Science.gov

Sample records for ac impedance spectra

  1. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  2. AC impedance study of degradation of porous nickel battery electrodes

    NASA Technical Reports Server (NTRS)

    Lenhart, Stephen J.; Macdonald, D. D.; Pound, B. G.

    1987-01-01

    AC impedance spectra of porous nickel battery electrodes were recorded periodically during charge/discharge cycling in concentrated KOH solution at various temperatures. A transmission line model (TLM) was adopted to represent the impedance of the porous electrodes, and various model parameters were adjusted in a curve fitting routine to reproduce the experimental impedances. Degradation processes were deduced from changes in model parameters with electrode cycling time. In developing the TLM, impedance spectra of planar (nonporous) electrodes were used to represent the pore wall and backing plate interfacial impedances. These data were measured over a range of potentials and temperatures, and an equivalent circuit model was adopted to represent the planar electrode data. Cyclic voltammetry was used to study the characteristics of the oxygen evolution reaction on planar nickel electrodes during charging, since oxygen evolution can affect battery electrode charging efficiency and ultimately electrode cycle life if the overpotential for oxygen evolution is sufficiently low.

  3. Microfabricated Thin Film Impedance Sensor & AC Impedance Measurements

    PubMed Central

    Yu, Jinsong; Liu, Chung-Chiun

    2010-01-01

    Thin film microfabrication technique was employed to fabricate a platinum based parallel-electrode structured impedance sensor. Electrochemical impedance spectroscopy (EIS) and equivalent circuit analysis of the small amplitude (±5 mV) AC impedance measurements (frequency range: 1 MHz to 0.1 Hz) at ambient temperature were carried out. Testing media include 0.001 M, 0.01 M, 0.1 M NaCl and KCl solutions, and alumina (∼3 μm) and sand (∼300 μm) particulate layers saturated with NaCl solutions with the thicknesses ranging from 0.6 mm to 8 mm in a testing cell, and the results were used to assess the effect of the thickness of the particulate layer on the conductivity of the testing solution. The calculated resistances were approximately around 20 MΩ, 4 MΩ, and 0.5 MΩ for 0.001 M, 0.01 M, and 0.1 M NaCl solutions, respectively. The presence of the sand particulates increased the impedance dramatically (6 times and 3 times for 0.001 M and 0.1 M NaCl solutions, respectively). A cell constant methodology was also developed to assess the measurement of the bulk conductivity of the electrolyte solution. The cell constant ranged from 1.2 to 0.8 and it decreased with the increase of the solution thickness. PMID:22219690

  4. Impedance spectra of polypyrrole coated platinum electrodes.

    PubMed

    Onnela, Niina; Savolainen, Virpi; Hiltunen, Maiju; Kellomäki, Minna; Hyttinen, Jari

    2013-01-01

    Polypyrrole (PPy) coated electrodes may provide new solutions to increase the charge injection capacity and biocompatibility of metal electrodes in e.g., neural stimulus applications. In this study, electrical impedance spectra of PPy coated platinum (Pt) electrodes having three different coating thicknesses were measured and modeled. A suitable equivalent electrical circuit providing the material characteristics was chosen and the impedance data was analyzed using the model and data fitting. The modeled parameter values of different coating thicknesses were compared and our results demonstrated the changes in charge transfer properties and mechanisms of thin and thick PPy film coatings. PMID:24109743

  5. Equivalent circuit models for ac impedance data analysis

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1990-01-01

    A least-squares fitting routine has been developed for the analysis of ac impedance data. It has been determined that the checking of the derived equations for a particular circuit with a commercially available electronics circuit program is essential. As a result of the investigation described, three equivalent circuit models were selected for use in the analysis of ac impedance data.

  6. Ac Impedance Spectroscopy Of Al/A-Sic/C-Si(P)/Al Heterostructure under Illumination

    NASA Astrophysics Data System (ADS)

    Perný, Milan; Šály, Vladimír; Váry, Michal; Mikolášek, Miroslav; Huran, Jozef; Packa, Juraj

    2014-05-01

    The amorphous silicon carbide/crystalline silicon heterojunction was prepared and analyzed. The current-voltage (I - V ) measurements showed the barrier properties of prepared sample. Biased impedance spectra of Al/a-SiC/c-Si(p)/Al heterojunction under the standard illumination are reported and analyzed. AC measurements in the illuminated conditions were processed in order to identify electronic behavior using equivalent AC circuit which was suggested and obtained by fitting the measured impedance data. A phenomenon of negative capacitance/resistance in certain frequency range has been observed.

  7. Fiber Materials AC Impedance Characteristics and Principium Analysis

    NASA Astrophysics Data System (ADS)

    Wang, Jianjun; Li, Xiaofeng

    With an invariable amplitude and variable frequency inspiriting, impedance of fiber materials rapidly decrease at first and then increase speedy followed with increasing of signal frequency. For the impedance curve of frequency is section of bathtub, this phenomenon is defined as alternating current electric conductive bathtub effect of fiber material. With analysis tools,of circuit theory and medium polarization theory, the phenomenon can be deeply detected that in AC electric field there are four different kind of currents in fiber material: absorbing current, conductance current, charging current and superficial current. With more analyzing it's discovered this phenomenon can be explained by medium polarize theory. Make using of fiber AC electric conductivity bathtub effect, fast testing equipment on fiber moisture regain can be invent, and disadvantages of conventional impedance technique, such as greatness test error and electrode polarization easily. This paper affords directions to design novel speediness fiber moisture test equipments in theory.

  8. Using ac dipoles to localize sources of beam coupling impedance

    NASA Astrophysics Data System (ADS)

    Biancacci, N.; Tomás, R.

    2016-05-01

    The beam coupling impedance is one of the main sources of beam instabilities and emittance blow up in circular accelerators. A refined machine impedance evaluation is therefore required in order to understand and model intensity dependent effects and instabilities that may limit the machine performance. For this reason, many impedance source localization techniques have been developed. In this work we present the impedance localization technique based on the observation of phase advance versus intensity at the beam position monitors using ac dipoles to force betatron oscillations. We present analytical formulas for the interpretation of measurements together with simulations to benchmark and illustrate the equations. Studies on the method accuracy for different Fourier transform algorithms are presented as well as first exploratory measurements performed in the LHC.

  9. Construction of Tunnel Diode Oscillator for AC Impedance Measurement

    NASA Astrophysics Data System (ADS)

    Shin, J. H.; Kim, E.

    2014-03-01

    We construct a tunnel diode oscillator (TDO) to study electromagnetic response of a superconducting thin film. Highly sensitive tunnel diode oscillators allow us to detect extremely small changes in electromagnetic properties such as dielectric constant, ac magnetic susceptibility and magnetoresistance. A tunnel diode oscillator is a self-resonant oscillator of which resonance frequency is primarily determined by capacitance and inductance of a resonator. Amplitude of the signal depends on the quality factor of the resonator. The change in the impedance of the sample electromagnetic coupled to one of inductors in the resonator alters impedance of the inductor, and leads to the shift in the resonance frequency and the change of the amplitude.

  10. Characterization of flow-through electrode processes by AC impedance

    SciTech Connect

    Yuh, C.Y. ); Selman, J.R. )

    1993-04-01

    Flow-through porous electrodes, such as packed-bed and fluidized-bed electrodes, are attractive for electrowinning, electro-organic synthesis and flow-battery applications. The extensive surface area of the porous electrodes makes high volumetric reaction rate more possible than in a cell with smooth electrodes. Forced convection also enhances mass-transfer rate and hence reduces concentration polarization. AC-impedance method has been used successfully in characterizing a packed-bed flow-through electrode system. A macrohomogeneous model was developed to simulate the effect of structural, physical and flow parameters. The relative importance of kinetics and mass transfer can be inferred from the AC-impedance analysis. Kinetic information about copper deposition in supported cupric sulfate solution has been obtained successfully using this technique.

  11. Impedance, AC conductivity and dielectric behavior Adeninium Trichloromercurate (II)

    NASA Astrophysics Data System (ADS)

    Fersi, M. Amine; Chaabane, I.; Gargouri, M.

    2016-09-01

    In this work, we report the measurements impedance spectroscopy technique for the organic-inorganic hybrid compound (C5H6N5) HgCl3, 11/2H2O measured in the 209 Hz-5 MHz frequency range from 378 to 428 K. Besides, the Cole-Cole (Z″ versus Z‧) plots were well fitted to an equivalent circuit built up by a parallel combination of resistance (R), fractal capacitance (CPE) and capacitance (C). Furthermore, the AC conductivity was investigated as a function of temperature and frequency in the same range. The experiment results indicated that AC conductivity (σac) was proportional to σdc + A ωS . The obtained results are discussed in terms of the correlated barrier hopping (CBH) model. An agreement between the experimental and theoretical results suggests that the AC conductivity behavior of Adeninium Trichloromercurate (II) can be successfully explained by CBH model. The contribution of single polaron hopping to AC conductivity in a present alloy was also studied.

  12. HVDC-AC system interaction from AC harmonics. Volume 1. Harmonic impedance calculations. Final report

    SciTech Connect

    Breuer, G D; Chow, J H; Lindh, C B; Miller, N W; Numrich, F H; Price, W W; Turner, A E; Whitney, R R

    1982-09-01

    Improved methods are needed to characterize ac system harmonic behavior for ac filter design for HVDC systems. The purpose of this General Electric Company RP1138 research is to evaluate the present filter design practice and to investigate methods for calculating system harmonic impedances. An overview of ac filter design for HVDC systems and a survey of literature related to filter design have been performed. Two methods for calculating system harmonic impedances have been investigated. In the measurement method, an instrumentation system for measuring system voltage and current has been assembled. Different schemes of using the measurements to calculate system harmonic impedances have been studied. In the analytical method, a procedure to include various operating conditions has been proposed. Computer programs for both methods have been prepared, and the results of the measurement and analytical methods analyzed. A conclusion of the project is that the measurement and analytical methods both provided reasonable results. There are correlations between the measured and analytical results for most harmonics, although there are discrepancies between the assumptions used in the two methods. A sensitivity approach has been proposed to further correlate the results. From the results of the analysis, it is recommended that both methods should be tested further. For the measurement method, more testing should be done to cover different system operating conditions. In the analytical method, more detailed models for representing system components should be studied. In addition, alternative statistical and sensitivity approaches should be attempted.

  13. High frequency impedance spectra on the chromium dioxide thin film

    SciTech Connect

    Fu, C. M.; Lai, C. J.; Wu, J. S.; Huang, J. C. A.; Wu, C.-C.; Shyu, S.-G.

    2001-06-01

    We report on the study of high frequency magnetotransport properties of the chromium dioxide (CrO{sub 2}) thin films, grown on Si substrate using chemical vapor deposition. The film exhibits a ferromagnetic transition with a Curie temperature near 390 K. The temperature dependent spontaneous magnetization follows Bloch{close_quote}s law. The impedance spectra, being analyzed based on the fundamental electrodynamics, are demonstrated to be in a low-loss dielectric limit along with the occurrence of dielectric relaxation and magnetization response. The specific features of impedance spectra, distinct from the usual metallic ferromagnet, are attributed to the half metallic nature of CrO{sub 2}. The results explore the possibility for high frequency device applications.

  14. AC impedance electrochemical modeling of lithium-ion positive electrodes.

    SciTech Connect

    Dees, D.; Gunen, E.; Abraham, D.; Jansen, A.; Prakash, J.; Chemical Engineering; IIT

    2004-01-01

    Under Department of Energy's Advanced Technology Development Program,various analytical diagnostic studies are being carried out to examine the lithium-ion battery technology for hybrid electric vehicle applications, and a series of electrochemical studies are being conducted to examine the performance of these batteries. An electrochemical model was developed to associate changes that were observed in the post-test analytical diagnostic studies with the electrochemical performance loss during testing of lithium ion batteries. While both electrodes in the lithium-ion cell have been studied using a similar electrochemical model, the discussion here is limited to modeling of the positive electrode. The positive electrode under study has a composite structure made of a layered nickel oxide (LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}) active material, a carbon black and graphite additive for distributing current, and a PVDF binder all on an aluminum current collector. The electrolyte is 1.2M LiPF{sub 6} dissolved in a mixture of EC and EMC and a Celgard micro-porous membrane is used as the separator. Planar test cells (positive/separator/negative) were constructed with a special fixture and two separator membranes that allowed the placement of a micro-reference electrode between the separator membranes [1]. Electrochemical studies including AC impedance spectroscopy were then conducted on the individual electrodes to examine the performance and ageing effects in the cell. The model was developed by following the work of Professor Newman at Berkeley [2]. The solid electrolyte interface (SEI) region, based on post-test analytical results, was assumed to be a film on the oxide and an oxide layer at the surface of the oxide. A double layer capacity was added in parallel with the Butler-Volmer kinetic expression. The pertinent reaction, thermodynamic, and transport equations were linearized for a small sinusoidal perturbation [3]. The resulting system of differential

  15. Impedance spectra of hot, dry silicate minerals and rocks: qualitative interpretation of spectra

    USGS Publications Warehouse

    Huebner, J.S.; Dillenburg, R.G.

    1995-01-01

    Impedance spectroscopy helps distinguish the contributions that grain interiors and grain boundaries make to electrical resistance of silicate minerals and rocks. Olivine, orthopyroxene, clinopyroxenes, and both natural and synthetic clinopyroxenite were measured. A network of electrical elements is presented for use in interpreting impedance spectra and conductive paths in hot or cold, wet or dry, minerals and rocks at any pressure. In dry rocks, a series network path predominates; in wet rocks, aqueous pore fluid and crystals both conduct. Finite resistance across the sample-electrode interface is evidence that electronic charge carriers are present at the surface, and presumably within, the silicate minerals and rocks measured. -from Authors

  16. Investigation of water and ice by ac impedance using electrochemical properties cup.

    PubMed

    Chin, K B; Buehler, M G; Seshadri, S; Keymeulen, D; Anderson, R C; Dutz, S; Narayanan, S R

    2007-01-01

    Water and ice were investigated by ac impedance with the electrochemical properties cup in an effort to develop an in situ instrument for water characterization. In liquid water, the impedance modulus decreased with the increase in charge carriers. In the ice, the impedance measurements were characterized by the dielectric relaxation and its corresponding activation energy. The activation energy of 0.400 eV was determined for pure ice. With ice containing Cl(-) anions, the activation energy was 0.24 eV. H(+) and OH(-) doped ice has the lowest activation energy for dielectric relaxation. Results from previous works are similar to the results reported in this study. PMID:17503953

  17. PDMS-film coated on PCB for AC impedance sensing of biological cells.

    PubMed

    Guo, Jinhong; Li, Chang Ming; Kang, Yuejun

    2014-10-01

    Microfluidic impedance sensor has been introduced as a cost effective platform in biological cell sensing and counting since several decades ago. Conventional microfluidic impedance sensor usually requires the patterned gold electrodes directly in contact with the carrying buffer to measure the electrical current change due to the blockage of cells. However, patterning metal electrode probes on the silicon or glass substrate is a non-trivial task, which increases the fabrication cost of the impedance sensor. In this paper, we demonstrate an alternating current (AC) impedance based microfluidic cytometer built on a printed circuit board (PCB) coated with polydimethylsiloxane (PDMS) thin film. In addition, circulating tumor cells (Hela cells) are used to successfully demonstrate the feasibility of the microfluidic AC impedance sensor in tumor cell detection. The electrodes pre-deposited PCB costs less than US$2.00 and is widely available in the market. This device has a good potential for point-of-care diagnosis in resource-poor settings. PMID:24850232

  18. AC impedance, Permittivity and modulus spectroscopy of lead chloride single crystal

    NASA Astrophysics Data System (ADS)

    Abdul-Jawad, S.; Alnajjar, A.; Abdallah, M. H.

    The ac electrical properties of lead chloride single crystal (PbCl2) were investigated at room temperature in the frequency range 1 Hz to 106 Hz. The real and imaginary components of permittivity and modulus were determined from ac measurements. The results indicate that the bulk material of PbCL2 single crystal can be represented by parallel RC circuit. The spectrum of the plot of the imaginary components of the impedance Z'' and electric modulus M'' versus frequency yield a broad Debye peak indicating overlapped relaxation transition processes (polar and structure).

  19. Development of AC impedance methods for evaluating corroding metal surfaces and coatings

    NASA Technical Reports Server (NTRS)

    Knockemus, Ward

    1986-01-01

    In an effort to investigate metal surface corrosion and the breakdown of metal protective coatings the AC Impedance Method was applied to zinc chromate primer coated 2219-T87 aluminum. The model 368-1 AC Impedance Measurement System recently acquired by the MSFC Corrosion Research Branch was used to monitor changing properties of coated aluminum disks immersed in 3.5% NaCl buffered at ph 5.5 over three to four weeks. The DC polarization resistance runs were performed on the same samples. The corrosion system can be represented by an electronic analog called an equivalent circuit that consists of transistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for resistances and capacities that can be assigned in the equivalent circuit following a least squares analysis of the data describe changes that occur on the corroding metal surface and in the protective coating. A suitable equivalent circuit was determined that predicts the correct Bode phase and magnitude for the experimental sample. The DC corrosion current density data are related to equivalent circuit element parameters.

  20. ACS grism spectra in the HDF-North

    NASA Astrophysics Data System (ADS)

    Meurer, G. R.; Tsvetanov, Z. I.; Gronwall, C.; Benitez, N.; Franx, M.; Blakeslee, J. P.; Cross, N.; Ford, H. C.; Martel, A. R.; Tran, H. D.; Illingworth, G. D.; Clampin, M.; Postman, M.; Allen, T.; Anderson, K.; Ardila, D. R.; Feldman, P. D.; Golimowski, D. A.; McCann, Wm. J.; Menanteau, F.; Sirianni, M.; Zheng, W.; Brown, R. A.; Burrows, C.; Hartig, G.; Krist, J.; Sparks, W. B.; White, R. L.; Cheng, E.; Kimble, R. A.; Campbell, D.; Sullivan, P.; Bouwens, R.; Magee, D.; Bartko, F.; Broadhurst, T. J.; Infante, L.; Lesser, M.; Miley, G.; Rosati, P.; Volmer, P.; Rafal, M.; Woodruff, R. A.

    2002-12-01

    We present slitless spectra of sources in the Hubble Deep Field North obtained with the Advanced Camera for Surveys. The Wide Field Camera was used to obtain dithered observations with a total exposure of 6700s (3 orbits) with the G800L grism. We concentrate on objects with published redshifts obtained spectroscopically and photometrically. In addition, we use a semi-automated technique to identify sources with emission line spectra, and those with broad stellar features. Sources with emission lines having a peak S/N > 4, have a median mF775W = 24.6 ABmag. This is 1.5 mag fainter than the median mF775W of objects in the Cohen et al. (2000, ApJ, 538, 29) spectroscopic redshift survey, illustrating that the G800L is a potentially useful tool for obtaining spectroscopic data of faint compact sources. ACS was developed under NASA contract NAS 5-32865, and this research is supported by NASA grant NAG5-7697. We are grateful for an equipment grant from the Sun Microsystems, Inc.

  1. AC Impedance Studies of Polymer Light-emitting Electrochemical Cells and Light-emitting Diodes

    NASA Astrophysics Data System (ADS)

    Li, Yongfang; Gao, Jun; Heeger, Alan J.; Yu, Gang; Cao, Yong

    1998-03-01

    The alternating current (ac) impedance of polymer light-emitting electrochemical cells (LECs) is studied and compared with that of polymer light-emitting diodes(LEDs) in the frequency range from 100 Hz to 5 M Hz. The device capacitance, resistance and interface characteristics are analyzed using the frequency dependence of the impedance and plots of the imaginary component of the impedance (Z") vs. the real part (Z'). At low bias voltages, polymer LEDs behave as pure capacitors whereas the polymer blend in the LEC exhibits an ionic conductivity contribution to the impedance. With dc bias higher than the energy gap of the semiconducting polymer (eV > Eg), the Z" vs. Z' plot of the LEC is a flattened semicircle, while that of LED is a semicircle with a small tail at low frequencies. In the LED, the capacitance is independent of voltages, the film resistance decreases as the bias voltage is increased in forward bias due to charge injection at higher voltages. In the LEC, the capacitance increases at voltages sufficient to induce electrochemical redox and doping near the electrodes. From this increase, the thickness of the i-layer of the p-i-n junction is estimated to approximately 0.8 of the film thickness (at the bias voltage of 3 V). Thus, in the LEC under operating conditions, the crossover region from p-type occupies most of the film thickness.

  2. Effective impedance spectra for predicting rough sea effects on atmospheric impulsive sounds.

    PubMed

    Boulanger, Patrice; Attenborough, Keith

    2005-02-01

    Two methods of calculating the effective impedance spectra of acoustically hard, randomly rough, two-dimensional surfaces valid for acoustic wavelengths large compared with the roughness scales have been explored. The first method uses the complex excess attenuation spectrum due to a point source above a rough boundary predicted by a boundary element method (BEM) and solves for effective impedance roots identified by a winding number integral method. The second method is based on an analytical theory in which the contributions from random distributions of surface scatterers are summed to obtain the total scattered field. Effective impedance spectra deduced from measurements of the complex excess attenuation above 2D randomly rough surfaces formed by semicylinders and wedges have been compared to predictions from the two approaches. Although the analytical theory gives relatively poor predictions, BEM-deduced effective impedance spectra agree tolerably well with measured data. Simple polynomials have been found to fit BEM-deduced spectra for surfaces formed by intersecting parabolas corresponding to average roughness heights between 0.25 and 7.5 m and for five incidence angles for each average height. Predicted effects of sea-surface roughness on sonic boom profiles and rise time are comparable to those due to turbulence and molecular relaxation effects. PMID:15759695

  3. A shock spectra and impedance method to determine a bound for spacecraft structural loads

    NASA Technical Reports Server (NTRS)

    Bamford, R.; Trubert, M.

    1974-01-01

    A method to determine a bound of structural loads for a spacecraft mounted on a launch vehicle is developed. The method utilizes the interface shock spectra and the relative impedance of the spacecraft and launch vehicle. The method is developed for single-degree-of-freedom models and then generalized to multidegree-of-freedom models.

  4. Potentiostatic and ac impedance studies of the hydrogen electrodes used in Ni/H2 batteries

    NASA Technical Reports Server (NTRS)

    Le Helloco, Jean-Guy; Bojkov, Hristo; Parthasarathy, Arvind; Srinivasan, Supramaniam; Appleby, A. J.

    1992-01-01

    In a study of electrode activity for hydrogen evolution and hydrogen ionization, knowledge of the detailed kinetics and of the surface coverage by adsorbed hydrogen is essential. In the Ni/H2 battery, the hydrogen electrode is subjected to high hydrogen pressure; elucidation of the variation of kinetic parameters with hydrogen pressure is therefore of interest. Potentiostatic and ac impedance spectroscopic techniques were used in the present study. The equivalent circuit of the reaction, the kinetic parameters, and their pressure dependence have been determined.

  5. Study of metal corrosion using ac impedance techniques in the STS launch environment

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.

    1989-01-01

    AC impedance measurements were performed to investigate the corrosion resistance of 19 alloys under conditions similar to the STS launch environment. The alloys were: Zirconium 702, Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, Inconel 600, 7Mo + N, Ferralium 255, Inco Alloy G-3, 20Cb-3, SS 904L, Inconel 825, SS 304LN, SS 316L, SS 317L, ES 2205, SS 304L, Hastelloy B-2, and Monel 400. AC impedance data were gathered for each alloy after one hour immersion time in each of the following three electrolyte solutions: 3.55 percent NaCl, 3.55 percent NaCl-0.1N HCl, and 3.55 percent NaCl-1.0N HCl. The data were analyzed qualitatively using the Nyquist plot and quantitatively using the Bode plot. Polarization resistance, Rp, values were obtained using the Bode plot. Zirconium 702 was the most corrosion resistant alloy in the three electrolytes. The ordering of the other alloys according the their resistance to corrosion varied as the concentration of hydrochloric acid in the electrolyte increased. The corrosion resistance of Zirconium 702 and Ferralium 255 increased as the concentration of hydrochloric acid in the electrolyte increased. The corrosion resistance of the other 17 alloys decreased as the concentration of the hyrdochloric acid in the electrolyte increased.

  6. Impedance spectra classification for determining the state of charge on a lithium iron phosphate cell using a support vector machine

    NASA Astrophysics Data System (ADS)

    Jansen, P.; Vergossen, D.; Renner, D.; John, W.; Götze, J.

    2015-11-01

    An alternative method for determining the state of charge (SOC) on lithium iron phosphate cells by impedance spectra classification is given. Methods based on the electric equivalent circuit diagram (ECD), such as the Kalman Filter, the extended Kalman Filter and the state space observer, for instance, have reached their limits for this cell chemistry. The new method resigns on the open circuit voltage curve and the parameters for the electric ECD. Impedance spectra classification is implemented by a Support Vector Machine (SVM). The classes for the SVM-algorithm are represented by all the impedance spectra that correspond to the SOC (the SOC classes) for defined temperature and aging states. A divide and conquer based search algorithm on a binary search tree makes it possible to grade measured impedances using the SVM method. Statistical analysis is used to verify the concept by grading every single impedance from each impedance spectrum corresponding to the SOC by class with different magnitudes of charged error.

