit broad heterogeneous distributions of relaxations. It is of considerable importance to determine the detailed forms of these distributions in order to understand how fast and slow processes are partitioned, and how they couple over time. Such information is available through four-point correlation and distribution functions. We present initial fluorescence fluctuation measurements of probe molecule rotation and translation in the glass forming liquid sucrose benzoate. These measurements are performed using a unique method called polarization-modulated Fourier imaging correlation spectroscopy (PM-FICS), which can simultaneously measure molecular center-of-mass motions and optical anisotropy fluctuations. By combining PM-FICS with single-molecule imaging techniques, we construct two-dimensional spectral densities and joint distribution functions that establish temporal correlations of microscopic coordinates over successive time intervals.

  14. Flexible SiO2 cantilevers for torsional self-aligning micro scale four-point probes

    NASA Astrophysics Data System (ADS)

    Kjær, D.; Gammelgaard, L.; Bøggild, P.; Hansen, O.; Petersen, P. R. E.; Hansen, J. E.

    2007-09-01

    In order to successfully measure the conductivity of a sample with a four-point probe, good alignment of the electrodes to the sample is important to establish even contact pressure and contact areas of the electrodes. By incorporating a hinge in a microfabricated SiO2 mono-cantilever the ability to compensate for misalignment is improved at a cost of reduced spring constant. Analytical calculations, numerical simulations on cantilever deflection and comparison with experimental results indicate that a reasonable compromise between torsional flexibility and overall spring constant can be achieved by proper dimensioning and placement of the hinge. Furthermore, it is shown that polymeric macro scale cantilever models can provide a fast and reliable understanding of the mechanical deflection properties of microfabricated SiO2 cantilevers.

  15. Note: a simple approach to fabricate a microscopic four-point probe for conductivity measurements in ultrahigh vacuum.

    PubMed

    Pang, Fei; Liang, Xuejin; Chen, Dongmin

    2013-07-01

    We present a simple method to fabricate microscopic four-point probe (M4PP) with spacing of 70-100 μm for conductivity measurements in ultrahigh vacuum. The probe includes four gold wires with 30 μm diameter and a 0.5 mm thickness sapphire slice as cantilever. One of the dual scanning tunneling microscope (DSTM) is replaced by M4PP. As a result, in situ transport measurement could be performed by M4PP and investigation of surface morphology by STM. Finally, we measure conductivity of 14 monolayer Bi(111) epitaxial film on n type Si which is 1.6 × 10(-3) Ω(-1)∕[larger open square].

  16. Effect of recovery from muscle strength imbalance in lower limb using four point weight bearing reduction system.

    PubMed

    Yu, Chang Ho; Kang, Seung Rok; Jeong, Ho Choon; Kim, Kyung; Kwon, Tae Kyu

    2014-01-01

    This study was performed to assess the improvement of muscle strength imbalance in the lower limbs using a four point weight bearing reduction system with a two-belt treadmill. Participants, each having differences in muscle function of the left and right legs of over 20%, were divided into two groups of ten. The participants were involved in experiments progressing 40 minutes per day, 3 days per week, during a period of 4 weeks. The maximal peak torque and average power were measured for testing joint torque in the hip, knee and ankle. The results showed the improvement of muscle imbalance as assessed by the maximal muscle strength was the most effective in the hip joint, while the improvement of muscular reaction was the most effective in the knee joint. We suggest that the method of weight bearing reduction could be sufficient to reduce muscle imbalance in the lower limbs.

  17. Electromyographic activity of trunk and hip muscles during stabilization exercises in four-point kneeling in healthy volunteers

    PubMed Central

    Vleeming, Andry; Bouche, Katie G.; Mahieu, Nele N.; Vanderstraeten, Guy G.; Danneels, Lieven A.

    2006-01-01

    Stabilization exercises are intended to optimize function of the muscles that are believed to govern trunk stability. Debate exists whether certain muscles are more important than others in optimally performing these exercises. Thirty healthy volunteers were asked to perform three frequently prescribed stabilization exercises in four-point kneeling. The electromyographic activity of different trunk and hip muscles was evaluated. Average amplitudes obtained during the exercises were normalized to the amplitude in maximal voluntary contraction (% MVIC). During all three exercises, the highest relative muscle activity levels (> 20% MVIC) were consistently found in the ipsilateral lumbar multifidus and gluteus maximus. During both the single leg extension (exercise 1) and the leg and arm extension exercise (exercise 2) the contralateral internal oblique and ipsilateral external oblique reached high levels (> 20%MVIC). During exercise 2 there were also high relative activity levels of the ipsilateral lumbar part and the contralateral thoracic part of the iliocostalis lumborum and the contralateral lumbar multifidus. During the leg and arm extension exercise with contralateral hip flexion (exercise 3) there were high relative muscle activity levels of all back muscles, except for the latissimus dorsi muscle. The lowest relative muscle activity levels (< 10% MVIC) were found in the rectus abdominis and the ipsilateral internal oblique during all exercises, and in the contralateral gluteus maximus during exercises 1 and 2. The results of this study show that in exercises in four-point kneeling performed by healthy subjects, hip and trunk muscles seem to work together in a harmonious way. This shows that when relative activity of muscles is measured, both “global and local” muscles function together in order to stabilize the spine. PMID:16896840

  18. Modeling of delamination in carbon/epoxy composite laminates under four point bending for damage detection and sensor placement optimization

    NASA Astrophysics Data System (ADS)

    Adu, Stephen Aboagye

    Laminated carbon fiber-reinforced polymer composites (CFRPs) possess very high specific strength and stiffness and this has accounted for their wide use in structural applications, most especially in the aerospace industry, where the trade-off between weight and strength is critical. Even though they possess much larger strength ratio as compared to metals like aluminum and lithium, damage in the metals mentioned is rather localized. However, CFRPs generate complex damage zones at stress concentration, with damage progression in the form of matrix cracking, delamination and fiber fracture or fiber/matrix de-bonding. This thesis is aimed at performing; stiffness degradation analysis on composite coupons, containing embedded delamination using the Four-Point Bend Test. The Lamb wave-based approach as a structural health monitoring (SHM) technique is used for damage detection in the composite coupons. Tests were carried-out on unidirectional composite coupons, obtained from panels manufactured with pre-existing defect in the form of embedded delamination in a laminate of stacking sequence [06/904/0 6]T. Composite coupons were obtained from panels, fabricated using vacuum assisted resin transfer molding (VARTM), a liquid composite molding (LCM) process. The discontinuity in the laminate structure due to the de-bonding of the middle plies caused by the insertion of a 0.3 mm thick wax, in-between the middle four (4) ninety degree (90°) plies, is detected using lamb waves generated by surface mounted piezoelectric (PZT) actuators. From the surface mounted piezoelectric sensors, response for both undamaged (coupon with no defect) and damaged (delaminated coupon) is obtained. A numerical study of the embedded crack propagation in the composite coupon under four-point and three-point bending was carried out using FEM. Model validation was then carried out comparing the numerical results with the experimental. Here, surface-to-surface contact property was used to model the

  19. ADVANCES IN IMPEDANCE THEORY

    SciTech Connect

    Stupakov, G.; /SLAC

    2009-06-05

    We review recent progress in the following areas of the impedance theory: calculation of impedance of tapers and small angle collimators; optical approximation and parabolic equation for the high-frequency impedance; impedance due to resistive inserts in a perfectly conducting pipe.

  20. A self-adjustable four-point probing system using polymeric three dimensional coils and non-toxic liquid metal.

    PubMed

    Oyunbaatar, Nomin-Erdene; Choi, Young Soo; Choi, Yong Soo; Lee, Dong-Weon

    2015-12-01

    This paper describes a self-adjustable four-point probe (S4PP) system with a square configuration. The S4PP system consists of 3D polymer coil springs for the independent operation of each tungsten (W) probe, microfluidic channels filled with a nontoxic liquid metal, and a LabView-based control system. The 3D coil springs made by PMMA are fabricated with a 3D printer and are positioned in a small container filled with the non-toxic liquid metal. This unique configuration allows independent self-adjustment of the probe heights for precise measurements of the electrical properties of both flexible and large-step-height microsamples. The feasibility of the fabricated S4PP system is evaluated by measuring the specific resistance of Cr and Au thin films deposited on silicon wafers. The system is then employed to evaluate the electrical properties of a Au thin film deposited onto a flexible and easily breakable silicon diaphragm (spring constant: ∼3.6 × 10(-5) N/m). The resistance of the Cr thin films (thickness: 450 nm) with step heights of 60 and 90 μm is also successfully characterized. These experimental results indicate that the proposed S4PP system can be applied to common metals and semiconductors as well as flexible and large-step-height samples. PMID:26724065

  1. Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-omega method.

    PubMed

    Choi, Tae-Youl; Poulikakos, Dimos; Tharian, Joy; Sennhauser, Urs

    2006-08-01

    The thermal conductivity of individual multiwalled carbon nanotubes was measured by utilizing the four-point-probe third-harmonic method, based on the fact that the third harmonic amplitude and phase as a response to applied alternate current at fundamental frequency, omega, can be expressed in terms of thermal conductivity and diffusivity. To this end, a microfabricated device composed of four metal electrodes was modified to manufacture nanometer-sized wires by using a focused ion beam source. A carbon nanotube could then be suspended over a deep trench milled by the focused ion beam, preventing heat loss to the substrate. Compared with the two-point-probe technique, a significant improvement in accuracy is assured by using four probes, because the contact contribution to the determination of the thermal conductivity is eliminated, making it possible to measure the correct signals of first and third harmonics. The multiwalled carbon nanotube was modeled as a one-dimensional diffusive energy transporter and its thermal conductivity was measured at room temperature under vacuum to be 300 +/- 20 W/mK. PMID:16895340

  2. A self-adjustable four-point probing system using polymeric three dimensional coils and non-toxic liquid metal

    NASA Astrophysics Data System (ADS)

    Oyunbaatar, Nomin-Erdene; Choi, Young Soo; Lee, Dong-Weon

    2015-12-01

    This paper describes a self-adjustable four-point probe (S4PP) system with a square configuration. The S4PP system consists of 3D polymer coil springs for the independent operation of each tungsten (W) probe, microfluidic channels filled with a nontoxic liquid metal, and a LabView-based control system. The 3D coil springs made by PMMA are fabricated with a 3D printer and are positioned in a small container filled with the non-toxic liquid metal. This unique configuration allows independent self-adjustment of the probe heights for precise measurements of the electrical properties of both flexible and large-step-height microsamples. The feasibility of the fabricated S4PP system is evaluated by measuring the specific resistance of Cr and Au thin films deposited on silicon wafers. The system is then employed to evaluate the electrical properties of a Au thin film deposited onto a flexible and easily breakable silicon diaphragm (spring constant: ˜3.6 × 10-5 N/m). The resistance of the Cr thin films (thickness: 450 nm) with step heights of 60 and 90 μm is also successfully characterized. These experimental results indicate that the proposed S4PP system can be applied to common metals and semiconductors as well as flexible and large-step-height samples.

  3. Communication disruption of Epiphyas postvittana (Lepidoptera: Tortricidae) by using two formulations at four point source densities in vineyards.

    PubMed

    Suckling, David M; Brockerhoff, Eckehard G; Stringer, Lloyd D; Butler, Ruth C; Campbell, Delyse M; Mosser, Lisa K; Cooperband, Miriam F

    2012-10-01

    Light brown apple moth [Epiphyas postvittana (Walker)] is now established as an economic and quarantine pest in California, and new technologies are being investigated to increase options for its management. Two new organic formulations for mating disruption, SPLAT LBAM HD-O and organic Hercon Biotie (biodegradable) were field tested at four point source densities (25, 72, 322, and 500/ha) and compared with the standard Isomate LBAM Plus (500/ha, as a positive control) and an untreated (negative) control. Assessment involved trapping using synthetic lures and virgin females. In total, 175,776 male light brown apple moths were caught to both the caged females and synthetic lures, from 10 February to 19 May 2011. The light brown apple moth catch dramatically decreased from baseline measurements after the treatments were applied, with the highest density treatments reducing catch to below 10% of the catch in the untreated controls within the first week (> 90% disruption). In synthetic lure traps, the SPLAT and Biotie treatment performed similarly well over all rates (P = 0.317 for posttreatment percentage communication disruption), but SPLAT performed better at disrupting virgin female traps (P = 0.045). There was a significant increase in disruption with an increasing number of points/ha (P < 0.001). Disruption of communication was similar for all three technologies (SPLAT, Biotie and Isomate) at 500 points/ha for both types of trap (P > 0.74). Disruption of this species in vineyards is thus highly feasible.

  4. (abstract) Scaling Nominal Solar Cell Impedances for Array Design

    NASA Technical Reports Server (NTRS)

    Mueller, Robert L; Wallace, Matthew T.; Iles, Peter

    1994-01-01

    This paper discusses a task the objective of which is to characterize solar cell array AC impedance and develop scaling rules for impedance characterization of large arrays by testing single solar cells and small arrays. This effort is aimed at formulating a methodology for estimating the AC impedance of the Mars Pathfinder (MPF) cruise and lander solar arrays based upon testing single cells and small solar cell arrays and to create a basis for design of a single shunt limiter for MPF power control of flight solar arrays having very different inpedances.

  5. Plasmonic-Based Electrochemical Impedance Spectroscopy: Application to Molecular Binding

    PubMed Central

    Lu, Jin; Wang, Wei; Wang, Shaopeng; Shan, Xiaonan; Li, Jinghong; Tao, Nongjian

    2012-01-01

    Plasmonic-based electrochemical impedance spectroscopy (P-EIS) is developed to investigate molecular binding on surfaces. Its basic principle relies on the sensitive dependence of surface plasmon resonance (SPR) signal on surface charge density, which is modulated by applying an AC potential to a SPR chip surface. The AC component of the SPR response gives the electrochemical impedance, and the DC component provides the conventional SPR detection. The plasmonic-based impedance measured over a range of frequency is in quantitative agreement with the conventional electrochemical impedance. Compared to the conventional SPR detection, P-EIS is sensitive to molecular binding taking place on the chip surface, and less sensitive to bulk refractive index changes or non-specific binding. Moreover, this new approach allows for simultaneous SPR and surface impedance analysis of molecular binding processes. PMID:22122514

  6. Dynamical heterogeneity in simulated glass-forming liquids studied via a four-point spatiotemporal density correlation function

    NASA Astrophysics Data System (ADS)

    Lacevic, Naida

    Relaxation in supercooled liquids at temperatures above their glass transition and below the onset temperature of "slow" dynamics involves the correlated motion of neighboring particles. This correlated motion results in the appearance of spatially heterogeneous dynamics or "dynamical heterogeneity". Traditional, two-point, time-dependent density correlation functions, while providing information about the transient "caging" of particles on cooling, are unable to provide sufficiently detailed information about correlated motion and dynamical heterogeneity. Hence, we study a four-point, time-dependent density correlation function g4( r, t) and corresponding "structure factor" S 4(q, t) which measure the spatial correlations between the local liquid density at two points in space, each at two different times. We study g4(r, t) and S4(q, t) via MD simulations of a binary Lennard-Jones mixture approaching the mode coupling temperature from above. We find that the correlations between particles measured by g 4(r, t) and S4( q; t) become increasingly pronounced on cooling. The corresponding dynamical correlation length xi4(t) has a maximum as a function of time t, and the value of the maximum of xi 4(t) increases steadily from less than one particle diameter to a value exceeding nine particle diameters in the temperature range approaching the mode coupling temperature from above. We examine the individual contributions to g4(r, t), S4(q, t), and xi4( t), well as the corresponding order parameter Q( t and generalized susceptibility chi4(t). These contributions elucidate key differences between domains of localized, replaced and delocalized particles. We examine particles' instantaneous pair forces belonging to domains of localized and replaced particles. We detect a relationship between high pair forces and replaced particles. We also construct "force chains" of particles interacting with low, average and high force and examine their distribution and relation to domains

  7. AC Impedance Behavior of LaNi3.55Mn0.4Al0.3Co0.6Fe0.15 Hydrogen-Storage Alloy: Effect of Surface Area

    NASA Astrophysics Data System (ADS)

    Tliha, M.; Khaldi, C.; Lamloumi, J.

    2016-04-01

    The decrease of Cobalt content in alloy is very beneficial to reduce the production cost of the alloy, whereas the effect of Co on cycle life of the AB5-type hydrogen-storage alloys is extremely important. Therefore, it is interesting to investigate low-Co and/or Co-free AB5-type alloys in which Co was substituted by other elements. Iron is a key element in the development of low-Co AB5-type alloys. The aim of this work is to systematically investigate the effect of the real surface area on the all kinetic properties of a low-Co LaNi3.55Mn0.4Al0.3Co0.6Fe0.15 alloy under cycling using electrochemical impedance spectroscopy (EIS) technique. All kinetic properties of the electrode, such as exchange density, limiting current density, high-rate charge/discharge ability, cycle life time, electrocatalytic activity, and diffusion rate are related to the real surface area. During the EIS analysis, interestingly, we found that with increasing number of charge/discharge cycles, the metal hydride alloy powders undergo micro-cracking into smaller particles, and thus the real surface area of the alloy increases, which then influences the kinetic properties of the electrode reactions.

  8. New impedance and electrochemical image techniques for biological applications

    NASA Astrophysics Data System (ADS)

    Tao, N. J.

    2010-03-01

    A method to image local surface impedance and electrochemical current optically is developed for biological applications. The principle of the impedance imaging is based on sensitive dependence of surface plasmon resonance (SPR) on local surface charge density. The technique can image local surface impedance and charge while providing simultaneously a conventional surface plasmon resonance (SPR) image. By applying a potential modulation to a sensor surface, it is possible to obtain an image of the DC component, and the amplitude and phase images of the AC component. The DC image provides local molecular binding, as found in the conventional SPR imaging technique. The AC images are directly related to the local impedance of the surface. This imaging capability may be used as a new detection platform for DNA and protein microarrays, a new method for analyzing local molecular binding and interfacial processes and a new tool for imaging cells and tissues.

  9. Wakefields and coupling impedances

    NASA Astrophysics Data System (ADS)

    Kurennoy, Sergey

    1995-02-01

    After a short introduction of the wake potentials and coupling impedances, a few new results in impedance calculations are discussed. The first example is a new analytical method for calculating impedances of axisymmetric structures in the low frequency range, below the cutoff frequency of the vacuum chamber. The second example demonstrates that even very small discontinuities on a smooth waveguide can result in appearance of trapped modes, with frequencies slightly below the waveguide cutoff frequency. The high-frequency (above the cutoff) behavior of the coupling impedance of many small discontinuities is discussed in the third example.

  10. Precise determination of full matrix of piezo-optic coefficients with a four-point bending technique: the example of lithium niobate crystals.

    PubMed

    Krupych, Oleg; Savaryn, Viktoriya; Vlokh, Rostyslav

    2014-04-01

    A recently proposed technique representing a combination of digital imaging laser interferometry with a classical four-point bending method is applied to a canonical nonlinear optical crystal, LiNbO₃, to precisely determine a full matrix of its piezo-optic coefficients (POCs). The contribution of a secondary piezo-optic effect to the POCs is investigated experimentally and analyzed theoretically. Based on the POCs thus obtained, a full matrix of strain-optic coefficients (SOCs) is calculated and the appropriate errors are estimated. A comparison of our experimental errors for the POCs and SOCs with the known reference data allows us to claim the present technique as the most precise.

  11. Impedance modelling of pipes

    NASA Astrophysics Data System (ADS)

    Creasy, M. Austin

    2016-03-01

    Impedance models of pipes can be used to estimate resonant frequencies of standing waves and model acoustic pressure of closed and open ended pipes. Modelling a pipe with impedance methods allows additional variations to the pipe to be included in the overall model as a system. Therefore an actuator can be attached and used to drive the system and the impedance model is able to include the dynamics of the actuator. Exciting the pipe system with a chirp signal allows resonant frequencies to be measured in both the time and frequency domain. The measurements in the time domain are beneficial for introducing undergraduates to resonances without needing an understanding of fast Fourier transforms. This paper also discusses resonant frequencies in open ended pipes and how numerous texts incorrectly approximate the resonant frequencies for this specific pipe system.

  12. Superconducting active impedance converter

    DOEpatents

    Ginley, David S.; Hietala, Vincent M.; Martens, Jon S.

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  13. Superconducting active impedance converter

    DOEpatents

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1993-11-16

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures.

  14. The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems.

    PubMed

    Miccoli, I; Edler, F; Pfnür, H; Tegenkamp, C

    2015-06-10

    The electrical conductivity of solid-state matter is a fundamental physical property and can be precisely derived from the resistance measured via the four-point probe technique excluding contributions from parasitic contact resistances. Over time, this method has become an interdisciplinary characterization tool in materials science, semiconductor industries, geology, physics, etc, and is employed for both fundamental and application-driven research. However, the correct derivation of the conductivity is a demanding task which faces several difficulties, e.g. the homogeneity of the sample or the isotropy of the phases. In addition, these sample-specific characteristics are intimately related to technical constraints such as the probe geometry and size of the sample. In particular, the latter is of importance for nanostructures which can now be probed technically on very small length scales. On the occasion of the 100th anniversary of the four-point probe technique, introduced by Frank Wenner, in this review we revisit and discuss various correction factors which are mandatory for an accurate derivation of the resistivity from the measured resistance. Among others, sample thickness, dimensionality, anisotropy, and the relative size and geometry of the sample with respect to the contact assembly are considered. We are also able to derive the correction factors for 2D anisotropic systems on circular finite areas with variable probe spacings. All these aspects are illustrated by state-of-the-art experiments carried out using a four-tip STM/SEM system. We are aware that this review article can only cover some of the most important topics. Regarding further aspects, e.g. technical realizations, the influence of inhomogeneities or different transport regimes, etc, we refer to other review articles in this field.

  15. The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems

    NASA Astrophysics Data System (ADS)

    Miccoli, I.; Edler, F.; Pfnür, H.; Tegenkamp, C.

    2015-06-01

    The electrical conductivity of solid-state matter is a fundamental physical property and can be precisely derived from the resistance measured via the four-point probe technique excluding contributions from parasitic contact resistances. Over time, this method has become an interdisciplinary characterization tool in materials science, semiconductor industries, geology, physics, etc, and is employed for both fundamental and application-driven research. However, the correct derivation of the conductivity is a demanding task which faces several difficulties, e.g. the homogeneity of the sample or the isotropy of the phases. In addition, these sample-specific characteristics are intimately related to technical constraints such as the probe geometry and size of the sample. In particular, the latter is of importance for nanostructures which can now be probed technically on very small length scales. On the occasion of the 100th anniversary of the four-point probe technique, introduced by Frank Wenner, in this review we revisit and discuss various correction factors which are mandatory for an accurate derivation of the resistivity from the measured resistance. Among others, sample thickness, dimensionality, anisotropy, and the relative size and geometry of the sample with respect to the contact assembly are considered. We are also able to derive the correction factors for 2D anisotropic systems on circular finite areas with variable probe spacings. All these aspects are illustrated by state-of-the-art experiments carried out using a four-tip STM/SEM system. We are aware that this review article can only cover some of the most important topics. Regarding further aspects, e.g. technical realizations, the influence of inhomogeneities or different transport regimes, etc, we refer to other review articles in this field.

  16. Thermal conductivity measurements of single-crystalline bismuth nanowires by the four-point-probe 3-ω technique at low temperatures.

    PubMed

    Lee, Seung-Yong; Kim, Gil-Sung; Lee, Mi-Ri; Lim, Hyuneui; Kim, Wan-Doo; Lee, Sang-Kwon

    2013-05-10

    We have successfully investigated the thermal conductivity (κ) of single-crystalline bismuth nanowires (BiNWs) with [110] growth direction, via a straightforward and powerful four-point-probe 3-ω technique in the temperature range 10-280 K. The BiNWs, which are well known as the most effective material for thermoelectric (TE) device applications, were synthesized by compressive thermal stress on a SiO2/Si substrate at 250-270 °C for 10 h. To understand the thermal transport mechanism of BiNWs, we present three kinds of experimental technique as follows, (i) a manipulation of a single BiNW by an Omni-probe in a focused ion beam (FIB), (ii) a suspended bridge structure integrating a four-point-probe chip by micro-fabrication to minimize the thermal loss to the substrate, and (iii) a simple 3-ω technique system setup. We found that the thermal transport of BiNWs is highly affected by boundary scattering of both phonons and electrons as the dominant heat carriers. The thermal conductivity of a single BiNW (d ~ 123 nm) was estimated to be ~2.9 W m(-1) K(-1) at 280 K, implying lower values compared to the thermal conductivity of the bulk (~11 W m(-1) K(-1) at 280 K). It was noted that this reduction in the thermal conductivity of the BiNWs could be due to strongly enhanced phonon-boundary scattering at the surface of the BiNWs. Furthermore, we present temperature-dependent (10-280 K) thermal conductivity of the BiNWs using the 3-ω technique.

  17. Impedance spectroscopy for the detection and identification of unknown toxins

    NASA Astrophysics Data System (ADS)

    Riggs, B. C.; Plopper, G. E.; Paluh, J. L.; Phamduy, T. B.; Corr, D. T.; Chrisey, D. B.

    2012-06-01

    Advancements in biological and chemical warfare has allowed for the creation of novel toxins necessitating a universal, real-time sensor. We have used a function-based biosensor employing impedance spectroscopy using a low current density AC signal over a range of frequencies (62.5 Hz-64 kHz) to measure the electrical impedance of a confluent epithelial cell monolayer at 120 sec intervals. Madin Darby canine kidney (MDCK) epithelial cells were grown to confluence on thin film interdigitated gold electrodes. A stable impedance measurement of 2200 Ω was found after 24 hrs of growth. After exposure to cytotoxins anthrax lethal toxin and etoposide, the impedance decreased in a linear fashion resulting in a 50% drop in impedance over 50hrs showing significant difference from the control sample (~20% decrease). Immunofluorescent imaging showed that apoptosis was induced through the addition of toxins. Similarities of the impedance signal shows that the mechanism of cellular death was the same between ALT and etoposide. A revised equivalent circuit model was employed in order to quantify morphological changes in the cell monolayer such as tight junction integrity and cell surface area coverage. This model showed a faster response to cytotoxin (2 hrs) compared to raw measurements (20 hrs). We demonstrate that herein that impedance spectroscopy of epithelial monolayers serves as a real-time non-destructive sensor for unknown pathogens.

  18. Impedances of Tevatron separators

    SciTech Connect

    K. Y. Ng

    2003-05-28

    The impedances of the Tevatron separators are revisited and are found to be negligibly small in the few hundred MHz region, except for resonances at 22.5 MHz. The later are contributions from the power cables which may drive head-tail instabilities if the bunch is long enough.

  19. Longitudinal impedance of RHIC

    SciTech Connect

    Blaskiewicz, M.; Brennan, J. M.; Mernick, K.

    2015-05-03

    The longitudinal impedance of the two RHIC rings has been measured using the effect of potential well distortion on longitudinal Schottky measurements. For the blue RHIC ring Im(Z/n) = 1.5±0.2Ω. For the yellow ring Im(Z/n) = 5.4±1Ω.

  20. Implantable Impedance Plethysmography

    PubMed Central

    Theodor, Michael; Ruh, Dominic; Ocker, Martin; Spether, Dominik; Förster, Katharina; Heilmann, Claudia; Beyersdorf, Friedhelm; Manoli, Yiannos; Zappe, Hans; Seifert, Andreas

    2014-01-01

    We demonstrate by theory, as well as by ex vivo and in vivo measurements that impedance plethysmography, applied extravascularly directly on large arteries, is a viable method for monitoring various cardiovascular parameters, such as blood pressure, with high accuracy. The sensor is designed as an implant to monitor cardiac events and arteriosclerotic progression over the long term. PMID:25123467

  1. Recycler short kicker beam impedance

    SciTech Connect

    Crisp, Jim; Fellenz, Brian; /Fermilab

    2009-07-01

    Measured longitudinal and calculated transverse beam impedance is presented for the short kicker magnets being installed in the Fermilab Recycler. Fermi drawing number ME-457159. The longitudinal impedance was measured with a stretched wire and the Panofsky equation was used to estimate the transverse impedance. The impedance of 3319 meters (the Recycler circumference) of stainless vacuum pipe is provided for comparison. Although measurements where done to 3GHz, impedance was negligible above 30MHz. The beam power lost to the kicker impedance is shown for a range of bunch lengths. The measurements are for one kicker assuming a rotation frequency of 90KHz. Seven of these kickers are being installed.

  2. Epigastric impedance: a non-invasive method for the assessment of gastric emptying and motility.

    PubMed Central

    McClelland, G R; Sutton, J A

    1985-01-01

    The impedance of the epigastrium to a 4 mA, 100 KHz AC current increases while liquids of low electrical conductivity are being drunk. Logically, the decline which follows occurs as the liquid leaves the stomach. This impedance measurement of gastric emptying proved comparable with the dye dilution method. In a placebo controlled trial the impedance method recorded significantly faster gastric emptying rates after metoclopramide. The impedance trace contains regular activity in the 2-4 cycle/min range consistent with gastric contractions. This non-invasive and technically simple method may thus provide a measure of simultaneous gastric emptying rates and motility. PMID:3891533

  3. Impedance calculation for ferrite inserts

    SciTech Connect

    Breitzmann, S.C.; Lee, S.Y.; Ng, K.Y.; /Fermilab

    2005-01-01

    Passive ferrite inserts were used to compensate the space charge impedance in high intensity space charge dominated accelerators. They study the narrowband longitudinal impedance of these ferrite inserts. they find that the shunt impedance and the quality factor for ferrite inserts are inversely proportional to the imaginary part of the permeability of ferrite materials. They also provide a recipe for attaining a truly passive space charge impedance compensation and avoiding narrowband microwave instabilities.

  4. Acoustic ground impedance meter

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1984-01-01

    A method and apparatus are presented for measuring the acoustic impedance of a surface in which the surface is used to enclose one end of the chamber of a Helmholz resonator. Acoustic waves are generated in the neck of the resonator by a piston driven by a variable speed motor through a cam assembly. The acoustic waves are measured in the chamber and the frequency of the generated acoustic waves is measured by an optical device. These measurements are used to compute the compliance and conductance of the chamber and surface combined. The same procedure is followed with a calibration plate having infinite acoustic impedance enclosing the chamber of the resonator to compute the compliance and conductance of the chamber alone. Then by subtracting, the compliance and conductance for the surface is obtained.

  5. Superconducting active impedance converter

    SciTech Connect

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1992-12-31

    This invention is comprised of a transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10--80 K temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  6. Impedance Measurement Box

    ScienceCinema

    Christophersen, Jon

    2016-07-12

    Energy storage devices, primarily batteries, are now more important to consumers, industries and the military. With increasing technical complexity and higher user expectations, there is also a demand for highly accurate state-of-health battery assessment techniques. IMB incorporates patented, proprietary, and tested capabilities using control software and hardware that can be part of an embedded monitoring system. IMB directly measures the wideband impedance spectrum in seconds during battery operation with no significant impact on service life. It also can be applied to batteries prior to installation, confirming health before entering active service, as well as during regular maintenance. For more information about this project, visit http://www.inl.gov/rd100/2011/impedance-measurement-box/

  7. Impedance Measurement Box

    SciTech Connect

    Christophersen, Jon

    2011-01-01

    Energy storage devices, primarily batteries, are now more important to consumers, industries and the military. With increasing technical complexity and higher user expectations, there is also a demand for highly accurate state-of-health battery assessment techniques. IMB incorporates patented, proprietary, and tested capabilities using control software and hardware that can be part of an embedded monitoring system. IMB directly measures the wideband impedance spectrum in seconds during battery operation with no significant impact on service life. It also can be applied to batteries prior to installation, confirming health before entering active service, as well as during regular maintenance. For more information about this project, visit http://www.inl.gov/rd100/2011/impedance-measurement-box/

  8. A Four-Point Screening Method for Assessing Molecular Mechanism of Action (MMOA) Identifies Tideglusib as a Time-Dependent Inhibitor of Trypanosoma brucei GSK3β

    PubMed Central

    Swinney, Zachary T.; Haubrich, Brad A.; Xia, Shuangluo; Ramesha, Chakk; Gomez, Stephen R.; Guyett, Paul; Mensa-Wilmot, Kojo; Swinney, David C.

    2016-01-01

    Background New therapeutics are needed for neglected tropical diseases including Human African trypanosomiasis (HAT), a progressive and fatal disease caused by the protozoan parasites Trypanosoma brucei gambiense and T. b. rhodesiense. There is a need for simple, efficient, cost effective methods to identify new molecules with unique molecular mechanisms of action (MMOAs). The mechanistic features of a binding mode, such as competition with endogenous substrates and time-dependence can affect the observed inhibitory IC50, and differentiate molecules and their therapeutic usefulness. Simple screening methods to determine time-dependence and competition can be used to differentiate compounds with different MMOAs in order to identify new therapeutic opportunities. Methodology/Principal Findings In this work we report a four point screening methodology to evaluate the time-dependence and competition for inhibition of GSK3β protein kinase isolated from T. brucei. Using this method, we identified tideglusib as a time-dependent inhibitor whose mechanism of action is time-dependent, ATP competitive upon initial binding, which transitions to ATP non-competitive with time. The enzyme activity was not recovered following 100-fold dilution of the buffer consistent with an irreversible mechanism of action. This is in contrast to the T. brucei GSK3β inhibitor GW8510, whose inhibition was competitive with ATP, not time-dependent at all measured time points and reversible in dilution experiments. The activity of tideglusib against T. brucei parasites was confirmed by inhibition of parasite proliferation (GI50 of 2.3 μM). Conclusions/Significance Altogether this work demonstrates a straightforward method for determining molecular mechanisms of action and its application for mechanistic differentiation of two potent TbGSK3β inhibitors. The four point MMOA method identified tideglusib as a mechanistically differentiated TbGSK3β inhibitor. Tideglusib was shown to inhibit parasite

  9. Impedance Measurement Box

    SciTech Connect

    Morrison, William

    2014-11-20

    The IMB 50V software provides functionality for design of impedance measurement tests or sequences of tests, execution of these tests or sequences, processing measured responses and displaying and saving of the results. The software consists of a Graphical User Interface that allows configuration of measurement parameters and test sequencing, a core engine that controls test sequencing, execution of measurements, processing and storage of results and a hardware/software data acquisition interface with the IMB hardware system.

  10. Gynecologic electrical impedance tomograph

    NASA Astrophysics Data System (ADS)

    Korjenevsky, A.; Cherepenin, V.; Trokhanova, O.; Tuykin, T.

    2010-04-01

    Electrical impedance tomography extends to the new and new areas of the medical diagnostics: lungs, breast, prostate, etc. The feedback from the doctors who use our breast EIT diagnostic system has induced us to develop the 3D electrical impedance imaging device for diagnostics of the cervix of the uterus - gynecologic impedance tomograph (GIT). The device uses the same measuring approach as the breast imaging system: 2D flat array of the electrodes arranged on the probe with handle is placed against the body. Each of the 32 electrodes of the array is connected in turn to the current source while the rest electrodes acquire the potentials on the surface. The current flows through the electrode of the array and returns through the remote electrode placed on the patient's limb. The voltages are measured relative to another remote electrode. The 3D backprojection along equipotential surfaces is used to reconstruct conductivity distribution up to approximately 1 cm in depth. Small number of electrodes enables us to implement real time imaging with a few frames per sec. rate. The device is under initial testing and evaluation of the imaging capabilities and suitability of usage.

  11. Acoustic ground impedance meter

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1981-01-01

    A compact, portable instrument was developed to measure the acoustic impedance of the ground, or other surfaces, by direct pressure-volume velocity measurement. A Helmholz resonator, constructed of heavy-walled stainless steel but open at the bottom, is positioned over the surface having the unknown impedance. The sound source, a cam-driven piston of known stroke and thus known volume velocity, is located in the neck of the resonator. The cam speed is a variable up to a maximum 3600 rpm. The sound pressure at the test surface is measured by means of a microphone flush-mounted in the wall of the chamber. An optical monitor of the piston displacement permits measurement of the phase angle between the volume velocity and the sound pressure, from which the real and imaginary parts of the impedance can be evaluated. Measurements using a 5-lobed cam can be made up to 300 Hz. Detailed design criteria and results on a soil sample are presented.

  12. Performance monitoring of large-scale autonomously healed concrete beams under four-point bending through multiple non-destructive testing methods

    NASA Astrophysics Data System (ADS)

    Karaiskos, G.; Tsangouri, E.; Aggelis, D. G.; Van Tittelboom, K.; De Belie, N.; Van Hemelrijck, D.

    2016-05-01

    Concrete is still the leading structural material due to its low production cost and great structural design flexibility. Although it is distinguished by such a high durability and compressive strength, it is vulnerable in a series of ambient and operational degradation factors which all too frequently result in crack formation that can adversely affect its mechanical performance. The autonomous healing system, using encapsulated polyurethane-based, expansive, healing agent embedded in concrete, is triggered by the crack formation and propagation and promises material repair and operational service life extension. As shown in our previous studies, the formed cracks on small-scale concrete beams are sealed and repaired by filling them with the healing agent. In the present study, the crack formation and propagation in autonomously healed, large-scale concrete beams are thoroughly monitored through a combination of non-destructive testing (NDT) methods. The ultrasonic pulse velocity (UPV), using embedded low-cost and aggregate-size piezoelectric transducers, the acoustic emission (AE) and the digital image correlation (DIC) are the NDT methods which are comprehensively used. The integrated ultrasonic, acoustic and optical monitoring system introduces an experimental configuration that detects and locates the four-point bending mode fracture on large-scale concrete beams, detects the healing activation process and evaluates the subsequent concrete repair.

  13. The effect of contact stresses in four-point bend testing of graphite/epoxy and graphite/PMR-15 composite beams

    NASA Technical Reports Server (NTRS)

    Binienda, Wieslaw K.; Roberts, Gary D.; Papadopoulos, Demetrios S.

    1992-01-01

    The results of in-plane four-point bend experiments on unidirectionally reinforced composite beams are presented for graphite/epoxy (T300/934) and graphite/polyimide (G30-500/PMR-15) composites. The maximum load and the location of cracks formed during failure were measured for testpieces with fibers oriented at various angles to the beam axis. Since most of the beams failed near one or more of the load points, the strength of the beams was evaluated in terms of a proposed model, for the local stress distribution. In this model, an exact solution to the problem of a localized contact force acting on a unidirectionally reinforced half plane is used to describe the local stress field. The stress singularity at the load points is treated in a manner similar to the stress singularity at a crack tip in fracture mechanisms problems. Using this approach, the effect of fiber angle and elastic material properties on the strength of the beam is described in terms of a load intensity factor. For fiber angles less than 45 deg from the beam axis, a single crack is initiated near one of the load points at a critical value of the load intensity factor. The critical load intensity factor decreases with the increasing fiber angle. For larger fiber angles, multiple cracks occur at locations both near and away from the load points, and the load intensity factor at failure increases sharply with increasing fiber angle.

  14. Microstructural Properties and Four-Point Bend Fatigue Behavior of Ti-6.5Al-2Zr-1Mo-1V Welded Joints by Electron Beam Welding

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Zhai, T.; Zhang, Yuanbin

    2016-06-01

    With the help of a four-point-bend of fatigue rig, high-cycle fatigue tests were carried out on an Ti-6.5Al-2Zr-1Mo-1V titanium alloy at room temperature, 20 Hz and R = 0.1 in ambient air. The test results indicated that the fatigue strength of base metal, 888 MPa, is about 120% of yield strength. The fatigue strength of joints is 814 MPa. It is about 110% of yield strength of base metal. When the loading stress is higher, the fatigue failure region is located in middle weld zone of weld face, which the cracks are propagated along coarse β phase's grain boundary. When the loading stress is lower, the fatigue failure region is located between the incomplete recrystallization zone and base metal. The crack nucleation resistance gradually increases from the WN to HAZ with the variable of loading stress and β phase (little α' phases)→ α + β phase→ α phase.

  15. Towards a graphene-based quantum impedance standard

    SciTech Connect

    Kalmbach, C.-C.; Schurr, J. Ahlers, F. J.; Müller, A.; Novikov, S.; Lebedeva, N.; Satrapinski, A.

    2014-08-18

    Precision measurements of the quantum Hall resistance with alternating current (ac) in the kHz range were performed on epitaxial graphene in order to assess its suitability as a quantum standard of impedance. The quantum Hall plateaus measured with alternating current were found to be flat within one part in 10{sup 7}. This is much better than for plain GaAs quantum Hall devices and shows that the magnetic-flux-dependent capacitive ac losses of the graphene device are less critical. The observed frequency dependence of about −8 × 10{sup −8}/kHz is comparable in absolute value to the positive frequency dependence of plain GaAs devices, but the negative sign is attributed to stray capacitances which we believe can be minimized by a careful design of the graphene device. Further improvements thus may lead to a simpler and more user-friendly quantum standard for both resistance and impedance.

  16. Module Twelve: Series AC Resistive-Reactive Circuits; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The module covers series circuits which contain both resistive and reactive components and methods of solving these circuits for current, voltage, impedance, and phase angle. The module is divided into six lessons: voltage and impedance in AC (alternating current) series circuits, vector computations, rectangular and polar notation, variational…

  17. Study of Influence of Electrode Geometry on Impedance Spectroscopy

    SciTech Connect

    Ahmed, Riaz; Reifsnider, Kenneth L

    2011-01-01

    Electrochemical Impedance Spectroscopy (EIS) is a powerful and proven tool for analyzing AC impedance response. A conventional three electrode EIS method was used to perform the investigation in the present study. Saturated potassium chloride solution was used as the electrolyte and three different material rods were used as working electrodes. Different configurations of electrode area were exposed to the electrolyte as an active area to investigate electrode geometry effects. Counter to working electrode distance was also altered while keeping the working electrode effective area constant to explore the AC response dependence on the variation of ion travel distance. Some controlled experiments were done to validate the experimental setup and to provide a control condition for comparison with experimental results. A frequency range of 100 mHz to 1 MHz was used for all experiments. In our analysis, we have found a noteworthy influence of electrode geometry on AC impedance response. For all electrodes, impedance decreases with the increase of effective area of the electrolyte. High frequency impedance is not as dependent on geometry as low frequency response. The observed phase shift angle drops in the high frequency region with increased working electrode area, whereas at low frequency the reverse is true. Resistance and capacitive reactance both decrease with an increase of area, but resistance response is more pronounce than reactance. For lower frequencies, small changes in working area produce very distinctive EIS variations. Electrode material as well as geometry was systematically varied in the present study. From these and other studies, we hope to develop a fundamental foundation for understanding specific changes in local geometry in fuel cell (and other) electrodes as a method of designing local morphology for specific performance.

  18. Impedance group summary

    NASA Astrophysics Data System (ADS)

    Blaskiewicz, M.; Dooling, J.; Dyachkov, M.; Fedotov, A.; Gluckstern, R.; Hahn, H.; Huang, H.; Kurennoy, S.; Linnecar, T.; Shaposhnikova, E.; Stupakov, G.; Toyama, T.; Wang, J. G.; Weng, W. T.; Zhang, S. Y.; Zotter, B.

    1999-12-01

    The impedance working group was charged to reply to the following 8 questions relevant to the design of high-intensity proton machines such as the SNS or the FNAL driver. These questions were first discussed one by one in the whole group, then each ne of them assigned to one member to summarize. On the lst morning these contributions were publicly read, re-discussed and re-written where required—hence they are not the opinion of a particular person, but rather the averaged opinion of all members of the working group. (AIP)

  19. Dissection of the Mechanical Impedance Components of the Outer Hair Cell Using a Chloride-Channel Blocker

    NASA Astrophysics Data System (ADS)

    Harasztosi, Csaba; Gummer, Anthony W.

    2011-11-01

    The voltage-dependent chloride-channel blocker anthracene-9-carboxylic acid (9AC) has been found to reduce the imaginary but not the real part of the mechanical impedance of the organ of Corti, suggesting that the effective stiffness of outer hair cells (OHCs) is reduced by 9AC. To examine whether 9AC interacts directly with the motor protein prestin to reduce the membrane component of the impedance, the patch-clamp technique in whole-cell configuration was used to measure the nonlinear capacitance (NLC) of isolated OHCs and, as control, prestin-transfected human embryonic kidney 293 (HEK293) cells. Extracellular application of 9AC significantly reduced the NLC of both OHCs and HEK293 cells. Intracellular 9AC did not influence the blocking effect of the extracellular applied drug. These results suggest that 9AC interacts directly with prestin, reducing the effective stiffness of the motor, and that the interaction is extracellular.

  20. Bio-impedance detector for Staphylococcus aureus exposed to magnetic fields

    NASA Astrophysics Data System (ADS)

    Younis Yacoob Aldosky, Haval; Barwari, Waleed Jameel Omar; Salih Al-mlaly, Janan M.

    2012-12-01

    Rapid detection of viability and growth of pathogenic microorganisms is very important in many applications such as food and drug production, health care, and national defense. Measurements on the electrical characteristics of cells have been used successfully in the past to detect many different physiological events. The effect of electromagnetic fields on the growth of bacteria (Staphylococcus aureus) was studied with the bio-impedance technique. The growth situations of bacteria in the absence and presence of different intensities of static and alternative magnetic fields were examined and analyzed. The results show that the impedance of bacteria fell in the presence of DC magnetic fields. In contrast the impedance increased when the bacteria were exposed to AC magnetic fields. Based on these results the bacterial growth indicated by the change in the impedance is inhibited under DC magnetic fields and enhanced under AC fields.

  1. Computational Study on the Steady-state Impedance of Saturated-core Superconducting Fault Current Limiter

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Tang, Y.; Liang, S.; Ren, L.; Wang, Z.; Xu, Y.

    This paper presents the electromagnetic analysis of a high voltage saturated-core superconducting fault current limiter (SCSFCL). The numerical analyses of a three-dimensional (3D) model is shown, and the specific parameters are given. The model focus on the steady-state impedance of the limiter when connected to the power grid. It analyzed the dependence of steady-state impedance on the AC coil current, and the relationship between oil gap and coil inductance. The results suggest that, adding oil gap between slice of silicon steel can reduce the core cross-section, restrain the ultraharmonic and decrease the steady-state impedance. As the core cross-section of AC limb decreased from 4344 cm2 to 3983 cm2, the total harmonic distortion for voltage decreased from 2.4% to 1.8%, and the impedance decreased from 1.082 Ω to 1.069 Ω(Idc=400A,Iac=1296A).

  2. Local impedance measurement of an electrode/single-pentacene-grain interface by frequency-modulation scanning impedance microscopy

    NASA Astrophysics Data System (ADS)

    Kimura, Tomoharu; Kobayashi, Kei; Yamada, Hirofumi

    2015-08-01

    The device performances of organic thin film transistors are often limited by the metal-organic interface because of the disordered molecular layers at the interface and the energy barriers against the carrier injection. It is important to study the local impedance at the interface without being affected by the interface morphology. We combined frequency modulation atomic force microscopy with scanning impedance microscopy (SIM) to sensitively measure the ac responses of the interface to an ac voltage applied across the interface and the dc potential drop at the interface. By using the frequency-modulation SIM (FM-SIM) technique, we characterized the interface impedance of a Pt electrode and a single pentacene grain as a parallel circuit of a contact resistance and a capacitance. We found that the reduction of the contact resistance was caused by the reduction of the energy level mismatch at the interface by the FM-SIM measurements, demonstrating the usefulness of the FM-SIM technique for investigation of the local interface impedance without being affected by its morphology.

  3. Local impedance measurement of an electrode/single-pentacene-grain interface by frequency-modulation scanning impedance microscopy

    SciTech Connect

    Kimura, Tomoharu; Yamada, Hirofumi; Kobayashi, Kei

    2015-08-07

    The device performances of organic thin film transistors are often limited by the metal–organic interface because of the disordered molecular layers at the interface and the energy barriers against the carrier injection. It is important to study the local impedance at the interface without being affected by the interface morphology. We combined frequency modulation atomic force microscopy with scanning impedance microscopy (SIM) to sensitively measure the ac responses of the interface to an ac voltage applied across the interface and the dc potential drop at the interface. By using the frequency-modulation SIM (FM-SIM) technique, we characterized the interface impedance of a Pt electrode and a single pentacene grain as a parallel circuit of a contact resistance and a capacitance. We found that the reduction of the contact resistance was caused by the reduction of the energy level mismatch at the interface by the FM-SIM measurements, demonstrating the usefulness of the FM-SIM technique for investigation of the local interface impedance without being affected by its morphology.

