Science.gov

Sample records for ac impedance measurements

  1. Microfabricated Thin Film Impedance Sensor & AC Impedance Measurements

    PubMed Central

    Yu, Jinsong; Liu, Chung-Chiun

    2010-01-01

    Thin film microfabrication technique was employed to fabricate a platinum based parallel-electrode structured impedance sensor. Electrochemical impedance spectroscopy (EIS) and equivalent circuit analysis of the small amplitude (±5 mV) AC impedance measurements (frequency range: 1 MHz to 0.1 Hz) at ambient temperature were carried out. Testing media include 0.001 M, 0.01 M, 0.1 M NaCl and KCl solutions, and alumina (∼3 μm) and sand (∼300 μm) particulate layers saturated with NaCl solutions with the thicknesses ranging from 0.6 mm to 8 mm in a testing cell, and the results were used to assess the effect of the thickness of the particulate layer on the conductivity of the testing solution. The calculated resistances were approximately around 20 MΩ, 4 MΩ, and 0.5 MΩ for 0.001 M, 0.01 M, and 0.1 M NaCl solutions, respectively. The presence of the sand particulates increased the impedance dramatically (6 times and 3 times for 0.001 M and 0.1 M NaCl solutions, respectively). A cell constant methodology was also developed to assess the measurement of the bulk conductivity of the electrolyte solution. The cell constant ranged from 1.2 to 0.8 and it decreased with the increase of the solution thickness. PMID:22219690

  2. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  3. Construction of Tunnel Diode Oscillator for AC Impedance Measurement

    NASA Astrophysics Data System (ADS)

    Shin, J. H.; Kim, E.

    2014-03-01

    We construct a tunnel diode oscillator (TDO) to study electromagnetic response of a superconducting thin film. Highly sensitive tunnel diode oscillators allow us to detect extremely small changes in electromagnetic properties such as dielectric constant, ac magnetic susceptibility and magnetoresistance. A tunnel diode oscillator is a self-resonant oscillator of which resonance frequency is primarily determined by capacitance and inductance of a resonator. Amplitude of the signal depends on the quality factor of the resonator. The change in the impedance of the sample electromagnetic coupled to one of inductors in the resonator alters impedance of the inductor, and leads to the shift in the resonance frequency and the change of the amplitude.

  4. Corrosion loss measurement of boiler tubes in a waste incineration environment by A.C. impedance method

    SciTech Connect

    Matsunaga, Yasuo; Nakagawa, Kiyokazu

    1997-08-01

    To monitor the corrosion rate of materials of boiler tubes in simulated waste incineration environment, A.C. impedance measurements were carried out for Alloy 625, SUS347H and STBA24 embedded in NaCl- KCl- NaSO{sub 4}-K{sub 2}SO{sub 4}-Al{sub 2}O{sub 3} mixed synthetic ash deposit at 600 C. Though the ash includes some non-melting component, A.C. impedance measurements can be applied to evaluate corrosion rates in the same manner the corrosion of materials immersed in molten salts. Supposing the difference of impedance between the low frequency and high frequency ({Delta}R) as polarization resistance, a linear relation was obtained between 1/{Delta}R and corrosion losses in air, air-0.1 vol.% HCl and air-10vol.% H{sub 2}O atmospheres. The HCl addition in accelerated the corrosion of all specimens by reducing basicity of the molten salt. On the other hand, the H{sub 2}O addition reduced the corrosion of Alloy 625, but it accelerated the corrosion of SUS347H and STBA24.

  5. Evaluation of the electrode performance for PAFC by using acid absorption, acceleration and ac-impedance measurement

    SciTech Connect

    Kim, Chang-Soo; Song, Rak-Hyun; Choi, Byung-Woo

    1996-12-31

    In PAFC, the degradation on cathode electrode caused by carbon corrosion, platinum dissolution and growth is especially severe. An acceleration test is a good technique for evaluating the degradation of electrode performance, because it does not need long time. Coleman et al used thermal cycling and on-off cycling as an acceleration test. Song et al showed that hydrogen shortage decreased the electrode performance more rapidly than that of air shortage in gas shortage test. Honji et al reported that the rate of coarsening of Pt particle is rapid in open circuit potential and this is one of major causes on the performance degradation of electrode. The cathode performance has been studied by using acid absorption, acceleration and ac-impedance measurements as functions of the polytetrafluoroethylene (PTFE) contents and sintering temperatures of the electrode.

  6. AC-impedance measurements during thermal runaway process in several lithium/polymer batteries

    NASA Astrophysics Data System (ADS)

    Uchida, I.; Ishikawa, H.; Mohamedi, M.; Umeda, M.

    In this work, we present a set of thermal characterization experiments of charged prismatic polymer lithium-ion battery (PLB) comparatively with those of a lithium-ion battery (LIB). These cells at different state of charge (SOC) were tested inside an accelerated rate calorimeter (ARC) to determine the onset-of-thermal runaway (OTR) temperatures. In addition, the thermally activated components of these cells were followed by monitoring the impedance (at 1 kHz) and the open-circuit voltage (OCV) as a function of temperature. An increase in the impedance was observed at around 133 °C corresponding to the polyethylene separator shutdown. Above 140 °C, the OCV dropped to zero indicating an internal short-circuit due the separator meltdown suggesting that the pinholes created in the separator at meltdown are large enough to create an internal short-circuit.

  7. AC impedance study of degradation of porous nickel battery electrodes

    NASA Technical Reports Server (NTRS)

    Lenhart, Stephen J.; Macdonald, D. D.; Pound, B. G.

    1987-01-01

    AC impedance spectra of porous nickel battery electrodes were recorded periodically during charge/discharge cycling in concentrated KOH solution at various temperatures. A transmission line model (TLM) was adopted to represent the impedance of the porous electrodes, and various model parameters were adjusted in a curve fitting routine to reproduce the experimental impedances. Degradation processes were deduced from changes in model parameters with electrode cycling time. In developing the TLM, impedance spectra of planar (nonporous) electrodes were used to represent the pore wall and backing plate interfacial impedances. These data were measured over a range of potentials and temperatures, and an equivalent circuit model was adopted to represent the planar electrode data. Cyclic voltammetry was used to study the characteristics of the oxygen evolution reaction on planar nickel electrodes during charging, since oxygen evolution can affect battery electrode charging efficiency and ultimately electrode cycle life if the overpotential for oxygen evolution is sufficiently low.

  8. Using ac dipoles to localize sources of beam coupling impedance

    NASA Astrophysics Data System (ADS)

    Biancacci, N.; Tomás, R.

    2016-05-01

    The beam coupling impedance is one of the main sources of beam instabilities and emittance blow up in circular accelerators. A refined machine impedance evaluation is therefore required in order to understand and model intensity dependent effects and instabilities that may limit the machine performance. For this reason, many impedance source localization techniques have been developed. In this work we present the impedance localization technique based on the observation of phase advance versus intensity at the beam position monitors using ac dipoles to force betatron oscillations. We present analytical formulas for the interpretation of measurements together with simulations to benchmark and illustrate the equations. Studies on the method accuracy for different Fourier transform algorithms are presented as well as first exploratory measurements performed in the LHC.

  9. Impedance Measurement Box

    2014-11-20

    The IMB 50V software provides functionality for design of impedance measurement tests or sequences of tests, execution of these tests or sequences, processing measured responses and displaying and saving of the results. The software consists of a Graphical User Interface that allows configuration of measurement parameters and test sequencing, a core engine that controls test sequencing, execution of measurements, processing and storage of results and a hardware/software data acquisition interface with the IMB hardware system.

  10. Equivalent circuit models for ac impedance data analysis

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1990-01-01

    A least-squares fitting routine has been developed for the analysis of ac impedance data. It has been determined that the checking of the derived equations for a particular circuit with a commercially available electronics circuit program is essential. As a result of the investigation described, three equivalent circuit models were selected for use in the analysis of ac impedance data.

  11. Impedance Measurement Box

    ScienceCinema

    Christophersen, Jon

    2013-05-28

    Energy storage devices, primarily batteries, are now more important to consumers, industries and the military. With increasing technical complexity and higher user expectations, there is also a demand for highly accurate state-of-health battery assessment techniques. IMB incorporates patented, proprietary, and tested capabilities using control software and hardware that can be part of an embedded monitoring system. IMB directly measures the wideband impedance spectrum in seconds during battery operation with no significant impact on service life. It also can be applied to batteries prior to installation, confirming health before entering active service, as well as during regular maintenance. For more information about this project, visit http://www.inl.gov/rd100/2011/impedance-measurement-box/

  12. HVDC-AC system interaction from AC harmonics. Volume 1. Harmonic impedance calculations. Final report

    SciTech Connect

    Breuer, G D; Chow, J H; Lindh, C B; Miller, N W; Numrich, F H; Price, W W; Turner, A E; Whitney, R R

    1982-09-01

    Improved methods are needed to characterize ac system harmonic behavior for ac filter design for HVDC systems. The purpose of this General Electric Company RP1138 research is to evaluate the present filter design practice and to investigate methods for calculating system harmonic impedances. An overview of ac filter design for HVDC systems and a survey of literature related to filter design have been performed. Two methods for calculating system harmonic impedances have been investigated. In the measurement method, an instrumentation system for measuring system voltage and current has been assembled. Different schemes of using the measurements to calculate system harmonic impedances have been studied. In the analytical method, a procedure to include various operating conditions has been proposed. Computer programs for both methods have been prepared, and the results of the measurement and analytical methods analyzed. A conclusion of the project is that the measurement and analytical methods both provided reasonable results. There are correlations between the measured and analytical results for most harmonics, although there are discrepancies between the assumptions used in the two methods. A sensitivity approach has been proposed to further correlate the results. From the results of the analysis, it is recommended that both methods should be tested further. For the measurement method, more testing should be done to cover different system operating conditions. In the analytical method, more detailed models for representing system components should be studied. In addition, alternative statistical and sensitivity approaches should be attempted.

  13. Impedance, AC conductivity and dielectric behavior Adeninium Trichloromercurate (II)

    NASA Astrophysics Data System (ADS)

    Fersi, M. Amine; Chaabane, I.; Gargouri, M.

    2016-09-01

    In this work, we report the measurements impedance spectroscopy technique for the organic-inorganic hybrid compound (C5H6N5) HgCl3, 11/2H2O measured in the 209 Hz-5 MHz frequency range from 378 to 428 K. Besides, the Cole-Cole (Z″ versus Z‧) plots were well fitted to an equivalent circuit built up by a parallel combination of resistance (R), fractal capacitance (CPE) and capacitance (C). Furthermore, the AC conductivity was investigated as a function of temperature and frequency in the same range. The experiment results indicated that AC conductivity (σac) was proportional to σdc + A ωS . The obtained results are discussed in terms of the correlated barrier hopping (CBH) model. An agreement between the experimental and theoretical results suggests that the AC conductivity behavior of Adeninium Trichloromercurate (II) can be successfully explained by CBH model. The contribution of single polaron hopping to AC conductivity in a present alloy was also studied.

  14. Monolithically compatible impedance measurement

    DOEpatents

    Ericson, Milton Nance; Holcomb, David Eugene

    2002-01-01

    A monolithic sensor includes a reference channel and at least one sensing channel. Each sensing channel has an oscillator and a counter driven by the oscillator. The reference channel and the at least one sensing channel being formed integrally with a substrate and intimately nested with one another on the substrate. Thus, the oscillator and the counter have matched component values and temperature coefficients. A frequency determining component of the sensing oscillator is formed integrally with the substrate and has an impedance parameter which varies with an environmental parameter to be measured by the sensor. A gating control is responsive to an output signal generated by the reference channel, for terminating counting in the at least one sensing channel at an output count, whereby the output count is indicative of the environmental parameter, and successive ones of the output counts are indicative of changes in the environmental parameter.

  15. Fiber Materials AC Impedance Characteristics and Principium Analysis

    NASA Astrophysics Data System (ADS)

    Wang, Jianjun; Li, Xiaofeng

    With an invariable amplitude and variable frequency inspiriting, impedance of fiber materials rapidly decrease at first and then increase speedy followed with increasing of signal frequency. For the impedance curve of frequency is section of bathtub, this phenomenon is defined as alternating current electric conductive bathtub effect of fiber material. With analysis tools,of circuit theory and medium polarization theory, the phenomenon can be deeply detected that in AC electric field there are four different kind of currents in fiber material: absorbing current, conductance current, charging current and superficial current. With more analyzing it's discovered this phenomenon can be explained by medium polarize theory. Make using of fiber AC electric conductivity bathtub effect, fast testing equipment on fiber moisture regain can be invent, and disadvantages of conventional impedance technique, such as greatness test error and electrode polarization easily. This paper affords directions to design novel speediness fiber moisture test equipments in theory.

  16. Ac Impedance Spectroscopy Of Al/A-Sic/C-Si(P)/Al Heterostructure under Illumination

    NASA Astrophysics Data System (ADS)

    Perný, Milan; Šály, Vladimír; Váry, Michal; Mikolášek, Miroslav; Huran, Jozef; Packa, Juraj

    2014-05-01

    The amorphous silicon carbide/crystalline silicon heterojunction was prepared and analyzed. The current-voltage (I - V ) measurements showed the barrier properties of prepared sample. Biased impedance spectra of Al/a-SiC/c-Si(p)/Al heterojunction under the standard illumination are reported and analyzed. AC measurements in the illuminated conditions were processed in order to identify electronic behavior using equivalent AC circuit which was suggested and obtained by fitting the measured impedance data. A phenomenon of negative capacitance/resistance in certain frequency range has been observed.

  17. Characterization of flow-through electrode processes by AC impedance

    SciTech Connect

    Yuh, C.Y. ); Selman, J.R. )

    1993-04-01

    Flow-through porous electrodes, such as packed-bed and fluidized-bed electrodes, are attractive for electrowinning, electro-organic synthesis and flow-battery applications. The extensive surface area of the porous electrodes makes high volumetric reaction rate more possible than in a cell with smooth electrodes. Forced convection also enhances mass-transfer rate and hence reduces concentration polarization. AC-impedance method has been used successfully in characterizing a packed-bed flow-through electrode system. A macrohomogeneous model was developed to simulate the effect of structural, physical and flow parameters. The relative importance of kinetics and mass transfer can be inferred from the AC-impedance analysis. Kinetic information about copper deposition in supported cupric sulfate solution has been obtained successfully using this technique.

  18. Investigation of water and ice by ac impedance using electrochemical properties cup.

    PubMed

    Chin, K B; Buehler, M G; Seshadri, S; Keymeulen, D; Anderson, R C; Dutz, S; Narayanan, S R

    2007-01-01

    Water and ice were investigated by ac impedance with the electrochemical properties cup in an effort to develop an in situ instrument for water characterization. In liquid water, the impedance modulus decreased with the increase in charge carriers. In the ice, the impedance measurements were characterized by the dielectric relaxation and its corresponding activation energy. The activation energy of 0.400 eV was determined for pure ice. With ice containing Cl(-) anions, the activation energy was 0.24 eV. H(+) and OH(-) doped ice has the lowest activation energy for dielectric relaxation. Results from previous works are similar to the results reported in this study. PMID:17503953

  19. AC impedance, Permittivity and modulus spectroscopy of lead chloride single crystal

    NASA Astrophysics Data System (ADS)

    Abdul-Jawad, S.; Alnajjar, A.; Abdallah, M. H.

    The ac electrical properties of lead chloride single crystal (PbCl2) were investigated at room temperature in the frequency range 1 Hz to 106 Hz. The real and imaginary components of permittivity and modulus were determined from ac measurements. The results indicate that the bulk material of PbCL2 single crystal can be represented by parallel RC circuit. The spectrum of the plot of the imaginary components of the impedance Z'' and electric modulus M'' versus frequency yield a broad Debye peak indicating overlapped relaxation transition processes (polar and structure).

  20. PDMS-film coated on PCB for AC impedance sensing of biological cells.

    PubMed

    Guo, Jinhong; Li, Chang Ming; Kang, Yuejun

    2014-10-01

    Microfluidic impedance sensor has been introduced as a cost effective platform in biological cell sensing and counting since several decades ago. Conventional microfluidic impedance sensor usually requires the patterned gold electrodes directly in contact with the carrying buffer to measure the electrical current change due to the blockage of cells. However, patterning metal electrode probes on the silicon or glass substrate is a non-trivial task, which increases the fabrication cost of the impedance sensor. In this paper, we demonstrate an alternating current (AC) impedance based microfluidic cytometer built on a printed circuit board (PCB) coated with polydimethylsiloxane (PDMS) thin film. In addition, circulating tumor cells (Hela cells) are used to successfully demonstrate the feasibility of the microfluidic AC impedance sensor in tumor cell detection. The electrodes pre-deposited PCB costs less than US$2.00 and is widely available in the market. This device has a good potential for point-of-care diagnosis in resource-poor settings. PMID:24850232

  1. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  2. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  3. TRANSVERSE IMPEDANCE MEASUREMENT AT THE RHIC.

    SciTech Connect

    ZHANG,S.Y.; HUANG,H.; CAMERON,P.; DREES,A.; FLILLER,R.; SATOGATA,T.

    2002-06-02

    The RHIC transverse impedance was measured during the last operation run. Measurement of the imaginary part of the broadband impedance was the main goal. No large difference between the two rings was found nor in either plane. The measured tune shift is larger than the expected by a factor of 2.5 to 3. Several other issues such as the real part impedance measurement are also presented.

  4. AC impedance electrochemical modeling of lithium-ion positive electrodes.

    SciTech Connect

    Dees, D.; Gunen, E.; Abraham, D.; Jansen, A.; Prakash, J.; Chemical Engineering; IIT

    2004-01-01

    Under Department of Energy's Advanced Technology Development Program,various analytical diagnostic studies are being carried out to examine the lithium-ion battery technology for hybrid electric vehicle applications, and a series of electrochemical studies are being conducted to examine the performance of these batteries. An electrochemical model was developed to associate changes that were observed in the post-test analytical diagnostic studies with the electrochemical performance loss during testing of lithium ion batteries. While both electrodes in the lithium-ion cell have been studied using a similar electrochemical model, the discussion here is limited to modeling of the positive electrode. The positive electrode under study has a composite structure made of a layered nickel oxide (LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}) active material, a carbon black and graphite additive for distributing current, and a PVDF binder all on an aluminum current collector. The electrolyte is 1.2M LiPF{sub 6} dissolved in a mixture of EC and EMC and a Celgard micro-porous membrane is used as the separator. Planar test cells (positive/separator/negative) were constructed with a special fixture and two separator membranes that allowed the placement of a micro-reference electrode between the separator membranes [1]. Electrochemical studies including AC impedance spectroscopy were then conducted on the individual electrodes to examine the performance and ageing effects in the cell. The model was developed by following the work of Professor Newman at Berkeley [2]. The solid electrolyte interface (SEI) region, based on post-test analytical results, was assumed to be a film on the oxide and an oxide layer at the surface of the oxide. A double layer capacity was added in parallel with the Butler-Volmer kinetic expression. The pertinent reaction, thermodynamic, and transport equations were linearized for a small sinusoidal perturbation [3]. The resulting system of differential

  5. Automated ac galvanomagnetic measurement system

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Espy, P. N.

    1985-01-01

    An automated, ac galvanomagnetic measurement system is described. Hall or van der Pauw measurements in the temperature range 10-300 K can be made at a preselected magnetic field without operator attendance. Procedures to validate sample installation and correct operation of other system functions, such as magnetic field and thermometry, are included. Advantages of ac measurements are discussed.

  6. Development of AC impedance methods for evaluating corroding metal surfaces and coatings

    NASA Technical Reports Server (NTRS)

    Knockemus, Ward

    1986-01-01

    In an effort to investigate metal surface corrosion and the breakdown of metal protective coatings the AC Impedance Method was applied to zinc chromate primer coated 2219-T87 aluminum. The model 368-1 AC Impedance Measurement System recently acquired by the MSFC Corrosion Research Branch was used to monitor changing properties of coated aluminum disks immersed in 3.5% NaCl buffered at ph 5.5 over three to four weeks. The DC polarization resistance runs were performed on the same samples. The corrosion system can be represented by an electronic analog called an equivalent circuit that consists of transistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for resistances and capacities that can be assigned in the equivalent circuit following a least squares analysis of the data describe changes that occur on the corroding metal surface and in the protective coating. A suitable equivalent circuit was determined that predicts the correct Bode phase and magnitude for the experimental sample. The DC corrosion current density data are related to equivalent circuit element parameters.

  7. Far-infrared embedding impedance measurements

    NASA Technical Reports Server (NTRS)

    Neikirk, D. P.; Rutledge, D. B.

    1984-01-01

    A technique which allows the measurement of detector embedding impedance has been developed. By using a bismuth microbolometer as a variable resistance load the impedance of one element in a bow-tie antenna array operating at 94 GHz was inferred. The technique is frequency insensitive, and could be used throughout the far-infrared.

  8. Measurements of electrical impedance of biomedical objects.

    PubMed

    Frączek, Marcin; Kręcicki, Tomasz; Moron, Zbigniew; Krzywaźnia, Adam; Ociepka, Janusz; Rucki, Zbigniew; Szczepanik, Zdzisław

    2016-01-01

    Some basic problems related to measurements of electrical impedance of biological objects (bioimpedance) have been presented in this paper. Particularly problems arising from impedance occurring at the sensor-tissue interface (interfacial impedances) in contact measuring methods have been discussed. The influence of finite values of impedances of the current source and voltage measuring device has also been taken into consideration. A model of the impedance sensor for the four-electrode measurement method containing the interfacial, source and measuring device impedances has been given and its frequency characteristics obtained by the computer simulation have been presented. The influence of these impedances on the shape of frequency characteristic of the sensor model has been discussed. Measurements of bioimpedance of healthy and anomalous soft tissues have been described. Some experimental results, particularly the frequency characteristics of bioimpedance, have been shown. The presented results of measurement show that bioimpedance can be a valuable source of information about the tissues, so measurement of bioimpedance can be a useful supplement to other medical diagnostic methods. PMID:27151250

  9. Acoustic input impedance measurements on brass instruments

    NASA Astrophysics Data System (ADS)

    Pyle, Robert W., Jr.

    2002-11-01

    Measurement of the acoustic input impedance of a brass instrument can reveal something about the instrument's intonation, its reasonable playing range, its tone color, and perhaps whether the mouthpiece used for the impedance measurement is appropriate for the instrument. Such measurements are made at sound-presssure levels much lower than those encountered under playing conditions. Thus, impedance measurements may offer the only feasible way to infer something about the playing characteristics of instruments, typically museum specimens, that are too rare or too fragile to be played. In this paper the effects of some of the available choices of sound source and stimulus signal on measurement accuracy will be explored. Driver-transducer nonlinearity, source impedance, signal-to-noise ratio, and any necessary signal processing will be discussed.

  10. Study of metal corrosion using ac impedance techniques in the STS launch environment

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.

    1989-01-01

    AC impedance measurements were performed to investigate the corrosion resistance of 19 alloys under conditions similar to the STS launch environment. The alloys were: Zirconium 702, Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, Inconel 600, 7Mo + N, Ferralium 255, Inco Alloy G-3, 20Cb-3, SS 904L, Inconel 825, SS 304LN, SS 316L, SS 317L, ES 2205, SS 304L, Hastelloy B-2, and Monel 400. AC impedance data were gathered for each alloy after one hour immersion time in each of the following three electrolyte solutions: 3.55 percent NaCl, 3.55 percent NaCl-0.1N HCl, and 3.55 percent NaCl-1.0N HCl. The data were analyzed qualitatively using the Nyquist plot and quantitatively using the Bode plot. Polarization resistance, Rp, values were obtained using the Bode plot. Zirconium 702 was the most corrosion resistant alloy in the three electrolytes. The ordering of the other alloys according the their resistance to corrosion varied as the concentration of hydrochloric acid in the electrolyte increased. The corrosion resistance of Zirconium 702 and Ferralium 255 increased as the concentration of hydrochloric acid in the electrolyte increased. The corrosion resistance of the other 17 alloys decreased as the concentration of the hyrdochloric acid in the electrolyte increased.

  11. An electrochemical study of corrosion protection by primer-topcoat systems on 4130 steel with ac impedance and dc methods

    NASA Technical Reports Server (NTRS)

    Mendrek, M. J.; Higgins, R. H.; Danford, M. D.

    1988-01-01

    To investigate metal surface corrosion and the breakdown of metal protective coatings, the ac impedance method is applied to six systems of primer coated and primer topcoated 4130 steel. Two primers were used: a zinc-rich epoxy primer and a red lead oxide epoxy primer. The epoxy-polyamine topcoat was used in four of the systems. The EG and G-PARC Model 368 ac impedance measurement system, along with dc measurements with the same system using the polarization resistance method, were used to monitor changing properties of coated 4230 steel disks immersed in 3.5 percent NaCl solutions buffered at pH 5.4 over periods of 40 to 60 days. The corrosion system can be represented by an electronic analog called an equivalent circuit consisting of resistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for the resistors and capacitors, that can be assigned in the equivalent circuit following a least-squares analysis of the data, describe changes that occur on the corroding metal surface and in the protective coatings. Two equivalent circuits have been determined that predict the correct Bode phase and magnitude of the experimental sample at different immersion times. The dc corrosion current density data are related to equivalent circuit element parameters. Methods for determining corrosion rate with ac impedance parameters are verified by the dc method.

  12. Constant current loop impedance measuring system that is immune to the effects of parasitic impedances

    NASA Technical Reports Server (NTRS)

    Anderson, Karl F. (Inventor)

    1994-01-01

    A constant current loop measuring system is provided for measuring a characteristic of an environment. The system comprises a first impedance positionable in the environment, a second impedance coupled in series with said first impedance and a parasitic impedance electrically coupled to the first and second impedances. A current generating device, electrically coupled in series with the first and second impedances, provides a constant current through the first and second impedances to produce first and second voltages across the first and second impedances, respectively, and a parasitic voltage across the parasitic impedance. A high impedance voltage measuring device measures a voltage difference between the first and second voltages independent of the parasitic voltage to produce a characteristic voltage representative of the characteristic of the environment.

  13. Protein Aggregation Measurement through Electrical Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Affanni, A.; Corazza, A.; Esposito, G.; Fogolari, F.; Polano, M.

    2013-09-01

    The paper presents a novel methodology to measure the fibril formation in protein solutions. We designed a bench consisting of a sensor having interdigitated electrodes, a PDMS hermetic reservoir and an impedance meter automatically driven by calculator. The impedance data are interpolated with a lumped elements model and their change over time can provide information on the aggregation process. Encouraging results have been obtained by testing the methodology on K-casein, a protein of milk, with and without the addition of a drug inhibiting the aggregation. The amount of sample needed to perform this measurement is by far lower than the amount needed by fluorescence analysis.

  14. Measurement of shear impedances of viscoelastic fluids

    SciTech Connect

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, A.C.

    1996-12-31

    Shear-wave reflection coefficients from a solid/fluid interface are derived for non-Newtonian fluids that can be described by Maxwell, Voigt, and power-law fluid models. Based on model calculations, we have identified the measurable effects on the reflection coefficients due to fluid non-Newtonian behavior. The models are used to interpret the viscosity data obtained by a technique based on shear impedance measurement.

  15. Readout electrode assembly for measuring biological impedance

    NASA Technical Reports Server (NTRS)

    Montgomery, L. D.; Moody, D. L., Jr. (Inventor)

    1976-01-01

    The invention comprises of a pair of readout ring electrodes which are used in conjunction with apparatus for measuring the electrical impedance between different points in the body of a living animal to determine the amount of blood flow therebetween. The readout electrodes have independently adjustable diameters to permit attachment around different parts of the body between which it is desired to measure electric impedance. The axial spacing between the electrodes is adjusted by a pair of rods which have a first pair of ends fixedly attached to one electrode and a second pair of ends slidably attached to the other electrode. Indicia are provided on the outer surface of the ring electrodes and on the surface of the rods to permit measurement of the circumference and spacing between the ring electrodes.

  16. ac-resistance-measuring instrument

    SciTech Connect

    Hof, P.J.

    1981-04-22

    An auto-ranging ac resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an ac excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance.

  17. RF discharge impedance measurements using a new method to determine the stray impedances

    SciTech Connect

    Bakker, L.P.; Kroesen, G.M.W.; Hoog, F.J. de )

    1999-06-01

    The impedance of a capacitively coupled radio frequency discharge in a tubular fluorescent lamp filled with neon and mercury is measured. The stray impedances in the electrical network are determined using a new method that requires no extra instruments. The reflection of power is used to determine the stray impedances. Making use of a simple discharge impedance model, the electron density in the lamp is estimated.

  18. Local impedance measurement of an electrode/single-pentacene-grain interface by frequency-modulation scanning impedance microscopy

    SciTech Connect

    Kimura, Tomoharu; Yamada, Hirofumi; Kobayashi, Kei

    2015-08-07

    The device performances of organic thin film transistors are often limited by the metal–organic interface because of the disordered molecular layers at the interface and the energy barriers against the carrier injection. It is important to study the local impedance at the interface without being affected by the interface morphology. We combined frequency modulation atomic force microscopy with scanning impedance microscopy (SIM) to sensitively measure the ac responses of the interface to an ac voltage applied across the interface and the dc potential drop at the interface. By using the frequency-modulation SIM (FM-SIM) technique, we characterized the interface impedance of a Pt electrode and a single pentacene grain as a parallel circuit of a contact resistance and a capacitance. We found that the reduction of the contact resistance was caused by the reduction of the energy level mismatch at the interface by the FM-SIM measurements, demonstrating the usefulness of the FM-SIM technique for investigation of the local interface impedance without being affected by its morphology.

  19. Local impedance measurement of an electrode/single-pentacene-grain interface by frequency-modulation scanning impedance microscopy

    NASA Astrophysics Data System (ADS)

    Kimura, Tomoharu; Kobayashi, Kei; Yamada, Hirofumi

    2015-08-01

    The device performances of organic thin film transistors are often limited by the metal-organic interface because of the disordered molecular layers at the interface and the energy barriers against the carrier injection. It is important to study the local impedance at the interface without being affected by the interface morphology. We combined frequency modulation atomic force microscopy with scanning impedance microscopy (SIM) to sensitively measure the ac responses of the interface to an ac voltage applied across the interface and the dc potential drop at the interface. By using the frequency-modulation SIM (FM-SIM) technique, we characterized the interface impedance of a Pt electrode and a single pentacene grain as a parallel circuit of a contact resistance and a capacitance. We found that the reduction of the contact resistance was caused by the reduction of the energy level mismatch at the interface by the FM-SIM measurements, demonstrating the usefulness of the FM-SIM technique for investigation of the local interface impedance without being affected by its morphology.

  20. Label-free whole blood cell differentiation based on multiple frequency AC impedance and light scattering analysis in a micro flow cytometer.

    PubMed

    Simon, Peter; Frankowski, Marcin; Bock, Nicole; Neukammer, Jörg

    2016-06-21

    We developed a microfluidic sensor for label-free flow cytometric cell differentiation by combined multiple AC electrical impedance and light scattering analysis. The measured signals are correlated to cell volume, membrane capacity and optical properties of single cells. For an improved signal to noise ratio, the microfluidic sensor incorporates two electrode pairs for differential impedance detection. One-dimensional sheath flow focusing was implemented, which allows single particle analysis at kHz count rates. Various monodisperse particles and differentiation of leukocytes in haemolysed samples served to benchmark the microdevice applying combined AC impedance and side scatter analyses. In what follows, we demonstrate that AC impedance measurements at selected frequencies allow label-free discrimination of platelets, erythrocytes, monocytes, granulocytes and lymphocytes in whole blood samples involving dilution only. Immunofluorescence staining was applied to validate the results of the label-free cell analysis. Reliable differentiation and enumeration of cells in whole blood by AC impedance detection have the potential to support medical diagnosis for patients with haemolysis resistant erythrocytes or abnormally sensitive leucocytes, i.e. for patients suffering from anaemia or leukaemia. PMID:27229300

  1. Algorithmic Error Correction of Impedance Measuring Sensors

    PubMed Central

    Starostenko, Oleg; Alarcon-Aquino, Vicente; Hernandez, Wilmar; Sergiyenko, Oleg; Tyrsa, Vira

    2009-01-01

    This paper describes novel design concepts and some advanced techniques proposed for increasing the accuracy of low cost impedance measuring devices without reduction of operational speed. The proposed structural method for algorithmic error correction and iterating correction method provide linearization of transfer functions of the measuring sensor and signal conditioning converter, which contribute the principal additive and relative measurement errors. Some measuring systems have been implemented in order to estimate in practice the performance of the proposed methods. Particularly, a measuring system for analysis of C-V, G-V characteristics has been designed and constructed. It has been tested during technological process control of charge-coupled device CCD manufacturing. The obtained results are discussed in order to define a reasonable range of applied methods, their utility, and performance. PMID:22303177

  2. Techniques for beam impedance measurements above cutoff

    SciTech Connect

    Lambertson, G.R.; Jacob, A.F.; Rimmer, R.A.; Voelker, F.

    1990-08-01

    Methods for measuring beam impedance above cutoff have been very limited. For design work on the ALS we have developed two techniques that yield data in the frequency domain with high sensitivity. The first is an extension of the wire method; the second utilizes traveling TM waves to simulate the beam's fields at the wall, and thus avoids the mechanical difficulties of mounting the wire. It is also more sensitive than the other method but the interpretation is complicated by the presence of higher order modes. With either method we were able to detect resonant peaks smaller than 1 Ohm at 10 GHz.

  3. Electron density dependence of impedance probe plasma potential measurements

    SciTech Connect

    Walker, D. N.; Blackwell, D. D.; Amatucci, W. E.

    2015-08-15

    In earlier works, we used spheres of various sizes as impedance probes in demonstrating a method of determining plasma potential, φ{sub p}, when the probe radius is much larger than the Debye length, λ{sub D}. The basis of the method in those works [Walker et al., Phys. Plasmas 13, 032108 (2006); ibid. 15, 123506 (2008); ibid. 17, 113503 (2010)] relies on applying a small amplitude signal of fixed frequency to a probe in a plasma and, through network analyzer-based measurements, determining the complex reflection coefficient, Γ, for varying probe bias, V{sub b}. The frequency range of the applied signal is restricted to avoid sheath resonant effects and ion contributions such that ω{sub pi} ≪ ω ≪ ω{sub pe}, where ω{sub pi} is the ion plasma frequency and ω{sub pe} is the electron plasma frequency. For a given frequency and applied bias, both Re(Z{sub ac}) and Im(Z{sub ac}) are available from Γ. When Re(Z{sub ac}) is plotted versus V{sub b}, a minimum predicted by theory occurs at φ{sub p} [Walker et al., Phys. Plasmas 17, 113503 (2010)]. In addition, Im(Z{sub ac}) appears at, or very near, a maximum at φ{sub p}. As n{sub e} decreases and the sheath expands, the minimum becomes harder to discern. The purpose of this work is to demonstrate that when using network analyzer-based measurements, Γ itself and Im(Z{sub ac}) and their derivatives are useful as accompanying indicators to Re(Z{sub ac}) in these difficult cases. We note the difficulties encountered by the most commonly used plasma diagnostic, the Langmuir probe. Spherical probe data is mainly used in this work, although we present limited data for a cylinder and a disk. To demonstrate the effect of lowered density as a function of probe geometry, we compare the cylinder and disk using only the indicator Re(Z{sub ac})

  4. Experimental study of coupling impedance: Part I longitudinal impedance measurement techniques

    SciTech Connect

    Song, J.J.

    1991-10-22

    Beam coupling impedances for the 7-GeV APS storage ring have been numerically estimated. In order to confirm these calculations, measurements of the coupling impedance of various vacuum components around the main storage ring were done with a coaxial wire method. In this paper, the procedure of the longitudinal impedance measurement techniques will be described. As an example, sections of the Cu beam chamber, the Cu beam + antechambers, and the Al beam + antechambers were used as a device under test (DUT) to obtain the results. The transverse impedance measurements will be described in a separate paper.

  5. Bioelectrical impedance analysis. What does it measure?

    NASA Technical Reports Server (NTRS)

    Schoeller, D. A.

    2000-01-01

    Bioelectrical impedance analysis (BIA) has been proposed for measuring fat-free mass, total body water, percent fat, body cell mass, intracellular water, and extracellular water: a veritable laboratory in a box. Although it is unlikely that BIA is quite this versatile, correlations have been demonstrated between BIA and all of these body compartments. At the same time, it is known that all of the compartments are correlated among themselves. Because of this, it is difficult to determine whether BIA is specific for any or all of these compartments. To investigate this question, we induced acute changes in total body water and its compartments over a 3-h period. Using this approach, we demonstrated that multifrequency BIA, using the Cole-Cole model to calculate the zero frequency and infinite frequency resistance, measures extracellular and intracellular water.

  6. Frequency domain impedance measurements of erythrocytes. Constant phase angle impedance characteristics and a phase transition.

    PubMed Central

    Bao, J Z; Davis, C C; Schmukler, R E

    1992-01-01

    We report measurements of the electrical impedance of human erythrocytes in the frequency range from 1 Hz to 10 MHz, and for temperatures from 4 to 40 degrees C. In order to achieve high sensitivity in this frequency range, we embedded the cells in the pores of a filter, which constrains the current to pass through the cells in the pores. Based on the geometry of the cells embedded in the filter a circuit model is proposed for the cell-filter saline system. A constant phase angle (CPA) element, i.e., an impedance of the form Z = A/(j omega)alpha, where A is a constant, j = square root of -1, omega is angular frequency, and 0 less than alpha less than 1 has been used to describe the ac response of the interface between the cell surface and the electrolyte solution, i.e., the electrical double layer. The CPA and other elements of the circuit model are determined by a complex nonlinear least squares (CNLS) fit, which simultaneously fits the real and imaginary parts of the experimental data to the circuit model. The specific membrane capacitance is determined to be 0.901 +/- 0.036 microF/cm2, and the specific cytoplasm conductivity to be 0.413 +/- 0.031 S/m at 26 degrees C. The temperature dependence of the cytoplasm conductivity, membrane capacitance, and CPA element has been obtained. The membrane capacitance increases markedly at approximately 37 degrees C, which suggests a phase transition in the cell membrane. PMID:1600086

  7. Frequency domain impedance measurements of erythrocytes. Constant phase angle impedance characteristics and a phase transition.

    PubMed

    Bao, J Z; Davis, C C; Schmukler, R E

    1992-05-01

    We report measurements of the electrical impedance of human erythrocytes in the frequency range from 1 Hz to 10 MHz, and for temperatures from 4 to 40 degrees C. In order to achieve high sensitivity in this frequency range, we embedded the cells in the pores of a filter, which constrains the current to pass through the cells in the pores. Based on the geometry of the cells embedded in the filter a circuit model is proposed for the cell-filter saline system. A constant phase angle (CPA) element, i.e., an impedance of the form Z = A/(j omega)alpha, where A is a constant, j = square root of -1, omega is angular frequency, and 0 less than alpha less than 1 has been used to describe the ac response of the interface between the cell surface and the electrolyte solution, i.e., the electrical double layer. The CPA and other elements of the circuit model are determined by a complex nonlinear least squares (CNLS) fit, which simultaneously fits the real and imaginary parts of the experimental data to the circuit model. The specific membrane capacitance is determined to be 0.901 +/- 0.036 microF/cm2, and the specific cytoplasm conductivity to be 0.413 +/- 0.031 S/m at 26 degrees C. The temperature dependence of the cytoplasm conductivity, membrane capacitance, and CPA element has been obtained. The membrane capacitance increases markedly at approximately 37 degrees C, which suggests a phase transition in the cell membrane. PMID:1600086

  8. AC Impedance Studies of Polymer Light-emitting Electrochemical Cells and Light-emitting Diodes

    NASA Astrophysics Data System (ADS)

    Li, Yongfang; Gao, Jun; Heeger, Alan J.; Yu, Gang; Cao, Yong

    1998-03-01

    The alternating current (ac) impedance of polymer light-emitting electrochemical cells (LECs) is studied and compared with that of polymer light-emitting diodes(LEDs) in the frequency range from 100 Hz to 5 M Hz. The device capacitance, resistance and interface characteristics are analyzed using the frequency dependence of the impedance and plots of the imaginary component of the impedance (Z") vs. the real part (Z'). At low bias voltages, polymer LEDs behave as pure capacitors whereas the polymer blend in the LEC exhibits an ionic conductivity contribution to the impedance. With dc bias higher than the energy gap of the semiconducting polymer (eV > Eg), the Z" vs. Z' plot of the LEC is a flattened semicircle, while that of LED is a semicircle with a small tail at low frequencies. In the LED, the capacitance is independent of voltages, the film resistance decreases as the bias voltage is increased in forward bias due to charge injection at higher voltages. In the LEC, the capacitance increases at voltages sufficient to induce electrochemical redox and doping near the electrodes. From this increase, the thickness of the i-layer of the p-i-n junction is estimated to approximately 0.8 of the film thickness (at the bias voltage of 3 V). Thus, in the LEC under operating conditions, the crossover region from p-type occupies most of the film thickness.

  9. Potentiostatic and ac impedance studies of the hydrogen electrodes used in Ni/H2 batteries

    NASA Technical Reports Server (NTRS)

    Le Helloco, Jean-Guy; Bojkov, Hristo; Parthasarathy, Arvind; Srinivasan, Supramaniam; Appleby, A. J.

    1992-01-01

    In a study of electrode activity for hydrogen evolution and hydrogen ionization, knowledge of the detailed kinetics and of the surface coverage by adsorbed hydrogen is essential. In the Ni/H2 battery, the hydrogen electrode is subjected to high hydrogen pressure; elucidation of the variation of kinetic parameters with hydrogen pressure is therefore of interest. Potentiostatic and ac impedance spectroscopic techniques were used in the present study. The equivalent circuit of the reaction, the kinetic parameters, and their pressure dependence have been determined.

  10. A review of impedance measurements of whole cells.

    PubMed

    Xu, Youchun; Xie, Xinwu; Duan, Yong; Wang, Lei; Cheng, Zhen; Cheng, Jing

    2016-03-15

    Impedance measurement of live biological cells is widely accepted as a label free, non-invasive and quantitative analytical method to assess cell status. This method is easy-to-use and flexible for device design and fabrication. In this review, three typical techniques for impedance measurement, i.e., electric cell-substrate impedance sensing, Impedance flow cytometry and electric impedance spectroscopy, are reviewed from the aspects of theory, to electrode design and fabrication, and applications. Benefiting from the integration of microelectronic and microfluidic techniques, impedance sensing methods have expanded their applications to nearly all aspects of biology, including living cell counting and analysis, cell biology research, cancer research, drug screening, and food and environmental safety monitoring. The integration with other techniques, the fabrication of devices for certain biological assays, and the development of point-of-need diagnosis devices is predicted to be future trend for impedance sensing techniques. PMID:26513290

  11. Impedance measurements of the Spallation Neutron Source extraction kicker system

    NASA Astrophysics Data System (ADS)

    Hahn, H.

    2004-10-01

    Transverse coupling impedance measurements of the Spallation Neutron Source (SNS) beam extraction system were performed and the results are here reported. The SNS beam extraction system is composed from 14 subsystems, each of which consists of a vertical kicker magnet plus a pulse forming network (PFN). Impedance bench measurements were performed on one large and one small aperture magnet, stand-alone as well as assembled with the first-article production PFN. The impedance measuring methods to cover the interesting frequency range from below 1 to 100MHz are described in considerable detail. The upper frequency range is properly covered by the conventional twin-wire method but it had to be supplemented at the low-frequency end by a direct input impedance measurement at the magnet busbar. Required modifications of the PFN to maintain the impedance budget are discussed. The total impedance estimate was finally obtained by quadratic scaling with vertical aperture from the two tested kicker subsystems.

  12. Transverse impedance measurement in RHIC and the AGS

    SciTech Connect

    Biancacci, Nicolo; Blaskiewicz, M.; Dutheil, Y.; Liu, C.; Mernick, M.; Minty, M.; White, S. M.

    2014-05-12

    The RHIC luminosity upgrade program aims for an increase of the polarized proton luminosity by a factor 2. To achieve this goal a significant increase in the beam intensity is foreseen. The beam coupling impedance could therefore represent a source of detrimental effects for beam quality and stability at high bunch intensities. For this reason it is essential to quantify the accelerator impedance budget and the major impedance sources, and possibly cure them. In this MD note we summarize the results of the 2013 transverse impedance measurements in the AGS and RHIC. The studies have been performed measuring the tune shift as a function of bunch intensity and deriving the total accelerator machine transverse impedance. For RHIC, we could obtain first promising results of impedance localization measurements as well.

  13. Impedance measurements for detecting pathogens attached to antibodies

    DOEpatents

    Miles, Robin R.; Venkateswaran, Kodumudi S.; Fuller, Christopher K.

    2004-12-28

    The use of impedance measurements to detect the presence of pathogens attached to antibody-coated beads. In a fluidic device antibodies are immobilized on a surface of a patterned interdigitated electrode. Pathogens in a sample fluid streaming past the electrode attach to the immobilized antibodies, which produces a change in impedance between two adjacent electrodes, which impedance change is measured and used to detect the presence of a pathogen. To amplify the signal, beads coated with antibodies are introduced and the beads would stick to the pathogen causing a greater change in impedance between the two adjacent electrodes.

  14. Measured longitudinal beam impedance of a Tevatron separator

    SciTech Connect

    James L Crisp; Brian J Fellenz

    2002-12-09

    Twenty two separators are currently installed in the Tevatron. The longitudinal impedance of one of these devices was recently measured with a stretched wire. The stretched wire technique can only measure impedance below the cutoff frequency (500MHz). The geometry of a separator is similar to an un-terminated stripline beam position detector. The separator plates occupy a 13.5'' ID vacuum tank, are 101'' long, 7.8'' wide, and have a 2'' gap between them. The differential characteristic impedance between the plates is estimated to be 81 {Gamma} and the common mode impedance plate to ground is about 42 {Gamma}.

  15. Plasma Diagnostics by Antenna Impedance Measurements

    NASA Technical Reports Server (NTRS)

    Swenson, C. M.; Baker, K. D.; Pound, E.; Jensen, M. D.

    1993-01-01

    The impedance of an electrically short antenna immersed in a plasma provides an excellent in situ diagnostic tool for electron density and other plasma parameters. By electrically short we mean that the wavelength of the free-space electromagnetic wave that would be excited at the driving frequency is much longer than the physical size of the antenna. Probes using this impedance technique have had a long history with sounding rockets and satellites, stretching back to the early 1960s. This active technique could provide information on composition and temperature of plasmas for comet or planetary missions. Advantages of the impedance probe technique are discussed and two classes of instruments built and flown by SDL-USU for determining electron density (the capacitance and plasma frequency probes) are described.

  16. Tevatron optics measurements using an AC dipole

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is a device to study beam optics of hadron synchrotrons. It can produce sustained large amplitude oscillations with virtually no emittance growth. A vertical AC dipole for the Tevatron is recently implemented and a maximum oscillation amplitude of 2{sigma} (4{sigma}) at 980 GeV (150 GeV) is achieved [1]. When such large oscillations are measured with the BPM system of the Tevatron (20 {micro}m resolution), not only linear but even nonlinear optics can be directly measured. This paper shows how to measure {beta} function using an AC dipole and the result is compared to the other measurement. The paper also shows a test to detect optics changes when small changes are made in the Tevatron. Since an AC dipole is nondestructive, it allows frequent measurements of the optics which is necessary for such an test.

  17. Electrochemical impedance measurement of a carbon nanotube probe electrode.

    PubMed

    Inaba, Akira; Takei, Yusuke; Kan, Tetsuo; Matsumoto, Kiyoshi; Shimoyama, Isao

    2012-12-01

    We measured and analyzed the electrochemical impedance of carbon nanotube (CNT) probe electrodes fabricated through the physical separation of insulated CNT bridges. The fabricated CNT electrodes were free-standing CNTs that were completely covered with an insulator, except for their tips. Typical dimensions of the nanoelectrodes were 1-10 nm in CNT diameter, 80-300 nm in insulator diameter, 0.5-4 μm in exposed CNT length and 1-10 μm in probe length. The electrochemical impedance at frequencies ranging from 40 Hz to 1 MHz was measured in physiological saline. The measured impedance of the CNT electrode was constant at 32 MΩ at frequencies below 1 kHz and was inversely proportional to frequency at frequencies above 10 kHz. By means of comparison with the parasitic capacitive impedance of the insulator membrane, we confirmed that the electrode was sufficiently insulated such that the measured constant impedance was given by the exposed CNT tip. Consequently, we can use the CNT electrode for highly localized electrochemical impedance measurements below 1 kHz. Considering an equivalent circuit and the nanoscopic dimensions of the CNT electrode, we demonstrated that the constant impedance was governed by diffusion impedance, whereas the solution resistance, charge-transfer resistance and double-layer capacitance were negligible. PMID:23124171

  18. Effect of Feeding and Suction on Gastric Impedance Spectroscopy Measurements.

    PubMed

    Beltran, Nohra E; Sánchez-Miranda, Gustavo; Sacristan, Emilio

    2015-01-01

    A specific device and system has been developed and tested for clinical monitoring of gastric mucosal reactance in the critically ill as an early warning of splanchnic hypoperfusion associated with shock and sepsis. This device has been proven effective in clinical trials and is expected to become commercially available next year. The system uses a combination nasogastric tube and impedance spectroscopy probe as a single catheter. Because this device has a double function, the question is: Does enteral feeding or suction affect the gastric reactance measurements? This study was designed to evaluate the effect of feeding and suction on the measurement of gastric impedance spectroscopy in healthy volunteers. Impedance spectra were obtained from the gastric wall epithelia of 18 subjects. The spectra were measured for each of the following conditions: postinsertion of gastric probe, during active suction, postactive suction, and during enteral feeding (236 ml of nutritional supplement). Impedance spectra were reproducible in all volunteers under all conditions tested. There was a slight increase in impedance parameters after suction, and a decrease in impedance after feeding; however, these observed differences were insignificant compared to patient-to-patient variability, and truly negligible compared with previously observed changes associated with splanchnic ischemia in critically ill patients. Our results demonstrate that suction or feeding when using the impedance spectro-metry probe/nasogastric tube does not significantly interfere with gastric impedance spectrometer measurements. PMID:26226020

  19. AC impedance spectroscopy - A dynamic tool for the design of corrosion inhibitors

    SciTech Connect

    Growcock, F.B.; Jasinski, R.J.

    1988-05-01

    Corrosion of steel during oil well acidizing or acid pickling treatments can be controlled effectively and economically with corrosion inhibitors. It is generally accepted that these additives function by forming an adherent barrier on the steel surface, the nature of which depends on various physiochemical properties of the inhibitor. Work to date has established that acetylenic alcohols first chemisorb and subsequently polymerize on steel surfaces. ..cap alpha.., BETA-Unsaturated aldehydes and ..cap alpha..-alkenylphenones behave in a similar manner. On the other hand, quaternary nitrogen salts adsorb electrostatically and do not appear to form macroscopic films. In this paper, the authors describe some AC impedance spectroscopy studies they have undertaken with the objective of elucidating the roles that adsorption and film formation play in the inhibition mechanisms of the compounds mentioned above.

  20. Impedance analysis of fibroblastic cell layers measured by electric cell-substrate impedance sensing

    NASA Astrophysics Data System (ADS)

    Lo, Chun-Min; Ferrier, Jack

    1998-06-01

    Impedance measurements of cell layers cultured on gold electrode surfaces obtained by electric cell-substrate impedance sensing provide morphological information such as junctional resistance and cell-substrate separation. Previously, a model that assumes that cells have a disklike shape and that electric currents flow radially underneath the ventral cell surface and then through the paracellular space has been used to theoretically calculate the impedance of the cell-covered electrode. In this paper we propose an extended model of impedance analysis for cell layers where cellular shape is rectangular. This is especially appropriate for normal fibroblasts in culture. To verify the model, we analyze impedance data obtained from four different kinds of fibroblasts that display a long rectangular shape. In addition, we measure the average cell-substrate separation of human gingival fibroblasts at different temperatures. At temperatures of 37, 22, and 4 °C, the average separation between ventral cell surface and substratum are 46, 55, and 89 nm, respectively.

  1. Measurement and simulation of the RHIC abort kicker longitudinal impedence

    SciTech Connect

    Abreu,N.P.; Hahn,H.; Choi, E.

    2009-09-01

    In face of the new upgrades for RHIC the longitudinal impedance of the machine plays an important role in setting the threshold for instabilities and the efficacy of some systems. In this paper we describe the measurement of the longitudinal impedance of the abort kicker for RHIC as well as computer simulations of the structure. The impedance measurement was done by the S{sub 21} wire method covering the frequency range from 9 kHz to 2.5 GHz. We observed a sharp resonance peak around 10 MHz and a broader peak around 20 MHz in both, the real and imaginary part, of the Z/n. These two peaks account for a maximum imaginary longitudinal impedance of j15 {Omega}, a value an order of magnitude larger than the estimated value of j0.2 {Omega}, which indicates that the kicker is one of the main sources of longitudinal impedance in the machine. A computer model was constructed for simulations in the CST MWS program. Results for the magnet input and the also the beam impedance are compared to the measurements. A more detail study of the system properties and possible changes to reduce the coupling impedance are presented.

  2. Damage detection technique by measuring laser-based mechanical impedance

    SciTech Connect

    Lee, Hyeonseok; Sohn, Hoon

    2014-02-18

    This study proposes a method for measurement of mechanical impedance using noncontact laser ultrasound. The measurement of mechanical impedance has been of great interest in nondestructive testing (NDT) or structural health monitoring (SHM) since mechanical impedance is sensitive even to small-sized structural defects. Conventional impedance measurements, however, have been based on electromechanical impedance (EMI) using contact-type piezoelectric transducers, which show deteriorated performances induced by the effects of a) Curie temperature limitations, b) electromagnetic interference (EMI), c) bonding layers and etc. This study aims to tackle the limitations of conventional EMI measurement by utilizing laser-based mechanical impedance (LMI) measurement. The LMI response, which is equivalent to a steady-state ultrasound response, is generated by shooting the pulse laser beam to the target structure, and is acquired by measuring the out-of-plane velocity using a laser vibrometer. The formation of the LMI response is observed through the thermo-mechanical finite element analysis. The feasibility of applying the LMI technique for damage detection is experimentally verified using a pipe specimen under high temperature environment.

  3. Damage detection technique by measuring laser-based mechanical impedance

    NASA Astrophysics Data System (ADS)

    Lee, Hyeonseok; Sohn, Hoon

    2014-02-01

    This study proposes a method for measurement of mechanical impedance using noncontact laser ultrasound. The measurement of mechanical impedance has been of great interest in nondestructive testing (NDT) or structural health monitoring (SHM) since mechanical impedance is sensitive even to small-sized structural defects. Conventional impedance measurements, however, have been based on electromechanical impedance (EMI) using contact-type piezoelectric transducers, which show deteriorated performances induced by the effects of a) Curie temperature limitations, b) electromagnetic interference (EMI), c) bonding layers and etc. This study aims to tackle the limitations of conventional EMI measurement by utilizing laser-based mechanical impedance (LMI) measurement. The LMI response, which is equivalent to a steady-state ultrasound response, is generated by shooting the pulse laser beam to the target structure, and is acquired by measuring the out-of-plane velocity using a laser vibrometer. The formation of the LMI response is observed through the thermo-mechanical finite element analysis. The feasibility of applying the LMI technique for damage detection is experimentally verified using a pipe specimen under high temperature environment.

  4. Plasma Impedance Spectrum Analyzer (PISA): an advanced impedance probe for measuring plasma density and other parameters

    NASA Astrophysics Data System (ADS)

    Rowland, D. E.; Pfaff, R. F.; Uribe, P.; Burchill, J.

    2006-12-01

    High-accuracy, high-cadence measurements of ionospheric electron density between 100 and a few x 106 / cc and electron temperature from 200 K to a few thousand K are of critical importance for understanding conductivity, Joule heating rates, and instability growth rates. We present results from the development of an impedance probe at NASA GSFC and show its strengths relative to other measurement techniques. Complementary measurement techniques such as Langmuir Probes, while providing extremely high measurement cadence, suffer from uncertainties in calibration, surface contamination effects, and wake/sheath effects. Impedance Probes function by measuring the phase shift between the voltage on a long antenna and the current flowing from the antenna into the plasma as a function of frequency. At frequencies for which the phase shift is zero, a plasma resonance is assumed to exist. These resonances depend on a variety of plasma parameters, including the electron density, electron temperature, and magnetic field strength, as well as the antenna geometry, angle between the antenna and the magnetic field, and sheath / Debye length effects, but do not depend on the surface properties of the antenna. Previous impedance probe designs which "lock" onto the upper hybrid resonance are susceptible to losing lock in low-density environments. Information about other resonances, including the series resonance (which strongly depends on temperature) and other resonances which may occur near the upper hybrid, confounding its identification, are typically not transmitted. The novel features of the GSFC Impedance Probe (PISA) include: 1) A white noise generator that stimulates a wide range of frequencies simultaneously, allowing the instrument to send down the entire impedance frequency spectrum every few milliseconds. This allows identification of all resonance frequencies, including the series resonance which depends on temperature. 2) DC bias voltage stepping to bring the antenna

  5. Measuring the Acoustic Impedance of Pipes and Musical Instruments

    NASA Astrophysics Data System (ADS)

    Jaeger, Herbert

    2007-05-01

    Using a small electret microphone and a piezo-buzzer we have constructed a simple impedance transducer to measure the input impedance of air columns, such as cylindrical pipes, as well as musical instruments. The input impedance of an air column is given as the ratio of the pressure to the volume flow of air at the input of the air column. The microphone serves as the pressure transducer, while the piezo-buzzer is controlled to provide a constant velocity amplitude. Therefore the microphone signal is proportional to the acoustical impedance and, if required, can be calibrated using a simple air column for which the impedance can be calculated. This impedance transducer is currently in use as demonstration equipment for a physical acoustics class. It is simple to use and robust, so that it is well-suited for an undergraduate introductory laboratory environment. This talk will discuss the function of the impedance transducer and show examples of the type of measurements that can be performed. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.OSS07.C1.1

  6. Correcting electrode impedance effects in broadband SIP measurements

    NASA Astrophysics Data System (ADS)

    Huisman, Johan Alexander; Zimmermann, Egon; Esser, Odilia; Haegel, Franz-Hubert; Vereecken, Harry

    2016-04-01

    Broadband spectral induced polarization (SIP) measurements of the complex electrical resistivity can be affected by the contact impedance of the potential electrodes above 100 Hz. In this study, we present a correction procedure to remove electrode impedance effects from SIP measurements. The first step in this correction procedure is to estimate the electrode impedance using a measurement with reversed current and potential electrodes. In a second step, this estimated electrode impedance is used to correct SIP measurements based on a simplified electrical model of the SIP measurement system. We evaluated this new correction procedure using SIP measurements on water because of the well-defined dielectric properties. It was found that the difference between the corrected and expected phase of the complex electrical resistivity of water was below 0.1 mrad at 1 kHz for a wide range of electrode impedances. In addition, SIP measurements on a saturated unconsolidated sediment sample with two types of potential electrodes showed that the measured phase of the electrical resistivity was very similar (difference <0.2 mrad) up to a frequency of 10 kHz after the effect of the different electrode impedances was removed. Finally, SIP measurements on variably saturated unconsolidated sand were made. Here, the plausibility of the phase of the electrical resistivity was improved for frequencies up to 1 kHz, but errors remained for higher frequencies due to the approximate nature of the electrode impedance estimates and some remaining unknown parasitic capacitances that led to current leakage. It was concluded that the proposed correction procedure for SIP measurements improved the accuracy of the phase measurements by an order of magnitude in the kHz frequency range. Further improvement of this accuracy requires a method to accurately estimate parasitic capacitances in situ.

  7. Measured longitudinal beam impedance of booster gradient magnets

    SciTech Connect

    James L Crisp and Brian J. Fellenz

    2001-08-24

    The Booster gradient magnets have no vacuum pipe which forces the beam image current to flow along the laminated pole tips. Both D and F style magnets were measured with a stretched wire to determine the longitudinal beam impedance caused by these laminations. Results are compared to calculations done 30 years ago. The inductive part of the magnet impedance is interesting because it partially compensates for the negative inductance effects of space charge on the beam. An R/L circuit consisting of 37K{center_dot} in parallel with between 40 and 100uH is a reasonable approximation to the total impedance of Booster magnet laminations.

  8. Location of coating defects and assessment of level of cathodic protection on underground pipelines using AC impedance, deterministic and non-deterministic models

    NASA Astrophysics Data System (ADS)

    Castaneda-Lopez, Homero

    A methodology for detecting and locating defects or discontinuities on the outside covering of coated metal underground pipelines subjected to cathodic protection has been addressed. On the basis of wide range AC impedance signals for various frequencies applied to a steel-coated pipeline system and by measuring its corresponding transfer function under several laboratory simulation scenarios, a physical laboratory setup of an underground cathodic-protected, coated pipeline was built. This model included different variables and elements that exist under real conditions, such as soil resistivity, soil chemical composition, defect (holiday) location in the pipeline covering, defect area and geometry, and level of cathodic protection. The AC impedance data obtained under different working conditions were used to fit an electrical transmission line model. This model was then used as a tool to fit the impedance signal for different experimental conditions and to establish trends in the impedance behavior without the necessity of further experimental work. However, due to the chaotic nature of the transfer function response of this system under several conditions, it is believed that non-deterministic models based on pattern recognition algorithms are suitable for field condition analysis. A non-deterministic approach was used for experimental analysis by applying an artificial neural network (ANN) algorithm based on classification analysis capable of studying the pipeline system and differentiating the variables that can change impedance conditions. These variables include level of cathodic protection, location of discontinuities (holidays), and severity of corrosion. This work demonstrated a proof-of-concept for a well-known technique and a novel algorithm capable of classifying impedance data for experimental results to predict the exact location of the active holidays and defects on the buried pipelines. Laboratory findings from this procedure are promising, and

  9. Electrical impedance measurements: rapid method for detecting and monitoring microorganisms.

    PubMed Central

    Cady, P; Dufour, S W; Shaw, J; Kraeger, S J

    1978-01-01

    A conceptually simple and east-to-use technique is described that uses continuous impedance measurements for automated monitoring of microbial growth and metabolism. The method has been applied to a wide range of microorganisms. Optical clarity is not required. The sensitivity and reproducibility of the method are demonstrated. The mechanism whereby microbial growth alters the impedance of the medium is discussed, as well as potential applications of the method to clinical microbiology. Images PMID:348718

  10. Microbial Sulfate Reduction Measured by an Automated Electrical Impedance Technique

    NASA Technical Reports Server (NTRS)

    Oremland, R. S.; Silverman, M. P.

    1979-01-01

    Electrical impedance measurements are used to investigate the rates of sulfate reduction by pure cultures of and sediments containing sulfur-reducing bacteria. Changes in the electrical impedance ratios of pure cultures of Desulfovibrio aestuarii and samples of reduced sediments from San Francisco Bay were measured by a Bactometer 32, and sulfate reduction was followed by measuring the incorporation of (S-35) sulfate into metal sulfides. The growth of the bacteria in pure culture is found to result in an increase of 0.2200 in the impedance ratio within 24 h, accompanied by increases in protein, ATP, sulfide and absorptance at 660 nm, all of which are inhibited by the addition of molybdate. Similar responses were observed in the sediments, although impedance ratio responses were not completely inhibited upon the addition of molybdate, due to the presence of nonsulfate-respiring microorganisms. Experiments conducted with sterile media and autoclaved sediments indicate that the presence of H2S together with iron is responsible for the impedance effect, and sulfate reduction rates ranging between 0.85 and 1.78 mmol/l per day are estimated for the sediments by the impedance technique.

  11. Feasibility of Bioelectrical Impedance Spectroscopy Measurement before and after Thoracentesis

    PubMed Central

    Weyer, Sören; Pauly, Karolin; Napp, Andreas; Dreher, Michael; Leonhardt, Steffen; Marx, Nikolaus; Schauerte, Patrick; Mischke, Karl

    2015-01-01

    Background. Bioelectrical impedance spectroscopy is applied to measure changes in tissue composition. The aim of this study was to evaluate its feasibility in measuring the fluid shift after thoracentesis in patients with pleural effusion. Methods. 45 participants (21 with pleural effusion and 24 healthy subjects) were included. Bioelectrical impedance was analyzed for “Transthoracic,” “Foot to Foot,” “Foot to Hand,” and “Hand to Hand” vectors in low and high frequency domain before and after thoracentesis. Healthy subjects were measured at a single time point. Results. The mean volume of removed pleural effusion was 1169 ± 513 mL. The “Foot to Foot,” “Hand to Hand,” and “Foot to Hand” vector indicated a trend for increased bioelectrical impedance after thoracentesis. Values for the low frequency domain in the “Transthoracic” vector increased significantly (P < 0.001). A moderate correlation was observed between the amount of removed fluid and impedance change in the low frequency domain using the “Foot to Hand” vector (r = −0.7). Conclusion. Bioelectrical impedance changes in correlation with the thoracic fluid level. It was feasible to monitor significant fluid shifts and loss after thoracentesis in the “Transthoracic” vector by means of bioelectrical impedance spectroscopy. The trial is registered with Registration Numbers IRB EK206/11 and NCT01778270. PMID:25861647

  12. Soybean oil in water-borne coatings and latex film formation study by AC impedance

    NASA Astrophysics Data System (ADS)

    Jiratumnukul, Nantana

    Conventional coalescing agents such as butyl cellosolve, butyl carbitol, and TexanolRTM are widely use in the latex coatings industry to facilitate film formation at ambient temperature. Coalescent aids are composed of solvents with low evaporation rates. After water evaporates, coalescent aids would help soften polymer molecules and form continuous films, then gradually evaporates from the film. Coalescent aids, therefore, are considered as volatile organic compounds (VOC), which are of environmental concern. The main purpose of this research project was to prepare a fatty acid glycol ester from soybean oil and glycol (polyols). The soybean oil glycol ester can be used as a coalescent aid in latex paint formulation. The soybean oil glycol ester not only lowered the minimum film formation temperature of latex polymers and continuous film formed at ambient temperature, but also after it has facilitated film formation, does not substantially evaporate, but becomes part of the film. Soybean oil glycol esters, therefore, can reduce the VOC levels and facilitate film formation of latex paints. In the second part of this research AC-Impedance was used to investigate the efficiency of soybean oil coalescent aid in latex film formation relative to the conventional ones. The coating resistance showed that the efficiency of film formation was increased as a function of dry time. The coating resistance also exhibited the effect of soybean oil ester in latex film formation in the same fashion as a conventional coalescent aid, TexanolRTM.

  13. Experimental verification of depolarization effects in bioelectrical impedance measurement.

    PubMed

    Chen, Xiaoyan; Lv, Xinqiang; Du, Meng

    2014-01-01

    The electrode polarization effects on bioelectrical impedance measurement at low-frequency cannot be ignored. In this paper, the bioelectrical data of mice livers are measured to specify the polarization effects on the bio-impedance measurement data. We firstly introduce the measurement system and methodology. Using the depolarization method, the corrected results are obtained. Besides, the specific effects of electrode polarization on bio-impedance measurement results are investigated using comparative analysis of the previous and posterior correction results from dielectric spectroscopy, Cole-Cole plot, conductivity and spectroscopy of dissipation tangent. Experimental results show that electrode polarization has a significant influence on the characteristic parameters of mouse liver tissues. To be specific, we see a low-frequency limit resistance R0 increase by 19.29%, a reactance peak XP increase by 8.50%, a low-frequency limit conductivity Kl decrease by 17.65% and a dissipation peak tangent decrease by 160%. PMID:25227082

  14. Smart mug to measure hand's geometrical mechanical impedance.

    PubMed

    Hondori, Hossein Mousavi; Tech, Ang Wei

    2011-01-01

    A novel device, which looks like a mug, has been proposed for measuring the impedance of human hand. The device is designed to have convenient size and light weight similar to an ordinary coffee mug. It contains a 2-axis inertia sensor to monitor vibration and a small motor to carry an eccentric mass (m=100 gr, r=2 cm, rpm=600). The centrifugal force due to the rotating mass applies a dynamic force to the hand that holds the mug. Correlation of the acceleration signals with the perturbing force gives the geometrical mechanical impedance. Experimental results on a healthy subject shows that impedance is posture dependant while it changes with the direction of the applied perturbing force. For nine postures the geometrical impedance is obtained all of which have elliptical shapes. The method can be used for assessment of spasticity and monitoring stability in patients with stroke or similar problems. PMID:22255230

  15. Electrochemical Performance and Stability of the Cathode for Solid Oxide Fuel Cells. I. Cross Validation of Polarization Measurements by Impedance Spectroscopy and Current-Potential Sweep

    SciTech Connect

    Zhou, Xiao Dong; Pederson, Larry R.; Templeton, Jared W.; Stevenson, Jeffry W.