  7. On-line monitoring of the crystallization process: relationship between crystal size and electrical impedance spectra

    NASA Astrophysics Data System (ADS)

    Zhao, Yanlin; Yao, Jun; Wang, Mi

    2016-07-01

    On-line monitoring of crystal size in the crystallization process is crucial to many pharmaceutical and fine-chemical industrial applications. In this paper, a novel method is proposed for the on-line monitoring of the cooling crystallization process of L-glutamic acid (LGA) using electrical impedance spectroscopy (EIS). The EIS method can be used to monitor the growth of crystal particles relying on the presence of an electrical double layer on the charged particle surface and the polarization of double layer under the excitation of alternating electrical field. The electrical impedance spectra and crystal size were measured on-line simultaneously by an impedance analyzer and focused beam reflectance measurement (FBRM), respectively. The impedance spectra were analyzed using the equivalent circuit model and the equivalent circuit elements in the model can be obtained by fitting the experimental data. Two equivalent circuit elements, including capacitance (C 2) and resistance (R 2) from the dielectric polarization of the LGA solution and crystal particle/solution interface, are in relation with the crystal size. The mathematical relationship between the crystal size and the equivalent circuit elements can be obtained by a non-linear fitting method. The function can be used to predict the change of crystal size during the crystallization process.

  8. AC impedance spectroscopy - A dynamic tool for the design of corrosion inhibitors

    SciTech Connect

    Growcock, F.B.; Jasinski, R.J.

    1988-05-01

    Corrosion of steel during oil well acidizing or acid pickling treatments can be controlled effectively and economically with corrosion inhibitors. It is generally accepted that these additives function by forming an adherent barrier on the steel surface, the nature of which depends on various physiochemical properties of the inhibitor. Work to date has established that acetylenic alcohols first chemisorb and subsequently polymerize on steel surfaces. ..cap alpha.., BETA-Unsaturated aldehydes and ..cap alpha..-alkenylphenones behave in a similar manner. On the other hand, quaternary nitrogen salts adsorb electrostatically and do not appear to form macroscopic films. In this paper, the authors describe some AC impedance spectroscopy studies they have undertaken with the objective of elucidating the roles that adsorption and film formation play in the inhibition mechanisms of the compounds mentioned above.

  9. Inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells - A review

    NASA Astrophysics Data System (ADS)

    Pivac, Ivan; Barbir, Frano

    2016-09-01

    The results of electrochemical impedance spectroscopy of proton exchange membrane (PEM) fuel cells may exhibit inductive phenomena at low frequencies. The occurrence of inductive features at high frequencies is explained by the cables and wires of the test system. However, explanation of inductive loop at low frequencies requires a more detailed study. This review paper discusses several possible causes of such inductive behavior in PEM fuel cells, such as side reactions with intermediate species, carbon monoxide poisoning, and water transport, also as their equivalent circuit representations. It may be concluded that interpretation of impedance spectra at low frequencies is still ambiguous, and that better equivalent circuit models are needed with clearly defined physical meaning of each of the circuit elements.

  10. Raman spectra of aligned carbon micro-coils and their impedance characteristics under loads

    SciTech Connect

    Tao, Wang; Yabo, Zhu Heliang, Fan; Zhicheng, Ju; Lei, Chen; Zhengyuan, Wang

    2014-02-21

    Scanning and transmission electron microscopy were used to characterize the morphology of the carbon microcoils (CMCs). The Raman spectra showed that CMCs had local regular structure as I{sub D}/I{sub G} = 0.841. Then, aligned CMCs/silicone–rubber composites (5 × 5 × 1 mm{sup 3}) were fabricated by coating of silicone rubber on the CMCs. Their alternating current impedance characteristics were measured as a function of applied load and the pressure sensitivity was discussed. The results showed that the impedance decreased as the increasing applied load, and the sample with less CMCs owned high pressure sensitivity, which indicated a novel composite film could act as an alternative of tactile sensor.

  11. An electrochemical study of corrosion protection by primer-topcoat systems on 4130 steel with ac impedance and dc methods

    NASA Technical Reports Server (NTRS)

    Mendrek, M. J.; Higgins, R. H.; Danford, M. D.

    1988-01-01

    To investigate metal surface corrosion and the breakdown of metal protective coatings, the ac impedance method is applied to six systems of primer coated and primer topcoated 4130 steel. Two primers were used: a zinc-rich epoxy primer and a red lead oxide epoxy primer. The epoxy-polyamine topcoat was used in four of the systems. The EG and G-PARC Model 368 ac impedance measurement system, along with dc measurements with the same system using the polarization resistance method, were used to monitor changing properties of coated 4230 steel disks immersed in 3.5 percent NaCl solutions buffered at pH 5.4 over periods of 40 to 60 days. The corrosion system can be represented by an electronic analog called an equivalent circuit consisting of resistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for the resistors and capacitors, that can be assigned in the equivalent circuit following a least-squares analysis of the data, describe changes that occur on the corroding metal surface and in the protective coatings. Two equivalent circuits have been determined that predict the correct Bode phase and magnitude of the experimental sample at different immersion times. The dc corrosion current density data are related to equivalent circuit element parameters. Methods for determining corrosion rate with ac impedance parameters are verified by the dc method.

  12. Acquiring impedance spectra from diode-coupled primary batteries to determine health and state of charge

    NASA Astrophysics Data System (ADS)

    Christophersen, Jon P.; Morrison, John L.; Morrison, William H.

    The U.S. Army uses BA5590 Lithium Sulfur Dioxide primary batteries for portable electronic systems. There remains a need, however, for technology that can rapidly assess these batteries and estimate their remaining state of health after being used without degrading them to determine if there is remaining useful life for additional missions. This allows the full range of charge to be consumed before the battery is recycled or disposed. Impedance spectroscopy measurements have been shown to be a useful diagnostic tool, but standard methods cannot be applied to the BA5590 batteries because of the up-front electronics. The BA5590 module is diode-coupled and a charge-neutral excitation signal would be half-wave rectified and completely corrupt the results. However, a rapid impedance spectrum measurement technique has been developed that can be used for the BA5590s based on the addition of a small discharge bias load super-imposed on the sinusoidal excitation signal. The feasibility of this approach was initially simulated and then successfully applied to cell strings on four fresh BA5590 modules. The results clearly showed consistent and repeatable impedance spectra with no significant impact on the SOC as a result of the measurement. Details of this measurement technique and discussion of the preliminary results are presented.

  13. Wavelet transformation to determine impedance spectra of lithium-ion rechargeable battery

    NASA Astrophysics Data System (ADS)

    Hoshi, Yoshinao; Yakabe, Natsuki; Isobe, Koichiro; Saito, Toshiki; Shitanda, Isao; Itagaki, Masayuki

    2016-05-01

    A new analytical method is proposed to determine the electrochemical impedance of lithium-ion rechargeable batteries (LIRB) from time domain data by wavelet transformation (WT). The WT is a waveform analysis method that can transform data in the time domain to the frequency domain while retaining time information. In this transformation, the frequency domain data are obtained by the convolution integral of a mother wavelet and original time domain data. A complex Morlet mother wavelet (CMMW) is used to obtain the complex number data in the frequency domain. The CMMW is expressed by combining a Gaussian function and sinusoidal term. The theory to select a set of suitable conditions for variables and constants related to the CMMW, i.e., band, scale, and time parameters, is established by determining impedance spectra from wavelet coefficients using input voltage to the equivalent circuit and the output current. The impedance spectrum of LIRB determined by WT agrees well with that measured using a frequency response analyzer.

  14. Soybean oil in water-borne coatings and latex film formation study by AC impedance

    NASA Astrophysics Data System (ADS)

    Jiratumnukul, Nantana

    Conventional coalescing agents such as butyl cellosolve, butyl carbitol, and TexanolRTM are widely use in the latex coatings industry to facilitate film formation at ambient temperature. Coalescent aids are composed of solvents with low evaporation rates. After water evaporates, coalescent aids would help soften polymer molecules and form continuous films, then gradually evaporates from the film. Coalescent aids, therefore, are considered as volatile organic compounds (VOC), which are of environmental concern. The main purpose of this research project was to prepare a fatty acid glycol ester from soybean oil and glycol (polyols). The soybean oil glycol ester can be used as a coalescent aid in latex paint formulation. The soybean oil glycol ester not only lowered the minimum film formation temperature of latex polymers and continuous film formed at ambient temperature, but also after it has facilitated film formation, does not substantially evaporate, but becomes part of the film. Soybean oil glycol esters, therefore, can reduce the VOC levels and facilitate film formation of latex paints. In the second part of this research AC-Impedance was used to investigate the efficiency of soybean oil coalescent aid in latex film formation relative to the conventional ones. The coating resistance showed that the efficiency of film formation was increased as a function of dry time. The coating resistance also exhibited the effect of soybean oil ester in latex film formation in the same fashion as a conventional coalescent aid, TexanolRTM.

  15. A New Approach for Resolution of Complex Tissue Impedance Spectra in Hearts

    PubMed Central

    Barr, Roger C.

    2014-01-01

    This study was designed to test the feasibility of using sinusoidal approximation in combination with a new instrumentation approach to resolve complex impedance (uCI) spectra from heart preparations. To assess that feasibility, we applied stimuli in the 10–4000 Hz range and recorded potential differences (uPDs) in a four-electrode configuration that allowed identification of probe constants (Kp) during calibration that were in turn used to measure total tissue resistivity ρt from rabbit ventricular epicardium. Simultaneous acquisition of a signal proportional to the supplied current (Vstim) with uPD allowed identification of the V –I ratio needed for ρt measurement, as well as the phase shift from Vstim to uPD needed for uCI spectra resolution. Performance with components integrated to reduce noise in cardiac electrophysiologic experiments, in particular, and provide accurate electrometer-based measurements, in general, was first characterized in tests using passive loads. Load tests showed accurate uCI recovery with mean uPD SNRs between 101 and 103 measured with supplied currents as low as 10 nA. Comparable performance characteristics were identified during calibration of nine arrays built with 250 µm Ag/AgCl electrodes, with uCIs that matched analytic predictions and no apparent effect of frequency (F = 0.12, P = 0.99). The potential ability of parasitic capacitance in the presence of the electrode–electrolyte interface associated with the small sensors to influence the uCI spectra was therefore limited by the instrumentation. Resolution of uCI spectra in rabbit ventricle allowed measurement of ρt = 134 ± 53 Ω·cm. The rapid identification available with this strategy provides an opportunity for new interpretations of the uCI spectra to improve quantification of disease-, region-, tissue-, and species-dependent intercellular uncoupling in hearts. PMID:23625349

  16. Sensor spacing affects the tissue impedance spectra of rabbit ventricular epicardium

    PubMed Central

    Waits, Charlotte Mae K.; Barr, Roger C.

    2014-01-01

    This study was designed to test the hypothesis that a complex composite impedance spectra develops when stimulation and recording of cardiac muscle with sufficiently fine spatial resolution in a four-electrode configuration is used. With traditional (millimeter scale) separations, the ratio between the recorded interstitial central potential difference and total supplied interstitial current is constant at all frequencies. This occurs because the fraction of supplied current that redistributes to the intracellular compartment depends on effective membrane resistance between electrodes, which is low, to a much greater extent than effective membrane capacitance. The spectra should therefore change with finer separations at which effective membrane resistance increases, as supplied current will remain primarily interstitial at lower frequencies and redistribute between compartments at higher frequencies. To test this hypothesis, we built arrays with sensors separated (d) by 804 μm, 452 μm, and 252 μm; positioned those arrays across myocyte axes on rabbit ventricular epicardium; and resolved spectra in terms of resistivity (ρt) and reactivity (χt) over the 10 Hz to 4,000 Hz range. With all separations, we measured comparable spectra with predictions from passive membrane simulations that used a three-dimensional structural framework in which intracellular, interstitial, and membrane properties were prescribed based on the limited data available from the literature. At the finest separation, we found mean ρt at 100 Hz and 4,000 Hz that lowered from 395 Ω-cm to 236 Ω-cm, respectively, with maximal mean χt of 160 Ω-cm. This experimental confirmation of spectra development in whole heart experiments is important because such development is central to achieve measurements of intracellular and interstitial passive electrical properties in cardiac electrophysiological experiments using only interstitial access. PMID:24778170

  17. Effects of Bimolecular Recombination on Impedance Spectra in Organic Semiconductors: Analytical Approach.

    PubMed

    Takata, Masashi; Takagi, Kenichiro; Nagase, Takashi; Kobayashi, Takashi; Naito, Hiroyoshi

    2016-04-01

    An analytical expression for impedance spectra in the case of double injection (both electrons and holes are injected into an organic semiconductor thin film) has been derived from the basic transport equations (the current density equation, the continuity equation and the Possion's equation). Capacitance-frequency characteristics calculated from the analytical expression have been examined at different recombination constants and different values of mobility balance defined by a ratio of electron mobility to hole mobility. Negative capacitance appears when the recombination constant is lower than the Langevin recombination constant and when the value of the mobility balance approaches unity. These results are consistent with the numerical results obtained by a device simulator (Atlas, Silvaco). PMID:27451625

  18. Investigation of the interaction between quercetin and human serum albumin by multiple spectra, electrochemical impedance spectra and molecular modeling.

    PubMed

    Dai, Jie; Zou, Ting; Wang, Li; Zhang, Yezhong; Liu, Yi

    2014-12-01

    Quercetin (Qu), a flavonoid compound, exists widely in the human diet and exhibits a variety of pharmacological activities. This work is aimed at studying the effect of Qu on the bioactive protein, human serum albumin (HSA) under simulated biophysical conditions. Multiple spectroscopic methods (including fluorescence and circular dichroism), electrochemical impedance spectra (EIS) and molecular modeling were employed to investigate the interaction between Qu and HSA. The fluorescence quenching and EIS experimental results showed that the fluorescence quenching of HSA was caused by formation of a Qu-HSA complex in the ground state, which belonged to the static quenching mechanism. Based on the calculated thermodynamic parameters, it concluded that the interaction was a spontaneous process and hydrogen bonds combined with van der Waal's forces played a major role in stabilizing the Qu-HSA complex. Molecular modeling results demonstrated that several amino acids participated in the binding process and the formed Qu-HSA complex was stabilized by H-bonding network at site I in sub-domain IIA, which was further confirmed by the site marker competitive experiments. The evidence from circular dichroism (CD) indicated that the secondary structure and microenvironment of HSA were changed. Alterations in the conformation of HSA were observed with a reduction in the amount of α helix from 59.9% (free HSA) to 56% (Qu-HSA complex), indicating a slight unfolding of the protein polypeptides. PMID:24801949

  19. Corrosion loss measurement of boiler tubes in a waste incineration environment by A.C. impedance method

    SciTech Connect

    Matsunaga, Yasuo; Nakagawa, Kiyokazu

    1997-08-01

    To monitor the corrosion rate of materials of boiler tubes in simulated waste incineration environment, A.C. impedance measurements were carried out for Alloy 625, SUS347H and STBA24 embedded in NaCl- KCl- NaSO{sub 4}-K{sub 2}SO{sub 4}-Al{sub 2}O{sub 3} mixed synthetic ash deposit at 600 C. Though the ash includes some non-melting component, A.C. impedance measurements can be applied to evaluate corrosion rates in the same manner the corrosion of materials immersed in molten salts. Supposing the difference of impedance between the low frequency and high frequency ({Delta}R) as polarization resistance, a linear relation was obtained between 1/{Delta}R and corrosion losses in air, air-0.1 vol.% HCl and air-10vol.% H{sub 2}O atmospheres. The HCl addition in accelerated the corrosion of all specimens by reducing basicity of the molten salt. On the other hand, the H{sub 2}O addition reduced the corrosion of Alloy 625, but it accelerated the corrosion of SUS347H and STBA24.

  20. Characterization of protein-immobilized polystyrene nanoparticles using impedance spectroscopy.

    PubMed

    Park, Soo-In; Lee, Sang-Yup

    2014-10-01

    A novel approach for characterization of non-conductive protein-immobilized nanoparticles using AC impedance spectroscopy combined with conductive atomic force microscopy was examined. As AC impedance spectroscopy can provide information on diverse electrical properties such as capacitance and inductance, it is applicable to the characterization of non-conductive substances. Several non-conductive protein-immobilized polystyrene nanoparticles were analyzed using AC impedance spectroscopy, and their impedance spectra were used as markers for nanoparticle identification. Analyses of impedance signals using an electrical circuit model established that the capacitance and inductance of each nanoparticle changed with the adsorbed protein and that impedance spectral differences were characteristic properties of the proteins. From this study, AC impedance spectroscopy was shown to be a useful tool for characterization of non-conductive nanoparticles and is expected to be applicable to the development of sensors for nanomaterials. PMID:25942903

  1. Label-free whole blood cell differentiation based on multiple frequency AC impedance and light scattering analysis in a micro flow cytometer.

    PubMed

    Simon, Peter; Frankowski, Marcin; Bock, Nicole; Neukammer, Jörg

    2016-06-21

    We developed a microfluidic sensor for label-free flow cytometric cell differentiation by combined multiple AC electrical impedance and light scattering analysis. The measured signals are correlated to cell volume, membrane capacity and optical properties of single cells. For an improved signal to noise ratio, the microfluidic sensor incorporates two electrode pairs for differential impedance detection. One-dimensional sheath flow focusing was implemented, which allows single particle analysis at kHz count rates. Various monodisperse particles and differentiation of leukocytes in haemolysed samples served to benchmark the microdevice applying combined AC impedance and side scatter analyses. In what follows, we demonstrate that AC impedance measurements at selected frequencies allow label-free discrimination of platelets, erythrocytes, monocytes, granulocytes and lymphocytes in whole blood samples involving dilution only. Immunofluorescence staining was applied to validate the results of the label-free cell analysis. Reliable differentiation and enumeration of cells in whole blood by AC impedance detection have the potential to support medical diagnosis for patients with haemolysis resistant erythrocytes or abnormally sensitive leucocytes, i.e. for patients suffering from anaemia or leukaemia. PMID:27229300

  2. AC-impedance measurements during thermal runaway process in several lithium/polymer batteries

    NASA Astrophysics Data System (ADS)

    Uchida, I.; Ishikawa, H.; Mohamedi, M.; Umeda, M.

    In this work, we present a set of thermal characterization experiments of charged prismatic polymer lithium-ion battery (PLB) comparatively with those of a lithium-ion battery (LIB). These cells at different state of charge (SOC) were tested inside an accelerated rate calorimeter (ARC) to determine the onset-of-thermal runaway (OTR) temperatures. In addition, the thermally activated components of these cells were followed by monitoring the impedance (at 1 kHz) and the open-circuit voltage (OCV) as a function of temperature. An increase in the impedance was observed at around 133 °C corresponding to the polyethylene separator shutdown. Above 140 °C, the OCV dropped to zero indicating an internal short-circuit due the separator meltdown suggesting that the pinholes created in the separator at meltdown are large enough to create an internal short-circuit.

  3. Membrane Operational Impedance Spectra in Chara corallina Estimated by Laplace Transforms Analysis 1

    PubMed Central

    Homblé, Fabrice; Jenard, André

    1986-01-01

    The membrane operational impedance spectrum of Chara corallina Klein ex Willd. (R. Brown) cells is investigated using Laplace transform analysis. The spectrum changes with both amplitude and sign of the electrical stimulation when time- and voltage-dependent K+ channels contribute to the membrane conductance. We compare the advantages and disadvantage of this technique for studying membrane impedance with those of the alternating current method and the white noise method. PMID:16664925

  4. Evaluation of the electrode performance for PAFC by using acid absorption, acceleration and ac-impedance measurement

    SciTech Connect

    Kim, Chang-Soo; Song, Rak-Hyun; Choi, Byung-Woo

    1996-12-31

    In PAFC, the degradation on cathode electrode caused by carbon corrosion, platinum dissolution and growth is especially severe. An acceleration test is a good technique for evaluating the degradation of electrode performance, because it does not need long time. Coleman et al used thermal cycling and on-off cycling as an acceleration test. Song et al showed that hydrogen shortage decreased the electrode performance more rapidly than that of air shortage in gas shortage test. Honji et al reported that the rate of coarsening of Pt particle is rapid in open circuit potential and this is one of major causes on the performance degradation of electrode. The cathode performance has been studied by using acid absorption, acceleration and ac-impedance measurements as functions of the polytetrafluoroethylene (PTFE) contents and sintering temperatures of the electrode.

  5. Reprogramming carcinoma associated fibroblasts by AC1MMYR2 impedes tumor metastasis and improves chemotherapy efficacy.

    PubMed

    Ren, Yu; Zhou, Xuan; Liu, Xia; Jia, Huan-huan; Zhao, Xiao-hui; Wang, Qi-xue; Han, Lei; Song, Xin; Zhu, Zhi-yan; Sun, Ting; Jiao, Hong-xiao; Tian, Wei-ping; Yang, Yu-qi; Zhao, Xiu-lan; Zhang, Lun; Mei, Mei; Kang, Chun-sheng

    2016-04-28

    Carcinoma associated fibroblasts (CAFs) produce a nutrient-rich microenvironment to fuel tumor progression and metastasis. Reactive oxygen species (ROS) levels and the inflammation pathway co-operate to transform CAFs. Therefore, elucidating the mechanism mediating the activity of CAFs might identify novel therapies. Abnormal miR-21 expression was reported to be involved in the conversion of resident fibroblasts to CAFs, yet the factor that drives transformation was poorly understood. Here, we reported that high miR-21 expression was strongly associated with lymph node metastasis in breast cancer, and the activation of the miR-21/NF-кB was required for the metastatic promoting effect of CAFs. AC1MMYR2, a small molecule inhibitor of miR-21, attenuated NF-кB activity by directly targeting VHL, thereby blocking the co-precipitation of NF-кB and ß-catenin and nuclear translocation. Taxol failed to constrain the aggressive behavior of cancer cells stimulated by CAFs, whereas AC1MMYR2 plus taxol significantly suppressed tumor migration and invasion ability. Remodeling and depolarization of F-actin, decreased levels of β-catenin and vimentin, and increased E-cadherin were also detected in the combination therapy. Furthermore, reduced levels of FAP-α and α-SMA were observed, suggesting that AC1MMYR2 was competent to reprogram CAFs via the NF-кB/miR-21/VHL axis. Strikingly, a significant reduction of tumor growth and lung metastasis was observed in the combination treated mice. Taken together, our findings identified miR-21 as a critical mediator of metastasis in breast cancer through the tumor environment. AC1MMYR2 may be translated into the clinic and developed as a more personalized and effective neoadjuvant treatment for patients to reduce metastasis and improve the chemotherapy response. PMID:26872723

  6. Corrosion behaviour of galvanized steel and electroplating steel in aqueous solution: AC impedance study and XPS

    NASA Astrophysics Data System (ADS)

    Lebrini, M.; Fontaine, G.; Gengembre, L.; Traisnel, M.; Lerasle, O.; Genet, N.

    2008-08-01

    The efficiency of a new triazole derivative, namely, 2-{(2-hydroxyethyl)[(4-methyl-1 H-1,2,3-benzotriazol-1-yl)methyl]amino}ethanol (TTA) has been studied for corrosion inhibition of galvanized steel and electroplating steel in aqueous solution. Corrosion inhibition was studied using electrochemical impedance spectroscopy (EIS). These studies have shown that TTA was a very good inhibitor. Data obtained from EIS show a frequency distribution and therefore a modelling element with frequency dispersion behaviour, a constant phase element (CPE) has been used. The corrosion behaviour of galvanized steel and electroplating steel in aqueous solution was also investigated in the presence of 4-methyl-1 H-benzotriazole (TTA unsubstituted) by EIS. These studies have shown that the ability of the molecule to adsorb on the steel surface was dependent on the group in triazole ring substituent. X-ray photoelectron spectroscopy surface analysis with TTA shows that it chemisorbed on surface of galvanized steel and electroplating steel.

  7. Determination of the Si-conducting polymer interfacial properties using A-C impedance techniques

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, G.; Di Stefano, Salvador; Moacanin, Jovan

    1985-01-01

    A study was made of the interfacial properties of poly(pyrrole) (PP) deposited electrochemically onto single crystal p-Si surfaces. The interfacial properties are dependent upon the counterions. The formation of 'quasi-ohmic' and 'nonohmic' contacts, respectively, of PP(ClO4) and PP films doped with other counterions (BF4 and para-toluene sulfonate) with p-Si, are explained in terms of the conductivity of these films and the flat band potential, V(fb), of PP relative to that of p-Si. The PP film seems to passivate or block intrinsic surface states present on the p-Si surface. The differences in the impedance behavior of para-toluene sulfonate doped and ClO4 doped PP are compared.