  4. Scheme for rapid adjustment of network impedance

    DOEpatents

    Vithayathil, John J.

    1991-01-01

    A static controlled reactance device is inserted in series with an AC electric power transmission line to adjust its transfer impedance. An inductor (reactor) is serially connected with two back-to-back connected thyristors which control the conduction period and hence the effective reactance of the inductor. Additional reactive elements are provided in parallel with the thyristor controlled reactor to filter harmonics and to obtain required range of variable reactance. Alternatively, the static controlled reactance device discussed above may be connected to the secondary winding of a series transformer having its primary winding connected in series to the transmission line. In a three phase transmission system, the controlled reactance device may be connected in delta configuration on the secondary side of the series transformer to eliminate triplen harmonics.

  5. Ionospheric effects to antenna impedance

    NASA Technical Reports Server (NTRS)

    Bethke, K. H.

    1986-01-01

    The reciprocity between high power satellite antennas and the surrounding plasma are examined. The relevant plasma states for antenna impedance calculations are presented and plasma models, and hydrodynamic and kinetic theory, are discussed. A theory from which a variation in antenna impedance with regard to the radiated power can be calculated for a frequency range well above the plasma resonance frequency is give. The theory can include photo and secondary emission effects in antenna impedance calculations.

  6. Optically stimulated differential impedance spectroscopy

    DOEpatents

    Maxey, Lonnie C; Parks, II, James E; Lewis, Sr., Samuel A; Partridge, Jr., William P

    2014-02-18

    Methods and apparatuses for evaluating a material are described. Embodiments typically involve use of an impedance measurement sensor to measure the impedance of a sample of the material under at least two different states of illumination. The states of illumination may include (a) substantially no optical stimulation, (b) substantial optical stimulation, (c) optical stimulation at a first wavelength of light, (d) optical stimulation at a second wavelength of light, (e) a first level of light intensity, and (f) a second level of light intensity. Typically a difference in impedance between the impedance of the sample at the two states of illumination is measured to determine a characteristic of the material.

  7. IMPEDANCE OF FINITE LENGTH RESISTOR

    SciTech Connect

    KRINSKY, S.; PODOBEDOV, B.; GLUCKSTERN, R.L.

    2005-05-15

    We determine the impedance of a cylindrical metal tube (resistor) of radius a, length g, and conductivity {sigma}, attached at each end to perfect conductors of semi-infinite length. Our main interest is in the asymptotic behavior of the impedance at high frequency, k >> 1/a. In the equilibrium regime, , the impedance per unit length is accurately described by the well-known result for an infinite length tube with conductivity {sigma}. In the transient regime, ka{sup 2} >> g, we derive analytic expressions for the impedance and wakefield.

  8. The Nature of Magnetohydrodynamic Fluctuations in the Solar Wind as Determined from Four-Point Measurements of Magnetic Field and (Electron) Plasma Velocity on Cluster

    NASA Astrophysics Data System (ADS)

    Goldstein, M. L.; Fazakerley, A.; Narita, Y.; Parks, G.; Roberts, D. A.; Glassmeier, K.; Le, G.

    2006-12-01

    One of the goals of the Cluster mission is to use large spacecraft separations (≍ 10,000 km) to examine the three-dimensional structure of magnetohydrodynamic turbulence in the solar wind. Pioneering work using the magnetometer data has been done in recent years. Analyses have included use of k-filtering or wave telescope, and correlation techniques (e.g., see, Glassmeier et al., 2001; Sahraoui et al., 2003; Matthaeus et al., 2005). The plasma properties of these fluctuations have not been examined due primarily to the lack of four-point measurements of the plasma velocity. We have examined the possibility of using velocity moments computed from high-resolution three-dimensional distribution functions obtained during burst mode from the PEACE experiment on all four Cluster spacecraft. Preliminary analysis suggests that for fluctuations with periods below about 10 sec, spectra of Elsässer variables have spectral indices close to the Kolmogorov value of -5/3 seen in fluid turbulence and known to be characteristic of solar wind turbulence when proton velocities are used. The spectra using PEACE data compare well with spectra for the same time intervals computed using proton velocity moments from the CIS experiment on C1. For some intervals, the PEACE spectra show the presence of highly compressible waves in the Earth's foreshock with periods of ≍ 30 sec. We will report on progress using multi-spacecraft techniques (e.g., the wave telescope) to identify the wave modes present at times when the spacecraft are in the solar wind at separations as large as 10,000 km. Glassmeier, K. H. et al. (2001), Cluster as a wave telescope--first results from the fluxgate magnetometer, Ann. Geophys., 19, 1439-1447. Sahraoui, F. et al. (2003), Ulf wave identification in the magnetosheath: K-filtering technique applied to Cluster II data, J. Geophys. Res., 108, 1335. Matthaeus, W. H. et al. (2005), Spatial correlation of solar-wind turbulence from two-point measurements, Phys. Rev

  9. Monolithically compatible impedance measurement

    DOEpatents

    Ericson, Milton Nance; Holcomb, David Eugene

    2002-01-01

    A monolithic sensor includes a reference channel and at least one sensing channel. Each sensing channel has an oscillator and a counter driven by the oscillator. The reference channel and the at least one sensing channel being formed integrally with a substrate and intimately nested with one another on the substrate. Thus, the oscillator and the counter have matched component values and temperature coefficients. A frequency determining component of the sensing oscillator is formed integrally with the substrate and has an impedance parameter which varies with an environmental parameter to be measured by the sensor. A gating control is responsive to an output signal generated by the reference channel, for terminating counting in the at least one sensing channel at an output count, whereby the output count is indicative of the environmental parameter, and successive ones of the output counts are indicative of changes in the environmental parameter.

  10. Impedance in School Screening Programs.

    ERIC Educational Resources Information Center

    Robarts, John T.

    1985-01-01

    This paper examines the controversy over use of impedance screening in public schools to identify students with hearing problems, including otitis media, a common ear condition in infants and young children. It cites research that questions the value of pure tone screening as a single test and raises critics' objections to the use of impedance,…

  11. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, T.E.

    1999-03-16

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks. 2 figs.

  12. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, Thomas E.

    1999-01-01

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks.

  13. [Experimental study on electrical impedance properties of human hepatoma cells].

    PubMed

    Fang, Yun; Tang, Zhiyuan; Zhang, Qian; Zhao, Xin; Ma, Qing

    2014-10-01

    The AC impedance of human hepatoma SMMC-7721 cells were measured in our laboratory by Agilent 4294A impedance analyzer in the frequency range of 0.01-100 MHz. And then the effect of hematocrit on electrical impedance characteristics of hepatoma cells was observed by electrical impedance spectroscopy, Bode diagram, Nyquist diagram and Nichols diagram. The results showed that firstly, there is a frequency dependence, i.e., the increment of real part and the imaginary part of complex electrical impedance (δZ', δZ"), the increment of the amplitude modulus of complex electrical impedance (δ[Z *]) and phase angle (δθ) were all changed with the increasing frequency. Secondly, it showed cell volume fraction (CVF) dependence, i. e. , the increment of low-frequency limit (δZ'0, δ[Z*] 0), peak (δZ"(p), δθ(p)), area and radius (Nyquist diagram, Nichols diagram) were all increased along with the electric field frequency. Thirdly, there was the presence of two characteristic frequencies: the first characteristic frequency (f(c1)) and the second characteristic frequency (f(c2)), which were originated respectively in the polarization effects of two interfaces that the cell membrane and extracellular fluid, cell membrane and cytoplasm. A conclusion can be drawn that the electrical impedance spectroscopy is able to be used to observe the electrical characteristics of human hepatoma cells, and therefore this method can be used to investigate the electrophysiological mechanisms of liver cancer cells, and provide research tools and observation parameters, and it also has important theoretical value and potential applications for screening anticancer drugs. PMID:25764724

  14. ACS: ALMA Common Software

    NASA Astrophysics Data System (ADS)

    Chiozzi, Gianluca; Šekoranja, Matej

    2013-02-01

    ALMA Common Software (ACS) provides a software infrastructure common to all ALMA partners and consists of a documented collection of common patterns and components which implement those patterns. The heart of ACS is based on a distributed Component-Container model, with ACS Components implemented as CORBA objects in any of the supported programming languages. ACS provides common CORBA-based services such as logging, error and alarm management, configuration database and lifecycle management. Although designed for ALMA, ACS can and is being used in other control systems and distributed software projects, since it implements proven design patterns using state of the art, reliable technology. It also allows, through the use of well-known standard constructs and components, that other team members whom are not authors of ACS easily understand the architecture of software modules, making maintenance affordable even on a very large project.

  15. Impedance analysis of porous carbon electrodes to predict rate capability of electric double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Yoo, Hyun Deog; Jang, Jong Hyun; Ryu, Ji Heon; Park, Yuwon; Oh, Seung M.

    2014-12-01

    Electrochemical impedance analysis is performed to predict the rate capability of two commercial activated carbon electrodes (RP20 and MSP20) for electric double-layer capacitor. To this end, ac impedance data are fitted with an equivalent circuit that comprises ohmic resistance and impedance of intra-particle pores. To characterize the latter, ionic accessibility into intra-particle pores is profiled by using the fitted impedance parameters, and the profiles are transformed into utilizable capacitance plots as a function of charge-discharge rate. The rate capability that is predicted from the impedance analysis is well-matched with that observed from a charge-discharge rate test. It is found that rate capability is determined by ionic accessibility as well as ohmic voltage drop. A lower value in ionic accessibility for MSP20 is attributed to smaller pore diameter, longer length, and higher degree of complexity in pore structure.

  16. Impedance-estimation methods, modeling methods, articles of manufacture, impedance-modeling devices, and estimated-impedance monitoring systems

    DOEpatents

    Richardson, John G.

    2009-11-17

    An impedance estimation method includes measuring three or more impedances of an object having a periphery using three or more probes coupled to the periphery. The three or more impedance measurements are made at a first frequency. Three or more additional impedance measurements of the object are made using the three or more probes. The three or more additional impedance measurements are made at a second frequency different from the first frequency. An impedance of the object at a point within the periphery is estimated based on the impedance measurements and the additional impedance measurements.

  17. I/O impedance controller

    DOEpatents

    Ruesch, Rodney; Jenkins, Philip N.; Ma, Nan

    2004-03-09

    There is disclosed apparatus and apparatus for impedance control to provide for controlling the impedance of a communication circuit using an all-digital impedance control circuit wherein one or more control bits are used to tune the output impedance. In one example embodiment, the impedance control circuit is fabricated using circuit components found in a standard macro library of a computer aided design system. According to another example embodiment, there is provided a control for an output driver on an integrated circuit ("IC") device to provide for forming a resistor divider network with the output driver and a resistor off the IC device so that the divider network produces an output voltage, comparing the output voltage of the divider network with a reference voltage, and adjusting the output impedance of the output driver to attempt to match the output voltage of the divider network and the reference voltage. Also disclosed is over-sampling the divider network voltage, storing the results of the over sampling, repeating the over-sampling and storing, averaging the results of multiple over sampling operations, controlling the impedance with a plurality of bits forming a word, and updating the value of the word by only one least significant bit at a time.

  18. Impedance and dielectric properties of mercury cuprate at nonsuperconducting state

    NASA Astrophysics Data System (ADS)

    Özdemir, Z. Güven; Çataltepe, Ö. Aslan; Onbaşlı, Ü.

    2015-10-01

    In this paper, impedance and dielectric properties of nonsuperconducting state of the mercury-based cuprate have been investigated by impedance measurements within the frequency interval of 10 Hz-10 MHz for the first time. The dielectric loss factor (tgδ) and ac conductivity (σac) parameters have also been calculated for non-superconducting state. According to impedance spectroscopy analysis, the equivalent circuit of the mercury cuprate system manifests itself as a semicircle in the Nyquist plot that corresponds to parallel connected resistance-capacitance circuit. The oscillation frequency of the circuit has been determined as approximately 45 kHz which coincides with the low frequency radio waves. Moreover, it has been revealed that the mercury-based cuprate investigated has high dielectric constants and hence it may be utilized in microelectronic industry such as capacitors, memory devices etc., at room temperature. In addition, negative capacitance (NC) effect has been observed for the mercury cuprate regardless of the operating temperatures at nonsuperconducting state. Referring to dispersions in dielectric properties, the main contribution to dielectric response of the system has been suggested as dipolar and interfacial polarization mechanisms.

  19. Input impedance of microstrip antennas

    NASA Technical Reports Server (NTRS)

    Deshpande, M. D.; Bailey, M. C.

    1982-01-01

    Using Richmond's reaction integral equation, an expression is derived for the input impedance of microstrip patch antennas excited by either a microstrip line or a coaxial probe. The effects of the finite substrate thickness, a dielectric protective cover, and associated surface waves are properly included by the use of the exact dyadic Green's function. Using the present formulation the input impedance of a rectangular microstrip antenna is determined and compared with experimental and earlier calculated results.

  20. Concentration dependence of nanochannel impedance and the determination of surface charge

    NASA Astrophysics Data System (ADS)

    Schiffbauer, Jarrod; Liel, Uri; Yossifon, Gilad

    2014-03-01

    In this paper, we demonstrate the variation of nanochannel impedance with bulk (reservoir) electrolyte concentration. The impedance of a nanochannel is shown to correspond to a characteristic deformed semicircular arc. The degree of deformation decreases with increasing concentration, and at a sufficiently low concentration the complex impedance saturates, becoming essentially independent of the reservoir concentration. This behavior is indicative of a surface-conduction dominant regime. Here we demonstrate that this effect extends beyond dc conductance and affects the ac response of the system as well, including both phase relationship and magnitude. The nanochannel resistance, obtained from low-voltage ac measurements, is then used to extract the nanochannel surface charge density. This is found to increase in magnitude with increasing electrolyte concentration.

  1. Study of AC/RF properties of SRF ingot niobium

    SciTech Connect

    Dhakal, Pashupati; Tsindlekht, Menachem I; Genkin, Valery M; Ciovati, Gianluigi; Myneni, Ganapati Rao

    2013-09-01

    In an attempt to correlate the performance of superconducting radiofrequency cavities made of niobium with the superconducting properties, we present the results of the magnetization and ac susceptibility of the niobium used in the superconducting radiofrequency cavity fabrication. The samples were subjected to buffer chemical polishing (BCP) surface and high temperature heat treatments, typically applied to the cavities fabrications. The analysis of the results show the different surface and bulk ac conductivity for the samples subjected to BCP and heat treatment. Furthermore, the RF surface impedance is measured on the sample using a TE011 microwave cavity for a comparison to the low frequency measurements.

  2. AC and Phase Sensing of Nanowires for Biosensing.

    PubMed

    Crescentini, Marco; Rossi, Michele; Ashburn, Peter; Lombardini, Marta; Sangiorgi, Enrico; Morgan, Hywel; Tartagni, Marco

    2016-04-19

    Silicon nanowires are label-free sensors that allow real-time measurements. They are economical and pave the road for point-of-care applications but require complex readout and skilled personnel. We propose a new model and technique for sensing nanowire sensors using alternating currents (AC) to capture both magnitude and phase information from the sensor. This approach combines the advantages of complex impedance spectroscopy with the noise reduction performances of lock-in techniques. Experimental results show how modifications of the sensors with different surface chemistries lead to the same direct-current (DC) response but can be discerned using the AC approach.

  3. AC and Phase Sensing of Nanowires for Biosensing

    PubMed Central

    Crescentini, Marco; Rossi, Michele; Ashburn, Peter; Lombardini, Marta; Sangiorgi, Enrico; Morgan, Hywel; Tartagni, Marco

    2016-01-01

    Silicon nanowires are label-free sensors that allow real-time measurements. They are economical and pave the road for point-of-care applications but require complex readout and skilled personnel. We propose a new model and technique for sensing nanowire sensors using alternating currents (AC) to capture both magnitude and phase information from the sensor. This approach combines the advantages of complex impedance spectroscopy with the noise reduction performances of lock-in techniques. Experimental results show how modifications of the sensors with different surface chemistries lead to the same direct-current (DC) response but can be discerned using the AC approach. PMID:27104577

  4. Introducing AC inductive reactance with a power tool

    NASA Astrophysics Data System (ADS)

    Bryant, Wesley; Baker, Blane

    2016-09-01

    The concept of reactance in AC electrical circuits is often non-intuitive and difficult for students to grasp. In order to address this lack of conceptual understanding, classroom exercises compare the predicted resistance of a power tool, based on electrical specifications, to measured resistance. Once students discover that measured resistance is smaller than expected, they are asked to explain these observations using previously studied principles of magnetic induction. Exercises also introduce the notion of inductive reactance and impedance in AC circuits and, ultimately, determine self-inductance of the motor windings within the power tool.

  5. AC magnetohydrodynamic microfluidic switch

    SciTech Connect

    Lemoff, A V; Lee, A P

    2000-03-02

    A microfluidic switch has been demonstrated using an AC Magnetohydrodynamic (MHD) pumping mechanism in which the Lorentz force is used to pump an electrolytic solution. By integrating two AC MHD pumps into different arms of a Y-shaped fluidic circuit, flow can be switched between the two arms. This type of switch can be used to produce complex fluidic routing, which may have multiple applications in {micro}TAS.

  6. Report of the SSC impedance workshop

    SciTech Connect

    1985-10-28

    This workshop focused attention on the transverse, single-bunch instability and the detailed analysis of the broadband impedance which would drive it. Issues discussed included: (1) single bunch stability -- impact of impedance frequency shape, coupled-mode vs. fast blowup regimes, possible stopband structure; (2) numerical estimates of transverse impedance of inner bellows and sliding contact shielded bellows; (3) analytic estimates of pickup and kicker impedance contributions; and (4) feasibility studies of wire and beam measurements of component impedance.

  7. Electrical impedance along connective tissue planes associated with acupuncture meridians

    PubMed Central

    Ahn, Andrew C; Wu, Junru; Badger, Gary J; Hammerschlag, Richard; Langevin, Helene M

    2005-01-01

    Background Acupuncture points and meridians are commonly believed to possess unique electrical properties. The experimental support for this claim is limited given the technical and methodological shortcomings of prior studies. Recent studies indicate a correspondence between acupuncture meridians and connective tissue planes. We hypothesized that segments of acupuncture meridians that are associated with loose connective tissue planes (between muscles or between muscle and bone) visible by ultrasound have greater electrical conductance (less electrical impedance) than non-meridian, parallel control segments. Methods We used a four-electrode method to measure the electrical impedance along segments of the Pericardium and Spleen meridians and corresponding parallel control segments in 23 human subjects. Meridian segments were determined by palpation and proportional measurements. Connective tissue planes underlying those segments were imaged with an ultrasound scanner. Along each meridian segment, four gold-plated needles were inserted along a straight line and used as electrodes. A parallel series of four control needles were placed 0.8 cm medial to the meridian needles. For each set of four needles, a 3.3 kHz alternating (AC) constant amplitude current was introduced at three different amplitudes (20, 40, and 80 μAmps) to the outer two needles, while the voltage was measured between the inner two needles. Tissue impedance between the two inner needles was calculated based on Ohm's law (ratio of voltage to current intensity). Results At the Pericardium location, mean tissue impedance was significantly lower at meridian segments (70.4 ± 5.7 Ω) compared with control segments (75.0 ± 5.9 Ω) (p = 0.0003). At the Spleen location, mean impedance for meridian (67.8 ± 6.8 Ω) and control segments (68.5 ± 7.5 Ω) were not significantly different (p = 0.70). Conclusion Tissue impedance was on average lower along the Pericardium meridian, but not along the Spleen

  8. Isolation of sequences flanking Ac insertion sites by Ac casting.

    PubMed

    Wang, Dafang; Peterson, Thomas

    2013-01-01

    Localizing Ac insertions is a fundamental task in studying Ac-induced mutation and chromosomal rearrangements involving Ac elements. Researchers may sometimes be faced with the situation in which the sequence flanking one side of an Ac/Ds element is known, but the other flank is unknown. Or, a researcher may have a small sequence surrounding the Ac/Ds insertion site and needs to obtain additional flanking genomic sequences. One way to rapidly clone unknown Ac/Ds flanking sequences is via a PCR-based method termed Ac casting. This approach utilizes the somatic transposition activity of Ac during plant development, and provides an efficient means for short-range genome walking. Here we describe the principle of Ac casting, and show how it can be applied to isolate Ac macrotransposon insertion sites.

  9. Impedances of Laminated Vacuum Chambers

    SciTech Connect

    Burov, A.; Lebedev, V.; /Fermilab

    2011-06-22

    First publications on impedance of laminated vacuum chambers are related to early 70s: those are of S. C. Snowdon [1] and of A. G. Ruggiero [2]; fifteen years later, a revision paper of R. Gluckstern appeared [3]. All the publications were presented as Fermilab preprints, and there is no surprise in that: the Fermilab Booster has its laminated magnets open to the beam. Being in a reasonable mutual agreement, these publications were all devoted to the longitudinal impedance of round vacuum chambers. The transverse impedance and the flat geometry case were addressed in more recent paper of K. Y. Ng [4]. The latest calculations of A. Macridin et al. [5] revealed some disagreement with Ref. [4]; this fact stimulated us to get our own results on that matter. Longitudinal and transverse impendances are derived for round and flat laminated vacuum chambers. Results of this paper agree with Ref. [5].

  10. Impedance of the amphibian lens.

    PubMed

    Duncan, G; Patmore, L; Pynsent, P B

    1981-03-01

    1. The electrical resistance of the perfused frog lens was measured using separate internal current passing and voltage measuring electrodes. 2. The resistance values obtained using voltage clamp and direct and alternating current techniques were in good agreement. 3. The voltage transients induced in response to current steps were multi-exponential in form. Increasing the external K concentration reduced both the amplitude of the voltage response and the rise time. 4. The impedance characteristics were investigated in more detail using alternating current analysis techniques. 5. In an equivalent-circuit modelling study it was assumed that there were two major pathways for current flow in the lens. The first through the surface membranes and the second through the inner fibre membranes via the narrow extracellular spaces. 6. The experimental impedance loci could not be adequately fitted by a simple two time constant model and a third time constant was introduced which may represent diffusion polarization effects in the extracellular spaces. 7. The three time constant model gave good and consistent fits to impedance data from a number of preparations. 8. The form of the impedance loci was also dependent on the external K concentration, but the only fitted parameter which changed consistently with external K was the surface membrane resistance (Rs).

  11. Characteristic impedance of microstrip lines

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.; Deshpande, M. D.

    1989-01-01

    The dyadic Green's function for a current embedded in a grounded dielectric slab is used to analyze microstrip lines at millimeter wave frequencies. The dyadic Green's function accounts accurately for fringing fields and dielectric cover over the microstrip line. Using Rumsey's reaction concept, an expression for the characteristic impedance is obtained. The numerical results are compared with other reported results.

  12. Impedance of the amphibian lens.

    PubMed Central

    Duncan, G; Patmore, L; Pynsent, P B

    1981-01-01

    1. The electrical resistance of the perfused frog lens was measured using separate internal current passing and voltage measuring electrodes. 2. The resistance values obtained using voltage clamp and direct and alternating current techniques were in good agreement. 3. The voltage transients induced in response to current steps were multi-exponential in form. Increasing the external K concentration reduced both the amplitude of the voltage response and the rise time. 4. The impedance characteristics were investigated in more detail using alternating current analysis techniques. 5. In an equivalent-circuit modelling study it was assumed that there were two major pathways for current flow in the lens. The first through the surface membranes and the second through the inner fibre membranes via the narrow extracellular spaces. 6. The experimental impedance loci could not be adequately fitted by a simple two time constant model and a third time constant was introduced which may represent diffusion polarization effects in the extracellular spaces. 7. The three time constant model gave good and consistent fits to impedance data from a number of preparations. 8. The form of the impedance loci was also dependent on the external K concentration, but the only fitted parameter which changed consistently with external K was the surface membrane resistance (Rs). PMID:6973626

  13. Investigation of nanocrystalline CdS/Si diode using complex impedance spectroscopy

    SciTech Connect

    El-Gendy, Y.A.; Yahia, I.S.; Yakuphanoglu, F.

    2012-11-15

    Highlights: ► CdS/n-Si device was fabricated as a heterostructure. ► AFM was used to examine the structure of CdS/n-Si. ► Complex impedance Z′and Z″were calculated. ► AC conductivity was explained by the power law relation. ► CBH model was used to describe the AC conduction mechanism. -- Abstract: CdS/n-Si device was fabricated via depositing CdS thin film onto pre-cleaned n-silicon substrates. The atomic force microscope was used to examine the crystal size of the deposited films and its roughness. The AC conductivity and the real part of complex impedance Z′as a function of frequency at different temperatures were studied. The AC conductivity dependence of the applied frequency was explained on the basis of the power law relation. The bulk resistance has been calculated at different temperatures from the complex impedance Z″. The temperature dependence of capacitance for CdS/n-Si device at different frequencies was also investigated.

  14. A Monte Carlo simulation of range for an invasive impedance respiration monitor.

    PubMed

    Valenta, H L; Fischer, S K

    1990-01-01

    One method of rate responsive pacing utilizes an analog of minute ventilation as the input to the rate control algorithm. A measure of the intravenous impedance along the pacing catheter is a convenient means of determining minute ventilation. Design of the impedance converter requires a knowledge of the range of DC and AC impedance signals. During normal and deep breathing, 116 AC measurements were taken from 34 Electrophysiology (EP) patients and 31 DC measurements were taken from 13 EP patients. The patient data produced skewed distributions with a normal AC mean of 0.45 +/- 0.40 ohms p-p, a deep AC mean of 2.0 +/- 1.6 ohms and a DC mean of 44 +/- 13 ohms. An eight variable static model was derived from prior work. Five of the physiological variables were chosen from established clinical ranges, one geometrical variable was chosen from prior work and two were selected by matching the statistics of a Monte Carlo analysis of the model with the statistics of the patient data. The blood resistivity was obtained from prior work. A simulation of 1000 measurements produced a normal breathing range of 0 to 2.24 ohms, a deep breathing range of 0 to 9.6 ohms and a DC range of 19 to 100 ohms. PMID:2334765

  15. Calibration of electrical impedance tomography

    SciTech Connect

    Daily, W; Ramirez, A

    2000-05-01

    Over the past 10 years we have developed methods for imaging the electrical resistivity of soil and rock formations. These technologies have been called electrical resistance tomography of ERT (e.g. Daily and Owen, 1991). Recently we have been striving to extend this capability to include images of electric impedance--with a new nomenclature of electrical impedance tomography or EIT (Ramirez et al., 1999). Electrical impedance is simply a generalization of resistance. Whereas resistance is the zero frequency ratio of voltage and current, impedance includes both the magnitude and phase relationship between voltage and current at frequency. This phase and its frequency behavior is closely related to what in geophysics is called induced polarization or (Sumner, 1976). Why is this phase or IP important? IP is known to be related to many physical phenomena of importance so that image of IP will be maps of such things as mineralization and cation exchange IP (Marshall and Madden, 1959). Also, it is likely that IP, used in conjunction with resistivity, will yield information about the subsurface that can not be obtained by either piece of information separately. In order to define the accuracy of our technologies to image impedance we have constructed a physical model of known impedance that can be used as a calibration standard. It consists of 616 resistors, along with some capacitors to provide the reactive response, arranged in a three dimensional structure as in figure 1. Figure 2 shows the construction of the network and defines the coordinate system used to describe it. This network of components is a bounded and discrete version of the unbounded and continuous medium with which we normally work (the subsurface). The network has several desirable qualities: (1) The impedance values are known (to the accuracy of the component values). (2) The component values and their 3D distribution is easily controlled. (3) Error associated with electrode noise is eliminated. (4

  16. Equivalent Electrical Circuit Representations of AC Quantized Hall Resistance Standards

    PubMed Central

    Cage, M. E.; Jeffery, A.; Matthews, J.

    1999-01-01

    We use equivalent electrical circuits to analyze the effects of large parasitic impedances existing in all sample probes on four-terminal-pair measurements of the ac quantized Hall resistance RH. The circuit components include the externally measurable parasitic capacitances, inductances, lead resistances, and leakage resistances of ac quantized Hall resistance standards, as well as components that represent the electrical characteristics of the quantum Hall effect device (QHE). Two kinds of electrical circuit connections to the QHE are described and considered: single-series “offset” and quadruple-series. (We eliminated other connections in earlier analyses because they did not provide the desired accuracy with all sample probe leads attached at the device.) Exact, but complicated, algebraic equations are derived for the currents and measured quantized Hall voltages for these two circuits. Only the quadruple-series connection circuit meets our desired goal of measuring RH for both ac and dc currents with a one-standard-deviation uncertainty of 10−8 RH or less during the same cool-down with all leads attached at the device. The single-series “offset” connection circuit meets our other desired goal of also measuring the longitudinal resistance Rx for both ac and dc currents during that same cool-down. We will use these predictions to apply small measurable corrections, and uncertainties of the corrections, to ac measurements of RH in order to realize an intrinsic ac quantized Hall resistance standard of 10−8 RH uncertainty or less.

  17. Superconducting shielded core reactor with reduced AC losses

    DOEpatents

    Cha, Yung S.; Hull, John R.

    2006-04-04

    A superconducting shielded core reactor (SSCR) operates as a passive device for limiting excessive AC current in a circuit operating at a high power level under a fault condition such as shorting. The SSCR includes a ferromagnetic core which may be either closed or open (with an air gap) and extends into and through a superconducting tube or superconducting rings arranged in a stacked array. First and second series connected copper coils each disposed about a portion of the iron core are connected to the circuit to be protected and are respectively wound inside and outside of the superconducting tube or rings. A large impedance is inserted into the circuit by the core when the shielding capability of the superconducting arrangement is exceeded by the applied magnetic field generated by the two coils under a fault condition to limit the AC current in the circuit. The proposed SSCR also affords reduced AC loss compared to conventional SSCRs under continuous normal operation.

  18. Theory of the ac spin-valve effect.

    PubMed

    Kochan, Denis; Gmitra, Martin; Fabian, Jaroslav

    2011-10-21

    The spin-valve complex magnetoimpedance of symmetric ferromagnet-normal-metal-ferromagnet junctions is investigated within the drift-diffusion (standard) model of spin injection. The ac magnetoresistance-the real part difference of the impedances of the parallel and antiparallel magnetization configurations-exhibits an overall damped oscillatory behavior, as an interplay of the diffusion and spin relaxation times. In wide junctions the ac magnetoresistance oscillates between positive and negative values, reflecting resonant amplification and depletion of the spin accumulation, while the line shape for thin tunnel junctions is predicted to be purely Lorentzian. The ac spin-valve effect could be a technique to extract spin transport and spin relaxation parameters in the absence of a magnetic field and for a fixed sample size. PMID:22107552

  19. Tevatron AC dipole system

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is an oscillating dipole magnet which can induce large amplitude oscillations without the emittance growth and decoherence. These properties make it a good tool to measure optics of a hadron synchrotron. The vertical AC dipole for the Tevatron is powered by an inexpensive high power audio amplifier since its operating frequency is approximately 20 kHz. The magnet is incorporated into a parallel resonant system to maximize the current. The use of a vertical pinger magnet which has been installed in the Tevatron made the cost relatively inexpensive. Recently, the initial system was upgraded with a more powerful amplifier and oscillation amplitudes up to 2-3{sigma} were achieved with the 980 GeV proton beam. This paper discusses details of the Tevatron AC dipole system and also shows its test results.

  20. AC-3 audio coder

    NASA Astrophysics Data System (ADS)

    Todd, Craig

    1995-12-01

    AC-3 is a system for coding up to 5.1 channels of audio into a low bit-rate data stream. High quality may be obtained with compression ratios approaching 12-1 for multichannel audio programs. The high compression ratio is achieved by methods which do not increase decoder memory, and thus cost. The methods employed include: the transmission of a high frequency resolution spectral envelope; and a novel forward/backward adaptive bit allocation algorithm. In order to satisfy practical requirements of an emissions coder, the AC-3 syntax includes a number of features useful to broadcasters and consumers. These features include: loudness uniformity between programs; dynamic range control; and broadcaster control of downmix coefficients. The AC-3 coder has been formally selected for inclusion of the U.S. HDTV broadcast standard, and has been informally selected for several additional applications.

  1. ac bidirectional motor controller

    NASA Technical Reports Server (NTRS)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  2. Dielectric and impedance spectroscopic studies of neodymium gallate

    NASA Astrophysics Data System (ADS)

    Sakhya, Anup Pradhan; Dutta, Alo; Sinha, T. P.

    2016-05-01

    The AC electrical properties of a polycrystalline neodymium gallate, NdGaO3 (NGO), synthesized by the sol-gel method have been investigated by employing impedance spectroscopy in the frequency range from 42 Hz to 5 MHz and in the temperature range from 323 K to 593 K. The X-ray diffraction analysis shows that the compound crystallizes in the orthorhombic phase with Pbnm space group at room temperature. Two relaxation processes with different relaxation times are observed from the impedance as well as modulus spectroscopic measurements, which have been attributed to the grain and the grain boundary effects at different temperatures in NGO. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element in parallel. It has been observed that the value of the capacitance and the resistance associated with the grain boundary is higher than those associated with the grain. The temperature dependent electrical conductivity shows the negative temperature coefficient of resistance. The frequency dependent conductivity spectra are found to follow the power law.

  3. Forces, moments, and acceleration acting on a restrained dummy during simulation of three possible accidents involving a wheelchair negotiating a curb: comparison between lap belt and four-point belt.

    PubMed

    Fast, A; Sosner, J; Begeman, P; Thomas, M; Drukman, D

    1997-01-01

    The objective of this study was to determine the effect of two types of restraining belts (lap belt and a four-point belt) on an instrumented dummy during three situations: wheelchair hitting straight into curb (SIC); wheelchair falling straight off a curb (SOC); wheelchair falling diagonally off a curb (DOC). A fully instrumented (50th percentile Hybrid III) dummy was seated in a standard wheelchair and restrained with one of the belts. The wheelchair rolled down a ramp reaching a platform at 2.4 miles per hour (comfortable walking speed). Three types of experiments were performed: SIC, SOC, DOC. Each experiment was repeated at least three times. Forces, moments, and acceleration were monitored and recorded via 48 sensors placed at the head, spine, and limbs. All experiments were videotaped and photographed. The data were averaged and compared with standards that have been previously established in car crash testing and with data recently obtained in a similar study using a nonrestrained dummy. Our results showed that in the SIC experiments, low magnitude forces, moments, and acceleration of no clinical significance were recorded with both types of belts. The wheelchair remained upright and the dummy safely seated. In the SOC experiments, the two belts prevented the dummy's ejection from the chair and, thus, have been effective in lowering the forces, moments, and acceleration and preventing significant injuries to the head and neck regions. In the DOC experiments, the lap belt proved to be somewhat more effective than the four-point belt in lowering the extension forces at the upper neck and the moments at the lower neck below injury levels. It also kept the head injury criteria well below injury level. We postulate that the four-point belt was less effective because of its more extensive body fixation, which leads to concentration of moments and forces at the head and lower neck regions. The results of this study show that restraining systems can enhance the

  4. Forces, moments, and acceleration acting on a restrained dummy during simulation of three possible accidents involving a wheelchair negotiating a curb: comparison between lap belt and four-point belt.

    PubMed

    Fast, A; Sosner, J; Begeman, P; Thomas, M; Drukman, D

    1997-01-01

    The objective of this study was to determine the effect of two types of restraining belts (lap belt and a four-point belt) on an instrumented dummy during three situations: wheelchair hitting straight into curb (SIC); wheelchair falling straight off a curb (SOC); wheelchair falling diagonally off a curb (DOC). A fully instrumented (50th percentile Hybrid III) dummy was seated in a standard wheelchair and restrained with one of the belts. The wheelchair rolled down a ramp reaching a platform at 2.4 miles per hour (comfortable walking speed). Three types of experiments were performed: SIC, SOC, DOC. Each experiment was repeated at least three times. Forces, moments, and acceleration were monitored and recorded via 48 sensors placed at the head, spine, and limbs. All experiments were videotaped and photographed. The data were averaged and compared with standards that have been previously established in car crash testing and with data recently obtained in a similar study using a nonrestrained dummy. Our results showed that in the SIC experiments, low magnitude forces, moments, and acceleration of no clinical significance were recorded with both types of belts. The wheelchair remained upright and the dummy safely seated. In the SOC experiments, the two belts prevented the dummy's ejection from the chair and, thus, have been effective in lowering the forces, moments, and acceleration and preventing significant injuries to the head and neck regions. In the DOC experiments, the lap belt proved to be somewhat more effective than the four-point belt in lowering the extension forces at the upper neck and the moments at the lower neck below injury levels. It also kept the head injury criteria well below injury level. We postulate that the four-point belt was less effective because of its more extensive body fixation, which leads to concentration of moments and forces at the head and lower neck regions. The results of this study show that restraining systems can enhance the

  5. Network Concepts; Four Points of View.

    ERIC Educational Resources Information Center

    Matzek, Richard A., Ed.

    Four speakers presented their points of view on library networks and automated systems at the April 1, 1970 meeting of the Catholic Library Association's College and University Libraries section. Carlos Cuadra gave the keynote address "Library Automation and Networks" which stresses the potential application of automated information systems to…

  6. The quantum Hall impedance standard

    NASA Astrophysics Data System (ADS)

    Schurr, J.; Kučera, J.; Pierz, K.; Kibble, B. P.

    2011-02-01

    Alternating current measurements of double-shielded quantum Hall devices have revealed a fascinating property of which only a quantum effect is capable: it can detect its own frequency dependence and convert it to a current dependence which can be used to eliminate both of them. According to an experimentally verified model, the residual frequency dependence is smaller than the measuring uncertainty of 1.3 × 10-9 kHz-1. In this way, a highly precise quantum standard of impedance can be established, without having to correct for any calculated frequency dependence and without the need for any artefact with a calculated frequency dependence. Nothing else like that is known to us and we hope that our results encourage other national metrology institutes to also apply it to impedance metrology and further explore its beautiful properties.

  7. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of...

  8. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of...

  9. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral...

  10. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral...

  11. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of...

  12. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of...

  13. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral...

  14. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral...

  15. Impedance analysis of acupuncture points and pathways

    NASA Astrophysics Data System (ADS)

    Teplan, Michal; Kukučka, Marek; Ondrejkovičová, Alena

    2011-12-01

    Investigation of impedance characteristics of acupuncture points from acoustic to radio frequency range is addressed. Discernment and localization of acupuncture points in initial single subject study was unsuccessfully attempted by impedance map technique. Vector impedance analyses determined possible resonant zones in MHz region.

  16. [Research on Electrical Impedance Tomography Technology].

    PubMed

    Chang, Feiba; Zhang, Hehua; Yan, Lexian; Yin, Jun

    2016-01-01

    This article reviews the principle of electrical impedance tomography imaging and measurement system; focuses on electrical impedance tomography imaging detection system of incentive mode and several typical image reconstruction algorithm of electrical impedance imaging; and objectively compares and effectively evaluates several image reconstruction algorithm.

  17. Electron density dependence of impedance probe plasma potential measurements

    SciTech Connect

    Walker, D. N.; Blackwell, D. D.; Amatucci, W. E.

    2015-08-15

    In earlier works, we used spheres of various sizes as impedance probes in demonstrating a method of determining plasma potential, φ{sub p}, when the probe radius is much larger than the Debye length, λ{sub D}. The basis of the method in those works [Walker et al., Phys. Plasmas 13, 032108 (2006); ibid. 15, 123506 (2008); ibid. 17, 113503 (2010)] relies on applying a small amplitude signal of fixed frequency to a probe in a plasma and, through network analyzer-based measurements, determining the complex reflection coefficient, Γ, for varying probe bias, V{sub b}. The frequency range of the applied signal is restricted to avoid sheath resonant effects and ion contributions such that ω{sub pi} ≪ ω ≪ ω{sub pe}, where ω{sub pi} is the ion plasma frequency and ω{sub pe} is the electron plasma frequency. For a given frequency and applied bias, both Re(Z{sub ac}) and Im(Z{sub ac}) are available from Γ. When Re(Z{sub ac}) is plotted versus V{sub b}, a minimum predicted by theory occurs at φ{sub p} [Walker et al., Phys. Plasmas 17, 113503 (2010)]. In addition, Im(Z{sub ac}) appears at, or very near, a maximum at φ{sub p}. As n{sub e} decreases and the sheath expands, the minimum becomes harder to discern. The purpose of this work is to demonstrate that when using network analyzer-based measurements, Γ itself and Im(Z{sub ac}) and their derivatives are useful as accompanying indicators to Re(Z{sub ac}) in these difficult cases. We note the difficulties encountered by the most commonly used plasma diagnostic, the Langmuir probe. Spherical probe data is mainly used in this work, although we present limited data for a cylinder and a disk. To demonstrate the effect of lowered density as a function of probe geometry, we compare the cylinder and disk using only the indicator Re(Z{sub ac})

  18. Impedance microflow cytometry for viability studies of microorganisms

    NASA Astrophysics Data System (ADS)

    Di Berardino, Marco; Hebeisen, Monika; Hessler, Thomas; Ziswiler, Adrian; Largiadèr, Stephanie; Schade, Grit

    2011-02-01

    Impedance-based Coulter counters and its derivatives are widely used cell analysis tools in many laboratories and use normally DC or low frequency AC to perform these electrical analyses. The emergence of micro-fabrication technologies in the last decade, however, provides a new means of measuring electrical properties of cells. Microfluidic approaches combined with impedance spectroscopy measurements in the radio frequency (RF) range increase sensitivity and information content and thus push single cell analyses beyond simple cell counting and sizing applications towards multiparametric cell characterization. Promising results have been shown already in the fields of cell differentiation and blood analysis. Here we emphasize the potential of this technology by presenting new data obtained from viability studies on microorganisms. Impedance measurements of several yeast and bacteria strains performed at frequencies around 10 MHz enable an easy discrimination between dead and viable cells. Moreover, cytotoxic effects of antibiotics and other reagents, as well as cell starvation can also be monitored easily. Control analyses performed with conventional flow cytometers using various fluorescent dyes (propidium iodide, oxonol) indicate a good correlation and further highlight the capability of this device. The label-free approach makes on the one hand the use of usually expensive fluorochromes obsolete, on the other hand practically eliminates laborious sample preparation procedures. Until now, online cell monitoring was limited to the determination of viable biomass, which provides rather poor information of a cell culture. Impedance microflow cytometry, besides other aspects, proposes a simple solution to these limitations and might become an important tool for bioprocess monitoring applications in the biotech industry.

  19. Constant current loop impedance measuring system that is immune to the effects of parasitic impedances

    NASA Technical Reports Server (NTRS)

    Anderson, Karl F. (Inventor)

    1994-01-01

    A constant current loop measuring system is provided for measuring a characteristic of an environment. The system comprises a first impedance positionable in the environment, a second impedance coupled in series with said first impedance and a parasitic impedance electrically coupled to the first and second impedances. A current generating device, electrically coupled in series with the first and second impedances, provides a constant current through the first and second impedances to produce first and second voltages across the first and second impedances, respectively, and a parasitic voltage across the parasitic impedance. A high impedance voltage measuring device measures a voltage difference between the first and second voltages independent of the parasitic voltage to produce a characteristic voltage representative of the characteristic of the environment.

  20. Local impedance imaging of boron-doped polycrystalline diamond thin films

    SciTech Connect

    Zieliński, A.; Ryl, J.; Burczyk, L.; Darowicki, K.

    2014-09-29

    Local impedance imaging (LII) was used to visualise surficial deviations of AC impedances in polycrystalline boron-doped diamond (BDD). The BDD thin film electrodes were deposited onto the highly doped silicon substrates via microwave plasma-enhanced CVD. The studied boron dopant concentrations, controlled by the [B]/[C] ratio in plasma, ranged from 1 × 10{sup 16} to 2 × 10{sup 21} atoms cm{sup −3}. The BDD films displayed microcrystalline structure, while the average size of crystallites decreased from 1 to 0.7 μm with increasing [B]/[C] ratios. The application of LII enabled a direct and high-resolution investigation of local distribution of impedance characteristics within the individual grains of BDD. Such an approach resulted in greater understanding of the microstructural control of properties at the grain level. We propose that the obtained surficial variation of impedance is correlated to the areas of high conductance which have been observed at the grain boundaries by using LII. We also postulate that the origin of high conductivity is due to either preferential boron accumulation, the presence of defects, or sp{sup 2} regions in the intragrain regions. The impedance modulus recorded by LII was in full agreement with the bulk impedance measurements. Both variables showed a decreasing trend with increasing [B]/[C] ratios, which is consistent with higher boron incorporation into BDD film.

  1. AC power systems handbook

    SciTech Connect

    Whitaker, J.

    1991-01-01

    Transient disturbances are what headaches are made of. Whatever you call them-spikes, surges, are power bumps-they can take your equipment down and leave you with a complicated and expensive repair job. Protection against transient disturbances is a science that demands attention to detail. This book explains how the power distribution system works, what can go wrong with it, and how to protect a facility against abnormalities. system grounding and shielding are covered in detail. Each major method of transient protection is analyzed and its relative merits discussed. The book provides a complete look at the critical elements of the ac power system. Provides a complete look at the ac power system from generation to consumption. Discusses the mechanisms that produce transient disturbances and how to protect against them. Presents diagrams to facilitate system design. Covers new areas, such as the extent of the transient disturbance problem, transient protection options, and stand-by power systems.

  2. Application of the A.C. Admittance technique to double layer studies on polycrystalline gold electrodes

    NASA Astrophysics Data System (ADS)

    Fawcett, W. R.; Kovacova, Zuzana; Motheo, Arthur J.; Foss, Colby A., Jr.

    1992-02-01

    A detailed examination of the dependence of the a.c. admittance of a cell containing a polycrystalline gold electrode has been made in the double layer region as a function of d.c. potential, a.c. frequency, and electrode history. It is shown that the interfacial impedance of a gold electrode with a carefully prepared surface can be treated under these circumstances as a constant phase element when it is in contact with an aqueous solution containing 0.05 M KClO4. Analysis of the frequency dependence of the cell impedance gives the surface inhomogeneity parameter n which turns out to be very close to unity. Although the electrode surface is only slightly inhomogeneous on a microscopic scale, a very large frequency dispersion of the impedance is observed experimentally. A method of estimating the true specific capacity of the electrode is presented, and conditions for carrying out the experiments in a reproducible manner are discussed.

  3. Increased Ac excision (iae): Arabidopsis thaliana mutations affecting Ac transposition.

    PubMed

    Jarvis, P; Belzile, F; Page, T; Dean, C

    1997-05-01

    The maize transposable element Ac is highly active in the heterologous hosts tobacco and tomato, but shows very much reduced levels of activity in Arabidopsis. A mutagenesis experiment was undertaken with the aim of identifying Arabidopsis host factors responsible for the observed low levels of Ac activity. Seed from a line carrying a single copy of the Ac element inserted into the streptomycin phosphotransferase (SPT) reporter fusion, and which displayed typically low levels of Ac activity, were mutagenized using gamma rays. Nineteen mutants displaying high levels of somatic Ac activity, as judged by their highly variegated phenotypes, were isolated after screening the M2 generation on streptomycin-containing medium. The mutations fall into two complementation groups, iae1 and iae2, are unlinked to the SPT::Ac locus and segregate in a Mendelian fashion. The iae1 mutation is recessive and the iae2 mutation is semi-dominant. The iae1 and iae2 mutants show 550- and 70-fold increases, respectively, in the average number of Ac excision sectors per cotyledon. The IAE1 locus maps to chromosome 2, whereas the SPT::Ac reporter maps to chromosome 3. A molecular study of Ac activity in the iae1 mutant confirmed the very high levels of Ac excision predicted using the phenotypic assay, but revealed only low levels of Ac re-insertion. Analyses of germinal transposition in the iae1 mutant demonstrated an average germinal excision frequency of 3% and a frequency of independent Ac re-insertions following germinal excision of 22%. The iae mutants represents a possible means of improving the efficiency of Ac/Ds transposon tagging systems in Arabidopsis, and will enable the dissection of host involvement in Ac transposition and the mechanisms employed for controlling transposable element activity.

  4. Impedance spectroscopy of food mycotoxins

    NASA Astrophysics Data System (ADS)

    Bilyy, Oleksandr I.; Yaremyk, Roman Ya.; Kotsyumbas, Ihor Ya.; Kotsyumbas, Halyna I.

    2012-01-01

    A new analytical method of high-selective detection of mycotoxins in food and feed are considered. A method is based on optical registration the changes of conduct of the electric polarized bacterial agents in solution at the action of the external gradient electric fields. Measuring are conducted in integrated electrode-optical cuvette of the special construction, which provides the photometric analysis of forward motion of the objects registration in liquid solution under act of the enclosed electric field and simultaneous registration of kinetics of change of electrical impedance parameters solution and electrode system.

