Science.gov

Sample records for ac high voltage

  1. Topologically protected loop flows in high voltage AC power grids

    NASA Astrophysics Data System (ADS)

    Coletta, T.; Delabays, R.; Adagideli, I.; Jacquod, Ph

    2016-10-01

    Geographical features such as mountain ranges or big lakes and inland seas often result in large closed loops in high voltage AC power grids. Sizable circulating power flows have been recorded around such loops, which take up transmission line capacity and dissipate but do not deliver electric power. Power flows in high voltage AC transmission grids are dominantly governed by voltage angle differences between connected buses, much in the same way as Josephson currents depend on phase differences between tunnel-coupled superconductors. From this previously overlooked similarity we argue here that circulating power flows in AC power grids are analogous to supercurrents flowing in superconducting rings and in rings of Josephson junctions. We investigate how circulating power flows can be created and how they behave in the presence of ohmic dissipation. We show how changing operating conditions may generate them, how significantly more power is ohmically dissipated in their presence and how they are topologically protected, even in the presence of dissipation, so that they persist when operating conditions are returned to their original values. We identify three mechanisms for creating circulating power flows, (i) by loss of stability of the equilibrium state carrying no circulating loop flow, (ii) by tripping of a line traversing a large loop in the network and (iii) by reclosing a loop that tripped or was open earlier. Because voltages are uniquely defined, circulating power flows can take on only discrete values, much in the same way as circulation around vortices is quantized in superfluids.

  2. Switch contact device for interrupting high current, high voltage, AC and DC circuits

    DOEpatents

    Via, Lester C.; Witherspoon, F. Douglas; Ryan, John M.

    2005-01-04

    A high voltage switch contact structure capable of interrupting high voltage, high current AC and DC circuits. The contact structure confines the arc created when contacts open to the thin area between two insulating surfaces in intimate contact. This forces the arc into the shape of a thin sheet which loses heat energy far more rapidly than an arc column having a circular cross-section. These high heat losses require a dramatic increase in the voltage required to maintain the arc, thus extinguishing it when the required voltage exceeds the available voltage. The arc extinguishing process with this invention is not dependent on the occurrence of a current zero crossing and, consequently, is capable of rapidly interrupting both AC and DC circuits. The contact structure achieves its high performance without the use of sulfur hexafluoride.

  3. An Annotated Bibliography of High-Voltage Direct-Current Transmission and Flexible AC Transmission (FACTS) Devices, 1991-1993.

    SciTech Connect

    Litzenberger, Wayne; Lava, Val

    1994-08-01

    References are contained for HVDC systems, converter stations and components, overhead transmission lines, cable transmission, system design and operations, simulation of high voltage direct current systems, high-voltage direct current installations, and flexible AC transmission system (FACTS).

  4. High ac-voltage sensitivity of a quartz needle sensor used in noncontact scanning force microscopy

    NASA Astrophysics Data System (ADS)

    Hartmann, C.; Mertin, W.; Bacher, G.

    2005-11-01

    The ac-voltage sensitivity of a needle sensor used in a scanning force microscope has been investigated. The voltage sensitivity varies depending if the needle sensor is used as an active or passive device. Using it as an active device, we achieve a voltage sensitivity down to 100μV if the frequency and phase of the excitation voltage of the needle sensor is matched to the voltage of the device under test.

  5. Metrological traceability for AC High-Voltage in Inmetro up to 40 kV

    NASA Astrophysics Data System (ADS)

    Vitorio, P. C. O.; de Lima, V. R.; Borges Filho, O.; de Souza, L. A. A.; Asencios, O. W. G.

    2016-07-01

    This paper refers to a project carried out in Inmetro aiming to provide internal metrological traceability for 60 Hz AC High-Voltage up to 40 kV. It presents details about the method used, its equations and obtained results. A capacitance and tanb bridge, with a built-in current comparator, was used in combination with two standard capacitors to calibrate a standard potential transformer (PT), both in ratio and phase angle. The results obtained by Inmetro showed good agreement with PTB ones, for the same PT. The maximum estimated uncertainty was 0,0049% for ratio error and 104 μrad for phase angle error.

  6. Spectral response of atmospheric electric field measurements near AC high voltage power lines

    NASA Astrophysics Data System (ADS)

    Silva, H. G.; Matthews, J. C.; Wright, M. D.; Shallcross, D. E.

    2015-10-01

    To understand the influence of corona ion emission on the atmospheric electrical field, measurements were made near to two AC high voltage power lines. A JCI 131 field-mill recorded the atmospheric electric field over one year. Meteorological measurements were also taken. The data series is divided in four zones (dependent on wind direction): whole zones, Z0; zone 1, Z1; zone 2, Z2; zone 3, Z3. Z3 is the least affected by corona ion emission and for that reason it is used as a reference against Z1 and Z2, which are strongly influenced by this phenomena. Analysis was undertaken for all weather days and dry days only. The Lomb-Scargle strategy developed for unevenly spaced time-series is used to calculate the spectral response of the aforementioned zones. Only frequencies above 1 minute are considered.

  7. Air ion mobility spectra and concentrations upwind and downwind of overhead AC high voltage power lines

    NASA Astrophysics Data System (ADS)

    Wright, Matthew D.; Buckley, Alison J.; Matthews, James C.; Shallcross, Dudley E.; Henshaw, Denis L.

    2014-10-01

    Corona ions produced by high-voltage power lines (HVPLs) can alter the nearby electrical environment, potentially increasing aerosol charge levels downwind. However, there is a lack of knowledge concerning the concentration and mobility of ions from AC HVPLs and their dispersion away from the line. We present ion concentration and mobility measurements made near AC HVPLs in South-West England. Examples of typical mobility spectra are shown highlighting features commonly observed. Corona was observed during 33 of 46 measurements, at 9 of 11 sites, with positive or ‘bipolar' (both polarities) ion production commonly seen. Ion production usually increases atmospheric concentrations by only a modest amount, but extreme cases can enhance concentration by an order of magnitude or more. A polarity imbalance is required to increase aerosol charge via ion attachment; this was observed on 15 of 24 days when positive corona was observed, but was not seen for negative ions. Ion mobility was higher downwind compared with upwind for both ion polarities, but the increase was not statistically significant. Future work should focus on identifying and characterising ‘heavy-producing' HVPLs, and obtaining results in conditions which may favour negative ion production e.g. high humidity, inclement weather or during nighttime.

  8. The Space Charge Effect on the Discharge Current in Cross-Linked Polyethylene under High AC Voltages

    NASA Astrophysics Data System (ADS)

    Kwon, Yoon-Hyeok; Hwangbo, Seung; Lee, June-Ho; Yi, Dong-Young; Han, Min-Koo

    2003-12-01

    The space charge distributions in solid dielectrics have been usually investigated by means of the pulsed electroacoustic (PEA) method. However, most previous studies have been limited to the phenomenological analysis under DC voltages. In our study, the space charge distribution in cross-linked polyethylene (XLPE) has been measured using AC voltages by means of the modified PEA method. Simultaneously, the streamer discharges in an air gap have been measured in order to investigate the relationship between space charge and discharge current, and the relationship has been adapted to the case of dielectric barrier discharge. At high AC voltages, discharge current increases to the critical point, but no further increase is exhibited over the critical voltage and the discharge pattern is resolved by the space charge. This result indicates that the frequency effect and space charge characteristics of dielectric materials are preferred to the voltage effect in the adaptation to dielectric barrier discharge. The results well explain the space charge effect on partial discharge and the dielectric barrier discharge phenomenon.

  9. Characteristics of corona impulses from insulated wires subjected to high ac voltages

    NASA Technical Reports Server (NTRS)

    Doreswamy, C. V.; Crowell, C. S.

    1976-01-01

    Corona discharges arise due to ionization of air or gas subject to high electric fields. The free electrons and ions contained in these discharges interact with molecules of insulating materials, resulting in chemical changes and destroying the electrical insulating properties. The paper describes some results of measurements aimed at determining corona pulse waveforms, their repetition rate, and amplitude distribution during various randomly-sampled identical time periods of a 60-Hz high-voltage wave. Described are properties of positive and negative corona impulses generated from typical conductors at various test high voltages. A possible method for calculating the energies, densities, and electromagnetic interferences by making use of these results is suggested.

  10. Voltage source ac-to-dc converters for high-power transmitters

    NASA Technical Reports Server (NTRS)

    Cormier, R.

    1990-01-01

    This work was done to optimize the design of the components used for the beam power supply, which is a component of the transmitters in the Deep Space Network (DSN). The major findings are: (1) the difference in regulation between a six-pulse and a twelve-pulse converter is at most 7 percent worse for the twelve-pulse converter; (2) the commutation overlap angle of a current source converter equals that of a voltage source converter with continuous line currents; (3) the sources of uncharacteristic harmonics are identified with SPICE simulation; (4) the use of an imperfect phase-shifting transformer for the twelve-pulse converter generates a harmonic at six times the line frequency; and (5) the assumptions usually made in analyzing converters can be relaxed with SPICE simulation. The results demonstrate the suitability of using SPICE simulation to obtain detailed performance predictions of ac-to-dc converters.

  11. Abnormal degradation of high-voltage p-type MOSFET with n+ polycrystalline silicon gate during AC stress

    NASA Astrophysics Data System (ADS)

    Lee, Dongjun; Joo, Ikhyung; Lee, Changsub; Song, Duheon; Choi, Byoungdeog

    2016-11-01

    We investigated the abnormal degradation of high-voltage p-type MOSFET (HV pMOSFET) under negative AC gate bias stress. In HV pMOSFET with n+ polycrystalline silicon (poly-Si) gate, the abnormal degradation occurs after the gradual degradation during negative AC stress. The abnormal degradation is suppressed by changing the gate material from n+ poly-Si to p+ poly-Si, and it is caused by hot holes produced by the impact ionization near the surface when electrons move from the gate toward the gate oxide. We suggest a possible mechanism to explain the improvement of degradation by using p+ poly-Si as a gate material.

  12. System and component design and test of a 10 hp, 18,000 rpm AC dynamometer utilizing a high frequency AC voltage link, part 1

    NASA Technical Reports Server (NTRS)

    Lipo, Thomas A.; Alan, Irfan

    1991-01-01

    Hard and soft switching test results conducted with one of the samples of first generation MOS-controlled thyristor (MCTs) and similar test results with several different samples of second generation MCT's are reported. A simple chopper circuit is used to investigate the basic switching characteristics of MCT under hard switching and various types of resonant circuits are used to determine soft switching characteristics of MCT under both zero voltage and zero current switching. Next, operation principles of a pulse density modulated converter (PDMC) for three phase (3F) to 3F two-step power conversion via parallel resonant high frequency (HF) AC link are reviewed. The details for the selection of power switches and other power components required for the construction of the power circuit for the second generation 3F to 3F converter system are discussed. The problems encountered in the first generation system are considered. Design and performance of the first generation 3F to 3F power converter system and field oriented induction moter drive based upon a 3 kVA, 20 kHz parallel resonant HF AC link are described. Low harmonic current at the input and output, unity power factor operation of input, and bidirectional flow capability of the system are shown via both computer and experimental results. The work completed on the construction and testing of the second generation converter and field oriented induction motor drive based upon specifications for a 10 hp squirrel cage dynamometer and a 20 kHz parallel resonant HF AC link is discussed. The induction machine is designed to deliver 10 hp or 7.46 kW when operated as an AC-dynamo with power fed back to the source through the converter. Results presented reveal that the proposed power level requires additional energy storage elements to overcome difficulties with a peak link voltage variation problem that limits reaching to the desired power level. The power level test of the second generation converter after the

  13. KEY COMPARISON Final report on APMP international comparison APMP.EM-K9: High voltage AC-DC transfer standards

    NASA Astrophysics Data System (ADS)

    Wei, Yih-Cheng; Yeh, Hsin-Da

    2010-01-01

    The international key comparison APMP.EM-K9 of AC-DC high voltage transfer standards with 12 participants was carried out from June 2000 to January 2004. This comparison offers the same range and frequencies as BIPM key comparison CCEM-K9, voltages at 500 V and 1000 V, frequency from 1 kHz to 100 kHz. This comparison provides the national metrology institutes (NMIs) of the APMP member economies with an opportunity to link the values of their standards for AC-DC transfer difference to the international reference values. The results of the majority of the participating NMIs show an agreement with the reference value within the associated expanded uncertainty given by the individual NMI. The agreement of the results and the tables of the degree of equivalence of the participants are included. The results have been linked to the key comparison CCEM-K9. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  14. Dc to ac converter operates efficiently at low input voltages

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Self-oscillating dc to ac converter with transistor switching to produce a square wave output is used for low and high voltage power sources. The converter has a high efficiency throughout a wide range of loads.

  15. Basic concepts of induced AC voltages on pipelines

    SciTech Connect

    Kirkpatrick, E.L.

    1995-07-01

    The phenomena of induced AC on pipelines sharing common rights-of-way with overhead high-voltage electrical transmission power lines is discussed. Basic concepts and techniques for personnel safety and some pipeline protective measures are reviewed.

  16. Liquid meniscus oscillation and drop ejection by ac voltage, pulsed dc voltage, and superimposing dc to ac voltages

    NASA Astrophysics Data System (ADS)

    Tran, Si Bui Quang; Byun, Doyoung; Nguyen, Vu Dat; Kang, Tae Sam

    2009-08-01

    The electrohydrodynamic (EHD) spraying technique has been utilized in applications such as inkjet printing and mass spectrometry technologies. In this paper, the role of electrical potential signals in jetting and on the oscillation of the meniscus is evaluated. The jetting and the meniscus oscillation behavior are experimentally investigated under ac voltage, ac voltage superimposed on dc voltage, and pulsed dc voltage. Based on this in-depth study of the meniscus behavior under various signals, the optimal signal is implemented to an EHD inkjet head for drop-on-demand operation. For applied ac voltage and ac voltage superimposed on dc voltage, the jetting phenomenon is a dynamic process due to sequential opposite sign signals. The jetting occurs at the end of the oscillation cycle, where the meniscus oscillates upward and arrives at its highest position.

  17. Fast switching, modular high-voltage DC/AC-power supplies for RF-Amplifiers and other applications

    SciTech Connect

    Alex, J.; Schminke, W.

    1995-12-31

    A new kind of high voltage high-power Pulse-Step Modulator (PSM) for broadcast transmitters, accelerator sources, for NBI (Neutral Beam Injection for Plasma Heating), gyrotrons and klystrons has been developed. Since its first introduction in 1984 for broadcast transmitters, more than 100 high-power sound broadcast transmitters had been equipped with the first generation of the PSM modulators, using Gate Turn-Off Thyristors (GTOs) as switching elements. Recently, due to faster switching elements and making use of the latest DSP technologies (Digital Signal Processing), the performance data and areas of application could be extended further. In 1994, a precision high voltage source for MW gyrotrons was installed at CRPP in Lausanne. Supplementary very low cost solutions for lower powers but high voltages had been developed. Hence, today, a large area of applications can be satisfied with the family of solutions. The paper describes the principle of operation, the related control systems and refers to some particular applications of the PSM amplifiers, especially the newest developments and corresponding field results.

  18. Reliable 100 kbps low-voltage ac powerline communications

    NASA Astrophysics Data System (ADS)

    Ladas, Chris; Propp, Michael

    1995-12-01

    Achieving reliable, 100 kbps powerline communications on the low voltage, AC powerlines has been realized by combining new techniques in spread spectrum technology with a robust, powerline specific protocol. This approach enables reliable, high speed data networking on the electrically hostile, low voltage powerline. Applications for the new technology include utility DA/DSM (distribution automation/demand side management), intraoffice LANs, powerline based telephony, and industrial data networking applications. This technological advancement was made possible through statistical modeling of the low voltage powerline, and developing unique spread spectrum and protocol techniques specific to the resulting powerline environment. The technology has been implemented as a highly integrated, CMOS chip set, allowing straightforward integration into OEM systems and products.

  19. Regular structures in 5CB liquid crystals under the joint action of ac and dc voltages

    NASA Astrophysics Data System (ADS)

    Aguirre, Luis E.; Anoardo, Esteban; Éber, Nándor; Buka, Ágnes

    2012-04-01

    A nematic liquid crystal with high, positive dielectric anisotropy (5CB) has been studied under the influence of the combined action of a dc and an ac electric field. Broad frequency, voltage, and cell thickness ranges were considered. Pattern morphologies were identified; the thresholds and critical wave numbers were measured and analyzed as a function of frequency, dc-to-ac voltage ratio, and thickness. The current-voltage characteristics were simultaneously detected.

  20. High Voltage SPT Performance

    NASA Technical Reports Server (NTRS)

    Manzella, David; Jacobson, David; Jankovsky, Robert

    2001-01-01

    A 2.3 kW stationary plasma thruster designed to operate at high voltage was tested at discharge voltages between 300 and 1250 V. Discharge specific impulses between 1600 and 3700 sec were demonstrated with thrust between 40 and 145 mN. Test data indicated that discharge voltage can be optimized for maximum discharge efficiency. The optimum discharge voltage was between 500 and 700 V for the various anode mass flow rates considered. The effect of operating voltage on optimal magnet field strength was investigated. The effect of cathode flow rate on thruster efficiency was considered for an 800 V discharge.

  1. Electron Temperature Measurement by Floating Probe Method Using AC Voltage

    NASA Astrophysics Data System (ADS)

    Satoshi, Nodomi; Shuichi, Sato; Mikio, Ohuchi

    2016-11-01

    This study presents a novel floating probe method to measure electron temperatures using a hollow cathode-type discharge tube. The proposed method detects a shift in the floating potential when an AC voltage is applied to a probe through an intermediary blocking capacitor. The shift in the floating potential is described as a function of the electron temperature and the applied AC voltage. The floating probe method is simpler than the Langmuir probe method because it does not require the measurement of volt-ampere characteristics. As the input AC voltage increases, the electron temperature converges. The electron temperature measured using the floating probe method with an applied sinusoidal voltage shows a value close to the first (tail) electron temperature in the range of the floating potential.

  2. High-voltage distributors

    NASA Technical Reports Server (NTRS)

    Mcchesney, J. F., Jr.

    1974-01-01

    Two distributors reduce high-voltage breakdowns and corona discharges. Both distributors are constructed to prevent air traps and facilitate servicing without soldering. Occurrence of coronas is also minimized due to smooth surfaces of device.

  3. Ac Synchronous Servo Based On The Armature Voltage Prediction Model

    NASA Astrophysics Data System (ADS)

    Hoshino, Akihiro; Kuromaru, Hiroshi; Kobayashi, Shinichi

    1987-10-01

    A new control method of the AC synchro-nous servo-system (Brushless DC servo-system) is discussed. The new system is based on the armature voltage prediction model. Without a resolver-digital-conver-ter nor a tachometer-generator, the resolver provides following three signals to the system immediately, they are the current command, the induced voltage, and the rotor speed. The new method realizes a simple hardware configuration. Experimental results show a good performance of the system.

  4. High voltage power supply

    NASA Technical Reports Server (NTRS)

    Ruitberg, A. P.; Young, K. M. (Inventor)

    1985-01-01

    A high voltage power supply is formed by three discrete circuits energized by a battery to provide a plurality of concurrent output signals floating at a high output voltage on the order of several tens of kilovolts. In the first two circuits, the regulator stages are pulse width modulated and include adjustable ressistances for varying the duty cycles of pulse trains provided to corresponding oscillator stages while the third regulator stage includes an adjustable resistance for varying the amplitude of a steady signal provided to a third oscillator stage. In the first circuit, the oscillator, formed by a constant current drive network and a tuned resonant network included a step up transformer, is coupled to a second step up transformer which, in turn, supplies an amplified sinusoidal signal to a parallel pair of complementary poled rectifying, voltage multiplier stages to generate the high output voltage.

  5. High-Voltage Pulse Voltage Generator,

    DTIC Science & Technology

    1979-12-21

    the invention: I. I. Kalyatskiy, V. I. Kurets, and V. I. Safronov Well-known are pulse voltage generators which employ the Arkad’yev- Marx principle of...P2, and hereafter the device operates like an ordinary GIN [pulse volt- age generator] according to the Arkad’yev- Marx principle. The Object of the...Invention The high-voltage pulse voltage generator, assembled according to the Arkad’yev- Marx arrangement, each stage of which incorporates reactive

  6. High voltage coaxial switch

    DOEpatents

    Rink, John P.

    1983-07-19

    A coaxial high voltage, high current switch having a solid cylindrical cold cathode coaxially surrounded by a thin hollow cylindrical inner electrode and a larger hollow cylindrical outer electrode. A high voltage trigger between the cathode and the inner electrode causes electrons to be emitted from the cathode and flow to the inner electrode preferably through a vacuum. Some of the electrons penetrate the inner electrode and cause a volumetric discharge in the gas (which may be merely air) between the inner and outer electrodes. The discharge provides a low impedance path between a high voltage charge placed on the outer electrode and a load (which may be a high power laser) coupled to the inner electrode. For high repetition rate the gas between the inner and outer electrodes may be continuously exchanged or refreshed under pressure.

  7. High voltage coaxial switch

    DOEpatents

    Rink, J.P.

    1983-07-19

    A coaxial high voltage, high current switch having a solid cylindrical cold cathode coaxially surrounded by a thin hollow cylindrical inner electrode and a larger hollow cylindrical outer electrode. A high voltage trigger between the cathode and the inner electrode causes electrons to be emitted from the cathode and flow to the inner electrode preferably through a vacuum. Some of the electrons penetrate the inner electrode and cause a volumetric discharge in the gas (which may be merely air) between the inner and outer electrodes. The discharge provides a low impedance path between a high voltage charge placed on the outer electrode and a load (which may be a high power laser) coupled to the inner electrode. For high repetition rate the gas between the inner and outer electrodes may be continuously exchanged or refreshed under pressure. 3 figs.

  8. High voltage pulse generator

    DOEpatents

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  9. Moderately nonlinear diffuse-charge dynamics under an ac voltage

    NASA Astrophysics Data System (ADS)

    Stout, Robert F.; Khair, Aditya S.

    2015-09-01

    The response of a symmetric binary electrolyte between two parallel, blocking electrodes to a moderate amplitude ac voltage is quantified. The diffuse charge dynamics are modeled via the Poisson-Nernst-Planck equations for a dilute solution of point-like ions. The solution to these equations is expressed as a Fourier series with a voltage perturbation expansion for arbitrary Debye layer thickness and ac frequency. Here, the perturbation expansion in voltage proceeds in powers of Vo/(kBT /e ) , where Vo is the amplitude of the driving voltage and kBT /e is the thermal voltage with kB as Boltzmann's constant, T as the temperature, and e as the fundamental charge. We show that the response of the electrolyte remains essentially linear in voltage amplitude at frequencies greater than the RC frequency of Debye layer charging, D /λDL , where D is the ion diffusivity, λD is the Debye layer thickness, and L is half the cell width. In contrast, nonlinear response is predicted at frequencies below the RC frequency. We find that the ion densities exhibit symmetric deviations from the (uniform) equilibrium density at even orders of the voltage amplitude. This leads to the voltage dependence of the current in the external circuit arising from the odd orders of voltage. For instance, the first nonlinear contribution to the current is O (Vo3) which contains the expected third harmonic but also a component oscillating at the applied frequency. We use this to compute a generalized impedance for moderate voltages, the first nonlinear contribution to which is quadratic in Vo. This contribution predicts a decrease in the imaginary part of the impedance at low frequency, which is due to the increase in Debye layer capacitance with increasing Vo. In contrast, the real part of the impedance increases at low frequency, due to adsorption of neutral salt from the bulk to the Debye layer.

  10. High Voltage Insulation Technology

    NASA Astrophysics Data System (ADS)

    Scherb, V.; Rogalla, K.; Gollor, M.

    2008-09-01

    In preparation of new Electronic Power Conditioners (EPC's) for Travelling Wave Tub Amplifiers (TWTA's) on telecom satellites a study for the development of new high voltage insulation technology is performed. The initiative is mandatory to allow compact designs and to enable higher operating voltages. In a first task a market analysis was performed, comparing different materials with respect to their properties and processes. A hierarchy of selection criteria was established and finally five material candidates (4 Epoxy resins and 1 Polyurethane resin) were selected to be further investigated in the test program. Samples for the test program were designed to represent core elements of an EPC, the high voltage transformer and Printed Circuit Boards of the high voltage section. All five materials were assessed in the practical work flow of the potting process and electrical, mechanical, thermal and lifetime testing was performed. Although the lifetime tests results were overlayed by a larges scatter, finally two candidates have been identified for use in a subsequent qualification program. This activity forms part of element 5 of the ESA ARTES Programme.

  11. High voltage variable diameter insulator

    DOEpatents

    Vanacek, D.L.; Pike, C.D.

    1982-07-13

    A high voltage feedthrough assembly having a tubular insulator extending between the ground plane ring and the high voltage ring. The insulator is made of Pyrex and decreases in diameter from the ground plane ring to the high voltage ring, producing equipotential lines almost perpendicular to the wall of the insulator to optimize the voltage-holding capability of the feedthrough assembly.

  12. High Voltage Seismic Generator

    NASA Astrophysics Data System (ADS)

    Bogacz, Adrian; Pala, Damian; Knafel, Marcin

    2015-04-01

    This contribution describes the preliminary result of annual cooperation of three student research groups from AGH UST in Krakow, Poland. The aim of this cooperation was to develop and construct a high voltage seismic wave generator. Constructed device uses a high-energy electrical discharge to generate seismic wave in ground. This type of device can be applied in several different methods of seismic measurement, but because of its limited power it is mainly dedicated for engineering geophysics. The source operates on a basic physical principles. The energy is stored in capacitor bank, which is charged by two stage low to high voltage converter. Stored energy is then released in very short time through high voltage thyristor in spark gap. The whole appliance is powered from li-ion battery and controlled by ATmega microcontroller. It is possible to construct larger and more powerful device. In this contribution the structure of device with technical specifications is resented. As a part of the investigation the prototype was built and series of experiments conducted. System parameter was measured, on this basis specification of elements for the final device were chosen. First stage of the project was successful. It was possible to efficiently generate seismic waves with constructed device. Then the field test was conducted. Spark gap wasplaced in shallowborehole(0.5 m) filled with salt water. Geophones were placed on the ground in straight line. The comparison of signal registered with hammer source and sparker source was made. The results of the test measurements are presented and discussed. Analysis of the collected data shows that characteristic of generated seismic signal is very promising, thus confirms possibility of practical application of the new high voltage generator. The biggest advantage of presented device after signal characteristics is its size which is 0.5 x 0.25 x 0.2 m and weight approximately 7 kg. This features with small li-ion battery makes

  13. Insulators for high voltages

    SciTech Connect

    Looms, J.S.T.

    1987-01-01

    This book describes electrical insulators for high voltage applications. Topics considered include the insulating materials, the manufacture of wet process porcelain, the manufacture of tempered glass, the glass-fibre core, the polymeric housing, the common problem - terminating an insulator, mechanical constraints, the physics of pollution flashover, the physics of contamination, testing of insulators, conclusions from testing, remedies for flashover, insulators for special cases, interference and noise, and the insulator of the future.

  14. High voltage generator

    DOEpatents

    Schwemin, A. J.

    1959-03-17

    A generator for producing relatively large currents at high voltages is described. In general, the invention comprises a plurality of capacitors connected in series by a plurality of switches alternately disposed with the capacitors. The above-noted circuit is mounted for movement with respect to contact members and switch closure means so that a load device and power supply are connected across successive numbers of capacitors, while the other capacitors are successively charged with the same power supply.

  15. High voltage pulse conditioning

    DOEpatents

    Springfield, Ray M.; Wheat, Jr., Robert M.

    1990-01-01

    Apparatus for conditioning high voltage pulses from particle accelerators in order to shorten the rise times of the pulses. Flashover switches in the cathode stalk of the transmission line hold off conduction for a determinable period of time, reflecting the early portion of the pulses. Diodes upstream of the switches divert energy into the magnetic and electrostatic storage of the capacitance and inductance inherent to the transmission line until the switches close.

  16. HIGH VOLTAGE GENERATOR

    DOEpatents

    Schwemin, A.J.

    1959-03-17

    A generator is presented for producing relatively large currents at high voltages. In general, the invention comprises a plurality of capacitors connected in series by a plurality of switches alternately disposed with the capacitors. The circuit is mounted for movement with respect to contact members and switch closure means so that a load device and power supply are connected across successive numbers of capacitors, while the other capacitors are successively charged with the same power supply.

  17. HIGH VOLTAGE ION SOURCE

    DOEpatents

    Luce, J.S.

    1960-04-19

    A device is described for providing a source of molecular ions having a large output current and with an accelerated energy of the order of 600 kv. Ions are produced in an ion source which is provided with a water-cooled source grid of metal to effect maximum recombination of atomic ions to molecular ions. A very high accelerating voltage is applied to withdraw and accelerate the molecular ions from the source, and means are provided for dumping the excess electrons at the lowest possible potentials. An accelerating grid is placed adjacent to the source grid and a slotted, grounded accelerating electrode is placed adjacent to the accelerating grid. A potential of about 35 kv is maintained between the source grid and accelerating grid, and a potential of about 600 kv is maintained between the accelerating grid and accelerating electrode. In order to keep at a minimum the large number of oscillating electrons which are created when such high voltages are employed in the vicinity of a strong magnetic field, a plurality of high voltage cascaded shields are employed with a conventional electron dumping system being employed between each shield so as to dump the electrons at the lowest possible potential rather than at 600 kv.

  18. High voltage DC power supply

    DOEpatents

    Droege, T.F.

    1989-12-19

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively. 7 figs.

  19. High voltage DC power supply

    DOEpatents

    Droege, Thomas F.

    1989-01-01

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively.

  20. Development of Low-Frequency AC Voltage Measurement System Using Single-Junction Thermal Converter

    NASA Astrophysics Data System (ADS)

    Amagai, Yasutaka; Nakamura, Yasuhiro

    Accurate measurement of low-frequency AC voltage using a digital multimeter at frequencies of 4-200Hz is a challenge in the mechanical engineering industry. At the National Metrology Institute of Japan, we developed a low-frequency AC voltage measurement system for calibrating digital multimeters operating at frequencies down to 1 Hz. The system uses a single-junction thermal converter and employs a theoretical model and a three-parameter sine wave fitting algorithm based on the least-square (LS) method. We calibrated the AC voltage down to 1Hz using our measurement system and reduced the measurement time compared with that using thin-film thermal converters. Our measurement results are verified by comparison with those of a digital sampling method using a high-resolution analog-to-digital converter; our data are in agreement to within a few parts in 105. Our proposed method enables us to measure AC voltage with an uncertainty of 25 μV/V (k = 1) at frequencies down to 4 Hz and a voltage of 10 V.

  1. Key comparison CCEM-K7: AC voltage ratio

    NASA Astrophysics Data System (ADS)

    Robinson, Ian; Belliss, Janet; Bryant, Stephen; Sánchez, Antonio; Álvarez, Yolanda; Schweiger, Kurt; Díaz, Carlos; Neira, Miguel; Callegaro, Luca; Lee, Rae Duk; Blanc, Isabelle; Overney, Frederic; He, XiaoBing; Ding, Cheng; Qian, ZhongTai; Waltrip, Bryan; Small, Greig; Fiander, John; Coogan, Peter; Johnson, Heather Leigh; Nakamura, Yasuhiro; Dierikx, Erik; Kishore Saxena, Anil; Saleem, Mohd; Wood, Barry; Ramm, Guenther; Eklund, Gunnar; Turhan, Enis; Semenov, Yuri

    2012-01-01

    We report the results of the international comparison of low-frequency ac voltage ratio: CCEM-K7. The participants made measurements of a unique travelling standard: an inductive voltage divider which provided the 20 ac voltage ratios chosen for the comparison. The nominal ratios chosen were: 0.1 to 0.9, 0.01 and 1/11 to 10/11. Each of the 17 participants measured the in-phase and quadrature components of all 20 ratios at a frequency of 1 kHz, and 7 laboratories made additional, optional, measurements at a frequency of 55 Hz. The report consists of two separate parts: the first part describes the comparison and provides detailed uncertainty budgets for each participant; the second part describes the method used to analyse the results, gives the results of the comparison and tabulates the raw data provided by each participant. Main text. To reach the main text of this paper, click on Final Report (a zip file containing the report as two pdf files: Part 1 and Part 2). Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  2. APPARATUS FOR REGULATING HIGH VOLTAGE

    DOEpatents

    Morrison, K.G.

    1951-03-20

    This patent describes a high-voltage regulator of the r-f type wherein the modulation of the r-f voltage is accomplished at a high level, resulting in good stabilization over a large range of load conditions.

  3. Strongly nonlinear dynamics of electrolytes in large ac voltages

    NASA Astrophysics Data System (ADS)

    Højgaard Olesen, Laurits; Bazant, Martin Z.; Bruus, Henrik

    2010-07-01

    We study the response of a model microelectrochemical cell to a large ac voltage of frequency comparable to the inverse cell relaxation time. To bring out the basic physics, we consider the simplest possible model of a symmetric binary electrolyte confined between parallel-plate blocking electrodes, ignoring any transverse instability or fluid flow. We analyze the resulting one-dimensional problem by matched asymptotic expansions in the limit of thin double layers and extend previous work into the strongly nonlinear regime, which is characterized by two features—significant salt depletion in the electrolyte near the electrodes and, at very large voltage, the breakdown of the quasiequilibrium structure of the double layers. The former leads to the prediction of “ac capacitive desalination” since there is a time-averaged transfer of salt from the bulk to the double layers, via oscillating diffusion layers. The latter is associated with transient diffusion limitation, which drives the formation and collapse of space-charge layers, even in the absence of any net Faradaic current through the cell. We also predict that steric effects of finite ion sizes (going beyond dilute-solution theory) act to suppress the strongly nonlinear regime in the limit of concentrated electrolytes, ionic liquids, and molten salts. Beyond the model problem, our reduced equations for thin double layers, based on uniformly valid matched asymptotic expansions, provide a useful mathematical framework to describe additional nonlinear responses to large ac voltages, such as Faradaic reactions, electro-osmotic instabilities, and induced-charge electrokinetic phenomena.

  4. High voltage variable diameter insulator

    DOEpatents

    Vanecek, David L.; Pike, Chester D.

    1984-01-01

    A high voltage feedthrough assembly (10) having a tubular insulator (15) extending between the ground plane ring (16) and the high voltage ring (30). The insulator (15) is made of Pyrex and decreases in diameter from the ground plane ring (16) to the high voltage ring (30), producing equipotential lines almost perpendicular to the wall (27) of the insulator (15) to optimize the voltage-holding capability of the feedthrough assembly (10).

  5. High voltage isolation transformer

    NASA Technical Reports Server (NTRS)

    Clatterbuck, C. H.; Ruitberg, A. P. (Inventor)

    1985-01-01

    A high voltage isolation transformer is provided with primary and secondary coils separated by discrete electrostatic shields from the surfaces of insulating spools on which the coils are wound. The electrostatic shields are formed by coatings of a compound with a low electrical conductivity which completely encase the coils and adhere to the surfaces of the insulating spools adjacent to the coils. Coatings of the compound also line axial bores of the spools, thereby forming electrostatic shields separating the spools from legs of a ferromagnetic core extending through the bores. The transformer is able to isolate a high constant potential applied to one of its coils, without the occurrence of sparking or corona, by coupling the coatings, lining the axial bores to the ferromagnetic core and by coupling one terminal of each coil to the respective coating encasing the coil.

  6. High voltage feedthrough bushing

    DOEpatents

    Brucker, John P.

    1993-01-01

    A feedthrough bushing for a high voltage diode provides for using compression sealing for all sealing surfaces. A diode assembly includes a central conductor extending through the bushing and a grading ring assembly circumferentially surrounding and coaxial with the central conductor. A flexible conductive plate extends between and compressively seals against the central conductor and the grading ring assembly, wherein the flexibility of the plate allows inner and outer portions of the plate to axially translate for compression sealing against the central conductor and the grading ring assembly, respectively. The inner portion of the plate is bolted to the central conductor for affecting sealing. A compression beam is also bolted to the central conductor and engages the outer portion of the plate to urge the outer portion toward the grading ring assembly to obtain compression sealing therebetween.

  7. Programmable high voltage power supply with regulation confined to the high voltage section

    NASA Technical Reports Server (NTRS)

    Castell, Karen D. (Inventor); Ruitberg, Arthur P. (Inventor)

    1994-01-01

    A high voltage power supply in a dc-dc converter configuration includes a pre-regulator which filters and regulates the dc input and drives an oscillator which applies, in turn, a low voltage ac signal to the low side of a step-up high voltage transformer. The high voltage side of the transformer drives a voltage multiplier which provides a stepped up dc voltage to an output filter. The output voltage is sensed by a feedback network which then controls a regulator. Both the input and output of the regulator are on the high voltage side, avoiding isolation problems. The regulator furnishes a portion of the drive to the voltage multiplier, avoiding having a regulator in series with the load with its attendant, relatively high power losses. This power supply is highly regulated, has low power consumption, a low parts count and may be manufactured at low cost. The power supply has a programmability feature that allows for the selection of a large range of output voltages.

  8. High Voltage Distribution

    NASA Astrophysics Data System (ADS)

    Norbeck, Edwin; Miller, Michael; Onel, Yasar

    2010-11-01

    For detector arrays that require 5 to 10 kV at a few microamps each for hundreds of detectors, using hundreds of HV power supplies is unreasonable. Bundles of hundreds of HV cables take up space that should be filled with detectors. A typical HV module can supply 1 ma, enough current for hundreds of detectors. It is better to use a single HV module and distribute the current as needed. We show a circuit that, for each detector, measures the current, cuts off the voltage if the current exceeds a set maximum, and allows the HV to be turned on or off from a control computer. The entire array requires a single HV cable and 2 or 3 control lines. This design provides the same voltage to all of the detectors, the voltage set by the single HV module. Some additional circuitry would allow a computer controlled voltage drop between the HV and each individual detector.

  9. Low voltage to high voltage level shifter and related methods

    NASA Technical Reports Server (NTRS)

    Mentze, Erik J. (Inventor); Hess, Herbert L. (Inventor); Buck, Kevin M. (Inventor); Cox, David F. (Inventor)

    2006-01-01

    A shifter circuit comprises a high and low voltage buffer stages and an output buffer stage. The high voltage buffer stage comprises multiple transistors arranged in a transistor stack having a plurality of intermediate nodes connecting individual transistors along the stack. The transistor stack is connected between a voltage level being shifted to and an input voltage. An inverter of this stage comprises multiple inputs and an output. Inverter inputs are connected to a respective intermediate node of the transistor stack. The low voltage buffer stage has an input connected to the input voltage and an output, and is operably connected to the high voltage buffer stage. The low voltage buffer stage is connected between a voltage level being shifted away from and a lower voltage. The output buffer stage is driven by the outputs of the high voltage buffer stage inverter and the low voltage buffer stage.

  10. Photon-assisted field emission from a Si tip at addition of an AC low voltage

    NASA Astrophysics Data System (ADS)

    Zaporozhchenko, A. V.; Chernov, S. V.; Odnodvorets, L. V.; Stetsenko, B. V.; Nepijko, S. A.; Elmers, H. J.; Schönhense, G.

    2015-07-01

    We investigated the field emission current from a p-type silicon tip with large resistivity of 4 × 103 Ω cm for light illumination with a photon energy of 1.3 eV and tip-anode voltages of 0.7-5.0 kV. Additional AC voltage with amplitude 30-60 V and frequency varying in the range of 10-107 Hz was applied to the tip which resulted in variations of emission current. We investigated the dependence of this phenomenon on the AC signal parameters, light intensity and temperature. The resonant-like frequency dependence of the emission current is because the tip acts as a driven plasmonic resonator. The results represent an important step forward for the development of high-frequency display systems based on electron field emission.

  11. Comparative High Voltage Impulse Measurement

    PubMed Central

    FitzPatrick, Gerald J.; Kelley, Edward F.

    1996-01-01

    A facility has been developed for the determination of the ratio of pulse high voltage dividers over the range from 10 kV to 300 kV using comparative techniques with Kerr electro-optic voltage measurement systems and reference resistive voltage dividers. Pulse voltage ratios of test dividers can be determined with relative expanded uncertainties of 0.4 % (coverage factor k = 2 and thus a two standard deviation estimate) or less using the complementary resistive divider/Kerr cell reference systems. This paper describes the facility and specialized procedures used at NIST for the determination of test voltage divider ratios through comparative techniques. The error sources and special considerations in the construction and use of reference voltage dividers to minimize errors are discussed, and estimates of the measurement uncertainties are presented. PMID:27805083

  12. Calibration of Voltage Transformers and High- Voltage Capacitors at NIST

    PubMed Central

    Anderson, William E.

    1989-01-01

    The National Institute of Standards and Technology (NIST) calibration service for voltage transformers and high-voltage capacitors is described. The service for voltage transformers provides measurements of ratio correction factors and phase angles at primary voltages up to 170 kV and secondary voltages as low as 10 V at 60 Hz. Calibrations at frequencies from 50–400 Hz are available over a more limited voltage range. The service for high-voltage capacitors provides measurements of capacitance and dissipation factor at applied voltages ranging from 100 V to 170 kV at 60 Hz depending on the nominal capacitance. Calibrations over a reduced voltage range at other frequencies are also available. As in the case with voltage transformers, these voltage constraints are determined by the facilities at NIST. PMID:28053409

  13. Thyratron Marx High Voltage Generator.

    DTIC Science & Technology

    This invention relates to a high voltage pulse generator of the Marx type, in which capacitors are charged in parallel and discharged in series...Amongst the many techniques for producing high voltage pulses, the Marx generator is probably the best known and most widely used. For the combination of...short risetime and low output impendance (i.e. high power), large energy, high efficiency and waveform flexibility -- the Marx principle is peerless

  14. Nonlinear control of voltage source converters in AC-DC power system.

    PubMed

    Dash, P K; Nayak, N

    2014-07-01

    This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations.

  15. High voltage solar array experiments

    NASA Technical Reports Server (NTRS)

    Kennerud, K. L.

    1974-01-01

    The interaction between the components of a high voltage solar array and a simulated space plasma is studied to obtain data for the design of a high voltage solar array capable of 15kW at 2 to 16kV. Testing was conducted in a vacuum chamber 1.5-m long by 1.5-m diameter having a plasma source which simulated the plasma conditions existing in earth orbit between 400 nautical miles and synchronous altitude. Test samples included solar array segments pinholes in insulation covering high voltage electrodes, and plain dielectric samples. Quantitative data are presented in the areas of plasma power losses, plasma and high voltage induced damage, and dielectric properties. Limitations of the investigation are described.

  16. High voltage power transistor development

    NASA Technical Reports Server (NTRS)

    Hower, P. L.

    1981-01-01

    Design considerations, fabrication procedures, and methods of evaluation for high-voltage power-transistor development are discussed. Technique improvements such as controlling the electric field at the surface and perserving lifetimes in the collector region which have advanced the state of the art in high-voltage transistors are discussed. These improvements can be applied directly to the development of 1200 volt, 200 ampere transistors.

  17. Induced Voltage Behavior on Pipelines Due to HV AC Interference: Effective Length Concept

    NASA Astrophysics Data System (ADS)

    Nassereddine, Mohamad; Rizk, Jamal; Nagrial, Mahmood; Hellany, Ali

    2015-04-01

    High-voltage infrastructure upgrade is expending due to the growth in populations. To save on easement cost and to reduce the environmental impact of these projects, HV transmission lines occupy the same easement as pipelines in many cases. This joint easement introduces the AC interference between transmission lines and pipelines. The induced voltage can reach a limit which will jeopardize the human safety. The cited research studies the induced voltage under the presence of the overhead earth wire (OHEW) using the shielding factor. The work in this paper studies the induced voltage using the OHEW section current along with the superposition theorem. The simulations are compared to the existing research methods. The case study along with the theoretical study discusses the advance accuracy of the proposed method over the existing shield factor used in the presence research. Furthermore, they introduce the effective length along with the effective shielding factor, which aids in computing the additional effect that the OHEW has on the induced voltage.

  18. Improved Programmable High-Voltage Power Supply

    NASA Technical Reports Server (NTRS)

    Castell, Karen; Rutberg, Arthur

    1994-01-01

    Improved dc-to-dc converter functions as programmable high-voltage power supply with low-power-dissipation voltage regulator on high-voltage side. Design of power supply overcomes deficiencies of older designs. Voltage regulation with low power dissipation provided on high-voltage side.

  19. High voltage thermal cells

    NASA Astrophysics Data System (ADS)

    Ryan, David M.

    An experiment aimed at a search for new, high-energy cathodes for thermal cells is described. The experiment has begun to reduce the solubility, volatility, and mobility of the cathode materials by preparing and testing massive, relatively immobile cathode molecules. A good candidate for this is the vanadium series, which forms rings, chains, clusters and Keggin compounds. The first three compounds of this genre have been prepared: K3V5O14, Na6V10O28, and K7(Ni4+V13O30). Only the first of these compounds has been tested as a cathode material. The K3V5O14 demonstrated better performance than V2O5, but it is not as good as the FeS2 cells used for benchmarks.

  20. Spectrographic analysis of bismuth-tin eutectic alloys by spark-ignited low-voltage ac-arc excitation

    NASA Technical Reports Server (NTRS)

    Huff, E. A.; Kulpa, S. J.

    1969-01-01

    Spectrographic method determines individual stainless steel components in molten bismuth-42 w/o tin eutectic to determine the solubility of Type 304 stainless steels. It utilizes the high sensitivity and precision of the spark-ignited, low-voltage ac-arc excitation of samples rendered homogeneous by dissolution.

  1. High Voltage Space Solar Arrays

    NASA Technical Reports Server (NTRS)

    Ferguson, D. C.; Hillard, G. B.; Vayner, B. V.; Galofaro, J. T.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Recent tests performed at the NASA Glenn Research Center and elsewhere have shown promise in the design and construction of high voltage (300-1000 V) solar arrays for space applications. Preliminary results and implications for solar array design will be discussed, with application to direct-drive electric propulsion and space solar power.

  2. Method and system for a gas tube switch-based voltage source high voltage direct current transmission system

    SciTech Connect

    She, Xu; Chokhawala, Rahul Shantilal; Zhou, Rui; Zhang, Di; Sommerer, Timothy John; Bray, James William

    2016-12-13

    A voltage source converter based high-voltage direct-current (HVDC) transmission system includes a voltage source converter (VSC)-based power converter channel. The VSC-based power converter channel includes an AC-DC converter and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and a DC-AC inverter include at least one gas tube switching device coupled in electrical anti-parallel with a respective gas tube diode. The VSC-based power converter channel includes a commutating circuit communicatively coupled to one or more of the at least one gas tube switching devices. The commutating circuit is configured to "switch on" a respective one of the one or more gas tube switching devices during a first portion of an operational cycle and "switch off" the respective one of the one or more gas tube switching devices during a second portion of the operational cycle.

  3. Phase-sensitive detection of both inductive and non-inductive ac voltages in ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Weiler, Mathias; Shaw, Justin M.; Nembach, Hans T.; Schoen, Martin A.; Boone, Carl T.; Silva, Thomas J.

    2014-03-01

    Spin pumping causes significant damping in ultrathin ferromagnetic/normal metal (NM) multilayers via spin-current generation of both dc and ac character in the NM system. While the nonlinear dc component has been investigated in detail by utilization of the inverse spin Hall effect (iSHE) in NMs, much less is known about the linear ac component that is presumably much larger in the small-excitation limit. We measured generated ac voltages in a wide variety of Permalloy/NM multilayers via vector-network-analyzer ferromagnetic resonance. We employ a custom, impedance-matched, broadband microwave coupler that features a ferromagnetic thin film reference resonator to accurately compare ac voltage amplitudes and phases between varieties of multilayers. By use of the fact that inductive and ac iSHE signals are phase-shifted by π/2, we find that inductive signals are major contributors in all investigated samples. It is only by comparison of the phase and amplitude of the recorded ac voltages between multiple samples that we can extract the non-inductive contributions due to spin-currents. Voltages due to the ac iSHE in Permalloy(10nm)/platinum(5nm) bilayers are weaker than inductive signals, in agreement with calculations based upon recent theoretical predictions. M.W. acknowledges financial support by the German Academic Exchange service (DAAD).