  8. Equivalent circuit modeling of the ac response of Pd-ZrO2 granular metal thin films using impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Bakkali, Hicham; Dominguez, Manuel; Batlle, Xavier; Labarta, Amílcar

    2015-08-01

    The ac response in the dielectric regime of thin films consisting of Pd nanoparticles embedded in a ZrO2 insulating matrix, fabricated by co-sputtering, was obtained from impedance spectroscopy measurements (11 Hz-2 MHz) in the temperature range 30-290 K. The response was fitted to an equivalent circuit model whose parameters were evaluated assuming that, as a consequence of the bimodal size distribution of the Pd particles, two mechanisms appear. At low frequencies, a first element similar to a parallel RC circuit dominates the response, due to two competing paths. One of them is associated with thermally-activated tunneling conductance among most of the smallest Pd particles (size ~ 2 nm), which make up the dc tunneling backbone of the sample. The other one is related to the conductance associated with the capacitive paths among larger Pd particles (size  >  5 nm). At low temperature and intermediate frequencies (~1 kHz), a shortcut process between the larger particles connects regions initially isolated from the backbone at low frequencies. These regions, populated by some additional smaller particles located around two bigger particles, were isolated because the bigger particles separation is too large for the tunneling current. Once connected to the backbone, current may also flow through them by means of the so-called thermally-activated assisted tunneling resistive paths, yielding the second element of the equivalent circuit (a parallel RLC element). At high temperature, the thermal energy shifts the onset of the shortcut process high frequencies and, thus, only the first element is observed. Considering these results, controlling the particle size distribution could be helpful to tune up the frequency at which tunneling conductance dominates the ac response of these granular metals.

  9. Fuzzy-control-based five-step Li-ion battery charger by using AC impedance technique

    NASA Astrophysics Data System (ADS)

    Asadi, Houshyar; Aghay Kaboli, Seyed Hamidreza; Mohammadi, Arash; Oladazimi, Maysam

    2011-12-01

    In This paper the previous Li-Ion battery charger techniques are reviewed and compared and the new fuzzy logic battery charging method which is proposed to optimize and improve the battery charger efficiently. According to results of comparison, using the fuzzy control charging system can shorten the charging time with higher efficiency and lower temperature rise. Additionally, we have used optimal Li-ion battery charging frequency by using AC impedance technique which means if the battery is charged by the optimal charging frequency fZmin, that obtain from Bode Plot of the Li-ion battery, the charging time and charging efficiency will improve. Thus using the switching frequency (fZmin) of the battery charger and the fuzzy logic control on the same system can optimize the performance on the charging process. According to the experimental results, the proposed charger can charge the Li-ion batteries with higher efficiency 97.16%, lower temperature rise1.513degree celosias, fast charging period around 50.43 minute and long life cycle. The results in this paper are presented by using MATLAB and dsPIC30F2020 is used as controller applying designed fuzzy logic inside.

  10. Fuzzy-control-based five-step Li-ion battery charger by using AC impedance technique

    NASA Astrophysics Data System (ADS)

    Asadi, Houshyar; Aghay Kaboli, Seyed Hamidreza; Mohammadi, Arash; Oladazimi, Maysam

    2012-01-01

    In This paper the previous Li-Ion battery charger techniques are reviewed and compared and the new fuzzy logic battery charging method which is proposed to optimize and improve the battery charger efficiently. According to results of comparison, using the fuzzy control charging system can shorten the charging time with higher efficiency and lower temperature rise. Additionally, we have used optimal Li-ion battery charging frequency by using AC impedance technique which means if the battery is charged by the optimal charging frequency fZmin, that obtain from Bode Plot of the Li-ion battery, the charging time and charging efficiency will improve. Thus using the switching frequency (fZmin) of the battery charger and the fuzzy logic control on the same system can optimize the performance on the charging process. According to the experimental results, the proposed charger can charge the Li-ion batteries with higher efficiency 97.16%, lower temperature rise1.513degree celosias, fast charging period around 50.43 minute and long life cycle. The results in this paper are presented by using MATLAB and dsPIC30F2020 is used as controller applying designed fuzzy logic inside.

  11. Complex permittivity of FeCl3/AOT/CCl4 microemulsions probed by AC impedance spectroscopy.

    PubMed

    Calandra, Pietro; Ruggirello, Angela; Turco Liveri, Vincenzo

    2009-09-01

    The complex permittivity of FeCl(3)/AOT/CCl(4) microemulsions in the 1-10(5) Hz frequency range has been measured by the conventional AC complex impedance technique. Measurements as a function of the volume fraction of the dispersed phase (FeCl(3)+AOT) and temperature at fixed salt-to-AOT molar ratio (R, R = 0.5) show that the entrapment of FeCl(3) clusters significantly enhances the local permittivity of the AOT reverse micelles and the number density of charge carriers resulting from the peculiar state of the confined inorganic salt. An estimate of the apparent static permittivity of the FeCl(3) ionic clusters entrapped in the core of AOT reverse micelles gives the very high and quite surprisingly value of about 237. Moreover, a thorough analysis of conductivity data and of their temperature dependence strongly supports the hypothesis that the charge transport in these systems is mainly sustained by a mechanism of hopping consisting in the continuous jumping of charged species within supra-micellar aggregates of AOT reverse micelles whose aggregation is driven by fluctuating opposite charges on contacting micelles. PMID:19481764

  12. Oxygen diffusion in niobia-doped zirconia as surrogate for oxide film on Zr-Nb alloy: AC impedance analysis

    NASA Astrophysics Data System (ADS)

    Yamana, Teppei; Arima, Tatsumi; Yoshihara, Takatoshi; Inagaki, Yaohiro; Idemitsu, Kazuya

    2013-11-01

    The oxygen conductivities and crystallographic properties of niobia-doped yttria-stabilized tetragonal zirconia with 0.0-2.6 wt% Nb2O5 were evaluated by the AC impedance analysis and the X-ray diffraction measurement, respectively. The tetragonality of zirconia increased with niobia content and approached ˜1.017 while the tetragonal-to-monoclinic phase transition occurred above ca. 1 wt% Nb2O5. On the other hand, oxygen conductivities of bulk and grain-boundary (GB) decreased with increasing niobia content. The bulk conductivity controlled the total ionic conductivity at high temperatures, and its activation energy had smaller dependence on temperature than that of GB. In addition to the effect of [VO] depletion by niobia addition, the behaviors of bulk and GB conductivities might be explained by the decrease of mobility of oxygen ion due to Coulomb repulsion between Nb5+ and VO and by no segregation of Nb ions in the space-charge layers, respectively.

  13. Correlation of capacity fading processes and electrochemical impedance spectra in lithium/sulfur cells

    NASA Astrophysics Data System (ADS)

    Risse, Sebastian; Cañas, Natalia A.; Wagner, Norbert; Härk, Eneli; Ballauff, Matthias; Friedrich, K. Andreas

    2016-08-01

    The capacity fading of lithium/sulfur (Li/S) cells is one major challenge that has to be overcome for a successful commercialization of this electrochemical storage system. Therefore it is essential to detect the major fading mechanisms for further improvements of this system. In this work, the processes leading to fading are analyzed in terms of a linear four state model and correlated to the distribution of relaxation times calculated with a modified Levenberg-Marquardt algorithm. Additionally, the Warburg impedance and the solution resistance are also obtained by the same algorithm. The detailed analysis of intermediate states during the first cycle gives the distinction between relaxation processes at the sulfur cathode and at the lithium anode. The influence of the polysulfides on the impedance parameters was evaluated using symmetric cells; this yields a good correlation with the results obtained from the first discharge/charge experiment. A fast and a slow capacity fading process are observed for the charge and the discharge during 50 cycles. The fast fading process can be assigned to Faradaic reactions at the lithium anode.

  14. Interpreting impedance spectra of organic photovoltaic cells—Extracting charge transit and recombination rates

    SciTech Connect

    Mullenbach, Tyler K.; Zou, Yunlong; Holmes, Russell J.; Holst, James

    2014-09-28

    Impedance spectroscopy has been widely used to extract the electron-hole recombination rate constant in organic photovoltaic cells (OPVs). This technique is typically performed on OPVs held at open-circuit. Under these conditions, the analysis is simplified with recombination as the only pathway for the decay of excess charge carriers; transit provides no net change in the charge density. In this work, we generalize the application and interpretation of impedance spectroscopy for bulk heterojunction OPVs at any operating voltage. This, in conjunction with reverse bias external quantum efficiency measurements, permits the extraction of both recombination and transit rate constants. Using this approach, the transit and recombination rate constants are determined for OPVs with a variety of electron donor-acceptor pairings and compositions. It is found that neither rate constant individually is sufficient to characterize the efficiency of charge collection in an OPV. It is demonstrated that a large recombination rate constant can be accompanied by a large transit rate constant, thus fast recombination is not necessarily detrimental to OPV performance. Extracting the transit and recombination rate constants permits a detailed understanding of how OPV architecture and processing conditions impact the transient behavior of charge carriers, elucidating the origin of optimum device configurations.

  15. Calculation of the energy loss in giant magnetic impedance elements using the complex magnetic permeability spectra

    NASA Astrophysics Data System (ADS)

    Rustemaj, Driton; Mukherjee, Debashis

    2013-01-01

    The giant magnetic impedance (GMI) effect in ferromagnetic materials has been investigated for sensing applications. The GMI properties were evaluated via numerical solution of the complex magnetic permeability of the material. MATLAB simulation was carried out to study the frequency dependence of magnetic permeability via obtaining solutions of the Landau-Lifshitz-Gilbert (LLG) and the Maxwell's equations. The results indicate that the complex magnetic permeability peaks at a frequency of 6 GHz, corresponding to the ferromagnetic resonant (FMR) frequency, where the energy loss is maximum. A variation of the Gilbert damping parameter (α) associated with the LLG equation inversely affects this peak value. The area under the curve of complex magnetic permeability, calculated through counting the number of pixels within the image, provides an estimate of the average energy loss density within the material and appears to be consistent with the variation of the peak intensity.

  16. Location of coating defects and assessment of level of cathodic protection on underground pipelines using AC impedance, deterministic and non-deterministic models

    NASA Astrophysics Data System (ADS)

    Castaneda-Lopez, Homero

    A methodology for detecting and locating defects or discontinuities on the outside covering of coated metal underground pipelines subjected to cathodic protection has been addressed. On the basis of wide range AC impedance signals for various frequencies applied to a steel-coated pipeline system and by measuring its corresponding transfer function under several laboratory simulation scenarios, a physical laboratory setup of an underground cathodic-protected, coated pipeline was built. This model included different variables and elements that exist under real conditions, such as soil resistivity, soil chemical composition, defect (holiday) location in the pipeline covering, defect area and geometry, and level of cathodic protection. The AC impedance data obtained under different working conditions were used to fit an electrical transmission line model. This model was then used as a tool to fit the impedance signal for different experimental conditions and to establish trends in the impedance behavior without the necessity of further experimental work. However, due to the chaotic nature of the transfer function response of this system under several conditions, it is believed that non-deterministic models based on pattern recognition algorithms are suitable for field condition analysis. A non-deterministic approach was used for experimental analysis by applying an artificial neural network (ANN) algorithm based on classification analysis capable of studying the pipeline system and differentiating the variables that can change impedance conditions. These variables include level of cathodic protection, location of discontinuities (holidays), and severity of corrosion. This work demonstrated a proof-of-concept for a well-known technique and a novel algorithm capable of classifying impedance data for experimental results to predict the exact location of the active holidays and defects on the buried pipelines. Laboratory findings from this procedure are promising, and

  17. Complex AC impedance, transference number and vibrational spectroscopy studies of proton conducting PVAc-NH 4SCN polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Selvasekarapandian, S.; Baskaran, R.; Hema, M.

    2005-03-01

    The polymer electrolytes composed of poly (vinyl acetate) (PVAc) with various stoichiometric ratios of ammonium thiocyanate (NH 4SCN) salt have been prepared by solution casting method. The polymer-salt complex formation and the polymer-proton interactions have been analysed by FT-IR spectroscopy. The conductivity and dielectric measurements are carried out on these films as a function of frequency at various temperatures. The complex impedance spectroscopy results reveal that the high-frequency semicircle is due to the bulk effect of the material. The conductivity is found to increase in the order of 10 -8-10 -4 S cm -1 at 303 K with the increase in salt concentration. The ionic transference number of mobile ions has been estimated by Wagner's polarization method and the results reveal that the conducting species are predominantly due to ions. The transient ionic current (TIC) measurement technique has been used to detect the type of mobile species and to evaluate their mobilities. The dielectric spectra show the low-frequency dispersion, which is due to the space charge effects arising from the electrodes.

  18. Synthesis and characterization of cancrinite-type zeolite, and its ionic conductivity study by AC impedance analysis

    NASA Astrophysics Data System (ADS)

    Kriaa, A.; Ben Saad, K.; Hamzaoui, A. H.

    2012-12-01

    The synthesis of cancrinite in the system NaOH-SiO2-Al2O3-NaHCO3-H2O was performed, according to methods described in the literature, in an autoclave under hydrothermal conditions at T = 473 K. The electrical properties of cancrinite-type zeolite pellets were investigated by complex impedance spectroscopy in the temperature range 465-800°C. The effect of temperature on impedance parameters was studied using an impedance analyzer in a wide frequency range (1 Hz to 13 MHz). The real and imaginary parts of complex impedance trace semicircles in the complex plane are plotted. The bulk resistance of the material decreases with rise in temperature. This exhibits a typical negative temperature coefficient of resistance (NTCR) behavior of the material. The results of bulk electrical conductivity and its activation energy are presented. The modulus analysis suggests that the electrical transport processes in the material are very likely to be of electronic nature. Relaxation frequencies follow an Arrhenius behavior with activation energy values not comparable to those found for the electrical conductivity.

  19. Impedance spectra of Fe-doped SrTiO3 thin films upon bias voltage: inductive loops as a trace of ion motion.

    PubMed

    Taibl, S; Fafilek, G; Fleig, J

    2016-08-01

    Mass and charge transport properties of slightly Fe-doped SrTiO3 (Fe:STO) thin films on a conducting substrate were investigated by means of impedance spectroscopy under different bias voltages and I-V measurements with varying scan rates. At measurement temperatures between 325 °C and 700 °C the applied bias voltage caused an unusual "inductive loop" in the low frequency range of impedance spectra. DC measurements showed that current-voltage curves strongly depend on the scan rate, indicating that different states of the sample became accessible to probe. Both findings can be understood in terms of bias induced ion motion, i.e. by stoichiometry polarization within the Fe:STO thin films upon voltage. Hence, the appearance of an "inductive loop" in the impedance spectra is considered a very general feature that might exist for many materials, particularly in oxide thin films. It may indicate ion motion and stoichiometry variations taking place in the corresponding frequency range. PMID:27088884

  20. The application of A.C. impedance spectroscopy on the durability of hydrated cement paste subjected to various environmental conditions

    NASA Astrophysics Data System (ADS)

    Perron, Stacey

    Harsh Canadian winters cause many problems in reinforced concrete structures due to damaging freezing-thawing cycles which is exacerbated by the heavy use of de-icing salts on roadways. Evaluation of concrete durability with current ASTM methods may give unreliable results and are destructive to the structure. A relatively new and novel approach to evaluating the durability of concrete uses A. C. Impedance Spectroscopy (ACIS). Hydrated cement paste (hcp), mortar, brick and vycor glass were evaluated using ACIS during drying-rewetting and freezing-thawing cycles. Thermal mechanical analysis (TMA), and differential scanning calorimetry (DSC) tests were also conducted and used as references. Results indicate that ACIS can be used to successfully evaluate the pore structure of hcp. The results from the drying-rewetting cycles are consistent with the pore coarsening theory. ACIS revealed pore structure changes consistent with the mechanical strains and pore solution chemistry. Increased pore continuity with each drying-rewetting cycle was indicated by a reduction in sample resistance. Unique tests were conducted on hydrated cement paste, mortar, brick and vycor glass that measured the ACIS and mechanical strains simultaneously while undergoing temperature changes. The temperature was lowered from 5°C to -80°C and then raised to +20°C. The ACIS results indicate that durability of the material can be assessed using the parameters R, material resistance, and phi, indicative of the frequency dispersion angle. The resistance on freezing values correlates with the amount of pore water freezing. The phi values on freezing are representative of the pore size distribution of the test sample. Resistance and phi data from freezing-thawing tests can be analyzed to assess durability of the sample. A material that is durable to freezing-thawing cycles can be described as having a high resistance at room temperature, a low freezing resistance and small changes in phi. Results were

  1. AC impedance analysis of ionic and electronic conductivities in electrode mixture layers for an all-solid-state lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Siroma, Zyun; Sato, Tomohiro; Takeuchi, Tomonari; Nagai, Ryo; Ota, Akira; Ioroi, Tsutomu

    2016-06-01

    The ionic and electronic effective conductivities of an electrode mixture layers for all-solid-state lithium-ion batteries containing Li2Ssbnd P2S5 as a solid electrolyte were investigated by AC impedance measurements and analysis using a transmission-line model (TLM). Samples containing graphite (graphite electrodes) or LiNi0.5Co0.2Mn0.3O2 (NCM electrodes) as the active material were measured under a "substrate | sample | bulk electrolyte | sample | substrate" configuration (ion-electron connection) and a "substrate | sample | substrate" configuration (electron-electron connection). Theoretically, if the electronic resistance is negligibly small, which is the case with our graphite electrodes, measurement with the ion-electron connection should be effective for evaluating ionic conductivity. However, if the electronic resistance is comparable to the ionic resistance, which is the case with our NCM electrodes, the results with the ion-electron connection may contain some inherent inaccuracy. In this report, we theoretically and practically demonstrate the advantage of analyzing the results with the electron-electron connection, which gives both the ionic and electronic conductivities. The similarity of the behavior of ionic conductivity with the graphite and NCM electrodes confirms the reliability of this analysis.

  2. Impedance and AC conductivity study of nano crystalline, fine grained multiferroic bismuth ferrite (BiFeO3), synthesized by microwave sintering

    NASA Astrophysics Data System (ADS)

    Kolte, Jayant; Salame, Paresh H.; Daryapurkar, A. S.; Gopalan, P.

    2015-09-01

    In this paper, major reduction in sintering time,temperautre and significant improvement over final density of sitnered sample is reported for the microwave sintered nanocrystalline BiFeO3 (BFO) ceramic. Also, different sintering time and temperatures have been used to tailor the grain size and the final density of the resulting BFO ceramics synthesized from phase pure BFO nanoparticles ( d ¯ ≈ 10 n m ). Microwave sintering resulted in reducing the sintering time substantially (by 1h), and has resulted in submicron sized grains and high resistivity ˜1.8 GΩ-cm. The AC conductivity is seen to follow the Jonscher's power law behavior, suggesting correlated barrier hopping (CBH) mechanism in the sample. The role of oxygen vacancies at high temperature, due to volatility of bismuth, in dielectric and conductivity behavior is also discussed. Further, the sample displayed dielectric anomaly near magnetic transition temperature (˜180 °C) indicating bearing of magnetic moments on the dielectric properties. Using Impedance Spectroscopy (IS) we have established, the electrical heterogeneity of the ceramic BFO reavealing semiconducting nature of grains and insulating nature of grain boundary. This, formation of network of insulating grain boundaries and semiconducting grains could lead to formation of internal barrier layer capacitance (IBLC) leading to high dielectric constant in microwave sintered BFO.

  3. Low temperature ac electrical study of Pr0.5-xLaxCa0.5MnO3 (x = 0.0-0.4) ceramics by employing impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Javid Iqbal, M.; Nadeem, M.; Hassan, M. M.

    2013-09-01

    Polycrystalline Pr0.5-xLaxCa0.5MnO3 (x = 0.0-0.40) ceramics are synthesized by conventional solid state reaction method, and phase purity is confirmed by employing X-ray diffraction. Temperature dependent ac impedance spectroscopic measurements enable us to determine an increasing trend in resistance values of these samples with the decrease in temperatures. However, a decreasing trend in resistance values with increase in the La-doping at Pr-site is observed. A metal to insulator transition (MIT) is reported for x ≥ 0.2, which is shifted to higher temperature values with further increase of x doping. Two equivalent circuit models, i.e., (ReQe)(RgbQgb) and (ReQe)(RgbQgb)(RgQg) are employed to explain the impedance data with and without MIT, respectively. Mott variable range hopping model is found to be an appropriate model for defining the conduction mechanism of charge carriers in the semiconducting region. The decrease in the impedance with x doping is explained in terms of increase in the localization length obtained from the fitting of Rgb. Using tanδ results, thermally activated relaxation behavior is discussed for x = 0.0 and 0.1; whereas for x = 0.2, a temperature independent relaxation behavior is conferred due to the change in the hopping process of charge carriers.

  4. Electronic Structure of AC-Clusters and High-Resolution X-ray Spectra of Actinides in Solids

    SciTech Connect

    Kulagin, Nicolay Alex

    2007-07-01

    Ab initio calculations using SCF approach for and analysis of results of investigation of the electronic structure of the clusters RAn+:[L]k with rare earths or actinides were carried out for the clusters in solids and liquids. Theoretical results for the electronic structure, radial integrals and energy of X- ray lines are presented for AC ions with unoccupied 5f-shell in the clusters in oxides, chlorides and fluorides environment. Possibility of collapse of nf-shell for the separate clusters and identification of electronic state of ions with unstable nuclei, are discussed, too. (author)

  5. Electron Impedances

    SciTech Connect

    P Cameron

    2011-12-31

    It is only recently, and particularly with the quantum Hall effect and the development of nanoelectronics, that impedances on the scale of molecules, atoms and single electrons have gained attention. In what follows the possibility that characteristic impedances might be defined for the photon and the single free electron is explored is some detail, the premise being that the concepts of electrical and mechanical impedances are relevant to the elementary particle. The scale invariant quantum Hall impedance is pivotal in this exploration, as is the two body problem and Mach's principle.

  6. Electrical transport properties of Mn-Ni-Zn ferrite using complex impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Azizar Rahman, M.; Hossain, A. K. M. Akther

    2014-02-01

    Polycrystalline Mn0.45Ni0.05Zn0.50Fe2O4 was prepared by a standard solid state reaction technique. We report the electrical properties of this ferrite using ac impedance spectroscopy as a function of frequency (20 Hz-10 MHz) at different temperatures (50-350 °C). X-ray diffraction patterns reveal the formation of cubic spinel structure. Complex impedance analysis has been used to separate the grain and grain boundary resistance of this ferrite. The variation of grain and grain boundary conductivities with temperature confirms semiconducting behavior. The dielectric permittivity shows dielectric dispersion at lower frequency and reveals that it has almost the same value on the high-frequency side. The non-coincidence of peaks corresponding to modulus and impedance indicates deviation from Debye-type relaxation. A similar value of activation energy is obtained from impedance and modulus spectra, indicating that charge carriers overcome the same energy barrier during relaxation. Electron hopping is responsible for ac conduction in this ferrite. The electron hopping shifts toward higher frequency with increasing temperature, below which the conductivity is frequency independent. The frequency-independent ac conductivity has been observed at and above 300 °C in the frequency range 20 Hz-1 MHz. This frequency-independent ac conductivity is due to the long-range movement of the mobile charge carriers.

  7. Synthesis of solid solutions of Dy xBi 2-xO 3 with x=0, 1 and 2: Structural, optical and ac impedance analysis

    NASA Astrophysics Data System (ADS)

    Iyyapushpam, S.; Chithra lekha, P.; Pathinettam Padiyan, D.

    2010-01-01

    Dysprosium hydroxide, bismuth hydroxide and mixed dysprosium bismuth hydroxide are prepared in the form of a gel by means of chemical precipitation technique. A simple gel to crystalline conversion technique has been followed by means of refluxing process. The synthesized hydroxides are characterized by thermogravimetry and differential thermal analysis. The formed hydroxides are converted into its oxides by calcining at a temperature of 700 °C for 2 h and solid solutions of Dy xBi 2-xO 3 with x=0, 1 and 2 are formed. The hydroxides and oxides of these solid solutions are investigated by means of XRD and found to be polycrystalline in nature. The Nyquist plot shows a single relaxation process. The enhanced conductivity is observed in dysprosium-based oxides and hydroxides. The optical band gap energy is in agreement with the ac conductivity values.

  8. Wolf-Rayet stars in M81: detection and characterization using GTC/OSIRIS spectra and HST/ACS images

    NASA Astrophysics Data System (ADS)

    Gómez-González, V. M. A.; Mayya, Y. D.; Rosa-González, D.

    2016-08-01

    We here report the properties of Wolf-Rayet (W-R) stars in 14 locations in the nearby spiral galaxy M81. These locations were found serendipitously while analysing the slit spectra of a sample of ˜150 star-forming complexes, taken using the long-slit and multiobject spectroscopic modes of the OSIRIS instrument at the 10.4-m Gran Telescopio Canarias. Colours and magnitudes of the identified point sources in the Hubble Space Telescope images compare well with those of individual W-R stars in the Milky Way. Using templates of individual W-R stars, we infer that the objects responsible for the observed W-R features are single stars in 12 locations, comprising of three WNLs, three WNEs, two WCEs and four transitional WN/C types. In diagrams involving bump luminosities and the width of the bumps, the W-R stars of the same sub-class group together, with the transitional stars occupying locations intermediate between the WNE and WCE groups, as expected from the evolutionary models. However, the observed number of 4 transitional stars out of our sample of 14 is statistically high as compared to the 4 per cent expected in stellar evolutionary models.