    2009-12-09

    The aim of this paper is to address three issues in solid oxide fuel cells: (1) cross-validation of the polarization of a single cell measured using both dc and ac approaches, (2) the precise determination of the total areal specific resistance (ASR), and (3) understanding cathode polarization with LSCF cathodes. The ASR of a solid oxide fuel cell is a dynamic property, meaning that it changes with current density. The ASR measured using ac impedance spectroscopy (low frequency interception with real Z´ axis of ac impedance spectrum) matches with that measured from a dc IV sweep (the tangent of dc i-V curve). Due to the dynamic nature of ASR, we found that an ac impedance spectrum measured under open circuit voltage or on a half cell may not represent cathode performance under real operating conditions, particularly at high current density. In this work, the electrode polarization was governed by the cathode activation polarization; the anode contribution was negligible.

  16. Whole-body impedance--what does it measure?

    PubMed

    Foster, K R; Lukaski, H C

    1996-09-01

    Although the bioelectrical impedance technique is widely used in human nutrition and clinical research, an integrated summary of the biophysical and bioelectrical bases of this approach is lacking. We summarize the pertinent electrical phenomena relevant to the application of the impedance technique in vivo and discuss the relations between electrical measurements and biological conductor volumes. Key terms in the derivation of bioelectrical impedance analysis are described and the relation between the electrical properties of tissues and tissue structure is discussed. The relation between the impedance of an object and its geometry, scale, and intrinsic electrical properties is also discussed. Correlations between whole-body impedance measurements and various bioconductor volumes, such as total body water and fat-free mass, are experimentally well established; however, the reason for the success of the impedence technique is much less clear. The bioengineering basis for the technique is critically presented and considerations are proposed that might help to clarify the method and potentially improve its sensitivity. PMID:8780354

  17. Mode error analysis of impedance measurement using twin wires

    NASA Astrophysics Data System (ADS)

    Huang, Liang-Sheng; Yoshiro, Irie; Liu, Yu-Dong; Wang, Sheng

    2015-03-01

    Both longitudinal and transverse coupling impedance for some critical components need to be measured for accelerator design. The twin wires method is widely used to measure longitudinal and transverse impedance on the bench. A mode error is induced when the twin wires method is used with a two-port network analyzer. Here, the mode error is analyzed theoretically and an example analysis is given. Moreover, the mode error in the measurement is a few percent when a hybrid with no less than 25 dB isolation and a splitter with no less than 20 dB magnitude error are used. Supported by Natural Science Foundation of China (11175193, 11275221)

  18. Low cost soil sensor based on impedance spectroscopy for in-situ measurement

    NASA Astrophysics Data System (ADS)

    Umar, Lazuardi; Setiadi, Rahmondia N.

    2015-04-01

    Soil moisture is a significant element in the water cycle, on an agricultural and in land interaction. In crop production, soil plays a key role as a physical support and a reservoir of water and nutrients. Decisions for optimized input rates of water are largely based on physical, chemical, and biological properties of soils. The aim of this work is to develop a low cost soil moisture sensor (SMS) based on impedance spectroscopy by means of magnitude ratio and phase difference detection method. Using impedance spectroscopy, more information can be delivered from real and imaginary part of the complex permittivity for several frequencies at the same moisture value. For this purpose, a probe has been designed which uses a simplified impedance measuring system to determine soil water content. The circuit sweeps at pre-programmed frequencies from 10 KHz to 10MHz with 10 mV AC amplitude. A local inceptisol soil of East Sumatra was especially selected for this investigation because measurements of soil moisture in peat swamp area were generally reported as challenging to analyze. Samples at defined soil moisture of 2%, 8%, 15% measured using commercial soil sensor Lutron PMS-714, was characterized. A model has been developed in order to correct the frequency influence upon the measurement. The results obtained by the sensor show good results with an overall mean error of 0.21% in impedance.

  19. Complex permittivity of FeCl3/AOT/CCl4 microemulsions probed by AC impedance spectroscopy.

    PubMed

    Calandra, Pietro; Ruggirello, Angela; Turco Liveri, Vincenzo

    2009-09-01

    The complex permittivity of FeCl(3)/AOT/CCl(4) microemulsions in the 1-10(5) Hz frequency range has been measured by the conventional AC complex impedance technique. Measurements as a function of the volume fraction of the dispersed phase (FeCl(3)+AOT) and temperature at fixed salt-to-AOT molar ratio (R, R = 0.5) show that the entrapment of FeCl(3) clusters significantly enhances the local permittivity of the AOT reverse micelles and the number density of charge carriers resulting from the peculiar state of the confined inorganic salt. An estimate of the apparent static permittivity of the FeCl(3) ionic clusters entrapped in the core of AOT reverse micelles gives the very high and quite surprisingly value of about 237. Moreover, a thorough analysis of conductivity data and of their temperature dependence strongly supports the hypothesis that the charge transport in these systems is mainly sustained by a mechanism of hopping consisting in the continuous jumping of charged species within supra-micellar aggregates of AOT reverse micelles whose aggregation is driven by fluctuating opposite charges on contacting micelles. PMID:19481764

  20. [An instrument for estimating human body composition using impedance measurement].

    PubMed

    Yin, J; Peng, C

    1997-03-01

    According to the impedance feature of biological tissue, the instrument was designed at 1, 5, 10, 50, 100kHz to measure human impedance, and then to calculate human FAT, FFM, FAT%, TBW, ECW, ICW and so on. A 8031 singlechip microprocessor contacuting used as a control center in the instrument. The part of electric circuit contacuting human body in the instrument was unreally earthing. The instrument was safty, effective, repeatable, and easily manpulative. Prelimintary clinical experiment showed the results measured with the instrument could effectively reflect practical, status of human composition. PMID:9647623

  1. Equivalent circuit modeling of the ac response of Pd-ZrO2 granular metal thin films using impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Bakkali, Hicham; Dominguez, Manuel; Batlle, Xavier; Labarta, Amílcar

    2015-08-01

    The ac response in the dielectric regime of thin films consisting of Pd nanoparticles embedded in a ZrO2 insulating matrix, fabricated by co-sputtering, was obtained from impedance spectroscopy measurements (11 Hz-2 MHz) in the temperature range 30-290 K. The response was fitted to an equivalent circuit model whose parameters were evaluated assuming that, as a consequence of the bimodal size distribution of the Pd particles, two mechanisms appear. At low frequencies, a first element similar to a parallel RC circuit dominates the response, due to two competing paths. One of them is associated with thermally-activated tunneling conductance among most of the smallest Pd particles (size ~ 2 nm), which make up the dc tunneling backbone of the sample. The other one is related to the conductance associated with the capacitive paths among larger Pd particles (size  >  5 nm). At low temperature and intermediate frequencies (~1 kHz), a shortcut process between the larger particles connects regions initially isolated from the backbone at low frequencies. These regions, populated by some additional smaller particles located around two bigger particles, were isolated because the bigger particles separation is too large for the tunneling current. Once connected to the backbone, current may also flow through them by means of the so-called thermally-activated assisted tunneling resistive paths, yielding the second element of the equivalent circuit (a parallel RLC element). At high temperature, the thermal energy shifts the onset of the shortcut process high frequencies and, thus, only the first element is observed. Considering these results, controlling the particle size distribution could be helpful to tune up the frequency at which tunneling conductance dominates the ac response of these granular metals.

  2. Oxygen diffusion in niobia-doped zirconia as surrogate for oxide film on Zr-Nb alloy: AC impedance analysis

    NASA Astrophysics Data System (ADS)

    Yamana, Teppei; Arima, Tatsumi; Yoshihara, Takatoshi; Inagaki, Yaohiro; Idemitsu, Kazuya

    2013-11-01

    The oxygen conductivities and crystallographic properties of niobia-doped yttria-stabilized tetragonal zirconia with 0.0-2.6 wt% Nb2O5 were evaluated by the AC impedance analysis and the X-ray diffraction measurement, respectively. The tetragonality of zirconia increased with niobia content and approached ˜1.017 while the tetragonal-to-monoclinic phase transition occurred above ca. 1 wt% Nb2O5. On the other hand, oxygen conductivities of bulk and grain-boundary (GB) decreased with increasing niobia content. The bulk conductivity controlled the total ionic conductivity at high temperatures, and its activation energy had smaller dependence on temperature than that of GB. In addition to the effect of [VO] depletion by niobia addition, the behaviors of bulk and GB conductivities might be explained by the decrease of mobility of oxygen ion due to Coulomb repulsion between Nb5+ and VO and by no segregation of Nb ions in the space-charge layers, respectively.

  3. Bunch Length and Impedance Measurements at SPEAR3

    SciTech Connect

    Corbett, W.J.; Cheng, W.X.; Fisher, A.S.; Huang, X.; /SLAC

    2011-11-02

    Streak camera measurements were made at SPEAR3 to characterize longitudinal coupling impedance. For the nominal optics, data was taken at three rf voltages and a single-bunch current range of 0-20mA. Both bunchcentroid phase shift and bunch lengthening were recorded to extract values for resistive and reactive impedance. An (R+L) and a Q=1 model were then back-substituted into the Haissinski equation and compared with raw profile data. In the short bunch (low-{alpha}) mode, distribution 'bursting' was observed.

  4. Modeling of converter transformers using frequency domain terminal impedance measurements

    SciTech Connect

    Liu, Yilu; Sebo, S.A.; Caldecott, R.; Kasten, D.G. ); Wright, S.E. )

    1993-01-01

    HVDC converter stations generate radio frequency (RF) electromagnetic (EM) noise which could interfere with adjacent communication and computer equipment, and carrier system operations. In order to calculate and predict the RF EM noise produced by the valve ignition of a converter station, it is essential to develop accurate models of station equipment over a broad frequency range. Models of all station equipment can be characterized by frequency dependent impedances. The paper describes the frequency dependent node-to-node impedance function (NIF) models of power system equipment based on systematic broad frequency range (50 Hz to 1MHz) external driving point impedance measurements, sponsored by the Electric Power Research Institute (EPRI). The regular structure, high accuracy, and virtually unlimited frequency range are important features of the NIF model. Examples of NIF model application in converter station RF EM noise calculations are presented.

  5. Antenna impedance measurements in a magnetized plasma. II. Dipole antenna

    SciTech Connect

    Blackwell, David D.; Walker, David N.; Messer, Sarah J.; Amatucci, William E.

    2007-09-15

    This paper presents experimental impedance measurements of a dipole antenna immersed in a magnetized plasma. The impedance was derived from the magnitude and phase of the reflected power using a network analyzer over a frequency range of 1 MHz-1 GHz. The plasma density was varied between 10{sup 7} and 10{sup 10} cm{sup -3} in weakly ({omega}{sub ce}<{omega}{sub pe}) and strongly ({omega}{sub ce}>{omega}{sub pe}) magnetized plasmas in the Space Physics Simulation Chamber at the Naval Research Laboratory. Over this range of plasma conditions the wavelength in the plasma varies from the short dipole limit ({lambda}>>L) to the long dipole limit ({lambda}{approx}L). As with previous impedance measurements, there are two resonant frequencies observed as frequencies where the impedance of the antenna is real. Measurements have indicated that in the short dipole limit the majority of the power deposition takes place at the lower resonance frequency which lies between the cyclotron frequency and the upper hybrid frequency. These measured curves agree very well with the analytic theory for a short dipole in a magnetoplasma. In the long dipole regime, in addition to the short dipole effects still being present, there is resonant energy deposition which peaks at much higher frequencies and correlates to 1/2 and 3/2 wavelength dipole resonances. The wavelengths in the plasma predicted by these resonances are consistent with the antenna radiating R and L-waves.

  6. Method to detect the end-point for PCR DNA amplification using an ionically labeled probe and measuring impedance change

    DOEpatents

    Miles, Robin R.; Belgrader, Phillip; Fuller, Christopher D.

    2007-01-02

    Impedance measurements are used to detect the end-point for PCR DNA amplification. A pair of spaced electrodes are located on a surface of a microfluidic channel and an AC or DC voltage is applied across the electrodes to produce an electric field. An ionically labeled probe will attach to a complementary DNA segment, and a polymerase enzyme will release the ionic label. This causes the conductivity of the solution in the area of the electrode to change. This change in conductivity is measured as a change in the impedance been the two electrodes.

  7. High Dynamic Range Complex Impedance Measurement System for Petrophysical Usage

    NASA Astrophysics Data System (ADS)

    Chen, R.; He, X.; Yao, H.; Tan, S.; Shi, H.; Shen, R.; Yan, C.; Zeng, P.; He, L.; Qiao, N.; Xi, F.; Zhang, H.; Xie, J.

    2015-12-01

    Spectral induced polarization method (SIP) or complex resistivity method is increasing its application in metalliferous ore exploration, hydrocarbon exploration, underground water exploration, monitoring of environment pollution, and the evaluation of environment remediation. And the measurement of complex resistivity or complex impedance of rock/ore sample and polluted water plays a fundamental role in improving the application effect of SIP and the application scope of SIP. However, current instruments can't guaranty the accuracy of measurement when the resistance of sample is less than 10Ω or great than 100kΩ. A lot of samples, such as liquid, polluted sea water, igneous rock, limestone, and sandstone, can't be measured with reliable complex resistivity result. Therefore, this problem projects a shadow in the basic research and application research of SIP. We design a high precision measurement system from the study of measurement principle, sample holder, and measurement instrument. We design input buffers in a single board. We adopt operation amplifier AD549 in this system because of its ultra-high input impedance and ultra-low current noise. This buffer is good in acquiring potential signal across high impedance sample. By analyzing the sources of measurement error and errors generated by the measurement system, we propose a correction method to remove the error in order to achieve high quality complex impedance measurement for rock and ore samples. This measurement system can improve the measurement range of the complex impedance to 0.1 Ω ~ 10 GΩ with amplitude error less than 0.1% and phase error less than 0.1mrad when frequency ranges as 0.01 Hz ~ 1 kHz. We tested our system on resistors with resistance as 0.1Ω ~ 10 GΩ in frequency range as 1 Hz ~ 1000 Hz, and the measurement error is less than 0.1 mrad. We also compared the result with LCR bridge and SCIP, we can find that the bridge's measuring range only reaches 100 MΩ, SCIP's measuring range

  8. A compact wideband precision impedance measurement system based on digital auto-balancing bridge

    NASA Astrophysics Data System (ADS)

    Hu, Binxin; Wang, Jinyu; Song, Guangdong; Zhang, Faxiang

    2016-05-01

    The ac impedance spectroscopy measurements are predominantly taken by using impedance analyzers based on analog auto-balancing bridge. However, those bench-top analyzers are generally complicated, bulky and expensive, thus limiting their usage in industrial field applications. This paper presents the development of a compact wideband precision measurement system based on digital auto-balancing bridge. The methods of digital auto-balancing bridge and digital lock-in amplifier are analyzed theoretically. The overall design and several key sections including null detector, direct digital synthesizer-based sampling clock, and digital control unit are introduced in detail. The results show that the system achieves a basic measurement accuracy of 0.05% with a frequency range of 20 Hz–2 MHz. The advantages of versatile measurement capacity, fast measurement speed, small size and low cost make it quite suitable for industrial field applications. It is demonstrated that this system is practical and effective by applying in determining the impedance-temperature characteristic of a motor starter PTC thermistor.

  9. Determination of Complex Microcalorimeter Parameters with Impedance Measurements

    NASA Technical Reports Server (NTRS)

    Saab, T.; Bandler, S. R.; Chervenak, J.; Figueroa-Feliciano, E.; Finkbeiner, F.; Iyomoto, N.; Kelley, R.; Kilbourne, C. A.; Lindeman, M. A.; Porter, F. S.; Sadleir, J.

    2005-01-01

    The proper understanding and modeling of a microcalorimeter s response requires the accurate knowledge of a handful of parameters, such as C, G, alpha, . . . . While a few of these, such 8s the normal state resistance and the total thermal conductance to the heat bath (G) are directly determined from the DC IV characteristics, some others, notoriously the heat capacity (C) and alpha, appear in degenerate combinations in most measurable quantities. The case of a complex microcalorimeter, i.e. one in which the absorber s heat capacity is connected by a finite thermal impedance to the sensor, and subsequently by another thermal impedance to the heat bath, results in an added ambiguity in the determination of the individual C's and G's. In general, the dependence of the microcalorimeter s complex impedance on these parameters varies with frequency. This variation allows us to determine the individual parameters by fitting the prediction of the microcalorimeter model to the impedance data. We describe in this paper our efforts at characterizing the Goddard X-ray microcalorimeters. Using the parameters determined with this method we them compare the pulse shape and noise spectra predicted by the microcalorimeter model to data taken with the same devices.

  10. Determination of soil moisture distribution from impedance and gravimetric measurements

    NASA Technical Reports Server (NTRS)

    Ungar, Stephen G.; Layman, Robert; Campbell, Jeffrey E.; Walsh, John; Mckim, Harlan J.

    1992-01-01

    Daily measurements of the soil dielectric properties at 5 and 10 cm were obtained at five locations throughout the First ISLSCP Field Experiment (FIFE) test site during the 1987 intensive field campaigns (IFCs). An automated vector voltmeter was used to monitor the complex electrical impedance, at 10 MHz, of cylindrical volumes of soil delineated by specially designed soil moisture probes buried at these locations. The objective of this exercise was to test the hypothesis that the soil impedance is sensitive to the moisture content of the soil and that the imaginary part (that is, capacitive reactance) can be used to calculate the volumetric water content of the soil. These measurements were compared with gravimetric samples collected at these locations by the FIFE staff science team.

  11. Damage Diagnosis in Semiconductive Materials Using Electrical Impedance Measurements

    NASA Technical Reports Server (NTRS)

    Ross, Richard W.; Hinton, Yolanda L.

    2008-01-01

    Recent aerospace industry trends have resulted in an increased demand for real-time, effective techniques for in-flight structural health monitoring. A promising technique for damage diagnosis uses electrical impedance measurements of semiconductive materials. By applying a small electrical current into a material specimen and measuring the corresponding voltages at various locations on the specimen, changes in the electrical characteristics due to the presence of damage can be assessed. An artificial neural network uses these changes in electrical properties to provide an inverse solution that estimates the location and magnitude of the damage. The advantage of the electrical impedance method over other damage diagnosis techniques is that it uses the material as the sensor. Simple voltage measurements can be used instead of discrete sensors, resulting in a reduction in weight and system complexity. This research effort extends previous work by employing finite element method models to improve accuracy of complex models with anisotropic conductivities and by enhancing the computational efficiency of the inverse techniques. The paper demonstrates a proof of concept of a damage diagnosis approach using electrical impedance methods and a neural network as an effective tool for in-flight diagnosis of structural damage to aircraft components.

  12. Nuclear radiation-warning detector that measures impedance

    SciTech Connect

    Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven

    2013-06-04

    This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.

  13. Real-time measurement of glucose using chrono-impedance technique on a second generation biosensor.

    PubMed

    Mayorga Martinez, Carmen C; Treo, Ernesto F; Madrid, Rossana E; Felice, Carmelo C

    2011-11-15

    Chrono-impedance technique (CIT) was implemented as a new transduction method for real time measurement of glucose in a biosensor system based in carbon paste (CP)/Ferrocene (FC)/glucose oxidase (GOx). The system presents high selectivity because the optimal stimulation signal composed by a 165mV DC potential and 50mV(RMS) AC signal at 0.4Hz was used. The low DC potential used decreased the interfering species effect and the biosensor showed a linear impedance response toward glucose detection at concentrations from 0mM to 20mM,with 0.9853 and 0.9945 correlation coefficient for impedance module (|Z|) and phase (Φ), respectively. The results of quadruplicate sets reveal the high repeatability and reproducibility of the measurements with a relative standard deviation (RSD) less than 10%. CIT presented good accuracy (within 10% of the actual value) and precision did not exceed 15% of RSD for high concentration values and 20% for the low concentration ones. In addition, a high correlation coefficient (R(2)=0.9954) between chrono-impedance and colorimetric methods was obtained. On the other hand, when two samples prepared at the same conditions were measured in parallel with both methods (the measurement was repeated four times), it should be noticed that student's t-test produced no difference between the two mentioned methods (p=1). The biosensor system hereby presented is highly specific to glucose detection and shows a better linear range than the one reported on the previous article. PMID:21907557

  14. Effect of borehole design on electrical impedance tomography measurements

    NASA Astrophysics Data System (ADS)

    Mozaffari, Amirpasha; Huisman, Johan Alexander; Treichel, Andrea; Zimmermann, Egon; Kelter, Matthias; Vereecken, Harry

    2015-04-01

    Electrical Impedance Tomography (EIT) is a sophisticated non-invasive tool to investigate the subsurface in engineering and environmental studies. To increase the depth of investigation, EIT measurements can be made in boreholes. However, the presence of the borehole may affect EIT measurements. Here, we aim to investigate the effect of different borehole components on EIT measurements using 2,5-D and 3D finite element modeling and unstructured meshes. To investigate the effect of different borehole components on EIT measurements, a variety of scenarios were designed. In particular, the effect of the water-filled borehole, the PVC casing, and the gravel filter were investigated relative to complex resistivity simulations for a homogenous medium with chain and electrode modules. It was found that the results of the complex resistivity simulations were best understood using the sensitivity distribution of the electrode configuration under consideration. In all simulations, the sensitivity in the vicinity of the borehole was predominantly negative. Therefore, the introduction of the water-filled borehole caused an increase in the real part of the impedance, and a decrease (more negative) in the imaginary part of the simulated impedance. The PVC casing mostly enhanced the effect of the water-filled borehole described above, although this effect was less clear for some electrode configuration. The effect of the gravel filter mostly reduced the effect of the water-filled borehole with PVC casing. For EIT measurements in a single borehole, the highest simulated phase error was 12% for a Wenner configuration with electrode spacing of 0.33 m. This error decreased with increasing electrode spacing. In the case of cross-well configurations, the error in the phase shit was as high as 6%. Here, it was found that the highest errors occur when both current electrodes are located in the same borehole. These results indicated that cross-well measurements are less affected by the

  15. Body Fat Measurement: Weighing the Pros and Cons of Electrical Impedance.

    ERIC Educational Resources Information Center

    Nash, Heyward L.

    1985-01-01

    Research technologists have developed electrical impedance units in response to demand for a convenient and reliable method of measuring body fat. Accuracy of impedance measures versus calipers and underwater weighing are discussed. (MT)

  16. Determination of time delay between ventricles contraction using impedance measurements

    NASA Astrophysics Data System (ADS)

    Lewandowska, M.; Poliński, A.; Wtorek, J.

    2013-04-01

    The paper presents a novel approach to assessment of ventricular dyssynchrony basing on multichannel electrical impedance measurements. Using a proper placement of electrodes, the sensitivity approach allows estimating time difference between chambers contraction from over determined nonlinear system of equations. The theoretical considerations which include Finite Element Method simulations were verified using measurements on healthy 28 year's old woman. The nonlinear least squares method was applied to obtain a time difference between heart chambers contraction. The obtained value was in a good agreement with theoretical values found in literature.

  17. Study of surfactant-skin interactions by skin impedance measurements.

    PubMed

    Lu, Guojin; Moore, David J

    2012-02-01

    The stratum corneum (SC) plays a very critical physiological role as skin barrier in regulating water loss through the skin and protects the body from a wide range of physical and chemical exogenous insults. Surfactant-containing formulations can induce skin damage and irritation owing to surfactant absorption and penetration. It is generally accepted that reduction in skin barrier properties occurs only after surfactants have penetrated/permeated into the skin barrier. To mitigate the harshness of surfactant-based cleansing products, penetration/permeation of surfactants should be reduced. Skin impedance measurements have been taken in vitro on porcine skin using vertical Franz diffusion cells to investigate the impact of surfactants, temperature and pH on skin barrier integrity. These skin impedance results demonstrate excellent correlation with other published methods for assessing skin damage and irritation from different surfactant chemistry, concentration, pH, time of exposure and temperature. This study demonstrates that skin impedance can be utilized as a routine approach to screen surfactant-containing formulations for their propensity to compromise the skin barrier and hence likely lead to skin irritation. PMID:21923733

  18. Current density distribution in cylindrical Li-Ion cells during impedance measurements

    NASA Astrophysics Data System (ADS)

    Osswald, P. J.; Erhard, S. V.; Noel, A.; Keil, P.; Kindermann, F. M.; Hoster, H.; Jossen, A.

    2016-05-01

    In this work, modified commercial cylindrical lithium-ion cells with multiple separate current tabs are used to analyze the influence of tab pattern, frequency and temperature on electrochemical impedance spectroscopy. In a first step, the effect of different current tab arrangements on the impedance spectra is analyzed and possible electrochemical causes are discussed. In a second step, one terminal is used to apply a sinusoidal current while the other terminals are used to monitor the local potential distribution at different positions along the electrodes of the cell. It is observed that the characteristic decay of the voltage amplitude along the electrode changes non-linearly with frequency, where high-frequent currents experience a stronger attenuation along the current collector than low-frequent currents. In further experiments, the decay characteristic is controlled by the cell temperature, driven by the increasing resistance of the current collector and the enhanced kinetic and transport properties of the active material and electrolyte. Measurements indicate that the ac current distribution depends strongly on the frequency and the temperature. In this context, the challenges for electrochemical impedance spectroscopy as cell diagnostic technique for commercial cells are discussed.

  19. Measurement of Electrical Activation Energy in Black CVD Diamond Using Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ye, Haitao; Williams, Oliver A.; Jackman, Richard B.

    Dc current-voltage (I-V) measurement, Hall measurement, Deep-level transient-spectroscopy (DLTS), and flatband capacitance measurement have been used to investigate electrical activation energies in diamond. However, the deviations still exist in the published activation energies obtained by these methods. In this paper, we report the first measurement of impedance on free-standing diamond films from 0.1Hz to 10MHz up to 300°C. A wide range of CVD materials have been investigated, but here we concentrate on `black' diamond grown by MWPECVD. The Cole-Cole (Z' via Z'') plots are well fitted to a RC parallel circuit model and the equivalent Resistance and Capacitance for the diamond films have been estimated using the Zview curve fitting. The results show only one single semicircle response at each temperature measured. It was found that the resistance decreases from 62 MΩ at room temperature to 4 KΩ at 300°C, with an activation energy around 0.15eV. The equivalent capacitance is maintained at the level of 102 pF up to 300°C suggesting that the diamond grain boundaries are dominating the conduction. At 400°C, the impedance at low frequencies shows a linear tail, which can be explained that the AC polarization of diamond/Au interface occurs.

  20. A new method for measuring osteoclast formation by electrical impedance.

    PubMed

    Emori, Haruka; Iwai, Shinichi; Ryu, Kakei; Amano, Hitoshi; Sambe, Takehiko; Kobayashi, Takahiro; Oguchi, Tatsunori; Ohura, Kiyoshi; Oguchi, Katsuji

    2015-06-01

    Osteoclasts are important target cells for osteoporosis treatment. Recently, a real-time cell analysis (RTCA) system was developed to observe cell morphology and adhesion; however, the use of RTCA to study osteoclastogenesis has not been reported. Here, we investigated whether osteoclast formation could be monitored in real-time using RTCA. The cell index determined via electrical impedance using RTCA, and the number of osteoclasts exhibited a significant positive correlation. RTCA was useful for determining the effect of (-)-epigallocatechin-3-gallate on the inhibition of bone resorption. We established a new method of measuring osteoclast formation in real-time using RTCA. PMID:26032840

  1. Crosstalk Compensation for a Rapid, Higher Resolution Impedance Spectrum Measurement

    SciTech Connect

    Jon P. Christophersen; John L. Morrison; David M. Rose; William H. Morrison; Chester G. Motloch

    2012-03-01

    Batteries and other energy storage devices are playing larger roles in various industries (e.g., military, automotive, electric utilities, etc.) as the U.S. seeks to reduce its dependence on foreign energy resources. As such, there exists a significant need for accurate, robust state-of-health assessment techniques. Present techniques tend to focus on simple, passive monitoring of voltage and current at a given ambient temperature. However, this approach has the disadvantage of ignoring key elements of health, that is, changes in resistance growth and power fade. Impedance spectroscopy is considered a useful laboratory tool in gauging changes in the resistance and power performance, but it has not been widely considered as an onboard diagnostic tool due to the length of time required to complete the measurement. Cross-Talk Compensation (CTC) is a novel approach that enables rapid, high resolution impedance spectra measurements using a hardware platform that could be designed as an embedded system. This input signal consists of a sum-of-sines excitation current that has a known frequency spread and a duration of one period of the lowest frequency. The voltage response is then captured at a sufficiently fast sample rate. Previously developed rapid impedance spectrum measurement techniques either required a longer excitation signal or a sum-of-sines signal that was separated by harmonic frequencies to reduce or eliminate, respectively, the cross-talk interference in the calculated results. The distinct advantage of CTC, however, is that non-harmonic frequencies can now be included within the excitation signal while still keeping the signal duration at one period of the lowest frequency. Since the frequency spread of the input signal is known, the crosstalk interference between sinusoidal signals within the sum-of-sines at a given frequency of interest can be pre-determined and assigned to an error matrix. Consequently, the real and imaginary components of the

  2. Traveling-wave electrokinetic micropumps: velocity, electrical current, and impedance measurements.

    PubMed

    García-Sánchez, P; Ramos, A; Green, N G; Morgan, H

    2008-09-01

    An array of microelectrodes covered in an electrolyte and energized by a traveling-wave potential produces net movement of the fluid. Arrays of platinum microelectrodes of two different characteristic sizes have been studied. For both sizes of arrays, at low voltages (<2 V pp) the electrolyte flow is in qualitative agreement with the linear theory of ac electroosmosis. At voltages above a threshold, the direction of fluid flow is reversed. The electrical impedance of the electrode-electrolyte system was measured after the experiments, and changes in the electrical properties of the electrolyte were observed. Measurements of the electrical current during pumping of the electrolyte are also reported. Transient behaviors in both electrical current and fluid velocity were observed. The Faradaic currents probably generate conductivity gradients in the liquid bulk, which in turn give rise to electrical forces. These effects are discussed in relation to the fluid flow observations. PMID:18672919

  3. Input impedance of brass instruments from velocity measurement

    NASA Astrophysics Data System (ADS)

    Ludwigsen, Daniel O.

    2005-09-01

    A velocity sensor known as the Microflown measures particle velocity from a difference in temperature between two MEMS-scale wires. With a small precision microphone in a package the size of a matchstick, simultaneous measurement of particle velocity and pressure can be accomplished in a tiny space such as the mouthpiece of a brass instrument. Traditional measurements of input impedance rely on a constant flow provided by a capillary tube or feedback loop control of the driver. This velocity sensor eliminates these technical requirements. The apparatus and calibration procedures will be described, and results of measurements of several instruments will be presented. In an easily used device, this approach could benefit instrument designers, makers, and repair technicians.

  4. Auditory evoked field measurement using magneto-impedance sensors

    NASA Astrophysics Data System (ADS)

    Wang, K.; Tajima, S.; Song, D.; Hamada, N.; Cai, C.; Uchiyama, T.

    2015-05-01

    The magnetic field of the human brain is extremely weak, and it is mostly measured and monitored in the magnetoencephalography method using superconducting quantum interference devices. In this study, in order to measure the weak magnetic field of the brain, we constructed a Magneto-Impedance sensor (MI sensor) system that can cancel out the background noise without any magnetic shield. Based on our previous studies of brain wave measurements, we used two MI sensors in this system for monitoring both cerebral hemispheres. In this study, we recorded and compared the auditory evoked field signals of the subject, including the N100 (or N1) and the P300 (or P3) brain waves. The results suggest that the MI sensor can be applied to brain activity measurement.

  5. Auditory evoked field measurement using magneto-impedance sensors

    SciTech Connect

    Wang, K. Tajima, S.; Song, D.; Uchiyama, T.; Hamada, N.; Cai, C.

    2015-05-07

    The magnetic field of the human brain is extremely weak, and it is mostly measured and monitored in the magnetoencephalography method using superconducting quantum interference devices. In this study, in order to measure the weak magnetic field of the brain, we constructed a Magneto-Impedance sensor (MI sensor) system that can cancel out the background noise without any magnetic shield. Based on our previous studies of brain wave measurements, we used two MI sensors in this system for monitoring both cerebral hemispheres. In this study, we recorded and compared the auditory evoked field signals of the subject, including the N100 (or N1) and the P300 (or P3) brain waves. The results suggest that the MI sensor can be applied to brain activity measurement.

  6. System for simultaneous measurements of bilaterally symmetrical acupoints multifrequency impedances

    PubMed Central

    Su, Mi-Yong; Tan, Yong-Hong; Wang, Zi-Min; Gan, Cai-Jun; Chen, Shou-Hong

    2013-01-01

    Devices which can obtain comparable bilaterally symmetrical acupoints (BSA) multifrequency impedances (MFI) are often needed in the detection of the energy balance states of acupoints in traditional Chinese medicine. To satisfy these needs, a two-channel impedance measurement system has been introduced which is capable of accurately and simultaneously measuring BSA MFI. The system includes a set of five electrodes, two of which are injected with exciting current signal to synchronously and equally excite BSA; the other three electrodes are used as sensors to simultaneously sense the response signal from both sides. The system also includes a PC-based time-domain signal testing platform with arbitrary current waveform generation and three channels (one exciting current and two response voltages) simultaneously sampling, and a set of MFI simultaneously unbiased computing algorithms based on special odd multisine current signal input. Preliminary validating experiments suggest that the system allows accurate and synchronous measurement of BSA MFI at least in the frequency range of 10 Hz to 60 kHz, and the obtained BSA MFI are well comparable. PMID:24348077

  7. Determinants of pulmonary perfusion measured by electrical impedance tomography.

    PubMed

    Smit, Henk J; Vonk Noordegraaf, Anton; Marcus, J Tim; Boonstra, Anco; de Vries, Peter M; Postmus, Pieter E

    2004-06-01

    Electrical impedance tomography (EIT) is a non-invasive imaging technique for detecting blood volume changes that can visualize pulmonary perfusion. The two studies reported here tested the hypothesis that the size of the pulmonary microvascular bed, rather than stroke volume (SV), determines the EIT signal. In the first study, the impedance changes relating to the maximal pulmonary pulsatile blood volume during systole (Delta Z(sys)) were measured in ten healthy subjects, ten patients diagnosed with chronic obstructive pulmonary disease, who were considered to have a reduced pulmonary vascular bed, and ten heart failure patients with an assumed low cardiac output but with a normal lung parenchyma. Mean Delta Z(sys) (SD) in these groups was 261 (34)x10(-5), 196 (39)x10(-5) ( P<0.001) and 233 (61)x10(-5) arbitrary units (AU) (P=NS), respectively. In the second study, including seven healthy volunteers, Delta Z(sys) was measured at rest and during exercise on a recumbent bicycle while SV was measured by means of magnetic resonance imaging. The Delta Z(sys) at rest was 352 (53)x10(-5 ) and 345 (112)x10(-5 )AU during exercise (P=NS), whereas SV increased from 83 (21) to 105 (34) ml (P<0.05). The EIT signal likely reflects the size of the pulmonary microvascular bed, since neither a low cardiac output nor a change in SV of the heart appear to influence EIT. PMID:14985995

  8. Optimization of Acoustic Pressure Measurements for Impedance Eduction

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Watson, W. R.; Nark, D. M.

    2007-01-01

    As noise constraints become increasingly stringent, there is continued emphasis on the development of improved acoustic liner concepts to reduce the amount of fan noise radiated to communities surrounding airports. As a result, multiple analytical prediction tools and experimental rigs have been developed by industry and academia to support liner evaluation. NASA Langley has also placed considerable effort in this area over the last three decades. More recently, a finite element code (Q3D) based on a quasi-3D implementation of the convected Helmholtz equation has been combined with measured data acquired in the Langley Grazing Incidence Tube (GIT) to reduce liner impedance in the presence of grazing flow. A new Curved Duct Test Rig (CDTR) has also been developed to allow evaluation of liners in the presence of grazing flow and controlled, higher-order modes, with straight and curved waveguides. Upgraded versions of each of these two test rigs are expected to begin operation by early 2008. The Grazing Flow Impedance Tube (GFIT) will replace the GIT, and additional capabilities will be incorporated into the CDTR. The current investigation uses the Q3D finite element code to evaluate some of the key capabilities of these two test rigs. First, the Q3D code is used to evaluate the microphone distribution designed for the GFIT. Liners ranging in length from 51 to 610 mm are investigated to determine whether acceptable impedance eduction can be achieved with microphones placed on the wall opposite the liner. This analysis indicates the best results are achieved for liner lengths of at least 203 mm. Next, the effects of moving this GFIT microphone array to the wall adjacent to the liner are evaluated, and acceptable results are achieved if the microphones are placed off the centerline. Finally, the code is used to investigate potential microphone placements in the CDTR rigid wall adjacent to the wall containing an acoustic liner, to determine if sufficient fidelity can be

  9. Detection of Chamber Conditioning Through Optical Emission and Impedance Measurements

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.; Rao, M. V. V. S.; Sharma, Surendra P.; Meyyappan, Meyya

    2001-01-01

    During oxide etch processes, buildup of fluorocarbon residues on reactor sidewalls can cause run-to-run drift and will necessitate some time for conditioning and seasoning of the reactor. Though diagnostics can be applied to study and understand these phenomena, many of them are not practical for use in an industrial reactor. For instance, measurements of ion fluxes and energy by mass spectrometry show that the buildup of insulating fluorocarbon films on the reactor surface will cause a shift in both ion energy and current in an argon plasma. However, such a device cannot be easily integrated into a processing system. The shift in ion energy and flux will be accompanied by an increase in the capacitance of the plasma sheath. The shift in sheath capacitance can be easily measured by a common commercially available impedance probe placed on the inductive coil. A buildup of film on the chamber wall is expected to affect the production of fluorocarbon radicals, and thus the presence of such species in the optical emission spectrum of the plasma can be monitored as well. These two techniques are employed on a GEC (Gaseous Electronics Conference) Reference Cell to assess the validity of optical emission and impedance monitoring as a metric of chamber conditioning. These techniques are applied to experimental runs with CHF3 and CHF3/O2/Ar plasmas, with intermediate monitoring of pure argon plasmas as a reference case for chamber conditions.

  10. Reprogramming carcinoma associated fibroblasts by AC1MMYR2 impedes tumor metastasis and improves chemotherapy efficacy.

    PubMed

    Ren, Yu; Zhou, Xuan; Liu, Xia; Jia, Huan-huan; Zhao, Xiao-hui; Wang, Qi-xue; Han, Lei; Song, Xin; Zhu, Zhi-yan; Sun, Ting; Jiao, Hong-xiao; Tian, Wei-ping; Yang, Yu-qi; Zhao, Xiu-lan; Zhang, Lun; Mei, Mei; Kang, Chun-sheng

    2016-04-28

    Carcinoma associated fibroblasts (CAFs) produce a nutrient-rich microenvironment to fuel tumor progression and metastasis. Reactive oxygen species (ROS) levels and the inflammation pathway co-operate to transform CAFs. Therefore, elucidating the mechanism mediating the activity of CAFs might identify novel therapies. Abnormal miR-21 expression was reported to be involved in the conversion of resident fibroblasts to CAFs, yet the factor that drives transformation was poorly understood. Here, we reported that high miR-21 expression was strongly associated with lymph node metastasis in breast cancer, and the activation of the miR-21/NF-кB was required for the metastatic promoting effect of CAFs. AC1MMYR2, a small molecule inhibitor of miR-21, attenuated NF-кB activity by directly targeting VHL, thereby blocking the co-precipitation of NF-кB and ß-catenin and nuclear translocation. Taxol failed to constrain the aggressive behavior of cancer cells stimulated by CAFs, whereas AC1MMYR2 plus taxol significantly suppressed tumor migration and invasion ability. Remodeling and depolarization of F-actin, decreased levels of β-catenin and vimentin, and increased E-cadherin were also detected in the combination therapy. Furthermore, reduced levels of FAP-α and α-SMA were observed, suggesting that AC1MMYR2 was competent to reprogram CAFs via the NF-кB/miR-21/VHL axis. Strikingly, a significant reduction of tumor growth and lung metastasis was observed in the combination treated mice. Taken together, our findings identified miR-21 as a critical mediator of metastasis in breast cancer through the tumor environment. AC1MMYR2 may be translated into the clinic and developed as a more personalized and effective neoadjuvant treatment for patients to reduce metastasis and improve the chemotherapy response. PMID:26872723

  11. Alternating current impedance imaging of high-resistance membrane pores using a scanning electrochemical microscope. Application of membrane electrical shunts to increase measurement sensitivity and image contrast.

    PubMed

    Ervin, Eric Nathan; White, Henry S; Baker, Lane A; Martin, Charles R

    2006-09-15

    Whether an individual pore in a porous membrane can be imaged using scanning electrochemical microscopy (SECM), operated in ac impedance mode, is determined by the magnitude of the change in the total impedance of the imaging system as the SECM tip is scanned over the pore. In instances when the SECM tip resistance is small relative to the internal pore resistance, the total impedance changes by a negligible amount, rendering the pore invisible during impedance imaging. A simple solution to this problem is to introduce a low-impedance electrical shunt (i.e., a salt bridge) across the membrane. This principle is demonstrated by imaging polycarbonate membranes (6-12-microm thickness) containing between 1 and 2000 conical-shaped pores (60-nm- and 2.5-microm-diameter openings) using an approximately 1-microm-radius Pt tip. Theory and experiments show that image contrast (the change in ac current measured as the probe is scanned over the pore) is inversely proportional to the total resistance of the membrane and can be increased by a factor of approximately 50x by introducing a low-resistance electrical shunt across the membrane. Remarkably, SECM images of membranes containing a single high-resistance (approximately 1 G Omega) pore can only be imaged by short-circuiting the membrane. Image contrast also becomes independent of membrane resistance when an electrical shunt is used, allowing for more quantitative comparisons of the features in ac impedance images of different membranes. PMID:16970331

  12. Ionosphere plasma electron parameters from radio frequency sweeping impedance probe measurements

    NASA Astrophysics Data System (ADS)

    Spencer, E.; Patra, S.

    2015-09-01

    In this work we will describe the technique of using an RF sweeping impedance probe (SIP) to measure the AC impedance of an electrically short monopole immersed in a plasma. We analyze the SIP measurements which are taken from the payload of the Storms sounding rocket, launched from Wallops Island, Virginia, in 2007. The scientific objective of the Storms mission was to concentrate on whether density irregularities observed in midlatitude spread F could arise from ionospheric coupling to terrestrial weather. As such, independent measurements of the electron density profile are crucial. Since the inherent nature of the SIP technique makes it relatively insensitive to errors introduced through spacecraft charging, probe contamination, and other DC effects, it is an ideal instrument to employ under disturbed plasma conditions. The instrument measures both the magnitude and phase of the AC impedance from 100 kHz to 20 MHz in 128 frequency steps, performing 45,776 sweeps over the entire flight. From these measurements we infer both the absolute electron density ne and the electron neutral collision frequencies νen throughout the flight trajectory. The SIP data can be approximately analyzed using a fluid formulation and thin sheath approximation particularly at altitudes below 200 km, which allows us to match the measurements to quasi-static analytical formulas. At about 265 km on the upleg, the magnitude data transitioned to a highly damped response with increasing altitude. The phase data, on the other hand, continued to indicate increased plasma density and reduced collisionality as expected. For a large portion of the flight, the payload of the Storms mission exhibited an uncontrolled coning motion, making the local magnetic field orientation with respect to the dipole difficult to decipher. Despite these difficulties, we were able to obtain robust estimates of the electron density profile, using the phase information from each sweep. In addition, the electron

  13. An instrument for simultaneous EQCM impedance and SECM measurements.

    PubMed

    Gollas, B; Bartlett, P N; Denuault, G

    2000-01-15

    A novel combination of an electrochemical quartz crystal microbalance (EQCM) and a scanning electrochemical microscope (SECM) has been built. Unlike conventional EQCMs, the instrument described here allows rapid in situ measurement of the modulus of the quartz crystal's transfer function. Data analysis in the complex plane for the Butterworth-Van Dyke (BVD) equivalent circuit yields the real and the imaginary components R (damping resistance) and XL (reactive inductance) of the crystal's electroacoustic impedance around its resonant frequency of 10 MHz. The influence of different tip shapes of an approaching microelectrode on the electroacoustic impedance of the quartz crystal was studied and found to be minimal for certain geometries. The capability of the EQCM/SECM instrument was tested in cyclic voltammetric plating/stripping experiments using a copper(I) chloride solution of high concentration in 1 M HCl. Four parameters, XL, R, the substrate, and the tip current, can be recorded simultaneously. Depletion layer effects were observed and could be corrected for to yield accurate current efficiencies for potentiodynamic and potentiostatic copper plating. The amperometric response of the SECM tip positioned closely to the substrate reflects the concentration changes of electroactive ions in the diffusion layer of the substrate electrode. PMID:10658330

  14. Grinding process monitoring based on electromechanical impedance measurements

    NASA Astrophysics Data System (ADS)

    Marchi, Marcelo; Guimarães Baptista, Fabricio; de Aguiar, Paulo Roberto; Bianchi, Eduardo Carlos

    2015-04-01

    Grinding is considered one of the last processes in precision parts manufacturing, which makes it indispensable to have a reliable monitoring system to evaluate workpiece surface integrity. This paper proposes the use of the electromechanical impedance (EMI) method to monitor the surface grinding operation in real time, particularly the surface integrity of the ground workpiece. The EMI method stands out for its simplicity and for using low-cost components such as PZT (lead zirconate titanate) piezoelectric transducers. In order to assess the feasibility of applying the EMI method to the grinding process, experimental tests were performed on a surface grinder using a CBN grinding wheel and a SAE 1020 steel workpiece, with PZT transducers mounted on the workpiece and its holder. During the grinding process, the electrical impedance of the transducers was measured and damage indices conventionally used in the EMI method were calculated and compared with workpiece wear, indicating the surface condition of the workpiece. The experimental results indicate that the EMI method can be an efficient and cost-effective alternative for monitoring precision workpieces during the surface grinding process.

  15. Two-Point Stretchable Electrode Array for Endoluminal Electrochemical Impedance Spectroscopy Measurements of Lipid-Laden Atherosclerotic Plaques.

    PubMed

    Packard, René R Sevag; Zhang, XiaoXiao; Luo, Yuan; Ma, Teng; Jen, Nelson; Ma, Jianguo; Demer, Linda L; Zhou, Qifa; Sayre, James W; Li, Rongsong; Tai, Yu-Chong; Hsiai, Tzung K

    2016-09-01

    Four-point electrode systems are commonly used for electric impedance measurements of biomaterials and tissues. We introduce a 2-point system to reduce electrode polarization for heterogeneous measurements of vascular wall. Presence of endoluminal oxidized low density lipoprotein (oxLDL) and lipids alters the electrochemical impedance that can be measured by electrochemical impedance spectroscopy (EIS). We developed a catheter-based 2-point micro-electrode configuration for intravascular deployment in New Zealand White rabbits. An array of 2 flexible round electrodes, 240 µm in diameter and separated by 400 µm was microfabricated and mounted on an inflatable balloon catheter for EIS measurement of the oxLDL-rich lesions developed as a result of high-fat diet-induced hyperlipidemia. Upon balloon inflation, the 2-point electrode array conformed to the arterial wall to allow deep intraplaque penetration via alternating current (AC). The frequency sweep from 10 to 300 kHz generated an increase in capacitance, providing distinct changes in both impedance (Ω) and phase (ϕ) in relation to varying degrees of intraplaque lipid burden in the aorta. Aortic endoluminal EIS measurements were compared with epicardial fat tissue and validated by intravascular ultrasound and immunohistochemistry for plaque lipids and foam cells. Thus, we demonstrate a new approach to quantify endoluminal EIS via a 2-point stretchable electrode strategy. PMID:26857007

  16. Corrosion behaviour of galvanized steel and electroplating steel in aqueous solution: AC impedance study and XPS

    NASA Astrophysics Data System (ADS)

    Lebrini, M.; Fontaine, G.; Gengembre, L.; Traisnel, M.; Lerasle, O.; Genet, N.

    2008-08-01

    The efficiency of a new triazole derivative, namely, 2-{(2-hydroxyethyl)[(4-methyl-1 H-1,2,3-benzotriazol-1-yl)methyl]amino}ethanol (TTA) has been studied for corrosion inhibition of galvanized steel and electroplating steel in aqueous solution. Corrosion inhibition was studied using electrochemical impedance spectroscopy (EIS). These studies have shown that TTA was a very good inhibitor. Data obtained from EIS show a frequency distribution and therefore a modelling element with frequency dispersion behaviour, a constant phase element (CPE) has been used. The corrosion behaviour of galvanized steel and electroplating steel in aqueous solution was also investigated in the presence of 4-methyl-1 H-benzotriazole (TTA unsubstituted) by EIS. These studies have shown that the ability of the molecule to adsorb on the steel surface was dependent on the group in triazole ring substituent. X-ray photoelectron spectroscopy surface analysis with TTA shows that it chemisorbed on surface of galvanized steel and electroplating steel.

  17. Determination of the Si-conducting polymer interfacial properties using A-C impedance techniques

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, G.; Di Stefano, Salvador; Moacanin, Jovan

    1985-01-01

    A study was made of the interfacial properties of poly(pyrrole) (PP) deposited electrochemically onto single crystal p-Si surfaces. The interfacial properties are dependent upon the counterions. The formation of 'quasi-ohmic' and 'nonohmic' contacts, respectively, of PP(ClO4) and PP films doped with other counterions (BF4 and para-toluene sulfonate) with p-Si, are explained in terms of the conductivity of these films and the flat band potential, V(fb), of PP relative to that of p-Si. The PP film seems to passivate or block intrinsic surface states present on the p-Si surface. The differences in the impedance behavior of para-toluene sulfonate doped and ClO4 doped PP are compared.

  18. Measurement of coupling resonance driving terms with the AC dipole

    SciTech Connect

    Miyamoto, R.

    2010-10-01

    Resonance driving terms for linear coupled betatron motion in a synchrotron ring can be determined from corresponding spectral lines of an excited coherent beam motion. An AC dipole is one of instruments to excite such a motion. When a coherent motion is excited with an AC dipole, measured Courant-Snyder parameters and betatron phase advance have apparent modulations, as if there is an additional quadrupole field at the location of the AC dipole. Hence, measurements of these parameters using the AC dipole require a proper interpretation of observed quantities. The situation is similar in measurements of resonance driving terms using the AC dipole. In this note, we derive an expression of coupled betatron motion excited with two AC dipoles in presence of skew quadrupole fields, discuss an impact of this quadrupole like effect of the AC dipole on a measurement of coupling resonance driving terms, and present an analytical method to determine the coupling resonance driving terms from quantities observed using the AC dipole.

  19. Field Evaluation of Broadband Electrical Impedance Tomography Measurements

    NASA Astrophysics Data System (ADS)

    Kelter, M.; Huisman, J. A.; Zimmermann, E.; Treichel, A.; Kemna, A.; Vereecken, H.

    2014-12-01

    Laboratory measurements of the complex electrical conductivity in a broad frequency range (i.e. mHz to kHz) using spectral induced polarization (SIP) measurements have shown great promise to characterize important hydrological properties (e.g. hydraulic conductivity) and biogeochemical processes. However, translating these findings to field applications remains challenging, and significant improvements in spectral electrical impedance tomography (EIT) are still required to obtain images of the complex electrical conductivity with sufficient accuracy in the field. The aim of this study is to present recent improvements in the inversion and processing of broadband field EIT measurements, and to evaluate the accuracy and spectral consistency of the obtained images of the real and imaginary part of the electrical conductivity. In a first case study, time-lapse surface EIT measurements were performed during an infiltration experiment to investigate the spectral complex electrical conductivity as a function of water content. State-of-the-art data processing and inversion approaches were used to obtain images of the complex electrical conductivity in a frequency range of 100 mHz to 1 kHz, and integral parameters were obtained using Debye decomposition. Results showed consistent spectral and spatial variation of the phase of the complex electrical conductivity in a broad frequency range, and a complex dependence on water saturation that was reasonably consistent with laboratory EIT measurements. In a second case study, borehole EIT measurements were made in a well-characterized aquifer. These measurements were inverted to obtain broadband images of the complex conductivity after correction for inductive and capacitive coupling using recently developed procedures. The results showed good correspondence with reference laboratory SIP measurements in a broad frequency bandwidth up to 1 kHz only after application of the correction procedures.

  20. Measurement of solar cell ac parameters using the time domain technique

    NASA Astrophysics Data System (ADS)

    Deshmukh, M. P.; Kumar, R. Anil; Nagaraju, J.

    2004-08-01

    The instrumentation to measure solar cell ac parameters [cell capacitance (CP) and cell resistance (RP)] using the time domain technique is developed. The cell capacitance (CP) and series resistance (r) are calculated using open circuit voltage decay (OCVD) technique. It is calibrated with the help of an electrical network with passive components similar to ac equivalent circuit of a solar cell consisting of precision resistors and capacitors. The maximum error observed in the measurement of resistor and capacitor value is ±3.5%. The cell resistance (RP) is calculated from I-V characteristics of solar cell. The data obtained in time domain technique is compared with the impedance spectroscopy technique data measured on same solar cell and it is found that the deviation in cell capacitance and resistance are within ±8%.

  1. Measurement of surface resistivity/conductivity of different organic thin films by a combination of optical shearography and electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Habib, Khaled

    2013-11-01

    Shearography techniques were applied again to measure the surface resistivity/conductivity of different organic thin films on a metallic substrate. The coatings were ACE premium-grey enamel (spray coating), a yellow Acrylic lacquer, and a gold nail polish on a carbon steel substrate. The investigation was focused on determining the in-plane displacement of the coatings by shearography between 20 and 60 °C. Then, the alternating current (AC) impedance (resistance) of the same coated samples was determined by electrochemical impedance spectroscopy (EIS) in 3.0% NaCl solution at room temperature. As a result, the proportionality constant (resistivity or conductivity = 1/surface resistivity) between the determined AC impedance and the in-plane displacement was obtained. The obtained resistivity of all investigated coatings, 40:15 × 106-24:6 × 109Ωcm, was found in the insulator range.

  2. Using impedance measurements for detecting pathogens trapped in an electric field

    DOEpatents

    Miles, Robin R.

    2004-07-20

    Impedance measurements between the electrodes in an electric field is utilized to detect the presence of pathogens trapped in the electric field. Since particles trapped in a field using the dielectiphoretic force changes the impedance between the electrodes by changing the dielectric material between the electrodes, the degree of particle trapping can be determined by measuring the impedance. This measurement is used to determine if sufficient pathogen have been collected to analyze further or potentially to identify the pathogen.

  3. Analytic modeling, simulation and interpretation of broadband beam coupling impedance bench measurements

    NASA Astrophysics Data System (ADS)

    Niedermayer, U.; Eidam, L.; Boine-Frankenheim, O.

    2015-03-01

    First, a generalized theoretical approach towards beam coupling impedances and stretched-wire measurements is introduced. Applied to a circular symmetric setup, this approach allows to compare beam and wire impedances. The conversion formulas for TEM scattering parameters from measurements to impedances are thoroughly analyzed and compared to the analytical beam impedance solution. A proof of validity for the distributed impedance formula is given. The interaction of the beam or the TEM wave with dispersive material such as ferrite is discussed. The dependence of the obtained beam impedance on the relativistic velocity β is investigated and found as material property dependent. Second, numerical simulations of wakefields and scattering parameters are compared. The applicability of scattering parameter conversion formulas for finite device length is investigated. Laboratory measurement results for a circularly symmetric test setup, i.e. a ferrite ring, are shown and compared to analytic and numeric models. The optimization of the measurement process and error reduction strategies are discussed.

  4. Critical field measurements in superconductors using ac inductive techniques

    NASA Astrophysics Data System (ADS)

    Campbell, S. A.; Ketterson, J. B.; Crabtree, G. W.

    1983-09-01

    The ac in-phase and out-of-phase response of type II superconductors is discussed in terms of dc magnetization curves. Hysteresis in the dc magnetization is shown to lead to a dependence of the ac response on the rate at which an external field is swept. This effect allows both Hc1 and Hc2 to be measured by ac techniques. A relatively simple mutual inductance bridge for making such measurements is described in the text, and factors affecting bridge sensitivity are discussed in the Appendix. Data for the magnetic superconductor ErRh4B4 obtained using this bridge are reported.

  5. Fuzzy-control-based five-step Li-ion battery charger by using AC impedance technique

    NASA Astrophysics Data System (ADS)

    Asadi, Houshyar; Aghay Kaboli, Seyed Hamidreza; Mohammadi, Arash; Oladazimi, Maysam

    2011-12-01

    In This paper the previous Li-Ion battery charger techniques are reviewed and compared and the new fuzzy logic battery charging method which is proposed to optimize and improve the battery charger efficiently. According to results of comparison, using the fuzzy control charging system can shorten the charging time with higher efficiency and lower temperature rise. Additionally, we have used optimal Li-ion battery charging frequency by using AC impedance technique which means if the battery is charged by the optimal charging frequency fZmin, that obtain from Bode Plot of the Li-ion battery, the charging time and charging efficiency will improve. Thus using the switching frequency (fZmin) of the battery charger and the fuzzy logic control on the same system can optimize the performance on the charging process. According to the experimental results, the proposed charger can charge the Li-ion batteries with higher efficiency 97.16%, lower temperature rise1.513degree celosias, fast charging period around 50.43 minute and long life cycle. The results in this paper are presented by using MATLAB and dsPIC30F2020 is used as controller applying designed fuzzy logic inside.

  6. Fuzzy-control-based five-step Li-ion battery charger by using AC impedance technique

    NASA Astrophysics Data System (ADS)

    Asadi, Houshyar; Aghay Kaboli, Seyed Hamidreza; Mohammadi, Arash; Oladazimi, Maysam

    2012-01-01

    In This paper the previous Li-Ion battery charger techniques are reviewed and compared and the new fuzzy logic battery charging method which is proposed to optimize and improve the battery charger efficiently. According to results of comparison, using the fuzzy control charging system can shorten the charging time with higher efficiency and lower temperature rise. Additionally, we have used optimal Li-ion battery charging frequency by using AC impedance technique which means if the battery is charged by the optimal charging frequency fZmin, that obtain from Bode Plot of the Li-ion battery, the charging time and charging efficiency will improve. Thus using the switching frequency (fZmin) of the battery charger and the fuzzy logic control on the same system can optimize the performance on the charging process. According to the experimental results, the proposed charger can charge the Li-ion batteries with higher efficiency 97.16%, lower temperature rise1.513degree celosias, fast charging period around 50.43 minute and long life cycle. The results in this paper are presented by using MATLAB and dsPIC30F2020 is used as controller applying designed fuzzy logic inside.

  7. Measurement uncertainty in pulmonary vascular input impedance and characteristic impedance estimated from pulsed-wave Doppler ultrasound and pressure: clinical studies on 57 pediatric patients.

    PubMed

    Tian, Lian; Hunter, Kendall S; Kirby, K Scott; Ivy, D Dunbar; Shandas, Robin

    2010-06-01

    Pulmonary vascular input impedance better characterizes right ventricular (RV) afterload and disease outcomes in pulmonary hypertension compared to the standard clinical diagnostic, pulmonary vascular resistance (PVR). Early efforts to measure impedance were not routine, involving open-chest measurement. Recently, the use of pulsed-wave (PW) Doppler-measured velocity to non-invasively estimate instantaneous flow has made impedance measurement more practical. One critical concern remains with clinical use: the measurement uncertainty, especially since previous studies only incorporated random error. This study utilized data from a large pediatric patient population to comprehensively examine the systematic and random error contributions to the total impedance uncertainty and determined the least error prone methodology to compute impedance from among four different methods. We found that the systematic error contributes greatly to the total uncertainty and that one of the four methods had significantly smaller propagated uncertainty; however, even when this best method is used, the uncertainty can be large for input impedance at high harmonics and for the characteristic impedance modulus. Finally, we found that uncertainty in impedance between normotensive and hypertensive patient groups displays no significant difference. It is concluded that clinical impedance measurement would be most improved by advancements in instrumentation, and the best computation method is proposed for future clinical use of the input impedance. PMID:20410558

  8. AC impedance analysis of ionic and electronic conductivities in electrode mixture layers for an all-solid-state lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Siroma, Zyun; Sato, Tomohiro; Takeuchi, Tomonari; Nagai, Ryo; Ota, Akira; Ioroi, Tsutomu

    2016-06-01

    The ionic and electronic effective conductivities of an electrode mixture layers for all-solid-state lithium-ion batteries containing Li2Ssbnd P2S5 as a solid electrolyte were investigated by AC impedance measurements and analysis using a transmission-line model (TLM). Samples containing graphite (graphite electrodes) or LiNi0.5Co0.2Mn0.3O2 (NCM electrodes) as the active material were measured under a "substrate | sample | bulk electrolyte | sample | substrate" configuration (ion-electron connection) and a "substrate | sample | substrate" configuration (electron-electron connection). Theoretically, if the electronic resistance is negligibly small, which is the case with our graphite electrodes, measurement with the ion-electron connection should be effective for evaluating ionic conductivity. However, if the electronic resistance is comparable to the ionic resistance, which is the case with our NCM electrodes, the results with the ion-electron connection may contain some inherent inaccuracy. In this report, we theoretically and practically demonstrate the advantage of analyzing the results with the electron-electron connection, which gives both the ionic and electronic conductivities. The similarity of the behavior of ionic conductivity with the graphite and NCM electrodes confirms the reliability of this analysis.

  9. Electron density dependence of impedance probe plasma potential measurements

    NASA Astrophysics Data System (ADS)

    Walker, D. N.; Blackwell, D. D.; Amatucci, W. E.

    2015-08-01

    In earlier works, we used spheres of various sizes as impedance probes in demonstrating a method of determining plasma potential, φp, when the probe radius is much larger than the Debye length, λD. The basis of the method in those works [Walker et al., Phys. Plasmas 13, 032108 (2006); ibid. 15, 123506 (2008); ibid. 17, 113503 (2010)] relies on applying a small amplitude signal of fixed frequency to a probe in a plasma and, through network analyzer-based measurements, determining the complex reflection coefficient, Γ, for varying probe bias, Vb. The frequency range of the applied signal is restricted to avoid sheath resonant effects and ion contributions such that ωpi ≪ ω ≪ ωpe, where ωpi is the ion plasma frequency and ωpe is the electron plasma frequency. For a given frequency and applied bias, both Re(Zac) and Im(Zac) are available from Γ. When Re(Zac) is plotted versus Vb, a minimum predicted by theory occurs at φp [Walker et al., Phys. Plasmas 17, 113503 (2010)]. In addition, Im(Zac) appears at, or very near, a maximum at φp. As ne decreases and the sheath expands, the minimum becomes harder to discern. The purpose of this work is to demonstrate that when using network analyzer-based measurements, Γ itself and Im(Zac) and their derivatives are useful as accompanying indicators to Re(Zac) in these difficult cases. We note the difficulties encountered by the most commonly used plasma diagnostic, the Langmuir probe. Spherical probe data is mainly used in this work, although we present limited data for a cylinder and a disk. To demonstrate the effect of lowered density as a function of probe geometry, we compare the cylinder and disk using only the indicator Re(Zac).

  10. Measuring impedance in congestive heart failure: Current options and clinical applications

    PubMed Central

    Tang, W. H. Wilson; Tong, Wilson

    2011-01-01

    Measurement of impedance is becoming increasingly available in the clinical setting as a tool for assessing hemodynamics and volume status in patients with heart failure. The 2 major categories of impedance assessment are the band electrode method and the implanted device lead method. The exact sources of the impedance signal are complex and can be influenced by physiologic effects such as blood volume, fluid, and positioning. This article provides a critical review of our current understanding and promises of impedance measurements, the techniques that have evolved, as well as the evidence and limitations regarding their clinical applications in the setting of heart failure management. PMID:19249408

  11. Transient Thermal Impedance Measurements on Low-Temperature-Sintered Nanoscale Silver Joints

    NASA Astrophysics Data System (ADS)

    Mei, Yunhui; Wang, Tao; Cao, Xiao; Chen, Gang; Lu, Guo-Quan; Chen, Xu

    2012-11-01

    A measurement system for thermal impedance ( Z th) was developed to evaluate the transient thermal performance of sintered nanoscale silver joints. Five different temperature profiles for low-temperature sintering were evaluated by Z th measurements of the joints. The thermal impedance of the sintered samples was altered by the different sintering conditions. Samples that underwent heating profiles with a separate drying stage offered lower thermal impedance than those sintered directly. Exerting pressure of more than 1 MPa during sintering insignificantly improved the thermal impedance. Besides, the impedance could be lowered by extending the holding time of the drying stage and applying pressure as low as 1 MPa during sintering. Characterization of microstructures of the sintered layers was performed by scanning electron microscopy (SEM). With more cracks present, the thermal impedance of the chip joints increased. The presence of cracks was possibly attributed to fast drying or the lack of a drying step.

  12. Identification of fluids and an interface between fluids by measuring complex impedance

    DOEpatents

    Lee, D.O.; Wayland, J.R. Jr.

    1989-12-05

    Complex impedance measured over a predefined frequency range is used to determine the identity of different oils in a column. The location of an interface between the oils is determined from the percent frequency effects of the complex impedance measured across the interface. 5 figs.

  13. Identification of fluids and an interface between fluids by measuring complex impedance

    DOEpatents

    Lee, David O.; Wayland, Jr., James R.

    1989-01-01

    Complex impedance measured over a predefined frequency range is used to determine the identity of different oils in a column. The location of an interface between the oils is determined from the percent frequency effects of the complex impedance measured across the interface.

  14. Impedance measurement using a two-microphone, random-excitation method

    NASA Technical Reports Server (NTRS)

    Seybert, A. F.; Parrott, T. L.

    1978-01-01

    The feasibility of using a two-microphone, random-excitation technique for the measurement of acoustic impedance was studied. Equations were developed, including the effect of mean flow, which show that acoustic impedance is related to the pressure ratio and phase difference between two points in a duct carrying plane waves only. The impedances of a honeycomb ceramic specimen and a Helmholtz resonator were measured and compared with impedances obtained using the conventional standing-wave method. Agreement between the two methods was generally good. A sensitivity analysis was performed to pinpoint possible error sources and recommendations were made for future study. The two-microphone approach evaluated in this study appears to have some advantages over other impedance measuring techniques.

  15. Nondestructive Determination of Moisture Content in Dry Fruits by Impedance and Phase angle measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Impedance (Z), and phase angle (') of a cylindrical parallel-plate capacitor with dry fruits between the plates was measured using a CI meter (Chari’s Impedance meter), at 1 and 9 MHz . Capacitance, C was derived from Z and ', and using the C, ', and Z values of a set of cherries whose moisture con...

  16. AC Loss Measurements on a 2G YBCO Coil

    SciTech Connect

    Rey, Christopher M; Duckworth, Robert C; Schwenterly, S W

    2011-01-01

    The Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES) to continue development of HTS power transformers. For compatibility with the existing power grid, a commercially viable HTS transformer will have to operate at high voltages in the range of 138 kV and above, and will have to withstand 550-kV impulse voltages as well. Second-generation (2G) YBCO coated conductors will be required for an economically-competitive design. In order to adequately size the refrigeration system for these transformers, the ac loss of these HTS coils must be characterized. Electrical AC loss measurements were conducted on a prototype high voltage (HV) coil with co-wound stainless steel at 60 Hz in a liquid nitrogen bath using a lock-in amplifier technique. The prototype HV coil consisted of 26 continuous (without splice) single pancake coils concentrically centered on a stainless steel former. For ac loss measurement purposes, voltage tap pairs were soldered across each set of two single pancake coils so that a total of 13 separate voltage measurements could be made across the entire length of the coil. AC loss measurements were taken as a function of ac excitation current. Results show that the loss is primarily concentrated at the ends of the coil where the operating fraction of critical current is the highest and show a distinct difference in current scaling of the losses between low current and high current regimes.

  17. Insulator-based DEP with impedance measurements for analyte detection

    DOEpatents

    Davalos, Rafael V.; Simmons, Blake A.; Crocker, Robert W.; Cummings, Eric B.

    2010-03-16

    Disclosed herein are microfluidic devices for assaying at least one analyte specie in a sample comprising at least one analyte concentration area in a microchannel having insulating structures on or in at least one wall of the microchannel which provide a nonuniform electric field in the presence of an electric field provided by off-chip electrodes; and a pair of passivated sensing electrodes for impedance detection in a detection area. Also disclosed are assay methods and methods of making.