  4. Mechanism of electrohydrodynamic printing based on ac voltage without a nozzle electrode

    NASA Astrophysics Data System (ADS)

    Nguyen, Vu Dat; Byun, Doyoung

    2009-04-01

    The electrohydrodynamic (EHD) spraying technique has been applied to inkjet printing technology for fabrication of printed electronics. The conventional EHD inkjet device is based on dc voltage and requires two electrodes: a nozzle electrode and an extractor electrode. This study notes several drawbacks of the dc-based EHD printing device such as electrical breakdown and demonstrates stable jetting by using the extractor electrode alone without the nozzle electrode and ac voltage. The continuous ejection of droplets can be obtained only by ac voltage, showing consistent ejection at every peak of electrical signal. The suggested EHD inkjet device prevents electrical breakdown.

  5. LHCb calorimeters high voltage system

    NASA Astrophysics Data System (ADS)

    Gilitsky, Yu.; Golutvin, A.; Konoplyannikov, A.; Lefrancois, J.; Perret, P.; Schopper, A.; Soldatov, M.; Yakimchuk, V.

    2007-02-01

    The calorimeter system in LHCb aims to identify electrons, photons and hadrons. All calorimeters are equipped with Hamamatsu photo tubes as devices for light to signal conversion. Eight thousand R7899-20 tubes are used for electromagnetic and hadronic calorimeters and two hundred 64 channels multi-anode R7600-00-M64 for Scintillator-Pad/Preshower detectors. The calorimeter high voltage (HV) system is based on a Cockroft Walton (CW) voltage converter and a control board connected to the Experiment Control System (ECS) by serial bus. The base of each photomultiplier tube (PMT) is built with a high voltage converter and constructed on an individual printed circuit board, using compact surface mount components. The base is attached directly to the PMT. There are no HV cables in the system. A Field Programmable Gate Array (FPGA) is used on the control board as an interface between the ECS and the 200 control channels. The FPGA includes also additional functionalities allowing automated monitoring and ramp up of the high voltage values. This paper describes the HV system architecture, some technical details of the electronics implementation and summarizes the system performance. This safe and low power consumption HV electronic system for the photomultiplier tubes can be used for various biomedical apparatus too.

  6. New internal multi-range resistors for ac voltage calibration by using TVC

    NASA Astrophysics Data System (ADS)

    Ali, Rasha S. M.

    2015-10-01

    Accurate calibration of ac voltages up to 1000 V by using thermal converters requires range resistors connected in series with the converter. The combination of a thermal converter and range resistor is known as the thermal voltage converter. In this paper, multi-range internal range resistors are designed and implemented in the National Institute for Standards (NIS), Egypt to cover the ac voltage ranges from 10 V to 750 V. The range resistor values are 2 kΩ, 10 kΩ, 20 kΩ, 40 kΩ, 100 kΩ, and 150 kΩ to cover the voltage ranges 10 V, 50 V, 100 V, 200 V, 500 V, and 750 V, respectively. The six range resistors are mounted in series with a single-junction thermo-element in the same box to provide a new thermal voltage converter. The required range resistor is selected by using a six-pin selector switch. Each resistor is connected to a selector pin. The new thermal voltage converter ranges are automatically calibrated against other standard thermal voltage converters at different frequencies by using a LabVIEW program to determine their ac-dc transfer difference at each range. The expanded uncertainties are estimated according to the GUM for all ranges at different frequencies. The performance of the new thermal voltage converter is also evaluated by comparing its ac-dc differences and its accuracy in measuring the ac voltage at different frequencies with a traditional thermal voltage converter.

  7. Compact high-voltage structures

    SciTech Connect

    Wilson, M. J.; Goerz, D.A.

    1997-06-09

    A basic understanding of the critical issues limiting the compactness of high-voltage systems is required for the next generation of impulse generators. In the process of optimizing the design of a highly reliable solid-dielectric over-voltage switch, an understanding of the limiting factors found are shown. Results of a l3O kV operating switch, having a modest field enhancement of 16% above the average field stress in the switching region, are reported. The resulting high reliability is obtained by reducing the standard deviation of the switch to 6.8%. The total height of the switch is 1 mm. The resulting operating parameters are obtained by controlling field distribution across the entire switch package and field shaping the desired point of switch closure. The disclosed field management technique provides an approach to improve other highly stressed components and structures.

  8. High-Voltage Droplet Dispenser

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2003-01-01

    An apparatus that is extremely effective in dispensing a wide range of droplets has been developed. This droplet dispenser is unique in that it utilizes a droplet bias voltage, as well as an ionization pulse, to release a droplet. Apparatuses that deploy individual droplets have been used in many applications, including, notably, study of combustion of liquid fuels. Experiments on isolated droplets are useful in that they enable the study of droplet phenomena under well-controlled and simplified conditions. In this apparatus, a syringe dispenses a known value of liquid, which emerges from, and hangs onto, the outer end of a flat-tipped, stainless steel needle. Somewhat below the needle tip and droplet is a ring electrode. A bias high voltage, followed by a high-voltage pulse, is applied so as to attract the droplet sufficiently to pull it off the needle. The voltages are such that the droplet and needle are negatively charged and the ring electrode is positively charged.

  9. A Generalised Fault Protection Structure Proposed for Uni-grounded Low-Voltage AC Microgrids

    NASA Astrophysics Data System (ADS)

    Bui, Duong Minh; Chen, Shi-Lin; Lien, Keng-Yu; Jiang, Jheng-Lun

    2016-04-01

    This paper presents three main configurations of uni-grounded low-voltage AC microgrids. Transient situations of a uni-grounded low-voltage (LV) AC microgrid (MG) are simulated through various fault tests and operation transition tests between grid-connected and islanded modes. Based on transient simulation results, available fault protection methods are proposed for main and back-up protection of a uni-grounded AC microgrid. In addition, concept of a generalised fault protection structure of uni-grounded LVAC MGs is mentioned in the paper. As a result, main contributions of the paper are: (i) definition of different uni-grounded LVAC MG configurations; (ii) analysing transient responses of a uni-grounded LVAC microgrid through line-to-line faults, line-to-ground faults, three-phase faults and a microgrid operation transition test, (iii) proposing available fault protection methods for uni-grounded microgrids, such as: non-directional or directional overcurrent protection, under/over voltage protection, differential current protection, voltage-restrained overcurrent protection, and other fault protection principles not based on phase currents and voltages (e.g. total harmonic distortion detection of currents and voltages, using sequence components of current and voltage, 3I0 or 3V0 components), and (iv) developing a generalised fault protection structure with six individual protection zones to be suitable for different uni-grounded AC MG configurations.

  10. Multiple high voltage output DC-to-DC power converter

    NASA Technical Reports Server (NTRS)

    Cronin, Donald L. (Inventor); Farber, Bertrand F. (Inventor); Gehm, Hartmut K. (Inventor); Goldin, Daniel S. (Inventor)

    1977-01-01

    Disclosed is a multiple output DC-to-DC converter. The DC input power is filtered and passed through a chopper preregulator. The chopper output is then passed through a current source inverter controlled by a squarewave generator. The resultant AC is passed through the primary winding of a transformer, with high voltages induced in a plurality of secondary windings. The high voltage secondary outputs are each solid-state rectified for passage to individual output loads. Multiple feedback loops control the operation of the chopper preregulator, one being responsive to the current through the primary winding and another responsive to the DC voltage level at a selected output.

  11. High voltage photovoltaic power converter

    DOEpatents

    Haigh, Ronald E.; Wojtczuk, Steve; Jacobson, Gerard F.; Hagans, Karla G.

    2001-01-01

    An array of independently connected photovoltaic cells on a semi-insulating substrate contains reflective coatings between the cells to enhance efficiency. A uniform, flat top laser beam profile is illuminated upon the array to produce electrical current having high voltage. An essentially wireless system includes a laser energy source being fed through optic fiber and cast upon the photovoltaic cell array to prevent stray electrical signals prior to use of the current from the array. Direct bandgap, single crystal semiconductor materials, such as GaAs, are commonly used in the array. Useful applications of the system include locations where high voltages are provided to confined spaces such as in explosive detonation, accelerators, photo cathodes and medical appliances.

  12. TRANSISTOR HIGH VOLTAGE POWER SUPPLY

    DOEpatents

    Driver, G.E.

    1958-07-15

    High voltage, direct current power supplies are described for use with battery powered nuclear detection equipment. The particular advantages of the power supply described, are increased efficiency and reduced size and welght brought about by the use of transistors in the circuit. An important feature resides tn the employment of a pair of transistors in an alternatefiring oscillator circuit having a coupling transformer and other circuit components which are used for interconnecting the various electrodes of the transistors.

  13. An isolated bridgeless AC-DC PFC converter using a LC resonant voltage doubler rectifier

    NASA Astrophysics Data System (ADS)

    Lee, Sin-woo; Do, Hyun-Lark

    2016-12-01

    This paper proposed an isolated bridgeless AC-DC power factor correction (PFC) converter using a LC resonant voltage doubler rectifier. The proposed converter is based on isolated conventional single-ended primary inductance converter (SEPIC) PFC converter. The conduction loss of rectification is reduced than a conventional one because the proposed converter is designed to eliminate a full-bridge rectifier at an input stage. Moreover, for zero-current switching (ZCS) operation and low voltage stresses of output diodes, the secondary of the proposed converter is designed as voltage doubler with a LC resonant tank. Additionally, an input-output electrical isolation is provided for safety standard. In conclusion, high power factor is achieved and efficiency is improved. The operational principles, steady-state analysis and design equations of the proposed converter are described in detail. Experimental results from a 60 W prototype at a constant switching frequency 100 kHz are presented to verify the performance of the proposed converter.

  14. High Voltage TAL Erosion Characterization

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.

    2003-01-01

    Extended operation of a D-80 anode layer thruster at high voltage was investigated. The thruster was operated for 1200 hours at 700 Volts and 4 Amperes. Laser profilometry was employed to quantify the erosion of the thruster's graphite guard rings and electrodes at 0, 300, 600, 900, and 1200 hours. Thruster performance and electrical characteristics were monitored over the duration of the investigation. The guard rings exhibited asymmetric erosion that was greatest in the region of the cathode. Erosion of the guard rings exposed the magnet poles between 600 to 900 hours of operation.

  15. High voltage RF feedthrough bushing

    DOEpatents

    Grotz, Glenn F.

    1984-01-01

    Described is a multi-element, high voltage radio frequency bushing for trmitting RF energy to an antenna located in a vacuum container. The bushing includes a center conductor of complex geometrical shape, an outer coaxial shield conductor, and a thin-walled hollow truncated cone insulator disposed between central and outer conductors. The shape of the center conductor, which includes a reverse curvature portion formed of a radially inwardly directed shoulder and a convex portion, controls the uniformity of the axial surface gradient on the insulator cone. The outer shield has a first substantially cylindrical portion and a second radially inwardly extending truncated cone portion.

  16. High voltage battery cell scanner development

    NASA Technical Reports Server (NTRS)

    Lepisto, J. W.; Decker, D. K.; Graves, J.

    1983-01-01

    Battery cell voltage scanners have been previously used in low voltage spacecraft applications. In connection with future missions involving an employment of high-power high voltage power subsystems and/or autonomous power subsystem management for unattended operation, it will be necessary to utilize battery cell voltage scanners to provide battery cell voltage information for early detection of impending battery cell degradation/failures. In preparation for such missions, a novel battery cell voltage scanner design has been developed. The novel design makes use of low voltage circuit modules which can be applied to high voltage batteries in a building block fashion. A description is presented of the design concept and test results of the high voltage battery cell scanner, and its operation with an autonomously managed power subsystem is discussed.

  17. Novel multijunction thermal converter in planar technique for AC current, voltage, power and optical radiation measurement

    NASA Astrophysics Data System (ADS)

    Klonz, M.; Weimann, T.

    1990-05-01

    A new planar thin film design of multijunction thermocouples on a silicon chip containing a window with a SiO2-membrane for low heat conductance underneath of the thermocouples is described. It is used as the sensor for the temperature difference in a multijunction thermal converter for ac-dc transfer of electrical quantities like voltage, current and power via Joule heat in a thin film resistor. By coating the heater with an optically absorbing layer it is used as a highly sensitive radiometer transferring absorbed energy to Joule heat in the resistor. The design can easily be optimized for all different frequency applications. It offers the possibility of the mass production of transfer standards at highest level of accuracy.

  18. AC electrical transport properties and current-voltage hysteresis behavior of PVA-CNT nanocomposite film

    NASA Astrophysics Data System (ADS)

    Das, Amit Kumar; Sinha, Subhojyoti; Meikap, Ajit Kumar

    2015-06-01

    Polyvinyl alcohol (PVA) - Carbon nanotube (CNT) composite has been prepared and its electric modulus, ac conductivity, impedance spectroscopy and current-voltage characteristics have been studied, at and above room temperature, to understand the prevailing charge transport mechanism. Non-Debye type relaxation behavior was observed with activation energy of 1.27 eV whereas correlated barrier hopping was found to be the dominant charge transport mechanism with maximum barrier height of 48.7 meV above room temperature. The sample, under ±80 V applied voltage, exhibits hysteresis behavior in its current - voltage characteristics.

  19. High voltage feed through bushing

    DOEpatents

    Brucker, J.P.

    1993-04-06

    A feed through bushing for a high voltage diode provides for using compression sealing for all sealing surfaces. A diode assembly includes a central conductor extending through the bushing and a grading ring assembly circumferentially surrounding and coaxial with the central conductor. A flexible conductive plate extends between and compressively seals against the central conductor and the grading ring assembly, wherein the flexibility of the plate allows inner and outer portions of the plate to axially translate for compression sealing against the central conductor and the grading ring assembly, respectively. The inner portion of the plate is bolted to the central conductor for affecting sealing. A compression beam is also bolted to the central conductor and engages the outer portion of the plate to urge the outer portion toward the grading ring assembly to obtain compression sealing therebetween.

  20. High voltage load resistor array

    DOEpatents

    Lehmann, Monty Ray

    2005-01-18

    A high voltage resistor comprising an array of a plurality of parallel electrically connected resistor elements each containing a resistive solution, attached at each end thereof to an end plate, and about the circumference of each of the end plates, a corona reduction ring. Each of the resistor elements comprises an insulating tube having an electrode inserted into each end thereof and held in position by one or more hose clamps about the outer periphery of the insulating tube. According to a preferred embodiment, the electrode is fabricated from stainless steel and has a mushroom shape at one end, that inserted into the tube, and a flat end for engagement with the end plates that provides connection of the resistor array and with a load.

  1. Experimental validation of a high voltage pulse measurement method.

    SciTech Connect

    Cular, Stefan; Patel, Nishant Bhupendra; Branch, Darren W.

    2013-09-01

    This report describes X-cut lithium niobates (LiNbO3) utilization for voltage sensing by monitoring the acoustic wave propagation changes through LiNbO3 resulting from applied voltage. Direct current (DC), alternating current (AC) and pulsed voltage signals were applied to the crystal. Voltage induced shift in acoustic wave propagation time scaled quadratically for DC and AC voltages and linearly for pulsed voltages. The measured values ranged from 10 - 273 ps and 189 ps 2 ns for DC and non-DC voltages, respectively. Data suggests LiNbO3 has a frequency sensitive response to voltage. If voltage source error is eliminated through physical modeling from the uncertainty budget, the sensors U95 estimated combined uncertainty could decrease to ~0.025% for DC, AC, and pulsed voltage measurements.

  2. High School Teachers Win ACS Prizes

    NASA Astrophysics Data System (ADS)

    Editorial Staff, Jce

    2009-07-01

    William E. Snyder is the 2009 winner of the ACS Division of Chemical Education Central Region Award for Excellence in High School Teaching; Sally Mitchell is the winner of the 2009 James Bryant Conant Award in High School Chemistry Teaching.

  3. Low power, scalable multichannel high voltage controller

    DOEpatents

    Stamps, James Frederick; Crocker, Robert Ward; Yee, Daniel Dadwa; Dils, David Wright

    2008-03-25

    A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

  4. Low power, scalable multichannel high voltage controller

    DOEpatents

    Stamps, James Frederick; Crocker, Robert Ward; Yee, Daniel Dadwa; Dils, David Wright

    2006-03-14

    A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

  5. High voltage design guide. Volume 4: Aircraft

    NASA Astrophysics Data System (ADS)

    Dunbar, W. G.

    1983-01-01

    This report supplies the theoretical background and design techniques needed by an engineer who is designing electrical insulation for high-voltage, high-power components, equipment, and systems for aircraft. A literature survey and abundant bibliography identify references that provide further data on the subjects of partial discharges, corona, field theory and plotting, voids and processes for applying insulation. Both gaseous and solid insulations are treated. Cryogenic and liquid design notes are included. Tests and test equipment for high voltage insulation and equipment are defined. Requirements of test plans and procedures for high-voltage, high-power equipment are identified and illustrated by examples. Suggestions for high-voltage specifications are provided. Very few of the Military and Government specifications deal with system voltages above 10kV, thus most aircraft high-voltage specifications will have to be derived from the power industry specifications and standards produced by ASTM, IEEE, and NEMA.

  6. HIGH VOLTAGE, HIGH CURRENT SPARK GAP SWITCH

    DOEpatents

    Dike, R.S.; Lier, D.W.; Schofield, A.E.; Tuck, J.L.

    1962-04-17

    A high voltage and current spark gap switch comprising two main electrodes insulatingly supported in opposed spaced relationship and a middle electrode supported medially between the main electrodes and symmetrically about the median line of the main electrodes is described. The middle electrode has a perforation aligned with the median line and an irradiation electrode insulatingly supported in the body of the middle electrode normal to the median line and protruding into the perforation. (AEC)

  7. High-Voltage CMOS Controller for Microfluidics.

    PubMed

    Khorasani, M; Behnam, M; van den Berg, L; Backhouse, C J; Elliott, D G

    2009-04-01

    A high-voltage microfluidic controller designed using DALSA semiconductor's 0.8-mum low-voltage/high-voltage complementary metal-oxide semiconductor/double diffused metal-oxide semiconductor process is presented. The chip's four high-voltage output drivers can switch 300 V, and the dc-dc boost converter can generate up to 68 V using external passive components. This integrated circuit represents an advancement in microfluidic technology when used in conjunction with a charge coupling device (CCD)-based optical system and a glass microfluidic channel, enabling a portable and cost-efficient platform for genetic analysis.

  8. High voltage MOSFET switching circuit

    DOEpatents

    McEwan, T.E.

    1994-07-26

    The problem of source lead inductance in a MOSFET switching circuit is compensated for by adding an inductor to the gate circuit. The gate circuit inductor produces an inductive spike which counters the source lead inductive drop to produce a rectangular drive voltage waveform at the internal gate-source terminals of the MOSFET. 2 figs.

  9. High voltage MOSFET switching circuit

    DOEpatents

    McEwan, Thomas E.

    1994-01-01

    The problem of source lead inductance in a MOSFET switching circuit is compensated for by adding an inductor to the gate circuit. The gate circuit inductor produces an inductive spike which counters the source lead inductive drop to produce a rectangular drive voltage waveform at the internal gate-source terminals of the MOSFET.

  10. Multijunction high-voltage solar cell

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Goradia, C.; Chai, A. T.

    1981-01-01

    Multijunction cell allows for fabrication of high-voltage solar cell on single semiconductor wafer. Photovoltaic energy source using cell is combined on wafer with circuit it is to power. Cell consists of many voltage-generating regions internally or externally interconnected to give desired voltage and current combination. For computer applications, module is built on silicon wafer with energy for internal information processing and readouts derived from external light source.

  11. High Voltage Pulse Testing Survey.

    DTIC Science & Technology

    1985-10-01

    Vacuum 18 I. Direct Current Source 18 2. Pulse 20 3. Insulator Flashover 20 (a) Alumina 20 (b) Organic Materials 23 D...withstand voltage. 3. Insulator Flashover Flashover along insulating surfaces is less than it is along a parallel plate vacuum gap of similar dimensions...K. D. Srivastova, "The Effects of DC Prestress on Impulse Flashover of Insulators in Vacuum ," IEEE Trans on Elec Ins, Vol. EI-9, No. 3, pp.

  12. Zero Voltage Soft Switching Duty Cycle Pulse Modulated High Frequency Inverter-Fed

    NASA Astrophysics Data System (ADS)

    Ishitobi, Manabu; Matsushige, Takayuki; Nakaoka, Mutsuo; Bessyo, Daisuke; Omori, Hideki; Terai, Haruo

    The utility grid voltage of commercial AC power source in Japan and USA is 100V, but in other Asian and European countries, it is 220V. In recent years, in Japan 200V outputted single-phase three-wire system begins to be used for high power applications. In 100V utility AC power applications and systems, an active voltage clamped quasi-resonant inverter circuit topology sing IGBTs has been effectively used so far for the consumer microwave oven. In this paper, presented is a half bridge type voltage-clamped asymmetrical soft switching PWM high-frequency inverter type AC-DC converter using IGBTs which is designed for consumer magnetron drive used as the consumer microwave oven in 200V utility AC power system. The zero voltage soft switching inverter treated here can use the same power rated switching semiconductor devices and three-winding high frequency transformer as those of the active voltage clamped quasi-resonant inverter using the IGBTs that has already been used for 100V utility AC power source. The operating performances of the voltage source single ended push pull (SEPP) type soft switching PWM inverter are evaluated and discussed for 100V and 200V common use consumer microwave oven. The harmonic line current components in the utility AC power side of the AC-DC power converter with ZVS-PWM SEPP inverter are reduced and improved on the basis of sine wave like pulse frequency modulation and sine wave like pulse width modulation for the utility AC voltage source.

  13. An Approach to Suppressing Both Shaft Voltage and Leakage Current in an AC Motor Driven by a Voltage-Source PWM Inverter

    NASA Astrophysics Data System (ADS)

    Doumoto, Takafumi; Akagi, Hirofumi

    This paper proposes a practical approach to suppressing both shaft voltage and leakage current in an ac motor driven by a voltage-source PWM inverter. This approach is characterized by using a neutral line of the ac motor. A common-mode inductor is connected between the inverter and the motor. Moreover, a resistor and a capacitor are connected in series between the motor neutral point and the inverter negative dc bus. This unique circuit configuration makes the common-mode inductor effective in reducing the common-mode voltage appearing at the motor terminals. As a result, both shaft voltage and ground current are significantly suppressed with low cost. Over-voltages at the end of a cable can be suppressed by a normal-mode inductor and a resistor which are connected in parallel. The validity and effectiveness of the new approach are verified by experimental results from a 5-kVA laboratory system.

  14. A high voltage method for measuring low capacitance for tomography.

    PubMed

    Lu, Decai; Shao, Fuqun; Guo, Zhiheng

    2009-05-01

    Low capacitance measurement is involved in many industrial applications, especially in the applications of electrical capacitance tomography (ECT). Most of the low capacitance measurement circuits employ an ac-based method or a charge/discharge method because of high sensitivity, high resolution, and immunity to stray capacitance; and its excitation or charge voltage are not more than 20 V. When ECT techniques for large industrial equipment such as blast furnaces or grain barns are explored, the existing methods for measuring low capacitance have some limitations. This paper proposes a high excitation voltage ac-based method for measuring low capacitance to improve the resolution of measurement. The method uses a high excitation voltage of several hundred volts and a transformer ratio arms as the C/V transducer. Experimental results indicate that the new method has a resolution of 0.005 fF, a good stability (about 0.003 fF over 4 h) and linearity (0.9992).

  15. Bi-directional flow induced by an AC electroosmotic micropump with DC voltage bias.

    PubMed

    Islam, Nazmul; Reyna, Jairo

    2012-04-01

    This paper discusses the principle of biased alternating current electroosmosis (ACEO) and its application to move the bulk fluid in a microchannel, as an alternative to mechanical pumping methods. Previous EO-driven flow research has looked at the effect of electrode asymmetry and transverse traveling wave forms on the performance of electroosmotic pumps. This paper presents an analysis that was conducted to assess the effect of combining an AC signal with a DC (direct current) bias when generating the electric field needed to impart electroosmosis (EO) within a microchannel. The results presented here are numerical and experimental. The numerical results were generated through simulations performed using COMSOL 3.5a. Currently available theoretical models for EO flows were embedded in the software and solved numerically to evaluate the effects of channel geometry, frequency of excitation, electrode array geometry, and AC signal with a DC bias on the flow imparted on an electrically conducting fluid. Simulations of the ACEO flow driven by a constant magnitude of AC voltage over symmetric electrodes did not indicate relevant net flows. However, superimposing a DC signal over the AC signal on the same symmetric electrode array leads to a noticeable net forward flow. Moreover, changing the polarity of electrical signal creates a bi-directional flow on symmetrical electrode array. Experimental flow measurements were performed on several electrode array configurations. The mismatch between the numerical and experimental results revealed the limitations of the currently available models for the biased EO. However, they confirm that using a symmetric electrode array excited by an AC signal with a DC bias leads to a significant improvement in flow rates in comparison to the flow rates obtained in an asymmetric electrode array configuration excited just with an AC signal.

  16. Ultrasonic evaluation of high voltage circuit boards

    NASA Technical Reports Server (NTRS)

    Klima, S. J.; Riley, T. J.

    1976-01-01

    Preliminary observations indicate that an ultrasonic scanning technique may be useful as a quick, low cost, nondestructive method for judging the quality of circuit board materials for high voltage applications. Corona inception voltage tests were conducted on fiberglass-epoxy and fiberglass-polyimide high pressure laminates from 20 to 140 C. The same materials were scanned ultrasonically by utilizing the single transducer, through-transmission technique with reflector plate, and recording variations in ultrasonic energy transmitted through the board thickness. A direct relationship was observed between ultrasonic transmission level and corona inception voltage. The ultrasonic technique was subsequently used to aid selection of high quality circuit boards for the Communications Technology Satellite.

  17. High-voltage-compatible, fully depleted CCDs

    SciTech Connect

    Holland, Stephen E.; Bebek, Chris J.; Dawson, Kyle S.; Emes, JohnE.; Fabricius, Max H.; Fairfield, Jessaym A.; Groom, Don E.; Karcher, A.; Kolbe, William F.; Palaio, Nick P.; Roe, Natalie A.; Wang, Guobin

    2006-05-15

    We describe charge-coupled device (CCD) developmentactivities at the Lawrence Berkeley National Laboratory (LBNL).Back-illuminated CCDs fabricated on 200-300 mu m thick, fully depleted,high-resistivity silicon substrates are produced in partnership with acommercial CCD foundry.The CCDs are fully depleted by the application ofa substrate bias voltage. Spatial resolution considerations requireoperation of thick, fully depleted CCDs at high substrate bias voltages.We have developed CCDs that are compatible with substrate bias voltagesof at least 200V. This improves spatial resolution for a given thickness,and allows for full depletion of thicker CCDs than previously considered.We have demonstrated full depletion of 650-675 mu m thick CCDs, withpotential applications in direct x-ray detection. In this work we discussthe issues related to high-voltage operation of fully depleted CCDs, aswell as experimental results on high-voltage-compatible CCDs.

  18. Spin Hall voltages from a.c. and d.c. spin currents

    PubMed Central

    Wei, Dahai; Obstbaum, Martin; Ribow, Mirko; Back, Christian H.; Woltersdorf, Georg

    2014-01-01

    In spin electronics, the spin degree of freedom is used to transmit and store information. To this end the ability to create pure spin currents—that is, without net charge transfer—is essential. When the magnetization vector in a ferromagnet–normal metal junction is excited, the spin pumping effect leads to the injection of pure spin currents into the normal metal. The polarization of this spin current is time-dependent and contains a very small d.c. component. Here we show that the large a.c. component of the spin currents can be detected efficiently using the inverse spin Hall effect. The observed a.c.-inverse spin Hall voltages are one order of magnitude larger than the conventional d.c.-inverse spin Hall voltages measured on the same device. Our results demonstrate that ferromagnet–normal metal junctions are efficient sources of pure spin currents in the gigahertz frequency range. PMID:24780927

  19. Detecting Faults In High-Voltage Transformers

    NASA Technical Reports Server (NTRS)

    Blow, Raymond K.

    1988-01-01

    Simple fixture quickly shows whether high-voltage transformer has excessive voids in dielectric materials and whether high-voltage lead wires too close to transformer case. Fixture is "go/no-go" indicator; corona appears if transformer contains such faults. Nests in wire mesh supported by cap of clear epoxy. If transformer has defects, blue glow of corona appears in mesh and is seen through cap.

  20. Spacecraft high-voltage power supply construction

    NASA Technical Reports Server (NTRS)

    Sutton, J. F.; Stern, J. E.

    1975-01-01

    The design techniques, circuit components, fabrication techniques, and past experience used in successful high-voltage power supplies for spacecraft flight systems are described. A discussion of the basic physics of electrical discharges in gases is included and a design rationale for the prevention of electrical discharges is provided. Also included are typical examples of proven spacecraft high-voltage power supplies with typical specifications for design, fabrication, and testing.

  1. Boeing's High Voltage Solar Tile Test Results

    NASA Technical Reports Server (NTRS)

    Reed, Brian J.; Harden, David E.; Ferguson, Dale C.; Snyder, David B.

    2002-01-01

    Real concerns of spacecraft charging and experience with solar array augmented electrostatic discharge arcs on spacecraft have minimized the use of high voltages on large solar arrays despite numerous vehicle system mass and efficiency advantages. Boeing's solar tile (patent pending) allows high voltage to be generated at the array without the mass and efficiency losses of electronic conversion. Direct drive electric propulsion and higher power payloads (lower spacecraft weight) will benefit from this design. As future power demand grows, spacecraft designers must use higher voltage to minimize transmission loss and power cable mass for very large area arrays. This paper will describe the design and discuss the successful test of Boeing's 500-Volt Solar Tile in NASA Glenn's Tenney chamber in the Space Plasma Interaction Facility. The work was sponsored by NASA's Space Solar Power Exploratory Research and Technology (SERT) Program and will result in updated high voltage solar array design guidelines being published.

  2. Electric Power High-Voltage Transmission Lines: Design Options, Cost, and Electric and Magnetic Field Levels

    SciTech Connect

    Stoffel, J. B.; Pentecost, E. D.; Roman, R. D.; Traczyk, P. A.

    1994-11-01

    The aim of this report is to provide background information about (1) the electric and magnetic fields (EMFs) of high-voltage transmission lines at typical voltages and line configurations and (2) typical transmission line costs to assist preparers and reviewers of the section on alternatives in environmental documents. This report will give the reviewing individual a better appreciation of the factors affecting EMF strengths near high-voltage transmission lines and the approaches that might be used to reduce EMF impacts on humans and other biological species in the vicinity of high-voltage overhead or underground alternating-current (ac) or direct-current (dc) transmission lines.

  3. Efficient circuit triggers high-current, high-voltage pulses

    NASA Technical Reports Server (NTRS)

    Green, E. D.

    1964-01-01

    Modified circuit uses diodes to effectively disconnect the charging resistors from the circuit during the discharge cycle. Result is an efficient parallel charging, high voltage pulse modulator with low voltage rating of components.

  4. Electrical Effect in Silver-Point Realization Due to Cell Structure and Bias Voltage Based on Resistance Measurement Using AC and DC Bridges

    NASA Astrophysics Data System (ADS)

    Widiatmo, J. V.; Harada, K.; Yamazawa, K.; Tamba, J.; Arai, M.

    2015-08-01

    Electrical effects related to insulating leakage represent one of the major factors contributing to uncertainties in measurements using high-temperature standard platinum resistance thermometers (HTSPRTs), especially during the realization of the silver freezing point (). This work is focused on the evaluation of the differences in resistance measurements observed when using AC resistance bridges and DC resistance bridges, hereafter, termed the AC-DC differences, as the result of various electrical effects. The magnitude of the AC-DC difference in several silver-point cells is demonstrated with several HTSPRTs. The effect of the cell structure on the AC-DC difference is evaluated by exchanging some components, part by part, within a silver-point cell. Then, the effect of the bias voltage applied to the heat pipe within the silver-point furnace is evaluated. Through the analysis of the experimental results and comparison with the reports in the literature, the importance of evaluating the AC-DC difference as a means to characterize the underlying electrical effects is discussed, considering that applying a negative bias condition to the furnace with respect to the high-temperature SPRT can minimize the AC-DC difference. Concluding recommendations are proposed on the components used in silver-point cells and the application of a bias voltage to the measurement circuit to minimize the effects of the electrical leakage.

  5. 30 CFR 75.826 - High-voltage trailing cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage trailing cables. 75.826 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.826 High-voltage trailing cables. High-voltage trailing cables must: (a)...

  6. High voltage planar multijunction solar cell

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Chai, A. T.; Goradia, C. P. (Inventor)

    1982-01-01

    A high voltage multijunction solar cell is provided wherein a plurality of discrete voltage generating regions or unit cells are formed in a single generally planar semiconductor body. The unit cells are comprised of doped regions of opposite conductivity type separated by a gap or undiffused region. Metal contacts connect adjacent cells together in series so that the output voltages of the individual cells are additive. In some embodiments, doped field regions separated by a overlie the unit cells but the cells may be formed in both faces of the wafer.

  7. High voltage insulation of bushing for HTS power equipment

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Jin; Choi, Jae-Hyeong; Kim, Sang-Hyun

    2012-12-01

    For the operation of high temperature superconducting (HTS) power equipments, it is necessary to develop insulating materials and high voltage (HV) insulation technology at cryogenic temperature of bushing. Liquid nitrogen (LN2) is an attractive dielectric liquid. Also, the polymer insulating materials are expected to be used as solid materials such as glass fiber reinforced plastic (GFRP), polytetra-fluoroethylene (PTFE, Teflon), Silicon (Si) rubber, aromatic polyamide (Nomex), EPDM/Silicon alloy compound (EPDM/Si). In this paper, the surface flashover characteristics of various insulating materials in LN2 are studied. These results are studied at both AC and impulse voltage under a non-uniform field. The use of GFRP and Teflon as insulation body for HTS bushing should be much desirable. Especially, GFRP is excellent material not only surface flashover characteristics but also mechanical characteristics at cryogenic temperature. The surface flashover is most serious problem for the shed design in LN2 and operation of superconducting equipments.

  8. Electro-optic high voltage sensor

    DOEpatents

    Davidson, James R.; Seifert, Gary D.

    2003-09-16

    A small sized electro-optic voltage sensor capable of accurate measurement of high voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation. A polarization beam displacer separates the input beam into two beams with orthogonal linear polarizations and causes one linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels effect elliptically polarizes the beam as it travels through the crystal. A reflector redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization. The system may include a detector for converting the output beams into electrical signals and a signal processor for determining the voltage based on an analysis of the output beams.

  9. High voltage testing for the Majorana Demonstrator

    SciTech Connect

    Abgrall, N.; Arnquist, Isaac J.; Avignone, F. T.; Barabash, A.; Bertrand, F.; Bradley, A. W.; Brudanin, V.; Busch, Matthew; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Yuen-Dat; Christofferson, C. D.; Chu, Pamela M.; Cuesta, C.; Detwiler, Jason A.; Doe, P. J.; Dunagan, C.; Efremenko, Yuri; Ejiri, H.; Elliott, S. R.; Fu, Z.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I.; Guiseppe, V. E.; Henning, R.; Hoppe, Eric W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K.; Kidd, M. F.; Konovalov, S.; Kouzes, Richard T.; Laferriere, Brian D.; Leon, Jonathan D.; Li, Alexander D.; MacMullin, J.; Martin, R. D.; Massarcyk, R.; Meijer, S. J.; Mertens, S.; Orrell, John L.; O'Shaughnessy, C.; Poon, Alan W.; Radford, D. C.; Rager, J.; Rielage, Keith; Robertson, R. G. H.; Romero Romo, M.; Shanks, B.; Shirchenko, M.; Snyder, N.; Suriano, Anne-Marie E.; Tedeschi, D.; Thompson, Andrew; Ton, K. T.; Trimble, J. E.; Varner, R. L.; Vasilyev, Sergey; Vetter, Kai; Vorren, Kris R.; White, Brandon R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, Chang-Hong; Yumatov, V.

    2016-07-01

    The Majorana Collaboration is constructing theMajorana Demonstrator, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in 76Ge. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of theMajorana Demonstrator. This effect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of the high-voltage path, including different improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the Majorana Demonstrator was characterized and the micro-discharge effects during theMajorana Demonstrator commissioning phase were studied. A stable configuration has been achieved, and the cables and connectors can supply HPGe detector operating voltages without exhibiting discharge.

  10. High voltage testing for the MAJORANA DEMONSTRATOR

    NASA Astrophysics Data System (ADS)

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Fu, Z.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Li, A.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O'Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Shanks, B.; Shirchenko, M.; Snyder, N.; Suriano, A. M.; Tedeschi, D.; Thompson, A.; Ton, K. T.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.

    2016-07-01

    The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in 76Ge. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of the MAJORANA DEMONSTRATOR. This effect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of the high-voltage path, including different improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the MAJORANA DEMONSTRATOR was characterized and the micro-discharge effects during the MAJORANA DEMONSTRATOR commissioning phase were studied. A stable configuration has been achieved, and the cables and connectors can supply HPGe detector operating voltages without exhibiting discharge.

  11. High voltage testing for the Majorana Demonstrator

    SciTech Connect

    Abgrall, N.; Arnquist, I. J.; Avignone, III, F. T.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y. -D.; Christofferson, C. D.; Chu, P. -H.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliot, S. R.; Fu, Z.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Li, A.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O'Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Shanks, B.; Shirchenko, M.; Snyder, N.; Suriano, A. M.; Tedeschi, D.; Thompson, A.; Ton, K. T.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C. -H.; Yumatov, V.

    2016-04-04

    The Majorana Collaboration is constructing the Majorana Demonstrator, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in 76Ge. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of the Majorana Demonstrator. This effect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of the high-voltage path, including different improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the Majorana Demonstrator was characterized and the micro-discharge effects during the Majorana Demonstrator commissioning phase were studied. Furthermore, a stable configuration has been achieved, and the cables and connectors can supply HPGe detector operating voltages without exhibiting discharge.

  12. High voltage testing for the Majorana Demonstrator

    DOE PAGES

    Abgrall, N.; Arnquist, I. J.; Avignone, III, F. T.; ...

    2016-04-04

    The Majorana Collaboration is constructing the Majorana Demonstrator, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in 76Ge. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of the Majorana Demonstrator. This effect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of themore » high-voltage path, including different improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the Majorana Demonstrator was characterized and the micro-discharge effects during the Majorana Demonstrator commissioning phase were studied. Furthermore, a stable configuration has been achieved, and the cables and connectors can supply HPGe detector operating voltages without exhibiting discharge.« less

  13. Compact high voltage solid state switch

    DOEpatents

    Glidden, Steven C.

    2003-09-23

    A compact, solid state, high voltage switch capable of high conduction current with a high rate of current risetime (high di/dt) that can be used to replace thyratrons in existing and new applications. The switch has multiple thyristors packaged in a single enclosure. Each thyristor has its own gate drive circuit that circuit obtains its energy from the energy that is being switched in the main circuit. The gate drives are triggered with a low voltage, low current pulse isolated by a small inexpensive transformer. The gate circuits can also be triggered with an optical signal, eliminating the trigger transformer altogether. This approach makes it easier to connect many thyristors in series to obtain the hold off voltages of greater than 80 kV.

  14. High-Voltage Isolation Transformer

    NASA Technical Reports Server (NTRS)

    Clatterbuck, C. H.; Ruitberg, A. P.

    1985-01-01

    Arcing and field-included surface erosion reduced by electrostatic shields around windings and ferromagnetic core of 80-kilovolt isolation transformer. Fabricated from high-resistivity polyurethane-based material brushed on critical surfaces, shields maintained at approximately half potential difference of windings.

  15. High-resolution ac-pulse modulated electrohydrodynamic jet printing on highly insulating substrates

    NASA Astrophysics Data System (ADS)

    Wei, Chuang; Qin, Hantang; Ramírez-Iglesias, Nakaira A.; Chiu, Chia-Pin; Lee, Yuan-shin; Dong, Jingyan

    2014-04-01

    This paper presents a new high-resolution ac-pulse modulated electrohydrodynamic (EHD)-jet printing technology on highly insulating substrates for drop-on-demand fabrication of electrical features and interconnects using silver nanoink. In traditional EHD-jet printing, the remained charge of the printed droplets changes the electrostatic field distribution and interrupts the follow-on printing behavior, especially for highly insulating substrates which have slow charge decay rates. The residue charge makes the control of EHD-jet printing very challenging for high-resolution continuous features. In this paper, by using modulated ac-pulsed voltage, the EHD-jet printing process switches the charge polarity of the consequent droplets to neutralize the charge on the substrate. The effect of the residue charge is minimized, which enables high-resolution printing of continuous patterns. Moreover, by modulating the pulse frequency, voltage, and duration, the EHD-jet printing behavior can be controlled with respect to printing speed/frequency and droplet size. Printing frequency is directly controlled by the pulse frequency, and the droplet dimension is controlled by the voltage and the duration of the pulse. We demonstrated that ac-pulse modulated EHD-jet printing can overcome the long-predicated charge accumulation problem on highly insulating substrates, and potentially be applied to many flexible electronics applications.

  16. High Voltage Design Guide. Volume V. Spacecraft

    DTIC Science & Technology

    1983-01-01

    4. W. G. Dunbar, "Skylab High Voltage Systems Corona Assessment", 1 th Electrical/Electronics Insulation Conference, Chicago, Illinois, 1973. 5. 3. F ...and Composition of Interplanetary Dust Particles", Earth Planet, Sci. Lett. 30, pp 234, 1976. 13. D. K. Heier, "Brush/Slip Ring Selection for High...mai. a FEIINrS CATALOG NUMBER - F dAL-TR-82-2057 Volume V _____________ 4. TITLE (mnd S. kettle) U TYPE OF REPORT S, PERIOD COVERED High Voltage Design

  17. High Voltage Flux Compression Generators

    DTIC Science & Technology

    2008-04-02

    the generator: the armature radial expansion speed, the high explosive (HE) detonation speed, and the armature-stator helical contact speed. Clearly... detonation speeds, which are also the speed at which the self-similar expanding armature cone moves axially, are on the order of 8 to 9 mm/μs...product of detonation speed and the ratio of stator underside circumference to pitch, ( )prvv sc π2Δ= rr . For a typical circumference-to-pitch ratio

  18. High Voltage Water Breakdown Studies

    DTIC Science & Technology

    1998-01-01

    Terman [20] gives the following equation for a rectangle that has sides that are S1 by S2 and is made up of a rectangular bar that is b by c, L = 0.02339...Dielectrics," Proc. Tenth IEEE Pulsed Power Confer- ence, June, 1995, p. 574. (UNCLASSIFIED) 86 (20) Terman , F. E., Radio Engineers’ Handbook, McGraw-Hill Book...34 Conference Rec- ord, Eighth International Conference on Conduction and Breakdown in Dielectric Liquids, pp. 176-179, July, 1984. Lewis , T. J., High

  19. High-voltage electrocution causing bulbar dysfunction

    PubMed Central

    Parvathy, G.; Shaji, C. V.; Kabeer, K. A.; Prasanth, S. R.

    2016-01-01

    Electrical shock can result in neurological complications, involving both peripheral and central nervous systems, which may present immediately or later on. High-voltage electrical injuries are uncommonly reported and may predispose to both immediate and delayed neurologic complications. We report the case of a 68-year-old man who experienced a high-voltage electrocution injury, subsequently developed bulbar dysfunction and spontaneously recovered. We describe the development of bulbar palsy following a significant electrical injury, which showed no evidence of this on magnetic resonance imaging. High-voltage electrocution injuries are a serious problem with potential for both immediate and delayed neurologic sequelae. The existing literature has no reports on bulbar dysfunction following electrocution, apart from motor neuron disease. PMID:27365968

  20. Comparative study of 0° X-cut and Y + 36°-cut lithium niobate high-voltage sensing

    NASA Astrophysics Data System (ADS)

    Patel, N.; Branch, D. W.; Schamiloglu, E.; Cular, S.

    2015-08-01

    A comparison study between Y + 36° and 0° X-cut lithium niobate (LiNbO3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y + 36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y + 36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz-100 kHz. Using the same conditions as the Y + 36° cut, the 0° X-cut crystal sensed a shift of 10-273 ps for DC voltages and 189-813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250-2 ns and the Y + 36°-cut crystal sensed a time shift of 0.115-1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. When the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.

  1. Comparative study of 0° X-cut and Y+36°-cut lithium niobate high-voltage sensing

    SciTech Connect

    Patel, N.; Branch, D. W.; Schamiloglu, E.; Cular, S.

    2015-08-11

    A comparison study between Y+36° and 0° X-cut lithium niobate (LiNbO3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y+36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y+36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz–100 kHz. Using the same conditions as the Y+36° cut, the 0° X-cut crystal sensed a shift of 10–273 ps for DC voltages and 189–813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250–2 ns and the Y+36°-cut crystal sensed a time shift of 0.115–1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. Furthermore, when the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.

  2. Comparative study of 0° X-cut and Y + 36°-cut lithium niobate high-voltage sensing

    SciTech Connect

    Patel, N.; Branch, D. W.; Cular, S.; Schamiloglu, E.

    2015-08-15

    A comparison study between Y + 36° and 0° X-cut lithium niobate (LiNbO{sub 3}) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y + 36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y + 36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz–100 kHz. Using the same conditions as the Y + 36° cut, the 0° X-cut crystal sensed a shift of 10–273 ps for DC voltages and 189–813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250–2 ns and the Y + 36°-cut crystal sensed a time shift of 0.115–1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. When the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.

  3. Comparative study of 0° X-cut and Y+36°-cut lithium niobate high-voltage sensing

    DOE PAGES

    Patel, N.; Branch, D. W.; Schamiloglu, E.; ...

    2015-08-11

    A comparison study between Y+36° and 0° X-cut lithium niobate (LiNbO3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y+36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to bothmore » crystals, the voltage-induced shift scaled linearly with voltage. For the Y+36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz–100 kHz. Using the same conditions as the Y+36° cut, the 0° X-cut crystal sensed a shift of 10–273 ps for DC voltages and 189–813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250–2 ns and the Y+36°-cut crystal sensed a time shift of 0.115–1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. Furthermore, when the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.« less

  4. Modular high voltage power supply for chemical analysis

    DOEpatents

    Stamps, James F.; Yee, Daniel D.

    2007-01-09

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC--DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC--DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  5. Modular high voltage power supply for chemical analysis

    DOEpatents

    Stamps, James F.; Yee, Daniel D.

    2008-07-15

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  6. Modular high voltage power supply for chemical analysis

    DOEpatents

    Stamps, James F.; Yee, Daniel D.

    2010-05-04

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  7. Recommended practices for encapsulating high voltage assemblies

    NASA Technical Reports Server (NTRS)

    Tankisley, E. W.

    1974-01-01

    Preparation and encapsulation of high voltage assemblies are considered. Related problems in encapsulating are brought out in these instructions. A test sampling of four frequently used encapsulating compounds is shown in table form. The purpose of this table is to give a general idea of the working time available and the size of the container required for mixing and de-aerating.