  9. Mechanistic insights into UV-induced electron transfer from PCBM to titanium oxide in inverted-type organic thin film solar cells using AC impedance spectroscopy.

    PubMed

    Kuwabara, Takayuki; Iwata, Chiaki; Yamaguchi, Takahiro; Takahashi, Kohshin

    2010-08-01

    An inverted organic bulk-heterojunction solar cell containing amorphous titanium oxide (TiOx) as an electron collection electrode with the structure ITO/TiO(x)/[6,6]-phenyl C(61) butyric acid methyl ester (PCBM): regioregular poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxylenethiophene):poly(4-styrene sulfonic acid)/Au (TiO(x) cell) was fabricated. Its complicated photovoltaic properties were investigated by photocurrent-voltage and alternating current impedance spectroscopy measurements. The TiO(x) cell required a significant amount of time (approximately 60 min) to reach its maximum power conversion efficiency (PCE) of 2.6%. To investigate the reason for this slow photoresponse, we investigated the influences of UV light and water molecules adsorbed on the TiO(x) layer. Surface treatment of the TiO(x) cell with water induced a rapid photoresponse and enhanced the performance, giving a PCE of 2.97%. However, the durability of the treated cell was considerably inferior that of the untreated cell because of UV-induced photodegradation. The cause of the rapid photoresponse of the treated cell was attributed to the formation of hydrogen bonds between adsorbed water molecules and carbonyl oxygen atoms in PCBM close to the TiO(x) surface. When the TiO(x) surface was positively charged by UV-induced holes, the carbonyl oxygen in PCBM close to the TiO(x) surface can quickly join to the TiO(x) surface, rapidly transporting photogenerated electrons from PCBM to TiO(x) in competition with the photocatalyzed degradation. The experimental results suggested that the slow photoresponse of the untreated TiO(x) cell was because the morphology of the photoactive organic layer changed gradually upon irradiation to improve the transport of photocarriers at the TiO(x)/PCBM:P3HT interface. PMID:20735096

  10. Sensitivity of Cirrus and Mixed-phase Clouds to the Ice Nuclei Spectra in McRAS-AC: Single Column Model Simulations

    NASA Technical Reports Server (NTRS)

    Betancourt, R. Morales; Lee, D.; Oreopoulos, L.; Sud, Y. C.; Barahona, D.; Nenes, A.

    2012-01-01

    The salient features of mixed-phase and ice clouds in a GCM cloud scheme are examined using the ice formation parameterizations of Liu and Penner (LP) and Barahona and Nenes (BN). The performance of LP and BN ice nucleation parameterizations were assessed in the GEOS-5 AGCM using the McRAS-AC cloud microphysics framework in single column mode. Four dimensional assimilated data from the intensive observation period of ARM TWP-ICE campaign was used to drive the fluxes and lateral forcing. Simulation experiments where established to test the impact of each parameterization in the resulting cloud fields. Three commonly used IN spectra were utilized in the BN parameterization to described the availability of IN for heterogeneous ice nucleation. The results show large similarities in the cirrus cloud regime between all the schemes tested, in which ice crystal concentrations were within a factor of 10 regardless of the parameterization used. In mixed-phase clouds there are some persistent differences in cloud particle number concentration and size, as well as in cloud fraction, ice water mixing ratio, and ice water path. Contact freezing in the simulated mixed-phase clouds contributed to transfer liquid to ice efficiently, so that on average, the clouds were fully glaciated at T approximately 260K, irrespective of the ice nucleation parameterization used. Comparison of simulated ice water path to available satellite derived observations were also performed, finding that all the schemes tested with the BN parameterization predicted 20 average values of IWP within plus or minus 15% of the observations.

  11. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  12. Electrical Analogues of Optical & EELS Spectra: Silicon

    NASA Astrophysics Data System (ADS)

    Smith, David Y.; Karstens, William

    2014-03-01

    We have explored an analogy between optical and electrical-circuit resonances that yields insight into single-particle and collective excitations. The analogy rests on the similarity of the differential equations for the Drude-Lorentz model of optics and the impedance of ac circuits. A parallel combination of capacitive (C) and inductive-capacitive (L-C) branches is a suitable circuit model. The L-C branches correspond to single-particle excitations. The C branch accounts for the electric-field term in the displacement, or equivalently the free-space susceptibility. Collective excitations represent combination resonances of the L-C and C branches. These excitations involve only internal mesh currents that can flow in the absence of an external (input) current. In this case, the admittance of the circuit is zero corresponding to the vanishing of the dielectric function at the plasmon resonance in optics (absent resistive losses). Circuit impedance corresponds to charged-particle energy loss. In contrast, circuit admittance (inverse impedance) corresponds to optical measurements. The interference of mesh currents in the circuit model plays the role of Coulomb screening in energy-loss spectra. Supported in part by the US Department of Energy, Office of Nuclear Physics under contract DE-AC02-06CH11357.

  13. Impedance feedback control for scanning electrochemical microscopy.

    PubMed

    Alpuche-Aviles, M A; Wipf, D O

    2001-10-15

    A new constant-distance imaging method based on the relationship between tip impedance and tip-substrate separation has been developed for the scanning electrochemical microscope. The tip impedance is monitored by application of a high-frequency ac voltage bias between the tip and auxiliary electrode. The high-frequency ac current is easily separated from the dc-level faradaic electrochemistry with a simple RC filter, which allows impedance measurements during feedback or generation/collection experiments. By employing a piezo-based feedback controller, we are able to maintain the impedance at a constant value and, thus, maintain a constant tip-substrate separation. Application of the method to feedback and generation/collection experiments with tip electrodes as small as 2 microm is presented. PMID:11681463

  14. Impedance magnetocardiogram.

    PubMed

    Kandori, A; Miyashita, T; Suzuki, D; Yokosawa, K; Tsukada, K

    2001-02-01

    We have developed an impedance magnetocardiogram (IMCG) system to detect the change of magnetic field corresponding to changes in blood volume in the heart. A low magnetic field from the electrical activity of the human heart--the so-called magnetocardiogram (MCG)--can be simultaneously detected by using this system. Because the mechanical and electrical functions in the heart can be monitored by non-invasive and non-contact measurements, it is easy to observe the cardiovascular functions from an accurate sensor position. This system uses a technique to demodulate induced current in a subject. A flux-locked circuit of a superconducting quantum interference device has a wide frequency range (above 1 MHz) because a constant current (40 kHz) is fed through the subject. It is shown for the first time that the system could measure IMCG signals at the same time as MCG signals. PMID:11229740

  15. Dielectric and impedance spectroscopic studies of neodymium gallate

    NASA Astrophysics Data System (ADS)

    Sakhya, Anup Pradhan; Dutta, Alo; Sinha, T. P.

    2016-05-01

    The AC electrical properties of a polycrystalline neodymium gallate, NdGaO3 (NGO), synthesized by the sol-gel method have been investigated by employing impedance spectroscopy in the frequency range from 42 Hz to 5 MHz and in the temperature range from 323 K to 593 K. The X-ray diffraction analysis shows that the compound crystallizes in the orthorhombic phase with Pbnm space group at room temperature. Two relaxation processes with different relaxation times are observed from the impedance as well as modulus spectroscopic measurements, which have been attributed to the grain and the grain boundary effects at different temperatures in NGO. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element in parallel. It has been observed that the value of the capacitance and the resistance associated with the grain boundary is higher than those associated with the grain. The temperature dependent electrical conductivity shows the negative temperature coefficient of resistance. The frequency dependent conductivity spectra are found to follow the power law.

  16. Impedance Spectroscopy Study of Composite Thin Films of Hydrated Polyethylene Glycol

    SciTech Connect

    Al-Hamarneh, Ibrahim F.; Pedrow, Patrick D.; Goheen, Steven C.; Hartenstine, M. J.

    2007-05-01

    A polythelene glycol (PEG) polymer was synthesized using a dip coating procedure on 316L stainless steel (SS) substrate pre coated by radio frequency RF inductively coupled plasma polymerization with di (ethylene glycol) vinyl ether (EO2V) monomer that was used as a primer coat. The primer and PEG composite film was studied with profilometer, visible-light microscope, scanning electron microscope (SEM) and a tape test to evaluate thickness, stability, morphology and adhesion. Response of the PEG composite film to an AC electric perturbation was studied as a function of hydration state using impedance spectroscopy (IS). A resistor/capacitor network was used to interpret the impedance spectra. The capacitance of the PEG film decreased with an exponentially decaying term as dehydration progressed. PEG film capacitance decay was consistent with a model describing water molecules diffusing through the PEG film.

  17. Impedance Spectroscopy Study of Composite Thin Films of Hydrated Polyethylene Glycol

    SciTech Connect

    Al-Hamarneh, Ibrahim F.; Pedrow, Patrick D.; Goheen, Steven C.; Hartenstine, M. J.

    2007-10-01

    A polyethylene glycol (PEG) polymer was synthesized using a dip coating procedure on 316L stainless steel (SS) substrate pre-coated with a primer that consisted of radio frequency RF inductively coupled plasma-polymerized di (ethylene glycol) vinyl ether (EO2V). The primer and PEG composite film was studied with profilometer, optical microscope, scanning electron microscope (SEM), and a tape test to evaluate thickness, coverage, morphology, and adhesion, respectively. Response of the PEG composite film to an applied AC voltage was studied as a function of hydration state using impedance spectroscopy (IS). A resistor/capacitor network was used to interpret the impedance spectra. Electrical capacitance of the PEG film decreased with an exponentially decaying term as dehydration progressed. PEG film capacitance decay was consistent with a model describing water molecules diffusing through the PEG film.

  18. ac and dc percolative conductivity of magnetite-cellulose acetate composites

    SciTech Connect

    Chiteme, C.; McLachlan, D. S.; Sauti, G.

    2007-03-01

    ac and dc conductivity results for a percolating system, which consists of a conducting powder (magnetite) combined with an 'insulating' powder (cellulose acetate), are presented. Impedance and modulus spectra are obtained in a percolation system. The temperature dependence of the resistivity of the cellulose acetate is such that at 170 deg. C, it is essentially a conductor at frequencies below 0.059{+-}0.002 Hz, and a dielectric above. The percolation parameters, from the dc conductivity measured at 25 and 170 deg. C, are determined and discussed in relation to the ac results. The experimental results scale as a function of composition, temperature, and frequency. An interesting result is the correlation observed between the scaling parameter (f{sub ce}), obtained from a scaling of the ac measurements, and the peak frequency (f{sub cp}) of the arcs, obtained from impedance spectra, above the critical volume fraction. Scaling at 170 deg. C is not as good as at 25 deg. C, probably indicating a breakdown in scaling at the higher temperature. The modulus plots show the presence of two materials: a conducting phase dominated by the cellulose acetate and the isolated conducting clusters below the critical volume fraction {phi}{sub c}, as well as the interconnected conducting clusters above {phi}{sub c}. These results are confirmed by computer simulations using the two exponent phenomenological percolation equation. These results emphasize the need to analyze ac conductivity results in terms of both impedance and modulus spectra in order to get more insight into the behavior of composite materials.

  19. Revisiting the electrochemical impedance spectroscopy of magnesium with online inductively coupled plasma atomic emission spectroscopy.

    PubMed

    Shkirskiy, Viacheslav; King, Andrew D; Gharbi, Oumaïma; Volovitch, Polina; Scully, John R; Ogle, Kevin; Birbilis, Nick

    2015-02-23

    The electrochemical impedance of reactive metals such as magnesium is often complicated by an obvious inductive loop with decreasing frequency of the AC polarising signal. The characterisation and ensuing explanation of this phenomenon has been lacking in the literature to date, being either ignored or speculated. Herein, we couple electrochemical impedance spectroscopy (EIS) with online atomic emission spectroelectrochemistry (AESEC) to simultaneously measure Mg-ion concentration and electrochemical impedance spectra during Mg corrosion, in real time. It is revealed that Mg dissolution occurs via Mg(2+) , and that corrosion is activated, as measured by AC frequencies less than approximately 1 Hz approaching DC conditions. The result of this is a higher rate of Mg(2+) dissolution, as the voltage excitation becomes slow enough to enable all Mg(2+) -enabling processes to adjust in real time. The manifestation of this in EIS data is an inductive loop. The rationalisation of such EIS behaviour, as it relates to Mg, is revealed for the first time by using concurrent AESEC. PMID:25425247

  20. ADVANCES IN IMPEDANCE THEORY

    SciTech Connect

    Stupakov, G.; /SLAC

    2009-06-05

    We review recent progress in the following areas of the impedance theory: calculation of impedance of tapers and small angle collimators; optical approximation and parabolic equation for the high-frequency impedance; impedance due to resistive inserts in a perfectly conducting pipe.

  1. (abstract) Scaling Nominal Solar Cell Impedances for Array Design

    NASA Technical Reports Server (NTRS)

    Mueller, Robert L; Wallace, Matthew T.; Iles, Peter

    1994-01-01

    This paper discusses a task the objective of which is to characterize solar cell array AC impedance and develop scaling rules for impedance characterization of large arrays by testing single solar cells and small arrays. This effort is aimed at formulating a methodology for estimating the AC impedance of the Mars Pathfinder (MPF) cruise and lander solar arrays based upon testing single cells and small solar cell arrays and to create a basis for design of a single shunt limiter for MPF power control of flight solar arrays having very different inpedances.

  2. Maxwell's mixing equation revisited: characteristic impedance equations for ellipsoidal cells.

    PubMed

    Stubbe, Marco; Gimsa, Jan

    2015-07-21

    We derived a series of, to our knowledge, new analytic expressions for the characteristic features of the impedance spectra of suspensions of homogeneous and single-shell spherical, spheroidal, and ellipsoidal objects, e.g., biological cells of the general ellipsoidal shape. In the derivation, we combined the Maxwell-Wagner mixing equation with our expression for the Clausius-Mossotti factor that had been originally derived to describe AC-electrokinetic effects such as dielectrophoresis, electrorotation, and electroorientation. The influential radius model was employed because it allows for a separation of the geometric and electric problems. For shelled objects, a special axial longitudinal element approach leads to a resistor-capacitor model, which can be used to simplify the mixing equation. Characteristic equations were derived for the plateau levels, peak heights, and characteristic frequencies of the impedance as well as the complex specific conductivities and permittivities of suspensions of axially and randomly oriented homogeneous and single-shell ellipsoidal objects. For membrane-covered spherical objects, most of the limiting cases are identical to-or improved with respect to-the known solutions given by researchers in the field. The characteristic equations were found to be quite precise (largest deviations typically <5% with respect to the full model) when tested with parameters relevant to biological cells. They can be used for the differentiation of orientation and the electric properties of cell suspensions or in the analysis of single cells in microfluidic systems. PMID:26200856

  3. Plasmonic-Based Electrochemical Impedance Spectroscopy: Application to Molecular Binding

    PubMed Central

    Lu, Jin; Wang, Wei; Wang, Shaopeng; Shan, Xiaonan; Li, Jinghong; Tao, Nongjian

    2012-01-01

    Plasmonic-based electrochemical impedance spectroscopy (P-EIS) is developed to investigate molecular binding on surfaces. Its basic principle relies on the sensitive dependence of surface plasmon resonance (SPR) signal on surface charge density, which is modulated by applying an AC potential to a SPR chip surface. The AC component of the SPR response gives the electrochemical impedance, and the DC component provides the conventional SPR detection. The plasmonic-based impedance measured over a range of frequency is in quantitative agreement with the conventional electrochemical impedance. Compared to the conventional SPR detection, P-EIS is sensitive to molecular binding taking place on the chip surface, and less sensitive to bulk refractive index changes or non-specific binding. Moreover, this new approach allows for simultaneous SPR and surface impedance analysis of molecular binding processes. PMID:22122514

  4. Sub-Doppler Spectra of Infrared Hyperfine Transitions of Nitric Oxide Using a Pulse Modulated Quantum Cascade Laser: Rapid Passage, Free Induction Decay and the AC Stark Effect

    SciTech Connect

    Duxbury, Geoffrey; Kelly, James F.; Blake, Thomas A.; Langford, Nigel

    2012-05-07

    Using a low power, rapid (nsec) pulse-modulated quantum cascade (QC) laser, collective coherent effects in the 5 {micro}m spectrum of nitric oxide have been demonstrated by the observation of sub-Doppler hyperfine splitting and also Autler-Townes splitting of Doppler broadened lines. For nitrous oxide, experiments and model calculations have demonstrated that two main effects occur with ulsemodulated (chirped) quantum cascade lasers: free induction decay signals, and signals induced by rapid passage during the laser chirp. In the open shell molecule, NO, in which both {Lambda}-doubling splitting and hyperfine structure occur, laser field-induced coupling between the hyperfine levels of the two {Lambda}-doublet components can induce a large AC Stark effect. This may be observed as sub-Doppler structure, field-induced splittings, or Autler-Townes splitting of a Doppler broadened line. These represent an extension of the types of behaviour observed in the closed shell molecule nitrous oxide, using the same apparatus, when probed with an 8 {micro}m QC laser.

  5. Optimal multisine excitation design for broadband electrical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Sanchez, B.; Vandersteen, G.; Bragos, R.; Schoukens, J.

    2011-11-01

    Electrical impedance spectroscopy (EIS) can be used to characterize biological materials in applications ranging from cell culture to body composition, including tissue and organ state. The emergence of cell therapy and tissue engineering opens up a new and promising field of application. While in most cases classical measurement techniques based on a frequency sweep can be used, EIS based on broadband excitations enables dynamic biological systems to be characterized when the measuring time and injected energy are a constraint. Myocardial regeneration, cell characterization in micro-fluidic systems and dynamic electrical impedance tomography are all examples of such applications. The weakness of such types of fast EIS measuring techniques resides in their intrinsic loss of accuracy. However, since most of the practical applications have no restriction over the excitation used, the input power spectrum can be appropriately designed to maximize the accuracy obtained from the measurements. This paper deals with the problem of designing the optimal multisine excitation for electrical bioimpedance measurements. The optimal multisine is obtained by the minimization of the Cramer-Rao lower bound, or what is the same, by maximizing the accuracy obtained from the measurements. Furthermore, because no analytical solution exists for global optimization involving time and frequency domains jointly, this paper presents the multisine optimization approach partially in both domains and then combines the results. As regards the frequency domain approach, a novel contribution is made for the multisine amplitude power spectrum. In the time domain, multisine is optimized by reducing its crest factor. Moreover, the impact on the information and accuracy of the impedance spectrum obtained from using different multisine amplitude power spectra is discussed, as well as the number of frequencies and frequency distributions. The theory is supported by a set of validation measurements when

  6. Mapping Electrochemical Heterogeneity at Iron Oxide Surfaces: A Local Electrochemical Impedance Study.

    PubMed

    Lucas, Marie; Boily, Jean-François

    2015-12-22

    Alternating current scanning electrochemical microscopy (AC-SECM) was used for the first time to map key electrochemical attributes of oriented hematite (α-Fe2O3) single crystal surfaces at the micron-scale. Localized electrochemical impedance spectra (LEIS) of the (001) and (012) faces provided insight into the spatial variations of local double layer capacitance (C(dl)) and charge transfer resistance (R(ad)). These parameters were extracted by LEIS measurements in the 0.4-8000 Hz range to probe the impedance response generated by the redistribution of water molecules and charge carriers (ions) under an applied AC. These were attributed to local variations in the local conductivity of the sample surfaces. Comparison with global EIS measurements on the same samples uncovered highly comparable frequency-resolved processes, that were broken down into contributions from the bulk hematite, the interface as well as the microelectrode/tip assembly. This work paves the way for new studies aimed at mapping electrochemical processes at the mesoscale on this environmentally and technologically important material. PMID:26625255

  7. New impedance and electrochemical image techniques for biological applications

    NASA Astrophysics Data System (ADS)

    Tao, N. J.

    2010-03-01

    A method to image local surface impedance and electrochemical current optically is developed for biological applications. The principle of the impedance imaging is based on sensitive dependence of surface plasmon resonance (SPR) on local surface charge density. The technique can image local surface impedance and charge while providing simultaneously a conventional surface plasmon resonance (SPR) image. By applying a potential modulation to a sensor surface, it is possible to obtain an image of the DC component, and the amplitude and phase images of the AC component. The DC image provides local molecular binding, as found in the conventional SPR imaging technique. The AC images are directly related to the local impedance of the surface. This imaging capability may be used as a new detection platform for DNA and protein microarrays, a new method for analyzing local molecular binding and interfacial processes and a new tool for imaging cells and tissues.

  8. Robust impedance shaping telemanipulation

    SciTech Connect

    Colgate, J.E.

    1993-08-01

    When a human operator performs a task via a bilateral manipulator, the feel of the task is embodied in the mechanical impedance of the manipulator. Traditionally, a bilateral manipulator is designed for transparency; i.e., so that the impedance reflected through the manipulator closely approximates that of the task. Impedance shaping bilateral control, introduced here, differs in that it treats the bilateral manipulator as a means of constructively altering the impedance of a task. This concept is particularly valuable if the characteristic dimensions (e.g., force, length, time) of the task impedance are very different from those of the human limb. It is shown that a general form of impedance shaping control consists of a conventional power-scaling bilateral controller augmented with a real-time interactive task simulation (i.e., a virtual environment). An approach to impedance shaping based on kinematic similarity between tasks of different scale is introduced and illustrated with an example. It is shown that an important consideration in impedance shaping controller design is robustness; i.e., guaranteeing the stability of the operator/manipulator/task system. A general condition for the robustness of a bilateral manipulator is derived. This condition is based on the structured singular value ({mu}). An example of robust impedance shaping bilateral control is presented and discussed.

  9. Structural and AC conductivity study of CdTe nanomaterials

    NASA Astrophysics Data System (ADS)

    Das, Sayantani; Banerjee, Sourish; Sinha, T. P.

    2016-04-01

    Cadmium telluride (CdTe) nanomaterials have been synthesized by soft chemical route using mercapto ethanol as a capping agent. Crystallization temperature of the sample is investigated using differential scanning calorimeter. X-ray diffraction and transmission electron microscope measurements show that the prepared sample belongs to cubic structure with the average particle size of 20 nm. Impedance spectroscopy is applied to investigate the dielectric relaxation of the sample in a temperature range from 313 to 593 K and in a frequency range from 42 Hz to 1.1 MHz. The complex impedance plane plot has been analyzed by an equivalent circuit consisting of two serially connected R-CPE units, each containing a resistance (R) and a constant phase element (CPE). Dielectric relaxation peaks are observed in the imaginary parts of the spectra. The frequency dependence of real and imaginary parts of dielectric permittivity is analyzed using modified Cole-Cole equation. The temperature dependence relaxation time is found to obey the Arrhenius law having activation energy ~0.704 eV. The frequency dependent conductivity spectra are found to follow the power law. The frequency dependence ac conductivity is analyzed by power law.

  10. Frequency Dependent Microwave Impedance Microscopy of Ferroelectric Domain Walls

    NASA Astrophysics Data System (ADS)

    Johnston, Scott; Shen, Zhi-Xun

    ABO3 ferroelectrics are known to exhibit domain wall conductivity which is of great fundamental and technological interest. Microwave Impedance Microscopy is a near field measurement technique which allows local, non-contact measurement of AC conductivity and permittivity. In this work, Microwave Impedance Microscopy over a wide frequency range is used to probe the electrical properties of domain walls in ABO3 ferroelectrics. An unexpected, strong frequency dependence in the microwave dissipation near domain walls is observed.

  11. Current density distribution in cylindrical Li-Ion cells during impedance measurements

    NASA Astrophysics Data System (ADS)

    Osswald, P. J.; Erhard, S. V.; Noel, A.; Keil, P.; Kindermann, F. M.; Hoster, H.; Jossen, A.

    2016-05-01

    In this work, modified commercial cylindrical lithium-ion cells with multiple separate current tabs are used to analyze the influence of tab pattern, frequency and temperature on electrochemical impedance spectroscopy. In a first step, the effect of different current tab arrangements on the impedance spectra is analyzed and possible electrochemical causes are discussed. In a second step, one terminal is used to apply a sinusoidal current while the other terminals are used to monitor the local potential distribution at different positions along the electrodes of the cell. It is observed that the characteristic decay of the voltage amplitude along the electrode changes non-linearly with frequency, where high-frequent currents experience a stronger attenuation along the current collector than low-frequent currents. In further experiments, the decay characteristic is controlled by the cell temperature, driven by the increasing resistance of the current collector and the enhanced kinetic and transport properties of the active material and electrolyte. Measurements indicate that the ac current distribution depends strongly on the frequency and the temperature. In this context, the challenges for electrochemical impedance spectroscopy as cell diagnostic technique for commercial cells are discussed.

  12. AC Impedance Behavior of LaNi3.55Mn0.4Al0.3Co0.6Fe0.15 Hydrogen-Storage Alloy: Effect of Surface Area

    NASA Astrophysics Data System (ADS)

    Tliha, M.; Khaldi, C.; Lamloumi, J.