  5. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba; Christopher J. Ziolkowski

    2004-06-30

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  6. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba

    2003-10-01

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  7. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba

    2003-04-01

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a thin film sensor conformal with the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is capacitively coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD

  8. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba

    2003-01-30

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a thin film sensor conformal with the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is capacitively coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD

  9. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba

    2002-08-30

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a thin film sensor conformal with the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is capacitively coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD

  10. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba

    2002-11-27

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a thin film sensor conformal with the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is capacitively coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD

  11. Electrochemical impedance spectroscopy of metal alloys in the space transportation system launch environment

    NASA Technical Reports Server (NTRS)

    Calle, Luz

    1990-01-01

    AC impedance measurements were performed to investigate the corrosion resistance of 18 alloys under conditions similar to the Space Transportation System (STS) launch environment. The alloys were: (1) zirconium 702; (2) Hastelloy C-22, C-276, C-4, and B-2; (3) Inconel 600 and 825; (4) Ferralium 255; (5) Inco Alloy G-3; (6) 20Cb-3; (7) SS 904L, 304LN, 316L, 317L, and 304L; (8) ES 2205; and (9) Monel 400. AC impedance data were gathered for each alloy at various immersion times in 3.55 percent NaCl-0.1N HCl. Polarization resistance values were obtained for the Nyguist plots at each immersion time using the EQUIVALENT CIRCUIT software package available with the 388 electrochemical impedance software. Hastelloy C-22 showed the highest overall values for polarization resistance while Monel 400 and Inconel 600 had the lowest overall values. There was good general correlation between the corrosion performance of the alloys at the beach corrosion testing site, and the expected rate of corrosion as predicted based on the polarization resistance values obtained. The data indicate that electrochemical impedance spectroscopy can be used to predict the corrosion performance of metal alloys.

  12. Journal bearing impedance descriptions for rotordynamic applications

    NASA Technical Reports Server (NTRS)

    Childs, D.; Moes, H.; Van Leeuwen, H.

    1976-01-01

    The paper deals with the development of analytic descriptions for plain circumferentially-symmetric fluid journal bearings, which are suitable for use in rotor dynamic analysis. The bearing impedance vector is introduced, which defines the bearing reaction force components as a function of the bearing motion. Impedances are derived directly for the Ocvirk (short) and Sommerfeld (long) bearings, and the relationships between the impedance vector and the more familiar mobility vector are developed and used to derive analytic impedance for finite-length bearings. The static correctness of the finite-length cavitating impedance is verified. Analytic stiffness and damping coefficient definitions are derived in terms of an impedance vector for small motion around an equilibrium position and demonstrated for the finite-length cavitating impedance. Nonlinear transient rotordynamic simulations are presented for the short pi and 2-pi impedances and the finite-length cavitating impedance. It is shown that finite-length impedance yields more accurate results for substantially less computer time than the short-bearing numerical-pressure-integration approach.

  13. Spheromak Impedance and Current Amplification

    SciTech Connect

    Fowler, T K; Hua, D D; Stallard, B W

    2002-01-31

    It is shown that high current amplification can be achieved only by injecting helicity on the timescale for reconnection, {tau}{sub REC}, which determines the effective impedance of the spheromak. An approximate equation for current amplification is: dI{sub TOR}{sup 2}/dt {approx} I{sup 2}/{tau}{sub REC} - I{sub TOR}{sup 2}/{tau}{sub closed} where I is the gun current, I{sub TOR} is the spheromak toroidal current and {tau}{sub CLOSED} is the ohmic decay time of the spheromak. Achieving high current amplification, I{sub TOR} >> I, requires {tau}{sub REC} <<{tau}{sub CLOSED}. For resistive reconnection, this requires reconnection in a cold zone feeding helicity into a hot zone. Here we propose an impedance model based on these ideas in a form that can be implemented in the Corsica-based helicity transport code. The most important feature of the model is the possibility that {tau}{sub REC} actually increases as the spheromak temperature increases, perhaps accounting for the ''voltage sag'' observed in some experiments, and a tendency toward a constant ratio of field to current, B {proportional_to} I, or I{sub TOR} {approx} I. Program implications are discussed.

  14. TRANSVERSE IMPEDANCE MEASUREMENT AT THE RHIC.

    SciTech Connect

    ZHANG,S.Y.; HUANG,H.; CAMERON,P.; DREES,A.; FLILLER,R.; SATOGATA,T.

    2002-06-02

    The RHIC transverse impedance was measured during the last operation run. Measurement of the imaginary part of the broadband impedance was the main goal. No large difference between the two rings was found nor in either plane. The measured tune shift is larger than the expected by a factor of 2.5 to 3. Several other issues such as the real part impedance measurement are also presented.

  15. Factors affecting bioelectrical impedance measurements in humans.

    PubMed

    Deurenberg, P; Weststrate, J A; Paymans, I; van der Kooy, K

    1988-12-01

    In several groups of young healthy subjects the effect of the ingestion of a meal, of drinking normal tea or beef tea, of exercise and of the menstrual cycle on body impedance was assessed. The day-to-day reproducibility of the method was also investigated under standardized conditions. Two to four hours after ingestion of a meal, body impedance had decreased by about 13-17 Ohms in comparison with body impedance in the fasting state. Drinking 200 ml of normal tea did not result in a change of body impedance, but drinking 200 ml beef tea lowered the body impedance significantly by 4 +/- 4 Ohms. Moderate exercise on a bicycle ergometer (90 min, 100 W) did not influence body impedance, but strenuous exercise (90 min, 175 W) resulted in a decrease of 9 +/- 11 Ohms in body impedance. In general, changes in body impedance during the menstrual cycle were small, and only the difference between measurements of body impedance 1 week before the onset of the menstruation and again 1 week after menstruation (8 +/- 9 Ohms) was statistically significant. Under standardized conditions (in the morning, in the fasting state after emptying the bladder) the within-person between-day variation was found to be 2.8 per cent (13 Ohms).

  16. Adaptive Impedance Control Of Redundant Manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun; Colbaugh, Richard D.; Glass, Kristin L.

    1994-01-01

    Improved method of controlling mechanical impedance of end effector of redundant robotic manipulator based on adaptive-control theory. Consists of two subsystems: adaptive impedance controller generating force-control inputs in Cartesian space of end effector to provide desired end-effector-impedance characteristics, and subsystem implementing algorithm that maps force-control inputs into torques applied to joints of manipulator. Accurate control of end effector and effective utilization of redundancy achieved simultaneously by use of method. Potential use to improve performance of such typical impedance-control tasks as deburring edges and accommodating transitions between unconstrained and constrained motions of end effectors.

  17. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  18. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  19. Impedance Spectroscopy of Human Blood

    NASA Astrophysics Data System (ADS)

    Mesa, Francisco; Bernal, José J.; Sosa, Modesto A.; Villagómez, Julio C.; Palomares, Pascual

    2004-09-01

    The blood is one of the corporal fluids more used with analytical purposes. When the blood is extracted, immediately it is affected by agents that act on it, producing transformations in its elements. Among the effects of these transformations the hemolysis phenomenon stands out, which consists of the membrane rupture and possible death of the red blood cells. The main purpose of this investigation was the quantification of this phenomenon. A Solartron SI-1260 Impedance Spectrometer was used, which covers a frequency range of work from 1 μHz to 10 MHz, and its accuracy has been tested in the accomplishment of several applications. Measurements were performed on 3 mL human blood samples, from healthy donors. Reactive strips for sugar test of 2 μL, from Bayer, were used as electrodes, which allow gathering a portion of the sample, to be analyzed by the spectrometer. Preliminary results of these measurements are presented.

  20. Electrical Impedance Tomography of Electrolysis

    PubMed Central

    Meir, Arie; Rubinsky, Boris

    2015-01-01

    The primary goal of this study is to explore the hypothesis that changes in pH during electrolysis can be detected with Electrical Impedance Tomography (EIT). The study has relevance to real time control of minimally invasive surgery with electrolytic ablation. To investigate the hypothesis, we compare EIT reconstructed images to optical images acquired using pH-sensitive dyes embedded in a physiological saline agar gel phantom treated with electrolysis. We further demonstrate the biological relevance of our work using a bacterial E.Coli model, grown on the phantom. The results demonstrate the ability of EIT to image pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E.coli model. The results are promising, and invite further experimental explorations. PMID:26039686

  1. Maxwell's mixing equation revisited: characteristic impedance equations for ellipsoidal cells.

    PubMed

    Stubbe, Marco; Gimsa, Jan

    2015-07-21

    We derived a series of, to our knowledge, new analytic expressions for the characteristic features of the impedance spectra of suspensions of homogeneous and single-shell spherical, spheroidal, and ellipsoidal objects, e.g., biological cells of the general ellipsoidal shape. In the derivation, we combined the Maxwell-Wagner mixing equation with our expression for the Clausius-Mossotti factor that had been originally derived to describe AC-electrokinetic effects such as dielectrophoresis, electrorotation, and electroorientation. The influential radius model was employed because it allows for a separation of the geometric and electric problems. For shelled objects, a special axial longitudinal element approach leads to a resistor-capacitor model, which can be used to simplify the mixing equation. Characteristic equations were derived for the plateau levels, peak heights, and characteristic frequencies of the impedance as well as the complex specific conductivities and permittivities of suspensions of axially and randomly oriented homogeneous and single-shell ellipsoidal objects. For membrane-covered spherical objects, most of the limiting cases are identical to-or improved with respect to-the known solutions given by researchers in the field. The characteristic equations were found to be quite precise (largest deviations typically <5% with respect to the full model) when tested with parameters relevant to biological cells. They can be used for the differentiation of orientation and the electric properties of cell suspensions or in the analysis of single cells in microfluidic systems. PMID:26200856

  2. Dielectric and impedance behavior of neodymium substituted strontium hexaferrite

    NASA Astrophysics Data System (ADS)

    Bhat, Bilal Hamid; Samad, Rubiya; Want, Basharat

    2016-09-01

    In this study, dielectric behavior and complex impedance of neodymium (Nd) substituted strontium hexaferrite system: Sr1- x Nd x Fe12O19 ( x = 0.0, 0.05, 0.1, 0.15, 0. 20), synthesized by citrate precursor technique, have been evaluated as a function of applied frequency and temperature. Variation of dielectric constant and dielectric loss with frequency shows the identical behavior for all the compositions. The value of dielectric constant increases with Nd doping. Relaxation process is observed in the composition x = 0.20, and the peaks in this composition shift toward the higher-frequency region as the temperature increases. The dielectric constants show temperature-independent behavior at low temperature, whereas at higher temperatures it increases for all the frequencies. The AC conductivity follows Jonscher's power law, showing that conduction mechanism is due to polaron hopping. Complex impedance as a function of composition and temperature is used to examine the role of grain and grain boundary in the prepared material. Cole-cole plot shows only one semicircle up to x = 0.15, while as for x = 0.20 two semicircles are observed. The conduction mechanism is explained on the basis of both grain and grain boundary.

  3. Studies of deionization and impedance spectroscopy for blood analyzer

    NASA Astrophysics Data System (ADS)

    Kwong, Charlotte C.; Li, Nan; Ho, Chih-Ming

    2005-11-01

    Blood analysis provides vital information for health conditions. For instance, typical infection response is correlated to an elevated White Blood Cell (WBC) count, while low Red Blood Cell (RBC) count, hemoglobin and hematocrit are caused by anemia or internal bleeding. We are developing two essential modules, deionization (DI) chip and microfluidic cytometer with impedance spectroscopy flow, for enabling the realization of a single platform miniaturized blood analyzer. In the proposed analyzer, blood cells are preliminarily sorted by Dielectrophoretic (DEP) means into sub-groups, differentiated and counted by impedance spectroscopy in a flow cytometer. DEP techniques have been demonstrated to stretch DNA, align Carbon Nanotubes (CNT) and trap cells successfully. However, DEP manipulation does not function in biological media with high conductivity. The DI module is designed to account for this challenge. H Filter will serve as an ion extraction platform in a microchamber. Sample and buffer do not mix well in micro scale allowing the ions being extracted by diffusion without increasing the volume. This can keep the downstream processing time short. Micro scale hydrodynamic focusing is employed to place single cell passing along the central plane of the flow cytometer module. By applying an AC electrical field, suspended cells are polarized, membrane capacitance C m, cytoplasm conductivity σ c, and cytoplasm permittivity ɛ c will vary as functions of frequency. Tracing back the monitored current, the numbers of individual cell species can be evaluated.

  4. Identification of /sup 233/Ac

    SciTech Connect

    Chu, Y.Y.; Zhou, M.L.

    1983-09-01

    We report in this paper identification of the new isotope /sup 233/Ac. Uranium targets were irradiated with 28 GeV protons; after rapid retrieval of the target and separation of actinium from thorium, /sup 233/Ac was allowed to decay into the known /sup 233/Th daughter. Exhaustive chemical purification was employed to permit the identification of /sup 233/Th via its characteristic ..gamma.. radiations. The half-life derived for /sup 233/Ac from several experiments is 2.3 +- 0.3 min. The production cross section for /sup 233/Ac is 100 ..mu..b.

  5. AC and DC power transmission

    SciTech Connect

    Not Available

    1985-01-01

    The technical and economic assessment of AC and DC transmission systems; long distance transmission, cable transmission, system inter-connection, voltage support, reactive compensation, stabilisation of systems; parallel operation of DC links with AC systems; comparison between alternatives for particular schemes. Design and application equipment: design, testing and application of equipment for HVDC, series and shunt static compensated AC schemes, including associated controls. Installations: overall design of stations and conductor arrangements for HVDC, series and shunt static AC schemes including insulation co-ordination. System analysis and modelling.

  6. Impedance spectroscopy of manganite films prepared by metalorganic chemical vapor deposition.

    PubMed

    Nakamura, Toshihiro; Homma, Kohei; Tachibana, Kunihide

    2011-09-01

    Polycrystalline Pr(1-x)CaxMnO3 (PCMO) films were prepared by liquid source metalorganic chemical vapor deposition using in situ infrared spectroscopic monitoring. The electric properties of the PCMO-based devices with Ni and Al electrodes (Ni-PCMO-Ni and Al-PCMO-Al devices) were studied by dc current-voltage (I-V) measurements and ac impedance spectroscopy. The current varied linearly with the applied voltage in Ni-PCMO-Ni devices, while nonlinear behavior was observed in I-V curves for Al-PCMO-Al devices. Impedance spectra were also different between Ni-PCMO-Ni and Al-PCMO-Al devices. The Cole-Cole plots for the Ni-PCMO-Ni devices showed only a single semicircular arc, which was assigned to the PCMO bulk impedance. Impedance spectra for the Al-PCMO-Al devices had two distinct components, which could be attributed to the PCMO bulk and to the interface between the PCMO film and the Al electrode, respectively. The bias dependence of the impedance spectra suggested that the resistance switching in the Al-PCMO-Al devices was mainly due to the resistance change in the interface between the film and the electrode. The metal electrode plays an important role in the resistance switching in the PCMO-based devices. The choice of the optimum metal electrodes is essential to the ReRAM application of the manganite-based devices.

  7. Impedance adaptation methods of the piezoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Kim, Hyeoungwoo

    In this study, the important issues of energy recovery were addressed and a comprehensive investigation was performed on harvesting electrical power from an ambient mechanical vibration source. Also discussed are the impedance matching methods used to increase the efficiency of energy transfer from the environment to the application. Initially, the mechanical impedance matching method was investigated to increase mechanical energy transferred to the transducer from the environment. This was done by reducing the mechanical impedance such as damping factor and energy reflection ratio. The vibration source and the transducer were modeled by a two-degree-of-freedom dynamic system with mass, spring constant, and damper. The transmissibility employed to show how much mechanical energy that was transferred in this system was affected by the damping ratio and the stiffness of elastic materials. The mechanical impedance of the system was described by electrical system using analogy between the two systems in order to simply the total mechanical impedance. Secondly, the transduction rate of mechanical energy to electrical energy was improved by using a PZT material which has a high figure of merit and a high electromechanical coupling factor for electrical power generation, and a piezoelectric transducer which has a high transduction rate was designed and fabricated. The high g material (g33 = 40 [10-3Vm/N]) was developed to improve the figure of merit of the PZT ceramics. The cymbal composite transducer has been found as a promising structure for piezoelectric energy harvesting under high force at cyclic conditions (10--200 Hz), because it has almost 40 times higher effective strain coefficient than PZT ceramics. The endcap of cymbal also enhances the endurance of the ceramic to sustain ac load along with stress amplification. In addition, a macro fiber composite (MFC) was employed as a strain component because of its flexibility and the high electromechanical coupling

  8. Digital ac monitor

    DOEpatents

    Hart, G.W.; Kern, E.C. Jr.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer. 24 figs.

  9. Digital ac monitor

    DOEpatents

    Hart, George W.; Kern, Jr., Edward C.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer.

  10. Cooling Floor AC Systems

    NASA Astrophysics Data System (ADS)

    Jun, Lu; Hao, Ding; Hong, Zhang; Ce, Gao Dian

    The present HVAC equipments for the residential buildings in the Hot-summer-and-Cold-winter climate region are still at a high energy consuming level. So that the high efficiency HVAC system is an urgently need for achieving the preset government energy saving goal. With its advantage of highly sanitary, highly comfortable and uniform of temperature field, the hot-water resource floor radiation heating system has been widely accepted. This paper has put forward a new way in air-conditioning, which combines the fresh-air supply unit and such floor radiation system for the dehumidification and cooling in summer or heating in winter. By analyze its advantages and limitations, we found that this so called Cooling/ Heating Floor AC System can improve the IAQ of residential building while keep high efficiency quality. We also recommend a methodology for the HVAC system designing, which will ensure the reduction of energy cost of users.

  11. Active impedance matching of complex structural systems

    NASA Technical Reports Server (NTRS)

    Macmartin, Douglas G.; Miller, David W.; Hall, Steven R.

    1991-01-01

    Viewgraphs on active impedance matching of complex structural systems are presented. Topics covered include: traveling wave model; dereverberated mobility model; computation of dereverberated mobility; control problem: optimal impedance matching; H2 optimal solution; statistical energy analysis (SEA) solution; experimental transfer functions; interferometer actuator and sensor locations; active strut configurations; power dual variables; dereverberation of complex structure; dereverberated transfer function; compensators; and relative power flow.

  12. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Impedance phlebograph. 870.2750 Section 870.2750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance...

  13. Esophageal Impedance Monitoring: Clinical Pearls and Pitfalls.

    PubMed

    Ravi, Karthik; Katzka, David A

    2016-09-01

    The development of intraluminal esophageal impedance monitoring has improved our ability to detect and measure gastroesophageal reflux without dependence on acid content. This ability to detect previously unrecognized weak or nonacid reflux episodes has had important clinical implications in the diagnosis and management of gastroesophageal reflux disease (GERD). In addition, with the ability to assess bolus transit within the esophageal lumen, impedance monitoring has enhanced the recognition and characterization of esophageal motility disorders in patients with nonobstructive dysphagia. The assessment of the intraluminal movement of gas and liquid has also been proven to be of diagnostic value in conditions such as rumination syndrome and excessive belching. Further, alternative applications of impedance monitoring, such as the measurement of mucosal impedance, have provided novel insights into assessing esophageal mucosal integrity changes as a consequence of inflammatory change. Future applications for esophageal impedance monitoring also hold promise in esophageal conditions other than GERD. However, despite all of the clinical benefits afforded by esophageal impedance monitoring, important clinical and technical shortcomings limit its diagnostic value and must be considered when interpreting study results. Overinterpretation of studies or application of impedance monitoring in patients can have deleterious clinical implications. This review will highlight the clinical benefits and limitations of esophageal impedance monitoring and provide clinical pearls and pitfalls associated with this technology.

  14. Esophageal Impedance Monitoring: Clinical Pearls and Pitfalls.

    PubMed

    Ravi, Karthik; Katzka, David A

    2016-09-01

    The development of intraluminal esophageal impedance monitoring has improved our ability to detect and measure gastroesophageal reflux without dependence on acid content. This ability to detect previously unrecognized weak or nonacid reflux episodes has had important clinical implications in the diagnosis and management of gastroesophageal reflux disease (GERD). In addition, with the ability to assess bolus transit within the esophageal lumen, impedance monitoring has enhanced the recognition and characterization of esophageal motility disorders in patients with nonobstructive dysphagia. The assessment of the intraluminal movement of gas and liquid has also been proven to be of diagnostic value in conditions such as rumination syndrome and excessive belching. Further, alternative applications of impedance monitoring, such as the measurement of mucosal impedance, have provided novel insights into assessing esophageal mucosal integrity changes as a consequence of inflammatory change. Future applications for esophageal impedance monitoring also hold promise in esophageal conditions other than GERD. However, despite all of the clinical benefits afforded by esophageal impedance monitoring, important clinical and technical shortcomings limit its diagnostic value and must be considered when interpreting study results. Overinterpretation of studies or application of impedance monitoring in patients can have deleterious clinical implications. This review will highlight the clinical benefits and limitations of esophageal impedance monitoring and provide clinical pearls and pitfalls associated with this technology. PMID:27325223

  15. Possibilities of electrical impedance tomography in gynecology

    NASA Astrophysics Data System (ADS)

    V, Trokhanova O.; A, Chijova Y.; B, Okhapkin M.; V, Korjenevsky A.; S, Tuykin T.

    2013-04-01

    The paper describes results of comprehensive EIT diagnostics of mammary glands and cervix. The data were obtained from examinations of 170 patients by EIT system MEM (multi-frequency electrical impedance mammograph) and EIT system GIT (gynecological impedance tomograph). Mutual dependence is discussed.

  16. Four-Point Preprandial Self-Monitoring of Blood Glucose for the Assessment of Glycemic Control and Variability in Patients with Type 2 Diabetes Treated with Insulin and Vildagliptin

    PubMed Central

    Tura, Andrea; Farngren, Johan; Schweizer, Anja; Foley, James E.; Pacini, Giovanni; Ahrén, Bo

    2015-01-01

    The study explored the utility of four-point preprandial glucose self-monitoring to calculate several indices of glycemic control and variability in a study adding the DPP-4 inhibitor vildagliptin to ongoing insulin therapy. This analysis utilized data from a double-blind, randomized, placebo-controlled crossover study in 29 patients with type 2 diabetes treated with vildagliptin or placebo on top of stable insulin dose. During two 4-week treatment periods, self-monitoring of plasma glucose was undertaken at 4 occasions every day. Glucose values were used to assess several indices of glycemic control quality, such as glucose mean, GRADE, M-VALUE, hypoglycemia and hyperglycemia index, and indices of glycemic variability, such as standard deviation, CONGA, J-INDEX, and MAGE. We found that vildagliptin improved the glycemic condition compared to placebo: mean glycemic levels, and both GRADE and M-VALUE, were reduced by vildagliptin (P < 0.01). Indices also showed that vildagliptin reduced glycemia without increasing the risk for hypoglycemia. Almost all indices of glycemic variability showed an improvement of the glycemic condition with vildagliptin (P < 0.02), though more marked differences were shown by the more complex indices. In conclusion, the study shows that four-sample preprandial glucose self-monitoring is sufficient to yield information on the vildagliptin effects on glycemic control and variability. PMID:26587020

  17. Modified structural and frequency dependent impedance formalism of nanoscale BaTiO3 due to Tb inclusion

    NASA Astrophysics Data System (ADS)

    Borah, Manjit; Mohanta, Dambarudhar

    2016-05-01

    We report the effect of Tb-doping on the structural and high frequency impedance response of the nanoscale BaTiO3 (BT) systems. While exhibiting a mixed phase crystal structure, the nano-BT systems are found to evolve with edges, and facets. The interplanar spacing of crystal lattice fringes is ~0.25 nm. The Cole-Cole plots, in the impedance formalism, have demonstrated semicircles which are the characteristic feature of grain boundary resistance of several MΩ. A lowering of ac conductivity with doping was believed to be due to the manifestation of oxygen vacancies and vacancy ordering.

  18. Method to detect the end-point for PCR DNA amplification using an ionically labeled probe and measuring impedance change

    DOEpatents

    Miles, Robin R.; Belgrader, Phillip; Fuller, Christopher D.

    2007-01-02

    Impedance measurements are used to detect the end-point for PCR DNA amplification. A pair of spaced electrodes are located on a surface of a microfluidic channel and an AC or DC voltage is applied across the electrodes to produce an electric field. An ionically labeled probe will attach to a complementary DNA segment, and a polymerase enzyme will release the ionic label. This causes the conductivity of the solution in the area of the electrode to change. This change in conductivity is measured as a change in the impedance been the two electrodes.

  19. Rotor damage detection by using piezoelectric impedance

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Tao, Y.; Mao, Y. F.

    2016-04-01

    Rotor is a core component of rotary machinery. Once the rotor has the damage, it may lead to a major accident. Thus the quantitative rotor damage detection method based on piezoelectric impedance is studied in this paper. With the governing equation of piezoelectric transducer (PZT) in a cylindrical coordinate, the displacement along the radius direction is derived. The charge of PZT is calculated by the electric displacement. Then, by the use of the obtained displacement and charge, an analytic piezoelectric impedance model of the rotor is built. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used to set up the damage detection model. The Electro-Mechanical (E/M) coupled impedance expression of an undamaged rotor is deduced with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection method is proposed. This method can directly calculate the change of bending stiffness of the structural elements, it follows that the rotor damage can be effectively detected. Finally, a preset damage configuration is used for the numerical simulation. The result shows that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.

  20. Estimates of Acausal Joint Impedance Models

    PubMed Central

    Perreault, Eric J.

    2013-01-01

    Estimates of joint or limb impedance are commonly used in the study of how the nervous system controls posture and movement, and how that control is altered by injury to the neural or musculoskeletal systems. Impedance characterizes the dynamic relationship between an imposed perturbation of joint position and the torques generated in response. While there are many practical reasons for estimating impedance rather than its inverse, admittance, it is an acausal representation of the limb mechanics that can lead to difficulties in interpretation or use. The purpose of this study was to explore the acausal nature of nonparametric estimates of joint impedance representations to determine how they are influenced by common experimental and computational choices. This was accomplished by deriving discrete-time realizations of first-and second-order derivatives to illustrate two key difficulties in the physical interpretation of impedance impulse response functions. These illustrations were provided using both simulated and experimental data. It was found that the shape of the impedance impulse response depends critically on the selected sampling rate, and on the bandwidth and noise characteristics of the position perturbation used during the estimation process. These results provide important guidelines for designing experiments in which nonparametric estimates of impedance will be obtained, especially when those estimates are to be used in a multistep identification process. PMID:22907963

  1. Tracking of electrochemical impedance of batteries

    NASA Astrophysics Data System (ADS)

    Piret, H.; Granjon, P.; Guillet, N.; Cattin, V.

    2016-04-01

    This paper presents an evolutionary battery impedance estimation method, which can be easily embedded in vehicles or nomad devices. The proposed method not only allows an accurate frequency impedance estimation, but also a tracking of its temporal evolution contrary to classical electrochemical impedance spectroscopy methods. Taking into account constraints of cost and complexity, we propose to use the existing electronics of current control to perform a frequency evolutionary estimation of the electrochemical impedance. The developed method uses a simple wideband input signal, and relies on a recursive local average of Fourier transforms. The averaging is controlled by a single parameter, managing a trade-off between tracking and estimation performance. This normalized parameter allows to correctly adapt the behavior of the proposed estimator to the variations of the impedance. The advantage of the proposed method is twofold: the method is easy to embed into a simple electronic circuit, and the battery impedance estimator is evolutionary. The ability of the method to monitor the impedance over time is demonstrated on a simulator, and on a real Lithium ion battery, on which a repeatability study is carried out. The experiments reveal good tracking results, and estimation performance as accurate as the usual laboratory approaches.

  2. Synthesis, dielectric behavior and impedance measurement studies of Cr-substituted Zn-Mn ferrites

    SciTech Connect

    Hankare, P.P.; Patil, R.P.; Garadkar, K.M.; Sasikala, R.; Chougule, B.K.

    2011-03-15

    Graphical abstract: Variation of dielectric constant with frequency. Research highlights: {yields} Sol-gel route synthesized spherical crystalline nanoparticles of ZnMn{sub 1-x}Cr{sub x}FeO{sub 4}. {yields} XRD, DTA, FTIR, SEM, dielectric and impedance study. {yields} The ferrites show concentration dependence of ac electrical conductivity. {yields} Impedance response is dominated by grain boundary behavior. -- Abstract: Nanocrystalline ZnMn{sub 1-x}Cr{sub x}FeO{sub 4} (1.0 {>=} x {>=} 0) ferrites were synthesized by sol-gel technique. X-ray diffraction (XRD) confirmed the formation of single phasic cubic spinel lattice for all the compositions studied. Lattice parameter shows a decreasing trend with an increase in Cr content in the compositions. Formation of spherical nanoparticles was revealed by scanning electron microscopy (SEM) analysis. Infrared spectroscopic studies revealed two main absorption bands in the range 400-800 cm{sup -1} arising due to tetrahedral (A) and octahedral (B) site vibrations. Dielectric constant, dielectric loss tangent, ac conductivity and complex impedance were measured as a function of frequency in the range 20 Hz to 1 MHz. Frequency dependence of dielectric constant shows dielectric dispersion due to the Maxwell-Wagner type of interfacial polarization. The role of chromium in modifying structural and dielectric properties of these ferrites has been explained.

  3. Operation Method for AC Motor Control during Power Interruption in Direct AC/AC Converter System

    NASA Astrophysics Data System (ADS)

    Shizu, Keiichiro; Azuma, Satoshi

    Direct AC/AC converters have been studied due to their potential use in power converters with no DC-link capacitor, which can contribute to the miniaturization of power converters. However, the absence of a DC-link capacitor makes it difficult to control the AC motor during power interruption. First, this paper proposes a system that realizes AC motor control during power interruption by utilizing a clamp capacitor. In general, direct AC/AC converters have a clamp circuit consisting of a rectifier diode(s) and a clamp capacitor in order to avoid over-voltages. In the proposed system, there is an additional semiconductor switch reverse-parallel to the rectifier diode(s), and the clamp capacitor voltage can be utilized for AC motor control by turning on the additional switch. Second, this paper discusses an operation method for AC motor control and clamp capacitor voltage control during power interruption. In the proposed method “DC-link voltage control”, the kinetic energy in the AC motor is transformed into electrical energy and stored in the clamp capacitor; the clamp capacitor is therefore charged and the capacitor voltage is controlled to remain constant at an instruction value. Third, this paper discusses a switching operation during power interruption. A dead-time is introduced between the operation of turning off all switches on the rectifier side and the operation of turning on the additional switch, which prevents the occurrence of a short circuit between the interrupted power source and the clamp capacitor. Finally, experimental results are presented. During power interruptions, an output current was continuously obtained and the clamp capacitor voltage was maintained to be equal to the instruction value of the capacitor voltage. These results indicate that both AC motor control and capacitor voltage control were successfully achieved by using the proposed system.

  4. ACS CCD Stability Monitor

    NASA Astrophysics Data System (ADS)

    Grogin, Norman

    2012-10-01

    A moderately crowded stellar field in the cluster 47 Tuc {6 arcmin West of the cluster core} is observed every four months with the WFC. The first visit exercises the full suite of broad and narrow band imaging filters and sub-array modes; following visits observe with only the six most popular Cycle 18 filters in full-frame mode. The positions and magnitudes of objects will be used to monitor local and large scale variations in the plate scale and the sensitivity of the detectors and to derive an independent measure of the detector CTE. One exposure in each sub-array mode with the WFC will allow us to verify that photometry obtained in full-frame and in sub-array modes are repeatable to better than 1%. This test is important for the ACS Photometric Cross-Calibration program, which uses sub-array exposures. This program may receive additional orbits to investigate ORIENT-dependent geometric distortion, which motivates the ORIENT and BETWEEN requirement on the first visit.

  5. Summary of the impedance working group

    SciTech Connect

    Chao, A.W.

    1995-05-01

    The impedance working group concentrated on the LHC design during the workshop. They look at the impedance contributions of liner, beam position monitors, shielded bellows, experimental chambers, superconducting cavities, recombination chambers, space charge, kickers, and the resistive wall. The group concluded that the impedance budgeting and the conceptual designs of the vacuum chamber components looked basically sound. It also noted, not surprisingly, that a large amount of studies are to be carried out further, and it ventured to give a partial list of these studies.

  6. Linearly tapered slot antenna impedance characteristics

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1995-01-01

    The paper presents for the first time an experimental technique to de-embed the input impedance of a LTSA from the measured reflection coefficient. The results show that the input impedance is dependent on the semi-flare angle and the length of the LTSA. The Re(Z(sub in)) is large when the electrical length of the LTSA is small and is on the order of few thousand ohms. However for an electrically large LTSA the Re(Z(sub in)) is in the range of 55 to 130 ohms. These results have potential applications in the design of broad band impedance matching networks for LTSA.

  7. Universal impedance fluctuations in wave chaotic systems.

    PubMed

    Hemmady, Sameer; Zheng, Xing; Ott, Edward; Antonsen, Thomas M; Anlage, Steven M

    2005-01-14

    We experimentally investigate theoretical predictions of universal impedance fluctuations in wave chaotic systems using a microwave analog of a quantum chaotic infinite square well potential. We emphasize the use of the radiation impedance to remove the nonuniversal effects of the particular coupling between the outside world and the scatterer. Specific predictions that we test include the probability density functions (PDFs) of the real and imaginary parts of the universal impedance, the equality of the variances of these PDFs, and the dependence of these PDFs on a single loss parameter.

  8. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  9. Phase-sensitive detection of both inductive and non-inductive ac voltages in ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Weiler, Mathias; Shaw, Justin M.; Nembach, Hans T.; Schoen, Martin A.; Boone, Carl T.; Silva, Thomas J.

    2014-03-01

    Spin pumping causes significant damping in ultrathin ferromagnetic/normal metal (NM) multilayers via spin-current generation of both dc and ac character in the NM system. While the nonlinear dc component has been investigated in detail by utilization of the inverse spin Hall effect (iSHE) in NMs, much less is known about the linear ac component that is presumably much larger in the small-excitation limit. We measured generated ac voltages in a wide variety of Permalloy/NM multilayers via vector-network-analyzer ferromagnetic resonance. We employ a custom, impedance-matched, broadband microwave coupler that features a ferromagnetic thin film reference resonator to accurately compare ac voltage amplitudes and phases between varieties of multilayers. By use of the fact that inductive and ac iSHE signals are phase-shifted by π/2, we find that inductive signals are major contributors in all investigated samples. It is only by comparison of the phase and amplitude of the recorded ac voltages between multiple samples that we can extract the non-inductive contributions due to spin-currents. Voltages due to the ac iSHE in Permalloy(10nm)/platinum(5nm) bilayers are weaker than inductive signals, in agreement with calculations based upon recent theoretical predictions. M.W. acknowledges financial support by the German Academic Exchange service (DAAD).

  10. AC conductivity and Dielectric Study of Chalcogenide Glasses of Se-Te-Ge System

    NASA Astrophysics Data System (ADS)

    Salman, Fathy

    2004-01-01

    The ac conductivity and dielectric properties of glassy system SexTe79 - xGe21, with x = 11, 14, 17 at.%, has been studied at temperatures 300 to 450 K and over a wide range of frequencies (50 Hz to 500 kHz). Experimental results indicate that the ac conductivity and the dielectric constants depend on temperature, frequency and Se content. The conductivity as a function of frequency exhibited two components: dc conductivity s dc, and ac conductivity s ac, where s ac ˜ w s. The mechanism of ac conductivity can be reasonably interpreted in terms of the correlated barrier hopping model (CBH). The activation energies are estimated and discussed. The dependence of ac conductivity and dielectric constants on the Se content x can be interpreted as the effect of Se fraction on the positional disorder. The impedance plot at each temperature appeared as a semicircle passes through the origin. Each semicircle is represented by an equivalent circuit of parallel resistance Rb and capacitance Cb.

  11. Antenna pattern control using impedance surfaces

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Liu, Kefeng; Tirkas, Panayiotis A.

    1993-01-01

    During the period of this research project, a comprehensive study of pyramidal horn antennas was conducted. Full-wave analytical and numerical techniques were developed to analyze horn antennas with or without impedance surfaces. Based on these full-wave analytic techniques, research was conducted on the use of impedance surfaces on the walls of the horn antennas to control the antenna radiation patterns without a substantial loss of antenna gain. It was found that the use of impedance surfaces could modify the antenna radiation patterns. In addition to the analytical and numerical models, experimental models were also constructed and they were used to validate the predictions. Excellent agreement between theoretical predictions and the measured data was obtained for pyramidal horns with perfectly conducting surfaces. Very good comparisons between numerical and experimental models were also obtained for horns with impedance surfaces.

  12. Acoustic input impedance measurements on brass instruments

    NASA Astrophysics Data System (ADS)

    Pyle, Robert W., Jr.

    2002-11-01

    Measurement of the acoustic input impedance of a brass instrument can reveal something about the instrument's intonation, its reasonable playing range, its tone color, and perhaps whether the mouthpiece used for the impedance measurement is appropriate for the instrument. Such measurements are made at sound-presssure levels much lower than those encountered under playing conditions. Thus, impedance measurements may offer the only feasible way to infer something about the playing characteristics of instruments, typically museum specimens, that are too rare or too fragile to be played. In this paper the effects of some of the available choices of sound source and stimulus signal on measurement accuracy will be explored. Driver-transducer nonlinearity, source impedance, signal-to-noise ratio, and any necessary signal processing will be discussed.

  13. Increases in cerebrovascular impedance in older adults.

    PubMed

    Zhu, Yong-Sheng; Tseng, Benjamin Y; Shibata, Shigeki; Levine, Benjamin D; Zhang, Rong

    2011-08-01

    This study explored a novel method for measuring cerebrovascular impedance to quantify the relationship between pulsatile changes in cerebral blood flow (CBF) and arterial pressure. Arterial pressure in the internal or common carotid artery (applanation tonometry), CBF velocity in the middle cerebral artery (transcranial Doppler), and end-tidal CO(2) (capnography) were measured in six young (28 ± 4 yr) and nine elderly subjects (70 ± 6 yr). Transfer function method was used to estimate cerebrovascular impedance. Under supine resting conditions, CBF velocity was reduced in the elderly despite the fact that they had higher arterial pressure than young subjects. As expected, cerebrovascular resistance index was increased in the elderly. In both young and elderly subjects, impedance modulus was reduced gradually in the frequency range of 0.78-8 Hz. Phase was negative in the range of 0.78-4.3 Hz and fluctuated at high frequencies. Compared with the young, impedance modulus increased by 38% in the elderly in the range of 0.78-2 Hz and by 39% in the range of 2-4 Hz (P < 0.05). Moreover, increases in impedance were correlated with reductions in CBF velocity. Collectively, these findings demonstrate the feasibility of assessing cerebrovascular impedance using the noninvasive method developed in this study. The estimated impedance modulus and phase are similar to those observed in the systemic circulation and other vascular beds. Moreover, increases in impedance in the elderly suggest that arterial stiffening, besides changes in cerebrovascular resistance, contributes to reduction in CBF with age.

  14. Inversion of elastic impedance for unconsolidated sediments

    USGS Publications Warehouse

    Lee, Myung W.

    2006-01-01

    Elastic properties of gas-hydrate-bearing sediments are important for quantifying gas hydrate amounts as well as discriminating the gas hydrate effect on velocity from free gas or pore pressure. This paper presents an elastic inversion method for estimating elastic properties of gas-hydrate-bearing sediments from angle stacks using sequential inversion of P-wave impedance from the zero-offset stack and S-wave impedance from the far-offset stack without assuming velocity ratio.

  15. CSR Impedance for Non-Ultrarelativistic Beams

    SciTech Connect

    Li, Rui; Tsai, Cheng Y.

    2015-09-01

    For the analysis of the coherent synchrotron radiation (CSR)-induced microbunching gain in the low energy regime, such as when a high-brightness electron beam is transported through a low-energy merger in an energy-recovery linac (ERL) design, it is necessary to extend the CSR impedance expression in the ultrarelativistic limit to the non-ultrarelativistic regime. This paper presents our analysis of CSR impedance for general beam energies.

  16. Modeling magnetically insulated devices using flow impedance

    SciTech Connect

    Mendel, C.W. Jr.; Rosenthal, S.E. )

    1995-04-01

    In modern pulsed power systems the electric field stresses at metal surfaces in vacuum transmission lines are so high that negative surfaces are space-charge-limited electron emitters. These electrons do not cause unacceptable losses because magnetic fields due to system currents result in net motion parallel to the electrodes. It has been known for several years that a parameter known as flow impedance is useful for describing these flows. Flow impedance is a measure of the separation between the anode and the mean position of the electron cloud, and it will be shown in this paper that in many situations flow impedance depends upon the geometry of the transmission line upstream of the point of interest. It can be remarkably independent of other considerations such as line currents and voltage. For this reason flow impedance is a valuable design parameter. Models of impedance transitions and voltage adders using flow impedance will be developed. Results of these models will be compared to two-dimensional, time-dependent, particle-in-cell simulations.

  17. Impedance Biosensing to detect food allergens, endocrine disrupting chemicals, and food pathogens

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Rajeswaran

    Electrochemical impedance biosensors can be viewed as an AC electroanalytical method for the analyte detection in the fields of biomedicine, environmental monitoring, and food and agriculture, amongst others. The most common format for AC impedance biosensing involves surface immobilization of an antibody, receptor protein, DNA strand, or other species capable of bio-recognition, and AC impedance detection of the binding event. Technological application of AC impedance biosensors has been hindered by several obstacles, including the more complex circuitry required for AC relative to DC electrochemistry, chemical and physical interference arising from non-specific adsorption, and the stability and reproducibility of protein immobilization. One focus of these PhD studies is on methods to reduce or compensate for non-specific adsorption, including sample dilution, site blocking with BSA, and the use of control electrodes onto which reference antibodies are immobilized. Examples that will be presented include impedance detection of food pathogens, such as Listeria monocytogenes, using a mouse monoclonal antibody immobilized onto an Au electrode. This yields detection limits of 5 CFU/ml and 4 CFU/ml for ideal solutions and filtered tomato extract, respectively. Control experiments with an Au electrode onto which a mouse monoclonal antibody to GAPDH is immobilized demonstrate that non-specific adsorption is insignificant for the system and methodology studied here. Control experiments with Salmonella enterica demonstrate no cross-reactivity to this food pathogen. In addition, Detection of two endocrine-disrupting chemicals (EDC), norfluoxetine and BDE-47, is reported here by impedance biosensing, with a detection limit of 8.5 and 1.3 ng/ml for norfluoxetine and BDE-47, respectively. Additional research has focused on alternative substrates and linker chemistries for protein immobilization, including the use of degenerate (highly doped) Si and bidendate thiol monolayer

  18. Measurement of surface resistivity/conductivity of different organic thin films by a combination of optical shearography and electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Habib, Khaled

    2013-11-01

    Shearography techniques were applied again to measure the surface resistivity/conductivity of different organic thin films on a metallic substrate. The coatings were ACE premium-grey enamel (spray coating), a yellow Acrylic lacquer, and a gold nail polish on a carbon steel substrate. The investigation was focused on determining the in-plane displacement of the coatings by shearography between 20 and 60 °C. Then, the alternating current (AC) impedance (resistance) of the same coated samples was determined by electrochemical impedance spectroscopy (EIS) in 3.0% NaCl solution at room temperature. As a result, the proportionality constant (resistivity or conductivity = 1/surface resistivity) between the determined AC impedance and the in-plane displacement was obtained. The obtained resistivity of all investigated coatings, 40:15 × 106-24:6 × 109Ωcm, was found in the insulator range.

  19. Dielectric, Impedance and Conduction Behavior of Double Perovskite Pr2CuTiO6 Ceramics

    NASA Astrophysics Data System (ADS)

    Mahato, Dev K.; Sinha, T. P.

    2016-08-01

    Polycrystalline Pr2CuTiO6 (PCT) ceramics exhibits dielectric, impedance and modulus characteristics as a possible material for microelectronic devices. PCT was synthesized through the standard solid-state reaction method. The dielectric permittivity, impedance and electric modulus of PCT have been studied in a wide frequency (100 Hz-1 MHz) and temperature (303-593 K) range. Structural analysis of the compound revealed a monoclinic phase at room temperature. Complex impedance Cole-Cole plots are used to interpret the relaxation mechanism, and grain boundary contributions towards conductivity have been estimated. From electrical modulus formalism polarization and conductivity relaxation behavior in PCT have been discussed. Normalization of the imaginary part of impedance (Z″) and the normalized imaginary part of modulus (M″) indicates contributions from both long-range and localized relaxation effects. The grain boundary resistance along with their relaxation frequencies are plotted in the form of an Arrhenius plot with activation energy 0.45 eV and 0.46 eV, respectively. The ac conductivity mechanism has been discussed.

  20. Dielectric, ferroelectrics properties and impedance spectroscopy analysis of the [(Na0.535K0.480)0.966Li0.058](Nb0.90Ta0.10)O3-based lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Saidi, M.; Chaouchi, A.; D'Astorg, S.; Rguiti, M.; Courtois, C.

    2015-04-01

    Polycrystalline of [(Na0.535K0.480)0.966Li0.058](Nb0.90Ta0.10)O3 samples were prepared using the high-temperature solid-state reaction technique. X-ray diffraction (XRD) analysis indicates the formation of a single-phase with orthorhombic structure. AC impedance plots were used as tool to analyze the electrical behavior of the sample as a function of frequency at different temperatures. The AC impedance studies revealed the presence of grain effect, from 425°C onwards. Complex impedance analysis indicated non-Debye type dielectric relaxation. The Nyquist plot showed the negative temperature coefficient of resistance (NTCR) characteristic of NKLNT. The AC conductivity results were used to correlate with the barrier hopping (CBH) model to evaluate the binding energy (Wm), the minimum hopping distance (Rmin), the density of states at Fermi level (N(Ef)), and the activation energy of the compound.

  1. Electrical impedance of mouse brain cortex in vitro from 4.7 kHz to 2.0 MHz.

    PubMed

    Wilson, M T; Elbohouty, M; Voss, L J; Steyn-Ross, D A

    2014-02-01

    The electrical impedance of samples of mouse brain cortex has been measured between 4.7 kHz and 2.0 MHz. Brain slices of thickness 400 μm were prepared from two mice. Each slice was placed in either normal artificial cerebrospinal fluid or magnesium-free artificial cerebrospinal fluid; the latter induces seizure-like electrical behaviour. A total of 74 samples of cortex of approximate size 2 mm × 2 mm were then cut from these slices. Each sample in turn was placed between two flat Ag/AgCl electrodes and electrical impedance measured with an Agilent E4980A four-point impedance monitor. The measurements showed two regions of significant dispersion. Circuits based on the Cole-Cole and Fricke models, consisting of inductive, nonlinear capacitive and resistive elements were used to model the behaviour. Distributions of values for each circuit element have been determined for the samples prepared in seizing and non-seizing conditions. Few differences were found between the values of circuit elements between the seizing and non-seizing groups.

  2. Effects of Liner Geometry on Acoustic Impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Tracy, Maureen B.; Watson, Willie R.; Parrott, Tony L.

    2002-01-01

    Current aircraft engine nacelles typically contain acoustic liners consisting of perforated sheets bonded onto honeycomb cavities. Numerous models have been developed to predict the acoustic impedance of these liners in the presence of grazing flow, and to use that information with aeroacoustic propagation codes to assess nacelle liner noise suppression. Recent efforts have provided advances in impedance education methodologies that offer more accurate determinations of acoustic liner properties in the presence of grazing flow. The current report provides the results of a parametric study, in which a finite element method was used to assess the effects of variations of the following geometric parameters on liner impedance, with and without the presence of grazing flow: percent open area, sheet thickness, sheet thickness-to-hole diameter ratio and cavity depth. Normal incidence acoustic impedances were determined for eight acoustic liners, consisting of punched aluminum facesheets bonded to hexcell honeycomb cavities. Similar liners were tested in the NASA Langley Research Center grazing incidence tube to determine their response in the presence of grazing flow. The resultant data provide a quantitative assessment of the effects of these perforate, single-layer liner parameters on the acoustic impedance of the liner.