  8. An Inexpensive Source of High Voltage

    ERIC Educational Resources Information Center

    Saraiva, Carlos

    2012-01-01

    As a physics teacher I like recycling old apparatus and using them for demonstrations in my classes. In physics laboratories in schools, sources of high voltage include induction coils or electronic systems that can be bought from companies that sell lab equipment. But these sources can be very expensive. In this article, I will explain how you…

  9. High Voltage Piezoelectric System for Generating Neutrons

    DTIC Science & Technology

    2013-06-01

    Piezoelectric transformer structural modeling - a review,” Ultrasonics , Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 54, pp...1 High Voltage Piezoelectric System for Generating Neutrons Brady Gall, Student Member, IEEE, Scott D. Kovaleski, Senior Member, IEEE, James A...Compact electrical neutron generators are a desir- able alternative to radioisotope neutron sources. A piezoelectric transformer system is presented

  10. Planar multijunction high voltage solar cells

    NASA Astrophysics Data System (ADS)

    Evans, J. C., Jr.; Chai, A. T.; Goradia, C.

    1980-01-01

    Technical considerations, preliminary results, and fabrication details are discussed for a family of high-voltage planar multi-junction (PMJ) solar cells which combine the attractive features of planar cells with conventional or interdigitated back contacts and the vertical multijunction (VMJ) solar cell. The PMJ solar cell is internally divided into many voltage-generating regions, called unit cells, which are internally connected in series. The key to obtaining reasonable performance from this device was the separation of top surface field regions over each active unit cell. Using existing solar cell fabricating methods, output voltages in excess of 20 volts per linear centimeter are possible. Analysis of the new device is complex, and numerous geometries are being studied which should provide substantial benefits in both normal sunlight usage as well as with concentrators.

  11. 30 CFR 77.810 - High-voltage equipment; grounding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage equipment; grounding. 77.810... COAL MINES Surface High-Voltage Distribution § 77.810 High-voltage equipment; grounding. Frames, supporting structures, and enclosures of stationary, portable, or mobile high-voltage equipment shall...

  12. An implantable neurostimulator with an integrated high-voltage inductive power-recovery frontend

    NASA Astrophysics Data System (ADS)

    Yuan, Wang; Xu, Zhang; Ming, Liu; Peng, Li; Hongda, Chen

    2014-10-01

    This paper present a highly-integrated neurostimulator with an on-chip inductive power-recovery frontend and high-voltage stimulus generator. In particular, the power-recovery frontend includes a high-voltage full-wave rectifier (up to 100 V AC input), high-voltage series regulators (24/5 V outputs) and a linear regulator (1.8/3.3 V output) with bandgap voltage reference. With the high voltage output of the series regulator, the proposed neurostimulator could deliver a considerably large current in high electrode-tissue contact impedance. This neurostimulator has been fabricated in a CSMC 1 μm 5/40/700 V BCD process and the total silicon area including pads is 5.8 mm2. Preliminary tests are successful as the neurostimulator shows good stability under a 13.56 MHz AC supply. Compared to previously reported works, our design has advantages of a wide induced voltage range (26-100 V), high output voltage (up to 24 V) and high-level integration, which are suitable for implantable neurostimulators.

  13. High voltage pulse generator. [Patent application

    DOEpatents

    Fasching, G.E.

    1975-06-12

    An improved high-voltage pulse generator is described which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of the first rectifier connected between the first and second capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. The output voltage can be readily increased by adding additional charging networks. The circuit allows the peak level of the output to be easily varied over a wide range by using a variable autotransformer in the charging circuit.

  14. High voltage source control on FODS

    NASA Astrophysics Data System (ADS)

    Patalakha, D. I.; Kalinin, A. Yu; Kulagin, N. V.

    2017-01-01

    The implementation of the high voltage power supply control system (HVPSCS) for experimental setup FODS (FOcusing Doublearmed Spectrometer) at accelerator U-70 of the Federal State Budgetary Institution State Research Center Of Russia Institute for High Energy Physics of the National Research Centre “Kurchatov Institute” (hereinafter referred to as IHEP) or for the test bench of the detector components is considered. The required set of hardware is defined and the appropriate software to operate HVPSCS is written in C/C++ codes. The date acquisition (DAQ) system [1] makes automatic control on HVPSCS for data taking run. It allows to get the dependence of appropriate detector parameters on the high voltage supply values and choose its optimal values for FODS detectors. The test run results of HVPSCS are presented.

  15. Background information on high voltage fields.

    PubMed Central

    Janes, D E

    1977-01-01

    The increased demand for power has led to higher voltages for overhead transmission lines. Environmentalists, governmental agencies, and some members of the scientific community have questioned if past biological effects research and experience with lower voltage lines provide adequate bases for predicting the possible health and environmental effects of the higher voltage lines. Only a small amount of work has been done to explore the possible effects, especially long term effects, of the exposure of biological systems to electric fields from transmission lines. Research in Western Europe and the United States has not identified any prompt or acute effects other than spark and electric discharge and no permanent effects. Contrasted with this are the studies of workers in Soviet and Spanish high voltage switchyards that report effects, such as excitability, headaches, drowsiness, fatique, and nausea, that are not found in Soviet line maintenance workers. The results of current and planned research, supported by both U.S. Government agencies and the private sector, should resolve a number of the present uncertanties and provide answers for the many questions concerning potential effects. PMID:598346

  16. High-Voltage Droplet Dispenser Developed

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; VanderWal, Randy L.

    2001-01-01

    Various techniques have been applied to deploying individual droplets for many applications, such as the study of the combustion of liquid fuels. Isolated droplet studies are useful in that they allow phenomena to be studied under well-controlled and simplified conditions. A high-voltage droplet dispenser has been developed that is extremely effective in dispensing a wide range of droplets. The dispenser is quite unique in that it utilizes a droplet bias voltage, as well as an ionization pulse, to release the droplet. The droplet is deployed from the end of a needle. A flat-tipped, stainless steel needle attached to a syringe dispenses a known value of liquid that hangs on the needle tip. Somewhat below the droplet is an annular ring electrode. A bias voltage, followed by a voltage pulse, is applied to attract the droplet sufficiently to pull it off the needle. The droplet and needle are oppositely charged relative to the annular electrode. The needle is negatively charged, and the annular ring is positively charged.

  17. High Voltage Power Supply Design Guide for Space

    NASA Technical Reports Server (NTRS)

    Bever, Renate S.; Ruitberg, Arthur P.; Kellenbenz, Carl W.; Irish, Sandra M.

    2006-01-01

    This book is written for newcomers to the topic of high voltage (HV) in space and is intended to replace an earlier (1970s) out-of-print document. It discusses the designs, problems, and their solutions for HV, mostly direct current, electric power, or bias supplies that are needed for space scientific instruments and devices, including stepping supplies. Output voltages up to 30kV are considered, but only very low output currents, on the order of microamperes. The book gives a brief review of the basic physics of electrical insulation and breakdown problems, especially in gases. It recites details about embedment and coating of the supplies with polymeric resins. Suggestions on HV circuit parts follow. Corona or partial discharge testing on the HV parts and assemblies is discussed both under AC and DC impressed test voltages. Electric field analysis by computer on an HV device is included in considerable detail. Finally, there are many examples given of HV power supplies, complete with some of the circuit diagrams and color photographs of the layouts.

  18. High Voltage Design Guidelines: A Timely Update

    NASA Technical Reports Server (NTRS)

    Hillard, G. Barry; Kirkici, H.; Ensworth, Clint (Technical Monitor)

    2001-01-01

    The evolving state of high voltage systems and their increasing use in the space program have called for a revision of the High Voltage Design Guidelines, Marshall Space Flight Center technical document MSFC-STD-531, originally issued September 1978 (previously 50 M05189b, October 1972). These guidelines deal in depth with issues relating to the specification of materials, particularly electrical insulation, as well as design practices and test methods. Emphasis is on corona and Paschen breakdown as well as plasma effects for Low Earth Orbiting systems. We will briefly review the history of these guidelines as well as their immediate predecessors and discuss their range of applicability. In addition, this document has served as the basis for several derived works that became focused, program-specific HV guidelines. We will briefly review two examples, guidelines prepared for the X-33 program and for the Space Shuttle Electric Auxiliary Power Unit (EAPU) upgrade.

  19. Electro-optic high voltage sensor

    DOEpatents

    Davidson, James R.; Seifert, Gary D.

    2002-01-01

    A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal having at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.

  20. Marine High Voltage Power Conditioning and Transmission System with Integrated Storage DE-EE0003640 Final Report

    SciTech Connect

    Frank Hoffmann, PhD; Aspinall, Rik

    2012-12-10

    Design, Development, and test of the three-port power converter for marine hydrokinetic power transmission. Converter provides ports for AC/DC conversion of hydrokinetic power, battery storage, and a low voltage to high voltage DC port for HVDC transmission to shore. The report covers the design, development, implementation, and testing of a prototype built by PPS.

  1. High voltage spark carbon fiber detection system

    NASA Technical Reports Server (NTRS)

    Yang, L. C.

    1980-01-01

    The pulse discharge technique was used to determine the length and density of carbon fibers released from fiber composite materials during a fire or aircraft accident. Specifications are given for the system which uses the ability of a carbon fiber to initiate spark discharge across a high voltage biased grid to achieve accurate counting and sizing of fibers. The design of the system was optimized, and prototype hardware proved satisfactory in laboratory and field tests.

  2. High voltage electric substation performance in earthquakes

    SciTech Connect

    Eidinger, J.; Ostrom, D.; Matsuda, E.

    1995-12-31

    This paper examines the performance of several types of high voltage substation equipment in past earthquakes. Damage data is provided in chart form. This data is then developed into a tool for estimating the performance of a substation subjected to an earthquake. First, suggests are made about the development of equipment class fragility curves that represent the expected earthquake performance of different voltages and types of equipment. Second, suggestions are made about how damage to individual pieces of equipment at a substation likely affects the post-earthquake performance of the substation as a whole. Finally, estimates are provided as to how quickly a substation, at various levels of damage, can be restored to operational service after the earthquake.

  3. Energy harvesting in high voltage measuring techniques

    NASA Astrophysics Data System (ADS)

    Żyłka, Pawel; Doliński, Marcin

    2016-02-01

    The paper discusses selected problems related to application of energy harvesting (that is, generating electricity from surplus energy present in the environment) to supply autonomous ultra-low-power measurement systems applicable in high voltage engineering. As a practical example of such implementation a laboratory model of a remote temperature sensor is presented, which is self-powered by heat generated in a current-carrying busbar in HV- switchgear. Presented system exploits a thermoelectric harvester based on a passively cooled Peltier module supplying micro-power low-voltage dc-dc converter driving energy-efficient temperature sensor, microcontroller and a fibre-optic transmitter. Performance of the model in laboratory simulated conditions are presented and discussed.

  4. Recent advances in the mitigation of AC voltages occurring in pipelines located close to electric transmission lines

    SciTech Connect

    Southey, R.D.; Dawalibi, F.P. ); Vukonich, W. )

    1994-04-01

    In joint-use corridors where both pipelines and AC electric transmission lines are present, a portion of the energy contained in the electromagnetic field surrounding the electric transmission lines is captured by each pipeline, resulting in induced AC voltages which vary in magnitude throughout the length of each pipeline. During a fault on any of the transmission lines, energization of the earth by supporting structures near the fault can result in large voltages appearing locally between the earth and the steel wall of any nearby pipeline. Some form of mitigation is usually required to reduce these voltages to acceptable levels for the protection of personnel and of the pipeline itself. This paper presents a new mitigation design approach which not only reduces AC voltages effectively and economically, but also provides cathodic protection for the protected pipeline. Performance of this new mitigation method is illustrated with results from computer simulations, which show how important it is to have an accurate electrical model of the soil structure in any interference study. Results from large-scale mitigation design studies performed for ANR Pipeline Company and other gas transmission companies are presented.

  5. Working group report on advanced high-voltage high-power and energy-storage space systems

    NASA Technical Reports Server (NTRS)

    Cohen, H. A.; Cooke, D. L.; Evans, R. W.; Hastings, D.; Jongeward, G.; Laframboise, J. G.; Mahaffey, D.; Mcintyre, B.; Pfizer, K. A.; Purvis, C.

    1986-01-01

    Space systems in the future will probably include high-voltage, high-power energy-storage and -production systems. Two such technologies are high-voltage ac and dc systems and high-power electrodynamic tethers. The working group identified several plasma interaction phenomena that will occur in the operation of these power systems. The working group felt that building an understanding of these critical interaction issues meant that several gaps in our knowledge had to be filled, and that certain aspects of dc power systems have become fairly well understood. Examples of these current collection are in quiescent plasmas and snap over effects. However, high-voltage dc and almost all ac phenomena are, at best, inadequately understood. In addition, there is major uncertainty in the knowledge of coupling between plasmas and large scale current flows in space plasmas. These gaps in the knowledge are addressed.

  6. High Voltage Design Guide for Airborne Equipment

    DTIC Science & Technology

    1976-06-01

    500 380 210 140 50 800 770 530 500 360 210 140 85 780 670 530 480 360 220 140 125 870 630 560 520 350 220 140 114 4.1.2 High Voltage Cable. At high...radioactive source of ionizing radiation such as polonium sHould be placed near the equipment under test in the altitude chamber to insure a supply of...electrons in the critical gap volumcs. Polonium is recommenoed because it’is not as hard to handle as other gari~na sources like cobalt 60. 6.1

  7. High voltage solar cell power generating system

    NASA Technical Reports Server (NTRS)

    Levy, E., Jr.; Opjorden, R. W.; Hoffman, A. C.

    1974-01-01

    A laboratory solar power system regulated by on-panel switches has been delivered for operating high power (3 kW), high voltage (15,000 volt) loads (communication tubes, ion thrusters). The modular system consists of 26 solar arrays, each with an integral light source and cooling system. A typical array contains 2,560 series-connected cells. Each light source consists of twenty 500-watt tungsten iodide lamps providing plus or minus 5 percent uniformity at one solar constant. An array temperature of less than 40 C is achieved using an infrared filter, a water-cooled plate, a vacuum hold-down system, and air flushing.

  8. High Voltage in Noble Liquids for High Energy Physics

    SciTech Connect

    Rebel, B.; Bernard, E.; Faham, C. H.; Ito, T. M.; Lundberg, B.; Messina, M.; Monrabal, F.; Pereverzev, S. P.; Resnati, F.; Rowson, P. C.; Soderberg, M.; Strauss, T.; Tomas, A.; Va'vra, J.; Wang, H.

    2014-08-22

    A workshop was held at Fermilab November 8-9, 2013 to discuss the challenges of using high voltage in noble liquids. The participants spanned the fields of neutrino, dark matter, and electric dipole moment physics. All presentations at the workshop were made in plenary sessions. This document summarizes the experiences and lessons learned from experiments in these fields at developing high voltage systems in noble liquids.

  9. Achieving High Performance in AC-Field Driven Organic Light Sources

    PubMed Central

    Xu, Junwei; Carroll, David L.; Smith, Gregory M.; Dun, Chaochao; Cui, Yue

    2016-01-01

    Charge balance in organic light emitting structures is essential to simultaneously achieving high brightness and high efficiency. In DC-driven organic light emitting devices (OLEDs), this is relatively straight forward. However, in the newly emerging, capacitive, field-activated AC-driven organic devices, charge balance can be a challenge. In this work we introduce the concept of gating the compensation charge in AC-driven organic devices and demonstrate that this can result in exceptional increases in device performance. To do this we replace the insulator layer in a typical field-activated organic light emitting device with a nanostructured, wide band gap semiconductor layer. This layer acts as a gate between the emitter layer and the voltage contact. Time resolved device characterization shows that, at high-frequencies (over 40 kHz), the semiconductor layer allows for charge accumulation in the forward bias, light generating part of the AC cycle and charge compensation in the negative, quiescent part of the AC cycle. Such gated AC organic devices can achieve a non-output coupled luminance of 25,900 cd/m2 with power efficiencies that exceed both the insulator-based AC devices and OLEDs using the same emitters. This work clearly demonstrates that by realizing balanced management of charge, AC-driven organic light emitting devices may well be able to rival today’s OLEDs in performance. PMID:27063414

  10. Achieving High Performance in AC-Field Driven Organic Light Sources

    NASA Astrophysics Data System (ADS)

    Xu, Junwei; Carroll, David L.; Smith, Gregory M.; Dun, Chaochao; Cui, Yue

    2016-04-01

    Charge balance in organic light emitting structures is essential to simultaneously achieving high brightness and high efficiency. In DC-driven organic light emitting devices (OLEDs), this is relatively straight forward. However, in the newly emerging, capacitive, field-activated AC-driven organic devices, charge balance can be a challenge. In this work we introduce the concept of gating the compensation charge in AC-driven organic devices and demonstrate that this can result in exceptional increases in device performance. To do this we replace the insulator layer in a typical field-activated organic light emitting device with a nanostructured, wide band gap semiconductor layer. This layer acts as a gate between the emitter layer and the voltage contact. Time resolved device characterization shows that, at high-frequencies (over 40 kHz), the semiconductor layer allows for charge accumulation in the forward bias, light generating part of the AC cycle and charge compensation in the negative, quiescent part of the AC cycle. Such gated AC organic devices can achieve a non-output coupled luminance of 25,900 cd/m2 with power efficiencies that exceed both the insulator-based AC devices and OLEDs using the same emitters. This work clearly demonstrates that by realizing balanced management of charge, AC-driven organic light emitting devices may well be able to rival today’s OLEDs in performance.

  11. A Spherical Electro Optic High Voltage Sensor

    DTIC Science & Technology

    1989-06-01

    electro - optic (EO) crystal is introduced for photonic measurement of pulsed high-voltage fields. A spherical shape is used in order to reduce electric field gradients in the vicinity of the sensor. The sensor is pure dielectric and is interrogated remotely using a laser. The sensor does not require the connection of any conducting components, which results in the highest electrical isolation. The spherical nature of the crystal coupled with the incident laser beam, and crossed polarizers (intensity modulation scheme). automatically produces interference figures. The

  12. Safe epoxy encapsulant for high voltage magnetics

    SciTech Connect

    Sanchez, R.O.; Archer, W.E.

    1998-01-01

    This paper describes the use of Formula 456, an aliphatic amine cured epoxy for impregnating coils and high voltage transformers. Sandia has evaluated a number of MDA-free epoxy encapsulants which relied on either anhydride or other aromatic amine curing agents. The use of aliphatic amine curing agents was more recently evaluated and has resulted in the definition of Formula 456 resin. Methylene dianiline (MDA) has been used for more than 20 years as the curing agent for various epoxy formulations throughout the Department of Energy and much of industry. Sandia National Laboratories began the process of replacing MDA with other formulations because of regulations imposed by OSHA on the use of MDA. OSHA has regulated MDA because it is a suspect carcinogen. Typically the elimination of OSHA-regulated materials provides a rare opportunity to qualify new formulations in a range of demanding applications. It was important to take full advantage of that opportunity, although the associated materials qualification effort was costly. Small high voltage transformers are one of those demanding applications. The successful implementation of the new formulation for high reliability transformers will be described. The test results that demonstrate the parts are qualified for use in DOE weapon systems will be presented.

  13. High-Voltage, Asymmetric-Waveform Generator

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Duong, Tuan A.; Duong, Vu A.; Kanik, Isik

    2008-01-01

    The shapes of waveforms generated by commercially available analytical separation devices, such as some types of mass spectrometers and differential mobility spectrometers are, in general, inadequate and result in resolution degradation in output spectra. A waveform generator was designed that would be able to circumvent these shortcomings. It is capable of generating an asymmetric waveform, having a peak amplitude as large as 2 kV and frequency of several megahertz, which can be applied to a capacitive load. In the original intended application, the capacitive load would consist of the drift plates in a differential-mobility spectrometer. The main advantage to be gained by developing the proposed generator is that the shape of the waveform is made nearly optimum for various analytical devices requiring asymmetric-waveform such as differential-mobility spectrometers. In addition, this waveform generator could easily be adjusted to modify the waveform in accordance with changed operational requirements for differential-mobility spectrometers. The capacitive nature of the load is an important consideration in the design of the proposed waveform generator. For example, the design provision for shaping the output waveform is based partly on the principle that (1) the potential (V) on a capacitor is given by V=q/C, where C is the capacitance and q is the charge stored in the capacitor; and, hence (2) the rate of increase or decrease of the potential is similarly proportional to the charging or discharging current. The proposed waveform generator would comprise four functional blocks: a sine-wave generator, a buffer, a voltage shifter, and a high-voltage switch (see Figure 1). The sine-wave generator would include a pair of operational amplifiers in a feedback configuration, the parameters of which would be chosen to obtain a sinusoidal timing signal of the desired frequency. The buffer would introduce a slight delay (approximately equal to 20 ns) but would otherwise

  14. 30 CFR 75.813 - High-voltage longwalls; scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage longwalls; scope. 75.813 Section 75.813 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.813...

  15. 30 CFR 75.813 - High-voltage longwalls; scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage longwalls; scope. 75.813 Section 75.813 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.813...

  16. Study of the Dependence on Magnetic Field and Bias Voltage of an AC-Biased TES Microcalorimeter

    NASA Technical Reports Server (NTRS)

    Bandler, Simon

    2011-01-01

    At SRON we are studying the performance of a Goddard Space Flight Center single pixel TES microcalorimeter operated in the AC bias configuration. For x-ray photons at 6keV the AC biased pixel shows a best energy resolution of 3.7eV, which is about a factor of 2 worse than the energy resolution observed in identical DC-biased pixels. To better understand the reasons of this discrepancy, we investigated the detector performance as a function of temperature, bias working point and applied magnetic field. A strong periodic dependence of the detector noise on the TES AC bias voltage is measured. We discuss the results in the framework of the recent weak-link behaviour observed inTES microcalorimeters.

  17. Complete low power controller for high voltage power systems

    SciTech Connect

    Sumner, R.; Blanar, G.

    1997-12-31

    The MHV100 is a custom CMOS integrated circuit, developed for the AMS experiment. It provides complete control for a single channel high voltage (HV) generator and integrates all the required digital communications, D to A and A to D converters, the analog feedback loop and output drivers. This chip has been designed for use in both distributed high voltage systems or for low cost single channel high voltage systems. The output voltage and current range is determined by the external components.

  18. Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co3O4-PVA/p-Si structures

    NASA Astrophysics Data System (ADS)

    Bilkan, Çiğdem; Azizian-Kalandaragh, Yashar; Altındal, Şemsettin; Shokrani-Havigh, Roya

    2016-11-01

    In this research a simple microwave-assisted method have been used for preparation of cobalt oxide nanostructures. The as-prepared sample has been investigated by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM). On the other hand, frequency and voltage dependence of both the real and imaginary parts of dielectric constants (ε‧, ε″) and electric modulus (M‧ and M″), loss tangent (tanδ), and ac electrical conductivity (σac) values of Al/Co3O4-PVA/p-Si structures were obtained in the wide range of frequency and voltage using capacitance (C) and conductance (G/ω) data at room temperature. The values of ε‧, ε″ and tanδ were found to decrease with increasing frequency almost for each applied bias voltage, but the changes in these parameters become more effective in the depletion region at low frequencies due to the charges at surface states and their relaxation time and polarization effect. While the value of σ is almost constant at low frequency, increases almost as exponentially at high frequency which are corresponding to σdc and σac, respectively. The M‧ and M″ have low values at low frequencies region and then an increase with frequency due to short-range mobility of charge carriers. While the value of M‧ increase with increasing frequency, the value of M″ shows two peak and the peaks positions shifts to higher frequency with increasing applied voltage due to the decrease of the polarization and Nss effects with increasing frequency.

  19. High Voltage Power Transmission for Wind Energy

    NASA Astrophysics Data System (ADS)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  20. Ac irreversibility line of bismuth-based high temperature superconductors

    SciTech Connect

    Mehdaoui, A.; Beille, J.; Berling, D.; Loegel, B.; Noudem, J.G.; Tournier, R.

    1997-09-01

    We discuss the magnetic properties of lead doped Bi-2223 bulk samples obtained through combined magnetic melt texturing and hot pressing (MMTHP). The ac complex susceptibility measurements are achieved over a broad ac field range (1 Oe{lt}h{sub ac}{lt}100 Oe) and show highly anisotropic properties. The intergranular coupling is improved in the direction perpendicular to the applied stress and magnetic field direction, and an intragranular loss peak is observed for the first time. A comparison is made with other bismuth-based compounds and it is shown that the MMTHP process shifts the ac irreversibility line (ac IL) toward higher fields. It is also shown that all the ac IL{close_quote}s for quasi 2D bismuth-based compounds show a nearly quadratic temperature dependence and deviate therefore strongly from the linear behavior observed in quasi 3D compounds and expected from a critical state model.{copyright} {ital 1997 Materials Research Society.}

  1. Radiofrequency exposure near high-voltage lines.

    PubMed Central

    Vignati, M; Giuliani, L

    1997-01-01

    Many epidemiologic studies suggest a relationship between incidence of diseases like cancer and leukemia and exposure to 50/60 Hz magnetic fields. Some studies suggest a relationship between leukemia incidence in populations residing near high-voltage lines and the distance to these lines. Other epidemiologic studies suggest a relationship between leukemia incidence and exposure to 50/60 Hz magnetic fields (measured or estimated) and distance from the main system (220 or 120 V). The present work does not question these results but is intended to draw attention to a possible concurrent cause that might also increase the incidence of this disease; the presence on an electric grid of radiofrequency currents used for communications and remote control. These currents have been detected on high- and medium-voltage lines. In some cases they are even used on the main system for remote reading of electric meters. This implies that radiofrequency (RF) magnetic fields are present near the electric network in addition to the 50/60 Hz fields. This intensity of these RF fields is low but the intensity of currents induced in the human body by exposure to magnetic fields increases with frequency. Because scientific research has not yet clarified whether the risk is related to the value of magnetic induction or to the currents this kind of exposure produces in the human body, it is reasonable to suggest that the presence of the RF magnetic fields must be considered in the context of epidemiologic studies. Images Figure 3. Figure 4. Figure 5. PMID:9467084

  2. High voltage supply for neutron tubes in well logging applications

    DOEpatents

    Humphreys, D. Russell

    1989-01-01

    A high voltage supply is provided for a neutron tube used in well logging. The "biased pulse" supply of the invention combines DC and "full pulse" techniques and produces a target voltage comprising a substantial negative DC bias component on which is superimposed a pulse whose negative peak provides the desired negative voltage level for the neutron tube. The target voltage is preferably generated using voltage doubling techniques and employing a voltage source which generates bipolar pulse pairs having an amplitude corresponding to the DC bias level.

  3. Conceptual definition of a high voltage power supply test facility

    NASA Technical Reports Server (NTRS)

    Biess, John J.; Chu, Teh-Ming; Stevens, N. John

    1989-01-01

    NASA Lewis Research Center is presently developing a 60 GHz traveling wave tube for satellite cross-link communications. The operating voltage for this new tube is - 20 kV. There is concern about the high voltage insulation system and NASA is planning a space station high voltage experiment that will demonstrate both the 60 GHz communications and high voltage electronics technology. The experiment interfaces, requirements, conceptual design, technology issues and safety issues are determined. A block diagram of the high voltage power supply test facility was generated. It includes the high voltage power supply, the 60 GHz traveling wave tube, the communications package, the antenna package, a high voltage diagnostics package and a command and data processor system. The interfaces with the space station and the attached payload accommodations equipment were determined. A brief description of the different subsystems and a discussion of the technology development needs are presented.

  4. Highly-Efficient and Modular Medium-Voltage Converters

    DTIC Science & Technology

    2015-09-28

    operation of the MMC-based adjustable-speed drive system is the large magnitude of the submodule (SM) capacitor volt- age ripple due to the inverse ...5), the peak-to-peak ripple of the SM capacitor voltages has an inverse depen- dency on the ac-side frequency and a direct dependency on the ac-side...line) 109 V Rated electrical frequency fr 120 Hz ^load 0.22 n Aoad 6.03 mH Number of poles pairs (P/2) 2 Table 3: MMC Parameters Quantity Value

  5. High-Voltage, High-Power Gaseous Electronics Switch For Electric Grid Power Conversion

    NASA Astrophysics Data System (ADS)

    Sommerer, Timothy J.

    2014-05-01

    We are developing a high-voltage, high-power gas switch for use in low-cost power conversion terminals on the electric power grid. Direct-current (dc) power transmission has many advantages over alternating current (ac) transmission, but at present the high cost of ac-dc power interconversion limits the use of dc. The gas switch we are developing conducts current through a magnetized cold cathode plasma in hydrogen or helium to reach practical current densities > 1 A/cm2. Thermal and sputter damage of the cathode by the incident ion flux is a major technical risk, and is being addressed through use of a ``self-healing'' liquid metal cathode (eg, gallium). Plasma conditions and cathode sputtering loss are estimated by analyzing plasma spectral emission. A particle-in-cell plasma model is used to understand various aspects of switch operation, including the conduction phase (where plasma densities can exceed 1013 cm-3), the switch-open phase (where the high-voltage must be held against gas breakdown on the left side of Paschen's curve), and the switching transitions (especially the opening process, which is initiated by forming an ion-matrix sheath adjacent to a control grid). The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.

  6. Low Voltage Electrowetting on Ferroelectric PVDF-HFP Insulator with Highly Tunable Contact Angle Range.

    PubMed

    Sawane, Yogesh B; Ogale, Satishchandra B; Banpurkar, Arun G

    2016-09-14

    We demonstrate a consistent electrowetting response on ferroelectric poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) insulator covered with a thin Teflon AF layer. This bilayer exhibits a factor of 3 enhancement in the contact angle modulation compared to that of conventional single-layered Teflon AF dielectric. On the basis of the proposed model the enhancement is attributed to the high value of effective dielectric constant (εeff ≈ 6) of the bilayer. Furthermore, the bilayer dielectric exhibits a hysteresis-free contact angle modulation over many AC voltage cycles. But the contact angle modulation for DC voltage shows a hysteresis because of the field-induced residual polarization in the ferroelectric layer. Finally, we show that a thin bilayer exhibits contact angle modulation of Δθ (U) ≈ 60° at merely 15 V amplitude of AC voltage indicating a potential dielectric for practical low voltage electrowetting applications. A proof of concept confirms electrowetting based rapid mixing of a fluorescent dye in aqueous glycerol solution for 15 V AC signal.

  7. Anomalous open-circuit voltage from a high-Tc superconducting dynamo

    NASA Astrophysics Data System (ADS)

    Bumby, C. W.; Jiang, Zhenan; Storey, J. G.; Pantoja, A. E.; Badcock, R. A.

    2016-03-01

    We report on the behavior of a high-Tc superconducting (HTS) homopolar dynamo which outputs a DC open-circuit voltage when the stator is in the superconducting state, but behaves as a conventional AC alternator when the stator is in the normal state. We observe that this time-averaged DC voltage arises from a change in the shape of the AC voltage waveform that is obtained from a normal conducting stator. The measured DC voltage is proportional to frequency, and decreases with increasing flux gap between the rotor magnet and the HTS stator wire. We observe that the DC output voltage decreases to zero at large flux gaps, although small differences between the normal-conducting and superconducting waveforms are still observed, which we attribute to screening currents in the HTS stator wire. Importantly, the normalised pulse shape is found to be a function of the rotor position angle only. Based on these observations, we suggest that the origin of this unexpected DC effect can be explained by a model first proposed by Giaever, which considers the impact of time-varying circulating eddy currents within the HTS stator wire. Such circulating currents form a superconducting shunt path which "short-circuits" the high field region directly beneath the rotor magnet, at those points in the cycle when the rotor magnet partially overlaps the superconducting stator wire. This reduces the output voltage from the device during these periods of the rotor cycle, leading to partial rectification of the output voltage waveform and hence the emergence of a time-averaged DC voltage.

  8. A high-speed TVC system for full-range AC traceability

    SciTech Connect

    Julie, L.

    1994-12-31

    A difficult and important region in the AC traceability chain lies in the higher voltage ranges from 30 volts to 1000 volts at frequencies between 100 khz and 1 Mhz. This paper describes recent developments to improve the accuracy/speed performance of AC voltage buildup over thes ranges.

  9. Study of the Dependency on Magnetic Field and Bias Voltage of an AC-Biased TES Microcalorimeter

    NASA Technical Reports Server (NTRS)

    Gottardi, L.; Bruijn, M.; denHartog, R.; Hoevers, H.; deKorte, P.; vanderKuur, J.; Linderman, M.; Adams, J.; Bailey, C.; Bandler, S.; Chervenak, J.; Eckart, M.; Finkbeiner, F.; Kelley, R.; Kilbourne, C.; Porter, F.; Sadlier, J.; Smith, S.

    2012-01-01

    At SRON we are studying the performance of a Goddard Space Flight Center single pixel TES microcalorimeter operated in an AC bias configuration. For x-ray photons at 6 keV the pixel shows an x-ray energy resolution Delta E(sub FWHM) = 3.7 eV, which is about a factor 2 worse than the energy resolution observed in an identical DC-biased pixel. In order to better understand the reasons for this discrepancy we characterized the detector as a function of temperature, bias working point and applied perpendicular magnetic field. A strong periodic dependency of the detector noise on the TES AC bias voltage is measured. We discuss the results in the framework of the recently observed weak-link behaviour of a TES microcalorimeter.

  10. High Voltage Applications of Explosively Formed Fuses

    NASA Astrophysics Data System (ADS)

    Tasker, D. G.; Goforth, J. H.; Fowler, C. M.; Herrera, D. H.; King, J. C.; Lopez, E. A.; Martinez, E. C.; Oona, H.; Marsh, S. P.; Reinovsky, R. E.; Stokes, J.; Tabaka, L. J.; Torres, D. T.; Sena, F. C.; Kiuttu, G.; Degnan, J.

    2004-11-01

    At Los Alamos, we have primarily applied Explosively Formed Fuse (EFF) techniques to high current systems. In these systems, the EFF has interrupted currents from 19-25 MA, thus diverting the current to low inductance loads. The transferred current magnitude is determined by the ratio of storage inductance to load inductance and, with dynamic loads, the current has ranged from 12-20 MA. In a system with 18 MJ stored energy, the switch operates at a power of up to 6 TW. We are now investigating the use of the EFF technique to apply high voltages to high impedance loads in systems that are more compact. In these systems we are exploring circuits with EFF lengths from 43-100 cm, which have storage inductances large enough to apply 300-500 kV across high impedance loads. Experimental results and design considerations are presented. Using cylindrical EFF switches of 10 cm diameter and 43 cm length, currents of approximately 3 MA were interrupted producing ~200 kV. This indicates the switch had an effective resistance of ~100 mΩ where 150-200 mΩ was expected. To understand the lower performance, several parameters were studied including electrical conduction through the explosive products; current density; explosive initiation; insulator type and conductor thickness. The results show a number of interesting features, most notably that the primary mechanism of switch operation is mechanical and not electrical fusing of the conductor. Switches opening on a 1-10 μs time scale with resistances starting at 50 μΩ and increasing to perhaps 1 Ω now seem possible to construct using explosive charges as small as a few pounds.

  11. High Voltage Application of Explosively Formed Fuses

    SciTech Connect

    Tasker, D.G.; Goforth, J.H.; Fowler, C.M.; Lopez, E.M.; Oona, H.; Marsh, S.P.; King, J.C.; Herrera, D.H.; Torres, D.T.; Sena, F.C.; Martinez, E.C.; Reinovsky, R.E.; Stokes, J.L.; Tabaka, L.J.; Kiuttu, G.; Degnan, J.

    1998-10-18

    At Los Alamos, the authors have primarily applied Explosively Formed Fuse (EFF) techniques to high current systems. In these systems, the EFF has interrupted currents from 19 to 25 MA, thus diverting the current to low inductance loads. The magnitude of transferred current is determined by the ratio of storage inductance to load inductance, and with dynamic loads, the current has ranged from 12 to 20 MA. In a system with 18 MJ stored energy, the switch operates at a power up to 6 TW. The authors are now investigating the use of the EFF technique to apply high voltages to high impedance loads in systems that are more compact. In these systems, they are exploring circuits with EFF lengths from 43 to 100 cm, which have storage inductances large enough to apply 300 to 500 kV across high impedance loads. Experimental results and design considerations are presented. Using cylindrical EFF switches of 10 cm diameter and 43 cm length, currents of approximately 3 MA were interrupted producing {approximately}200 kV. This indicate s the switch had an effective resistance of {approximately}100 m{Omega} where 150--200 m{Omega} was expected. To understand the lower performance, several parameters were studied, including: electrical conduction through the explosive products; current density; explosive initiation; insulator type; conductor thickness; and so on. The results show a number of interesting features, most notably that the primary mechanism of switch operation is mechanical and not electrical fusing of the conductor. Switches opening on a 10 to 10 {micro}s time scale with resistances starting at 50 {micro}{Omega} and increasing to perhaps 1 {Omega} now seem possible to construct, using explosive charges as small as a few pounds.

  12. Electromechanical systems with transient high power response operating from a resonant ac link

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Hansen, Irving G.

    1992-01-01

    The combination of an inherently robust asynchronous (induction) electrical machine with the rapid control of energy provided by a high frequency resonant ac link enables the efficient management of higher power levels with greater versatility. This could have a variety of applications from launch vehicles to all-electric automobiles. These types of systems utilize a machine which is operated by independent control of both the voltage and frequency. This is made possible by using an indirect field-oriented control method which allows instantaneous torque control all four operating quadrants. Incorporating the ac link allows the converter in these systems to switch at the zero crossing of every half cycle of the ac waveform. This zero loss switching of the link allows rapid energy variations to be achieved without the usual frequency proportional switching loss. Several field-oriented control systems were developed under contract to NASA.

  13. Analysis of three-phase rectifiers with AC-side switches and interleaved three-phase voltage-source converters

    NASA Astrophysics Data System (ADS)

    Miller, Stephanie Katherine Teixeira

    Of all the alternative and renewable energy sources, wind power is the fastest growing alternative energy source with a total worldwide capacity of over 93 GW as of the end of 2007. However, making wind energy a sustainable and reliable source of electricity doesn't come without its set of challenges. As the wind turbines increase in size and turbine technology moves towards off-shore wind farms and direct drive transmission, the need for a reliable and efficient power electronics interface to convert the variable-frequency variable-magnitude output of the wind turbine's generator into the fixed-frequency fixed-magnitude voltage of the utility grid is critical. This dissertation investigates a power electronics interface envisioned to operate with an induction generator-based variable-speed wind turbine. The research conclusions and the interface itself are applicable to a variety of applications, including uninterruptible power supplies, industrial drives, and power quality applications, among others. The three-phase PWM rectifiers with ac-side bidirectional switches are proposed as the rectification stage of the power electronics interface. Modulation strategies are proposed for the rectifiers and the operation of the rectifiers in conjunction with an induction generator is demonstrated. The viability of using these rectifiers in place of the standard three-phase voltage-source converter is analyzed by comparing losses and common-mode voltage generation of the two topologies. Parallel three-phase voltage-source converter modules operated in an interleaved fashion are proposed for the inversion stage of the power electronics interface. The interleaved three-phase voltage-source converters are analyzed by deriving analytical models for the common-mode voltage, ac phase current, and dc-link current to reveal their spectra and the harmonic cancellation effects of interleaving. The practical problem of low frequency circulating current in parallel voltage

  14. Solid electrolyte: The key for high-voltage lithium batteries

    DOE PAGES

    Li, Juchuan; Ma, Cheng; Chi, Miaofang; ...

    2014-10-14

    A solid-state high-voltage (5 V) lithium battery is demonstrated to deliver a cycle life of 10 000 with 90% capacity retention. Furthermore, the solid electrolyte enables the use of high-voltage cathodes and Li anodes with minimum side reactions, leading to a high Coulombic efficiency of 99.98+%.

  15. High-Voltage Digital-To-Analog Converter

    NASA Technical Reports Server (NTRS)

    Huston, Steven W.

    1990-01-01

    High-voltage 10-bit digital-to-analog converter operates under computer control to put out voltages up to 500 V at currents up to 35 mA. Circuit includes high-voltage power supply used to generate high-voltage square wave at frequency set by computer at value between 0.2 Hz and 10 Hz. Used to drive 0.02-microfarad, 1-kV capacitor at slewing rate of 1 V/microsecond to provide signal for robotic imaging system.

  16. Final report on COOMET key comparison of AC/DC voltage transfer references (COOMET.EM-K6.a)

    NASA Astrophysics Data System (ADS)

    Velychko, O.; Darmenko, Yu

    2016-01-01

    An intercomparison of AC/DC voltage transfer references has taken place within the framework of COOMET. The intercomparison, piloted by State Enterprise 'Ukrmetrteststandard'-UMTS (Ukraine), has involved five laboratories, including one who is a member of another regional metrological organization-EURAMET (INM, Romania). The results presented in this report appear to show that there are significant differences between some laboratories' representations of the volt. However, the agreement demonstrated by the intercomparison provides confidence in maintaining traceability for the AC/DC voltage transfer references. Proposed to link the results from this key comparison to the CCEM-K6.a comparison. VNIIM (Russia) is linking NMI as far as they participated in CCEM-K6.a. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  17. 30 CFR 75.804 - Underground high-voltage cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance grounded systems shall be equipped with metallic shields around each power conductor with one or more ground conductors having a total cross sectional area of not less than one-half the power conductor,...

  18. High voltage switches having one or more floating conductor layers

    SciTech Connect

    Werne, Roger W.; Sampayan, Stephen; Harris, John Richardson

    2015-11-24

    This patent document discloses high voltage switches that include one or more electrically floating conductor layers that are isolated from one another in the dielectric medium between the top and bottom switch electrodes. The presence of the one or more electrically floating conductor layers between the top and bottom switch electrodes allow the dielectric medium between the top and bottom switch electrodes to exhibit a higher breakdown voltage than the breakdown voltage when the one or more electrically floating conductor layers are not present between the top and bottom switch electrodes. This increased breakdown voltage in the presence of one or more electrically floating conductor layers in a dielectric medium enables the switch to supply a higher voltage for various high voltage circuits and electric systems.

  19. A Comparison of High-Voltage Switches

    SciTech Connect

    Chu, K.W.; Scott, G.L.

    1999-02-01

    This report summarizes our work on high-voltage switches during the past few years. With joint funding from the Department of Energy (DOE) and the Department of Defense (DOD), we tested a wide variety of switches to a common standard. This approach permitted meaningful comparisons between disparate switches. Most switches were purchased from commercial sources, though some were experimental devices. For the purposes of this report, we divided the switches into three generic types (gas, vacuum, and semiconductor) and selected data that best illustrates important strengths and weaknesses of each switch type. Test techniques that indicate the state of health of the switches are emphasized. For example, a good indicator of residual gas in a vacuum switch is the systematic variation of the switching delay in response to changes in temperature and/or operating conditions. We believe that the presentation of this kind of information will help engineers to select and to test switches for their particular applications. Our work was limited to switches capable of driving slappers. Also known as exploding-foil initiators, slappers are detonators that initiate a secondary explosive by direct impact with a small piece of matter moving at the detonation velocity (several thousands of meters per second). A slapper is desirable for enhanced safety (no primary explosive), but it also places extra demands on the capacitor-discharge circuit to deliver a fast-rising current pulse (greater than 10 A/ns) of several thousand amperes. The required energy is substantially less than one joule; but this energy is delivered in less than one microsecond, taking the peak power into the megawatt regime. In our study, the switches operated in the 1 kV to 3 kV range and were physically small, roughly 1 cm{sup 3} or less. Although a fuze functions only once in actual use, multiple-shot capability is important for production testing and for research work. For this reason, we restricted this report

  20. Active Device-Less Voltage Equalization Charger Using Capacitors, Diodes, and an AC Power Source

    NASA Astrophysics Data System (ADS)

    Uno, Masatoshi; Tanaka, Koji

    Conventional cell/module voltage equalizers or equalization chargers based on traditional dc-dc converters require numerous switches or transformers as the number of series connections increases; therefore, their cost and complexity tend to increase and their reliability decreases as the number of connections increases. This paper proposes a novel voltage equalization charger that consists only of passive components such as capacitors, diodes, and a transformer. The fundamental operating principle, major features, and derivation of equivalent dc circuits are presented. A symmetrical configuration is also proposed to mitigate the RMS current flowing through energy storage cells in the charging process. Simulations and experimental charging and cycle tests were performed on series-connected electric double-layer capacitor modules to demonstrate the equalization performance. The experimental and simulation results were in good agreement, and the voltage imbalances were gradually eliminated as time elapsed even during charge-discharge cycling.

  1. Electrical system architecture having high voltage bus

    DOEpatents

    Hoff, Brian Douglas [East Peoria, IL; Akasam, Sivaprasad [Peoria, IL

    2011-03-22

    An electrical system architecture is disclosed. The architecture has a power source configured to generate a first power, and a first bus configured to receive the first power from the power source. The architecture also has a converter configured to receive the first power from the first bus and convert the first power to a second power, wherein a voltage of the second power is greater than a voltage of the first power, and a second bus configured to receive the second power from the converter. The architecture further has a power storage device configured to receive the second power from the second bus and deliver the second power to the second bus, a propulsion motor configured to receive the second power from the second bus, and an accessory motor configured to receive the second power from the second bus.

  2. A 65-kV insulated gate bipolar transistor switch applied in damped AC voltages partial discharge detection system.

    PubMed

    Jiang, J; Ma, G M; Luo, D P; Li, C R; Li, Q M; Wang, W

    2014-02-01

    Damped AC voltages detection system (DAC) is a productive way to detect the faults in power cables. To solve the problems of large volume, complicated structure and electromagnetic interference in existing switches, this paper developed a compact solid state switch based on electromagnetic trigger, which is suitable for DAC test system. Synchronous electromagnetic trigger of 32 Insulated Gate Bipolar Transistors (IGBTs) in series was realized by the topological structure of single line based on pulse width modulation control technology. In this way, external extension was easily achieved. Electromagnetic trigger and resistor-capacitor-diode snubber circuit were optimized to reduce the switch turn-on time and circular layout. Epoxy encapsulating was chosen to enhance the level of partial discharge initial voltage (PDIV). The combination of synchronous trigger and power supply is proposed to reduce the switch volume. Moreover, we have overcome the drawback of the electromagnetic interference and improved the detection sensitivity of DAC by using capacitor storage energy to maintain IGBT gate driving voltage. The experimental results demonstrated that the solid-state switch, with compact size, whose turn-on time was less than 400 ns and PDIV was more than 65 kV, was able to meet the actual demands of 35 kV DAC test system.

  3. A 65-kV insulated gate bipolar transistor switch applied in damped AC voltages partial discharge detection system

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Ma, G. M.; Luo, D. P.; Li, C. R.; Li, Q. M.; Wang, W.

    2014-02-01

    Damped AC voltages detection system (DAC) is a productive way to detect the faults in power cables. To solve the problems of large volume, complicated structure and electromagnetic interference in existing switches, this paper developed a compact solid state switch based on electromagnetic trigger, which is suitable for DAC test system. Synchronous electromagnetic trigger of 32 Insulated Gate Bipolar Transistors (IGBTs) in series was realized by the topological structure of single line based on pulse width modulation control technology. In this way, external extension was easily achieved. Electromagnetic trigger and resistor-capacitor-diode snubber circuit were optimized to reduce the switch turn-on time and circular layout. Epoxy encapsulating was chosen to enhance the level of partial discharge initial voltage (PDIV). The combination of synchronous trigger and power supply is proposed to reduce the switch volume. Moreover, we have overcome the drawback of the electromagnetic interference and improved the detection sensitivity of DAC by using capacitor storage energy to maintain IGBT gate driving voltage. The experimental results demonstrated that the solid-state switch, with compact size, whose turn-on time was less than 400 ns and PDIV was more than 65 kV, was able to meet the actual demands of 35 kV DAC test system.

  4. Theoretical evidence of maximum intracellular currents versus frequency in an Escherichia coli cell submitted to AC voltage.