    2016-04-01

    The decrease of Cobalt content in alloy is very beneficial to reduce the production cost of the alloy, whereas the effect of Co on cycle life of the AB5-type hydrogen-storage alloys is extremely important. Therefore, it is interesting to investigate low-Co and/or Co-free AB5-type alloys in which Co was substituted by other elements. Iron is a key element in the development of low-Co AB5-type alloys. The aim of this work is to systematically investigate the effect of the real surface area on the all kinetic properties of a low-Co LaNi3.55Mn0.4Al0.3Co0.6Fe0.15 alloy under cycling using electrochemical impedance spectroscopy (EIS) technique. All kinetic properties of the electrode, such as exchange density, limiting current density, high-rate charge/discharge ability, cycle life time, electrocatalytic activity, and diffusion rate are related to the real surface area. During the EIS analysis, interestingly, we found that with increasing number of charge/discharge cycles, the metal hydride alloy powders undergo micro-cracking into smaller particles, and thus the real surface area of the alloy increases, which then influences the kinetic properties of the electrode reactions.

  13. Impedance of a nanoantenna

    SciTech Connect

    Greffet, Jean-Jacques; Laroche, Marine; Marquier, Francois

    2009-10-07

    We introduce a generalized definition of the impedance of a nanoantenna that can be applied to any system. We also introduce a definition of the impedance of a two level system. Using this framework, we establish a link between the electrical engineering and the quantum optics picture of light emission.

  14. Study of Body Composition by Impedance Analysis

    NASA Astrophysics Data System (ADS)

    González-Solís, J. L.; Vargas-Luna, M.; Sosa-Aquino, M.; Bernal-Alvarado, J.; Gutiérrez-Juárez, G.; Huerta-Franco, R.; Sanchis-Sabater, A.

    2002-08-01

    This work presents a set of impedance measurements and preliminary results on the analysis of body composition using impedance spectroscopy. This study is made using a pork meat sample and spectra from fat and flesh region were independently obtained using the same electrodes array. From these measurements, and theoretical considerations, it is possible to explain the behavior of the composite sample flesh-fat-flesh and, fitting the electrical parameters of the model, it shows the plausibility of a physical and quantitative application to human corporal composition.

  15. Effect of Feeding and Suction on Gastric Impedance Spectroscopy Measurements.

    PubMed

    Beltran, Nohra E; Sánchez-Miranda, Gustavo; Sacristan, Emilio

    2015-01-01

    A specific device and system has been developed and tested for clinical monitoring of gastric mucosal reactance in the critically ill as an early warning of splanchnic hypoperfusion associated with shock and sepsis. This device has been proven effective in clinical trials and is expected to become commercially available next year. The system uses a combination nasogastric tube and impedance spectroscopy probe as a single catheter. Because this device has a double function, the question is: Does enteral feeding or suction affect the gastric reactance measurements? This study was designed to evaluate the effect of feeding and suction on the measurement of gastric impedance spectroscopy in healthy volunteers. Impedance spectra were obtained from the gastric wall epithelia of 18 subjects. The spectra were measured for each of the following conditions: postinsertion of gastric probe, during active suction, postactive suction, and during enteral feeding (236 ml of nutritional supplement). Impedance spectra were reproducible in all volunteers under all conditions tested. There was a slight increase in impedance parameters after suction, and a decrease in impedance after feeding; however, these observed differences were insignificant compared to patient-to-patient variability, and truly negligible compared with previously observed changes associated with splanchnic ischemia in critically ill patients. Our results demonstrate that suction or feeding when using the impedance spectro-metry probe/nasogastric tube does not significantly interfere with gastric impedance spectrometer measurements. PMID:26226020

  16. Overview Of Impedance Sensors

    NASA Astrophysics Data System (ADS)

    Abele, John E.

    1989-08-01

    Electrical impedance has been one of the many "tools of great promise" that physicians have employed in their quest to measure and/or monitor body function or physiologic events. So far, the expectations for its success have always exceeded its performance. In simplistic terms, physiologic impedance is a measure of the resistance in the volume between electrodes which changes as a function of changes in that volume, the relative impedance of that volume, or a combination of these two. The history and principles of electrical impedance are very nicely reviewed by Geddes and Baker in their textbook "Principles of Applied Biomedical Instrumentation". It is humbling, however, to note that Cremer recorded variations in electrical impedance in frog hearts as early as 1907. The list of potential applications includes the measurement of thyroid function, estrogen activity, galvanic skin reflex, respiration, blood flow by conductivity dilution, nervous activity and eye movement. Commercial devices employing impedance have been and are being used to measure respiration (pneumographs and apneamonitors), pulse volume (impedance phlebographs) and even noninvasive cardiac output.

  17. Study of dielectric and impedance properties of Mn ferrites

    NASA Astrophysics Data System (ADS)

    Mujasam Batoo, Khalid

    2011-02-01

    The paper reports on the effect of Al substitution on the structural and electrical properties of bulk ferrite series of basic composition MnFe 2-2 xAl 2 xO 4 (0.0≤ x≤0.5) synthesized using solid state reaction method. XRD analysis confirms that all the samples exhibit single phase cubic spinel structure excluding presence of any secondary phase. The dielectric constant shows a normal behaviour with frequency, whereas the loss tangent exhibits an anomalous behaviour with frequency for all compositions. Variation of dielectric properties and ac conductivity with frequency reveals that the dispersion is due to Maxwell-Wagner type of interfacial polarization in general and hopping of charge between Fe +2 and Fe +3 as well as between Mn +2 and Mn +3 ions at octahedral sites. The complex impedance plane spectra shows the presence of two semicircles up to x=0.2, and only one semicircle for the higher values of x. The analysis of the data shows that the resistive and capacitive properties of the Mn ferrite are mainly due to processes associated with grain and grain boundaries.

  18. Wake potentials and impedances for the ATA (Advanced Test Accelerator) induction cell

    SciTech Connect

    Craig, G.D.

    1990-09-04

    The AMOS Wakefield Code is used to calculate the impedances of the induction cell used in the Advanced Test Accelerator (ATA) at Livermore. We present the wakefields and impedances for multipoles m = 0, 1 and 2. The ATA cell is calculated to have a maximum transverse impedance of approximately 1000 {Omega}/m at 875 MHz with a quality factor Q = 5. The sensitivity of the impedance spectra to modeling variations is discussed.

  19. Vascular impedance analysis in human pulmonary circulation.

    PubMed

    Zhou, Qinlian; Gao, Jian; Huang, Wei; Yen, Michael

    2006-01-01

    Vascular impedance is determined by morphometry and mechanical properties of the vascular system, as well as the rheology of the blood. The interactions between all these factors are complicated and difficult to investigate solely by experiments. A mathematical model representing the entire system of human pulmonary circulation was constructed based on experimentally measured morphometric and elasticity data of the vessels. The model consisted of 16 orders of arteries and 15 orders of veins. The pulmonary arteries and veins were considered as elastic tubes and their impedance was calculated based on Womersley's theory. The flow in capillaries was described by the "sheet-flow" theory. The model yielded an impedance modulus spectrum that fell steeply from a high value at 0 Hz to a minimum around 1.5 Hz. At about 4 Hz, it reached a second high and then oscillated around a relatively small value at higher frequencies. Characteristic impedance was 27.9 dyn-sec/cm5. Influence of variations in vessel geometry and elasticity on impedance spectra was analyzed. Simulation results showed good agreement with experimental measurements. PMID:16817653

  20. Impedance of accelerator components

    SciTech Connect

    Corlett, J.N.

    1996-05-01

    As demands for high luminosity and low emittance particle beams increase, an understanding of the electromagnetic interaction of these beams with their vacuum chamber environment becomes more important in order to maintain the quality of the beam. This interaction is described in terms of the wake field in time domain, and the beam impedance in frequency domain. These concepts are introduced, and related quantities such as the loss factor are presented. The broadband Q = 1 resonator impedance model is discussed. Perturbation and coaxial wire methods of measurement of real components are reviewed.

  1. Superconducting active impedance converter

    DOEpatents

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1993-11-16

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures.

  2. Superconducting active impedance converter

    DOEpatents

    Ginley, David S.; Hietala, Vincent M.; Martens, Jon S.

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  3. Validation of an Impedance Education Method in Flow

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.; Parrott, Tony L.

    2004-01-01

    This paper reports results of a research effort to validate a method for educing the normal incidence impedance of a locally reacting liner, located in a grazing incidence, nonprogressive acoustic wave environment with flow. The results presented in this paper test the ability of the method to reproduce the measured normal incidence impedance of a solid steel plate and two soft test liners in a uniform flow. The test liners are known to be locally react- ing and exhibit no measurable amplitude-dependent impedance nonlinearities or flow effects. Baseline impedance spectra for these liners were therefore established from measurements in a conventional normal incidence impedance tube. A key feature of the method is the expansion of the unknown impedance function as a piecewise continuous polynomial with undetermined coefficients. Stewart's adaptation of the Davidon-Fletcher-Powell optimization algorithm is used to educe the normal incidence impedance at each Mach number by optimizing an objective function. The method is shown to reproduce the measured normal incidence impedance spectrum for each of the test liners, thus validating its usefulness for determining the normal incidence impedance of test liners for a broad range of source frequencies and flow Mach numbers. Nomenclature

  4. Statistical Properties of Antenna Impedance in an Electrically Large Cavity

    SciTech Connect

    WARNE,LARRY K.; LEE,KELVIN S.H.; HUDSON,H. GERALD; JOHNSON,WILLIAM A.; JORGENSON,ROY E.; STRONACH,STEPHEN L.

    2000-12-13

    This paper presents models and measurements of antenna input impedance in resonant cavities at high frequencies.The behavior of input impedance is useful in determining the transmission and reception characteristics of an antenna (as well as the transmission characteristics of certain apertures). Results are presented for both the case where the cavity is undermoded (modes with separate and discrete spectra) as well as the over moded case (modes with overlapping spectra). A modal series is constructed and analyzed to determine the impedance statistical distribution. Both electrically small as well as electrically longer resonant and wall mounted antennas are analyzed. Measurements in a large mode stirred chamber cavity are compared with calculations. Finally a method based on power arguments is given, yielding simple formulas for the impedance distribution.

  5. Impedance cardiography: recent advancements.

    PubMed

    Cybulski, Gerard; Strasz, Anna; Niewiadomski, Wiktor; Gąsiorowska, Anna

    2012-01-01

    The aim of this paper is the presentation of recent advancements in impedance cardiography regarding methodical approach, applied equipment and clinical or research implementations. The review is limited to the papers which were published over last 17 months (dated 2011 and 2012) in well recognised scientific journals. PMID:23042327

  6. Impedances of Tevatron separators

    SciTech Connect

    K. Y. Ng

    2003-05-28

    The impedances of the Tevatron separators are revisited and are found to be negligibly small in the few hundred MHz region, except for resonances at 22.5 MHz. The later are contributions from the power cables which may drive head-tail instabilities if the bunch is long enough.

  7. Longitudinal impedance of RHIC

    SciTech Connect

    Blaskiewicz, M.; Brennan, J. M.; Mernick, K.

    2015-05-03

    The longitudinal impedance of the two RHIC rings has been measured using the effect of potential well distortion on longitudinal Schottky measurements. For the blue RHIC ring Im(Z/n) = 1.5±0.2Ω. For the yellow ring Im(Z/n) = 5.4±1Ω.

  8. Maxwell’s Mixing Equation Revisited: Characteristic Impedance Equations for Ellipsoidal Cells

    PubMed Central

    Stubbe, Marco; Gimsa, Jan

    2015-01-01

    We derived a series of, to our knowledge, new analytic expressions for the characteristic features of the impedance spectra of suspensions of homogeneous and single-shell spherical, spheroidal, and ellipsoidal objects, e.g., biological cells of the general ellipsoidal shape. In the derivation, we combined the Maxwell-Wagner mixing equation with our expression for the Clausius-Mossotti factor that had been originally derived to describe AC-electrokinetic effects such as dielectrophoresis, electrorotation, and electroorientation. The influential radius model was employed because it allows for a separation of the geometric and electric problems. For shelled objects, a special axial longitudinal element approach leads to a resistor-capacitor model, which can be used to simplify the mixing equation. Characteristic equations were derived for the plateau levels, peak heights, and characteristic frequencies of the impedance as well as the complex specific conductivities and permittivities of suspensions of axially and randomly oriented homogeneous and single-shell ellipsoidal objects. For membrane-covered spherical objects, most of the limiting cases are identical to—or improved with respect to—the known solutions given by researchers in the field. The characteristic equations were found to be quite precise (largest deviations typically <5% with respect to the full model) when tested with parameters relevant to biological cells. They can be used for the differentiation of orientation and the electric properties of cell suspensions or in the analysis of single cells in microfluidic systems. PMID:26200856

  9. Recycler short kicker beam impedance

    SciTech Connect

    Crisp, Jim; Fellenz, Brian; /Fermilab

    2009-07-01

    Measured longitudinal and calculated transverse beam impedance is presented for the short kicker magnets being installed in the Fermilab Recycler. Fermi drawing number ME-457159. The longitudinal impedance was measured with a stretched wire and the Panofsky equation was used to estimate the transverse impedance. The impedance of 3319 meters (the Recycler circumference) of stainless vacuum pipe is provided for comparison. Although measurements where done to 3GHz, impedance was negligible above 30MHz. The beam power lost to the kicker impedance is shown for a range of bunch lengths. The measurements are for one kicker assuming a rotation frequency of 90KHz. Seven of these kickers are being installed.

  10. Dielectric behavior and ac conductivity study of NiO /Al2O3 nanocomposites in humid atmosphere

    NASA Astrophysics Data System (ADS)

    Ahmad, Mohamad M.; Makhlouf, Salah A.; Khalil, Kamal M. S.

    2006-11-01

    Humidity sensing characteristics of NiO /Al2O3 nanocomposites, prepared by sol-gel method, are studied by impedance spectroscopy. Modeling of the obtained impedance spectra with an appropriate equivalent circuit enables us to separate the electrical responses of the tightly bound chemisorbed water molecules on the grain surfaces and the loosely associated physisorbed water layers. Dependence of the dielectric properties and ac conductivity of the nanocomposites on relative humidity (RH) were studied as a function of the frequency of the applied ac signal in the frequency range of 0.1-105Hz. The electrical relaxation behavior of the investigated materials is presented in the conductivity formalism, where the conductivity spectra at different RHs are analyzed by the Almond-West formalism [D. P. Almond et al., Solid State Ionics 8, 159 (1983)]. The dc conductivity and the hopping rate of charge carriers, determined from this analysis, show similar dependences on RH, indicating that the concentration of mobile ions is independent of RH and is primarily determined by the chemisorption process of water molecules. Finally, the results are discussed in view of a percolation-type conduction mechanism, where mobile ions are provided by the chemisorbed water molecules and the percolation network is formed by the physisorbed water layers.

  11. Piezoelectric impedance-based strength gain monitoring in concrete

    NASA Astrophysics Data System (ADS)

    Guo, Zhigang; Sun, Zhi

    2012-04-01

    This paper presented an experimental study on piezoelectric impedance based cubic and axial compressive strength gain monitoring in concrete during curing process. The piezoceramic (PZT) patch was attached on the concrete specimen to collect the monitoring signal. The electro-mechanical impedance (EMI) spectra of surface bonded PZT patch were collected using an impedance analyzer by sweeping the frequency. A regression analysis is conducted to establish the empirical relationship between the relative strength gain of concrete and the monitored relative resonant frequency change of the EMI spectra. The established empirical formula is used for concrete strength monitoring via EMI spectra. The results tell that the EMI technique is a practical and reliable nondestructive test method for concrete strength gain monitoring.

  12. Impedance spectroscopy for the detection and identification of unknown toxins

    NASA Astrophysics Data System (ADS)

    Riggs, B. C.; Plopper, G. E.; Paluh, J. L.; Phamduy, T. B.; Corr, D. T.; Chrisey, D. B.

    2012-06-01

    Advancements in biological and chemical warfare has allowed for the creation of novel toxins necessitating a universal, real-time sensor. We have used a function-based biosensor employing impedance spectroscopy using a low current density AC signal over a range of frequencies (62.5 Hz-64 kHz) to measure the electrical impedance of a confluent epithelial cell monolayer at 120 sec intervals. Madin Darby canine kidney (MDCK) epithelial cells were grown to confluence on thin film interdigitated gold electrodes. A stable impedance measurement of 2200 Ω was found after 24 hrs of growth. After exposure to cytotoxins anthrax lethal toxin and etoposide, the impedance decreased in a linear fashion resulting in a 50% drop in impedance over 50hrs showing significant difference from the control sample (~20% decrease). Immunofluorescent imaging showed that apoptosis was induced through the addition of toxins. Similarities of the impedance signal shows that the mechanism of cellular death was the same between ALT and etoposide. A revised equivalent circuit model was employed in order to quantify morphological changes in the cell monolayer such as tight junction integrity and cell surface area coverage. This model showed a faster response to cytotoxin (2 hrs) compared to raw measurements (20 hrs). We demonstrate that herein that impedance spectroscopy of epithelial monolayers serves as a real-time non-destructive sensor for unknown pathogens.

  13. Bioelectrical impedance analysis of bovine milk fat

    NASA Astrophysics Data System (ADS)

    Veiga, E. A.; Bertemes-Filho, P.

    2012-12-01

    Three samples of 250ml at home temperature of 20°C were obtained from whole, low fat and fat free bovine UHT milk. They were analysed by measuring both impedance spectra and dc conductivity in order to establish the relationship between samples related to fat content. An impedance measuring system was developed, which is based on digital oscilloscope, a current source and a FPGA. Data was measured by the oscilloscope in the frequency 1 kHz to 100 kHz. It was showed that there is approximately 7.9% difference in the conductivity between whole and low fat milk whereas 15.9% between low fat and free fat one. The change of fatness in the milk can be significantly sensed by both impedance spectra measurements and dc conductivity. This result might be useful for detecting fat content of milk in a very simple way and also may help the development of sensors for measuring milk quality, as for example the detection of mastitis.

  14. Impedance calculation for ferrite inserts

    SciTech Connect

    Breitzmann, S.C.; Lee, S.Y.; Ng, K.Y.; /Fermilab

    2005-01-01

    Passive ferrite inserts were used to compensate the space charge impedance in high intensity space charge dominated accelerators. They study the narrowband longitudinal impedance of these ferrite inserts. they find that the shunt impedance and the quality factor for ferrite inserts are inversely proportional to the imaginary part of the permeability of ferrite materials. They also provide a recipe for attaining a truly passive space charge impedance compensation and avoiding narrowband microwave instabilities.

  15. Impedance Measurement Box

    ScienceCinema

    Christophersen, Jon

    2013-05-28

    Energy storage devices, primarily batteries, are now more important to consumers, industries and the military. With increasing technical complexity and higher user expectations, there is also a demand for highly accurate state-of-health battery assessment techniques. IMB incorporates patented, proprietary, and tested capabilities using control software and hardware that can be part of an embedded monitoring system. IMB directly measures the wideband impedance spectrum in seconds during battery operation with no significant impact on service life. It also can be applied to batteries prior to installation, confirming health before entering active service, as well as during regular maintenance. For more information about this project, visit http://www.inl.gov/rd100/2011/impedance-measurement-box/

  16. Impedance Measurement Box

    2014-11-20

    The IMB 50V software provides functionality for design of impedance measurement tests or sequences of tests, execution of these tests or sequences, processing measured responses and displaying and saving of the results. The software consists of a Graphical User Interface that allows configuration of measurement parameters and test sequencing, a core engine that controls test sequencing, execution of measurements, processing and storage of results and a hardware/software data acquisition interface with the IMB hardware system.

  17. Gynecologic electrical impedance tomograph

    NASA Astrophysics Data System (ADS)

    Korjenevsky, A.; Cherepenin, V.; Trokhanova, O.; Tuykin, T.

    2010-04-01

    Electrical impedance tomography extends to the new and new areas of the medical diagnostics: lungs, breast, prostate, etc. The feedback from the doctors who use our breast EIT diagnostic system has induced us to develop the 3D electrical impedance imaging device for diagnostics of the cervix of the uterus - gynecologic impedance tomograph (GIT). The device uses the same measuring approach as the breast imaging system: 2D flat array of the electrodes arranged on the probe with handle is placed against the body. Each of the 32 electrodes of the array is connected in turn to the current source while the rest electrodes acquire the potentials on the surface. The current flows through the electrode of the array and returns through the remote electrode placed on the patient's limb. The voltages are measured relative to another remote electrode. The 3D backprojection along equipotential surfaces is used to reconstruct conductivity distribution up to approximately 1 cm in depth. Small number of electrodes enables us to implement real time imaging with a few frames per sec. rate. The device is under initial testing and evaluation of the imaging capabilities and suitability of usage.

  18. Acoustic ground impedance meter

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1981-01-01

    A compact, portable instrument was developed to measure the acoustic impedance of the ground, or other surfaces, by direct pressure-volume velocity measurement. A Helmholz resonator, constructed of heavy-walled stainless steel but open at the bottom, is positioned over the surface having the unknown impedance. The sound source, a cam-driven piston of known stroke and thus known volume velocity, is located in the neck of the resonator. The cam speed is a variable up to a maximum 3600 rpm. The sound pressure at the test surface is measured by means of a microphone flush-mounted in the wall of the chamber. An optical monitor of the piston displacement permits measurement of the phase angle between the volume velocity and the sound pressure, from which the real and imaginary parts of the impedance can be evaluated. Measurements using a 5-lobed cam can be made up to 300 Hz. Detailed design criteria and results on a soil sample are presented.

  19. High input impedance amplifier

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L.

    1995-01-01

    High input impedance amplifiers are provided which reduce the input impedance solely to a capacitive reactance, or, in a somewhat more complex design, provide an extremely high essentially infinite, capacitive reactance. In one embodiment, where the input impedance is reduced in essence, to solely a capacitive reactance, an operational amplifier in a follower configuration is driven at its non-inverting input and a resistor with a predetermined magnitude is connected between the inverting and non-inverting inputs. A second embodiment eliminates the capacitance from the input by adding a second stage to the first embodiment. The second stage is a second operational amplifier in a non-inverting gain-stage configuration where the output of the first follower stage drives the non-inverting input of the second stage and the output of the second stage is fed back to the non-inverting input of the first stage through a capacitor of a predetermined magnitude. These amplifiers, while generally useful, are very useful as sensor buffer amplifiers that may eliminate significant sources of error.

  20. Towards a graphene-based quantum impedance standard

    SciTech Connect

    Kalmbach, C.-C.; Schurr, J. Ahlers, F. J.; Müller, A.; Novikov, S.; Lebedeva, N.; Satrapinski, A.

    2014-08-18

    Precision measurements of the quantum Hall resistance with alternating current (ac) in the kHz range were performed on epitaxial graphene in order to assess its suitability as a quantum standard of impedance. The quantum Hall plateaus measured with alternating current were found to be flat within one part in 10{sup 7}. This is much better than for plain GaAs quantum Hall devices and shows that the magnetic-flux-dependent capacitive ac losses of the graphene device are less critical. The observed frequency dependence of about −8 × 10{sup −8}/kHz is comparable in absolute value to the positive frequency dependence of plain GaAs devices, but the negative sign is attributed to stray capacitances which we believe can be minimized by a careful design of the graphene device. Further improvements thus may lead to a simpler and more user-friendly quantum standard for both resistance and impedance.

  1. AC conductivity and dielectric measurements of metal-free phthalocyanine thin films dispersed in polycarbonate

    NASA Astrophysics Data System (ADS)

    Riad, A. S.; Korayem, M. T.; Abdel-Malik, T. G.

    1999-10-01

    The dielectric constant and the dielectric loss of thin films of metal-free phthalocyanine dispersed in polycarbonate using ohmic gold electrodes are investigated in the frequency range 20-10 5 Hz and within the temperature range 300-388 K. The frequency dependence of the impedance spectra plotted in the complex plane shows semicircles. The Cole-Cole diagrams have been used to determine the molecular relaxation time, τ, The temperature dependence of τ is expressed by thermally activated process. The AC conductivity σ AC (ω) is found to vary as ωs with the index s⩽1, indicating a dominant hopping process at low temperatures. From the temperature dependence of AC conductivity, free carrier conduction with mean activation energy of 0.33 eV is observed at higher temperatures. Capacitance and loss tangent are found to decrease with increasing frequency and increase with increasing temperature. Such characteristics are found to be in good qualitative agreement with existing equivalent circuit model assuming ohmic contacts.

  2. Microfabricated multi-frequency particle impedance characterization system

    SciTech Connect

    Fuller, C K; Hamilton, J; Ackler, H; Krulevitch, P; Boser, B; Eldredge, A; Becker, F; Yang, J; Gascoyne, P

    2000-03-01

    We have developed a microfabricated flow-through impedance characterization system capable of performing AC, multi-frequency measurements on cells and other particles. The sensor measures both the resistive and reactive impedance of passing particles, at rates of up to 100 particles per second. Its operational bandwidth approaches 10 MHz with a signal-to-noise ratio of approximately 40 dB. Particle impedance is measured at three or more frequencies simultaneously, enabling the derivation of multiple particle parameters. This constitutes an improvement to the well-established technique of DC particle sizing via the Coulter Principle. Human peripheral blood granulocyte radius, membrane capacitance, and cytoplasmic conductivity were measured (r = 4.1 {micro}m, C{sub mem} = 0.9 {micro}F/cm{sup 2}, {sigma}{sub int} = 0.66 S/m) and were found to be consistent with published values.