  3. Vascular impedance analysis in human pulmonary circulation.

    PubMed

    Zhou, Qinlian; Gao, Jian; Huang, Wei; Yen, Michael

    2006-01-01

    Vascular impedance is determined by morphometry and mechanical properties of the vascular system, as well as the rheology of the blood. The interactions between all these factors are complicated and difficult to investigate solely by experiments. A mathematical model representing the entire system of human pulmonary circulation was constructed based on experimentally measured morphometric and elasticity data of the vessels. The model consisted of 16 orders of arteries and 15 orders of veins. The pulmonary arteries and veins were considered as elastic tubes and their impedance was calculated based on Womersley's theory. The flow in capillaries was described by the "sheet-flow" theory. The model yielded an impedance modulus spectrum that fell steeply from a high value at 0 Hz to a minimum around 1.5 Hz. At about 4 Hz, it reached a second high and then oscillated around a relatively small value at higher frequencies. Characteristic impedance was 27.9 dyn-sec/cm5. Influence of variations in vessel geometry and elasticity on impedance spectra was analyzed. Simulation results showed good agreement with experimental measurements. PMID:16817653

  4. Impedance of silver oxide-zinc cells

    NASA Technical Reports Server (NTRS)

    Frank, H. A.; Long, W. L.; Uchiyama, A. A.

    1976-01-01

    Over 100 sealed AgO-Zn cells were subjected to prolonged periods of storage over a range of temperatures and storage modes including open circuit, trickle charge, and float charge. Impedances of these cells were monitored throughout, and at the end of the storage period their transient voltage characteristics were observed at the onset of discharge. Results revealed that the impedances of these cells tended to increase with storage time; the magnitude of the impedance rise was dependent primarily on temperature and to a lesser degree on storage mode. Typical values for 50 A-hr cells were usually less than 100 mohm immediately after activation and from 1 to 30 ohm after 6-10 months of storage. Transient voltages of these cells droped sharply during the first msec of discharge and then rose to a stablized value during the following few seconds. The magnitude of the initial drop and the stabilized voltage values were found to be related to impedance but not in a linear manner. The magnitude and duration of the low transient voltages may be unacceptable in some applications of these cells. The impedance variations are attributed to changes occurring at the positive electrode.

  5. Tunable microwave impedance matching to a high impedance source using a Josephson metamaterial

    SciTech Connect

    Altimiras, Carles Parlavecchio, Olivier; Joyez, Philippe; Vion, Denis; Roche, Patrice; Esteve, Daniel; Portier, Fabien

    2013-11-18

    We report the efficient coupling of a 50  Ω microwave circuit to a high impedance conductor. We use an impedance transformer consisting of a λ/4 co-planar resonator whose inner conductor contains an array of superconducting quantum interference devices (SQUIDs), providing it with a tunable lineic inductance L∼80 μ{sub 0}, resulting in a characteristic impedance Z{sub C}∼1 kΩ. The impedance matching efficiency is characterized by measuring the shot noise power emitted by a dc biased tunnel junction connected to the resonator. We demonstrate matching to impedances in the 15 to 35 kΩ range with bandwidths above 100 MHz around a resonant frequency tunable between 4 and 6 GHz.

  6. Ferrofluid Microwave Devices With Magnetically Controlled Impedances

    NASA Astrophysics Data System (ADS)

    Fannin, P. C.; Stefu, N.; Marin, C. N.; Malaescu, I.; Totoreanu, R.

    2010-08-01

    Ferrofluid filled transmission lines are microwave electronic devices. The complex dielectric permittivity and the complex magnetic permeability of a kerosene based ferrofluid with magnetite nanoparticles, in the frequency range (0.5-6) GHz were measured, for several values of polarising field, H. Afterwards, the input impedance of a short-circuited transmission line filled with this ferrofluid was computed using the equation Z = Zc tanh(γl). Here Zc and l are the characteristic impedance and the length of the coaxial line and γ is the propagation constant, depending on the dielectric and magnetic parameters of the material within the line. It is demonstrated how the impedance displays a frequency and polarizing field dependence, which has application in the design of magnetically controlled microwave devices.

  7. Wavelet analysis of the impedance cardiogram waveforms

    NASA Astrophysics Data System (ADS)

    Podtaev, S.; Stepanov, R.; Dumler, A.; Chugainov, S.; Tziberkin, K.

    2012-12-01

    Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt)max) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.

  8. Propagation of waves along an impedance boundary

    NASA Technical Reports Server (NTRS)

    Wenzel, A. R.

    1974-01-01

    A theoretical analysis of the scalar wave field due to a point source above a plane impedance boundary is presented. A surface wave is found to be an essential component of the total wave field. It is shown that, as a result of ducting of energy by the surface wave, the amplitude of the total wave near the boundary can be greater than it would be if the boundary were perfectly reflecting. Asymptotic results, valid near the boundary, are obtained both for the case of finite impedance (the soft-boundary case) and for the limiting case in which the impedance becomes infinite (the hard-boundary case). In the latter, the wave amplitude in the farfield decreases essentially inversely as the horizontal propagation distance; in the former (if the surface-wave term is neglected), it decreases inversely as the square of the horizontal propagation distance.

  9. Impedance properties of circular microstrip antenna

    NASA Technical Reports Server (NTRS)

    Deshpande, M. D.; Bailey, M. C.

    1983-01-01

    A moment method solution to the input impedance of a circular microstrip antenna excited by either a microstrip feed or a coaxial probe is presented. Using the exact dyadic Green's function and the Fourier transform the problem is formulated in terms of Richmond's reaction integral equation from which the unknown patch current can be solved for. The patch current is expanded in terms of regular surface patch modes and an attachment mode (for probe excited case) which insures continuity of the current at probe/patch junction, proper polarization and p-dependance of patch current in the vicinity of the probe. The input impedance of a circular microstrip antenna is computed and compared with earlier results. Effect of attachment mode on the input impedance is also discussed.

  10. Impedance Scaling for Small Angle Transitions

    SciTech Connect

    Stupakov, G.; Bane, Karl; Zagorodnov, I.; /DESY

    2010-10-27

    Based on the parabolic equation approach to Maxwell's equations we have derived scaling properties of the high frequency impedance/short bunch wakefields of structures. For the special case of small angle transitions we have shown the scaling properties are valid for all frequencies. Using these scaling properties one can greatly reduce the calculation time of the wakefield/impedance of long, small angle, beam pipe transitions, like one often finds in insertion regions of storage rings. We have tested the scaling with wakefield simulations of 2D and 3D models of such transitions, and found that the scaling works well. In modern ring-based light sources one often finds insertion devices having extremely small vertical apertures (on the order of millimeters) to allow for maximal undulator fields reaching the beam. Such insertion devices require that there be beam pipe transitions from these small apertures to the larger cross-sections (normally on the order of centimeters) found in the rest of the ring. The fact that there may be many such transitions, and that these transitions introduce beam pipe discontinuities very close to the beam path, means that their impedance will be large and, in fact, may dominate the impedance budget of the entire ring. To reduce their impact on impedance, the transitions are normally tapered gradually over a long distance. The accurate calculation of the impedance or wakefield of these long transitions, which are typically 3D objects (i.e. they do not have cylindrical symmetry), can be quite a challenging numerical task. In this report we present a method of obtaining the impedance of a long, small angle transition from the calculation of a scaled, shorter one. Normally, the actual calculation is obtained from a time domain simulation of the wakefield in the structure, where the impedance can be obtained by performing a Fourier transform. We shall see that the scaled calculation reduces the computer time and memory requirements

  11. Numerical modelling errors in electrical impedance tomography.

    PubMed

    Dehghani, Hamid; Soleimani, Manuchehr

    2007-07-01

    Electrical impedance tomography (EIT) is a non-invasive technique that aims to reconstruct images of internal impedance values of a volume of interest, based on measurements taken on the external boundary. Since most reconstruction algorithms rely on model-based approximations, it is important to ensure numerical accuracy for the model being used. This work demonstrates and highlights the importance of accurate modelling in terms of model discretization (meshing) and shows that although the predicted boundary data from a forward model may be within an accepted error, the calculated internal field, which is often used for image reconstruction, may contain errors, based on the mesh quality that will result in image artefacts.

  12. Protein Aggregation Measurement through Electrical Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Affanni, A.; Corazza, A.; Esposito, G.; Fogolari, F.; Polano, M.

    2013-09-01

    The paper presents a novel methodology to measure the fibril formation in protein solutions. We designed a bench consisting of a sensor having interdigitated electrodes, a PDMS hermetic reservoir and an impedance meter automatically driven by calculator. The impedance data are interpolated with a lumped elements model and their change over time can provide information on the aggregation process. Encouraging results have been obtained by testing the methodology on K-casein, a protein of milk, with and without the addition of a drug inhibiting the aggregation. The amount of sample needed to perform this measurement is by far lower than the amount needed by fluorescence analysis.

  13. Acoustic impedance of curved multilayered duct liners

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.

    1973-01-01

    The effect of curvature of annular duct liners on the liner acoustic impedance is examined. Exact equations are derived for the impedance of point reacting liners which are made from an arbitrary number of thin cylindrical layers of porous material separated by small radially oriented cells. Equations are given for liners with convex curvature and for liners with concave curvature. For ducts with small curvature, it is shown that these equations reduce to the equations for a flat liner. It is shown, by analytical and numerical examples, that the effect of liner curvature is significant in practical noise reduction problems.

  14. Impedance and modulus spectroscopic study of nano hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Jogiya, B. V.; Jethava, H. O.; Tank, K. P.; Raviya, V. R.; Joshi, M. J.

    2016-05-01

    Hydroxyapatite (Ca10 (PO4)6 (OH)2, HAP) is the main inorganic component of the hard tissues in bones and also important material for orthopedic and dental implant applications. Nano HAP is of great interest due to its various bio-medical applications. In the present work the nano HAP was synthesized by using surfactant mediated approach. Structure and morphology of the synthesized nano HAP was examined by the Powder XRD and TEM. Impedance study was carried out on pelletized sample in a frequency range of 100Hz to 20MHz at room temperature. The variation of dielectric constant, dielectric loss, and a.c. conductivity with frequency of applied field was studied. The Nyquist plot as well as modulus plot was drawn. The Nyquist plot showed two semicircle arcs, which indicated the presence of grain and grain boundary effect in the sample. The typical behavior of the Nyquist plot was represented by equivalent circuit having two parallel RC combinations in series.

  15. Study of dielectric and impedance properties of Mn ferrites

    NASA Astrophysics Data System (ADS)

    Mujasam Batoo, Khalid

    2011-02-01

    The paper reports on the effect of Al substitution on the structural and electrical properties of bulk ferrite series of basic composition MnFe 2-2 xAl 2 xO 4 (0.0≤ x≤0.5) synthesized using solid state reaction method. XRD analysis confirms that all the samples exhibit single phase cubic spinel structure excluding presence of any secondary phase. The dielectric constant shows a normal behaviour with frequency, whereas the loss tangent exhibits an anomalous behaviour with frequency for all compositions. Variation of dielectric properties and ac conductivity with frequency reveals that the dispersion is due to Maxwell-Wagner type of interfacial polarization in general and hopping of charge between Fe +2 and Fe +3 as well as between Mn +2 and Mn +3 ions at octahedral sites. The complex impedance plane spectra shows the presence of two semicircles up to x=0.2, and only one semicircle for the higher values of x. The analysis of the data shows that the resistive and capacitive properties of the Mn ferrite are mainly due to processes associated with grain and grain boundaries.

  16. Electrical impedance tomography problem with inaccurately known boundary and contact impedances.

    PubMed

    Kolehmainen, Ville; Lassas, Matti; Ola, Petri

    2008-10-01

    In electrical impedance tomography (EIT) electric currents are injected into a body with unknown electromagnetic properties through a set of contact electrodes at the boundary of the body. The resulting voltages are measured on the same electrodes and the objective is to reconstruct the unknown conductivity function inside the body based on these data. All the traditional approaches to the reconstruction problem assume that the boundary of the body and the electrode-skin contact impedances are known a priori. However, in clinical experiments one usually lacks the exact knowledge of the boundary and contact impedances, and therefore, approximate model domain and contact impedances have to be used in the image reconstruction. However, it has been noticed that even small errors in the shape of the computation domain or contact impedances can cause large systematic artefacts in the reconstructed images, leading to loss of diagnostically relevant information. In a recent paper (Kolehmainen , 2006), we showed how in the 2-D case the errors induced by the inaccurately known boundary can be eliminated as part of the image reconstruction and introduced a novel method for finding a deformed image of the original isotropic conductivity using the theory of TeichmUller mappings. In this paper, the theory and reconstruction method are extended to include the estimation of unknown contact impedances. The method is implemented numerically and tested with experimental EIT data. The results show that the systematic errors caused by inaccurately known boundary and contact impedances can efficiently be eliminated by the reconstruction method.

  17. The ac53, ac78, ac101, and ac103 Genes Are Newly Discovered Core Genes in the Family Baculoviridae

    PubMed Central

    Garavaglia, Matías Javier; Miele, Solange Ana Belén; Iserte, Javier Alonso; Belaich, Mariano Nicolás

    2012-01-01

    The family Baculoviridae is a large group of insect viruses containing circular double-stranded DNA genomes of 80 to 180 kbp, which have broad biotechnological applications. A key feature to understand and manipulate them is the recognition of orthology. However, the differences in gene contents and evolutionary distances among the known members of this family make it difficult to assign sequence orthology. In this study, the genome sequences of 58 baculoviruses were analyzed, with the aim to detect previously undescribed core genes because of their remote homology. A routine based on Multi PSI-Blast/tBlastN and Multi HaMStR allowed us to detect 31 of 33 accepted core genes and 4 orthologous sequences in the Baculoviridae which were not described previously. Our results show that the ac53, ac78, ac101 (p40), and ac103 (p48) genes have orthologs in all genomes and should be considered core genes. Accordingly, there are 37 orthologous genes in the family Baculoviridae. PMID:22933288

  18. Semiconductor ac static power switch

    NASA Technical Reports Server (NTRS)

    Vrancik, J.

    1968-01-01

    Semiconductor ac static power switch has long life and high reliability, contains no moving parts, and operates satisfactorily in severe environments, including high vibration and shock conditions. Due to their resistance to shock and vibration, static switches are used where accidental switching caused by mechanical vibration or shock cannot be tolerated.

  19. Impedance-matched drilling telemetry system

    DOEpatents

    Normann, Randy A.; Mansure, Arthur J.

    2008-04-22

    A downhole telemetry system that uses inductance or capacitance as a mode through which signal is communicated across joints between assembled lengths of pipe wherein efficiency of signal propagation through a drill string, for example, over multiple successive pipe segments is enhanced through matching impedances associated with the various telemetry system components.

  20. Explicit expressions of impedances and wake functions

    SciTech Connect

    Ng, K.Y.; Bane, K,; /SLAC

    2010-10-01

    Sections 3.2.4 and 3.2.5 of the Handbook of Accelerator Physics and Engineering on Landau damping are combined and updated. The new addition includes impedances and wakes for multi-layer beam pipe, optical model, diffraction model, and cross-sectional transition.

  1. Bioelectrical Impedance and Body Composition Assessment

    ERIC Educational Resources Information Center

    Martino, Mike

    2006-01-01

    This article discusses field tests that can be used in physical education programs. The most common field tests are anthropometric measurements, which include body mass index (BMI), girth measurements, and skinfold testing. Another field test that is gaining popularity is bioelectrical impedance analysis (BIA). Each method has particular strengths…

  2. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Impedance plethysmograph. 870.2770 Section 870.2770 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770...

  3. Impedance matching between ventricle and load.

    PubMed

    Piene, H

    1984-01-01

    Impedance matching in the cardiovascular system is discussed in light of two models of ventricle and load: a Thevenin equivalent consisting of a hydromotive pressure source and an internal, source resistance and compliance in parallel; and a time-varying compliance filled from a constant pressure source and ejecting into a load of three components, a central resistor, a compliance, and a peripheral resistance. According to the Thevenin analog, the energy source and the load are matched when the load resistance is T/t times the internal source resistance (T is total cycle length, t is systolic time interval). Both from this model and from the variable compliance model it appears that optimum matching between source and load depends on the compliance of the Windkessel, as low compliance shifts the matching load resistance to a low value. Animal experiments (isolated cat hearts) indicated that both left and right ventricles at normal loads work close to their maxima of output hydraulic power, and, according to experiments in the right ventricle, maximum power output is related to load resistance and compliance as predicted by the above models. From an experimentally determined relationship among instantaneous ventricular pressure and volume (right ventricle of isolated cat hearts), an optimum load impedance was calculated on the basis of the assumption that the ratio between stroke work and static, potential energy developed in the ventricular cavity is maximum. The optimum load impedance found by this procedure closely resembles the normal input impedance of the cat lung vessel bed. PMID:6507966

  4. Electrical Impedance Tomography Technology (EITT) Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J.

    2014-01-01

    Development of a portable, lightweight device providing two-dimensional tomographic imaging of the human body using impedance mapping. This technology can be developed to evaluate health risks and provide appropriate medical care on the ISS, during space travel and on the ground.

  5. Explicit Expressions of Impedances and Wake Functions

    SciTech Connect

    Ng, K.Y.; Bane, K,; /SLAC

    2012-06-11

    Sections 3.2.4 and 3.2.5 of the Handbook of Accelerator Physics and Engineering on Landau damping are combined and updated. The new addition includes impedances and wakes for multi-layer beam pipe, optical model, diffraction model, and cross-sectional transition.

  6. High Impedance Comparator for Monitoring Water Resistivity.

    ERIC Educational Resources Information Center

    Holewinski, Paul K.

    1984-01-01

    A high-impedance comparator suitable for monitoring the resistivity of a deionized or distilled water line supplying water in the 50 Kohm/cm-2 Mohm/cm range is described. Includes information on required circuits (with diagrams), sensor probe assembly, and calibration techniques. (JN)

  7. Mapping Electrochemical Heterogeneity at Iron Oxide Surfaces: A Local Electrochemical Impedance Study.

    PubMed

    Lucas, Marie; Boily, Jean-François

    2015-12-22

    Alternating current scanning electrochemical microscopy (AC-SECM) was used for the first time to map key electrochemical attributes of oriented hematite (α-Fe2O3) single crystal surfaces at the micron-scale. Localized electrochemical impedance spectra (LEIS) of the (001) and (012) faces provided insight into the spatial variations of local double layer capacitance (C(dl)) and charge transfer resistance (R(ad)). These parameters were extracted by LEIS measurements in the 0.4-8000 Hz range to probe the impedance response generated by the redistribution of water molecules and charge carriers (ions) under an applied AC. These were attributed to local variations in the local conductivity of the sample surfaces. Comparison with global EIS measurements on the same samples uncovered highly comparable frequency-resolved processes, that were broken down into contributions from the bulk hematite, the interface as well as the microelectrode/tip assembly. This work paves the way for new studies aimed at mapping electrochemical processes at the mesoscale on this environmentally and technologically important material.

  8. Investigation of electrical properties of Mn doped tin oxide nanoparticles using impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Azam, Ameer; Ahmed, Arham S.; Chaman, M.; Naqvi, A. H.

    2010-11-01

    Manganese doped tin oxide nanoparticles with manganese content varying from 0 to 15 mol % were synthesized using sol-gel method. The structural and compositional analysis was carried out using x-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive x-ray analysis (EDAX). Dielectric and impedance spectroscopy was carried out at room temperature to explore the electrical properties of Mn doped SnO2. XRD analysis indicated the formation of single phase rutile type tetragonal structure of all the samples. The crystallite size was observed to vary from 16.2 to 7.1 nm as the Mn content was increased. The XRD, SEM, and EDAX results corroborated the successful doping of Mn in the SnO2 matrix. Complex impedance analysis was used to distinguish the grain and grain boundary contributions to the system, suggesting the dominance of grain boundary resistance in the doped samples. The dielectric constant ɛ', dielectric loss tan δ and ac conductivity σac were studied as a function of frequency and composition and the behavior has been explained on the basis of Maxwell-Wagner interfacial model. All the dielectric parameters were found to decrease with the increase in doping concentration. Moreover, it has been observed that the dielectric loss approaches to zero in case of high dopant concentration (9%, 15%) at high frequencies.

  9. ac and dc percolative conductivity of magnetite-cellulose acetate composites

    SciTech Connect

    Chiteme, C.; McLachlan, D. S.; Sauti, G.

    2007-03-01

    ac and dc conductivity results for a percolating system, which consists of a conducting powder (magnetite) combined with an 'insulating' powder (cellulose acetate), are presented. Impedance and modulus spectra are obtained in a percolation system. The temperature dependence of the resistivity of the cellulose acetate is such that at 170 deg. C, it is essentially a conductor at frequencies below 0.059{+-}0.002 Hz, and a dielectric above. The percolation parameters, from the dc conductivity measured at 25 and 170 deg. C, are determined and discussed in relation to the ac results. The experimental results scale as a function of composition, temperature, and frequency. An interesting result is the correlation observed between the scaling parameter (f{sub ce}), obtained from a scaling of the ac measurements, and the peak frequency (f{sub cp}) of the arcs, obtained from impedance spectra, above the critical volume fraction. Scaling at 170 deg. C is not as good as at 25 deg. C, probably indicating a breakdown in scaling at the higher temperature. The modulus plots show the presence of two materials: a conducting phase dominated by the cellulose acetate and the isolated conducting clusters below the critical volume fraction {phi}{sub c}, as well as the interconnected conducting clusters above {phi}{sub c}. These results are confirmed by computer simulations using the two exponent phenomenological percolation equation. These results emphasize the need to analyze ac conductivity results in terms of both impedance and modulus spectra in order to get more insight into the behavior of composite materials.

  10. Aortic Input Impedance during Nitroprusside Infusion

    PubMed Central

    Pepine, Carl J.; Nichols, W. W.; Curry, R. C.; Conti, C. Richard

    1979-01-01

    Beneficial effects of nitroprusside infusion in heart failure are purportedly a result of decreased afterload through “impedance” reduction. To study the effect of nitroprusside on vascular factors that determine the total load opposing left ventricular ejection, the total aortic input impedance spectrum was examined in 12 patients with heart failure (cardiac index <2.0 liters/min per m2 and left ventricular end diastolic pressure >20 mm Hg). This input impedance spectrum expresses both mean flow (resistance) and pulsatile flow (compliance and wave reflections) components of vascular load. Aortic root blood flow velocity and pressure were recorded continuously with a catheter-tip electromagnetic velocity probe in addition to left ventricular pressure. Small doses of nitroprusside (9-19 μg/min) altered the total aortic input impedance spectrum as significant (P < 0.05) reductions in both mean and pulsatile components were observed within 60-90 s. With these acute changes in vascular load, left ventricular end diastolic pressure declined (44%) and stroke volume increased (20%, both P < 0.05). Larger nitroprusside doses (20-38 μg/min) caused additional alteration in the aortic input impedance spectrum with further reduction in left ventricular end diastolic pressure and increase in stroke volume but no additional changes in the impedance spectrum or stroke volume occurred with 39-77 μg/min. Improved ventricular function persisted when aortic pressure was restored to control values with simultaneous phenylephrine infusion in three patients. These data indicate that nitroprusside acutely alters both the mean and pulsatile components of vascular load to effect improvement in ventricular function in patients with heart failure. The evidence presented suggests that it may be possible to reduce vascular load and improve ventricular function independent of aortic pressure reduction. PMID:457874

  11. ACS Expands Role In High School Chemistry.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Describes some of the services and programs of special interests to high school chemistry teachers that are being provided by ACS, and meant to make ACS membership more attractive to the teachers. (GA)

  12. Dynamic electrochemical impedance spectroscopy reconstructed from continuous impedance measurement of single frequency during charging/discharging

    NASA Astrophysics Data System (ADS)

    Huang, Jun; Li, Zhe; Zhang, Jianbo

    2015-01-01

    In this study, a novel implementation of dynamic electrochemical impedance spectroscopy (DEIS) is proposed. The method first measures the impedance continuously at a single frequency during one charging/discharging cycle, then repeats the measurement at a number of other selected frequencies. The impedance spectrum at a specific SOC is obtained by interpolating and collecting the impedance at all of the selected frequencies. The charge transfer resistance, Rct, from the DEIS is smaller than that from the steady EIS in a wide state-of-charge (SOC) range from 0.4 to 1.0, the Rct during charging is generally smaller than that during discharging for the battery chemistry used in this study.

  13. Structural and AC conductivity study of CdTe nanomaterials

    NASA Astrophysics Data System (ADS)

    Das, Sayantani; Banerjee, Sourish; Sinha, T. P.

    2016-04-01

    Cadmium telluride (CdTe) nanomaterials have been synthesized by soft chemical route using mercapto ethanol as a capping agent. Crystallization temperature of the sample is investigated using differential scanning calorimeter. X-ray diffraction and transmission electron microscope measurements show that the prepared sample belongs to cubic structure with the average particle size of 20 nm. Impedance spectroscopy is applied to investigate the dielectric relaxation of the sample in a temperature range from 313 to 593 K and in a frequency range from 42 Hz to 1.1 MHz. The complex impedance plane plot has been analyzed by an equivalent circuit consisting of two serially connected R-CPE units, each containing a resistance (R) and a constant phase element (CPE). Dielectric relaxation peaks are observed in the imaginary parts of the spectra. The frequency dependence of real and imaginary parts of dielectric permittivity is analyzed using modified Cole-Cole equation. The temperature dependence relaxation time is found to obey the Arrhenius law having activation energy ~0.704 eV. The frequency dependent conductivity spectra are found to follow the power law. The frequency dependence ac conductivity is analyzed by power law.

  14. Impedance spectroscopy of thin-film CdTe/CdS solar cells under varied illumination

    NASA Astrophysics Data System (ADS)

    Proskuryakov, Y. Y.; Durose, K.; Al Turkestani, M. K.; Mora-Seró, I.; Garcia-Belmonte, G.; Fabregat-Santiago, F.; Bisquert, J.; Barrioz, V.; Lamb, D.; Irvine, S. J. C.; Jones, E. W.

    2009-08-01

    The electrical properties of CdTe/CdS solar cells grown by metal organic chemical vapor deposition were investigated by a technique of impedance measurements under varied intensity of AM1.5 illumination. A generalized impedance model was developed and applied to a series of CdTe/CdS cells with variations in structure and doping. The light measurements were compared to the conventional ac measurements in dark under varied dc bias, using the same methodology for equivalent circuit analysis in both cases. Detailed information on the properties of the device structure was obtained, including the properties of the main p-n junction under light, minority carrier lifetime, back contact, as well as the effect of the blocking ZnO layer incorporated between the transparent conductor and CdS layers. In particular, the comparison between samples with different chemical concentrations of As has shown that the total device impedance and the series resistance are strongly increased at lower As densities, resulting in the lower collection current and efficiencies. At the same time the minority carrier lifetime was found to be one order of magnitude larger for the lowest value of As density, when compared to the optimized devices.

  15. Current density distribution in cylindrical Li-Ion cells during impedance measurements

    NASA Astrophysics Data System (ADS)

    Osswald, P. J.; Erhard, S. V.; Noel, A.; Keil, P.; Kindermann, F. M.; Hoster, H.; Jossen, A.

    2016-05-01

    In this work, modified commercial cylindrical lithium-ion cells with multiple separate current tabs are used to analyze the influence of tab pattern, frequency and temperature on electrochemical impedance spectroscopy. In a first step, the effect of different current tab arrangements on the impedance spectra is analyzed and possible electrochemical causes are discussed. In a second step, one terminal is used to apply a sinusoidal current while the other terminals are used to monitor the local potential distribution at different positions along the electrodes of the cell. It is observed that the characteristic decay of the voltage amplitude along the electrode changes non-linearly with frequency, where high-frequent currents experience a stronger attenuation along the current collector than low-frequent currents. In further experiments, the decay characteristic is controlled by the cell temperature, driven by the increasing resistance of the current collector and the enhanced kinetic and transport properties of the active material and electrolyte. Measurements indicate that the ac current distribution depends strongly on the frequency and the temperature. In this context, the challenges for electrochemical impedance spectroscopy as cell diagnostic technique for commercial cells are discussed.

  16. A compact wideband precision impedance measurement system based on digital auto-balancing bridge

    NASA Astrophysics Data System (ADS)

    Hu, Binxin; Wang, Jinyu; Song, Guangdong; Zhang, Faxiang

    2016-05-01

    The ac impedance spectroscopy measurements are predominantly taken by using impedance analyzers based on analog auto-balancing bridge. However, those bench-top analyzers are generally complicated, bulky and expensive, thus limiting their usage in industrial field applications. This paper presents the development of a compact wideband precision measurement system based on digital auto-balancing bridge. The methods of digital auto-balancing bridge and digital lock-in amplifier are analyzed theoretically. The overall design and several key sections including null detector, direct digital synthesizer-based sampling clock, and digital control unit are introduced in detail. The results show that the system achieves a basic measurement accuracy of 0.05% with a frequency range of 20 Hz-2 MHz. The advantages of versatile measurement capacity, fast measurement speed, small size and low cost make it quite suitable for industrial field applications. It is demonstrated that this system is practical and effective by applying in determining the impedance-temperature characteristic of a motor starter PTC thermistor.

  17. Creating dynamic equivalent PV circuit models with impedance spectroscopy for arc-fault modeling.

    SciTech Connect

    Johnson, Jay Dean; Kuszmaul, Scott S.; Strauch, Jason E.; Schoenwald, David Alan

    2011-06-01

    Article 690.11 in the 2011 National Electrical Code{reg_sign} (NEC{reg_sign}) requires new photovoltaic (PV) systems on or penetrating a building to include a listed arc fault protection device. Currently there is little experimental or empirical research into the behavior of the arcing frequencies through PV components despite the potential for modules and other PV components to filter or attenuate arcing signatures that could render the arc detector ineffective. To model AC arcing signal propagation along PV strings, the well-studied DC diode models were found to inadequately capture the behavior of high frequency arcing signals. Instead dynamic equivalent circuit models of PV modules were required to describe the impedance for alternating currents in modules. The nonlinearities present in PV cells resulting from irradiance, temperature, frequency, and bias voltage variations make modeling these systems challenging. Linearized dynamic equivalent circuits were created for multiple PV module manufacturers and module technologies. The equivalent resistances and capacitances for the modules were determined using impedance spectroscopy with no bias voltage and no irradiance. The equivalent circuit model was employed to evaluate modules having irradiance conditions that could not be measured directly with the instrumentation. Although there was a wide range of circuit component values, the complex impedance model does not predict filtering of arc fault frequencies in PV strings for any irradiance level. Experimental results with no irradiance agree with the model and show nearly no attenuation for 1 Hz to 100 kHz input frequencies.

  18. Biosensor arrays based on the degradation of thin polymer films interrogated by scanning photoinduced impedance microscopy.

    PubMed

    Zhou, Yinglin; Jiang, Shihong; Krause, Steffi; Chazalviel, Jean-Noël

    2007-12-01

    Disposable sensors based on the degradation of thin films as a result of an enzymatic reaction have been developed into efficient enzyme detectors. Film degradation has traditionally been monitored using surface plasmon resonance (SPR), quartz crystal microbalance (QCM), or classical ac impedance measurements. The enzyme detection principle has now been integrated with an array technology derived from a recently developed impedance imaging technique, scanning photoinduced impedance microscopy (SPIM). SPIM is based on photocurrent measurements at field-effect structures. The material under investigation is commonly deposited onto a semiconductor-insulator substrate. In this work, field-effect capacitors were replaced by hydrogenated amorphous silicon (a-Si:H) n-i-p photodiode structures, which have recently been shown to be suitable for SPIM measurements with good lateral resolution. To demonstrate the feasibility of SPIM for the characterization of biosensor arrays, polymer dots of the inert polymer cellulose acetate and an alpha-chymotrypsin-sensitive poly(ester amide) were deposited onto a-Si:H n-i-p/SiO2 structures and their enzymatic degradation was monitored using a laser scanning setup.

  19. Tuning electrode impedance for the electrical recording of biopotentials.

    PubMed

    Fontes, M A; de Beeck, M; Van Hoof, C; Neves, H P

    2010-01-01

    Tuning the electrode impedance through the DC biasing of iridium oxide is presented. Impedance reduction of up to two orders of magnitude was reproducibly observed in 20 microm diameter microelectrodes at a biasing of 1V.

  20. Scattering by a groove in an impedance plane

    NASA Technical Reports Server (NTRS)

    Bindiganavale, Sunil; Volakis, John L.

    1993-01-01

    An analysis of two-dimensional scattering from a narrow groove in an impedance plane is presented. The groove is represented by a impedance surface and the problem reduces to that of scattering from an impedance strip in an otherwise uniform impedance plane. On the basis of this model, appropriate integral equations are constructed using a form of the impedance plane Green's functions involving rapidly convergent integrals. The integral equations are solved by introducing a single basis representation of the equivalent current on the narrow impedance insert. Both transverse electric (TE) and transverse magnetic (TM) polarizations are treated. The resulting solution is validated by comparison with results from the standard boundary integral method (BIM) and a high frequency solution. It is found that the presented solution for narrow impedance inserts can be used in conjunction with the high frequency solution for the characterization of impedance inserts of any given width.

  1. Ag incorporated Mn3O4/AC nanocomposite based supercapacitor devices with high energy density and power density.

    PubMed

    Nagamuthu, S; Vijayakumar, S; Muralidharan, G

    2014-12-14

    Silver incorporated Mn3O4/amorphous carbon (AC) nanocomposites are synthesized by a green chemistry method. X-ray diffraction studies revealed the structural changes in Mn3O4/AC nanocomposites attributable to the addition of silver. Cyclic voltammetry, charge-discharge and ac-impedance studies indicated that the Ag-Mn3O4/AC-5 electrode was the most suitable candidate for supercapacitor applications. From the galvanostatic charge-discharge studies, a higher specific capacitance of 981 F g(-1) at a specific current of 1 A g(-1) was obtained. An Ag-Mn3O4/AC-symmetric supercapacitor consisting of an Ag-incorporated Mn3O4/AC composite as an anode as well as a cathode, and an asymmetric supercapacitor consisting of an Ag-incorporated Mn3O4/AC composite as a cathode and an activated carbon as an anode have been fabricated. The symmetric device exhibits a specific cell capacitance of 72 F g(-1) at a specific current of 1 A g(-1) whereas the asymmetric device delivers a specific cell capacitance of 180 F g(-1) at a high current rate of 10 A g(-1). The asymmetric supercapacitor device yields a high energy density of 81 W h kg(-1). This is higher than that of lead acid batteries and comparable with that of nickel hydride batteries.

  2. Impedance spectroscopic analysis of composite electrode from activated carbon/conductive materials/ruthenium oxide for supercapacitor applications

    SciTech Connect

    Taer, E.; Awitdrus,; Farma, R.; Deraman, M. Talib, I. A.; Ishak, M. M.; Omar, R.; Dolah, B. N. M.; Basri, N. H.; Othman, M. A. R.; Kanwal, S.

    2015-04-16

    Activated carbon powders (ACP) were produced from the KOH treated pre-carbonized rubber wood sawdust. Different conductive materials (graphite, carbon black and carbon nanotubes (CNTs)) were added with a binder (polivinylidene fluoride (PVDF)) into ACP to improve the supercapacitive performance of the activated carbon (AC) electrodes. Symmetric supercapacitor cells, fabricated using these AC electrodes and 1 molar H{sub 2}SO{sub 4} electrolyte, were analyzed using a standard electrochemical impedance spectroscopy technique. The addition of graphite, carbon black and CNTs was found effective in reducing the cell resistance from 165 to 68, 23 and 49 Ohm respectively, and increasing the specific capacitance of the AC electrodes from 3 to 7, 17, 32 F g{sup −1} respectively. Since the addition of CNTs can produce the highest specific capacitance, CNTs were chosen as a conductive material to produce AC composite electrodes that were added with 2.5 %, 5 % and 10 % (by weight) electro-active material namely ruthenium oxide; PVDF binder and CNTs contents were kept at 5 % by weight in each AC composite produced. The highest specific capacitance of the cells obtained in this study was 86 F g{sup −1}, i.e. for the cell with the resistance of 15 Ohm and composite electrode consists of 5 % ruthenium oxide.

  3. Impedance spectroscopic analysis of composite electrode from activated carbon/conductive materials/ruthenium oxide for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Taer, E.; Deraman, M.; Talib, I. A.; Awitdrus, Farma, R.; Ishak, M. M.; Omar, R.; Dolah, B. N. M.; Basri, N. H.; Othman, M. A. R.; Kanwal, S.

    2015-04-01

    Activated carbon powders (ACP) were produced from the KOH treated pre-carbonized rubber wood sawdust. Different conductive materials (graphite, carbon black and carbon nanotubes (CNTs)) were added with a binder (polivinylidene fluoride (PVDF)) into ACP to improve the supercapacitive performance of the activated carbon (AC) electrodes. Symmetric supercapacitor cells, fabricated using these AC electrodes and 1 molar H2SO4 electrolyte, were analyzed using a standard electrochemical impedance spectroscopy technique. The addition of graphite, carbon black and CNTs was found effective in reducing the cell resistance from 165 to 68, 23 and 49 Ohm respectively, and increasing the specific capacitance of the AC electrodes from 3 to 7, 17, 32 F g-1 respectively. Since the addition of CNTs can produce the highest specific capacitance, CNTs were chosen as a conductive material to produce AC composite electrodes that were added with 2.5 %, 5 % and 10 % (by weight) electro-active material namely ruthenium oxide; PVDF binder and CNTs contents were kept at 5 % by weight in each AC composite produced. The highest specific capacitance of the cells obtained in this study was 86 F g-1, i.e. for the cell with the resistance of 15 Ohm and composite electrode consists of 5 % ruthenium oxide.

  4. Enhanced Method for Cavity Impedance Calculations

    SciTech Connect

    Frank Marhauser, Robert Rimmer, Kai Tian, Haipeng Wang

    2009-05-01

    With the proposal of medium to high average current accelerator facilities the demand for cavities with extremely low Higher Order Mode (HOM) impedances is increasing. Modern numerical tools are still under development to more thoroughly predict impedances that need to take into account complex absorbing boundaries and lossy materials. With the usually large problem size it is preferable to utilize massive parallel computing when applicable and available. Apart from such computational issues, we have developed methods using available computer resources to enhance the information that can be extracted from a cavities? wakefield computed in time domain. In particular this is helpful for a careful assessment of the extracted RF power and the mitigation of potential beam break-up or emittance diluting effects, a figure of merit for the cavity performance. The method is described as well as an example of its implementation.

  5. Stimuli dependent impedance of conductive magnetorheological elastomers

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Xuan, Shouhu; Dong, Bo; Xu, Feng; Gong, Xinglong

    2016-02-01

    The structure dependent impedance of conductive magnetorheological elastomers (MREs) under different loads and magnetic fields has been studied in this work. By increasing the weight fraction of iron particles, the conductivity of the MREs increased. Dynamic mechanical measurements and synchrotron radiation x-ray computed tomography (SR-CT) were used and they provided reasons for the electrical properties changing significantly under pressure and magnetic field stimulation. The high sensitivity of MREs to external stimuli renders them suitable for application in force or magnetic field sensors. The equivalent circuit model was proposed to analyze the impedance response of MREs and it fits the experimental results very well. Each circuit component reflected the change of the inner interface under different conditions, thus relative changes in the microstructure could be distinguished. This method could be used not only to detect the structural changes in the MRE but also to provide a great deal of valuable information for the further understanding of the MR mechanism.

  6. Automatic digital-analog impedance plethysmograph

    NASA Astrophysics Data System (ADS)

    Goy, C. B.; Mauro, K. A.; Yanicelli, L. M.; Parodi, N. F.; Gómez López, M. A.; Herrera, M. C.

    2016-04-01

    Venous occlusion plethysmography (VOP) is a traditional method widely used to assess limb blood circulation. One common mode to record VOP is by means of evaluating limb volume changes using impedance plethysmography (IP). In this paper the design and implementation of an automatic digital-analog impedance plethysmograph (ADAIP) for VOP is presented. The system is tested using precision resistances in order to calculate its repeatability. Then its global performance is assessed by means of VOP recordings on the upper and me lower limb of a healthy volunteer. The obtained repeatability was very high (95%), and the VOP recordings where the expected ones. It can be concluded that the whole system performs well and that it is suitable for automatic VOP recording.

  7. Nonlinear acoustic impedance of thermoacoustic stack

    NASA Astrophysics Data System (ADS)

    Ge, Huan; Fan, Li; Xiao, Shu-yu; Tao, Sha; Qiu, Mei-chen; Zhang, Shu-yi; Zhang, Hui

    2012-09-01

    In order to optimize the performances of the thermoacoustic refrigerator working with the high sound pressure level, the nonlinear acoustic characteristics of the thermoacoustic stack in the resonant pipe are studied. The acoustic fluid impedance of the stack made of copper mesh and set up in a resonant pipe is measured in the acoustic fields with different intensities. It is found that when the sound pressure level in the pipe increases to a critical value, the resistance of the stack increases nonlinearly with the sound pressure, while the reactance of the stack keeps constant. Based on the experimental results, a theory model is set up to describe the acoustic characteristics of the stack, according to the rigid frame theory and Forchheimmer equation. Furthermore, the influences of the sound pressure level, operating frequency, volume porosity, and length of the stack on the nonlinear impedance of the stack are evaluated.

  8. Impedance issues in the CERN SPS

    NASA Astrophysics Data System (ADS)

    Linnecar, T.

    1999-12-01

    The future use of the CERN SPS accelerator as injector for the Large Hadron Collider, LHC, and the possible use of the SPS as a neutrino source for the Gran Sasso experiment are pushing the maximum intensity requirements of the accelerator much higher than achieved up to now. At the same time the requirements on beam quality are becoming far more stringent. The SPS machine, built in the 70's, is not a "smooth" machine. It contains many discontinuities in vacuum chamber cross-section and many cavity-like objects, as well as the 5 separate RF systems at present installed. All these lead to a high impedance, seen by the beam, spread over a wide frequency range. As a result there is a constant fight against instabilities, both single and multi bunch, as the intensity increases. A program of studies is under way in the SPS to identify, reduce, and remove where possible the sources of these impedances.

  9. Impedance of a beam tube with antechamber

    SciTech Connect

    Barry, W.; Lambertson, G.R.; Voelker, F.

    1986-08-01

    A beam vacuum chamber was proposed to allow synchrotron light to radiate from a circulating electron beam into an antechamber containing photon targets, pumps, etc. To determine the impedance such a geometry would present to the beam, electromagnetic measurements were carried out on a section of chamber using for low frequencies a current-carrying wire and for up to 16 GHz, a resonance perturbation method. Because the response of such a chamber would depend on upstream and downstream restrictions of aperture yet to be determined, the resonance studies were analyzed in some generality. The favorable conclusion of these studies is that the antechamber makes practically no contribution to either the longitudinal or the transverse impedances.

  10. Impedance characteristics of terawatt ion diodes

    NASA Astrophysics Data System (ADS)

    Mendel, C. W., Jr.; Desjarlais, M. P.; Pointon, T. D.; Quintenz, J. P.; Rosenthal, S. E.; Seidel, D. B.; Slutz, S. A.

    Light ion fusion research has developed ion diodes that have unique properties when compared to other ion diodes. These diodes involve relativistic electrons, ion beam stagnation pressures that compress the magnetic field to the order of 10 Tesla, and large space charge and particle current effects throughout the accelerating region. These diodes have required new theories and models to account for effects that previously were unimportant. One of the most important effects of the magnetic field compression and large space charge has been impedance collapse. The impedance collapse can lead to poor energy transfer efficiency, beam debunching, and rapid change of the beam focus. The current understanding of these effects is discussed including some of the methods used to ameliorate them, and the future directions the theory and modeling will take.

  11. Signal conditioning circuit apparatus. [with constant input impedance

    NASA Technical Reports Server (NTRS)

    Holland, V. B. (Inventor)

    1975-01-01

    A signal conditioning circuit is described including operational amplifier, a variable source of offset potential, and four resistive impedance. The circuit has constant input impedance independent of gain and offset adjustments. Gain change is effected by varying one of the impedances in an amplifier feedback circuit; offset adjustment is effected through variation of the offset potential source.

  12. Simultaneous distribution of AC and DC power

    DOEpatents

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  13. Moderately nonlinear diffuse-charge dynamics under an ac voltage.

    PubMed

    Stout, Robert F; Khair, Aditya S

    2015-09-01

    The response of a symmetric binary electrolyte between two parallel, blocking electrodes to a moderate amplitude ac voltage is quantified. The diffuse charge dynamics are modeled via the Poisson-Nernst-Planck equations for a dilute solution of point-like ions. The solution to these equations is expressed as a Fourier series with a voltage perturbation expansion for arbitrary Debye layer thickness and ac frequency. Here, the perturbation expansion in voltage proceeds in powers of V_{o}/(k_{B}T/e), where V_{o} is the amplitude of the driving voltage and k_{B}T/e is the thermal voltage with k_{B} as Boltzmann's constant, T as the temperature, and e as the fundamental charge. We show that the response of the electrolyte remains essentially linear in voltage amplitude at frequencies greater than the RC frequency of Debye layer charging, D/λ_{D}L, where D is the ion diffusivity, λ_{D} is the Debye layer thickness, and L is half the cell width. In contrast, nonlinear response is predicted at frequencies below the RC frequency. We find that the ion densities exhibit symmetric deviations from the (uniform) equilibrium density at even orders of the voltage amplitude. This leads to the voltage dependence of the current in the external circuit arising from the odd orders of voltage. For instance, the first nonlinear contribution to the current is O(V_{o}^{3}) which contains the expected third harmonic but also a component oscillating at the applied frequency. We use this to compute a generalized impedance for moderate voltages, the first nonlinear contribution to which is quadratic in V_{o}. This contribution predicts a decrease in the imaginary part of the impedance at low frequency, which is due to the increase in Debye layer capacitance with increasing V_{o}. In contrast, the real part of the impedance increases at low frequency, due to adsorption of neutral salt from the bulk to the Debye layer. PMID:26465471

  14. Impedance Matched Absorptive Thermal Blocking Filters

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Chuss, D. T.; U-Yen, K.; Rostem, K.

    2014-01-01

    We have designed, fabricated and characterized absorptive thermal blocking filters for cryogenic microwave applications. The transmission line filter's input characteristic impedance is designed to match 50 Omega and its response has been validated from 0-to-50GHz. The observed return loss in the 0-to-20GHz design band is greater than 20 dB and shows graceful degradation with frequency. Design considerations and equations are provided that enable this approach to be scaled and modified for use in other applications.

  15. Impedance Matched Absorptive Thermal Blocking Filters

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Chuss, D. T.; Rostem, K.; U-Yen, K.

    2014-01-01

    We have designed, fabricated and characterized absorptive thermal blocking filters for cryogenic microwave applications. The transmission line filter's input characteristic impedance is designed to match 50O and its response has been validated from 0-to-50GHz. The observed return loss in the 0-to-20GHz design band is greater than 20 dB and shows graceful degradation with frequency. Design considerations and equations are provided that enable this approach to be scaled and modified for use in other applications.

  16. Measurement of shear impedances of viscoelastic fluids

    SciTech Connect

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, A.C.

    1996-12-31

    Shear-wave reflection coefficients from a solid/fluid interface are derived for non-Newtonian fluids that can be described by Maxwell, Voigt, and power-law fluid models. Based on model calculations, we have identified the measurable effects on the reflection coefficients due to fluid non-Newtonian behavior. The models are used to interpret the viscosity data obtained by a technique based on shear impedance measurement.

  17. Superconducting surface impedance under radiofrequency field

    DOE PAGES

    Xiao, Binping P.; Reece, Charles E.; Kelley, Michael J.

    2013-04-26

    Based on BCS theory with moving Cooper pairs, the electron states distribution at 0K and the probability of electron occupation with finite temperature have been derived and applied to anomalous skin effect theory to obtain the surface impedance of a superconductor under radiofrequency (RF) field. We present the numerical results for Nb and compare these with representative RF field-dependent effective surface resistance measurements from a 1.5 GHz resonant structure.

  18. PEP-X IMPEDANCE AND INSTABILITY CALCULATIONS

    SciTech Connect

    Bane, K.L.F.; Lee, L.-Q.; Ng, C.; Stupakov, G.; au Wang, L.; Xiao, L.; /SLAC

    2010-08-25

    PEP-X, a next generation, ring-based light source is designed to run with beams of high current and low emittance. Important parameters are: energy 4.5 GeV, circumference 2.2 km, beam current 1.5 A, and horizontal and vertical emittances, 185 pm by 8 pm. In such a machine it is important that impedance driven instabilities not degrade the beam quality. In this report they study the strength of the impedance and its effects in PEP-X. For the present, lacking a detailed knowledge of the vacuum chamber shape, they create a straw man design comprising important vacuum chamber objects to be found in the ring, for which they then compute the wake functions. From the wake functions they generate an impedance budget and a pseudo-Green function wake representing the entire ring, which they, in turn, use for performing microwave instability calculations. In this report they, in addition, consider in PEP-X the transverse mode-coupling, multi-bunch transverse, and beam-ion instabilities.