    PubMed

    Xavier, Pascal; Rauly, Dominique; Chamberod, Eric; Martins, Jean M F

    2017-04-01

    In this work, the problem of intracellular currents in longilinear bacteria, such as Escherichia coli, suspended in a physiological medium and submitted to a harmonic voltage (AC), is analyzed using the Finite-Element-based software COMSOL Multiphysics. Bacterium was modeled as a cylindrical capsule, ended by semi-spheres and surrounded by a dielectric cell wall. An equivalent single-layer cell wall was defined, starting from the well-recognized three-shell modeling approach. The bacterium was considered immersed in a physiological medium, which was also taken into account in the modeling. A new complex transconductance was thus introduced, relating the complex ratio between current inside the bacterium and voltage applied between two parallel equipotential planes, separated by a realistic distance. When voltage was applied longitudinally relative to the bacterium main axis, numerical results in terms of frequency response in the 1-20 MHz range for E. coli cells revealed that transconductance magnitude exhibited a maximum at a frequency depending on the cell wall capacitance. This occurred in spite of the purely passive character of the model and could be explained by an equivalent electrical network giving very similar results and showing special conditions for lateral paths of the currents through the cell wall. It is shown that the main contribution to this behavior is due to the conductive part of the current. Bioelectromagnetics. 38:213-219, 2017. © 2016 Wiley Periodicals, Inc.

  5. Living and Working Safely Around High-Voltage Power Lines.

    SciTech Connect

    United States. Bonneville Power Administration.

    2001-06-01

    High-voltage transmission lines can be just as safe as the electrical wiring in the homes--or just as dangerous. The crucial factor is ourselves: they must learn to behave safely around them. This booklet is a basic safety guide for those who live and work around power lines. It deals primarily with nuisance shocks due to induced voltages, and with potential electric shock hazards from contact with high-voltage lines. References on possible long-term biological effects of transmission lines are shown. In preparing this booklet, the Bonneville Power Administration has drawn on more than 50 years of experience with high-voltage transmission. BPA operates one of the world`s largest networks of long-distance, high-voltage lines. This system has more than 400 substations and about 15,000 miles of transmission lines, almost 4,400 miles of which are operated at 500,000 volts.

  6. High-voltage air-core pulse transformers

    SciTech Connect

    Rohwein, G.J.

    1981-08-01

    High voltage air core pulse transformers are best suited to applications outside the normal ranges of conventional magnetic core transformers. In general these include charge transfer at high power levels and fast pulse generation with comparatively low energy. When properly designed and constructed, they are capable of delivering high energy transfer efficiency and have demonstrated superior high voltage endurance. The general types designed for high voltage pulse generation and energy transfer applications are described. Special emphasis is given to pulse charging systems which operate up to the multi-megavolt range. (WHK)

  7. Planar LTCC transformers for high voltage flyback converters.

    SciTech Connect

    Schofield, Daryl; Schare, Joshua M.; Glass, Sarah Jill; Roesler, Alexander William; Ewsuk, Kevin Gregory; Slama, George; Abel, Dave

    2007-06-01

    This paper discusses the design and use of low-temperature (850 C to 950 C) co-fired ceramic (LTCC) planar magnetic flyback transformers for applications that require conversion of a low voltage to high voltage (> 100V) with significant volumetric constraints. Measured performance and modeling results for multiple designs showed that the LTCC flyback transformer design and construction imposes serious limitations on the achievable coupling and significantly impacts the transformer performance and output voltage. This paper discusses the impact of various design factors that can provide improved performance by increasing transformer coupling and output voltage. The experiments performed on prototype units demonstrated LTCC transformer designs capable of greater than 2 kV output. Finally, the work investigated the effect of the LTCC microstructure on transformer insulation. Although this paper focuses on generating voltages in the kV range, the experimental characterization and discussion presented in this work applies to designs requiring lower voltage.

  8. Bipolar high-repetition-rate high-voltage nanosecond pulser.

    PubMed

    Tian, Fuqiang; Wang, Yi; Shi, Hongsheng; Lei, Qingquan

    2008-06-01

    The pulser designed is mainly used for producing corona plasma in waste water treatment system. Also its application in study of dielectric electrical properties will be discussed. The pulser consists of a variable dc power source for high-voltage supply, two graded capacitors for energy storage, and the rotating spark gap switch. The key part is the multielectrode rotating spark gap switch (MER-SGS), which can ensure wider range modulation of pulse repetition rate, longer pulse width, shorter pulse rise time, remarkable electrical field distortion, and greatly favors recovery of the gap insulation strength, insulation design, the life of the switch, etc. The voltage of the output pulses switched by the MER-SGS is in the order of 3-50 kV with pulse rise time of less than 10 ns and pulse repetition rate of 1-3 kHz. An energy of 1.25-125 J per pulse and an average power of up to 10-50 kW are attainable. The highest pulse repetition rate is determined by the driver motor revolution and the electrode number of MER-SGS. Even higher voltage and energy can be switched by adjusting the gas pressure or employing N(2) as the insulation gas or enlarging the size of MER-SGS to guarantee enough insulation level.

  9. Bipolar high-repetition-rate high-voltage nanosecond pulser

    SciTech Connect

    Tian Fuqiang; Wang Yi; Shi Hongsheng; Lei Qingquan

    2008-06-15

    The pulser designed is mainly used for producing corona plasma in waste water treatment system. Also its application in study of dielectric electrical properties will be discussed. The pulser consists of a variable dc power source for high-voltage supply, two graded capacitors for energy storage, and the rotating spark gap switch. The key part is the multielectrode rotating spark gap switch (MER-SGS), which can ensure wider range modulation of pulse repetition rate, longer pulse width, shorter pulse rise time, remarkable electrical field distortion, and greatly favors recovery of the gap insulation strength, insulation design, the life of the switch, etc. The voltage of the output pulses switched by the MER-SGS is in the order of 3-50 kV with pulse rise time of less than 10 ns and pulse repetition rate of 1-3 kHz. An energy of 1.25-125 J per pulse and an average power of up to 10-50 kW are attainable. The highest pulse repetition rate is determined by the driver motor revolution and the electrode number of MER-SGS. Even higher voltage and energy can be switched by adjusting the gas pressure or employing N{sub 2} as the insulation gas or enlarging the size of MER-SGS to guarantee enough insulation level.

  10. E-beam high voltage switching power supply

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1996-10-15

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 figs.

  11. E-beam high voltage switching power supply

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1996-01-01

    A high-power power supply produces a controllable, constant high voltage put under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  12. Optically triggered high voltage switch network and method for switching a high voltage

    DOEpatents

    El-Sharkawi, Mohamed A.; Andexler, George; Silberkleit, Lee I.

    1993-01-19

    An optically triggered solid state switch and method for switching a high voltage electrical current. A plurality of solid state switches (350) are connected in series for controlling electrical current flow between a compensation capacitor (112) and ground in a reactive power compensator (50, 50') that monitors the voltage and current flowing through each of three distribution lines (52a, 52b and 52c), which are supplying three-phase power to one or more inductive loads. An optical transmitter (100) controlled by the reactive power compensation system produces light pulses that are conveyed over optical fibers (102) to a switch driver (110') that includes a plurality of series connected optical triger circuits (288). Each of the optical trigger circuits controls a pair of the solid state switches and includes a plurality of series connected resistors (294, 326, 330, and 334) that equalize or balance the potential across the plurality of trigger circuits. The trigger circuits are connected to one of the distribution lines through a trigger capacitor (340). In each switch driver, the light signals activate a phototransistor (300) so that an electrical current flows from one of the energy reservoir capacitors through a pulse transformer (306) in the trigger circuit, producing gate signals that turn on the pair of serially connected solid state switches (350).

  13. COTS Li-Ion Cells in High Voltage Batteries

    NASA Technical Reports Server (NTRS)

    Davies, Francis; Darcy, Eric; Jeevarajan, Judy; Cowles, Phil

    2003-01-01

    Testing at NASA JSC and COMDEV shows that Commercial Off the Shelf (COTS) Li Ion cells can not be used in high voltage batteries safely without considering the voltage stresses that may be put on the protective devices in them during failure modes.

  14. High-voltage air-core pulse transformers

    SciTech Connect

    Rohwein, G. J.

    1981-01-01

    General types of air core pulse transformers designed for high voltage pulse generation and energy transfer applications are discussed with special emphasis on pulse charging systems which operate up to the multi-megavolt range. The design, operation, dielectric materials, and performance are described. It is concluded that high voltage air core pulse transformers are best suited to applications outside the normal ranges of conventional magnetic core transformers. In general these include charge transfer at high power levels and fast pulse generation with comparatively low energy. When properly designed and constructed, they are capable of delivering high energy transfer efficiency and have demonstrated superior high voltage endurance. The principal disadvantage of high voltage air core transformers is that they are not generally available from commercial sources. Consequently, the potential user must become thoroughly familiar with all aspects of design, fabrication and system application before he can produce a high performance transformer system. (LCL)

  15. High-voltage pulsed generators for electro-discharge technologies

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Kharlov, A. V.; Kumpyak, E. V.; Sinebrykhov, V. A.

    2013-09-01

    A high-voltage pulse technology is one of effective techniques for the disintegration and milling of rocks, separation of ores and synthesized materials, recycling of building and elastoplastic materials. We present here the design and test results of two portable HV pulsed generators, designed for materials fragmentation, though some other technological applications are possible as well. Generator #1 consists of low voltage block, high voltage transformer, high voltage capacitive storage block, two electrode gas switch, fragmentation chamber and control system block. Technical characteristics of the #1 generator: stored energy in HV capacitors can be varied from 50 to 1000 J, output voltage up to 300 kV, voltage rise time ~ 50 ns, typical operation regime 1000 pulses bursts with a repetitive rate up to 10 Hz. Generator #2 is made on an eight stages Marx scheme with two capacitors (100 kV-400 nF) per stage, connected in parallel. Two electrode spark gap switches, operated in atmospheric air, are used in the Marx generator. Parameters of the generator: stored energy in capacitors 2÷8 kJ, amplitude of the output voltage 200÷400 kV, voltage rise time on a load 50÷100 ns, repetitive rate up to 0.5 Hz. The fragmentation process can be controlled within a wide range of parameters for both generators.

  16. High voltage high repetition rate pulse using Marx topology

    NASA Astrophysics Data System (ADS)

    Hakki, A.; Kashapov, N.

    2015-06-01

    The paper describes Marx topology using MOSFET transistors. Marx circuit with 10 stages has been done, to obtain pulses about 5.5KV amplitude, and the width of the pulses was about 30μsec with a high repetition rate (PPS > 100), Vdc = 535VDC is the input voltage for supplying the Marx circuit. Two Ferrite ring core transformers were used to control the MOSFET transistors of the Marx circuit (the first transformer to control the charging MOSFET transistors, the second transformer to control the discharging MOSFET transistors).

  17. Preparation of Power Distribution System for High Penetration of Renewable Energy Part I. Dynamic Voltage Restorer for Voltage Regulation Pat II. Distribution Circuit Modeling and Validation

    NASA Astrophysics Data System (ADS)

    Khoshkbar Sadigh, Arash

    Part I: Dynamic Voltage Restorer In the present power grids, voltage sags are recognized as a serious threat and a frequently occurring power-quality problem and have costly consequence such as sensitive loads tripping and production loss. Consequently, the demand for high power quality and voltage stability becomes a pressing issue. Dynamic voltage restorer (DVR), as a custom power device, is more effective and direct solutions for "restoring" the quality of voltage at its load-side terminals when the quality of voltage at its source-side terminals is disturbed. In the first part of this thesis, a DVR configuration with no need of bulky dc link capacitor or energy storage is proposed. This fact causes to reduce the size of the DVR and increase the reliability of the circuit. In addition, the proposed DVR topology is based on high-frequency isolation transformer resulting in the size reduction of transformer. The proposed DVR circuit, which is suitable for both low- and medium-voltage applications, is based on dc-ac converters connected in series to split the main dc link between the inputs of dc-ac converters. This feature makes it possible to use modular dc-ac converters and utilize low-voltage components in these converters whenever it is required to use DVR in medium-voltage application. The proposed configuration is tested under different conditions of load power factor and grid voltage harmonic. It has been shown that proposed DVR can compensate the voltage sag effectively and protect the sensitive loads. Following the proposition of the DVR topology, a fundamental voltage amplitude detection method which is applicable in both single/three-phase systems for DVR applications is proposed. The advantages of proposed method include application in distorted power grid with no need of any low-pass filter, precise and reliable detection, simple computation and implementation without using a phased locked loop and lookup table. The proposed method has been verified

  18. High voltage bushing having weathershed and surrounding stress relief collar

    DOEpatents

    Cookson, Alan H.

    1981-01-01

    A high voltage electric bushing comprises a hollow elongated dielectric weathershed which encloses a high voltage conductor. A collar formed of high voltage dielectric material is positioned over the weathershed and is bonded thereto by an interface material which precludes moisture-like contaminants from entering between the bonded portions. The collar is substantially thicker than the adjacent weathershed which it surrounds, providing relief of the electric stresses which would otherwise appear on the outer surface of the weathershed. The collar may include a conductive ring or capacitive foil to further relieve electric stresses experienced by the bushing.

  19. Forecasting of high voltage insulation performance: Testing of recommended potting materials and of capacitors

    NASA Technical Reports Server (NTRS)

    Bever, R. S.

    1984-01-01

    Nondestructive high voltage test techniques (mostly electrical methods) are studied to prevent total or catastrophic breakdown of insulation systems under applied high voltage in space. Emphasis is on the phenomenon of partial breakdown or partial discharge (P.D.) as a symptom of insulation quality, notably partial discharge testing under D.C. applied voltage. Many of the electronic parts and high voltage instruments in space experience D.C. applied stress in service, and application of A.C. voltage to any portion thereof would be prohibited. Suggestions include: investigation of the ramp test method for D.C. partial discharge measurements; testing of actual flight-type insulation specimen; perfect plotting resin samples with controlled defects for test; several types of plotting resins and recommendations of the better ones from the electrical characteristics; thermal and elastic properties are also considered; testing of commercial capaciters; and approximate acceptance/rejection/rerating criteria for sample test elements for space use, based on D.C. partial discharge.

  20. Determining the mode of high voltage breakdowns in vacuum devices

    SciTech Connect

    Miller, H.C.; Furno, E.J.; Sturtz, J.P.

    1980-08-11

    Devices were constructed which were essentially vacuum diodes equipped with windows allowing observation of high voltage breakdowns. The waveform of the applied voltage was photographed, and the x-ray output was monitored to investigate electrical breakdown in these vacuum diodes. Results indicate that breakdowns may be divided into two types: (1) vacuum (interelectrode) breakdown - characterized by a diffuse moderately bright discharge, a relative slow and smooth voltage collapse, and a large burst of x-rays, and (2) surface (insulator) flashover - characterized by a bright discharge with a very bright filamentary core, a relatively fast and noisy voltage collapse and no x-ray burst. Useful information concerning the type of breakdown in a vacuum device can be obtained by monitoring the voltage (current) waveform and the x-ray output.

  1. High voltage, low inductance hydrogen thyratron study program, phase 5

    NASA Astrophysics Data System (ADS)

    Friedman, S.

    1983-08-01

    50 kv per stage dynamic breakdown voltage (DBV) was demonstrated in low inductance multistage hydrogen thyratrons for total voltages up to nearly 200 kv, at pressures consistent with a 10 ns current rise time. High peak current operation has been demonstrated up to 14 ka at 56 kv (the limits of our high current test kit). Bottom stage holdoff the per stage DBV are comparable to that of the best single stage thyratrons, bottom stage holdoff, stage voltage addition, and prefire problems are solved.

  2. Test Results from a Simulated High Voltage Lunar Power Transmission Line

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2008-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, OH was modified to simulate high voltage transmission capability. The testbed simulated a 1 km transmission cable length from the ATU to the LPSF using resistors and inductors installed between the distribution transformers. Power factor correction circuitry was used to compensate for the reactance of the distribution system to improve the overall power factor. This test demonstrated that a permanent magnet alternator can successfully provide high frequency AC power to a lunar facility located at a distance.

  3. Test Results From a Simulated High-Voltage Lunar Power Transmission Line

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2008-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio was modified to simulate high-voltage transmission capability. The testbed simulated a 1 km transmission cable length from the ATU to the LPSF using resistors and inductors installed between the distribution transformers. Power factor correction circuitry was used to compensate for the reactance of the distribution system to improve the overall power factor. This test demonstrated that a permanent magnet alternator can successfully provide high-frequency ac power to a lunar facility located at a distance.

  4. Bias-voltage-controlled ac and dc magnetotransport phenomena in hybrid structures

    NASA Astrophysics Data System (ADS)

    Volkov, N. V.; Tarasov, A. S.; Smolyakov, D. A.; Varnakov, S. N.; Ovchinnikov, S. G.

    2015-06-01

    We report some ac and dc magnetotransport phenomena in silicon-based hybrid structures. The giant impedance change under an applied magnetic field has been experimentally found in the metal/insulator/semiconductor (MIS) diode with the Schottky barrier based on the Fe/SiO2/p-Si and Fe/SiO2/n-Si structures. The maximum effect is found to observe at temperatures of 10-30 K in the frequency range 10 Hz-1 MHz. Below 1 kHz the magnetoresistance can be controlled in a wide range by applying a bias to the device. A photoinduced dc magnetoresistance of over 104% has been found in the Fe/SiO2/p-Si back-to-back Schottky diode. The observed magnetic-field-dependent effects are caused by the interface states localized in the insula-tor/semiconductor interface.

  5. Final report on COOMET.EM-S5: Supplementary comparison of AC voltage ratio standards (COOMET project 396/UA/07)

    NASA Astrophysics Data System (ADS)

    Kikalo, V. N.; Petrovich, M. L.; Lobzhanidze, N. G.; Kisilev, V. V.; Styblikova, R.

    2013-01-01

    The comparison COOMET No 396/UA/07 of AC voltage ratio standards is registered in the BIPM key comparison database (KCDB) as supplementary comparison COOMET.EM-S5. It was conducted from June 2008 to July 2010 and involved the National Metrology Institutes of the Republic of Belarus, Georgia, the Russian Federation, the Czech Republic and Ukraine. SE "Ukrmetrteststandard" (Ukraine) was the Pilot laboratory for this exercise. The final report lists all data of measurement results and declared uncertainties as obtained by the participating NMIs. The degrees to which the values of the national standards correspond to the reference values of the supplementary comparison are quantitatively evaluated with the conclusions that the results obtained are recognized to be consistent taking into account the declared uncertainties. This gives evidence for supporting the corresponding Calibration and Measurement Capabilities for those values of voltage ratio at which NMIs have performed measurements. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by COOMET, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  6. High-voltage supplies for corona-electrostatic separators

    SciTech Connect

    Iuga, A.; Neamtu, V.; Suarasan, I.; Morar, R.; Dascalescu, L.

    1995-12-31

    The selection of the high-voltage supply can play an important role in the optimization of electrostatic separation processes. The present work aimed to evaluate the influence of the main high-voltage parameters (waveform, polarity, level) on the efficiency of electroseparation, in the case of insulation-metal granular mixtures. A roll-type laboratory electroseparator was employed for the experimental study and the tests were carried out with granular materials prelevated from the technological flow sheet of a recycling plant for electric wire scraps. The experiments shown the existence of a strong interdependence between the level of the operating voltage and the other electrical parameters. Although the full-wave rectifier allows for lower operating voltages than the half-wave rectifier, its general effectiveness in electroseparation processes is superior. The optimum operating voltage of an electroseparator seems to be slightly lower than the level at which the frequency of the spark discharges tends to exceed 60 min{sup {minus}1}. The oscillograms of the voltage and of the current across the separator proved to be of great use for studying the transition from corona to spark discharges. Good insulation-metal electroseparation can be achieved at either positive or negative polarity of the high-voltage supply, but negative electrode energization is recommended for most industry applications.

  7. Optical control system for high-voltage terminals

    DOEpatents

    Bicek, John J.

    1978-01-01

    An optical control system for the control of devices in the terminal of an electrostatic accelerator includes a laser that is modulated by a series of preselected codes produced by an encoder. A photodiode receiver is placed in the laser beam at the high-voltage terminal of an electrostatic accelerator. A decoder connected to the photodiode decodes the signals to provide control impulses for a plurality of devices at the high voltage of the terminal.

  8. Dynamics of laser-guided alternating current high voltage discharges

    NASA Astrophysics Data System (ADS)

    Daigle, J.-F.; Théberge, F.; Lassonde, P.; Kieffer, J.-C.; Fujii, T.; Fortin, J.; Châteauneuf, M.; Dubois, J.

    2013-10-01

    The dynamics of laser-guided alternating current high voltage discharges are characterized using a streak camera. Laser filaments were used to trigger and guide the discharges produced by a commercial Tesla coil. The streaking images revealed that the dynamics of the guided alternating current high voltage corona are different from that of a direct current source. The measured effective corona velocity and the absence of leader streamers confirmed that it evolves in a pure leader regime.

  9. Electromechanical systems with transient high power response operating from a resonant AC link

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Hansen, Irving G.

    1992-01-01

    The combination of an inherently robust asynchronous (induction) electrical machine with the rapid control of energy provided by a high frequency resonant AC link enables the efficient management of higher power levels with greater versatility. This could have a variety of applications from launch vehicles to all-electric automobiles. These types of systems utilize a machine which is operated by independent control of both the voltage and frequency. This is made possible by using an indirect field-oriented control method which allows instantaneous torque control in all four operating quadrants. Incorporating the AC link allows the converter in these systems to switch at the zero crossing of every half cycle of the AC waveform. This zero loss switching of the link allows rapid energy variations to be achieved without the usual frequency proportional switching loss. Several field-oriented control systems were developed by LeRC and General Dynamics Space Systems Division under contract to NASA. A description of a single motor, electromechanical actuation system is presented. Then, focus is on a conceptual design for an AC electric vehicle. This design incorporates an induction motor/generator together with a flywheel for peak energy storage. System operation and implications along with the associated circuitry are addressed. Such a system would greatly improve all-electric vehicle ranges over the Federal Urban Driving Cycle (FUD).

  10. Regenerating /sup 227/Ac from highly contaminated preparations

    SciTech Connect

    Volynskii, L.D.; Garbuzov, V.M.; Tsirlin, V.A.

    1988-05-01

    Studies have been made on the conditions for coprecipitation of actinium with calcium, barium, and iron fluorides, as well as on the conditions for the selective separation of actinium and iron on a cation-exchange material by the use of hydrochloric acid in acetone. Several ways of regenerating /sup 337/Ac from highly contaminated preparations are proposed.

  11. Integration of offshore wind farms through high voltage direct current networks

    NASA Astrophysics Data System (ADS)

    Livermore, Luke

    The integration of offshore wind farms through Multi Terminal DC (MTDC) networks into the GB network was investigated. The ability of Voltage Source Converter (VSC) High Voltage Direct Current (HVDC) to damp Subsynchronous Resonance (SSR) and ride through onshore AC faults was studied. Due to increased levels of wind generation in Scotland, substantial onshore and offshore reinforcements to the GB transmission network are proposed. Possible inland reinforcements include the use of series compensation through fixed capacitors. This potentially can lead to SSR. Offshore reinforcements are proposed by two HVDC links. In addition to its primary functions of bulk power transmission, a HVDC link can be used to provide damping against SSR, and this function has been modelled. Simulation studies have been carried out in PSCAD. In addition, a real-time hardware-in-the-loop HVDC test rig has been used to implement and validate the proposed damping scheme on an experimental platform. When faults occur within AC onshore networks, offshore MTDC networks are vulnerable to DC overvoltages, potentially damaging the DC plant and cables. Power reduction and power dissipation control systems were investigated to ride through onshore AC faults. These methods do not require dedicated fast communication systems. Simulations and laboratory experiments are carried out to evaluate the control systems, with the results from the two platforms compared..

  12. A compact, all solid-state LC high voltage generator

    NASA Astrophysics Data System (ADS)

    Fan, Xuliang; Liu, Jinliang

    2013-06-01

    LC generator is widely applied in the field of high voltage generation technology. A compact and all solid-state LC high voltage generator based on saturable pulse transformer is proposed in this paper. First, working principle of the generator is presented. Theoretical analysis and circuit simulation are used to verify the design of the generator. Experimental studies of the proposed LC generator with two-stage main energy storage capacitors are carried out. And the results show that the proposed LC generator operates as expected. When the isolation inductance is 27 μH, the output voltage is 1.9 times larger than the charging voltage on single capacitor. The multiplication of voltages is achieved. On the condition that the primary energy storage capacitor is charged to 857 V, the output voltage of the generator can reach to 59.5 kV. The step-up ratio is nearly 69. When self breakdown gas gap switch is used as main switch, the rise time of the voltage pulse on load resistor is 8.7 ns. It means that the series-wound inductance in the discharging circuit is very small in this system. This generator can be employed in two different applications.

  13. A compact, all solid-state LC high voltage generator.

    PubMed

    Fan, Xuliang; Liu, Jinliang

    2013-06-01

    LC generator is widely applied in the field of high voltage generation technology. A compact and all solid-state LC high voltage generator based on saturable pulse transformer is proposed in this paper. First, working principle of the generator is presented. Theoretical analysis and circuit simulation are used to verify the design of the generator. Experimental studies of the proposed LC generator with two-stage main energy storage capacitors are carried out. And the results show that the proposed LC generator operates as expected. When the isolation inductance is 27 μH, the output voltage is 1.9 times larger than the charging voltage on single capacitor. The multiplication of voltages is achieved. On the condition that the primary energy storage capacitor is charged to 857 V, the output voltage of the generator can reach to 59.5 kV. The step-up ratio is nearly 69. When self breakdown gas gap switch is used as main switch, the rise time of the voltage pulse on load resistor is 8.7 ns. It means that the series-wound inductance in the discharging circuit is very small in this system. This generator can be employed in two different applications.

  14. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    NASA Technical Reports Server (NTRS)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources - a nominal 300-Volt high voltage input bus and a nominal 28-Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power supplies that provide power to the thruster auxiliary supplies, and two parallel 7.5 kilowatt power supplies that are capable of providing up to 15 kilowatts of total power at 300-Volts to 500-Volts to the thruster discharge supply. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall Effect Thruster. The performance of unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate the exceptional performance with full power efficiencies exceeding 97. With a space-qualified silicon carbide or similar high voltage, high efficiency power device, this design could evolve into a flight design for future missions that require high power electric propulsion systems.

  15. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    NASA Technical Reports Server (NTRS)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  16. High voltage electrical amplifier having a short rise time

    DOEpatents

    Christie, David J.; Dallum, Gregory E.

    1991-01-01

    A circuit, comprising an amplifier and a transformer is disclosed that produces a high power pulse having a fast response time, and that responds to a digital control signal applied through a digital-to-analog converter. The present invention is suitable for driving a component such as an electro-optic modulator with a voltage in the kilovolt range. The circuit is stable at high frequencies and during pulse transients, and its impedance matching circuit matches the load impedance with the output impedance. The preferred embodiment comprises an input stage compatible with high-speed semiconductor components for amplifying the voltage of the input control signal, a buffer for isolating the input stage from the output stage; and a plurality of current amplifiers connected to the buffer. Each current amplifier is connected to a field effect transistor (FET), which switches a high voltage power supply to a transformer which then provides an output terminal for driving a load. The transformer comprises a plurality of transmission lines connected to the FETs and the load. The transformer changes the impedance and voltage of the output. The preferred embodiment also comprises a low voltage power supply for biasing the FETs at or near an operational voltage.

  17. Design & Fabrication of a High-Voltage Photovoltaic Cell

    SciTech Connect

    Felder, Jennifer; /North Carolina State U. /SLAC

    2012-09-05

    Silicon photovoltaic (PV) cells are alternative energy sources that are important in sustainable power generation. Currently, applications of PV cells are limited by the low output voltage and somewhat low efficiency of such devices. In light of this fact, this project investigates the possibility of fabricating high-voltage PV cells on float-zone silicon wafers having output voltages ranging from 50 V to 2000 V. Three designs with different geometries of diffusion layers were simulated and compared in terms of metal coverage, recombination, built-in potential, and conduction current density. One design was then chosen and optimized to be implemented in the final device design. The results of the simulation serve as a feasibility test for the design concept and provide supportive evidence of the effectiveness of silicon PV cells as high-voltage power supplies.

  18. Planar LTCC transformers for high voltage flyback converters: Part II.

    SciTech Connect

    Schofield, Daryl; Schare, Joshua M., Ph.D.; Slama, George; Abel, David

    2009-02-01

    This paper is a continuation of the work presented in SAND2007-2591 'Planar LTCC Transformers for High Voltage Flyback Converters'. The designs in that SAND report were all based on a ferrite tape/dielectric paste system originally developed by NASCENTechnoloy, Inc, who collaborated in the design and manufacturing of the planar LTCC flyback converters. The output/volume requirements were targeted to DoD application for hard target/mini fuzing at around 1500 V for reasonable primary peak currents. High voltages could be obtained but with considerable higher current. Work had begun on higher voltage systems and is where this report begins. Limits in material properties and processing capabilities show that the state-of-the-art has limited our practical output voltage from such a small part volume. In other words, the technology is currently limited within the allowable funding and interest.

  19. Introducing high performance distributed logging service for ACS

    NASA Astrophysics Data System (ADS)

    Avarias, Jorge A.; López, Joao S.; Maureira, Cristián; Sommer, Heiko; Chiozzi, Gianluca

    2010-07-01

    The ALMA Common Software (ACS) is a software framework that provides the infrastructure for the Atacama Large Millimeter Array and other projects. ACS, based on CORBA, offers basic services and common design patterns for distributed software. Every properly built system needs to be able to log status and error information. Logging in a single computer scenario can be as easy as using fprintf statements. However, in a distributed system, it must provide a way to centralize all logging data in a single place without overloading the network nor complicating the applications. ACS provides a complete logging service infrastructure in which every log has an associated priority and timestamp, allowing filtering at different levels of the system (application, service and clients). Currently the ACS logging service uses an implementation of the CORBA Telecom Log Service in a customized way, using only a minimal subset of the features provided by the standard. The most relevant feature used by ACS is the ability to treat the logs as event data that gets distributed over the network in a publisher-subscriber paradigm. For this purpose the CORBA Notification Service, which is resource intensive, is used. On the other hand, the Data Distribution Service (DDS) provides an alternative standard for publisher-subscriber communication for real-time systems, offering better performance and featuring decentralized message processing. The current document describes how the new high performance logging service of ACS has been modeled and developed using DDS, replacing the Telecom Log Service. Benefits and drawbacks are analyzed. A benchmark is presented comparing the differences between the implementations.

  20. New High Voltage Ceramic Capacitors for Power Electronics

    NASA Astrophysics Data System (ADS)

    Laville, H.; Fabre, M.

    2014-08-01

    This paper presents the characteristics and performances of a new range of high voltage ceramic capacitors manufactured using a new ceramic material. This dielectric allows to get under working voltage the same capacitance values than using an X7R material with the advantage compared to X7R of a very low dissipation factor (less than 5.10-4). What makes these capacitors to be ideally suited for power applications where heat dissipation may be detrimental for performances and reliability.

  1. High voltage series connected tandem junction solar battery

    DOEpatents

    Hanak, Joseph J.

    1982-01-01

    A high voltage series connected tandem junction solar battery which comprises a plurality of strips of tandem junction solar cells of hydrogenated amorphous silicon having one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon, arranged in a tandem configuration, can have the same bandgap or differing bandgaps. The tandem junction strip solar cells are series connected to produce a solar battery of any desired voltage.

  2. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad...

  3. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad...

  4. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad...

  5. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad...

  6. High voltage switch triggered by a laser-photocathode subsystem

    DOEpatents

    Chen, Ping; Lundquist, Martin L.; Yu, David U. L.

    2013-01-08

    A spark gap switch for controlling the output of a high voltage pulse from a high voltage source, for example, a capacitor bank or a pulse forming network, to an external load such as a high gradient electron gun, laser, pulsed power accelerator or wide band radar. The combination of a UV laser and a high vacuum quartz cell, in which a photocathode and an anode are installed, is utilized as triggering devices to switch the spark gap from a non-conducting state to a conducting state with low delay and low jitter.

  7. Design and power management of an offshore medium voltage DC microgrid realized through high voltage power electronics technologies and control

    NASA Astrophysics Data System (ADS)

    Grainger, Brandon Michael

    The growth in the electric power industry's portfolio of Direct Current (DC) based generation and loads have captured the attention of many leading research institutions. Opportunities for using DC based systems have been explored in electric ship design and have been a proven, reliable solution for transmitting bulk power onshore and offshore. To integrate many of the renewable resources into our existing AC grid, a number of power conversions through power electronics are required to condition the equipment for direct connection. Within the power conversion stages, there is always a requirement to convert to or from DC. The AC microgrid is a conceptual solution proposed for integrating various types of renewable generation resources. The fundamental microgrid requirements include the capability of operating in islanding mode and/or grid connected modes. The technical challenges associated with microgrids include (1) operation modes and transitions that comply with IEEE1547 without extensive custom engineering and (2) control architecture and communication. The Medium Voltage DC (MVDC) architecture, explored by the University of Pittsburgh, can be visualized as a special type of DC microgrid. This dissertation is multi-faceted, focused on many design aspects of an offshore DC microgrid. The focal points of the discussion are focused on optimized high power, high frequency magnetic material performance in electric machines, transformers, and DC/DC power converters---all components found within offshore, power system architectures. A new controller design based upon model reference control is proposed and shown to stabilize the electric motor drives (modeled as constant power loads), which serve as the largest power consuming entities in the microgrid. The design and simulation of a state-of-the-art multilevel converter for High Voltage DC (HVDC) is discussed and a component sensitivity analysis on fault current peaks is explored. A power management routine is

  8. High-Capacity, High-Voltage Composite Oxide Cathode Materials

    NASA Technical Reports Server (NTRS)

    Hagh, Nader M.

    2015-01-01

    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  9. Comprehensive review of high power factor ac-dc boost converters for PFC applications

    NASA Astrophysics Data System (ADS)

    De Castro Pereira, Dênis; Da Silva, Márcio Renato; Mateus Silva, Elder; Lessa Tofoli, Fernando

    2015-08-01

    High power factor rectifiers have been consolidated as an effective solution to improve power quality indices in terms of input power factor correction, reduction in the total harmonic distortion of the input current and also regulated dc voltages. Within this context, this subject has motivated the introduction of numerous converter topologies based on classic dc-dc structures associated with novel control techniques, thus leading to the manufacturing of dedicated integrated circuits that allow high input power factor by adding a front-end stage to switch-mode converters. In particular, boost converters in continuous current mode (CCM) are widely employed since they allow obtaining minimised electromagnetic interference levels. This work is concerned with a literature review involving relevant ac-dc single-phase boost-based topologies with high input power factor. The evolution of aspects regarding the conventional boost converter is shown in terms of improved characteristics inherent to other ac-dc boost converters. Additionally, the work intends to be a fast and concise reference to single-phase ac-dc boost converters operating in CCM for engineers, researchers and experts in the field of power electronics by properly analysing and comparing the aforementioned rectifiers.

  10. Optimal high-voltage energization of corona-electrostatic separators

    SciTech Connect

    Iuga, A.; Neamtu, V.; Suarasan, I.; Morar, R.; Dascalescu, L.

    1998-03-01

    The selection of the high-voltage supply can play an important role in the optimization of electrostatic separation processes. This paper aims to evaluate the influence of the main high-voltage parameters (waveform, polarity, level) on the efficiency of electrostatic separation, in the case of insulation-metal granular mixtures. A roll-type laboratory high-tension separator was employed for the experimental study, and the tests were carried out with samples of granular materials taken from the technological flowsheet of a recycling plant for electric wire scraps. The oscillograms of the voltage and of the current across the separator proved to be of great use for studying the transition from corona to spark discharges. The experiments, performed under various operating conditions (roll speed, roll radius, high-voltage level, interelectrode distance), show the existence of a strong interdependence between these parameters, the frequency of spark discharges, and the efficiency of the separation process. The reported results suggest that monitoring the frequency of spark discharges, and the efficiency of the separation process. The reported results suggest that monitoring the frequency of the spark discharges could be of use for controlling the optimum operating voltage for a given electrostatic separation application. Although the full-wave rectifier allows for lower operating voltages than the half-wave rectifier, its general effectiveness in electrostatic separation processes is superior. Good insulation-metal electrostatic separation can be achieved at either positive or negative polarity of the high-voltage supply, but negative electrode energization is recommended for most industrial applications. The methodology proposed in this paper might be successfully employed for establishing the optimal operating conditions of electrode energization for other applications, such as electrostatic precipitation, plasma chemical purification of gases, or charge

  11. Gaseous insulators for high voltage electrical equipment

    DOEpatents

    Christophorou, Loucas G.; James, David R.; Pace, Marshall O.; Pai, Robert Y.

    1979-01-01

    Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.

  12. Gaseous insulators for high voltage electrical equipment

    DOEpatents

    Christophorou, Loucas G.; James, David R.; Pace, Marshall O.; Pai, Robert Y.

    1981-01-01

    Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.

  13. A high voltage nanosecond pulser with independently adjustable output voltage, pulse width, and pulse repetition frequency

    NASA Astrophysics Data System (ADS)

    Prager, James; Ziemba, Timothy; Miller, Kenneth; Carscadden, John; Slobodov, Ilia

    2014-10-01

    Eagle Harbor Technologies (EHT) is developing a high voltage nanosecond pulser capable of generating microwaves and non-equilibrium plasmas for plasma medicine, material science, enhanced combustion, drag reduction, and other research applications. The EHT nanosecond pulser technology is capable of producing high voltage (up to 60 kV) pulses (width 20-500 ns) with fast rise times (<10 ns) at high pulse repetition frequency (adjustable up to 100 kHz) for CW operation. The pulser does not require the use of saturable core magnetics, which allows for the output voltage, pulse width, and pulse repetition frequency to be fully adjustable, enabling researchers to explore non-equilibrium plasmas over a wide range of parameters. A magnetic compression stage can be added to improve the rise time and drive lower impedance loads without sacrificing high pulse repetition frequency operation. Work supported in part by the US Navy under Contract Number N00014-14-P-1055 and the US Air Force under Contract Number FA9550-14-C-0006.

  14. E-beam high voltage switching power supply

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  15. E-beam high voltage switching power supply

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1997-03-11

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360{degree}/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs.

  16. High-voltage pulsed generator for dynamic fragmentation of rocks.

    PubMed

    Kovalchuk, B M; Kharlov, A V; Vizir, V A; Kumpyak, V V; Zorin, V B; Kiselev, V N

    2010-10-01

    A portable high-voltage (HV) pulsed generator has been designed for rock fragmentation experiments. The generator can be used also for other technological applications. The installation consists of low voltage block, HV block, coaxial transmission line, fragmentation chamber, and control system block. Low voltage block of the generator, consisting of a primary capacitor bank (300 μF) and a thyristor switch, stores pulse energy and transfers it to the HV block. The primary capacitor bank stores energy of 600 J at the maximum charging voltage of 2 kV. HV block includes HV pulsed step up transformer, HV capacitive storage, and two electrode gas switch. The following technical parameters of the generator were achieved: output voltage up to 300 kV, voltage rise time of ∼50 ns, current amplitude of ∼6 kA with the 40 Ω active load, and ∼20 kA in a rock fragmentation regime (with discharge in a rock-water mixture). Typical operation regime is a burst of 1000 pulses with a frequency of 10 Hz. The operation process can be controlled within a wide range of parameters. The entire installation (generator, transmission line, treatment chamber, and measuring probes) is designed like a continuous Faraday's cage (complete shielding) to exclude external electromagnetic perturbations.

  17. High-voltage pulsed generator for dynamic fragmentation of rocks

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Kharlov, A. V.; Vizir, V. A.; Kumpyak, V. V.; Zorin, V. B.; Kiselev, V. N.

    2010-10-01

    A portable high-voltage (HV) pulsed generator has been designed for rock fragmentation experiments. The generator can be used also for other technological applications. The installation consists of low voltage block, HV block, coaxial transmission line, fragmentation chamber, and control system block. Low voltage block of the generator, consisting of a primary capacitor bank (300 μF) and a thyristor switch, stores pulse energy and transfers it to the HV block. The primary capacitor bank stores energy of 600 J at the maximum charging voltage of 2 kV. HV block includes HV pulsed step up transformer, HV capacitive storage, and two electrode gas switch. The following technical parameters of the generator were achieved: output voltage up to 300 kV, voltage rise time of ˜50 ns, current amplitude of ˜6 kA with the 40 Ω active load, and ˜20 kA in a rock fragmentation regime (with discharge in a rock-water mixture). Typical operation regime is a burst of 1000 pulses with a frequency of 10 Hz. The operation process can be controlled within a wide range of parameters. The entire installation (generator, transmission line, treatment chamber, and measuring probes) is designed like a continuous Faraday's cage (complete shielding) to exclude external electromagnetic perturbations.

  18. Improved Lifetime High Voltage Switch Electrode.

    DTIC Science & Technology

    2014-09-26

    and T.R. Burkes, "Erosion of Spark Gap Electrodes", IEEE Trans. Plasma Sci., PS-8, 149, (1980). 5. L.B. Gordon, M. Kristiansen, M.O. Hagler, H.C...Kirbie, R.M. Ness, L.L. Hatfield and 3.N. Marx, "Material Studies in a High Energy Spark Gap", IEEE Trans. Plasma Sci., PS-10, 286, (1982). 6. A.L...identify by block number) Spark switches, electrodes, ion implantation. _. / 20. ABSTRACT (Cqntnu* on ,.as maide Ii necossery and Identify by block number

  19. Voltage-current and voltage-flux characteristics of asymmetric high TC DC SQUIDs

    NASA Astrophysics Data System (ADS)

    Novikov, I. L.; Greenberg, Ya. S.; Schultze, V.; Ijsselsteijn, R.; Meyer, H.-G.

    2009-01-01

    We report measurements of transfer functions and flux shifts of 20 on-chip high TC DC SQUIDs half of which were made purposely geometrically asymmetric. All of these SQUIDs were fabricated using standard high TC thin-film technology and they were single layer ones, having 140 nm thickness of YBa 2Cu 3O 7- x film deposited by laser ablation onto MgO bicrystal substrates with 24° misorientation angle. For every SQUID the parameters of its intrinsic asymmetry, i.e., the density of critical current and resistivity of every junction, were measured directly and independently. We showed that the main reason for the on-chip spreading of SQUIDs’ voltage-current and voltage-flux characteristics was the intrinsic asymmetry. We found that for SQUIDs with a relative large inductance ( L > 120 pH) both the voltage modulation and the transfer function were not very sensitive to the junctions asymmetry, whereas SQUIDs with smaller inductance ( L ≃ 65-75 pH) were more sensitive. The results obtained in the paper are important for the implementation in the sensitive instruments based on high TC SQUID arrays and gratings.

  20. High voltage stability performance of a gamma ray detection device

    NASA Astrophysics Data System (ADS)

    Abdullah, Nor Arymaswati; Lombigit, Lojius; Rahman, Nur Aira Abd

    2014-02-01

    An industrial grade digital radiation survey meter device is currently being developed at Malaysian Nuclear Agency. This device used a cylindrical type Geiger Mueller (GM) which acts as a detector. GM detector operates at relatively high direct current voltages depend on the type of GM tube. This thin/thick walled cylindrical type of GM tube operates at 450-650 volts range. Proper value and stability performance of high voltage are important parameters to ensure that this device give a reliable radiation dose measurement. This paper will present an assessment of the stability and performance of the high voltage supply for radiation detector. The assessment is performed using System Identification tools box in MATLAB and mathematical statistics.

  1. High voltage stability performance of a gamma ray detection device

    SciTech Connect

    Abdullah, Nor Arymaswati; Lombigit, Lojius; Rahman, Nur Aira Abd

    2014-02-12

    An industrial grade digital radiation survey meter device is currently being developed at Malaysian Nuclear Agency. This device used a cylindrical type Geiger Mueller (GM) which acts as a detector. GM detector operates at relatively high direct current voltages depend on the type of GM tube. This thin/thick walled cylindrical type of GM tube operates at 450-650 volts range. Proper value and stability performance of high voltage are important parameters to ensure that this device give a reliable radiation dose measurement. This paper will present an assessment of the stability and performance of the high voltage supply for radiation detector. The assessment is performed using System Identification tools box in MATLAB and mathematical statistics.

  2. Cleaning High-Voltage Equipment With Corncob Grit

    NASA Technical Reports Server (NTRS)

    Caveness, C.

    1986-01-01

    High electrical resistance of particles makes power shutdown unnecessary. New, inexpensive method of cleaning high-voltage electrical equipment uses plentiful agricultural product - corncob grit. Method removes dirt and debris from transformers, circuit breakers, and similar equipment. Suitable for utilities, large utility customers, and electrical-maintenance services.

  3. High voltage electron microscopy of lunar samples

    NASA Technical Reports Server (NTRS)

    Fernandez-Moran, H.

    1973-01-01

    Lunar pyroxenes from Apollo 11, 12, 14, and 15 were investigated. The iron-rich and magnesium-rich pyroxene specimens were crushed to a grain size of ca. 50 microns and studied by a combination of X-ray and electron diffraction, electron microscopy, 57 Fe Mossbauer spectroscopy and X-ray crystallography techniques. Highly ordered, uniform electron-dense bands, corresponding to exsolution lamellae, with average widths of ca. 230A to 1000A dependent on the source specimen were observed. These were?qr separated by wider, less-dense interband spacings with average widths of ca. 330A to 3100A. In heating experiments, splitting of the dense bands into finer structures, leading finally to obliteration of the exsolution lamellae was recorded. The extensive exsolution is evidence for significantly slower cooling rates, or possibly annealing, at temperatures in the subsolidus range, adding evidence that annealing of rock from the surface of the moon took place at ca. 600 C. Correlation of the band structure with magnetic ordering at low temperatures and iron clustering within the bands was studied.

  4. Copper wire theft and high voltage electrical burns

    PubMed Central

    Francis, Eamon C; Shelley, Odhran P

    2014-01-01

    High voltage electrical burns are uncommon. However in the midst of our economic recession we are noticing an increasing number of these injuries. Copper wire is a valuable commodity with physical properties as an excellent conductor of electricity making it both ubiquitous in society and prized on the black market. We present two consecutive cases referred to the National Burns Unit who sustained life threatening injuries from the alleged theft of high voltage copper wire and its omnipresence on an international scale. PMID:25356371

  5. Partial discharge in a high voltage experimental test assembly

    SciTech Connect

    Koss, R.J.; Brainard, J.P.

    1998-07-01

    This study was initiated when a new type of breakdown occurred in a high voltage experimental test assembly. An anomalous current pulse was observed, which indicated partial discharges, some leading to total breakdowns. High voltage insulator defects are shown along with their effect on the electrostatic fields in the breakdown region. OPERA electromagnetic field modeling software is used to calculate the fields and present a cause for the discharge. Several design modifications are investigated and one of the simplest resulted in a 25% decrease in the field at the discharge surface.

  6. High-Voltage, Low-Power BNC Feedthrough Terminator

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas

    2012-01-01

    This innovation is a high-voltage, lowpower BNC (Bayonet Neill-Concelman) feedthrough that enables the user to terminate an instrumentation cable properly while connected to a high voltage, without the use of a voltage divider. This feedthrough is low power, which will not load the source, and will properly terminate the instrumentation cable to the instrumentation, even if the cable impedance is not constant. The Space Shuttle Program had a requirement to measure voltage transients on the orbiter bus through the Ground Lightning Measurement System (GLMS). This measurement has a bandwidth requirement of 1 MHz. The GLMS voltage measurement is connected to the orbiter through a DC panel. The DC panel is connected to the bus through a nonuniform cable that is approximately 75 ft (approximately equal to 23 m) long. A 15-ft (approximately equal to 5-m), 50-ohm triaxial cable is connected between the DC panel and the digitizer. Based on calculations and simulations, cable resonances and reflections due to mismatched impedances of the cable connecting the orbiter bus and the digitizer causes the output not to reflect accurately what is on the bus. A voltage divider at the DC panel, and terminating the 50-ohm cable properly, would eliminate this issue. Due to implementation issues, an alternative design was needed to terminate the cable properly without the use of a voltage divider. Analysis shows how the cable resonances and reflections due to the mismatched impedances of the cable connecting the orbiter bus and the digitizer causes the output not to reflect accurately what is on the bus. After simulating a dampening circuit located at the digitizer, simulations were performed to show how the cable resonances were dampened and the accuracy was improved significantly. Test cables built to verify simulations were accurate. Since the dampening circuit is low power, it can be packaged in a BNC feedthrough.