  18. In situ measurement of tissue impedance using an inductive coupling interface circuit.

    PubMed

    Chiu, Hung-Wei; Chuang, Jia-min; Lu, Chien-Chi; Lin, Wei-Tso; Lin, Chii-Wann; Lin, Mu-Lien

    2013-06-01

    In this work, a method of an inductive coupling impedance measurement (ICIM) is proposed for measuring the nerve impedance of a dorsal root ganglion (DRG) under PRF stimulation. ICIM provides a contactless interface for measuring the reflected impedance by an impedance analyzer with a low excitation voltage of 7 mV. The paper develops a calibration procedure involving a 50-Ω reference resistor to calibrate the reflected resistance for measuring resistance of the nerve in the test. A de-embedding technique to build the equivalent transformer circuit model for the ICIM circuit is also presented. A batteryless PRF stimulator with ICIM circuit demonstrated good accuracy for the acute measurement of DRG impedance both in situ and in vivo. Besides, an in vivo animal experiment was conducted to show that the effectiveness of pulsed radiofrequency (PRF) stimulation in relieving pain gradually declined as the impedance of the stimulated nerve increased. The experiment also revealed that the excitation voltage for measuring impedance below 25 mV can prevent the excitation of a nonlinear response of DRG. PMID:23853322

  19. Microelectrical Impedance Spectroscopy for the Differentiation between Normal and Cancerous Human Urothelial Cell Lines: Real-Time Electrical Impedance Measurement at an Optimal Frequency

    PubMed Central

    Park, Yangkyu; Kim, Hyeon Woo; Yun, Joho; Seo, Seungwan; Park, Chang-Ju; Lee, Jeong Zoo; Lee, Jong-Hyun

    2016-01-01

    Purpose. To distinguish between normal (SV-HUC-1) and cancerous (TCCSUP) human urothelial cell lines using microelectrical impedance spectroscopy (μEIS). Materials and Methods. Two types of μEIS devices were designed and used in combination to measure the impedance of SV-HUC-1 and TCCSUP cells flowing through the channels of the devices. The first device (μEIS-OF) was designed to determine the optimal frequency at which the impedance of two cell lines is most distinguishable. The μEIS-OF trapped the flowing cells and measured their impedance at a frequency ranging from 5 kHz to 1 MHz. The second device (μEIS-RT) was designed for real-time impedance measurement of the cells at the optimal frequency. The impedance was measured instantaneously as the cells passed the sensing electrodes of μEIS-RT. Results. The optimal frequency, which maximized the average difference of the amplitude and phase angle between the two cell lines (p < 0.001), was determined to be 119 kHz. The real-time impedance of the cell lines was measured at 119 kHz; the two cell lines differed significantly in terms of amplitude and phase angle (p < 0.001). Conclusion. The μEIS-RT can discriminate SV-HUC-1 and TCCSUP cells by measuring the impedance at the optimal frequency determined by the μEIS-OF. PMID:26998490

  20. Coupling impedance of an in-vacuum undulator. Measurement, simulation, and analytical estimation

    SciTech Connect

    Simaluk, Victor; Blednykh, Alexei; Fielder, Richard; Rehm, Guenther; Bartolini, Riccardo

    2014-07-25

    One of the important issues of the in-vacuum undulator design is the coupling impedance of the vacuum chamber, which includes tapered transitions with variable gap size. In order to get complete and reliable information on the impedance, analytical estimate, numerical simulations and beam-based measurements have been performed at Diamond Light Source, a forthcoming upgrade of which includes introducing additional insertion device (ID) straights. Moreover, the impedance of an already existing ID vessel geometrically similar to the new one has been measured using the orbit bump method. The measurement results in comparison with analytical estimations and numerical simulations are discussed in this paper.

  1. Skin-electrode impedance measurement during ECG acquisition: method’s validation

    NASA Astrophysics Data System (ADS)

    Casal, Leonardo; La Mura, Guillermo

    2016-04-01

    Skm-electrode impedance measurement can provide valuable information prior. dunng and post electrocardiographic (ECG) or electroencephalographs (EEG) acquisitions. In this work we validate a method for skm-electrode impedance measurement using test circuits with known resistance and capacitor values, at different frequencies for injected excitation current. Finally the method is successfully used for impedance measurement during ECG acquisition on a subject usmg 125 Hz and 6 nA square wave excitation signal at instrumentation amplifier mput. The method can be used for many electrodes configuration.

  2. Acoustic input impedance of the avian inner ear measured in ostrich (Struthio camelus).

    PubMed

    Muyshondt, Pieter G G; Aerts, Peter; Dirckx, Joris J J

    2016-09-01

    In both mammals and birds, the mechanical behavior of the middle ear structures is affected by the mechanical impedance of the inner ear. In this study, the aim was to quantify the acoustic impedance of the avian inner ear in the ostrich, which allows us to determine the effect on columellar vibrations and middle ear power flow in future studies. To determine the inner ear impedance, vibrations of the columella were measured for both the quasi-static and acoustic stimulus frequencies. In the frequency range of 0.3-4 kHz, we used electromagnetic stimulation of the ossicle and a laser Doppler vibrometer to measure the vibration response. At low frequencies, harmonic displacements were imposed on the columella using piezo stimulation and the resulting force response was measured with a force sensor. From these measurement data, the acoustic impedance of the inner ear could be determined. A simple RLC model in series of the impedance measurements resulted in a stiffness reactance of KIE = 0.20·10(12) Pa/m³, an inertial impedance of MIE = 0.652·10(6) Pa s(2)/m³, and a resistance of RIE = 1.57·10(9) Pa s/m. We found that values of the inner ear impedance in the ostrich are one to two orders in magnitude smaller than what is found in mammal ears. PMID:27473506

  3. Comparison of impedance measurements near the skin of newborns and adults.

    PubMed

    Amm, Bruce; Kao, Tzu-Jen; Newell, Jonathan; Isaacson, David; Saulnier, Gary; Shoudy, David; Boverman, Greg; Sahni, Rakesh; Weindler, Marilyn; Chong, David; DiBardino, David; Davenport, David; Ashe, Jeffrey

    2016-06-01

    Electrical impedance tomography (EIT) is a non-invasive imaging technology that has been extensively studied for monitoring lung function of neonatal and adult subjects, especially in neonatal intensive care unit (NICU) and intensive care unit (ICU) environments. The sources of the total impedance in these applications include internal organs, near-boundary tissues, electrode-skin impedance, electrodes and conducting wires. This total impedance must be considered for system design and setting voltage gain since it will contribute to the measured voltage. To adapt a single instrument for use on infants and adults, we studied the difference between the impedance near the skin in both classes of patients. We used a simultaneous multi-source EIT (SMS-EIT) system to make impedance measurements. Characteristic resistance was calculated for two different current patterns: one that is more sensitive to boundary region impedance and another that is more sensitive to interior changes. We present ratios of these resistances to assess the relative contribution of near-skin effects to the overall impedance. Twenty adult ICU subjects (10 male, 10 female, age: 49.05  ±  16.32 years (mean  ±  standard deviation)) and 45 neonates (23 male, 22 female, gestational age: 37.67  ±  2.11 weeks, postnatal age, 2.56  ±  2.67 d) were studied at Columbia University Medical Center. Impedance measurements at 10 kHz were collected for approximately one hour from each subject. The characteristic resistance ratio for each subject was computed and analyzed. The result shows the impedance at or near the skin of newborns is significantly higher than in adult subjects. PMID:27203362

  4. Investigation of ground reflection and impedance from flyover noise measurements

    NASA Technical Reports Server (NTRS)

    Chapkis, R. L.; Marsh, A. H.

    1978-01-01

    An extensive series of flyover noise tests was conducted for the primary purpose of studying meteorological effects on propagation of aircraft noise. The test airplane, a DC 9-10, flew several level-flight passes at various heights over a taxiway. Two microphone stations were located under the flight path. A total of 37 runs was selected for analysis and processed to obtain a consistant set of 1/3 octave band sound pressure levels at half-second intervals. The goal of the present study was to use the flyover noise data to deduce acoustical reflection coefficients and hence, acoustical impedances.

  5. Development of an attachable piezoelectric impedance measuring device for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiwen; Jiang, Zhongwei; Morisaki, Tetsuya

    2005-12-01

    In this paper, we develop a field-portable small-size impedance measurement system for structural health monitoring. The system consists of a rectangle wave generator, computer (or microcomputer), AD converter and piezo-electric element. We present some experimental results for testing the torque loose in the bolt for a truss structure. The results indicate that an accuracy of the impedance measurement system proposed in this paper is almost as accurate as the commercial multipurpose impedance analyzer, and it could be used on the structures for health monitoring.

  6. The influence of acupuncture on the impedance measured by four electrodes on meridians.

    PubMed

    Zhang, W; Xu, R; Zhu, Z

    1999-01-01

    The impedance on the pericardium merdian near Quze (P3) and control points in 12 cases was measured by a four electrodes impedance instrument. The amplitude of impedance was recorded before, during and after needling the Neiguan. The result showed that the mean impedance on the meridian and control points before the needling were 52.8 +/- 11.0 (omega) and 61.7 +/- 10.3 (omega) respectively which had significant difference (P<0.05). During the needling, impedance decreased significantly on the meridian by 9.2 +/- 5.6 (omega) (P<0.001) while impedance decreased by only 0.12 +/- 2.4 (omega) on control points without significance (P>0.05). The impedance changed back to 51.1 +/- 11.3 (omega) and 59.9 +/- 11.0 (omega) on the meridian and control points respectively during the 5-10 minutes after withdrawing the needling. In some cases, impedance changed intermittently during the needling. The experiment implies that interstitial fluid increases during the needling by axon reflection and blood capillary expanding which may be one of the mechanisms of acupuncture regulation. PMID:10768415

  7. Measuring Electrolyte Impedance and Noise Simultaneously by Triangular Waveform Voltage and Principal Component Analysis

    PubMed Central

    Xu, Shanzhi; Wang, Peng; Dong, Yonggui

    2016-01-01

    In order to measure the impedance variation process in electrolyte solutions, a method of triangular waveform voltage excitation is investigated together with principal component analysis (PCA). Using triangular waveform voltage as the excitation signal, the response current during one duty cycle is sampled to construct a measurement vector. The measurement matrix is then constructed by the measurement vectors obtained from different measurements. After being processed by PCA, the changing information of solution impedance is contained in the loading vectors while the response current and noise information is contained in the score vectors. The measurement results of impedance variation by the proposed signal processing method are independent of the equivalent impedance model. The noise-induced problems encountered during equivalent impedance calculation are therefore avoided, and the real-time variation information of noise in the electrode-electrolyte interface can be extracted at the same time. Planar-interdigitated electrodes are experimentally tested for monitoring the KCl concentration variation process. Experimental results indicate that the measured impedance variation curve reflects the changing process of solution conductivity, and the amplitude distribution of the noise during one duty cycle can be utilized to analyze the contact conditions of the electrode and electrolyte interface. PMID:27110787

  8. Measuring Electrolyte Impedance and Noise Simultaneously by Triangular Waveform Voltage and Principal Component Analysis.

    PubMed

    Xu, Shanzhi; Wang, Peng; Dong, Yonggui

    2016-01-01

    In order to measure the impedance variation process in electrolyte solutions, a method of triangular waveform voltage excitation is investigated together with principal component analysis (PCA). Using triangular waveform voltage as the excitation signal, the response current during one duty cycle is sampled to construct a measurement vector. The measurement matrix is then constructed by the measurement vectors obtained from different measurements. After being processed by PCA, the changing information of solution impedance is contained in the loading vectors while the response current and noise information is contained in the score vectors. The measurement results of impedance variation by the proposed signal processing method are independent of the equivalent impedance model. The noise-induced problems encountered during equivalent impedance calculation are therefore avoided, and the real-time variation information of noise in the electrode-electrolyte interface can be extracted at the same time. Planar-interdigitated electrodes are experimentally tested for monitoring the KCl concentration variation process. Experimental results indicate that the measured impedance variation curve reflects the changing process of solution conductivity, and the amplitude distribution of the noise during one duty cycle can be utilized to analyze the contact conditions of the electrode and electrolyte interface. PMID:27110787

  9. Evaluation of electrical impedance ratio measurements in accuracy of electronic apex locators

    PubMed Central

    Kim, Pil-Jong; Kim, Hong-Gee

    2015-01-01

    Objectives The aim of this paper was evaluating the ratios of electrical impedance measurements reported in previous studies through a correlation analysis in order to explicit it as the contributing factor to the accuracy of electronic apex locator (EAL). Materials and Methods The literature regarding electrical property measurements of EALs was screened using Medline and Embase. All data acquired were plotted to identify correlations between impedance and log-scaled frequency. The accuracy of the impedance ratio method used to detect the apical constriction (APC) in most EALs was evaluated using linear ramp function fitting. Changes of impedance ratios for various frequencies were evaluated for a variety of file positions. Results Among the ten papers selected in the search process, the first-order equations between log-scaled frequency and impedance were in the negative direction. When the model for the ratios was assumed to be a linear ramp function, the ratio values decreased if the file went deeper and the average ratio values of the left and right horizontal zones were significantly different in 8 out of 9 studies. The APC was located within the interval of linear relation between the left and right horizontal zones of the linear ramp model. Conclusions Using the ratio method, the APC was located within a linear interval. Therefore, using the impedance ratio between electrical impedance measurements at different frequencies was a robust method for detection of the APC. PMID:25984472

  10. Transvers Impedance Measurements of the Modified DARHT-2Accelerator Cell Design

    SciTech Connect

    Briggs, Dick; Waldron, Will

    2005-11-30

    The DARHT-2 accelerator cells have been redesigned to make their high voltage performance more robust. At the outset of the DARHT-2 development program about 8 years ago, an extensive campaign was mounted to minimize the transverse impedance of the original cell design. Since the initial spec on the machine was a beam current of 4 kA, the control of beam-breakup (BBU) amplification with a 2 microsecond pulse length was considered to be one the most critical issues in the design. Even after advances in detector technology allowed the beam current requirement to be lowered to 2 kA, the goal for the standard cell impedance was kept at {approx}300 ohms/meter to allow for the possibility of future beam current upgrades to 4 kA without any modifications in the cells. The results of this campaign to minimize the transverse impedance are described in detail in Reference 1. After several iterations in the design of ferrite dampers and the anode finger stock shape, the measured (peak) impedance of the original standard cell was determined to be about 280 ohms/meter. (As a reference point, the measured impedance of the DARHT-1 cell is about 880 ohms/meter). This impedance provided such a wide safety margin against BBU amplification at 2 kA that it was felt that the cell redesign could focus on voltage holding without any detailed considerations of impacts on the transverse impedance. Now that a baseline design for the DARHT-2 cell has been established and tested, however, it was felt that a measurement of its impedance would be prudent. The results of these impedance measurements are presented in this note. The objective was mainly to do a ''quick check'' to ensure that there were no surprises, and to provide an estimate of the BBU frequencies and growth rates to the experimental test program.

  11. Measurement of the 225Ac half-life.

    PubMed

    Pommé, S; Marouli, M; Suliman, G; Dikmen, H; Van Ammel, R; Jobbágy, V; Dirican, A; Stroh, H; Paepen, J; Bruchertseifer, F; Apostolidis, C; Morgenstern, A

    2012-11-01

    The (225)Ac half-life was determined by measuring the activity of (225)Ac sources as a function of time, using various detection techniques: α-particle counting with a planar silicon detector at a defined small solid angle and in a nearly-2π geometry, 4πα+β counting with a windowless CsI sandwich spectrometer and with a pressurised proportional counter, gamma-ray spectrometry with a HPGe detector and with a NaI(Tl) well detector. Depending on the technique, the decay was followed for 59-141 d, which is about 6-14 times the (225)Ac half-life. The six measurement results were in good mutual agreement and their mean value is T(1/2)((225)Ac)=9.920 (3)d. This half-life value is more precise and better documented than the currently recommended value of 10.0 d, based on two old measurements lacking uncertainty evaluations. PMID:22940415

  12. Rapid Impedance Spectrum Measurements for Onboard State-of-Health Applications

    SciTech Connect

    Jon P. Christophersen; John L. Morrison; Chinh D. Ho

    2012-06-01

    Rapid impedance measurements can provide a useful online tool for improved state-of-health estimation. A validation study has been initiated at the Idaho National Laboratory for a rapid impedance technique known as Harmonic Compensated Synchronous Detection. This technique enables capturing the impedance spectra over a broad frequency range within about ten seconds. Commercially available lithium-ion cells are being calendar-life aged at 50°C with reference performance tests at 30°C every 32.5 days to gauge degradation The cells have completed the first set of reference performance tests and preliminary results are presented. The spectra change as a function of temperature and depth-of-discharge condition, as expected. The data indicate that the rapid impedance measurement technique is a benign measurement tool that can be successfully used to gauge changes in the corresponding pulse resistance.

  13. Sensitive immunodetection through impedance measurements onto gold functionalized electrodes.

    PubMed

    Ameur, S; Martelet, C; Jaffrezic-Renault, N; Chovelon, J M

    2000-01-01

    This article deals with a direct electrochemical method of detecting antigens using new methods of functionalization of gold electrodes. Based on the reacting ability of gold with sulfhydryl groups, three protocols for the fixation of antibodies have been explored. They are based on either the self-assembling properties of functional thiols bearing long alkyl chains or the possibility of a direct coupling of antibody moieties. Coverage rates as high as 97% can be reached. The analysis of the electrochemical impedance behavior of such layers can lead to a sensitive method for the direct detection of the antibody/antigen interaction. The addition of a redox couple in the tested solution, acting as an amplifier, allowed detection limits for the antigens as low as a few picograms/milliliter to be reached. PMID:11209460

  14. Complex AC impedance, transference number and vibrational spectroscopy studies of proton conducting PVAc-NH 4SCN polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Selvasekarapandian, S.; Baskaran, R.; Hema, M.

    2005-03-01

    The polymer electrolytes composed of poly (vinyl acetate) (PVAc) with various stoichiometric ratios of ammonium thiocyanate (NH 4SCN) salt have been prepared by solution casting method. The polymer-salt complex formation and the polymer-proton interactions have been analysed by FT-IR spectroscopy. The conductivity and dielectric measurements are carried out on these films as a function of frequency at various temperatures. The complex impedance spectroscopy results reveal that the high-frequency semicircle is due to the bulk effect of the material. The conductivity is found to increase in the order of 10 -8-10 -4 S cm -1 at 303 K with the increase in salt concentration. The ionic transference number of mobile ions has been estimated by Wagner's polarization method and the results reveal that the conducting species are predominantly due to ions. The transient ionic current (TIC) measurement technique has been used to detect the type of mobile species and to evaluate their mobilities. The dielectric spectra show the low-frequency dispersion, which is due to the space charge effects arising from the electrodes.

  15. Experimental investigation of microwave interaction with magnetoplasma in miniature multipolar configuration using impedance measurements

    SciTech Connect

    Dey, Indranuj Toyoda, Yuji; Yamamoto, Naoji; Nakashima, Hideki

    2014-09-15

    A miniature microwave plasma source employing both radial and axial magnetic fields for plasma confinement has been developed for micro-propulsion applications. Plasma is initiated by launching microwaves via a short monopole antenna to circumvent geometrical cutoff limitations. The amplitude and phase of the forward and reflected microwave power is measured to obtain the complex reflection coefficient from which the equivalent impedance of the plasma source is determined. Effect of critical plasma density condition is reflected in the measurements and provides insight into the working of the miniature plasma source. A basic impedance calculation model is developed to help in understanding the experimental observations. From experiment and theory, it is seen that the equivalent impedance magnitude is controlled by the coaxial discharge boundary conditions, and the phase is influenced primarily by the plasma immersed antenna impedance.

  16. Experimental investigation of microwave interaction with magnetoplasma in miniature multipolar configuration using impedance measurements

    NASA Astrophysics Data System (ADS)

    Dey, Indranuj; Toyoda, Yuji; Yamamoto, Naoji; Nakashima, Hideki

    2014-09-01

    A miniature microwave plasma source employing both radial and axial magnetic fields for plasma confinement has been developed for micro-propulsion applications. Plasma is initiated by launching microwaves via a short monopole antenna to circumvent geometrical cutoff limitations. The amplitude and phase of the forward and reflected microwave power is measured to obtain the complex reflection coefficient from which the equivalent impedance of the plasma source is determined. Effect of critical plasma density condition is reflected in the measurements and provides insight into the working of the miniature plasma source. A basic impedance calculation model is developed to help in understanding the experimental observations. From experiment and theory, it is seen that the equivalent impedance magnitude is controlled by the coaxial discharge boundary conditions, and the phase is influenced primarily by the plasma immersed antenna impedance.

  17. A novel sensitive method of surface impedance measurement for small samples

    NASA Astrophysics Data System (ADS)

    Chin, C. C.

    1998-02-01

    We propose a novel sensitive method of surface impedance measurement for small samples utilizing a YIG delay line. We will give a full analysis of the relationship between the phase and amplitude of the signals to surface impedance. The sensitivity of this method will be fully addressed. The dispersion relations of magnetostatic waves guided by lossy ground planes will also be given as byproducts of the above analysis.

  18. Measurements of AC Losses and Current Distribution in Superconducting Cables

    SciTech Connect

    Nguyen, Doan A; Ashworth, Stephen P; Duckworth, Robert C; Carter, Bill; Fleshler, Steven

    2011-01-01

    This paper presents our new experimental facility and techniques to measure ac loss and current distribution between the layers for High Temperature Superconducting (HTS) cables. The facility is powered with a 45 kVA three-phase power supply which can provide three-phase currents up to 5 kA per phase via high current transformers. The system is suitable for measurements at any frequency between 20 and 500 Hz to better understand the ac loss mechanisms in HTS cables. In this paper, we will report techniques and results for ac loss measurements carried out on several HTS cables with and without an HTS shielding layer. For cables without a shielding layer, care must be taken to control the effect of the magnetic fields from return currents on loss measurements. The waveform of the axial magnetic field was also measured by a small pick-up coil placed inside a two-layer cable. The temporal current distribution between the layers can be calculated from the waveform of the axial field.

  19. Combined optical coherence phase microscopy and impedance sensing measurements of differentiating adipose derived stem cells

    NASA Astrophysics Data System (ADS)

    Bagnaninchi, P. O.

    2010-02-01

    There is a growing interest in monitoring differentiating stem cells in 2D culture without the use of labelling agents. In this study we explore the feasibility of a multimodality method that combines impedance sensing (IS) and optical coherence phase microscopy (OCPM) to monitor the main biological events associated with adipose derived stem cells differentiation into different lineages. Adipose derived stem cells were cultured in Mesenpro RS medium on gold electrode arrays. The system (ECIS, Applied biophysics) is connected to a lock-in amplifier controlled by a computer, and the complex impedance is derived from the in phase and out of phase voltages. Multi-frequency measurements spanning from 500Hz to 100 kHz are recorded every 2 minutes. The Optical coherence phase microscope is build around a Thorlabs engine (930nm FWHM: 90nm) and connected to a custom build microscope probe. The IS and OCPM were successfully integrated. The electrode area (250um) was imaged with a lateral resolution of 1.5um during impedance measurements. Impedance sensing gave an average measurement of differentiation, as a change in impedance over the electrode area, whereas OCPM provides additional information on the cellular events occurring on top of the electrode. The information retrieved from OCPM will feed a mathematical model correlating cellular differentiation and impedance variation. In this study we have demonstrated the feasibility of integrating two non-invasive monitoring techniques that will be instrumental in designing stem cell based screening assays.

  20. A microchip integrating cell array positioning with in situ single-cell impedance measurement.

    PubMed

    Guo, Xiaoliang; Zhu, Rong; Zong, Xianli

    2015-10-01

    This paper presents a novel microarray chip integrating cell positioning with in situ, real-time and long-time impedance measurement on a single cell. The microchip integrates a plurality of quadrupole-electrode units (termed positioning electrodes) patterned into an array with pairs of planar electrodes (termed measuring electrodes) located at the centers of each quadrupole-electrode unit. The positioning electrodes are utilized to trap and position living cells onto the measuring electrodes based on negative dielectrophoresis (nDEP), while the measuring electrodes are used to measure impedances of the trapped single cells. Each measuring electrode has a small footprint area of 7 × 7 μm(2) to ensure inhabiting only one single cell on it. However, the electrode with a small surface area has a low double-layer capacitance when it is immersed in a liquid solution, thus generating a large double-layer impedance, which reduces the sensitivity for impedance measurement on the single cell. To enlarge the effective surface areas of the measuring electrodes, a novel surface-modification process is proposed to controllably construct gold nanostructures on the surfaces of the measuring electrodes while the positioning electrodes are unstained. The double layer capacitances of the modified electrodes are increased by about one order after surface-modification. The developed microchip is used to monitor the adhering behavior of a single HeLa cell by measuring its impedance spectra in real time. The measured impedance is analyzed and used to extract cellular electrical parameters, which demonstrated that the cell compresses the electrical double layer in the process of adherence and adheres onto the measuring electrodes after 4-5 hours. PMID:26282920

  1. Low temperature ac electrical study of Pr0.5-xLaxCa0.5MnO3 (x = 0.0-0.4) ceramics by employing impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Javid Iqbal, M.; Nadeem, M.; Hassan, M. M.

    2013-09-01

    Polycrystalline Pr0.5-xLaxCa0.5MnO3 (x = 0.0-0.40) ceramics are synthesized by conventional solid state reaction method, and phase purity is confirmed by employing X-ray diffraction. Temperature dependent ac impedance spectroscopic measurements enable us to determine an increasing trend in resistance values of these samples with the decrease in temperatures. However, a decreasing trend in resistance values with increase in the La-doping at Pr-site is observed. A metal to insulator transition (MIT) is reported for x ≥ 0.2, which is shifted to higher temperature values with further increase of x doping. Two equivalent circuit models, i.e., (ReQe)(RgbQgb) and (ReQe)(RgbQgb)(RgQg) are employed to explain the impedance data with and without MIT, respectively. Mott variable range hopping model is found to be an appropriate model for defining the conduction mechanism of charge carriers in the semiconducting region. The decrease in the impedance with x doping is explained in terms of increase in the localization length obtained from the fitting of Rgb. Using tanδ results, thermally activated relaxation behavior is discussed for x = 0.0 and 0.1; whereas for x = 0.2, a temperature independent relaxation behavior is conferred due to the change in the hopping process of charge carriers.

  2. Measuring the multi-frequency electrical impedance of the mouse gastrocnemius muscle using a tetrapolar technique

    NASA Astrophysics Data System (ADS)

    Li, J.; Fogerson, P. M.; Rutkove, S. B.

    2010-04-01

    Electrical impedance methods can be used to evaluate and monitor neuromuscular disease states. Recently, we have applied tetrapolar surface electrical impedance methods to the gastrocnemius muscle of the rat for this purpose and substantial changes in the impedance parameters after sciatic nerve crush can be identified. In order to be able to study additional animal models of nerve and muscle disease, however, it would highly desirable to be able to perform such impedance measurements in the mouse. Yet the small size of the mouse presents a substantial technical challenge. In this study, we evaluate a basic approach for performing such measurements. A series of thin, stainless steel strip electrodes affixed to the gastrocnemius and interfaced via a separate connector to the Imp SFB7® (Impedimed, Inc), provided an effective means for obtaining impedance data in the 20-500 kHz range. After two weeks, test-retest reproducibility was good, with intra-class correlation coefficients as high 0.84 and variability as low as 12.86 ± 6.18% in the 15 mice studied. Using this approach, it may now be possible to study impedance changes in a variety of mouse models of neuromuscular disease, including amyotrophic lateral sclerosis, spinal muscular atrophy, muscular dystrophy and Charcot-Marie-Tooth disease.

  3. Optimally tuned resonant negative capacitance for piezoelectric shunt damping based on measured electromechanical impedance

    NASA Astrophysics Data System (ADS)

    Salloum, Rogério; Heuss, Oliver; Götz, Benedict; Mayer, Dirk

    2015-04-01

    In this paper, a new tuning method for shunt damping with a series resistance, inductance and negative capacitance is proposed and its validity is investigated. It is based on the measured electromechanical impedance of a piezoelectric system, which is represented through an equivalent electrical circuit that takes into account the characteristics of the piezoelectric transducer and the host structure. Afterwards, an additional circuit representing the shunt is connected and the Norton equivalent impedance is obtained at the terminals that represent the mechanical mode of interest. During the tuning process, the optimal shunt parameters are found by minimizing the maximum absolute value of the Norton equivalent impedance over a defined frequency range through a numerical optimization. Taking benefit from the analogy between electrical impedance and mechanical admittance, the minimization of different mechanical responses (displacement, velocity or acceleration) is also proposed and the different optimum shunt parameters obtained are compared. In view of real technical applications, this method allows the integration of a real negative capacitance circuit, i.e., a negative impedance converter, rather than an ideal component. It is thus possible to use the impedance of this circuit and optimize the individual component values. Since this method is based on one simple measurement, it can be applied to arbitrary structures without the need of complex dynamic tests or expensive finite elements calculations. Finally, an experimental analysis is carried out in order to compare the damping performance of the proposed method and the conventional analytical method that minimizes a mechanical frequency response function.

  4. Measurements of the Release of Alpha Quartz: A New Standard for Impedance-Matching Experiments

    SciTech Connect

    Boehly, T.R.; Miller, J.E.; Meyerhofer, D.D.; Eggert, J.H.; Celliers, P.M.; Hicks, D.G.; Collins, G.W.

    2008-01-14

    Measurements of the release of alpha quartz into SiO2 aerogel are found to agree well with previous near-direct measurements for that aerogel Hugoniot. The results establish alpha quartz as an impedance-matching standard that, because of its transparency, enables higher-accuracy measurements and knowledge of the pressure profile in the pusher.

  5. Correlation between T-Wave Alternans and Cardiac Volume Status via Intrathoracic Impedance Measurements.

    PubMed

    Dizon, Jose'; Hickey, Kathleen; Garan, Hasan

    2012-01-01

    Introduction. The presence of T-wave alternans (TWA) has been shown to correlate with a higher risk for sudden cardiac death. The mechanism of TWA may be related to abnormalities in intracellular calcium handling, which is a mechanism in heart failure and associated arrhythmias as well. However, an association between TWA and cardiac volume status has not been demonstrated. Methods Used. We report the case of a 54-year-old man with a dilated cardiomyopathy who had a biventricular defibrillator system implanted with intrathoracic impedance measurement capability. We performed baseline TWA testing, which was normal and was associated with normal clinical status and normal intrathoracic impedance. We followed intrathoracic impedance measurements, and when the measurement suggested volume overload eight months later, we repeated the TWA test. TWA was grossly positive, and volume overload was corroborated with clinical heart failure. The patient was diuresed, and when clinical status and intrathoracic impedance returned to normal a month later, we repeated TWA, which was again negative. Conclusion. This case demonstrates a correlation between cardiac volume status, as measured by intrathoracic impedance measurements, and TWA status. This data suggests that conditions of volume overload such as heart failure could be causally related to increased TWA, perhaps by the common mechanism of altered intracellular calcium handling. PMID:24826235

  6. Correlation between T-Wave Alternans and Cardiac Volume Status via Intrathoracic Impedance Measurements

    PubMed Central

    Dizon, Jose'; Hickey, Kathleen; Garan, Hasan

    2012-01-01

    Introduction. The presence of T-wave alternans (TWA) has been shown to correlate with a higher risk for sudden cardiac death. The mechanism of TWA may be related to abnormalities in intracellular calcium handling, which is a mechanism in heart failure and associated arrhythmias as well. However, an association between TWA and cardiac volume status has not been demonstrated. Methods Used. We report the case of a 54-year-old man with a dilated cardiomyopathy who had a biventricular defibrillator system implanted with intrathoracic impedance measurement capability. We performed baseline TWA testing, which was normal and was associated with normal clinical status and normal intrathoracic impedance. We followed intrathoracic impedance measurements, and when the measurement suggested volume overload eight months later, we repeated the TWA test. TWA was grossly positive, and volume overload was corroborated with clinical heart failure. The patient was diuresed, and when clinical status and intrathoracic impedance returned to normal a month later, we repeated TWA, which was again negative. Conclusion. This case demonstrates a correlation between cardiac volume status, as measured by intrathoracic impedance measurements, and TWA status. This data suggests that conditions of volume overload such as heart failure could be causally related to increased TWA, perhaps by the common mechanism of altered intracellular calcium handling. PMID:24826235

  7. New equivalent-electrical circuit model and a practical measurement method for human body impedance.

    PubMed

    Chinen, Koyu; Kinjo, Ichiko; Zamami, Aki; Irei, Kotoyo; Nagayama, Kanako

    2015-01-01

    Human body impedance analysis is an effective tool to extract electrical information from tissues in the human body. This paper presents a new measurement method of impedance using armpit electrode and a new equivalent circuit model for the human body. The lowest impedance was measured by using an LCR meter and six electrodes including armpit electrodes. The electrical equivalent circuit model for the cell consists of resistance R and capacitance C. The R represents electrical resistance of the liquid of the inside and outside of the cell, and the C represents high frequency conductance of the cell membrane. We propose an equivalent circuit model which consists of five parallel high frequency-passing CR circuits. The proposed equivalent circuit represents alpha distribution in the impedance measured at a lower frequency range due to ion current of the outside of the cell, and beta distribution at a high frequency range due to the cell membrane and the liquid inside cell. The calculated values by using the proposed equivalent circuit model were consistent with the measured values for the human body impedance. PMID:26406074

  8. Synthesis and characterization of cancrinite-type zeolite, and its ionic conductivity study by AC impedance analysis

    NASA Astrophysics Data System (ADS)

    Kriaa, A.; Ben Saad, K.; Hamzaoui, A. H.

    2012-12-01

    The synthesis of cancrinite in the system NaOH-SiO2-Al2O3-NaHCO3-H2O was performed, according to methods described in the literature, in an autoclave under hydrothermal conditions at T = 473 K. The electrical properties of cancrinite-type zeolite pellets were investigated by complex impedance spectroscopy in the temperature range 465-800°C. The effect of temperature on impedance parameters was studied using an impedance analyzer in a wide frequency range (1 Hz to 13 MHz). The real and imaginary parts of complex impedance trace semicircles in the complex plane are plotted. The bulk resistance of the material decreases with rise in temperature. This exhibits a typical negative temperature coefficient of resistance (NTCR) behavior of the material. The results of bulk electrical conductivity and its activation energy are presented. The modulus analysis suggests that the electrical transport processes in the material are very likely to be of electronic nature. Relaxation frequencies follow an Arrhenius behavior with activation energy values not comparable to those found for the electrical conductivity.

  9. Crew Quarters (CQ) and Electromagnetic Interference (EMI) Measurement Facility Combined Impedance Study

    NASA Technical Reports Server (NTRS)

    Scully, Robert C.

    2011-01-01

    This report documents an investigation into observed failures associated with conducted susceptibility testing of Crew Quarters (CQ) hardware in the Johnson Space Center (JSC) Electromagnetic Interference (EMI) Measurement Facility, and the work accomplished to identify the source of the observed behavior. Investigation led to the conclusion that the hardware power input impedance was interacting with the facility power impedance leading to instability at the observed frequencies of susceptibility. Testing performed in other facilities did not show this same behavior, pointing back to the EMI Measurement Facility power as the potential root cause. A LISN emulating the Station power bus impedance was inserted into the power circuit, and the susceptibility was eliminated from the measurements.

  10. The development of the miniaturized waveform receiver with the function measuring Antenna Impedance in space plasmas

    NASA Astrophysics Data System (ADS)

    Ishii, H.; Kojima, H.; Fukuhara, H.; Okada, S.; Yamakawa, H.

    2012-04-01

    Plasma wave is one of the most essential physical quantities in the solar terrestrial physics. The role of plasma wave receiver onboard satellites is to detect plasma waves in space with a good signal to noise ratio. There are two types of plasma wave receivers, the sweep frequency analyzer and the waveform capture. While the sweep frequency analyzer provides plasma wave spectra, the waveform capture obtains waveforms with phase information that is significant in studying nonlinear phenomena. Antenna sensors to observe electric fields of the plasma waves show different features in plasmas from in vacuum. The antenna impedances have specific characteristics in the frequency domain because of the dispersion of plasmas. These antenna impedances are expressed with complex number. We need to know not only the antenna impedances but also the transfer functions of plasma wave receiver's circuits in order to calibrate observed waveforms precisely. The impedances of the electric field antennas are affected by a state of surrounding plasmas. Since satellites run through various regions with different plasma parameters, we precisely should measure the antenna impedances onboard spacecraft. On the contrary, we can obtain the plasma density and by measuring the antenna impedances. Several formulas of the antenna impedance measurement system were proposed. A synchronous detection method is used on the BepiColombo Mercury Magnetospheric Orbiter (MMO), which will be launched in 2014. The digital data are stored in the onboard memory. They are read out and converted to the analog waveforms by D/A converter. They are fed into the input of the preamplifiers of antenna sensors through a resistor. We can calculate a transfer function of the circuit by applying the synchronous detection method to the output waveform from waveform receivers and digital data as a signal source. The size of this system is same as an A5 board. In recent years, Application Specific Integrated Circuit (ASIC

  11. Rapid Impedance Spectrum Measurements for State-of-Health Assessment of Energy Storage Devices

    SciTech Connect

    Jon P. Christophersen; John L. Morrison; Chester G. Motloch; William H. Morrison

    2012-04-01

    Harmonic compensated synchronous detection (HCSD) is a technique that can be used to measure wideband impedance spectra within seconds based on an input sum-of-sines signal having a frequency spread separated by harmonics. The battery (or other energy storage device) is excited with a sum-of-sines current signal that has a duration of at least one period of the lowest frequency. The voltage response is then captured and synchronously detected at each frequency of interest to determine the impedance spectra. This technique was successfully simulated using a simplified battery model and then verified with commercially available Sanyo lithium-ion cells. Simulations revealed the presence of a start-up transient effect when only one period of the lowest frequency is included in the excitation signal. This transient effect appears to only influence the low-frequency impedance measurements and can be reduced when a longer input signal is used. Furthermore, lithium-ion cell testing has indicated that the transient effect does not seem to impact the charge transfer resistance in the mid-frequency region. The degradation rates for the charge transfer resistance measured from the HCSD technique were very similar to the changes observed from standardized impedance spectroscopy methods. Results from these studies, therefore, indicate that HCSD is a viable, rapid alternative approach to acquiring impedance spectra.

  12. An Analysis of Electrical Impedance Measurements Applied for Plant N Status Estimation in Lettuce (Lactuca sativa)

    PubMed Central

    Muñoz-Huerta, Rafael F.; de J. Ortiz-Melendez, Antonio; Guevara-Gonzalez, Ramon G.; Torres-Pacheco, Irineo; Herrera-Ruiz, Gilberto; Contreras-Medina, Luis M.; Prado-Olivarez, Juan; Ocampo-Velazquez, Rosalia V.

    2014-01-01

    Nitrogen plays a key role in crop yields. Hence, farmers may apply excessive N fertilizers to crop fields, inducing environmental pollution. Crop N monitoring methods have been developed to improve N fertilizer management, most of them based on leaf or canopy optical-property measurements. However, sensitivity to environmental interference remains an important drawback. Electrical impedance has been applied to determine the physiological and nutritional status of plant tissue, but no studies related to plant-N contents are reported. The objective of this article is to analyze how the electrical impedance response of plants is affected by their N status. Four sets of lettuce (Lactuca sativa L.) with a different N-source concentrations per set were used. Total nitrogen and electrical impedance spectra (in a 1 to 100 kHz frequency range) were measured five times per set, three times every other day. Minimum phase angles of impedance spectra were detected and analyzed, together with the frequency value in which they occurred, and their magnitude at that frequency. High and positive correlation was observed between plant N content and frequency values at minimum phase angle with no significant variations detected between days of measurement. These results suggest that electrical impedance can be sensitive to plant N status. PMID:25057134

  13. Studies of longitudinal profile of electron bunches and impedance measurements at Indus-2 synchrotron radiation source

    NASA Astrophysics Data System (ADS)

    Garg, Akash Deep; Yadav, S.; Kumar, Mukesh; Shrivastava, B. B.; Karnewar, A. K.; Ojha, A.; Puntambekar, T. A.

    2016-04-01

    Indus-2 is a 3rd generation synchrotron radiation source at the Raja Ramanna Centre for Advanced Technology (RRCAT) in India. We study the longitudinal profile of electrons in Indus-2 by using dual sweep synchroscan streak camera at visible diagnostic beamline. In this paper, the longitudinal profiles of electron bunch are analyzed by filling beam current in a single bunch mode. These studies are carried at injection energy (550 MeV) and at ramped beam energy (2.5 GeV). The effects of the wakefield generated interactions between the circulating electrons and the surrounding vacuum chamber are analyzed in terms of measured effects on longitudinal beam distribution. The impedance of the storage ring is obtained by fitting the solutions of Haissinski equation to the measured bunch lengthening with different impedance models. The impedance of storage ring obtained by a series R+L impedance model indicates a resistance (R) of 1350±125 Ω, an inductance (L) of 180±25 nH and broadband impedance of 2.69 Ω. These results are also compared with the values obtained from measured synchronous phase advancing and scaling laws. These studies are very useful in better understanding and control of the electromagnetic interactions.

  14. LDV measurement of bird ear vibrations to determine inner ear impedance and middle ear power flow

    NASA Astrophysics Data System (ADS)

    Muyshondt, Pieter G. G.; Pires, Felipe; Dirckx, Joris J. J.

    2016-06-01

    The mechanical behavior of the middle ear structures in birds and mammals is affected by the fluids in the inner ear (IE) that are present behind the oval window. In this study, the aim was to gather knowledge of the acoustic impedance of the IE in the ostrich, to be able to determine the effect on vibrations and power flow in the single-ossicle bird middle ear for future studies. To determine the IE impedance, vibrations of the ossicle were measured for both the quasi-static and acoustic stimulus frequencies. In the acoustic regime, vibrations were measured with a laser Doppler vibrometer and electromagnetic stimulation of the ossicle. The impedance of the inner ear could be determined by means of a simple RLC model in series, which resulted in a stiffness reactance of KIE = 0.20.1012 Pa/m3, an inertial impedance of MIE = 0.652.106 Pa s2/m3, and a resistance of RIE = 1.57.109 Pa s/m. The measured impedance is found to be considerably smaller than what is found for the human IE.

  15. Time-invariant measurement of time-varying bioimpedance using vector impedance analysis.

    PubMed

    Sanchez, B; Louarroudi, E; Pintelon, R

    2015-03-01

    When stepped-sine impedance spectroscopy measurements are carried out on (periodically) time-varying bio-systems, the inherent time-variant (time-periodic) parts are traditionally ignored or mitigated by filtering. The latter, however, lacks theoretical foundation and, in this paper, it is shown that it only works under certain specific conditions. Besides, we propose an alternative method, based on multisine signals, that exploits the non-stationary nature in time-varying bio-systems with a dominant periodic character, such as cardiovascular and respiratory systems, or measurements interfered with by their physiological activities. The novel method extracts the best—in a mean square sense—linear time-invariant (BLTI) impedance approximation ZBLTI(jω) of a periodically time-varying (PTV) impedance ZPTV(jω, t) as well as its time-periodic part. Relying on the geometrical interpretation of the BLTI concept, a new impedance analysis tool, called vector impedance analysis (VIA), is also presented. The theoretical and practical aspects are validated through measurements performed on a PTV dummy circuit and on an in vivo myocardial tissue. PMID:25700023

  16. In vivo measurement of mechanical impedance of bone

    NASA Technical Reports Server (NTRS)

    Young, D. R.; Thompson, G.

    1974-01-01

    System of measurement provides indications of ulnar properties independent of characteristics of surrounding soft tissue and other bones. Mechanical modal approximated ulnar response so average bending rigidity could be determined to provide direct index of bone resistance to bending loading.

  17. UNIVERSAL AUTO-CALIBRATION FOR A RAPID BATTERY IMPEDANCE SPECTRUM MEASUREMENT DEVICE

    SciTech Connect

    Jon P. Christophersen; John L. Morrison; William H. Morrison

    2014-03-01

    Electrochemical impedance spectroscopy has been shown to be a valuable tool for diagnostics and prognostics of energy storage devices such as batteries and ultra-capacitors. Although measurements have been typically confined to laboratory environments, rapid impedance spectrum measurement techniques have been developed for on-line, embedded applications as well. The prototype hardware for the rapid technique has been validated using lithium-ion batteries, but issues with calibration had also been identified. A new, universal automatic calibration technique was developed to address the identified issues while also enabling a more simplified approach. A single, broad-frequency range is used to calibrate the system and then scaled to the actual range and conditions used when measuring a device under test. The range used for calibration must be broad relative to the expected measurement conditions for the scaling to be successful. Validation studies were performed by comparing the universal calibration approach with data acquired from targeted calibration ranges based on the expected range of performance for the device under test. First, a mid-level shunt range was used for calibration and used to measure devices with lower and higher impedance. Next, a high excitation current level was used for calibration, followed by measurements using lower currents. Finally, calibration was performed over a wide frequency range and used to measure test articles with a lower set of frequencies. In all cases, the universal calibration approach compared very well with results acquired following a targeted calibration. Additionally, the shunts used for the automated calibration technique were successfully characterized such that the rapid impedance measurements compare very well with laboratory-scale measurements. These data indicate that the universal approach can be successfully used for onboard rapid impedance spectra measurements for a broad set of test devices and range of

  18. Mathematical justification of the acoustic method for measuring the impedance of the respiratory tract.

    PubMed

    Bogomolov, A V; Dragan, S P

    2015-01-01

    A new method for measuring a complex frequency-dependent acoustic impedance of the respiratory tract based on two-microphone method was developed. The measuring device consists of a waveguide connected through a mouthpiece to the patient's mouth. A sound field with a frequency range from 5 to 100 Hz is created in the waveguide. The impedance of the respiratory tract is determined at free respiration of the patient in the set frequency range; the duration of examination does not exceed 15 s. The criteria for the recognition of respiratory tract pathologies are proposed. PMID:26518558

  19. The application of A.C. impedance spectroscopy on the durability of hydrated cement paste subjected to various environmental conditions

    NASA Astrophysics Data System (ADS)

    Perron, Stacey

    Harsh Canadian winters cause many problems in reinforced concrete structures due to damaging freezing-thawing cycles which is exacerbated by the heavy use of de-icing salts on roadways. Evaluation of concrete durability with current ASTM methods may give unreliable results and are destructive to the structure. A relatively new and novel approach to evaluating the durability of concrete uses A. C. Impedance Spectroscopy (ACIS). Hydrated cement paste (hcp), mortar, brick and vycor glass were evaluated using ACIS during drying-rewetting and freezing-thawing cycles. Thermal mechanical analysis (TMA), and differential scanning calorimetry (DSC) tests were also conducted and used as references. Results indicate that ACIS can be used to successfully evaluate the pore structure of hcp. The results from the drying-rewetting cycles are consistent with the pore coarsening theory. ACIS revealed pore structure changes consistent with the mechanical strains and pore solution chemistry. Increased pore continuity with each drying-rewetting cycle was indicated by a reduction in sample resistance. Unique tests were conducted on hydrated cement paste, mortar, brick and vycor glass that measured the ACIS and mechanical strains simultaneously while undergoing temperature changes. The temperature was lowered from 5°C to -80°C and then raised to +20°C. The ACIS results indicate that durability of the material can be assessed using the parameters R, material resistance, and phi, indicative of the frequency dispersion angle. The resistance on freezing values correlates with the amount of pore water freezing. The phi values on freezing are representative of the pore size distribution of the test sample. Resistance and phi data from freezing-thawing tests can be analyzed to assess durability of the sample. A material that is durable to freezing-thawing cycles can be described as having a high resistance at room temperature, a low freezing resistance and small changes in phi. Results were

  20. Longitudinal impedance measurement of an RK-TBA induction accelerating gap

    SciTech Connect

    Eylon, S.; Henestroza, E.; Kim, J.-S.; Houck, T.L.; Westenskow, G.A.; Yu, S.S.

    1997-05-01

    Induction accelerating gap designs are being studied for Relativistic Klystron Two-Beam Accelerator (RK-TBA) applications. The accelerating gap has to satisfy the following major requirements: hold-off of the applied accelerating voltage pulse, low transverse impedance to limit beam breakup, low longitudinal impedance at the beam-modulation frequency to minimize power loss. Various gap geometries, materials and novel insulating techniques were explored to optimize the gap design. We report on the experimental effort to evaluate the rf properties of the accelerating gaps in a simple pillbox cavity structure. The experimental cavity setup was designed using the AMOS, MAFIA and URMEL numerical codes. Longitudinal impedance measurements above beam-tube cut-off frequency using a single-wire measuring system are presented.

  1. Shot Noise of a Quantum Dot Measured with Gigahertz Impedance Matching

    NASA Astrophysics Data System (ADS)

    Hasler, T.; Jung, M.; Ranjan, V.; Puebla-Hellmann, G.; Wallraff, A.; Schönenberger, C.

    2015-11-01

    The demand for a fast high-frequency read-out of high-impedance devices, such as quantum dots, necessitates impedance matching. Here we use a resonant impedance-matching circuit (a stub tuner) realized by on-chip superconducting transmission lines to measure the electronic shot noise of a carbon-nanotube quantum dot at a frequency close to 3 GHz in an efficient way. As compared to wideband detection without impedance matching, the signal-to-noise ratio can be enhanced by as much as a factor of 800 for a device with an impedance of 100 k Ω . The advantage of the stub resonator concept is the ease with which the response of the circuit can be predicted, designed, and fabricated. We further demonstrate that all relevant matching circuit parameters can reliably be deduced from power-reflectance measurements and then used to predict the power-transmission function from the device through the circuit. The shot noise of the carbon-nanotube quantum dot in the Coulomb blockade regime shows an oscillating suppression below the Schottky value of 2 e I , as well as an enhancement in specific regions.

  2. Development of a new rapid measurement technique for fish embryo membrane permeability studies using impedance spectroscopy

    PubMed Central

    Zhang, T.; Wang, R.Y.; Bao, Q-Y.; Rawson, D.M.

    2006-01-01

    Information on fish embryo membrane permeability is vital in their cryopreservation. Whilst conventional volumetric measurement based assessment methods have been widely used in fish embryo membrane permeability studies, they are lengthy and reduce the capacity for multi-embryo measurement during an experimental run. A new rapid ‘real-time’ measurement technique is required to determine membrane permeability during cryoprotectant treatment. In this study, zebrafish (Danio rerio) embryo membrane permeability to cryoprotectants was investigated using impedance spectroscopy. An embryo holding cell, capable of holding up to 10 zebrafish embryos was built incorporating the original system electrods for measuring the impedance spectra. The holding cell was tested with deionised water and a series of KCl solutions with known conductance values to confirm the performance of the modified system. Untreated intact embryos were then tested to optimise the loading capacity and sensitivity of the system. To study the impedance changes of zebrafish embryos during cryoprotectant exposure, three, six or nine embryos at 50% epiboly stage were loaded into the holding cell in egg water, which was then removed and replaced by 0.5, 1.0, 2.0 or 3 M methanol or dimethyl sulfoxide (DMSO). The impedance changes of the loaded embryos in different cryoprotectant solutions were monitored over 30 min at 22 °C, immediately following embryo exposure to cryoprotectants, at the frequency range of 10–106 Hz. The impedance changes of the embryos in egg water were used as controls. Results from this study showed that the optimum embryo loading level was six embryos per cell for each experimental run. The optimum frequency was identified at 103.14 or 1380 Hz which provided good sensitivity and reproducibility. Significant impedance changes were detected after embryos were exposed to different concentrations of cryoprotectants. The results agreed well with those obtained from conventional

  3. Measurement of acoustic impedance and reflectance in the human ear canal.

    PubMed

    Voss, S E; Allen, J B

    1994-01-01

    The pressure reflectance R (omega) is the transfer function which may be defined for a linear one-port network by the ratio of the reflected complex pressure divided by the incident complex pressure. The reflectance is a function that is closely related to the impedance of the 1-port. The energy reflectance R (omega) is defined as magnitude of [R]2. It represents the ratio of reflected to incident energy. In the human ear canal the energy reflectance is important because it is a measure of the inefficiency of the middle ear and cochlea, and because of the insight provided by its simple frequency domain interpretation. One may characterize the ear canal impedance by use of the pressure reflectance and its magnitude, sidestepping the difficult problems of (a) the unknown canal length from the measurement point to the eardrum, (b) the complicated geometry of the drum, and (c) the cross-sectional area changes in the canal as a function of distance. Reported here are acoustic impedance measurements, looking into the ear canal, measured on ten young adults with normal hearing (ages 18-24). The measurement point in the canal was approximately 0.85 cm from the entrance of the canal. From these measurements, the pressure reflectance in the canal is computed and impedance and reflectance measurements from 0.1 to 15.0 kHz are compared among ears. The average reflectance and the standard deviation of the reflectance for the ten subjects have been determined. The impedance and reflectance of two common ear simulators, the Brüel & Kjaer 4157 and the Industrial Research Products DB-100 (Zwislocki) coupler are also measured and compared to the average human measurements. All measurements are made using controls that assure a uniform accuracy in the acoustic calibration across subjects. This is done by the use of two standard acoustic resistors whose impedances are known. From the experimental results, it is concluded that there is significant subject variability in the magnitude

  4. Impedance spectroscopy for detection of mold in archives with an integrated reference measurement

    NASA Astrophysics Data System (ADS)

    Papireddy Vinayaka, P.; Van Den Driesche, S.; Janssen, S.; Frodl, M.; Blank, R.; Cipriani, F.; Lang, W.; Vellekoop, M. J.

    2015-06-01

    In this work, we present a new miniaturized culture medium based sensor system where we apply an optical reference in an impedance measurement approach for the detection of mold in archives. The designed sensor comprises a chamber with pre-loaded culture medium which promotes the growth of archive mold species. Growth of mold is detected by measuring changes in the impedance of the culture medium caused due to increase in the pH (from 5.5 to 8) with integrated electrodes. Integration of the reference measurement helps in determining the sensitivity of the sensor. The colorimetric principle serves as a reference measurement that indicates a pH change after which further pH shifts can be determined using impedance measurement. In this context, some of the major archive mold species Eurotium amstelodami, Aspergillus penicillioides and Aspergillus restrictus have been successfully analyzed on-chip. Growth of Eurotium amstelodami shows a proportional impedance change of 10 % (12 chips tested) per day, with a sensitivity of 0.6 kΩ/pH unit.

  5. [A Digital System for Bioimpedance and Electrical Impedance Tomography Measurement System].

    PubMed

    Chen, Xiaoyan; Gao, Nana; Huang, Huafang

    2015-06-01

    A digital system for bioimpedance and electrical impedance tomography (EIT) measurement controlled by an ATmega16 microcontroller was constructed in our laboratory. There are eight digital electrodes using AD5933 to measure the impedance of the targets, and the data is transmitted to the computer wirelessly through nRF24L01. The structure of the system, circuit design, system testing, vitro measurements of animals' tissues and electrical impedance tomography are introduced specifically in this paper. The experimental results showed that the system relative error was 0.42%, and the signal noise ratio was 76.3 dB. The system not only can be used to measure the impedance by any two electrodes within the frequency of 1-100 kHz in a sweep scanning, but also can reconstruct the images of EIT. The animal experiments showed that the data was valid and plots were fitting with Cole-Cole theory. The testing verified the feasibility and effectiveness of the system. The images reconstructed of a salt-water tank are satisfactory and match with the actual distribution of the tank. The system improves the effectiveness of the front-end measuring signal and the stability of the system greatly. PMID:26485981

  6. Lorentz force electrical impedance tomography using magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Zengin, Reyhan; Güneri Gençer, Nevzat

    2016-08-01

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from -{{25}\\circ} to {{25}\\circ} at intervals of {{5}\\circ} . The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 dB. Simulation studies

  7. Lorentz force electrical impedance tomography using magnetic field measurements.

    PubMed

    Zengin, Reyhan; Gençer, Nevzat Güneri

    2016-08-21

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from [Formula: see text] to [Formula: see text] at intervals of [Formula: see text]. The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 d

  8. A new correction technique for measuring respiratory impedance through an endotracheal tube.

    PubMed

    Lorino, A M; Beydon, L; Mariette, C; Dahan, E; Lorino, H

    1996-05-01

    Measurement of respiratory impedance (Zrs) in intubated patients requires corrections for flow-dependent resistance and air compression inside the endotracheal tube (ET). The purpose of this study was to test a new correction technique for these effects. We therefore studied 110 patients in two conditions: breathing normally (C1), or breathing through an ET placed at the mouth (C2). In C1, we measured pressure and flow signals at the mouth, and in C2, at the ET inlet, during application of a pseudorandom forced excitation (4-32 Hz). In C1, respiratory impedance was calculated directly as Z1. In C2, pressure data were first corrected for the flow-dependent resistance of the ET, and respiratory impedance was then corrected both for gas compression inside the set-up and ET inertance (impedance Z2). Strong linear relationships were found between the reference and corrected estimates of the resistance at 6 Hz, the frequency dependence of resistance and the resonant frequency. The mean normalized distance between Z1 and Z2 observed in the patients over the 4-32 Hz frequency range was about 14% for resistance and 12% for reactance (-9% and -4%, respectively, when considering the algebraic value of the distance). This slight underestimation of both components of impedance might be due to an overcorrection of pressure for the flow-dependent resistance of the ET. We conclude that, in intubated patients, newly tested corrections for the mechanical contribution of the endotracheal tube may yield a fair estimate of respiratory impedance when pressure is measured at the inlet of the endotracheal tube. PMID:8793472

  9. Tissue electrical properties measured by bioelectrical impedance analysis among healthy and sportsmen population

    NASA Astrophysics Data System (ADS)

    Kapica, Dominik; Warchulińska, Joanna; Jakubiak, Monika; Teter, Mariusz; Mlak, Radosław; Hałabiś, Magdalena; Wójcik, Waldemar; Małecka-Massalska, Teresa

    2015-09-01

    Introduction: Bioelectrical impedance analysis (BIA) is a useful tool to asses human body composition and nutrition status; multi-frequency BIA has a higher accuracy than single-frequency BIA. In our study a difference of impedance values (Z) at 5, 100 and 200 kHz and Z200/Z5 index between professional athletes and control group were determined. Methods: In this research 105 people were tested, divided into control group (72 people: 35 males and 37 females) and professional athletes (33 people: 16 males and 17 females). Impedance was measured at three frequency values - 5, 100 and 200 kHz; with received values the Z200/Z5 index was calculated. Results: In most compared subgroups impedance values showed significantly lower values in athletes than in control group (5 kHz - males: p=0.136, females: p=0.001, 100 kHz - males: p=0.039, females: p<0.0001, 200 kHz - males: p=0.047, females: p<0.0001) Z200/Z5 index also showed lower value in athletes than in control group (p=0.016 for males, p<0.0001 for females). Conclusion: Lower values of impedance and Z200/Z5 index indicates a better nutrition status and general health condition of athletes than in control group.

  10. A direct-display oscillation method for measurement of respiratory impedance.

    PubMed

    Franetzki, M; Prestele, K; Korn, V

    1979-05-01

    The basic principle of the method described here is derived from a variant of the oscillation method. A reference impedance is connected to the mouth; between these two an oscillating flow is imposed. As a reference impedance we use a flexible tube, which acts as a virtually pure inductance or inertance. Respiration is hardly impeded. The only measured parameter is the alternating pressure in front of the mouth and this is easily picked up by a simple microphone. In contrast to former direct-display methods, the inertia and elasticity of the respiratory gas and the respiratory tract, i.e., airways including lungs and thorax, are also taken into account for the evaluation. The respiratory resistance is studied as a complex parameters, i.e., as an impedance. With the aid of diagrams or via electronic computation circuitry, the direct and continuous display of all impedance components such as its magnitude and phase, resistance, and reactance is possible. They can be read out as a function of time, respiratory flow, or volume. PMID:468614

  11. Electrode-Skin contact impedance: In vivo measurements on an ovine model

    NASA Astrophysics Data System (ADS)

    Nguyen, D. T.; Kosobrodov, R.; Barry, M. A.; Chik, W.; Jin, C.; Oh, T. I.; Thiagalingam, A.; McEwan, A.

    2013-04-01

    The problem of electrical impedance between the skin and the electrode is an on-going challenge in bio-electronics. This is particularly true in the case of Electrical Impedance Tomography (EIT), which uses a large number of skin-contact electrodes and is very sensitive to noise. In the present article, contact impedance is measured and compared for a range of electrodes placed on the thorax of an ovine model. The study has been approved by the Westmead Hospital Animal Ethics Committee. The electrode models that were employed in the research are Ag/AgCl electrodes (E1), commonly used for ECG and EIT measurements in both humans and animal models, stainless steel crocodile clips (E2), typically used on animal models, and novel multi-point dry electrodes in two modifications: bronze plated (E3) and nickel plated (E4). Further, since the contact impedance is mostly attributed to the acellular outer layer of the skin, in our experiment, we attempted to study the effect of this layer by comparing the results when the skin is intact and when electrodes are introduced underneath the skin through small cuts. This boundary effect was assessed by comparison of measurements obtained during E2 skin surface contact, and sub-cutaneous contact (E5). Twelve gauge intradermal needles were also tested as an electrode (E6). The full impedance spectrum, from 500 Hz to 300 kHz, was recorded, analysed and compared. As expected, the contact impedance in the more invasive cases, i.e the electrodes under the skin, is significantly lower than in the non-invasive cases. At the frequency of 50 kHz which is commonly used in lung EIT acquisition, electrodes E3, E4 and E6 demonstrated contact impedance of less than 200 Ω, compared to more than 400 Ω measured for electrodes E1, E2 and E5. In conclusion, the novel multipoint electrodes proved to be best suited for EIT purposes, because they are non-invasive and have lower contact impedance than Ag/AgCl and crocodile clips, in both invasive and

  12. RF impedance measurement status for the 7-GeV Advanced Photon Source (APS)

    SciTech Connect

    Song, J.J.; Kustom, R.L.

    1992-05-01

    Beam-coupling impedances (Z) for the 7-GeV APS storage ring have been numerically estimated. In order to confirm these calculations, the wire method with a synthetic pulse technique was used to measure the beam coupling impedance of various vacuum components around the main storage ring. A section of the beam+antechambers, a vacuum isolation valve with and without the RF shielding screen, an insertion device, and a photon absorber were used as a device under test (DUT) to obtain the results. The results were compared with the computer simulations and the Z or k-dependence on bunch lengths was studied.

  13. RF impedance measurement status for the 7-GeV Advanced Photon Source (APS)

    SciTech Connect

    Song, J.J.; Kustom, R.L.

    1992-01-01

    Beam-coupling impedances (Z) for the 7-GeV APS storage ring have been numerically estimated. In order to confirm these calculations, the wire method with a synthetic pulse technique was used to measure the beam coupling impedance of various vacuum components around the main storage ring. A section of the beam+antechambers, a vacuum isolation valve with and without the RF shielding screen, an insertion device, and a photon absorber were used as a device under test (DUT) to obtain the results. The results were compared with the computer simulations and the Z or k-dependence on bunch lengths was studied.

  14. New ac microammeter for leakage current measurement of biomedical equipment

    NASA Astrophysics Data System (ADS)

    Branca, F. P.; Del Prete, Z.; Marinozzi, F.

    1993-11-01

    A new inexpensive current probe for on-line leakage current measurement of biomedical devices in hospital environment is described. The prototype is designed to detect and measure leakage currents on the ground wire of the device's power cord so that its integrity can be monitored in real time. Realized with a sensing coil specially matched to a low-noise op amp, this probe adds only negligible impedance on the monitored ground lines. From this preliminary study about the device's metrological performances, a sensitivity of 10 nArms for a current range 1-500 μArms has emerged, together with a mean linearity error of 0.03% and a frequency response flat within 1% of gain from 50 to 2000 Hz.

  15. On the reconstruction of boundary impedance of a heat conduction system from nonlocal measurement

    NASA Astrophysics Data System (ADS)

    Liu, Jijun; Wang, Yuchan

    2016-07-01

    We consider the reconstruction of the Robin impedance coefficient of a heat conduction system in a two-dimensional spatial domain from the time-average measurement specified on the boundary. By applying the potential representation of a solution, this nonlinear inverse problem is transformed into an ill-posed integral system coupling the density function for potential and the unknown boundary impedance. The uniqueness as well as the conditional stability of this inverse problem is established from the integral system. Then we propose to find the boundary impedance by solving a non-convex regularizing optimization problem. The well-posedness of this optimization problem together with the convergence property of the minimizer is analyzed. Finally, based on the singularity decomposition of the potential representation of the solution, two iteration schemes with their numerical realizations are proposed to solve this optimization problem.

  16. Phase Angle Measurement in Healthy Human Subjects through Bio-Impedance Analysis

    PubMed Central

    Kumar, Satish; Dutt, Aswini; Hemraj, Sandhya; Bhat, Shankar; Manipadybhima, Bhat

    2012-01-01

    Objective(s) Bioelectrical impedance is the measure of impedance of the body. Impedance consists of electric resistance and reactance. Phase angle (PA) is the tan value of the ratio of reactance versus electric resistance. PA depends on cell membrane integrity and on body cell mass. There exists a correlation between PA values and body cell mass. The objective of this study was to compare the PA values of normal individuals and their anthropometric measurements. Materials and Methods Anthropometric measurements, Bioelectrical impedance analysis and PA measurements were done using Bodystat Quadscan 4000 machine on 42 healthy subjects between the age group of 18 to 50 yrs at a private hospital, Bangalore, Karnataka, India for eight months. Kolmogrov-Smirnov and Pearson’s correlation tests were used for data analysis. Results The PA values were 7.321.17º in healthy subjects. PA values were significantly positively correlated with body mass index (BMI) (r= 0.011, P<0.001). The phase angle values for males and females were 7.43±0.98º and 7.05±1.1.58º, respectively. Conclusion PA values positively correlated with BMI indicating the nutritional status of the study group. PA values were similar to the values to found in other studies. PMID:23653848

  17. Measurement of Peak Esophageal Luminal Cross Sectional Area Utilizing Nadir Intraluminal Impedance

    PubMed Central

    Zifan, Ali; Ledgerwood-Lee, Melissa; Mittal, Ravinder K

    2015-01-01

    BACKGROUND Multichannel intraluminal impedance (MII) is currently used to monitor gastroesophageal reflux and esophageal bolus clearance. We describe a novel methodology to measure maximal luminal CSA during bolus transport from MII measurements. METHODS Studies were conducted in-vitro (test tubes) and in-vivo (healthy subjects). Concurrent MII, HRM, and intraluminal ultrasound (US) were recorded 7 cm above the lower esophageal sphincter. Swallows with two concentrations of saline, 0.1N and 0.5N, of bolus volumes 5cc, 10cc and 15cc were performed. The CSA was estimated by solving two algebraic Ohm’s law equations, resulting from the two saline solutions. The CSA calculated from impedance method was compared with the CSA measured from the intraluminal US images. KEY RESULTS The CSA measured in duplicate from B-mode US images showed a mean difference between the two manual delineations to be near zero, and the repeatability coefficient was within 7.7% of the mean of the two CSA measurements. The calculated CSA from the impedance measurements strongly correlated with the US measured CSA (R2 ≅ 0.98). A detailed statistical analysis of the impedance and US measured CSA data indicated that the 95% limits of agreement between the two methods ranged from −9.1 to 13mm2. The root mean square error (RMS) of the two measurements was 4.8% of the mean US-measured CSA. CONCLUSIONS We describe a novel methodology to measure peak esophageal luminal CSA during peristalsis. Further studies are needed to determine if it is possible to measure patterns of luminal distension during peristalsis across the entire length of the esophagus. PMID:25930157

  18. Bench-Top Impedance Measurements for a Rotatable Copper Collimator for the LHC Phase II Collimation Upgrade

    SciTech Connect

    Smith, Jeffrey Claiborne; Bane, Karl; Doyle, Eric; Keller, Lew; Lundgren, Steve; Markiewicz, Tom; Ng, Cho-Kuen; Xiao, Liling; /SLAC

    2010-08-26

    Simulations have been performed in Omega3P to study both trapped modes and impedance contributions of a rotatable collimator for the LHC phase II collimation upgrade. Bench-top stretched coil probe impedance methods are also being implemented for measurements on prototype components to directly measure the low frequency impedance contributions. The collimator design also calls for a RF contact interface at both jaw ends with contact resistance much less than a milliohm in order to limit transverse impedance. DC resistance measurements in a custom built test chamber have been performed to test the performance of this interface.

  19. End-point impedance measurements across dominant and nondominant hands and robotic assistance with directional damping.

    PubMed

    Erden, Mustafa Suphi; Billard, Aude

    2015-06-01

    The goal of this paper is to perform end-point impedance measurements across dominant and nondominant hands while doing airbrush painting and to use the results for developing a robotic assistance scheme. We study airbrush painting because it resembles in many ways manual welding, a standard industrial task. The experiments are performed with the 7 degrees of freedom KUKA lightweight robot arm. The robot is controlled in admittance using a force sensor attached at the end-point, so as to act as a free-mass and be passively guided by the human. For impedance measurements, a set of nine subjects perform 12 repetitions of airbrush painting, drawing a straight-line on a cartoon horizontally placed on a table, while passively moving the airbrush mounted on the robot's end-point. We measure hand impedance during the painting task by generating sudden and brief external forces with the robot. The results show that on average the dominant hand displays larger impedance than the nondominant in the directions perpendicular to the painting line. We find the most significant difference in the damping values in these directions. Based on this observation, we develop a "directional damping" scheme for robotic assistance and conduct a pilot study with 12 subjects to contrast airbrush painting with and without robotic assistance. Results show significant improvement in precision with both dominant and nondominant hands when using robotic assistance. PMID:25148680

  20. Impedance measurements of the extraction kicker system for the rapid cycling synchrotron of China Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Huang, Liang-Sheng; Wang, Sheng; Liu, Yu-Dong; Li, Yong; Liu, Ren-Hong; Xiao, Ou-Zheng

    2016-04-01

    The fast extraction kicker system is one of the most important accelerator components and the main source of impedance in the Rapid Cycling Synchrotron of the China Spallation Neutron Source. It is necessary to understand the kicker impedance before its installation into the tunnel. Conventional and improved wire methods are employed in the impedance measurement. The experimental results for the kicker impedance are explained by comparison with simulation using CST PARTICLE STUDIO. The simulation and measurement results confirm that the window-frame ferrite geometry and the end plate are the important structures causing coupling impedance. It is proved in the measurements that the mismatching from the power form network to the kicker leads to a serious oscillation sideband of the longitudinal and vertical impedance and the oscillation can be reduced by ferrite absorbing material. Supported by National Natural Science Foundation of China (11175193, 11275221)

  1. Impedance feedback control for scanning electrochemical microscopy.

    PubMed

    Alpuche-Aviles, M A; Wipf, D O

    2001-10-15

    A new constant-distance imaging method based on the relationship between tip impedance and tip-substrate separation has been developed for the scanning electrochemical microscope. The tip impedance is monitored by application of a high-frequency ac voltage bias between the tip and auxiliary electrode. The high-frequency ac current is easily separated from the dc-level faradaic electrochemistry with a simple RC filter, which allows impedance measurements during feedback or generation/collection experiments. By employing a piezo-based feedback controller, we are able to maintain the impedance at a constant value and, thus, maintain a constant tip-substrate separation. Application of the method to feedback and generation/collection experiments with tip electrodes as small as 2 microm is presented. PMID:11681463

  2. Measurements of Middle Ear Pressure Gain and Cochlear Input Impedance in the Chinchilla

    NASA Astrophysics Data System (ADS)

    Slama, Michael C. C.; Ravicz, Michael E.; Nakajima, Hideko H.; Dong, Wei; Rosowski, John J.