  3. Tailoring Giant Magneto-impedance Effect in Ultrasoft Ferromagnetic Microwires

    NASA Astrophysics Data System (ADS)

    Chaturvedi, A.; Ruiz, A.; Mukherjee, P.; Srikanth, H.; Phan, M. H.; Larin, V. S.

    2012-02-01

    Research on soft ferromagnetic microwires exhibiting giant magneto-impedance (GMI) effect, which is a large change of the ac impedance of a ferromagnetic conductor in a static magnetic field, for advanced magnetic sensor applications is an area of topical interest. In this study we show how the GMI effect and its field sensitivity are optimized in Co-B-Si-Mn microwires by varying the magnetic core to glass shell diameter ratio (d). The microwires have been fabricated by the glass-coated melt spinning method. The largest values of GMI (245%) and its field sensitivity 25%/Oe are achieved at f = 13MHz for the microwires with d = 0.86. The d dependence of the magneto-impedance has been analyzed based on those of the magneto-resistance and magneto-reactance. Our studies indicate that the microwires with optimized GMI response are attractive candidate materials for structural health self-monitoring and magnetic biosensing applications.

  4. Influence of the ac magnetic field frequency on the magnetoimpedance of amorphous wire

    NASA Astrophysics Data System (ADS)

    Chen, A. P.; García, C.; Zhukov, A.; Domínguez, L.; Blanco, J. M.; González, J.

    2006-05-01

    Experimental and theoretical studies on the influence of ac magnetic field frequency on the axial diagonal (ζzz) and off-diagonal (ζphiz) components of the magnetoimpedance (MI) tensor in (Co0.94Fe0.06)72.5Si12.5B15 amorphous wires have been performed. The frequency (f) of an ac current flowing along the wire was varied from 1 to 20 MHz with the current amplitude less than 15 mA. In order to enhance the ζphiz component, the amorphous wire was submitted to torsion annealing for developing and preserving a helical magnetic anisotropy in the surface of the wire. The experimental measurements show that the value of the impedance is proportional to the square-root of the ac current frequency, \\sqrt f , in the vicinity of Hex < HK and this increase is due to the contribution of the resistance (real part of the impedance). The measurements also indicate that the peaks of the MI curve shift slightly towards higher field values with increasing f. In a theoretical study the magnetoimpedance expressions ζzz and ζphiz have been deduced using the Faraday law in combination with the solutions of the Maxwell and Landau-Lifshitz-Gilbert (LLG) equations. By analysing quantitatively the spectra of ζzz and ζphiz, the phenomenon of the shift in the peaks of the MI curve with f has been considered as a characteristic of the helical anisotropy in the domain structure of the wire surface.

  5. Ionospheric effects to antenna impedance

    NASA Technical Reports Server (NTRS)

    Bethke, K. H.

    1986-01-01

    The reciprocity between high power satellite antennas and the surrounding plasma are examined. The relevant plasma states for antenna impedance calculations are presented and plasma models, and hydrodynamic and kinetic theory, are discussed. A theory from which a variation in antenna impedance with regard to the radiated power can be calculated for a frequency range well above the plasma resonance frequency is give. The theory can include photo and secondary emission effects in antenna impedance calculations.

  6. Application of impedance spectroscopy to SOFC research

    SciTech Connect

    Hsieh, G.; Mason, T.O.; Pederson, L.R.

    1996-12-31

    With the resurgence of interest in solid oxide fuel cells and other solid state electrochemical devices, techniques originally developed for characterizing aqueous systems are being adapted and applied to solid state systems. One of these techniques, three-electrode impedance spectroscopy, is particularly powerful as it allows characterization of subcomponent and interfacial properties. Obtaining accurate impedance spectra, however, is difficult as reference electrode impedance is usually non-negligible and solid electrolytes typically have much lower conductance than aqueous solutions. Faidi et al and Chechirlian et al have both identified problems associated with low conductivity media. Other sources of error are still being uncovered. Ford et al identified resistive contacts with large time constants as a possibility, while Me et al showed that the small contact capacitance of the reference electrode was at fault. Still others show that instrument limitations play a role. Using the voltage divider concept, a simplified model that demonstrates the interplay of these various factors, predicts the form of possible distortions, and offers means to minimize errors is presented.

  7. Scheme for rapid adjustment of network impedance

    DOEpatents

    Vithayathil, John J.

    1991-01-01

    A static controlled reactance device is inserted in series with an AC electric power transmission line to adjust its transfer impedance. An inductor (reactor) is serially connected with two back-to-back connected thyristors which control the conduction period and hence the effective reactance of the inductor. Additional reactive elements are provided in parallel with the thyristor controlled reactor to filter harmonics and to obtain required range of variable reactance. Alternatively, the static controlled reactance device discussed above may be connected to the secondary winding of a series transformer having its primary winding connected in series to the transmission line. In a three phase transmission system, the controlled reactance device may be connected in delta configuration on the secondary side of the series transformer to eliminate triplen harmonics.

  8. Computational Study on the Steady-state Impedance of Saturated-core Superconducting Fault Current Limiter

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Tang, Y.; Liang, S.; Ren, L.; Wang, Z.; Xu, Y.

    This paper presents the electromagnetic analysis of a high voltage saturated-core superconducting fault current limiter (SCSFCL). The numerical analyses of a three-dimensional (3D) model is shown, and the specific parameters are given. The model focus on the steady-state impedance of the limiter when connected to the power grid. It analyzed the dependence of steady-state impedance on the AC coil current, and the relationship between oil gap and coil inductance. The results suggest that, adding oil gap between slice of silicon steel can reduce the core cross-section, restrain the ultraharmonic and decrease the steady-state impedance. As the core cross-section of AC limb decreased from 4344 cm2 to 3983 cm2, the total harmonic distortion for voltage decreased from 2.4% to 1.8%, and the impedance decreased from 1.082 Ω to 1.069 Ω(Idc=400A,Iac=1296A).

  9. Bio-impedance detector for Staphylococcus aureus exposed to magnetic fields

    NASA Astrophysics Data System (ADS)

    Younis Yacoob Aldosky, Haval; Barwari, Waleed Jameel Omar; Salih Al-mlaly, Janan M.

    2012-12-01

    Rapid detection of viability and growth of pathogenic microorganisms is very important in many applications such as food and drug production, health care, and national defense. Measurements on the electrical characteristics of cells have been used successfully in the past to detect many different physiological events. The effect of electromagnetic fields on the growth of bacteria (Staphylococcus aureus) was studied with the bio-impedance technique. The growth situations of bacteria in the absence and presence of different intensities of static and alternative magnetic fields were examined and analyzed. The results show that the impedance of bacteria fell in the presence of DC magnetic fields. In contrast the impedance increased when the bacteria were exposed to AC magnetic fields. Based on these results the bacterial growth indicated by the change in the impedance is inhibited under DC magnetic fields and enhanced under AC fields.

  10. Local impedance measurement of an electrode/single-pentacene-grain interface by frequency-modulation scanning impedance microscopy

    SciTech Connect

    Kimura, Tomoharu; Yamada, Hirofumi; Kobayashi, Kei

    2015-08-07

    The device performances of organic thin film transistors are often limited by the metal–organic interface because of the disordered molecular layers at the interface and the energy barriers against the carrier injection. It is important to study the local impedance at the interface without being affected by the interface morphology. We combined frequency modulation atomic force microscopy with scanning impedance microscopy (SIM) to sensitively measure the ac responses of the interface to an ac voltage applied across the interface and the dc potential drop at the interface. By using the frequency-modulation SIM (FM-SIM) technique, we characterized the interface impedance of a Pt electrode and a single pentacene grain as a parallel circuit of a contact resistance and a capacitance. We found that the reduction of the contact resistance was caused by the reduction of the energy level mismatch at the interface by the FM-SIM measurements, demonstrating the usefulness of the FM-SIM technique for investigation of the local interface impedance without being affected by its morphology.

  11. Local impedance measurement of an electrode/single-pentacene-grain interface by frequency-modulation scanning impedance microscopy

    NASA Astrophysics Data System (ADS)

    Kimura, Tomoharu; Kobayashi, Kei; Yamada, Hirofumi

    2015-08-01

    The device performances of organic thin film transistors are often limited by the metal-organic interface because of the disordered molecular layers at the interface and the energy barriers against the carrier injection. It is important to study the local impedance at the interface without being affected by the interface morphology. We combined frequency modulation atomic force microscopy with scanning impedance microscopy (SIM) to sensitively measure the ac responses of the interface to an ac voltage applied across the interface and the dc potential drop at the interface. By using the frequency-modulation SIM (FM-SIM) technique, we characterized the interface impedance of a Pt electrode and a single pentacene grain as a parallel circuit of a contact resistance and a capacitance. We found that the reduction of the contact resistance was caused by the reduction of the energy level mismatch at the interface by the FM-SIM measurements, demonstrating the usefulness of the FM-SIM technique for investigation of the local interface impedance without being affected by its morphology.

  12. Dissection of the Mechanical Impedance Components of the Outer Hair Cell Using a Chloride-Channel Blocker

    NASA Astrophysics Data System (ADS)

    Harasztosi, Csaba; Gummer, Anthony W.

    2011-11-01

    The voltage-dependent chloride-channel blocker anthracene-9-carboxylic acid (9AC) has been found to reduce the imaginary but not the real part of the mechanical impedance of the organ of Corti, suggesting that the effective stiffness of outer hair cells (OHCs) is reduced by 9AC. To examine whether 9AC interacts directly with the motor protein prestin to reduce the membrane component of the impedance, the patch-clamp technique in whole-cell configuration was used to measure the nonlinear capacitance (NLC) of isolated OHCs and, as control, prestin-transfected human embryonic kidney 293 (HEK293) cells. Extracellular application of 9AC significantly reduced the NLC of both OHCs and HEK293 cells. Intracellular 9AC did not influence the blocking effect of the extracellular applied drug. These results suggest that 9AC interacts directly with prestin, reducing the effective stiffness of the motor, and that the interaction is extracellular.

  13. Optically stimulated differential impedance spectroscopy

    DOEpatents

    Maxey, Lonnie C; Parks, II, James E; Lewis, Sr., Samuel A; Partridge, Jr., William P

    2014-02-18

    Methods and apparatuses for evaluating a material are described. Embodiments typically involve use of an impedance measurement sensor to measure the impedance of a sample of the material under at least two different states of illumination. The states of illumination may include (a) substantially no optical stimulation, (b) substantial optical stimulation, (c) optical stimulation at a first wavelength of light, (d) optical stimulation at a second wavelength of light, (e) a first level of light intensity, and (f) a second level of light intensity. Typically a difference in impedance between the impedance of the sample at the two states of illumination is measured to determine a characteristic of the material.

  14. IMPEDANCE OF FINITE LENGTH RESISTOR

    SciTech Connect

    KRINSKY, S.; PODOBEDOV, B.; GLUCKSTERN, R.L.

    2005-05-15

    We determine the impedance of a cylindrical metal tube (resistor) of radius a, length g, and conductivity {sigma}, attached at each end to perfect conductors of semi-infinite length. Our main interest is in the asymptotic behavior of the impedance at high frequency, k >> 1/a. In the equilibrium regime, , the impedance per unit length is accurately described by the well-known result for an infinite length tube with conductivity {sigma}. In the transient regime, ka{sup 2} >> g, we derive analytic expressions for the impedance and wakefield.

  15. Monolithically compatible impedance measurement

    DOEpatents

    Ericson, Milton Nance; Holcomb, David Eugene

    2002-01-01

    A monolithic sensor includes a reference channel and at least one sensing channel. Each sensing channel has an oscillator and a counter driven by the oscillator. The reference channel and the at least one sensing channel being formed integrally with a substrate and intimately nested with one another on the substrate. Thus, the oscillator and the counter have matched component values and temperature coefficients. A frequency determining component of the sensing oscillator is formed integrally with the substrate and has an impedance parameter which varies with an environmental parameter to be measured by the sensor. A gating control is responsive to an output signal generated by the reference channel, for terminating counting in the at least one sensing channel at an output count, whereby the output count is indicative of the environmental parameter, and successive ones of the output counts are indicative of changes in the environmental parameter.

  16. Bioelectrical impedance analysis revisited.

    PubMed

    Mikes, D M; Cha, B A; Dym, C L; Baumgaertner, J; Hartzog, A G; Tacey, A D; Calabria, M R

    1999-12-01

    Although total limb volume measurements are used to track the progress of lymphedema and its treatment, these measurements can be confounded by changes other than fluid excess namely muscle or fat gain. Bioelectrical impedance analysis (BIA) is a technique that specifically quantifies both total body fluid and extracellular fluid in extremities. Whereas BIA has potential as a quick, inexpensive, and quantitative technique to measure directly fluid gain or loss from lymphedema, it also has certain shortcomings that must be addressed before it can be validated. this paper examines the back-ground that explains why measuring total limb volume is insufficient to quantify the extent of peripheral lymphedema and explores the advantages and drawbacks of using BIA for this purpose. PMID:10652699

  17. Module Twelve: Series AC Resistive-Reactive Circuits; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The module covers series circuits which contain both resistive and reactive components and methods of solving these circuits for current, voltage, impedance, and phase angle. The module is divided into six lessons: voltage and impedance in AC (alternating current) series circuits, vector computations, rectangular and polar notation, variational…

  18. Characterisation of CFRP adhesive bonds by electromechanical impedance

    NASA Astrophysics Data System (ADS)

    Malinowski, Pawel H.; Wandowski, Tomasz; Ostachowicz, Wieslaw M.

    2014-03-01

    In aircraft industry the Carbon Fiber Reinforced Polymer (CFRP) elements are joint using rivets and adhesive bonding. The reliability of the bonding limits the use of adhesive bonding for primary aircraft structures, therefore it is important to assess the bond quality. The performance of adhesive bonds depends on the physico-chemical properties of the adhered surfaces. The contamination leading to weak bonds may have various origin and be caused by moisture, release agent, hydraulic fluid, fuel, poor curing of adhesive and so on. In this research three different causes of possible weak bonds were selected for the investigation: 1. Weak bond due to release agent contamination, 2. Weak bond due to moisture contamination, 3. Weak bond due to poor curing of the adhesive. In order to assess the bond quality electromechanical impedance (EMI) technique was selected and investigation was focused on the influence of bond quality on electrical impedance of piezoelectric transducer. The piezoelectric transducer was mounted at the middle of each sample surface. Measurements were conducted using HIOKI Impedance Analyzer IM3570. Using the impedance analyzer the electrical parameters were measured for wide frequency band. Due to piezoelectric effect the electrical response of a piezoelectric transducer is related to mechanical response of the sample to which the transducers is attached. The impedance spectra were investigated in order to find indication of the weak bonds. These spectra were compared with measurements for reference sample using indexes proposed in order to assess the bond quality.

  19. Impedance in School Screening Programs.

    ERIC Educational Resources Information Center

    Robarts, John T.

    1985-01-01

    This paper examines the controversy over use of impedance screening in public schools to identify students with hearing problems, including otitis media, a common ear condition in infants and young children. It cites research that questions the value of pure tone screening as a single test and raises critics' objections to the use of impedance,…

  20. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, Thomas E.

    1999-01-01

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks.

  1. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, T.E.

    1999-03-16

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks. 2 figs.

  2. Electromagnetic scattering by impedance structures

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Griesser, Timothy

    1987-01-01

    The scattering of electromagnetic waves from impedance structures is investigated, and current work on antenna pattern calculation is presented. A general algorithm for determining radiation patterns from antennas mounted near or on polygonal plates is presented. These plates are assumed to be of a material which satisfies the Leontovich (or surface impedance) boundary condition. Calculated patterns including reflection and diffraction terms are presented for numerious geometries, and refinements are included for antennas mounted directly on impedance surfaces. For the case of a monopole mounted on a surface impedance ground plane, computed patterns are compared with experimental measurements. This work in antenna pattern prediction forms the basis of understanding of the complex scattering mechanisms from impedance surfaces. It provides the foundation for the analysis of backscattering patterns which, in general, are more problematic than calculation of antenna patterns. Further proposed study of related topics, including surface waves, corner diffractions, and multiple diffractions, is outlined.

  3. Electrochemical Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Retter, Utz; Lohse, Heinz

    Non-steady-state measuring techniques are known to be extremely suitable for the investigation of the electrode kinetics of more complex electrochemical systems. Perturbation of the electrochemical system leads to a shift of the steady state. The rate at which it proceeds to a new steady state depends on characteristic parameters (reaction rate constants, diffusion coefficients, charge transfer resistance, double-layer capacity). Due to non-linearities caused by the electron transfer, low-amplitude perturbation signals are necessary. The small perturbation of the electrode state has the advantage that the solutions of relevant mathematical equations used are transformed in limiting forms that are normally linear. Impedance spectroscopy represents a powerful method for investigation of electrical properties of materials and interfaces of conducting electrodes. Relevant fields of application are the kinetics of charges in bulk or interfacial regions, the charge transfer of ionic or mixed ionic-ionic conductors, semiconducting electrodes, the corrosion inhibition of electrode processes, investigation of coatings on metals, characterisation of materials and solid electrolyte as well as solid-state devices.

  4. Impedance Eduction in Sound Fields With Peripherally Varying Liners and Flow

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.

    2015-01-01

    A two-dimensional impedance eduction theory is extended to three-dimensional sound fields and peripherally varying duct liners. The approach is to first measure the acoustic pressure field at a series of flush-mounted wall microphones located around the periphery of the flow duct. The numerical solution for the acoustic pressure field at these microphones is also obtained by solving the three-dimensional convected Helmholtz equation using the finite element method. A quadratic objective function based on the difference between the measured and finite element solution is constructed and the unknown impedance function is obtained by minimizing this objective function. Impedance spectra educed for two uniform-structure liners (a wire-mesh and a conventional liner) and a hard-soft-hard peripherally varying liner (for which the soft segment is that of the conventional liner) are presented. Results are presented at three mean flow Mach numbers and fourteen sound source frequencies. The impedance spectra of the uniform-structure liners are also computed using a two-dimensional impedance eduction theory. The primary conclusions of the study are: 1) when measured data is used with the uniform-structure liners, the three-dimensional theory reproduces the same impedance spectra as the two-dimensional theory except for frequencies corresponding to very low or very high liner attenuation; and 2) good agreement between the educed impedance spectra of the uniform structure conventional liner and the soft segment of the peripherally varying liner is obtained.

  5. I/O impedance controller

    DOEpatents

    Ruesch, Rodney; Jenkins, Philip N.; Ma, Nan

    2004-03-09

    There is disclosed apparatus and apparatus for impedance control to provide for controlling the impedance of a communication circuit using an all-digital impedance control circuit wherein one or more control bits are used to tune the output impedance. In one example embodiment, the impedance control circuit is fabricated using circuit components found in a standard macro library of a computer aided design system. According to another example embodiment, there is provided a control for an output driver on an integrated circuit ("IC") device to provide for forming a resistor divider network with the output driver and a resistor off the IC device so that the divider network produces an output voltage, comparing the output voltage of the divider network with a reference voltage, and adjusting the output impedance of the output driver to attempt to match the output voltage of the divider network and the reference voltage. Also disclosed is over-sampling the divider network voltage, storing the results of the over sampling, repeating the over-sampling and storing, averaging the results of multiple over sampling operations, controlling the impedance with a plurality of bits forming a word, and updating the value of the word by only one least significant bit at a time.

  6. Impedance-estimation methods, modeling methods, articles of manufacture, impedance-modeling devices, and estimated-impedance monitoring systems

    DOEpatents

    Richardson, John G.

    2009-11-17

    An impedance estimation method includes measuring three or more impedances of an object having a periphery using three or more probes coupled to the periphery. The three or more impedance measurements are made at a first frequency. Three or more additional impedance measurements of the object are made using the three or more probes. The three or more additional impedance measurements are made at a second frequency different from the first frequency. An impedance of the object at a point within the periphery is estimated based on the impedance measurements and the additional impedance measurements.

  7. Impedance and dielectric properties of mercury cuprate at nonsuperconducting state

    NASA Astrophysics Data System (ADS)

    Özdemir, Z. Güven; Çataltepe, Ö. Aslan; Onbaşlı, Ü.

    2015-10-01

    In this paper, impedance and dielectric properties of nonsuperconducting state of the mercury-based cuprate have been investigated by impedance measurements within the frequency interval of 10 Hz-10 MHz for the first time. The dielectric loss factor (tgδ) and ac conductivity (σac) parameters have also been calculated for non-superconducting state. According to impedance spectroscopy analysis, the equivalent circuit of the mercury cuprate system manifests itself as a semicircle in the Nyquist plot that corresponds to parallel connected resistance-capacitance circuit. The oscillation frequency of the circuit has been determined as approximately 45 kHz which coincides with the low frequency radio waves. Moreover, it has been revealed that the mercury-based cuprate investigated has high dielectric constants and hence it may be utilized in microelectronic industry such as capacitors, memory devices etc., at room temperature. In addition, negative capacitance (NC) effect has been observed for the mercury cuprate regardless of the operating temperatures at nonsuperconducting state. Referring to dispersions in dielectric properties, the main contribution to dielectric response of the system has been suggested as dipolar and interfacial polarization mechanisms.

  8. Dielectric properties and study of AC electrical conduction mechanisms by non-overlapping small polaron tunneling model in Bis(4-acetylanilinium) tetrachlorocuprate(II) compound

    NASA Astrophysics Data System (ADS)

    Abkari, A.; Chaabane, I.; Guidara, K.

    2016-09-01

    In the present work, the synthesis and characterization of the Bis(4-acetylanilinium) tetrachlorocuprate(II) compound are presented. The structure of this compound is analyzed by X-ray diffraction which confirms the formation of single phase and is in good agreement the literature. Indeed, the Thermo gravimetric Analysis (TGA) shows that the decomposition of the compound is observed in the range of 420-520 K. However, the differential thermal analysis (DTA) indicates the presence of a phase transition at T=363 k. Furthermore, the dielectric properties and AC conductivity were studied over a temperature range (338-413 K) and frequency range (200 Hz-5 MHz) using complex impedance spectroscopy. Dielectric measurements confirmed such thermal analyses by exhibiting the presence of an anomaly in the temperature range of 358-373 K. The complex impedance plots are analyzed by an electrical equivalent circuit consisting of resistance, constant phase element (CPE) and capacitance. The activation energy values of two distinct regions are obtained from log σT vs 1000/T plot and are found to be E=1.27 eV (T<363 K) and E=1.09 eV (363 Kac conductivity, σac, has been analyzed by Jonscher's universal power law σ(ω)=σdc+Aωs. The value of s is to be temperature-dependent, which has a tendency to increase with temperature and the non-overlapping small polaron tunneling (NSPT) model is the most applicable conduction mechanism in the title compound. Complex impedance spectra of [C8H10NO]2CuCl4 at different temperatures.

  9. Mechanical impedance and acoustic mobility measurement techniques of specifying vibration environments

    NASA Technical Reports Server (NTRS)

    Kao, G. C.

    1973-01-01

    Method has been developed for predicting interaction between components and corresponding support structures subjected to acoustic excitations. Force environments determined in spectral form are called force spectra. Force-spectra equation is determined based on one-dimensional structural impedance model.

  10. ACS Quicklook PDF products

    NASA Astrophysics Data System (ADS)

    Suchkov, Anatoly

    1999-12-01

    This report details the features of the ACS quicklook PDF products produced by the HST data pipeline. The requirements closely follow the design of paper products recommended by the Data Quality Committee, with appropriate changes required to fully support ACS.

  11. Coupling impedance for modern accelerators

    SciTech Connect

    Heifets, S.A.; Kheifets, S.A. )

    1992-03-10

    A systematic review of theoretical results for the longitudinal and transverse impedances obtained by different methods is presented. The paper comprises definitions, general theorems, modal analysis, a diffraction model, and analytical results. Several new results are included. In particular, necessary and sufficient conditions are given for the independence of the impedance from the beam longitudinal direction. The impedances of two basic simple structures---that of a {ital cavity} and that of a {ital step}---are studied in detail. The transition from the regime of a cavity to the regime of a step is explained, an approximate formula describing this transition is given, and the criterion for determining the applicability of each regime is established. The asymptotic behavior of the impedance for a finite number {ital M} of periodically arranged cavities as a function of {ital M} is studied. The different behaviors of the impedance for a single cavity and that for an infinite number of cavities are explained as resulting from the interference of the diffracted waves. A criterion for determining the transition in the impedance behavior from small {ital M} to large {ital M} is presented.

  12. Electrochemical Impedance Spectroscopy of Conductive Polymer Coatings

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; MacDowell, Louis G.