  7. Push-pull with recovery stage high-voltage DC converter for PV solar generator

    NASA Astrophysics Data System (ADS)

    Nguyen, The Vinh; Aillerie, Michel; Petit, Pierre; Pham, Hong Thang; Vo, Thành Vinh

    2017-02-01

    A lot of systems are basically developed on DC-DC or DC-AC converters including electronic switches such as MOS or bipolar transistors. The limits of efficiency are quickly reached when high output voltages and high input currents are needed. This work presents a new high-efficiency-high-step-up based on push-pull DC-DC converter integrating recovery stages dedicated to smart HVDC distributed architecture in PV solar energy production systems. Appropriate duty cycle ratio assumes that the recovery stage work with parallel charge and discharge to achieve high step-up voltage gain. Besides, the voltage stress on the main switch is reduced with a passive clamp circuit and thus, low on-state resistance Rdson of the main switch can be adopted to reduce conduction losses. Thus, the efficiency of a basic DC-HVDC converter dedicated to renewable energy production can be further improved with such topology. A prototype converter is developed, and experimentally tested for validation.

  8. Simplified modeling of pulsed corona for dielectric design of high-voltage devices

    NASA Astrophysics Data System (ADS)

    Pancheshnyi, Sergey; Schefer, Thomas

    2016-09-01

    Physics-based modeling of discharges in insulating gases (air, SF6, CO2 , etc.) is required for quantitative prediction of withstand voltages of high-voltage devices. Breakdown of not very long gaps at elevated pressures occurs typically by streamer (or spark) mechanism. Glow or streamer corona can delay the inception of breakdown streamers. This is often attributed to the so-called corona stabilization effect that is lowering of electric field close to the stressed electrodes due to corona space charge. However, compared to corona-less streamer breakdown of short gaps at elevated pressures, breakdown voltages are typically lower if corona starts. Direct simulation of discharges are often computationally costly, especially for 3D cases, and simplified engineering approaches are developing. Such models are then used for prediction of the ``worst-case scenario'', which might lead to breakdown of gaseous insulation in real design. The engineering models used for simulation of corona inception and development for different voltage shapes (DC, AC, pulsed) will be discussed for several geometries, including rod-plane case and electrode-less inception near a dielectric surface.

  9. Cardiac stimulation with high voltage discharge from stun guns.

    PubMed

    Nanthakumar, Kumaraswamy; Massé, Stephane; Umapathy, Karthikeyan; Dorian, Paul; Sevaptsidis, Elias; Waxman, Menashe

    2008-05-20

    The ability of an electrical discharge to stimulate the heart depends on the duration of the pulse, the voltage and the current density that reaches the heart. Stun guns deliver very short electrical pulses with minimal amount of current at high voltages. We discuss external stimulation of the heart by high voltage discharges and review studies that have evaluated the potential of stun guns to stimulate cardiac muscle. Despite theoretical analyses and animal studies which suggest that stun guns cannot and do not affect the heart, 3 independent investigators have shown cardiac stimulation by stun guns. Additional research studies involving people are needed to resolve the conflicting theoretical and experimental findings and to aid in the design of stun guns that are unable to stimulate the heart.

  10. AC/DC converter

    NASA Astrophysics Data System (ADS)

    Jain, Praveen K.

    1992-08-01

    In a system such as a 20 kHz space station primary electrical power distribution system, power conversion from AC to DC is required. Some of the basic requirements for this conversion are high efficiency, light weight and small volume, regulated output voltage, close to unity input power factor, distortionless input current, soft-starting, low electromagnetic interference, and high reliability. An AC-to-DC converter is disclosed which satisfies the main design objectives of such converters for use in space. The converter of the invention comprises an input transformer, a resonant network, a current controller, a diode rectifier, and an output filter. The input transformer is for connection to a single phase, high frequency, sinusoidal waveform AC voltage source and provides a matching voltage isolating from the AC source. The resonant network converts this voltage to a sinusoidal, high frequency bidirectional current output, which is received by the current controller to provide the desired output current. The diode rectifier is connected in parallel with the current controller to convert the bidirectional current into a unidirectional current output. The output filter is connected to the rectifier to provide an essentially ripple-free, substantially constant voltage DC output.

  11. Ultra-compact Marx-type high-voltage generator

    DOEpatents

    Goerz, David A.; Wilson, Michael J.

    2000-01-01

    An ultra-compact Marx-type high-voltage generator includes individual high-performance components that are closely coupled and integrated into an extremely compact assembly. In one embodiment, a repetitively-switched, ultra-compact Marx generator includes low-profile, annular-shaped, high-voltage, ceramic capacitors with contoured edges and coplanar extended electrodes used for primary energy storage; low-profile, low-inductance, high-voltage, pressurized gas switches with compact gas envelopes suitably designed to be integrated with the annular capacitors; feed-forward, high-voltage, ceramic capacitors attached across successive switch-capacitor-switch stages to couple the necessary energy forward to sufficiently overvoltage the spark gap of the next in-line switch; optimally shaped electrodes and insulator surfaces to reduce electric field stresses in the weakest regions where dissimilar materials meet, and to spread the fields more evenly throughout the dielectric materials, allowing them to operate closer to their intrinsic breakdown levels; and uses manufacturing and assembly methods to integrate the capacitors and switches into stages that can be arranged into a low-profile Marx generator.

  12. Effective variable switching point predictive current control for ac low-voltage drives

    NASA Astrophysics Data System (ADS)

    Stolze, Peter; Karamanakos, Petros; Kennel, Ralph; Manias, Stefanos; Endisch, Christian

    2015-07-01

    This paper presents an effective model predictive current control scheme for induction machines driven by a three-level neutral point clamped inverter, called variable switching point predictive current control. Despite the fact that direct, enumeration-based model predictive control (MPC) strategies are very popular in the field of power electronics due to their numerous advantages such as design simplicity and straightforward implementation procedure, they carry two major drawbacks. These are the increased computational effort and the high ripples on the controlled variables, resulting in a limited applicability of such methods. The high ripples occur because in direct MPC algorithms the actuating variable can only be changed at the beginning of a sampling interval. A possible remedy for this would be to change the applied control input within the sampling interval, and thus to apply it for a shorter time than one sample. However, since such a solution would lead to an additional overhead which is crucial especially for multilevel inverters, a heuristic preselection of the optimal control action is adopted to keep the computational complexity at bay. Experimental results are provided to verify the potential advantages of the proposed strategy.

  13. Study of a High Voltage Ion Engine Power Supply

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.; King, Roger J.; Mayer, Eric

    1996-01-01

    A complete laboratory breadboard version of a ion engine power converter was built and tested. This prototype operated on a line voltage of 80-120 Vdc, and provided output ratings of 1100 V at 1.8 kW, and 250 V at 20 mA. The high-voltage (HV) output voltage rating was revised from the original value of 1350 V at the beginning of the project. The LV output was designed to hold up during a 1-A surge current lasting up to 1 second. The prototype power converter included a internal housekeeping power supply which also operated from the line input. The power consumed in housekeeping was included in the overall energy budget presented for the ion engine converter. HV and LV output voltage setpoints were commanded through potentiometers. The HV converter itself reached its highest power efficiency of slightly over 93% at low line and maximum output. This would dip below 90% at high line. The no-load (rated output voltages, zero load current) power consumption of the entire system was less than 13 W. A careful loss breakdown shows that converter losses are predominately Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) conduction losses and HV rectifier snubbing losses, with the rectifier snubbing losses becoming predominant at high line. This suggests that further improvements in power efficiency could best be obtained by either developing a rectifier that was adequately protected against voltage overshoot with less snubbing, or by developing a pre-regulator to reduced the range of line voltage on the converter. The transient testing showed the converter to be fully protected against load faults, including a direct short-circuit from the HV output to the LV output terminals. Two currents sensors were used: one to directly detect any core ratcheting on the output transformer and re-initiate a soft start, and the other to directly detect a load fault and quickly shut down the converter for load protection. The finished converter has been extensively fault tested

  14. 59. View of high voltage (4160 volts alternating current) electric ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. View of high voltage (4160 volts alternating current) electric load center and motor control center at mezzanine level in transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  15. High voltage gas insulated transmission line with continuous particle trapping

    DOEpatents

    Cookson, Alan H.; Dale, Steinar J.

    1983-01-01

    This invention provides a novel high voltage gas insulated transmission line utilizing insulating supports spaced at intervals with snap-in means for supporting a continuous trapping apparatus and said trapping apparatus having perforations and cutouts to facilitate trapping of contaminating particles and system flexibility.

  16. Laboratory 15 kV high voltage solar array facility

    NASA Technical Reports Server (NTRS)

    Kolecki, J. C.; Gooder, S. T.

    1976-01-01

    The laboratory high voltage solar array facility is a photoelectric power generating system. Consisting of nine modules with over 23,000 solar cells, the facility is capable of delivering more than a kilowatt of power. The physical and electrical characteristics of the facility are described.

  17. The design and development of a high voltage power supply

    NASA Technical Reports Server (NTRS)

    Ting, R.

    1974-01-01

    A high voltage circuit system was redesigned, breadboarded, and tested to meet revised specification requirements. Circuit component subassemblies are described and include the firing unit, regulator, dc to dc converter, and output and trigger circuits. Design changes, tests, and equipment fabrication are outlined chronologically by month. A list of design specifications is included.

  18. Treatment of spider bites by high voltage direct current.

    PubMed

    Osborn, C D

    1991-06-01

    Between September 7, 1988, and January 15, 1991, 147 cases of confirmed (19) and suspected spider bites have been treated by high voltage direct current (HVDC) shocks. Venom damage to tissue was arrested at the time of treatment. Pain and systemic symptoms usually improved within 15 minutes. Lesion excision or grafts have not been necessary in any of the 127 cases with completed followup.

  19. Current isolating epitaxial buffer layers for high voltage photodiode array

    DOEpatents

    Morse, Jeffrey D.; Cooper, Gregory A.

    2002-01-01

    An array of photodiodes in series on a common semi-insulating substrate has a non-conductive buffer layer between the photodiodes and the semi-insulating substrate. The buffer layer reduces current injection leakage between the photodiodes of the array and allows optical energy to be converted to high voltage electrical energy.

  20. High voltage electrical insulation coating for refractory materials

    NASA Technical Reports Server (NTRS)

    Lent, W. E.

    1972-01-01

    Formula and process have been developed for coating refractory metal surfaces with high voltage electrical insulation for use at temperatures to 600 C. Coatings were specifically developed as an insulation for the surface of a perforated, molybdenum, ion-accelerator grid, but are not limited to this application.

  1. [Fatal electric arc accidents due to high voltage].

    PubMed

    Strauch, Hansjürg; Wirth, Ingo

    2004-01-01

    The frequency of electric arc accidents has been successfully reduced owing to preventive measures taken by the professional association. However, the risk of accidents has continued to exist in private setting. Three fatal electric arc accidents caused by high voltage are reported with reference to the autopsy findings.

  2. [Research on sterilization of pathogens by high electrostatic voltage method].

    PubMed

    Wang, X; Wu, Y; Ni, X; Xia, B; Xu, J; Du, Q

    1992-10-01

    An experimental research has been carried out on the sterilization of four kinds of pathogens by high electrostatic method along with an inquiry into the influence of voltage waveform and the treated time on sterilization. It is concluded that pathogens can be killed efficiently by corona discharge field.

  3. Deep Space One High-Voltage Bus Management

    NASA Technical Reports Server (NTRS)

    Rachocki, Ken; Nieraeth, Donald

    1999-01-01

    The design of the High Voltage Power Converter Unit on DS1 allows both the spacecraft avionics and ion propulsion to operate in a stable manner near the PPP of the solar array. This approach relies on a fairly well-defined solar array model to determine the projected PPP. The solar array voltage set-points have to be updated every week to maintain operation near PPP. Stable operation even to the LEFT of the Peak Power Point is achievable so long as you do not change the operating power level of the ion engine. The next step for this technology is to investigate the use of onboard autonomy to determine the optimum SA voltage regulation set-point (i.e. near the PPP); this is for future missions that have one or more ion propulsion subsystems.

  4. Simulating on-line dynamic voltages of multiple trains under real operating conditions for AC railways

    SciTech Connect

    Hsi, P.H.; Chen, S.L.; Li, R.J.

    1999-05-01

    The analysis of Railway Power Supplies (RPS) presents a unique type of load flow problem which is characterized by its constant moving loads, dynamically changing load types (constant current/constant power), and its specialized network structure. When multiple trains and the capacitors for power factor correction are also involved, the analysis of this special kind of power system can be very complicated and time consuming which will prevent on-line state analysis from becoming possible. This paper presents a novel and extremely efficient algorithm to solve this special kind of power flow problem with high precision. By first decoupling the Autotransformer (AT) current into 2 equal phasor components and then applying an iteration-based circuit-analysis approach, the RPS power flow problem can be solved in an accurate but extremely efficient manner. An on-line Railway Power-Supply State Analyzer (RPSA) based on this approach is presented in this paper while the extension of using this approach to perform power factor corrector (PFC) simulation is also presented.

  5. A high frequency active voltage doubler in standard CMOS using offset-controlled comparators for inductive power transmission.

    PubMed

    Lee, Hyung-Min; Ghovanloo, Maysam

    2013-06-01

    In this paper, we present a fully integrated active voltage doubler in CMOS technology using offset-controlled high speed comparators for extending the range of inductive power transmission to implantable microelectronic devices (IMD) and radio-frequency identification (RFID) tags. This active voltage doubler provides considerably higher power conversion efficiency (PCE) and lower dropout voltage compared to its passive counterpart and requires lower input voltage than active rectifiers, leading to reliable and efficient operation with weakly coupled inductive links. The offset-controlled functions in the comparators compensate for turn-on and turn-off delays to not only maximize the forward charging current to the load but also minimize the back current, optimizing PCE in the high frequency (HF) band. We fabricated the active voltage doubler in a 0.5-μm 3M2P std . CMOS process, occupying 0.144 mm(2) of chip area. With 1.46 V peak AC input at 13.56 MHz, the active voltage doubler provides 2.4 V DC output across a 1 kΩ load, achieving the highest PCE = 79% ever reported at this frequency. In addition, the built-in start-up circuit ensures a reliable operation at lower voltages.

  6. A High Frequency Active Voltage Doubler in Standard CMOS Using Offset-Controlled Comparators for Inductive Power Transmission

    PubMed Central

    Lee, Hyung-Min; Ghovanloo, Maysam

    2014-01-01

    In this paper, we present a fully integrated active voltage doubler in CMOS technology using offset-controlled high speed comparators for extending the range of inductive power transmission to implantable microelectronic devices (IMD) and radio-frequency identification (RFID) tags. This active voltage doubler provides considerably higher power conversion efficiency (PCE) and lower dropout voltage compared to its passive counterpart and requires lower input voltage than active rectifiers, leading to reliable and efficient operation with weakly coupled inductive links. The offset-controlled functions in the comparators compensate for turn-on and turn-off delays to not only maximize the forward charging current to the load but also minimize the back current, optimizing PCE in the high frequency (HF) band. We fabricated the active voltage doubler in a 0.5-μm 3M2P std. CMOS process, occupying 0.144 mm2 of chip area. With 1.46 V peak AC input at 13.56 MHz, the active voltage doubler provides 2.4 V DC output across a 1 kΩ load, achieving the highest PCE = 79% ever reported at this frequency. In addition, the built-in start-up circuit ensures a reliable operation at lower voltages. PMID:23853321

  7. 30 CFR 75.833 - Handling high-voltage trailing cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Handling high-voltage trailing cables. 75.833... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.833 Handling high-voltage trailing cables. (a) Cable handling. (1)...

  8. 30 CFR 77.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage circuits; circuit breakers. 77.800... COAL MINES Surface High-Voltage Distribution § 77.800 High-voltage circuits; circuit breakers. High-voltage circuits supplying power to portable or mobile equipment shall be protected by suitable...

  9. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage powerlines; clearances above... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad...

  10. 30 CFR 77.807 - Installation of high-voltage transmission cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Installation of high-voltage transmission... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807 Installation of high-voltage transmission cables. High-voltage transmission cables shall be installed or placed so as to afford...

  11. 30 CFR 75.810 - High-voltage trailing cables; splices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage trailing cables; splices. 75.810... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.810 High-voltage trailing cables; splices. In the case of high-voltage cables used as...

  12. Next generation KATRIN high precision voltage divider for voltages up to 65kV

    NASA Astrophysics Data System (ADS)

    Bauer, S.; Berendes, R.; Hochschulz, F.; Ortjohann, H.-W.; Rosendahl, S.; Thümmler, T.; Schmidt, M.; Weinheimer, C.

    2013-10-01

    The KATRIN (KArlsruhe TRItium Neutrino) experiment aims to determine the mass of the electron antineutrino with a sensitivity of 200 meV by precisely measuring the electron spectrum of the tritium beta decay. This will be done by the use of a retarding spectrometer of the MAC-E-Filter type. To achieve the desired sensitivity the stability of the retarding potential of -18.6 kV has to be monitored with a precision of 3 ppm over at least two months. Since this is not feasible with commercial devices, two ppm-class high voltage dividers were developed, following the concept of the standard divider for DC voltages of up to 100 kV of the Physikalisch-Technische Bundesanstalt (PTB). In order to reach such high accuracies different effects have to be considered. The two most important ones are the temperature dependence of resistance and leakage currents, caused by insulators or corona discharges. For the second divider improvements were made concerning the high-precision resistors and the thermal design of the divider. The improved resistors are the result of a cooperation with the manufacturer. The design improvements, the investigation and the selection of the resistors, the built-in ripple probe and the calibrations at PTB will be reported here. The latter demonstrated a stability of about 0.1 ppm/month over a period of two years.

  13. BANSHEE: High-voltage repetitively pulsed electron-beam driver

    SciTech Connect

    VanHaaften, F.

    1992-01-01

    BANSHEE (Beam Accelerator for a New Source of High-Energy Electrons) this is a high-voltage modulator is used to produce a high-current relativistic electron beam for high-power microwave tube development. The goal of the BANSHEE research is first to achieve a voltage pulse of 700--750 kV with a 1-{mu}s pulse width driving a load of {approximately}100 {Omega}, the pulse repetition frequency (PRF) of a few hertz. The ensuing goal is to increase the pulse amplitude to a level approaching 1 MV. We conducted tests using half the modulator with an output load of 200 {Omega}, up to a level of {approximately}650 kV at a PRF of 1 Hz and 525 kV at a PRF of 5 Hz. We then conducted additional testing using the complete system driving a load of {approximately}100 {Omega}.

  14. BANSHEE: High-voltage repetitively pulsed electron-beam driver

    SciTech Connect

    VanHaaften, F.

    1992-08-01

    BANSHEE (Beam Accelerator for a New Source of High-Energy Electrons) this is a high-voltage modulator is used to produce a high-current relativistic electron beam for high-power microwave tube development. The goal of the BANSHEE research is first to achieve a voltage pulse of 700--750 kV with a 1-{mu}s pulse width driving a load of {approximately}100 {Omega}, the pulse repetition frequency (PRF) of a few hertz. The ensuing goal is to increase the pulse amplitude to a level approaching 1 MV. We conducted tests using half the modulator with an output load of 200 {Omega}, up to a level of {approximately}650 kV at a PRF of 1 Hz and 525 kV at a PRF of 5 Hz. We then conducted additional testing using the complete system driving a load of {approximately}100 {Omega}.

  15. Stable electrolyte for high voltage electrochemical double-layer capacitors

    SciTech Connect

    Ruther, Rose E.; Sun, Che -Nan; Holliday, Adam; Cheng, Shiwang; Delnick, Frank M.; Zawodzinski, Thomas A.; Nanda, Jagjit

    2016-12-28

    A simple electrolyte consisting of NaPF6 salt in 1,2-dimethoxyethane (DME) can extend the voltage window of electric double-layer capacitors (EDLCs) to >3.5 V. DME does not passivate carbon electrodes at very negative potentials (near Na/Na+), extending the practical voltage window by about 1.0 V compared to standard, non-aqueous electrolytes based on acetonitrile. The voltage window is demonstrated in two- and three-electrode cells using a combination of electrochemical impedance spectroscopy (EIS), charge-discharge cycling, and measurements of leakage current. DME-based electrolytes cannot match the high conductivity of acetonitrile solutions, but they can satisfy applications that demand high energy density at moderate power. The conductivity of NaPF6 in DME is comparable to commercial lithium-ion battery electrolytes and superior to most ionic liquids. Lastly, factors that limit the voltage window and EDLC energy density are discussed, and strategies to further boost energy density are proposed.

  16. High Transmembrane Voltage Raised by Close Contact Initiates Fusion Pore.

    PubMed

    Bu, Bing; Tian, Zhiqi; Li, Dechang; Ji, Baohua

    2016-01-01

    Membrane fusion lies at the heart of neuronal communication but the detailed mechanism of a critical step, fusion pore initiation, remains poorly understood. Here, through atomistic molecular dynamics simulations, a transient pore formation induced by a close contact of two apposed bilayers is firstly reported. Such a close contact gives rise to a high local transmembrane voltage that induces the transient pore formation. Through simulations on two apposed bilayers fixed at a series of given distances, the process in which two bilayers approaching to each other under the pulling force from fusion proteins for membrane fusion was mimicked. Of note, this close contact induced fusion pore formation is contrasted with previous reported electroporation under ad hoc applied external electric field or ionic charge in-balance. We show that the transmembrane voltage increases with the decrease of the distance between the bilayers. Below a critical distance, depending on the lipid composition, the local transmembrane voltage can be sufficiently high to induce the transient pores. The size of these pores is approximately 1~2 nm in diameter, which is large enough to allow passing of neurotransmitters. A resealing of the membrane pores resulting from the neutralization of the transmembrane voltage by ions through the pores was then observed. We also found that the membrane tension can either prolong the lifetime of transient pores or cause them to dilate for full collapse. This result provides a possible mechanism for fusion pore formation and regulation of pathway of fusion process.

  17. High Transmembrane Voltage Raised by Close Contact Initiates Fusion Pore

    PubMed Central

    Bu, Bing; Tian, Zhiqi; Li, Dechang; Ji, Baohua

    2016-01-01

    Membrane fusion lies at the heart of neuronal communication but the detailed mechanism of a critical step, fusion pore initiation, remains poorly understood. Here, through atomistic molecular dynamics simulations, a transient pore formation induced by a close contact of two apposed bilayers is firstly reported. Such a close contact gives rise to a high local transmembrane voltage that induces the transient pore formation. Through simulations on two apposed bilayers fixed at a series of given distances, the process in which two bilayers approaching to each other under the pulling force from fusion proteins for membrane fusion was mimicked. Of note, this close contact induced fusion pore formation is contrasted with previous reported electroporation under ad hoc applied external electric field or ionic charge in-balance. We show that the transmembrane voltage increases with the decrease of the distance between the bilayers. Below a critical distance, depending on the lipid composition, the local transmembrane voltage can be sufficiently high to induce the transient pores. The size of these pores is approximately 1~2 nm in diameter, which is large enough to allow passing of neurotransmitters. A resealing of the membrane pores resulting from the neutralization of the transmembrane voltage by ions through the pores was then observed. We also found that the membrane tension can either prolong the lifetime of transient pores or cause them to dilate for full collapse. This result provides a possible mechanism for fusion pore formation and regulation of pathway of fusion process. PMID:28018169

  18. Stable electrolyte for high voltage electrochemical double-layer capacitors

    DOE PAGES

    Ruther, Rose E.; Sun, Che -Nan; Holliday, Adam; ...

    2016-12-28

    A simple electrolyte consisting of NaPF6 salt in 1,2-dimethoxyethane (DME) can extend the voltage window of electric double-layer capacitors (EDLCs) to >3.5 V. DME does not passivate carbon electrodes at very negative potentials (near Na/Na+), extending the practical voltage window by about 1.0 V compared to standard, non-aqueous electrolytes based on acetonitrile. The voltage window is demonstrated in two- and three-electrode cells using a combination of electrochemical impedance spectroscopy (EIS), charge-discharge cycling, and measurements of leakage current. DME-based electrolytes cannot match the high conductivity of acetonitrile solutions, but they can satisfy applications that demand high energy density at moderate power.more » The conductivity of NaPF6 in DME is comparable to commercial lithium-ion battery electrolytes and superior to most ionic liquids. Lastly, factors that limit the voltage window and EDLC energy density are discussed, and strategies to further boost energy density are proposed.« less

  19. A magnesium–sodium hybrid battery with high operating voltage

    DOE PAGES

    Dong, Hui; Li, Yifei; Liang, Yanliang; ...

    2016-06-10

    Here, we report a high performance magnesium-sodium hybrid battery utilizing a magnesium-sodium dual-salt electrolyte, a magnesium anode, and a Berlin green cathode. The cell delivers an average discharge voltage of 2.2 V and a reversible capacity of 143 mA h g–1. We also demonstrate the cell with an energy density of 135 W h kg–1 and a high power density of up to 1.67 kW kg–1.

  20. High-voltage pixel sensors for ATLAS upgrade

    NASA Astrophysics Data System (ADS)

    Perić, I.; Kreidl, C.; Fischer, P.; Bompard, F.; Breugnon, P.; Clemens, J.-C.; Fougeron, D.; Liu, J.; Pangaud, P.; Rozanov, A.; Barbero, M.; Feigl, S.; Capeans, M.; Ferrere, D.; Pernegger, H.; Ristic, B.; Muenstermann, D.; Gonzalez Sevilla, S.; La Rosa, A.; Miucci, A.; Nessi, M.; Iacobucci, G.; Backhaus, M.; Hügging, Fabian; Krüger, H.; Hemperek, T.; Obermann, T.; Wermes, N.; Garcia-Sciveres, M.; Quadt, A.; Weingarten, J.; George, M.; Grosse-Knetter, J.; Rieger, J.; Bates, R.; Blue, A.; Buttar, C.; Hynds, D.

    2014-11-01

    The high-voltage (HV-) CMOS pixel sensors offer several good properties: a fast charge collection by drift, the possibility to implement relatively complex CMOS in-pixel electronics and the compatibility with commercial processes. The sensor element is a deep n-well diode in a p-type substrate. The n-well contains CMOS pixel electronics. The main charge collection mechanism is drift in a shallow, high field region, which leads to a fast charge collection and a high radiation tolerance. We are currently evaluating the use of the high-voltage detectors implemented in 180 nm HV-CMOS technology for the high-luminosity ATLAS upgrade. Our approach is replacing the existing pixel and strip sensors with the CMOS sensors while keeping the presently used readout ASICs. By intelligence we mean the ability of the sensor to recognize a particle hit and generate the address information. In this way we could benefit from the advantages of the HV sensor technology such as lower cost, lower mass, lower operating voltage, smaller pitch, smaller clusters at high incidence angles. Additionally we expect to achieve a radiation hardness necessary for ATLAS upgrade. In order to test the concept, we have designed two HV-CMOS prototypes that can be readout in two ways: using pixel and strip readout chips. In the case of the pixel readout, the connection between HV-CMOS sensor and the readout ASIC can be established capacitively.

  1. High-voltage suicidal electrocution with multiple exit wounds.

    PubMed

    Das, Siddhartha; Patra, Ambika Prasad; Shaha, Kusa Kumar; Sistla, Sarath Chandra; Jena, Manoj Kumar

    2013-03-01

    Poisoning, hanging, and burning are the usual methods adopted by people to commit suicide. Suicide by electrocution and that too high voltage is one of the rarest methods adopted for the purpose. We report the case of a young man who committed suicide by climbing up a 25-ft-high electric pole. The deceased was a regular alcoholic and was under severe depression for a long time because of his personal problems. He survived for more than 2 days after the incident. His serum urea and creatinine levels were elevated, so were the creatine kinase total and creatine kinase-MB level. The method adopted and the findings make this case a rare scientific report. Moreover, to the best of our knowledge, this is the first reported case in an English scientific literature of a high-voltage suicidal electrocution with multiple exit wounds. The circumstances surrounding the manner of electrocution and the features of electric injuries are presented and discussed.

  2. High-voltage plasma interactions calculations using NASCAP/LEO

    NASA Technical Reports Server (NTRS)

    Mandell, M. J.; Katz, I.

    1990-01-01

    This paper reviews four previous simulations (two laboratory and two space-flight) of interactions of a high-voltage spacecraft with a plasma under low-earth orbit conditions, performed using a three-dimensional computer code NASCAP/LEO. Results show that NASCAP/LEO can perform meaningful simulations of high-voltage plasma interactions taking into account three-dimensional effects of geometry, spacecraft motion, and magnetic field. Two new calculations are presented: (1) for current collection by 1-mm pinholes in wires (showing that a pinhole in a wire can collect far more current than a similar pinhole in a flat plate); and (2) current collection by Charge-2 mother vehicle launched in December 1985. It is shown that the Charge-2 calculations predicted successfully ion collection at negative bias, the floating potential of a probe outside or inside the sheath under negative bias conditions, and magnetically limited electron collection under electron beam operation at high altitude.

  3. Stable Josephson reference voltages between 0. 1 and 1. 3 V for high-precision voltage standards

    SciTech Connect

    Niemeyer, J.; Grimm, L.; Meier, W.; Hinken, J.H.; Vollmer, E.

    1985-12-01

    A new series array of 1440 Josephson tunnel junctions has been developed and tested as a reference voltage standard. It yields microwave induced quantized voltage steps up to 1.3 V. The steps are usually stable for more than 5 h with a microwave driving frequency of either 70 or 90 GHz. A high-resolution comparison of a constant voltage step at the 1-V level with the electromotive force of a saturated Weston cell is described. The comparison shows that the step voltage is constant to within +- 1 nV over the full step width.

  4. Stable Josephson reference voltages between 0.1 and 1.3 V for high precision voltage standards

    NASA Astrophysics Data System (ADS)

    Niemeyer, J.; Grimm, L.; Meier, W.; Hinken, J. H.; Vollmer, E.

    1985-12-01

    A new series array of 1440 Josephson tunnel junctions has been developed and tested as a reference voltage standard. It yields microwave induced quantized voltage steps up to 1.3 V. The steps are usually stable for more than 5 h with a microwave driving frequency of either 70 or 90 GHz. A high-resolution comparison of a constant voltage step at the 1-V level with the electromotive force of a saturated Weston cell is described. The comparison shows that the step voltage is constant to within + or - 1 nV over the full step width.

  5. Upgrade of the TITAN EBIT High Voltage Operation

    NASA Astrophysics Data System (ADS)

    Foster, Matt; Titan Collaboration

    2016-09-01

    TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) is a setup dedicated to highly precise mass measurements of short-lived isotopes down to 10ms. TITAN's Electron Beam Ion Trap (EBIT) is a charge breeder integrated into the setup to perform in-trap decay spectroscopy of highly charged ions and increase the precision of mass measurements. In its previous configuration TITAN's EBIT could not fulfil its maximum design specification due to high voltage safety restrictions, limiting its obtainable charge states. A recently completed upgrade of the high voltage operation that will allow the EBIT to fulfil its design specification and achieve higher charge states for heavier species is undergoing preliminary tests with stable beam. Simulations were performed to optimise the injection and extraction efficiency at high voltage and initial tests have involved using a Ge detector to identify x-rays produced by charge breeding stable ions. Future work comprises exploring electron capture rates of Ne-, He- and H-like charge states of 64Cu and higher masses, which were not previously accessible. The function of the EBIT within the TITAN setup, the work carried out on the upgrade thus far and its scope for future work will be presented.

  6. High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1995-01-01

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  7. High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1995-05-23

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

  8. High voltage processing of the SLC polarized electron gun

    SciTech Connect

    Saez, P.; Clendenin, J.; Garden, C.; Hoyt, E.; Klaisner, L.; Prescott, C.; Schultz, D.; Tang, H.

    1993-04-01

    The SLC polarized electron gun operates at 120 kV with very low dark current to maintain the ultra high vacuum (UHV). This strict requirement protects the extremely sensitive photocathode from contaminants caused by high voltage (HV) activity. Thorough HV processing is thus required x-ray sensitive photographic film, a nanoammeter in series with gun power supply, a radiation meter, a sensitive residual gas analyzer and surface x-ray spectrometry were used to study areas in the gun where HV activity occurred. By reducing the electric field gradients, carefully preparing the HV surfaces and adhering to very strict clean assembly procedures, we found it possible to process the gun so as to reduce both the dark current at operating voltage and the probability of HV discharge. These HV preparation and processing techniques are described.

  9. Pulse Evaluation of High Voltage SiC Diodes

    DTIC Science & Technology

    2007-06-01

    Different packaging options were also explored. The first group of diodes was encased in hard, caramel - colored , high temperature epoxy which...16-21 June 2013., The original document contains color images. 14. ABSTRACT The U. S. Army Research Laboratory (ARL) is evaluating silicon carbide...individually at increasing voltage and current levels until failure in order to narrow down the peak current limitation of the devices

  10. Locating of normal transitions in a Bi2223 high temperature superconducting coil by non-contact voltage measurement method

    NASA Astrophysics Data System (ADS)

    Nanato, N.; Nishiyama, K.

    2015-12-01

    Locating of normal transitions in high temperature superconducting (HTS) coils is important for protection and safety design of HTS apparatus. A general method to locate the normal transitions is to measure resistive voltages along HTS windings by many voltage taps directly soldered to the HTS coils. However, electrical insulation characteristics of the HTS coils are deteriorated because it is necessary to remove electrical insulations of the HTS wires for the soldering. It is a serious problem especially for AC HTS coils to which high voltages are applied. Therefore the authors have presented a non-contact voltage measurement method that can detect the resistive voltages without removing the insulations by voltage dividing capacitors. So far the authors have verified the principle of the non-contact method. In this paper, a method to locate the normal transitions in a Bi2223 HTS coil based on the non-contact method is proposed. The proposed method can not only detect the normal transitions but also locate their positions. It is experimentally confirmed that the proposed method is useful for locating the normal transitions.

  11. High voltage systems (tube-type microwave)/low voltage system (solid-state microwave) power distribution

    NASA Technical Reports Server (NTRS)

    Nussberger, A. A.; Woodcock, G. R.

    1980-01-01

    SPS satellite power distribution systems are described. The reference Satellite Power System (SPS) concept utilizes high-voltage klystrons to convert the onboard satellite power from dc to RF for transmission to the ground receiving station. The solar array generates this required high voltage and the power is delivered to the klystrons through a power distribution subsystem. An array switching of solar cell submodules is used to maintain bus voltage regulation. Individual klystron dc voltage conversion is performed by centralized converters. The on-board data processing system performs the necessary switching of submodules to maintain voltage regulation. Electrical power output from the solar panels is fed via switch gears into feeder buses and then into main distribution buses to the antenna. Power also is distributed to batteries so that critical functions can be provided through solar eclipses.

  12. Fiber optic current monitor for high-voltage applications

    DOEpatents

    Renda, G.F.

    1992-04-21

    A current monitor which derives its power from the conductor being measured for bidirectionally measuring the magnitude of current (from DC to above 50 khz) flowing through a conductor across which a relatively high level DC voltage is applied, includes a pair of identical transmitter modules connected in opposite polarity to one another in series with the conductor being monitored, for producing from one module a first light signal having an intensity directly proportional to the magnitude of current flowing in one direction through the conductor during one period of time, and from the other module a second light signal having an intensity directly proportional to the magnitude of current flowing in the opposite direction through the conductor during another period of time, and a receiver located in a safe area remote from the high voltage area for receiving the first and second light signals, and converting the same to first and second voltage signals having levels indicative of the magnitude of current being measured at a given time. 6 figs.

  13. Loss Reduction on Adoption of High Voltage LT Less Distribution

    NASA Astrophysics Data System (ADS)

    Tiwari, Deepika; Adhikari, Nikhileshwar Prasad; Gupta, Amit; Bajpai, Santosh Kumar

    2016-06-01

    In India there is a need to improve the quality of the electricity distribution process which has increased varying from year to year. In distribution networks, the limiting factor to load carrying capacity is generally the voltage reduction. High voltage distribution system (HVDS) is one of the steps to reduce line losses in electrical distribution network. It helps to reduce the length of low tension (LT) lines and makes the power available close to the users. The high voltage power distribution system reduces the probability of power theft by hooking HVDS suggests an increase in installation of small capacity single-phase transformers in the network which again save considerable energy. This paper is compared to existing conventional low tension distribution network with HVDS. The paper gives a clear picture of reduction in distribution losses with adoption of HVDS system. Losses Reduction of 11 kV Feeder in Nuniya (India) with adoption of HVDS have been worked out/ quantified and benefits thereby in generating capacity have discussed.

  14. Advanced Gate Drive for the SNS High Voltage Converter Modulator

    SciTech Connect

    Nguyen, M.N.; Burkhart, C.; Kemp, M.A.; Anderson, D.E.; /Oak Ridge

    2009-05-07

    SLAC National Accelerator Laboratory is developing a next generation H-bridge switch plate [1], a critical component of the SNS High Voltage Converter Modulator [2]. As part of that effort, a new IGBT gate driver has been developed. The drivers are an integral part of the switch plate, which are essential to ensuring fault-tolerant, high-performance operation of the modulator. The redesigned driver improves upon the existing gate drive in several ways. The new gate driver has improved fault detection and suppression capabilities; suppression of shoot-through and over-voltage conditions, monitoring of dI/dt and Vce(sat) for fast over-current detection and suppression, and redundant power isolation are some of the added features. In addition, triggering insertion delay is reduced by a factor of four compared to the existing driver. This paper details the design and performance of the new IGBT gate driver. A simplified schematic and description of the construction are included. The operation of the fast over-current detection circuits, active IGBT over-voltage protection circuit, shoot-through prevention circuitry, and control power isolation breakdown detection circuit are discussed.

  15. Fiber optic current monitor for high-voltage applications

    DOEpatents

    Renda, George F.

    1992-01-01

    A current monitor which derives its power from the conductor being measured for bidirectionally measuring the magnitude of current (from DC to above 50 khz) flowing through a conductor across which a relatively high level DC voltage is applied, includes a pair of identical transmitter modules connected in opposite polarity to one another in series with the conductor being monitored, for producing from one module a first light signal having an intensity directly proportional to the magnitude of current flowing in one direction through the conductor during one period of time, and from the other module a second light signal having an intensity directly proportional to the magnitude of current flowing in the opposite direction through the conductor during another period of time, and a receiver located in a safe area remote from the high voltage area for receiving the first and second light signals, and converting the same to first and second voltage signals having levels indicative of the magnitude of current being measured at a given time.

  16. Modeling of High-voltage Breakdown in Helium

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Khrabrov, Alexander; Kaganovich, Igor; Sommerer, Timothy

    2016-09-01

    We investigate the breakdown in extremely high reduced electric fields (E/N) between parallel-plate electrodes in helium. The left branch of the Paschen curve in the voltage range of 20-350kV and inter-electrode gap range of 0.5-3.5cm is studied analytically and with Monte-Carlo/PIC simulations. The model incorporates electron, ion, and fast neutral species whose energy-dependent anisotropic scattering, as well as backscattering at the electrodes, is carefully taken into account. Our model demonstrates that (1) anisotropic scattering is indispensable for producing reliable results at such high voltage and (2) due to the heavy species backscattered at cathode, breakdown can occur even without electron- and ion-induced ionization of the background gas. Fast atoms dominate in the breakdown process more and more as the applied voltage is increased, due to their increasing ionization cross-section and to the copious flux of energetic fast atoms generated in charge-exchange collisions.

  17. High voltage design structure for high temperature superconducting device

    DOEpatents

    Tekletsadik, Kasegn D.

    2008-05-20

    In accordance with the present invention, modular corona shields are employed in a HTS device to reduce the electric field surrounding the HTS device. In a exemplary embodiment a fault current limiter module in the insulation region of a cryogenic cooling system has at least one fault current limiter set which employs a first corona shield disposed along the top portion of the fault current limiter set and is electrically coupled to the fault current limiter set. A second corona shield is disposed along the bottom portion of the fault current limiter set and is electrically coupled to the fault current limiter set. An insulation barrier is disposed within the insulation region along at least one side of the fault current limiter set. The first corona shield and the second corona shield act together to reduce the electric field surrounding the fault limiter set when voltage is applied to the fault limiter set.

  18. A magnesium–sodium hybrid battery with high operating voltage

    SciTech Connect

    Dong, Hui; Li, Yifei; Liang, Yanliang; Li, Guosheng; Sun, Cheng -Jun; Ren, Yang; Lu, Yuhao; Yao, Yan

    2016-06-10

    Here, we report a high performance magnesium-sodium hybrid battery utilizing a magnesium-sodium dual-salt electrolyte, a magnesium anode, and a Berlin green cathode. The cell delivers an average discharge voltage of 2.2 V and a reversible capacity of 143 mA h g–1. We also demonstrate the cell with an energy density of 135 W h kg–1 and a high power density of up to 1.67 kW kg–1.

  19. A magnesium–sodium hybrid battery with high operating voltage

    SciTech Connect

    Dong, Hui; Li, Yifei; Liang, Yanliang; Li, Guosheng; Sun, Cheng-Jun; Ren, Yang; Lu, Yuhao; Yao, Yan

    2016-06-10

    We report a high performance magnesium-sodium hybrid battery utilizing a magnesium-sodium dual-salt electrolyte, a magnesium anode, and a Berlin green cathode. The cell delivers an average discharge voltage of 2.2 V and a reversible capacity of 143 mAh g-1. We also demonstrate the cell with an energy density of 135 Wh kg-1 and a high power density of up to 1.67 kW kg-1.

  20. Generation and Characterization of Magnetized Bunched Electron Beam from a DC High Voltage Photogun

    NASA Astrophysics Data System (ADS)

    Suleiman, Riad; Poelker, Matthew; Benesch, Jay; Hannon, Fay; Hernandez-Garcia, Carlos; Wang, Yan

    2016-03-01

    To maintain ion beam emittance and extend luminosity lifetime, the Jefferson Lab design of the Electron Ion Collider includes a bunched magnetized electron beam cooler as part of the Collider Ring. We are building a prototype magnetized gun using our newly commissioned 325 kV inverted-insulator DC high voltage photogun. This contribution describes planned measurements of beam magnetization as a function of bunch charge and average current, and laser beam size and magnetic field strength at the photocathode. Results will be compared to particle tracking code simulations. Photocathode lifetime at milli-ampere current will be compared to beam lifetime with no magnetization, to explore the impact of the magnetic field on photogun operation. Combined, these measurements and simulations will benchmark our design tools and provide insights on ways to optimize the electron cooler. This work is supported by the Department of Energy, Laboratory Directed Research and Development funding, under contract DE-AC05-06OR23177.

  1. Impact of Solar Array Designs on High Voltage Operations

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.; Ferguson, Dale; Piszczor, Mike; ONeill, Mark

    2006-01-01

    As power levels of advanced spacecraft climb above 25 kW, higher solar array operating voltages become attractive. Even in today s satellites, operating spacecraft buses at 100 V and above has led to arcing in GEO communications satellites, so the issue of spacecraft charging and solar array arcing remains a design problem. In addition, micrometeoroid impacts on all of these arrays can also lead to arcing if the spacecraft is at an elevated potential. For example, tests on space station hardware disclosed arcing at 75V on anodized A1 structures that were struck with hypervelocity particles in Low Earth Orbit (LEO) plasmas. Thus an understanding of these effects is necessary to design reliable high voltage solar arrays of the future, especially in light of the Vision for Space Exploration of NASA. In the future, large GEO communication satellites, lunar bases, solar electric propulsion missions, high power communication systems around Mars can lead to power levels well above 100 kW. As noted above, it will be essential to increase operating voltages of the solar arrays well above 80 V to keep the mass of cabling needed to carry the high currents to an acceptable level. Thus, the purpose of this paper is to discuss various solar array approaches, to discuss the results of testing them at high voltages, in the presence of simulated space plasma and under hypervelocity impact. Three different types of arrays will be considered. One will be a planar array using thin film cells, the second will use planar single or multijunction cells and the last will use the Stretched Lens Array (SLA - 8-fold concentration). Each of these has different approaches for protection from the space environment. The thin film cell based arrays have minimal covering due to their inherent radiation tolerance, conventional GaAs and multijunction cells have the traditional cerium-doped microsheet glasses (of appropriate thickness) that are usually attached with Dow Corning DC 93-500 silicone

  2. Pickup impact on high-voltage multifinger LDMOS-SCR with low trigger voltage and high failure current

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Jin, Xiangliang; Wang, Yang; Zhou, Acheng

    2015-12-01

    The impact of inserting P+ pickup on high-voltage multi-finger laterally diffused metal-oxide-semiconductor-silicon-controlled rectifier (LDMOS-SCR) has been studied in this article. Four-finger LDMOS-SCR structures with finger length of 50 μm using 0.5 μm 18 V complementarily diffused metal oxide semiconductor (CDMOS) process were fabricated and tested. Theoretical analysis is carried out to make detailed comparisons between LDMOS-SCR with and without P+ pickup. It verifies that the multi-finger LDMOS-SCR with P+ pickup has greater electrostatic discharge (ESD) robustness and effectiveness. Furthermore, transmission line pulse (TLP) test has been done and the results show that the trigger voltage (Vt1) of the LDMOS-SCR with P+ pickup remarkably decreases from 46.19 to 35.39 V and the second breakdown current (It2) effectively increases from 8.13 to 10.08 A.

  3. AC losses in conductors based on high {Tc} superconductors

    SciTech Connect

    SUENAGA,M.

    2000-03-17

    In electrical power devices, ac losses from a superconductor is a primary factor which determines their usefulness as commercial power equipment. For this reason, extensive studies have been carried out on the losses of Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}/Ag, [Bi(2223)/Ag], tapes. These studies were mostly limited to a single isolated tape. However, a conductor in a power device is surrounded by other conductors and the precise magnetic field distribution around it is very different from that for a single conductor carrying currents or in ac fields. Since the precise field distribution in and around a superconductor is critical in determining the losses, it is very important to measure and to understand the losses in Bi(2223)/Ag tapes which are surrounded by other tapes as in a power device. Taking this fact into consideration, recently the authors have studied ac losses in stacks of Bi(2223)/Ag tapes in parallel and perpendicular applied fields and shown that they can calculate the losses in these cases utilizing the critical state model if a number of appropriate factors about properties of the tape are taken into a consideration. However, in a power device such as a transformer, magnetic fields near the ends of a solenoid vary from parallel to perpendicular with the tape face. Thus, it is important to learn the behavior of the losses in the stacks of Bi(2223)/Ag tapes with respect to the variations in the angle between the applied field direction and the tape face. In order to accomplish this, they measured the angular dependence of the losses in the stacks which were made from two different Bi(2223)/Ag tapes. Here they report this result and discuss under what conditions they can calculate the losses with a reasonable accuracy. The angular dependence of the losses in ac applied fields were measured using a series of stacked Bi(2223)/Ag tapes having the angles with the direction of applied fields of 0, 7.5, 15, 30, 45, 60, and 90 degrees. The measured

  4. Phosphor-in-glass for high-powered remote-type white AC-LED.

    PubMed

    Lin, Hang; Wang, Bo; Xu, Ju; Zhang, Rui; Chen, Hui; Yu, Yunlong; Wang, Yuansheng

    2014-12-10

    The high-powered alternating current (AC) light-emitting diode (LED) (AC-LED), featuring low cost, high energy utilization efficiency, and long service life, will become a new economic growth point in the field of semiconductor lighting. However, flicker of AC-LED in the AC cycles is not healthy for human eyes, and therefore need to be restrained. Herein we report an innovation of persistent "phosphor-in-glass" (PiG) for the remote-type AC-LED, whose afterglow can be efficiently activated by the blue light. It is experimentally demonstrated that the afterglow decay of PiG in the microsecond range can partly compensate the AC time gap. Moreover, the substitution of inorganic glass for organic resins or silicones as the encapsulants would bring out several technological benefits to AC-LED, such as good heat-dissipation, low glare, and excellent physical/chemical stability.