    2009-02-01

    Measurements of middle ear conducted sound pressure in the cochlear vestibule PV have been performed in only a few species. Simultaneous measurements of sound-induced stapes velocity Vs are even more rare. We report simultaneous measurements of VS and PV in chinchillas. The VS measurements are performed using single-beam laser-Doppler vibrometry; PV is measured with fiber-optic pressure sensors like those described by Olson [1]. PV and VS have been measured in six animals, and the middle ear pressure gain (ratio of PV to the sound pressure in the ear canal) and the cochlear input impedance (ratio of PV to the product of VS and area of the footplate) computed. Our measurements of middle ear pressure gain are similar to published data in the chinchilla at stimulus frequencies of 500 Hz to 3 kHz, but are different at other frequencies. Our measurements of cochlear input impedance differ somewhat from previous estimates in the chinchilla and show a resistive input impedance up to at least 10 kHz.

  3. Comparison of impedance cardiography and dye dilution method for measuring cardiac output

    PubMed Central

    Spiering, W; van Es, P N; de Leeuw, P W

    1998-01-01

    Objective—To assess the degree of agreement between impedance cardiography, using the NCCOM3-R7 device, and the gold standard—the dye dilution method—both under basal conditions and after stimulation of cardiac output.
Patients—35 paired measurements in five healthy male volunteers.
Interventions—To obtain higher levels of cardiac output, cardiac performance was stimulated with a dopamine infusion.
Results—In 35 paired measurements, the mean of all the impedance values was higher than that of the dye dilution values, at 10.2 v 7.4 l/min (p < 0.0001). The mean discrepancy between the two methods was 3.3 l/min, and the mean bias −2.9 l/min, with limits of agreement of −9.0 and 3.2 l/min. A change in cardiac output could not adequately be predicted by the NCCOM3-R7. In 20 of 25 measurements obtained during continuous intravenous dopamine infusions there was a rise in dye dilution cardiac output (range 0.2 to 5.9 l/min). Neither the magnitude nor the direction of the change in dye dilution values corresponded with the change measured by impedance cardiography. The mean discrepancy here between the two methods was 1.8 l/min, and the mean bias −0.8 l/min, with limits of agreement of −4.9 and 3.3 l/min.
Conclusions—In healthy volunteers, impedance cardiography with NCCOM3-R7 is inadequate for assessing cardiac output when compared with the dye dilution method.

 Keywords: cardiac output;  impedance cardiography;  dye dilution PMID:9659188

  4. Interpulse multifrequency electrical impedance measurements during electroporation of adherent differentiated myotubes.

    PubMed

    García-Sánchez, Tomás; Azan, Antoine; Leray, Isabelle; Rosell-Ferrer, Javier; Bragós, Ramon; Mir, Lluis M

    2015-10-01

    In this study, electrical impedance spectroscopy measurements are performed during electroporation of monolayers of differentiated myotubes. The time resolution of the system (1 spectrum/ms) enable 860 full spectra (21 frequencies from 5 kHz to 1.3 MHz) to be acquired during the time gap between consecutive pulses (interpulse) of a classical electroporation treatment (8 pulses, 100 μs, 1 Hz). Additionally, the characteristics of the custom microelectrode assembly used allow the experiments to be performed directly in situ in standard 24 multi-well plates. The impedance response dynamics are studied for three different electric field intensities (400, 800 and 1200 V/cm). The multifrequency information, analysed with the Cole model, reveals a short-term impedance recovery after each pulse in accordance with the fast resealing of the cell membrane, and a long-term impedance decay over the complete treatment in accordance with an accumulated effect pulse after pulse. The analysis shows differences between the lowest electric field condition and the other two, suggesting that different mechanisms that may be related with the reversibility of the process are activated. As a result of the multifrequency information, the system is able to measure simultaneously the conductivity variations due to ion diffusion during electroporation. Finally, in order to reinforce the physical interpretation of the results, a complementary electrical equivalent model is used. PMID:26123676

  5. Accuracy of acoustic ear canal impedances: finite element simulation of measurement methods using a coupling tube.

    PubMed

    Schmidt, Sebastian; Hudde, Herbert

    2009-06-01

    Acoustic impedances measured at the entrance of the ear canal provide information on both the ear canal geometry and the terminating impedance at the eardrum, in principle. However, practical experience reveals that measured results in the audio frequency range up to 20 kHz are frequently not very accurate. Measurement methods successfully tested in artificial tubes with varying area functions often fail when applied to real ear canals. The origin of these errors is investigated in this paper. To avoid mixing of systematical and other errors, no real measurements are performed. Instead finite element simulations focusing on the coupling between a connecting tube and the ear canal are regarded without simulating a particular measuring method in detail. It turns out that realistic coupling between the connecting tube and the ear canal causes characteristic shifts of the frequencies of measured pressure minima and maxima. The errors in minima mainly depend on the extent of the area discontinuity arising at the interface; the errors in maxima are determined by the alignment of the tube with respect to the ear canal. In summary, impedance measurements using coupling tubes appear questionable beyond 3 kHz. PMID:19507964

  6. Accelerated life ac conductivity measurements of CRT oxide cathodes

    NASA Astrophysics Data System (ADS)

    Hashim, A. A.; Barratt, D. S.; Hassan, A. K.; Nabok, A.

    2006-07-01

    The ac conductivity measurements have been carried out for the activated Ba/SrO cathode with additional 5% Ni powder for every 100 h acceleration life time at the temperature around 1125 K. The ac conductivity was studied as a function of temperature in the range 300-1200 K after conversion and activation of the cathode at 1200 K for 1 h in two cathodes face to face closed configuration. The experimental results prove that the hopping conductivity dominate in the temperature range 625-770 K through the traps of the WO 3 associate with activation energy Ea = 0.87 eV, whereas from 500-625 K it is most likely to be through the traps of the Al 2O 3 with activation energy of Ea = 1.05 eV. The hopping conductivity at the low temperature range 300-500 K is based on Ni powder link with some Ba contaminants in the oxide layer stricture which indicates very low activation energy Ea = 0.06 eV.

  7. A new method for estimating shear-wave velocity in marine sediments from radiation impedance measurements

    NASA Astrophysics Data System (ADS)

    Kimura, Masao

    2005-11-01

    Shear-wave velocity is one of the important parameters that characterize the physical properties of marine sediments. In this study, a new method is proposed for measuring shear-wave velocity in marine sediments by using radiation impedance. Shear-wave velocities for three kinds of urethane rubber with different Japanese Industrial Standards hardness values were obtained by radiation impedance and time-of-flight measurement techniques. It was shown that the values of the shear-wave velocity measured by the radiation impedance method were consistent with those of time-of-flight measurements. It was then shown that the shear-wave velocities for air- and water-saturated beach sands are different. It was also found that the indicated shear-wave velocity is dependent on the vibrating plate radius because the instrument measures an average shear-wave velocity within a depth window beneath the plate; the larger the plate radius, the deeper the averaging window. Finally, measurements were made on two-layered media in which air-saturated beach sand or urethane rubber was covered with air-saturated clay, and the relationship between the thickness of the clay layer and the indicated shear-wave velocity was investigated.

  8. Absorption and Attenuation Coefficients Using the WET Labs ac-s in the Mid-Atlantic Bight: Field Measurements and Data Analysis

    NASA Technical Reports Server (NTRS)

    Ohi, Nobuaki; Makinen, Carla P.; Mitchell, Richard; Moisan, Tiffany A.

    2008-01-01

    Ocean color algorithms are based on the parameterization of apparent optical properties as a function of inherent optical properties. WET Labs underwater absorption and attenuation meters (ac-9 and ac-s) measure both the spectral beam attenuation [c (lambda)] and absorption coefficient [a (lambda)]. The ac-s reports in a continuous range of 390-750 nm with a band pass of 4 nm, totaling approximately 83 distinct wavelengths, while the ac-9 reports at 9 wavelengths. We performed the ac-s field measurements at nine stations in the Mid-Atlantic Bight from water calibrations to data analysis. Onboard the ship, the ac-s was calibrated daily using Milli Q-water. Corrections for the in situ temperature and salinity effects on optical properties of water were applied. Corrections for incomplete recovery of the scattered light in the ac-s absorption tube were performed. The fine scale of spectral and vertical distributions of c (lambda) and a (lambda) were described from the ac-s. The significant relationships between a (674) and that of spectrophotometric analysis and chlorophyll a concentration of discrete water samples were observed.

  9. TECHNICAL NOTE: Portable audio electronics for impedance-based measurements in microfluidics

    NASA Astrophysics Data System (ADS)

    Wood, Paul; Sinton, David

    2010-08-01

    We demonstrate the use of audio electronics-based signals to perform on-chip electrochemical measurements. Cell phones and portable music players are examples of consumer electronics that are easily operated and are ubiquitous worldwide. Audio output (play) and input (record) signals are voltage based and contain frequency and amplitude information. A cell phone, laptop soundcard and two compact audio players are compared with respect to frequency response; the laptop soundcard provides the most uniform frequency response, while the cell phone performance is found to be insufficient. The audio signals in the common portable music players and laptop soundcard operate in the range of 20 Hz to 20 kHz and are found to be applicable, as voltage input and output signals, to impedance-based electrochemical measurements in microfluidic systems. Validated impedance-based measurements of concentration (0.1-50 mM), flow rate (2-120 µL min-1) and particle detection (32 µm diameter) are demonstrated. The prevailing, lossless, wave audio file format is found to be suitable for data transmission to and from external sources, such as a centralized lab, and the cost of all hardware (in addition to audio devices) is ~10 USD. The utility demonstrated here, in combination with the ubiquitous nature of portable audio electronics, presents new opportunities for impedance-based measurements in portable microfluidic systems.

  10. Random and systematic measurement errors in acoustic impedance as determined by the transmission line method

    NASA Technical Reports Server (NTRS)

    Parrott, T. L.; Smith, C. D.

    1977-01-01

    The effect of random and systematic errors associated with the measurement of normal incidence acoustic impedance in a zero-mean-flow environment was investigated by the transmission line method. The influence of random measurement errors in the reflection coefficients and pressure minima positions was investigated by computing fractional standard deviations of the normalized impedance. Both the standard techniques of random process theory and a simplified technique were used. Over a wavelength range of 68 to 10 cm random measurement errors in the reflection coefficients and pressure minima positions could be described adequately by normal probability distributions with standard deviations of 0.001 and 0.0098 cm, respectively. An error propagation technique based on the observed concentration of the probability density functions was found to give essentially the same results but with a computation time of about 1 percent of that required for the standard technique. The results suggest that careful experimental design reduces the effect of random measurement errors to insignificant levels for moderate ranges of test specimen impedance component magnitudes. Most of the observed random scatter can be attributed to lack of control by the mounting arrangement over mechanical boundary conditions of the test sample.

  11. Sensitive Radio-Frequency Measurements of a Quantum Dot by Tuning to Perfect Impedance Matching

    NASA Astrophysics Data System (ADS)

    Ares, N.; Schupp, F. J.; Mavalankar, A.; Rogers, G.; Griffiths, J.; Jones, G. A. C.; Farrer, I.; Ritchie, D. A.; Smith, C. G.; Cottet, A.; Briggs, G. A. D.; Laird, E. A.

    2016-03-01

    Electrical readout of spin qubits requires fast and sensitive measurements, which are hindered by poor impedance matching to the device. We demonstrate perfect impedance matching in a radio-frequency readout circuit, using voltage-tunable varactors to cancel out parasitic capacitances. An optimized capacitance sensitivity of 1.6 aF /√{Hz } is achieved at a maximum source-drain bias of 170 -μ V root-mean-square and with a bandwidth of 18 MHz. Coulomb blockade in a quantum-dot is measured in both conductance and capacitance, and the two contributions are found to be proportional as expected from a quasistatic tunneling model. We benchmark our results against the requirements for single-shot qubit readout using quantum capacitance, a goal that has so far been elusive.

  12. Use of low-frequency electrical impedance measurements to determine phospholipid content in amniotic fluid

    NASA Astrophysics Data System (ADS)

    DeLuca, F.; Cametti, C.; Zimatore, G.; Maraviglia, B.; Pachi', A.

    1996-09-01

    In this report we propose a new method for an in vitro test of the foetal lung maturity based on the measurement of the electrical conductivity of the overall amniotic fluid obtained from transabdominal amniocentesis, since this quantity can be linked to a first approximation in a very simple way to the phospholipid content. We have carried out measurements of 85 different samples of amniotic fluid as a function of gestation weeks and we have observed a pronounced change of the electrical conductivity that reflects the increase in the phospholipid concentration occurring at the end of normal pregnancies. The method could be further developed to obtain similar information on in vivo experiments by means of bioelectric impedance tomography, taking advantage of the frequency dependence of the tissue electrical impedance.

  13. Minimal implementation of an AFE4300-based spectrometer for electrical impedance spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Sanchez, B.; Praveen, A.; Bartolome, E.; Soundarapandian, K.; Bragos, R.

    2013-04-01

    The AFE4300 is a new low-cost on-chip impedance spectrometer developed by Texas Instruments able to handle multiple four electrode interface measurements. In this work, we present a brief description and characterization of this device and, besides its interesting features as a body-composition impedancemeter system; we evaluate its potential to develop minimal implementations for other biomedical applications. As the case study presented in this paper, its use to monitor ventilatory time-varying bioimpedance.

  14. Phase angle and impedance measurements for nondestructive moisture content determination of in-shell peanuts using a cylindrical sample holder

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simple, low cost instrument that measures impedance and phase angle was used along with a parallel-plate capacitance system to estimate the moisture content (MC) of yellow corn. A sample of corn weighing about 100g was placed between the parallel-plate electrodes and the impedance and phase angle...

  15. AC Circuit Measurements with a Differential Hall Element Magnetometer

    NASA Astrophysics Data System (ADS)

    Calkins, Matthew W.; Nicks, B. Scott; Quintero, Pedro A.; Meisel, Mark W.

    2013-03-01

    As the biomedical field grows, there is an increasing need to quickly and efficiently characterize more samples at room temperature. An automated magnetometer was commissioned to do these room temperature magnetic characterizations. This magnetometer, which is inspired by a Differential Hall Element Magnetometer,[2] uses two commercially available Hall elements wired in series. One Hall element measures the external magnetic field of a 9 T superconducting magnet and the other measures the same external field plus the field due to the magnetization of the sample that sits on top of the Hall element. The difference between these two Hall elements is taken while a linear stepper motor sweeps through the external magnetic field. The linear motor and data acquisition are controlled by a LabVIEW program. Recently, the system was outfitted for AC circuit measurements and these data will be compared to DC circuit data. In addition, the lowest signal to noise ratio will be found in order to deduce the smallest amount of sample needed to register an accurate coercive field. Supported by the NSF via NHMFL REU (DMR-0654118), a single investigator grant (DMR-1202033 to MWM) and by the UF Undergraduate Scholars Program.

  16. Measurement of AC Induced Flow using Mico PIV

    NASA Astrophysics Data System (ADS)

    Wang, Dazhi; Meinhart, Carl; Sigurdson, Marin

    2002-11-01

    The fluid motion in a wedge-shaped device subject to an AC electric field is measured using Micron-Resolution Particle Image Velocimetry (micro-PIV). The fluorescent polystyrene spherical particles are used as flow tracers. In the non-uniform electric field, the particles in the suspension experience dielectrophoretic forces, which cause difference of velocities between the particles and the fluid. In order to eliminate the velocity difference, two different size particles are used for the micro-PIV measurements to determine the fluid velocity field. A two-color PIV technique is used to determine uniquely the fluid velocity field. The wedge-shaped channel is 100-micron wide at the apex, and fabricated from a 550-micron thick silicon wafer. A voltage of 15Vrms at 100 kHz is applied to the electrodes. The particle volume fraction is set below 0.1% so that the effect of the particles on the fluid can be negligible. Fifty successive images are taken to record particle images and analyzed to estimate the particle velocity fields. The velocity fields of the two different size particles are then used to uniquely determine the underlying fluid velocity. The measured fluid flow is a saddle-point flow, which could be used for precision mixing and transport in microscale devices.

  17. Amplifier spurious input current components in electrode-electrolyte interface impedance measurements

    PubMed Central

    Felice, Carmelo J; Madrid, Rossana E; Valentinuzzi, Max E

    2005-01-01

    Background In Impedance Microbiology, the time during which the measuring equipment is connected to the bipolar cells is rather long, usually between 6 to 24 hrs for microorganisms with duplication times in the order of less than one hour and concentrations ranging from 101 to 107 [CFU/ml]. Under these conditions, the electrode-electrolyte interface impedance may show a slow drift of about 2%/hr. By and large, growth curves superimposed on such drift do not stabilize, are less reproducible, and keep on distorting all over the measurement of the temporal reactive or resistive records due to interface changes, in turn originated in bacterial activity. This problem has been found when growth curves were obtained by means of impedance analyzers or with impedance bridges using different types of operational amplifiers. Methods Suspecting that the input circuitry was the culprit of the deleterious effect, we used for that matter (a) ultra-low bias current amplifiers, (b) isolating relays for the selection of cells, and (c) a shorter connection time, so that the relays were maintained opened after the readings, to bring down such spurious drift to a negligible value. Bacterial growth curves were obtained in order to test their quality. Results It was demonstrated that the drift decreases ten fold when the circuit remained connected to the cell for a short time between measurements, so that the distortion became truly negligible. Improvement due to better-input amplifiers was not as good as by reducing the connection time. Moreover, temperature effects were insignificant with a regulation of ± 0.2 [°C]. Frequency did not influence either. Conclusion The drift originated either at the dc input bias offset current (Ios) of the integrated circuits, or in discrete transistors connected directly to the electrodes immersed in the cells, depending on the particular circuit arrangement. Reduction of the connection time was the best countermeasure. PMID:15796776

  18. Measurements of complex impedance in microwave high power systems with a new bluetooth integrated circuit.

    PubMed

    Roussy, Georges; Dichtel, Bernard; Chaabane, Haykel

    2003-01-01

    By using a new integrated circuit, which is marketed for bluetooth applications, it is possible to simplify the method of measuring the complex impedance, complex reflection coefficient and complex transmission coefficient in an industrial microwave setup. The Analog Devices circuit AD 8302, which measures gain and phase up to 2.7 GHz, operates with variable level input signals and is less sensitive to both amplitude and frequency fluctuations of the industrial magnetrons than are mixers and AM crystal detectors. Therefore, accurate gain and phase measurements can be performed with low stability generators. A mechanical setup with an AD 8302 is described; the calibration procedure and its performance are presented. PMID:15078067

  19. Evaluation of indirect impedance for measuring microbial growth in complex food matrices.

    PubMed

    Johnson, N; Chang, Z; Bravo Almeida, C; Michel, M; Iversen, C; Callanan, M

    2014-09-01

    The suitability of indirect impedance to accurately measure microbial growth in real food matrices was investigated. A variety of semi-solid and liquid food products were inoculated with Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, Lactobacillus plantarum, Pseudomonas aeruginosa, Escherichia coli, Salmonella enteriditis, Candida tropicalis or Zygosaccharomyces rouxii and CO2 production was monitored using a conductimetric (Don Whitely R.A.B.I.T.) system. The majority (80%) of food and microbe combinations produced a detectable growth signal. The linearity of conductance responses in selected food products was investigated and a good correlation (R(2) ≥ 0.84) was observed between inoculum levels and times to detection. Specific growth rate estimations from the data were sufficiently accurate for predictive modeling in some cases. This initial evaluation of the suitability of indirect impedance to generate microbial growth data in complex food matrices indicates significant potential for the technology as an alternative to plating methods. PMID:24929710

  20. Microwave Surface Impedance Measurements of SrFe2(As,P)2 Single Crystals

    NASA Astrophysics Data System (ADS)

    Takahashi, Hideyuki; Imai, Yoshinori; Maeda, Atsutaka; Kitagawa, Kentaro; Matsubayashi, Kazuyuki; Takigawa, Masashi; Uwatoko, Yoshiya

    2012-02-01

    Various pairing symmetries have been proposed concerning Fe-based superconductors both theoretically and experimentally. It was reported that LaFePO[1] and BaFe2(As,P)2[2] have line nodes in their superconducting gap. It is in sharp contrast to other Fe-based compounds such as LiFeAs[3] and Fe(Se,Te)[4]. To confirm whether line nodes in gap function is a common feature among P doped systems, we measured the microwave surface impedances of SrFe2(As,P)2 single crystals (Tc˜30K). Single crystals were grown by self-flux method. The surface impedances were measured using a cavity perturbation technique. The imaginary part of surface impedance, which is proportional to London penetration depth in the superconducting state, shows a power law, λ(T)-λ(0)T^n. The power law indicates low-energy quasiparticle excitation, and an exponent slightly smaller than 2 does not exclude the possibility of the existence of line nodes. [ 1 ] J. D. Fletcher et al., Phys. Rev. Lett. 102 (2009) 147001.[ 2 ] K. Hashimoto et al., Phys. Rev. B 81 (2010) 220501(R).[ 3 ] Y. Imai et al., J. Phys. Soc. Jpn. 80 (2011) 013704.[ 4 ] H. Takahashi et al., Phys. Rev. B 84. (2011) 132503.

  1. Effect of a spherical object in 4 electrode Focused Impedance Method (FIM): measurement and simulation

    NASA Astrophysics Data System (ADS)

    Abir, R.; Pettersen, F. J.; Martinsen, O. G.; Rabbani, K. S.

    2013-04-01

    Focused Impedance Method (FIM) gives enhanced localized sensitivity at the centre of a zone defined by a simple system of electrodes, of which a 4-electrode version with electrodes at the corners of a square region has been studied in detail in the present work. The present work studies the effect of a large sphere whose diameter almost equals the dimensions of the central focused zone, or, the Focused Impedance. The sphere is placed at different positions with respect to the centre of the system at the electrode plane. The study has been made using a phantom in which the electrodes are fixed on a side wall while an insulating ball is hung at various positions inside the saline and moved with respect to the electrodes in their vicinity. The same was then simulated by providing appropriate parameters in COMSOL multiphysics, a software package utilizing Finite Element Method, by providing appropriately matching parameters. The measured impedance decreases as the ball is moved away from the centre in the electrode plane or along the depth. The sensitivity also decreases with an increase in electrode spacing. Although the behaviours were similar in both the studies, simulated values by COMSOL deviated from the measured values significantly. It suggests that COMSOL may not give accurate simulations for large objects.

  2. Measurement of total respiratory impedance in infants by the forced oscillation technique.

    PubMed

    Desager, K N; Buhr, W; Willemen, M; van Bever, H P; de Backer, W; Vermeire, P A; Lándsér, F J

    1991-08-01

    The forced oscillation technique according to Làndsér et al. (J. Appl. Physiol. 41:101-106, 1976) was modified for use in infants. Adaptations, including a flexible tube to connect the infant to the measuring system and a bias flow to avoid rebreathing, did not influence impedance values. The linearity of the respiratory system was assessed and confirmed by 1) applying pseudo-random noise oscillations at three different amplitudes to 7 infants and 2) comparing in 12 infants impedance values obtained with pseudo-random noise and with sinusoidal oscillations at 12 and 32 Hz. Intersubject variability, averaged for all frequencies, was 6%. In 17 infants the relative error (+/- SD) between two series of five measurements within a time interval of 15 min was 0.5 +/- 5.7%. No statistically significant difference was found between impedance values before and after repositioning of the infant's head, whereas rotation resulted in a decrease in resistance and no effect on reactance. Our results indicate that the infant-adapted forced pseudo-random noise oscillation technique has the potential to give valuable information about ventilatory lung function in infants. PMID:1938751

  3. Impedance measurement set-up based on off-the-shelf PXI modules

    NASA Astrophysics Data System (ADS)

    Pettersen, F. J.; Martinsen, Ø. G.; Grimnes, S.; Høgetveit, J. O.

    2010-04-01

    As bioimpedance measurements are being done in an increasing variety of measurands and environments, measurement equipment must be flexible in use and easy to handle for the researcher. Measurement equipment used today is excellent for a range of uses, but it is often bulky, heavy, and not very flexible. A new compact and flexible measurement set-up based on off-the-shelf modules is described. The system is based on commercially available PXI-modules, one module that may be custom made, and custom software. The basis of the system is a PXI chassis with a power supply unit. The chassis is equipped with a controller module running software controlling the system, a signal generator, and a multichannel digitizer. All of this is commercially available. Both a custom made and a commercially available impedance interfaces were used. A LabVIEW program is controlling the measurement system, and provides a user interface. The LabVIEW program handles necessary signal conditioning and calibration. The measurement system is capable of doing frequency response measurements at frequencies up to 15 MHz. In addition to the two normal voltage pick-up electrodes used in four-electrode measurements, this system has the possibility to use 5 extra voltage pick-up electrodes. This simplifies exploration of segmental impedance, anisotropy, reciprocity, etc.

  4. Continuous Non-Invasive Monitoring of Tidal Volumes by Measurement of Tidal Impedance in Neonatal Piglets

    PubMed Central

    Kurth, Florian; Zinnow, Fabienne; Prakapenia, Alexandra; Dietl, Sabrina; Winkler, Stefan; Ifflaender, Sascha; Rüdiger, Mario; Burkhardt, Wolfram

    2011-01-01

    Background Electrical Impedance measurements can be used to estimate the content of intra-thoracic air and thereby give information on pulmonary ventilation. Conventional Impedance measurements mainly indicate relative changes, but no information concerning air-volume is given. The study was performed to test whether a 3-point-calibration with known tidal volumes (VT) during conventional mechanical ventilation (CMV) allows subsequent calculation of VT from total Tidal-Impedance (tTI) measurements using Quadrant Impedance Measurement (QIM). In addition the distribution of TI in different regions of the thorax was examined. Methodology and Principal Findings QIM was performed in five neonatal piglets during volume-controlled CMV. tTI values at three different VT (4, 6, 8 ml/kg) were used to establish individual calibration curves. Subsequently, each animal was ventilated with different patterns of varying VT (2–10 ml/kg) at different PEEP levels (0, 3, 6, 9, 12 cmH2O). VT variation was repeated after surfactant depletion by bronchoalveolar lavage. VT was calculated from tTI values (VTcalc) and compared to the VT delivered by the ventilator (VTPNT). Bland-Altman analysis revealed good agreement between VTcalc and VTPNT before (bias −0.08 ml; limits of agreement −1.18 to 1.02 ml at PEEP = 3 cmH2O) and after surfactant depletion (bias −0.17 ml; limits of agreement −1.57 to 1.22 ml at PEEP = 3 cmH2O). At higher PEEP levels VTcalc was lower than VTPNT, when only one fixed calibration curve (at PEEP 3 cmH2O) was used. With a new calibration curve at each PEEP level the method showed similar accuracy at each PEEP level. TI showed a homogeneous distribution over the four assessed quadrants with a shift toward caudal regions of the thorax with increasing VT. Conclusion Tidal Impedance values could be used for precise and accurate calculation of VT during CMV in this animal study, when calibrated at each PEEP level. PMID:21687746

  5. Impedance and AC conductivity study of nano crystalline, fine grained multiferroic bismuth ferrite (BiFeO3), synthesized by microwave sintering

    NASA Astrophysics Data System (ADS)

    Kolte, Jayant; Salame, Paresh H.; Daryapurkar, A. S.; Gopalan, P.

    2015-09-01

    In this paper, major reduction in sintering time,temperautre and significant improvement over final density of sitnered sample is reported for the microwave sintered nanocrystalline BiFeO3 (BFO) ceramic. Also, different sintering time and temperatures have been used to tailor the grain size and the final density of the resulting BFO ceramics synthesized from phase pure BFO nanoparticles ( d ¯ ≈ 10 n m ). Microwave sintering resulted in reducing the sintering time substantially (by 1h), and has resulted in submicron sized grains and high resistivity ˜1.8 GΩ-cm. The AC conductivity is seen to follow the Jonscher's power law behavior, suggesting correlated barrier hopping (CBH) mechanism in the sample. The role of oxygen vacancies at high temperature, due to volatility of bismuth, in dielectric and conductivity behavior is also discussed. Further, the sample displayed dielectric anomaly near magnetic transition temperature (˜180 °C) indicating bearing of magnetic moments on the dielectric properties. Using Impedance Spectroscopy (IS) we have established, the electrical heterogeneity of the ceramic BFO reavealing semiconducting nature of grains and insulating nature of grain boundary. This, formation of network of insulating grain boundaries and semiconducting grains could lead to formation of internal barrier layer capacitance (IBLC) leading to high dielectric constant in microwave sintered BFO.

  6. Effect of impedance and higher order chromaticity on the measurement of linear chromaticity

    SciTech Connect

    Ranjbar, V.H.; Tan, C.Y.; /Fermilab

    2011-08-01

    The combined effect of impedance and higher order chromaticity can act on the beam in a nontrivial manner which can cause a tune shift which depends on the relative momenta with respect to the 'on momentum' particle ({Delta}p/p). Experimentally, this tune shift affects the measurement of the linear chromaticity which is traditionally measured with a change of {Delta}p/p. The theory behind this effect will be derived in this paper. Computer simulations and experimental data from the Tevatron will be used to support the theory.

  7. Above-cutoff impedance measurements of pumping holes for the Collider Liner

    SciTech Connect

    Walling, L.; Barts, T.; Ruiz, E.; Turner, W.; Spayd, N.

    1994-04-01

    A holed liner was considered for the Superconducting Super Collider (SSC) Collider Ring because of vacuum problems caused by photon-induced desorption. The liner would serve to shield the cold surface of the beam tube from the synchrotron radiation and the holes (or slots) would allow distributed pumping by gas-absorption material that could be placed between the liner and the beam tube. The impedance of holes and slots in a liner were studied by means of simulations using both MAFIA and HFSS, analytical modelling, wire measurements and electron beam measurements.

  8. Circuit and Scattering Matrix Analysis of the Wire Measurement Method of Beam Impedance in Accelerating Structures

    SciTech Connect

    Jones, Roger M

    2003-05-23

    In order to measure the wakefield left behind multiple bunches of energetic electrons we have previously used the ASSET facility in the SLC [1]. However, in order to produce a more rapid and cost-effective determination of the wakefields we have designed a wire experimental method to measure the beam impedance and from the Fourier transform thereof, the wakefields. In this paper we present studies of the wire effect on the properties of X-band structures in study for the JLC/NLC (Japanese Linear Collider/Next Linear Collider) project. Simulations are made on infinite and finite periodical structures. The results are discussed.

  9. Method of utility-system source-impedance measurement for the industrial power engineer

    SciTech Connect

    Corvin, W C

    1982-05-24

    In general, the power company that delivers energy to an industrial power system will supply, upon request, information describing the utility source impedance at the point of interconnection with the industrial customer. this information is usually expressed as the maximum available short-circuit MVA (megavolt amperes) that the utility can deliver at some nominal voltage. For sizing the interrupting ratings of protective equipment, this number is important. However, better information is required for modeling the utility system under all conditions of system switching, generation, and loading. In this paper a method is described for measuring the utility source impedance that gives a more realistic representation of the utility at the point of interconnection. It is increasingly important that the industrial power engineer accurately view the power company as a power source of variable impedance. Industrial loads may operate and interact differently, depending on the relative stiffness of their power source. Electric utilities increasingly experience planned voltage reductions, brownouts, and temporary line-switching configurations that can leave the industrial customer with a power source far different from the one normally expected.

  10. Plasmonic-Based Electrochemical Impedance Spectroscopy: Application to Molecular Binding

    PubMed Central

    Lu, Jin; Wang, Wei; Wang, Shaopeng; Shan, Xiaonan; Li, Jinghong; Tao, Nongjian

    2012-01-01

    Plasmonic-based electrochemical impedance spectroscopy (P-EIS) is developed to investigate molecular binding on surfaces. Its basic principle relies on the sensitive dependence of surface plasmon resonance (SPR) signal on surface charge density, which is modulated by applying an AC potential to a SPR chip surface. The AC component of the SPR response gives the electrochemical impedance, and the DC component provides the conventional SPR detection. The plasmonic-based impedance measured over a range of frequency is in quantitative agreement with the conventional electrochemical impedance. Compared to the conventional SPR detection, P-EIS is sensitive to molecular binding taking place on the chip surface, and less sensitive to bulk refractive index changes or non-specific binding. Moreover, this new approach allows for simultaneous SPR and surface impedance analysis of molecular binding processes. PMID:22122514

  11. Measurements of Electrode Skin Impedances using Carbon Rubber Electrodes - First Results

    NASA Astrophysics Data System (ADS)

    Kaufmann, Steffen; Ardelt, Gunther; Ryschka, Martin

    2013-04-01

    Non-invasive bioimpedance measurement as a tool in biomedical engineering and life sciences allows conclusions about condition and composition of living tissue. For interfacing the electronic conduction of the instrumentation and the ionic conduction of the tissue, electrodes are needed. A crucial point is the uncertainty arising from the unknown, time-varying and current density depend Electrode Skin Impedance (ESI). This work presents ESI measurements using carbon rubber electrodes on different human test subjects. The measurements for this work are carried out by employing a high accuracy Bioimpedance Measurement System (BMS) developed by the authors group, which is based on a Field Programmable Gate Array (FPGA) System on Chip (SoC). The system is able to measure magnitude and phase of complex impedances using a two- or four-electrode setup, with excitation currents from 60 μA to 5 mA in a frequency range from about 10 kHz to 300 kHz. Achieved overall measurement uncertainties are below 1%.

  12. A new lithium-ion battery internal temperature on-line estimate method based on electrochemical impedance spectroscopy measurement

    NASA Astrophysics Data System (ADS)

    Zhu, J. G.; Sun, Z. C.; Wei, X. Z.; Dai, H. F.

    2015-01-01

    The power battery thermal management problem in EV (electric vehicle) and HEV (hybrid electric vehicle) has been widely discussed, and EIS (electrochemical impedance spectroscopy) is an effective experimental method to test and estimate the status of the battery. Firstly, an electrochemical-based impedance matrix analysis for lithium-ion battery is developed to describe the impedance response of electrochemical impedance spectroscopy. Then a method, based on electrochemical impedance spectroscopy measurement, has been proposed to estimate the internal temperature of power lithium-ion battery by analyzing the phase shift and magnitude of impedance at different ambient temperatures. Respectively, the SoC (state of charge) and temperature have different effects on the impedance characteristics of battery at various frequency ranges in the electrochemical impedance spectroscopy experimental study. Also the impedance spectrum affected by SoH (state of health) is discussed in the paper preliminary. Therefore, the excitation frequency selected to estimate the inner temperature is in the frequency range which is significantly influenced by temperature without the SoC and SoH. The intrinsic relationship between the phase shift and temperature is established under the chosen excitation frequency. And the magnitude of impedance related to temperature is studied in the paper. In practical applications, through obtaining the phase shift and magnitude of impedance, the inner temperature estimation could be achieved. Then the verification experiments are conduced to validate the estimate method. Finally, an estimate strategy and an on-line estimation system implementation scheme utilizing battery management system are presented to describe the engineering value.

  13. Electrical impedance spectroscopy device for measurement of moisture gradients in wood

    NASA Astrophysics Data System (ADS)

    Tiitta, M.; Olkkonen, H.

    2002-08-01

    A prototype of the electrical impedance spectroscopy (EIS) device for the measurement of internal moisture gradients in wood was developed. The EIS device consists of a hand-held probe connected to a control unit interfaced with a portable personal computer and a power unit. In the measurement, parallel flat electrodes of the measuring probe are laid against the wood specimen and the sine wave excitation is applied in the frequency range 1-100 kHz. The measured amplitude and phase spectral data were analyzed using the model based on constant phase elements. A spectral analysis software package was designed for measurement of subsurface transverse moisture gradients. The EIS device was tested with many types of uniform, desorption, and absorption gradients in lumber, pulpwood, and log specimens from spruce, pine, and birch. The EIS device can be easily transferred in a small case allowing field measurements.

  14. Body water measurement in growth disorders: a comparison of bioelectrical impedance and skinfold thickness techniques with isotope dilution.

    PubMed Central

    Gregory, J W; Greene, S A; Scrimgeour, C M; Rennie, M J

    1991-01-01

    Total body water was estimated as part of the assessment of body composition in children with growth disorders, using the newly commercially available method of bioelectrical impedance. This was undertaken to compare the precision and accuracy of the results with those derived from skinfold thickness against measurement of stable isotopically labelled water (H2(18)O) dilution as a standard. The comparisons were carried out to see to what extent the impedance method could be applied with confidence to assessment of children with growth disorders. Total body water was derived from impedance (I) using an association with height (Ht2/I). Impedance and skinfold thickness estimates of total body water were equally precise when compared with values obtained from H2(18)O dilution (limits of agreement -1.9 to +1.3 and -1.7 to +2.0 kg respectively). The mean intraobserver coefficient of variation for repeat measurements of impedance was 0.9% compared with 4.6% for skinfold thickness with an interobserver coefficient of variation for impedance of 2.8%. Bioelectrical impedance estimation of body composition is likely to be of value in the growth clinic when expertise in measurement of skinfold thickness is limited or repeated measurements are to be undertaken by different observers. PMID:2001107

  15. Visualized Multiprobe Electrical Impedance Measurements with STM Tips Using Shear Force Feedback Control

    PubMed Central

    Botaya, Luis; Coromina, Xavier; Samitier, Josep; Puig-Vidal, Manel; Otero, Jorge

    2016-01-01

    Here we devise a multiprobe electrical measurement system based on quartz tuning forks (QTFs) and metallic tips capable of having full 3D control over the position of the probes. The system is based on the use of bent tungsten tips that are placed in mechanical contact (glue-free solution) with a QTF sensor. Shear forces acting in the probe are measured to control the tip-sample distance in the Z direction. Moreover, the tilting of the tip allows the visualization of the experiment under the optical microscope, allowing the coordination of the probes in X and Y directions. Meanwhile, the metallic tips are connected to a current–voltage amplifier circuit to measure the currents and thus the impedance of the studied samples. We discuss here the different aspects that must be addressed when conducting these multiprobe experiments, such as the amplitude of oscillation, shear force distance control, and wire tilting. Different results obtained in the measurement of calibration samples and microparticles are presented. They demonstrate the feasibility of the system to measure the impedance of the samples with a full 3D control on the position of the nanotips. PMID:27231911

  16. Visualized Multiprobe Electrical Impedance Measurements with STM Tips Using Shear Force Feedback Control.

    PubMed

    Botaya, Luis; Coromina, Xavier; Samitier, Josep; Puig-Vidal, Manel; Otero, Jorge

    2016-01-01

    Here we devise a multiprobe electrical measurement system based on quartz tuning forks (QTFs) and metallic tips capable of having full 3D control over the position of the probes. The system is based on the use of bent tungsten tips that are placed in mechanical contact (glue-free solution) with a QTF sensor. Shear forces acting in the probe are measured to control the tip-sample distance in the Z direction. Moreover, the tilting of the tip allows the visualization of the experiment under the optical microscope, allowing the coordination of the probes in X and Y directions. Meanwhile, the metallic tips are connected to a current-voltage amplifier circuit to measure the currents and thus the impedance of the studied samples. We discuss here the different aspects that must be addressed when conducting these multiprobe experiments, such as the amplitude of oscillation, shear force distance control, and wire tilting. Different results obtained in the measurement of calibration samples and microparticles are presented. They demonstrate the feasibility of the system to measure the impedance of the samples with a full 3D control on the position of the nanotips. PMID:27231911

  17. Effect of Mild, Asymptomatic Obstructive Sleep Apnea on Daytime Heart Rate Variability and Impedance Cardiography Measurements

    PubMed Central

    Balachandran, Jay S.; Bakker, Jessie P.; Rahangdale, Shilpa; Yim-Yeh, Susie; Mietus, Joseph E.; Goldberger, Ary L.; Malhotra, Atul

    2011-01-01

    Dysregulation of autonomic nervous system dynamics is important in the pathophysiology of cardiovascular risk in obstructive sleep apnea (OSA). Heart rate variability (HRV) and impedance cardiography measures can estimate autonomic activity but have not gained traction clinically. We hypothesized that, even in a cohort of mild, asymptomatic OSA patients without overt cardiovascular disease, daytime HRV metrics and impedance cardiography measurements of pre-ejection period (PEP) would demonstrate increased sympathetic and decreased parasympathetic modulation compared with matched controls. Obese individuals (BMI ≥30 kg/m2) without any known cardiovascular or inflammatory comorbidities were recruited from the community. Subjects underwent standard in-laboratory polysomnograms (PSG), followed by simultaneous electrocardiography (ECG) and impedance cardiography recordings while supine, supine with paced breathing, and after standing. 74 subjects were studied, and 59% had OSA (apnea-hypopnea index (AHI) ≥10episodes/hr) with a median AHI of 25.8/hr. OSA subjects had significantly decreased daytime time- and frequency-domain HRV indices, but not significantly different PEP, when compared to controls. AHI was a significant independent predictor of time-domain HRV measures in all awake conditions, after controlling for age, gender, blood pressure, fasting cholesterol levels and hemoglobin A1C. In conclusion, our results demonstrate reductions in cardiac vagal modulation, as measured by multiple daytime time-domain markers of HRV, among asymptomatic OSA patients versus controls. Further prospective outcomes-based studies are needed to evaluate the applicability of these metrics for noninvasive screening of obese asymptomatic OSA patients, prior to the onset of overt cardiovascular disease. PMID:21945139

  18. Broadband fully automated digitally assisted coaxial bridge for high accuracy impedance ratio measurements

    NASA Astrophysics Data System (ADS)

    Overney, Frédéric; Lüönd, Felix; Jeanneret, Blaise

    2016-06-01

    This paper describes the principle of a new fully automated digitally assisted coaxial bridge having a large bandwidth ranging from 60 Hz to 50 kHz. The performance of the bridge is evaluated making 1:1 comparisons between calculable ac resistors. The agreement between the calculated and the measured frequency dependence of the resistors is better than 5\\cdot {{10}-8} at frequencies up to 5 kHz, better than 1\\cdot {{10}-7} up to 20 kHz and better than 0.8\\cdot {{10}-6} up to 50 kHz. This bridge is particularly well suited to investigate the ac transport properties of graphene in the quantum Hall regime.

  19. Digital PIV Measurements of Acoustic Particle Displacements in a Normal Incidence Impedance Tube

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Bartram, Scott M.; Parrott, Tony L.; Jones, Michael G.

    1998-01-01

    Acoustic particle displacements and velocities inside a normal incidence impedance tube have been successfully measured for a variety of pure tone sound fields using Digital Particle Image Velocimetry (DPIV). The DPIV system utilized two 600-mj Nd:YAG lasers to generate a double-pulsed light sheet synchronized with the sound field and used to illuminate a portion of the oscillatory flow inside the tube. A high resolution (1320 x 1035 pixel), 8-bit camera was used to capture double-exposed images of 2.7-micron hollow silicon dioxide tracer particles inside the tube. Classical spatial autocorrelation analysis techniques were used to ascertain the acoustic particle displacements and associated velocities for various sound field intensities and frequencies. The results show that particle displacements spanning a range of 1-60 microns can be measured for incident sound pressure levels of 100-130 dB and for frequencies spanning 500-1000 Hz. The ability to resolve 1 micron particle displacements at sound pressure levels in the 100 dB range allows the use of DPIV systems for measurement of sound fields at much lower sound pressure levels than had been previously possible. Representative impedance tube data as well as an uncertainty analysis for the measurements are presented.

  20. A Comparison Study of Normal-Incidence Acoustic Impedance Measurements of a Perforate Liner

    NASA Technical Reports Server (NTRS)

    Schultz, Todd; Liu, Fei; Cattafesta, Louis; Sheplak, Mark; Jones, Michael

    2009-01-01

    The eduction of the acoustic impedance for liner configurations is fundamental to the reduction of noise from modern jet engines. Ultimately, this property must be measured accurately for use in analytical and numerical propagation models of aircraft engine noise. Thus any standardized measurement techniques must be validated by providing reliable and consistent results for different facilities and sample sizes. This paper compares normal-incidence acoustic impedance measurements using the two-microphone method of ten nominally identical individual liner samples from two facilities, namely 50.8 mm and 25.4 mm square waveguides at NASA Langley Research Center and the University of Florida, respectively. The liner chosen for this investigation is a simple single-degree-of-freedom perforate liner with resonance and anti-resonance frequencies near 1.1 kHz and 2.2 kHz, respectively. The results show that the ten measurements have the most variation around the anti-resonance frequency, where statistically significant differences exist between the averaged results from the two facilities. However, the sample-to-sample variation is comparable in magnitude to the predicted cross-sectional area-dependent cavity dissipation differences between facilities, providing evidence that the size of the present samples does not significantly influence the results away from anti-resonance.

  1. Frequency Dependent Microwave Impedance Microscopy of Ferroelectric Domain Walls

    NASA Astrophysics Data System (ADS)

    Johnston, Scott; Shen, Zhi-Xun

    ABO3 ferroelectrics are known to exhibit domain wall conductivity which is of great fundamental and technological interest. Microwave Impedance Microscopy is a near field measurement technique which allows local, non-contact measurement of AC conductivity and permittivity. In this work, Microwave Impedance Microscopy over a wide frequency range is used to probe the electrical properties of domain walls in ABO3 ferroelectrics. An unexpected, strong frequency dependence in the microwave dissipation near domain walls is observed.

  2. Relationships between bioelectric impedance and subcutaneous adipose tissue thickness measured by LIPOMETER and skinfold calipers in children.

    PubMed

    Jürimäe, T; Sudi, K; Payerl, D; Leppik, A; Jürimäe, J; Müller, R; Tafeit, E

    2003-09-01

    The aim of this study was to compare the relationships between bioelectrical impedance and thicknesses of adipose tissue measured by traditional skinfold caliper (double thickness) or a LIPOMETER device (single non-compressed thickness) in 9- to 12-year-old boys ( n=52) and girls ( n=44). In total, nine skinfolds (triceps, subscapular, biceps, iliac crest, supraspinale, abdominal, front thigh, medial calf, mid-axilla) were measured. Measurement for the thickness of subcutaneous adipose tissue layers (SAT-layers) by LIPOMETER were performed at 15 body sites (neck, triceps, biceps, upper back, front chest, lateral chest, upper abdomen, lower abdomen, lower back, hip, front thigh, lateral thigh, rear thigh, inner thigh, calf). Body bioelectrical impedance was measured with a multiple-frequency impedance device Multiscan-5000 (Bodystat, UK). Impedance at 50 kHz highly correlated with body mass ( r=-0.47 in boys, r=-0.46 in girls, r=-0.47 in total group). The relationship with body height was significant only in girls ( r=-0.42). Skinfold thicknesses measured by caliper did not correlate significantly with body impedance at 50 kHz. SAT-layers measured by LIPOMETER at triceps, front thigh, lateral thigh and rear thigh sites in boys and at the lateral thigh site in girls correlated significantly with body impedance measured at 50 kHz. Stepwise multiple regression analysis indicated that the iliac crest and front thigh skinfold thicknesses measured by caliper characterized only 5.7-12.0% of the impedance at 50 kHz in the total group ( n=96). From the measured 15 SAT-layers, the most significant was the lateral thigh layer which characterized 20.0%, 11.9% and 13.6% of the impedance at 50 kHz in boys, girls and the total group, respectively. It was concluded that the influence of subcutaneous adipose tissue on body impedance is relatively low in children. However, SAT-layers have a slightly higher influence on body impedance than skinfold thicknesses measured by caliper. The

  3. [Estimation of normal body volumes in children by the measurement of total electrical impedance (author's transl)].

    PubMed

    Peyramond, D; Tholly, F; Bertoye, A

    1980-03-01

    The theoretical fluid volume of 41 normal children (mean age 8 years 9 months) was estimated from anthropometric data: height, weight, wrist circumference, and body surface. The correlation between this method and the conventional methods of determining total body water using tritiated water or of extracellular fluid volume using stable bromide or bromide 82 is very good. The real fluid volumes have been measured using total body electrical impedance at low frequency (Z5 kHz) and high frequency (Z1 MHz). The correlation of these results with those obtained by anthropometry is very satisfactory (r = 0.89; p < 0,001). PMID:7469697

  4. On the measurement of the thermal impedance in vertical-external-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Hader, J.; Wang, T.-L.; Moloney, J. V.; Heinen, B.; Koch, M.; Koch, S. W.; Kunert, B.; Stolz, W.

    2013-04-01

    A detailed and systematic analysis of the loss mechanisms in vertical-external-cavity surface-emitting lasers is presented with the goal to correctly determine the amount of pump power that is converted to heat. With this input, the accuracy of a recently proposed method for measuring the thermal impedance based on roll-over characteristics is shown to be very high for devices with and without dielectric coating. Potential errors arising from non-heating losses can be determined by performing experiments with different out-coupling mirrors.

  5. Measurement of lung function using Electrical Impedance Tomography (EIT) during mechanical ventilation

    NASA Astrophysics Data System (ADS)

    Nebuya, Satoru; Koike, Tomotaka; Imai, Hiroshi; Noshiro, Makoto; Brown, Brian H.; Soma, Kazui

    2010-04-01

    The consistency of regional lung density measurements as estimated by Electrical Impedance Tomography (EIT), in eleven patients supported by a mechanical ventilator, was validated to verify the feasibility of its use in intensive care medicine. There were significant differences in regional lung densities between the normal lung and diseased lungs associated with pneumonia, atelectasis and pleural effusion (Steel-Dwass test, p < 0.05). Temporal changes in regional lung density of patients with atelectasis were observed to be in good agreement with the results of clinical diagnosis. These results indicate that it is feasible to obtain a quantitative value for regional lung density using EIT.

  6. Impedance measurements on a spiral-wound nickel/metal hydride cell cycled in a simulated Leo orbit

    NASA Technical Reports Server (NTRS)

    Reid, Margaret A.

    1993-01-01

    A spiral-wound size C cell was cycled at 25 C in a low earth orbit (LEO) regime at 50 percent depth of discharge (DOD) with approximately five percent over-charge. The nominal capacity was 3.5 AH. The cell was cycled for 2000 cycles. Capacity checks and impedance measurements over the complete range of state of charge were made upon receipt and after 500, 1000, and 2000 cycles. The capacity of the cell was essentially unchanged until after the impedance measurements at 2000 cycles. Only small changes in the impedance parameters were observed, but there was somewhat more scatter in the data after 2000 cycles. When the cell was returned to LEO cycling after 2000 cycles, only 38 percent of the capacity could be obtained. It is believed that the cell failed because of an equipment failure at the end of the final impedance measurements which allowed an over-discharge.

  7. Design of an Electrical Impedance Tomography Sensor for Flow Measurement in an Oscillatory Baffled Reactor

    NASA Astrophysics Data System (ADS)

    Vilar, G.; Williams, R. A.; Wang, M.

    2007-06-01

    In this paper, a new application of electrical impedance tomography (EIT) for an advanced on-line measurement is presented. This application involves the design, manufacture and adaptation of an EIT sensor for the measurement in an oscillatory baffled reactor (OBR). The main goal is to develop of a novel measurement and modeling method for control of the OBR. The reactor itself enables the production of water-in-oil/oil-in water emulsions along with the use of chemical reagents for a variety of manufacturing processes. Use of electrical tomography facilitates detailed measurement of the concentration and flow of components in the reactor. The paper reports on design philosophy of the EIT for this application that has not, to our knowledge, been reported previously.

  8. Validation of bioelectrical-impedance analysis as a measurement of change in body composition in obesity

    SciTech Connect

    Kushner, R.F.; Kunigk, A.; Alspaugh, M.; Andronis, P.T.; Leitch, C.A.; Schoeller, D.A. )

    1990-08-01

    The bioelectrical-impedance-analysis (BIA) method accurately measures body composition in weight-stable subjects. This study validates the use of BIA to measure change in body composition. Twelve obese females underwent weight loss at a mean rate of 1.16 kg/wk. Body composition was measured by deuterium oxide dilution (D2O), BIA, and skinfold anthropometry (SFA) at baseline and at 5% decrements in weight. Highly significant correlations were obtained between D2O and BIA (r = 0.971) and between D2O and SFA (r = 0.932). Overall, BIA predicted change in fat-free mass with greater accuracy (to 0.4 kg) and precision (+/- 1.28 kg) than did anthropometry (to 0.8 kg and +/- 2.58 kg, respectively). We conclude that BIA is a useful clinical method for measuring change in body composition.

  9. Considerations on electrical impedance measurements of electrolyte solutions in a four-electrode cell

    NASA Astrophysics Data System (ADS)

    Chaparro, C. V.; Herrera, L. V.; Meléndez, A. M.; Miranda, D. A.

    2016-02-01

    A tetrapolar probe to measure the electrical properties of electrolyte solutions was implemented with gold electrodes according to the van der Pauw method. Electrical impedance spectroscopy (EIS) measurements of different concentrations of phosphate buffer saline (PBS) solution and an oral mucosal tissue sample dispersed in PBS were performed in the galvanostatic mode using a four-electrode cell (tetrapolar probe). Taking advantage of using a potentiostat/galvanostat for carrying out the electrical measurements, a simple and rapid method using a three-electrode electrochemical cell is described for: a) cleaning of electrodes, b) verification of surface chemical state of electrode material and c) choice of current supplied to electrodes for EIS measurements. Results of this research shown a depolarization effect due to the addition of oral mucosa tissue cells into the PBS solution.

  10. Measurement of noise and impedance of dry and wet textile electrodes, and textile electrodes with hydrogel.

    PubMed

    Puurtinen, Merja M; Komulainen, Satu M; Kauppinen, Pasi K; Malmivuo, Jaakko A V; Hyttinen, Jari A K

    2006-01-01

    Textile sensors, when embedded into clothing, can provide new ways of monitoring physiological signals, and improve the usability and comfort of such monitoring systems in the areas of medical, occupational health and sports. However, good electrical and mechanical contact between the electrode and the skin is very important, as it often determines the quality of the signal. This paper introduces a study where the properties of dry textile electrodes, textile electrodes moistened with water, and textile electrodes covered with hydrogel were studied with five different electrode sizes. The aim was to study how the electrode size and preparation of the electrode (dry electrode/wet electrode/electrode covered with hydrogel membrane) affect the measurement noise, and the skin-electrode impedance. The measurement noise and skin-electrode impedance were determined from surface biopotential measurements. These preliminary results indicate that noise level increases as the electrode size decreases. The noise level is high in dry textile electrodes, as expected. Yet, the noise level of wet textile electrodes is quite low and similar to that of textile electrodes covered with hydrogel. Hydrogel does not seem to improve noise properties, however it may have effects on movement artifacts. Thus, it is feasible to use textile embedded sensors in physiological monitoring applications when moistening or hydrogel is applied. PMID:17946734

  11. Monitoring of pipelines in nuclear power plants by measuring laser-based mechanical impedance

    NASA Astrophysics Data System (ADS)

    Lee, Hyeonseok; Sohn, Hoon; Yang, Suyoung; Yang, Jinyeol

    2014-06-01

    Using laser-based mechanical impedance (LMI) measurement, this study proposes a damage detection technique that enables structural health monitoring of pipelines under the high temperature and radioactive environments of nuclear power plants (NPPs). The applications of conventional electromechanical impedance (EMI) based techniques to NPPs have been limited, mainly due to the contact nature of piezoelectric transducers, which cannot survive under the high temperature and high radiation environments of NPPs. The proposed LMI measurement technique aims to tackle the limitations of the EMI techniques by utilizing noncontact laser beams for both ultrasound generation and sensing. An Nd:Yag pulse laser is used for ultrasound generation, and a laser Doppler vibrometer is employed for the measurement of the corresponding ultrasound responses. For the monitoring of pipes covered by insulation layers, this study utilizes optical fibers to guide the laser beams to specific target locations. Then, an outlier analysis is adopted for autonomous damage diagnosis. Validation of the proposed LMI technique is carried out on a carbon steel pipe elbow under varying temperatures. A corrosion defect chemically engraved in the specimen is successfully detected.

  12. Harmonic analysis of AC magnetostriction measurements under non-sinusoidal excitation

    SciTech Connect

    Mogi, Hisashi; Yabumoto, Masao; Mizokami, Masato; Okazaki Yasuo

    1996-09-01

    A new system for analyzing ac magnetostriction of electrical steel sheets has been developed. This system has the following advantages: (a) AC magnetostriction waveforms can be precisely measured up to 4 kHz, and analyzed to harmonic components; (b) non-sinusoidal flux density can be excited to simulate the distorted waveform in an actual transformer core.

  13. Forced expiratory flow and oscillometric impedance measurement in evaluating airway obstruction.

    PubMed

    Wouters, E F; Mostert, R; Polko, A H; Visser, B F

    1990-05-01

    The application of forced oscillations has been introduced as a noninvasive method to measure the impedance of the respiratory system. Impedance can be partitioned into a real part or resistance and an imaginary part or reactance. The reactance depends on the elastic and inertial properties of the respiratory system. In the present study, resistance and reactance obtained in a frequency spectrum between 4 and 52 Hz were compared with maximal forced expiratory spirometry in 100 out-patients, aged 18-70 years. Resonant frequency and frequency dependence of resistance correlated significantly with selected parameters of the forced expiratory flow volume curve: correlation coefficient values ranged from 0.492 between frequency dependence and FVC and 0.668 between resonant frequency and FEV1. No correlation between average resistance and spirometric parameters reached a statistically significant level. No marked difference was observed between spirometric parameters depending on the early or effort-dependent portion and those parameters depending on the late or effort independent portion of the maximum forced expiration. It can be concluded that each measurement procedure reveals different but characteristic information about the mechanical behaviour and properties of the respiratory system. PMID:2218005

  14. Influence of cheek support on respiratory impedance measured by forced oscillation technique.

    PubMed

    Uchida, Akemi; Ito, Satoru; Suki, Béla; Matsubara, Hiroki; Hasegawa, Yoshinori

    2013-01-01

    The forced oscillation technique (FOT) is a useful tool to assess respiratory resistance and reactance during tidal breathing in patients with respiratory diseases, specifically asthma and chronic obstructive pulmonary disease. Although the FOT has been clinically used, results of respiratory impedance can be affected by various factors such as upper airway artifact. We investigated the effects of cheek support on respiratory resistance and reactance measured by a commercially available FOT equipment MostGraph-01. Respiratory resistance at 20 Hz (R20) with support of the cheeks was significantly higher than those without the cheek support in healthy subjects. Two different cheek support protocols, support of the cheeks by subjects themselves and an operator, were compared in healthy volunteers and patients with respiratory diseases. The cheek support protocols significantly affected respiratory resistance at 5 Hz (R5) and reactance at 5 Hz (X5) in the patient group but not in the healthy subjects. Moreover, for X5, there was a significant interaction between cheek support protocols (by a subject or operator) and groups (healthy or diseased). In conclusion, during impedance measurements using the FOT, application of cheek support either by subjects or the operator is recommended to reduce upper airway artifacts, however, results obtained by two protocols may be different in patients with respiratory diseases. Contribution of the chest wall and position of the arms to the mechanical properties should be carefully considered in physiological studies in which the FOT is attempted. PMID:23961407

  15. AN ADVANCED CALIBRATION PROCEDURE FOR COMPLEX IMPEDANCE SPECTRUM MEASUREMENTS OF ADVANCED ENERGY STORAGE DEVICES

    SciTech Connect

    William H. Morrison; Jon P. Christophersen; Patrick Bald; John L. Morrison

    2012-06-01

    With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. The concern for the availability of critical systems in turn drives the availability of battery systems and thus the need for accurate battery health monitoring has become paramount. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of an accurate, simple, robust calibration process. This paper discusses the successful realization of this process.

  16. Wide-Range Filter-Based Sinusoidal Wave Synthesizer for Electrochemical Impedance Spectroscopy Measurements.

    PubMed

    Chia-Ling Wei; Yi-Wen Wang; Bin-Da Liu

    2014-06-01

    A filter-based wide-range programmable sinusoidal wave synthesizer for electrochemical impedance spectroscopy measurement is proposed. The adopted filter is implemented with switched-capacitor circuits, so its corner frequency is accurate and adjustable by changing its switching frequency. The proposed sine wave synthesizer is implemented by using a 0.35 μm 2P4M 3.3 V mixed-signal polycide process. According to the measured results, the output frequency of the proposed synthesizer is 40 mHz-40 kHz . The measured total harmonic distortion is 0.073% at 10 Hz and 0.075% at 10 kHz, both of which are better than that of a typical function generator. PMID:24043398

  17. Method and apparatus for sensing a target characteristic by measuring both impedance and resonant frequency of a tank circuit

    NASA Technical Reports Server (NTRS)

    Laskowski, Edward L. (Inventor)

    1995-01-01

    An apparatus for sensing a target characteristic, such as relative distance between the apparatus and target, target thickness, target material, or lateral position between the apparatus and the target, includes a coil for directing an electro-magnetic field at the target. A voltage controlled oscillator energizes the coil at a resonant frequency which is functionally related to the target characteristic. The coil has an effective impedance value at resonance functionally related to the target characteristic. A frequency monitor measures the resonant frequency. An impedance monitor determines the impedance value when the drive frequency is at the resonant value. A PROM or controller determines the target characteristic in response to the measured resonant frequency and the determined impedance value. The PROM or controller provides a signal responsive to the determined target characteristic.

  18. In vivo bioimpedance measurement of healthy and ischaemic rat brain: implications for stroke imaging using electrical impedance tomography.

    PubMed

    Dowrick, T; Blochet, C; Holder, D

    2015-06-01

    In order to facilitate the imaging of haemorrhagic and ischaemic stroke using frequency difference electrical impedance tomography (EIT), impedance measurements of normal and ischaemic brain, and clotted blood during haemorrhage, were gathered using a four-terminal technique in an in vivo animal model, a first for ischaemic measurements. Differences of 5-10% in impedance were seen between the frequency spectrums of healthy and ischaemic brain, over the frequency range 0-3 kHz, while the spectrum of blood was predominately uniform. The implications of imaging blood/ischaemia in the brain using electrical impedance tomography are discussed, supporting the notion that it will be possible to differentiate stroke from haemorrhage. PMID:26006171

  19. Estimation of Metabolism Characteristics for Heat-Injured Bacteria Using Dielectrophoretic Impedance Measurement Method

    NASA Astrophysics Data System (ADS)

    Amako, Eri; Enjoji, Takaharu; Uchida, Satoshi; Tochikubo, Fumiyoshi

    Constant monitoring and immediate control of fermentation processes have been required for advanced quality preservation in food industry. In the present work, simple estimation of metabolic states for heat-injured Escherichia coli (E. coli) in a micro-cell was investigated using dielectrophoretic impedance measurement (DEPIM) method. Temporal change in the conductance between micro-gap (ΔG) was measured for various heat treatment temperatures. In addition, the dependence of enzyme activity, growth capacity and membrane situation for E. coli on heat treatment temperature was also analyzed with conventional biological methods. Consequently, a correlation between ΔG and those biological properties was obtained quantitatively. This result suggests that DEPIM method will be available for an effective monitoring technique for complex change in various biological states of microorganisms.

  20. Biological impedance cross evaluation and imaging from composite measurements of magnetic and electrical methods.

    PubMed

    Ran, Peng; Xiao, Xiaoming; He, Wei; Li, Zhangyong

    2015-01-01

    Because of the need for rapid detection and location of diseases in clinical applications, this work proposes a composite measurement of magnetic induction tomography (MIT) and electrical impedance tomography (EIT). This paper is composed of the following aspects: portable and integral hardware design, stable dual constant-current sources, the composite detection method, cross-plane data acquirement, 3-dimensional image reconstruction and so on. A qualitative evaluation of conductivity, resolution and relative position error were taken by combining the EIT and MIT methods via the experiment model. The sensitivities of both methods were analyzed to improve the imaging results. The reconstruction results reveal that the system is capable of obtaining better physiological measurements, which is very useful in clinical monitoring, quick medical diagnosing and preliminary screening of community health. PMID:26405936

  1. A sapphire loaded TE011 cavity for surface impedance measurements: design, construction, and commissioning status

    SciTech Connect

    L. Phillips; G. K. Davis; J. R. Delayen; J. P. Ozelis; T. Plawski; H. Wang; G. Wu

    2005-07-10

    In order to measure the superconducting surface properties of niobium that are of interest to SRF applications, a facility which utilizes a Nb cavity operating in the TE011 mode at 7.65 GHz which provides a well-defined RF field on a disk shaped sample has been designed and fabricated. The RF losses due to the sample's surface impedance are determined by using a calorimetric technique. The system has the capability to measure such properties as Rs,(T), and penetration depth, which can then be correlated with surface properties and preparation processes. The design, fabrication, and results from initial commissioning operations will be discussed, along with the near term sample evaluation program.

  2. Focused Impedance Method (FIM) and Pigeon Hole Imaging (PHI) for localized measurements - a review

    NASA Astrophysics Data System (ADS)

    Siddique-e Rabbani, K.

    2010-04-01

    This paper summarises up to date development in Focused Impedance Method (FIM) initiated by us. It basically involves taking the sum of two orthogonal tetra-polar impedance measurements around a common central region, giving a localized enhanced sensitivity. Although the basic idea requires 8 electrodes, versions with 6- and 4-electrodes were subsequently conceived and developed. The focusing effect has been verified in 2D and 3D phantoms and through numerical analysis. Dynamic stomach emptying, and ventilation of localized lung regions have been studied successfully suggesting further applications in monitoring of gastric acid secretion, artificial respiration, bladder emptying, etc. Multi-frequency FIM may help identify some diseases and disorders including certain cancers. FIM, being much simpler and having less number of electrodes, appears to have the potential to replace EIT for applications involving large and shallow organs. An enhancement of 6-electrode FIM led to Pigeon Hole Imaging (PHI) in a square matrix through backprojection in two orthogonal directions, good for localising of one or two well separated objects.

  3. Real-time gastric motility monitoring using transcutaneous intraluminal impedance measurements (TIIM).

    PubMed

    Poscente, M D; Wang, G; Filip, D; Ninova, P; Yadid-Pecht, O; Andrews, C N; Mintchev, M P

    2014-02-01

    The stomach plays a critical role in digestion, processing ingested food mechanically and breaking it up into particles, which can be effectively and efficiently processed by the intestines. When the motility of the stomach is compromised, digestion is adversely affected. This can lead to a variety of disorders. Current diagnostic techniques for gastric motility disorders are seriously lacking, and are based more on eliminating other possibilities rather than on specific tests. Presently, gastric motility can be assessed by monitoring gastric emptying, food transit, intragastric pressures, etc. The associated tests are usually stationary and of relatively short duration. The present study proposes a new method of measuring gastric motility, utilizing the attenuation of an oscillator-induced electrical signal across the gastric tissue, which is modulated by gastric contractions. The induced high-frequency oscillator signal is generated within the stomach, and is picked up transluminally by cutaneous electrodes positioned on the abdominal area connected to a custom-designed data acquisition instrument. The proposed method was implemented in two different designs: first a transoral catheter was modified to emit the signal inside the stomach; and second, a gastric retentive pill was designed to emit the signal. Both implementations were applied in vivo on two mongrel dogs (25.50 kg and 25.75 kg). Gastric contractions were registered and quantitatively compared to recordings from force transducers sutured onto the serosa of the stomach. Gastric motility indices were calculated for each minute, with transluminal impedance measurements and the measurements from the force transducers showing statistically significant (p < 0.05) Pearson correlation coefficients (0.65 ± 0.08 for the catheter-based design and 0.77 ± 0.03 for the gastric retentive pill design). These results show that transcutaneous intraluminal impedance measurement has the potential with further research

  4. A new application of electrical impedance spectroscopy for measuring glucose metabolism: a phantom study

    NASA Astrophysics Data System (ADS)

    Dhurjaty, Sreeram; Qiu, Yuchen; Tan, Maxine; Liu, Hong; Zheng, Bin

    2015-03-01

    Glucose metabolism relates to biochemical processes in living organisms and plays an important role in diabetes and cancer-metastasis. Although many methods are available for measuring glucose metabolism-activities, from simple blood tests to positron emission tomography, currently there is no robust and affordable device that enables monitoring of glucose levels in real-time. In this study we tested feasibility of applying a unique resonance-frequency based electronic impedance spectroscopy (REIS) device that has been, recently developed to measure and monitor glucose metabolism levels using a phantom study. In this new testing model, a multi-frequency electrical signal sequence is applied and scanned through the subject. When the positive reactance of an inductor inside the device cancels out the negative reactance of the capacitance of the subject, the electrical impedance reaches a minimum value and this frequency is defined as the resonance frequency. The REIS system has a 24-bit analog-to-digital signal convertor and a frequency-resolution of 100Hz. In the experiment, two probes are placed inside a 100cc container initially filled with distilled water. As we gradually added liquid-glucose in increments of 1cc (250mg), we measured resonance frequencies and minimum electrical signal values (where A/D was normalized to a full scale of 1V). The results showed that resonance frequencies monotonously decreased from 243kHz to 178kHz, while the minimum voltages increased from 405mV to 793mV as the added amount of glucose increased from 0 to 5cc. The study demonstrated the feasibility of applying this new REIS technology to measure and/or monitor glucose levels in real-time in future.