    1996-01-01

    Electrochemical impedance spectroscopy (EIS) was used to investigate the corrosion protection performance of twenty nine proprietary conductive polymer coatings for cold rolled steel under immersion in 3.55 percent NaCl. Corrosion potential as well as Bode plots of the data were obtained for each coating after one hour immersion, All coatings, with the exception of one, have a corrosion potential that is higher in the positive direction than the corrosion potential of bare steel under the same conditions. Group A consisted of twenty one coatings with Bode plots indicative of the capacitive behavior characteristic of barrier coatings. An equivalent circuit consisting of a capacitor in series with a resistor simulated the experimental EIS data for these coatings very well. Group B consisted of eight coatings that exhibited EIS spectra showing an inflection point which indicates that two time constants are present. This may be caused by an electrochemical process taking place which could be indicitive of coating failing. These coatings have a lower impedance that those in Group A.

  13. Combined electromechanical impedance and fiber optic diagnosis of aerospace structures

    NASA Astrophysics Data System (ADS)

    Schlavin, Jon; Zagrai, Andrei; Clemens, Rebecca; Black, Richard J.; Costa, Joey; Moslehi, Behzad; Patel, Ronak; Sotoudeh, Vahid; Faridian, Fereydoun

    2014-03-01

    Electromechanical impedance is a popular diagnostic method for assessing structural conditions at high frequencies. It has been utilized, and shown utility, in aeronautic, space, naval, civil, mechanical, and other types of structures. By contrast, fiber optic sensing initially found its niche in static strain measurement and low frequency structural dynamic testing. Any low frequency limitations of the fiber optic sensing, however, are mainly governed by its hardware elements. As hardware improves, so does the bandwidth (frequency range * number of sensors) provided by the appropriate enabling fiber optic sensor interrogation system. In this contribution we demonstrate simultaneous high frequency measurements using fiber optic and electromechanical impedance structural health monitoring technologies. A laboratory specimen imitating an aircraft wing structure, incorporating surfaces with adjustable boundary conditions, was instrumented with piezoelectric and fiber optic sensors. Experiments were conducted at different structural boundary conditions associated with deterioration of structural health. High frequency dynamic responses were collected at multiple locations on a laboratory wing specimen and conclusions were drawn about correspondence between structural damage and dynamic signatures as well as correlation between electromechanical impedance and fiber optic sensors spectra. Theoretical investigation of the effect of boundary conditions on electromechanical impedance spectra is presented and connection to low frequency structural dynamics is suggested. It is envisioned that acquisition of high frequency structural dynamic responses with multiple fiber optic sensors may open new diagnostic capabilities for fiber optic sensing technologies.

  14. Label-free impedance detection of cancer cells.

    PubMed

    Venkatanarayanan, Anita; Keyes, Tia E; Forster, Robert J

    2013-02-19

    Ovarian cancer cells, SKOV3, have been immobilized onto platinum microelectrodes using anti-EPCAM capture antibodies and detected with high sensitivity using electrochemical impedance. The change in impedance following cell capture is strongly dependent on the supporting electrolyte concentration. By controlling the concentration of Dulbecco's phosphate buffered saline (DPBS) electrolyte, the double layer thickness can be manipulated so that the interfacial electric field interacts with the bound cells, rather than simply decaying across the antibody capture layer. Significantly, the impedance changes markedly upon cell capture over the frequency range from 3 Hz to 90 kHz. For example, using an alternating-current (ac) amplitude of 25 mV, a frequency of 81.3 kHz, and an open circuit potential (OCP) as the direct-current (dc) voltage, a detection limit of 4 captured cells was achieved. Assuming an average cell radius of 5 μm, the linear dynamic range is from 4 captured cells to 650 ± 2 captured cells, which is approximately equivalent to fractional coverages from 0.1% to 29%. An equivalent circuit that models the impedance response of the cell capture is discussed. PMID:23331159

  15. Concentration dependence of nanochannel impedance and the determination of surface charge.

    PubMed

    Schiffbauer, Jarrod; Liel, Uri; Yossifon, Gilad

    2014-03-01

    In this paper, we demonstrate the variation of nanochannel impedance with bulk (reservoir) electrolyte concentration. The impedance of a nanochannel is shown to correspond to a characteristic deformed semicircular arc. The degree of deformation decreases with increasing concentration, and at a sufficiently low concentration the complex impedance saturates, becoming essentially independent of the reservoir concentration. This behavior is indicative of a surface-conduction dominant regime. Here we demonstrate that this effect extends beyond dc conductance and affects the ac response of the system as well, including both phase relationship and magnitude. The nanochannel resistance, obtained from low-voltage ac measurements, is then used to extract the nanochannel surface charge density. This is found to increase in magnitude with increasing electrolyte concentration. PMID:24730947

  16. Concentration dependence of nanochannel impedance and the determination of surface charge

    NASA Astrophysics Data System (ADS)

    Schiffbauer, Jarrod; Liel, Uri; Yossifon, Gilad

    2014-03-01

    In this paper, we demonstrate the variation of nanochannel impedance with bulk (reservoir) electrolyte concentration. The impedance of a nanochannel is shown to correspond to a characteristic deformed semicircular arc. The degree of deformation decreases with increasing concentration, and at a sufficiently low concentration the complex impedance saturates, becoming essentially independent of the reservoir concentration. This behavior is indicative of a surface-conduction dominant regime. Here we demonstrate that this effect extends beyond dc conductance and affects the ac response of the system as well, including both phase relationship and magnitude. The nanochannel resistance, obtained from low-voltage ac measurements, is then used to extract the nanochannel surface charge density. This is found to increase in magnitude with increasing electrolyte concentration.

  17. The Hubble Legacy Archive ACS grism data

    NASA Astrophysics Data System (ADS)

    Kümmel, M.; Rosati, P.; Fosbury, R.; Haase, J.; Hook, R. N.; Kuntschner, H.; Lombardi, M.; Micol, A.; Nilsson, K. K.; Stoehr, F.; Walsh, J. R.

    2011-06-01

    A public release of slitless spectra, obtained with ACS/WFC and the G800L grism, is presented. Spectra were automatically extracted in a uniform way from 153 archival fields (or "associations") distributed across the two Galactic caps, covering all observations to 2008. The ACS G800L grism provides a wavelength range of 0.55-1.00 μm, with a dispersion of 40 Å/pixel and a resolution of ~80 Å for point-like sources. The ACS G800L images and matched direct images were reduced with an automatic pipeline that handles all steps from archive retrieval, alignment and astrometric calibration, direct image combination, catalogue generation, spectral extraction and collection of metadata. The large number of extracted spectra (73,581) demanded automatic methods for quality control and an automated classification algorithm was trained on the visual inspection of several thousand spectra. The final sample of quality controlled spectra includes 47 919 datasets (65% of the total number of extracted spectra) for 32 149 unique objects, with a median iAB-band magnitude of 23.7, reaching 26.5 AB for the faintest objects. Each released dataset contains science-ready 1D and 2D spectra, as well as multi-band image cutouts of corresponding sources and a useful preview page summarising the direct and slitless data, astrometric and photometric parameters. This release is part of the continuing effort to enhance the content of the Hubble Legacy Archive (HLA) with highly processed data products which significantly facilitate the scientific exploitation of the Hubble data. In order to characterize the slitless spectra, emission-line flux and equivalent width sensitivity of the ACS data were compared with public ground-based spectra in the GOODS-South field. An example list of emission line galaxies with two or more identified lines is also included, covering the redshift range 0.2 - 4.6. Almost all redshift determinations outside of the GOODS fields are new. The scope of science projects

  18. Transcranial Extracellular Impedance Control (tEIC) Modulates Behavioral Performances

    PubMed Central

    Matani, Ayumu; Nakayama, Masaaki; Watanabe, Mayumi; Furuyama, Yoshikazu; Hotta, Atsushi; Hoshino, Shotaro

    2014-01-01

    Electric brain stimulations such as transcranial direct current stimulation (tDCS), transcranial random noise stimulation (tRNS), and transcranial alternating current stimulation (tACS) electrophysiologically modulate brain activity and as a result sometimes modulate behavioral performances. These stimulations can be viewed from an engineering standpoint as involving an artificial electric source (DC, noise, or AC) attached to an impedance branch of a distributed parameter circuit. The distributed parameter circuit is an approximation of the brain and includes electric sources (neurons) and impedances (volume conductors). Such a brain model is linear, as is often the case with the electroencephalogram (EEG) forward model. Thus, the above-mentioned current stimulations change the current distribution in the brain depending on the locations of the electric sources in the brain. Now, if the attached artificial electric source were to be replaced with a resistor, or even a negative resistor, the resistor would also change the current distribution in the brain. In light of the superposition theorem, which holds for any linear electric circuit, attaching an electric source is different from attaching a resistor; the resistor affects each active electric source in the brain so as to increase (or decrease in some cases of a negative resistor) the current flowing out from each source. From an electrophysiological standpoint, the attached resistor can only control the extracellular impedance and never causes forced stimulation; we call this technique transcranial extracellular impedance control (tEIC). We conducted a behavioral experiment to evaluate tEIC and found evidence that it had real-time enhancement and depression effects on EEGs and a real-time facilitation effect on reaction times. Thus, tEIC could be another technique to modulate behavioral performance. PMID:25047913

  19. Cervical cancer detection by electrical impedance in a Colombian setting

    NASA Astrophysics Data System (ADS)

    Miranda, David A.; Corzo, Sandra P.; González Correa, C. A.

    2013-04-01

    Electrical properties of normal and neoplastic cervical tissues in a heterogeneous group of 56 Colombian women were studied by electrical impedance spectroscopy and a model based on the Generalized Effective-Medium Theory of Induced Polarization (GEMTIP). Differences between the electrical bioimpedance spectra were correlated with cellular and tissue parameters. The analysis performed by the proposed model suggest that the number of different types of cellular layers that form the biological tissue, the intracellular and extracellular conductivity could be used to explain the differences between electrical bioimpedance spectra in normal and neoplastic tissues.

  20. Age spectra of detrital zircon of the Jurassic clastic rocks of the Mino-Tanba AC belt in SW Japan: Constraints to the provenance of the mid-Mesozoic trench in East Asia

    NASA Astrophysics Data System (ADS)

    Fujisaki, Wataru; Isozaki, Yukio; Maki, Kenshi; Sakata, Shuhei; Hirata, Takafumi; Maruyama, Shigenori

    2014-07-01

    U-Pb ages of detrital zircon grains were determined from an upper Middle Jurassic siliceous mudstone and two lower Upper Jurassic sandstones of the Mino-Tanba belt, Southwest Japan, by Laser-ablation ICPMS. The age spectra of detrital zircon grains of the three analyzed samples show multiple age clusters: 175-198 Ma (Early Jurassic), 202-284 Ma (Permian to Triassic), 336-431 Ma (Silurian to Carboniferous), and 1691-2657 Ma (Neoarchean to Paleoproterozoic). As per the Precambrian grains, the prominent peak exists around 1800-2000 Ma in all analyzed samples. The age clusters of 175-198 Ma, 202-284 Ma, and 336-431 Ma suggest that pre-Middle Jurassic Japan has exposed older granitic batholiths. The corresponding batholiths occur in the Cathaysian part of South China block. In contrast, the absence of them in modern Japan suggests that these batholiths were totally consumed by post-Jurassic tectonic erosion. The Neoarchean to Paleoproterozoic detrital zircon grains were derived from South China, North China, or possibly both of them; nonetheless, the circumstantial geologic lines of evidence point to South China, in particular to Cathaysia, rather than North China.

  1. Noncontact scanning electrical impedance imaging.

    PubMed

    Liu, Hongze; Hawkins, Aaron; Schultz, Stephen; Oliphant, Travis E

    2004-01-01

    We are interested in applying electrical impedance imaging to a single cell because it has potential to reveal both cell anatomy and cell function. Unfortunately, classic impedance imaging techniques are not applicable to this small scale measurement due to their low resolution. In this paper, a different method of impedance imaging is developed based on a noncontact scanning system. In this system, the imaging sample is immersed in an aqueous solution allowing for the use of various probe designs. Among those designs, we discuss a novel shield-probe design that has the advantage of better signal-to-noise ratio with higher resolution compared to other probes. Images showing the magnitude of current for each scanned point were obtained using this configuration. A low-frequency linear physical model helps to relate the current to the conductivity at each point. Line-scan data of high impedance contrast structures can be shown to be a good fit to this model. The first two-dimensional impedance image of biological tissues generated by this technique is shown with resolution on the order of 100 mum. The image reveals details not present in the optical image. PMID:17271930

  2. [Monitoring cervical dilatation by impedance].

    PubMed

    Salvat, J; Lassen, M; Sauze, C; Baud, S; Salvat, F

    1992-01-01

    Several different physics procedures have been tried to mechanize the recording of partograms. Can a measure of impedance of tissue Z using potential difference V, according to Ohm's law V = Z1, and 1 is a constant, be correlated with a measure of cervical dilatation using vaginal examination? This was our hypothesis. The tissue impedance meter was made to our design and applied according to a bipolar procedure. Our work was carried out on 28 patients. 10 patients were registered before labour started in order to test the apparatus and to record the impedance variations without labour taking place, and 18 patients were registered in labour to see whether there was any correlation. The level of impedance in the cervix without labour was 302.7 Ohms with a deviation of 8.2. Using student's t tests it was found that there was a significant correlation (p less than 0.001) in four measurements between the impedance measure and measures obtained by extrapolating the degrees of dilatation calculated from vaginal examination. This is a preliminary study in which we have defined the conditions that are necessary to confirm these first results and to further develop the method. PMID:1401774

  3. Impedances of Laminated Vacuum Chambers

    SciTech Connect

    Burov, A.; Lebedev, V.; /Fermilab

    2011-06-22

    First publications on impedance of laminated vacuum chambers are related to early 70s: those are of S. C. Snowdon [1] and of A. G. Ruggiero [2]; fifteen years later, a revision paper of R. Gluckstern appeared [3]. All the publications were presented as Fermilab preprints, and there is no surprise in that: the Fermilab Booster has its laminated magnets open to the beam. Being in a reasonable mutual agreement, these publications were all devoted to the longitudinal impedance of round vacuum chambers. The transverse impedance and the flat geometry case were addressed in more recent paper of K. Y. Ng [4]. The latest calculations of A. Macridin et al. [5] revealed some disagreement with Ref. [4]; this fact stimulated us to get our own results on that matter. Longitudinal and transverse impendances are derived for round and flat laminated vacuum chambers. Results of this paper agree with Ref. [5].

  4. Rapid Impedance Spectrum Measurements for Onboard State-of-Health Applications

    SciTech Connect

    Jon P. Christophersen; John L. Morrison; Chinh D. Ho

    2012-06-01

    Rapid impedance measurements can provide a useful online tool for improved state-of-health estimation. A validation study has been initiated at the Idaho National Laboratory for a rapid impedance technique known as Harmonic Compensated Synchronous Detection. This technique enables capturing the impedance spectra over a broad frequency range within about ten seconds. Commercially available lithium-ion cells are being calendar-life aged at 50°C with reference performance tests at 30°C every 32.5 days to gauge degradation The cells have completed the first set of reference performance tests and preliminary results are presented. The spectra change as a function of temperature and depth-of-discharge condition, as expected. The data indicate that the rapid impedance measurement technique is a benign measurement tool that can be successfully used to gauge changes in the corresponding pulse resistance.

  5. Characteristic impedance of microstrip lines

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.; Deshpande, M. D.

    1989-01-01

    The dyadic Green's function for a current embedded in a grounded dielectric slab is used to analyze microstrip lines at millimeter wave frequencies. The dyadic Green's function accounts accurately for fringing fields and dielectric cover over the microstrip line. Using Rumsey's reaction concept, an expression for the characteristic impedance is obtained. The numerical results are compared with other reported results.

  6. The Aberdeen Impedance Imaging System.

    PubMed

    Kulkarni, V; Hutchison, J M; Mallard, J R

    1989-01-01

    The Aberdeen Impedance Imaging System is designed to reconstruct 2 dimensional images of the average distribution of the amplitude and phase of the complex impedance within a 3 dimensional region. The system uses the four electrode technique in a 16 electrode split-array. The system hardware consists of task-orientated electronic modules for: driving a constant current, multiplexing the current drive, demultiplexing peripheral voltages, differential amplification, phase sensitive detection and low-pass filtration, digitisation with a 14 bit analog to digital converter (ADC), and -control logic for the ADC and multiplexors. A BBC microprocessor (Master series), initiates a controlled sequence for the collection of a number of data sets which are averaged and stored on disk. Image reconstruction is by a process of convolution-backprojection similar to the fan-beam reconstruction of computerised tomography and is also known as Equipotential Backprojection. In imaging impedance changes associated with fracture healing the changes may be large enough to allow retrieval of both the amplitude and phase of the complex impedance. Sequential imaging of these changes would necessitate monitoring electronic and electrode drift by imaging an equivalent region of the contralateral limb. Differential images could be retrieved when the image of the normal limb is the image template. Better characterisation of tissues would necessitate a cleaner retrieval of the quadrature signal. PMID:2742979

  7. Calibration of electrical impedance tomography

    SciTech Connect

    Daily, W; Ramirez, A

    2000-05-01

    Over the past 10 years we have developed methods for imaging the electrical resistivity of soil and rock formations. These technologies have been called electrical resistance tomography of ERT (e.g. Daily and Owen, 1991). Recently we have been striving to extend this capability to include images of electric impedance--with a new nomenclature of electrical impedance tomography or EIT (Ramirez et al., 1999). Electrical impedance is simply a generalization of resistance. Whereas resistance is the zero frequency ratio of voltage and current, impedance includes both the magnitude and phase relationship between voltage and current at frequency. This phase and its frequency behavior is closely related to what in geophysics is called induced polarization or (Sumner, 1976). Why is this phase or IP important? IP is known to be related to many physical phenomena of importance so that image of IP will be maps of such things as mineralization and cation exchange IP (Marshall and Madden, 1959). Also, it is likely that IP, used in conjunction with resistivity, will yield information about the subsurface that can not be obtained by either piece of information separately. In order to define the accuracy of our technologies to image impedance we have constructed a physical model of known impedance that can be used as a calibration standard. It consists of 616 resistors, along with some capacitors to provide the reactive response, arranged in a three dimensional structure as in figure 1. Figure 2 shows the construction of the network and defines the coordinate system used to describe it. This network of components is a bounded and discrete version of the unbounded and continuous medium with which we normally work (the subsurface). The network has several desirable qualities: (1) The impedance values are known (to the accuracy of the component values). (2) The component values and their 3D distribution is easily controlled. (3) Error associated with electrode noise is eliminated. (4

  8. Evaluation of Wall Boundary Conditions for Impedance Eduction Using a Dual-Source Method

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.

    2012-01-01

    The accuracy of the Ingard-Myers boundary condition and a recently proposed modified Ingard-Myers boundary condition is evaluated for use in impedance eduction under the assumption of uniform mean flow. The evaluation is performed at three centerline Mach numbers, using data acquired in a grazing flow impedance tube, using both upstream and downstream propagating sound sources, and on a database of test liners for which the expected behavior of the impedance spectra is known. The test liners are a hard-wall insert consisting of 12.6 mm thick aluminum, a linear liner without a facesheet consisting of a number of small diameter but long cylindrical channels embedded in a ceramic material, and two conventional nonlinear liners consisting of a perforated facesheet bonded to a honeycomb core. The study is restricted to a frequency range for which only plane waves are cut on in the hard-wall sections of the flow impedance tube. The metrics used to evaluate each boundary condition are 1) how well it educes the same impedance for upstream and downstream propagating sources, and 2) how well it predicts the expected behavior of the impedance spectra over the Mach number range. The primary conclusions of the study are that the same impedance is educed for upstream and downstream propagating sources except at the highest Mach number, that an effective impedance based on both the upstream and downstream measurements is more accurate than an impedance based on the upstream or downstream data alone, and that the Ingard-Myers boundary condition with an effective impedance produces results similar to that achieved with the modified Ingard-Myers boundary condition.

  9. Impedance analysis of different cell monolayers grown on gold-film electrodes.

    PubMed

    Reiss, Bjoern; Wegener, Joachim

    2015-08-01

    Impedance analysis of mammalian cells grown on planar film electrodes provides a label-free, non-invasive and unbiased observation of cell-based assays addressing the biological response to drugs, toxins or stressors in general. Whereas the time course of the measured impedance at one particular frequency has been used a lot for quantitative monitoring, in-depth analysis of the frequency-dependent impedance spectra is rarely performed. This study summarizes and validates the existing model for spectral analysis by applying it to eight different cell types from different mammalian tissues. Model parameters correctly predict the functional and/or structural properties of the individual cells under study. PMID:26737923

  10. Impedance and thermal conductivity properties of epoxy/polyhedral oligomeric silsequioxane nanocomposites

    NASA Astrophysics Data System (ADS)

    Eed, H.; Ramadin, Y.; Zihlif, A. M.; Elimat, Ziad; Ragosta, Giuseppe

    2014-03-01

    The impedance and thermal conductivity properties of prepared organic epoxy/polyhedral oligomeric silsequioxane (POSS) nanocomposites were studied. The measurements of the impedance were carried out using the impedance technique as a function of applied field frequency range from 20 kHz to 1 MHz, temperature range from 20°C-110°C, and POSS filler concentrations 5, 10, and 20 wt%. The AC conductivity and dielectric properties were determined from the impedance data. It was found that the AC conductivity and dielectric constant are increased by increasing the POSS content in the nanocomposites. The calculated activation energy varies with the filler content, temperature, and applied frequency. The observed electrical results fit approximately the reported equations concerning the AC conductivity of the prepared nanocomposites. The dielectric behavior was explained on the basis of the interfacial polarization, dipolar polarization, and decrease in the hindrance produced by the polymer matrix. The thermal conductivity of the prepared nanocomposite was studied as a function of temperature, and POSS concentration. It was found that the thermal conductivity is enhanced by the addition of the POSS content and temperature. During the heating process, the phonons are activated and electrons hopp to higher localized energy states producing enhancement in the thermal conductivity. Furthermore, correlations between the observed physical properties as thermal conductivity, storage modulus, and glass transition temperature of the nanocomposites are presented.

  11. Electrochemical Performance and Stability of the Cathode for Solid Oxide Fuel Cells. I. Cross Validation of Polarization Measurements by Impedance Spectroscopy and Current-Potential Sweep

    SciTech Connect

    Zhou, Xiao Dong; Pederson, Larry R.; Templeton, Jared W.; Stevenson, Jeffry W.

    2009-12-09

    The aim of this paper is to address three issues in solid oxide fuel cells: (1) cross-validation of the polarization of a single cell measured using both dc and ac approaches, (2) the precise determination of the total areal specific resistance (ASR), and (3) understanding cathode polarization with LSCF cathodes. The ASR of a solid oxide fuel cell is a dynamic property, meaning that it changes with current density. The ASR measured using ac impedance spectroscopy (low frequency interception with real Z´ axis of ac impedance spectrum) matches with that measured from a dc IV sweep (the tangent of dc i-V curve). Due to the dynamic nature of ASR, we found that an ac impedance spectrum measured under open circuit voltage or on a half cell may not represent cathode performance under real operating conditions, particularly at high current density. In this work, the electrode polarization was governed by the cathode activation polarization; the anode contribution was negligible.

  12. A Monte Carlo simulation of range for an invasive impedance respiration monitor.

    PubMed

    Valenta, H L; Fischer, S K

    1990-01-01

    One method of rate responsive pacing utilizes an analog of minute ventilation as the input to the rate control algorithm. A measure of the intravenous impedance along the pacing catheter is a convenient means of determining minute ventilation. Design of the impedance converter requires a knowledge of the range of DC and AC impedance signals. During normal and deep breathing, 116 AC measurements were taken from 34 Electrophysiology (EP) patients and 31 DC measurements were taken from 13 EP patients. The patient data produced skewed distributions with a normal AC mean of 0.45 +/- 0.40 ohms p-p, a deep AC mean of 2.0 +/- 1.6 ohms and a DC mean of 44 +/- 13 ohms. An eight variable static model was derived from prior work. Five of the physiological variables were chosen from established clinical ranges, one geometrical variable was chosen from prior work and two were selected by matching the statistics of a Monte Carlo analysis of the model with the statistics of the patient data. The blood resistivity was obtained from prior work. A simulation of 1000 measurements produced a normal breathing range of 0 to 2.24 ohms, a deep breathing range of 0 to 9.6 ohms and a DC range of 19 to 100 ohms. PMID:2334765

  13. Investigation of nanocrystalline CdS/Si diode using complex impedance spectroscopy

    SciTech Connect

    El-Gendy, Y.A.; Yahia, I.S.; Yakuphanoglu, F.

    2012-11-15

    Highlights: ► CdS/n-Si device was fabricated as a heterostructure. ► AFM was used to examine the structure of CdS/n-Si. ► Complex impedance Z′and Z″were calculated. ► AC conductivity was explained by the power law relation. ► CBH model was used to describe the AC conduction mechanism. -- Abstract: CdS/n-Si device was fabricated via depositing CdS thin film onto pre-cleaned n-silicon substrates. The atomic force microscope was used to examine the crystal size of the deposited films and its roughness. The AC conductivity and the real part of complex impedance Z′as a function of frequency at different temperatures were studied. The AC conductivity dependence of the applied frequency was explained on the basis of the power law relation. The bulk resistance has been calculated at different temperatures from the complex impedance Z″. The temperature dependence of capacitance for CdS/n-Si device at different frequencies was also investigated.