  19. Interior impedance wedge diffraction with surface waves

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Griesser, Timothy

    1988-01-01

    The exact impedance wedge solution is evaluated asymptotically using the method of steepest descents for plane wave illumination at normal incidence. Uniform but different impedances on each face are considered for both soft and hard polarizations. The asymptotic solution isolates the incident, singly reflected, multiply reflected, diffracted, and surface wave fields. Multiply reflected fields of any order are permitted. The multiply reflected fields from the exact solution are written as ratios of auxiliary Maliuzhinets functions, whereas a geometrical analysis gives the reflected fields as products of reflection coefficients. These two representations are shown to be identical in magnitude, phase and the angular range over which they exist. The diffracted field includes four Fresnel transition functions as in the perfect conductor case, and the expressions for the appropriate discontinuities at the shadow boundaries are presented. The surface wave exists over a finite angular range and only for certain surface impedances. A surface wave transition field is included to retain continuity. Computations are presented for interior wedge diffractions although the formulation is valid for both exterior and interior wedges.

  20. Bioelectrical impedance analysis of bovine milk fat

    NASA Astrophysics Data System (ADS)

    Veiga, E. A.; Bertemes-Filho, P.

    2012-12-01

    Three samples of 250ml at home temperature of 20°C were obtained from whole, low fat and fat free bovine UHT milk. They were analysed by measuring both impedance spectra and dc conductivity in order to establish the relationship between samples related to fat content. An impedance measuring system was developed, which is based on digital oscilloscope, a current source and a FPGA. Data was measured by the oscilloscope in the frequency 1 kHz to 100 kHz. It was showed that there is approximately 7.9% difference in the conductivity between whole and low fat milk whereas 15.9% between low fat and free fat one. The change of fatness in the milk can be significantly sensed by both impedance spectra measurements and dc conductivity. This result might be useful for detecting fat content of milk in a very simple way and also may help the development of sensors for measuring milk quality, as for example the detection of mastitis.

  1. A vector impedance meter digitally controlled

    NASA Astrophysics Data System (ADS)

    Caranti, Giorgio M.; Ré, Miguel A.

    1991-12-01

    As with most similar equipment, the method consists in applying a sinusoidal voltage to an unknown impedance and measuring the current through it. The advantage of the developed equipment is that it allows independent and simultaneous measurement of the resistive and reactive components of the current through the sample impedance, thus making possible the determination of impedances in magnitude and phase. The measurements can be controlled with a computer using a digital interface. The instrument may also be controlled with a computer using a digital interface. The instrument may also be controlled manually from a front panel. The apparatus was designed to operate in the audio range 1 Hz-100 kHz for currents even below 1 μA. The analog outputs may either be connected to an X-Y recorder or the data can be acquired with a computer through an analog-to-digital converter. The laboratory tests have shown a good performance according to the design specifications. These tests have been carried out using discrete circuits made of calibrated components.

  2. Application of impedance spectroscopy to SOFC research

    SciTech Connect

    Hsieh, G.; Mason, T.O.; Pederson, L.R.

    1996-12-31

    With the resurgence of interest in solid oxide fuel cells and other solid state electrochemical devices, techniques originally developed for characterizing aqueous systems are being adapted and applied to solid state systems. One of these techniques, three-electrode impedance spectroscopy, is particularly powerful as it allows characterization of subcomponent and interfacial properties. Obtaining accurate impedance spectra, however, is difficult as reference electrode impedance is usually non-negligible and solid electrolytes typically have much lower conductance than aqueous solutions. Faidi et al and Chechirlian et al have both identified problems associated with low conductivity media. Other sources of error are still being uncovered. Ford et al identified resistive contacts with large time constants as a possibility, while Me et al showed that the small contact capacitance of the reference electrode was at fault. Still others show that instrument limitations play a role. Using the voltage divider concept, a simplified model that demonstrates the interplay of these various factors, predicts the form of possible distortions, and offers means to minimize errors is presented.

  3. On the directional symmetry of the impedance

    SciTech Connect

    Heifets, S.A.

    1990-03-01

    The independence of the impedance on the beam direction is an important feature of an accelerator structure, in particular, for the electron-positron storage rings where bunches of opposite charges travel through the same vacuum chamber in opposite directions. Recently Gluckstern and Zotter considered a cylindrically symmetric but longitudinally asymmetric cavity with side pipes of equal radii. They were able to prove that for a relativistic particle the longitudinal impedance of the cavity with an arbitrary shape is independent of the direction in which the beam travels through it. Their result corroborates numerical observations of the independence of the wakefield obtained with the code TBCI. Bisognano gave an elegant proof of the same statement. His approach is based on a reciprocity relation applied to the tensor Green's function. I follow here his idea in a somewhat simpler way to obtain more general and physically transparent proof of this property for both longitudinal and transverse impedances. The result is valid for a cavity with no azimuthal symmetry and for arbitrary particle velocity, as soon as it may be considered constant. At the same time the limits of its validity are shown.

  4. Influence of temperature on AC conductivity of nanocrystalline CuAlO2

    NASA Astrophysics Data System (ADS)

    Prakash, T.

    2012-07-01

    Nanocrystalline CuAlO2 was synthesized by mechanical alloying of Cu2O and α-Al2O3 powders in the molar ratio of 1:1 for 20 h in toluene medium with tungsten carbide balls and vials using planetary ball mill. The ball milling was carried out at 300 rpm with a ball to powder weight ratio of 10:1 and then annealed at 1373 K in a platinum crucible for 20 h to get CuAlO2 phase with average crystallite size 45 nm. Complex impedance spectroscopic measurement in the frequency region 1 Hz to 10 MHz between the temperatures 333 to 473 K was carried out for nanocrystalline CuAlO2 sample. The obtained complex impedance data was analyzed for AC conductivities, DC and AC conductivities correlations and crossover frequencies ( f co ). The BNN (Barton, Nakajima and Namikawa) relation was applied to understand the correlation between DC and AC conductivities. The observed experimental results were discussed in the paper.

  5. Electrical impedance tomography-based sensing skin for quantitative imaging of damage in concrete

    NASA Astrophysics Data System (ADS)

    Hallaji, Milad; Seppänen, Aku; Pour-Ghaz, Mohammad

    2014-08-01

    This paper outlines the development of a large-area sensing skin for damage detection in concrete structures. The developed sensing skin consists of a thin layer of electrically conductive copper paint that is applied to the surface of the concrete. Cracking of the concrete substrate results in the rupture of the sensing skin, decreasing its electrical conductivity locally. The decrease in conductivity is detected with electrical impedance tomography (EIT) imaging. In previous works, electrically based sensing skins have provided only qualitative information on the damage on the substrate surface. In this paper, we study whether quantitative imaging of the damage is possible. We utilize application-specific models and computational methods in the image reconstruction, including a total variation (TV) prior model for the damage and an approximate correction of the modeling errors caused by the inhomogeneity of the painted sensing skin. The developed damage detection method is tested experimentally by applying the sensing skin to polymeric substrates and a reinforced concrete beam under four-point bending. In all test cases, the EIT-based sensing skin provides quantitative information on cracks and/or other damages on the substrate surface: featuring a very low conductivity in the damage locations, and a reliable indication of the lengths and shapes of the cracks. The results strongly support the applicability of the painted EIT-based sensing skin for damage detection in reinforced concrete elements and other substrates.

  6. Electrical impedance measurements of root canal length.

    PubMed

    Meredith, N; Gulabivala, K

    1997-06-01

    Electronic methods are now widely used during endodontic treatment for the assessment of root canal length. These commonly measure the electrical resistance or impedance between the root canal and the buccal mucosa. A number of studies have been undertaken to determine the accuracy of commercially available instruments. The aims of this investigation were to determine the electrical impedance characteristics of the root canal and periapical tissues in vivo, measure the changes relative to the distance of an endodontic instrument from the apical constriction and propose an equivalent circuit modelling the periapical tissues. The length of the root canals of 20 previously untreated teeth were determined using radiographic and electronic methods. Minimal canal preparation was carried out and measurements were made with a size 10 K-Flex file. A microprocessor-controlled LCR analyser was used to measure the electrical impedance characteristics of each root canal. The instrument measured the series and parallel resistive (RS, RP) and capacitance (CS, CP) component of the tissues at two test frequencies, 100 Hz and 1 kHz. Measurements were made for each root canal when the diagnostic file was placed at the apical constriction and repeated when the file was withdrawn to -0.5, -1.0, -1.5, -2.0 and -5.0 mm from the foramen. Readings were taken for each canal after the canal had been dried with paper points, and flooded first with deionised water and then with sodium hypochlorite. The root canals were then prepared, cleaned and obturated using standard endodontic procedures. The LCR analyser selected the series resistance component as the major measurement parameter. There was a clear increase in series resistance (RS) with increasing distance from the radiographic apex for dry canals and those containing deionised water and sodium hypochlorite. The mean resistance for dry canals was markedly higher than for those containing fluid, ranging from 22.19 k omega to 92.07 k omega

  7. Impedance adaptation for optimal robot-environment interaction

    NASA Astrophysics Data System (ADS)

    Ge, Shuzhi Sam; Li, Yanan; Wang, Chen

    2014-02-01

    In this paper, impedance adaptation is investigated for robots interacting with unknown environments. Impedance control is employed for the physical interaction between robots and environments, subject to unknown and uncertain environments dynamics. The unknown environments are described as linear systems with unknown dynamics, based on which the desired impedance model is obtained. A cost function that measures the tracking error and interaction force is defined, and the critical impedance parameters are found to minimise it. Without requiring the information of the environments dynamics, the proposed impedance adaptation is feasible in a large number of applications where robots physically interact with unknown environments. The validity of the proposed method is verified through simulation studies.

  8. Label-Free Impedance Biosensors: Opportunities and Challenges

    PubMed Central

    Daniels, Jonathan S.; Pourmand, Nader

    2007-01-01

    Impedance biosensors are a class of electrical biosensors that show promise for point-of-care and other applications due to low cost, ease of miniaturization, and label-free operation. Unlabeled DNA and protein targets can be detected by monitoring changes in surface impedance when a target molecule binds to an immobilized probe. The affinity capture step leads to challenges shared by all label-free affinity biosensors; these challenges are discussed along with others unique to impedance readout. Various possible mechanisms for impedance change upon target binding are discussed. We critically summarize accomplishments of past label-free impedance biosensors and identify areas for future research. PMID:18176631

  9. Oblique impacts into low impedance layers

    NASA Astrophysics Data System (ADS)

    Stickle, A. M.; Schultz, P. H.

    2009-12-01

    Planetary impacts occur indiscriminately, in all locations and materials. Varied geologic settings can have significant effects on the impact process, including the coupling between the projectile and target, the final damage patterns and modes of deformation that occur. For example, marine impact craters are not identical to impacts directly into bedrock or into sedimentary materials, though many of the same fundamental processes occur. It is therefore important, especially when considering terrestrial impacts, to understand how a low impedance sedimentary layer over bedrock affects the deformation process during and after a hypervelocity impact. As a first step, detailed comparisons between impacts and hydrocode models were performed. Experiments performed at the NASA Ames Vertical Gun Range of oblique impacts into polymethylmethacrylate (PMMA) targets with low impedance layers were performed and compared to experiments of targets without low impedance layers, as well as to hydrocode models under identical conditions. Impact velocities ranged from 5 km/s to 5.6 km/s, with trajectories from 30 degrees to 90 degrees above the horizontal. High-speed imaging provided documentation of the sequence and location of failure due to impact, which was compared to theoretical models. Plasticine and ice were used to construct the low impedance layers. The combination of experiments and models reveals the modes of failure due to a hypervelocity impact. How such failure is manifested at large scales can present a challenge for hydrocodes. CTH models tend to overestimate the amount of damage occurring within the targets and have difficulties perfectly reproducing morphologies; nevertheless, they provide significant and useful information about the failure modes and style within the material. CTH models corresponding to the experiments allow interpretation of the underlying processes involved as well as provide a benchmark for the experimental analysis. The transparency of PMMA

  10. Potential applications of a small high-surface-area platinum electrode as an implanted impedance biosensor or recording electrode

    NASA Astrophysics Data System (ADS)

    Duan, Yvonne Y.; Millard, Rodney E.; Tykocinski, Michael; Lui, Xuguang; Clark, Graeme M.; Cowan, Robert S. C.

    2001-03-01

    A small Platinum (Pt) electrode (geometric area: ~0.43 mm2) was treated in an electrochemical etching process, to produce a highly porous columnar thin layer (~600 nm) on the surface of the electrode. The modified Pt electrode (Pt-p) showed similar electrical properties to a platinum-black electrode but with high mechanical integrity. Previous studies of chronic stimulation had also shown good biocompatibility and surface stability over several months implantation. This paper discusses the potential applications of the modified electrode as an implanted bio-sensor: (1) as a recording electrode compared to an untreated Pt electrode. (2) as a probe in detecting electrical characteristics of living biological material adjacent to the electrode in vivo, which may correlate to inflammation or trauma repair. Results of electrochemical impedance spectroscopy (EIS) revealed much lower electrode interface polarisation impedance, reduced overall electrode impedance, and a largely constant impedance above 100 Hz for the Pt-p electrode compared with untreated Pt electrodes. This provides a platform for recording biological events with low noise interference. Results of A.C. impedance spectroscopy of the high surface area electrode only reflect changes in the surrounding biological environment in the frequency range (1 k Hz to 100 k Hz), interference from electrode polarisation impedance can be neglected. The results imply that the surface-modified electrode is a good candidate for application to implantable biosensors for detecting bio-electric events. The modification procedure and its high surface area concept could have application to a smart MEMS device or microelectrode.

  11. Mechanism of the formation for thoracic impedance change.

    PubMed

    Kuang, Ming-Xing; Xiao, Qiu-Jin; Cui, Chao-Ying; Kuang, Nan-Zhen; Hong, Wen-Qin; Hu, Ai-Rong

    2010-03-01

    The purpose of this study is to investigate the mechanism of the formation for thoracic impedance change. On the basis of Ohm's law and the electrical field distribution in the cylindrical volume conductor, the formula about the thoracic impedance change are deduced, and they are demonstrated with the model experiment. The results indicate that the thoracic impedance change caused by single blood vessel is directly proportional to the ratio of the impedance change to the basal impedance of the blood vessel itself, to the length of the blood vessel appearing between the current electrodes, and to the basal impedance between two detective electrodes on the chest surface, while it is inversely proportional to the distance between the blood vessel and the line joining two detective electrodes. The thoracic impedance change caused by multiple blood vessels together is equal to the algebraic addition of all thoracic impedance changes resulting from the individual blood vessels. That is, the impedance changes obey the principle of adding scalars in the measurement of the electrical impedance graph. The present study can offer the theoretical basis for the waveform reconstruction of Impedance cardiography (ICG).

  12. Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review

    PubMed Central

    Bera, Tushar Kanti

    2014-01-01

    Under the alternating electrical excitation, biological tissues produce a complex electrical impedance which depends on tissue composition, structures, health status, and applied signal frequency, and hence the bioelectrical impedance methods can be utilized for noninvasive tissue characterization. As the impedance responses of these tissue parameters vary with frequencies of the applied signal, the impedance analysis conducted over a wide frequency band provides more information about the tissue interiors which help us to better understand the biological tissues anatomy, physiology, and pathology. Over past few decades, a number of impedance based noninvasive tissue characterization techniques such as bioelectrical impedance analysis (BIA), electrical impedance spectroscopy (EIS), electrical impedance plethysmography (IPG), impedance cardiography (ICG), and electrical impedance tomography (EIT) have been proposed and a lot of research works have been conducted on these methods for noninvasive tissue characterization and disease diagnosis. In this paper BIA, EIS, IPG, ICG, and EIT techniques and their applications in different fields have been reviewed and technical perspective of these impedance methods has been presented. The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends. PMID:27006932

  13. Superconducting fault current-limiter with variable shunt impedance

    SciTech Connect

    Llambes, Juan Carlos H; Xiong, Xuming

    2013-11-19

    A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.

  14. Impedance Noise Identification for State-of-Health Prognostics

    SciTech Connect

    Jon P. Christophersen; Chester G. Motloch; John L. Morrison; Ian B. Donnellan; William H. Morrison

    2008-07-01

    Impedance Noise Identification is an in-situ method of measuring battery impedance as a function of frequency using a random small signal noise excitation source. Through a series of auto- and cross-correlations and Fast Fourier Transforms, the battery complex impedance as a function of frequency can be determined. The results are similar to those measured under a lab-scale electrochemical impedance spectroscopy measurement. The lab-scale measurements have been shown to correlate well with resistance and power data that are typically used to ascertain the remaining life of a battery. To this end, the Impedance Noise Identification system is designed to acquire the same type of data as an on-board tool. A prototype system is now under development, and results are being compared to standardized measurement techniques such as electrochemical impedance spectroscopy. A brief description of the Impedance Noise Identification hardware system and representative test results are presented.

  15. Resolving the grain boundary and lattice impedance of hot-pressed Li7La3Zr2O12 garnet electrolytes

    DOE PAGES

    Tenhaeff, Wyatt E.; Wang, Yangyang; Sokolov, Alexei P.; Wolfenstine, Jeff; Sakamoto, Jeffrey; Dudney, Nancy J.; Rangasamy, Ezhiyl

    2013-07-24

    Here, the cubic-stabilized garnet solid electrolyte with a nominal composition of Li6.28Al0.24La3Zr2O12 is thoroughly characterized by impedance spectroscopy. By varying the frequency of the applied AC signal over 11 orders of magnitude for characterizations from –100 to +60 °C, the relative contributions of grain and grain boundary conduction are unambiguously resolved.

  16. Small-Signal ac Analysis

    NASA Technical Reports Server (NTRS)

    Jagielski, James M.; Chen, Jess

    1987-01-01

    Program simulates power circuits and systems. Small Signal A.C. Analysis program (SSAC) valuable tool for design and analysis of electrical-power-system circuits. By combining "black box" power-system components operating in specified manner, user characterizes system modeled. Menu-driven program proved simple and cost effective in development and modification of arbitrary power-system configurations. Package includes sample data from Dynamic Explorer satellite family. Results compared favorable to calculations from such general circuit-analysis programs as SPICE. Written in FORTRAN 77.

  17. Origin of Capacity Fading in Nano-Sized Co3O4Electrodes: Electrochemical Impedance Spectroscopy Study

    PubMed Central

    2008-01-01

    Transition metal oxides have been suggested as innovative, high-energy electrode materials for lithium-ion batteries because their electrochemical conversion reactions can transfer two to six electrons. However, nano-sized transition metal oxides, especially Co3O4, exhibit drastic capacity decay during discharge/charge cycling, which hinders their practical use in lithium-ion batteries. Herein, we prepared nano-sized Co3O4with high crystallinity using a simple citrate-gel method and used electrochemical impedance spectroscopy method to examine the origin for the drastic capacity fading observed in the nano-sized Co3O4anode system. During cycling, AC impedance responses were collected at the first discharged state and at every subsequent tenth discharged state until the 100th cycle. By examining the separable relaxation time of each electrochemical reaction and the goodness-of-fit results, a direct relation between the charge transfer process and cycling performance was clearly observed.

  18. Estimation of defect activation energy around pn interfaces of Cu(In,Ga)Se2 solar cells using impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakakura, Hidenori; Itagaki, Masayuki; Sugiyama, Mutsumi

    2016-01-01

    We investigate the defect activation energy around the pn interface of Cu(In,Ga)Se2 (CIGS)-based solar cells using a simple electrochemical impedance spectroscopy. By applying AC and DC voltages to the solar cells, we observed an “inductive” element around the pn interface, which is ignored in conventional deep-level transient spectroscopy or admittance spectroscopy. A defect model is evaluated by proposing an equivalent circuit that includes a positive/negative constant phase element (CPE) to represent the area around the CdS/CIGS interface. By fitting the impedance data, the CPE index and CPE constant show a relationship with the defect activation energy or defect concentration. This result is significant because it may help reveal the defect properties of CIGS solar cells or any other semiconductor devices.

  19. Effect of the magnetic material on AC losses in HTS conductors in AC magnetic field carrying AC transport current

    NASA Astrophysics Data System (ADS)

    Wan, Xing-Xing; Huang, Chen-Guang; Yong, Hua-Dong; Zhou, You-He

    2015-11-01

    This paper presents an investigation on the AC losses in several typical superconducting composite conductors using the H-formulation model. A single superconducting strip with ferromagnetic substrate or cores and a stack of coated conductors with ferromagnetic substrates are studied. We consider all the coated conductors carrying AC transport currents and simultaneously exposed to perpendicular AC magnetic fields. The influences of the amplitude, frequency, phase difference and ferromagnetic materials on the AC losses are investigated. The results show that the magnetization losses of single strip and stacked strips have similar characteristics. The ferromagnetic substrate can increase the magnetization loss at low magnetic field, and decrease the loss at high magnetic field. The ferromagnetic substrate can obviously increase the transport loss in stacked strips. The trends of total AC losses of single strip and stacked strips are similar when they are carrying current or exposed to a perpendicular magnetic field. The effect of the frequency on the total AC losses of single strip is related to the amplitude of magnetic field. The AC losses decrease with increasing frequency in low magnetic field region while increase in high magnetic field region. As the phase difference changes, there is a periodic variation for the AC losses. Moreover, when the strip is under only the transport current and magnetic field, the ferromagnetic cores will increase the AC losses for large transport current or field.

  20. Impedance analysis of an enhanced piezoelectric biosensor

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Ho

    This study investigated the usefulness and characteristics of a five-megahertz quartz crystal resonator oscillating in a thickness-shear mode as a sensor of biological pathogens such as Salmonella typhimurium . An impedance analyzer measured the impedance of the oscillating quartz crystal, which determined all mechanical properties of the oscillating quartz and its immediate environment. In this study, the impedance behavior of the bare crystal was characterized in air and in potassium phosphate buffer solution. The potassium phosphate buffer was a Newtonian liquid. The resonance frequency of the oscillating quartz shifted down about 900 Hz by contacting with the buffer. An immobilized-antibody layer on the quartz surface behaved like a rigid mass when immersed in the buffer solution. The quartz crystal with immobilized antibodies was characterized in various solutions containing antibody- coated paramagnetic microspheres and varying concentrations of Salmonella typhimurium (102 - 108 cells/ml). The Salmonella cells were captured by antibody- coated paramagnetic microspheres, and then these complexes were moved magnetically to the oscillating quartz and were captured by antibodies immobilized on the crystal surface. The response of the crystal was expressed in terms of equivalent circuit parameters. The motional inductance and the motional resistance increased as a function of the concentration of Salmonella. The viscous damping was the main contribution to the resistance and the inductance in a liquid environment. The load resistance was the most effective and sensitive circuit parameter. A magnetic force was a useful method to collect the complexes of Salmonella-microspheres on the crystal surface and enhance the response sensor. In this system, the detection limit, based on resistance monitoring, was about 103 cells/ml.

  1. Method for conducting nonlinear electrochemical impedance spectroscopy

    DOEpatents

    Adler, Stuart B.; Wilson, Jamie R.; Huff, Shawn L.; Schwartz, Daniel T.

    2015-06-02

    A method for conducting nonlinear electrochemical impedance spectroscopy. The method includes quantifying the nonlinear response of an electrochemical system by measuring higher-order current or voltage harmonics generated by moderate-amplitude sinusoidal current or voltage perturbations. The method involves acquisition of the response signal followed by time apodization and fast Fourier transformation of the data into the frequency domain, where the magnitude and phase of each harmonic signal can be readily quantified. The method can be implemented on a computer as a software program.

  2. Adaptive techniques in electrical impedance tomography reconstruction.

    PubMed

    Li, Taoran; Isaacson, David; Newell, Jonathan C; Saulnier, Gary J

    2014-06-01

    We present an adaptive algorithm for solving the inverse problem in electrical impedance tomography. To strike a balance between the accuracy of the reconstructed images and the computational efficiency of the forward and inverse solvers, we propose to combine an adaptive mesh refinement technique with the adaptive Kaczmarz method. The iterative algorithm adaptively generates the optimal current patterns and a locally-refined mesh given the conductivity estimate and solves for the unknown conductivity distribution with the block Kaczmarz update step. Simulation and experimental results with numerical analysis demonstrate the accuracy and the efficiency of the proposed algorithm.

  3. Some boundary problems in electrical impedance tomography.

    PubMed

    Pidcock, M; Ciulli, S; Ispas, S

    1996-11-01

    Accurate mathematical modelling is important in the development of iterative image reconstruction algorithms for electrical impedance tomography (EIT). In such schemes the forward problem of calculating the electric potential from Neumann boundary data is solved many times. One aspect of this problem which has received some attention is the mathematical modelling of the electrodes used in the technique. In this paper we describe an integral equation formulation of a boundary value problem associated with this tissue and we indicate some of the ways in which this formulation can be used to obtain numerical and analytic results.

  4. Bioelectrical impedance modelling of gentamicin pharmacokinetic parameters.

    PubMed

    Zarowitz, B J; Pilla, A M; Peterson, E L

    1989-10-01

    1. Bioelectrical impedance analysis was used to develop descriptive models of gentamicin pharmacokinetic parameters in 30 adult in-patients receiving therapy with gentamicin. 2. Serial blood samples obtained from each subject at steady state were analyzed and used to derive gentamicin pharmacokinetic parameters. 3. Multiple regression equations were developed for clearance, elimination rate constant and volume of distribution at steady state and were all statistically significant at P less than 0.05. 4. Clinical validation of this innovative technique is warranted before clinical use is recommended.

  5. Broadband Planar 5:1 Impedence Transformer

    NASA Technical Reports Server (NTRS)

    Ehsan, Negar; Hsieh, Wen-Ting; Moseley, Samuel H.; Wollack, Edward J.

    2015-01-01

    This paper presents a broadband Guanella-type planar impedance transformer that transforms so 50 omega to 10 omega with a 10 dB bandwidth of 1-14GHz. The transformer is designed on a flexible 50 micrometer thick polyimide substrate in microstrip and parallel-plate transmission line topologies, and is Inspired by the traditional 4:1 Guanella transformer. Back-to-back transformers were designed and fabricated for characterization in a 50 omega system. Simulated and measured results are in excellent agreement.

  6. ac electroosmosis in rectangular microchannels.

    PubMed

    Campisi, Michele; Accoto, Dino; Dario, Paolo

    2005-11-22

    Motivated by the growing interest in ac electroosmosis as a reliable no moving parts strategy to control fluid motion in microfluidic devices for biomedical applications, such as lab-on-a-chip, we study transient and steady-state electrokinetic phenomena (electroosmosis and streaming currents) in infinitely extended rectangular charged microchannels. With the aid of Fourier series and Laplace transforms we provide a general formal solution of the problem, which is used to study the time-dependent response to sudden ac applied voltage differences in case of finite electric double layer. The Debye-Huckel approximation has been adopted to allow for an algebraic solution of the Poisson-Boltzmann problem in Fourier space. We obtain the expressions of flow velocity profiles, flow rates, streaming currents, as well as expressions of the complex hydraulic and electrokinetic conductances. We analyze in detail the dependence of the electrokinetic conductance on the extension of linear dimensions relative to the Debye length, with an eye on finite electric double layer effects. PMID:16351310

  7. Study of corrosion of super martensitic stainless steel under alternating current in artificial seawater with electrochemical impedance spectroscopy

    SciTech Connect

    Reyes, T.; Bhola, S.; Olson, D. L.; Mishra, B.

    2011-06-23

    The assessment of corrosion requires the use of tools able to quantify the corrosion but often times also qualify it. Electrochemical Impedance Spectroscopy (EIS) is a laboratory tool that can provide both qualification and quantification of corrosion. EIS was successfully used to compare the thickness of the corrosion products formed during the application of different alternating current (AC) densities as well as to characterize pitting. When EIS is applied at the open circuit potential, the technique is nondestructive and predicts the corrosion behavior of the electrode. It can also be used at cathodic potentials while still being nondestructive, providing information about the electrode reaction kinetics, diffusion and electrical double layer.

  8. Angiostrongylus cantonensis cathepsin B-like protease (Ac-cathB-1) is involved in host gut penetration.

    PubMed

    Long, Ying; Cao, Binbin; Yu, Liang; Tukayo, Meks; Feng, Chonglv; Wang, Yinan; Luo, Damin

    2015-01-01

    Although the global spread of the emerging zoonosis, human angiostrongyliasis, has attracted increasing attention, understanding of specific gene function has been impeded by the inaccessibility of genetic manipulation of the pathogen nematode causing this disease, Angiostrongylus cantonensis. Many parasitic proteases play key roles in host-parasite interactions, but those of A. cantonensis are always expressed as the inactive form in prokaryotic expression systems, thereby impeding functional studies. Hence, a lentiviral system that drives secreted expression of target genes fused to a Myc-His tag was used to obtain recombinant Ac-cathB-1 with biological activity. Although this class of proteases was always reported to function in nutrition and immune evasion in parasitic nematodes, recombinant Ac-cathB-1 was capable of hydrolysis of fibronectin and laminin as well as the extracellular matrix of IEC-6 monolayer, so that the intercellular space of the IEC-6 monolayer increased 5.15 times as compared to the control, while the shape of the adherent cells partly rounded up. This suggests a probable role for this protease in intestinal epithelial penetration. The inhibition of Ac-cathB-1 enzymatic activity with antiserum partly suppressed larval penetration ability in the isolated intestine. Thus, an effective system for heterologous expression of parasite proteases is presented for studying gene function in A. cantonensis; and Ac-cathB-1 was related to larval penetration ability in the host small intestine.

  9. Angiostrongylus cantonensis cathepsin B-like protease (Ac-cathB-1) is involved in host gut penetration

    PubMed Central

    Long, Ying; Cao, Binbin; Yu, Liang; Tukayo, Meks; Feng, Chonglv; Wang, Yinan; Luo, Damin

    2015-01-01

    Although the global spread of the emerging zoonosis, human angiostrongyliasis, has attracted increasing attention, understanding of specific gene function has been impeded by the inaccessibility of genetic manipulation of the pathogen nematode causing this disease, Angiostrongylus cantonensis. Many parasitic proteases play key roles in host-parasite interactions, but those of A. cantonensis are always expressed as the inactive form in prokaryotic expression systems, thereby impeding functional studies. Hence, a lentiviral system that drives secreted expression of target genes fused to a Myc-His tag was used to obtain recombinant Ac-cathB-1 with biological activity. Although this class of proteases was always reported to function in nutrition and immune evasion in parasitic nematodes, recombinant Ac-cathB-1 was capable of hydrolysis of fibronectin and laminin as well as the extracellular matrix of IEC-6 monolayer, so that the intercellular space of the IEC-6 monolayer increased 5.15 times as compared to the control, while the shape of the adherent cells partly rounded up. This suggests a probable role for this protease in intestinal epithelial penetration. The inhibition of Ac-cathB-1 enzymatic activity with antiserum partly suppressed larval penetration ability in the isolated intestine. Thus, an effective system for heterologous expression of parasite proteases is presented for studying gene function in A. cantonensis; and Ac-cathB-1 was related to larval penetration ability in the host small intestine. PMID:26682577

  10. Angiostrongylus cantonensis cathepsin B-like protease (Ac-cathB-1) is involved in host gut penetration.

    PubMed

    Long, Ying; Cao, Binbin; Yu, Liang; Tukayo, Meks; Feng, Chonglv; Wang, Yinan; Luo, Damin

    2015-01-01

    Although the global spread of the emerging zoonosis, human angiostrongyliasis, has attracted increasing attention, understanding of specific gene function has been impeded by the inaccessibility of genetic manipulation of the pathogen nematode causing this disease, Angiostrongylus cantonensis. Many parasitic proteases play key roles in host-parasite interactions, but those of A. cantonensis are always expressed as the inactive form in prokaryotic expression systems, thereby impeding functional studies. Hence, a lentiviral system that drives secreted expression of target genes fused to a Myc-His tag was used to obtain recombinant Ac-cathB-1 with biological activity. Although this class of proteases was always reported to function in nutrition and immune evasion in parasitic nematodes, recombinant Ac-cathB-1 was capable of hydrolysis of fibronectin and laminin as well as the extracellular matrix of IEC-6 monolayer, so that the intercellular space of the IEC-6 monolayer increased 5.15 times as compared to the control, while the shape of the adherent cells partly rounded up. This suggests a probable role for this protease in intestinal epithelial penetration. The inhibition of Ac-cathB-1 enzymatic activity with antiserum partly suppressed larval penetration ability in the isolated intestine. Thus, an effective system for heterologous expression of parasite proteases is presented for studying gene function in A. cantonensis; and Ac-cathB-1 was related to larval penetration ability in the host small intestine. PMID:26682577

  11. AC Conductivity Studies in Lithium-Borate Glass Containing Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shivaprakash, Y.; Anavekar, R. V.

    2011-07-01

    Gold nanoparticles have been synthesized in a base glass with composition 30Li2O-70B2O3 using gold chloride (HAuCl4.3H2O) as a dopant. The samples are characterized using XRD, ESR, SEM and optical absorption in the visible range. AC conductivity studies have been performed at RT over a frequency range 100 to 10 MHz. The dc conductivity is calculated from the complex impedence plot. The dc conductivity is found to be increasing with the increase of dopant concentration. AC conductivity data is fitted with Almond-West law with power exponent `s'. The values of `s' is found to lie in the range of 0.70-0.73.

  12. RHIC spin flipper AC dipole controller

    SciTech Connect

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  13. Method of Adjusting Acoustic Impedances for Impedance-Tunable Acoustic Segments

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H (Inventor); Nark, Douglas M. (Inventor); Jones, Michael G. (Inventor); Parrott, Tony L. (Inventor); Lodding, Kenneth N. (Inventor)

    2012-01-01

    A method is provided for making localized decisions and taking localized actions to achieve a global solution. In an embodiment of the present invention, acoustic impedances for impedance-tunable acoustic segments are adjusted. A first acoustic segment through an N-th acoustic segment are defined. To start the process, the first acoustic segment is designated as a leader and a noise-reducing impedance is determined therefor. This is accomplished using (i) one or more metrics associated with the acoustic wave at the leader, and (ii) the metric(s) associated with the acoustic wave at the N-th acoustic segment. The leader, the N-th acoustic segment, and each of the acoustic segments exclusive of the leader and the N-th acoustic segment, are tuned to the noise-reducing impedance. The current leader is then excluded from subsequent processing steps. The designation of leader is then given one of the remaining acoustic segments, and the process is repeated for each of the acoustic segments through an (N-1)-th one of the acoustic segments.

  14. Electrochemical Impedance Spectroscopy of Conductive Polymer Coatings

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; MacDowell, Louis G.

    1996-01-01

    Electrochemical impedance spectroscopy (EIS) was used to investigate the corrosion protection performance of twenty nine proprietary conductive polymer coatings for cold rolled steel under immersion in 3.55 percent NaCl. Corrosion potential as well as Bode plots of the data were obtained for each coating after one hour immersion, All coatings, with the exception of one, have a corrosion potential that is higher in the positive direction than the corrosion potential of bare steel under the same conditions. Group A consisted of twenty one coatings with Bode plots indicative of the capacitive behavior characteristic of barrier coatings. An equivalent circuit consisting of a capacitor in series with a resistor simulated the experimental EIS data for these coatings very well. Group B consisted of eight coatings that exhibited EIS spectra showing an inflection point which indicates that two time constants are present. This may be caused by an electrochemical process taking place which could be indicitive of coating failing. These coatings have a lower impedance that those in Group A.

  15. Impedance matching for broadband piezoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Hagedorn, F.; Leicht, J.; Sanchez, D.; Hehn, T.; Manoli, Y.

    2013-12-01

    This paper presents a system design for broadband piezoelectric energy harvesting by means of impedance matching. An inductive load impedance is emulated by controlling the output current of the piezoelectric harvester with a bipolar boost converter. The reference current is derived from the low pass filtered voltage measured at the harvester terminals. In order to maximize the harvested power especially for nonresonant frequencies the filter parameters are adjusted by a simple optimization algorithm. However the amount of harvested power is limited by the efficiency of the bipolar boost converter. Therefore an additional switch in the bipolar boost converter is proposed to reduce the capacitive switching losses. The proposed system is simulated using numerical parameters of available discrete components. Using the additional switch, the harvested power is increased by 20%. The proposed system constantly harvests 80% of the theoretically available power over frequency. The usable frequency range of ±4Hz around the resonance frequency of the piezoelectric harvester is mainly limited due to the boost converter topology. This comparison does not include the power dissipation of the control circuit.

  16. Arts of electrical impedance tomographic sensing

    PubMed Central

    Wang, Mi; Wang, Qiang; Karki, Bishal

    2016-01-01

    This paper reviews governing theorems in electrical impedance sensing for analysing the relationships of boundary voltages obtained from different sensing strategies. It reports that both the boundary voltage values and the associated sensitivity matrix of an alternative sensing strategy can be derived from a set of full independent measurements and sensitivity matrix obtained from other sensing strategy. A new sensing method for regional imaging with limited measurements is reported. It also proves that the sensitivity coefficient back-projection algorithm does not always work for all sensing strategies, unless the diagonal elements of the transformed matrix, ATA, have significant values and can be approximate to a diagonal matrix. Imaging capabilities of few sensing strategies were verified with static set-ups, which suggest the adjacent electrode pair sensing strategy displays better performance compared with the diametrically opposite protocol, with both the back-projection and multi-step image reconstruction methods. An application of electrical impedance tomography for sensing gas in water two-phase flows is demonstrated. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185968

  17. A high frequency electromagnetic impedance imaging system

    SciTech Connect

    Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex

    2003-01-15

    Non-invasive, high resolution geophysical mapping of the shallow subsurface is necessary for delineation of buried hazardous wastes, detecting unexploded ordinance, verifying and monitoring of containment or moisture contents, and other environmental applications. Electromagnetic (EM) techniques can be used for this purpose since electrical conductivity and dielectric permittivity are representative of the subsurface media. Measurements in the EM frequency band between 1 and 100 MHz are very important for such applications, because the induction number of many targets is small and the ability to determine the subsurface distribution of both electrical properties is required. Earlier workers were successful in developing systems for detecting anomalous areas, but quantitative interpretation of the data was difficult. Accurate measurements are necessary, but difficult to achieve for high-resolution imaging of the subsurface. We are developing a broadband non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using an EM impedance approach similar to the MT exploration technique. Electric and magnetic sensors were tested to ensure that stray EM scattering is minimized and the quality of the data collected with the high-frequency impedance (HFI) system is good enough to allow high-resolution, multi-dimensional imaging of hidden targets. Additional efforts are being made to modify and further develop existing sensors and transmitters to improve the imaging capability and data acquisition efficiency.

  18. Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS).

    PubMed

    Witkowski, Matthias; Garcia-Cossio, Eliana; Chander, Bankim S; Braun, Christoph; Birbaumer, Niels; Robinson, Stephen E; Soekadar, Surjo R

    2016-10-15

    Transcranial alternating current stimulation (tACS), a non-invasive and well-tolerated form of electric brain stimulation, can influence perception, memory, as well as motor and cognitive function. While the exact underlying neurophysiological mechanisms are unknown, the effects of tACS are mainly attributed to frequency-specific entrainment of endogenous brain oscillations in brain areas close to the stimulation electrodes, and modulation of spike timing dependent plasticity reflected in gamma band oscillatory responses. tACS-related electromagnetic stimulator artifacts, however, impede investigation of these neurophysiological mechanisms. Here we introduce a novel approach combining amplitude-modulated tACS during whole-head magnetoencephalography (MEG) allowing for artifact-free source reconstruction and precise mapping of entrained brain oscillations underneath the stimulator electrodes. Using this approach, we show that reliable reconstruction of neuromagnetic low- and high-frequency oscillations including high gamma band activity in stimulated cortical areas is feasible opening a new window to unveil the mechanisms underlying the effects of stimulation protocols that entrain brain oscillatory activity.

  19. Impedance and self-discharge mechanism studies of nickel metal hydride batteries for energy storage applications

    NASA Astrophysics Data System (ADS)

    Zhu, Wenhua; Zhu, Ying; Tatarchuk, Bruce

    2013-04-01

    Nickel metal hydride battery packs have been found wide applications in the HEVs (hybrid electric vehicles) through the on-board rapid energy conservation and efficient storage to decrease the fossil fuel consumption rate and reduce CO2 emissions as well as other harmful exhaust gases. In comparison to the conventional Ni-Cd battery, the Ni-MH battery exhibits a relatively higher self-discharge rate. In general, there are quite a few factors that speed up the self-discharge of the electrodes in the sealed nickel metal hydride batteries. This disadvantage eventually reduces the overall efficiency of the energy conversion and storage system. In this work, ac impedance data were collected from the nickel metal hydride batteries. The self-discharge mechanism and battery capacity degradation were analyzed and discussed for further performance improvement.

  20. Voltammetric and impedance behaviours of surface-treated nano-crystalline diamond film electrodes

    SciTech Connect

    Liu, F. B.; Jing, B.; Cui, Y.; Di, J. J.; Qu, M.

    2015-04-15

    The electrochemical performances of hydrogen- and oxygen-terminated nano-crystalline diamond film electrodes were investigated by cyclic voltammetry and AC impedance spectroscopy. In addition, the surface morphologies, phase structures, and chemical states of the two diamond films were analysed by scanning probe microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, respectively. The results indicated that the potential window is narrower for the hydrogen-terminated nano-crystalline diamond film than for the oxygen-terminated one. The diamond film resistance and capacitance of oxygen-terminated diamond film are much larger than those of the hydrogen-terminated diamond film, and the polarization resistances and double-layer capacitance corresponding to oxygen-terminated diamond film are both one order of magnitude larger than those corresponding to the hydrogen-terminated diamond film. The electrochemical behaviours of the two diamond film electrodes are discussed.

  1. A microprocessor-based digital feeder monitor with high-impedance fault detection

    SciTech Connect

    Patterson, R.; Tyska, W.; Russell, B.D.

    1994-12-31

    The high impedance fault detection technology developed at Texas A&M University after more than a decade of research, funded in large part by the Electric Power Research Institute, has been incorporated into a comprehensive monitoring device for overhead distribution feeders. This digital feeder monitor (DFM) uses a high waveform sampling rate for the ac current and voltage inputs in conjunction with a high-performance reduced instruction set (RISC) microprocessor to obtain the frequency response required for arcing fault detection and power quality measurements. Expert system techniques are employed to assure security while maintaining dependability. The DFM is intended to be applied at a distribution substation to monitor one feeder. The DFM is packaged in a non-drawout case which fits the panel cutout for a GE IAC overcurrent relay to facilitate retrofits at the majority of sites were electromechanical overcurrent relays already exist.

  2. Traveling-wave electrokinetic micropumps: velocity, electrical current, and impedance measurements.

    PubMed

    García-Sánchez, P; Ramos, A; Green, N G; Morgan, H

    2008-09-01

    An array of microelectrodes covered in an electrolyte and energized by a traveling-wave potential produces net movement of the fluid. Arrays of platinum microelectrodes of two different characteristic sizes have been studied. For both sizes of arrays, at low voltages (<2 V pp) the electrolyte flow is in qualitative agreement with the linear theory of ac electroosmosis. At voltages above a threshold, the direction of fluid flow is reversed. The electrical impedance of the electrode-electrolyte system was measured after the experiments, and changes in the electrical properties of the electrolyte were observed. Measurements of the electrical current during pumping of the electrolyte are also reported. Transient behaviors in both electrical current and fluid velocity were observed. The Faradaic currents probably generate conductivity gradients in the liquid bulk, which in turn give rise to electrical forces. These effects are discussed in relation to the fluid flow observations.

  3. Internal impedance of steel-reinforced helically stranded conductors at commercial frequency

    NASA Astrophysics Data System (ADS)

    Merkushev, A. G.; Elagin, I. A.

    2015-04-01

    An original simplified mathematical model is proposed that describes the distribution of a harmonic electromagnetic field at a commercial frequency in steel-reinforced high-voltage cables with helically stranded single-layer winding. In the framework of the idealized physical concepts on which the proposed model is based, stranded conductors are treated as an anisotropic conducting layer. It is shown that taking into account the helical twist of conductors leads to the appearance of an axial magnetic field, the presence of which can significantly influence the level of ac losses. The model has been used to calculate the dependence of the internal impedance on the magnetic permeability of the steel core for commercial AS-70 grade steel-reinforced stranded aluminum cable. The results are compared to those obtained using a hollow cylinder model and full-scale numerical calculations using the finite element method.

  4. Impedance studies of a green blend polymer electrolyte based on PVA and Aloe-vera

    NASA Astrophysics Data System (ADS)

    Selvalakshmi, S.; Mathavan, T.; Vijaya, N.; Selvasekarapandian, Premalatha, M.; Monisha, S.

    2016-05-01

    The development of polymer electrolyte materials for energy generating and energy storage devices is a challenge today. A new type of blended green electrolyte based on Poly-vinyl alcohol (PVA) and Aloe-vera has been prepared by solution casting technique. The blending of polymers may lead to the increase in stability due to one polymer portraying itself as a mechanical stiffener and the other as a gelled matrix supported by the other. The prepared blend electrolytes were subjected to Ac impedance studies. It has been found out that the polymer film in which 1 gm of PVA was dissolved in 40 ml of Aloe-vera extract exhibits highest conductivity and its value is 3.08 × 10-4 S cm-1.

  5. Sensitive and rapid detection of pathogenic bacteria in small volumes using impedance spectroscopy technique.

    PubMed

    Pal, Namrata; Sharma, Shashank; Gupta, Shalini

    2016-03-15

    We illustrate a novel impedance immunosensor which rapidly and sensitively detects typhoid-causing infectious bacteria Salmonella enterica serovar (Salmonella typhi) in 10 μL of sample volume. The bacteria are tagged with gold nanoparticles (Au NPs) via high-affinity antigen-antibody interactions for enhanced signal amplification and selectivity. The cell-particle bioconjugates are then subjected to alternating current (AC) electric fields applied through interdigitated microelectrodes. The immunosensor performance is optimized with respect to electric field frequency, cell concentration, incubation times and the type of blocking agent to achieve a low limit of detection (LOD) of 100 CFU/mL. The approach is extendable to a wide spectrum of clinical diseases and offers an efficient and cost-effective solution for point-of-care diagnosis.

  6. Impedance analysis of the PEP-II vacuum chamber

    SciTech Connect

    Ng, C.K.; Weiland, T.

    1995-05-01

    The PEP-II high energy ring (HER) vacuum chamber consists of a copper tube with periodically spaced pumping slots. The impedance of the vacuum chamber due to the slots is analyzed. Both narrow-band and broadband impedances are considered as well as longitudinal and transverse components thereof. It is found that although the broad-band impedance is tolerable, the narrow-band impedance may exceed the instability limit given by the natural damping with no feedback system on. Traveling wave modes in the chamber are the major source of this high value narrow-band impedance. We also study the dependences of the impedance on the slot length and the geometrical cross section.

  7. Breathing detection with a portable impedance measurement system: first measurements.

    PubMed

    Cordes, Axel; Foussier, Jerome; Leonhardt, Steffen

    2009-01-01

    For monitoring the health status of individuals, detection of breathing and heart activity is important. From an electrical point of view, it is known that breathing and heart activity change the electrical impedance distribution in the human body over the time due to ventilation (high impedance) and blood shifts (low impedance). Thus, it is possible to detect both important vital parameters by measuring the impedance of the thorax or the region around lung and heart. For some measurement scenarios it is also essential to detect these parameters contactless. For instance, monitoring bus drivers health could help to limit accidents, but directly connected systems limit the drivers free moving space. One measurement technology for measuring the impedance changes in the chest without cables is the magnetic impedance tomography (MIT). This article describes a portable measurement system we developed for this scenario that allows to measure breathing contactless. Furthermore, first measurements with five volunteers were performed and analyzed.

  8. Transverse impedance measurement in RHIC and the AGS

    SciTech Connect

    Biancacci, Nicolo; Blaskiewicz, M.; Dutheil, Y.; Liu, C.; Mernick, M.; Minty, M.; White, S. M.