  5. Calorimetric method of ac loss measurement in a rotating magnetic field.

    PubMed

    Ghoshal, P K; Coombs, T A; Campbell, A M

    2010-07-01

    A method is described for calorimetric ac-loss measurements of high-T(c) superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines. PMID:20687748

  6. Calorimetric method of ac loss measurement in a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Ghoshal, P. K.; Coombs, T. A.; Campbell, A. M.

    2010-07-01

    A method is described for calorimetric ac-loss measurements of high-Tc superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.

  7. Calorimetric method of ac loss measurement in a rotating magnetic field

    SciTech Connect

    Ghoshal, P. K.; Coombs, T. A.; Campbell, A. M.

    2010-07-15

    A method is described for calorimetric ac-loss measurements of high-T{sub c} superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.

  8. Development of impedance/external field potential dual measurement system for evaluation of electrophysiological properties of cells on microelectrodes

    NASA Astrophysics Data System (ADS)

    Nomura, Fumimasa; Matsuura, Kenji; Hattori, Akihiro; Odaka, Masao; Sugio, Yoshihiro; Kurotobi, Hiromi; Terazono, Hideyuki; Yasuda, Kenji

    2015-06-01

    A combination of extracellular field potential (FP) and impedance measurement technologies for multielectrode array (MEA) chip architecture is developed for the simultaneous evaluation of information on the ion current and resistance of cells and microelectrodes. The simultaneous measurement system can not only evaluate the time course changes of characteristics in the MEAs but also clarification of the origin of the difference in the waveform of the field potentials of each cell on an microelectrode whether it is caused by the changes in the electrophysiological properties of cells or by the changes in the performance of an microelectrode (and cell-to-electrode contacts). The automatic impedance measurement technology in the system exploited the swiping of the wide frequency range of impedances of microelectrodes and calculated the true impedance of each microelectrode without significant effects on the cells on the MEA chip. Hence, the system can give us invisible cell-to-electrode contact information and its change, and also information on the degradation of the performance of microelectrodes during long-term cultivation and after the application of compounds into the MEA chip. The impedance spectrum measurement showed that (1) the increase in the impedance of microelectrodes correlated with its area decrease from 10-7 to 10-10 m2, (2) even the area of microelectrodes decreased from 10-8 to 10-10 m2, the noise level of field potential signals was independent and did not change, and (3) the attachment of cells on the microelectrode surface can be determined by a significant increase in impedance at 1 kHz corresponding to the width of the depolarization peak on the field potential recordings. These results indicate the potential to evaluate the cell-to-electrode contact and degradation of microelectrodes, which was not evaluated in conventional FP measurements only. These results also indicate that this method should be used for the evaluation of the changes in

  9. Radio frequency current-voltage probe for impedance and power measurements in multi-frequency unmatched loads

    NASA Astrophysics Data System (ADS)

    Lafleur, T.; Delattre, P. A.; Booth, J. P.; Johnson, E. V.; Dine, S.

    2013-01-01

    A broad-band, inline current-voltage probe, with a characteristic impedance of 50 Ω, is presented for the measurement of voltage and current waveforms, impedance, and power in rf systems. The probe, which uses capacitive and inductive sensors to determine the voltage and current, respectively, can be used for the measurement of single or multi-frequency signals into both matched and unmatched loads, over a frequency range of about 1-100 MHz. The probe calibration and impedance/power measurement technique are described in detail, and the calibrated probe results are compared with those obtained from a vector network analyzer and other commercial power meters. Use of the probe is demonstrated with the measurement of power into an unmatched capacitively coupled plasma excited by multi-frequency tailored voltage waveforms.

  10. Radio frequency current-voltage probe for impedance and power measurements in multi-frequency unmatched loads.

    PubMed

    Lafleur, T; Delattre, P A; Booth, J P; Johnson, E V; Dine, S

    2013-01-01

    A broad-band, inline current-voltage probe, with a characteristic impedance of 50 Ω, is presented for the measurement of voltage and current waveforms, impedance, and power in rf systems. The probe, which uses capacitive and inductive sensors to determine the voltage and current, respectively, can be used for the measurement of single or multi-frequency signals into both matched and unmatched loads, over a frequency range of about 1-100 MHz. The probe calibration and impedance/power measurement technique are described in detail, and the calibrated probe results are compared with those obtained from a vector network analyzer and other commercial power meters. Use of the probe is demonstrated with the measurement of power into an unmatched capacitively coupled plasma excited by multi-frequency tailored voltage waveforms. PMID:23387681

  11. AC loss measurements in HTS coil assemblies with hybrid coil structures

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenan; Long, Nicholas J.; Staines, Mike; Badcock, Rodney A.; Bumby, Chris W.; Buckley, Robert G.; Amemiya, Naoyuki

    2016-09-01

    Both AC loss and wire cost in coil windings are critical factors for high temperature superconductor (HTS) AC machinery applications. We present AC loss measurement results in three HTS coil assemblies at 77 K and 65 K which have a hybrid coil structure comprising one central winding (CW) and two end windings (EWs) wound with ReBCO and BSCCO wires with different self-field I c values at 77 K. All AC loss results in the coil assemblies are hysteretic and the normalized AC losses in the coil assemblies at different temperatures can be scaled with the I c value of the coil assemblies. The normalised results show that AC loss in a coil assembly with BSCCO CW can be reduced by using EWs wound with high I c ReBCO wires, whilst further AC loss reduction can be achieved by replacing the BSCCO CW with ReBCO CW. The results imply that a flexible hybrid coil structure is possible which considers both AC loss and wire cost in coil assemblies.

  12. Evaluation of Grounding Impedance of a Complex Lightning Protective System Using Earth Ground Clamp Measurements and ATP Modeling

    NASA Technical Reports Server (NTRS)

    Mata, Carlos T.; Rakov, V. A.; Mata, Angel G.

    2010-01-01

    A new Lightning Protection System (LPS) was designed and built at Launch Complex 39B (LC39B), at the Kennedy Space Center (KSC), Florida, which consists of a catenary wire system (at a height of about 181 meters above ground level) supported by three insulators installed atop three towers in a triangular configuration. A total of nine downconductors (each about 250 meters long, on average) are connected to the catenary wire system. Each of the nine downconductors is connected to a 7.62-meter radius circular counterpoise conductor with six equally spaced 6-meter long vertical grounding rods. Grounding requirements at LC39B call for all underground and above ground metallic piping, enclosures, raceways, and cable trays, within 7.62 meters of the counterpoise, to be bounded to the counterpoise, which results in a complex interconnected grounding system, given the many metallic piping, raceways, and cable trays that run in multiple direction around LC39B. The complexity of this grounding system makes the fall of potential method, which uses multiple metallic rods or stakes, unsuitable for measuring the grounding impedances of the downconductors. To calculate the downconductors grounding impedance, an Earth Ground Clamp (a stakeless grounding resistance measuring device) and a LPS Alternative Transient Program (ATP) model are used. The Earth Ground Clamp is used to measure the loop impedance plus the grounding impedance of each downconductor and the ATP model is used to calculate the loop impedance of each downconductor circuit. The grounding impedance of the downconductors is then calculated by subtracting the ATP calculated loop impedances from the Earth Ground Clamp measurements.

  13. Explanation of Anomalous Behavior Observed in Impedance Eduction Techniques Using Measured Data

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.

    2010-01-01

    Several enhancements that improve the accuracy and robustness of an impedance eduction technique that use an automatic optimizer are presented. These enhancements are then used to launch an intensive investigation into the cause of anomalous behavior that occurs for a small number of test conditions. This anomalous behavior is investigated for both a hardwall insert and a conventional liner. The primary conclusions of the study are that: (1) for the hard wall insert, the anomalies are due to narrow peaks in the objective function, (2) For the conventional liner, the anomalies are due to the presence of an extremely flat objective function, and (3) the anomalies appear to be triggered by inconsistencies between the duct propagation model and the measured data. At high frequencies, the duct propagation model may need to include the effects of higher-order duct modes, whereas at low frequencies, the effects of the mean boundary layer may have to be included.

  14. Lack of Correlation of Vaginal Impedance Measurements with Hormone Levels in the Rat

    PubMed Central

    SINGLETARY, SYLVIA J.; KIRSCH, ALAN J.; WATSON, JULIE; KARIM, BAKTIAR O.; HUSO, DAVID L.; HURN, PATRICIA D.; MURPHY, STEPHANIE J.

    2005-01-01

    Hormone levels vary in female rats depending on estrous cycle stage. Vaginal cytology is a reliable method of staging female rats, but vaginal impedance offers an alternative depending on application. We sought to correlate vaginal impedance in cycling female rats with hormone levels. Vaginal cytology was the standard for comparison and verification of estrous cycle stage. Female rats (n = 41) were evaluated twice daily for 15 days via vaginal cytology and impedance to evaluate two or three estrous cycles per rat. During the last 5 days of the study, selected anesthetized sampling groups (n = 3 or 4 rats per group) were bled terminally at each time point to allow hormone determinations concurrently with vaginal cytology and impedance. Rats with abnormal vaginal smears or discharges (n = 5) were evaluated for reproductive tract histology. Rats classified in estrus by vaginal cytology had significantly higher vaginal impedance values than did nonestrus rats, but vaginal impedance and estrous cycle stage as determined by vaginal cytology did not correlate. Because of small sampling size in nonproestrus groups, correlation between vaginal impedance and hormone levels was evaluated only in proestrus rats (n = 22) and was nonsignificant. No correlation occurred between vaginal impedance and hormone levels in unstaged rats (n = 41). Two animals evaluated for reproductive tract histology showed evidence of pseudopregnancy. Vaginal impedance may be useful in distinguishing estrus from nonestrus rats but may be limited for chronic estrous cycle monitoring because of the possible risk of inducing pseudo pregnancy. PMID:16370578

  15. Measurements and calculations of transport AC loss in second generation high temperature superconducting pancake coils

    NASA Astrophysics Data System (ADS)

    Yuan, Weijia; Coombs, T. A.; Kim, Jae-Ho; Han Kim, Chul; Kvitkovic, Jozef; Pamidi, Sastry

    2011-12-01

    Theoretical and experimental AC loss data on a superconducting pancake coil wound using second generation (2 G) conductors are presented. An anisotropic critical state model is used to calculate critical current and the AC losses of a superconducting pancake coil. In the coil there are two regions, the critical state region and the subcritical region. The model assumes that in the subcritical region the flux lines are parallel to the tape wide face. AC losses of the superconducting pancake coil are calculated using this model. Both calorimetric and electrical techniques were used to measure AC losses in the coil. The calorimetric method is based on measuring the boil-off rate of liquid nitrogen. The electric method used a compensation circuit to eliminate the inductive component to measure the loss voltage of the coil. The experimental results are consistent with the theoretical calculations thus validating the anisotropic critical state model for loss estimations in the superconducting pancake coil.

  16. Parametric electrical impedance tomography for measuring bone mineral density in the pelvis using a computational model.

    PubMed

    Kimel-Naor, Shani; Abboud, Shimon; Arad, Marina

    2016-08-01

    Osteoporosis is defined as bone microstructure deterioration resulting a decrease of bone's strength. Measured bone mineral density (BMD) constitutes the main tool for Osteoporosis diagnosis, management, and defines patient's fracture risk. In the present study, parametric electrical impedance tomography (pEIT) method was examined for monitoring BMD, using a computerized simulation model and preliminary real measurements. A numerical solver was developed to simulate surface potentials measured over a 3D computerized pelvis model. Varying cortical and cancellous BMD were simulated by changing bone conductivity and permittivity. Up to 35% and 16% change was found in the real and imaginary modules of the calculated potential, respectively, while BMD changes from 100% (normal) to 60% (Osteoporosis). Negligible BMD relative error was obtained with SNR>60 [dB]. Position changes errors indicate that for long term monitoring, measurement should be taken at the same geometrical configuration with great accuracy. The numerical simulations were compared to actual measurements that were acquired from a healthy male subject using a five electrodes belt bioimpedance device. The results suggest that pEIT may provide an inexpensive easy to use tool for frequent monitoring BMD in small clinics during pharmacological treatment, as a complementary method to DEXA test. PMID:27185035

  17. High Frequency Electromagnetic Impedance Measurements For Characterization, Monitoring And Verification Efforts

    SciTech Connect

    Lee, Ki Ha; Becker, Alex

    2000-12-31

    Electromagnetic methods in exploration geophysics include many technologies capable of imaging the subsurface. The electromagnetic geophysical spectrum for shallow subsurface imaging is roughly 1 Hz to 500 MHz, with electrical resistivity and other geometric sounding methods located at the low frequency end and the familiar GPR method at the high end of the spectrum. Baseline studies (Pellerin et al., 1997) show that electromagnetic instrumentation in the mid- and low-frequencies (< 300 kHz) and GPR systems (> 30 MHz) are well developed in the commercial sector. In the high-frequency range of 300 kHz to 100 MHz developments have been quite recent and reside within the research community. Accurate theoretical numerical modeling algorithms are available for simulations and interpretation across the entire spectrum (Mackie and Madden, 1993; Pellerin et al., 1995; Pellerin et al., 1997; Alumbaugh and Newman, 1995; Lee et al., 1995, Newmann and Alumbaugh, 1997; Newmann, 1999; Sasaki, 1999, etc.), but instrumentation suitable for collecting calibrated field data in the important high-frequency range is critically lacking. Several attempts to develop reliable, accurate and calibrated instruments (Sternberg and Poulton, 1996; Stewart et al., 1994; Wright et el., 1996) have produced mixed results. We proposed to exploit the concept of electromagnetic impedance, the ratio of orthogonal horizontal electric to horizontal magnetic fields, to provide the necessary technology in the high-frequency band described above. The effective depth of investigation for surface impedance measurements depends on the frequency, and is commonly expressed in terms of the skin depth, the distance into the conductive half space at which the amplitude of the incoming wave has decreased to e-1 of its surface value. In order to achieve skin depths between 0.5 and 10 meters in material of resistivity between 1 and 100 ohm-m and relative permittivity between 1 and 30, frequencies bet ween about 300 k

  18. Transfer impedance measurements of the space shuttle Solid Rocket Motor (SRM) joints, wire meshes and a carbon graphite motor case

    NASA Technical Reports Server (NTRS)

    Papazian, Peter B.; Perala, Rodney A.; Curry, John D.; Lankford, Alan B.; Keller, J. David

    1988-01-01

    Using three different current injection methods and a simple voltage probe, transfer impedances for Solid Rocket Motor (SRM) joints, wire meshes, aluminum foil, Thorstrand and a graphite composite motor case were measured. In all cases, the surface current distribution for the particular current injection device was calculated analytically or by finite difference methods. The results of these calculations were used to generate a geometric factor which was the ratio of total injected current to surface current density. The results were validated in several ways. For wire mesh measurements, results showed good agreement with calculated results for a 14 by 18 Al screen. SRM joint impedances were independently verified. The filiment wound case measurement results were validated only to the extent that their curve shape agrees with the expected form of transfer impedance for a homogeneous slab excited by a plane wave source.

  19. Non-contact multi-frequency magnetic induction spectroscopy system for industrial-scale bio-impedance measurement

    NASA Astrophysics Data System (ADS)

    O'Toole, M. D.; Marsh, L. A.; Davidson, J. L.; Tan, Y. M.; Armitage, D. W.; Peyton, A. J.

    2015-03-01

    Biological tissues have a complex impedance, or bio-impedance, profile which changes with respect to frequency. This is caused by dispersion mechanisms which govern how the electromagnetic field interacts with the tissue at the cellular and molecular level. Measuring the bio-impedance spectra of a biological sample can potentially provide insight into the sample’s properties and its cellular structure. This has obvious applications in the medical, pharmaceutical and food-based industrial domains. However, measuring the bio-impedance spectra non-destructively and in a way which is practical at an industrial scale presents substantial challenges. The low conductivity of the sample requires a highly sensitive instrument, while the demands of industrial-scale operation require a fast high-throughput sensor of rugged design. In this paper, we describe a multi-frequency magnetic induction spectroscopy (MIS) system suitable for industrial-scale, non-contact, spectroscopic bio-impedance measurement over a bandwidth of 156 kHz-2.5 MHz. The system sensitivity and performance are investigated using calibration and known reference samples. It is shown to yield rapid and consistently sensitive results with good long-term stability. The system is then used to obtain conductivity spectra of a number of biological test samples, including yeast suspensions of varying concentration and a range of agricultural produce, such as apples, pears, nectarines, kiwis, potatoes, oranges and tomatoes.

  20. Measuring the dielectric properties of soil-organic mixtures using coaxial impedance dielectric reflectometry

    NASA Astrophysics Data System (ADS)

    Francisca, Franco M.; Montoro, Marcos A.

    2012-05-01

    Contamination of soils with non-aqueous phase liquids (NAPLs) is frequently produced by accidental spills and storage tanks or pipes leakage. The main goals dealing with soil and groundwater contamination include determining the extension of the affected zone, monitoring the contaminant plume and quantifying the pollution degree. The objective of this work is to evaluate the potential of dielectric permittivity measurements to detect the presence of NAPLs in sands. Tested samples were fine, medium, coarse and silty sand with different volumetric contents of water and paraffin oil. The dielectric permittivity was measured by means of a Coaxial Impedance Dielectric Reflectometry method in specimens with either known fluid content or at different stages during immiscible displacement tests. A simplified method was developed to quantify the amount of oil from dielectric permittivity measurements and effective mixture media models. Obtained results showed that groundwater contamination with NAPL and the monitoring of immiscible fluid displacement in saturated porous media can be clearly identified from dielectric measurements. Finally, very accurate results can be obtained when computing the contamination degree with the proposed method in comparison with the real volumetric content of NAPL (r2 > 90%).

  1. Measuring two phase flow parameters using impedance cross-correlation flow meter

    NASA Astrophysics Data System (ADS)

    Muhamedsalih, Y.; Lucas, G.

    2012-03-01

    This paper describes the design and implementation of an impedance cross correlation flow meter which can be used in solids-water pipe flows to measure the local solids volume fraction distribution and the local solids velocity distribution. The system is composed of two arrays of electrodes, separated by an axial distance of 50 mm and each array contains eights electrodes mounted over the internal circumference of the pipe carrying the flow. Furthermore every electrode in each array can be selected to be either"excitation", "measurement" or "earth". Changing the electrode configuration leads to a change in the electric field, and hence in the region of the flow cross section which is interrogated. The local flow velocity in the interrogated region is obtained by cross correlation between the two electrode arrays. Additionally, the local solids volume fraction can be obtained from the mean mixture conductivity in the region under interrogation. The system is being integrated with a microcontroller to measure the velocity distribution of the solids and the volume fraction distribution of the solids in order to create a portable flow meter capable of measuring the multi-phase flow parameters without the need of a PC to control it. Integration of the product of the local solids volume fraction and the local solids velocity in the flow cross section enables the solids volumetric flow rate to be determined.

  2. Assessing risk of thyroid cancer using resonance-frequency based electrical impedance measurements

    NASA Astrophysics Data System (ADS)

    Zheng, Bin; Tublin, Mitchell E.; Lederman, Dror; Klym, Amy H.; Brown, Erica D.; Gur, David

    2011-03-01

    The incidence of thyroid cancer has risen faster than many malignancies and has nearly doubled in the USA over the past 30 years. Palpable nodules and subclinical nodules detected by imaging are found in a large percentage of the USA population. Most of these (.>95%) are fortunately benign. This vast reservoir of nodules makes the detection and diagnosis of thyroid cancer a diagnostic dilemma. Ultrasound guided Fine Needle Aspiration Biopsy (FNAB) is excellent for triaging patients but up to 25% of FNABs are inconclusive. As a result, definitive diagnosis is often only possible with a diagnostic lobectomy; many thousands of these are performed in the USA annually for ultimately benign disease. It would be extremely beneficial if we could develop a non-invasive procedure that could assist the diagnostician in reliably predicting the likelihood of malignancy of otherwise indeterminate thyroid nodules, thereby reducing the number of these "exploratory/diagnostic" lobectomies performed under general anesthesia. Electrical Impedance Spectroscopy (EIS) was considered as a possible approach to address this problem. However, the diagnostic accuracy of EIS is too low for routine clinical use to date. In our group, we developed a substantially modified technology termed Resonance-frequency Electrical Impedance Spectroscopy (REIS), which yields usable information for classifying risk of having breast abnormalities. We preliminarily applied REIS to measure signals on participants having thyroid nodules aiming to assess whether we can assist in improving diagnosis of indeterminate thyroid nodules. In this study we present a new multi-probe based REIS device specifically designed for the assessment of indeterminate thyroid nodules. Our preliminary assessment presented here demonstrates the feasibility of using this proposed REIS device in a busy tertiary care center.

  3. AC loss measurement of superconducting dipole magnets by the calorimetric method

    SciTech Connect

    Morita, Y.; Hara, K.; Higashi, N.; Kabe, A.

    1996-12-31

    AC losses of superconducting dipole magnets were measured by the calorimetric method. The magnets were model dipole magnets designed for the SSC. These were fabricated at KEK with 50-mm aperture and 1.3-m overall length. The magnet was set in a helium cryostat and cooled down to 1.8 K with 130 L of pressurized superfluid helium. Heat dissipated by the magnet during ramp cycles was measured by temperature rise of the superfluid helium. Heat leakage into the helium cryostat was 1.6 W and was subtracted from the measured heat to obtain AC loss of the magnet. An electrical measurement was carried out for calibration. Results of the two methods agreed within the experimental accuracy. The authors present the helium cryostat and measurement system in detail, and discuss the results of AC loss measurement.

  4. Knowing more by fewer measurements: about the (In)ability of bioelectric impedance to enhance obesity research in children.

    PubMed

    Gelbrich, G; Reich, A; Müller, G; Kiess, W

    2005-03-01

    The prevalence of obesity is increasing worldwide. The implications for human health can already be observed in children. Consequently, it is desirable to provide good quantitative descriptions of the relationship of body fat and health risks, such as hypertension. Bioelectric impedance analysis has been frequently praised to be useful for assessing body fat. Devices to analyse body composition based on this technique seem to be selling well, while the real gain in information they provide is unclear. Here we show in a cohort of 2,218 schoolchildren that the body mass index (which is more easily and less costly to determine) is a better predictor of hypertension than the data delivered by impedance analysis. Moreover, we demonstrate that the output of a random number generator is competitive with impedance measurement for this purpose. It is explained by simple arguments from physics why the formulas for the computation of body fat from bioelectric impedance obliterate rather than clarify the relationship of obesity and hypertension. As a consequence, we suggest questioning the opinion propagated by others that bioelectric impedance analysis is a useful tool in field studies on body fat in children. Measurements requiring more effort (compared to simpler methods) should be proved to add worthwhile information, otherwise they should be avoided. PMID:15813605

  5. Total respiratory impedance measurement by forced oscillations: a noninvasive method to assess bronchial response in occupational medicine.

    PubMed

    Wouters, E F

    1990-01-01

    The forced oscillation technique is a noninvasive and effort-independent test to characterize the mechanical impedance of the respiratory system. By applying a complex signal, the frequency-dependent behavior of the respiratory system can be measured over an extended spectrum. For clinical practice, the input impedance is used most frequently; pressure and flow are measured at the same place. The impedance can be partitioned into a real part or resistance and an imaginary part or reactance. At low frequencies, reactance is determined by the capacitance of the system and at high frequencies by the inertial properties of the system. Equipment and impedance data in normal subjects and patients with chronic obstructive pulmonary disease are discussed. The frequency-dependent behavior of the respiratory system is described with the use of an electrical model characterized by partitioning of airway resistance and the presence of shunt compliance represented by the compliance of the intrathoracic airway walls. Influences of peripheral resistance, airway compliance, lung volumes, chest wall and pulmonary resistance, and resistance of the cheeks and upper airways are analyzed. Input impedance can be applied to the detection of bronchoconstriction and bronchodilation, but this technique is suitable for detecting early airway abnormalities caused by smoking or occupational hazards. PMID:2307147

  6. Measured and calculated acoustic attenuation rates of tuned resonator arrays for two surface impedance distribution models with flow

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Abrahamson, A. Louis; Jones, Michael G.

    1988-01-01

    An experiment was performed to validate two analytical models for predicting low frequency attenuation of duct liner configurations built from an array of seven resonators that could be individually tuned via adjustable cavity depths. These analytical models had previously been developed for high frequency aero-engine inlet duct liner design. In the low frequency application, the liner surface impedance distribution is unavoidably spatially varying by virtue of available fabrication techniques. The characteristic length of this spatial variation may be a significant fraction of the acoustic wavelength. Comparison of measured and predicted attenuation rates and transmission losses for both modal decomposition and finite element propagation models were in good to excellent agreement for a test frequency range that included the first and second cavity resonance frequencies. This was true for either of two surface impedance distribution modeling procedures used to simplify the impedance boundary conditions. In the presence of mean flow, measurements revealed a fine scale structure of acoustic hot spots in the attenuation and phase profiles. These details were accurately predicted by the finite element model. Since no impedance changes due to mean flow were assumed, it is concluded that this fine scale structure was due to convective effects of the mean flow interacting with the surface impedance nonuniformities.

  7. Measurement of nutritional status in simulated microgravity by bioelectrical impedance spectroscopy

    NASA Technical Reports Server (NTRS)

    Bartok, Cynthia; Atkinson, Richard L.; Schoeller, Dale A.

    2003-01-01

    The potential of bioelectrical impedance spectroscopy (BIS) for assessing nutritional status in spaceflight was tested in two head-down-tilt bed-rest studies. BIS-predicted extracellular water (ECW), intracellular water (ICW), and total body water (TBW) measured using knee-elbow electrode placement were compared with deuterium and bromide dilution (DIL) volumes in healthy, 19- to 45-yr-old subjects. BIS was accurate during 44 h of head-down tilt with mean differences (BIS - DIL) of 0-0.1 kg for ECW, 0.3-0.5 for ICW, and 0.4-0.6 kg for TBW (n = 28). At 44 h, BIS followed the within-individual change in body water compartments with a relative prediction error (standard error of the estimate/baseline volume) of 2.0-3.6% of water space. In the second study, BIS did not detect an acute decrease (-1.41 +/- 0.91 kg) in ICW secondary to 48 h of a protein-free, 800 kcal/day diet (n = 18). BIS's insensitivity to ICW losses may be because they were predominantly (65%) localized to the trunk and/or because there was a general failure of BIS to measure ICW independently of ECW and TBW. BIS may have potential for measuring nutritional status during spaceflight, but its limitations in precision and insensitivity to acute ICW changes warrant further validation studies.

  8. Measurement of nutritional status in simulated microgravity by bioelectrical impedance spectroscopy.

    PubMed

    Bartok, Cynthia; Atkinson, Richard L; Schoeller, Dale A

    2003-07-01

    The potential of bioelectrical impedance spectroscopy (BIS) for assessing nutritional status in spaceflight was tested in two head-down-tilt bed-rest studies. BIS-predicted extracellular water (ECW), intracellular water (ICW), and total body water (TBW) measured using knee-elbow electrode placement were compared with deuterium and bromide dilution (DIL) volumes in healthy, 19- to 45-yr-old subjects. BIS was accurate during 44 h of head-down tilt with mean differences (BIS - DIL) of 0-0.1 kg for ECW, 0.3-0.5 for ICW, and 0.4-0.6 kg for TBW (n = 28). At 44 h, BIS followed the within-individual change in body water compartments with a relative prediction error (standard error of the estimate/baseline volume) of 2.0-3.6% of water space. In the second study, BIS did not detect an acute decrease (-1.41 +/- 0.91 kg) in ICW secondary to 48 h of a protein-free, 800 kcal/day diet (n = 18). BIS's insensitivity to ICW losses may be because they were predominantly (65%) localized to the trunk and/or because there was a general failure of BIS to measure ICW independently of ECW and TBW. BIS may have potential for measuring nutritional status during spaceflight, but its limitations in precision and insensitivity to acute ICW changes warrant further validation studies. PMID:12562674

  9. Cancer Prognostics by Direct Detection of p53-Antibodies on Gold Surfaces by Impedance Measurements

    PubMed Central

    Prats-Alfonso, Elisabet; Sisquella, Xavier; Zine, Nadia; Gabriel, Gemma; Guimerà, Anton; del Campo, F. Javier; Villa, Rosa; Eisenberg, Adam H.; Mrksich, Milan; Errachid, Abdelhamid; Aguiló, Jordi; Albericio, Fernando

    2013-01-01

    The identification and measurement of biomarkers is critical to a broad range of methods that diagnose and monitor many diseases. Serum auto-antibodies are rapidly becoming interesting targets because of their biological and medical relevance. This paper describes a highly sensitive, label-free approach for the detection of p53-antibodies, a prognostic indicator in ovarian cancer as well as a biomarker in the early stages of other cancers. This approach uses impedance measurements on gold microelectrodes to measure antibody concentrations at the picomolar level in undiluted serum samples. The biosensor shows high selectivity as a result of the optimization of the epitopes responsible for the detection of p53-antibodies and was validated by several techniques including microcontact printing, self-assembled-monolayer desorption ionization (SAMDI) mass spectrometry, and adhesion pull-off force by atomic force microscopy (AFM). This transduction method will lead to fast and accurate diagnostic tools for the early detection of cancer and other diseases. PMID:22511467

  10. Second VAMAS a.c. loss measurement intercomparison: a.c. magnetization measurement of hysteresis and coupling losses in NbTi multifilamentary strands

    NASA Astrophysics Data System (ADS)

    Schmidt, C.; Itoh, K.; Wada, H.

    The article summarizes results of part of the second VAMAS a.c. loss measurement intercomparison. This program was carried out at 17 participating laboratories on two sets of multifilamentary NbTi strands (Set No. 1: copper matrix, fil. diam. between 0.5 and 12 μm; Set No. 2: cupronickel matrix, fil. diam. between 0.4 and 1.2 μm). The results reported here were measured by means of a.c. magnetization methods and separated into hysteresis and coupling losses. One laboratory used a calorimetric method. The data scatter in measured hysteresis losses among the participating laboratories was reasonably small for different measuring methods adopted and experimental arrangements used. On the other hand, the data scatter in coupling losses was large, mainly because in most laboratories a.c. losses were measured only at low frequencies (below 1 Hz), where the separation of coupling losses from total losses tends to be inaccurate. The comparison of measured hysteresis losses with the critical state model showed a large disagreement, which is assumed to be due to proximity effect coupling between filaments. 1997 Elsevier Science Limited

  11. AC conductivity and dielectric measurements of metal-free phthalocyanine thin films dispersed in polycarbonate

    NASA Astrophysics Data System (ADS)

    Riad, A. S.; Korayem, M. T.; Abdel-Malik, T. G.

    1999-10-01

    The dielectric constant and the dielectric loss of thin films of metal-free phthalocyanine dispersed in polycarbonate using ohmic gold electrodes are investigated in the frequency range 20-10 5 Hz and within the temperature range 300-388 K. The frequency dependence of the impedance spectra plotted in the complex plane shows semicircles. The Cole-Cole diagrams have been used to determine the molecular relaxation time, τ, The temperature dependence of τ is expressed by thermally activated process. The AC conductivity σ AC (ω) is found to vary as ωs with the index s⩽1, indicating a dominant hopping process at low temperatures. From the temperature dependence of AC conductivity, free carrier conduction with mean activation energy of 0.33 eV is observed at higher temperatures. Capacitance and loss tangent are found to decrease with increasing frequency and increase with increasing temperature. Such characteristics are found to be in good qualitative agreement with existing equivalent circuit model assuming ohmic contacts.

  12. An FPGA-based frequency response analyzer for multisine and stepped sine measurements on stationary and time-varying impedance

    NASA Astrophysics Data System (ADS)

    Sanchez, B.; Fernandez, X.; Reig, S.; Bragos, R.

    2014-01-01

    We report the development of a field programmable gate array (FPGA) based frequency response analyzer (FRA) for impedance frequency response function (FRF) measurements using periodic excitations, i.e. sine waves and multisines. The stepped sine measurement uses two dedicated hardware-built digital embedded multiplier blocks to extract the phase and quadrature components of the output signal. The multisine FRF measurements compute the fast Fourier transform (FFT) of the input/output signals. In this paper, we describe its design, implementation and performance evaluation, performing electrical impedance spectroscopy (EIS) measurements on phantoms. The stepped sine accuracy is 1.21% at 1 kΩ (1%), the precision is 35 mΩ and the total harmonic distortion plus noise (THD+N) is -120 dB. As for the multisine impedance FRF measurements, the magnitude and phase precision are, respectively, 0.23 Ω at 48.828 kHz and 0.021 deg at 8.087 MHz when measuring a resistor 505 Ω (1%). The magnitude accuracy is 0.55% at 8.087 MHz while the phase accuracy is 0.17 deg at 6.54 MHz. In all, the stepped sine signal-to-noise ratio (SNR) is 84 dB and 65 dB at frequencies below and above 1 MHz respectively. The SNR for the multisine FRF measurements is above 65 dB (30 kHz-10 MHz). The FRA bandwidth is 610.4 mHz-12.5 MHz and the maximum FRF measurement rate exciting with multisines starting at 30 kHz is 200 spectra s-1. Based on its technical specifications and versatility, the FRA presented can be used in many applications, e.g. for getting insight quickly into the instantaneous impedance FRF of the time-varying impedance under test.

  13. The Wechsler ACS Social Perception Subtest: A Preliminary Comparison with Other Measures of Social Cognition

    ERIC Educational Resources Information Center

    Kandalaft, Michelle R.; Didehbani, Nyaz; Cullum, C. Munro; Krawczyk, Daniel C.; Allen, Tandra T.; Tamminga, Carol A.; Chapman, Sandra B.

    2012-01-01

    Relative to other cognitive areas, there are few clinical measures currently available to assess social perception. A new standardized measure, the Wechsler Advanced Clinical Solutions (ACS) Social Perception subtest, addresses some limitations of existing measures; however, little is known about this new test. The first goal of this investigation…

  14. Microengineered Conductive Elastomeric Electrodes for Long-Term Electrophysiological Measurements with Consistent Impedance under Stretch

    PubMed Central

    Hu, Dinglong; Cheng, Tin Kei; Xie, Kai; Lam, Raymond H. W.

    2015-01-01

    In this research, we develop a micro-engineered conductive elastomeric electrode for measurements of human bio-potentials with the absence of conductive pastes. Mixing the biocompatible polydimethylsiloxane (PDMS) silicone with other biocompatible conductive nano-particles further provides the material with an electrical conductivity. We apply micro-replica mold casting for the micro-structures, which are arrays of micro-pillars embedded between two bulk conductive-PDMS layers. These micro-structures can reduce the micro-structural deformations along the direction of signal transmission; therefore the corresponding electrical impedance under the physical stretch by the movement of the human body can be maintained. Additionally, we conduct experiments to compare the electrical properties between the bulk conductive-PDMS material and the microengineered electrodes under stretch. We also demonstrate the working performance of these micro-engineered electrodes in the acquisition of the 12-lead electrocardiographs (ECG) of a healthy subject. Together, the presented gel-less microengineered electrodes can provide a more convenient and stable bio-potential measurement platform, making tele-medical care more achievable with reduced technical barriers for instrument installation performed by patients/users themselves. PMID:26512662

  15. Microengineered Conductive Elastomeric Electrodes for Long-Term Electrophysiological Measurements with Consistent Impedance under Stretch.

    PubMed

    Hu, Dinglong; Cheng, Tin Kei; Xie, Kai; Lam, Raymond H W

    2015-01-01

    In this research, we develop a micro-engineered conductive elastomeric electrode for measurements of human bio-potentials with the absence of conductive pastes. Mixing the biocompatible polydimethylsiloxane (PDMS) silicone with other biocompatible conductive nano-particles further provides the material with an electrical conductivity. We apply micro-replica mold casting for the micro-structures, which are arrays of micro-pillars embedded between two bulk conductive-PDMS layers. These micro-structures can reduce the micro-structural deformations along the direction of signal transmission; therefore the corresponding electrical impedance under the physical stretch by the movement of the human body can be maintained. Additionally, we conduct experiments to compare the electrical properties between the bulk conductive-PDMS material and the microengineered electrodes under stretch. We also demonstrate the working performance of these micro-engineered electrodes in the acquisition of the 12-lead electrocardiographs (ECG) of a healthy subject. Together, the presented gel-less microengineered electrodes can provide a more convenient and stable bio-potential measurement platform, making tele-medical care more achievable with reduced technical barriers for instrument installation performed by patients/users themselves. PMID:26512662

  16. Application of computer modelling and lead field theory in developing multiple aimed impedance cardiography measurements.

    PubMed

    Kauppinen, P; Kööbi, T; Kaukinen, S; Hyttinen, J; Malmivuo, J

    1999-01-01

    Conventional impedance cardiography (ICG) methods estimate parameters related to the function of the heart from a single waveform that reflects an integrated combination of complex sources. We have previously developed methods and tools for calculating measurement sensitivity distributions of ICG electrode configurations. In this study, the methods were applied to investigate the prospects of recording multiple aimed ICG waveforms utilizing the 12-lead electrocardiography (ECG) electrode locations. Three anatomically realistic volume conductor models were used: one based on Visible Human Man cryosection data and two on magnetic resonance (MR) images representing end diastolic and end systolic phases of the cardiac cycle. Based on the sensitivity distributions obtained, 236 electrode configurations were selected for preliminary clinical examination on 12 healthy volunteers and 9 valvular patients. The model study suggested that a variety of configurations had clearly enhanced sensitivity to the cardiovascular structures as compared to conventional ICGs. Simulation data and clinical experiments showed logical correspondence supporting the theoretically predicted differences between the configurations. Recorded 12-lead ICG signals had characteristic waveforms and landmarks not coinciding with those of conventional ICG. Furthermore, configurations showing resemblance to invasive data and morphological variations in disease are of interest. The results indicate the applicability of the modelling approach in developing ICG measurement configurations. However, the level of clinical relevance and potential of the 12-lead method remains to be explored in studies employing dynamic modelling and acquisition of invasive reference data. PMID:10627950

  17. RF impedance measurements on the DARHT-II accelerator intercell assembly

    SciTech Connect

    Fawley, William M.; Eylon, Shmuel; Briggs, Richard

    2003-05-05

    We report upon recent experimental measurements made of RF properties of the intercell assembly of the second axis accelerator[1] of Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at LANL. The intercells provide both pumping and diagnostic access to the main DARHT-II beamline. Their design includes a pumping plenum separated from the main beam pipe by return current rods together with RF shielding provided by a copper-coated stainless steel mesh. Measurements using the twin lead technique (see Ref. [2]) at low frequencies (f < 200 MHz) suggest a constant value for the ratio h of the radial and azimuthal magnetic field components to which the transverse impedance is linearly related. We find that these results compare favorably to predictions from a simple analytic, lumped circuit model which includes the effects of the mesh and return current rods. We also present RF loop-to-loop frequency scans above beam pipe cutoff ({approx}600 MHz) showing the existence of many RF modes with relatively high Q's.

  18. Measurements and computational fluid dynamics predictions of the acoustic impedance of orifices

    NASA Astrophysics Data System (ADS)

    Su, J.; Rupp, J.; Garmory, A.; Carrotte, J. F.

    2015-09-01

    The response of orifices to incident acoustic waves, which is important for many engineering applications, is investigated with an approach combining both experimental measurements and numerical simulations. This paper presents experimental data on acoustic impedance of orifices, which is subsequently used for validation of a numerical technique developed for the purpose of predicting the acoustic response of a range of geometries with moderate computational cost. Measurements are conducted for orifices with length to diameter ratios, L/D, of 0.5, 5 and 10. The experimental data is obtained for a range of frequencies using a configuration in which a mean (or bias) flow passes from a duct through the test orifices before issuing into a plenum. Acoustic waves are provided by a sound generator on the upstream side of the orifices. Computational fluid dynamics (CFD) calculations of the same configuration have also been performed. These have been undertaken using an unsteady Reynolds averaged Navier-Stokes (URANS) approach with a pressure based compressible formulation with appropriate characteristic based boundary conditions to simulate the correct acoustic behaviour at the boundaries. The CFD predictions are in very good agreement with the experimental data, predicting the correct trend with both frequency and orifice L/D in a way not seen with analytical models. The CFD was also able to successfully predict a negative resistance, and hence a reflection coefficient greater than unity for the L / D = 0.5 case.

  19. Effect of Electrode Belt and Body Positions on Regional Pulmonary Ventilation- and Perfusion-Related Impedance Changes Measured by Electric Impedance Tomography.

    PubMed

    Ericsson, Elin; Tesselaar, Erik; Sjöberg, Folke

    2016-01-01

    Ventilator-induced or ventilator-associated lung injury (VILI/VALI) is common and there is an increasing demand for a tool that can optimize ventilator settings. Electrical impedance tomography (EIT) can detect changes in impedance caused by pulmonary ventilation and perfusion, but the effect of changes in the position of the body and in the placing of the electrode belt on the impedance signal have not to our knowledge been thoroughly evaluated. We therefore studied ventilation-related and perfusion-related changes in impedance during spontaneous breathing in 10 healthy subjects in five different body positions and with the electrode belt placed at three different thoracic positions using a 32-electrode EIT system. We found differences between regions of interest that could be attributed to changes in the position of the body, and differences in impedance amplitudes when the position of the electrode belt was changed. Ventilation-related changes in impedance could therefore be related to changes in the position of both the body and the electrode belt. Perfusion-related changes in impedance were probably related to the interference of major vessels. While these findings give us some insight into the sources of variation in impedance signals as a result of changes in the positions of both the body and the electrode belt, further studies on the origin of the perfusion-related impedance signal are needed to improve EIT further as a tool for the monitoring of pulmonary ventilation and perfusion. PMID:27253433

  20. Effect of Electrode Belt and Body Positions on Regional Pulmonary Ventilation- and Perfusion-Related Impedance Changes Measured by Electric Impedance Tomography

    PubMed Central

    Ericsson, Elin; Tesselaar, Erik; Sjöberg, Folke

    2016-01-01

    Ventilator-induced or ventilator-associated lung injury (VILI/VALI) is common and there is an increasing demand for a tool that can optimize ventilator settings. Electrical impedance tomography (EIT) can detect changes in impedance caused by pulmonary ventilation and perfusion, but the effect of changes in the position of the body and in the placing of the electrode belt on the impedance signal have not to our knowledge been thoroughly evaluated. We therefore studied ventilation-related and perfusion-related changes in impedance during spontaneous breathing in 10 healthy subjects in five different body positions and with the electrode belt placed at three different thoracic positions using a 32-electrode EIT system. We found differences between regions of interest that could be attributed to changes in the position of the body, and differences in impedance amplitudes when the position of the electrode belt was changed. Ventilation-related changes in impedance could therefore be related to changes in the position of both the body and the electrode belt. Perfusion-related changes in impedance were probably related to the interference of major vessels. While these findings give us some insight into the sources of variation in impedance signals as a result of changes in the positions of both the body and the electrode belt, further studies on the origin of the perfusion-related impedance signal are needed to improve EIT further as a tool for the monitoring of pulmonary ventilation and perfusion. PMID:27253433

  1. Phase angle and Impedance Measurements for Nondestructive Moisture Content Determination of In-Shell Peanuts Using a Cylindrical Sample Holder

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two parallel-plate electrodes were mounted inside a cylinder, made of a non-conducting material. The space between the plates was filled with peanut pods and the capacitance and phase angle of this system was measured with a prototype low-cost impedance meter, designed for this purpose. Measuremen...

  2. Determination of moisture content of in-shell peanuts by Parallel-Plate impedance measurements in cylindrical sample holder

    Technology Transfer Automated Retrieval System (TEKTRAN)

    . This paper describes a method to determine the moisture content of in-shell peanuts with a parallel-plate electrode system fitted inside a cylinder by using impedance measurements made on the system. Two parallel-plate electrodes were mounted inside a cylinder, made of acrylic material, and the s...

  3. Development of a high-speed impedance measurement system for dual-frequency capacitive-coupled pulsed-plasma.

    PubMed

    Lee, Hohyoung; Lee, Jeongbeom; Park, Gijung; Han, Yunseok; Lee, Youngwook; Cho, Gunhee; Kim, Hanam; Chang, Hongyoung; Min, Kyoungwook

    2015-08-01

    A high-speed impedance measurement system was developed, which enables the measurement of various characteristics of CW and pulsed plasmas with time resolution of less than a microsecond. For this system, a voltage and current sensor is implemented in a printed circuit board to sense the radio frequency signals. A digital board, which has a high-speed analog to digital converter and a field-programmable gate-array, is used to calculate the impedance of the signal. The final output of impedance is measured and stored with a maximum speed of 3 Msps. This sensor system was tested in a pulsed-plasma by applying it to the point between the matching box and the plasma chamber. The experimental equipment was constructed connecting the matching box, a 13.56 MHz generator, a 2 MHz generator that produced pulsed power, and a pulse-signal generator. From the temporal behavior of the measured impedance, we were able to determine the time intervals of transient states, especially of the initial active state. This information can be used to set the pulse frequency and duty for plasma processing. PMID:26329190

  4. Development of a high-speed impedance measurement system for dual-frequency capacitive-coupled pulsed-plasma

    NASA Astrophysics Data System (ADS)

    Lee, Hohyoung; Lee, Jeongbeom; Park, Gijung; Han, Yunseok; Lee, Youngwook; Cho, Gunhee; Kim, Hanam; Chang, Hongyoung; Min, Kyoungwook

    2015-08-01

    A high-speed impedance measurement system was developed, which enables the measurement of various characteristics of CW and pulsed plasmas with time resolution of less than a microsecond. For this system, a voltage and current sensor is implemented in a printed circuit board to sense the radio frequency signals. A digital board, which has a high-speed analog to digital converter and a field-programmable gate-array, is used to calculate the impedance of the signal. The final output of impedance is measured and stored with a maximum speed of 3 Msps. This sensor system was tested in a pulsed-plasma by applying it to the point between the matching box and the plasma chamber. The experimental equipment was constructed connecting the matching box, a 13.56 MHz generator, a 2 MHz generator that produced pulsed power, and a pulse-signal generator. From the temporal behavior of the measured impedance, we were able to determine the time intervals of transient states, especially of the initial active state. This information can be used to set the pulse frequency and duty for plasma processing.

  5. Measurement of cantilever vibration using impedance-loaded surface acoustic wave sensor

    NASA Astrophysics Data System (ADS)

    Oishi, Masaki; Hamashima, Hiromitsu; Kondoh, Jun

    2016-07-01

    In this study, an impedance-loaded surface acoustic wave (SAW) sensor was demonstrated to monitor the vibration frequency. Commercialized pressure sensors and a variable capacitor were chosen as external sensors, which were connected to a reflector on a SAW device. As the reflection coefficient of the reflector depended on the impedance, the echo amplitude was influenced by changes in the impedance of the external sensor. The vibration frequency of the cantilever was determined by monitoring the echo amplitude of the SAW device. Moreover, the attenuation constant of an envelope was estimated. The results of our feasibility study indicate that the impedance-loaded SAW sensor can be applied as a detector for structural health monitoring.

  6. Propagation of sound through the Earth's atmosphere. 1: Measurement of sound absorption in the air: 2: Measurement of ground impedance

    NASA Technical Reports Server (NTRS)

    Meredith, R. W.; Becher, J.

    1981-01-01

    Parts were fabricated for the acoustic ground impedance meter and the instrument was tested. A rubber hose was used to connect the resonator neck to the chamber in order to suppress vibration from the volume velocity source which caused chatter. An analog to digital converter was successfully hardwired to the computer detection system. The cooling system for the resonant tube was modified to use liquid nitrogen cooling. This produced the required temperature for the tube, but the temperature gradients within each of the four tube sections reached unacceptable levels. Final measurements of the deexcitation of nitrogen by water vapor indicate that the responsible physical process is not the direct vibration-translation energy transfer, but is a vibration-vibration energy transfer.

  7. ac driving amplitude dependent systematic error in scanning Kelvin probe microscope measurements: Detection and correction

    SciTech Connect

    Wu Yan; Shannon, Mark A.

    2006-04-15

    The dependence of the contact potential difference (CPD) reading on the ac driving amplitude in scanning Kelvin probe microscope (SKPM) hinders researchers from quantifying true material properties. We show theoretically and demonstrate experimentally that an ac driving amplitude dependence in the SKPM measurement can come from a systematic error, and it is common for all tip sample systems as long as there is a nonzero tracking error in the feedback control loop of the instrument. We further propose a methodology to detect and to correct the ac driving amplitude dependent systematic error in SKPM measurements. The true contact potential difference can be found by applying a linear regression to the measured CPD versus one over ac driving amplitude data. Two scenarios are studied: (a) when the surface being scanned by SKPM is not semiconducting and there is an ac driving amplitude dependent systematic error; (b) when a semiconductor surface is probed and asymmetric band bending occurs when the systematic error is present. Experiments are conducted using a commercial SKPM and CPD measurement results of two systems: platinum-iridium/gap/gold and platinum-iridium/gap/thermal oxide/silicon are discussed.

  8. The design evaluation of inductive power-transformer for personal rapid transit by measuring impedance

    SciTech Connect

    Han, Kyung-Hee; Lee, Byung-Song; Baek, Soo-Hyun

    2008-04-01

    The contact-less inductive power transformer (IPT) uses the principle of electromagnetic induction. The concept of the IPT for vehicles such as the personal rapid transit (PRT) system is proposed and some suggestions for power collector design of IPT to improve power transfer performance are presented in this paper. The aim of this paper is to recommend the concept of IPT for vehicles such as the PRT system and also to present some propositions for the power collector design of the IPT, which is to improve the power transfer performance. Generally, there are diverse methods to evaluate transfer performance of the traditional transformers. Although the principle of IPT is similar to that of the general transformer, it is impossible to apply the methods directly because of large air gap. The system must be compensated by resonant circuit due to the large air gap. Consequently, it is difficult to apply numerical formulas to the magnetic design of IPT systems. This paper investigates the magnetic design of a PRT system using three-dimensional magnetic modeling and measurements of the pick-up coupling coefficient and its impedances. In addition, how the use of Litz wire and leakage inductance is related will be observed through experiment and simulation.

  9. The Initial Systolic Time Interval in patients with spinal cord injury measured with impedance cardiography

    NASA Astrophysics Data System (ADS)

    Hoekstra, Femke; Martinsen, Ørjan G.; Verdaasdonk, Rudolf M.; Janssen, Thomas W. J.; Meijer, Jan H.

    2012-12-01

    The Initial Systolic Time Interval (ISTI), obtained from the electrocardiogram and impedance cardiogram, is considered to be a measure for the time delay between the electrical and mechanical activity of the heart. This time delay is influenced by the sympathetic nerve system. Therefore, an observational study was performed in a group of patients (SCI) with spinal cord injuries. The relationship between the ISTI and the total heart cycle (RR-interval) was established by varying the RR-interval using an exercise stimulus to increase the heart rate. The slope of this relationship was observed to be significantly higher in the SCI-group as compared with a control group, although there was no difference in ISTI in the range of common heart rates during the test between the groups. This slope and the ISTI was observed to be significantly different in an acute patient having a recent spinal cord injury at a high level. Because of the variety in injury levels and incompleteness of the injuries further, more specific research is necessary to draw decisive conclusions with respect to the contribution of autonomic nervous control on the ISTI in SCI, although the present observations are notable.

  10. Association of Anthropometric and Bioelectrical Impedance Analysis Measures of Adiposity with High Molecular Weight Adiponectin Concentration

    PubMed Central

    Zeng, Wei-Fang; Li, Yan; Sheng, Chang-Sheng; Huang, Qi-Fang; Kang, Yuan-Yuan; Zhang, Lu; Wang, Shuai; Cheng, Yi-Bang; Li, Fei-Ka; Wang, Ji-Guang

    2016-01-01

    Objective To investigate the relationship between adiposity measures and plasma concentration of high molecular weight (HMW) adiponectin. Methods In a Chinese sample (n = 1081), we performed measurements of anthropometry and bioelectrical impedance analysis (BIA). We defined overweight and obesity as a body mass index between 24 and 27.4 kg/m² and ≥ 27.5 kg/m², respectively, and central obesity as a waist circumference ≥ 90 cm in men and ≥ 80 cm in women. Plasma HMW adiponectin concentration was measured by the ELISA method. Results Plasma HMW adiponectin concentration was significantly (P < 0.0001) higher in women (n = 677, 2.47 μg/mL) than men (n = 404, 1.58 μg/mL) and correlated with advancing age in men (r = 0.28) and women (r = 0.29). In adjusted analyses, it was lower in the presence of overweight (n = 159, 1.26 μg/mL in men and n = 227, 2.15μg/mL in women) and obesity (n = 60, 1.31 μg/mL and n = 82, 2.10 μg/mL, respectively) than normal weight subjects (n = 185, 2.07μg/mL and n = 368, 2.94 μg/mL, respectively) and in the presence of central obesity (n = 106, 1.28 μg/mL and n = 331, 2.12 μg/mL, respectively) than subjects with a normal waist circumference (n = 298, 1.74 μg/mL and n = 346, 2.74 μg/mL, respectively). In multiple regression analyses stratified for gender, adjusted for confounders and considered separately each of the adiposity measures, all adiposity measures were significantly (r -0.18 to -0.31, P < 0.001) associated with plasma HMW adiponectin concentration. However, in further stratified and adjusted regression analyses considered stepwise all adiposity measures, only waist-to-hip ratio was significantly (P < 0.05) associated with plasma HMW adiponectin concentration in men (r = -0.10) and women (r = -0.15). Conclusions Anthropometric measures of obesity, such as waist-to-hip ratio, but not BIA measures, are independently associated with plasma adiponectin concentration. PMID:27227680

  11. A Miniaturized Plasma Impedance Probe For Ionospheric Absolute Electron Density and Electron-Neutral Collision Frequency Measurements

    NASA Astrophysics Data System (ADS)

    Patra, S.; Rao, A. J.; Jayaram, M.; Hamoui, M. E.; Spencer, E. A.; Winstead, C.

    2008-12-01

    A fully integrated, low power, miniaturized Plasma Impedance Probe (PIP) is developed for small satellite constellation missions to create a map of electron density in the ionosphere. Two alternative methods for deriving plasma parameters from impedance measurements are discussed. The first method employs a frequency sweep technique, while the second employs a pulse based technique. The pulse based technique is a new method that leads to faster measurements. The two techniques necessitate different specifications for the front end analog circuit design. Unlike previous PIP designs, the integrated PIP performs direct voltage/current sampling at the probe's terminal. The signal processing tasks are performed by an off-chip FPGA to compute the impedance of the probe in the surrounding plasma. The new design includes self- calibration algorithms in order to increase the accuracy and reliability of the probe for small satellite constellation missions. A new feature included in this instrument is that the plasma parameters are derived from impedance measurements directly on the FPGA, significantly reducing the bandwith of telemetered data down to ground.

  12. Cold vacuum chamber for diagnostics: Analysis of the measurements at the Diamond Light Source and impedance bench measurements

    NASA Astrophysics Data System (ADS)

    Voutta, R.; Gerstl, S.; Casalbuoni, S.; Grau, A. W.; Holubek, T.; Saez de Jauregui, D.; Bartolini, R.; Cox, M. P.; Longhi, E. C.; Rehm, G.; Schouten, J. C.; Walker, R. P.; Migliorati, M.; Spataro, B.

    2016-05-01

    The beam heat load is an important input parameter needed for the cryogenic design of superconducting insertion devices. Theoretical models taking into account the different heating mechanisms of an electron beam to a cold bore predict smaller values than the ones measured with several superconducting insertion devices installed in different electron storage rings. In order to measure and possibly understand the beam heat load to a cold bore, a cold vacuum chamber for diagnostics (COLDDIAG) has been built. COLDDIAG is equipped with temperature sensors, pressure gauges, mass spectrometers as well as retarding field analyzers which allow to measure the beam heat load, total pressure, and gas content as well as the flux of particles hitting the chamber walls. COLDDIAG was installed in a straight section of the Diamond Light Source (DLS). In a previous paper the experimental equipment as well as the installation of COLDDIAG in the DLS are described [S. Gerstl et al., Phys. Rev. ST Accel. Beams 17, 103201 (2014)]. In this paper we present an overview of all the measurements performed with COLDDIAG at the DLS and their detailed analysis, as well as impedance bench measurements of the cold beam vacuum chamber performed at the Karlsruhe Institute of Technology after removal from the DLS. Relevant conclusions for the cryogenic design of superconducting insertion devices are drawn from the obtained results.

  13. Design and evaluation of a handheld impedance plethysmograph for measuring heart rate variability.

    PubMed

    Kristiansen, N K; Fleischer, J; Jensen, M S; Andersen, K S; Nygaard, H

    2005-07-01

    Heart rate variability (HRV) analysis from 10s ECGs has been shown to be reliable. However, the short examination time warrants a user-friendly system that can be used for ad-hoc examinations without normal preparation, unlike ECG. A handheld device has been developed that can measure ultra-short HRV from impedance plethysmographic recordings of the pulse wave in distal superficial arteries. The prototype device was made user-friendly through a compact, pen-like design and the use of integrated metal electrodes that were especially designed for dry operation. The main signal processing was performed by a digital signal processor, where the discrete heart beats were detected using a correlation algorithm that could adapt to individual pulse wave shapes to account for biological variation. The novel device was evaluated in 20 mainly young volunteers, using 10 s time-correlated ECG recordings as the reference method. Agreement between the two methods in measuring heart rate and root mean square of successive differences in the heart beat interval (RMSSD) was analysed using correlation coefficients (Pearson's R2), mean differences with 95% confidence intervals and 95% limits of agreement, and Bland-Altman plots. The correlation between the two methods was R2 = 1.00 and R2 = 0.99 when heart rate and RMSSD were measured, respectively. The Bland-Altman plots showed suitable agreement between the novel device and standard 10 s ECGs, which was substantiated by 95% limits of agreement of the difference of +/- 0.1 beats min(-1) and approximately +/- 10 ms for heart rate and RMSSD, respectively. Therefore the evaluation showed no significant systematic error of the novel device compared with ECG. PMID:16255435

  14. [The evaluation of body composition in children by anthropometry and impedance measurement].

    PubMed

    Ferrante, E; Pitzalis, G; Deganello, F; Galastri, E; Sciarpelletti, R; Imperato, C

    1993-01-01

    Several anthropometric parameters (weight, height, thickness skinfolds, and body circumferences) together with the bioelectric impedance (BIA) were measured in a group of 407 healthy prepuberal children (205 males, mean age +/- SD: 6.8 +/- 1.6 years; 202 females, mean age +/- SD: 6.6 +/- 1.6 years) who did not practice any competitive sport. The group was divided into six weight classes (underweight to obese 3). The average values of the anthropometric data, BIA, FM (which is derived from the thickness skinfolds and BIA), TBW (derived from BIA), AFA and AMA (both derived from the forearm circumference and triceps skinfold) were all evaluated in relation to sex and weight classes. The average values of all the measured thickness skinfolds, FM and AFA were higher in the females. When considering the body circumferences, only the wrist circumference showed a statistically significant difference between sexes, being higher in males. In contrast both the rates waist/hips circumferences and waist/thigh circumferences were higher in males. As far as the BIA and FM average values is concerned, these were higher in females. The average value of FM derived from measuring the thickness skinfolds (males = 17.65 +/- 4.89%: females = 23.81 +/- 4.72% of body weight) proved higher than that one derived from BIA (males = 17 +/- 9.02%; females = 19.27 +/- 9.18%). The analysis of anthropometric and BIA data in relation to the weight classes showed significant variations of the mean values, except the rates waist/hips circumferences and waist/thigh circumferences. Therefore our data seem to exclude the presence of any difference of the fat distribution between sexes in paediatric age.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8255269

  15. Electromagnetic Subsurface Soundings at HF frequencies and Antenna Impedance Measurements on the Antarctic Continent

    NASA Astrophysics Data System (ADS)

    Valerie, C.; Jean-Jacques, B.; Richard, N.; Michel, H.; Sebastien, B.; Francois, D.; Alain, R.

    2004-05-01

    In the frame of the NETLANDER project, a ground penetrating radar (GPR) dedicated to the exploration of the Martian subsurface has been developed. This GPR is designed for deep sounding down to a depth which is sufficient to allow possible detection of liquid water and thus operates mainly at a frequency of 2 MHz. Contrary to the normal mode of operation of subsurface radars which can be moved over the soil to be explored, the GPR of NETLANDER aims at performing 3D imaging of the underground reflecting structures even if it operates in a fixed position. This is achieved by retrieving not only the distance of the reflectors but also the direction of the backscattered waves by measuring the 2 horizontal electric components and the 3 magnetic components of the reflected waves. Two perpendicular dipoles each consisting in two 35-meters electric monopoles are used for both transmission and reception, while the receiving magnetic antenna can be successively directed along 3 mutually orthogonal directions. In addition, the perfect stability of the environment allows a very large number of coherent integrations to be performed, which provide a satisfactory sensitivity Ground tests were recently carried out on the Antarctic continent in 2004. Soundings at frequencies in the range 2-5 MHz have been performed with the NETLANDER monostatic GPR prototype and with the updated version of this instrument, which operates in a real bistatic mode. As expected the echoes due to interaction with the bedrock are detected and the magnetic component measurements provide information linked to the orientation of the reflecting structures. The first experimental results will be reported. We will present results on the electric antenna impedance measurements, which give information on the permittivity of the upper subsurface layer. We will also focus on the analysis of the backscattered signals using both electric and magnetic components of the received field. Comparisons with numerical

  16. Cost-effective broad-band electrical impedance spectroscopy measurement circuit and signal analysis for piezo-materials and ultrasound transducers.

    PubMed

    Lewis, George K; Lewis, George K; Olbricht, William

    2008-10-01

    This paper explains the circuitry and signal processing to perform electrical impedance spectroscopy on piezoelectric materials and ultrasound transducers. Here, we measure and compare the impedance spectra of 2-5 MHz piezoelectrics, but the methodology applies for 700 kHz-20 MHz ultrasonic devices as well. Using a 12 ns wide 5 volt pulsing circuit as an impulse, we determine the electrical impedance curves experimentally using Ohm's law and fast Fourier transform (FFT), and compare results with mathematical models. The method allows for rapid impedance measurement for a range of frequencies using a narrow input pulse, digital oscilloscope and FFT techniques. The technique compares well to current methodologies such as network and impedance analyzers while providing additional versatility in the electrical impedance measurement. The technique is theoretically simple, easy to implement and completed with ordinary laboratory instrumentation for minimal cost. PMID:19081773

  17. Prediction of body fat percentage from skinfold and bio-impedance measurements in Indian school children

    PubMed Central

    Kehoe, Sarah H.; Krishnaveni, Ghattu V.; Lubree, Himangi G.; Wills, Andrew K.; Guntupalli, Aravinda M.; Veena, Sargoor R.; Bhat, Dattatray S.; Kishore, Ravi; Fall, Caroline H.D.; Yajnik, Chittaranjan S.; Kurpad, Anura

    2011-01-01

    Background Few equations for calculating body fat percentage (BF%) from field methods have been developed in South Asian children. Objective To assess agreement between BF% derived from primary reference methods and that from skinfold equations and bio-impedance analysis (BIA) in Indian children. Methods We measured BF% in two groups of Indian children. In Pune, 570 rural children aged 6-8 years underwent dual-energy X-ray absorptiometry (DXA) scans. In Mysore 18O was administered to 59 urban children aged 7-9 years. We conducted BIA at 50kHz and anthropometry including subscapular and triceps skinfold thicknesses. We used the published equations of Wickramasinghe, Shaikh, Slaughter and Dezenburg to calculate BF% from anthropometric data and the manufacturer’s equation for BIA measurements. We assessed agreement with values derived from DXA and DLW using Bland Altman analysis. Results Children were light and thin compared to international standards. There was poor agreement between the reference BF% values and those from all equations. Assumptions for Bland Altman analysis were not met for Wickramasinghe, Shaikh and Slaughter equations. The Dezenberg equations under-predicted BF% for most children (mean difference in Pune −13.4, LOA −22.7, −4.0 and in Mysore −7.9, LOA −13.7 and −2.2). The mean bias for the BIA equation in Pune was +5.0% and in Mysore +1.95% and the LOA were wide; −5.0, 15.0 and −7.8, 11.7 respectively. Conclusions Currently available skinfold equations do not accurately predict BF% in Indian children. We recommend development of BIA equations in this population using a 4-compartment model. PMID:21731039

  18. Mechanistic insights into UV-induced electron transfer from PCBM to titanium oxide in inverted-type organic thin film solar cells using AC impedance spectroscopy.

    PubMed

    Kuwabara, Takayuki; Iwata, Chiaki; Yamaguchi, Takahiro; Takahashi, Kohshin

    2010-08-01

    An inverted organic bulk-heterojunction solar cell containing amorphous titanium oxide (TiOx) as an electron collection electrode with the structure ITO/TiO(x)/[6,6]-phenyl C(61) butyric acid methyl ester (PCBM): regioregular poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxylenethiophene):poly(4-styrene sulfonic acid)/Au (TiO(x) cell) was fabricated. Its complicated photovoltaic properties were investigated by photocurrent-voltage and alternating current impedance spectroscopy measurements. The TiO(x) cell required a significant amount of time (approximately 60 min) to reach its maximum power conversion efficiency (PCE) of 2.6%. To investigate the reason for this slow photoresponse, we investigated the influences of UV light and water molecules adsorbed on the TiO(x) layer. Surface treatment of the TiO(x) cell with water induced a rapid photoresponse and enhanced the performance, giving a PCE of 2.97%. However, the durability of the treated cell was considerably inferior that of the untreated cell because of UV-induced photodegradation. The cause of the rapid photoresponse of the treated cell was attributed to the formation of hydrogen bonds between adsorbed water molecules and carbonyl oxygen atoms in PCBM close to the TiO(x) surface. When the TiO(x) surface was positively charged by UV-induced holes, the carbonyl oxygen in PCBM close to the TiO(x) surface can quickly join to the TiO(x) surface, rapidly transporting photogenerated electrons from PCBM to TiO(x) in competition with the photocatalyzed degradation. The experimental results suggested that the slow photoresponse of the untreated TiO(x) cell was because the morphology of the photoactive organic layer changed gradually upon irradiation to improve the transport of photocarriers at the TiO(x)/PCBM:P3HT interface. PMID:20735096

  19. Quantification of the specific membrane capacitance of single cells using a microfluidic device and impedance spectroscopy measurement.