  5. High Power, High Voltage FETs in Linear Applications: A User's Perspective

    SciTech Connect

    N. Greenough, E. Fredd, S. DePasquale

    2009-09-21

    The specifications of the current crop of highpower, high-voltage field-effect transistors (FETs) can lure a designer into employing them in high-voltage DC equipment. Devices with extremely low on-resistance and very high power ratings are available from several manufacturers. However, our experience shows that high-voltage, linear operation of these devices at near-continuous duty can present difficult reliability challenges at stress levels well-below their published specifications. This paper chronicles the design evolution of a 600 volt, 8 ampere shunt regulator for use with megawatt-class radio transmitters, and presents a final design that has met its reliability criteria.

  6. Curing system for high voltage cross linked cables

    DOEpatents

    Bahder, George; Katz, Carlos; Bopp, Louis A.

    1978-01-01

    This invention makes extruded, vulcanized, high voltage cables insulated with thermosetting compounds at much higher rates of production and with superior insulation of reduced thickness and with reduced cavities or voids in the insulation. As the cable comes from an extruder, it passes into a curing chamber with a heat booster that quickly raises the insulation to a temperature at which it is cured much more quickly than with steam heating of the prior art. A high temperature liquid in contact with the insulation maintains the high temperature; and because of the greater curing heat, the cable can travel through the curing chamber at a faster rate and into a cooling tube where it contacts with a cooling liquid under high pressure. The insulation compound is treated to reduce the size of cavities; and the high pressure maintained by the curing and cooling mediums prevent expansion of cavities before the insulation is set.

  7. DEMONSTRATION BULLETIN: HIGH VOLTAGE ELECTRON BEAM TECHNOLOGY - HIGH VOLTAGE ENVIRONMENTAL APPLICATIONS, INC.

    EPA Science Inventory

    The high energy electron beam irradiation technology is a low temperature method for destroying complex mixtures of hazardous organic chemicals in solutions containing solids. The system consists of a computer-automated, portable electron beam accelerator and a delivery system. T...

  8. Preliminary chaotic model of snapover on high voltage solar cells

    NASA Technical Reports Server (NTRS)

    Mackey, Willie R.

    1995-01-01

    High voltage power systems in space will interact with the space plasma in a variety of ways. One of these, snapover, is characterized by sudden enlargement of the current collection area across normally insulating surfaces generating enhanced electron current collection. Power drain on solar array power systems results from this enhanced current collection. Optical observations of the snapover phenomena in the laboratory indicates a functional relation between glow area and bia potential as a consequence of the fold/cusp bifurcation in chaos theory. Successful characterizations of snapover as a chaotic phenomena may provide a means of snapover prevention and control through chaotic synchronization.

  9. High-voltage R-F feedthrough bushing

    DOEpatents

    Grotz, G.F.

    1982-09-03

    Described is a multi-element, high voltage radio frequency bushing for transmitting rf energy to an antenna located in a vacuum container. The bushing includes a center conductor of complex geometrical shape, an outer coaxial shield conductor, and a thin-walled hollow truncated cone insulator disposed between central and outer conductors. The shape of the center conductor, which includes a reverse curvature portion formed of a radially inwardly directed shoulder and a convex portion, controls the uniformity of the axial surface gradient on the insulator cone. The outer shield has a first substantially cylindrical portion and a second radially inwardly extending truncated cone portion.

  10. Self-monitoring high voltage transmission line suspension insulator

    DOEpatents

    Stemler, Gary E.; Scott, Donald N.

    1981-01-01

    A high voltage transmission line suspension insulator (18 or 22) which monitors its own dielectric integrity. A dielectric rod (10) has one larger diameter end fitting attachable to a transmission line and another larger diameter end fitting attachable to a support tower. The rod is enclosed in a dielectric tube (14) which is hermetically sealed to the rod's end fittings such that a liquidtight space (20) is formed between the rod and the tube. A pressurized dielectric liquid is placed within that space. A discoloring dye placed within this space is used to detect the loss of the pressurized liquid.

  11. A High-Voltage Bipolar Transconductance Amplifier for Electrotactile Stimulation

    PubMed Central

    Schaning, Matthew A.; Kaczmarek, Kurt A.

    2008-01-01

    This article describes a high-performance transconductance amplifier specifically designed for electrotactile (electrocutaneous) stimulation. It enables voltages up to ±600 V to be produced at the output which will allow the psychophysiological performance associated with stimulation of the fingertip using various stimulation waveforms to be studied more thoroughly. The design has a transconductance of up to 20 mA/V, an 8.8-MΩ output resistance, and can provide output currents up to ±20 mA. A complete schematic diagram is presented along with a discussion of theory of operation and safety issues as well as performance and derating plots from the implemented design. PMID:18838369

  12. Corona streamer onset as an optimization criterion for design of high voltage hardware on transmission lines

    SciTech Connect

    Pedrow, P.D.; Olsen, R.G.

    1996-12-31

    To design hardware for compact high voltage lines it is necessary to predict conditions for which corona streamers are initiated. Existing techniques for optimizing hardware shape and calculating streamer onset are based on corona measurements in a coaxial geometry that uses concentric cylinders for electrodes. Peek`s law shows that the formation of corona streamers is related not only to electric field but also to surface curvature. It is not clear that Peek`s law (developed in a coaxial geometry for which radius of curvature in the axial direction is infinite) is appropriate for designing hardware surfaces which are defined at any point by two finite radii of curvature. In this work the authors seek a corona onset criterion for these more general surfaces which reduces to Peeks law in the limit that one of the radii of curvature is infinite. An existing electrostatic code is being modified to allow for iterative optimization of electrode shapes based on results of previous field calculations. Experimental corona performance testing of electrode shapes will take place in an air-filled chamber with ac voltage as high as 100 kV rms. Experiments will be used to evaluate various electrode shapes designed by the trial optimization criterion.

  13. Potential therapeutic mechanism of extremely low-frequency high-voltage electric fields in cells.

    PubMed

    Kim, Ka-Eun; Park, Soon-Kwon; Nam, Sang-Yun; Han, Tae-Jong; Cho, Il-Young

    2016-05-18

    The aim of this survey was to provide background theory based on previous research to elucidate the potential pathway by which medical devices using extremely low-frequency high-voltage electric fields (ELF-HVEF) exert therapeutic effects on the human body, and to increase understanding of the AC high-voltage electrotherapeutic apparatus for consumers and suppliers of the relevant devices. Our review revealed that an ELF field as weak as 1-10 μ V/m can induce diverse alterations of membrane proteins such as transporters and channel proteins, including changes in Ca + + binding to a specific site of the cell surface, changes in ion (e.g., Ca + + ) influx or efflux, and alterations in the ligand-receptor interaction. These alterations then induce cytoplasmic responses within cells (Ca + + , cAMP, kinases, etc.) that can have impacts on cell growth, differentiation, and other functional properties by promoting the synthesis of macromolecules. Moreover, increased cytoplasmic Ca + + involves calmodulin-dependent signaling and consequent Ca + + /calmodulin-dependent stimulation of nitric oxide synthesis. This event in turn induces the nitric oxide-cGMP-protein kinase G pathway, which may be an essential factor in the observed physiological and therapeutic responses.

  14. AN ASSESSMENT OF HIGH-VOLTAGE DC ELECTRICAL POWER IN AIRCRAFT ELECTRICAL SYSTEMS.

    DTIC Science & Technology

    If the presently installed three-phase ac transmission system on aircraft were replaced by a higher voltage dc ( HVDC ) transmission using a ground...from one- to two-thirds of the total electrical system weight. HVDC may have some disadvantages such as higher short-circuit currents, some increase in

  15. An accurate continuous calibration system for high voltage current transformer

    SciTech Connect

    Tong Yue; Li Binhong

    2011-02-15

    A continuous calibration system for high voltage current transformers is presented in this paper. The sensor of this system is based on a kind of electronic instrument current transformer, which is a clamp-shape air core coil. This system uses an optical fiber transmission system for its signal transmission and power supply. Finally the digital integrator and fourth-order convolution window algorithm as error calculation methods are realized by the virtual instrument with a personal computer. It is found that this system can calibrate a high voltage current transformer while energized, which means avoiding a long calibrating period in the power system and the loss of power metering expense. At the same time, it has a wide dynamic range and frequency band, and it can achieve a high accuracy measurement in a complex electromagnetic field environment. The experimental results and the on-site operation results presented in the last part of the paper, prove that it can reach the 0.05 accuracy class and is easy to operate on site.

  16. Radiation damage in high voltage silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Brandhorst, H., Jr.; Swartz, C. K.; Weizer, V. G.

    1980-01-01

    Three high open-circuit voltage cell designs based on 0.1 ohm-cm p-type silicon were irradiated with 1 MeV electrons and their performance determined to fluences as high as 10 to the 15th power/sq cm. Of the three cell designs, radiation induced degradation was greatest in the high-low emitter (HLE cell). The diffused and ion implanted cells degraded approximately equally but less than the HLE cell. Degradation was greatest in an HLE cell exposed to X-rays before electron irradiation. The cell regions controlling both short-circuit current and open-circuit voltage degradation were defined in all three cell types. An increase in front surface recombination velocity accompanied time dependent degradation of an HLE cell after X-irradiation. It was speculated that this was indirectly due to a decrease in positive charge at the silicon-oxide interface. Modifications aimed at reducing radiation induced degradation are proposed for all three cell types.

  17. Assessment of research directions for high-voltage direct-current power systems. Final report

    SciTech Connect

    Long, W F

    1982-09-01

    High voltage direct current (HVDC) power transmission continues to be an emerging technology nearly thirty years after its introduction into modern power systems. To date its use has been restricted to either specialized applications having identifiable economic advantages (e.g., breakeven distance) or, rarely, applications where decoupling is needed. Only recently have the operational advantages (e.g., power modulation) of HVDC been realized on operating systems. A research project whose objective was to identify hardware developments and, where appropriate, system applications which can exemplify cost and operational advantages of integrated ac/dc power systems is discussed. The three principal tasks undertaken were: assessment of equipment developments; quantification of operational advantages; and interaction with system planners. Interest in HVDC power transmission has increased markedly over the past several years, and many new systems are now being investigated. The dissemination of information about HVDC, including specifically the symposium undertaken for Task 3, is a critical factor in fostering an understanding of this important adjunct to ac power transmission.

  18. High voltage protection in active matrix flat-panel imagers

    NASA Astrophysics Data System (ADS)

    Lehnert, Joerg; Zhao, Wei

    2006-03-01

    Various direct and indirect active matrix flat-panel imagers (AMFPI) are being investigated for x-ray imaging. In both direct AMFPI and indirect AMFPI with avalanche gain, a bias potential up to several thousand volts is required to operate the photoconductor. Under the condition of a large amount of radiation exposure between subsequent readout, a potential >80 V could appear across the amorphous silicon (a-Si) thin film transistor (TFT) and cause permanent damage. The purpose of this paper is to investigate a simple pixel design for high voltage protection. The pixel electrode acts as an additional gate for the top channel of an a-Si TFT to drain excess image charge from the pixel electrode until an equilibrium is reached where the TFT channel current equals the detector signal current at a predetermined safe maximum value V Pmax for the pixel potential. This "dual-gate" TFT structure without additional protective device simplifies the TFT array design and improves yield. However special care is required to understand the characteristics of both the top and the bottom gates to ensure sufficient detector dynamic range as well as reliable high voltage protection. A physical model for dual-gate a-Si TFTs was developed and device parameters were determined by fitting the model to measured characteristics from a dual-gate TFT array. Our results showed that compared to the bottom (normal) gate, the protective gate has a shallower transfer characteristics (i.e. channel current as a function of gate voltage) due to a higher density of states in the top interface. Nevertheless it provides adequate protection of the TFT with V Pmax of ~40 V for typical radiographic exposures.

  19. Proposal and Development of a High Voltage Variable Frequency Alternating Current Power System for Hybrid Electric Aircraft

    NASA Technical Reports Server (NTRS)

    Sadey, David J.; Taylor, Linda M.; Beach, Raymond F.

    2016-01-01

    The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid-electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid-electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of AC and DC for power transmission. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power generation, transmission, and distribution systems, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of dual-fed induction machines, which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the project along with the system architecture, development status and preliminary results.

  20. 30 CFR 77.704-1 - Work on high-voltage lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Work on high-voltage lines. 77.704-1 Section 77... MINES Grounding § 77.704-1 Work on high-voltage lines. (a) No high-voltage line shall be regarded as... provided in § 77.103) that such high-voltage line has been deenergized and grounded. Such qualified...

  1. 30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. No electrical work shall be performed on low-, medium-, or high-voltage distribution circuits...

  2. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage power centers and transformers; record of examination. 75.812-2 Section 75.812-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of...

  3. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage power centers and transformers; record of examination. 75.812-2 Section 75.812-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of...

  4. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-voltage power centers and transformers; record of examination. 75.812-2 Section 75.812-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of...

  5. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage power centers and transformers; record of examination. 75.812-2 Section 75.812-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of...

  6. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage power centers and transformers; record of examination. 75.812-2 Section 75.812-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of...

  7. 30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. No electrical work shall be performed on low-, medium-, or high-voltage distribution circuits...

  8. 30 CFR 75.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage circuits; circuit breakers. 75.800... § 75.800 High-voltage circuits; circuit breakers. High-voltage circuits entering the underground area of any coal mine shall be protected by suitable circuit breakers of adequate interrupting...

  9. 78 FR 20949 - Proposed Collection; Comment Request; High-Voltage Continuous Mining Machines Standards for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... Safety and Health Administration Proposed Collection; Comment Request; High-Voltage Continuous Mining... collection maintains the safe use of high-voltage continuous mining machines in underground coal mines by... high-voltage continuous mining machine standards for underground coal mines. MSHA is...

  10. 30 CFR 18.53 - High-voltage longwall mining systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage longwall mining systems. 18.53..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.53 High-voltage longwall mining systems. (a) In each high-voltage...

  11. 30 CFR 18.53 - High-voltage longwall mining systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage longwall mining systems. 18.53..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.53 High-voltage longwall mining systems. (a) In each high-voltage...

  12. 30 CFR 18.53 - High-voltage longwall mining systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-voltage longwall mining systems. 18.53..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.53 High-voltage longwall mining systems. (a) In each high-voltage...

  13. 30 CFR 18.53 - High-voltage longwall mining systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage longwall mining systems. 18.53..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.53 High-voltage longwall mining systems. (a) In each high-voltage...

  14. 30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. No electrical work shall be performed on low-, medium-, or high-voltage distribution circuits...

  15. 30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. No electrical work shall be performed on low-, medium-, or high-voltage distribution circuits...

  16. 30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. No electrical work shall be performed on low-, medium-, or high-voltage distribution circuits...

  17. 30 CFR 75.705-2 - Repairs to energized surface high-voltage lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Repairs to energized surface high-voltage lines. 75.705-2 Section 75.705-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... Repairs to energized surface high-voltage lines. An energized high-voltage surface line may be...

  18. 30 CFR 75.802 - Protection of high-voltage circuits extending underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection of high-voltage circuits extending... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.802 Protection of high-voltage circuits extending underground. (a) Except...

  19. 30 CFR 77.704-10 - Tying into energized high-voltage surface circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tying into energized high-voltage surface... AREAS OF UNDERGROUND COAL MINES Grounding § 77.704-10 Tying into energized high-voltage surface circuits. If the work of forming an additional circuit by tying into an energized high-voltage surface line...

  20. 30 CFR 75.807 - Installation of high-voltage transmission cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Installation of high-voltage transmission... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.807 Installation of high-voltage transmission cables. All underground...

  1. 30 CFR 75.705-10 - Tying into energized high-voltage surface circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tying into energized high-voltage surface....705-10 Tying into energized high-voltage surface circuits. If the work of forming an additional circuit by tying into an energized high-voltage surface line is performed from the ground, any...

  2. 30 CFR 75.705-1 - Work on high-voltage lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Work on high-voltage lines. 75.705-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.705-1 Work on high-voltage lines. (a) Section 75.705 specifically prohibits work on energized high-voltage lines underground;...

  3. 30 CFR 75.811 - High-voltage underground equipment; grounding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage underground equipment; grounding... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.811 High-voltage underground equipment; grounding. Frames, supporting structures...

  4. Magnetic shielding of Hall thrusters at high discharge voltages

    SciTech Connect

    Mikellides, Ioannis G. Hofer, Richard R.; Katz, Ira; Goebel, Dan M.

    2014-08-07

    A series of numerical simulations and experiments have been performed to assess the effectiveness of magnetic shielding in a Hall thruster operating in the discharge voltage range of 300–700 V (I{sub sp} ≈ 2000–2700 s) at 6 kW, and 800 V (I{sub sp} ≈ 3000) at 9 kW. At 6 kW, the magnetic field topology with which highly effective magnetic shielding was previously demonstrated at 300 V has been retained for all other discharge voltages; only the magnitude of the field has been changed to achieve optimum thruster performance. It is found that magnetic shielding remains highly effective for all discharge voltages studied. This is because the channel is long enough to allow hot electrons near the channel exit to cool significantly upon reaching the anode. Thus, despite the rise of the maximum electron temperature in the channel with discharge voltage, the electrons along the grazing lines of force remain cold enough to eliminate or reduce significantly parallel gradients of the plasma potential near the walls. Computed maximum erosion rates in the range of 300–700 V are found not to exceed 10{sup −2} mm/kh. Such rates are ∼3 orders of magnitude less than those observed in the unshielded version of the same thruster at 300 V. At 9 kW and 800 V, saturation of the magnetic circuit did not allow for precisely the same magnetic shielding topology as that employed during the 6-kW operation since this thruster was not designed to operate at this condition. Consequently, the maximum erosion rate at the inner wall is found to be ∼1 order of magnitude higher (∼10{sup −1} mm/kh) than that at 6 kW. At the outer wall, the ion energy is found to be below the sputtering yield threshold so no measurable erosion is expected.

  5. Low power, high voltage power supply with fast rise/fall time

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas B. (Inventor)

    2007-01-01

    A low power, high voltage power supply system includes a high voltage power supply stage and a preregulator for programming the power supply stage so as to produce an output voltage which is a predetermined fraction of a desired voltage level. The power supply stage includes a high voltage, voltage doubler stage connected to receive the output voltage from the preregulator and for, when activated, providing amplification of the output voltage to the desired voltage level. A first feedback loop is connected between the output of the preregulator and an input of the preregulator while a second feedback loop is connected between the output of the power supply stage and the input of the preregulator.

  6. A High Voltage Ratio and Low Ripple Interleaved DC-DC Converter for Fuel Cell Applications

    PubMed Central

    Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih

    2012-01-01

    This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters. PMID:23365536

  7. Low Power, High Voltage Power Supply with Fast Rise/Fall Time

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas B. (Inventor)

    2007-01-01

    A low power, high voltage power supply system includes a high voltage power supply stage and a preregulator for programming the power supply stage so as to produce an output voltage which is a predetermined fraction of a desired voltage level. The power supply stage includes a high voltage, voltage doubler stage connected to receive the output voltage from the preregulator and for, when activated, providing amplification of the output voltage to the desired voltage level. A first feedback loop is connected between the output of the preregulator and an input of the preregulator while a second feedback loop is connected between the output of the power supply stage and the input of the preregulator.

  8. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    PubMed

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  9. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications

    NASA Astrophysics Data System (ADS)

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  10. Topics in recent studies with high-voltage electron microscopes.

    PubMed

    Mori, Hirotaro

    2011-01-01

    In this article, topics in recent studies with high-voltage electron microscopes (HVEMs) are reviewed. High-voltage electron microscopy possesses a number of advantages that cannot be afforded by conventional electron microscopy, thus providing a unique microscopy technique in both materials science and biological science. One of these advantages is the capability of continuously observing phenomena using a variety of electron microscopy techniques simultaneously with the introduction of the displacement of atoms from lattice points. This has enabled in-depth studies on such fundamental subjects as the crystalline-to-amorphous-to-crystalline transition, the motion properties of point defects and the one-dimensional diffusion of dislocation loops. Electron tomography studies using HVEMs take advantage of the large observable thickness of a specimen. In addition, by combining different advantages, a number of advanced applications in materials science have been carried out, including analyses of the atomic structure of a reduction-induced reconstructed surface and the atomic mechanism behind the self-catalytic vapor-liquid-solid growth of an oxide nanowire. As long as excellent and invaluable studies that cannot be carried out without HVEMs appear in succession, it is necessary to make the utmost efforts to improve these microscopes.

  11. High-voltage field-controlled integrated thyristor

    NASA Astrophysics Data System (ADS)

    Grekhov, I. V.; Rozhkov, A. V.; Kostina, L. S.; Konovalov, A. V.; Fomenko, Yu. L.

    2013-01-01

    The design and technology of powerful field-controlled integrated thyristors, new energy-saving devices intended for converter equipment, are considered. The turn-on and turn-off current and voltage waveforms of the n+ p' N- n' p + microthyristor chip are presented, and turn-on and turn-off mechanisms are discussed. The development of local dynamic breakdown at turn-off is experimentally studied. The respective waveforms for this process are given, and the type of breakdown at a current density of about 150 A/cm2 is demonstrated. The current-voltage characteristics in the on state at room temperature and at 125°C indicate the temperature dependence changes sign at a current density above 60 A/cm2, becoming positive. This is significant for parallel operation of microthyristor chips in a module. It is shown that the static and dynamic characteristics of simple-in-design field-controlled integrated thyristors are highly competitive with those of insulated-gate bipolar transistors-basic devices of advanced high-power converter equipment.

  12. Understanding High Voltage Vacuum Insulators for Microsecond Pulses

    SciTech Connect

    J.B., J; D.A., G; T.L., H; E.J., L; R.D., S; L.K., T; G.E., V

    2007-08-15

    High voltage insulation is one of the main areas of pulsed power research and development since the surface of an insulator exposed to vacuum can fail electrically at an applied field more than an order or magnitude below the bulk dielectric strength of the insulator. This is troublesome for applications where high voltage conditioning of the insulator and electrodes is not practical and where relatively long pulses, on the order of several microseconds, are required. Here we give a summary of our approach to modeling and simulation efforts and experimental investigations for understanding flashover mechanism. The computational work is comprised of both filed and particle-in-cell modeling with state-of-the-art commercial codes. Experiments were performed in using an available 100-kV, 10-{micro}s pulse generator and vacuum chamber. The initial experiments were done with polyethylene insulator material in the shape of a truncated cone cut at +45{sup o} angle between flat electrodes with a gap of 1.0 cm. The insulator was sized so there were no flashovers or breakdowns under nominal operating conditions. Insulator flashover or gap closure was induced by introducing a plasma source, a tuft of velvet, in proximity to the insulator or electrode.

  13. Research of position measuring system for high voltage switchgear

    NASA Astrophysics Data System (ADS)

    Ji, Yilin; Qian, Zheng; Pan, Kaikai

    2016-01-01

    The contact position's accurate measurement is the key part of the realization of high voltage switchgear's on-line monitoring. Based on the position measurement, the speed and trip of the switchgear could also be obtained. Thus, the health level and the operation status can be evaluated. The insulation condition and the fault symptom can also be identified. In this paper, the on-line measuring principle for the contact position is presented at first. The indirect measuring method is adopted, and the incremental photoelectric encoder is utilized to realize the measurement of angular displacement. The position could be calculated by establishing the relationship between the angular displacement and the contact's linear displacement. After that, the technical difficulties of the on-line measuring system are demonstrated. The selection of encoder, the difficult parts of hardware design and software design are all discussed deeply. The lab test of the whole measuring system is processed at last, and the measuring results are satisfactory. It will provide powerful support for the realization of on-line monitoring equipment of the high voltage switchgear.

  14. Integration Test of the High Voltage Hall Accelerator System Components

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Pinero, Luis; Peterson, Todd; Dankanich, John

    2013-01-01

    NASA Glenn Research Center is developing a 4 kilowatt-class Hall propulsion system for implementation in NASA science missions. NASA science mission performance analysis was completed using the latest high voltage Hall accelerator (HiVHAc) and Aerojet-Rocketdyne's state-of-the-art BPT-4000 Hall thruster performance curves. Mission analysis results indicated that the HiVHAc thruster out performs the BPT-4000 thruster for all but one of the missions studied. Tests of the HiVHAc system major components were performed. Performance evaluation of the HiVHAc thruster at NASA Glenn's vacuum facility 5 indicated that thruster performance was lower than performance levels attained during tests in vacuum facility 12 due to the lower background pressures attained during vacuum facility 5 tests when compared to vacuum facility 12. Voltage-Current characterization of the HiVHAc thruster in vacuum facility 5 showed that the HiVHAc thruster can operate stably for a wide range of anode flow rates for discharge voltages between 250 and 600 volts. A Colorado Power Electronics enhanced brassboard power processing unit was tested in vacuum for 1,500 hours and the unit demonstrated discharge module efficiency of 96.3% at 3.9 kilowatts and 650 volts. Stand-alone open and closed loop tests of a VACCO TRL 6 xenon flow control module were also performed. An integrated test of the HiVHAc thruster, brassboard power processing unit, and xenon flow control module was performed and confirmed that integrated operation of the HiVHAc system major components. Future plans include continuing the maturation of the HiVHAc system major components and the performance of a single-string integration test.

  15. Development of a 10 kW High Temperature High Power Density Three-Phase AC-DC-AC SiC Converter

    SciTech Connect

    Ning, Puqi

    2012-01-01

    This paper presents the development and experimental performance of a 10 kW, all SiC, 250 C junction temperature high-power-density three-phase ac-dc-ac converter. The electromagnetic interference filter, thermal system, high temperature package, and gate drive design are discussed in detail. Finally, tests confirming the feasibility and validating the theoretical basis of the prototype converter system are described.

  16. ac bidirectional motor controller

    NASA Technical Reports Server (NTRS)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  17. High-voltage scanning ion microscope: Beam optics and design

    NASA Astrophysics Data System (ADS)

    Magilin, D.; Ponomarev, A.; Rebrov, V.; Ponomarov, A.

    2015-05-01

    This article is devoted to the conceptual design of a compact high-voltage scanning ion microscope (HVSIM). In an HVSIM design, the ion optical system is based on a high-brightness ion source. Specifically, the ion optical system is divided into two components: an ion injector and a probe-forming system (PFS) that consists of an accelerating tube and a multiplet of quadrupole lenses. The crossover is formed and controlled by the injector, which acts as an object collimator, and is focused on the image plane by the PFS. The ion microprobe has a size of 0.1 μm and an energy of 2 MeV. When the influence of the chromatic and third-order aberrations is theoretically taken into account, the HVSIM forms an ion microprobe.

  18. Propylene based systems for high voltage cable insulation applications

    NASA Astrophysics Data System (ADS)

    Hosier, I. L.; Cozzarini, L.; Vaughan, A. S.; Swingler, S. G.

    2009-08-01

    Crosslinked polyethylene (XLPE) remains the material of choice for extruded high voltage cables, possessing excellent thermo-mechanical and electrical properties. However, it is not easily recyclable posing questions as to its long term sustainability. Whilst both polyethylene and polypropylene are widely recycled and provide excellent dielectric properties, polypropylene has significantly better mechanical integrity at high temperatures than polyethylene. However, while isotactic polypropylene is too stiff at room temperature for incorporation into a cable system, previous studies by the authors have indicated that this limitation can be overcome by using a propylene-ethylene copolymer. Whilst these previous studies considered unrelated systems, the current study aims to quantify the usefulness of a series of related random propylene-ethylene co-polymers and assesses their potential for replacing XLPE.

  19. High-voltage atmospheric breakdown across intervening rutile dielectrics.

    SciTech Connect

    Williamson, Kenneth Martin; Simpson, Sean; Coats, Rebecca Sue; Jorgenson, Roy Eberhardt; Hjalmarson, Harold Paul; Pasik, Michael Francis

    2013-09-01

    This report documents work conducted in FY13 on electrical discharge experiments performed to develop predictive computational models of the fundamental processes of surface breakdown in the vicinity of high-permittivity material interfaces. Further, experiments were conducted to determine if free carrier electrons could be excited into the conduction band thus lowering the effective breakdown voltage when UV photons (4.66 eV) from a high energy pulsed laser were incident on the rutile sample. This report documents the numerical approach, the experimental setup, and summarizes the data and simulations. Lastly, it describes the path forward and challenges that must be overcome in order to improve future experiments for characterizing the breakdown behavior for rutile.

  20. High Voltage Dielectrophoretic and Magnetophoretic Hybrid Integrated Circuit / Microfluidic Chip

    PubMed Central

    Issadore, David; Franke, Thomas; Brown, Keith A.; Hunt, Thomas P.; Westervelt, Robert M.

    2010-01-01

    A hybrid integrated circuit (IC) / microfluidic chip is presented that independently and simultaneously traps and moves microscopic objects suspended in fluid using both electric and magnetic fields. This hybrid chip controls the location of dielectric objects, such as living cells and drops of fluid, on a 60 × 61 array of pixels that are 30 × 38 μm2 in size, each of which can be individually addressed with a 50 V peak-to-peak, DC to 10 MHz radio frequency voltage. These high voltage pixels produce electric fields above the chip’s surface with a magnitude , resulting in strong dielectrophoresis (DEP) forces . Underneath the array of DEP pixels there is a magnetic matrix that consists of two perpendicular sets of 60 metal wires running across the chip. Each wire can be sourced with 120 mA to trap and move magnetically susceptible objects using magnetophoresis (MP). The DEP pixel array and magnetic matrix can be used simultaneously to apply forces to microscopic objects, such as living cells or lipid vesicles, that are tagged with magnetic nanoparticles. The capabilities of the hybrid IC / microfluidic chip demonstrated in this paper provide important building blocks for a platform for biological and chemical applications. PMID:20625468

  1. High Voltage Dielectrophoretic and Magnetophoretic Hybrid Integrated Circuit / Microfluidic Chip.

    PubMed

    Issadore, David; Franke, Thomas; Brown, Keith A; Hunt, Thomas P; Westervelt, Robert M

    2009-12-01

    A hybrid integrated circuit (IC) / microfluidic chip is presented that independently and simultaneously traps and moves microscopic objects suspended in fluid using both electric and magnetic fields. This hybrid chip controls the location of dielectric objects, such as living cells and drops of fluid, on a 60 × 61 array of pixels that are 30 × 38 μm(2) in size, each of which can be individually addressed with a 50 V peak-to-peak, DC to 10 MHz radio frequency voltage. These high voltage pixels produce electric fields above the chip's surface with a magnitude , resulting in strong dielectrophoresis (DEP) forces . Underneath the array of DEP pixels there is a magnetic matrix that consists of two perpendicular sets of 60 metal wires running across the chip. Each wire can be sourced with 120 mA to trap and move magnetically susceptible objects using magnetophoresis (MP). The DEP pixel array and magnetic matrix can be used simultaneously to apply forces to microscopic objects, such as living cells or lipid vesicles, that are tagged with magnetic nanoparticles. The capabilities of the hybrid IC / microfluidic chip demonstrated in this paper provide important building blocks for a platform for biological and chemical applications.

  2. Piezoelectric transformer and modular connections for high power and high voltage power supplies

    NASA Technical Reports Server (NTRS)

    Vazquez Carazo, Alfredo (Inventor)

    2006-01-01

    A modular design for combining piezoelectric transformers is provided for high voltage and high power conversion applications. The input portions of individual piezoelectric transformers are driven for a single power supply. This created the vibration and the conversion of electrical to electrical energy from the input to the output of the transformers. The output portions of the single piezoelectric transformers are combining in series and/or parallel to provide multiple outputs having different rating of voltage and current.

  3. Understanding and Improving High Voltage Vacuum Insulators for Microsecond Pulses

    SciTech Connect

    Javedani, J B; Goerz, D A; Houck, T L; Lauer, E J; Speer, R D; Tully, L K; Vogtlin, G E; White, A D

    2007-03-05

    High voltage insulation is one of the main areas of pulsed power research and development, and dielectric breakdown is usually the limiting factor in attaining the highest possible performance in pulsed power devices. For many applications the delivery of pulsed power into a vacuum region is the most critical aspect of operation. The surface of an insulator exposed to vacuum can fail electrically at an applied field more than an order or magnitude below the bulk dielectric strength of the insulator. This mode of breakdown, called surface flashover, imposes serious limitations on the power flow into a vacuum region. This is especially troublesome for applications where high voltage conditioning of the insulator and electrodes is not practical and for applications where relatively long pulses, on the order of several microseconds, are required. The goal of this project is to establish a sound fundamental understanding of the mechanisms that lead to surface flashover, and then evaluate the most promising techniques to improve vacuum insulators and enable high voltage operation at stress levels near the intrinsic bulk breakdown limits of the material. The approach we proposed and followed was to develop this understanding through a combination of theoretical and computation methods coupled with experiments to validate and quantify expected behaviors. In this report we summarize our modeling and simulation efforts, theoretical studies, and experimental investigations. The computational work began by exploring the limits of commercially available codes and demonstrating methods to examine field enhancements and defect mechanisms at microscopic levels. Plasma simulations with particle codes used in conjunction with circuit models of the experimental apparatus enabled comparisons with experimental measurements. The large scale plasma (LSP) particle-in-cell (PIC) code was run on multiprocessor platforms and used to simulate expanding plasma conditions in vacuum gap regions

  4. Experimental Study of Arcing on High-voltage Solar Arrays

    NASA Technical Reports Server (NTRS)

    Vayner, Boris; Galofaro, Joel; Ferguson, Dale

    2005-01-01

    The main obstacle to the implementation of a high-voltage solar array in space is arcing on the conductor-dielectric junctions exposed to the surrounding plasma. One obvious solution to this problem would be the installation of fully encapsulated solar arrays which were not having exposed conductors at all. However, there are many technological difficulties that must be overcome before the employment of fully encapsulated arrays will turn into reality. An alternative solution to raise arc threshold by modifications of conventionally designed solar arrays looks more appealing, at least in the nearest future. A comprehensive study of arc inception mechanism [1-4] suggests that such modifications can be done in the following directions: i) to insulate conductor-dielectric junction from a plasma environment (wrapthrough interconnects); ii) to change a coverglass geometry (overhang); iii) to increase a coverglass thickness; iiii) to outgas areas of conductor-dielectric junctions. The operation of high-voltage array in LEO produces also the parasitic current power drain on the electrical system. Moreover, the current collected from space plasma by solar arrays determines the spacecraft floating potential that is very important for the design of spacecraft and its scientific apparatus. In order to verify the validity of suggested modifications and to measure current collection five different solar array samples have been tested in large vacuum chamber. Each sample (36 silicon based cells) consists of three strings containing 12 cells connected in series. Thus, arc rate and current collection can be measured on every string independently, or on a whole sample when strings are connected in parallel. The heater installed in the chamber provides the possibility to test samples under temperature as high as 80 C that simulates the LEO operational temperature. The experimental setup is described below.

  5. Hybrid-PIC Modeling of a High-Voltage, High-Specific-Impulse Hall Thruster

    NASA Technical Reports Server (NTRS)

    Smith, Brandon D.; Boyd, Iain D.; Kamhawi, Hani; Huang, Wensheng

    2013-01-01

    The primary life-limiting mechanism of Hall thrusters is the sputter erosion of the discharge channel walls by high-energy propellant ions. Because of the difficulty involved in characterizing this erosion experimentally, many past efforts have focused on numerical modeling to predict erosion rates and thruster lifespan, but those analyses were limited to Hall thrusters operating in the 200-400V discharge voltage range. Thrusters operating at higher discharge voltages (V(sub d) >= 500 V) present an erosion environment that may differ greatly from that of the lower-voltage thrusters modeled in the past. In this work, HPHall, a well-established hybrid-PIC code, is used to simulate NASA's High-Voltage Hall Accelerator (HiVHAc) at discharge voltages of 300, 400, and 500V as a first step towards modeling the discharge channel erosion. It is found that the model accurately predicts the thruster performance at all operating conditions to within 6%. The model predicts a normalized plasma potential profile that is consistent between all three operating points, with the acceleration zone appearing in the same approximate location. The expected trend of increasing electron temperature with increasing discharge voltage is observed. An analysis of the discharge current oscillations shows that the model predicts oscillations that are much greater in amplitude than those measured experimentally at all operating points, suggesting that the differences in oscillation amplitude are not strongly associated with discharge voltage.

  6. 76 FR 72203 - Voltage Coordination on High Voltage Grids; Notice of Reliability Workshop Agenda

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ... improvements to dispatch and voltage control software could improve reliability and market efficiency. This... existing and emerging software to improve coordination and optimization of the Bulk-Power System from a... free 1-(866) 208- 3372 (voice) or (202) 208-1659 (TTY), or send a FAX to (202) 208-2106 with...

  7. 76 FR 70721 - Voltage Coordination on High Voltage Grids; Notice of Staff Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-15

    ... software could improve reliability and market efficiency. The workshop will address how entities currently coordinate economic dispatch and voltage control and the capability of existing and emerging software to... email to accessibility@ferc.gov or call toll free 1-(866) 208- 3372 (voice) or (202) 208-1659 (TTY),...

  8. High-voltage, low-inductance gas switch

    SciTech Connect

    Gruner, Frederick R.; Stygar, William A.

    2016-03-22

    A low-inductance, air-insulated gas switch uses a de-enhanced annular trigger ring disposed between two opposing high voltage electrodes. The switch is DC chargeable to 200 kilovolts or more, triggerable, has low jitter (5 ns or less), has pre-fire and no-fire rates of no more than one in 10,000 shots, and has a lifetime of greater than 100,000 shots. Importantly, the switch also has a low inductance (less than 60 nH) and the ability to conduct currents with less than 100 ns rise times. The switch can be used with linear transformer drives or other pulsed-power systems.

  9. Preliminary Chaotic Model of Snapover on High Voltage Solar Cells

    NASA Technical Reports Server (NTRS)

    Mackey, Willie R.

    1995-01-01

    High voltage power systems in space will interact with the space plasma in a variety of ways. One of these, Snapover, is characterized by a sudden enlargement of the electron current collection area across normally insulating surfaces. A power drain on solar array power systems will results from this enhanced current collection. Optical observations of the snapover phenomena in the laboratory indicates a functional relation between bia potential and surface glow area. This paper shall explore the potential benefits of modeling the relation between current and bia potential as an aspect of bifurcation analysis in chaos theory. Successful characterizations of snapover as a chaotic phenomena may provide a means of snapover prevention and control through chaotic synchronization.

  10. Analysis of lifetime control in high-voltage IGBTs

    NASA Astrophysics Data System (ADS)

    Yuan, X.; Udrea, F.; Coulbeck, L.; Waind, P. R.; Amaratunga, G. A. J.

    2002-01-01

    This paper discusses the effectiveness of the lifetime control technology in high-voltage insulated gate bipolar transistors (IGBTs) by using both numerical simulations and a two-dimensional on-state analytical model specifically developed for IGBTs with local lifetime killing. A comprehensive study of the static and dynamic performance of IGBTs using lifetime control technology in comparison with IGBTs featuring reduced anode injection efficiency structures is made. We show for the first time that IGBTs with low anode injection efficiency have similar or better on-state/switching trade-off when compared to equivalent IGBTs using lifetime control technology. We also show that both the local lifetime control and the low anode injection efficiency techniques are superior to full irradiation. The low anode injection efficiency is particularly better than the local lifetime control technique when applied to punch-though IGBTs while no difference between the two is found in non-punch-though IGBTs.

  11. High-voltage electrical survey advances using UV/IR

    NASA Astrophysics Data System (ADS)

    Ninedorf, Daniel A.; Stolper, Roel; Hart, Jaco

    2008-03-01

    Technology miniaturization has made new advancements in high voltage electrical surveying possible. A solar-blind ultraviolet image overlaid onto infrared, combined with a solar-blind ultraviolet image and then overlaid onto color visible in the same camera with a weight of 6 pounds provides the comparison images and portability to allow an operator to do on-the-spot analysis and repair priority assignment. The UV-VIS image provides the quickest location and identification. The UV-IR image allows analysis to determine if there is damage and the severity. This can be accomplished in just seconds thru menu selection: before it required two separate cameras. This presentation will provide examples of different images and analysis, with operating time from hand-held, laboratory, vehicle and aerial camera mounts.

  12. Summary of multiterminal high-voltage direct current transmission technology

    SciTech Connect

    Biggs, R.B.; Jewell, W.T.

    1984-05-01

    This report summarizes the present state of multiterminal (MT) high-voltage direct current (HVDC) power transmission. The purpose is to reassess the need for HVDC circuit breakers and to identify needed research for MT HVDC. The fundamentals of this technology are presented, and previous research and development is reviewed. Although no MT HVDC systems have yet been built, many concepts have been proposed. Some require a dc breaker, and others do not. Both options have advantages and disadvantages for various applications, so the selection will depend on the proposed application. Research is needed to define operating characteristics of various MT HVDC systems. In some applications, dc breakers will be useful, so research into HVDC interruption should continue. Also, dc fault detection and control algorithms for MT systems should be studied.

  13. Monolithic high voltage nonlinear transmission line fabrication process

    DOEpatents

    Cooper, G.A.

    1994-10-04

    A process for fabricating sequential inductors and varistor diodes of a monolithic, high voltage, nonlinear, transmission line in GaAs is disclosed. An epitaxially grown laminate is produced by applying a low doped active n-type GaAs layer to an n-plus type GaAs substrate. A heavily doped p-type GaAs layer is applied to the active n-type layer and a heavily doped n-type GaAs layer is applied to the p-type layer. Ohmic contacts are applied to the heavily doped n-type layer where diodes are desired. Multiple layers are then either etched away or Oxygen ion implanted to isolate individual varistor diodes. An insulator is applied between the diodes and a conductive/inductive layer is thereafter applied on top of the insulator layer to complete the process. 6 figs.

  14. Monolithic high voltage nonlinear transmission line fabrication process

    DOEpatents

    Cooper, Gregory A.

    1994-01-01

    A process for fabricating sequential inductors and varactor diodes of a monolithic, high voltage, nonlinear, transmission line in GaAs is disclosed. An epitaxially grown laminate is produced by applying a low doped active n-type GaAs layer to an n-plus type GaAs substrate. A heavily doped p-type GaAs layer is applied to the active n-type layer and a heavily doped n-type GaAs layer is applied to the p-type layer. Ohmic contacts are applied to the heavily doped n-type layer where diodes are desired. Multiple layers are then either etched away or Oxygen ion implanted to isolate individual varactor diodes. An insulator is applied between the diodes and a conductive/inductive layer is thereafter applied on top of the insulator layer to complete the process.

  15. LEO high voltage solar array arcing response model, continuation 5

    NASA Technical Reports Server (NTRS)

    Metz, Roger N.

    1989-01-01

    The modeling of the Debye Approximation electron sheaths in the edge and strip geometries was completed. Electrostatic potentials in these sheaths were compared to NASCAP/LEO solutions for similar geometries. Velocity fields, charge densities and particle fluxes to the biased surfaces were calculated for all cases. The major conclusion to be drawn from the comparisons of our Debye Approximation calculations with NASCAP-LEO output is that, where comparable biased structures can be defined and sufficient resolution obtained, these results are in general agreement. Numerical models for the Child-Langmuir, high-voltage electron sheaths in the edge and strip geometries were constructed. Electrostatic potentials were calculated for several cases in each of both geometries. Velocity fields and particle fluxes were calculated. The self-consistent solution process was carried through one cycle and output electrostatic potentials compared to NASCAP-type input potentials.

  16. Cryogenic CMOS cameras for high voltage monitoring in liquid argon

    NASA Astrophysics Data System (ADS)

    McConkey, N.; Spooner, N.; Thiesse, M.; Wallbank, M.; Warburton, T. K.

    2017-03-01

    The prevalent use of large volume liquid argon detectors strongly motivates the development of novel readout and monitoring technology which functions at cryogenic temperatures. This paper presents the development of a cryogenic CMOS camera system suitable for use inside a large volume liquid argon detector for online monitoring purposes. The characterisation of the system is described in detail. The reliability of such a camera system has been demonstrated over several months, and recent data from operation within the liquid argon region of the DUNE 35 t cryostat is presented. The cameras were used to monitor for high voltage breakdown inside the cryostat, with capability to observe breakdown of a liquid argon time projection chamber in situ. They were also used for detector monitoring, especially of components during cooldown.

  17. A high-voltage rechargeable magnesium-sodium hybrid battery

    DOE PAGES

    Li, Yifei; An, Qinyou; Cheng, Yingwen; ...

    2017-02-13

    There is a growing global demand for safe and low-cost energy storage technology which triggers strong interests in novel battery concepts beyond state-of-art Li-ion batteries. We report a high-voltage rechargeable Mg–Na hybrid battery featuring dendrite-free deposition of Mg anode and Na-intercalation cathode as a low-cost and safe alternative to Li-ion batteries for large-scale energy storage. A prototype device using a Na3V2(PO4)3 cathode, a Mg anode, and a Mg–Na dual salt electrolyte exhibits the highest voltage (2.60 V vs. Mg) and best rate performance (86% capacity retention at 10 C rate) among reported hybrid batteries. Synchrotron radiation-based X-ray absorption near edgemore » structure (XANES), atomic-pair distribution function (PDF), and high-resolution X-ray diffraction (HRXRD) studies reveal the chemical environment and structural change of Na3V2(PO4)3 cathode during the Na ion insertion/deinsertion process. XANES study shows a clear reversible shift of vanadium K-edge and HRXRD and PDF studies reveal a reversible two-phase transformation and V–O bond length change during cycling. The energy density of the hybrid cell could be further improved by developing electrolytes with a higher salt concentration and wider electrochemical window. Our work represents a significant step forward for practical safe and low-cost hybrid batteries.« less

  18. Plasma Interaction with International Space Station High Voltage Solar Arrays

    NASA Technical Reports Server (NTRS)

    Heard, John W.

    2002-01-01

    The International Space Station (ISS) is presently being assembled in low-earth orbit (LEO) operating high voltage solar arrays (-160 V max, -140 V typical with respect to the ambient atmosphere). At the station's present altitude, there exists substantial ambient plasma that can interact with the solar arrays. The biasing of an object to an electric potential immersed in plasma creates a plasma "sheath" or non-equilibrium plasma around the object to mask out the electric fields. A positively biased object can collect electrons from the plasma sheath and the sheath will draw a current from the surrounding plasma. This parasitic current can enter the solar cells and effectively "short out" the potential across the cells, reducing the power that can be generated by the panels. Predictions of collected current based on previous high voltage experiments (SAMPIE (Solar Array Module Plasma Interactions Experiment), PASP+ (Photovoltaic Array Space Power) were on the order of amperes of current. However, present measurements of parasitic current are on the order of several milliamperes, and the current collection mainly occurs during an "eclipse exit" event, i.e., when the space station comes out of darkness. This collection also has a time scale, t approx. 1000 s, that is much slower than any known plasma interaction time scales. The reason for the discrepancy between predictions and present electron collection is not understood and is under investigation by the PCU (Plasma Contactor Unit) "Tiger" team. This paper will examine the potential structure within and around the solar arrays, and the possible causes and reasons for the electron collection of the array.

  19. High-voltage supply for neutron tubes in well-logging applications

    DOEpatents

    Humphreys, D.R.

    1982-09-15

    A high voltage supply is provided for a neutron tube used in well logging. The biased pulse supply of the invention combines DC and full pulse techniques and produces a target voltage comprising a substantial negative DC bias component on which is superimposed a pulse whose negative peak provides the desired negative voltage level for the neutron tube. The target voltage is preferably generated using voltage doubling techniques and employing a voltage source which generates bipolar pulse pairs having an amplitude corresponding to the DC bias level.