    2014-05-12

    The RHIC luminosity upgrade program aims for an increase of the polarized proton luminosity by a factor 2. To achieve this goal a significant increase in the beam intensity is foreseen. The beam coupling impedance could therefore represent a source of detrimental effects for beam quality and stability at high bunch intensities. For this reason it is essential to quantify the accelerator impedance budget and the major impedance sources, and possibly cure them. In this MD note we summarize the results of the 2013 transverse impedance measurements in the AGS and RHIC. The studies have been performed measuring the tune shift as a function of bunch intensity and deriving the total accelerator machine transverse impedance. For RHIC, we could obtain first promising results of impedance localization measurements as well.

  9. Transverse beam coupling impedance of the CERN Proton Synchrotron

    NASA Astrophysics Data System (ADS)

    Persichelli, S.; Migliorati, M.; Biancacci, N.; Gilardoni, S.; Metral, E.; Salvant, B.

    2016-04-01

    Beam coupling impedance is a fundamental parameter to characterize the electromagnetic interaction of a particle beam with the surrounding environment. Synchrotron machine performances are critically affected by instabilities and collective effects triggered by beam coupling impedance. In particular, transverse beam coupling impedance is expected to impact beam dynamics of the CERN Proton Synchrotron (PS), since a significant increase in beam intensity is foreseen within the framework of the LHC Injectors Upgrade (LIU) project. In this paper we describe the study of the transverse beam coupling impedance of the PS, taking into account the main sources of geometrical impedance and the contribution of indirect space charge at different energies. The total machine impedance budget, determined from beam-based dedicated machine measurement sessions, is also discussed and compared with the theoretical model.

  10. Impedance Matched to Vacuum, Invisible Edge, Diffraction Suppressed Mirror

    NASA Technical Reports Server (NTRS)

    Hagopian, John G. (Inventor); Roman, Patrick A. (Inventor); Shiri, Sharham (Inventor); Wollack, Edward J. (Inventor)

    2015-01-01

    Diffraction suppressed mirrors having an invisible edge are disclosed for incident light at both targeted wavelengths and broadband incident light. The mirrors have a first having at least one discontiguous portion having a plurality of nanostructured apertures. The discontiguous mirror portion impedance matches a relatively high impedance portion of the mirror to a relatively low impedance portion of the mirror, thereby reducing the diffraction edge effect otherwise present in a conventional mirror.

  11. Validation of an Impedance Education Method in Flow

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.; Parrott, Tony L.

    2004-01-01

    This paper reports results of a research effort to validate a method for educing the normal incidence impedance of a locally reacting liner, located in a grazing incidence, nonprogressive acoustic wave environment with flow. The results presented in this paper test the ability of the method to reproduce the measured normal incidence impedance of a solid steel plate and two soft test liners in a uniform flow. The test liners are known to be locally react- ing and exhibit no measurable amplitude-dependent impedance nonlinearities or flow effects. Baseline impedance spectra for these liners were therefore established from measurements in a conventional normal incidence impedance tube. A key feature of the method is the expansion of the unknown impedance function as a piecewise continuous polynomial with undetermined coefficients. Stewart's adaptation of the Davidon-Fletcher-Powell optimization algorithm is used to educe the normal incidence impedance at each Mach number by optimizing an objective function. The method is shown to reproduce the measured normal incidence impedance spectrum for each of the test liners, thus validating its usefulness for determining the normal incidence impedance of test liners for a broad range of source frequencies and flow Mach numbers. Nomenclature

  12. [Cardiac output monitoring by impedance cardiography in cardiac surgery].

    PubMed

    Shimizu, H; Seki, S; Mizuguchi, A; Tsuchida, H; Watanabe, H; Namiki, A

    1990-04-01

    The cardiac output monitoring by impedance cardiography, NCCOM3, was evaluated in adult patients (n = 12) who were subjected to coronary artery bypass grafting. Values of cardiac output measured by impedance cardiography were compared to those by the thermodilution method. Changes of base impedance level used as an index of thoracic fluid volume were also investigated before and after cardiopulmonary bypass (CPB). Correlation coefficient (r) of the values obtained by thermodilution with impedance cardiography was 0.79 and the mean difference was 1.29 +/- 16.9 (SD)% during induction of anesthesia. During the operation, r was 0.83 and the mean difference was -14.6 +/- 18.7%. The measurement by impedance cardiography could be carried out through the operation except when electro-cautery was used. Base impedance level before CPB was significantly lower as compared with that after CPB. There was a negative correlation between the base impedance level and central venous pressure (CVP). No patients showed any signs suggesting lung edema and all the values of CVP, pulmonary artery pressure and blood gas analysis were within normal ranges. From the result of this study, it was concluded that cardiac output monitoring by impedance cardiography was useful in cardiac surgery, but further detailed examinations will be necessary on the relationship between the numerical values of base impedance and the clinical state of the patients. PMID:2362347

  13. In vivo impedance spectroscopy of deep brain stimulation electrodes

    NASA Astrophysics Data System (ADS)

    Lempka, Scott F.; Miocinovic, Svjetlana; Johnson, Matthew D.; Vitek, Jerrold L.; McIntyre, Cameron C.

    2009-08-01

    Deep brain stimulation (DBS) represents a powerful clinical technology, but a systematic characterization of the electrical interactions between the electrode and the brain is lacking. The goal of this study was to examine the in vivo changes in the DBS electrode impedance that occur after implantation and during clinically relevant stimulation. Clinical DBS devices typically apply high-frequency voltage-controlled stimulation, and as a result, the injected current is directly regulated by the impedance of the electrode-tissue interface. We monitored the impedance of scaled-down clinical DBS electrodes implanted in the thalamus and subthalamic nucleus of a rhesus macaque using electrode impedance spectroscopy (EIS) measurements ranging from 0.5 Hz to 10 kHz. To further characterize our measurements, equivalent circuit models of the electrode-tissue interface were used to quantify the role of various interface components in producing the observed electrode impedance. Following implantation, the DBS electrode impedance increased and a semicircular arc was observed in the high-frequency range of the EIS measurements, commonly referred to as the tissue component of the impedance. Clinically relevant stimulation produced a rapid decrease in electrode impedance with extensive changes in the tissue component. These post-operative and stimulation-induced changes in impedance could play an important role in the observed functional effects of voltage-controlled DBS and should be considered during clinical stimulation parameter selection and chronic animal research studies.

  14. Multi-gap high impedance plasma opening switch

    DOEpatents

    Mason, R.J.

    1996-10-22

    A high impedance plasma opening switch having an anode and a cathode and at least one additional electrode placed between the anode and cathode is disclosed. The presence of the additional electrodes leads to the creation of additional plasma gaps which are in series, increasing the net impedance of the switch. An equivalent effect can be obtained by using two or more conventional plasma switches with their plasma gaps wired in series. Higher impedance switches can provide high current and voltage to higher impedance loads such as plasma radiation sources. 12 figs.

  15. Multi-gap high impedance plasma opening switch

    DOEpatents

    Mason, Rodney J.

    1996-01-01

    A high impedance plasma opening switch having an anode and a cathode and at least one additional electrode placed between the anode and cathode. The presence of the additional electrodes leads to the creation of additional plasma gaps which are in series, increasing the net impedance of the switch. An equivalent effect can be obtained by using two or more conventional plasma switches with their plasma gaps wired in series. Higher impedance switches can provide high current and voltage to higher impedance loads such as plasma radiation sources.

  16. Time-Domain Impedance Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Auriault, Laurent

    1996-01-01

    It is an accepted practice in aeroacoustics to characterize the properties of an acoustically treated surface by a quantity known as impedance. Impedance is a complex quantity. As such, it is designed primarily for frequency-domain analysis. Time-domain boundary conditions that are the equivalent of the frequency-domain impedance boundary condition are proposed. Both single frequency and model broadband time-domain impedance boundary conditions are provided. It is shown that the proposed boundary conditions, together with the linearized Euler equations, form well-posed initial boundary value problems. Unlike ill-posed problems, they are free from spurious instabilities that would render time-marching computational solutions impossible.

  17. Impedance generalization for plasmonic waveguides beyond the lumped circuit model

    NASA Astrophysics Data System (ADS)

    Kaiser, Thomas; Hasan, Shakeeb Bin; Paul, Thomas; Pertsch, Thomas; Rockstuhl, Carsten

    2013-07-01

    We analytically derive a rigorous expression for the relative impedance ratio between two photonic structures based on their electromagnetic interaction. Our approach generalizes the physical meaning of the impedance to a measure for the reciprocity-based overlap of eigenmodes. The consistency with known cases in the radio-frequency and optical domain is shown. The analysis reveals where the applicability of simple circuit parameters ends and how the impedance can be interpreted beyond this point. We illustrate our approach by successfully describing a Bragg reflector that terminates an insulator-metal-insulator plasmonic waveguide in the near infrared by our impedance concept.

  18. Impedance measurements for detecting pathogens attached to antibodies

    DOEpatents

    Miles, Robin R.; Venkateswaran, Kodumudi S.; Fuller, Christopher K.

    2004-12-28

    The use of impedance measurements to detect the presence of pathogens attached to antibody-coated beads. In a fluidic device antibodies are immobilized on a surface of a patterned interdigitated electrode. Pathogens in a sample fluid streaming past the electrode attach to the immobilized antibodies, which produces a change in impedance between two adjacent electrodes, which impedance change is measured and used to detect the presence of a pathogen. To amplify the signal, beads coated with antibodies are introduced and the beads would stick to the pathogen causing a greater change in impedance between the two adjacent electrodes.

  19. Proceedings of the impedance and bunch instability workshop

    SciTech Connect

    Not Available

    1990-04-01

    This report discusses the following topics: impedance and bunch lengthening; single bunch stability in the ESRF; a longitudinal mode-coupling instability model for bunch lengthening; high-frequency behavior of longitudinal coupling impedance; beam-induced energy spreads at beam-pipe transitions; on the calculation of wake functions using MAFIA-T3 code; preliminary measurements of the bunch length and the impedance of LEP; measurements and simulations of collective effects in the CERN SPS; bunch lengthening in the SLC damping rings; and status of impedance measurements for the spring-8 storage ring.

  20. Algorithmic Error Correction of Impedance Measuring Sensors

    PubMed Central

    Starostenko, Oleg; Alarcon-Aquino, Vicente; Hernandez, Wilmar; Sergiyenko, Oleg; Tyrsa, Vira

    2009-01-01

    This paper describes novel design concepts and some advanced techniques proposed for increasing the accuracy of low cost impedance measuring devices without reduction of operational speed. The proposed structural method for algorithmic error correction and iterating correction method provide linearization of transfer functions of the measuring sensor and signal conditioning converter, which contribute the principal additive and relative measurement errors. Some measuring systems have been implemented in order to estimate in practice the performance of the proposed methods. Particularly, a measuring system for analysis of C-V, G-V characteristics has been designed and constructed. It has been tested during technological process control of charge-coupled device CCD manufacturing. The obtained results are discussed in order to define a reasonable range of applied methods, their utility, and performance. PMID:22303177

  1. Quartz tuning fork based microwave impedance microscopy

    NASA Astrophysics Data System (ADS)

    Cui, Yong-Tao; Ma, Eric Yue; Shen, Zhi-Xun

    2016-06-01

    Microwave impedance microscopy (MIM), a near-field microwave scanning probe technique, has become a powerful tool to characterize local electrical responses in solid state samples. We present the design of a new type of MIM sensor based on quartz tuning fork and electrochemically etched thin metal wires. Due to a higher aspect ratio tip and integration with tuning fork, such design achieves comparable MIM performance and enables easy self-sensing topography feedback in situations where the conventional optical feedback mechanism is not available, thus is complementary to microfabricated shielded stripline-type probes. The new design also enables stable differential mode MIM detection and multiple-frequency MIM measurements with a single sensor.

  2. Corrosion Study Using Electrochemical Impedance Spectroscopy

    NASA Technical Reports Server (NTRS)

    Farooq, Muhammad Umar

    2003-01-01

    Corrosion is a common phenomenon. It is the destructive result of chemical reaction between a metal or metal alloy and its environment. Stainless steel tubing is used at Kennedy Space Center for various supply lines which service the orbiter. The launch pads are also made of stainless steel. The environment at the launch site has very high chloride content due to the proximity to the Atlantic Ocean. Also, during a launch, the exhaust products in the solid rocket boosters include concentrated hydrogen chloride. The purpose of this project was to study various alloys by Electrochemical Impedance Spectroscopy in corrosive environments similar to the launch sites. This report includes data and analysis of the measurements for 304L, 254SMO and AL-6XN in primarily neutral 3.55% NaCl. One set of data for 304L in neutral 3.55%NaCl + 0.1N HCl is also included.

  3. Bioelectrical impedance analysis. What does it measure?

    NASA Technical Reports Server (NTRS)

    Schoeller, D. A.

    2000-01-01

    Bioelectrical impedance analysis (BIA) has been proposed for measuring fat-free mass, total body water, percent fat, body cell mass, intracellular water, and extracellular water: a veritable laboratory in a box. Although it is unlikely that BIA is quite this versatile, correlations have been demonstrated between BIA and all of these body compartments. At the same time, it is known that all of the compartments are correlated among themselves. Because of this, it is difficult to determine whether BIA is specific for any or all of these compartments. To investigate this question, we induced acute changes in total body water and its compartments over a 3-h period. Using this approach, we demonstrated that multifrequency BIA, using the Cole-Cole model to calculate the zero frequency and infinite frequency resistance, measures extracellular and intracellular water.

  4. Wave guide impedance matching method and apparatus

    DOEpatents

    Kronberg, James W.

    1990-01-01

    A technique for modifying the end portion of a wave guide, whether hollow or solid, carrying electromagnetic, acoustic or optical energy, to produce a gradual impedance change over the length of the end portion, comprising the cutting of longitudinal, V-shaped grooves that increase in width and depth from beginning of the end portion of the wave guide to the end of the guide so that, at the end of the guide, no guide material remains and no surfaces of the guide as modified are perpendicular to the direction of energy flow. For hollow guides, the grooves are cut beginning on the interior surface; for solid guides, the grooves are cut beginning on the exterior surface. One or more resistive, partially conductive or nonconductive sleeves can be placed over the exterior of the guide and through which the grooves are cut to smooth the transition to free space.

  5. Sensing Estrogen with Electrochemical Impedance Spectroscopy

    PubMed Central

    Li, Jing; Kim, Byung Kun; Im, Ji-Eun; Choi, Han Nim; Kim, Dong-Hwan; Cho, Seong In

    2016-01-01

    This study demonstrates the application feasibility of electrochemical impedance spectroscopy (EIS) in measuring estrogen (17β-estradiol) in gas phase. The present biosensor gives a linear response (R2 = 0.999) for 17β-estradiol vapor concentration from 3.7 ng/L to 3.7 × 10−4 ng/L with a limit of detection (3.7 × 10−4 ng/L). The results show that the fabricated biosensor demonstrates better detection limit of 17β-estradiol in gas phase than the previous report with GC-MS method. This estrogen biosensor has many potential applications for on-site detection of a variety of endocrine disrupting compounds (EDCs) in the gas phase. PMID:27803838

  6. Impedance matched thin metamaterials make metals absorbing

    PubMed Central

    Mattiucci, N.; Bloemer, M. J.; Aközbek, N.; D'Aguanno, G.

    2013-01-01

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others. PMID:24220284

  7. Impedance matched thin metamaterials make metals absorbing.

    PubMed

    Mattiucci, N; Bloemer, M J; Aközbek, N; D'Aguanno, G

    2013-01-01

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others. PMID:24220284

  8. Impedance matched thin metamaterials make metals absorbing.

    PubMed

    Mattiucci, N; Bloemer, M J; Aközbek, N; D'Aguanno, G

    2013-11-13

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others.

  9. A combined complex electrical impedance and acoustic emission study in limestone samples under uniaxial loading

    NASA Astrophysics Data System (ADS)

    Saltas, V.; Fitilis, I.; Vallianatos, F.

    2014-12-01

    In the present work, complex electrical impedance measurements in the frequency range of 10 mHz to 1 MHz were carried out in conjunction with acoustic emission monitoring in limestone samples subjected to linear and stepped-like uniaxial loading, up to ultimate failure. Cole-Cole plots of the complex impedance during the stepped loading of limestone have been used to discriminate the contributions of grains interior, grain boundaries and electrode polarization effects to the overall electrical behavior. The latter is well-described with an equivalent-circuit model which comprises components of constant phase elements and resistances in parallel connection. Electrical conductivity increases upon uniaxial loading giving rise to negative values of effective activation volume. This is a strong experimental evidence for the generation of transient electric signals recorded prior to seismic events and may be attributed to charge transfer (proton conduction) due to cracks generation and propagation as a result of the applied stress. The time-series of ac-conductivity at two distinct frequencies (10 kHz, 200 kHz) during linear loading of limestone samples exhibits a strong correlation with the acoustic emission activity obeying the same general self-similar law for critical phenomena that has been reported for the energy release before materials fracture.

  10. Maxwell’s Mixing Equation Revisited: Characteristic Impedance Equations for Ellipsoidal Cells

    PubMed Central

    Stubbe, Marco; Gimsa, Jan

    2015-01-01

    We derived a series of, to our knowledge, new analytic expressions for the characteristic features of the impedance spectra of suspensions of homogeneous and single-shell spherical, spheroidal, and ellipsoidal objects, e.g., biological cells of the general ellipsoidal shape. In the derivation, we combined the Maxwell-Wagner mixing equation with our expression for the Clausius-Mossotti factor that had been originally derived to describe AC-electrokinetic effects such as dielectrophoresis, electrorotation, and electroorientation. The influential radius model was employed because it allows for a separation of the geometric and electric problems. For shelled objects, a special axial longitudinal element approach leads to a resistor-capacitor model, which can be used to simplify the mixing equation. Characteristic equations were derived for the plateau levels, peak heights, and characteristic frequencies of the impedance as well as the complex specific conductivities and permittivities of suspensions of axially and randomly oriented homogeneous and single-shell ellipsoidal objects. For membrane-covered spherical objects, most of the limiting cases are identical to—or improved with respect to—the known solutions given by researchers in the field. The characteristic equations were found to be quite precise (largest deviations typically <5% with respect to the full model) when tested with parameters relevant to biological cells. They can be used for the differentiation of orientation and the electric properties of cell suspensions or in the analysis of single cells in microfluidic systems. PMID:26200856

  11. Impedance spectroscopy on ceramic materials at high temperatures, considering stray fields and electromagnetic noise.

    PubMed

    Müller, T M; Meinhardt, J; Raether, F

    2013-01-01

    Impedance spectroscopy of many ceramics is a challenge due to their high electrical resistance. Small disturbances can significantly alter the measuring results. In the present paper, it is shown how impedance measurements can be performed in an electromagnetically noisy ac furnace, using consequent Faraday shielding of the sample and the electrical connections. As example, the conductivity data of alumina was measured between room temperature and 1000 °C and compared to literature data. In addition, a correction method for the calculation of permittivity was developed to consider the stray fields in the sample-electrode setup. The distribution of the electrical field was simulated by finite element (FE) methods for different sample geometries and electrode arrangements. The deviations from the behavior of an ideal plate capacitor follow a linear trend and are in the order of 5% to 20% for an experimentally reasonable range of sample thicknesses. To check the theoretical results experimentally, alumina samples of varying thickness were measured. The customary calculation of permittivity leads to a clear trend with sample thickness, whereas the correction from the FE-simulation produces almost constant values of the relative permittivity.

  12. Impedance spectroscopy on ceramic materials at high temperatures, considering stray fields and electromagnetic noise

    NASA Astrophysics Data System (ADS)

    Müller, T. M.; Meinhardt, J.; Raether, F.

    2013-01-01

    Impedance spectroscopy of many ceramics is a challenge due to their high electrical resistance. Small disturbances can significantly alter the measuring results. In the present paper, it is shown how impedance measurements can be performed in an electromagnetically noisy ac furnace, using consequent Faraday shielding of the sample and the electrical connections. As example, the conductivity data of alumina was measured between room temperature and 1000 °C and compared to literature data. In addition, a correction method for the calculation of permittivity was developed to consider the stray fields in the sample-electrode setup. The distribution of the electrical field was simulated by finite element (FE) methods for different sample geometries and electrode arrangements. The deviations from the behavior of an ideal plate capacitor follow a linear trend and are in the order of 5% to 20% for an experimentally reasonable range of sample thicknesses. To check the theoretical results experimentally, alumina samples of varying thickness were measured. The customary calculation of permittivity leads to a clear trend with sample thickness, whereas the correction from the FE-simulation produces almost constant values of the relative permittivity.

  13. Impedance and domain wall mass determination in cylindrical wire with circular anisotropy

    NASA Astrophysics Data System (ADS)

    Ziman, J.; Kladivová, M.; Šuhajová, V.

    2015-11-01

    A study of single magnetic domain wall contribution to impedance due to its oscillation in the intermediate frequency region (100 kHz to a few MHz) is presented for a domain wall between circular domains. A simple theoretical model of the wall trapped in a quadratic potential well is proposed, for which the possible influence of skin effect is tested using a scalar permeability model. From this model, for parameters of the Co68.2Fe4.3Si12.5B15 wire used in the experiment, it follows that the frequency dependence of domain wall contribution to impedance exhibits a single maximum at the frequency of an ac current equal to the natural frequency ω0 of the domain wall moving in the quadratic potential well. Experimental dependence confirmed the existence of this maximum, and it made it possible to obtain the value of natural frequency ω0. From the theoretical model it follows that this parameter depends on inertial domain wall mass. Additional experimental procedures are proposed to measure parameters of the quadratic potential well in which the wall is trapped, and the value of domain wall mass per unit area 1.64 ×10-9 kgm-2 was obtained.

  14. Surface impedance tensor in amorphous wires with helical anisotropy: Magnetic hysteresis and asymmetry

    SciTech Connect

    Makhnovskiy, D. P.; Panina, L. V.; Mapps, D. J.

    2001-06-01

    This article concerns the investigation of the magnetic behavior of the surface impedance tensor {cflx {var_sigma}} in CoSiB amorphous wires having a residual torsion stress and a helical anisotropy. The full tensor {cflx {var_sigma}} involving three different components is found by measuring the S{sub 21} parameter at a required excitation with a Hewlett-Packard network/spectrum analyzer at MHz frequencies. In general, the impedance plots versus axial magnetic field H{sub ex} exhibit a hysteresis related to that for the case of static magnetization. The diagonal components of {cflx {var_sigma}} (longitudinal {var_sigma}{sub zz} and circular {var_sigma}{sub {var_phi}{var_phi}}) show a sharp peak in a narrow field interval where the domain walls form and contribute to the ac magnetization dynamics. This peak is not seen for the off-diagonal component {var_sigma}{sub z{var_phi}} ({var_sigma}{sub {var_phi}z}) since the existence of the domain structure suppresses it. Applying a dc bias current results in a gradual transition to a nonhysteretic asymmetrical behavior with an enhanced sensitivity. The portions of the experimental plots associated with the rotational dynamic process are in qualitative agreement with the theory based on a single-domain model. {copyright} 2001 American Institute of Physics.

  15. Surface impedance tensor in amorphous wires with helical anisotropy: Magnetic hysteresis and asymmetry

    NASA Astrophysics Data System (ADS)

    Makhnovskiy, D. P.; Panina, L. V.; Mapps, D. J.

    2001-06-01

    This article concerns the investigation of the magnetic behavior of the surface impedance tensor final_sigmâ in CoSiB amorphous wires having a residual torsion stress and a helical anisotropy. The full tensor final_sigmâ involving three different components is found by measuring the S21 parameter at a required excitation with a Hewlett-Packard network/spectrum analyzer at MHz frequencies. In general, the impedance plots versus axial magnetic field Hex exhibit a hysteresis related to that for the case of static magnetization. The diagonal components of final_sigmâ (longitudinal final_sigmazz and circular final_sigmaφφ) show a sharp peak in a narrow field interval where the domain walls form and contribute to the ac magnetization dynamics. This peak is not seen for the off-diagonal component final_sigmazφ (final_sigmaφz) since the existence of the domain structure suppresses it. Applying a dc bias current results in a gradual transition to a nonhysteretic asymmetrical behavior with an enhanced sensitivity. The portions of the experimental plots associated with the rotational dynamic process are in qualitative agreement with the theory based on a single-domain model.

  16. Multifrequency impedance measurement technique for wireless characterization of microbiological cell cultures

    NASA Astrophysics Data System (ADS)

    Wissenwasser, J.; Vellekoop, M. J.; Kapferer, W.; Lepperdinger, G.; Heer, R.

    2011-11-01

    An impedance measurement system with probe signal frequencies up to 50 kHz with AC-probe voltages below 30 mV rms was integrated for wireless and battery-free monitoring of microbiological cell cultures. The here presented modular design and the use of state-of-the-art components greatly eases adoptions to a wide range of biotechnological applications without the need of bulky LCR-meters or potentiostats. The device had a power consumption of less than 2.5 mA at a 3.3 V single power supply and worked trouble-free within the humid environment of a cell culture incubator. Measurements on lumped RC-elements showed an error of less than 1% for absolute values and less than 1° regarding the phase of the complex impedance. The performance of sensor devices with interdigitated electrode structures for the measurement of adherent cell cultures was tested in the presence of phosphate-buffered saline solution in the humid atmosphere of an incubator for biological cell cultures.

  17. Sources and effects of electrode impedance during deep brain stimulation

    PubMed Central

    Butson, Christopher R.; Maks, Christopher B.; McIntyre, Cameron C.

    2013-01-01

    Objective Clinical impedance measurements for deep brain stimulation (DBS) electrodes in human patients are normally in the range 500–1500 Ω. DBS devices utilize voltage-controlled stimulation; therefore, the current delivered to the tissue is inversely proportional to the impedance. The goals of this study were to evaluate the effects of various electrical properties of the tissue medium and electrode-tissue interface on the impedance and to determine the impact of clinically relevant impedance variability on the volume of tissue activated (VTA) during DBS. Methods Axisymmetric finite-element models (FEM) of the DBS system were constructed with explicit representation of encapsulation layers around the electrode and implanted pulse generator. Impedance was calculated by dividing the stimulation voltage by the integrated current density along the active electrode contact. The models utilized a Fourier FEM solver that accounted for the capacitive components of the electrode-tissue interface during voltage-controlled stimulation. The resulting time- and space-dependent voltage waveforms generated in the tissue medium were superimposed onto cable model axons to calculate the VTA. Results The primary determinants of electrode impedance were the thickness and conductivity of the encapsulation layer around the electrode contact and the conductivity of the bulk tissue medium. The difference in the VTA between our low (790 Ω) and high (1244 Ω) impedance models with typical DBS settings (−3 V, 90 μs, 130 Hz pulse train) was 121 mm3, representing a 52% volume reduction. Conclusions Electrode impedance has a substantial effect on the VTA and accurate representation of electrode impedance should be an explicit component of computational models of voltage-controlled DBS. Significance Impedance is often used to identify broken leads (for values >2000 Ω) or short circuits in the hardware (for values <50 Ω); however, clinical impedance values also represent an important

  18. Electrical transport properties of CoMn0.2-xGaxFe1.8O4 ferrites using complex impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Tsay, Chien-Yie; Lin, Yi-Hsiang; Wang, Yao-Ming; Chang, Horng-Yi; Lei, Chien-Ming; Jen, Shien-Uang

    2016-05-01

    In this study, we report the influence of Ga content on the microstructural, magnetic, and AC impedance properties of Co-based ferrites with compositions of CoMn0.2-xGaxFe1.8O4 (x=0, 0.1, and 0.2) prepared by the solid-state reaction method. Experimental results showed that the as-prepared Co-based ferrites had a single-phase spinel structure; the Curie temperature of Co-based ferrites decreased with increasing Ga content. All ferrite samples exhibited a typical hysteresis behavior with good values of saturation magnetization at room temperature. The electrical properties of Co-based ferrites were investigated using complex impedance spectroscopy analysis in the frequency range of 100 kHz-50 MHz at temperatures of 150 to 250 oC. The impedance analysis revealed that the magnitudes of the real part (Z') and the imaginary part (Z") of complex impedance decreased with increasing temperature. Only one semicircle was observed in each complex impedance plane plot, which revealed that the contribution to conductivity was from the grain boundaries. It was found that the relaxation time for the grain boundary (τgb) also decreased with increasing temperature. The values of resistance for the grain boundary (Rgb) significantly increased with increasing Ga content, which indicated that the incorporation of Ga into Co-based ferrites enhanced the electrical resistivity.

  19. Preliminary Results on Different Impedance Contrast Agents for Pulmonary Perfusion Imaging with Electrical Impedance Tomography

    NASA Astrophysics Data System (ADS)

    Nguyen, D. T.; Kosobrodov, R.; Barry, M. A.; Chik, W.; Pouliopoulos, J.; Oh, T. I.; Thiagalingam, A.; McEwan, A.

    2013-04-01

    Recent studies in animal models suggest that the use of small volume boluses of NaCl as an impedance contrast agent can significantly improve pulmonary perfusion imaging by Electrical Impedance Tomography (EIT). However, these studies used highly concentrated NaCl solution (20%) which may have adverse effects on the patients. In a pilot experiment, we address this problem by comparing a number of different Impedance Contrast Boluses (ICBs). Conductivity changes in the lungs of a sheep after the injection of four different ICBs were compared, including three NaCl-based ICBs and one glucose-based ICB. The following procedure was followed for each ICB. Firstly, ventilation was turned off to provide an apneic window of approximately 40s to image the conductivity changes due to the ICB. Each ICB was then injected through a pig-tail catheter directly into the right atrium. EIT images were acquired throughout the apnea to capture the conductivity change. For each ICB, the experiment was repeated three times. The three NaCl-based ICB exhibited similar behaviour in which following the injection of each of these ICBs, the conductivity of each lung predictably increased. The effect of the ICB of 5% glucose solution was inconclusive. A small decrease in conductivity in the left lung was observed in two out of three cases and none was discernible in the right lung.

  20. Transthoracic defibrillation: effect of sternotomy on chest impedance.

    PubMed

    Kerber, R E; Vance, S; Schomer, S J; Mariano, D J; Charbonnier, F

    1992-07-01

    The purpose of this study was to determine the effect of sternotomy on transthoracic impedance, a major determinant of current flow and defibrillation success. Transthoracic impedance was determined by using a validated test-pulse technique that does not require actual shocks. Seventeen patients undergoing median sternotomy were studied prospectively. Transthoracic impedance was determined before operation, 3 to 5 days after operation and (in eight patients) greater than or equal to 1 month after operation. When measured using paddle electrodes placed in the standard apex-right parasternal defibrillating position, transthoracic impedance declined after sternotomy in all patients, from 77 +/- 18 to 59 +/- 17 omega (p less than 0.01); smaller declines were demonstrated by using other electrode positions. Transthoracic impedance remained below the preoperative level in the eight patients who underwent a second set of measurements at least 1 month after operation. Six normal subjects not undergoing sternotomy underwent serial transthoracic impedance measurements at least 5 days apart; mean transthoracic impedance did not change. It is concluded that transthoracic impedance declines after sternotomy. At any operator-selected energy level a higher current flow will result after sternotomy; this may facilitate postoperative defibrillation.

  1. The Impedance Response of Semiconductors: An Electrochemical Engineering Perspective.

    ERIC Educational Resources Information Center

    Orazem, Mark E.

    1990-01-01

    Shows that the principles learned in the study of mass transport, thermodynamics, and kinetics associated with electrochemical systems can be applied to the transport and reaction processes taking place within a semiconductor. Describes impedance techniques and provides several graphs illustrating impedance data for diverse circuit systems. (YP)

  2. An Inexpensive, Very High Impedance Digital Voltmeter for Selective Electrodes.

    ERIC Educational Resources Information Center

    Caceci, Marco S.

    1984-01-01

    Describes a compact, digital voltmeter which exceeds, both in accuracy and input impedance, most commercial pH meters and potentiometers. The instrument consists of two parts: a very high impedance hybrid operational amplifier used as a voltage follower (ICH8500/A, Intersil) and a four and one-half digits LED display panel meter (RP-4500,…

  3. Induced optical metric in the non-impedance-matched media

    NASA Astrophysics Data System (ADS)

    Mousavi, S. A.; Roknizadeh, R.; Sahebdivan, S.

    2016-11-01

    In non-magnetic anisotropic media, the behavior of electromagnetic waves depends on the polarization and direction of the incident light. Therefore, to tame the unwanted wave responses such as polarization dependent reflections, the artificial impedance-matched media are suggested to be used in optical devices like invisibility cloak or super lenses. Nevertheless, developing the impedance-matched media is far from trivial in practice. In this paper, we are comparing the samples of both impedance-matched and non-impedance-matched (non-magnetic) media regarding their electromagnetic response in constructing a well-defined optical metric. In the case of similar anisotropic patterns, we show that the optical metric in an impedance-matched medium for unpolarized light is the same as the optical metric of an electrical birefringent medium when the extraordinary mode is concerned. By comparing the eikonal equation in an empty curved space-time and its counterparts in the medium, we have shown that a non-impedance-matched medium can resemble an optical metric for a particular polarization. As an example of non-impedance-matched materials, we are studying a medium with varying optical axis profile. We show that such a medium can be an alternative to impedance-matched materials in various optical devices.

  4. An Alternative to Impedance Screening: Unoccluded Frontal Bone Conduction Screening.

    ERIC Educational Resources Information Center

    Square, Regina; And Others

    1985-01-01

    A bone conduction hearing screening test using frontal bone oscillator placement was compared with pure-tone air-conduction screening and impedance audiometry with 114 preschoolers. Unoccluded frontal bone conduction testing produced screening results not significantly different from results obtained by impedance audiometry. (CL)!

  5. Impedance Matching of Tapered Slot Antenna using a Dielectric Transformer

    NASA Technical Reports Server (NTRS)

    Simons, R. N.; Lee, R. Q.

    1998-01-01

    A new impedance matching technique for tapered slot antennas using a dielectric transformer is presented. The technique is demonstrated by measuring the input impedance, Voltage Standing Wave Ratio (VSWR) and the gain of a Vivaldi antenna (VA). Measured results at Ka-Band frequencies are presented and discussed.

  6. Modifying the acoustic impedance of polyurea-based composites

    NASA Astrophysics Data System (ADS)

    Nantasetphong, Wiroj; Amirkhizi, Alireza V.; Jia, Zhanzhan; Nemat-Nasser, Sia

    2013-04-01

    Acoustic impedance is a material property that depends on mass density and acoustic wave speed. An impedance mismatch between two media leads to the partial reflection of an acoustic wave sent from one medium to another. Active sonar is one example of a useful application of this phenomenon, where reflected and scattered acoustic waves enable the detection of objects. If the impedance of an object is matched to that of the surrounding medium, however, the object may be hidden from observation (at least directly) by sonar. In this study, polyurea composites are developed to facilitate such impedance matching. Polyurea is used due to its excellent blast-mitigating properties, easy casting, corrosion protection, abrasion resistance, and various uses in current military technology. Since pure polyurea has impedance higher than that of water (the current medium of interest), low mass density phenolic microballoon particles are added to create composite materials with reduced effective impedances. The volume fraction of particles is varied to study the effect of filler quantity on the acoustic impedance of the resulting composite. The composites are experimentally characterized via ultrasonic measurements. Computational models based on the method of dilute-randomly-distributed inclusions are developed and compared with the experimental results. These experiments and models will facilitate the design of new elastomeric composites with desirable acoustic impedances.

  7. Flip-Chip Carrier Would Match Microwave FET Impedances

    NASA Technical Reports Server (NTRS)

    Huang, H. C.

    1982-01-01

    Proposed field-effect transistor consists of three cells which make up one complete FET pellet. Pellet is flip-chip mounted on carrier with source grounded gate and drain posts connected directly to impedance-matching transmission-line segments. Impedance transformers are part of mounting and contact strips.

  8. Development of impedance matching technologies for ICRF antenna arrays

    SciTech Connect

    Pinsker, R.I.

    1998-03-01

    All high power ICRF heating systems include devices for matching the input impedance of the antenna array to the generator output impedance. For most types of antennas used, the input impedance is strongly time-dependent on timescales as rapid as 10-4 s, while the rf generators used are capable of producing full power only into a stationary load impedance. Hence, the dynamic response of the matching method is of great practical importance. In this paper, world-wide developments in this field over the past decade are reviewed. These techniques may be divided into several classes. The edge plasma parameters that determine the antenna array`s input impedance may be controlled to maintain a fixed load impedance. The frequency of the rf source can be feedback controlled to compensate for changes in the edge plasma conditions, or fast variable tuning elements in the transmission line between the generator output and the antenna input connections can provide the necessary time-varying impedance transformation. In lossy passive schemes, reflected power due to the time-varying impedance of the antenna array is diverted to a dummy load. Each of these techniques can be applied to a pre-existing antenna system. If a new antenna is to be designed, recent advances allow the antenna array to have the intrinsic property of presenting a constant load to the feeding transmission lines despite the varying load seen by each antenna in the array.

  9. 21 CFR 874.1090 - Auditory impedance tester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1090 Auditory impedance tester. (a) Identification. An auditory impedance tester is a device that is intended to change the air pressure in the... evaluate the functional condition of the middle ear. The device is used to determine abnormalities in...

  10. 21 CFR 874.1090 - Auditory impedance tester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1090 Auditory impedance tester. (a) Identification. An auditory impedance tester is a device that is intended to change the air pressure in the... evaluate the functional condition of the middle ear. The device is used to determine abnormalities in...

  11. Development of a field-portable small-size impedance analyzer for structural health monitoring using the electromechanical impedance technique

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor; Xu, Buli

    2004-07-01

    Electromechanical (E/M) impedance method is emerging as an effective and powerful technique for structural health monitoring. The E/M impedance method utilizes as its main apparatus an impedance analyzer that reads the in-situ E/M impedance of piezoelectric wafer active sensors (PWAS) attached to the monitored structure. Laboratory-type impedance analyzers (e.g. HP4194) are bulky, heavy, and expensive. They cannot be easily carried into the field for on-site structural health monitoring. To address this issue, means of to reduce the size of the impedance analyzer making the impedance analyzer more compact and field-portable are explored. In this paper, we present a systematic approach to the development of a field-portable small-size impedance analyzer for structural health monitoring using the electromechanical impedance technique. Our approach consists of several developmental stages. First, we perform a simulation of the E/M Impedance technique and develop the software tools for analyzing the signal in a fast and efficient way while maintaining the desired accuracy. The objective of this signal processing part is to obtain the complex impedance, ZR+iZI)=|Z| angle arg Z, at a number of frequencies in a predetermined range. Several signal processing methods were explored such as: (a) integration method; (b) correlation method; (c) Discrete Fourier transform (DFT) method. Second, we discuss the hardware issues associated with the implementation of this approach. The hardware system architecture consists of several blocks: (a) reference signal generation; (b) voltage and current measurements; and (c) digital signal acquisition and processing. Practical results obtained during proof-of-concept experiments are presented and comparatively examined.

  12. Three phase AC motor controller

    DOEpatents

    Vuckovich, Michael; Wright, Maynard K.; Burkett, John P.

    1984-03-20

    A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.

  13. Development on electromagnetic impedance function modeling and its estimation

    SciTech Connect

    Sutarno, D.

    2015-09-30

    Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim at reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition

  14. Development on electromagnetic impedance function modeling and its estimation

    NASA Astrophysics Data System (ADS)

    Sutarno, D.

    2015-09-01

    Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim at reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition

  15. [Effects of different electrodes on bioelectrical impedance values].

    PubMed

    Nakadomo, F; Tanaka, K; Yokoyama, T; Maeda, K

    1990-01-01

    Effects of different electrodes on bioelectrical impedance values measured by the Selco bioelectrical impedance plethysmograph (SIF-881, Japan) were investigated using 8 adult females (age: 35.3 +/- 7.6 yr, Ht: 156.9 +/- 3.8 cm, Wt: 57.1 +/- 9.9 kg, and hydrodensitometrically determined body fat: 29.4 +/- 6.0%). The Lectec MP3000 electrode (Liberty Carton, USA) and the Bipolar electrode (Sanwa, Japan) produced significantly higher impedance values when compared to the Disposable electrode (Adovance, Japan) and the ECG electrode (Nihon Kohden, Japan). The coefficient of variation was significantly lower for the Disposable electrode (0.8%) and the ECG electrode (0.2%) than that for the Lectec MP3000 electrode (2.3%) and the Bipolar electrode (4.9%). In conclusion, the ECG electrode provides higher bioelectrical impedance values with the highest reproducibility in the assessment of human body composition by the bioelectrical impedance plethysmography.

  16. Twelve years evolution of skin as seen by electrical impedance

    NASA Astrophysics Data System (ADS)

    Nicander, Ingrid; Emtestam, Lennart; Åberg, Peter; Ollmar, Stig

    2010-04-01

    Twelve years ago we reported an electrical impedance baseline study related to age, sex and body locations. The results showed significant differences between different anatomical locations and ages. In this study, the same participants were recalled to explore how the skin had evolved at the individual level over time. A total of 50 subjects, divided into an older and a younger group, were recalled for measurements of electrical impedance at eight anatomical locations. Readings were taken with an electrical impedance spectrometer. Information was extracted from the impedance spectra using indices based on magnitude and phase at two frequencies as in the earlier study. All included body sites had undergone alterations over time, and the size of the changes varied at different locations. The results also showed that changes in the younger group were different over time compared with the older group. In conclusion: Electrical impedance can be used to monitor skin evolution over time and baseline characteristics differ between various locations.

  17. Method of estimating pulse response using an impedance spectrum

    DOEpatents

    Morrison, John L; Morrison, William H; Christophersen, Jon P; Motloch, Chester G

    2014-10-21

    Electrochemical Impedance Spectrum data are used to predict pulse performance of an energy storage device. The impedance spectrum may be obtained in-situ. A simulation waveform includes a pulse wave with a period greater than or equal to the lowest frequency used in the impedance measurement. Fourier series coefficients of the pulse train can be obtained. The number of harmonic constituents in the Fourier series are selected so as to appropriately resolve the response, but the maximum frequency should be less than or equal to the highest frequency used in the impedance measurement. Using a current pulse as an example, the Fourier coefficients of the pulse are multiplied by the impedance spectrum at corresponding frequencies to obtain Fourier coefficients of the voltage response to the desired pulse. The Fourier coefficients of the response are then summed and reassembled to obtain the overall time domain estimate of the voltage using the Fourier series analysis.

  18. Impedances of Nickel Electrodes Cycled in Various KOH Concentrations

    NASA Technical Reports Server (NTRS)

    Reid, Margaret A.; Loyselle, Patricia L.

    1991-01-01

    Impedances were measured of electrodes from boiler-plate cells cycled i n KOH concentrations from 21% to 36%. These cells under accelerated conditions at 80% DOD to failure, defined discharge voltage. Cell life ranged from about 1,000 t o 40 impedances were measured at five voltages corresponding to charge. The results were analyzed using a standard circuit model including a Warburg impedance term. The kinetic resistances and Warburg slopes were greater for those electrodes which had failed earliest. Other circuit models have also been examined. The results are considered indicative but not conclusive, since the cells had been stored after failure for varying lengths of time which is known to affect the impedance. In order to minimize the effects of storage, the electrodes were cycled 10 times before the impedance measurements were taken.

  19. Superconductor coil geometry and ac losses

    NASA Technical Reports Server (NTRS)

    Pierce, T. V., Jr.; Zapata, R. N.

    1976-01-01

    An empirical relation is presented which allows simple computation of volume-averaged winding fields from central fields for coils of small rectangular cross sections. This relation suggests that, in certain applications, ac-loss minimization can be accomplished by use of low winding densities, provided that hysteresis losses are independent of winding density. The ac-loss measurements on coils wound of twisted multifilamentary composite superconductors show no significant dependence on ac losses on winding density, thus permitting the use of winding density as an independent design parameter in loss minimization.

  20. Development of CSAMT impedance modeling and its estimation

    NASA Astrophysics Data System (ADS)

    Sutarno, D.

    2015-04-01

    Accurate modeling and estimation of impedance functions is essential for the correct interpretation of Controlled Source Audio Magnetotelluric (CSAMT) measurements. Non plane wave effect of CSAMT source and noises are inevitably encountered when CSAMT observations are conducted and, consequently, impedance estimates are usually based on least-squares (LS) approximation, and the resulting estimates need to be corrected for the non plane wave field fraction. However, estimation procedure based on LS would not be statistically optimal, as outliers (abnormal data) are frequently superimposed on a normal ambient CSAMT noise field. In this situation, the estimation can be seriously misleading, while plane wave correction has also limited application, as the non plane wave field fraction is reasonably strong. This paper briefly discus the recent development of alternative methods for the CSAMT impedance modeling and its estimation, those are efficient in nature. The means for accomplishing the non plane wave problem is based on full solution numerical modeling of CSAMT impedance function that accommodates the non plane wave effect in the function. Whilst, one appealing approach to dealing with outliers is to make the estimation procedure robust. This is based on the M-estimation and the Hilbert transform operating on the causal CSAMT impedance functions. As demonstrated, the full solution based modeling for CSAMT impedance function is applied for all measurement zones, including near-, transition- as well as the far-field zones, and suitably, the plane wave correction is no longer needed for the impedance function. In the resulting impedance estimates, outlier contamination is removed and the self consistency between the real and imaginary parts of the impedance estimates is guaranteed. Using synthetic data, it is shown that the proposed methods can produce usable CSAMT impedance functions for all measurement zones, even under condition of severe noise contamination.

  1. Kinetic Description of the Impedance Probe

    NASA Astrophysics Data System (ADS)

    Oberrath, Jens; Lapke, Martin; Mussenbrock, Thomas; Brinkmann, Ralf

    2011-10-01

    Active plasma resonance spectroscopy is a well known diagnostic method. Many concepts of this method are theoretically investigated and realized as a diagnostic tool, one of which is the impedance probe (IP). The application of such a probe in plasmas with pressures of a few Pa raises the question whether kinetic effects have to be taken into account or not. To address this question a kinetic model is necessary. A general kinetic model for an electrostatic concept of active plasma spectroscopy was presented by R.P. Brinkmann and can be used to describe the multipole resonance probe (MRP). In principle the IP is interpretable as a special case of the MRP in lower order. Thus, we are able to describe the IP by the kinetic model of the MRP. Based on this model we derive a solution to investigate the influence of kinetic effects to the resonance behavior of the IP. Active plasma resonance spectroscopy is a well known diagnostic method. Many concepts of this method are theoretically investigated and realized as a diagnostic tool, one of which is the impedance probe (IP). The application of such a probe in plasmas with pressures of a few Pa raises the question whether kinetic effects have to be taken into account or not. To address this question a kinetic model is necessary. A general kinetic model for an electrostatic concept of active plasma spectroscopy was presented by R.P. Brinkmann and can be used to describe the multipole resonance probe (MRP). In principle the IP is interpretable as a special case of the MRP in lower order. Thus, we are able to describe the IP by the kinetic model of the MRP. Based on this model we derive a solution to investigate the influence of kinetic effects to the resonance behavior of the IP. The authors acknowledge the support by the Deutsche Forschungsgemeinschaft (DFG) via the Ruhr University Research School and the Federal Ministry of Education and Research in frame of the PluTO project.

  2. Eddy Current Rail Inspection Using AC Bridge Techniques

    PubMed Central

    Liu, Ze; Koffman, Andrew D; Waltrip, Bryan C; Wang, Yicheng

    2013-01-01

    AC bridge techniques commonly used for precision impedance measurements have been adapted to develop an eddy current sensor for rail defect detection. By using two detection coils instead of just one as in a conventional sensor, we can balance out the large baseline signals corresponding to a normal rail. We have significantly enhanced the detection sensitivity of the eddy current method by detecting and demodulating the differential signal of the two coils induced by rail defects, using a digital lock-in amplifier algorithm. We have also explored compensating for the lift-off effect of the eddy current sensor due to vibrations by using the summing signal of the detection coils to measure the lift-off distance. The dominant component of the summing signal is a constant resulting from direct coupling from the excitation coil, which can be experimentally determined. The remainder of the summing signal, which decreases as the lift-off distance increases, is induced by the secondary eddy current. This dependence on the lift-off distance is used to calibrate the differential signal, allowing for a more accurate characterization of the defects. Simulated experiments on a sample rail have been performed using a computer controlled X-Y moving table with the X-axis mimicking the train’s motion and the Y-axis mimicking the train’s vibrational bumping. Experimental results demonstrate the effectiveness of the new detection method. PMID:26401427

  3. AC properties of low-pass RC filters embedded in printed circuit boards

    NASA Astrophysics Data System (ADS)

    Winiarski, Paweł; Kłossowicz, Adam; Steplewski, Wojciech; Borecki, Janusz; Nitsch, Karol; Dziedzic, Andrzej

    2013-07-01

    Impedance Spectroscopy (IS) is a widely used measurement technique for determining the characteristics of a variety of materials and systems. Analysis of object's AC-response can allow determine of different electrical properties due to its structure. IS can also be used to study electronic components such as gas and humidity sensors, thermistors, varistors, capacitors or resistors. The resulting impedance spectrum can be approximated by electrical equivalent circuit. However, It is difficult to find papers dedicated to the electronic systems investigated by IS method. For this reason authors analyzed properties of RC low-pass filters embedded in printed circuit boards using IS technique. These four-contact structures were made of special Ohmega/FaradFlex® composite material. It consists of a resistive/capacitive core containing OhmegaPly RCM layer (resistive NiP alloy) laminated to FaradFlex dielectric of Oak-Mitsui company. Analysis of the measurements results using impedance spectroscopy allowed a more precise determination of the filter parameters than an analysis using standard method based on ideal components. Additionally selected filters were subjected to one of the aging process (thermal aging or thermal-humidity exposure), and found that this results in a frequency shift of the filter.