    PubMed

    Tan, Qingyuan; Ferrier, Graham A; Chen, Brandon K; Wang, Chen; Sun, Yu

    2012-09-01

    The specific membrane capacitance (SMC) is an electrical parameter that correlates with both the electrical activity and morphology of the plasma membrane, which are physiological markers for cellular phenotype and health. We have developed a microfluidic device that enables impedance spectroscopy measurements of the SMC of single biological cells. Impedance spectra induced by single cells aspirated into the device are captured over a moderate frequency range (5 kHz-1 MHz). Maximum impedance sensitivity is achieved using a tapered microfluidic channel, which effectively routes electric fields across the cell membranes. The SMC is extracted by curve-fitting impedance spectra to an equivalent circuit model. From our measurement, acute myeloid leukemia (AML) cells are found to exhibit larger SMC values in hypertonic solutions as compared with those in isotonic solutions. In addition, AML cell phenotypes (AML2 and NB4) exhibiting varying metastatic potential yield distinct SMC values (AML2: 16.9 ± 1.9 mF/m(2) (n = 23); NB4: 22.5 ± 4.7 mF/m(2) (n = 23)). Three-dimensional finite element simulations of the microfluidic device confirm the feasibility of this approach. PMID:23940502

  20. Validation of Bioelectrical Impedance Spectroscopy to Measure Total Body Water in Resistance-Trained Males.

    PubMed

    Kerr, Ava; Slater, Gary; Byrne, Nuala; Chaseling, Janet

    2015-10-01

    The three-compartment (3-C) model of physique assessment (fat mass, fat-free mass, water) incorporates total body water (TBW) whereas the two-compartment model (2-C) assumes a TBW of 73.72%. Deuterium dilution (D2O) is the reference method for measuring TBW but is expensive and time consuming. Multifrequency bioelectrical impedance spectroscopy (BIS SFB7) estimates TBW instantaneously and claims high precision. Our aim was to compare SFB7 with D2O for estimating TBW in resistance trained males (BMI >25kg/m2). We included TBWBIS estimates in a 3-C model and contrasted this and the 2-C model against the reference 3-C model using TBWD2O. TBW of 29 males (32.4 ± 8.5 years; 183.4 ± 7.2 cm; 92.5 ± 9.9 kg; 27.5 ± 2.6 kg/m2) was measured using SFB7 and D2O. Body density was measured by BODPOD, with body composition calculated using the Siri equation. TBWBIS values were consistent with TBWD2O (SEE = 2.65L; TE = 2.6L) as were %BF values from the 3-C model (BODPOD + TBWBIS) with the 3-C reference model (SEE = 2.20%; TE = 2.20%). For subjects with TBW more than 1% from the assumed 73.72% (n = 16), %BF from the 2-C model differed significantly from the reference 3-C model (Slope 0.6888; Intercept 5.093). The BIS SFB7 measured TBW accurately compared with D2O. The 2C model with an assumed TBW of 73.72% introduces error in the estimation of body composition. We recommend TBW should be measured, either via the traditional D2O method or when resources are limited, with BIS, so that body composition estimates are enhanced. The BIS can be accurately used in 3C equations to better predict TBW and BF% in resistance trained males compared with a 2C model. PMID:26011918

  1. Development of Low-Frequency AC Voltage Measurement System Using Single-Junction Thermal Converter

    NASA Astrophysics Data System (ADS)

    Amagai, Yasutaka; Nakamura, Yasuhiro

    Accurate measurement of low-frequency AC voltage using a digital multimeter at frequencies of 4-200Hz is a challenge in the mechanical engineering industry. At the National Metrology Institute of Japan, we developed a low-frequency AC voltage measurement system for calibrating digital multimeters operating at frequencies down to 1 Hz. The system uses a single-junction thermal converter and employs a theoretical model and a three-parameter sine wave fitting algorithm based on the least-square (LS) method. We calibrated the AC voltage down to 1Hz using our measurement system and reduced the measurement time compared with that using thin-film thermal converters. Our measurement results are verified by comparison with those of a digital sampling method using a high-resolution analog-to-digital converter; our data are in agreement to within a few parts in 105. Our proposed method enables us to measure AC voltage with an uncertainty of 25 μV/V (k = 1) at frequencies down to 4 Hz and a voltage of 10 V.

  2. Measurements of the Seebeck coefficient of thermoelectric materials by an ac method

    SciTech Connect

    Goto, T.; Li, J.H.; Hirai, T.; Maeda, Y.; Kato, R.; Maesono, A.

    1997-03-01

    An ac method for measurement of the Seebeck coefficient was developed. Specimens were heated periodically at frequencies in the range 0.2--10 Hz using a semiconductor laser. The small temperature increase and the resultant thermoelectric power were measured with a Pt-Pt 13% Rh thermocouple (25 {micro}m in diameter) through a lock-in amplifier. The Seebeck coefficient of a Pt{sub 90}Rh{sub 10} foil measured by the ac method was in agreement with that obtained from the standard table. The optimum frequency and specimen thickness for the ac method were 0.2 Hz and 0.1--0.2 mm, respectively. The Seebeck coefficients of silicon single crystal and several thermoelectric semiconductors (Si{sub 80}Ge{sub 20}, PbTc, FeSi{sub 2}, SiB{sub 14}) measured by the ac method agreed with those measured by a conventional dc method in the temperature range between room temperature and 1200 K. The time needed for each measurement was less than a few tens of minutes, significantly shorter than that for a conventional dc method.

  3. Method, system and computer-readable media for measuring impedance of an energy storage device

    DOEpatents

    Morrison, John L.; Morrison, William H.; Christophersen, Jon P.; Motloch, Chester G.

    2016-01-26

    Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. A time profile of this sampled signal has a duration that is a few periods of the lowest frequency. A voltage response of the battery, average deleted, is an impedance of the battery in a time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time profile by rectifying relative to sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency.

  4. Monitoring of CRT by means of impedance multiple measurements - simulation studies

    NASA Astrophysics Data System (ADS)

    Lewandowska, M.; Wtorek, J.; Bujnowski, A.; Mierzejewski, L.

    2010-04-01

    Cardiac resynchronization therapy (CRT) is a very promising treatment for patients with congestive heart failure. An Impedance Cardiography (ICG) is used for evaluation of heart mechanical activity. A simulation study with the use of a FEM model was performed. The developed realistic model of the thorax, based on CT data obtained from examination of a 68-year-old man, consisted of 212 000 tetrahedral elements. Different configurations of electrodes allowing extraction of ventricular components from impedance signal were examined. The associated sensitivity distributions were calculated for different phases of heart contraction and blood distribution inside the thorax. These sensitivity distributions were compared to that obtained for a uniform model of the thorax described by average conductivity. The performed simulation studies proved that it is possible to extract ventricular components of impedance signal with a reasonable accuracy.

  5. Fiber - Optic Devices as Temperature Sensors for Temperature Measurements in AC Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Rablau, Corneliu; Lafrance, Joseph; Sala, Anca

    2007-10-01

    We report on the investigation of several fiber-optic devices as potential sensors for temperature measurements in AC magnetic fields. Common temperature sensors, such as thermocouples, thermistors or diodes, will create random and/or systematic errors when placed in a magnetic field. A DC magnetic field is susceptible to create a systematic offset to the measurement, while in an AC magnetic field of variable frequency random errors which cannot be corrected for can also be introduced. Fiber-Bragg-gratings and thin film filters have an inherent temperature dependence. Detrimental for their primary applications, the same dependence allows one to use such devices as temperature sensors. In an AC magnetic field, they present the advantage of being immune to electromagnetic interference. Moreover, for fiber-Bragg-gratings, the shape factor and small mass of the bare-fiber device make it convenient for temperature measurements on small samples. We studied several thin-film filters and fiber-Bragg-gratings and compared their temperature measurement capabilities in AC magnetic fields of 0 to 150 Gauss, 0 to 20 KHz to the results provided by off-the-shelf thermocouples and thermistor-based temperature measurement systems.

  6. On-line Measurements and Control of Viable Cell Density in Cell Culture Manufacturing Processes using Radio-frequency Impedance.

    PubMed

    Carvell, John P; Dowd, Jason E

    2006-03-01

    In this work, radio-frequency (RF) impedance is reviewed as a method for monitoring and controlling cell culture manufacturing processes. It is clear from the many publications cited that RF Impedance is regarded as an accurate and reliable method for measuring the live cell bio-volume both on-line and off-line and the technology is also sutable for animal cells in suspension, attached to micro-carriers or immobilized in fixed beds. In cGMP production, RF Impedance is being used in three main areas. Firstly, it is being used as a control instrument for maintaining consistent perfusion culture allowing the bioreactor to operate under optimum conditions for maximum production of recombinant proteins. In the second application it has not replaced traditional off-line live cell counting techniques but it is being used as an additional monitoring tool to check product conformance. Finally, RF Impedance is being used to monitor the concentration of live cells immobilized on micro-carriers or packed beds in cGMP processes where traditional off-line live cell counting methods are inaccurate or impossible to perform. PMID:19003069

  7. Physical and electrical models for interpreting AC and DC transport measurements in polymer solar cells

    NASA Astrophysics Data System (ADS)

    McIntyre, Max; Tzolov, Marian; Cossel, Raquel; Peeler, Seth

    We have fabricated and studied bulk heterojunction solar cells using a mixture of the low bandgap material PCPDTBT and PCBM-C60. Our transport studies show that the devices in dark have good rectification and they respond to AC voltage as a simple RC circuit. The illumination causes an additional contribution to the impedance, which varies with the level of illumination. One proposed model is that photo-generated charges can become trapped in potential wells. These charges then follow a Debye relaxation process, which contributes to a varying dielectric constant. Another proposed model is based on a RC circuit model with two capacitors which can describe the varying capacitance behavior. The physical mechanism for this model is that photo-generated charges become accumulated at the interface between PCPDTBT and PCBM-C60 and form an additional layer of charge. We will show that our circuit models and their analogous physical models can predict the AC and DC responses of polymer solar cells.

  8. Pulmonary Vascular Input Impedance is a Combined Measure of Pulmonary Vascular Resistance and Stiffness and Predicts Clinical Outcomes Better than PVR Alone in Pediatric Patients with Pulmonary Hypertension

    PubMed Central

    Hunter, Kendall S.; Lee, Po-Feng; Lanning, Craig J.; Ivy, D. Dunbar; Kirby, K. Scott; Claussen, Lori R.; Chan, K. Chen; Shandas, Robin

    2011-01-01

    Background Pulmonary vascular resistance (PVR) is the current standard for evaluating reactivity in children with pulmonary arterial hypertension (PAH). However, PVR measures only the mean component of right ventricular afterload and neglects pulsatile effects. We recently developed and validated an method to measure pulmonary vascular input impedance, which revealed excellent correlation between the zero-harmonic impedance value and PVR, and suggested a correlation between higher harmonic impedance values and pulmonary vascular stiffness (PVS). Here we show that input impedance can be measured routinely and easily in the catheterization laboratory, that impedance provides PVR and PVS from a single measurement, and that impedance is a better predictor of disease outcomes compared to PVR. Methods Pressure and velocity waveforms within the main PA were measured during right-heart catheterization of patients with normal PA hemodynamics (n=14) and those with PAH undergoing reactivity evaluation (49 subjects; 95 conditions). A correction factor needed to transform velocity into flow was obtained by calibrating against cardiac output. Input impedance was obtained off-line by dividing Fourier-transformed pressure and flow waveforms. Results Exceptional correlation was found between the indexed zero harmonic of impedance and indexed PVR (y=1.095·x+1.381, R2=0.9620). Additionally, the modulus sum of the first two harmonics of impedance was found to best correlate with indexed pulse pressure over stroke volume (PP/SV) (y=13.39·x-0.8058, R2=0.7962). Amongst a subset of PAH patients (n=25), cumulative logistic regression between outcomes to total indexed impedance was better (RL2=0.4012) than between outcomes and indexed PVR (RL2=0.3131). Conclusions Input impedance can be consistently and easily obtained from PW Doppler and a single catheter pressure measurement, provides comprehensive characterization of the main components of RV afterload, and better predicts patient

  9. Second VAMAS a.c. loss measurement intercomparison: magnetization measurement of low-frequency (hysteretic) a.c. loss in NbTi multifilamentary strands

    NASA Astrophysics Data System (ADS)

    Collings, E. W.; Sumption, M. D.; Itoh, K.; Wada, H.; Tachikawa, K.

    The results of the 2 nd VAMAS measurement intercomparison program on low-frequency (hysteretic) a.c. loss are presented and discussed. Two sets of multifilamentary NbTi strands (Set No. 1: copper matrix, fil. diams 0.5, 1, 3, and 12 μm; Set No. 2: cupronickel matrix, fil. diams 0.4, 0.5, and 1 μm) were subjected to interlaboratory testing. In an initial series of tests, samples in various forms (e.g. wire bundles, coils) were measured mostly by vibrating-sample- and SQUID magnetometry. Considerable scatter was noted especially in the small-filament-diameter a.c.-loss data. In a study of measurement accuracy, a supplementary series of tests compared the results of VSM measurement of a given pair of copper-matrix samples. In the light of all the results, factors contributing to a.c. loss error are discussed and recommendations are made concerning the specification of future a.c.-loss measurement intercomparisons.

  10. Recycler short kicker beam impedance

    SciTech Connect

    Crisp, Jim; Fellenz, Brian; /Fermilab

    2009-07-01

    Measured longitudinal and calculated transverse beam impedance is presented for the short kicker magnets being installed in the Fermilab Recycler. Fermi drawing number ME-457159. The longitudinal impedance was measured with a stretched wire and the Panofsky equation was used to estimate the transverse impedance. The impedance of 3319 meters (the Recycler circumference) of stainless vacuum pipe is provided for comparison. Although measurements where done to 3GHz, impedance was negligible above 30MHz. The beam power lost to the kicker impedance is shown for a range of bunch lengths. The measurements are for one kicker assuming a rotation frequency of 90KHz. Seven of these kickers are being installed.

  11. Modelling and measurement of ac loss in BSCCO/Ag-tape windings

    NASA Astrophysics Data System (ADS)

    Oomen, M. P.; Nanke, R.; Leghissa, M.

    2003-03-01

    High-temperature superconducting (HTS) transformers promise decreased weight and volume and higher efficiency. A 1 MVA HTS railway transformer was built and tested at Siemens AG. This paper deals with the prediction of ac loss in the BSCCO/Ag-tape windings. In a railway transformer the tape carries ac current in alternating field, the temperature differs from 77 K, tapes are stacked or cabled and overcurrents and higher harmonics occur. In ac-loss literature these issues are treated separately, if at all. We have developed a model that predicts the ac loss in sets of BSCCO/Ag-tape coils, and deals with the above-mentioned issues. The effect of higher harmonics on the loss in HTS tapes is considered for the first time. The paper gives a complete overview of the model equations and required input parameters. The model is validated over a wide range of the input parameters, using the measured critical current and ac loss of single tapes, single coils and sets of coils in the 1 MVA transformer. An accuracy of around 25% is achieved in all relevant cases. Presently the model is developed further, in order to describe other HTS materials and other types of applications.

  12. Measuring body composition in dogs using multifrequency bioelectrical impedance analysis and dual energy X-ray absorptiometry.

    PubMed

    Rae, L S; Vankan, D M; Rand, J S; Flickinger, E A; Ward, L C

    2016-06-01

    Thirty-five healthy, neutered, mixed breed dogs were used to determine the ability of multifrequency bioelectrical impedance analysis (MFBIA) to predict accurately fat-free mass (FFM) in dogs using dual energy X-ray absorptiometry (DXA)-measured FFM as reference. A second aim was to compare MFBIA predictions with morphometric predictions. MFBIA-based predictors provided an accurate measure of FFM, within 1.5% when compared to DXA-derived FFM, in normal weight dogs. FFM estimates were most highly correlated with DXA-measured FFM when the prediction equation included resistance quotient, bodyweight, and body condition score. At the population level, the inclusion of impedance as a predictor variable did not add substantially to the predictive power achieved with morphometric variables alone; in individual dogs, impedance predictors were more valuable than morphometric predictors. These results indicate that, following further validation, MFBIA could provide a useful tool in clinical practice to objectively measure FFM in canine patients and help improve compliance with prevention and treatment programs for obesity in dogs. PMID:27256027

  13. Locating interfaces in vertically-layered materials and determining concentrations in mixed materials utilizing acoustic impedance measurements

    DOEpatents

    Langlois, G.N.

    1983-09-13

    Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material are disclosed. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material. 6 figs.

  14. Locating interfaces in vertically-layered materials and determining concentrations in mixed materials utilizing acoustic impedance measurements

    DOEpatents

    Langlois, Gary N.

    1983-09-13

    Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material.

  15. Features of high-frequency measurements of the impedance of metal-insulator-semiconductor structures with an ultrathin oxide

    SciTech Connect

    Goldman, E. I.; Levashova, A. I.; Levashov, S. A.; Chucheva, G. V.

    2015-04-15

    The possibilities of using the data of high-frequency measurements of the impedance of metal-oxide-semiconductor structures with an ultrathin insulating layer for determining the parameters of the semiconductor and the tunneling characteristics of the insulator are considered. If the accuracy of the experiment makes it possible to record both the active and reactive impedance components, the thickness of the surface depletion layer, the resistance of the semiconductor base portion, the differential tunnel conductivity of the insulating layer, and the differential tunneling-stimulated current of the generation of electron-hole pairs are calculated using the values of the capacitance and conduction of the structure measured at two frequencies. In the case, where the values of the active component of the impedance is beyond the accuracy of measurements, analysis of the parameters is possible upon four-frequency organization of the experiment from the values of only the capacitances with an increased accuracy of their measurements. A test for the necessary accuracy of data of such an experiment is formulated. If the test fails, it is possible to determine only the capacitance of the surface depletion layer in the semiconductor and, in this case, it is sufficient to implement only the single-frequency experiment.

  16. Locating interfaces in vertically-layered materials and determining concentrations in mixed materials utilizing acoustic-impedance measurements. [Patent application

    DOEpatents

    Not Available

    1981-06-10

    Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material are presented. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material.

  17. Mechanical impedance and acoustic mobility measurement techniques of specifying vibration environments

    NASA Technical Reports Server (NTRS)

    Kao, G. C.

    1973-01-01

    Method has been developed for predicting interaction between components and corresponding support structures subjected to acoustic excitations. Force environments determined in spectral form are called force spectra. Force-spectra equation is determined based on one-dimensional structural impedance model.

  18. HIGH FREQUENCY ELECTROMAGNETIC IMPEDANCE MEASUREMENTS FOR CHARACTERIZATION, MONITORING AND VERIFICATION EFFORTS

    EPA Science Inventory

    We propose to develop high-frequency impedance (HFI) methodology utilizing a window of the electromagnetic (em) spectrum from 1.0 MHz to 100 MHz. This window, between GPR and low-frequency induction techniques, has not been used to non-invasively investigate the upper few meters ...

  19. Single cell studies of mouse embryonic stem cell (mESC) differentiation by electrical impedance measurements in a microfluidic device.

    PubMed

    Zhou, Ying; Basu, Srinjan; Laue, Ernest; Seshia, Ashwin A

    2016-07-15

    Biological populations of cells show considerable cell-to-cell variability. Study of single cells and analysis of cell heterogeneity are considered to be critical in understanding biological processes such as stem cell differentiation and cancer development. Recent advances in lab-on-a-chip techniques have allowed single-cell capture in microfluidic channels with the possibility of precise environmental control and high throughput of experiments with minimal usage of samples and reagents. In recent years, label-free techniques such as electrical impedance spectroscopy have emerged as a non-invasive approach to studying cell properties. In this study, we have designed and fabricated a microfluidic device that combines hydrodynamic trapping of single cells in pre-defined locations with the capability of running electrical impedance measurements within the same device. We have measured mouse embryonic stem cells (mESCs) at different states during differentiation (t=0h, 24h and 48h) and quantitatively analysed the changes in electrical parameters of cells during differentiation. A marked increase in the magnitude of the cell impedance is found during cell differentiation, which can be attributed to an increase in cell size. The analysis of the measurements shows that the nucleus-to-cytoplasm ratio decreases during this process. The degree of cell heterogeneity is observed to be the highest when the cells are at the transition state (24h), compare with cells at undifferentiated (0h) and fully differentiated (48h) states. The device enables highly efficient single cell trapping and provides sensitive, label-free electrical impedance measurements of individual cells, enabling the possibility of quantitatively analysing their physical state as well as studying the associated heterogeneity of a cell population. PMID:26963790

  20. Single cell studies of mouse embryonic stem cell (mESC) differentiation by electrical impedance measurements in a microfluidic device

    PubMed Central

    Zhou, Ying; Basu, Srinjan; Laue, Ernest; Seshia, Ashwin A.

    2016-01-01

    Biological populations of cells show considerable cell-to-cell variability. Study of single cells and analysis of cell heterogeneity are considered to be critical in understanding biological processes such as stem cell differentiation and cancer development. Recent advances in lab-on-a-chip techniques have allowed single-cell capture in microfluidic channels with the possibility of precise environmental control and high throughput of experiments with minimal usage of samples and reagents. In recent years, label-free techniques such as electrical impedance spectroscopy have emerged as a non-invasive approach to studying cell properties. In this study, we have designed and fabricated a microfluidic device that combines hydrodynamic trapping of single cells in pre-defined locations with the capability of running electrical impedance measurements within the same device. We have measured mouse embryonic stem cells (mESCs) at different states during differentiation (t=0 h, 24 h and 48 h) and quantitatively analysed the changes in electrical parameters of cells during differentiation. A marked increase in the magnitude of the cell impedance is found during cell differentiation, which can be attributed to an increase in cell size. The analysis of the measurements shows that the nucleus-to-cytoplasm ratio decreases during this process. The degree of cell heterogeneity is observed to be the highest when the cells are at the transition state (24 h), compare with cells at undifferentiated (0 h) and fully differentiated (48 h) states. The device enables highly efficient single cell trapping and provides sensitive, label-free electrical impedance measurements of individual cells, enabling the possibility of quantitatively analysing their physical state as well as studying the associated heterogeneity of a cell population. PMID:26963790

  1. Monitoring colloidal stability of polymer-coated magnetic nanoparticles using AC susceptibility measurements.

    PubMed

    Herrera, Adriana P; Barrera, Carola; Zayas, Yashira; Rinaldi, Carlos

    2010-02-15

    The application of the response of magnetic nanoparticles to oscillating magnetic fields to probe transitions in colloidal state and structure of polymer-coated nanoparticles is demonstrated. Cobalt ferrite nanoparticles with narrow size distribution were prepared and shown to respond to oscillating magnetic fields through a Brownian relaxation mechanism, which is dependent on the mechanical coupling between the particle dipoles and the surrounding matrix. These nanoparticles were coated with covalently-attached poly(N-isopropylacrylamide) (pNIPAM) or poly(N-isopropylmethacrylamide) (pNIPMAM) through free radical polymerization. The temperature induced transitions of colloidal suspensions of these nanoparticles were studied through a combination of differential scanning calorimetry (DSC), dynamic light scattering (DLS), and AC susceptibility measurements. In the pNIPAM coated nanoparticles excellent agreement was found for a transition temperature of approximately 30 degrees C by all three methods, although the AC susceptibility measurements indicated aggregation which was not evident from the DLS results. Small-angle neutron scattering (SANS) results obtained for pNIPAM coated nanoparticles confirmed that aggregation indeed occurs above the lower critical transition temperature of pNIPAM. For the pNIPMAM coated nanoparticles DLS and AC susceptibility measurements indicated aggregation at a temperature of approximately 33-35 degrees C, much lower than the transition temperature peak at 40 degrees C observed by DSC. However, the transition observed by DSC is very broad, hence it is possible that aggregation begins to occur at temperatures lower than the peak, as indicated by the AC susceptibility and DLS results. These experiments and observations demonstrate the possibility of using AC susceptibility measurements to probe transitions in colloidal suspensions induced by external stimuli. Because magnetic measurements do not require optical transparency, these

  2. Impedance-estimation methods, modeling methods, articles of manufacture, impedance-modeling devices, and estimated-impedance monitoring systems

    DOEpatents

    Richardson, John G.

    2009-11-17

    An impedance estimation method includes measuring three or more impedances of an object having a periphery using three or more probes coupled to the periphery. The three or more impedance measurements are made at a first frequency. Three or more additional impedance measurements of the object are made using the three or more probes. The three or more additional impedance measurements are made at a second frequency different from the first frequency. An impedance of the object at a point within the periphery is estimated based on the impedance measurements and the additional impedance measurements.

  3. Impedance magnetocardiogram.

    PubMed

    Kandori, A; Miyashita, T; Suzuki, D; Yokosawa, K; Tsukada, K

    2001-02-01

    We have developed an impedance magnetocardiogram (IMCG) system to detect the change of magnetic field corresponding to changes in blood volume in the heart. A low magnetic field from the electrical activity of the human heart--the so-called magnetocardiogram (MCG)--can be simultaneously detected by using this system. Because the mechanical and electrical functions in the heart can be monitored by non-invasive and non-contact measurements, it is easy to observe the cardiovascular functions from an accurate sensor position. This system uses a technique to demodulate induced current in a subject. A flux-locked circuit of a superconducting quantum interference device has a wide frequency range (above 1 MHz) because a constant current (40 kHz) is fed through the subject. It is shown for the first time that the system could measure IMCG signals at the same time as MCG signals. PMID:11229740

  4. The Performance of Dammar-based Paint System Evaluated by Electrochemical Impedance Spectroscopy (EIS) and Potential Time Measurement (PTM)

    NASA Astrophysics Data System (ADS)

    Omar, N. M.; Ahmad, A. Hanom

    2009-06-01

    The coating resistance of the Dammar-based paint system was determined by using Electrochemical Impedance Spectroscopy (EIS), whereas, the corrosion potential analysis was determined by using potential time measurement (PTM) method. Carotenoid pigment obtained from Capsicum Annum (dried chili pepper) was added into the mixture of dammar and acrylic polyol resin and the paint systems were proofed on Aluminium steel Q-panels as a substrate. Result shows that the paint system with a composition of 35% dammar (CD35%) possessed the higher corrosion resistance after 30 days of exposure in 3% NaCl solution for electrochemical impedance spectroscopy and also can withstand the longest time for delimitation protection in PTM analysis. The results prove that the developed organic paint system can improve the electrochemical and corrosion protection properties of a paint system.

  5. Smartphone-based portable biosensing system using impedance measurement with printed electrodes for 2,4,6-trinitrotoluene (TNT) detection.

    PubMed

    Zhang, Diming; Jiang, Jing; Chen, Junye; Zhang, Qian; Lu, Yanli; Yao, Yao; Li, Shuang; Logan Liu, Gang; Liu, Qingjun

    2015-08-15

    Rapid, sensitive, selective and portable detection of 2,4,6-trinitrotoluene (TNT) is in high demand for public safety and environmental monitoring. In this study, we reported a smartphone-based system using impedance monitoring for TNT detection. The screen-printed electrodes modified with TNT-specific peptides were used as disposable a biosensor to produce impedance responses to TNT. The responses could be monitored by a hand-held device and send out to smartphone through Bluetooth. Then, the smartphone was used to display TNT responses in real time and report concentration finally. In the measurement, the system was demonstrated to detect TNT at concentration as low as 10(-6) M and distinguish TNT versus different chemicals in high specificity. Thus, the smartphone-based biosensing platform provided a convenient and efficient approach to design portable instruments for chemical detections such as TNT recognition. PMID:25796040

  6. Locating damage using integrated global-local approach with wireless sensing system and single-chip impedance measurement device.

    PubMed

    Lin, Tzu-Hsuan; Lu, Yung-Chi; Hung, Shih-Lin

    2014-01-01

    This study developed an integrated global-local approach for locating damage on building structures. A damage detection approach with a novel embedded frequency response function damage index (NEFDI) was proposed and embedded in the Imote2.NET-based wireless structural health monitoring (SHM) system to locate global damage. Local damage is then identified using an electromechanical impedance- (EMI-) based damage detection method. The electromechanical impedance was measured using a single-chip impedance measurement device which has the advantages of small size, low cost, and portability. The feasibility of the proposed damage detection scheme was studied with reference to a numerical example of a six-storey shear plane frame structure and a small-scale experimental steel frame. Numerical and experimental analysis using the integrated global-local SHM approach reveals that, after NEFDI indicates the approximate location of a damaged area, the EMI-based damage detection approach can then identify the detailed damage location in the structure of the building. PMID:24672359

  7. Locating Damage Using Integrated Global-Local Approach with Wireless Sensing System and Single-Chip Impedance Measurement Device

    PubMed Central

    Hung, Shih-Lin

    2014-01-01

    This study developed an integrated global-local approach for locating damage on building structures. A damage detection approach with a novel embedded frequency response function damage index (NEFDI) was proposed and embedded in the Imote2.NET-based wireless structural health monitoring (SHM) system to locate global damage. Local damage is then identified using an electromechanical impedance- (EMI-) based damage detection method. The electromechanical impedance was measured using a single-chip impedance measurement device which has the advantages of small size, low cost, and portability. The feasibility of the proposed damage detection scheme was studied with reference to a numerical example of a six-storey shear plane frame structure and a small-scale experimental steel frame. Numerical and experimental analysis using the integrated global-local SHM approach reveals that, after NEFDI indicates the approximate location of a damaged area, the EMI-based damage detection approach can then identify the detailed damage location in the structure of the building. PMID:24672359

  8. Electrical impedance measurements in the arm and the leg during a thirty day bed rest study

    NASA Technical Reports Server (NTRS)

    Cardus, David; Jaweed, Mazher; McTaggart, Wesley

    1995-01-01

    The need to detect, follow, and understand the effects of gravity on body fluid distribution is a constant stimulus to the quest for new techniques in this area of research. One of these techniques is electrical bioimpedance spectroscopy (BIS). Although not new, this is a technique whose applications to biomedical research are fairly recent. What is new is the development of instrumentation that has made practical the use of impedance spectroscopy in the biomedical setting, particularly in studies involving human subjects. The purpose of this paper is to report impedance spectroscopy observations made on a subject who was submitted to bed rest for a period of thirty days. These observations were made as part of a study on muscle atrophy during a thirty day head down bed rest. Since bed rest studies are very costly in human and financial terms, and technically difficult to realize, we felt that even though the present study deals only with a single case it was worthy of reporting because it illustrates kinds of questions impedance spectroscopy may help to answer in microgravity research.

  9. Dissection of the Mechanical Impedance Components of the Outer Hair Cell Using a Chloride-Channel Blocker

    NASA Astrophysics Data System (ADS)

    Harasztosi, Csaba; Gummer, Anthony W.

    2011-11-01

    The voltage-dependent chloride-channel blocker anthracene-9-carboxylic acid (9AC) has been found to reduce the imaginary but not the real part of the mechanical impedance of the organ of Corti, suggesting that the effective stiffness of outer hair cells (OHCs) is reduced by 9AC. To examine whether 9AC interacts directly with the motor protein prestin to reduce the membrane component of the impedance, the patch-clamp technique in whole-cell configuration was used to measure the nonlinear capacitance (NLC) of isolated OHCs and, as control, prestin-transfected human embryonic kidney 293 (HEK293) cells. Extracellular application of 9AC significantly reduced the NLC of both OHCs and HEK293 cells. Intracellular 9AC did not influence the blocking effect of the extracellular applied drug. These results suggest that 9AC interacts directly with prestin, reducing the effective stiffness of the motor, and that the interaction is extracellular.

  10. Impedance spectroscopy for the detection and identification of unknown toxins

    NASA Astrophysics Data System (ADS)

    Riggs, B. C.; Plopper, G. E.; Paluh, J. L.; Phamduy, T. B.; Corr, D. T.; Chrisey, D. B.

    2012-06-01

    Advancements in biological and chemical warfare has allowed for the creation of novel toxins necessitating a universal, real-time sensor. We have used a function-based biosensor employing impedance spectroscopy using a low current density AC signal over a range of frequencies (62.5 Hz-64 kHz) to measure the electrical impedance of a confluent epithelial cell monolayer at 120 sec intervals. Madin Darby canine kidney (MDCK) epithelial cells were grown to confluence on thin film interdigitated gold electrodes. A stable impedance measurement of 2200 Ω was found after 24 hrs of growth. After exposure to cytotoxins anthrax lethal toxin and etoposide, the impedance decreased in a linear fashion resulting in a 50% drop in impedance over 50hrs showing significant difference from the control sample (~20% decrease). Immunofluorescent imaging showed that apoptosis was induced through the addition of toxins. Similarities of the impedance signal shows that the mechanism of cellular death was the same between ALT and etoposide. A revised equivalent circuit model was employed in order to quantify morphological changes in the cell monolayer such as tight junction integrity and cell surface area coverage. This model showed a faster response to cytotoxin (2 hrs) compared to raw measurements (20 hrs). We demonstrate that herein that impedance spectroscopy of epithelial monolayers serves as a real-time non-destructive sensor for unknown pathogens.

  11. Effective method to measure back emfs and their harmonics of permanent magnet ac motors

    NASA Astrophysics Data System (ADS)

    Jiang, Q.; Bi, C.; Lin, S.

    2006-04-01

    As the HDD spindle motors become smaller and smaller, the back electromotive forces (emfs) measurement faces the new challenges due to their low inertias and small sizes. This article proposes a novel method to measure the back emfs and their harmonic components of PM ac motors only through a freewheeling procedure. To eliminate the influence of the freewheeling deceleration, the phase flux linkages are employed to obtain the back emf amplitudes and phases of the fundamental and harmonic components by using finite Fourier series analysis. The proposed method makes the freewheeling measurement of the back emfs and their harmonics accurate and fast. It is especially useful for the low inertia PM ac motors, such as spindle motors for small form factor HDDs.

  12. AC magnetic measurements of the ALS Booster Dipole Engineering Model Magnet

    SciTech Connect

    Green, M.I.; Keller, R.; Nelson, D.H.; Hoyer, E.

    1989-03-01

    10 Hz sine wave and 2 Hz sawtooth AC magnetic measurements of he curved ALS Booster Dipole Engineering Model Magnet have been accomplished. Long curved coils were utilized to measure the integral transfer function and uniformity. Point coils and a Hall Probe were used to measure magnetic induction and its uniformity. The data were logged and processed by a Tektronix 11401 digital oscilloscope. The dependence of the effective length on the field was determined from the ratio of the integral coil signals to the point coil signals. Quadrupole and sextupole harmonics were derived from the point and integral uniformity measurements. 5 refs., 4 figs., 2 tabs.

  13. Electron Impedances

    SciTech Connect

    P Cameron

    2011-12-31

    It is only recently, and particularly with the quantum Hall effect and the development of nanoelectronics, that impedances on the scale of molecules, atoms and single electrons have gained attention. In what follows the possibility that characteristic impedances might be defined for the photon and the single free electron is explored is some detail, the premise being that the concepts of electrical and mechanical impedances are relevant to the elementary particle. The scale invariant quantum Hall impedance is pivotal in this exploration, as is the two body problem and Mach's principle.

  14. Direct Measurement of Ab and Ac at the Z0 Pole Using a Lepton Tag

    NASA Astrophysics Data System (ADS)

    Abe, Kenji; Abe, Koya; Abe, T.; Adam, I.; Akagi, T.; Allen, N. J.; Arodzero, A.; Ash, W. W.; Aston, D.; Baird, K. G.; Baltay, C.; Band, H. R.; Barakat, M. B.; Bardon, O.; Barklow, T. L.; Bashindzhagyan, G. L.; Bauer, J. M.; Bellodi, G.; Ben-David, R.; Benvenuti, A. C.; Bilei, G. M.; Bisello, D.; Blaylock, G.; Bogart, J. R.; Bolen, B.; Bower, G. R.; Brau, J. E.; Breidenbach, M.; Bugg, W. M.; Burke, D.; Burnett, T. H.; Burrows, P. N.; Byrne, R. M.; Calcaterra, A.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Chou, A.; Church, E.; Cohn, H. O.; Coller, J. A.; Convery, M. R.; Cook, V.; Cotton, R.; Cowan, R. F.; Coyne, D. G.; Crawford, G.; Damerell, C. J.; Danielson, M. N.; Daoudi, M.; de Groot, N.; dell'Orso, R.; Dervan, P. J.; de Sangro, R.; Dima, M.; D'Oliveira, A.; Dong, D. N.; Doser, M.; Dubois, R.; Eisenstein, B. I.; Eschenburg, V.; Etzion, E.; Fahey, S.; Falciai, D.; Fan, C.; Fernandez, J. P.; Fero, M. J.; Flood, K.; Frey, R.; Gillman, T.; Gladding, G.; Gonzalez, S.; Goodman, E. R.; Hart, E. L.; Harton, J. L.; Hasan, A.; Hasuko, K.; Hedges, S. J.; Hertzbach, S. S.; Hildreth, M. D.; Huber, J.; Huffer, M. E.; Hughes, E. W.; Huynh, X.; Hwang, H.; Iwasaki, M.; Jackson, D. J.; Jacques, P.; Jaros, J. A.; Jiang, Z. Y.; Johnson, A. S.; Johnson, J. R.; Johnson, R. A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Kamyshkov, Y.; Kang, H. J.; Karliner, I.; Kawahara, H.; Kim, Y. D.; King, R.; King, M. E.; Kofler, R. R.; Krishna, N. M.; Kroeger, R. S.; Langston, M.; Lath, A.; Leith, D. W.; Lia, V.; Lin, C.-J. S.; Liu, X.; Liu, M. X.; Loreti, M.; Lu, A.; Lynch, H. L.; Ma, J.; Mahjouri, M.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T. W.; Maruyama, T.; Masuda, H.; Mazzucato, E.; McKemey, A. K.; Meadows, B. T.; Menegatti, G.; Messner, R.; Mockett, P. M.; Moffeit, K. C.; Moore, T. B.; Morii, M.; Muller, D.; Murzin, V.; Nagamine, T.; Narita, S.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Oishi, N.; Onoprienko, D.; Osborne, L. S.; Panvini, R. S.; Park, H.; Park, C. H.; Pavel, T. J.; Peruzzi, I.; Piccolo, M.; Piemontese, L.; Pieroni, E.; Pitts, K. T.; Plano, R. J.; Prepost, R.; Prescott, C. Y.; Punkar, G. D.; Quigley, J.; Ratcliff, B. N.; Reeves, T. W.; Reidy, J.; Reinertsen, P. L.; Rensing, P. E.; Rochester, L. S.; Rowson, P. C.; Russell, J. J.; Saxton, O. H.; Schalk, T.; Schindler, R. H.; Schumm, B. A.; Schwiening, J.; Sen, S.; Serbo, V. V.; Shaevitz, M. H.; Shank, J. T.; Shapiro, G.; Sherden, D. J.; Shmakov, K. D.; Simopoulos, C.; Sinev, N. B.; Smith, S. R.; Smy, M. B.; Snyder, J. A.; Staengle, H.; Stahl, A.; Stamer, P.; Steiner, R.; Steiner, H.; Strauss, M. G.; Su, D.; Suekane, F.; Sugiyama, A.; Suzuki, S.; Swartz, M.; Szumilo, A.; Takahashi, T.; Taylor, F. E.; Thom, J.; Torrence, E.; Toumbas, N. K.; Usher, T.; Vannini, C.; Va'Vra, J.; Vella, E.; Venuti, J. P.; Verdier, R.; Verdini, P. G.; Wagner, S. R.; Wagner, D. L.; Waite, A. P.; Walston, S.; Wang, J.; Ward, C.; Watts, S. J.; Weidemann, A. W.; Weiss, E. R.; Whitaker, J. S.; White, S. L.; Wickens, F. J.; Williams, B.; Williams, D. C.; Williams, S. H.; Willocq, S.; Wilson, R. J.; Wisniewski, W. J.; Wittlin, J. L.; Woods, M.; Word, G. B.; Wright, T. R.; Wyss, J.; Yamamoto, R. K.; Yamartino, J. M.; Yang, X.; Yashima, J.; Yellin, S. J.; Young, C. C.; Yuta, H.; Zapalac, G.; Zdarko, R. W.; Zhou, J.

    1999-10-01

    The parity violation parameters Ab and Ac of the Zbb¯ and Zcc¯ couplings have been measured directly, using the polar angle dependence of the Z0-pole polarized cross sections. Bottom and charmed hadrons were tagged via semileptonic decays. Both the muon and electron identification algorithms take advantage of new multivariate techniques, incorporating for the first time information from the SLD Cˇerenkov Ring Imaging Detector. Based on the 1993-1995 SLD sample of 150 000 Z0 decays produced with highly polarized electron beams, we measure Ab = 0.910+/-0.068\\(stat\\)+/-0.037\\(syst\\), Ac = 0.642+/-0.110\\(stat\\)+/-0.063\\(syst\\).

  15. Measurement of Small Molecule Binding Kinetics on a Protein Microarray by Plasmonic-Based Electrochemical Impedance Imaging

    PubMed Central

    2015-01-01

    We report on a quantitative study of small molecule binding kinetics on protein microarrays with plasmonic-based electrochemical impedance microscopy (P-EIM). P-EIM measures electrical impedance optically with high spatial resolution by converting a surface charge change to a surface plasmon resonance (SPR) image intensity change, and the signal is not scaled to the mass of the analyte. Using P-EIM, we measured binding kinetics and affinity between small molecule drugs (imatinib and SB202190) and their target proteins (kinases Abl1 and p38-α). The measured affinity values are consistent with reported values measured by an indirect competitive binding assay. We also found that SB202190 has weak bindings to ABL1 with KD > 10 μM, which is not reported in the literature. Furthermore, we found that P-EIM is less prone to nonspecific binding, a long-standing issue in SPR. Our results show that P-EIM is a novel method for high-throughput measurement of small molecule binding kinetics and affinity, which is critical to the understanding of small molecules in biological systems and discovery of small molecule drugs. PMID:25153794

  16. Ac hysteresis loop measurement of stator-tooth in induction motor

    SciTech Connect

    Son, D.

    1999-09-01

    The properties of ac hysteresis loop of a stator tooth in a 5 hp induction motor was measured and analyzed. The load increase on the motor decreased magnetic induction, however increase the minor hysteresis loops in the high induction region. This effect caused increase in the core loss. Depending on condition of the motor, the core loss of the stator tooth can be 50% greater than the core loss under sinusoidal magnetic induction waveform.

  17. Microfabricated multi-frequency particle impedance characterization system

    SciTech Connect

    Fuller, C K; Hamilton, J; Ackler, H; Krulevitch, P; Boser, B; Eldredge, A; Becker, F; Yang, J; Gascoyne, P

    2000-03-01

    We have developed a microfabricated flow-through impedance characterization system capable of performing AC, multi-frequency measurements on cells and other particles. The sensor measures both the resistive and reactive impedance of passing particles, at rates of up to 100 particles per second. Its operational bandwidth approaches 10 MHz with a signal-to-noise ratio of approximately 40 dB. Particle impedance is measured at three or more frequencies simultaneously, enabling the derivation of multiple particle parameters. This constitutes an improvement to the well-established technique of DC particle sizing via the Coulter Principle. Human peripheral blood granulocyte radius, membrane capacitance, and cytoplasmic conductivity were measured (r = 4.1 {micro}m, C{sub mem} = 0.9 {micro}F/cm{sup 2}, {sigma}{sub int} = 0.66 S/m) and were found to be consistent with published values.

  18. Measurement of Silicone Rubber Using Impedance Change of a Quartz-Crystal Tuning-Fork Tactile Sensor

    NASA Astrophysics Data System (ADS)

    Itoh, Hideaki; Yamada, Yuuki

    2006-05-01

    Silicone rubber has been investigated experimentally using the impedance change (Δ R) of a quartz-crystal tuning-fork tactile sensor when its base is in contact with the surface of many kinds of rectangular silicone rubber plates in order to discover how viscosity and elasticity of silicone rubber may be separately determined. Eleven silicone rubber plates (the values of the rubber hardness are JIS85, 80, 70, 65, 60, 50, 45, 40, 35, 30, and 20) are investigated in this experiment. Δ R increases linearly according to acoustic impedance ρ C (ρ: density of silicone rubber, C: sound velocity of a longitudinal acoustic wave in silicone rubber). We compare Δ R with ρ C when C is calculated in three cases: in first, C is calculated using Young’s modulus of silicone rubber measured by a tensiometer; in second, using Young’s modulus which is converted by the shear modulus measured by a rotating viscometer using the Poisson ratio of silicone rubber, 0.49; in third, using a complex Young’s modulus which is converted by the complex shear modulus measured by a rotating viscometer. We investigated which case in the three described showed good linearity between Δ R and ρ C. In order to clarify how the longitudinal plane wave generated in the sensor’s base travels into the silicone rubber plate, Δ R is measured when the tactile sensor is in contact with the surface of the rectangular silicone rubber plates of varying thickness and a size.

  19. Bio-impedance detector for Staphylococcus aureus exposed to magnetic fields

    NASA Astrophysics Data System (ADS)

    Younis Yacoob Aldosky, Haval; Barwari, Waleed Jameel Omar; Salih Al-mlaly, Janan M.

    2012-12-01

    Rapid detection of viability and growth of pathogenic microorganisms is very important in many applications such as food and drug production, health care, and national defense. Measurements on the electrical characteristics of cells have been used successfully in the past to detect many different physiological events. The effect of electromagnetic fields on the growth of bacteria (Staphylococcus aureus) was studied with the bio-impedance technique. The growth situations of bacteria in the absence and presence of different intensities of static and alternative magnetic fields were examined and analyzed. The results show that the impedance of bacteria fell in the presence of DC magnetic fields. In contrast the impedance increased when the bacteria were exposed to AC magnetic fields. Based on these results the bacterial growth indicated by the change in the impedance is inhibited under DC magnetic fields and enhanced under AC fields.

  20. Ac-loss measurement of a DyBCO-Roebel assembled coated conductor cable (RACC)

    NASA Astrophysics Data System (ADS)

    Schuller, S.; Goldacker, W.; Kling, A.; Krempasky, L.; Schmidt, C.

    2007-10-01

    Low ac-loss HTS cables for transport currents well above 1 kA are required for application in transformers and generators and are taken into consideration for future generations of fusion reactor coils. Coated conductors (CC) are suitable candidates for high field application at an operation temperature around 50-77 K, which is a crucial precondition for economical cooling costs. We prepared a short length of a Roebel bar cable made of industrial DyBCO coated conductor (Theva Company, Germany). Meander shaped tapes of 4 mm width with a twist pitch of 122 mm were cut from 10 mm wide CC tapes using a specially designed tool. Eleven of these strands were assembled to a cable. The electrical and mechanical connection of the tapes was achieved using a silver powder filled conductive epoxy resin. Ac-losses of a short sample in an external ac field were measured as a function of frequency and field amplitude in transverse and parallel field orientations. In addition, the coupling current time constant of the sample was directly measured.

  1. Impedance measurements on lead-acid batteries for state-of-charge, state-of-health and cranking capability prognosis in electric and hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Blanke, Holger; Bohlen, Oliver; Buller, Stephan; De Doncker, Rik W.; Fricke, Birger; Hammouche, Abderrezak; Linzen, Dirk; Thele, Marc; Sauer, Dirk Uwe

    Various attempts have been made to use impedance measurements for online analysis and offline modelling of lead-acid batteries. This presentation gives an overview on the latest and successful approaches based on impedance measurements to assess state-of-charge (SoC), state-of-health (SoH) and cranking capability of lead-acid batteries. Furthermore, it is shown that impedance data can serve as a basis for dynamic battery models for the simulation of vehicle power-supply systems. The methods and procedures aim for a reliable prediction of battery performance in electric vehicles, hybrid cars and classical automotive applications. Although, it will become obvious that impedance measurements give valuable information on the battery state, typically the information needs to be combined with other conventional algorithms or self-learning tools to achieve reliable and stable results for real-world applications.

  2. Direct measurements of Ab and Ac using vertex and kaon charge tags at the SLAC detector.

    PubMed

    Abe, Koya; Abe, Kenji; Abe, T; Adam, I; Akimoto, H; Aston, D; Baird, K G; Baltay, C; Band, H R; Barklow, T L; Bauer, J M; Bellodi, G; Berger, R; Blaylock, G; Bogart, J R; Bower, G R; Brau, J E; Breidenbach, M; Bugg, W M; Burke, D; Burnett, T H; Burrows, P N; Calcaterra, A; Cassell, R; Chou, A; Cohn, H O; Coller, J A; Convery, M R; Cook, V; Cowan, R F; Crawford, G; Damerell, C J S; Daoudi, M; Dasu, S; de Groot, N; de Sangro, R; Dong, D N; Doser, M; Dubois, R; Erofeeva, I; Eschenburg, V; Etzion, E; Fahey, S; Falciai, D; Fernandez, J P; Flood, K; Frey, R; Hart, E L; Hasuko, K; Hertzbach, S S; Huffer, M E; Huynh, X; Iwasaki, M; Jackson, D J; Jacques, P; Jaros, J A; Jiang, Z Y; Johnson, A S; Johnson, J R; Kajikawa, R; Kalelkar, M; Kang, H J; Kofler, R R; Kroeger, R S; Langston, M; Leith, D W G; Lia, V; Lin, C; Mancinelli, G; Manly, S; Mantovani, G; Markiewicz, T W; Maruyama, T; McKemey, A K; Messner, R; Moffeit, K C; Moore, T B; Morii, M; Muller, D; Murzin, V; Narita, S; Nauenberg, U; Neal, H; Nesom, G; Oishi, N; Onoprienko, D; Osborne, L S; Panvini, R S; Park, C H; Peruzzi, I; Piccolo, M; Piemontese, L; Plano, R J; Prepost, R; Prescott, C Y; Ratcliff, B N; Reidy, J; Reinertsen, P L; Rochester, L S; Rowson, P C; Russell, J J; Saxton, O H; Schalk, T; Schumm, B A; Schwiening, J; Serbo, V V; Shapiro, G; Sinev, N B; Snyder, J A; Staengle, H; Stahl, A; Stamer, P; Steiner, H; Su, D; Suekane, F; Sugiyama, A; Suzuki, A; Swartz, M; Taylor, F E; Thom, J; Torrence, E; Usher, T; Va'vra, J; Verdier, R; Wagner, D L; Waite, A P; Walston, S; Weidemann, A W; Weiss, E R; Whitaker, J S; Williams, S H; Willocq, S; Wilson, R J; Wisniewski, W J; Wittlin, J L; Woods, M; Wright, T R; Yamamoto, R K; Yashima, J; Yellin, S J; Young, C C; Yuta, H

    2005-03-11

    Exploiting the manipulation of the SLAC Linear Collider electron-beam polarization, we present precise direct measurements of the parity-violation parameters A(c) and A(b) in the Z-boson-c-quark and Z-boson-b-quark coupling. Quark-antiquark discrimination is accomplished via a unique algorithm that takes advantage of the precise SLAC Large Detector charge coupled device vertex detector, employing the net charge of displaced vertices as well as the charge of kaons that emanate from those vertices. From the 1996-1998 sample of 400 000 Z decays, produced with an average beam polarization of 73.4%, we find A(c)=0.673+/-0.029(stat)+/-0.023(syst) and A(b)=0.919+/-0.018(stat)+/-0.017(syst). PMID:15783953

  3. Direct Detection of Pure ac Spin Current by X-Ray Pump-Probe Measurements.

    PubMed

    Li, J; Shelford, L R; Shafer, P; Tan, A; Deng, J X; Keatley, P S; Hwang, C; Arenholz, E; van der Laan, G; Hicken, R J; Qiu, Z Q

    2016-08-12

    Despite recent progress in spin-current research, the detection of spin current has mostly remained indirect. By synchronizing a microwave waveform with synchrotron x-ray pulses, we use the ferromagnetic resonance of the Py (Ni_{81}Fe_{19}) layer in a Py/Cu/Cu_{75}Mn_{25}/Cu/Co multilayer to pump a pure ac spin current into the Cu_{75}Mn_{25} and Co layers, and then directly probe the spin current within the Cu_{75}Mn_{25} layer and the spin dynamics of the Co layer by x-ray magnetic circular dichroism. This element-resolved pump-probe measurement unambiguously identifies the ac spin current in the Cu_{75}Mn_{25} layer. PMID:27563981

  4. Direct Detection of Pure ac Spin Current by X-Ray Pump-Probe Measurements

    NASA Astrophysics Data System (ADS)

    Li, J.; Shelford, L. R.; Shafer, P.; Tan, A.; Deng, J. X.; Keatley, P. S.; Hwang, C.; Arenholz, E.; van der Laan, G.; Hicken, R. J.; Qiu, Z. Q.

    2016-08-01

    Despite recent progress in spin-current research, the detection of spin current has mostly remained indirect. By synchronizing a microwave waveform with synchrotron x-ray pulses, we use the ferromagnetic resonance of the Py (Ni81Fe19 ) layer in a Py /Cu /Cu75Mn25/Cu /Co multilayer to pump a pure ac spin current into the Cu75Mn25 and Co layers, and then directly probe the spin current within the Cu75Mn25 layer and the spin dynamics of the Co layer by x-ray magnetic circular dichroism. This element-resolved pump-probe measurement unambiguously identifies the ac spin current in the Cu75Mn25 layer.

  5. Synthesis of solid solutions of Dy xBi 2-xO 3 with x=0, 1 and 2: Structural, optical and ac impedance analysis

    NASA Astrophysics Data System (ADS)

    Iyyapushpam, S.; Chithra lekha, P.; Pathinettam Padiyan, D.

    2010-01-01

    Dysprosium hydroxide, bismuth hydroxide and mixed dysprosium bismuth hydroxide are prepared in the form of a gel by means of chemical precipitation technique. A simple gel to crystalline conversion technique has been followed by means of refluxing process. The synthesized hydroxides are characterized by thermogravimetry and differential thermal analysis. The formed hydroxides are converted into its oxides by calcining at a temperature of 700 °C for 2 h and solid solutions of Dy xBi 2-xO 3 with x=0, 1 and 2 are formed. The hydroxides and oxides of these solid solutions are investigated by means of XRD and found to be polycrystalline in nature. The Nyquist plot shows a single relaxation process. The enhanced conductivity is observed in dysprosium-based oxides and hydroxides. The optical band gap energy is in agreement with the ac conductivity values.

  6. Overview Of Impedance Sensors

    NASA Astrophysics Data System (ADS)

    Abele, John E.

    1989-08-01

    Electrical impedance has been one of the many "tools of great promise" that physicians have employed in their quest to measure and/or monitor body function or physiologic events. So far, the expectations for its success have always exceeded its performance. In simplistic terms, physiologic impedance is a measure of the resistance in the volume between electrodes which changes as a function of changes in that volume, the relative impedance of that volume, or a combination of these two. The history and principles of electrical impedance are very nicely reviewed by Geddes and Baker in their textbook "Principles of Applied Biomedical Instrumentation". It is humbling, however, to note that Cremer recorded variations in electrical impedance in frog hearts as early as 1907. The list of potential applications includes the measurement of thyroid function, estrogen activity, galvanic skin reflex, respiration, blood flow by conductivity dilution, nervous activity and eye movement. Commercial devices employing impedance have been and are being used to measure respiration (pneumographs and apneamonitors), pulse volume (impedance phlebographs) and even noninvasive cardiac output.

  7. Measurement of Two-Phase Flow Fields by Application of Dynamic Electrical Impedance Imaging

    SciTech Connect

    Kim, KyungYoun; Kang, Sook In; Kim, Ho Chan; Kim, Sin; Lee, Yoon Joon; Kim, Min Chan; Anghaie, Samim

    2002-07-01

    This study presents a visualization technique for the phase distribution in a two-phase flow field with an electrical impedance imaging technique, which reconstructs the resistivity distribution with electrical responses that are determined by corresponding excitations. Special emphasis is placed on the development of dynamic imaging technique for two-phase system undergoing a rapid transient, which could not be visualized with conventional static imaging techniques. The proposed algorithm treats the image reconstruction problem as a nonlinear state estimation problem and the unknown state (resistivity distribution, i.e. phase distribution) is estimated with the aid of a Kalman filter in a minimum mean square error sense. Several illustrative examples with computer simulations are successfully provided to verify the reconstruction performance of the proposed algorithm. (authors)

  8. Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects.

    PubMed

    Tittl, Andreas; Harats, Moshe G; Walter, Ramon; Yin, Xinghui; Schäferling, Martin; Liu, Na; Rapaport, Ronen; Giessen, Harald

    2014-10-28

    Plasmonic devices with absorbance close to unity have emerged as essential building blocks for a multitude of technological applications ranging from trace gas detection to infrared imaging. A crucial requirement for such elements is the angle independence of the absorptive performance. In this work, we develop theoretically and verify experimentally a quantitative model for the angular behavior of plasmonic perfect absorber structures based on an optical impedance matching picture. To achieve this, we utilize a simple and elegant k-space measurement technique to record quantitative angle-resolved reflectance measurements on various perfect absorber structures. Particularly, this method allows quantitative reflectance measurements on samples where only small areas have been nanostructured, for example, by electron-beam lithography. Combining these results with extensive numerical modeling, we find that matching of both the real and imaginary parts of the optical impedance is crucial to obtain perfect absorption over a large angular range. Furthermore, we successfully apply our model to the angular dispersion of perfect absorber geometries with disordered plasmonic elements as a favorable alternative to current array-based designs. PMID:25251075

  9. Recent Advances in AC-DC Transfer Measurements Using Thin-Film Thermal Converters

    SciTech Connect

    WUNSCH,THOMAS F.; KINARD,JOSEPH R.; MANGINELL,RONALD P.; LIPE,THOMAS E.; SOLOMON JR.,OTIS M.; JUNGLING,KENNETH C.

    2000-12-08

    New standards for ac current and voltage measurements, thin-film multifunction thermal converters (MJTCS), have been fabricated using thin-film and micro-electro-mechanical systems (MEMS) technology. Improved sensitivity and accuracy over single-junction thermoelements and targeted performance will allow new measurement approaches in traditionally troublesome areas such as the low frequency and high current regimes. A review is presented of new microfabrication techniques and packaging methods that have resulted from a collaborative effort at Sandia National Laboratories and the National Institute of Standards and Technology (MHZ).

  10. Towards a graphene-based quantum impedance standard

    SciTech Connect

    Kalmbach, C.-C.; Schurr, J. Ahlers, F. J.; Müller, A.; Novikov, S.; Lebedeva, N.; Satrapinski, A.

    2014-08-18

    Precision measurements of the quantum Hall resistance with alternating current (ac) in the kHz range were performed on epitaxial graphene in order to assess its suitability as a quantum standard of impedance. The quantum Hall plateaus measured with alternating current were found to be flat within one part in 10{sup 7}. This is much better than for plain GaAs quantum Hall devices and shows that the magnetic-flux-dependent capacitive ac losses of the graphene device are less critical. The observed frequency dependence of about −8 × 10{sup −8}/kHz is comparable in absolute value to the positive frequency dependence of plain GaAs devices, but the negative sign is attributed to stray capacitances which we believe can be minimized by a careful design of the graphene device. Further improvements thus may lead to a simpler and more user-friendly quantum standard for both resistance and impedance.

  11. Microwave surface impedance measurements of LiFeAs and LiFe(As,P) single crystals

    NASA Astrophysics Data System (ADS)

    Imai, Y.; Takahashi, H.; Okada, T.; Maeda, A.; Kitagawa, K.; Matsubayashi, K.; Takigawa, M.; Uwatoko, Y.; Nakai, N.; Nagai, Y.; Machida, M.

    2011-03-01

    We report results of microwave surface impedance measurements in LiFeAs and LiFe(As,P) single crystals [1]. These crystals were grown by self-flux method. The surface impedances of crystals were measured by a cavity perturbation technique. The in-plane penetration depth calculated from the surface reactance shows an exponential temperature dependence at low temperatures in both of LiFeAs and LiFe(As,P). This indicates that these materials do not have any nodes in the superconducting gap. The temperature dependence of the superfluid density indicates that LiFeAs and LiFe(As,P) are multi-gap superconductors with at least two isotropic gaps. In addition, the real part of complex conductivity exhibits an enhancement below Tc , which is different from the so-called coherence peak. This is due to the rapid increase of the relaxation time of the quasiparticle below Tc . We believe that this enhancement is rather common to all superconductors where an inelastic scattering is dominant above Tc , irrespective of the strength of the electron correlation. [ 1 ] Y. Imai et al . , J. Phys. Soc. Jpn, in - press .(arXiv: 1009.4628.)

  12. A wide-frequency range AC magnetometer to measure the specific absorption rate in nanoparticles for magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Garaio, E.; Collantes, J. M.; Garcia, J. A.; Plazaola, F.; Mornet, S.; Couillaud, F.; Sandre, O.

    2014-11-01

    Measurement of specific absorption rate (SAR) of magnetic nanoparticles is crucial to assert their potential for magnetic hyperthermia. To perform this task, calorimetric methods are widely used. However, those methods are not very accurate and are difficult to standardize. In this paper, we present AC magnetometry results performed with a lab-made magnetometer that is able to obtain dynamic hysteresis-loops in the AC magnetic field frequency range from 50 kHz to 1 MHz and intensities up to 24 kA m-1. In this work, SAR values of maghemite nanoparticles dispersed in water are measured by AC magnetometry. The so-obtained values are compared with the SAR measured by calorimetric methods. Both measurements, by calorimetry and magnetometry, are in good agreement. Therefore, the presented AC magnetometer is a suitable way to obtain SAR values of magnetic nanoparticles.

  13. Theory of the ac spin valve effect: a new method to measure spin relaxation time

    NASA Astrophysics Data System (ADS)

    Kochan, Denis; Gmitra, Martin; Fabian, Jaroslav

    2012-02-01

    Parallel (P) and antiparallel (AP) configurations of FNF junctions have, in a dc regime, different resistivities (RAP>RP), giving rise to the giant magnetoresistance (GMR) effect, which can be explained within the spin injection drift-diffusion model. We extend the model to include ac phenomena and predict new spin dynamical phenomenon; the resonant amplification and depletion of spin accumulation in the P and AP configurations, respectively. As the major new effect, the spin valve magnetoimpedance of the FNF junction oscillates with the driving ac frequency, which leads to negative GMR effect (|ZAP|<|ZP|). We show that from the spin-valve oscillation periods, measured all electrically in the GHz regime, the spin relaxation times could be extracted without any magnetic field and sample size changes (contrary to other techniques). For thin tunnel junctions the ac signal becomes pure Lorentzian, also enabling one to obtain the spin relaxation time of the N region from the signal width. This work, was published in Physical Review Letters,10, 176604 (2011).

  14. Characterization of protein-immobilized polystyrene nanoparticles using impedance spectroscopy.

    PubMed

    Park, Soo-In; Lee, Sang-Yup

    2014-10-01

    A novel approach for characterization of non-conductive protein-immobilized nanoparticles using AC impedance spectroscopy combined with conductive atomic force microscopy was examined. As AC impedance spectroscopy can provide information on diverse electrical properties such as capacitance and inductance, it is applicable to the characterization of non-conductive substances. Several non-conductive protein-immobilized polystyrene nanoparticles were analyzed using AC impedance spectroscopy, and their impedance spectra were used as markers for nanoparticle identification. Analyses of impedance signals using an electrical circuit model established that the capacitance and inductance of each nanoparticle changed with the adsorbed protein and that impedance spectral differences were characteristic properties of the proteins. From this study, AC impedance spectroscopy was shown to be a useful tool for characterization of non-conductive nanoparticles and is expected to be applicable to the development of sensors for nanomaterials. PMID:25942903

  15. Broadband 120 MHz Impedance Quartz Crystal Microbalance (QCM) with Calibrated Resistance and Quantitative Dissipation for Biosensing Measurements at Higher Harmonic Frequencies

    PubMed Central

    Kasper, Manuel; Traxler, Lukas; Salopek, Jasmina; Grabmayr, Herwig; Ebner, Andreas; Kienberger, Ferry

    2016-01-01

    We developed an impedance quartz crystal microbalance (QCM) approach with the ability to simultaneously record mass changes and calibrated energy dissipation with high sensitivity using an impedance analyzer. This impedance QCM measures frequency shifts and resistance changes of sensing quartz crystals very stable, accurately, and calibrated, thus yielding quantitative information on mass changes and dissipation. Resistance changes below 0.3 Ω were measured with corresponding dissipation values of 0.01 µU (micro dissipation units). The broadband impedance capabilities allow measurements between 20 Hz and 120 MHz including higher harmonic modes of up to 11th order for a 10 MHz fundamental resonance frequency quartz crystal. We demonstrate the adsorbed mass, calibrated resistance, and quantitative dissipation measurements on two biological systems including the high affinity based avidin-biotin interaction and nano-assemblies of polyelectrolyte layers. The binding affinity of a protein-antibody interaction was determined. The impedance QCM is a versatile and simple method for accurate and calibrated resistance and dissipation measurements with broadband measurement capabilities for higher harmonics measurements. PMID:27231946

  16. Broadband 120 MHz Impedance Quartz Crystal Microbalance (QCM) with Calibrated Resistance and Quantitative Dissipation for Biosensing Measurements at Higher Harmonic Frequencies.

    PubMed

    Kasper, Manuel; Traxler, Lukas; Salopek, Jasmina; Grabmayr, Herwig; Ebner, Andreas; Kienberger, Ferry

    2016-01-01

    We developed an impedance quartz crystal microbalance (QCM) approach with the ability to simultaneously record mass changes and calibrated energy dissipation with high sensitivity using an impedance analyzer. This impedance QCM measures frequency shifts and resistance changes of sensing quartz crystals very stable, accurately, and calibrated, thus yielding quantitative information on mass changes and dissipation. Resistance changes below 0.3 Ω were measured with corresponding dissipation values of 0.01 µU (micro dissipation units). The broadband impedance capabilities allow measurements between 20 Hz and 120 MHz including higher harmonic modes of up to 11th order for a 10 MHz fundamental resonance frequency quartz crystal. We demonstrate the adsorbed mass, calibrated resistance, and quantitative dissipation measurements on two biological systems including the high affinity based avidin-biotin interaction and nano-assemblies of polyelectrolyte layers. The binding affinity of a protein-antibody interaction was determined. The impedance QCM is a versatile and simple method for accurate and calibrated resistance and dissipation measurements with broadband measurement capabilities for higher harmonics measurements. PMID:27231946

  17. RF Surface Impedance Measurement of Polycrystalline and Large Grain Nb Disk Sample at 7.5 GHz

    SciTech Connect

    Xiao, Binping; Geng, Rongli; Kelley, Michael J.; Marhauser, Frank; Phillips, H. Larry; Reece, Charles E.; Wang, Haipeng

    2009-11-01

    A Surface Impedance Characterization (SIC) system has been proposed at the 2005 SRF workshop and recently updated as detailed at the 2009 PAC conference. Currently the SIC system can measure samples in a temperature range from 2K to 20K exposed to an RF magnetic flux density of less than 3mT. We report on new results of a BCP etched large grain Nb sample measured with this system as compared with previous results of a BCP etched polycrystalline Nb sample. The design of an upgraded SIC system for use at higher magnetic flux densities is on the way to more efficiently investigate correlations between local material characteristics and associated SRF properties, both for preparation studies of bulk niobium and also new thin film SRF developments.

  18. Evaluation of bioelectrical impedance analysis (BIA) to measure condition and energy allocated to reproduction in marine fishes

    NASA Astrophysics Data System (ADS)

    Fitzhugh, G. R.; Wuenschel, M. J.; McBride, R. S.

    2010-04-01

    Reliable estimates of fish energy density at specific times prior to spawning may provide suitable proxies for egg production, and thereby help to explain some of the observed annual variation in recruits per spawner. Our goal is to develop and test modifications of BIA technology to measure energy allocation to reproduction for a variety of marine fishes. To date, a newly developed measuring board and probe system stabilized readings, which was demonstrated by a significant reduction in the coefficients of variation for impedance measures. Total body water, wet and dry weights could be predicted with very good precision (r2 = 0.92-0.99) using BIA measures of reactance or resistance for a number of finfish species. While constituent relationships (e.g. body water- body mass functions) did not differ seasonally, we did find that BIA measures are sensitive to body composition changes related to the seasonal spawning cycle. In an examination of monthly samples of tilefish, phase angle decreased below 15° in post-spawning (regressed) females. Such a monthly trend, which suggests available energy had decreased following the spawning season, was not evident from other, more traditional measures of condition including body-muscle water content, Fulton's K or ordinal measures of fat deposition (such as mesenteric fat). These preliminary results show that BIA technology is a promising application for tracking and efficiently predicting energetic condition of marine fishes.

  19. AC hot wire measurement of thermophysical properties of nanofluids with 3ω method

    NASA Astrophysics Data System (ADS)

    Turgut, A.; Sauter, C.; Chirtoc, M.; Henry, J. F.; Tavman, S.; Tavman, I.; Pelzl, J.

    2008-01-01

    We present a new application of a hot wire sensor for simultaneous and independent measurement of thermal conductivity k and diffusivity α of (nano)fluids, based on a hot wire thermal probe with ac excitation and 3 ω lock-in detection. The theoretical modeling of imaginary part of the signal yields the k value while the phase yields the α value. Due to modulated heat flow in cylindrical geometry with a radius comparable to the thermal diffusion length, the necessary sample quantity is kept very low, typically 25 μl. In the case of relative measurements, the resolution is 0.1% in k and 0.3% in α. Measurements of water-based Aerosil 200V nanofluids indicate that ultrasound treatment is more efficient than high pressure dispersion method in enhancing their thermal parameters.

  20. An AC constant-response method for electrophysiological measurements of spectral sensitivity functions.

    PubMed

    de Souza, J M; DeVoe, R D; Schoeps, C; Ventura, D F

    1996-10-01

    A number of methods have been used in the past to measure spectral sensitivity (S(lambda)) functions of electric responses in the visual system. We present here a microcomputer based, AC, constant-response method for automatic on-line measurement of S(lambda) in cells with or without a sustained tonic response. It is based on feedback adjustment of light intensity to obtain constant peak-to-peak amplitudes of response to a flickering stimulus as the spectrum is scanned between 300 and 700 nm in 4 nm steps. It combines the advantages of: (1) on-line presentation of S(lambda) curves; (2) constant light adaptation; (3) sampling of many points; and (4) fast data collection time. The system can be applied to sensitivity or threshold (e.g., S(lambda), dark adaptation, receptive field) measurements of any electrically recorded visual response. PMID:8912193

  1. Measurement of the axial force during primary peristalsis in the oesophagus using a novel electrical impedance technology.