  20. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    NASA Technical Reports Server (NTRS)

    West, William C. (Inventor); Blanco, Mario (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  1. Evaluation of high temperature dielectric films for high voltage power electronic applications

    NASA Technical Reports Server (NTRS)

    Suthar, J. L.; Laghari, J. R.

    1992-01-01

    Three high temperature films, polyimide, Teflon perfluoroalkoxy and poly-P-xylene, were evaluated for possible use in high voltage power electronic applications, such as in high energy density capacitors, cables and microelectronic circuits. The dielectric properties, including permittivity and dielectric loss, were obtained in the frequency range of 50 Hz to 100 kHz at temperatures up to 200 C. The dielectric strengths at 60 Hz were determined as a function of temperature to 250 C. Confocal laser microscopy was performed to diagnose for voids and microimperfections within the film structure. The results obtained indicate that all films evaluated are capable of maintaining their high voltage properties, with minimal degradation, at temperatures up to 200 C. However, above 200 C, they lose some of their electrical properties. These films may therefore become viable candidates for high voltage power electronic applications at high temperatures.

  2. Nonlinear high voltage transmission line for transversely excited CO{sub 2} lasers

    SciTech Connect

    Ishi, Akira; Yasuoka, Koichi; Tamagawa, Tohru

    1995-12-31

    A high voltage Pulse with the risetime less than a few hundreds nanoseconds and the amplitude of several tens kilovolts is required to establish stable glow discharge excitation in high power pulsed gas lasers. To make the high voltage pulse fast, we have developed a nonlinear high voltage transmission line for transversely excited CO{sub 2} lasers. Fig.1 shows the electrical circuit of switching unit, pulse sharpening unit with nonlinear high voltage transmission line and discharge electrodes for TE-CO{sub 2} laser. The nonlinear high voltage transmission line is a 15-step LC ladder circuit that consists of linear inductors (L=6 {mu}H) and nonlinear BaTiO{sub 3} capacitors. Fig.2 shows a capacitance dependence on applied voltages. If an LC ladder circuit is constructed using a capacitor with the characteristics, the transmission velocity is fast at the high-voltage section and is slow at the low-voltage section. High voltage pulse with slow risetime is expected to be sharpen. The voltage and the current waveforms of the discharge measured at the point {open_quotes}c{close_quotes}. The risetime of 1{mu}s of the input voltage pulse was compressed to less than 200 ns at the output terminal of the LC ladder circuit and the outout pulse was applied to the discharge gap of the laser.

  3. Circuit for monitoring temperature of high-voltage equipment

    DOEpatents

    Jacobs, Martin E.

    1976-01-01

    This invention relates to an improved circuit for measuring temperature in a region at high electric potential and generating a read-out of the same in a region at lower potential. The circuit is specially designed to combine high sensitivity, stability, and accuracy. A major portion of the circuit situated in the high-potential region can take the form of an integrated circuit. The preferred form of the circuit includes an input section which is situated in the high-potential region and comprises a temperature-compensated thermocouple circuit for sensing temperature, an oscillator circuit for generating a train of ramp voltages whose rise time varies inversely with the thermocouple output, a comparator and switching circuit for converting the oscillator output to pulses whose frequency is proportional to the thermocouple output, and a light-emitting diode which is energized by these pulses. An optical coupling transmits the light pulses generated by the diode to an output section of the circuit, situated in a region at ground. The output section comprises means for converting the transmitted pulses to electrical pulses of corresponding frequency, means for amplifying the electrical pulses, and means for displaying the frequency of the same. The preferred embodiment of the overall circuit is designed so that the frequency of the output signal in hertz and tenths of hertz is equal to the sensed temperature in degrees and tenths of degrees.

  4. High-Voltage-Input Level Translator Using Standard CMOS

    NASA Technical Reports Server (NTRS)

    Yager, Jeremy A.; Mojarradi, Mohammad M.; Vo, Tuan A.; Blalock, Benjamin J.

    2011-01-01

    proposed integrated circuit would translate (1) a pair of input signals having a low differential potential and a possibly high common-mode potential into (2) a pair of output signals having the same low differential potential and a low common-mode potential. As used here, "low" and "high" refer to potentials that are, respectively, below or above the nominal supply potential (3.3 V) at which standard complementary metal oxide/semiconductor (CMOS) integrated circuits are designed to operate. The input common-mode potential could lie between 0 and 10 V; the output common-mode potential would be 2 V. This translation would make it possible to process the pair of signals by use of standard 3.3-V CMOS analog and/or mixed-signal (analog and digital) circuitry on the same integrated-circuit chip. A schematic of the circuit is shown in the figure. Standard 3.3-V CMOS circuitry cannot withstand input potentials greater than about 4 V. However, there are many applications that involve low-differential-potential, high-common-mode-potential input signal pairs and in which standard 3.3-V CMOS circuitry, which is relatively inexpensive, would be the most appropriate circuitry for performing other functions on the integrated-circuit chip that handles the high-potential input signals. Thus, there is a need to combine high-voltage input circuitry with standard low-voltage CMOS circuitry on the same integrated-circuit chip. The proposed circuit would satisfy this need. In the proposed circuit, the input signals would be coupled into both a level-shifting pair and a common-mode-sensing pair of CMOS transistors. The output of the level-shifting pair would be fed as input to a differential pair of transistors. The resulting differential current output would pass through six standoff transistors to be mirrored into an output branch by four heterojunction bipolar transistors. The mirrored differential current would be converted back to potential by a pair of diode-connected transistors

  5. Transmembrane potentials during high voltage shocks in ischemic cardiac tissue.

    PubMed

    Holley, L K; Knisley, S B

    1997-01-01

    Transmembrane, voltage sensitive fluorescent dye (TMF) recording techniques have shown that high voltage shocks (HVS), typically used in defibrillation, produce either hyper- or depolarization of the transmembrane potential (TMP) when delivered in the refractory period of an action potential (AP) in normal cardiac tissue (NT). Further, HVS produce an extension of the AP, which has been hypothesized as a potential mechanism for electrical defibrillation. We examined whether HVS modify TMP of ischemic tissue (IT) in a similar manner. In seven Langendorff rabbit hearts, recordings of APs were obtained in both NT and IT with TMF using di-4-ANEPPS, and diacetylmonoxime (23 microM) to avoid motion artifacts. Local ischemia was produced by occlusion of the LAD, HVS of either biphasic (5 + 5 ms) or (3 + 2 ms) or monophasic shapes (5 ms) were delivered at varying times (20%-90%) of the paced AP. Intracardiac ECG and TMF recordings of the TMP were each amplified, recorded, and digitized at a frequency of 1 kHz. The paced AP in IT was triangular in shape with no obvious phase 3 plateau, typically seen in NT. There was normally a reduced AP amplitude (expressed as fractional fluorescence) in IT (2.6% +/- 1.79%) compared to 3.8% +/- 0.66% in NT, and shortened AP duration (137 +/- 42 vs 171 +/- 11 ms). One hundred-Volt HVS delivered during the refractory period of paced AP in IT in five rabbits, elicited a depolarization response of the TMP with an amplitude up to three times greater than the paced AP. This is in contrast to NT where the 100-V HVS produced hyperpolarization in four hearts, and only a slight depolarization response in one heart. These results suggest that HVS, typically delivered by a defibrillation shock, modify TMPs in a significantly different manner for ischemic cells, which may influence success in defibrillation.

  6. Recovery of consciousness in broilers following combined dc and ac stunning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Broilers in the United States are typically electrically stunned using low voltage-high frequency pulsed DC water bath stunners and in the European Union broilers are electrocuted using high voltage-low frequency AC. DC stunned broilers regain consciousness in the absence of exsanguination and AC st...

  7. Critical current density and ac harmonic voltage generation in YBaCuO thin films by the screening technique

    NASA Astrophysics Data System (ADS)

    Pérez-López, Israel O.; Gamboa, Fidel; Sosa, Víctor

    2010-12-01

    The temperature and field dependence of harmonics in voltage Vn=Vn‧-iVn″ using the screening technique have been measured for YBaCuO superconducting thin films. Using the Sun model we obtained the curves for the temperature-dependent critical current density Jc(T). In addition, we applied the criterion proposed by Acosta et al. to compute Jc(T). Also, we made used of the empirical law Jc∝(1-T/Tc)n as an input in our calculations to reproduce experimental harmonic generation up to the fifth harmonic. We found that most models fit well the fundamental voltage but higher harmonics are poorly reproduced. Such behavior suggests the idea that higher harmonics contain information concerning complex processes like flux creep or thermally assisted flux flow.

  8. High-Voltage LED Light Engine with Integrated Driver

    SciTech Connect

    Soer, Wouter

    2016-02-29

    LED luminaires have seen dramatic changes in cost breakdown over the past few years. The LED component cost, which until recently was the dominant portion of luminaire cost, has fallen to a level of the same order as the other luminaire components, such as the driver, housing, optics etc. With the current state of the technology, further luminaire performance improvement and cost reduction is realized most effectively by optimization of the whole system, rather than a single component. This project focuses on improving the integration between LEDs and drivers. Lumileds has developed a light engine platform based on low-cost high-power LEDs and driver topologies optimized for integration with these LEDs on a single substrate. The integration of driver and LEDs enables an estimated luminaire cost reduction of about 25% for targeted applications, mostly due to significant reductions in driver and housing cost. The high-power LEDs are based on Lumileds’ patterned sapphire substrate flip-chip (PSS-FC) technology, affording reduced die fabrication and packaging cost compared to existing technology. Two general versions of PSS-FC die were developed in order to create the desired voltage and flux increments for driver integration: (i) small single-junction die (0.5 mm2), optimal for distributed lighting applications, and (ii) larger multi-junction die (2 mm2 and 4 mm2) for high-power directional applications. Two driver topologies were developed: a tapped linear driver topology and a single-stage switch-mode topology, taking advantage of the flexible voltage configurations of the new PSS-FC die and the simplification opportunities enabled by integration of LEDs and driver on the same board. A prototype light engine was developed for an outdoor “core module” application based on the multi-junction PSS-FC die and the single-stage switch-mode driver. The light engine meets the project efficacy target of 128 lm/W at a luminous flux

  9. Improvement of high-voltage staircase drive circuit waveform for high-intensity therapeutic ultrasound

    NASA Astrophysics Data System (ADS)

    Tamano, Satoshi; Jimbo, Hayato; Azuma, Takashi; Yoshizawa, Shin; Fujiwara, Keisuke; Itani, Kazunori; Umemura, Shin-Ichiro

    2016-07-01

    Recently, in the treatment of diseases such as cancer, noninvasive or low-invasive modality, such as high-intensity focused ultrasound (HIFU), has been put into practice as an alternative to open surgery. HIFU induces thermal ablation of the target tissue to be treated. To improve the efficiency of HIFU, we have proposed a “triggered-HIFU” technique, which uses the combination of a short-duration, high-voltage transmission and a long-duration, medium-voltage transmission. In this method, the transmission device must endure high peak voltage for the former and the high time-average power for the latter. The triggered-HIFU sequence requires electronic scanning of the HIFU focus to maximize its thermal efficiency. Therefore, the transmission device must drive an array transducer with the number of elements on the order of a hundred or more, which requires that each part of the device that drives each element must be compact. The purpose of this work is to propose and construct such a transmission device by improving the staircase drive circuit, which we previously proposed. The main point of improvement is that both N and P MOSFETs are provided for each staircase voltage level instead of only one of them. Compared with the previous ultrasonic transmission circuit, high-voltage spikes were significantly reduced, the power consumption was decreased by 26.7%, and the transmission circuit temperature rise was decreased by 14.5 °C in the triggered-HIFU heating mode.

  10. Control of Analyte Electrolysis in Electrospray Ionization Mass Spectrometry Using Repetitively Pulsed High Voltage

    SciTech Connect

    Kertesz, Vilmos; Van Berkel, Gary J

    2011-01-01

    Analyte electrolysis using a repetitively pulsed high voltage ion source was investigated and compared to that using a regular, continuously operating direct current high voltage ion source in electrospray ionization mass spectrometry. The extent of analyte electrolysis was explored as a function of the length and frequency of the high voltage pulse using the model compound reserpine in positive ion mode. Using +5 kV as the maximum high voltage amplitude, reserpine was oxidized to its 2, 4, 6 and 8-electron oxidation products when direct current high voltage was employed. In contrast, when using a pulsed high voltage, oxidation of reserpine was eliminated by employing the appropriate high voltage pulse length and frequency. This effect was caused by inefficient mass transport of the analyte to the electrode surface during the duration of the high voltage pulse and the subsequent relaxation of the emitter electrode/ electrolyte interface during the time period when the high voltage was turned off. This mode of ESI source operation allows for analyte electrolysis to be quickly and simply switched on or off electronically via a change in voltage pulse variables.

  11. Interaction of high voltage surfaces with the space plasma

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1980-01-01

    High voltage solar arrays provide spacecraft power while optimizing mass and power efficiency. Operating such arrays in the space plasma environment can result in anomalously large currents being collected through insulation defects. Two thicknesses of the insulating material were tested, with no effect found due to insulator thickness. In these tests the polyimide thickness was always much less than the pinhole diameter. The pinhole area was varied over an area range of more than 30:1. It was found that the current collected was independent of the pinhole area for hole diameters from 0.35 to 2.0 mm. Two types of adhesives were tried in two different configurations. The adhesives were chosen for their extreme difference in vacuum qualifications. Neither adhesive types nor configuration made a significant difference in current collection. The temperature of the insulating material was also varied. It was found that current collection decreased with increasing temperature. Tests were conducted to see if pinhole current collection decreased with time, as was indicated by the effects of several short tests. Current was collected for over four hours while the conductor potential was held constant at 1000 volts. A smooth decrease with time was not observed, but rather a roughly constant current collection with brief surges to high values. Tests were also conducted with the simulated solar cell biased negative. The current was found to be proportional to pinhole area.

  12. High voltage power supply with modular series resonant inverters

    DOEpatents

    Dreifuerst, G.R.; Merritt, B.T.

    1995-07-18

    A relatively small and compact high voltage, high current power supply for a laser utilizes a plurality of modules containing series resonant half bridge inverters. A pair of reverse conducting thyristors are incorporated in each series resonant inverter module such that the series resonant inverter modules are sequentially activated in phases 360{degree}/n apart, where n=number of modules for n>2. Selective activation of the modules allows precise output control reducing ripple and improving efficiency. Each series resonant half bridge inverter module includes a transformer which has a cooling manifold for actively circulating a coolant such as water, to cool the transformer core as well as selected circuit elements. Conductors connecting and forming various circuit components comprise hollow, electrically conductive tubes such as copper. Coolant circulates through the tubes to remove heat. The conductive tubes act as electrically conductive lines for connecting various components of the power supply. Where it is desired to make electrical isolation breaks, tubes comprised of insulating material such as nylon are used to provide insulation and continue the fluid circuit. 11 figs.

  13. High voltage power supply with modular series resonant inverters

    DOEpatents

    Dreifuerst, Gary R.; Merritt, Bernard T.

    1995-01-01

    A relatively small and compact high voltage, high current power supply for a laser utilizes a plurality of modules containing series resonant half bridge inverters. A pair of reverse conducting thyristors are incorporated in each series resonant inverter module such that the series resonant inverter modules are sequentially activated in phases 360.degree./n apart, where n=number of modules for n>2. Selective activation of the modules allows precise output control reducing ripple and improving efficiency. Each series resonant half bridge inverter module includes a transformer which has a cooling manifold for actively circulating a coolant such as water, to cool the transformer core as well as selected circuit elements. Conductors connecting and forming various circuit components comprise hollow, electrically conductive tubes such as copper. Coolant circulates through the tubes to remove heat. The conductive tubes act as electrically conductive lines for connecting various components of the power supply. Where it is desired to make electrical isolation breaks, tubes comprised of insulating material such as nylon are used to provide insulation and continue the fluid circuit.

  14. Photoconductivity of high-voltage space insulating materials

    NASA Technical Reports Server (NTRS)

    Coffey, H. T.; Nanevicz, J. E.; Adamo, R. C.

    1975-01-01

    The dark and photoconductivities of four high voltage spacecraft insulators, Kapton-H, FEP Teflon, Parylene, and fused quartz, were studied under a variety of conditions intended to simulate a space environment. All measurements were made in a vacuum of less than .00001 torr while the temperature was varied from 22 C to 100 C. Some of the samples used employed conventional deposited metal electrodes--others employed electrodes composed either of an electron beam or a plasma formed by ionization of the residual gas in the test chamber. Test results show: (1) Kapton had unusual conduction properties; it conductivity decreased by more than an order of magnitude when heated at 100 C in a vacuum, but ultimately attained a stable and reproducible value. (2) Both Teflon and fused quartz had high dark resistivities but low photoresistivities when exposed to UV. Optical-density measurements revealed that both materials transmitted UV with little attenuation. (3) Parylene was found to have a low but relatively stable resistivity--comparatively minor changes occurred upon heating or illuminating the sample. Optical-density measurements showed that Parylene was absorbent in the UV and would prevent photoemission from the metal electrode on the back surface.

  15. Evaluation of Epoxy Nanocomposites for High Voltage Insulation

    NASA Astrophysics Data System (ADS)

    Iyer, Ganpathy

    Polymeric materials containing nanometer (nm) size particles are being introduced to provide compact shapes for low and medium voltage insulation equipment. The nanocomposites may provide superior electrical performance when compared with those available currently, such as lower dielectric losses and increased dielectric strength, tracking and erosion resistance, and surface hydrophobicity. All of the above mentioned benefits can be achieved at a lower filler concentration (< 10%) than conventional microfillers (40-60%). Also, the uniform shapes of nanofillers provide a better electrical stress distribution as compared to irregular shaped microcomposites which can have high internal electric stress, which could be a problem for devices with active electrical parts. Improvement in electrical performance due to addition of nanofillers in an epoxy matrix has been evaluated in this work. Scanning Electron Microscopy (SEM) was done on the epoxy samples to confirm uniform dispersion of nano-sized fillers as good filler dispersion is essential to realize the above stated benefits. Dielectric spectroscopy experiments were conducted over a wide range of frequencies as a function of temperature to understand the role of space charge and interfaces in these materials. The experiment results demonstrate significant reduction in dielectric losses in samples containing nanofillers. High voltage experiments such as corona resistance tests were conducted over 500 hours to monitor degradation in the samples due to corona. These tests revealed improvements in partial discharge endurance of nanocomposite samples. These improvements could not be adequately explained using a macroscopic quantity such as thermal conductivity. Thermo gravimetric analysis (TGA) showed higher weight loss initiation temperatures for nanofilled samples which is in agreement with the corona resistance experimental results. Theoretical models have also been developed in this work to complement the results of

  16. Note: Complementary metal-oxide-semiconductor high voltage pulse generation circuits.

    PubMed

    Sun, Jiwei; Wang, Pingshan

    2013-10-01

    We present two types of on-chip pulse generation circuits. The first is based on CMOS pulse-forming-lines (PFLs). It includes a four-stage charge pump, a four-stacked-MOSFET switch and a 5 mm long PFL. The circuit is implemented in a 0.13 μm CMOS process. Pulses of ~1.8 V amplitude with ~135 ps duration on a 50 Ω load are obtained. The obtained voltage is higher than 1.6 V, the rated operating voltage of the process. The second is a high-voltage Marx generator which also uses stacked MOSFETs as high voltage switches. The output voltage is 11.68 V, which is higher than the highest breakdown voltage (~10 V) of the CMOS process. These results significantly extend high-voltage pulse generation capabilities of CMOS technologies.

  17. Note: Complementary metal-oxide-semiconductor high voltage pulse generation circuits

    NASA Astrophysics Data System (ADS)

    Sun, Jiwei; Wang, Pingshan

    2013-10-01

    We present two types of on-chip pulse generation circuits. The first is based on CMOS pulse-forming-lines (PFLs). It includes a four-stage charge pump, a four-stacked-MOSFET switch and a 5 mm long PFL. The circuit is implemented in a 0.13 μm CMOS process. Pulses of ˜1.8 V amplitude with ˜135 ps duration on a 50 Ω load are obtained. The obtained voltage is higher than 1.6 V, the rated operating voltage of the process. The second is a high-voltage Marx generator which also uses stacked MOSFETs as high voltage switches. The output voltage is 11.68 V, which is higher than the highest breakdown voltage (˜10 V) of the CMOS process. These results significantly extend high-voltage pulse generation capabilities of CMOS technologies.

  18. Three-phase-to-two-phase direct AC-AC converter with three leg structure

    NASA Astrophysics Data System (ADS)

    Kwak, S.-S.

    2014-05-01

    A three-phase-to-two-phase ac-ac converter is, along with a modulation strategy based on the space vector scheme, introduced to directly drive two-phase output ac systems with high input power quality. The converter is capable of synthesising two sinusoidal output voltages with variable output frequency and arbitrary magnitude in quadrature phase-shift as well as sinusoidal input currents.

  19. Novel bandgap-based under-voltage-lockout methods with high reliability

    NASA Astrophysics Data System (ADS)

    Yongrui, Zhao; Xinquan, Lai

    2013-10-01

    Highly reliable bandgap-based under-voltage-lockout (UVLO) methods are presented in this paper. The proposed under-voltage state to signal conversion methods take full advantages of the high temperature stability characteristics and the enhancement low-voltage protection methods which protect the core circuit from error operation; moreover, a common-source stage amplifier method is introduced to expand the output voltage range. All of these methods are verified in a UVLO circuit fabricated with a 0.5 μm standard BCD process technology. The experimental result shows that the proposed bandgap method exhibits a good temperature coefficient of 20 ppm/°C, which ensures that the UVLO keeps a stable output until the under-voltage state changes. Moreover, at room temperature, the high threshold voltage VTH+ generated by the UVLO is 12.3 V with maximum drift voltage of ±80 mV, and the low threshold voltage VTH- is 9.5 V with maximum drift voltage of ±70 mV. Also, the low voltage protection method used in the circuit brings a high reliability when the supply voltage is very low.

  20. High precision high voltage divider and its application to electron beam ion traps

    SciTech Connect

    Chen, W. D.; Xiao, J.; Shen, Y.; Fu, Y. Q.; Meng, F. C.; Chen, C. Y.; Zou, Y.; Hutton, R.

    2008-12-15

    A high precision high voltage divider has been developed for the electron beam ion trap in Shanghai. The uncertainty caused by the temperature coefficient of resistance (TCR) and the voltage coefficient of resistance has been studied in detail and was minimized to the level of ppm (10{sup -6}) range. Once the TCR was matched between the resistors, the precision of the dividing ratio finally reached the ppm range also. We measured the delay of the divider caused by the capacitor introduced to minimize voltage ripple to be 2.35 ms. Finally we applied the divider to an experiment to measure resonant energies for some dielectronic recombination processes for highly charged xenon ions. The final energies include corrections for both space charge and fringe field effects are mostly under 0.03%.

  1. Application of high voltage electric field (HVEF) drying technology in potato chips

    NASA Astrophysics Data System (ADS)

    Bai, Yaxiang; Shi, Hua; Yang, Yaxin

    2013-03-01

    In order to improve the drying efficiency and qualities of vegetable by high voltage electric field (HVEF), potato chips as a representative of vegetable was dried using a high voltage electric drying systems at 20°C. The shrinkage rate, water absorption and rehydration ratio of dried potato chips were measured. The results indicated that the drying rate of potato chips was significantly improved in the high voltage electric drying systems. The shrinkage rate of potato chips dried by high voltage electric field was 1.1% lower than that by oven drying method. And the rehydration rate of high voltage electric field was 24.6% higher than that by oven drying method. High voltage electric field drying is very advantageous and can be used as a substitute for traditional drying method.

  2. Near-field optical taper antennas fabricated with a highly replicable ac electrochemical etching method

    NASA Astrophysics Data System (ADS)

    Kharintsev, Sergey S.; Noskov, Alexey I.; Hoffmann, Günter G.; Loos, Joachim

    2011-01-01

    This paper describes a novel chemical etching method to fabricate high quality near-field optical antennas—tapered metallic tips—from gold wire in a reproducible way for optically probing a specimen on the nanoscale. A new type of an electrochemical cell is introduced and different dc and ac etching regimes are studied in detail. The formation and dynamics of a meniscus around a gold wire immersed in an electrolyte when supplying a square wave voltage are considered. We show that in situ etching current kinetics allows one to improve a yield of tips with a well-defined geometry up to 95% by filtering these on the basis of a cutoff current and a power spectrum of etching current fluctuations. As a quantitative measure for estimating the yield we introduce a probability to find tips with curvature radii falling in the range of interest. Testing the tips for a plasmonic effect is implemented with tip-enhanced Raman spectroscopy and sub-wavelength imaging of a thin fullerene film.

  3. A new aluminium-ion battery with high voltage, high safety and low cost.

    PubMed

    Sun, Haobo; Wang, Wei; Yu, Zhijing; Yuan, Yan; Wang, Shuai; Jiao, Shuqiang

    2015-07-28

    A new kind of Al-ion battery with carbon paper as the cathode, high-purity Al foil as the anode and ionic liquid as the electrolyte is proposed in this work. The significance of the presented battery is going to be an extremely high average voltage plateau of ca. 1.8 V vs. Al(3+)/Al.

  4. Design, conditioning, and performance of a high voltage, high brightness dc photoelectron gun with variable gap

    SciTech Connect

    Maxson, Jared; Bazarov, Ivan; Dunham, Bruce; Dobbins, John; Liu, Xianghong; Smolenski, Karl

    2014-09-15

    A new high voltage photoemission gun has been constructed at Cornell University which features a segmented insulator and a movable anode, allowing the cathode-anode gap to be adjusted. In this work, we describe the gun's overall mechanical and high voltage design, the surface preparation of components, as well as the clean construction methods. We present high voltage conditioning data using a 50 mm cathode-anode gap, in which the conditioning voltage exceeds 500 kV, as well as at smaller gaps. Finally, we present simulated emittance results obtained from a genetic optimization scheme using voltage values based on the conditioning data. These results indicate that for charges up to 100 pC, a 30 mm gap at 400 kV has equal or smaller 100% emittance than a 50 mm gap at 450 kV, and also a smaller core emittance, when placed as the source for the Cornell energy recovery linac photoinjector with bunch length constrained to be <3 ps rms. For 100 pC up to 0.5 nC charges, the 50 mm gap has larger core emittance than the 30 mm gap, but conversely smaller 100% emittance.

  5. Harmonic resonance on parallel high voltage transmission lines

    SciTech Connect

    Harries, J.R.; Randall, J.L.

    1997-01-01

    The Bonneville Power Administration (BPA) has received complaints of telephone interference over a wide area of northwestern Washington State for several years. However, until 1995 investigations had proved inconclusive as either the source of the harmonics or the operating conditions changed whenever investigators arrived. The 2,100 Hz interference had been noticed at several optically isolated telephone exchanges. The area of complaint corresponded to electric service areas near the transmission line corridors of the BPA Custer-Monroe 500-kV lines. High 2,100 Hz field strength was measured near the 500-kV lines and also under lower voltage lines served from stations along the transmission line corridor. Tests and studies made with the Alternative Transients Program version of the Electromagnetic Transients Program (EMTP) were able to define the phenomena and isolate the source. Harmonic resonance has been observed, measured and modeled on parallel 500-kV lines that are about one wavelength at 2,100 Hz, the 35th harmonic. A seemingly small harmonic injection at one location on the system causes significant problems some distance away such as telephone interference.

  6. Construction and performance of a high voltage zinc bromine battery in an electric vehicle

    SciTech Connect

    Swan, D.H.; Dickinson, B.; Arikara, M.; Prabhu, M.

    1995-07-01

    This paper describes the design, construction, testing and installation of a 391 volt, 35 kWh zinc bromine battery in an electric vehicle. This research project, was referred to as the Endura Project and it resulted in the construction of the highest voltage zinc bromine battery ever to be used in an electric vehicle. The zinc bromine battery is a high energy density battery that utilizes low cost materials (predominantly polyethylene plastic). It has a relatively high energy density (60 to 70 Wh/kg of battery weight) and is modular in its construction. It utilizes a water cooling loop and normally operates between 32 and 45 C. The Endura project constructed a state of the art zinc bromine battery, used an advanced charging system, and an advanced AC propulsion system. These components were integrated in a Geo Prizm and used to compete in the APS Electric 500 in Phoenix, AZ (3rd place, 3/94), the World Clean Air Rally in LA (1st Place, 4/94) and the 1994 American Tour de Sol (2nd Place 5/94).

  7. Method and apparatus for connecting high voltage leads to a high temperature super-conducting transformer

    DOEpatents

    Golner, Thomas M.; Mehta, Shirish P.

    2005-07-26

    A method and apparatus for connecting high voltage leads to a super-conducting transformer is provided that includes a first super-conducting coil set, a second super-conducting coil set, and a third super-conducting coil set. The first, second and third super-conducting coil sets are connected via an insulated interconnect system that includes insulated conductors and insulated connectors that are utilized to connect the first, second, and third super-conducting coil sets to the high voltage leads.

  8. Design of a high voltage stimulator chip for a stroke rehabilitation system.

    PubMed

    Zeng, Lei; Yi, Xin; Lu, Sheng; Lou, Yuan; Jiang, Jianfei; Qu, Hongen; Lan, Ning; Wang, Guoxing

    2013-01-01

    This paper describes the design of an 8-channel high voltage stimulator chip for rehabilitation of stroke patients through surface stimulation, which requires high stimulation currents and high compliance voltage. The chip gets stimulation control data through its Serial Peripheral Interface (SPI), and can accordingly generate biphasic stimulation currents with different amplitudes, duration, frequencies and polarities independently for each channel. The current driver is implemented with thick oxide devices with a supply voltage up to 90V. The chip is designed in a 0.35εm X-FAB high voltage process.

  9. High voltage holding in the negative ion sources with cesium deposition

    SciTech Connect

    Belchenko, Yu.; Abdrashitov, G.; Ivanov, A.; Sanin, A.; Sotnikov, O.

    2016-02-15

    High voltage holding of the large surface-plasma negative ion source with cesium deposition was studied. It was found that heating of ion-optical system electrodes to temperature >100 °C facilitates the source conditioning by high voltage pulses in vacuum and by beam shots. The procedure of electrode conditioning and the data on high-voltage holding in the negative ion source with small cesium seed are described. The mechanism of high voltage holding improvement by depletion of cesium coverage is discussed.

  10. High-voltage direct current handbook: First edition

    SciTech Connect

    Piwko, R.J.; Leonard, D.J.; Nolan, J.J.; Thorpe, J.B.

    1994-12-31

    HVDC systems offer opportunities for power transfer between asynchronous systems, improved performance of the ac system in which the dc link is integrated, and possibly increased power transfer across existing lines if converted to HVDC. This handbook is intended to help planners and engineers understand the intricacies of HVDC systems.

  11. The Thermal Regime Around Buried Submarine High-Voltage Cables

    NASA Astrophysics Data System (ADS)

    Emeana, C. J.; Dix, J.; Henstock, T.; Gernon, T.; Thompson, C.; Pilgrim, J.

    2015-12-01

    The expansion of offshore renewable energy infrastructure and the desire for "trans-continental shelf" power transmission, all require the use of submarine High Voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70oC and are typically buried at depths of 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the thermal properties of near surface shelf sediments are poorly understood and this increases the uncertainty in determining the required cable current ratings, cable reliability and the potential effects on the sedimentary environments. We present temperature measurements from a 2D laboratory experiment, designed to represent a buried, submarine HV cable. We used a large (2.5 m-high) tank, filled with water-saturated ballotini and instrumented with 120 thermocouples, which measured the time-dependent 2D temperature distributions around the heat source. The experiments use a buried heat source to represent a series of realistic cable surface temperatures with the aim for identifying the thermal regimes generated within typical non-cohesive shelf sediments: coarse silt, fine sand and very coarse sand. The steady state heat flow regimes, and normalised and radial temperature distributions were assessed. Our results show that at temperatures up to 60°C above ambient, the thermal regimes are conductive for the coarse silt sediments and convective for the very coarse sand sediments even at 7°C above ambient. However, the heat flow pattern through the fine sand sediment shows a transition from conductive to convective heat flow at a temperature of approximately 20°C above ambient. These findings offer an important new understanding of the thermal regimes associated with submarine HV cables buried in different substrates and has huge impacts on cable ratings as the IEC 60287 standard only considers conductive heat flow as well as other potential near surface impacts.

  12. Study on the Crack Propagation Behavior of ×80 Pipeline Steel Under AC Application in High pH Solution

    NASA Astrophysics Data System (ADS)

    Zhu, M.; Ou, G. F.; Jin, H. Z.; Du, C. W.; Li, X. G.; Liu, Z. Y.

    2015-06-01

    The crack propagation behavior of pipeline steels with or without AC application was studied in high pH solution using the crack propagation experiment (cyclic load). The results show that there is a significant difference in the crack propagation behavior of steels with or without AC interference. The crack growth rate (CGR) of steel under superimposed AC is considerably greater than that without AC. AC could cause an obvious effect on the crack propagation behavior, and enhance the CGR. The crack propagation behavior of steel under AC application in high pH solution is analogous to that in near-neutral pH solution.

  13. Chandra Probes High-Voltage Auroras on Jupiter

    NASA Astrophysics Data System (ADS)

    2005-03-01

    Scientists have obtained new insight into the unique power source for many of Jupiter's auroras, the most spectacular and active auroras in the Solar System. Extended monitoring of the giant planet with NASA's Chandra X-ray Observatory detected the presence of highly charged particles crashing into the atmosphere above its poles. X-ray spectra measured by Chandra showed that the auroral activity was produced by ions of oxygen and other elements that were stripped of most of their electrons. This implies that these particles were accelerated to high energies in a multimillion-volt environment above the planet's poles. The presence of these energetic ions indicates that the cause of many of Jupiter's auroras is different from auroras produced on Earth or Saturn. Chandra X-ray Image of Jupiter Chandra X-ray Image of Jupiter "Spacecraft have not explored the region above the poles of Jupiter, so X-ray observations provide one of the few ways to probe that environment," said Ron Elsner of the NASA Marshall Space Flight Center in Huntsville, Alabama, and lead author on a recently published paper describing these results in the Journal for Geophysical Research. "These results will help scientists to understand the mechanism for the power output from Jupiter's auroras, which are a thousand times more powerful than those on Earth." Electric voltages of about 10 million volts, and currents of 10 million amps - a hundred times greater than the most powerful lightning bolts - are required to explain the X-ray observations. These voltages would also explain the radio emission from energetic electrons observed near Jupiter by the Ulysses spacecraft. Schematic of Jupiter's Auroral Activity Production Schematic of Jupiter's Auroral Activity Production On Earth, auroras are triggered by solar storms of energetic particles, which disturb Earth's magnetic field. Gusts of particles from the Sun can also produce auroras on Jupiter, but unlike Earth, Jupiter has another way of producing

  14. The thermal regime around buried submarine high-voltage cables

    NASA Astrophysics Data System (ADS)

    Emeana, C. J.; Hughes, T. J.; Dix, J. K.; Gernon, T. M.; Henstock, T. J.; Thompson, C. E. L.; Pilgrim, J. A.

    2016-08-01

    The expansion of offshore renewable energy infrastructure and the need for trans-continental shelf power transmission require the use of submarine high-voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70 °C and are typically buried 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the heat flow pattern and potential effects on the sedimentary environments around such anomalously high heat sources in the near-surface sediments are poorly understood. We present temperature measurements from a 2-D laboratory experiment representing a buried submarine HV cable, and identify the thermal regimes generated within typical unconsolidated shelf sediments—coarse silt, fine sand and very coarse sand. We used a large (2 × 2.5 m2) tank filled with water-saturated spherical glass beads (ballotini) and instrumented with a buried heat source and 120 thermocouples to measure the time-dependent 2-D temperature distributions. The observed and corresponding Finite Element Method simulations of the steady state heat flow regimes and normalized radial temperature distributions were assessed. Our results show that the heat transfer and thus temperature fields generated from submarine HV cables buried within a range of sediments are highly variable. Coarse silts are shown to be purely conductive, producing temperature increases of >10 °C up to 40 cm from the source of 60 °C above ambient; fine sands demonstrate a transition from conductive to convective heat transfer between cf. 20 and 36 °C above ambient, with >10 °C heat increases occurring over a metre from the source of 55 °C above ambient; and very coarse sands exhibit dominantly convective heat transfer even at very low (cf. 7 °C) operating temperatures and reaching temperatures of up to 18 °C above ambient at a metre from the source at surface temperatures of only 18 °C. These findings are important for the surrounding near

  15. Observation of Dust Stream Formation Produced by Low Current, High Voltage Cathode Spots

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    Macro-particle acceleration driven by low current, high voltage cathode spots has been investigated. The phenomenon was observed to occur when nanometer and micrometer-sized particles in the presence of a discharge plasma were exposed to a high voltage pulse. The negative voltage pulse initiates the formation of multiple, high voltage, low current cathode spots which provides the mechanism of actual acceleration of the charged dust particles. Dust streams generated by this process were detected using laser scattering techniques. The particle impact craters observed at the surface of downstream witness badges were documented using SEM and light microscopy.

  16. Extension to AC Loss Minimization in High Temperature Superconductors

    DTIC Science & Technology

    2007-11-02

    The sample architecture was YBCO /Y2O3/CeO2:Pd/NiFe and YBCO /Y2O3/YSZ/CeO2:Pd/NiCrW. Both samples had a thickness of YBCO of 350 - 370 nm and the...our efforts on AC loss measurements of YBCO coated conductors on textured metallic substrates made in Cambridge. Several samples were prepared by pulsed...buffer structure thickness was 200 nm . The thickness of NiFe and NiCrW substrates was 35 µm and 90 µm, respectively. The measurements were performed in

  17. Developments of high-voltage all-solid-state thin-film lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Schwenzel, J.; Thangadurai, V.; Weppner, W.

    Powders of Li 2MMn 3O 8 (M = Fe, Co) were prepared by glycine nitrate combustion from the corresponding metal nitrates. The reaction products were pressed into pellets with the addition of 20 wt.% excess LiNO 3, which were used as targets for e-beam evaporation. A high-voltage all-solid-state thin-film lithium ion battery was demonstrated by the sequential deposition of spinel structured Li 2MMn 3O 8 (M = Co, Fe) as positive electrode by e-beam evaporation, LiPON as electrolyte, and metallic Al as negative electrode by sputtering in N 2 and Ar gas mixtures with specific power and gas flow rates. A lithium ion conductivity of ∼10 -6 S cm -1 was observed for the optimized thin-film LiPON electrolyte prepared under the condition of a chamber pressure of 2.6 × 10 -2 mbar and a power of 60-100 W. The chemical diffusion coefficient (D ˜) was found to be in the range 10 -13 to 10 -12 cm 2 s -1 for any composition x of Li 2- xMMn 3O 8 (M = Fe, Co) in the range from 0.1 to 1.6 by employing the galvanostatic intermittent titration technique (GITT). AC impedance studies revealed a charge transfer resistance of 260-290 Ω, a double layer capacity of ∼45-70 μF for an electrode area of 6.7 cm 2.

  18. High precision, low disturbance calibration system for the CMS Barrel Electromagnetic Calorimeter High Voltage apparatus

    NASA Astrophysics Data System (ADS)

    Fasanella, G.

    2017-01-01

    The CMS Electromagnetic Calorimeter utilizes scintillation lead tungstate crystals, with avalanche photodiodes (APD) as photo-detectors in the barrel part. 1224 HV channels bias groups of 50 APD pairs, each at a voltage of about 380 V. The APD gain dependence on the voltage is 3%/V. A stability of better than 60 mV is needed to have negligible impact on the calorimeter energy resolution. Until 2015 manual calibrations were performed yearly. A new calibration system was deployed recently, which satisfies the requirement of low disturbance and high precision. The system is discussed in detail and first operational experience is presented.

  19. High-voltage, high-power, solid-state remote power controllers for aerospace applications

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.

    1985-01-01

    Two general types of remote power controller (RPC) that combine the functions of a circuit breaker and a switch were developed for use in direct-current (dc) aerospace systems. Power-switching devices used in these designs are the relatively new gate-turnoff thyristor (GTO) and poweer metal-oxide-semiconductor field-effect transistors (MOSFET). The various RPC's can switch dc voltages to 1200 V and currents to 100 A. Seven different units were constructed and subjected to comprehensive laboratory and thermal vacuum testing. Two of these were dual units that switch both positive and negative voltages simultaneously. The RPC's using MOSFET's have slow turnon and turnoff times to limit voltage spiking from high di/dt. The GTO's have much faster transition times. All RPC's have programmable overload tripout and microsecond tripout for large overloads. The basic circuits developed can be used to build switchgear limited only by the ratings of the switching device used.

  20. Fast Rise Time and High Voltage Nanosecond Pulses at High Pulse Repetition Frequency

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth E.; Ziemba, Timothy; Prager, James; Picard, Julian; Hashim, Akel

    2015-09-01

    Eagle Harbor Technologies (EHT), Inc. is conducting research to decrease the rise time and increase the output voltage of the EHT Nanosecond Pulser product line, which allows for independently, user-adjustable output voltage (0 - 20 kV), pulse width (20 - 500 ns), and pulse repetition frequency (0 - 100 kHz). The goals are to develop higher voltage pulses (50 - 60 kV), decrease the rise time from 20 to below 10 ns, and maintain the high pulse repetition capabilities. These new capabilities have applications to pseudospark generation, corona production, liquid discharges, and nonlinear transmission line driving for microwave production. This work is supported in part by the US Navy SBIR program.

  1. High-Resolution ac Measurements of the Hall Effect in Organic Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Yi, H. T.; Podzorov, V.

    2016-03-01

    We describe a high resolving power technique for Hall-effect measurements, efficient in determining Hall mobility and carrier density in organic field-effect transistors and other low-mobility systems. We utilize a small low-frequency ac magnetic field (Brms<0.25 T ) and a phase-sensitive (lock-in) detection of Hall voltage, with the necessary corrections for Faraday induction. This method significantly enhances the signal-to-noise ratio and eliminates the necessity of using high magnetic fields in Hall-effect studies. With the help of this method, we are able to obtain the Hall mobility and carrier density in organic transistors with a mobility as low as μ ˜0.3 cm2 V-1 s-1 by using a compact desktop apparatus and low magnetic fields. We find a good agreement between Hall-effect and electric-field-effect measurements, indicating that, contrary to the common belief, certain organic semiconductors with mobilities below 1 cm2 V-1 s-1 can still exhibit a fully developed, band-semiconductor-like Hall effect, with the Hall mobility and carrier density matching those obtained in longitudinal transistor measurements. This suggests that, even when μ <1 cm2 V-1 s-1 , charges in organic semiconductors can still behave as delocalized coherent carriers. This technique paves the way to ubiquitous Hall-effect studies in a wide range of low-mobility materials and devices, where it is typically very difficult to resolve the Hall effect even in very high dc magnetic fields.

  2. A fully-integrated high-compliance voltage SoC for epi-retinal and neural prostheses.

    PubMed

    Lo, Yi-Kai; Chen, Kuanfu; Gad, Parag; Liu, Wentai

    2013-12-01

    This paper presents a fully functionally integrated 1024-channel mixed-mode and mixed-voltage system-on-a-chip (SoC) for epi-retinal and neural prostheses. Taking an AC input, an integrated power telemetry circuits is capable of generating multiple DC voltages with a voltage conversion efficiency of 83% at a load of 100 mW without external diodes or separate power integrated circuits, reducing the form factor of the prosthetic device. A wireless DPSK receiver with a novel noise reduction scheme supports a data rate of 2 Mb/s at a bit-error-rate of 2 ×10⁻⁷. The 1024-channel stimulator array meets an output compliance voltage of ±10 V and provides flexible stimulation waveforms. Through chip-clustering, the stimulator array can be further expanded to 4096 channels. This SoC is designed and fabricated in TSMC 0.18 μm high-voltage 32 V CMOS process and occupies a chip area of 5.7 mm × 6.6 mm. Using this SoC, a retinal implant bench-top test system is set up with real-time visual verification. In-vitro experiment conducted in artificial vitreous humor is designed and set-up to investigate stimulation waveforms for better visual resolution. In our in-vivo experiment, a hind-limb paralyzed rat with spinal cord transection and implanted chronic epidural electrodes has been shown to regain stepping and standing abilities using stimulus provided by the SoC.

  3. Skylab high voltage electrical/electronic systems corona assessment.

    NASA Technical Reports Server (NTRS)

    Dunbar, W. G.

    1973-01-01

    Six significant design parameters which must be considered in the corona assessment include the operating voltage, radio frequency power, the 'pressure times spacing' relation, operating temperature, gases and contaminants in the environment, and configuration and field gradients. An equipment and experiments survey is presented, giving attention to corona-free equipment and equipment requiring detailed investigations.

  4. Radio-frequency powered glow discharge device and method with high voltage interface

    DOEpatents

    Duckworth, D.C.; Marcus, R.K.; Donohue, D.L.; Lewis, T.A.

    1994-06-28

    A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components. 11 figures.

  5. Radio-frequency powered glow discharge device and method with high voltage interface

    DOEpatents

    Duckworth, Douglas C.; Marcus, R. Kenneth; Donohue, David L.; Lewis, Trousdale A.

    1994-01-01

    A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components.

  6. High Power/High Voltage Rechargeable Batteries Open New Opportunities for Space Missions

    NASA Astrophysics Data System (ADS)

    Borthomieu, Y.; Brochard, P.; Lagattu, B.; Netchev, K.

    2008-09-01

    Scientific missions probes, new generation of launchers and satellites are increasingly requesting high power (permanent or pulses). The introduction of a range of rechargeable cells capable of delivering up and receiving high current addresses these needs and opens new horizons for future space missions power supply.Moreover, high power is often linked to high voltage and such need becomes more and more common for space & defence applications. The aim of the high voltage is to carry reasonable current in the harness of the electrical systems.This paper presents Saft answers to these demands, for existing launchers and also for in development ones, as well as for other markets with similar needs, such as military equipment or underwater vehicles.

  7. Design Guide: Designing and Building High Voltage Power Supplies. Volume 2

    DTIC Science & Technology

    1988-08-01

    surface was stressed at a voltage of over 45-kV/cm impulse and 35 V/cm de. However. the atmosphere was sulfur hexafluoride, and such high voltage -stress...3.3.3.4 Surface Surrounding Void 77 3.3.3.5 Temperature Effects 77 3.3.3.6 Impressed Voltage 78 3.3.4 Surface Flashover 84 3.3.4.1 Temperature Effect on...Interconnects, and Surfaces 182 5.2.5.1 Terminal Boards and Su~pports 182 5.2.5.2 High Voltage Leads 184 5.2.5.3 Lead Terminals 187 5.2.5.4

  8. 30 CFR 18.54 - High-voltage continuous mining machines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage continuous mining machines. 18.54..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.54 High-voltage continuous mining machines. (a) Separation of...

  9. 30 CFR 18.54 - High-voltage continuous mining machines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage continuous mining machines. 18.54..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.54 High-voltage continuous mining machines. (a) Separation of...

  10. 30 CFR 18.54 - High-voltage continuous mining machines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage continuous mining machines. 18.54..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.54 High-voltage continuous mining machines. (a) Separation of...

  11. 30 CFR 18.54 - High-voltage continuous mining machines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-voltage continuous mining machines. 18.54..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.54 High-voltage continuous mining machines. (a) Separation of...

  12. 30 CFR 18.54 - High-voltage continuous mining machines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage continuous mining machines. 18.54..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.54 High-voltage continuous mining machines. (a) Separation of...

  13. High Energy Density Battery Lithium Thionyl Chloride Improved Reverse Voltage Design.

    DTIC Science & Technology

    1981-12-01

    BATTERY LITHIUM THIONYL CHLORIDE IMPROVED R-ETC(U) DEC 81 A E ZOLLA N660011-C-0310...HIGH ENERGY DENSITY BATTERY LITHIUM THIONYL CHLORIDE IMPROVED REVERSE VOLTAGE DESIGN Dr. A. E. Zolla Altus Corporation C:1 1610 Crane Court San Jose...reverse aide If necesary and identify by block number) Lithium Battery Lithium Thionyl Chloride High Energy Density Battery Voltage Reversal Battery

  14. 30 CFR 77.704-2 - Repairs to energized high-voltage lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Repairs to energized high-voltage lines. 77.704-2 Section 77.704-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL... UNDERGROUND COAL MINES Grounding § 77.704-2 Repairs to energized high-voltage lines. An energized...