  4. Nanojacketing and dejacketing of ds-DNA: a nondestructive characterization of a nanojacketed sample by impedance spectroscopy.

    PubMed

    Nandi, Sudipta; Mukherjee, Pratap; Kundu, Aniruddha; Nandi, Arun K

    2014-03-13

    A facile approach of nanojacketing DNA in intact conformation is evolved by the in situ polymerization of o-methoxyaniline (OMA) at 30 °C using HAuCl4 as an oxidant and DNA as a soft template. It concomitantly produces poly(o-methoxyaniline) (POMA) and a Au nanojacket encapsulating the double stranded DNA (ds-DNA). The POMA chains remain adhered to the Au nanojacket, facilitating the dissolution of nanojacketed DNA (DNA-Au-POMA) in organic solvent without affecting its conformation. Digestion of the nanojacketed system with saturated iodine solution dejackets the ds-DNA with retention of its conformation, leaving the POMA nanotube. The nanojacketing and dejacketing phenomena are established by transmission electron microscopy (TEM), UV-vis spectroscopy, and CD spectroscopy, and the nanostructure is further characterized by FTIR, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The impedance study of the DNA-Au-POMA sample suggests the Cole-Cole plots at both the impedance and modulus planes and the values of capacitance and electron-transfer resistance of the material (R(et)) are calculated to be 13.74 pF and 388 kΩ, respectively. The presence of a single Debye peak in both the impedance and modulus vs frequency plots suggests an isotropic nature of the system, and the frequency dependent ac-conductivity suggests the presence of short-range translational and reorientational (localized) hopping of charge carriers at lower and higher frequency region.

  5. Stretchable Electrochemical Impedance Sensors for Intravascular Detection of Lipid-Rich Lesions in New Zealand White Rabbits

    PubMed Central

    Cao, Hung; Yu, Fei; Zhao, Yu; Scianmarello, Nick; Lee, Juhyun; Dai, Wangde; Jen, Nelson; Beebe, Tyler; Li, Rongsong; Ebrahimi, Ramin; Chang, Donald S.; Mody, Freny V.; Pacella, John; Tai, Yu-Chong; Hsiai, Tzung

    2014-01-01

    Flexible electronics have enabled catheter-based intravascular sensing. However, real-time interrogation of unstable plaque remains an unmet clinical challenge. Here, we demonstrate the feasibility of stretchable electrochemical impedance spectroscopy (EIS) sensors for endoluminal investigations in New Zealand White (NZW) rabbits on diet-induced hyperlipidemia. A parylene C (PAC)-based EIS sensor mounted on the surface of an inflatable silicone balloon affixed to the tip of an interrogating catheter was deployed 1) on the explants of NZW rabbit aorta for detection of lipid-rich atherosclerotic lesions, and 2) on live animals for demonstration of balloon inflation and EIS measurements. An input peak-to-peak AC voltage of 10 mV and sweeping-frequency from 300 kHz to 100 Hz were delivered to the endoluminal sites. Balloon inflation allowed EIS sensors to be in contact with endoluminal surface. In the oxidized low-density-lipoprotein (oxLDL)-rich lesions from explants of fat-fed rabbits, impedance magnitude increased significantly by 1.5-fold across the entire frequency band, and phase shifted ~5 degrees at frequencies below 10 kHz. In the lesion-free sites of the normal diet-fed rabbits, impedance magnitude increased by 1.2-fold and phase shifted ~5 degrees at frequencies above 30 kHz. Thus, we demonstrate the feasibility of stretchable intravascular EIS sensors for identification of lipid rich lesions, with a translational implication for detecting unstable lesions. PMID:24333932

  6. Failure of thin organic films by a combination of shearography and electrochemical impedance spectroscopy: the new concept of resistivity

    NASA Astrophysics Data System (ADS)

    Habib, Khaled

    2012-04-01

    A critical (steady state) value of the resistivity of different organic coatings was determined by a combination of optical shearography and electrochemical impedance spectroscopy (EIS). The behavior of organic coatings, i.e., ACE premiumgray enamel, white enamel, beige enamel (spray coatings), a yellow acrylic lacquer, and a gold nail polish on a metallic alloy, i.e., a carbon steel, was investigated over a temperature range of 20-60 °C. The value of the resistivity of coatings was determined by correlating the in-plan displacement of the coating (by shearography over a temperature range of 20- 60 °C) and the value of the alternating current (A.C) impedance of the coating by EIS in 3% NaCl solution. The integrity of the coatings with respect to time was assessed by comparison the measured value of resistivity to the critical (steady state) or asymptotic value of resistivity. In other words, by shearography, measurement of coating properties could be performed independent of parameters such as UV exposure, humidity, presence of chemical species, and other parameters which may normally interfere with conventional methods of the assessing of the integrity of coatings. Therefore, one may measure the resistivity of coatings, regardless of the history of the coating, in order to assess the integrity of coatings. Also, the obtained shearography data were found to be in a reasonable trend with the data of electrochemical impedance spectroscopy (EIS) in 3%NaCl solution.

  7. AC methods for detection and monitoring of crevice corrosion

    NASA Astrophysics Data System (ADS)

    Rawat, Ashwani Kumar

    reduces the solution resistance, and hence, eliminates the iR drop between the crevice and the probing electrodes. Successful detection of locally corroding macroscopic sites on interior and/or exterior surfaces of structural elements was first accomplished by using a Segmented Counter Electrode Approach (SCEA) and a Magnetometer Approach (MA). These detection methods confirmed that the locally corroding macroscopic sites (simulated crevice sites) possess lower interfacial impedance, thereby resulting in the preferential leakage of applied current/voltage signals from these sites. Next, the use of EIS for the detection of crevice corrosion in naturally corroding IN625 and SS316L alloys in seawater clearly indicated the feasibility of this technique to detect the crevice corrosion. Methodology involving the incorporation of a Counter Electrode (CE) and a Reference Electrode (RE) inside the crevice former (O-ring) represents an innovative approach to monitoring and characterizing the crevice corrosion while obtaining the true local information from inside the crevice environments. The initiation and propagation of crevice corrosion can be detected sensitively by monitoring the changes in crevice polarization resistance (Rsb{p}). This methodology represents a very sensitive technique for in situ, non-destructive, and real time the detection and monitoring of crevice corrosion. Finally, for the successful practical application of any innovative methodology, the technique has to be non-detrimental. There would be a concern that AC signals applied to the crevice for EIS, may promote crevice initiation. It was found that for AC perturbations in the range of practically important amplitudes (10.0-50.0 mV peak-to-peak), no discernible damage, even after repeated harsher application, was observed.

  8. Impedance spectroscopy of reduced monoclinic zirconia.

    PubMed

    Eder, Dominik; Kramer, Reinhard

    2006-10-14

    Zirconia doped with low-valent cations (e.g. Y3+ or Ca2+) exhibits an exceptionally high ionic conductivity, making them ideal candidates for various electrochemical applications including solid oxide fuel cells (SOFC) and oxygen sensors. It is nevertheless important to study the undoped, monoclinic ZrO2 as a model system to construct a comprehensive picture of the electrical behaviour. In pure zirconia a residual number of anion vacancies remains because of contaminants in the material as well as the thermodynamic disorder equilibrium, but electronic conduction may also contribute to the observed conductivity. Reduction of zirconia in hydrogen leads to the adsorption of hydrogen and to the formation of oxygen vacancies, with their concentration affected by various parameters (e.g. reduction temperature and time, surface area, and water vapour pressure). However, there is still little known about the reactivities of defect species and their effect on the ionic and electronic conduction. Thus, we applied electrochemical impedance spectroscopy to investigate the electric performance of pure monoclinic zirconia with different surface areas in both oxidizing and reducing atmospheres. A novel equivalent circuit model including parallel ionic and electronic conduction has previously been developed for titania and is used herein to decouple the conduction processes. The concentration of defects and their formation energies were measured using volumetric oxygen titration and temperature programmed oxidation/desorption.

  9. Modified sparse regularization for electrical impedance tomography.

    PubMed

    Fan, Wenru; Wang, Huaxiang; Xue, Qian; Cui, Ziqiang; Sun, Benyuan; Wang, Qi

    2016-03-01

    Electrical impedance tomography (EIT) aims to estimate the electrical properties at the interior of an object from current-voltage measurements on its boundary. It has been widely investigated due to its advantages of low cost, non-radiation, non-invasiveness, and high speed. Image reconstruction of EIT is a nonlinear and ill-posed inverse problem. Therefore, regularization techniques like Tikhonov regularization are used to solve the inverse problem. A sparse regularization based on L1 norm exhibits superiority in preserving boundary information at sharp changes or discontinuous areas in the image. However, the limitation of sparse regularization lies in the time consumption for solving the problem. In order to further improve the calculation speed of sparse regularization, a modified method based on separable approximation algorithm is proposed by using adaptive step-size and preconditioning technique. Both simulation and experimental results show the effectiveness of the proposed method in improving the image quality and real-time performance in the presence of different noise intensities and conductivity contrasts. PMID:27036798

  10. Modified sparse regularization for electrical impedance tomography.

    PubMed

    Fan, Wenru; Wang, Huaxiang; Xue, Qian; Cui, Ziqiang; Sun, Benyuan; Wang, Qi

    2016-03-01

    Electrical impedance tomography (EIT) aims to estimate the electrical properties at the interior of an object from current-voltage measurements on its boundary. It has been widely investigated due to its advantages of low cost, non-radiation, non-invasiveness, and high speed. Image reconstruction of EIT is a nonlinear and ill-posed inverse problem. Therefore, regularization techniques like Tikhonov regularization are used to solve the inverse problem. A sparse regularization based on L1 norm exhibits superiority in preserving boundary information at sharp changes or discontinuous areas in the image. However, the limitation of sparse regularization lies in the time consumption for solving the problem. In order to further improve the calculation speed of sparse regularization, a modified method based on separable approximation algorithm is proposed by using adaptive step-size and preconditioning technique. Both simulation and experimental results show the effectiveness of the proposed method in improving the image quality and real-time performance in the presence of different noise intensities and conductivity contrasts.

  11. Journal and Wave Bearing Impedance Calculation Software

    NASA Technical Reports Server (NTRS)

    Hanford, Amanda; Campbell, Robert

    2012-01-01

    The wave bearing software suite is a MALTA application that computes bearing properties for user-specified wave bearing conditions, as well as plain journal bearings. Wave bearings are fluid film journal bearings with multi-lobed wave patterns around the circumference of the bearing surface. In this software suite, the dynamic coefficients are outputted in a way for easy implementation in a finite element model used in rotor dynamics analysis. The software has a graphical user interface (GUI) for inputting bearing geometry parameters, and uses MATLAB s structure interface for ease of interpreting data. This innovation was developed to provide the stiffness and damping components of wave bearing impedances. The computational method for computing bearing coefficients was originally designed for plain journal bearings and tilting pad bearings. Modifications to include a wave bearing profile consisted of changing the film thickness profile given by an equation, and writing an algorithm to locate the integration limits for each fluid region. Careful consideration was needed to implement the correct integration limits while computing the dynamic coefficients, depending on the form of the input/output variables specified in the algorithm.

  12. Calculating the impedance of a grounding system

    SciTech Connect

    Nekhoul, B.; Labie, P.; Zgainski, F.X.; Meunier, G.; Morillon, F.; Bourg, S.

    1996-05-01

    Following up previous research, concerning low frequency electromagnetic emission from a grounding system, the authors suggest methodology which allows a complete electromagnetic study by Finite Element Method (FEM) of a grounding system in the significant frequential spectrum of a stroke of lightning or a short circuit (f{le}1MHz). In this study, as well as calculating the electromagnetic field at any point in space (ground and air), the authors shall pay particular attention to variation with frequency of the impedance of a grounding system. Suggested modelling will take into account eddy currents in buried conductors and ground and nonlinear phenomena (ionization of the ground) around the buried conductors when high currents flow via the earth. It will also deal with displacement currents when their effect becomes noticeable in the earth for high frequency. The interest of this work lies in providing data needed to implement an optimal grounding system in nonhomogeneous medium. All the results of calculations will be compared with measurements made by the French Electricity Board (E.D.F., France).

  13. Electrical Impedance Tomography During Mechanical Ventilation.

    PubMed

    Walsh, Brian K; Smallwood, Craig D

    2016-10-01

    Electrical impedance tomography (EIT) is a noninvasive, non-radiologic imaging modality that may be useful for the quantification of lung disorders and titration of mechanical ventilation. The principle of operation is based on changes in electrical conductivity that occur as a function of changes in lung volume during ventilation. EIT offers potentially important benefits over standard imaging modalities because the system is portable and non-radiologic and can be applied to patients for long periods of time. Rather than providing a technical dissection of the methods utilized to gather, compile, reconstruct, and display EIT images, the present article seeks to provide an overview of the clinical application of this technology as it relates to monitoring mechanical ventilation and providing decision support at the bedside. EIT has been shown to be useful in the detection of pneumothoraces, quantification of pulmonary edema and comparison of distribution of ventilation between different modes of ventilation and may offer superior individual titration of PEEP and other ventilator parameters compared with existing approaches. Although application of EIT is still primarily done within a research context, it may prove to be a useful bedside tool in the future. However, head-to-head comparisons with existing methods of mechanical ventilation titration in humans need to be conducted before its application in general ICUs can be recommended. PMID:27682815

  14. Low impedance printed circuit radiating element

    NASA Technical Reports Server (NTRS)

    Rahm, James K. (Inventor); Frankievich, Robert H. (Inventor); Martinko, John D. (Inventor)

    1993-01-01

    A printed circuit radiating element comprises a geometrically symmetric planar area of a conducting material separated from a ground plane by a dielectric medium. The driving point of the radiating element is at the base of a notch in one side thereof so that the driving impedance is reduced from that obtained when the element is driven at its edge. Symmetrically disposed on opposite sides of an axis of symmetry of the element along which the driving point lies are two notches which restore the electrical symmetry of the radiating element thereby to suppress higher order modes. The suppression of these higher order modes results in a radiation pattern with minimal cross-polarized energy in the principal planes and high port-to-port isolation which could not be achieved with an asymmetrical element. Two driving points may be employed with the radiating element to produce a dual linearly polarized antenna and a reactive combiner or hybrid may be employed to obtain circularly-polarized radiations. The shape of the radiating element may be square, rectangular or circular, for example, in accordance with the desired characteristics. A plurality of radiating elements may be interconnected via appropriate transmission paths to form an antenna array.

  15. High School Teachers Win ACS Prizes

    NASA Astrophysics Data System (ADS)

    Editorial Staff, Jce

    2009-07-01

    William E. Snyder is the 2009 winner of the ACS Division of Chemical Education Central Region Award for Excellence in High School Teaching; Sally Mitchell is the winner of the 2009 James Bryant Conant Award in High School Chemistry Teaching.

  16. Tevatron optics measurements using an AC dipole

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is a device to study beam optics of hadron synchrotrons. It can produce sustained large amplitude oscillations with virtually no emittance growth. A vertical AC dipole for the Tevatron is recently implemented and a maximum oscillation amplitude of 2{sigma} (4{sigma}) at 980 GeV (150 GeV) is achieved [1]. When such large oscillations are measured with the BPM system of the Tevatron (20 {micro}m resolution), not only linear but even nonlinear optics can be directly measured. This paper shows how to measure {beta} function using an AC dipole and the result is compared to the other measurement. The paper also shows a test to detect optics changes when small changes are made in the Tevatron. Since an AC dipole is nondestructive, it allows frequent measurements of the optics which is necessary for such an test.

  17. The AC-120: The advanced commercial transport

    NASA Technical Reports Server (NTRS)

    Duran, David; Griffin, Ernest; Mendoza, Saul; Nguyen, Son; Pickett, Tim; Noernberg, Clemm

    1993-01-01

    The main objective of this design was to fulfill a need for a new airplane to replace the aging 100 to 150 passenger, 1500 nautical mile range aircraft such as the Douglas DC9 and Boeing 737-100 airplanes. After researching the future aircraft market, conducting extensive trade studies, and analysis on different configurations, the AC-120 Advanced Commercial Transport final design was achieved. The AC-120's main design features include the incorporation of a three lifting surface configuration which is powered by two turboprop engines. The AC-120 is an economically sensitive aircraft which meets the new FM Stage Three noise requirements, and has lower NO(x) emissions than current turbofan powered airplanes. The AC-120 also improves on its contemporaries in passenger comfort, manufacturing, and operating cost.

  18. Impedance Spectroscopy of Human Erythrocytes: Constant Phase Angle Characteristics and a Membrane Phase Transition

    NASA Astrophysics Data System (ADS)

    Bao, Jian-Zhong

    Impedance spectroscopy can be used as a tool for studying the structure of materials, including living cells. The measurements of the electrical impedance of human erythrocytes in the frequency range from 1 Hz to 10 MHz, and for temperatures from 4^circC to 40 ^circC are presented in this dissertation. In order to achieve high sensitivity in this frequency range, we embedded the cells in the pores of a filter, which constrains the current to pass through the cells in the pores and forces the cells into a well defined geometric form. To correct the measurement errors, we extend a calibration procedure to include both real and imaginary parts of the impedance to obtain a complete calibration, and we have proved that this improved calibration procedure works successfully. Based on the geometry of the cells embedded in the filter a circuit model is proposed for the cell-filter -electrolyte system. A constant-phase-angle (CPA) element, i.e., an impedance of the form Z = A/(jomega) ^{alpha}, where A is a constant, j = sqrt{-1}, omega is angular frequency, and 0 < alpha < 1, has been used to describe the ac response of the interface between the cell surface and the electrolyte solution, i.e., the electrical double layer. CPA element is believed to be closely related to the fractal structure of the interface, with alpha approaching one when the interface becomes increasingly smooth. The CPA and other elements of the circuit model are determined by a complex non-linear least squares (CNLS) fit, which simultaneously fits the real and imaginary parts of the experimental data to the circuit model. The specific membrane capacitance is determined to be 0.901 +/- 0.036 muF/cm ^2, and the specific cytoplasm conductivity to be 0.413 +/- 0.031 S/m at 26 ^circC, which are in good agreement with published data. The temperature dependence of the cytoplasm conductivity, membrane capacitance, and CPA element has been obtained. The membrane capacitance increases markedly at about 37^circ

  19. Dielectric and complex impedance properties of tetravalent hafnium (HF 4+) integrated cobalt ferrite

    NASA Astrophysics Data System (ADS)

    Sanchez, Luis

    The work presented in this thesis was carried out to understand the effects of tetravalent hafnium (Hf4+) ion on the crystal structure and phase, surface morphology, electrical, dielectric and complex impedance properties of cobalt ferrite (CoFe2O4; CFO). Hafnium incorporated cobalt ferrite, CoFe2-xHfxO4, with x = 0.00, 0.05, 0.075, 0.10, 0.15 and 0.20 were prepared by the standard solid state ceramic synthesis method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) characterizations were performed to determine the structural properties. Most important aspect of this study is to explore the dielectric and complex impedance properties as a function of variable temperature (T=300-1000 K) and frequency (f=20 Hz -1 MHz). Room temperature and the temperature dependence of dielectric constant, loss factor, complex impedance, and the ac resistivity measurements enabled us to understand the effect of temperature and frequency on the electrical and dielectric properties on CoFe2-xHfxO4 and, thus, to derive structure-property relation. X-ray diffraction (XRD) patterns for Hf-incorporated CFO confirm the formation of majority of CFO spinel [with space group Fd3m (227)] phase, in addition to the small amount of HfO2 monoclinic [space group, P1 21/c (14)] phase leading to formation of CFO-Hf composites. The lattice constant values derived from XRD for CFO-Hf were found to increase from 8.374 A (x = 0.000) to 8.391 A (x = 0.200). The lattice expansion is significant at the very first step of Hf-incorporation and then slows down with progressive Hf-incorporation. SEM imaging analysis indicates that Hf resides at the grain boundaries for CFO-Hf. The dielectric constant (epsilon') of CFO-Hf is T-independent at T<450 K, at which point increasing trend prevails. A grain bulk-boundary based two-layer model, where semiconducting-grains separated by insulating-grain boundaries, satisfactorily accounts for epsilon- T (>450 K) variation. Correspondingly, electrical

  20. Ac Impedance Spectroscopic Studies on Li2xPb2xBaP2O7

    NASA Astrophysics Data System (ADS)

    Vijayakumar, M.; Selvasekarapandian, S.

    2002-12-01

    The complex diphosphate (P2O7)4- ions have been used as a building blocks in wide variety of crystal phases for a wide spectrum of physical and chemical properties. Lithium barium diphsophate doped with lead {Li2-xPb2xBaP2O7 (x = 0, 0.2 & 0.4)} has been prepared by solid state reaction method The conductivity is found to be decreasing with the doping of lead. The lithium ion dynamics parameters such as hopping frequency and relaxation frequency were calculated from the frequency dependent conductivity and modulus analysis.

  1. A Batteryless Sensor ASIC for Implantable Bio-Impedance Applications.

    PubMed

    Rodriguez, Saul; Ollmar, Stig; Waqar, Muhammad; Rusu, Ana

    2016-06-01

    The measurement of the biological tissue's electrical impedance is an active research field that has attracted a lot of attention during the last decades. Bio-impedances are closely related to a large variety of physiological conditions; therefore, they are useful for diagnosis and monitoring in many medical applications. Measuring living tissues, however, is a challenging task that poses countless technical and practical problems, in particular if the tissues need to be measured under the skin. This paper presents a bio-impedance sensor ASIC targeting a battery-free, miniature size, implantable device, which performs accurate 4-point complex impedance extraction in the frequency range from 2 kHz to 2 MHz. The ASIC is fabricated in 150 nm CMOS, has a size of 1.22 mm × 1.22 mm and consumes 165 μA from a 1.8 V power supply. The ASIC is embedded in a prototype which communicates with, and is powered by an external reader device through inductive coupling. The prototype is validated by measuring the impedances of different combinations of discrete components, measuring the electrochemical impedance of physiological solution, and performing ex vivo measurements on animal organs. The proposed ASIC is able to extract complex impedances with around 1 Ω resolution; therefore enabling accurate wireless tissue measurements. PMID:26372646

  2. Analysis of left ventricular impedance in comparison with ultrasound images.

    PubMed

    Choi, Seong Wook; Park, Sung Min

    2012-05-01

    Cardiac monitoring of ventricular assist devices (VADs) is important for detecting heart failure risks, such as critical arrhythmia and ventricular fibrillation, and for supplying data that are useful for hemodynamic control. Specifically, impedance cardiograms (ICGs) are especially beneficial because they have no effect on the tissue or organs and can monitor various parameters simultaneously, including the heart rate and heart contractions. In this article, we measured impedance changes in porcine left ventricles using electrodes placed around the inlet and outlet cannulae of the VAD. The measured left ventricular impedance (LVI) waveform changes are caused by heart movements, such as cardiac muscle contraction and changes in blood volume as a result of heart filling and emptying. In contrast to other impedance measurements, LVI is less affected by the movement of other organs. Using a porcine model, LVIs were measured and compared with blood flow data measured with an ultrasound blood flowmeter. The ICG showed the same frequency as the animal's heart rate, and their amplitudes were closely related to cardiac output (CO). However, the waveform differed from other vital signs, such as CO, electrocardiogram, and blood pressure. Ultrasound images were used to explain the impedance waveform. In the ultrasound images, we obtained the shape and size of the animal's heart and calculated the predicted impedance data. We then compared these to the actual measured data. These results show that the impedance signal contains detailed information on heart rate and CO; these results were unaffected by the cannulae or VAD perfusion. PMID:22188560

  3. Frequency dependent elastic impedance inversion for interstratified dispersive elastic parameters

    NASA Astrophysics Data System (ADS)

    Zong, Zhaoyun; Yin, Xingyao; Wu, Guochen

    2016-08-01

    The elastic impedance equation is extended to frequency dependent elastic impedance equation by taking partial derivative to frequency. With this equation as the forward solver, a practical frequency dependent elastic impedance inversion approach is presented to implement the estimation of the interstratified dispersive elastic parameters which makes full use of the frequency information of elastic impedances. Three main steps are included in this approach. Firstly, the elastic Bayesian inversion is implemented for the estimation of elastic impedances from different incident angle. Secondly, with those estimated elastic impedances, their variations are used to estimate P-wave velocity and S-wave velocity. Finally, with the prior elastic impedance and P-wave and S-wave velocity information, the frequency dependent elastic variation with incident angle inversion is presented for the estimation of the interstratified elastic parameters. With this approach, the interstratified elastic parameters rather than the interface information can be estimated, making easier the interpretation of frequency dependent seismic attributes. The model examples illustrate the feasibility and stability of the proposed method in P-wave velocity dispersion and S-wave velocity dispersion estimation. The field data example validates the possibility and efficiency in hydrocarbon indication of the estimated P-wave velocity dispersion and S-wave velocity dispersion.

  4. Summary of Human Ankle Mechanical Impedance During Walking

    PubMed Central

    Rouse, Elliott J.; Krebs, Hermano Igo

    2016-01-01

    The human ankle joint plays a critical role during walking and understanding the biomechanical factors that govern ankle behavior and provides fundamental insight into normal and pathologically altered gait. Previous researchers have comprehensively studied ankle joint kinetics and kinematics during many biomechanical tasks, including locomotion; however, only recently have researchers been able to quantify how the mechanical impedance of the ankle varies during walking. The mechanical impedance describes the dynamic relationship between the joint position and the joint torque during perturbation, and is often represented in terms of stiffness, damping, and inertia. The purpose of this short communication is to unify the results of the first two studies measuring ankle mechanical impedance in the sagittal plane during walking, where each study investigated differing regions of the gait cycle. Rouse et al. measured ankle impedance from late loading response to terminal stance, where Lee et al. quantified ankle impedance from pre-swing to early loading response. While stiffness component of impedance increases significantly as the stance phase of walking progressed, the change in damping during the gait cycle is much less than the changes observed in stiffness. In addition, both stiffness and damping remained low during the swing phase of walking. Future work will focus on quantifying impedance during the “push off” region of stance phase, as well as measurement of these properties in the coronal plane. PMID:27766187

  5. Measurement and simulation of the RHIC abort kicker longitudinal impedence

    SciTech Connect

    Abreu,N.P.; Hahn,H.; Choi, E.

    2009-09-01

    In face of the new upgrades for RHIC the longitudinal impedance of the machine plays an important role in setting the threshold for instabilities and the efficacy of some systems. In this paper we describe the measurement of the longitudinal impedance of the abort kicker for RHIC as well as computer simulations of the structure. The impedance measurement was done by the S{sub 21} wire method covering the frequency range from 9 kHz to 2.5 GHz. We observed a sharp resonance peak around 10 MHz and a broader peak around 20 MHz in both, the real and imaginary part, of the Z/n. These two peaks account for a maximum imaginary longitudinal impedance of j15 {Omega}, a value an order of magnitude larger than the estimated value of j0.2 {Omega}, which indicates that the kicker is one of the main sources of longitudinal impedance in the machine. A computer model was constructed for simulations in the CST MWS program. Results for the magnet input and the also the beam impedance are compared to the measurements. A more detail study of the system properties and possible changes to reduce the coupling impedance are presented.

  6. Thickness-, Composition-, and Magnetic-Field-Dependent Complex Impedance Spectroscopy of Granular-Type-Barrier Co/Co-Al2O3/Co MTJs

    NASA Astrophysics Data System (ADS)

    Tuan, Nguyen Anh; Anh, Nguyen Tuan; Nga, Nguyen Tuyet; Tue, Nguyen Anh; Van Cuong, Giap

    2016-06-01

    The alternating-current (ac) electrical properties of granular-type-barrier magnetic tunnel junctions (GBMTJs) based on Co/Co x (Al2O3)1- x ( t)/Co trilayer structures have been studied using complex impedance spectroscopy (CIS). Their CIS characteristics were investigated in external magnetic fields varying from 0 kOe to 3 kOe as a function of Co composition x at 10 at.%, 25 at.%, and 35 at.%, with barrier layer thickness t of 20 nm to 90 nm. The influence of these factors on the behaviors of the ac impedance response of the GBMTJs was deeply investigated and attributed to the dielectric or conducting nature of the Co-Al2O3 barrier layer. The most remarkable typical phenomena observed in these behaviors, even appearing paradoxical, include lower impedance for thicker t for each given x, a declining trend of Z with increasing x, a clear decrease of Z with H, and especially a partition of Z into zones according to the H value. All these effects are analyzed and discussed to demonstrate that diffusion-type and mass-transfer-type phenomena can be inferred from processes such as spin tunneling and Coulomb or spin blockade in the Co-Al2O3 barrier layer.

  7. Very long period magnetotellurics at Tucson Observatory: Estimation of impedances

    SciTech Connect

    Egbert, G.D.; Booker, J.R.; Schultz, A.

    1992-10-10

    Eleven years (1932-1942) of electric potential and magnetic measurements at the Tucson observatory represent a unique very long period magnetotelluric (MT) data set. The authors report on a careful reanalysis of this data using modern processing techniques. They have developed and used novel methods for separating out the quasi-periodic daily variation fields and for cleaning up outliers and filling in missing data in the time domain. MT impedance tensors, estimated using the cleaned and filled data and using robust frequency domain methods, are well determined and smoothly varying for periods between 4 hours and 10 days. At longer periods the electric field data are swamped by large-amplitude incoherent noise, particularly after the third year of the experiment. Although they find no evidence for contamination of any field components by oceanic motional induction at tidal periods, the MT impedance estimates do show evidence of small systematic biases due to finite spatial scale geomagnetic sources at harmonics of the daily variation period. These periods are thus removed from the time series and not used in further analysis. They show that the resulting impedance tensor is well modeled by a real, frequency-independent distortion of a scalar impedance, which is consistent with non-inductive distortion of the electric fields by local surface geology. To estimate the undetermined static shift of the MT impedance, the authors compare the long-period MT results to equivalent MT impedances determined from 46 years of geomagnetic data. Combining the geomagnetic and undistorted MT impedances results in scalar impedance estimates for periods 0.17 < T < 91 days of unprecedented precision. However, for periods less than one day, the phase and amplitude of this impedance, while individually consistent, are not mutually consistent with any one-dimensional conductivity distribution. 51 refs., 19 figs., 4 tabs.

  8. Note: electrode polarization of Galinstan electrodes for liquid impedance spectroscopy.

    PubMed

    Mellor, Brett L; Kellis, Nathan A; Mazzeo, Brian A

    2011-04-01

    Electrode polarization is a significant obstacle in the impedance measurements of ionic liquids. An atomically smooth electrode surface could potentially reduce unwanted impedance contributions from electrode polarization. Liquid metal electrodes were formed by adhering Galinstan to acrylic plates in a parallel-plate capacitor arrangement. Electrode polarization was compared to a similar cell with stainless steel electrodes. The impedance of salt and protein solutions (β-lactoglobulin) was measured from 40 Hz to 110 MHz. Because of oxide layer formation, the performance of the Galinstan electrode is significantly different than the theoretical ideal.

  9. Low Impedance Bellows for High-current Beam Operations

    SciTech Connect

    Wu, G; Nassiri, A; Waldschmidt, G J; Yang, Y; Feingold, J J; Mammosser, J D; Rimmer, R A; Wang, H; Jang, J; Kim, S H

    2012-07-01

    In particle accelerators, bellows are commonly used to connect beamline components. Such bellows are traditionally shielded to lower the beam impedance. Excessive beam impedance can cause overheating in the bellows, especially in high beam current operation. For an SRF-based accelerator, the bellows must also be particulate free. Many designs of shielded bellows incorporate rf slides or fingers that prevent convolutions from being exposed to wakefields. Unfortunately these mechanical structures tend to generate particulates that, if left in the SRF accelerator, can migrate into superconducting cavities, the accelerator's critical components. In this paper, we describe a prototype unshielded bellows that has low beam impedance and no risk of particulate generation.

  10. Propagation of quasiplane waves along an impedance boundary

    NASA Technical Reports Server (NTRS)

    Mcaninch, G. L.; Myers, M. K.

    1988-01-01

    The parabolic approximation for the acoustic equations of motion is applied to the study of the sound field generated by a time harmonic plane wave at grazing incidence to a finite impedance boundary. The resulting equations possess a solution which may be expressed in terms of the complementary error function. Asymptotic expansion of this solution for field points near the boundary provides results compatible with those for a point source on the boundary for both the soft boundary (finite impedance) and hard boundary (the limit in which the impedance becomes infinite) cases. The presence of a surface wave in the solution is also established.

  11. Note: Electrode polarization of Galinstan electrodes for liquid impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Mellor, Brett L.; Kellis, Nathan A.; Mazzeo, Brian A.

    2011-04-01

    Electrode polarization is a significant obstacle in the impedance measurements of ionic liquids. An atomically smooth electrode surface could potentially reduce unwanted impedance contributions from electrode polarization. Liquid metal electrodes were formed by adhering Galinstan to acrylic plates in a parallel-plate capacitor arrangement. Electrode polarization was compared to a similar cell with stainless steel electrodes. The impedance of salt and protein solutions (β-lactoglobulin) was measured from 40 Hz to 110 MHz. Because of oxide layer formation, the performance of the Galinstan electrode is significantly different than the theoretical ideal.

  12. 78 FR 39345 - ACS Wireless, Inc.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... COMMISSION ACS Wireless, Inc.; Notice of Application AGENCY: Securities and Exchange Commission (``Commission...''). Summary of Application: ACS Wireless, Inc. (``ACS Wireless'') seeks an order under section 3(b)(2) of the..., owning, holding or trading in securities. ACS Wireless is primarily engaged in providing...

  13. 21 CFR 888.1240 - AC-powered dynamometer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered dynamometer. 888.1240 Section 888.1240...) MEDICAL DEVICES ORTHOPEDIC DEVICES Diagnostic Devices § 888.1240 AC-powered dynamometer. (a) Identification. An AC-powered dynamometer is an AC-powered device intended for medical purposes to...

  14. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  15. 21 CFR 886.1630 - AC-powered photostimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered photostimulator. 886.1630 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1630 AC-powered photostimulator. (a) Identification. An AC-powered photostimulator is an AC-powered device intended to provide light stimulus...

  16. 21 CFR 886.1850 - AC-powered slitlamp biomicroscope.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered slitlamp biomicroscope. 886.1850... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1850 AC-powered slitlamp biomicroscope. (a) Identification. An AC-powered slitlamp biomicroscope is an AC-powered device that is...

  17. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  18. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  19. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  20. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  1. AC Electrokinetics of Physiological Fluids for Biomedical Applications.

    PubMed

    Lu, Yi; Liu, Tingting; Lamanda, Ariana C; Sin, Mandy L Y; Gau, Vincent; Liao, Joseph C; Wong, Pak Kin

    2015-12-01

    Alternating current (AC) electrokinetics is a collection of processes for manipulating bulk fluid mass and embedded objects with AC electric fields. The ability of AC electrokinetics to implement the major microfluidic operations, such as pumping, mixing, concentration, and separation, makes it possible to develop integrated systems for clinical diagnostics in nontraditional health care settings. The high conductivity of physiological fluids presents new challenges and opportunities for AC electrokinetics-based diagnostic systems. In this review, AC electrokinetic phenomena in conductive physiological fluids are described followed by a review of the basic microfluidic operations and the recent biomedical applications of AC electrokinetics. The future prospects of AC electrokinetics for clinical diagnostics are presented.

  2. Childbearing impeded education more than education impeded childbearing among Norwegian women.

    PubMed

    Cohen, Joel E; Kravdal, Øystein; Keilman, Nico

    2011-07-19

    In most societies, women at age 39 with higher levels of education have fewer children. To understand this association, we investigated the effects of childbearing on educational attainment and the effects of education on fertility in the 1964 birth cohort of Norwegian women. Using detailed annual data from ages 17 to 39, we estimated the probabilities of an additional birth, a change in educational level, and enrollment in the coming year, conditional on fertility history, educational level, and enrollment history at the beginning of each year. A simple model reproduced a declining gradient of children ever born with increasing educational level at age 39. When a counterfactual simulation assumed no effects of childbearing on educational progression or enrollment (without changing the estimated effects of education on childbearing), the simulated number of children ever born decreased very little with increasing completed educational level, contrary to data. However, when another counterfactual simulation assumed no effects of current educational level and enrollment on childbearing (without changing the estimated effects of childbearing on education), the simulated number of children ever born decreased with increasing completed educational level nearly as much as the decrease in the data. In summary, in these Norwegian data, childbearing impeded education much more than education impeded childbearing. These results suggest that women with advanced degrees have lower completed fertility on the average principally because women who have one or more children early are more likely to leave or not enter long educational tracks and never attain a high educational level.

  3. Impedance and Otoscopy Screening of Multiply Handicapped Children in School.

    ERIC Educational Resources Information Center

    Bruns, Janet M.; And Others

    1979-01-01

    In order to examine the effectiveness of impedance and otoscopic screening in the determination of middle ear abnormalities, 79 physically handicapped, mentally retarded school children (mean age 8 years) were examined. (Author/PHR)

  4. Motion discrimination of throwing a baseball using forearm electrical impedance

    NASA Astrophysics Data System (ADS)

    Nakamura, Takao; Kusuhara, Toshimasa; Yamamoto, Yoshitake

    2013-04-01

    The extroversion or hyperextension of elbow joint cause disorders of elbow joint in throwing a baseball. A method, which is easy handling and to measure motion objectively, can be useful for evaluation of throwing motion. We investigated a possibility of motion discrimination of throwing a baseball using electrical impedance method. The parameters of frequency characteristics (Cole-Cole arc) of forearm electrical impedance were measured during four types of throwing a baseball. Multiple discriminant analysis was used and the independent variables were change ratios of 11 parameters of forearm electrical impedance. As results of 120 data with four types of throwing motion in three subjects, hitting ratio was very high and 95.8%. We can expect to discriminate throwing a baseball using multiple discriminant analysis of impedance parameters.

  5. Bioelectrical impedance analysis for bovine milk: Preliminary results

    NASA Astrophysics Data System (ADS)

    Bertemes-Filho, P.; Valicheski, R.; Pereira, R. M.; Paterno, A. S.

    2010-04-01

    This work reports the investigation and analysis of bovine milk quality by using biological impedance measurements using electrical impedance spectroscopy (EIS). The samples were distinguished by a first chemical analysis using Fourier transform midinfrared spectroscopy (FTIR) and flow citometry. A set of milk samples (100ml each) obtained from 17 different cows in lactation with and without mastitis were analyzed with the proposed technique using EIS. The samples were adulterated by adding distilled water and hydrogen peroxide in a controlled manner. FTIR spectroscopy and flow cytometry were performed, and impedance measurements were made in a frequency range from 500Hz up to 1MHz with an implemented EIS system. The system's phase shift was compensated by measuring saline solutions. It was possible to show that the results obtained with the Bioelectrical Impedance Analysis (BIA) technique may detect changes in the milk caused by mastitis and the presence of water and hydrogen peroxide in the bovine milk.

  6. Statistical Properties of Antenna Impedance in an Electrically Large Cavity

    SciTech Connect

    WARNE,LARRY K.; LEE,KELVIN S.H.; HUDSON,H. GERALD; JOHNSON,WILLIAM A.; JORGENSON,ROY E.; STRONACH,STEPHEN L.

    2000-12-13

    This paper presents models and measurements of antenna input impedance in resonant cavities at high frequencies.The behavior of input impedance is useful in determining the transmission and reception characteristics of an antenna (as well as the transmission characteristics of certain apertures). Results are presented for both the case where the cavity is undermoded (modes with separate and discrete spectra) as well as the over moded case (modes with overlapping spectra). A modal series is constructed and analyzed to determine the impedance statistical distribution. Both electrically small as well as electrically longer resonant and wall mounted antennas are analyzed. Measurements in a large mode stirred chamber cavity are compared with calculations. Finally a method based on power arguments is given, yielding simple formulas for the impedance distribution.

  7. Manipulating acoustic wavefront by inhomogeneous impedance and steerable extraordinary reflection.

    PubMed

    Zhao, Jiajun; Li, Baowen; Chen, Zhining; Qiu, Cheng-Wei

    2013-01-01

    We unveil the connection between the acoustic impedance along a flat surface and the reflected acoustic wavefront, in order to empower a wide wariety of novel applications in acoustic community. Our designed flat surface can generate double reflections: the ordinary reflection and the extraordinary one whose wavefront is manipulated by the proposed impedance-governed generalized Snell's law of reflection (IGSL). IGSL is based on Green's function and integral equation, instead of Fermat's principle for optical wavefront manipulation. Remarkably, via the adjustment of the designed specific acoustic impedance, extraordinary reflection can be steered for unprecedented acoustic wavefront while that ordinary reflection can be surprisingly switched on or off. The realization of the complex discontinuity of the impedance surface has been proposed using Helmholtz resonators. PMID:23985717

  8. Manipulating Acoustic Wavefront by Inhomogeneous Impedance and Steerable Extraordinary Reflection

    NASA Astrophysics Data System (ADS)

    Zhao, Jiajun; Li, Baowen; Chen, Zhining; Qiu, Cheng-Wei

    2013-08-01

    We unveil the connection between the acoustic impedance along a flat surface and the reflected acoustic wavefront, in order to empower a wide wariety of novel applications in acoustic community. Our designed flat surface can generate double reflections: the ordinary reflection and the extraordinary one whose wavefront is manipulated by the proposed impedance-governed generalized Snell's law of reflection (IGSL). IGSL is based on Green's function and integral equation, instead of Fermat's principle for optical wavefront manipulation. Remarkably, via the adjustment of the designed specific acoustic impedance, extraordinary reflection can be steered for unprecedented acoustic wavefront while that ordinary reflection can be surprisingly switched on or off. The realization of the complex discontinuity of the impedance surface has been proposed using Helmholtz resonators.

  9. The effects of pulmonary circulation pulsatility on the impedance cardiogram.

    PubMed

    Saito, Y; Goto, T; Terasaki, H; Hayashida, Y; Morioka, T

    1983-11-01

    To study the effects of pulmonary blood flow on the impedance cardiogram, the pattern of pulmonary blood flow was alternated from pulsatile to non pulsatile, or the reverse, using our extracorporeal bypass-method on anaesthetized dogs. The thoracic impedance cardiogram was recorded from band electrodes placed around the neck and upper abdomen. During nonpulsatile pulmonary blood flow, the height of the diastolic phase of the delta Z wave was lower than that during pulsatile pulmonary blood flow. The area under the impedance curve decreased during nonpulsatile pulmonary blood flow. This appeared to be more obvious as the pulmonary arterial flow was reduced. The results suggest that the pulmonary blood flow might have substantial effects on the impedance cardiogram.

  10. Impedance Calculations for the NSLS-II Storage Rings

    SciTech Connect

    Blednykh,A.; Ferreira, M.; Krinsky, S.

    2009-05-04

    Impedance of two vacuum chamber components, Bellows and BPM, is considered in some detail. In order to avoid generation of Higher-Order Modes (HOM's) in the NSLS-II bellows, we designed a new low-impedance RF shielding consisting of 6 wide and 2 narrow metal plates without opening slots between them. The short-range wakepotential has been optimized taking into account vertical offset of RF fingers from their nominal position. The results were compared with data of bellows designed at other laboratories. Narrow-band impedance of the BPM Button has been studied. TE-modes in the BPM button were suppressed by a factor of 8 by modification of existing housings. Two new types of housings are shown. The total impedance of the NSLS-II storage ring is discussed in terms of the loss factor and the vertical kick factor for a 3mm-Gaussian bunch.

  11. Impedance Biosensors: Applications to Sustainability and Remaining Technical Challenges

    PubMed Central

    2015-01-01

    Due to their all-electrical nature, impedance biosensors have significant potential for use as simple and portable sensors for environmental studies and environmental monitoring. Detection of two endocrine-disrupting chemicals (EDC), norfluoxetine and BDE-47, is reported here by impedance biosensing, with a detection limit of 8.5 and 1.3 ng/mL for norfluoxetine and BDE-47, respectively. Although impedance biosensors have been widely studied in the academic literature, commercial applications have been hindered by several technical limitations, including possible limitations to small analytes, the complexity of impedance detection, susceptibility to nonspecific adsorption, and stability of biomolecule immobilization. Recent research into methods to overcome these obstacles is briefly reviewed. New results demonstrating antibody regeneration atop degenerate (highly doped) Si are also reported. Using 0.2 M KSCN and 10 mM HF for antibody regeneration, peanut protein Ara h 1 is detected daily during a 30 day trial. PMID:25068095

  12. Beam coupling impedances of fast transmission-line kickers.

    SciTech Connect

    Kurennoy, S.

    2002-01-01

    Fast transmission-line kickers contain no ferrite and consist of two long metallic parallel plates supported by insulators inside a beam pipe. A beam is deflected by both the electric and magnetic fields of a TEM wave created by a pulse propagating along the strips in the direction opposite to the beam. Computations of the beam coupling impedances for such structures are difficult because of their length. In the paper, the beam coupling impedances of transmission-line kickers are calculated by combining analytical and numerical methods: the wake potentials computed in short models are extended analytically to obtain the wakes for the long kickers, and then the corresponding beam impedances are derived. At very low frequencies the results are compared with simple analytical expressions for the coupling impedances of striplines in beam position monitors.

  13. Smart mug to measure hand's geometrical mechanical impedance.

    PubMed

    Hondori, Hossein Mousavi; Tech, Ang Wei

    2011-01-01

    A novel device, which looks like a mug, has been proposed for measuring the impedance of human hand. The device is designed to have convenient size and light weight similar to an ordinary coffee mug. It contains a 2-axis inertia sensor to monitor vibration and a small motor to carry an eccentric mass (m=100 gr, r=2 cm, rpm=600). The centrifugal force due to the rotating mass applies a dynamic force to the hand that holds the mug. Correlation of the acceleration signals with the perturbing force gives the geometrical mechanical impedance. Experimental results on a healthy subject shows that impedance is posture dependant while it changes with the direction of the applied perturbing force. For nine postures the geometrical impedance is obtained all of which have elliptical shapes. The method can be used for assessment of spasticity and monitoring stability in patients with stroke or similar problems. PMID:22255230

  14. Manipulating Acoustic Wavefront by Inhomogeneous Impedance and Steerable Extraordinary Reflection

    PubMed Central

    Zhao, Jiajun; Li, Baowen; Chen, Zhining; Qiu, Cheng-Wei

    2013-01-01

    We unveil the connection between the acoustic impedance along a flat surface and the reflected acoustic wavefront, in order to empower a wide wariety of novel applications in acoustic community. Our designed flat surface can generate double reflections: the ordinary reflection and the extraordinary one whose wavefront is manipulated by the proposed impedance-governed generalized Snell's law of reflection (IGSL). IGSL is based on Green's function and integral equation, instead of Fermat's principle for optical wavefront manipulation. Remarkably, via the adjustment of the designed specific acoustic impedance, extraordinary reflection can be steered for unprecedented acoustic wavefront while that ordinary reflection can be surprisingly switched on or off. The realization of the complex discontinuity of the impedance surface has been proposed using Helmholtz resonators. PMID:23985717

  15. A quantitative skin impedance test to diagnose spinal cord injury

    PubMed Central

    Ugur, Mukden; Arslan, Yunus Ziya; Palamar, Deniz

    2009-01-01

    The purpose of this study was to develop a quantitative skin impedance test that could be used to diagnose spinal cord injury (SCI) if any, especially in unconscious and/or non-cooperative SCI patients. To achieve this goal, initially skin impedance of the sensory key points of the dermatomes (between C3 and S1 bilaterally) was measured in 15 traumatic SCI patients (13 paraplegics and 2 tetraplegics) and 15 control subjects. In order to classify impedance values and to observe whether there would be a significant difference between patient and subject impedances, an artificial neural network (ANN) with back-propagation algorithm was employed. Validation results of the ANN showed promising performance. It could classify traumatic SCI patients with a success rate of 73%. By assessing the experimental protocols and the validation results, the proposed method seemed to be a simple, objective, quantitative, non-invasive and non-expensive way of assessing SCI in such patients. PMID:19301045

  16. Deletion of AcMNPV ac146 eliminates the production of budded virus.

    PubMed

    Dickison, Virginia L; Willis, Leslie G; Sokal, Nadia R; Theilmann, David A

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac146 is a highly conserved gene in the Alpha- and Betabaculovirus genera that has an unknown function. Northern blot analysis and transcript mapping showed that ac146 is transcribed at late times post infection as a 1.2 kb mRNA. To determine the role of ac146 in the baculovirus life cycle ac146 knock out viruses were constructed. Transfection and plaque assays showed that all the ac146 deletions produced a single cell phenotype indicating that no infectious budded virus (BV) was produced, however occlusion bodies were formed. The lack of BV production was confirmed by viral titration utilizing both qPCR and TCID₅₀. Analysis of BV and occlusion derived virus (ODV) revealed that AC146 is associated with both forms of the virus and is modified specifically in ODV. This study therefore demonstrates that AC146 is a late virion associated protein and is essential for the viral life cycle.