    PubMed

    Gravesen, F H; McMahon, B P; Drewes, A M; Gregersen, H

    2008-03-01

    The oesophagus serves to transport food and fluid from the pharynx to the stomach. Oesophageal function is usually evaluated by means of manometry which is a proxy of the force in the radial direction. However, force measurements in the axial direction will provide a better measure of oesophageal transport function. The aim of this study was to develop a probe based on electrical impedance measurements to quantify the axial force generated by oesophageal contractions, i.e. probe elongation was associated with the axial force. Calibration with weights up to 200 g was done. The dispersion, creep, temperature and bending dependence were studied at the bench. Subsequently, the probe was tested in vivo in a healthy human volunteer. The probe showed good reproducibility and the dispersion was <0.04. Some dependence on temperature, creep and bending was found. Interpolation of the calibration curves made it possible to compensate for temperature fluctuations. The maximum deviation was 6.1 +/- 3.7% at loads of 50 g. The influence of creep showed a maximum net creep of 6.1 g after 8 s. The swallowed bolus size correlated with the axial force measurements (P = 0.038) but not with manometric measurements. In conclusion, the new technique measures axial force in the oesophagus and may in the future provide valuable information about oesophageal function. PMID:18367813

  2. Measurement and calculation of individual head-related transfer functions using a boundary element model including the measurement and effect of skin and hair impedance

    NASA Astrophysics Data System (ADS)

    Katz, Brian Fredrick Gray

    1998-12-01

    This research investigates various aspects of the Head- Related Transfer Function (HRTF), which is a description of the acoustic frequency filtering performed by the geometry of the head as a function of incident angle. The effects of this filtering are used in the brain to determine the location of sound sources in space. Initially, various methods for measuring the HRTF are examined, as well as several means of normalizing or equalizing the data. One method is chosen which best represents the informational content of the measured data for comparisons between experimental methods. The question as to whether the acoustic properties of skin and hair contribute to the HRTF is also examined. Measurements are made of the acoustic absorption and impedance of various skin and hair samples using a plane wave tube and two microphones. The limitations of this technique and published standards are also included. Finally, an individual HRTF is calculated using an optically generated surface mesh and a numerical boundary element (BEM) solution. The results of the impedance measurements are included in the calculations. Final analysis consists of comparing the various calculated HRTFs and measured HRTFs. Geometric variations in the head mesh such as removal of the pinna are also included. Good agreement is found given the assumptions made in the generation of the computational model (i.e. lack of torso) throughout the frequency range of the model, which extends from 1-6 kHz. Computational speed and size of the numerical problem limit the work to this region.

  3. Verification of three-microphone impedance tube method for measurement of transmission loss in aerogels

    NASA Astrophysics Data System (ADS)

    Connick, Robert J.

    Accurate measurement of normal incident transmission loss is essential for the acoustic characterization of building materials. In this research, a method of measuring normal incidence sound transmission loss proposed by Salissou et al. as a complement to standard E2611-09 of the American Society for Testing and Materials [Standard Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method (American Society for Testing and Materials, New York, 2009)] is verified. Two sam- ples from the original literature are used to verify the method as well as a Filtros RTM sample. Following the verification, several nano-material Aerogel samples are measured.

  4. The Reliability of Pharyngeal High Resolution Manometry with Impedance for Derivation of Measures of Swallowing Function in Healthy Volunteers

    PubMed Central

    Omari, Taher I.; Savilampi, Johanna; Kokkinn, Karmen; Schar, Mistyka; Lamvik, Kristin; Doeltgen, Sebastian; Cock, Charles

    2016-01-01

    Purpose. We evaluated the intra- and interrater agreement and test-retest reliability of analyst derivation of swallow function variables based on repeated high resolution manometry with impedance measurements. Methods. Five subjects swallowed 10 × 10 mL saline on two occasions one week apart producing a database of 100 swallows. Swallows were repeat-analysed by six observers using software. Swallow variables were indicative of contractility, intrabolus pressure, and flow timing. Results. The average intraclass correlation coefficients (ICC) for intra- and interrater comparisons of all variable means showed substantial to excellent agreement (intrarater ICC 0.85–1.00; mean interrater ICC 0.77–1.00). Test-retest results were less reliable. ICC for test-retest comparisons ranged from slight to excellent depending on the class of variable. Contractility variables differed most in terms of test-retest reliability. Amongst contractility variables, UES basal pressure showed excellent test-retest agreement (mean ICC 0.94), measures of UES postrelaxation contractile pressure showed moderate to substantial test-retest agreement (mean Interrater ICC 0.47–0.67), and test-retest agreement of pharyngeal contractile pressure ranged from slight to substantial (mean Interrater ICC 0.15–0.61). Conclusions. Test-retest reliability of HRIM measures depends on the class of variable. Measures of bolus distension pressure and flow timing appear to be more test-retest reliable than measures of contractility. PMID:27190520

  5. Time-resolved Measurements of Spontaneous Magnetic Deflagration of Mn12 tBuAc

    NASA Astrophysics Data System (ADS)

    Chen, Yizhang; Kent, A. D.; Zhang, Qing; Sarachik, M. P.; Baker, M. L.; Garanin, D. A.; Mhesn, Najah; Lampropoulos, Christos

    Magnetic deflagration in molecular magnets has been triggered by heat pulses and acoustic waves. In this work we report spontaneous magnetic deflagration (i.e. deflagration that occurs without an external trigger) in the axially symmetric single molecule magnet Mn12 tBuAc . Magnetic hysteresis measurements show steps due to resonant quantum tunneling (RQT) below 1K, confirming the spin-Hamiltonian parameters for this material and previous results. Deflagration speeds measured with a newly constructed higher bandwidth (2MHz) setup will be presented as a function of transverse and longitudinal fields Hx ⊗Hz both on and off resonance. A large increase in front velocity near RQT steps is observed in experiments with swept transverse fields and will be discussed in light of models of deflagration. Work supported by NSF-DMR-1309202 (NYU); ARO W911NF-13-1-0125 (CCNY); DMR-1161571(Lehman); Cottrell College Science Award (UNF).

  6. Test Results of the AC Field Measurements of Fermilab Booster Corrector Magnets

    SciTech Connect

    DiMarco, E.Joseph; Harding, D.J.; Kashikhin, V.S.; Kotelnikov, S.K.; Lamm, M.J.; Makulski, A.; Nehring, R.; Orris, D.F.; Schlabach, P.; Sylvester, C.; Tartaglia, Michael Albert; /Fermilab

    2008-06-25

    Multi-element corrector magnets are being produced at Fermilab that enable correction of orbits and tunes through the entire cycle of the Booster, not just at injection. The corrector package includes six different corrector elements--normal and skew orientations of dipole, quadrupole, and sextupole--each independently powered. The magnets have been tested during typical AC ramping cycles at 15Hz using a fixed coil system to measure the dynamic field strength and field quality. The fixed coil is comprised of an array of inductive pick-up coils around the perimeter of a cylinder which are sampled simultaneously at 100 kHz with 24-bit ADC's. The performance of the measurement system and a summary of the field results are presented and discussed.

  7. PROGRESS REPORT. HIGH-FREQUENCY ELECTROMAGNETIC IMPEDANCE MEASUREMENTS FOR CHARACTERIZATION, MONITORING, AND VERIFICATION EFFORTS

    EPA Science Inventory

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordnance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequenci...

  8. Spectral Measurements from the Optical Emission of the A.C. Plasma Anemometer

    NASA Astrophysics Data System (ADS)

    Matlis, Eric; Marshall, Curtis; Corke, Thomas; Gogineni, Sivaram

    2015-11-01

    The optical emission properties of a new class of AC-driven flow sensors based on a glow discharge (plasma) is presented. These results extend the utility of the plasma sensor that has recently been developed for measurements in high-enthalpy flows. The plasma sensor utilizes a high frequency (1MHz) AC discharge between two electrodes as the main sensing element. The voltage drop across the discharge correlates to changes in the external flow which can be calibrated for mass-flux (ρU) or pressure depending on the design of the electrodes and orientation relative to the free-stream flow direction. Recent experiments examine the potential for spectral analysis of the optical emission of the discharge to provide additional insight to the flow field. These experiments compare the optical emission of the plasma to emission from breakdown due to an ND:YAG laser. The oxygen 777.3 nm band in particular is a focus of interest as a marker for the determination of gas density.

  9. Optically stimulated differential impedance spectroscopy

    DOEpatents

    Maxey, Lonnie C; Parks, II, James E; Lewis, Sr., Samuel A; Partridge, Jr., William P

    2014-02-18

    Methods and apparatuses for evaluating a material are described. Embodiments typically involve use of an impedance measurement sensor to measure the impedance of a sample of the material under at least two different states of illumination. The states of illumination may include (a) substantially no optical stimulation, (b) substantial optical stimulation, (c) optical stimulation at a first wavelength of light, (d) optical stimulation at a second wavelength of light, (e) a first level of light intensity, and (f) a second level of light intensity. Typically a difference in impedance between the impedance of the sample at the two states of illumination is measured to determine a characteristic of the material.

  10. Simple uniaxial pressure device for ac-susceptibility measurements suitable for closed cycle refrigerator system.

    PubMed

    Arumugam, S; Manivannan, N; Murugeswari, A

    2007-06-01

    A simple design of the uniaxial pressure device for the measurement of ac-susceptibility at low temperatures using closed cycle refrigerator system is presented for the first time. This device consists of disc micrometer, spring holder attachment, uniaxial pressure cell, and the ac-susceptibility coil wound on stycast bobbin. It can work under pressure till 0.5 GPa and at the temperature range of 30-300 K. The performance of the system at ambient pressure is tested and calibrated with standard paramagnetic salts [Gd(2)O(3), Er(2)O(3), and Fe(NH(4)SO(4))(2)6H(2)O], Fe(3)O(4), Gd metal, Dy metal, superconductor (YBa(2)Cu(3)O(7)), manganite (La(1.85)Ba(0.15)MnO(3)), and spin glass material (Pr(0.8)Sr(0.2)MnO(3)). The performance of the uniaxial pressure device is demonstrated by investigating the uniaxial pressure dependence of La(1.85)Ba(0.15)MnO(3) single crystal with P||c axis. The Curie temperature (T(c)) decreases as a function of pressure with P||c axis (dT(c)dP(||c axis)=-11.65 KGPa) up to 46 MPa. The design is simple, is user friendly, and does not require pressure calibration. Measurement can even be made on thin and small size oriented crystals. The failure of the coil is remote under uniaxial pressure. The present setup can be used as a multipurpose uniaxial pressure device for the measurement of Hall effect and thermoelectric power with a small modification in the pressure cell. PMID:17614625

  11. The routine measurement of platelet volume: a comparison of aperture-impedance and flow cytometric systems.

    PubMed

    Reardon, D M; Hutchinson, D; Preston, F E; Trowbridge, E A

    1985-01-01

    The effect of dipotassium ethylenediaminetetraaceticacid (EDTA) on the platelet count and mean volume (MPV) was evaluated using two routine measurement systems, a Coulter S Plus Phase 1 (S+) and a Technicon H6000 (H6000). In normal subjects (n = 29) MPV increased by 17% during 39 h storage in EDTA when measured by the S+. In contrast MPV decreased by 22% when measured by the H6000. MPV differences of up to 40% were observed between the two systems. Concomitant platelet counts, in both systems, changed by less than 4%. Using the anticoagulant sodium citrate and prostaglandin E1 (Na-citrate/PGE1 there were no significant changes in MPV measured by the S+ during 7 h storage, although a linear decrease in platelet count was observed. A decrease in H6000 MPV was observed whether the blood was stored in EDTA or Na-citrate/PGE1. Methodology, anticoagulation and storage time all influence MPV. Until these determinants are standardized the clinical value of MPV cannot be assessed. PMID:3935360

  12. In vivo measurements of structure/electrode position changes during respiration for Electrical Impedance Tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Qin, Lihong; Allen, Tadashi; Patterson, Robert

    2010-04-01

    For pulmonary applications of EIT systems, the electrodes are placed around the chest in a 2D ring, and the images are reconstructed based on the assumptions that the object is rigid and the measured resistivity change in EIT images is only caused by the actual resistivity change of tissue. Structural changes are rarely considered. Previous studies have shown that structural changes which result in tissue/organ and electrode position change tend to introduce artifacts to EIT images of the thorax. Since EIT reconstruction is an ill-posed inverse problem, any inaccurate assumptions of object may cause large artifacts in reconstructed images. Accurate information on structure/electrode position changes is necessary to understand factors contributing to the measured resistivity changes and to improve EIT reconstruction algorithm. In this study, in vivo structure/electrode position changes from a healthy male volunteer are investigated during respiration cycle at two levels, the nipple line level and the level approximately 5 cm below. For each level, sixteen fiduciary markers are equally spaced around the surface, the same as the electrode placement for EIT measurements. A MR scanner with respiration-gated ability is used to acquire images of the thorax. MR thoracic images are prospectively acquired corresponding temporally to specific time periods within respiration cycle (FRC, mid tidal volume, tidal volume). The chest expansions in anterior-posterior and lateral directions and inside tissue/organ position changes are then analyzed. The electrode position changes corresponding to different phases of respiration cycle are also measured.

  13. [Anorexia nervosa: bioelectrical impedance analysis in body composition measurement during hospitalization].

    PubMed

    Van Leer, M; Leistedt, S J; Linkowski, P; Simon, Y

    2013-01-01

    Monitoring parameters for anorexia nervosa include clinical, biological and psychological factors. Many research groups are currently trying to identify parameters more likely to predict the severity or the evolution of the illness. Body composition has been proposed as one of those parameters. The aim of the present study is to demonstrate that measures of body composition are more accurate and efficient than the use of body composition index (BMI). We also aim to show that body composition could be used as a prognostic factor in the long-term evolution of patients with anorexia nervosa. It's a retrospective study investigating body composition and BMI in 44 patients treated in a specialized unit for eating disorder. Measures of body composition and BMI were gathered at the time of admission and again 3 months after refeeding onset. Data was correlated to the EDI-2 questionnaire scores. BMI and %FM where found to be increased (P < 0.05) between admission and after 3 months refeeding. The double objective of reaching a BMI value > or = 20 kg/m2 and a %FM value > or = 2% was achieved by 22% of patients. No significant correlation was found between EDI-2 scores and measures of BMI and %FM either on admission or after the 3 months refeeding period. In conclusion, results of our study don't allow concluding for a prognostic superiority of %FM. Nonetheless, BMI currently used as a reference for the monitoring of eating disorders patients seems to lack sensitivity where measures of body composition seem more informative regarding nutritional status. Furthermore, fat mass plays an important role in other clinical manifestations. In addition, measures of body composition should allow more individualised therapeutic support. PMID:24505865

  14. A detailed comparison of antenna impedance measurements on ASDEX Upgrade with the ion cyclotron range of frequencies antenna code TOPICA

    NASA Astrophysics Data System (ADS)

    Stepanov, I.; Noterdaeme, J.-M.; Bobkov, V.; Faugel, H.; Coster, D.; Milanesio, D.; Maggiora, R.; Siegl, G.; Bilato, R.; Brambilla, M.; Verdoolaege, G.; Braun, F.; Fünfgelder, H.; D'Inca, R.; Suttrop, W.; Kallenbach, A.; Schweinzer, J.; Wolfrum, E.; Fischer, R.; Mlynek, A.; Nikolaeva, V.; Guimarais, L.; the ASDEX Upgrade Team

    2015-09-01

    New antenna diagnostics on the ASDEX Upgrade, in the form of voltage and current probe pairs on the feeding lines of each ion cyclotron range of frequencies antenna, close to the input ports, have made it possible to study in detail the behavior of the ASDEX Upgrade two-strap antenna under changing loading conditions, and compare these measurements with the results of simulations using the TOPICA code. The present work extends previous studies by using the input impedance (more precisely, the complex voltage reflection coefficient Γ ) on each antenna port for comparison, instead of the more commonly used loading resistance or coupled power. The electron density profiles used for the simulation were reconstructed from the deuterium-carbon-nitrogen interferometer and lithium beam emission spectroscopy measurements, edge-localized mode-synchronized and averaged over time intervals from 10 to 200 ms depending on the case; 112 cases were compared from seven ASDEX Upgrade discharges with widely different plasma parameters and two operating frequencies (30 and 36.5 MHz). Very good agreement in \\vert Γ\\vert was found with the measurements on antenna 3 (<3% averaged over a shot), and good agreement was found with antennas 1 and 2 (<10%) the code reproduced the correct trend in loading resistance {{R}\\text{L}} in a significant majority of cases, although the discrepancies in the absolute values were rather high (up to  ˜50%) due to high reflection. Sources of discrepancy are discussed.

  15. A study of optothermal and AC impedance properties of Cr-doped Mn{sub 3}O{sub 4} sprayed thin films

    SciTech Connect

    Larbi, T.; Amara, A.; Ben Said, L.; Ouni, B.; Haj Lakhdar, M.; Amlouk, M.

    2015-10-15

    Highlights: • Outlining adequacy an original combination of several characterization means. • Structural, optical, thermal and electrical properties have been studied. • Opto- thermal analysis shows that band gap can be tuned through Cr doping. • Outlining physical properties for an eventual development of sensing components. - Abstract: Chrome-doped Mn{sub 3}O{sub 4} thin films were grown on the glass substrates by the spray pyrolysis technique at 350 °C. XRD diffraction and Raman spectroscopy analysis revealed that all samples have tetragonal spinel structure with a preferred orientation along the direction (1 0 1). Absorption coefficient has been measured using both transmission and mirage effect. The band gap energy decreases from 2.2 to 1.9 eV with Cr content while Urbach energy value increases from 354 to 473 meV. Also, thermal conductivity was evaluated. Finally, physical properties have been evaluated and discussed in terms of alteration of the band gap edges, electrical patterns and mirage effect.

  16. Measurement of the ac Stark shift with a guided matter-wave interferometer

    NASA Astrophysics Data System (ADS)

    Deissler, B.; Hughes, K. J.; Burke, J. H. T.; Sackett, C. A.

    2008-03-01

    The dynamic polarizability of Rb87 atoms was measured using a guided-wave Bose-Einstein condensate interferometer. Taking advantage of the large arm separations obtainable in our device, a well-calibrated laser beam is applied to one atomic packet and not the other, inducing a differential phase shift. The technique requires relatively low laser intensity and works for arbitrary optical frequencies. For off-resonant light, the ac polarizability is obtained with a statistical accuracy of 3% and a calibration uncertainty of 6%. On resonance, the dispersion-shaped behavior of the Stark shift is observed, but with a broadened linewidth that is attributed to collective light scattering effects. The resulting nonlinearity may prove useful for the production and control of squeezed quantum states.

  17. AC-Conductivity Measure from Heat Production of Free Fermions in Disordered Media

    NASA Astrophysics Data System (ADS)

    Bru, J.-B.; de Siqueira Pedra, W.; Hertling, C.

    2016-05-01

    We extend (Bru et al. in J Math Phys 56:051901-1-51, 2015) in order to study the linear response of free fermions on the lattice within a (independently and identically distributed) random potential to a macroscopic electric field that is time- and space-dependent. We obtain the notion of a macroscopic AC-conductivity measure which only results from the second principle of thermodynamics. The latter corresponds here to the positivity of the heat production for cyclic processes on equilibrium states. Its Fourier transform is a continuous bounded function which is naturally called (macroscopic) conductivity. We additionally derive Green-Kubo relations involving time-correlations of bosonic fields coming from current fluctuations in the system. This is reminiscent of non-commutative central limit theorems.

  18. Longitudinal impedance of RHIC

    SciTech Connect

    Blaskiewicz, M.; Brennan, J. M.; Mernick, K.

    2015-05-03

    The longitudinal impedance of the two RHIC rings has been measured using the effect of potential well distortion on longitudinal Schottky measurements. For the blue RHIC ring Im(Z/n) = 1.5±0.2Ω. For the yellow ring Im(Z/n) = 5.4±1Ω.

  19. Rapid microbead-based DNA detection using dielectrophoresis and impedance measurement

    NASA Astrophysics Data System (ADS)

    Nakano, Michihiko; Ding, Zhenhao; Kasahara, Hiromichi; Suehiro, Junya

    2014-10-01

    Polymerase chain reaction (PCR) is a powerful tool for diagnostic procedures in bacterial and viral infections. The authors propose a new electrical technique for rapid detection of DNA amplified by PCR using dielectrophoresis (DEP) of microbeads. The method is based on dramatic alteration of DEP characteristics of microbeads caused by DNA labeling. DNA-labeled microbeads are trapped on a microelectrode under the action of positive DEP, whereas pristine ones are not. DEP-trapped microbeads are measured impedimetrically to realize rapid and quantitative detection of the amplified DNA. The validity of the proposed method was demonstrated by detection of PCR-amplified DNA of viruses.

  20. Study of passive films formed on AISI 304 stainless steel by impedance measurements and photoelectrochemistry

    SciTech Connect

    Simoes, A.M.P.; Ferreiro, M.G.S. ); Rondot, B.; Belo, M. . Centre d'Etudes de Chimie Metallurgique)

    1990-01-01

    Moss-Schottky plots and photoelectrochemical measurements were made on films formed at different potentials on AISI 304 stainless steel in a borate/boric acid solution, pH 9.2. The results allowed the determination of the semiconductive properties and band structure of the films, which account for the existence of two kinds of films depending on the formation potential. For potentials below 0 V (SCE), the results point out for a film with an inverse spinel structure constituted by Cr-substituted magnetite with two donor levels. Above 0 V only one donor level is detected, which should be Fe{sup 2 +} on tetrahedral sites.

  1. An AC phase measuring interferometer for measuring dn/dT of fused silica and calcium fluoride at 193 nm

    SciTech Connect

    Shagam, R.N.

    1998-09-01

    A novel method for the measurement of the change in index of refraction vs. temperature (dn/dT) of fused silica and calcium fluoride at the 193 nm wavelength has been developed in support of thermal modeling efforts for the development of 193 nm-based photolithographic exposure tools. The method, based upon grating lateral shear interferometry, uses a transmissive linear grating to divide a 193 nm laser beam into several beam paths by diffraction which propagate through separate identical material samples. One diffracted order passing through one sample overlaps the undiffracted beam from a second sample and forms interference fringes dependent upon the optical path difference between the two samples. Optical phase delay due to an index change from heating one of the samples causes the interference fringes to change sinusoidally with phase. The interferometer also makes use of AC phase measurement techniques through lateral translation of the grating. Results for several samples of fused silica and calcium fluoride are demonstrated.

  2. Effects of temperature variations on piezoelectric sensor diagnostics process based on impedance measurements (presentation video)

    NASA Astrophysics Data System (ADS)

    Jo, HyeJin; Park, Tong-il; Park, Gyehae

    2014-05-01

    A sensor diagnostic and validation process that performs in-situ monitoring of the operational status of piezoelectric (PZT) active-sensors in structural health monitoring (SHM) applications is presented. The basis of this process is to track the changes in the capacitive value of piezoelectric materials, which shows up in measured admittance. Both degradation of the mechanical/electrical properties of a PZT transducer and the bonding defects between a PZT patch and a host structure could be identified by the proposed process. Due to the temperature dependent nature of piezoelectric materials, we investigated the effects of temperature on sensor diagnostic process. The effect of temperature found to be remarkable, modifying the measured capacitive values significantly. This results indicates that there is need for developing a rigorous signal processing technique to normalizing the temperature effects. It has been also found that, as the temperature changes, the sensor diagnostic process was influenced not only by a sensor and a structure, but by a bonding materials that was used for attaching a piezoelectric transducers to a structure, which would be an important characteristic when designing an SHM system. This paper summarizes considerations needed to develop such sensor diagnostic processes, experimental procedures and results, and additional issues that can be used as guidelines for future investigations.

  3. Concentration dependence of nanochannel impedance and the determination of surface charge.

    PubMed

    Schiffbauer, Jarrod; Liel, Uri; Yossifon, Gilad

    2014-03-01

    In this paper, we demonstrate the variation of nanochannel impedance with bulk (reservoir) electrolyte concentration. The impedance of a nanochannel is shown to correspond to a characteristic deformed semicircular arc. The degree of deformation decreases with increasing concentration, and at a sufficiently low concentration the complex impedance saturates, becoming essentially independent of the reservoir concentration. This behavior is indicative of a surface-conduction dominant regime. Here we demonstrate that this effect extends beyond dc conductance and affects the ac response of the system as well, including both phase relationship and magnitude. The nanochannel resistance, obtained from low-voltage ac measurements, is then used to extract the nanochannel surface charge density. This is found to increase in magnitude with increasing electrolyte concentration. PMID:24730947

  4. Concentration dependence of nanochannel impedance and the determination of surface charge

    NASA Astrophysics Data System (ADS)

    Schiffbauer, Jarrod; Liel, Uri; Yossifon, Gilad

    2014-03-01

    In this paper, we demonstrate the variation of nanochannel impedance with bulk (reservoir) electrolyte concentration. The impedance of a nanochannel is shown to correspond to a characteristic deformed semicircular arc. The degree of deformation decreases with increasing concentration, and at a sufficiently low concentration the complex impedance saturates, becoming essentially independent of the reservoir concentration. This behavior is indicative of a surface-conduction dominant regime. Here we demonstrate that this effect extends beyond dc conductance and affects the ac response of the system as well, including both phase relationship and magnitude. The nanochannel resistance, obtained from low-voltage ac measurements, is then used to extract the nanochannel surface charge density. This is found to increase in magnitude with increasing electrolyte concentration.

  5. Application of a coaxial-like sensor for impedance spectroscopy measurements of selected low-conductivity liquids.

    PubMed

    Szypłowska, Agnieszka; Nakonieczna, Anna; Wilczek, Andrzej; Paszkowski, Bartosz; Solecki, Grzegorz; Skierucha, Wojciech

    2013-01-01

    The paper presents a coaxial-like sensor operating in the 20 Hz-2 MHz frequency range used to determine the electrical properties of selected liquids of low electrical conductivity. Examined materials included low-concentrated aqueous solutions of potassium chloride, sodium chloride and trisodium citrate, which are common food additives. Impedance spectra of the measurement cell filled with particular liquids were obtained and analyzed using the electrical equivalent circuit approach. The values of physical quantities and parameters describing the equivalent circuit components, including a constant phase element, were calculated for each sample. The applied sensor was also calibrated for electrical conductivity measurements up to 8 mS/m. The constant phase element parameters differed among the studied solutions and concentrations. This may provide a basis for a detection method of small amounts of compounds, such as food additives in low-concentrated aqueous solutions. To demonstrate the potential of the presented method, samples of purchased mineral water and a flavored drink containing various additives were tested. PMID:24084120

  6. Application of a Coaxial-Like Sensor for Impedance Spectroscopy Measurements of Selected Low-Conductivity Liquids

    PubMed Central

    Szypłowska, Agnieszka; Nakonieczna, Anna; Wilczek, Andrzej; Paszkowski, Bartosz; Solecki, Grzegorz; Skierucha, Wojciech

    2013-01-01

    The paper presents a coaxial-like sensor operating in the 20 Hz–2 MHz frequency range used to determine the electrical properties of selected liquids of low electrical conductivity. Examined materials included low-concentrated aqueous solutions of potassium chloride, sodium chloride and trisodium citrate, which are common food additives. Impedance spectra of the measurement cell filled with particular liquids were obtained and analyzed using the electrical equivalent circuit approach. The values of physical quantities and parameters describing the equivalent circuit components, including a constant phase element, were calculated for each sample. The applied sensor was also calibrated for electrical conductivity measurements up to 8 mS/m. The constant phase element parameters differed among the studied solutions and concentrations. This may provide a basis for a detection method of small amounts of compounds, such as food additives in low-concentrated aqueous solutions. To demonstrate the potential of the presented method, samples of purchased mineral water and a flavored drink containing various additives were tested. PMID:24084120

  7. Surface Impedance Measurements of Single Crystal MgB2 Films for Radiofrequency Superconductivity Applications

    SciTech Connect

    Binping Xiao, Xin Zhao, Joshua Spradlin, Charles Reece, Michael Kelley, Teng Tan, Xi Xiaoxing

    2012-07-01

    We report microstructure analyses and superconducting radiofrequency (SRF) measurements of large scale epitaxial MgB{sub 2} films. MgB{sub 2} films on 5 cm dia. sapphire disks were fabricated by a Hybrid Physical Chemical Vapor Deposition (HPCVD) technique. The electron-beam backscattering diffraction (EBSD) results suggest that the film is a single crystal complying with a MgB{sub 2}(0001) {parallel} Al{sub 2}O{sub 3}(0001) epitaxial relationship. The SRF properties of different film thicknesses (200 nm and 350 nm) were evaluated under different temperatures and applied fields at 7.4 GHz. A surface resistance of 9 {+-} 2 {mu}{Omega} has been observed at 2.2 K.

  8. Assessment of plasma impedance probe for measuring electron density and collision frequency in a plasma with spatial and temporal gradients

    SciTech Connect

    Hopkins, Mark A. King, Lyon B.

    2014-05-15

    Numerical simulations and experimental measurements were combined to determine the ability of a plasma impedance probe (PIP) to measure plasma density and electron collision frequency in a plasma containing spatial gradients as well as time-varying oscillations in the plasma density. A PIP is sensitive to collision frequency through the width of the parallel resonance in the Re[Z]-vs.-frequency characteristic, while also being sensitive to electron density through the zero-crossing of the Im[Z]-vs.-frequency characteristic at parallel resonance. Simulations of the probe characteristic in a linear plasma gradient indicated that the broadening of Re[Z] due to the spatial gradient obscured the broadening due to electron collision frequency, preventing a quantitative measurement of the absolute collision frequency for gradients considered in this study. Simulation results also showed that the PIP is sensitive to relative changes in electron collision frequency in a spatial density gradient, but a second broadening effect due to time-varying oscillations made collision frequency measurements impossible. The time-varying oscillations had the effect of causing multiple zero-crossings in Im[Z] at parallel resonance. Results of experiments and simulations indicated that the lowest-frequency zero-crossing represented the lowest plasma density in the oscillations and the highest-frequency zero-crossing represented the highest plasma density in the oscillations, thus the PIP probe was found to be an effective tool to measure both the average plasma density as well as the maximum and minimum densities due to temporal oscillations.

  9. Assessment of plasma impedance probe for measuring electron density and collision frequency in a plasma with spatial and temporal gradients

    NASA Astrophysics Data System (ADS)

    Hopkins, Mark A.; King, Lyon B.

    2014-05-01

    Numerical simulations and experimental measurements were combined to determine the ability of a plasma impedance probe (PIP) to measure plasma density and electron collision frequency in a plasma containing spatial gradients as well as time-varying oscillations in the plasma density. A PIP is sensitive to collision frequency through the width of the parallel resonance in the Re[Z]-vs.-frequency characteristic, while also being sensitive to electron density through the zero-crossing of the Im[Z]-vs.-frequency characteristic at parallel resonance. Simulations of the probe characteristic in a linear plasma gradient indicated that the broadening of Re[Z] due to the spatial gradient obscured the broadening due to electron collision frequency, preventing a quantitative measurement of the absolute collision frequency for gradients considered in this study. Simulation results also showed that the PIP is sensitive to relative changes in electron collision frequency in a spatial density gradient, but a second broadening effect due to time-varying oscillations made collision frequency measurements impossible. The time-varying oscillations had the effect of causing multiple zero-crossings in Im[Z] at parallel resonance. Results of experiments and simulations indicated that the lowest-frequency zero-crossing represented the lowest plasma density in the oscillations and the highest-frequency zero-crossing represented the highest plasma density in the oscillations, thus the PIP probe was found to be an effective tool to measure both the average plasma density as well as the maximum and minimum densities due to temporal oscillations.

  10. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  11. Effects of skin blood flow and temperature on skin--electrode impedance and offset potential: measurements at low alternating current density.

    PubMed

    Smith, D C

    1992-01-01

    Skin--electrode impedance was determined at 100 Hz and 1 kHz between two disposable electrodes, 5 cm apart, at current densities < 65 microA.cm-2. Measurements were made on the volar skin of the forearm during cooling on cardiopulmonary bypass, and on the dorsum of the foot in the absence of skin blood flow during aortic aneurysm repair. Both the resistive and reactive components of the skin-electrode impedence showed an inverse linear relationship to temperature between 26 and 36 degrees C. The magnitude of the impedance change was different for each patient studied; resistance changes ranged from 0.03 to 23.2 k omega. Degrees C-1 at 100 Hz and from 0.03 to 2.7 k omega. Degrees C-1 at 1 kHz, while reactance changes ranged from 0.4 to 2.1 k omega. Degrees C-1 at 100 Hz and from 0.04 to 0.18 k omega. Degrees C-1 at 1 kHz. Changes in skin-electrode impedance were not due to changes in skin blood flow. There was no consistent change in offset potential with temperature. Although the skin-electrode impedance increases as temperature falls, it is concluded that temperature effects at the skin-electrode interface are not responsible for the observed failure of evoked electromyography during clinical monitoring of neuromuscular function. PMID:1404312

  12. Quantitative Thermal Microscopy Measurement with Thermal Probe Driven by dc+ac Current

    NASA Astrophysics Data System (ADS)

    Bodzenta, Jerzy; Juszczyk, Justyna; Kaźmierczak-Bałata, Anna; Firek, Piotr; Fleming, Austin; Chirtoc, Mihai

    2016-07-01

    Quantitative thermal measurements with spatial resolution allowing the examination of objects of submicron dimensions are still a challenging task. The quantity of methods providing spatial resolution better than 100 nm is very limited. One of them is scanning thermal microscopy (SThM). This method is a variant of atomic force microscopy which uses a probe equipped with a temperature sensor near the apex. Depending on the sensor current, either the temperature or the thermal conductivity distribution at the sample surface can be measured. However, like all microscopy methods, the SThM gives only qualitative information. Quantitative measuring methods using SThM equipment are still under development. In this paper, a method based on simultaneous registration of the static and the dynamic electrical resistances of the probe driven by the sum of dc and ac currents, and examples of its applications are described. Special attention is paid to the investigation of thin films deposited on thick substrates. The influence of substrate thermal properties on the measured signal and its dependence on thin film thermal conductivity and film thickness are analyzed. It is shown that in the case where layer thicknesses are comparable or smaller than the probe-sample contact diameter, a correction procedure is required to obtain actual thermal conductivity of the layer. Experimental results obtained for thin SiO2 and BaTiO_{3 }layers with thicknesses in the range from 11 nm to 100 nm are correctly confirmed with this approach.

  13. Measurement of total respiratory impedance in calves by the forced oscillation technique.

    PubMed

    Gustin, P; Dhem, A R; Lomba, F; Lekeux, P; Van de Woestijne, K P; Làndsér, F J

    1988-05-01

    We have determined the resistance (Rrs) and the reactance (Xrs) of the total respiratory system in unsedated spontaneously breathing calves at various frequencies. A pseudorandom noise pressure wave was produced at the nostrils of the animals by means of a loudspeaker adapted to the nose by a tightly fitting mask. A Fourier analysis of the pressure in the nostrils and flow signals yielded mean Rrs and Xrs, over 16 s, at frequencies of 2-26 Hz. A good correlation was found between values of pulmonary resistances measured by the isovolume method at the respiratory frequency of animals and values obtained at a frequency of 6 Hz by use of our technique. The linearity of the respiratory system, the reproducibility of the technique, and the effects of upper airways on results have been studied. In healthy calves, Rrs increases with frequency. Mean resonant frequency is 7.5 Hz. Bronchospasm was induced in six calves by administration of intravenous organophosphates. Rrs tended to decrease with increasing frequency. Resonant frequency exceeded 26 Hz. All parameters returned to initial values after administration of atropine. In healthy calves, atropine produces a decrease in Rrs, especially at low frequencies. Values of resonant frequency are not modified. PMID:3391882

  14. Non-invasive measurement of cholesterol in human blood by impedance technique: an investigation by 3D finite element field modelling

    NASA Astrophysics Data System (ADS)

    Aristovich, Ekaterina; Khan, Sanowar

    2013-06-01

    This paper concerns detection of particle concentration (e.g. cholesterol) in conductive media (e.g. human blood) by impedance technique. The technique is based on changes in the impedance measurement across a given conducting medium due to changes in the particle concentration. The impedance is calculated by calculating the current through the conducting media produced by electric field distribution between two electrodes. This is done by modelling and computation of 3D electric fields between the electrodes for known voltages applied between them using the well-known finite element method (FEM). The complexity of such FE models is attributed to particle distribution, their geometric and material parameters, and their shape and size which can be of many orders of magnitude smaller than the overall problem domain under investigation. This paper overcomes this problem by adopting an effective particle coagulation (aggregation) strategy in FE modelling without significantly affecting the accuracy of field computation.

  15. Measurement of total respiratory impedance in dogs by the forced oscillation technique.

    PubMed

    Clercx, C; Gustin, P; Landser, F J; Van de Woestijne, K P

    1993-01-01

    The resistance (Rrs) and reactance (Xrs) of the total respiratory system were determined at various frequencies in 14 healthy conscious beagle dogs. A pseudorandom noise pressure wave was produced at the nostrils of the animals by means of a loudspeaker adapted to the nose by a tightly fitting mask. A Fourier analysis of the pressure and flow signals yielded mean Rrs and Xrs, over 16 s, at frequencies from 2 to 26 Hz. The influence of the posture of the dog, the position of its head, the linearity of the respiratory system, the reproducibility of the method and the effects of upper and lower airway obstructions were studied. In sitting and standing healthy dogs with the head in the extended position, Rrs values increased progressively with frequency from 5.4 +/- 0.4 (SEM) cmH2O L-1s at 6 Hz up to 8.8 +/- 0.7 cmH2O L-1s at 26 Hz, the mean resonant frequency being 6.1 +/- 0.5 Hz. No significant differences were observed between measurements performed with the head in the normal or the extended position. In a recumbent posture, all Rrs values were increased but Rrs was still dependent on the frequency in the same way (7.1 +/- 0.7 cmH2O L-1s at 6Hz up to 10.0 +/- 0.5 cmH2O L-1s at 26 Hz). Tracheal compression also induced higher Rrs values without changes in the frequency dependence or in the resonant frequency. In anaesthetized dogs, airway obstruction was induced by inhalation of histamine (4 mg/ml for 5 min; the Rrs values tended to decrease with increasing frequency, and the resonant frequency was markedly increased. PMID:8284900

  16. Sensing of damage and substrate stress in concrete using electro-mechanical impedance measurements of bonded PZT patches

    NASA Astrophysics Data System (ADS)

    Narayanan, Arun; Subramaniam, Kolluru V. L.

    2016-09-01

    The influence of stress and induced damage in concrete on the electro-mechanical (EM) impedance response of bonded PZT patches is evaluated for applied compressive loading. Full field displacements obtained from digital image correlation are used to evaluate the level of stress-induced damage in concrete. Stress in the substrate produces an imposed strain on the PZT. A change in the imposed strain produces a rightward frequency shift and an increase in the amplitude of the resonant peak in the EM conductance spectrum of the PZT. An increase in the substrate compliance produces a decrease in the resonant frequency and an increase in the amplitude of the resonant peak. Changes in the resonant peak in the conductance spectrum induced by increasing substrate stress are of a significant magnitude when compared with the changes induced by damage. In the early stages of damage associated with distributed microcracking, the counteracting influences of increasing level of damage and increasing stress on the resonant peak result in no shift in frequency for measurements under applied load. There is however an increase in the amplitude of the resonance peak. When the applied stress is removed, there is a net decrease in frequency resulting from damage in the form of distributed microcracks. Measures of changes in the resonant peak based on root mean square deviation (RMSD), do not show any observable change when measurements are performed under applied loading. There is a consistent increase in RMSD values and frequency shift with increasing damage when the applied stress is removed. The centroidal measure of the normalized frequency spectrum reflects changes in substrate stress. At higher applied stress levels, there is a nonlinear increase in damage, leading to localization and cracking. The influence of damage is dominant in this region and significant changes are obtained in the RMSD values in both loaded and unloaded conditions.

  17. Association between muscle hydration measures acquired using bioelectrical impedance spectroscopy and magnetic resonance imaging in healthy and hemodialysis population

    PubMed Central

    Sawant, Anuradha; House, Andrew A.; Chesworth, Bert M.; Connelly, Denise M.; Lindsay, Robert; Gati, Joe; Bartha, Robert; Overend, Tom J.

    2015-01-01

    Abstract Establishing the effect of fluctuating extracellular fluid (ECF) volume on muscle strength in people with end‐stage renal disease (ESRD) on hemodialysis (HD) is essential, as inadequate hydration of the skeletal muscles impacts its strength and endurance. Bioelectrical impedance spectroscopy (BIS) has been a widely used method for estimating ECF volume of a limb or calf segment. Magnetic resonance imaging (MRI)‐acquired transverse relaxation times (T2) has also been used for estimating ECF volumes of individual skeletal muscles. The purpose of this study was to determine the association between T2 (gold standard) of tibialis anterior (TA), medial (MG), and lateral gastrocnemius (LG), and soleus muscles and calf BIS ECF, in healthy and in people with ESRD/HD. Calf BIS and MRI measures were collected on two occasions before and after HD session in people with ESRD/HD and on a single occasion for the healthy participants. Linear regression analysis was used to establish the association between these measures. Thirty‐two healthy and 22 participants on HD were recruited. The association between T2 of TA, LG, MG, and soleus muscles and ratio of calf BIS‐acquired ECF and intracellular fluids (ICF) were: TA: β = 0.30, P > 0.05; LG: β = 0.37, P = 0.035; MG: β = 0.43, P = 0.014; soleus: β = 0.60, P < 0.001. For the HD group, calf ECF was significantly associated with T2 of TA (β = 0.44, P = 0.042), and medial gastrocnemius (β = 0.47, P = 0.027) following HD only. Hence BIS‐acquired measures cannot be used to measure ECF volumes of a single muscle in the ESRD/HD population; however, BIS could be utilized to estimate ratio of ECF: ICF in healthy population for the LG, MG, and soleus muscles. PMID:25626863

  18. A Pilot Randomized Trial Evaluating Lymphedema Self-Measurement with Bioelectrical Impedance, Self-Care Adherence, and Health Outcomes

    PubMed Central

    Shih, Ya-Chen Tina; Doersam, Jennifer K.; Rhoten, Bethany Andrews; Schultze, Benjamin S.; Dietrich, Mary S.

    2014-01-01

    Abstract Background: Less than half of breast cancer survivors with lymphedema perform self-care as directed. Effective lymphedema self-care is required to obtain acceptable health outcomes. Self-Regulation Theory suggests that objective self-measurement of physiological conditions is necessary to promote self-regulation/self-care. Bioelectric Impedance Spectroscopy (BIS) represents a potential self-measurement method for arm lymphedema. The purpose of this pilot study was to examine the impact of arm self-measurement on daily self-care activities and health outcomes in breast cancer survivors with lymphedema. Methods and Results: A pilot randomized clinical trial compared outcomes between breast cancer survivors with lymphedema who self-monitored for 3 months and breast cancer survivors with lymphedema who did not self-monitor. Data were collected at baseline, months 1, 2, 3, and 4. Eighty-six women with lymphedema were screened: 62 were eligible, 50 were enrolled, 10 withdrew, and 1 had incomplete data, thus N=39. No between group differences were noted in participant characteristics. The self-monitored group had higher days of garment use (p=0.005) that remained stable after self-monitoring stopped. The median number of days of simple manual lymphatic drainage increased in the intervention group (p=0.004) with a downward trend after self-monitoring ceased. Conclusions: Objective self-monitoring of arms using BIS is possible. Self-monitoring may positively impact self-care behaviors. Highly symptomatic patients may require coaching or other psychological support to improve their self-care. Studies that combine a cognitive behavioral therapy component along with self-measurement should be considered as potential interventions to impact lymphedema self-care. Other applications of self-monitoring warrant investigation. PMID:25412401

  19. Relationship between the Initial Systolic Time Interval and RR-interval during an exercise stimulus measured with Impedance Cardiography

    NASA Astrophysics Data System (ADS)

    Hoekstra, Femke; Habers, Esther; Janssen, Thomas W. J.; Verdaasdonk, Rudolf M.; Meijer, Jan H.

    2010-04-01

    The Initial Systolic Time Interval (ISTI), obtained from the electrocardiogram and impedance cardiogram, is considered to be a measure for the time delay between the electrical and mechanical activity of the heart and reflects an active period of the heart cycle. The relationship between ISTI and the total heart cycle (RR-interval) was studied in three groups of young, healthy volunteers: low, moderately and highly trained subjects. The three groups were exposed to an exercise stimulus on a cycle ergometer with an increasing work load to increase the heart rate. ISTI was decreased with decreasing RR-interval. However, the relative proportion of ISTI, ISTI/RR, was found to increase with decreasing RR-interval. This relationship was found to be inversely proportional. The rate of this increase in ISTI/RR was significantly higher in highly trained subjects. Also, over the whole range of heart rates ISTI was longer in these subjects. It is concluded that ISTI can be used to evaluate cardiac performance during physical exercise non-invasively and in an extramural setting.

  20. A Monte Carlo simulation of range for an invasive impedance respiration monitor.

    PubMed

    Valenta, H L; Fischer, S K

    1990-01-01

    One method of rate responsive pacing utilizes an analog of minute ventilation as the input to the rate control algorithm. A measure of the intravenous impedance along the pacing catheter is a convenient means of determining minute ventilation. Design of the impedance converter requires a knowledge of the range of DC and AC impedance signals. During normal and deep breathing, 116 AC measurements were taken from 34 Electrophysiology (EP) patients and 31 DC measurements were taken from 13 EP patients. The patient data produced skewed distributions with a normal AC mean of 0.45 +/- 0.40 ohms p-p, a deep AC mean of 2.0 +/- 1.6 ohms and a DC mean of 44 +/- 13 ohms. An eight variable static model was derived from prior work. Five of the physiological variables were chosen from established clinical ranges, one geometrical variable was chosen from prior work and two were selected by matching the statistics of a Monte Carlo analysis of the model with the statistics of the patient data. The blood resistivity was obtained from prior work. A simulation of 1000 measurements produced a normal breathing range of 0 to 2.24 ohms, a deep breathing range of 0 to 9.6 ohms and a DC range of 19 to 100 ohms. PMID:2334765

  1. Introducing AC inductive reactance with a power tool

    NASA Astrophysics Data System (ADS)

    Bryant, Wesley; Baker, Blane

    2016-09-01

    The concept of reactance in AC electrical circuits is often non-intuitive and difficult for students to grasp. In order to address this lack of conceptual understanding, classroom exercises compare the predicted resistance of a power tool, based on electrical specifications, to measured resistance. Once students discover that measured resistance is smaller than expected, they are asked to explain these observations using previously studied principles of magnetic induction. Exercises also introduce the notion of inductive reactance and impedance in AC circuits and, ultimately, determine self-inductance of the motor windings within the power tool.

  2. Study of AC/RF properties of SRF ingot niobium

    SciTech Connect

    Dhakal, Pashupati; Tsindlekht, Menachem I; Genkin, Valery M; Ciovati, Gianluigi; Myneni, Ganapati Rao

    2013-09-01

    In an attempt to correlate the performance of superconducting radiofrequency cavities made of niobium with the superconducting properties, we present the results of the magnetization and ac susceptibility of the niobium used in the superconducting radiofrequency cavity fabrication. The samples were subjected to buffer chemical polishing (BCP) surface and high temperature heat treatments, typically applied to the cavities fabrications. The analysis of the results show the different surface and bulk ac conductivity for the samples subjected to BCP and heat treatment. Furthermore, the RF surface impedance is measured on the sample using a TE011 microwave cavity for a comparison to the low frequency measurements.

  3. Impedance of accelerator components

    SciTech Connect

    Corlett, J.N.

    1996-05-01

    As demands for high luminosity and low emittance particle beams increase, an understanding of the electromagnetic interaction of these beams with their vacuum chamber environment becomes more important in order to maintain the quality of the beam. This interaction is described in terms of the wake field in time domain, and the beam impedance in frequency domain. These concepts are introduced, and related quantities such as the loss factor are presented. The broadband Q = 1 resonator impedance model is discussed. Perturbation and coaxial wire methods of measurement of real components are reviewed.

  4. Measurement of klystron phase modulation due to ac-powered filaments

    NASA Technical Reports Server (NTRS)

    Finnegan, E. J.

    1977-01-01

    A technique for determining the intermodulation components in the RF spectrum of the S-band radar transmitter generated by having the klystron filaments heated by 400-Hz ac power is described. When the klystron is being operated with 400-Hz (ac) on the filament, the IPM is buried in the 400-Hz equipment interference noise. The modulation sidebands were separated and identified and found to be-67 db below the main carrier. This is well below the transmitter specifications, and operating the filaments on ac would not degrade the spectrum to where it would be detrimental to the radiated RF.

  5. Evaluation of process-induced dimensional changes in the membrane structure of biological cells using impedance measurement.

    PubMed

    Angersbach, Alexander; Heinz, Volker; Knorr, Dietrich

    2002-01-01

    The impact of high intensity electric field pulses, high hydrostatic pressure, and freezing-thawing on local structural changes of the membrane was determined for potato, sugar beet tissue, and yeast suspensions. On the basis of the electrophysical model of cell systems in biological tissues and suspensions, a method was derived for determining the extent of local damage of cell membranes. The method was characterized by an accurate and rapid on-line determination of frequency-dependent electrical conductivity properties from which information on microscopic events on cellular level may be deduced. Evaluation was based on the measurement of the relative change in the sample's impedance at characteristically low (f(l)) and high (f(h)) frequencies within the beta-dispersion range. For plant and animal cells the characteristic frequencies were f(l) approximately 5 kHz and f(h) > 5 MHz and for yeast cells in the range f(l) approximately 50 kHz and f(h) > 25 MHz. The observed phenomena were complex. The identification of the underlying mechanisms required consideration of the time-dependent nature of the processing effects and stress reactions of the biological systems, which ranged from seconds to several hours. A very low but significantly detectable membrane damage (0.004% of the total area) was found after high hydrostatic pressure treatment of potato tissue at 200 MPa. The membrane rupture in plant tissue cells was higher after freezing and subsequent thawing (0.9% of total area for potato cells and 0.05-0.07% for sugar beet cells determined immediately after thawing), which increased substantially during the next 2 h. PMID:12052078

  6. High-Resolution ac Measurements of the Hall Effect in Organic Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Yi, H. T.; Podzorov, V.

    2016-03-01

    We describe a high resolving power technique for Hall-effect measurements, efficient in determining Hall mobility and carrier density in organic field-effect transistors and other low-mobility systems. We utilize a small low-frequency ac magnetic field (Brms<0.25 T ) and a phase-sensitive (lock-in) detection of Hall voltage, with the necessary corrections for Faraday induction. This method significantly enhances the signal-to-noise ratio and eliminates the necessity of using high magnetic fields in Hall-effect studies. With the help of this method, we are able to obtain the Hall mobility and carrier density in organic transistors with a mobility as low as μ ˜0.3 cm2 V-1 s-1 by using a compact desktop apparatus and low magnetic fields. We find a good agreement between Hall-effect and electric-field-effect measurements, indicating that, contrary to the common belief, certain organic semiconductors with mobilities below 1 cm2 V-1 s-1 can still exhibit a fully developed, band-semiconductor-like Hall effect, with the Hall mobility and carrier density matching those obtained in longitudinal transistor measurements. This suggests that, even when μ <1 cm2 V-1 s-1 , charges in organic semiconductors can still behave as delocalized coherent carriers. This technique paves the way to ubiquitous Hall-effect studies in a wide range of low-mobility materials and devices, where it is typically very difficult to resolve the Hall effect even in very high dc magnetic fields.

  7. Measurement of electrical impedance of a Berea sandstone core during the displacement of saturated brine by oil and CO2 injections

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Xue, Ziqiu; Park, Hyuck; Kiyama, Tamotsu; Zhang, Yi; Nishizawa, Osamu; Chae, Kwang-seok

    2015-12-01

    Complex electrical impedance measurements were performed on a brine-saturated Berea sandstone core while oil and CO2 were injected at different pressures and temperatures. The saturations of brine, oil, and CO2 in the core were simultaneously estimated using an X-ray computed tomography scanner. The formation factor of this Berea core and the resistivity indexes versus the brine saturations were calculated using Archie's law. The experimental results found different flow patterns of oil under different pressures and temperatures. Fingers were observed for the first experiment at 10 MPa and 40 °C. The fingers were restrained as the viscosity ratio of oil and water changed in the second (10 MPa and 25 °C) and third (5 MPa and 25 °C) experiments. The resistivity index showed an exponential increase with a decrease in brine saturation. The saturation exponent varied from 1.4 to 4.0 at different pressure and temperature conditions. During the oil injection procedure, the electrical impedance increased with oil saturation and was significantly affected by different oil distributions; therefore, the impedance varied whether the finger was remarkable or not, even if the oil saturation remained constant. During the CO2 injection steps, the impedance showed almost no change with CO2 saturation because the brine in the pores became immobile after the oil injection.

  8. Equivalent Electrical Circuit Representations of AC Quantized Hall Resistance Standards

    PubMed Central

    Cage, M. E.; Jeffery, A.; Matthews, J.

    1999-01-01

    We use equivalent electrical circuits to analyze the effects of large parasitic impedances existing in all sample probes on four-terminal-pair measurements of the ac quantized Hall resistance RH. The circuit components include the externally measurable parasitic capacitances, inductances, lead resistances, and leakage resistances of ac quantized Hall resistance standards, as well as components that represent the electrical characteristics of the quantum Hall effect device (QHE). Two kinds of electrical circuit connections to the QHE are described and considered: single-series “offset” and quadruple-series. (We eliminated other connections in earlier analyses because they did not provide the desired accuracy with all sample probe leads attached at the device.) Exact, but complicated, algebraic equations are derived for the currents and measured quantized Hall voltages for these two circuits. Only the quadruple-series connection circuit meets our desired goal of measuring RH for both ac and dc currents with a one-standard-deviation uncertainty of 10−8 RH or less during the same cool-down with all leads attached at the device. The single-series “offset” connection circuit meets our other desired goal of also measuring the longitudinal resistance Rx for both ac and dc currents during that same cool-down. We will use these predictions to apply small measurable corrections, and uncertainties of the corrections, to ac measurements of RH in order to realize an intrinsic ac quantized Hall resistance standard of 10−8 RH uncertainty or less.

  9. Use of an advanced composite material in construction of a high pressure cell for magnetic ac susceptibility measurements

    NASA Astrophysics Data System (ADS)

    Wang, X.; Misek, M.; Jacobsen, M. K.; Kamenev, K. V.

    2014-10-01

    The applicability of fibre-reinforced polymers for fabrication of high pressure cells was assessed using finite element analysis and experimental testing. Performance and failure modes for the key components of the cell working in tension and in compression were evaluated and the ways for optimising the designs were established. These models were used in construction of a miniature fully non-metallic diamond anvil cell for magnetic ac susceptibility measurements in a magnetic property measurement system. The cell is approximately 14 mm long, 8.5 mm in diameter and was demonstrated to reach a pressure of 5.6 GPa. AC susceptibility data collected on Dy2O3 demonstrate the performance of the cell in magnetic property measurements and confirm that there is no screening of the sample by the environment which typically accompanies the use of conventional metallic high pressure cells in oscillating magnetic fields.

  10. Direct observation of large shock impedance jump upon shock-induced densification of powdered materials confirmed by in situ shock pressure and particle velocity measurements

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takamichi

    2014-07-01

    Shock pressure and particle velocity measurements have been performed separately on a powdered material under a similar shock loading condition by employing time-resolved luminescence spectroscopy and velocity interferometry (VISAR). Shock pressure measurement adopts the pressure-shift characteristic of ruby crystal that is used as a window material. Exactly the same shock condition could be realized for the particle velocity measurement by using a sapphire crystal as a window. A good agreement between the results of two different measurements has been obtained and they indicate a 7 times or more increase in shock impedance of the powdered material.

  11. AC and Phase Sensing of Nanowires for Biosensing

    PubMed Central

    Crescentini, Marco; Rossi, Michele; Ashburn, Peter; Lombardini, Marta; Sangiorgi, Enrico; Morgan, Hywel; Tartagni, Marco

    2016-01-01

    Silicon nanowires are label-free sensors that allow real-time measurements. They are economical and pave the road for point-of-care applications but require complex readout and skilled personnel. We propose a new model and technique for sensing nanowire sensors using alternating currents (AC) to capture both magnitude and phase information from the sensor. This approach combines the advantages of complex impedance spectroscopy with the noise reduction performances of lock-in techniques. Experimental results show how modifications of the sensors with different surface chemistries lead to the same direct-current (DC) response but can be discerned using the AC approach. PMID:27104577

  12. AC and Phase Sensing of Nanowires for Biosensing.

    PubMed

    Crescentini, Marco; Rossi, Michele; Ashburn, Peter; Lombardini, Marta; Sangiorgi, Enrico; Morgan, Hywel; Tartagni, Marco

    2016-01-01

    Silicon nanowires are label-free sensors that allow real-time measurements. They are economical and pave the road for point-of-care applications but require complex readout and skilled personnel. We propose a new model and technique for sensing nanowire sensors using alternating currents (AC) to capture both magnitude and phase information from the sensor. This approach combines the advantages of complex impedance spectroscopy with the noise reduction performances of lock-in techniques. Experimental results show how modifications of the sensors with different surface chemistries lead to the same direct-current (DC) response but can be discerned using the AC approach. PMID:27104577

  13. Impedance and dielectric properties of mercury cuprate at nonsuperconducting state

    NASA Astrophysics Data System (ADS)

    Özdemir, Z. Güven; Çataltepe, Ö. Aslan; Onbaşlı, Ü.

    2015-10-01

    In this paper, impedance and dielectric properties of nonsuperconducting state of the mercury-based cuprate have been investigated by impedance measurements within the frequency interval of 10 Hz-10 MHz for the first time. The dielectric loss factor (tgδ) and ac conductivity (σac) parameters have also been calculated for non-superconducting state. According to impedance spectroscopy analysis, the equivalent circuit of the mercury cuprate system manifests itself as a semicircle in the Nyquist plot that corresponds to parallel connected resistance-capacitance circuit. The oscillation frequency of the circuit has been determined as approximately 45 kHz which coincides with the low frequency radio waves. Moreover, it has been revealed that the mercury-based cuprate investigated has high dielectric constants and hence it may be utilized in microelectronic industry such as capacitors, memory devices etc., at room temperature. In addition, negative capacitance (NC) effect has been observed for the mercury cuprate regardless of the operating temperatures at nonsuperconducting state. Referring to dispersions in dielectric properties, the main contribution to dielectric response of the system has been suggested as dipolar and interfacial polarization mechanisms.

  14. Acoustic ground impedance meter

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1981-01-01

    A compact, portable instrument was developed to measure the acoustic impedance of the ground, or other surfaces, by direct pressure-volume velocity measurement. A Helmholz resonator, constructed of heavy-walled stainless steel but open at the bottom, is positioned over the surface having the unknown impedance. The sound source, a cam-driven piston of known stroke and thus known volume velocity, is located in the neck of the resonator. The cam speed is a variable up to a maximum 3600 rpm. The sound pressure at the test surface is measured by means of a microphone flush-mounted in the wall of the chamber. An optical monitor of the piston displacement permits measurement of the phase angle between the volume velocity and the sound pressure, from which the real and imaginary parts of the impedance can be evaluated. Measurements using a 5-lobed cam can be made up to 300 Hz. Detailed design criteria and results on a soil sample are presented.

  15. Impedance and thermal conductivity properties of epoxy/polyhedral oligomeric silsequioxane nanocomposites

    NASA Astrophysics Data System (ADS)

    Eed, H.; Ramadin, Y.; Zihlif, A. M.; Elimat, Ziad; Ragosta, Giuseppe

    2014-03-01

    The impedance and thermal conductivity properties of prepared organic epoxy/polyhedral oligomeric silsequioxane (POSS) nanocomposites were studied. The measurements of the impedance were carried out using the impedance technique as a function of applied field frequency range from 20 kHz to 1 MHz, temperature range from 20°C-110°C, and POSS filler concentrations 5, 10, and 20 wt%. The AC conductivity and dielectric properties were determined from the impedance data. It was found that the AC conductivity and dielectric constant are increased by increasing the POSS content in the nanocomposites. The calculated activation energy varies with the filler content, temperature, and applied frequency. The observed electrical results fit approximately the reported equations concerning the AC conductivity of the prepared nanocomposites. The dielectric behavior was explained on the basis of the interfacial polarization, dipolar polarization, and decrease in the hindrance produced by the polymer matrix. The thermal conductivity of the prepared nanocomposite was studied as a function of temperature, and POSS concentration. It was found that the thermal conductivity is enhanced by the addition of the POSS content and temperature. During the heating process, the phonons are activated and electrons hopp to higher localized energy states producing enhancement in the thermal conductivity. Furthermore, correlations between the observed physical properties as thermal conductivity, storage modulus, and glass transition temperature of the nanocomposites are presented.

  16. Electromagnetic scattering by impedance structures

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Griesser, Timothy

    1987-01-01

    The scattering of electromagnetic waves from impedance structures is investigated, and current work on antenna pattern calculation is presented. A general algorithm for determining radiation patterns from antennas mounted near or on polygonal plates is presented. These plates are assumed to be of a material which satisfies the Leontovich (or surface impedance) boundary condition. Calculated patterns including reflection and diffraction terms are presented for numerious geometries, and refinements are included for antennas mounted directly on impedance surfaces. For the case of a monopole mounted on a surface impedance ground plane, computed patterns are compared with experimental measurements. This work in antenna pattern prediction forms the basis of understanding of the complex scattering mechanisms from impedance surfaces. It provides the foundation for the analysis of backscattering patterns which, in general, are more problematic than calculation of antenna patterns. Further proposed study of related topics, including surface waves, corner diffractions, and multiple diffractions, is outlined.

  17. Improved direct measurement of A(b) and A(c) at the Z(0) pole using a lepton tag.

    PubMed

    Abe, Kenji; Abe, Koya; Abe, T; Adam, I; Akimoto, H; Aston, D; Baird, K G; Baltay, C; Band, H R; Barklow, T L; Bauer, J M; Bellodi, G; Berger, R; Blaylock, G; Bogart, J R; Bower, G R; Brau, J E; Breidenbach, M; Bugg, W M; Burke, D; Burnett, T H; Burrows, P N; Calcaterra, A; Cassell, R; Chou, A; Cohn, H O; Coller, J A; Convery, M R; Cook, V; Cowan, R F; Crawford, G; Damerell, C J S; Daoudi, M; de Groot, N; de Sangro, R; Dong, D N; Doser, M; Dubois, R; Erofeeva, I; Eschenburg, V; Fahey, S; Falciai, D; Fernandez, J P; Flood, K; Frey, R; Hart, E L; Hasuko, K; Hertzbach, S S; Huffer, M E; Huynh, X; Iwasaki, M; Jackson, D J; Jacques, P; Jaros, J A; Jiang, Z Y; Johnson, A S; Johnson, J R; Kajikawa, R; Kalelkar, M; Kang, H J; Kofler, R R; Kroeger, R S; Langston, M; Leith, D W G; Lia, V; Lin, C; Mancinelli, G; Manly, S; Mantovani, G; Markiewicz, T W; Maruyama, T; McKemey, A K; Messner, R; Moffeit, K C; Moore, T B; Morii, M; Muller, D; Murzin, V; Narita, S; Nauenberg, U; Neal, H; Nesom, G; Oishi, N; Onoprienko, D; Osborne, L S; Panvini, R S; Park, C H; Peruzzi, I; Piccolo, M; Piemontese, L; Plano, R J; Prepost, R; Prescott, C Y; Ratcliff, B N; Reidy, J; Reinertsen, P L; Rochester, L S; Rowson, P C; Russell, J J; Saxton, O H; Schalk, T; Schumm, B A; Schwiening, J; Serbo, V V; Shapiro, G; Sinev, N B; Snyder, J A; Staengle, H; Stahl, A; Stamer, P; Steiner, H; Su, D; Suekane, F; Sugiyama, A; Suzuki, S; Swartz, M; Taylor, F E; Thom, J; Torrence, E; Usher, T; Va'vra, J; Verdier, R; Wagner, D L; Waite, A P; Walston, S; Weidemann, A W; Weiss, E R; Whitaker, J S; Williams, S H; Willocq, S; Wilson, R J; Wisniewski, W J; Wittlin, J L; Woods, M; Wright, T R; Yamamoto, R K; Yashima, J; Yellin, S J; Young, C C; Yuta, H

    2002-04-15

    The parity violation parameters A(b) and A(c) of the Zb(b) and Zc(c) couplings have been measured directly, using the polar angle dependence of the polarized cross sections at the Z(0) pole. Bottom and charmed hadrons were tagged via their semileptonic decays. Both the electron and muon analyses take advantage of new multivariate techniques to increase the analyzing power. Based on the 1993-1998 SLD sample of 550,000 Z(0) decays produced with highly polarized electron beams, we measure A(b) = 0.919+/-0.030(stat)+/-0.024(syst), and A(c) = 0.583+/-0.055(stat)+/-0.055(syst). PMID:11955189

  18. Studies on the activation energy from the ac conductivity measurements of rubber ferrite composites containing manganese zinc ferrite

    NASA Astrophysics Data System (ADS)

    Hashim, Mohd.; Alimuddin; Kumar, Shalendra; Shirsath, Sagar E.; Mohammed, E. M.; Chung, Hanshik; Kumar, Ravi

    2012-11-01

    Manganese zinc ferrites (MZF) have resistivities between 0.01 and 10 Ω m. Making composite materials of ferrites with either natural rubber or plastics will modify the electrical properties of ferrites. The moldability and flexibility of these composites find wide use in industrial and other scientific applications. Mixed ferrites belonging to the series Mn(1-x)ZnxFe2O4 were synthesized for different ‘x’ values in steps of 0.2, and incorporated in natural rubber matrix (RFC). From the dielectric measurements of the ceramic manganese zinc ferrite and rubber ferrite composites, ac conductivity and activation energy were evaluated. A program was developed with the aid of the LabVIEW package to automate the measurements. The ac conductivity of RFC was then correlated with that of the magnetic filler and matrix by a mixture equation which helps to tailor properties of these composites.

  19. The point source method for reconstructing an inclusion from boundary measurements in electrical impedance tomography and acoustic scattering

    NASA Astrophysics Data System (ADS)

    Erhard, Klaus; Potthast, Roland

    2003-10-01

    We employ the point source method (PSM) for the reconstruction of some field u on parts of a domain Omega from the Cauchy data for the field on the boundary partialOmega of the domain. Then, the boundary condition for a perfectly conducting inclusion or a sound-soft object in Omega can be used to find the location and shape of the inhomogeneity. The results show that we can detect perfectly conducting inclusions in impedance tomography from the voltages for one injected current. For acoustic scattering a sound-soft object is found from the knowledge of one (total) field and its normal derivative on partialOmega. The work redesigns the PSM, which was first proposed in the framework of inverse scattering, to solve inverse boundary value problems. Numerical examples are provided for impedance tomography and the sound-soft acoustic boundary value problem.

  20. Wavelet-based multiscale analysis of bioimpedance data measured by electric cell-substrate impedance sensing for classification of cancerous and normal cells

    NASA Astrophysics Data System (ADS)

    Das, Debanjan; Shiladitya, Kumar; Biswas, Karabi; Dutta, Pranab Kumar; Parekh, Aditya; Mandal, Mahitosh; Das, Soumen

    2015-12-01

    The paper presents a study to differentiate normal and cancerous cells using label-free bioimpedance signal measured by electric cell-substrate impedance sensing. The real-time-measured bioimpedance data of human breast cancer cells and human epithelial normal cells employs fluctuations of impedance value due to cellular micromotions resulting from dynamic structural rearrangement of membrane protrusions under nonagitated condition. Here, a wavelet-based multiscale quantitative analysis technique has been applied to analyze the fluctuations in bioimpedance. The study demonstrates a method to classify cancerous and normal cells from the signature of their impedance fluctuations. The fluctuations associated with cellular micromotion are quantified in terms of cellular energy, cellular power dissipation, and cellular moments. The cellular energy and power dissipation are found higher for cancerous cells associated with higher micromotions in cancer cells. The initial study suggests that proposed wavelet-based quantitative technique promises to be an effective method to analyze real-time bioimpedance signal for distinguishing cancer and normal cells.

  1. Analyzing the Effects of Capacitances-to-Shield in Sample Probes on AC Quantized Hall Resistance Measurements

    PubMed Central

    Cage, M. E.; Jeffery, A.

    1999-01-01

    We analyze the effects of the large capacitances-to-shields existing in all sample probes on measurements of the ac quantized Hall resistance RH. The object of this analysis is to investigate how these capacitances affect the observed frequency dependence of RH. Our goal is to see if there is some way to eliminate or minimize this significant frequency dependence, and thereby realize an intrinsic ac quantized Hall resistance standard. Equivalent electrical circuits are used in this analysis, with circuit components consisting of: capacitances and leakage resistances to the sample probe shields; inductances and resistances of the sample probe leads; quantized Hall resistances, longitudinal resistances, and voltage generators within the quantum Hall effect device; and multiple connections to the device. We derive exact algebraic equations for the measured RH values expressed in terms of the circuit components. Only two circuits (with single-series “offset” and quadruple-series connections) appear to meet our desired goals of measuring both RH and the longitudinal resistance Rx in the same cool-down for both ac and dc currents with a one-standard-deviation uncertainty of 10−8 RH or less. These two circuits will be further considered in a future paper in which the effects of wire-to-wire capacitances are also included in the analysis.

  2. Incorporating residential AC load control into ancillary service markets: Measurement and settlement

    SciTech Connect

    Bode, Josh L.; Sullivan, Michael J.; Berghman, Dries; Eto, Joseph H.