  15. 21 CFR 892.1700 - Diagnostic x-ray high voltage generator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Diagnostic x-ray high voltage generator. 892.1700 Section 892.1700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... generator. (a) Identification. A diagnostic x-ray high voltage generator is a device that is intended...

  16. 21 CFR 892.1700 - Diagnostic x-ray high voltage generator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Diagnostic x-ray high voltage generator. 892.1700 Section 892.1700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... generator. (a) Identification. A diagnostic x-ray high voltage generator is a device that is intended...

  17. 21 CFR 892.1700 - Diagnostic x-ray high voltage generator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Diagnostic x-ray high voltage generator. 892.1700 Section 892.1700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... generator. (a) Identification. A diagnostic x-ray high voltage generator is a device that is intended...

  18. 21 CFR 892.1700 - Diagnostic x-ray high voltage generator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Diagnostic x-ray high voltage generator. 892.1700 Section 892.1700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... generator. (a) Identification. A diagnostic x-ray high voltage generator is a device that is intended...

  19. 21 CFR 892.1700 - Diagnostic x-ray high voltage generator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Diagnostic x-ray high voltage generator. 892.1700 Section 892.1700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... generator. (a) Identification. A diagnostic x-ray high voltage generator is a device that is intended...

  20. Development of a novel voltage divider for measurement of sub-nanosecond rise time high voltage pulses

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Senthil, K.; Singh, S. K.; Kumar, Ranjeet; Sharma, Archana

    2016-02-01

    This paper is about the development of a copper sulphate based aqueous-electrolytic voltage divider for the measurement of high voltage pulses, 100 kV, with pulse widths of 1-2 ns and rise time <1 ns. Novel features are incorporated in the design of the divider, to meet the performance requirements for the application. Analytical calculations to justify design are described. Structural simulation of the divider is carried out using field wave simulation software to verify the effectiveness. A calibration procedure has been developed to calibrate the divider. Results obtained during calibration are subjected to statistical analysis to determine the confidence of measurement. Details of design, analysis, and simulation are described in this paper.

  1. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    DOEpatents

    Murty, Balarama Vempaty

    2000-01-01

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  2. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    SciTech Connect

    Murty, B.V.

    2000-03-21

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  3. Resistojet control and power for high frequency ac buses

    NASA Technical Reports Server (NTRS)

    Gruber, Robert P.

    1987-01-01

    Resistojets are operational on many geosynchronous communication satellites which all use dc power buses. Multipropellant resistojets were selected for the Initial Operating Capability (IOC) Space Station which will supply 208 V, 20 kHz power. This paper discusses resistojet heater temperature controllers and passive power regulation methods for ac power systems. A simple passive power regulation method suitable for use with regulated sinusoidal or square wave power was designed and tested using the Space Station multipropellant resistojet. The breadboard delivered 20 kHz power to the resistojet heater. Cold start surge current limiting, a power efficiency of 95 percent, and power regulation of better than 2 percent were demonstrated with a two component, 500 W breadboard power controller having a mass of 0.6 kg.

  4. Design, Analysis and Construction of a High Voltage Capacitor Charging Supply

    DTIC Science & Technology

    2008-06-01

    desired capacitor voltage and actual to compute a current reference using a PI controller . A feed-forward term is added to this current reference...additional PI controller to compute a duty cycle. This duty cycle is compared to the sawtooth waveform to switch the IGBTs on. 16 THIS PAGE INTENTIONALLY...actual voltage measured by the high voltage probe (the “V_meas” signal). The error signal is then sent through a PI controller , the output of this

  5. The effect of minority carrier mobility variations on the performance of high voltage silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.; Godlewski, M. P.

    1980-01-01

    A multistep diffusion processing schedule is described which allows the attainment of high open circuit voltages in 0.1 ohm/cm silicon cells. The schedule consists of a deep primary diffusion, followed by an acid etch of emmitter surface which is then followed by a shallow secondary diffusion. A correlation is made between the observed voltage increases and the time of primary diffusion. Results indicate that as the primary diffusion time increases, the voltage rises monotonically.

  6. High voltage generation from lead-free magnetoelectric coaxial nanotube arrays and their applications in nano energy harvesters

    NASA Astrophysics Data System (ADS)

    Lekha, C. S. Chitra; Kumar, Ajith S.; Vivek, S.; Rasi, U. P. Mohammed; Venkata Saravanan, K.; Nandakumar, K.; Nair, Swapna S.

    2017-02-01

    Harvesting energy from surrounding vibrations and developing self-powered portable devices for wireless and mobile electronics have recently become popular. Here the authors demonstrate the synthesis of piezoelectric energy harvesters based on nanotube arrays by a wet chemical route, which requires no sophisticated instruments. The energy harvester gives an output voltage of 400 mV. Harvesting energy from a sinusoidal magnetic field is another interesting phenomenon for which the authors fabricated a magnetoelectric energy harvester based on piezoelectric-magnetostrictive coaxial nanotube arrays. Piezoelectric K0.5Na0.5NbO3 (KNN) is fabricated as the shell and magnetostrictive CoFe2O4 (CFO) as the core of the composite coaxial nanotubes. The delivered voltages are as high as 300 mV at 500 Hz and at a weak ac magnetic field of 100 Oe. Further tailoring of the thickness of the piezoelectric and magnetic layers can enhance the output voltage by several orders. Easy, single-step wet chemical synthesis enhances the industrial upscaling potential of these nanotubes as energy harvesters. In view of the excellent properties reported here, the lead-free piezoelectric component (KNN) in this nanocomposite should be explored for eco-friendly piezoelectric as well as magnetoelectric power generators in nanoelectromechanical systems (NEMS).

  7. High voltage generation from lead-free magnetoelectric coaxial nanotube arrays and their applications in nano energy harvesters.

    PubMed

    Lekha, C S Chitra; Kumar, Ajith S; Vivek, S; Rasi, U P Mohammed; Saravanan, K Venkata; Nandakumar, K; Nair, Swapna S

    2017-02-03

    Harvesting energy from surrounding vibrations and developing self-powered portable devices for wireless and mobile electronics have recently become popular. Here the authors demonstrate the synthesis of piezoelectric energy harvesters based on nanotube arrays by a wet chemical route, which requires no sophisticated instruments. The energy harvester gives an output voltage of 400 mV. Harvesting energy from a sinusoidal magnetic field is another interesting phenomenon for which the authors fabricated a magnetoelectric energy harvester based on piezoelectric-magnetostrictive coaxial nanotube arrays. Piezoelectric K0.5Na0.5NbO3 (KNN) is fabricated as the shell and magnetostrictive CoFe2O4 (CFO) as the core of the composite coaxial nanotubes. The delivered voltages are as high as 300 mV at 500 Hz and at a weak ac magnetic field of 100 Oe. Further tailoring of the thickness of the piezoelectric and magnetic layers can enhance the output voltage by several orders. Easy, single-step wet chemical synthesis enhances the industrial upscaling potential of these nanotubes as energy harvesters. In view of the excellent properties reported here, the lead-free piezoelectric component (KNN) in this nanocomposite should be explored for eco-friendly piezoelectric as well as magnetoelectric power generators in nanoelectromechanical systems (NEMS).

  8. An MRI-Compatible High Frequency AC Resistive Heating System for Homeothermic Maintenance in Small Animals

    PubMed Central

    Gomes, Ana L.; Kinchesh, Paul; Kersemans, Veerle; Allen, Philip D.; Smart, Sean C.

    2016-01-01

    Purpose To develop an MRI-compatible resistive heater, using high frequency alternating current (AC), for temperature maintenance of anaesthetised animals. Materials and Methods An MRI-compatible resistive electrical heater was formed from narrow gauge wire connected to a high frequency (10–100 kHz) AC power source. Multiple gradient echo images covering a range of echo times, and pulse-acquire spectra were acquired with the wire heater powered using high frequency AC or DC power sources and without any current flowing in order to assess the sensitivity of the MRI acquisitions to the presence of current flow through the heater wire. The efficacy of temperature maintenance using the AC heater was assessed by measuring rectal temperature immediately following induction of general anaesthesia for a period of 30 minutes in three different mice. Results Images and spectra acquired in the presence and absence of 50–100 kHz AC through the wire heater were indistinguishable, whereas DC power created field shifts and lineshape distortions. Temperature lost during induction of anaesthesia was recovered within approximately 20 minutes and a stable temperature was reached as the mouse’s temperature approached the set target. Conclusion The AC-powered wire heater maintains adequate heat input to the animal to maintain body temperature, and does not compromise image quality. PMID:27806062

  9. High Voltage Testing. Volume 1. Test Program Report

    DTIC Science & Technology

    1982-07-15

    Discharges 44 6.3.7.1 Procedure 6.3.7.2 Instruments "vi TABLE OF CONTENTS (Continued) ,E;CTION PAGE 6.4 Test Data 45 6.4.1 Insulation Resistance 45...Partial Discharge Test 56 6.5 Discussion of Test Results 59 6.5.1 Test Objectives 63 6.5.2 Insulation Resistance 63 6.5.3 Capacitance and Dielectric...and DC Partial Discharge Test Data 61 6.4-17 Pulse Transformer AC Partial Discharge Test Data 62 6.5-1 Insulation Resistance 64 6.5-2 Dielectric

  10. High Input Voltage Discharge Supply for High Power Hall Thrusters Using Silicon Carbide Devices

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Scheidegger, Robert J.; Aulsio, Michael V.; Birchenough, Arthur G.

    2014-01-01

    A power processing unit for a 15 kW Hall thruster is under development at NASA Glenn Research Center. The unit produces up to 400 VDC with two parallel 7.5 kW discharge modules that operate from a 300 VDC nominal input voltage. Silicon carbide MOSFETs and diodes were used in this design because they were the best choice to handle the high voltage stress while delivering high efficiency and low specific mass. Efficiencies in excess of 97 percent were demonstrated during integration testing with the NASA-300M 20 kW Hall thruster. Electromagnet, cathode keeper, and heater supplies were also developed and will be integrated with the discharge supply into a vacuum-rated brassboard power processing unit with full flight functionality. This design could be evolved into a flight unit for future missions that requires high power electric propulsion.

  11. SECONDARY ELECTRON TRAJECTORIES IN HIGH-GRADIENT VACUUM INSULATORS WITH FAST HIGH-VOLTAGE PULSES

    SciTech Connect

    Chen, Y; Blackfield, D; Nelson, S D; Poole, B

    2010-04-21

    Vacuum insulators composed of alternating layers of metal and dielectric, known as high-gradient insulators (HGIs), have been shown to withstand higher electric fields than conventional insulators. Primary or secondary electrons (emitted from the insulator surface) can be deflected by magnetic fields from external sources, the high-current electron beam, the conduction current in the transmission line, or the displacement current in the insulator. These electrons are deflected either toward or away from the insulator surface and this affects the performance of the vacuum insulator. This paper shows the effects of displacement current from short voltage pulses on the performance of high gradient insulators. Generally, vacuum insulator failure is due to surface flashover, initiated by electrons emitted from a triple junction. These electrons strike the insulator surface thus producing secondary electrons, and can lead to a subsequent electron cascade along the surface. The displacement current in the insulator can deflect electrons either toward or away from the insulator surface, and affects the performance of the vacuum insulator when the insulator is subjected to a fast high-voltage pulse. Vacuum insulators composed of alternating layers of metal and dielectric, known as high-gradient insulators (HGIs), have been shown to withstand higher electric fields than conventional insulators. HGIs, being tolerant of the direct view of high-current electron and ion beams, and having desirable RF properties for accelerators, are a key enabling technology for the dielectric-wall accelerators (DWA) being developed at Lawrence Livermore National Laboratory (LLNL). Characteristically, insulator surface breakdown thresholds go up as the applied voltage pulse width decreases. To attain the highest accelerating gradient in the DWA, short accelerating voltage pulses are only applied locally, along the HGI accelerator tube, in sync with the charged particle bunch, and the effects of

  12. Pure Parallel Near-UV Observations with WFPC2 within High-Latitude ACS Survey Fields

    NASA Astrophysics Data System (ADS)

    Gardner, Jonathan

    2002-07-01

    In anticipation of the allocation of ACS high-latitude imaging survey{s}, we request a modification of the default pure parallel program for those WFPC2 parallels that fall within the ACS survey field. Rather than duplicate the red bands which will be done much better with ACS, we propose to observe in the near-ultraviolet F300W filter. These data will enable study of the rest-frame ultraviolet morphology of galaxies at 0ACS.

  13. New Approach for High-Voltage Electrical Double-Layer Capacitors Using Vertical Graphene Nanowalls with and without Nitrogen Doping.

    PubMed

    Chi, Yu-Wen; Hu, Chi-Chang; Shen, Hsiao-Hsuan; Huang, Kun-Ping

    2016-09-14

    Integrating various devices to achieve high-performance energy storage systems to satisfy various demands in modern societies become more and more important. Electrical double-layer capacitors (EDLCs), one kind of the electrochemical capacitors, generally provide the merits of high charge-discharge rates, extremely long cycle life, and high efficiency in electricity capture/storage, leading to a desirable device of electricity management from portable electronics to hybrid vehicles or even smart grid application. However, the low cell voltage (2.5-2.7 V in organic liquid electrolytes) of EDLCs lacks the direct combination of Li-ion batteries (LIBs) and EDLCs for creating new functions in future applications without considering the issue of a relatively low energy density. Here we propose a guideline, "choosing a matching pair of electrode materials and electrolytes", to effectively extend the cell voltage of EDLCs according to three general strategies. Based on the new strategy proposed in this work, materials with an inert surface enable to tolerate a wider potential window in commercially available organic electrolytes in comparison with activated carbons (ACs). The binder-free, vertically grown graphene nanowalls (GNW) and nitrogen-doped GNW (NGNW) electrodes respectively provide good examples for extending the upper potential limit of a positive electrode of EDLCs from 0.1 to 1.5 V (vs Ag/AgNO3) as well as the lower potential limit of a negative electrode of EDLCs from -2.0 V to ca. -2.5 V in 1 M TEABF4/PC (propylene carbonate) compared to ACs. This newly designed asymmetric EDLC exhibits a cell voltage of 4 V, specific energy of 52 Wh kg(-1) (ca. a device energy density of 13 Wh kg(-1)), and specific power of 8 kW kg(-1) and ca. 100% retention after 10,000 cycles charge-discharge, reducing the series number of EDLCs to enlarge the module voltage and opening the possibility for directly combining EDLCs and LIBs in advanced applications.

  14. The Dynamic Fracture Process in Rocks Under High-Voltage Pulse Fragmentation

    NASA Astrophysics Data System (ADS)

    Cho, Sang Ho; Cheong, Sang Sun; Yokota, Mitsuhiro; Kaneko, Katsuhiko

    2016-10-01

    High-voltage pulse technology has been applied to rock excavation, liberation of microfossils, drilling of rocks, oil and water stimulation, cleaning castings, and recycling products like concrete and electrical appliances. In the field of rock mechanics, research interest has focused on the use of high-voltage pulse technology for drilling and cutting rocks over the past several decades. In the use of high-voltage pulse technology for drilling and cutting rocks, it is important to understand the fragmentation mechanism in rocks subjected to high-voltage discharge pulses to improve the effectiveness of drilling and cutting technologies. The process of drilling rocks using high-voltage discharge is employed because it generates electrical breakdown inside the rocks between the anode and cathode. In this study, seven rock types and a cement paste were electrically fractured using high-voltage pulse discharge to investigate their dielectric breakdown properties. The dielectric breakdown strengths of the samples were compared with their physical and mechanical properties. The samples with dielectric fractured were scanned using a high-resolution X-ray computed tomography system to observe the fracture formation associated with mineral constituents. The fracture patterns of the rock samples were analyzed using numerical simulation for high-voltage pulse-induced fragmentation that adopts the surface traction and internal body force conditions.

  15. Status of high polarization DC high voltage Gallium Arsenide photoelectron guns

    SciTech Connect

    M. Poelker, P. Adderley, J. Brittian, J. Clark, J. Grames, J. Hansknecht, J. McCarter, M. Stutzman, R. Suleiman, K. Surles-Law

    2008-01-01

    Users receive very high beam polarization from reliable GaAs photoelectron guns at facilities worldwide. Satisfaction with beam quality (and a number of lab closures) has reduced the level of polarized source R&D from the heyday of 1990s. However, new experiments and new accelerators proposals including high current unpolarized machines, require GaAs photoguns with capabilities that exceed today's state of the art. This submission describes the capabilities of today's high- polarization DC high voltage GaAs photoguns and discusses issues that must be addressed to meet new demands.

  16. A high voltage electrical power system for low Earth orbit applications

    NASA Technical Reports Server (NTRS)

    Lanier, J. R., Jr.; Bush, J. R., Jr.

    1984-01-01

    The results of testing a high voltage electrical power system (EPS) breadboard using high voltage power processing equipment developed at Marshall Space Flight Center and Ni-Cd batteries are discussed. These test results are used to extrapolate to an efficient, reliable, high capacity EPS for near term low Earth orbit, high power applications. EPS efficiencies, figures of merit, and battery reliability with a battery protection and reconditioning circuit are presented.

  17. Light-weight DC to very high voltage DC converter

    DOEpatents

    Druce, R.L.; Kirbie, H.C.; Newton, M.A.

    1998-06-30

    A DC-DC converter capable of generating outputs of 100 KV without a transformer comprises a silicon opening switch (SOS) diode connected to allow a charging current from a capacitor to flow into an inductor. When a specified amount of charge has flowed through the SOS diode, it opens up abruptly; and the consequential collapsing field of the inductor causes a voltage and current reversal that is steered into a load capacitor by an output diode. A switch across the series combination of the capacitor, inductor, and SOS diode closes to periodically reset the SOS diode by inducing a forward-biased current. 1 fig.

  18. Light-weight DC to very high voltage DC converter

    DOEpatents

    Druce, Robert L.; Kirbie, Hugh C.; Newton, Mark A.

    1998-01-01

    A DC-DC converter capable of generating outputs of 100 KV without a transformer comprises a silicon opening switch (SOS) diode connected to allow a charging current from a capacitor to flow into an inductor. When a specified amount of charge has flowed through the SOS diode, it opens up abruptly; and the consequential collapsing field of the inductor causes a voltage and current reversal that is steered into a load capacitor by an output diode. A switch across the series combination of the capacitor, inductor, and SOS diode closes to periodically reset the SOS diode by inducing a forward-biased current.

  19. Low Voltage, High Speed & High Contrast Electrooptical Thin Film Devices for Free Space Optical Interconnects

    DTIC Science & Technology

    2007-11-02

    Space Optical Interconnects (FSOI) for future ultra fast computing /communications systems. Fabry - Perot thin film Electrooptic(EO) modulators (STFP...low modulation voltages.This is enabled by Fabry - Perot (F-P) etalons of the EO film as modulators either in the reflection or transmission mode. In...Tuning’ of a F-P EOLM with respect to thickness variation for high extinction ratios. Demonstration of ’proof-of concept’ of a ’Self Tuned Fabry - Perot

  20. Simple sub-50-ps rise-time high voltage generator

    NASA Astrophysics Data System (ADS)

    Kekez, M. M.

    1991-12-01

    This article relates to the development of an ultrafast (nanoseconds-picoseconds time scale) compact system(s) readily applicable to the field of EMP/radiation, x-ray-induced nondestructive testing, plasma fusion (energy) experiments, bioelectromagnetic (food-drug) sterilization, drivers for x-ray preionized XeCl laser and similar applications. The present work shows that the Marx and the Pulse forming section can be integrated into a single unit. The stray capacitance present in each stage acts as a peaking capacitor. For a charging voltage per stage of <40 kV, the rise time of the output pulse is below 50 ps at 200 kV into a 100-Ω load. Work is in progress to extend the voltage amplitude to 1.6 MV while maintaining the relative pulse waveform. With a contemporary optical diagnostic technique it is believed that the present concept may achieve 1-10 ps rise-time pulses at a megavolt level in ``smart gas mixtures.'' In addition a solution for the classical peaking circuit has been obtained and presented in the Appendix.

  1. A compact, high-voltage pulsed charging system based on an air-core pulse transformer.

    PubMed

    Zhang, Tianyang; Chen, Dongqun; Liu, Jinliang; Liu, Chebo; Yin, Yi

    2015-09-01

    Charging systems of pulsed power generators on mobile platforms are expected to be compact and provide high pulsed power, high voltage output, and high repetition rate. In this paper, a high-voltage pulsed charging system with the aforementioned characteristics is introduced, which can be applied to charge a high-voltage load capacitor. The operating principle of the system and the technical details of the components in the system are described in this paper. The experimental results show that a 600 nF load capacitor can be charged to 60 kV at 10 Hz by the high-voltage pulsed charging system for a burst of 0.5 s. The weight and volume of the system are 60 kg and 600 × 500 × 380 mm(3), respectively.

  2. A compact, high-voltage pulsed charging system based on an air-core pulse transformer

    NASA Astrophysics Data System (ADS)

    Zhang, Tianyang; Chen, Dongqun; Liu, Jinliang; Liu, Chebo; Yin, Yi

    2015-09-01

    Charging systems of pulsed power generators on mobile platforms are expected to be compact and provide high pulsed power, high voltage output, and high repetition rate. In this paper, a high-voltage pulsed charging system with the aforementioned characteristics is introduced, which can be applied to charge a high-voltage load capacitor. The operating principle of the system and the technical details of the components in the system are described in this paper. The experimental results show that a 600 nF load capacitor can be charged to 60 kV at 10 Hz by the high-voltage pulsed charging system for a burst of 0.5 s. The weight and volume of the system are 60 kg and 600 × 500 × 380 mm3, respectively.

  3. Realization of a high voltage generator by series connection of floating modules.

    PubMed

    Antonini, P; Benato, A; Borsato, E; Carugno, G; Gobbo, R; Montecassiano, F; Pegoraro, M; Pesavento, G; Zago, M; Zotto, P

    2017-02-01

    A high voltage generator built by a series connection of 100 kV modules was produced. The series connection feasibility is ensured by the inherent floating character of each module which is wireless powered by high efficiency photovoltaic cells illuminated by a laser system. Each module is equipped with a control and monitoring board allowing excellent stabilization of the high voltage output. The performance of the system in terms of reliability, stability, and efficiency was evaluated. In particular using a three module setup, we achieved a maximum voltage of 234 kV with stability better than 0.1%.

  4. Integrated high-voltage modulator for plasma immersion ion implantation with an RF plasma

    NASA Astrophysics Data System (ADS)

    Rogozin, A. I.; Astrelin, V. T.; Richter, E.; Möller, W.

    2003-08-01

    The present investigation focuses on further development of the plasma based high-voltage modulator for plasma immersion ion implantation devices. The modulator produces high-voltage pulses using grid controlled extraction of electrons from the plasma, which is used for the ion implantation. The operation features of the modulator in connection with a radio-frequency plasma are described. The device is applied to nitrogen ion implantations of stainless steel. The results indicate considerable hardness improvement, which confirms the practical utility of the high-voltage modulator.

  5. High-voltage crowbar protection for the large CDF axial drift chamber

    SciTech Connect

    Binkley, M.; Mukherjee, A.; Stuermer, W.; Wagner, R.L.; /Fermilab

    2004-01-01

    The Central Outer Tracker (COT) is a big cylindrical drift chamber that provides charged particle tracking for the Collider Detector at Fermilab experiment. To protect the COT, the large stored energy in the high voltage system needs to be removed quickly when a problem is sensed. For the high voltage switch, a special-order silicon-controlled-rectifier was chosen over more readily available integrated gate bipolar transistors because of layout and reliability questions. The considerations concerning the high voltage switch, the prototype performance, and the experience of more than two years of running are described.

  6. Cervicothoracic spinal cord and pontomedullary injury secondary to high-voltage electrocution: a case report

    PubMed Central

    2012-01-01

    Introduction High-voltage electrical injuries are uncommonly reported and may predispose to both immediate and delayed neurologic complications. Case presentation We report the case of a 43-year-old Caucasian man who experienced a high-voltage electrocution injury resulting in ischemic myelopathy and secondary paraparesis. Conclusion High-voltage electrocution injuries are a serious problem with potential for both immediate and delayed neurologic sequelae. The existing literature regarding effective treatment of neurologic complications is limited. Long-term follow-up and multidisciplinary management of these patients is required. PMID:22974044

  7. High voltage and high current density vertical GaN power diodes

    SciTech Connect

    Fischer, A. J.; Dickerson, J. R.; Armstrong, A. M.; Moseley, M. W.; Crawford, M. H.; King, M. P.; Allerman, A. A.; Kaplar, R. J.; van Heukelom, M. S.; Wierer, J. J.

    2016-01-01

    We report on the realization of a GaN high voltage vertical p-n diode operating at > 3.9 kV breakdown with a specific on-resistance < 0.9 mΩ.cm2. Diodes achieved a forward current of 1 A for on-wafer, DC measurements, corresponding to a current density > 1.4 kA/cm2. An effective critical electric field of 3.9 MV/cm was estimated for the devices from analysis of the forward and reverse current-voltage characteristics. Furthermore this suggests that the fundamental limit to the GaN critical electric field is significantly greater than previously believed.

  8. High voltage and high current density vertical GaN power diodes

    DOE PAGES

    Fischer, A. J.; Dickerson, J. R.; Armstrong, A. M.; ...

    2016-01-01

    We report on the realization of a GaN high voltage vertical p-n diode operating at > 3.9 kV breakdown with a specific on-resistance < 0.9 mΩ.cm2. Diodes achieved a forward current of 1 A for on-wafer, DC measurements, corresponding to a current density > 1.4 kA/cm2. An effective critical electric field of 3.9 MV/cm was estimated for the devices from analysis of the forward and reverse current-voltage characteristics. Furthermore this suggests that the fundamental limit to the GaN critical electric field is significantly greater than previously believed.

  9. A high voltage power supply for the AE-C and D low energy electron experiment

    NASA Technical Reports Server (NTRS)

    Gillis, J. A.

    1974-01-01

    A description is given of the electrical and mechanical design and operation of high voltage power supplies for space flight use. The supply was used to generate the spiraltron high voltage for low energy electron experiment on AE-C and D. Two versions of the supply were designed and built; one design is referred to as the low power version (AE-C) and the other as the high power version (AE-D). Performance is discussed under all operating conditions.

  10. High voltage space plasma interactions. [charging the solar power satellites

    NASA Technical Reports Server (NTRS)

    Mccoy, J. E.

    1980-01-01

    Two primary problems resulted from plasma interactions; one of concern to operations in geosynchronous orbit (GEO), the other in low orbits (LEO). The two problems are not the same. Spacecraft charging has become widely recognized as a problem, particularly for communications satellites operating in GEO. The very thin thermal plasmas at GEO are insufficient to bleed off voltage buildups due to higher energy charged particle radiation collected on outer surfaces. Resulting differential charging/discharging causes electrical transients, spurious command signals and possible direct overload damage. An extensive NASA/Air Force program has been underway for several years to address this problem. At lower altitudes, the denser plasmas of the plasmasphere/ionosphere provide sufficient thermal current to limit such charging to a few volts or less. Unfortunately, these thermal plasma currents which solve the GEO spacecraft charging problem can become large enough to cause just the opposite problem in LEO.

  11. LEO high voltage solar array arcing response model

    NASA Astrophysics Data System (ADS)

    Metz, Roger N.

    1987-02-01

    A series of mathematical models were developed that describe the electrical behavior of a large solar cell array floating electrically in the low Earth orbit (LEO) space plasma and struck by an arc at a point of negative bias. There are now three models in this series: ARCII, which is a fully analytical, linearized model; ARCIII, which is an extension of ARCIII that includes solar cell inductance as well as load reactance; Nonlinear ARC, which is a numerical model able to treat effects such as non-linearized, i.e., logarithmic solar cell I/V characteristics, conductance switching as a solar cell crosses plasma ground on a voltage excursion and non-ohmic plasma leakage current collection.

  12. LEO high voltage solar array arcing response model

    NASA Technical Reports Server (NTRS)

    Metz, Roger N.

    1987-01-01

    A series of mathematical models were developed that describe the electrical behavior of a large solar cell array floating electrically in the low Earth orbit (LEO) space plasma and struck by an arc at a point of negative bias. There are now three models in this series: ARCII, which is a fully analytical, linearized model; ARCIII, which is an extension of ARCIII that includes solar cell inductance as well as load reactance; Nonlinear ARC, which is a numerical model able to treat effects such as non-linearized, i.e., logarithmic solar cell I/V characteristics, conductance switching as a solar cell crosses plasma ground on a voltage excursion and non-ohmic plasma leakage current collection.

  13. High voltage conditioning of the electrostatic deflector of MARA

    NASA Astrophysics Data System (ADS)

    Partanen, J.; Johansen, U.; Sarén, J.; Tuunanen, J.; Uusitalo, J.

    2016-06-01

    MARA is a new recoil mass separator in the Accelerator Laboratory of University of Jyväskylä (JYFL-ACCLAB) with a mass resolving power of 250 and an ion-optical configuration of QQQDEDM . In this paper the construction, control and conditioning of its electrostatic deflector are described. The deflector was designed for voltages up to 500 kV accross the gap, corresponding to a 3.6 MV/m field, to accomodate fusion reactions with inverse kinematics. Titanium electrodes with a beam dump opening in the anode are used. The conditioning procedure, which has been used repeatedly to take the deflector to 450 kV, is described, along with the safety systems and precautions that are in place.

  14. Energy spectrum of corona impulses generated from insulated wires under high a.c. voltages

    NASA Technical Reports Server (NTRS)

    Doreswamy, C. V.; Padiyar, K. R.; Crowell, C. S.

    1978-01-01

    This paper suggests methods for calculating spectral energy densities of corona impulses generated from insulated conductors. The calculation is based on the data obtained from the measurement of corona pulse waveforms, repetition rates and relevant statistical properties of corona impulses.

  15. Solar photovoltaic charging of high voltage nickel metal hydride batteries using DC power conversion

    NASA Astrophysics Data System (ADS)

    Kelly, Nelson A.; Gibson, Thomas L.

    There are an increasing number of vehicle choices available that utilize batteries and electric motors to reduce tailpipe emissions and increase fuel economy. The eventual production of electricity and hydrogen in a renewable fashion, such as using solar energy, can achieve the long-term vision of having no tailpipe environmental impact, as well as eliminating the dependence of the transportation sector on dwindling supplies of petroleum for its energy. In this report we will demonstrate the solar-powered charging of the high-voltage nickel-metal hydride (NiMH) battery used in the GM 2-mode hybrid system. In previous studies we have used low-voltage solar modules to produce hydrogen via the electrolysis of water and to directly charge lithium-ion battery modules. Our strategy in the present work was to boost low-voltage PV voltage to over 300 V using DC-DC converters in order to charge the high-voltage NiMH battery, and to regulate the battery charging using software to program the electronic control unit supplied with the battery pack. A protocol for high-voltage battery charging was developed, and the solar to battery charging efficiency was measured under a variety of conditions. We believe this is the first time such high-voltage batteries have been charged using solar energy in order to prove the concept of efficient, solar-powered charging for battery-electric vehicles.

  16. Development of a New Class of Low Cost, High Frequency Link Direct DC to AC Converters for Solid Oxide Fuel Cells (SOFC)

    SciTech Connect

    Prasad Enjeti; J.W. Howze

    2003-12-01

    This project proposes to design and develop a new class of power converters (direct DC to AC) to drastically improve performance and optimize the cost, size, weight and volume of the DC to AC converter in SOFC systems. The proposed topologies employ a high frequency link; direct DC to AC conversion approach. The direct DC to AC conversion approach is more efficient and operates without an intermediate dc-link stage. The absence of the dc-link, results in the elimination of bulky, aluminum electrolytic capacitors, which in turn leads to a reduction in the cost, volume, size and weight of the power electronic converter. The feasibility of two direct DC to AC converter topologies and their suitability to meet SECA objectives will be investigated. Laboratory proto-type converters (3-5kW) will be designed and tested in Phase-1. A detailed design trade-off study along with the test results will be available in the form of a report for the evaluation of SECA Industrial partners. This project proposes to develop a new and innovative power converter technology suitable for Solid Oxide Fuel Cell (SOFC) power systems in accordance with SECA objectives. The proposed fuel cell inverter (FCI) employs state of the art power electronic devices configured in two unique topologies to achieve direct conversion of DC power (24-48V) available from a SOFC to AC power (120/240V, 60Hz) suitable for utility interface and powering stand alone loads. The primary objective is to realize cost effective fuel cell converter, which operates under a wide input voltage range, and output load swings with high efficiency and improved reliability.

  17. A high voltage pulse generator for the mod-anode of the cluster klystron

    SciTech Connect

    Zhao, Yongxiang; Wang, Hai-peng

    1995-10-01

    A high voltage pulse generator using Zarem type was developed. The advantage of the Zarem type circuit is that it does not require a matched load. In our case the purser is dedicated to drive a mod-anode, which is a capacitive load. Therefore the Zarem type circuit is desirable. This report addresses systematically the R & D work, including the basic Principle and the designing consideration, the low voltage and high voltage experiments. A lot of irregular phenomena were observed, including ringing, pulse ``skirt`` and ``deficiency``. Also addressed are the analyses, simulation and solutions.

  18. A multistep ac electrodeposition method to prepare Co nanowires with high coercivity

    NASA Astrophysics Data System (ADS)

    Wang, Pangpang; Gao, Lumei; Qiu, Zhiyong; Song, Xiaoping; Wang, Liqun; Yang, Sen; Murakami, Ri-ichi

    2008-09-01

    It is known that the ac electrodeposition method with low current density can grow compact metal nanowires, but the length of those nanowires is very short. In contrast, the ac electrodeposition method with high current density can grow long metal nanowires. However these long nanowires are not compact and contain lots of defects. In this paper, we describe a multistep ac electrodeposition method to fabricate long metal nanowires with compact structure uniformly filled upon a porous anodic aluminum oxide template. Using this method, Co nanowires with high coercivity (Hc ∥) and remnant ratio (Mr/Ms) have been prepared under relatively low deposition current density. The Co nanowires exhibited obvious magnetic anisotropy with the easy axis along the axial direction of nanowires. The maximal Hc ∥ (2900 Oe) and Mr/Ms (0.95) were optimal for the perpendicular magnetic recording materials. The magnetic microstructure of Co nanowires is also discussed in this paper.

  19. Project resumes: biological effects from electric fields associated with high-voltage transmission lines

    SciTech Connect

    1980-01-01

    Abstracts of research projects are presented in the following areas: measurements and special facilities; cellular and subcellular studies; physiology; behavior; environmental effects; modeling, scaling and dosimetry; and high voltage direct current. (ACR)

  20. Inexpensive system protects megawatt resistance-heating furnace against high-voltage surges

    NASA Technical Reports Server (NTRS)

    Stearns, E. J.

    1971-01-01

    Coolant gas extinguishes arcing across the break in a heater element. Air-gap shunt which bypasses high voltage impressed across the circuit prevents damage if the resistance elements break and open the inductive circuit.

  1. HIGH VOLTAGE ENVIRONMENTAL APPLICATIONS, INC.ELECTRON BEAM TECHNOLOGY - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    This report evaluates a high-voltage electron beam (E-beam) technology's ability to destroy volatile organic compounds (VOCs) and other contaminants present in liquid wastes. Specifically, this report discusses performance and economic data from a Superfund Innovative Technology...

  2. Lithium-Ion Electrolytes with Improved Safety Tolerance to High Voltage Systems

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor); Prakash, Surya G. (Inventor); Krause, Frederick C. (Inventor)

    2015-01-01

    The invention discloses various embodiments of electrolytes for use in lithium-ion batteries, the electrolytes having improved safety and the ability to operate with high capacity anodes and high voltage cathodes. In one embodiment there is provided an electrolyte for use in a lithium-ion battery comprising an anode and a high voltage cathode. The electrolyte has a mixture of a cyclic carbonate of ethylene carbonate (EC) or mono-fluoroethylene carbonate (FEC) co-solvent, ethyl methyl carbonate (EMC), a flame retardant additive, a lithium salt, and an electrolyte additive that improves compatibility and performance of the lithium-ion battery with a high voltage cathode. The lithium-ion battery is charged to a voltage in a range of from about 2.0 V (Volts) to about 5.0 V (Volts).

  3. A prototype of a high-voltage platform for the KRION ion source

    NASA Astrophysics Data System (ADS)

    Alexandrov, V. S.; Donets, E. E.; Konnov, G. I.; Kosukhin, V. V.; Sidorova, V. O.; Sidorov, A. I.; Shvetsov, V. S.; Trubnikov, G. V.

    2014-09-01

    A high-voltage platform that has been developed for the KRION ion source is described. The platform design concept is explained. The calculations that have been performed of the influence of the design and materials on the source magnetic field make it possible to define a range of materials suitable for manufacturing the platform. The major components of the high-voltage platform, such as a high-voltage power supplier, and decoupling insulators of the high-voltage power source, and the main and supplementary platforms, are chosen and described. It is determined that, to exclude electric breakdowns and corona discharges, one should use an electrically shielded channel with a cryocooler and power supplies for the KRION-source coupling cables.

  4. Spontaneous aggregation of lithium ion coordination polymers in fluorinated electrolytes for high-voltage batteries

    DOE PAGES

    Malliakas, Christos D.; Leung, Kevin; Pupek, Krzysztof Z.; ...

    2016-03-31

    Fluorinated carbonate solvents are pursued as liquid electrolytes for high-voltage Li-ion batteries. We report aggregation of [Li+(FEC)3]n polymer species from fluoroethylene carbonate containing electrolytes and scrutinized the causes for this behavior.

  5. Spontaneous aggregation of lithium ion coordination polymers in fluorinated electrolytes for high-voltage batteries.

    PubMed

    Malliakas, Christos D; Leung, Kevin; Pupek, Krzysztof Z; Shkrob, Ilya A; Abraham, Daniel P

    2016-04-28

    Fluorinated carbonates are pursued as liquid electrolyte solvents for high-voltage Li-ion batteries. Here we report aggregation of [Li(+)(FEC)3]n polymer species in fluoroethylene carbonate containing electrolytes and scrutinize the causes for this behavior.

  6. Evaluation of modern IGBT-modules for hard-switched AC/DC/AC converters

    SciTech Connect

    Blaabjerg, F.; Pedersen, J.K.; Jaeger, U.

    1995-12-31

    The development of IGBT devices is still producing faster devices with lower losses. The applications become more advanced like a complete hard-switched AC/DC/AC converter with almost clean input current and regenerating capabilities. This paper will first focus on a detailed characterization and comparison of eight different IGBT-modules representing state-of-the-art for both PT and NPT technologies. The voltage level of the devices is 1,200V and 1,600V/1,700V. The characterization is done on an advanced measurement system which is briefly described. The characterization is based on static and dynamic tests for both IGBT and the diodes in the IGBT-modules at a junction temperature at 125 C. The comparison is first done directly based on conduction losses and switching losses, and later the measurements are used in a loss model for a complete AC/DC/AC converter application. In the AC/DC/AC converter the power losses are modelled, and different operating conditions are compared like different voltage levels in the DC-link. It is concluded dependent on operation conditions different devices will be preferable, but the high voltage devices have the highest losses even at a high operating voltage.

  7. High-voltage power supply system for detecting equipment of DSS experiment at JINR Nuclotron

    NASA Astrophysics Data System (ADS)

    Piyadin, S. M.; Ladygin, V. P.; Pilyar, A. V.; Reznikov, S. G.; Janek, M.

    2017-01-01

    The eight-channel high-voltage power supply system based on using the Wenzel Elektronik N1130 module is described. The characteristics of 8DAC-12 and 8ADC-14 types control modules of CAMAC standard designed for high-voltage systems are presented. This system was successfully used to provide the power supply of scintillation detectors in the experiments on the study of the structure of light nuclei at JINR Nuclotron.

  8. The effects of high voltage transmission lines on the health of adjacent resident populations.

    PubMed Central

    Haupt, R C; Nolfi, J R

    1984-01-01

    A community health survey of 438 individuals was taken to detect health problems related to high voltage electrical transmission among an adjacent residential population. Results revealed no significant or consistent relationships between exposure to a high-voltage DC power line and the perceived health problems that were measured. The sample was not, however, large enough to draw statistically significant conclusions regarding possible health effects with a very low incidence. PMID:6689848

  9. Cermet insert high voltage holdoff for ceramic/metal vacuum devices

    DOEpatents

    Ierna, William F.

    1987-01-01

    An improved metal-to-ceramic seal is provided wherein the ceramic body of the seal contains an integral region of cermet material in electrical contact with the metallic member, e.g., an electrode, of the seal. The seal is useful in high voltage vacuum devices, e.g., vacuum switches, and increases the high-voltage holdoff capabilities of such devices. A method of fabricating such seals is also provided.

  10. Cermet insert high voltage holdoff improvement for ceramic/metal vacuum devices

    DOEpatents

    Ierna, W.F.

    1986-03-11

    An improved metal-to-ceramic seal is provided wherein the ceramic body of the seal contains an integral region of cermet material in electrical contact with the metallic member, e.g., an electrode, of the seal. The seal is useful in high voltage vacuum devices, e.g., vacuum switches, and increases the high-voltage holdoff capabilities of such devices. A method of fabricating such seals is also provided.

  11. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    SciTech Connect

    Sulaeman, M. Y.; Widita, R.

    2014-09-30

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20–100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of −1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.

  12. Modal analysis of multiterminal high voltage direct current transmission

    SciTech Connect

    Dagle, J.E.

    1993-12-01

    This report describes a first phase of effort in providing the Bonneville Power Administration (BPA) with comprehensive tools for model-based analysis of interactions between the Pacific HVDC Intertie (PDCI) and the alternating current (ac) system containing it. The work builds upon the transient stability model coded by Control Technologies, Inc. (CTI) for use in the Electric Power Research Institute (EPRI) Extended Transient-Midterm Stability Package (ETMSP). The general thrust of the effort is that CM`s model be interfaced to and tested against all tools provided by EPRI`s Power System Analysis Package (PSAPAC), and that these tools be used to investigate options for PDCI use in testing and control of western system dynamics. This will require refinements to the tools, the model, and western system case data. The PSAPAC tool for eigenanalysis is the Small Signal Stability Package (SSSP), useful for performing modal analysis of the multiterminal HVDC (MTDC) system. Such analyses are necessary to design and test an expanded role of the PDCI for power system control. This study focused on testing the application of the MTDC with SSSP. Modifications were made to enable SSSP to read the MTDC model. The PSAPAC and SSSP tools and the MTDC model were evaluated for accuracy and consistency using several modal analysis techniques, including Prony analysis on ETMSP-generated data. Although SSSP appears to be useful in analyzing the PDCI modes, inconsistencies limit the overall usefulness of that approach. The modal frequencies and damping identified by SSSP are inconsistent, indicating SSSP has difficulty analyzing the MTDC representation of the dc systems. The differences between the new and existing models can be used to identify the particular modeling issues associated with SSSP which are presently resulting in inconsistent results.

  13. Low Voltage High Precision Spatial Light ModulatorsFinal Report

    SciTech Connect

    Papavasiliou, A P

    2005-02-09

    The goal of this project was to make LLNL a leader in Spatial Light Modulators (SLMs) by developing the technology that will be needed by the next generation of SLMs. We would use new lower voltage actuators and bond those actuators directly to controlling circuitry to break the fundamental limitations that constrain current SLM technology. This three-year project was underfunded in the first year and not funded in the second year. With the funding that was available, we produced actuators and designs for the controlling circuitry that would have been integrated in the second year. Spatial light modulators (SLMs) are arrays of tiny movable mirrors that modulate the wave-fronts of light. SLMs can correct aberrations in incoming light for adaptive optics or modulate light for beam control, optical communication and particle manipulation. MicroElectroMechanical Systems (MEMS) is a technology that utilizes the microfabrication tools developed by the semiconductor industry to fabricate a wide variety of tiny machines. The first generation of MEMS SLMs have improved the functionality of SLMs while drastically reducing per pixel cost making arrays on the order of 1000 pixels readily available. These MEMS SLMs however are limited by the nature of their designs to be very difficult to scale above 1000 pixels and have very limited positioning accuracy. By co-locating the MEMS mirrors with CMOS electronics, we will increase the scalability and positioning accuracy. To do this we will have to make substantial advances in SLM actuator design, and fabrication.

  14. The design of nanosecond high-voltage ultra wide band bipolar pulse generator

    NASA Astrophysics Data System (ADS)

    Shi, Jincheng; Liu, Baiyu; Gou, Yongsheng

    2015-10-01

    The design of nanosecond high-voltage ultra wide band bipolar pulse generator is shown in this paper. By analyzing the principle of the avalanche diode and doing the research of the related circuit acting on the pulse, this generator can generate a nanosecond high-voltage ultra wide band bipolar pulse, which its peak-to-peak voltage is about 400V and the pulse time width is 2ns. The experimental results showed a good agreement with the simulation results. A negative unipolar high-voltage pulse, having a fast falling-edge and a slowly exponential rising-edge, was firstly generated by the MARX circuit consist of the avalanche diodes. Then the use of the high speed avalanche diode could generate a negative unipolar high-voltage narrow Gaussian pulse, having a fast falling-edge and a fast rising-edge. In an attempt to cancel the reflection of the pulse made by the impedance mismatch, the circuit introduced the capacitor(C) and inductor(L) by calculating. Eventually a nanosecond high-voltage ultra wide band bipolar pulse could be got after going through the differentiator consist of introducing the right resistance, capacitance and inductance by calculation and experiment, and a filter with 2GHz bandwidth makes the bipolar smooth and perfect.

  15. 30 CFR 75.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... resistance grounded systems. 75.803 Section 75.803 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.803 Fail safe ground check circuits on high-voltage resistance grounded systems. On and after September 30, 1970, high-voltage, resistance grounded systems shall include a...

  16. 30 CFR 75.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... resistance grounded systems. 75.803 Section 75.803 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.803 Fail safe ground check circuits on high-voltage resistance grounded systems. On and after September 30, 1970, high-voltage, resistance grounded systems shall include a...

  17. 30 CFR 75.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... resistance grounded systems. 75.803 Section 75.803 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.803 Fail safe ground check circuits on high-voltage resistance grounded systems. On and after September 30, 1970, high-voltage, resistance grounded systems shall include a...

  18. 30 CFR 75.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... resistance grounded systems. 75.803 Section 75.803 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.803 Fail safe ground check circuits on high-voltage resistance grounded systems. On and after September 30, 1970, high-voltage, resistance grounded systems shall include a...

  19. 30 CFR 75.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... resistance grounded systems. 75.803 Section 75.803 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.803 Fail safe ground check circuits on high-voltage resistance grounded systems. On and after September 30, 1970, high-voltage, resistance grounded systems shall include a...

  20. Radio and television interference caused by corona discharges from high-voltage transmission lines

    SciTech Connect

    Sarmadi, M.

    1996-11-01

    Increase in power utility loads in industrialized countries, as well as developing countries, demands a higher level of transmission line voltage. Radio interference (RI) problems have been determined to be a limiting factor in selecting the size of transmission line conductors. Transmission line noise is primarily caused by corona discharges in the immediate vicinity of the conductor. It has been observed that discharges occur during both half-cycles of the applied voltage, but positive corona is usually predominant at AM radio frequencies range with practical high-voltage and extra high-voltage transmission lines. The corona radio noise effect is highly dependent upon the presence of particles on the surface of the conductor and the increase of the electrical gradient beyond the breakdown value of the air. Therefore, corona radio noise varies significantly with the weather and atmospheric conditions and generally increases by 10 to 30 dB in foul weather.