  17. Comparison of Two Acoustic Waveguide Methods for Determining Liner Impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Watson, Willie R.; Tracy, Maureen B.; Parrott, Tony L.

    2001-01-01

    Acoustic measurements taken in a flow impedance tube are used to assess the relative accuracy of two waveguide methods for impedance eduction in the presence of grazing flow. The aeroacoustic environment is assumed to contain forward and backward-traveling acoustic waves, consisting of multiple modes, and uniform mean flow. Both methods require a measurement of the complex acoustic pressure profile over the length of the test liner. The Single Mode Method assumes that the sound pressure level and phase decay-rates of a single progressive mode can be extracted from this measured complex acoustic pressure profile. No a priori assumptions are made in the Finite Element. Method regarding the modal or reflection content in the measured acoustic pressure profile. The integrity of each method is initially demonstrated by how well their no-flow impedances match those acquired in a normal incidence impedance tube. These tests were conducted using ceramic tubular and conventional perforate liners. Ceramic tubular liners were included because of their impedance insensitivity to mean flow effects. Conversely, the conventional perforate liner was included because its impedance is known to be sensitive to mean flow velocity effects. Excellent comparisons between impedance values educed with the two waveguide methods in the absence of mean flow and the corresponding values educed with the normal incident impedance tube were observed. The two methods are then compared for mean flow Mach numbers up to 0.5, and are shown to give consistent results for both types of test liners. The quality of the results indicates that the Single Mode Method should be used when the measured acoustic pressure profile is clearly dominated by a single progressive mode, and the Finite Element Method should be used for all other cases.

  18. Input impedance and mutual coupling of rectangular microstrip antennas

    NASA Technical Reports Server (NTRS)

    Pozar, D. M.

    1982-01-01

    A moment method solution to the problem of input impedance and mutual coupling of rectangular microstrip antenna elements is presented. The formulation uses the grounded dielectric slab Green's function to account rigorously for the presence of the substrate and surface waves. Both entire basis (EB) and piecewise sinusoidal (PWS) expansion modes are used, and their relative advantages are noted. Calculations of input impedance and mutual coupling are compared with measured data and other calculations.

  19. PRELIMINARY IMPEDANCE BUDGET FOR NSLS-II STORAGE RING.

    SciTech Connect

    BLEDNYKH,A.; KRINSKY, S.

    2007-06-25

    The wakefield and impedance produced by the components of the NSLS-II storage ring have been computed for an electron bunch length of 3mm rms. The results are summarized in a table giving for each component, the loss factor ({kappa}{sub {parallel}}), the imaginary part of the longitudinal impedance at low frequency divided by the revolution harmonic (ImZ{sub {parallel}}/n), and the transverse kick factors ({kappa}{sub x}, {kappa}{sub y}).

  20. Measurement of steel corrosion in concrete by impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartholomew, Paul; Sumsion, Eric; Guthrie, Spencer; Mazzeo, Brian

    2010-10-01

    Steel corrosion is a major problem for aging bridge structures. The steel corrodes as chloride ions migrate to the buried steel. The properties of the corroded steel-concrete interface change due to the corrosion and can be measured by impedance spectroscopy. A new spectrometer was built to measure concrete slabs. A fitting function to the impedance spectra was used to determine relevant parameters correlated with corrosion. Data from the laboratory and the field demonstrate the utility of this technique.

  1. Beam coupling impedances of obstacles protruding into a beam pipe

    NASA Astrophysics Data System (ADS)

    Kurennoy, Sergey S.

    1997-03-01

    The beam coupling impedances of small obstacles protruding inside the vacuum chamber of an accelerator are calculated at frequencies for which the wavelength is large compared to a typical size of the obstacle. Formulas for a few important particular cases including both essentially three-dimensional objects like a post or a mask and axisymmetric irises, are presented. These results allow simple practical estimates of the broadband impedance contributions from such discontinuities.

  2. Quantitative rotor damage detection based on piezoelectric impedance

    NASA Astrophysics Data System (ADS)

    Qin, Yi; Tao, Yi; Mao, Yongfang; Tang, Baoping

    2015-12-01

    To realize the quantitative damage detection of a rotor, firstly an impedance analytic model is built. Then the change of bending stiffness is introduced as the damage index. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used. The electro-mechanical (E/M) coupled impedance expression of an undamaged rotor is derived with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection algorithm is proposed. In this paper, a preset damage configuration is used for the numerical simulation and experiment validation. The detection results have shown that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.

  3. Positive impedance humidity sensors via single-component materials.

    PubMed

    Qian, Jingwen; Peng, Zhijian; Shen, Zhenguang; Zhao, Zengying; Zhang, Guoliang; Fu, Xiuli

    2016-05-06

    Resistivity-type humidity sensors have been investigated with great interest due to the increasing demands in industry, agriculture and daily life. To date, most of the available humidity sensors have been fabricated based on negative humidity impedance, in which the electrical resistance decreases as the humidity increases, and only several carbon composites have been reported to present positive humidity impedance. However, here we fabricate positive impedance humidity sensors only via single-component WO3-x crystals. The resistance of WO3-x crystal sensors in response to relative humidity could be tuned from a negative to positive one by increasing the compositional x. And it was revealed that the positive humidity impedance was driven by the defects of oxygen vacancy. This result will extend the application field of humidity sensors, because the positive humidity impedance sensors would be more energy-efficient, easier to be miniaturized and electrically safer than their negative counterparts for their lower operation voltages. And we believe that constructing vacancies in semiconducting materials is a universal way to fabricate positive impedance humidity sensors.

  4. Feasibility of Bioelectrical Impedance Spectroscopy Measurement before and after Thoracentesis

    PubMed Central

    Weyer, Sören; Pauly, Karolin; Napp, Andreas; Dreher, Michael; Leonhardt, Steffen; Marx, Nikolaus; Schauerte, Patrick; Mischke, Karl

    2015-01-01

    Background. Bioelectrical impedance spectroscopy is applied to measure changes in tissue composition. The aim of this study was to evaluate its feasibility in measuring the fluid shift after thoracentesis in patients with pleural effusion. Methods. 45 participants (21 with pleural effusion and 24 healthy subjects) were included. Bioelectrical impedance was analyzed for “Transthoracic,” “Foot to Foot,” “Foot to Hand,” and “Hand to Hand” vectors in low and high frequency domain before and after thoracentesis. Healthy subjects were measured at a single time point. Results. The mean volume of removed pleural effusion was 1169 ± 513 mL. The “Foot to Foot,” “Hand to Hand,” and “Foot to Hand” vector indicated a trend for increased bioelectrical impedance after thoracentesis. Values for the low frequency domain in the “Transthoracic” vector increased significantly (P < 0.001). A moderate correlation was observed between the amount of removed fluid and impedance change in the low frequency domain using the “Foot to Hand” vector (r = −0.7). Conclusion. Bioelectrical impedance changes in correlation with the thoracic fluid level. It was feasible to monitor significant fluid shifts and loss after thoracentesis in the “Transthoracic” vector by means of bioelectrical impedance spectroscopy. The trial is registered with Registration Numbers IRB EK206/11 and NCT01778270. PMID:25861647

  5. Computer simulations of the impedance response of lithium rechargeable batteries

    SciTech Connect

    Doyle, M.; Meyers, J.P.; Newman, J.

    2000-01-01

    A mathematical model is developed to simulate the impedance response of a wide range of lithium rechargeable battery systems. The mathematical model is a macroscopic model of a full-cell sandwich utilizing porous electrode theory to treat the electrode region and concentrated solution theory for transport processes in solution. Insertion processes are described with charge-transfer kinetic expressions and solid-phase diffusion of lithium into the active electrode material. The impedance model assumes steady-state conditions and a linear response with the perturbation applied about the open-circuit condition for the battery. The simulated impedance response of a specific system, the lithium-polymer cell Li{vert{underscore}bar}PEO{sub 18}LiCF{sub 3}So{sub 3}{vert{underscore}bar}LiTiS{sub 2}, is analyzed in more detail to illustrate several features of the impedance behavior. Particular attention is paid to the measurement of solid-phase lithium-ion diffusion coefficients in the insertion electrodes using impedance techniques. A number of complications that can lead to errors in diffusion-coefficient measurements based on impedance techniques are discussed.

  6. Positive impedance humidity sensors via single-component materials

    PubMed Central

    Qian, Jingwen; Peng, Zhijian; Shen, Zhenguang; Zhao, Zengying; Zhang, Guoliang; Fu, Xiuli

    2016-01-01

    Resistivity-type humidity sensors have been investigated with great interest due to the increasing demands in industry, agriculture and daily life. To date, most of the available humidity sensors have been fabricated based on negative humidity impedance, in which the electrical resistance decreases as the humidity increases, and only several carbon composites have been reported to present positive humidity impedance. However, here we fabricate positive impedance humidity sensors only via single-component WO3−x crystals. The resistance of WO3−x crystal sensors in response to relative humidity could be tuned from a negative to positive one by increasing the compositional x. And it was revealed that the positive humidity impedance was driven by the defects of oxygen vacancy. This result will extend the application field of humidity sensors, because the positive humidity impedance sensors would be more energy-efficient, easier to be miniaturized and electrically safer than their negative counterparts for their lower operation voltages. And we believe that constructing vacancies in semiconducting materials is a universal way to fabricate positive impedance humidity sensors. PMID:27150936

  7. Validation of an Acoustic Impedance Prediction Model for Skewed Resonators

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.; Parrott, Tony L.

    2009-01-01

    An impedance prediction model was validated experimentally to determine the composite impedance of a series of high-aspect ratio slot resonators incorporating channel skew and sharp bends. Such structures are useful for packaging acoustic liners into constrained spaces for turbofan noise control applications. A formulation of the Zwikker-Kosten Transmission Line (ZKTL) model, incorporating the Richards correction for rectangular channels, is used to calculate the composite normalized impedance of a series of six multi-slot resonator arrays with constant channel length. Experimentally, acoustic data was acquired in the NASA Langley Normal Incidence Tube over the frequency range of 500 to 3500 Hz at 120 and 140 dB OASPL. Normalized impedance was reduced using the Two-Microphone Method for the various combinations of channel skew and sharp 90o and 180o bends. Results show that the presence of skew and/or sharp bends does not significantly alter the impedance of a slot resonator as compared to a straight resonator of the same total channel length. ZKTL predicts the impedance of such resonators very well over the frequency range of interest. The model can be used to design arrays of slot resonators that can be packaged into complex geometries heretofore unsuitable for effective acoustic treatment.

  8. Damage detection technique by measuring laser-based mechanical impedance

    SciTech Connect

    Lee, Hyeonseok; Sohn, Hoon

    2014-02-18

    This study proposes a method for measurement of mechanical impedance using noncontact laser ultrasound. The measurement of mechanical impedance has been of great interest in nondestructive testing (NDT) or structural health monitoring (SHM) since mechanical impedance is sensitive even to small-sized structural defects. Conventional impedance measurements, however, have been based on electromechanical impedance (EMI) using contact-type piezoelectric transducers, which show deteriorated performances induced by the effects of a) Curie temperature limitations, b) electromagnetic interference (EMI), c) bonding layers and etc. This study aims to tackle the limitations of conventional EMI measurement by utilizing laser-based mechanical impedance (LMI) measurement. The LMI response, which is equivalent to a steady-state ultrasound response, is generated by shooting the pulse laser beam to the target structure, and is acquired by measuring the out-of-plane velocity using a laser vibrometer. The formation of the LMI response is observed through the thermo-mechanical finite element analysis. The feasibility of applying the LMI technique for damage detection is experimentally verified using a pipe specimen under high temperature environment.

  9. Optimization and Control of Acoustic Liner Impedance with Bias Flow

    NASA Technical Reports Server (NTRS)

    Wood, Houston; Follet, Jesse

    2000-01-01

    Because communities are impacted by steady increases in aircraft traffic, aircraft noise continues to be a growing problem for the growth of commercial aviation. Research has focused on improving the design of specific high noise source areas of aircraft and on noise control measures to alleviate noise radiated from aircraft to the surrounding environment. Engine duct liners have long been a principal means of attenuating engine noise. The ability to control in-situ the acoustic impedance of a liner would provide a valuable tool to improve the performance of liners. The acoustic impedance of a liner is directly related to the sound absorption qualities of that liner. Increased attenuation rates, the ability to change liner acoustic impedance to match various operating conditions, or the ability to tune a liner to more precisely match design impedance represent some ways that in-situ impedance control could be useful. With this in mind, the research to be investigated will focus on improvements in the ability to control liner impedance using a mean flow through the liner which is referred to as bias flow.

  10. Optical approximation in the theory of geometric impedance

    NASA Astrophysics Data System (ADS)

    Stupakov, G.; Bane, K. L. F.; Zagorodnov, I.

    2007-05-01

    In this paper we introduce an optical approximation into the theory of impedance calculation, one valid in the limit of high frequencies. This approximation neglects diffraction effects in the radiation process, and is conceptually equivalent to the approximation of geometric optics in electromagnetic theory. Using this approximation, we derive equations for the longitudinal impedance for arbitrary offsets, with respect to a reference orbit, of source and test particles. With the help of the Panofsky-Wenzel theorem, we also obtain expressions for the transverse impedance (also for arbitrary offsets). We further simplify these expressions for the case of the small offsets that are typical for practical applications. Our final expressions for the impedance, in the general case, involve two-dimensional integrals over various cross sections of the transition. We further demonstrate, for several known axisymmetric examples, how our method is applied to the calculation of impedances. Finally, we discuss the accuracy of the optical approximation and its relation to the diffraction regime in the theory of impedance.

  11. Positive impedance humidity sensors via single-component materials

    NASA Astrophysics Data System (ADS)

    Qian, Jingwen; Peng, Zhijian; Shen, Zhenguang; Zhao, Zengying; Zhang, Guoliang; Fu, Xiuli

    2016-05-01

    Resistivity-type humidity sensors have been investigated with great interest due to the increasing demands in industry, agriculture and daily life. To date, most of the available humidity sensors have been fabricated based on negative humidity impedance, in which the electrical resistance decreases as the humidity increases, and only several carbon composites have been reported to present positive humidity impedance. However, here we fabricate positive impedance humidity sensors only via single-component WO3‑x crystals. The resistance of WO3‑x crystal sensors in response to relative humidity could be tuned from a negative to positive one by increasing the compositional x. And it was revealed that the positive humidity impedance was driven by the defects of oxygen vacancy. This result will extend the application field of humidity sensors, because the positive humidity impedance sensors would be more energy-efficient, easier to be miniaturized and electrically safer than their negative counterparts for their lower operation voltages. And we believe that constructing vacancies in semiconducting materials is a universal way to fabricate positive impedance humidity sensors.

  12. Implementation and Validation of an Impedance Eduction Technique

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.; Gerhold, Carl H.

    2011-01-01

    Implementation of a pressure gradient method of impedance eduction in two NASA Langley flow ducts is described. The Grazing Flow Impedance Tube only supports plane-wave sources, while the Curved Duct Test Rig supports sources that contain higher-order modes. Multiple exercises are used to validate this new impedance eduction method. First, synthesized data for a hard wall insert and a conventional liner mounted in the Grazing Flow Impedance Tube are used as input to the two impedance eduction methods, the pressure gradient method and a previously validated wall pressure method. Comparisons between the two results are excellent. Next, data measured in the Grazing Flow Impedance Tube are used as input to both methods. Results from the two methods compare quite favorably for sufficiently low Mach numbers but this comparison degrades at Mach 0.5, especially when the hard wall insert is used. Finally, data measured with a hard wall insert mounted in the Curved Duct Test Rig are used as input to the pressure gradient method. Significant deviation from the known solution is observed, which is believed to be largely due to 3-D effects in this flow duct. Potential solutions to this issue are currently being explored.

  13. Skin impedance comparisons of electrodes for electro-oculography.

    PubMed

    Lee, J B; Reinecke, R D

    1991-01-01

    In an effort to define the most comfortable electrode needing the simplest skin preparation with low and stable skin impedance, we compared the impedance between skin electrodes and Stat-Trace II St-102 EKG electrodes (Niko Med USA, New Brunswick, NJ)--the latter being renamed "dry electrodes" because they are used without electrolyte paste--on 12 normal subjects with two different skin preparations, with and without alcohol. The dry electrodes were found to have lower impedance than the skin electrodes. With each skin preparation the alcohol scored better, 7.2 kOhm vs 16.5 kOhm, respectively, and "no preparation" worse, 13.8 kOhm vs 22.7 kOhm, respectively, (but still acceptable when the dry electrode was used). The dry electrode's impedance was quite stable from the moment of application while the skin electrode's impedance drifted dramatically for 30 minutes. If the dry electrode was halved in area of skin contact, as often is necessary with the nasal electrode in children, the impedance rose proportionally but remained acceptable. We conclude that the new dry electrodes give us improved electro-oculography records and suggest their use, particularly for infants and young children where ease of application and simple skin preparation are particularly important.

  14. Clinical implementation of electrical impedance tomography with hyperthermia.

    PubMed

    Moskowitz, M J; Ryan, T P; Paulsen, K D; Mitchell, S E

    1995-01-01

    We describe the use of electrical impedance tomography (EIT) for non-invasive thermal imaging in conjunction with a clinical treatment of a superficial scalp lesion utilizing a spiral microstrip antenna. This is our first reported use of EIT with a clinical hyperthermia treatment and perhaps the first world-wide. The thermal measurements recorded during treatment compare favourably with the images reconstructed from impedance data gathered during heating. A linear relation, measured in phantom material, between the change in temperature with the change in reconstructed impedance was assumed. The average discrepancy between the measured temperature changes with the temperatures reconstructed from the impedance changes was 1.4 degrees C, with the maximum being 8.9 degrees C. These preliminary data suggest that impedance changes can be measured during hyperthermia delivery and temperature estimates based on these observed changes are possible in the clinical setting. These findings also point to the complex, yet critical nature of the impedance versus temperature relationship for tissue in vivo. The reconstructed thermal images may provide complementary information about the overall thermal damage imposed during heating. Based on this initial clinical experience we feel that EIT has great potential as a viable clinical aid in imaging the temperature changes imposed during hyperthermia. PMID:7790730

  15. Cyclotron and linac production of Ac-225.

    PubMed

    Melville, Graeme; Allen, Barry J

    2009-04-01

    Radium needles that were once implanted into tumours as a cancer treatment are now obsolete and constitute a radioactive waste problem, as their half-life is 1600 years. The reduction of radium by photonuclear transmutation by bombarding Ra-226 with high-energy photons from a medical linear accelerator (linac) has been investigated. A linac dose of 2800 Gy produced about 2.4 MBq (64 microCi) of Ra-225, which decays to Ac-225 and can then be used for 'Targeted Alpha Therapy' (TAT) of cancer. This result, while consistent with theoretical calculations, is far too low to be of practical use unless much larger quantities of radium are irradiated. The increasing application of Ac-225 for cancer therapy indicates the potential need for its increased production and availability. This paper investigates the possibility of producing of Ac-225 in commercial quantities, which could potentially reduce obsolete radioactive material and displace the need for expensive importation of Ac-225 from the USA and Russia in the years ahead. Scaled up production of Ac-225 could theoretically be achieved by the use of a high current cyclotron or linac. Production specifications are determined for a linac in terms of current, pulse length and frequency, as well as an examination of other factors such as radiation issues and radionuclei separation. Yields are compared with those calculated for the Australian National Cyclotron in Sydney.

  16. Design and synthesis of 225Ac radioimmunopharmaceuticals.

    PubMed

    McDevitt, Michael R; Ma, Dangshe; Simon, Jim; Frank, R Keith; Scheinberg, David A

    2002-12-01

    The alpha-particle-emitting radionuclides 213Bi, 211At, 224Ra are under investigation for the treatment of leukemias, gliomas, and ankylosing spondylitis, respectively. 213Bi and 211At were attached to monoclonal antibodies and used as targeted immunotherapeutic agents while unconjugated 224Ra chloride selectively seeks bone. 225Ac possesses favorable physical properties for radioimmunotherapy (10d half-life and 4 net alpha particles), but has a history of unfavorable radiolabeling chemistry and poor metal-chelate stability. We selected functionalized derivatives of DOTA as the most promising to pursue from out of a group of potential 225Ac chelate compounds. A two-step synthetic process employing either MeO-DOTA-NCS or 2B-DOTA-NCS as the chelating moiety was developed to attach 225Ac to monoclonal antibodies. This method was tested using several different IgG systems. The chelation reaction yield in the first step was 93+/-8% radiochemically pure (n=26). The second step yielded 225Ac-DOTA-IgG constructs that were 95+/-5% radiochemically pure (n=27) and the mean percent immunoreactivity ranged from 25% to 81%, depending on the antibody used. This process has yielded several potential novel targeted 225Ac-labeled immunotherapeutic agents that may now be evaluated in appropriate model systems and ultimately in humans.

  17. Cosmic Shear - with ACS Pure Parallel Observations

    NASA Astrophysics Data System (ADS)

    Ratnatunga, Kavan

    2002-07-01

    The ACS, with greater sensitivity and sky coverage, will extend our ability to measure the weak gravitational lensing of galaxy images caused by the large scale distribution of dark matter. We propose to use the ACS in pure parallel {non- proprietary} mode, following the guidelines of the ACS Default Pure Parallel Program. Using the HST Medium Deep Survey WFPC2 database we have measured cosmic shear at arc-min angular scales. The MDS image parameters, in particular the galaxy orientations and axis ratios, are such that any residual corrections due to errors in the PSF or jitter are much smaller than the measured signal. This situation is in stark contrast with ground-based observations. We have also developed a statistical analysis procedure to derive unbiased estimates of cosmic shear from a large number of fields, each of which has a very small number of galaxies. We have therefore set the stage for measurements with the ACS at fainter apparent magnitudes and smaller, 10 arc-second scales corresponding to larger cosmological distances. We will adapt existing MDS WFPC2 maximum likelihood galaxy image analysis algorithms to work with the ACS. The analysis would also yield an online database similar to that in archive.stsci.edu/mds/

  18. AC conductivity and its scaling behavior in MgO-Li2O-B2O3-Bi2O3 glasses

    NASA Astrophysics Data System (ADS)

    Purnima, M.; Bale, Shashidhar; Samee, M. A.; Ahmmad, Shaik Kareem; Rahman, Syed

    2013-02-01

    In the present work, the compositional dependence of density, refractive index and glass transition temperature of xMgO-(25-x)Li2O-50B2O3-25Bi2O3 glasses is studied. Impedance spectroscopy technique is employed on these samples and the data are analyzed using Cole-Cole type impedance response function. The AC conductivity behavior of the present glasses has been investigated in the frequency range from 100 Hz to 1 MHz and as a function of temperature the measured AC data are analyzed using the Jonscher’s universal power law to explain the observed dispersive behavior of the electrical conductivity. The temperature and composition dependence scaling behavior in the AC conductivity are satisfactorily explained by scaling the AC conductivity σ‧(ω) by hopping frequency ωp. The frequency response of dielectric constant ɛ‧ and dielectric loss tanδ as a function of temperature were studied. The tanδ peak shifts to higher frequency with increasing temperature, indicating dipolar relaxation character of dielectric loss in the present glasses.

  19. I-BIEM calculations of the frequency dispersion and ac current distribution at disk and ring-disk electrodes

    NASA Technical Reports Server (NTRS)

    Cahan, Boris D.

    1991-01-01

    The Iterative Boundary Integral Equation Method (I-BIEM) has been applied to the problem of frequency dispersion at a disk electrode in a finite geometry. The I-BIEM permits the direct evaluation of the AC potential (a complex variable) using complex boundary conditions. The point spacing was made highly nonuniform, to give extremely high resolution in those regions where the variables change most rapidly, i.e., in the vicinity of the edge of the disk. Results are analyzed with respect to IR correction, equipotential surfaces, and reference electrode placement. The current distribution is also examined for a ring-disk configuration, with the ring and the disk at the same AC potential. It is shown that the apparent impedance of the disk is inductive at higher frequencies. The results are compared to analytic calculations from the literature, and usually agree to better than 0.001 percent.

  20. I-BIEM calculations of the frequency dispersion and AC current distribution at disk and ring-disk electrodes

    NASA Technical Reports Server (NTRS)

    Cahan, Boris D.

    1991-01-01

    The Iterative Boundary Integral Equation Method (I-BIEM) has been applied to the problem of frequency dispersion at a disk electrode in a finite geometry. The I-BIEM permits the direct evaluation of the AC potential (a complex variable) using complex boundary conditions. The point spacing was made highly nonuniform, to give extremely high resolution in those regions where the variables change most rapidly, i.e., in the vicinity of the edge of the disk. Results are analyzed with respect to IR correction, equipotential surfaces, and reference electrode placement. The current distribution is also examined for a ring-disk configuration, with the ring and the disk at the same AC potential. It is shown that the apparent impedance of the disk is inductive at higher frequencies. The results are compared to analytic calculations from the literature, and usually agree to better than 0.001 percent.

  1. ac propulsion system for an electric vehicle

    NASA Technical Reports Server (NTRS)

    Geppert, S.

    1980-01-01

    It is pointed out that dc drives will be the logical choice for current production electric vehicles (EV). However, by the mid-80's, there is a good chance that the price and reliability of suitable high-power semiconductors will allow for a competitive ac system. The driving force behind the ac approach is the induction motor, which has specific advantages relative to a dc shunt or series traction motor. These advantages would be an important factor in the case of a vehicle for which low maintenance characteristics are of primary importance. A description of an EV ac propulsion system is provided, taking into account the logic controller, the inverter, the motor, and a two-speed transmission-differential-axle assembly. The main barrier to the employment of the considered propulsion system in EV is not any technical problem, but inverter transistor cost.

  2. Atrial-caval shunting (ACS) after trauma.

    PubMed

    Kudsk, K A; Sheldon, G F; Lim, R C

    1982-02-01

    Since 1968 the atrial-caval shunt (ACS), along with inflow occlusion at the porta hepatis, has been used at San Francisco General Hospital in 18 trauma patients to control massive hemorrhage from the inferior vena cava, hepatic veins, or liver. Thirteen patients died from irreversible shock. Five patients survived their initial injuries; one of them died 45 days later from the complications of shock and sepsis. No patients survived who sustained blunt trauma and were admitted in cardiac arrest. Only one of ten patients with BP less than 70 mm Hg after resuscitation survived, whereas four of eight with BP greater than 70 mm Hg survived. ACS was used to control caval injuries in seven patients (one survivor), severe hepatic parenchymal fractures in four patients (two survivors), and combined hepatic and caval injuries in seven patients (two survivors). Survivors had an average of 5.75 associated injuries; nonsurvivors had 3.8. No complications of ACS occurred in the surviving patients.

  3. Beneficial Effects of Adenylyl Cyclase Type 6 (AC6) Expression Persist Using a Catalytically Inactive AC6 Mutant

    PubMed Central

    Tang, Tong; Lai, Ngai Chin; Miyanohara, Atsushi; Guo, Tracy; Tang, Rouying; Firth, Amy L.; Yuan, Jason X.; Hammond, H. Kirk

    2011-01-01

    Cardiac-directed expression of AC6 has pronounced favorable effects on cardiac function possibly not linked with cAMP production. To determine rigorously whether cAMP generation is required for the beneficial effects of increased AC6 expression, we generated a catalytically inactive AC6 mutant (AC6mut) that has markedly diminished cAMP generating capacity by replacing aspartic acid with alanine at position 426 in the C1 domain (catalytic region) of AC6. Gene transfer of AC6 or AC6mut (adenovirus-mediated) in adult rat cardiac myocytes resulted in similar expression levels and intracellular distribution, but AC6mut expression was associated with marked reduction in cAMP production. Despite marked reduction in cAMP generation, AC6mut influenced intracellular signaling events similarly to that observed after expression of catalytically intact AC6. For example, both AC6 and AC6mut reduced phenylephrine-induced cardiac myocyte hypertrophy and apoptosis (p < 0.001), expression of cardiac ankyrin repeat protein (p < 0.01), and phospholamban (p < 0.05). AC6mut expression, similar to its catalytically intact cohort, was associated with increased Ca2+ transients in cardiac myocytes after isoproterenol stimulation. Many of the biological effects of AC6 expression are replicated by a catalytically inactive AC6 mutant, indicating that the mechanisms for these effects do not require increased cAMP generation. PMID:21127130

  4. Analysis and design of triple-band high-impedance surface absorber with periodic diversified impedance

    NASA Astrophysics Data System (ADS)

    Rui Zhang, Guo; Heng Zhou, Pei; Bin Zhang, Hui; Bo Zhang, Lin; Liang Xie, Jian; Jiang Deng, Long

    2013-10-01

    In this paper, a triple-band planar absorber with high-impedance surface (HIS) is designed and fabricated. The absorber structure is composed of polyurethane foam sandwiched between a lossy sheet of frequency selective surfaces (FSS) and a perfect electric conductor. The lossy FSS possesses different resistances in a periodic composite unit as compared with typical HIS absorber. Losses in the FSS are introduced by printing the periodic composite square ring pattern on blank stickers using various resistive inks. Physical mechanism of the HIS absorbers is analyzed by equivalent circuit model and electric field distribution studies. The proposed absorber with periodic composite units offers superimposed triple-band absorption as compared with that of the single units having single- or dual-band absorption characteristics. The reflection loss measurements show that the 90% absorption bandwidth of the HIS absorber is increased by 42% by the proposed composite periodic units.

  5. Electron transfer at the contact between Al electrode and gold nanoparticles of polymer: Nanoparticle resistive switching devices studied by alternating current impedance spectroscopy

    SciTech Connect

    Ouyang, Jianyong

    2013-12-02

    Electron transfer at the contact between an Al electrode and Au nanoparticles of polymer:nanoparticle devices is studied by ac impedance spectroscopy. The devices have a polystyrene layer embedded with Au nanoparticles capped with conjugated 2-naphthalenethiol sandwiched between Al and MoO{sub 3}/Al electrodes, and they exhibit electrode-sensitive resistive switches. The devices in the pristine or high resistance state have high capacitance. The capacitance decreases after the devices switch to a low resistance state by a voltage scan. The change in the capacitance is attributed to the voltage-induced change on the electronic structure of the contact between the Al electrode and Au nanoparticles.

  6. Correcting electrode impedance effects in broadband SIP measurements

    NASA Astrophysics Data System (ADS)

    Huisman, Johan Alexander; Zimmermann, Egon; Esser, Odilia; Haegel, Franz-Hubert; Vereecken, Harry

    2016-04-01

    Broadband spectral induced polarization (SIP) measurements of the complex electrical resistivity can be affected by the contact impedance of the potential electrodes above 100 Hz. In this study, we present a correction procedure to remove electrode impedance effects from SIP measurements. The first step in this correction procedure is to estimate the electrode impedance using a measurement with reversed current and potential electrodes. In a second step, this estimated electrode impedance is used to correct SIP measurements based on a simplified electrical model of the SIP measurement system. We evaluated this new correction procedure using SIP measurements on water because of the well-defined dielectric properties. It was found that the difference between the corrected and expected phase of the complex electrical resistivity of water was below 0.1 mrad at 1 kHz for a wide range of electrode impedances. In addition, SIP measurements on a saturated unconsolidated sediment sample with two types of potential electrodes showed that the measured phase of the electrical resistivity was very similar (difference <0.2 mrad) up to a frequency of 10 kHz after the effect of the different electrode impedances was removed. Finally, SIP measurements on variably saturated unconsolidated sand were made. Here, the plausibility of the phase of the electrical resistivity was improved for frequencies up to 1 kHz, but errors remained for higher frequencies due to the approximate nature of the electrode impedance estimates and some remaining unknown parasitic capacitances that led to current leakage. It was concluded that the proposed correction procedure for SIP measurements improved the accuracy of the phase measurements by an order of magnitude in the kHz frequency range. Further improvement of this accuracy requires a method to accurately estimate parasitic capacitances in situ.

  7. [The design of a new respiratory detecting system using impedance method].

    PubMed

    Liu, Baohua

    2003-09-01

    A coupling principle of reflecting impedance based on resonance is designed to achieve impedance detection with high sensitivity. It is characterized by small impelled current, high sensitivity and simple circuit. The principle can be used not only in detecting human respiratory impedance, but also in detecting the bio-impedance of other human organs. It may find wide application in this aspect.

  8. Transient AC voltage related phenomena for HVDC schemes connected to weak AC systems

    SciTech Connect

    Pilotto, L.A.S.; Szechtman, M. ); Hammad, A.E. )

    1992-07-01

    In this paper a didactic explanation of voltage stability associated phenomena at HVDC terminals is presented. Conditions leading to ac voltage collapse problems are identified. A mechanism that excites control-induced voltage oscillations is shown. The voltage stability factor is used for obtaining the maximum power limits of ac/dc systems operating with different control strategies. Correlation to Pd {times} Id curves is given. Solutions for eliminating the risks of voltage collapse and for avoiding control-induced oscillations are discussed. The results are supported by detailed digital simulations of a weak ac/dc system using EMTP.

  9. AcsA-AcsB: The core of the cellulose synthase complex from Gluconacetobacter hansenii ATCC23769.

    PubMed

    McManus, John B; Deng, Ying; Nagachar, Nivedita; Kao, Teh-hui; Tien, Ming

    2016-01-01

    The gram-negative bacterium, Gluconacetobacter hansenii, produces cellulose of exceptionally high crystallinity in comparison to the cellulose of higher plants. This bacterial cellulose is synthesized and extruded into the extracellular medium by the cellulose synthase complex (CSC). The catalytic component of this complex is encoded by the gene AcsAB. However, several other genes are known to encode proteins critical to cellulose synthesis and are likely components of the bacterial CSC. We have purified an active heterodimer AcsA-AcsB from G. hansenii ATCC23769 to homogeneity by two different methods. With the purified protein, we have determined how it is post-translationally processed, forming the active heterodimer AcsA-AcsB. Additionally, we have performed steady-state kinetic studies on the AcsA-AcsB complex. Finally through mutagenesis studies, we have explored the roles of the postulated CSC proteins AcsC, AcsD, and CcpAx. PMID:26672449

  10. AcsA-AcsB: The core of the cellulose synthase complex from Gluconacetobacter hansenii ATCC23769.

    PubMed

    McManus, John B; Deng, Ying; Nagachar, Nivedita; Kao, Teh-hui; Tien, Ming

    2016-01-01

    The gram-negative bacterium, Gluconacetobacter hansenii, produces cellulose of exceptionally high crystallinity in comparison to the cellulose of higher plants. This bacterial cellulose is synthesized and extruded into the extracellular medium by the cellulose synthase complex (CSC). The catalytic component of this complex is encoded by the gene AcsAB. However, several other genes are known to encode proteins critical to cellulose synthesis and are likely components of the bacterial CSC. We have purified an active heterodimer AcsA-AcsB from G. hansenii ATCC23769 to homogeneity by two different methods. With the purified protein, we have determined how it is post-translationally processed, forming the active heterodimer AcsA-AcsB. Additionally, we have performed steady-state kinetic studies on the AcsA-AcsB complex. Finally through mutagenesis studies, we have explored the roles of the postulated CSC proteins AcsC, AcsD, and CcpAx.

  11. Data analysis in multiple-frequency bioelectrical impedance analysis.

    PubMed

    Cornish, B H; Ward, L C

    1998-05-01

    The performance of three analytical methods for multiple-frequency bioelectrical impedance analysis (MFBIA) data was assessed. The methods were the established method of Cole and Cole, the newly proposed method of Siconolfi and co-workers and a modification of this procedure. Method performance was assessed from the adequacy of the curve fitting techniques, as judged by the correlation coefficient and standard error of the estimate, and the accuracy of the different methods in determining the theoretical values of impedance parameters describing a set of model electrical circuits. The experimental data were well fitted by all curve-fitting procedures (r = 0.9 with SEE 0.3 to 3.5% or better for most circuit-procedure combinations). Cole-Cole modelling provided the most accurate estimates of circuit impedance values, generally within 1-2% of the theoretical values, followed by the Siconolfi procedure using a sixth-order polynomial regression (1-6% variation). None of the methods, however, accurately estimated circuit parameters when the measured impedances were low (< 20 omega) reflecting the electronic limits of the impedance meter used. These data suggest that Cole-Cole modelling remains the preferred method for the analysis of MFBIA data.

  12. Do changes in transcardiac impedance modulation correlate with haemodynamic status?

    PubMed

    Weiss, S M; Einstein, R; Matthews, R J; Leer, T W; Cincunegui, J L; McCulloch, R

    1992-06-01

    Implantable cardiac pacemakers and defibrillators have the ability to revert a variety of arrhythmias to normal sinus rhythm. For correct operation, such devices require accurate arrhythmia classification. Arrhythmia classification by these devices could be improved with the addition of a suitable haemodynamic sensor. This study investigated the use of transcardiac impedance for haemodynamic sensing. Ventricular fibrillation, ventricular tachycardia, electro-mechanical dissociation and five rates of ventricular pacing, each having a different associated level of haemodynamic compromise, were induced in each of seven mongrel dogs. The amplitude responses of the modulations of transcardiac impedance were compared with those of arterial pulse pressure (an established measure of haemodynamic status), and changes in cycle length. The correlation coefficient for changes in transcardiac impedance modulation amplitude and arterial pulse pressure was found to be 0.89. For transcardiac impedance modulation amplitude and cycle length, the correlation coefficient was 0.77, and for arterial pulse pressure and cycle length, the correlation coefficient was 0.85. In the acute anaesthetised dog, changes in the amplitude of transcardiac impedance modulations were shown to reflect different levels of haemodynamic status. PMID:1642572

  13. Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxiang; Chen, Yu; Yan, Mufu; Chen, Fanglin

    2015-06-01

    Linear electrochemical impedance spectroscopy (EIS), and in particular its representation of distribution of relaxation time (DRT), enables the identification of the number of processes and their nature involved in electrochemical cells. With the advantage of high frequency resolution, DRT has recently drawn increasing attention for applications in solid oxide fuel cells (SOFCs). However, the method of DRT reconstruction is not yet presented clearly in terms of what mathematical treatments and theoretical assumptions have been made. Here we present unambiguously a method to reconstruct DRT function of impedance based on Tikhonov regularization. By using the synthetic impedances and analytic DRT functions of RQ element, generalized finite length Warburg element, and Gerischer element with physical quantities representative to those of SOFC processes, we show that the quality of DRT reconstruction is sensitive to the sampling points per decade (ppd) of frequency from the impedance measurement. The robustness of the DRT reconstruction to resist noise imbedded in impedance data and numerical calculations can be accomplished by optimizing the weighting factor λ according to well defined criterion.

  14. Effects of Flow Profile on Educed Acoustic Liner Impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Watson, Willie r.; Nark, Douglas M.

    2010-01-01

    This paper presents results of an investigation of the effects of shear flow profile on impedance eduction processes employed at NASA Langley. Uniform and 1-D shear-flow propagation models are used to educe the acoustic impedance of three test liners based on aeroacoustic data acquired in the Langley Grazing Flow Impedance Tube, at source levels of 130, 140 and 150 dB, and at centerline Mach numbers of 0.0, 0.3 and 0.5. A ceramic tubular, calibration liner is used to evaluate the propagation models, as this liner is expected to be insensitive to SPL, grazing flow Mach number, and flow profile effects. The propagation models are then used to investigate the effects of shear flow profile on acoustic impedances educed for two conventional perforate-over-honeycomb liners. Results achieved with the uniform-flow models follow expected trends, but those educed with the 1-D shear-flow model do not, even for the calibration liner. However, when the flow profile used with the shear-flow model is varied to increase the Mach number gradient near the wall, results computed with the shear-flow model are well matched to those achieved with the uniform-flow model. This indicates the effects of flow profile on educed acoustic liner impedance are small, but more detailed investigations of the flow field throughout the duct are needed to better understand these effects.

  15. Piezogenerator impedance matching using Mason equivalent circuit for harvester identification

    NASA Astrophysics Data System (ADS)

    Li, Yang; Richard, Claude

    2014-04-01

    Any piezoelectric generator structure can be modeled close to its resonance by an equivalent circuit derived from the well known Mason equivalent circuit. This equivalent circuit can therefore be used in order to optimize the harvested power using usual electrical impedance matching. The objective of this paper is to illustrate the full process leading to the definition of the proper passive load allowing the optimization of the harvested energy of any harvesting device. First, the electric equivalent circuit of the generator is derived from the Mason equivalent circuit of a seismic harvester. Theoretical ideal impedance matching and optimal load analyze is then given emphasizing the fact that for a given acceleration a constant optimal output power is achievable for any frequency as long as the optimal load is feasible. Identification of the equivalent circuit of an experimental seismic harvester is then derived and matched impedance is defined both theoretically and experimentally. Results demonstrate that an optimal load can always be obtained and that the corresponding output power is constant. However, it is very sensitive to this impedance, and that even if impedance matching is a longtime well known technique, it is not really experimentally and practically achievable.

  16. Temperature dependence of acoustic impedance for specific fluorocarbon liquids.

    PubMed

    Marsh, Jon N; Hall, Christopher S; Wickline, Samuel A; Lanza, Gregory M

    2002-12-01

    Recent studies by our group have demonstrated the efficacy of perfluorocarbon liquid nanoparticles for enhancing the reflectivity of tissuelike surfaces to which they are bound. The magnitude of this enhancement depends in large part on the difference in impedances of the perfluorocarbon, the bound substrate, and the propagating medium. The impedance varies directly with temperature because both the speed of sound and the mass density of perfluorocarbon liquids are highly temperature dependent. However, there are relatively little data in the literature pertaining to the temperature dependence of the acoustic impedance of these compounds. In this study, the speed of sound and density of seven different fluorocarbon liquids were measured at specific temperatures between 20 degrees C and 45 degrees C. All of the samples demonstrated negative, linear dependencies on temperature for both speed of sound and density and, consequently, for the acoustic impedance. The slope of sound speed was greatest for perfluorohexane (-278 +/- 1.5 cm/s-degrees C) and lowest for perfluorodichlorooctane (-222 +/- 0.9 cm/s-degrees C). Of the compounds measured, perfluorohexane exhibited the lowest acoustic impedance at all temperatures, and perfluorodecalin the highest at all temperatures. Computations from a simple transmission-line model used to predict reflectivity enhancement from surface-bound nanoparticles are discussed in light of these results.

  17. Microfluidic impedance cytometry of tumour cells in blood.

    PubMed

    Spencer, Daniel; Hollis, Veronica; Morgan, Hywel

    2014-11-01

    The dielectric properties of tumour cells are known to differ from normal blood cells, and this difference can be exploited for label-free separation of cells. Conventional measurement techniques are slow and cannot identify rare circulating tumour cells (CTCs) in a realistic timeframe. We use high throughput single cell microfluidic impedance cytometry to measure the dielectric properties of the MCF7 tumour cell line (representative of CTCs), both as pure populations and mixed with whole blood. The data show that the MCF7 cells have a large membrane capacitance and size, enabling clear discrimination from all other leukocytes. Impedance analysis is used to follow changes in cell viability when cells are kept in suspension, a process which can be understood from modelling time-dependent changes in the dielectric properties (predominantly membrane conductivity) of the cells. Impedance cytometry is used to enumerate low numbers of MCF7 cells spiked into whole blood. Chemical lysis is commonly used to remove the abundant erythrocytes, and it is shown that this process does not alter the MCF7 cell count or change their dielectric properties. Combining impedance cytometry with magnetic bead based antibody enrichment enables MCF7 cells to be detected down to 100 MCF7 cells in 1 ml whole blood, a log 3.5 enrichment and a mean recovery of 92%. Microfluidic impedance cytometry could be easily integrated within complex cell separation systems for identification and enumeration of specific cell types, providing a fast in-line single cell characterisation method.

  18. A systematic uncertainty analysis for liner impedance eduction technology

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Bodén, Hans

    2015-11-01

    The so-called impedance eduction technology is widely used for obtaining acoustic properties of liners used in aircraft engines. The measurement uncertainties for this technology are still not well understood though it is essential for data quality assessment and model validation. A systematic framework based on multivariate analysis is presented in this paper to provide 95 percent confidence interval uncertainty estimates in the process of impedance eduction. The analysis is made using a single mode straightforward method based on transmission coefficients involving the classic Ingard-Myers boundary condition. The multivariate technique makes it possible to obtain an uncertainty analysis for the possibly correlated real and imaginary parts of the complex quantities. The results show that the errors in impedance results at low frequency mainly depend on the variability of transmission coefficients, while the mean Mach number accuracy is the most important source of error at high frequencies. The effect of Mach numbers used in the wave dispersion equation and in the Ingard-Myers boundary condition has been separated for comparison of the outcome of impedance eduction. A local Mach number based on friction velocity is suggested as a way to reduce the inconsistencies found when estimating impedance using upstream and downstream acoustic excitation.

  19. Uncertainty Analysis of the Grazing Flow Impedance Tube

    NASA Technical Reports Server (NTRS)

    Brown, Martha C.; Jones, Michael G.; Watson, Willie R.

    2012-01-01

    This paper outlines a methodology to identify the measurement uncertainty of NASA Langley s Grazing Flow Impedance Tube (GFIT) over its operating range, and to identify the parameters that most significantly contribute to the acoustic impedance prediction. Two acoustic liners are used for this study. The first is a single-layer, perforate-over-honeycomb liner that is nonlinear with respect to sound pressure level. The second consists of a wire-mesh facesheet and a honeycomb core, and is linear with respect to sound pressure level. These liners allow for evaluation of the effects of measurement uncertainty on impedances educed with linear and nonlinear liners. In general, the measurement uncertainty is observed to be larger for the nonlinear liners, with the largest uncertainty occurring near anti-resonance. A sensitivity analysis of the aerodynamic parameters (Mach number, static temperature, and static pressure) used in the impedance eduction process is also conducted using a Monte-Carlo approach. This sensitivity analysis demonstrates that the impedance eduction process is virtually insensitive to each of these parameters.

  20. Electro-mechanical analogies for modeling the structural impedance response

    NASA Astrophysics Data System (ADS)

    Zagrai, Andrei

    2007-04-01

    Electro-mechanical (E/M) impedance is a powerful structural identification and health monitoring (SHM) technique that allows for inferring high-frequency structural dynamic characteristics directly by interrogating a network of embedded piezoelectric active sensors. In recent years, there has been a considerable interest in expanding range of applications of the electromechanical impedance technique, its synergistic integration into complementary SHM methodologies, and miniaturizing the associated impedance measurement circuitry. The present work is aimed at developing an E/M impedance modeling approach that explores analogies between electrical and mechanical systems and permits representation of the mechanical system elements in terms of equivalent electrical circuits. The advantage of such a representation is that analytical modeling is substantially simplified by considering a network of electrical elements, mechanical quantities are incorporated directly into the electrical model of a measurement unit, and modern circuit design, simulation and analysis software tools can be employed to improve the method performance. The electro-mechanical model of a piezoelectric impedance sensor is discussed and development of the electrical circuit representation of the sensor-structure interaction is presented. The proposed electrical and existing mechanical models are compared showing a good agreement. Applicability of the developed modeling approach is discussed and examples of numerical calculations are provided. It is suggested that describing a sensor-structure electro-mechanical system in terms of electro-mechanical analogies could simplify analytical modeling and improve instrumentation design.