    2013-05-01

    Many pre-existing air conditioner load control programs can provide valuable operational flexibility but have not been incorporated into electricity ancillary service markets or grid operations. Multiple demonstrations have shown that residential air conditioner (AC) response can deliver resources quickly and can provide contingency reserves. A key policy hurdle to be overcome before AC load control can be fully incorporated into markets is how to balance the accuracy, cost, and complexity of methods available for the settlement of load curtailment. Overcoming this hurdle requires a means for assessing the accuracy of shorter-term AC load control demand reduction estimation approaches in an unbiased manner. This paper applies such a method to compare the accuracy of approaches varying in cost and complexity ? including regression analysis, load matching and control group approaches ? using feeder data, household data and AC end-use data. We recommend a practical approach for settlement, relying on an annually updated set of tables, with pre-calculated reduction estimates. These tables allow users to look up the demand reduction per device based on daily maximum temperature, geographic region and hour of day, simplifying settlement and providing a solution to the policy problem presented in this paper.

  3. Development, implementation, and characterization of a standalone embedded viscosity measurement system based on the impedance spectroscopy of a vibrating wire sensor

    NASA Astrophysics Data System (ADS)

    Santos, José; Janeiro, Fernando M.; Ramos, Pedro M.

    2015-10-01

    This paper presents an embedded liquid viscosity measurement system based on a vibrating wire sensor. Although multiple viscometers based on different working principles are commercially available, there is still a market demand for a dedicated measurement system capable of performing accurate, fast measurements and requiring little or no operator training for simple systems and solution monitoring. The developed embedded system is based on a vibrating wire sensor that works by measuring the impedance response of the sensor, which depends on the viscosity and density of the liquid in which the sensor is immersed. The core of the embedded system is a digital signal processor (DSP) which controls the waveform generation and acquisitions for the measurement of the impedance frequency response. The DSP also processes the acquired waveforms and estimates the liquid viscosity. The user can interact with the measurement system through a keypad and an LCD or through a computer with a USB connection for data logging and processing. The presented system is tested on a set of viscosity standards and the estimated values are compared with the standard manufacturer specified viscosity values. A stability study of the measurement system is also performed.

  4. A high-sensitivity scanning magnetometer based on the giant magneto-impedance effect for measuring local magnetic fields of corrosion currents

    NASA Astrophysics Data System (ADS)

    Gudoshnikov, S. A.; Bardin, I. V.; Bautin, V. A.; Nozdrin, A. G.; Popova, A. V.; Prokhorova, Yu. V.; Skomarovskii, V. S.; Lyubimov, B. Ya.; Seferyan, A. G.; Usov, N. A.

    2016-05-01

    The design, main characteristics, and specific features of a new high-sensitivity magnetometer based on the giant magneto-impedance (GMI) effect in amorphous ferromagnetic microwires are considered. It is shown that, in addition to measuring homogeneous fields, the device is capable of detecting weak local magnetic fields of conduction currents and ion currents involved in corrosion processes. Results of in situ magnetic measurements of corrosion processes in the model system of copper-zinc in a sulfuric acid solution qualitatively agree with the data of direct corrosion tests employing the standard gravimetric method.

  5. Cellular impedance measurement as a new tool for poxvirus titration, antibody neutralization testing and evaluation of antiviral substances

    SciTech Connect

    Witkowski, Peter T.; Schuenadel, Livia; Wiethaus, Julia; Bourquain, Daniel R.; Kurth, Andreas; Nitsche, Andreas

    2010-10-08

    Research highlights: {yields} Real-time data acquisition by RT-CES requires low operative effort. {yields} Time to result is reduced by using RT-CES instead of conventional methods. {yields} RT-CES enables quantification of virus titers in unknown samples. {yields} RT-CES is a useful tool for high-throughput characterization of antiviral agents. {yields} An RT-CES-based virus neutralization test was established. -- Abstract: Impedance-based biosensing known as real-time cell electronic sensing (RT-CES) belongs to an emerging technology for analyzing the status of cells in vitro. In the present study protocols were developed for an RT-CES-based system (xCELLigence{sup TM}, Roche Applied Science, ACEA Biosciences Inc.) to supplement conventional techniques in pox virology. First, proliferation of cells susceptible to orthopoxviruses was monitored. For virus titration cells were infected with vaccinia virus and cell status, represented by the dimensionless impedance-based cell index (CI), was monitored. A virus-dose dependent decrease in electrical impedance could be shown. Calculation of calibration curves at a suitable CI covering a dynamic range of 4 log enabled the quantification of virus titers in unknown samples. Similarly, antiviral effects could be determined as shown for anti-poxviral agents ST-246 and Cidofovir. Published values for the in vitro concentration that inhibited virus replication by 50% (IC{sub 50}) could be confirmed while cytotoxicity in effective concentrations was excluded in long-term incubation experiments. Finally, an RT-CES-based virus neutralization test was established. Various poxvirus-specific antibodies were examined for their neutralizing activity and a calculation mode for the neutralizing antibody titer was introduced. In summary, the presented RT-CES-based methods outmatch end-point assays by observing the cell population throughout the entire experiment while workload and time to result are reduced.

  6. Gynecologic electrical impedance tomograph

    NASA Astrophysics Data System (ADS)

    Korjenevsky, A.; Cherepenin, V.; Trokhanova, O.; Tuykin, T.

    2010-04-01

    Electrical impedance tomography extends to the new and new areas of the medical diagnostics: lungs, breast, prostate, etc. The feedback from the doctors who use our breast EIT diagnostic system has induced us to develop the 3D electrical impedance imaging device for diagnostics of the cervix of the uterus - gynecologic impedance tomograph (GIT). The device uses the same measuring approach as the breast imaging system: 2D flat array of the electrodes arranged on the probe with handle is placed against the body. Each of the 32 electrodes of the array is connected in turn to the current source while the rest electrodes acquire the potentials on the surface. The current flows through the electrode of the array and returns through the remote electrode placed on the patient's limb. The voltages are measured relative to another remote electrode. The 3D backprojection along equipotential surfaces is used to reconstruct conductivity distribution up to approximately 1 cm in depth. Small number of electrodes enables us to implement real time imaging with a few frames per sec. rate. The device is under initial testing and evaluation of the imaging capabilities and suitability of usage.

  7. ADVANCES IN IMPEDANCE THEORY

    SciTech Connect

    Stupakov, G.; /SLAC

    2009-06-05

    We review recent progress in the following areas of the impedance theory: calculation of impedance of tapers and small angle collimators; optical approximation and parabolic equation for the high-frequency impedance; impedance due to resistive inserts in a perfectly conducting pipe.

  8. The use of the impedance measurements to distinguish between fresh and frozen-thawed chicken breast muscle.

    PubMed

    Chen, Tian-Hao; Zhu, Ye-Pei; Wang, Peng; Han, Min-Yi; Wei, Ran; Xu, Xing-Lian; Zhou, Guang-Hong

    2016-06-01

    An impedance system was built to differentiate fresh chicken breasts from those that had been frozen and thawed. Inserting needle electrode pairs of the detecting probe aligned with the longitudinal direction of muscle myofibers (PL) gave more satisfactory results. Learning vector quantization neural network (LVQNN) and partial least square-discriminant analysis (PLS-DA) were employed to acquire the prediction accuracy. The results demonstrated that the model using LVQNN achieved a satisfactory prediction accuracy, with a discrimination accuracy for fresh breasts of 100%. Additionally, the recognition results for a single frozen-thawed cycle were greater than 90%, and for two cycles were greater than 88%. The values obtained from PLS-DA were somewhat lower than for LVQNN, being 100% for fresh samples, in excess of 90% for single frozen-thawed cycle and more than 84% for those that had been multiple frozen-thawed. In conclusion, these results showed that the impedance system is a simple and effective application for the discrimination of fresh chicken breasts from frozen-thawed ones. PMID:26890390

  9. Calorimetric AC loss measurement of MgB2 superconducting tape in an alternating transport current and direct magnetic field

    NASA Astrophysics Data System (ADS)

    See, K. W.; Xu, X.; Horvat, J.; Cook, C. D.; Dou, S. X.

    2012-11-01

    Applications of MgB2 superconductors in electrical engineering have been widely reported, and various studies have been made to define their alternating current (AC) losses. However, studies on the transport losses with an applied transverse DC magnetic field have not been conducted, even though this is one of the favored conditions in applications of practical MgB2 tapes. Methods and techniques used to characterize and measure these losses have so far been grouped into ‘electrical’ and ‘calorimetric’ approaches with external conditions set to resemble the application conditions. In this paper, we present a new approach to mounting the sample and employ the calorimetric method to accurately determine the losses in the concurrent application of AC transport current and DC magnetic fields that are likely to be experienced in practical devices such as generators and motors. This technique provides great simplification compared to the pickup coil and lock-in amplifier methods and is applied to a long length (˜10 cm) superconducting tape. The AC loss data at 20 and 30 K will be presented in an applied transport current of 50 Hz under external DC magnetic fields. The results are found to be higher than the theoretical predictions because of the metallic fraction of the tape that contributes quite significantly to the total losses. The data, however, will allow minimization of losses in practical MgB2 coils and will be used in the verification of numerical coil models.

  10. Measuring thermal diffusivity of mechanical and optical grades of polycrystalline diamond using an AC laser calorimetry method

    SciTech Connect

    Rule, Toby D.; Cai, Wei; Wang, Hsin

    2013-01-01

    Because of its extremely high thermal conductivity, measuring the thermal conductivity or diffusivity of optical-grade diamond can be challenging. Various methods have been used to measure the thermal conductivity of thick diamond films. For the purposes of commercial quality control, the AC laser calorimetry method is appealing because it enables fairly rapid and convenient sample preparation and measurement. In this paper, the method is used to measure the thermal diffusivity of optical diamond. It is found that sample dimensions and measurement parameters are critical, and data analysis must be performed with great care. The results suggest that the method as it is applied to optical-grade diamond could be enhanced by a more powerful laser, higher frequency beam modulation, and post-processing based on 2D thermal simulation.

  11. (abstract) Scaling Nominal Solar Cell Impedances for Array Design

    NASA Technical Reports Server (NTRS)

    Mueller, Robert L; Wallace, Matthew T.; Iles, Peter

    1994-01-01

    This paper discusses a task the objective of which is to characterize solar cell array AC impedance and develop scaling rules for impedance characterization of large arrays by testing single solar cells and small arrays. This effort is aimed at formulating a methodology for estimating the AC impedance of the Mars Pathfinder (MPF) cruise and lander solar arrays based upon testing single cells and small solar cell arrays and to create a basis for design of a single shunt limiter for MPF power control of flight solar arrays having very different inpedances.

  12. Local impedance imaging of boron-doped polycrystalline diamond thin films

    SciTech Connect

    Zieliński, A.; Ryl, J.; Burczyk, L.; Darowicki, K.

    2014-09-29

    Local impedance imaging (LII) was used to visualise surficial deviations of AC impedances in polycrystalline boron-doped diamond (BDD). The BDD thin film electrodes were deposited onto the highly doped silicon substrates via microwave plasma-enhanced CVD. The studied boron dopant concentrations, controlled by the [B]/[C] ratio in plasma, ranged from 1 × 10{sup 16} to 2 × 10{sup 21} atoms cm{sup −3}. The BDD films displayed microcrystalline structure, while the average size of crystallites decreased from 1 to 0.7 μm with increasing [B]/[C] ratios. The application of LII enabled a direct and high-resolution investigation of local distribution of impedance characteristics within the individual grains of BDD. Such an approach resulted in greater understanding of the microstructural control of properties at the grain level. We propose that the obtained surficial variation of impedance is correlated to the areas of high conductance which have been observed at the grain boundaries by using LII. We also postulate that the origin of high conductivity is due to either preferential boron accumulation, the presence of defects, or sp{sup 2} regions in the intragrain regions. The impedance modulus recorded by LII was in full agreement with the bulk impedance measurements. Both variables showed a decreasing trend with increasing [B]/[C] ratios, which is consistent with higher boron incorporation into BDD film.

  13. The measurement of peripheral blood volume reactions to tilt test by the electrical impedance technique after exercise in athletes

    NASA Astrophysics Data System (ADS)

    Melnikov, A. A.; Popov, S. G.; Nikolaev, D. V.; Vikulov, A. D.

    2013-04-01

    We have investigated the distribution of peripheral blood volumes in different regions of the body in response to the tilt-test in endurance trained athletes after aerobic exercise. Distribution of peripheral blood volumes (ml/beat) simultaneously in six regions of the body (two legs, two hands, abdomen, neck and ECG) was assessed in response to the tilt-test using the impedance method (the impedance change rate (dZ/dT). Before and after exercise session cardiac stroke (CSV) and blood volumes in legs, arms and neck were higher in athletes both in lying and standing positions. Before exercise the increase of heart rate and the decrease of a neck blood volume in response to tilting was lower (p <0.05) but the decrease of leg blood volumes was higher (p<0.001) in athletes. The reactions in arms and abdomen blood volumes were similar. Also, the neck blood volumes as percentage of CSV (%/CSV) did not change in the control but increased in athletes (p <0.05) in response to the tilt test. After (10 min recovery) the aerobic bicycle exercise (mean HR = 156±8 beat/min, duration 30 min) blood volumes in neck and arms in response to the tilting were reduced equally, but abdomen (p<0.05) and leg blood volumes (p <0.001) were lowered more significantly in athletes. The neck blood flow (%/CSV) did not change in athletes but decreased in control (p<0.01), which was offset by higher tachycardia in response to tilt-test in controls after exercise. The data demonstrate greater orthostatic tolerance in athletes both before and after exercise during fatigue which is due to effective distribution of blood flows aimed at maintaining cerebral blood flow.

  14. Bioelectrical impedance analysis as a laboratory activity: At the interface of physics and the body

    NASA Astrophysics Data System (ADS)

    Mylott, Elliot; Kutschera, Ellynne; Widenhorn, Ralf

    2014-05-01

    We present a novel laboratory activity on RC circuits aimed at introductory physics students in life-science majors. The activity teaches principles of RC circuits by connecting ac-circuit concepts to bioelectrical impedance analysis (BIA) using a custom-designed educational BIA device. The activity shows how a BIA device works and how current, voltage, and impedance measurements relate to bioelectrical characteristics of the human body. From this, useful observations can be made including body water, fat-free mass, and body fat percentage. The laboratory is engaging to pre-health and life-science students, as well as engineering students who are given the opportunity to observe electrical components and construction of a commonly used biomedical device. Electrical concepts investigated include alternating current, electrical potential, resistance, capacitance, impedance, frequency, phase shift, device design, and the use of such topics in biomedical analysis.

  15. Size-Dependent Relaxation Properties of Monodisperse Magnetite Nanoparticles Measured Over Seven Decades of Frequency by AC Susceptometry.

    PubMed

    Ferguson, R Matthew; Khandhar, Amit P; Jonasson, Christian; Blomgren, Jakob; Johansson, Christer; Krishnan, Kannan M

    2013-07-01

    Magnetic relaxation is exploited in innovative biomedical applications of magnetic particles such as magnetic particle imaging (MPI), magnetic fluid hyperthermia, and bio-sensing. Relaxation behavior should be optimized to achieve high performance imaging, efficient heating, and good SNR in bio-sensing. Using two AC susceptometers with overlapping frequency ranges, we have measured the relaxation behavior of a series of monodisperse magnetic particles and demonstrated that this approach is an effective way to probe particle relaxation characteristics from a few Hz to 10 MHz, the frequencies relevant for MPI, hyperthermia, and sensing. PMID:25473124

  16. [Monitoring cervical dilatation by impedance].

    PubMed

    Salvat, J; Lassen, M; Sauze, C; Baud, S; Salvat, F

    1992-01-01

    Several different physics procedures have been tried to mechanize the recording of partograms. Can a measure of impedance of tissue Z using potential difference V, according to Ohm's law V = Z1, and 1 is a constant, be correlated with a measure of cervical dilatation using vaginal examination? This was our hypothesis. The tissue impedance meter was made to our design and applied according to a bipolar procedure. Our work was carried out on 28 patients. 10 patients were registered before labour started in order to test the apparatus and to record the impedance variations without labour taking place, and 18 patients were registered in labour to see whether there was any correlation. The level of impedance in the cervix without labour was 302.7 Ohms with a deviation of 8.2. Using student's t tests it was found that there was a significant correlation (p less than 0.001) in four measurements between the impedance measure and measures obtained by extrapolating the degrees of dilatation calculated from vaginal examination. This is a preliminary study in which we have defined the conditions that are necessary to confirm these first results and to further develop the method. PMID:1401774

  17. Simultaneous ac and dc magnetic field measurements in residential areas: Implications for resonance theories of biological effects

    SciTech Connect

    Wong, P.S.; Sastre, A.

    1995-10-01

    The goal of this study was to obtain data that could be used to evaluate the applicability of ``resonance`` theories of biological effects in residential settings. The authors first describe a measurement system which allows the study of ac and dc magnetic fields simultaneously in space and in time. Sample measurements were taken near two power lines, two objects and in two residential homes. The results show that the earth`s (dc) magnetic field was unaffected near power lines. The compass orientation of the power line influenced the relative values of the ac components parallel and perpendicular to the dc field. The electric heating system greatly affected the ac field levels in the home, causing the levels to increase from less than 1 mG to a maximum of 7.5 mG during heating. The magnitudes of the dc field in the two homes varied from about 380 to 650 mG, with the larger variations near metallic or magnetic objects such as the refrigerator or a metallic air duct. The earth`s field was elevated above its natural level within a distance of 8 feet from a subcompact passenger car, e.g., the level changed from about 540 to 1,100 mG beside the headlight. A steel chair changed the earth`s field by up to 60 mG within a distance of one foot. These results suggest that some of the narrow ``resonances`` described in laboratory studies may be difficult to observe against the variations in do field amplitude and direction resulting from the presence of everyday metallic objects.

  18. Bioelectrical impedance analysis revisited.

    PubMed

    Mikes, D M; Cha, B A; Dym, C L; Baumgaertner, J; Hartzog, A G; Tacey, A D; Calabria, M R

    1999-12-01

    Although total limb volume measurements are used to track the progress of lymphedema and its treatment, these measurements can be confounded by changes other than fluid excess namely muscle or fat gain. Bioelectrical impedance analysis (BIA) is a technique that specifically quantifies both total body fluid and extracellular fluid in extremities. Whereas BIA has potential as a quick, inexpensive, and quantitative technique to measure directly fluid gain or loss from lymphedema, it also has certain shortcomings that must be addressed before it can be validated. this paper examines the back-ground that explains why measuring total limb volume is insufficient to quantify the extent of peripheral lymphedema and explores the advantages and drawbacks of using BIA for this purpose. PMID:10652699

  19. Measurements of Electron Temperature and Density, in an AC Pulsed Oxygen Plasma Discharge

    NASA Astrophysics Data System (ADS)

    Yousif, Farook; Martinez, Horacio; Castillo, Fermin

    2007-06-01

    Emission and analytical spectroscopy was applied to investigate O2 plasma, which was generated by an AC discharge between 0.15 and 0.5 Torr pressure. For the diagnostic study, a double Langmuir probe was employed. The derivation of plasma parameters is based on a theoretical description of the double-probe current-voltage characterization in the Thick Sheath Limit (TSL) region [1]. Electron temperature of Te = 1.09 eV and an ion density of ni= 2.08 x 10^10 cm-3 were evaluated at 2 Torr. We present electron temperature and ion density as a function of the pressure at 3 different power discharge levels. Also we present emission spectroscopy in the wavelength range of 200-1100 nm as a function of the pressure. [1] J.D. Swift and J. R. Schwar, Electric Probes for Plasma Diagnostics (New York: Elsevier) 1971.

  20. Electrochemical impedance spectroscopy of metal alloys in the space transportation system launch environment

    NASA Technical Reports Server (NTRS)

    Calle, Luz

    1990-01-01

    AC impedance measurements were performed to investigate the corrosion resistance of 18 alloys under conditions similar to the Space Transportation System (STS) launch environment. The alloys were: (1) zirconium 702; (2) Hastelloy C-22, C-276, C-4, and B-2; (3) Inconel 600 and 825; (4) Ferralium 255; (5) Inco Alloy G-3; (6) 20Cb-3; (7) SS 904L, 304LN, 316L, 317L, and 304L; (8) ES 2205; and (9) Monel 400. AC impedance data were gathered for each alloy at various immersion times in 3.55 percent NaCl-0.1N HCl. Polarization resistance values were obtained for the Nyguist plots at each immersion time using the EQUIVALENT CIRCUIT software package available with the 388 electrochemical impedance software. Hastelloy C-22 showed the highest overall values for polarization resistance while Monel 400 and Inconel 600 had the lowest overall values. There was good general correlation between the corrosion performance of the alloys at the beach corrosion testing site, and the expected rate of corrosion as predicted based on the polarization resistance values obtained. The data indicate that electrochemical impedance spectroscopy can be used to predict the corrosion performance of metal alloys.

  1. High-resolution Impedance Manometry Measurement of Bolus Flow Time in Achalasia and its Correlation with Dysphagia

    PubMed Central

    Lin, Zhiyue; Carlson, Dusty; Dykstra, Kristina; Sternbach, Joel; Hungness, Eric; Kahrilas, Peter J.; Ciolino, Jody D.; Pandolfino, John E.

    2015-01-01

    Background We assessed whether a high-resolution impedance manometry (HRIM) metric, bolus flow time (BFT) across the esophagogastric junction (EGJ), was abnormal in achalasia patients subtyped by the Chicago Classification and compared BFT to other HRM metrics. Methods HRIM studies were performed in 60 achalasia patients (14 type I, 36 type II and 10 type III) and 15 healthy controls. Studies were analyzed with a MATLAB program to calculate BFT using a virtual HRIM sleeve. Integrated relaxation pressure (IRP) and basal end-expiratory EGJ pressure were also calculated. The relationship between BFT and dysphagia symptom scores was assessed using the impaction dysphagia questionnaire (IDQ). Key Results Median BFT was significantly lower in achalasia patients (0.5 s, range 0.0 to 3.5 s) compared to controls (3.5 s, range 2.0 to 5.0 s) (P<0.05). BFT was significantly lower in types I and II than in type III achalasia in both the supine and upright positions (p<0.0001). BFT was the only HRIM metric significantly associated with IDQ score in both the supine (R2 =0.20, p=0.0046) and upright positions (R2 =0.27, p=0.0002). Conclusions & Inferences BFT was significantly reduced in all subtypes of achalasia and complementary to the IRP as a diagnostic discriminant in equivocal achalasia cases. Additionally, BFT had a more robust correlation with dysphagia severity compared to other metrics of EGJ function. PMID:26088614

  2. Formaldehyde assay by capacitance versus voltage and impedance measurements using bi-layer bio-recognition membrane.

    PubMed

    Ben Ali, M; Korpan, Y; Gonchar, M; El'skaya, A; Maaref, M A; Jaffrezic-Renault, N; Martelet, C

    2006-12-15

    A novel formaldehyde sensitive biosensor based on bacterial formaldehyde dehydrogenase (FDH) as a bio-recognition element has been developed. The bio-recognition membrane had bi-layer architecture and consisted of FDH, cross-linked with albumin, and of the cofactor NAD at a high concentration level (first layer). The second layer was a negatively charged Nafion membrane, which prevented a leakage of negatively charged NAD molecules from the bio-membrane. As transducers, gold electrodes SiO(2)/Si/SiO(2)/Ti/Au and electrolyte-insulator-semiconductor Si/SiO(2) (EIS) structures have been used. Changes in capacitance and impedance properties of the bio-recognition membrane have been used for monitoring formaldehyde concentration in a bulk solution. It has been shown that formaldehyde can be detected within a concentration range from 1 microM to 20mM depending on the type of transduction used, with a detection limit of 1 and 100 microM for gold-based and EIS-based transducers, respectively. PMID:16516460

  3. A better method to define electrical chargeability from laboratory measurements of spectral impedance using a parallel Cole-Cole equivalent circuit

    NASA Astrophysics Data System (ADS)

    Enkin, R. J.

    2014-12-01

    Induced polarization (IP) is a successful electric method to identify drill targets for mineral exploration at the property scale. The Paleomagnetism and Petrophysics Laboratory at the Geological Survey of Canada makes petrophysical measurements on cylindrical rock samples, 2.5 cm diameter and 2.2 cm long. This small size has advantages, including allowing measurement of magnetic remanence with standard paleomagnetism equipment, but it is too small to allow a 4-contact electrical impedance measurement. The samples are impregnated with distilled water under vacuum and allowed 24 hours for solutes to dissolve off pore walls, in order to approximate original groundwater ionic conductivity. We use graphite electrodes on the flat surfaces and measure the complex impedance at 5 frequencies per decade from 1 MHz down to 25 mHz. Typical responses on a Cole-Cole plot (i.e., real vs. imaginary components displayed parametrically as a function of frequency) look like a two overlapping circular arcs followed by a constant-phase diffusive response at lowest frequencies. The impedance frequency response is fit with a circuit in which the rock is modelled as a set of parallel resistor and constant-phase-element pathways, connected in series through a modified constant-phase-element representing the low frequency sample-holder response. The program "ZarcFit", written in LabView, allows the operator to tune parameters of an equivalent but far more intuitive series circuit with a set of 13 sliders, and then perform a least-squares optimization. Time domain chargeability is defined by removing the effect of the sample holder, taking the Fourier transform to convert the frequency response to its time-domain equivalent and then integrating under the resulting voltage-decay curve. Time domain measurements using two-electrode sample holders are necessarily contaminated by the low-frequency response of ionic diffusion at the electrodes. Results are compiled in the Canadian Rock Physical

  4. Electrical Effect in Silver-Point Realization Due to Cell Structure and Bias Voltage Based on Resistance Measurement Using AC and DC Bridges

    NASA Astrophysics Data System (ADS)

    Widiatmo, J. V.; Harada, K.; Yamazawa, K.; Tamba, J.; Arai, M.

    2015-08-01

    Electrical effects related to insulating leakage represent one of the major factors contributing to uncertainties in measurements using high-temperature standard platinum resistance thermometers (HTSPRTs), especially during the realization of the silver freezing point (). This work is focused on the evaluation of the differences in resistance measurements observed when using AC resistance bridges and DC resistance bridges, hereafter, termed the AC-DC differences, as the result of various electrical effects. The magnitude of the AC-DC difference in several silver-point cells is demonstrated with several HTSPRTs. The effect of the cell structure on the AC-DC difference is evaluated by exchanging some components, part by part, within a silver-point cell. Then, the effect of the bias voltage applied to the heat pipe within the silver-point furnace is evaluated. Through the analysis of the experimental results and comparison with the reports in the literature, the importance of evaluating the AC-DC difference as a means to characterize the underlying electrical effects is discussed, considering that applying a negative bias condition to the furnace with respect to the high-temperature SPRT can minimize the AC-DC difference. Concluding recommendations are proposed on the components used in silver-point cells and the application of a bias voltage to the measurement circuit to minimize the effects of the electrical leakage.

  5. Pulse Wave Velocity and Cardiac Output vs. Heart Rate in Patients with an Implanted Pacemaker Based on Electric Impedance Method Measurement

    NASA Astrophysics Data System (ADS)

    Soukup, Ladislav; Vondra, Vlastimil; Viščor, Ivo; Jurák, Pavel; Halámek, Josef

    2013-04-01

    The methods and device for estimation of cardiac output and measurement of pulse wave velocity simultaneously is presented here. The beat-to-beat cardiac output as well as pulse wave velocity measurement is based on application of electrical impedance method on the thorax and calf. The results are demonstrated in a study of 24 subjects. The dependence of pulse wave velocity and cardiac output on heart rate during rest in patients with an implanted pacemaker was evaluated. The heart rate was changed by pacemaker programming while neither exercise nor drugs were applied. The most important result is that the pulse wave velocity, cardiac output and blood pressure do not depend significantly on heart rate, while the stroke volume is reciprocal proportionally to the heart rate.

  6. Online Measurement of Real-Time Cytotoxic Responses Induced by Multi-Component Matrices, such as Natural Products, through Electric Cell-Substrate Impedance Sensing (ECIS)

    PubMed Central

    Fallarero, Adyary; Batista-González, Ana E.; Hiltunen, Anna K.; Liimatainen, Jaana; Karonen, Maarit; Vuorela, Pia M.

    2015-01-01

    Natural products are complex matrices of compounds that are prone to interfere with the label-dependent methods that are typically used for cytotoxicity screenings. Here, we developed a label-free Electric Cell-substrate Impedance Sensing (ECIS)-based cytotoxicity assay that can be applied in the assessment of the cytotoxicity of natural extracts. The conditions to measure the impedance using ECIS were first optimized in mice immortalized hypothalamic neurons GT1-7 cells. The performance of four natural extracts when tested using three conventional cytotoxicity assays in GT1-7 cells, was studied. Betula pendula (silver birch tree) was found to interfere with all of the cytotoxicity assays in which labels were applied. The silver birch extract was also proven to be cytotoxic and, thus, served as a proof-of-concept for the use of ECIS. The extract was fractionated and the ECIS method permitted the distinction of specific kinetic patterns of cytotoxicity on the fractions as well as the extract’s pure constituents. This study offers evidence that ECIS is an excellent tool for real-time monitoring of the cytotoxicity of complex extracts that are difficult to work with using conventional (label-based) assays. Altogether, it offers a very suitable cytotoxicity-screening assay making the work with natural products less challenging within the drug discovery workflow. PMID:26569236

  7. Online Measurement of Real-Time Cytotoxic Responses Induced by Multi-Component Matrices, such as Natural Products, through Electric Cell-Substrate Impedance Sensing (ECIS).

    PubMed

    Fallarero, Adyary; Batista-González, Ana E; Hiltunen, Anna K; Liimatainen, Jaana; Karonen, Maarit; Vuorela, Pia M

    2015-01-01

    Natural products are complex matrices of compounds that are prone to interfere with the label-dependent methods that are typically used for cytotoxicity screenings. Here, we developed a label-free Electric Cell-substrate Impedance Sensing (ECIS)-based cytotoxicity assay that can be applied in the assessment of the cytotoxicity of natural extracts. The conditions to measure the impedance using ECIS were first optimized in mice immortalized hypothalamic neurons GT1-7 cells. The performance of four natural extracts when tested using three conventional cytotoxicity assays in GT1-7 cells, was studied. Betula pendula (silver birch tree) was found to interfere with all of the cytotoxicity assays in which labels were applied. The silver birch extract was also proven to be cytotoxic and, thus, served as a proof-of-concept for the use of ECIS. The extract was fractionated and the ECIS method permitted the distinction of specific kinetic patterns of cytotoxicity on the fractions as well as the extract's pure constituents. This study offers evidence that ECIS is an excellent tool for real-time monitoring of the cytotoxicity of complex extracts that are difficult to work with using conventional (label-based) assays. Altogether, it offers a very suitable cytotoxicity-screening assay making the work with natural products less challenging within the drug discovery workflow. PMID:26569236

  8. Impedance microflow cytometry for viability studies of microorganisms

    NASA Astrophysics Data System (ADS)

    Di Berardino, Marco; Hebeisen, Monika; Hessler, Thomas; Ziswiler, Adrian; Largiadèr, Stephanie; Schade, Grit

    2011-02-01

    Impedance-based Coulter counters and its derivatives are widely used cell analysis tools in many laboratories and use normally DC or low frequency AC to perform these electrical analyses. The emergence of micro-fabrication technologies in the last decade, however, provides a new means of measuring electrical properties of cells. Microfluidic approaches combined with impedance spectroscopy measurements in the radio frequency (RF) range increase sensitivity and information content and thus push single cell analyses beyond simple cell counting and sizing applications towards multiparametric cell characterization. Promising results have been shown already in the fields of cell differentiation and blood analysis. Here we emphasize the potential of this technology by presenting new data obtained from viability studies on microorganisms. Impedance measurements of several yeast and bacteria strains performed at frequencies around 10 MHz enable an easy discrimination between dead and viable cells. Moreover, cytotoxic effects of antibiotics and other reagents, as well as cell starvation can also be monitored easily. Control analyses performed with conventional flow cytometers using various fluorescent dyes (propidium iodide, oxonol) indicate a good correlation and further highlight the capability of this device. The label-free approach makes on the one hand the use of usually expensive fluorochromes obsolete, on the other hand practically eliminates laborious sample preparation procedures. Until now, online cell monitoring was limited to the determination of viable biomass, which provides rather poor information of a cell culture. Impedance microflow cytometry, besides other aspects, proposes a simple solution to these limitations and might become an important tool for bioprocess monitoring applications in the biotech industry.

  9. Dielectric and impedance spectroscopic studies of neodymium gallate

    NASA Astrophysics Data System (ADS)

    Sakhya, Anup Pradhan; Dutta, Alo; Sinha, T. P.

    2016-05-01

    The AC electrical properties of a polycrystalline neodymium gallate, NdGaO3 (NGO), synthesized by the sol-gel method have been investigated by employing impedance spectroscopy in the frequency range from 42 Hz to 5 MHz and in the temperature range from 323 K to 593 K. The X-ray diffraction analysis shows that the compound crystallizes in the orthorhombic phase with Pbnm space group at room temperature. Two relaxation processes with different relaxation times are observed from the impedance as well as modulus spectroscopic measurements, which have been attributed to the grain and the grain boundary effects at different temperatures in NGO. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element in parallel. It has been observed that the value of the capacitance and the resistance associated with the grain boundary is higher than those associated with the grain. The temperature dependent electrical conductivity shows the negative temperature coefficient of resistance. The frequency dependent conductivity spectra are found to follow the power law.

  10. Electric cell-substrate impedance sensing (ECIS) based real-time measurement of titer dependent cytotoxicity induced by adenoviral vectors in an IPI-2I cell culture model.

    PubMed

    Müller, Jakob; Thirion, Christian; Pfaffl, Michael W

    2011-01-15

    Recombinant viral vectors are widespread tools for transfer of genetic material in various modern biotechnological applications like for example RNA interference (RNAi). However, an accurate and reproducible titer assignment represents the basic step for most downstream applications regarding a precise multiplicity of infection (MOI) adjustment. As necessary scaffold for the studies described in this work we introduce a quantitative real-time PCR (qPCR) based approach for viral particle measurement. Still an implicated problem concerning physiological effects is that the appliance of viral vectors is often attended by toxic effects on the individual target. To determine the critical viral dose leading to cell death we developed an electric cell-substrate impedance sensing (ECIS) based assay. With ECIS technology the impedance change of a current flow through the cell culture medium in an array plate is measured in a non-invasive manner, visualizing effects like cell attachment, cell-cell contacts or proliferation. Here we describe the potential of this online measurement technique in an in vitro model using the porcine ileal epithelial cell line IPI-2I in combination with an adenoviral transfection vector (Ad5-derivate). This approach shows a clear dose-depending toxic effect, as the amount of applied virus highly correlates (p<0.001) with the level of cell death. Thus this assay offers the possibility to discriminate the minimal non-toxic dose of the individual transfection method. In addition this work suggests that the ECIS-device bears the feasibility to transfer this assay to multiple other cytotoxicological questions. PMID:20875729

  11. A flexible electrode array for muscle impedance measurements in the mouse hind limb: A tool to speed research in neuromuscular disease

    NASA Astrophysics Data System (ADS)

    Li, J.; Rutkove, S. B.

    2013-04-01

    Electrical impedance myography (EIM) is a bioelectrical impedance technique focused on the assessment of neuromuscular diseases using tetrapolar surface arrays. Recently, we have shown that reproducible and sensitive EIM measurements can be made on the gastrocnemius muscle of the mouse hind limb and that these are sensitive to disease alterations. A dedicated array would help speed data acquisition and provide additional sensitivity to disease-induced alterations. A flexible electrode array was developed with electrode sizes of 1mm × 1mm by Parlex, Inc. Tetrapolar electrode sets were arranged both parallel to (longitudinal) and orthogonally to (transverse) the major muscle fiber direction of the gastrocnemius muscle. Measurements were made with a dedicated EIM system. A total of 11 healthy animals and 7 animals with spinal muscular atrophy (a form of motor neuron disease) were evaluated after the fur was completely removed with a depilatory agent from the hind limb. Standard electrophysiologic testing (compound motor action potential amplitude and motor unit number estimation) was also performed. The flexible electrode array demonstrated high repeatability in both the longitudinal and transverse directions in the healthy and diseased animals (with intraclass correlation coefficients of 0.94 and 0.89, respectively, for phase angle measured transversely). In addition, differences between healthy and diseased animals were identifiable. For example, the 50 kHz transverse phase angle was higher in the healthy as compared to the SMA animals (16.8° ± 0.5 vs. 14.3° ± 0.7, respectively) at 21 weeks of age (p = 0.01). Differences in anisotropy were also identifiable. Correlations to several standard neurophysiologic parameters also appeared promising. This novel flexible tetrapolar electrode array can be used on the mouse hind limb and provides multidirectional data that can be used to assess muscle health. This technique has the potential of finding widespread use in

  12. Comparative study of structural, optical and impedance measurements on V{sub 2}O{sub 5} and V-Ce mixed oxide thin films

    SciTech Connect

    Malini, D. Rachel; Sanjeeviraja, C.

    2015-06-24

    Vanadium pentoxide (V{sub 2}O{sub 5}) and Vanadium-Cerium mixed oxide thin films at different molar ratios of V{sub 2}O{sub 5} and CeO{sub 2} have been deposited at 200 W rf power by rf planar magnetron sputtering in pure argon atmosphere. The structural and optical properties were studied by taking X-ray diffraction and transmittance and absorption spectra respectively. The amorphous thin films show an increase in transmittance and optical bandgap with increase in CeO{sub 2} content in as-prepared thin films. The impedance measurements for as-deposited thin films show an increase in electrical conductivity with increase in CeO{sub 2} material.

  13. Optimal multisine excitation design for broadband electrical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Sanchez, B.; Vandersteen, G.; Bragos, R.; Schoukens, J.

    2011-11-01

    exciting with the optimal and flat multisine signals and compared to a single frequency ac impedance analyzer when characterizing an RC circuit. In vivo healthy myocardium tissue electrical impedance measurements show that broadband EIS based on multisine excitations enable the characterization of dynamic biological systems.

  14. Noncontact scanning electrical impedance imaging.

    PubMed

    Liu, Hongze; Hawkins, Aaron; Schultz, Stephen; Oliphant, Travis E

    2004-01-01

    We are interested in applying electrical impedance imaging to a single cell because it has potential to reveal both cell anatomy and cell function. Unfortunately, classic impedance imaging techniques are not applicable to this small scale measurement due to their low resolution. In this paper, a different method of impedance imaging is developed based on a noncontact scanning system. In this system, the imaging sample is immersed in an aqueous solution allowing for the use of various probe designs. Among those designs, we discuss a novel shield-probe design that has the advantage of better signal-to-noise ratio with higher resolution compared to other probes. Images showing the magnitude of current for each scanned point were obtained using this configuration. A low-frequency linear physical model helps to relate the current to the conductivity at each point. Line-scan data of high impedance contrast structures can be shown to be a good fit to this model. The first two-dimensional impedance image of biological tissues generated by this technique is shown with resolution on the order of 100 mum. The image reveals details not present in the optical image. PMID:17271930

  15. A novel wireless health monitor by using a wearable rubber glove with three-dimensional scanning elastic electrodes to measure acupuncture bio-potentials and impedances of a whole palm.

    PubMed

    Lin, Jium-Ming; Lin, Cheng-Hung

    2015-01-01

    This paper proposes a novel wearable wireless-sensing technology on a glove to measure the bio-potentials and impedances of acupunctures on a whole palm in a non-invasive manner. Moreover, the device can transmit the information to a remote cloud server to learn at normal condition, and take measurement later for health condition analysis and monitoring. An example is given how to measure the acupuncture impedances and bio-potentials on a palm. One can see if certain acupuncture's impedance or bio-potential is not follow the Ohm's law or voltage divider rule along a meridian, then the health condition of the corresponding organ maybe with some problem. This discovery is not found in the previous literatures. PMID:26684570

  16. A slowly rotating coil system for AC field measurements of Fermilab booster correctors

    SciTech Connect

    Velev, G.; DiMarco, J.; Harding, David J.; Kashikhin, V.; Lamm, Michael J.; Schlabach, P.; Tartaglia, Michael Albert; Tompkins, John C.; /Fermilab

    2007-06-01

    A method for measurement of rapidly changing magnetic fields has been developed and applied to the testing of new room temperature corrector packages designed for the Fermilab Booster Synchrotron. The method is based on fast digitization of a slowly rotating tangential coil probe, with analysis combining the measured coil voltages across a set of successive magnet current cycles. This paper presents results on the field quality measured for the normal and skew dipole, quadrupole, and sextupole elements in several of these corrector packages.

  17. Surface diffusivity of cleaved NaCl crystals as a function of humidity: Impedance spectroscopy measurements and implications for crack healing in rock salt

    NASA Astrophysics Data System (ADS)

    Koelemeijer, Paula J.; Peach, Colin J.; Spiers, Christopher J.

    2012-01-01

    Rock salt offers an attractive host rock for geological storage applications, because of its naturally low permeability and the ability of excavation-induced cracks to heal by fluid-assisted diffusive mass transfer. However, while diffusive transport rates in bulk NaCl solution are rapid and well characterized, such data are not directly applicable to storage conditions where crack walls are coated with thin adsorbed water films. To reliably predict healing times in geological storage applications, data on mass transport rates in adsorbed films are needed. We determined the surface diffusivity in such films for conditions with absolute humidities (AH) ranging from 1 to 18 g/m3 (relative humidities (RH) of 4%-78%) by measuring the surface impedance of single NaCl crystals. We use the impedance results to calculate the effective surface diffusivity S = DδCusing the Nernst-Einstein equation. TheS values obtained lie in the range 1 × 10-27 m3 s-1 at very dry conditions to 1 × 10-19 m3 s-1 for the deliquescence point at 296 K, which is in reasonable agreement with existing values for grain boundary diffusion under wet conditions. Estimates for the diffusivity D made assuming a film thickness δ of 50-90 nm and no major effects of thickness on the solubility C lie in the range of 1 × 10-14 to 8 × 10-12 m2 s-1 for the highest humidities studied (14-18 g/m3 AH, 60%-78% RH). For geological storage systems in rock salt, we predict S values between 1 × 10-22 - 8 × 10-18 m3 s-1. These imply crack healing rates 6 to 7 orders of magnitude lower than expected for brine-filled cracks.

  18. Revisiting the electrochemical impedance spectroscopy of magnesium with online inductively coupled plasma atomic emission spectroscopy.

    PubMed

    Shkirskiy, Viacheslav; King, Andrew D; Gharbi, Oumaïma; Volovitch, Polina; Scully, John R; Ogle, Kevin; Birbilis, Nick

    2015-02-23

    The electrochemical impedance of reactive metals such as magnesium is often complicated by an obvious inductive loop with decreasing frequency of the AC polarising signal. The characterisation and ensuing explanation of this phenomenon has been lacking in the literature to date, being either ignored or speculated. Herein, we couple electrochemical impedance spectroscopy (EIS) with online atomic emission spectroelectrochemistry (AESEC) to simultaneously measure Mg-ion concentration and electrochemical impedance spectra during Mg corrosion, in real time. It is revealed that Mg dissolution occurs via Mg(2+) , and that corrosion is activated, as measured by AC frequencies less than approximately 1 Hz approaching DC conditions. The result of this is a higher rate of Mg(2+) dissolution, as the voltage excitation becomes slow enough to enable all Mg(2+) -enabling processes to adjust in real time. The manifestation of this in EIS data is an inductive loop. The rationalisation of such EIS behaviour, as it relates to Mg, is revealed for the first time by using concurrent AESEC. PMID:25425247

  19. New impedance and electrochemical image techniques for biological applications

    NASA Astrophysics Data System (ADS)

    Tao, N. J.

    2010-03-01

    A method to image local surface impedance and electrochemical current optically is developed for biological applications. The principle of the impedance imaging is based on sensitive dependence of surface plasmon resonance (SPR) on local surface charge density. The technique can image local surface impedance and charge while providing simultaneously a conventional surface plasmon resonance (SPR) image. By applying a potential modulation to a sensor surface, it is possible to obtain an image of the DC component, and the amplitude and phase images of the AC component. The DC image provides local molecular binding, as found in the conventional SPR imaging technique. The AC images are directly related to the local impedance of the surface. This imaging capability may be used as a new detection platform for DNA and protein microarrays, a new method for analyzing local molecular binding and interfacial processes and a new tool for imaging cells and tissues.

  20. Experimental study of two-phase fluid flow in two different porosity types of sandstone by P-wave velocity and electrical Impedance measurement

    NASA Astrophysics Data System (ADS)

    Honda, H.; Mitani, Y.; Kitamura, K.; Ikemi, H.; Takaki, S.

    2015-12-01

    Carbon dioxide (CO2) capture and storage (CCS) is recently expected as the promising method to reduce greenhouse gas emissions. It is important to investigate CO2 behavior in the reservoir, to evaluate the safety and to account the stored CO2 volume. In this study, experimental investigation is conducted to discuss the relationships between injected fluid speed (Flow rate: FR) or capillary number (Ca) and non-wetting fluid flow by compressional wave velocity (Vp) and electrical impedance (Z). In the experiment, N2 and supercritical CO2 were injected into the two sandstones with different porosity (φ), Berea sandstone (φ: 18 %), and Ainoura sandstone (φ: 11.9 %). The dimension of the rock specimens is cored cylinder with a 35 mm diameter and 70 mm height. Experimental conditions are nearly same as the reservoir of deep underground (Confining pressure:15MPa, 40℃). Initial conditions of the specimen are brine (0.1wt%-KCl) saturated. Four piezo-electrical transducers (PZTs) are set on the each surface of the top, middle, lower of the specimen to monitor the CO2 bahavior by Vp. To measuring Z, we use for electrodes method with Ag-AgCl electrodes. Four electrodes are wounded around specimen on the both sides of PZTs. We measured the changes of these parameters with injecting N2, injected fluid speed (FR), the differential pore pressure (DP), N2 saturation (SN2), P-wave velocity (Vp) and electrical impedance (Z), respectively. We also estimated the Ca from measured FR. From these experimental results, there are no obvious Vp changes with increasing Ca, while Z measurement indicates clear and continuous increment. In regards to Vp, Vp reduced at the small FR (0.1 to 0.2 ml/min). As the Ca increases, Vp doesn't indicate large reduction. On the other hand, Z is more sensitive to change the fluid saturation than Vp. It is well-known that both of Vp and Z are the function of fluid saturation. Though, these experimental results are not consistent with previous studies. In

  1. The routine measurement of platelet volume: a comparison of light-scattering and aperture-impedance technologies.

    PubMed

    Trowbridge, E A; Reardon, D M; Hutchinson, D; Pickering, C

    1985-08-01

    The effect of dipotassium ethylenediaminetetra-acetic acid (EDTA) on platelet count and mean volume (MPV) was evaluated using two routine measurement systems, a Coulter S Plus (Phase 1) (S+) and a Technicon H6000 (H6000). In normal subjects (n = 29) MPV increased by 17% during 39 h storage in EDTA when measured by the S+. In contrast MPV decreased by 22% when measured by the H6000. MPV differences of up to 40% were observed between the two systems. Concomitant platelet counts, in both systems, changed by less than 4%. A mathematical model of the variation of MPV with storage time was constructed, enabling experimental results to be extrapolated, with accuracy, to time zero (MPV0). The H6000 average MPV0 was significantly larger than the S+ average MPV0. Using the anticoagulant sodium citrate and prostaglandin E1 (NaCitrate-PGE1) there were no significant changes in MPV measured by the S+ during 7 h storage, although a linear decrease in platelet count was observed. A decrease in H6000 MPV was observed whether the blood was stored in EDTA or NaCitrate-PGE1. Methodology, anti-coagulation and storage time all influence MPV. Until these determinants are standardised the clinical value of MPV cannot be assessed. PMID:3930129

  2. Robust impedance shaping telemanipulation

    SciTech Connect

    Colgate, J.E.

    1993-08-01

    When a human operator performs a task via a bilateral manipulator, the feel of the task is embodied in the mechanical impedance of the manipulator. Traditionally, a bilateral manipulator is designed for transparency; i.e., so that the impedance reflected through the manipulator closely approximates that of the task. Impedance shaping bilateral control, introduced here, differs in that it treats the bilateral manipulator as a means of constructively altering the impedance of a task. This concept is particularly valuable if the characteristic dimensions (e.g., force, length, time) of the task impedance are very different from those of the human limb. It is shown that a general form of impedance shaping control consists of a conventional power-scaling bilateral controller augmented with a real-time interactive task simulation (i.e., a virtual environment). An approach to impedance shaping based on kinematic similarity between tasks of different scale is introduced and illustrated with an example. It is shown that an important consideration in impedance shaping controller design is robustness; i.e., guaranteeing the stability of the operator/manipulator/task system. A general condition for the robustness of a bilateral manipulator is derived. This condition is based on the structured singular value ({mu}). An example of robust impedance shaping bilateral control is presented and discussed.

  3. AC field measurements of Fermilab Booster correctors using a rotating coil system

    SciTech Connect

    Velev, G.V.; DiMarco, J.; Harding, D.J.; Kashikhin, V.; Lamm, M.; Makulski, A.; Orris, D.; Schlabach, P.; Sylvester, C.; Tartaglia, M.; Tompkins, J.; /Fermilab

    2006-07-01

    The first prototype of a new corrector package for the Fermilab Booster Synchrotron is presently in production. This water-cooled package includes normal and skew dipole, quadrupole and sextupole elements to control orbit, tune and chromaticity of the beam over the full range of Booster energies (0.4-8 GeV). These correctors operate at the 15 Hz excitation cycle of the main synchrotron magnets, but must also make more rapid excursions, in some cases even switching polarity in approximately 1 ms at transition crossing. To measure the dynamic field changes during operation, a new method based on a relatively slow rotating coil system is proposed. The method pieces together the measured voltages from successive current cycles to reconstruct the field harmonics. This paper describes the method and presents initial field quality measurements from a Tevatron corrector.

  4. Identification of boundaries in the cometary environment from AC electric field measurements

    NASA Astrophysics Data System (ADS)

    Mogilevsky, M.; Mikhailov, Y.; Molchanov, O.; Grard, R.; Pedersen, A.; Trotignon, J. G.; Beghin, C.; Formisano, V.; Shapiro, V.; Shevchenko, V.

    1986-12-01

    Electric fields are measured with the AVP-V experiment in the frequency range 8 Hz - 300 kHz. The field amplitude increases significantly, first at a distance of 2×105km, then at distances of 1.2 - 1.5×105km, and 5 - 7×104km from the nucleus. These phenomena have been observed both on VEGA-1 and VEGA-2. The electric field measurements are compared with data obtained from dust and plasma experiments; possible mechanisms responsible for the existence of these boundaries are discussed.

  5. AC Impedance Behavior of LaNi3.55Mn0.4Al0.3Co0.6Fe0.15 Hydrogen-Storage Alloy: Effect of Surface Area

    NASA Astrophysics Data System (ADS)

    Tliha, M.; Khaldi, C.; Lamloumi, J.

    2016-04-01

    The decrease of Cobalt content in alloy is very beneficial to reduce the production cost of the alloy, whereas the effect of Co on cycle life of the AB5-type hydrogen-storage alloys is extremely important. Therefore, it is interesting to investigate low-Co and/or Co-free AB5-type alloys in which Co was substituted by other elements. Iron is a key element in the development of low-Co AB5-type alloys. The aim of this work is to systematically investigate the effect of the real surface area on the all kinetic properties of a low-Co LaNi3.55Mn0.4Al0.3Co0.6Fe0.15 alloy under cycling using electrochemical impedance spectroscopy (EIS) technique. All kinetic properties of the electrode, such as exchange density, limiting current density, high-rate charge/discharge ability, cycle life time, electrocatalytic activity, and diffusion rate are related to the real surface area. During the EIS analysis, interestingly, we found that with increasing number of charge/discharge cycles, the metal hydride alloy powders undergo micro-cracking into smaller particles, and thus the real surface area of the alloy increases, which then influences the kinetic properties of the electrode reactions.

  6. Atmospheric chemistry suite (ACS): a set of infrared spectrometers for atmospheric measurements on board ExoMars trace gas orbiter

    NASA Astrophysics Data System (ADS)

    Korablev, Oleg; Grigoriev, Alexei V.; Trokhimovsky, Alexander; Ivanov, Yurii S.; Moshkin, Boris; Shakun, Alexei; Dziuban, Ilia; Kalinnikov, Yurii K.; Montmessin, Franck

    2013-09-01

    The ACS package for ExoMars Trace Gas Orbiter is a part of Russian contribution to ExoMars ESA-Roscosmos mission. On the Orbiter it complements NOMAD investigation and is intended to recover in much extent the science lost with the cancellation of NASA MATMOS and EMCS infrared sounders. ACS includes three separate spectrometers, sharing common mechanical, electrical, and thermal interfaces. NIR is a versatile spectrometer for the spectral range of 0.7-1.6 μm with resolving power of ~20000. It is conceived on the principle of RUSALKA/ISS or SOIR/Venus Express experiments combining an echelle spectrometer and an AOTF (Acousto-Optical Tuneable Filter) for order selection. Up to 8 diffraction orders, each 10-20 nm wide can be measured in one sequence record. NIR will be operated principally in nadir, but also in solar occultations, and possibly on the limb. MIR is a high-resolution echelle instrument exclusively dedicated to solar occultation measurements in the range of 2.2-4.4 μm targeting the resolving power of 50000. The order separation is done by means of a steerable grating cross-disperser, allowing instantaneous coverage of up to 300-nm range of the spectrum for one or two records per second. MIR is dedicated to sensitive measurements of trace gases, approaching MATMOS detection thresholds for many species. TIRVIM is a 2- inch double pendulum Fourier-transform spectrometer for the spectral range of 1.7-17 μm with apodized resolution varying from 0.2 to 1.6 cm-1. TIRVIM is primarily dedicated to monitoring of atmospheric temperature and aerosol state in nadir, and would contribute in solar occultation to detection/reducing of upper limits of some components absorbing beyond 4 μm, complementing MIR and NOMAD. Additionally, TIRVIM targets the methane mapping in nadir, using separate detector optimized for 3.3-μm range. The concept of the instrument and in more detail the optical design and the expected parameters of its three parts, channel by channel are

  7. Dual AC Dipole Excitation for the Measurement of Magnetic Multipole Strength from Beam Position Monitor Data

    SciTech Connect

    M. Spata, G.A. Krafft

    2011-09-01

    An experiment was conducted at Jefferson Lab's Continuous Electron Beam Accelerator Facility to develop a technique for characterizing the nonlinear fields of the beam transport system. Two air-core dipole magnets were simultaneously driven at two different frequencies to provide a time-dependent transverse modulation of the electron beam. Fourier decomposition of beam position monitor data was then used to measure the amplitude of these frequencies at different positions along the beamline. For a purely linear transport system one expects to find solely the frequencies that were applied to the dipoles with amplitudes that depend on the phase advance of the lattice. In the presence of nonlinear fields one expects to also find harmonics of the driving frequencies that depend on the order of the nonlinearity. The technique was calibrated using one of the sextupole magnets in a CEBAF beamline and then applied to a dipole to measure the sextupole and octupole strength of the magnet. A comparison is made between the beam-based measurements, results from TOSCA and data from our Magnet Measurement Facility.

  8. Reflectivity Measurements for Copper and Aluminumin the Far Infrared and the Resistive Wall Impedance in the LCLSUndulator

    SciTech Connect

    Bane, K.L.F.; Stupakov, G.; Tu, J.J.; /City Coll., N.Y.

    2006-06-27

    Reflectivity measurements in the far infrared, performed on aluminum and copper samples, are presented and analyzed. Over a frequency range of interest for the LCLS bunch, the data is fit to the free-electron model, and to one including the anomalous skin effect. The models fit well, yielding parameters dc conductivity and relaxation times that are within 30-40% of expected values. We show that the induced energy in the LCLS undulator region is relatively insensitive to variations on this order, and thus we can have confidence that the wake effect will be close to what is expected.

  9. Inter-Changeability of Impedance Devices for Lymphedema Assessment.

    PubMed

    van Zanten, Malou; Piller, Neil; Ward, Leigh C

    2016-06-01

    Impedance technology is a popular technique for the early detection of lymphedema. The preferred approach is to use bioimpedance spectroscopy (BIS), with measurements being made with the subject lying supine, although attempts have been made to use single or multiple frequency impedance measurements obtained while the subject is standing. The aim of the present study was to determine the equivalence of these different approaches. Impedance measurements of the individual limbs of 37 healthy individuals were determined using both a stand-on, multi-frequency impedance device and a supine impedance spectroscopy instrument. Significant differences were found between the instruments in both absolute impedance values and, importantly, inter-limb impedance ratios. Since impedance ratios in healthy individuals provide the reference standard for detection of lymphedema, these data indicate that the methods are not interchangeable. Consideration of the errors associated with each method indicates that the BIS remains the preferred method for lymphedema detection. PMID:26574711

  10. A Fast-sampling, Planar Array for Measuring the AC Field of Fermilab Pulsed Extraction Magnets

    SciTech Connect

    DiMarco, E.Joseph; Johnstone, C.; Kiemschies, O.; Kotelnikov, S.K.; Lamm, M.J.; Makulski, A.; Nehring, R.; Orris, D.F.; Russell, A.D.; Tartaglia, Michael Albert; Velev, G.; /Fermilab

    2008-06-25

    A system employing a planar array of inductive pick-up coils has been developed for measurements of the rapidly changing dipole field in pulsed extraction magnets for the Fermilab MuCool project. The magnets are of C-type and deigned to support a peak field of 0.65 T during 8.33 millisecond half-sine pulse at a 15 Hz repetition rate. The coils of the measurement system are fabricated on a single, 97.5 mm wide, 2-layer circuit board. The array of coils is simultaneously sampled at data rates of up to 100 kHz with 10 kHz bandwidth using 24-bit ADC's. A detailed overview of the system and data analysis is presented, along with a characterization of results and system performance.

  11. Esophageal Impedance Monitoring: Clinical Pearls and Pitfalls.

    PubMed

    Ravi, Karthik; Katzka, David A

    2016-09-01

    The development of intraluminal esophageal impedance monitoring has improved our ability to detect and measure gastroesophageal reflux without dependence on acid content. This ability to detect previously unrecognized weak or nonacid reflux episodes has had important clinical implications in the diagnosis and management of gastroesophageal reflux disease (GERD). In addition, with the ability to assess bolus transit within the esophageal lumen, impedance monitoring has enhanced the recognition and characterization of esophageal motility disorders in patients with nonobstructive dysphagia. The assessment of the intraluminal movement of gas and liquid has also been proven to be of diagnostic value in conditions such as rumination syndrome and excessive belching. Further, alternative applications of impedance monitoring, such as the measurement of mucosal impedance, have provided novel insights into assessing esophageal mucosal integrity changes as a consequence of inflammatory change. Future applications for esophageal impedance monitoring also hold promise in esophageal conditions other than GERD. However, despite all of the clinical benefits afforded by esophageal impedance monitoring, important clinical and technical shortcomings limit its diagnostic value and must be considered when interpreting study results. Overinterpretation of studies or application of impedance monitoring in patients can have deleterious clinical implications. This review will highlight the clinical benefits and limitations of esophageal impedance monitoring and provide clinical pearls and pitfalls associated with this technology. PMID:27325223

  12. Impedance of a nanoantenna

    SciTech Connect

    Greffet, Jean-Jacques; Laroche, Marine; Marquier, Francois

    2009-10-07

    We introduce a generalized definition of the impedance of a nanoantenna that can be applied to any system. We also introduce a definition of the impedance of a two level system. Using this framework, we establish a link between the electrical engineering and the quantum optics picture of light emission.

  13. Selective label-free electrochemical impedance measurement of glycated haemoglobin on 3-aminophenylboronic acid-modified eggshell membranes.

    PubMed

    Boonyasit, Yuwadee; Heiskanen, Arto; Chailapakul, Orawan; Laiwattanapaisal, Wanida

    2015-07-01

    We propose a novel alternative approach to long-term glycaemic monitoring using eggshell membranes (ESMs) as a new immobilising platform for the selective label-free electrochemical sensing of glycated haemoglobin (HbA1c), a vital clinical index of the glycaemic status in diabetic individuals. Due to the unique features of a novel 3-aminophenylboronic acid-modified ESM, selective binding was obtained via cis-diol interactions. This newly developed device provides clinical applicability as an affinity membrane-based biosensor for the identification of HbA1c over a clinically relevant range (2.3 - 14 %) with a detection limit of 0.19%. The proposed membrane-based biosensor also exhibited good reproducibility. When analysing normal and abnormal HbA1c levels, the within-run coefficients of variation were 1.68 and 1.83%, respectively. The run-to-run coefficients of variation were 1.97 and 2.02%, respectively. These results demonstrated that this method achieved the precise and selective measurement of HbA1c. Compared with a commercial HbA1c kit, the results demonstrated excellent agreement between the techniques (n = 15), demonstrating the clinical applicability of this sensor for monitoring glycaemic control. Thus, this low-cost sensing platform using the proposed membrane-based biosensor is ideal for point-of-care diagnostics. PMID:25956596

  14. Measuring the proton conductivity of ion-exchange membranes using electrochemical impedance spectroscopy and through-plane cell.

    PubMed

    Müller, Franciélli; Ferreira, Carlos A; Azambuja, Denise S; Alemán, Carlos; Armelin, Elaine

    2014-01-30

    The role of the incorporation of conducting polymer (CP), doped with different sulfonic acid organic molecules, in polystyrene (PS) and high-impact polystyrene (HIPS) with poly(styrene-ethylene-butylene) (SEBS) triblock copolymer has been investigated. Two factors associated with this model membrane system are addressed: (i) the influence of the presence of a low concentration of doped conducting polymer and (ii) the influence of the membrane preparation method. Membrane characterization and bulk conductivity measurements allowed the conclusion that proton conductivity has been promoted by the addition of CP; the best results were achieved for PAni-CSA, in either PS/SEBS or HIPS/SEBS blends. Additionally, the water uptake only decreased with the addition of PAni-doped molecules compared to the pure copolymer, without loss of ion-exchange capacity (IEC). Electrodialysis efficiency for HIPS/SEBS (before annealing) is higher than that for HIPS/SEBS (after annealing), indicating that membrane preparation method is crucial. Finally, through-plane cell arrangement proved to be an effective, quick, and time-saving tool for studying the main resistance parameters of isolating polymers, which is useful for application in industry and research laboratories working with membranes for electrodialysis or fuel cells. PMID:24428522

  15. RHIC ABORT KICKER WITH REDUCED COUPLING IMPEDANCE.

    SciTech Connect

    HAHN,H.; DAVINO,D.

    2002-06-02

    Kicker magnets typically represent the most important contributors to the transverse impedance budget of accelerators and storage rings. Methods of reducing the impedance value of the SNS extraction kicker presently under construction and, in view of a future performance upgrade, that of the RHIC abort kicker have been thoroughly studied at this laboratory. In this paper, the investigation of a potential improvement from using ferrite different from the BNL standard CMD5005 is reported. Permeability measurements of several ferrite types have been performed. Measurements on two kicker magnets using CMD5005 and C2050 suggest that the impedance of a magnet without external resistive damping, such as the RHIC abort kicker, would benefit.

  16. Impedance Noise Identification for State-of-Health Prognostics

    SciTech Connect

    Jon P. Christophersen; Chester G. Motloch; John L. Morrison; Ian B. Donnellan; William H. Morrison

    2008-07-01

    Impedance Noise Identification is an in-situ method of measuring battery impedance as a function of frequency using a random small signal noise excitation source. Through a series of auto- and cross-correlations and Fast Fourier Transforms, the battery complex impedance as a function of frequency can be determined. The results are similar to those measured under a lab-scale electrochemical impedance spectroscopy measurement. The lab-scale measurements have been shown to correlate well with resistance and power data that are typically used to ascertain the remaining life of a battery. To this end, the Impedance Noise Identification system is designed to acquire the same type of data as an on-board tool. A prototype system is now under development, and results are being compared to standardized measurement techniques such as electrochemical impedance spectroscopy. A brief description of the Impedance Noise Identification hardware system and representative test results are presented.

  17. The electrical properties of Titan's surface at the Huygens landing site measured with the PWA-HASI Mutual Impedance Probe. New approach and new findings

    NASA Astrophysics Data System (ADS)

    Hamelin, Michel; Lethuillier, Anthony; Le Gall, Alice; Grard, Réjean; Béghin, Christian; Schwingenschuh, Konrad; Jernej, Irmgard; López-Moreno, José-Juan; Brown, Vic; Lorenz, Ralph D.; Ferri, Francesca; Ciarletti, Valérie

    2016-05-01

    Ten years after the successful landing of the Huygens Probe on the surface of Titan, we reassess the derivation of ground complex permittivity using the PWA-MIP/HASI measurements (Permittivity, Waves and Altimetry-Mutual Impedance Probe/Huygens Atmospheric Structure Instrument) at the frequencies 45, 90 and 360 Hz. For this purpose, we have developed a numerical method, namely "the capacity-influence matrix method", able to account for new insights on the Huygens Probe attitude at its final resting position. We find that the surface of Titan at the landing site has a dielectric constant of 2.5 ± 0.3 and a conductivity of 1.2 ± 0.6 nS/m, in agreement with previously published results but with much more reliable error estimates. These values speak in favour of a photochemical origin of the material in the first meter of the subsurface. We also propose, for the first time, a plausible explanation for the sudden change observed by PWA-MIP ∼11 min after landing: this change corresponds to a drop in the ground conductivity, probably due to the removal of a superficial conductive layer in association with the release of volatile materials warmed by the Huygens Probe.

  18. New integral equation formulation of the measured equation of invariance and the extension to analyze two-dimensional cylinders with impedance boundary conditions

    NASA Astrophysics Data System (ADS)

    Hirose, Masanobu; Miyake, Masayasu; Takada, Jun-Ichi; Arai, Ikuo

    1999-01-01

    We have derived a new form of the integral equation formulation of the measured equation of invariance (IE-MEI). The new formulation clarifies the existence of a relationship between scattered electric and magnetic fields at consecutive nodes in the IE-MEI and indicates that the relationship in a problem for a perfect electric conductor (PEC) holds for a problem with arbitrary materials. In a scattering problem of a two-dimensional cylinder with an impedance boundary condition (IBC), every matrix in the IE-MEI is a band-like sparse matrix. That is, the solution process in the IE-MEI with an IBC is the same as that for a PEC. Therefore the IE-MEI with an IBC has the same merits of the IE-MEI for a PEC: The more efficient computation can be achieved with the smaller memory than those of the method of moments (MOM). The IE-MEI with an IBC is validated by numerical examples for a circular cylinder and a square cylinder by comparison with a combined field MOM that satisfies exact boundary conditions. Numerical examples show that the IE-MEI with an IBC is applicable to the case where the generalized skin depth is less than half the width of a scatterer.

  19. Application of the surface-charge distribution method to the interpretation of impedance measurements of a rocket-borne dipole antenna

    NASA Astrophysics Data System (ADS)

    Kolesnikova, E.; BéGhin, C.

    1998-05-01

    In a companion paper [Béghin and Kolesnikova, this issue], we have presented the surface charge-distribution (SCD) method for modeling a complex devices's behavior in the radio frequency range around the plasma resonance. Here we give one application of this method to the interpretation of published experimental data of a sounding rocket experiment which was carefully designed to make the impedance measurements of a dipole antenna. The data were found by the authors of this experiment to agree generally well with theoretical predictions, including a hydrodynamic model for the ion sheath, except for a strong discrepancy in the antenna resistance below the plasma frequency. Using the SCD approach, which allows the determination of the charge distribution not only on the antenna itself but also on the rocket body, we show that the data can be remarkably well explained by feed end effects involving the gap region between the antenna and the rocket body. While these effects exist with the simple approach of mesh surfaces, the presence of an ion sheath is proved to magnify the mechanism. Thus we argue that the above discrepancy was due basically to the usual assumption of a triangular current distribution along the antenna.

  20. Body composition of adult cystic fibrosis patients and control subjects as determined by densitometry, bioelectrical impedance, total-body electrical conductivity, skinfold measurements, and deuterium oxide dilution

    SciTech Connect

    Newby, M.J.; Keim, N.L.; Brown, D.L. )

    1990-08-01

    This study contrasts body compositions (by six methods) of eight cystic fibrosis (CF) subjects with those of eight control subjects matched for age, height, and sex. CF subjects weighed 84% as much as control subjects. Densitometry and two bioelectrical impedance-analysis methods suggested that reduced CF weights were due to less lean tissue (10.7, 9.5, and 10.4 kg). Total-body electrical conductivity (TOBEC) and skinfold-thickness measurements indicated that CF subjects were leaner than control subjects and had less fat (5.4 and 3.6 kg) and less lean (5.2 and 7 kg) tissue. D2O dilution showed a pattern similar to TOBEC (8.3 kg less lean, 2.7 kg less fat tissue). Densitometry estimates of fat (mass and percent) were not correlated (r less than 0.74, p greater than 0.05) with any other method for CF subjects but were correlated with all other methods for control subjects. CF subjects contained less fat and lean tissue than did control subjects. Densitometry by underwater weighing is unsuitable for assessing body composition of CF patients.