  14. Determination of Complex Microcalorimeter Parameters with Impedance Measurements

    NASA Technical Reports Server (NTRS)

    Saab, T.; Bandler, S. R.; Chervenak, J.; Figueroa-Feliciano, E.; Finkbeiner, F.; Iyomoto, N.; Kelley, R.; Kilbourne, C. A.; Lindeman, M. A.; Porter, F. S.; Sadleir, J.

    2005-01-01

    The proper understanding and modeling of a microcalorimeter s response requires the accurate knowledge of a handful of parameters, such as C, G, alpha, . . . . While a few of these, such 8s the normal state resistance and the total thermal conductance to the heat bath (G) are directly determined from the DC IV characteristics, some others, notoriously the heat capacity (C) and alpha, appear in degenerate combinations in most measurable quantities. The case of a complex microcalorimeter, i.e. one in which the absorber s heat capacity is connected by a finite thermal impedance to the sensor, and subsequently by another thermal impedance to the heat bath, results in an added ambiguity in the determination of the individual C's and G's. In general, the dependence of the microcalorimeter s complex impedance on these parameters varies with frequency. This variation allows us to determine the individual parameters by fitting the prediction of the microcalorimeter model to the impedance data. We describe in this paper our efforts at characterizing the Goddard X-ray microcalorimeters. Using the parameters determined with this method we them compare the pulse shape and noise spectra predicted by the microcalorimeter model to data taken with the same devices.

  15. Introducing AC inductive reactance with a power tool

    NASA Astrophysics Data System (ADS)

    Bryant, Wesley; Baker, Blane

    2016-09-01

    The concept of reactance in AC electrical circuits is often non-intuitive and difficult for students to grasp. In order to address this lack of conceptual understanding, classroom exercises compare the predicted resistance of a power tool, based on electrical specifications, to measured resistance. Once students discover that measured resistance is smaller than expected, they are asked to explain these observations using previously studied principles of magnetic induction. Exercises also introduce the notion of inductive reactance and impedance in AC circuits and, ultimately, determine self-inductance of the motor windings within the power tool.

  16. Study of AC/RF properties of SRF ingot niobium

    SciTech Connect

    Dhakal, Pashupati; Tsindlekht, Menachem I; Genkin, Valery M; Ciovati, Gianluigi; Myneni, Ganapati Rao

    2013-09-01

    In an attempt to correlate the performance of superconducting radiofrequency cavities made of niobium with the superconducting properties, we present the results of the magnetization and ac susceptibility of the niobium used in the superconducting radiofrequency cavity fabrication. The samples were subjected to buffer chemical polishing (BCP) surface and high temperature heat treatments, typically applied to the cavities fabrications. The analysis of the results show the different surface and bulk ac conductivity for the samples subjected to BCP and heat treatment. Furthermore, the RF surface impedance is measured on the sample using a TE011 microwave cavity for a comparison to the low frequency measurements.

  17. AC and Phase Sensing of Nanowires for Biosensing

    PubMed Central

    Crescentini, Marco; Rossi, Michele; Ashburn, Peter; Lombardini, Marta; Sangiorgi, Enrico; Morgan, Hywel; Tartagni, Marco

    2016-01-01

    Silicon nanowires are label-free sensors that allow real-time measurements. They are economical and pave the road for point-of-care applications but require complex readout and skilled personnel. We propose a new model and technique for sensing nanowire sensors using alternating currents (AC) to capture both magnitude and phase information from the sensor. This approach combines the advantages of complex impedance spectroscopy with the noise reduction performances of lock-in techniques. Experimental results show how modifications of the sensors with different surface chemistries lead to the same direct-current (DC) response but can be discerned using the AC approach. PMID:27104577

  18. AC and Phase Sensing of Nanowires for Biosensing.

    PubMed

    Crescentini, Marco; Rossi, Michele; Ashburn, Peter; Lombardini, Marta; Sangiorgi, Enrico; Morgan, Hywel; Tartagni, Marco

    2016-01-01

    Silicon nanowires are label-free sensors that allow real-time measurements. They are economical and pave the road for point-of-care applications but require complex readout and skilled personnel. We propose a new model and technique for sensing nanowire sensors using alternating currents (AC) to capture both magnitude and phase information from the sensor. This approach combines the advantages of complex impedance spectroscopy with the noise reduction performances of lock-in techniques. Experimental results show how modifications of the sensors with different surface chemistries lead to the same direct-current (DC) response but can be discerned using the AC approach. PMID:27104577

  19. Study the effects of moisture content on the electrical properties of technical textiles by impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Lusis, A.; Pentjuss, E.; Bajars, G.; Gabrusenoks, J.; Janeliukštis, R.; Zandersons, J.

    2012-08-01

    Application of metal coatings for the functionalization of technical fibres and fabrics faced with influence of moisture on functional properties, e.g., the impedance of the metal coated K-glass fabrics have strong dependence of content absorbed water or moisture. The paper devoted to develop methodology for characterisation functional materials based on fabrics and model for interpretation of the electrical impedance spectra to obtained functional characteristics of technical textile fabrics. Model based on analyses of 3D plot of imaginary part of complex modulus spectra versus sample mass. Methodology helps to control content of adsorbed water in fabric and influence of moisture on the functional characteristics.

  20. The quantum Hall impedance standard

    NASA Astrophysics Data System (ADS)

    Schurr, J.; Kučera, J.; Pierz, K.; Kibble, B. P.

    2011-02-01

    Alternating current measurements of double-shielded quantum Hall devices have revealed a fascinating property of which only a quantum effect is capable: it can detect its own frequency dependence and convert it to a current dependence which can be used to eliminate both of them. According to an experimentally verified model, the residual frequency dependence is smaller than the measuring uncertainty of 1.3 × 10-9 kHz-1. In this way, a highly precise quantum standard of impedance can be established, without having to correct for any calculated frequency dependence and without the need for any artefact with a calculated frequency dependence. Nothing else like that is known to us and we hope that our results encourage other national metrology institutes to also apply it to impedance metrology and further explore its beautiful properties.

  1. FXR accelerator cavity impedance experiments

    SciTech Connect

    Avalle, C.A.

    1998-01-05

    One of the goals of the present Flash X-Ray (FXR) accelerator upgrade effort [1][2] at Lawrence Livermore National Laboratory (LLNL) is to reduce the cavity transverse impedance, since it has been shown that beam stability is significantly affected by this parameter [3]. Recently, we have evaluated various techniques and cell modifications to accomplish that, both through lab measurements and computer models. A spare cell, identical in every way to cells in the accelerator, was specially modified for the experiments. The impedance measurements were done without the beam, by applying twin-wire techniques. This report describes the results of these experiments and suggests possible cell modifications to improve their performance. The techniques and modifications which are suggested might also be applicable to AHF and DARHT-2 long-pulse accelerator development.

  2. Impedance based automatic electrode positioning.

    PubMed

    Miklody, Daniel; Hohne, Johannes

    2015-08-01

    The position of electrodes in electrical imaging and stimulation of the human brain is an important variable with vast influences on the precision in modeling approaches. Nevertheless, the exact position is obscured by many factors. 3-D Digitization devices can measure the distribution over the scalp surface but remain uncomfortable in application and often imprecise. We demonstrate a new approach that uses solely the impedance information between the electrodes to determine the geometric position. The algorithm involves multidimensional scaling to create a 3 dimensional space based on these impedances. The success is demonstrated in a simulation study. An average electrode position error of 1.67cm over all 6 subjects could be achieved. PMID:26736345

  3. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral...

  4. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of...

  5. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral...

  6. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of...

  7. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of...

  8. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of...

  9. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of...

  10. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral...

  11. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral...

  12. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral...

  13. Impedance analysis of acupuncture points and pathways

    NASA Astrophysics Data System (ADS)

    Teplan, Michal; Kukučka, Marek; Ondrejkovičová, Alena

    2011-12-01

    Investigation of impedance characteristics of acupuncture points from acoustic to radio frequency range is addressed. Discernment and localization of acupuncture points in initial single subject study was unsuccessfully attempted by impedance map technique. Vector impedance analyses determined possible resonant zones in MHz region.

  14. Frequency domain impedance measurements of erythrocytes. Constant phase angle impedance characteristics and a phase transition.

    PubMed Central

    Bao, J Z; Davis, C C; Schmukler, R E

    1992-01-01

    We report measurements of the electrical impedance of human erythrocytes in the frequency range from 1 Hz to 10 MHz, and for temperatures from 4 to 40 degrees C. In order to achieve high sensitivity in this frequency range, we embedded the cells in the pores of a filter, which constrains the current to pass through the cells in the pores. Based on the geometry of the cells embedded in the filter a circuit model is proposed for the cell-filter saline system. A constant phase angle (CPA) element, i.e., an impedance of the form Z = A/(j omega)alpha, where A is a constant, j = square root of -1, omega is angular frequency, and 0 less than alpha less than 1 has been used to describe the ac response of the interface between the cell surface and the electrolyte solution, i.e., the electrical double layer. The CPA and other elements of the circuit model are determined by a complex nonlinear least squares (CNLS) fit, which simultaneously fits the real and imaginary parts of the experimental data to the circuit model. The specific membrane capacitance is determined to be 0.901 +/- 0.036 microF/cm2, and the specific cytoplasm conductivity to be 0.413 +/- 0.031 S/m at 26 degrees C. The temperature dependence of the cytoplasm conductivity, membrane capacitance, and CPA element has been obtained. The membrane capacitance increases markedly at approximately 37 degrees C, which suggests a phase transition in the cell membrane. PMID:1600086

  15. Frequency domain impedance measurements of erythrocytes. Constant phase angle impedance characteristics and a phase transition.

    PubMed

    Bao, J Z; Davis, C C; Schmukler, R E

    1992-05-01

    We report measurements of the electrical impedance of human erythrocytes in the frequency range from 1 Hz to 10 MHz, and for temperatures from 4 to 40 degrees C. In order to achieve high sensitivity in this frequency range, we embedded the cells in the pores of a filter, which constrains the current to pass through the cells in the pores. Based on the geometry of the cells embedded in the filter a circuit model is proposed for the cell-filter saline system. A constant phase angle (CPA) element, i.e., an impedance of the form Z = A/(j omega)alpha, where A is a constant, j = square root of -1, omega is angular frequency, and 0 less than alpha less than 1 has been used to describe the ac response of the interface between the cell surface and the electrolyte solution, i.e., the electrical double layer. The CPA and other elements of the circuit model are determined by a complex nonlinear least squares (CNLS) fit, which simultaneously fits the real and imaginary parts of the experimental data to the circuit model. The specific membrane capacitance is determined to be 0.901 +/- 0.036 microF/cm2, and the specific cytoplasm conductivity to be 0.413 +/- 0.031 S/m at 26 degrees C. The temperature dependence of the cytoplasm conductivity, membrane capacitance, and CPA element has been obtained. The membrane capacitance increases markedly at approximately 37 degrees C, which suggests a phase transition in the cell membrane. PMID:1600086

  16. Constant current loop impedance measuring system that is immune to the effects of parasitic impedances

    NASA Technical Reports Server (NTRS)

    Anderson, Karl F. (Inventor)

    1994-01-01

    A constant current loop measuring system is provided for measuring a characteristic of an environment. The system comprises a first impedance positionable in the environment, a second impedance coupled in series with said first impedance and a parasitic impedance electrically coupled to the first and second impedances. A current generating device, electrically coupled in series with the first and second impedances, provides a constant current through the first and second impedances to produce first and second voltages across the first and second impedances, respectively, and a parasitic voltage across the parasitic impedance. A high impedance voltage measuring device measures a voltage difference between the first and second voltages independent of the parasitic voltage to produce a characteristic voltage representative of the characteristic of the environment.

  17. Impedance microflow cytometry for viability studies of microorganisms

    NASA Astrophysics Data System (ADS)

    Di Berardino, Marco; Hebeisen, Monika; Hessler, Thomas; Ziswiler, Adrian; Largiadèr, Stephanie; Schade, Grit

    2011-02-01

    Impedance-based Coulter counters and its derivatives are widely used cell analysis tools in many laboratories and use normally DC or low frequency AC to perform these electrical analyses. The emergence of micro-fabrication technologies in the last decade, however, provides a new means of measuring electrical properties of cells. Microfluidic approaches combined with impedance spectroscopy measurements in the radio frequency (RF) range increase sensitivity and information content and thus push single cell analyses beyond simple cell counting and sizing applications towards multiparametric cell characterization. Promising results have been shown already in the fields of cell differentiation and blood analysis. Here we emphasize the potential of this technology by presenting new data obtained from viability studies on microorganisms. Impedance measurements of several yeast and bacteria strains performed at frequencies around 10 MHz enable an easy discrimination between dead and viable cells. Moreover, cytotoxic effects of antibiotics and other reagents, as well as cell starvation can also be monitored easily. Control analyses performed with conventional flow cytometers using various fluorescent dyes (propidium iodide, oxonol) indicate a good correlation and further highlight the capability of this device. The label-free approach makes on the one hand the use of usually expensive fluorochromes obsolete, on the other hand practically eliminates laborious sample preparation procedures. Until now, online cell monitoring was limited to the determination of viable biomass, which provides rather poor information of a cell culture. Impedance microflow cytometry, besides other aspects, proposes a simple solution to these limitations and might become an important tool for bioprocess monitoring applications in the biotech industry.

  18. Electron density dependence of impedance probe plasma potential measurements

    SciTech Connect

    Walker, D. N.; Blackwell, D. D.; Amatucci, W. E.

    2015-08-15

    In earlier works, we used spheres of various sizes as impedance probes in demonstrating a method of determining plasma potential, φ{sub p}, when the probe radius is much larger than the Debye length, λ{sub D}. The basis of the method in those works [Walker et al., Phys. Plasmas 13, 032108 (2006); ibid. 15, 123506 (2008); ibid. 17, 113503 (2010)] relies on applying a small amplitude signal of fixed frequency to a probe in a plasma and, through network analyzer-based measurements, determining the complex reflection coefficient, Γ, for varying probe bias, V{sub b}. The frequency range of the applied signal is restricted to avoid sheath resonant effects and ion contributions such that ω{sub pi} ≪ ω ≪ ω{sub pe}, where ω{sub pi} is the ion plasma frequency and ω{sub pe} is the electron plasma frequency. For a given frequency and applied bias, both Re(Z{sub ac}) and Im(Z{sub ac}) are available from Γ. When Re(Z{sub ac}) is plotted versus V{sub b}, a minimum predicted by theory occurs at φ{sub p} [Walker et al., Phys. Plasmas 17, 113503 (2010)]. In addition, Im(Z{sub ac}) appears at, or very near, a maximum at φ{sub p}. As n{sub e} decreases and the sheath expands, the minimum becomes harder to discern. The purpose of this work is to demonstrate that when using network analyzer-based measurements, Γ itself and Im(Z{sub ac}) and their derivatives are useful as accompanying indicators to Re(Z{sub ac}) in these difficult cases. We note the difficulties encountered by the most commonly used plasma diagnostic, the Langmuir probe. Spherical probe data is mainly used in this work, although we present limited data for a cylinder and a disk. To demonstrate the effect of lowered density as a function of probe geometry, we compare the cylinder and disk using only the indicator Re(Z{sub ac})

  19. Joint Impedance Decreases during Movement Initiation

    PubMed Central

    Ludvig, Daniel; Antos, Stephen A.; Perreault, Eric J.

    2013-01-01

    The mechanical properties of the joint influence how we interact with our environment and hence are important in the control of both posture and movement. Many studies have investigated how the mechanical properties—specifically the impedance—of different joints vary with different postural tasks. However, studies on how joint impedance varies with movement remain limited. The few studies that have investigated how impedance varies with movement have found that impedance is lower during movement than during posture. In this study we investigated how impedance changed as people transitioned from a postural task to a movement task. We found that subjects’ joint impedances decreased at the initiation of movement, prior to increasing at the cessation of movement. This decrease in impedance occurred even though the subjects’ torque and EMG levels increased. These findings suggest that during movement the central nervous system may control joint impedance independently of muscle activation. PMID:23366632

  20. Storm Spectra

    NASA Technical Reports Server (NTRS)

    2007-01-01

    portion is defined by the day/night boundary (known as the terminator).

    These two images illustrate only a small fraction of the information contained in a single LEISA scan, highlighting just one aspect of the power of infrared spectra for atmospheric studies.

  1. Electrical Impedance Spectroscopy for Electro-Mechanical Characterization of Conductive Fabrics

    PubMed Central

    Bera, Tushar Kanti; Mohamadou, Youssoufa; Lee, Kyounghun; Wi, Hun; Oh, Tong In; Woo, Eung Je; Soleimani, Manuchehr; Seo, Jin Keun

    2014-01-01

    When we use a conductive fabric as a pressure sensor, it is necessary to quantitatively understand its electromechanical property related with the applied pressure. We investigated electromechanical properties of three different conductive fabrics using the electrical impedance spectroscopy (EIS). We found that their electrical impedance spectra depend not only on the electrical properties of the conductive yarns, but also on their weaving structures. When we apply a mechanical tension or compression, there occur structural deformations in the conductive fabrics altering their apparent electrical impedance spectra. For a stretchable conductive fabric, the impedance magnitude increased or decreased under tension or compression, respectively. For an almost non-stretchable conductive fabric, both tension and compression resulted in decreased impedance values since the applied tension failed to elongate the fabric. To measure both tension and compression separately, it is desirable to use a stretchable conductive fabric. For any conductive fabric chosen as a pressure-sensing material, its resistivity under no loading conditions must be carefully chosen since it determines a measurable range of the impedance values subject to different amounts of loadings. We suggest the EIS method to characterize the electromechanical property of a conductive fabric in designing a thin and flexible fabric pressure sensor. PMID:24892493

  2. Non-destructive determination of impedance spectrum of fruit flesh under the skin

    NASA Astrophysics Data System (ADS)

    Vozáry, E.; Benkó, P.

    2010-04-01

    Impedance spectrum of fresh (intact) apples and of artificially bruised (pressed) apples was determined on the surface of skin with ECG electrodes (Fiab Spa). The magnitude and the phase angle of impedance were measured with a HP 4284A precision LCR meter. The open-short corrected spectra were approached a model consisting of serial resultant of an ohmic resistance and three distributed elements. Approach was performed with complex nonlinear least squares method by MathLab program. Variance analysis was performed (P<0.05) on impedance parameters (SPSS 12.0 for Windows). Parameters of the first distributed element can describe the impedance of apple skin, and parameters of the second and the third element can characterize the impedance of apple flesh. Parameters of the second and the third element are in good agreement with impedance parameters obtained from spectra measured directly on apple flesh without skin. The value of parameters resulted from measurement on apples with skin are sensitive to the degree of artificial bruises.

  3. Local impedance imaging of boron-doped polycrystalline diamond thin films

    SciTech Connect

    Zieliński, A.; Ryl, J.; Burczyk, L.; Darowicki, K.

    2014-09-29

    Local impedance imaging (LII) was used to visualise surficial deviations of AC impedances in polycrystalline boron-doped diamond (BDD). The BDD thin film electrodes were deposited onto the highly doped silicon substrates via microwave plasma-enhanced CVD. The studied boron dopant concentrations, controlled by the [B]/[C] ratio in plasma, ranged from 1 × 10{sup 16} to 2 × 10{sup 21} atoms cm{sup −3}. The BDD films displayed microcrystalline structure, while the average size of crystallites decreased from 1 to 0.7 μm with increasing [B]/[C] ratios. The application of LII enabled a direct and high-resolution investigation of local distribution of impedance characteristics within the individual grains of BDD. Such an approach resulted in greater understanding of the microstructural control of properties at the grain level. We propose that the obtained surficial variation of impedance is correlated to the areas of high conductance which have been observed at the grain boundaries by using LII. We also postulate that the origin of high conductivity is due to either preferential boron accumulation, the presence of defects, or sp{sup 2} regions in the intragrain regions. The impedance modulus recorded by LII was in full agreement with the bulk impedance measurements. Both variables showed a decreasing trend with increasing [B]/[C] ratios, which is consistent with higher boron incorporation into BDD film.

  4. Rapid Impedance Spectrum Measurements for State-of-Health Assessment of Energy Storage Devices

    SciTech Connect

    Jon P. Christophersen; John L. Morrison; Chester G. Motloch; William H. Morrison

    2012-04-01

    Harmonic compensated synchronous detection (HCSD) is a technique that can be used to measure wideband impedance spectra within seconds based on an input sum-of-sines signal having a frequency spread separated by harmonics. The battery (or other energy storage device) is excited with a sum-of-sines current signal that has a duration of at least one period of the lowest frequency. The voltage response is then captured and synchronously detected at each frequency of interest to determine the impedance spectra. This technique was successfully simulated using a simplified battery model and then verified with commercially available Sanyo lithium-ion cells. Simulations revealed the presence of a start-up transient effect when only one period of the lowest frequency is included in the excitation signal. This transient effect appears to only influence the low-frequency impedance measurements and can be reduced when a longer input signal is used. Furthermore, lithium-ion cell testing has indicated that the transient effect does not seem to impact the charge transfer resistance in the mid-frequency region. The degradation rates for the charge transfer resistance measured from the HCSD technique were very similar to the changes observed from standardized impedance spectroscopy methods. Results from these studies, therefore, indicate that HCSD is a viable, rapid alternative approach to acquiring impedance spectra.

  5. AC magnetohydrodynamic microfluidic switch

    SciTech Connect

    Lemoff, A V; Lee, A P

    2000-03-02

    A microfluidic switch has been demonstrated using an AC Magnetohydrodynamic (MHD) pumping mechanism in which the Lorentz force is used to pump an electrolytic solution. By integrating two AC MHD pumps into different arms of a Y-shaped fluidic circuit, flow can be switched between the two arms. This type of switch can be used to produce complex fluidic routing, which may have multiple applications in {micro}TAS.

  6. ACS Symposium Support

    SciTech Connect

    Kenneth D. Jordan

    2010-02-20

    The funds from this DOE grant were used to help cover the travel costs of five students and postdoctoral fellows who attended a symposium on 'Hydration: From Clusters to Aqueous Solutions' held at the Fall 2007 American Chemical Society Meeting in Boston, MA, August 19-23. The Symposium was sponsored by the Physical Chemistry Division, ACS. The technical program for the meeting is available at http://phys-acs.org/fall2007.html.

  7. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba

    2002-08-30

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a thin film sensor conformal with the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is capacitively coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD

  8. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba; Christopher J. Ziolkowski

    2004-10-29

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or non-metallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  9. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba

    2004-05-03

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  10. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba

    2004-02-01

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  11. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba; Christopher J. Ziolkowski

    2005-01-17

    This project aimed at developing a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GTI. GTI proposed to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or non-metallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment

  12. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba

    2003-10-01

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  13. Bilateral Impedance Control For Telemanipulators

    NASA Technical Reports Server (NTRS)

    Moore, Christopher L.

    1993-01-01

    Telemanipulator system includes master robot manipulated by human operator, and slave robot performing tasks at remote location. Two robots electronically coupled so slave robot moves in response to commands from master robot. Teleoperation greatly enhanced if forces acting on slave robot fed back to operator, giving operator feeling he or she manipulates remote environment directly. Main advantage of bilateral impedance control: enables arbitrary specification of desired performance characteristics for telemanipulator system. Relationship between force and position modulated at both ends of system to suit requirements of task.

  14. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba; Christopher J. Ziolkowski

    2004-06-30

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  15. Impedance spectroscopy of food mycotoxins

    NASA Astrophysics Data System (ADS)

    Bilyy, Oleksandr I.; Yaremyk, Roman Ya.; Kotsyumbas, Ihor Ya.; Kotsyumbas, Halyna I.

    2012-01-01

    A new analytical method of high-selective detection of mycotoxins in food and feed are considered. A method is based on optical registration the changes of conduct of the electric polarized bacterial agents in solution at the action of the external gradient electric fields. Measuring are conducted in integrated electrode-optical cuvette of the special construction, which provides the photometric analysis of forward motion of the objects registration in liquid solution under act of the enclosed electric field and simultaneous registration of kinetics of change of electrical impedance parameters solution and electrode system.

  16. Four-electrode impedance spectrometer for investigation of solid ion conductors.

    PubMed

    Kežionis, A; Butvilas, P; Šalkus, T; Kazlauskas, S; Petrulionis, D; Žukauskas, T; Kazakevičius, E; Orliukas, A F

    2013-01-01

    An impedance spectrometer capable of accurately measuring solid ion conducting sample impedance spectra by two- or four-electrode methods in either time or frequency domain has been built. The four-electrode measurement mode is implemented by constructing a differential amplifier with a very high input impedance and common mode rejection ratio over a wide frequency range. All of the measurements can be performed in frequencies ranging from 10 Hz to 2 MHz and sample temperatures up to 800 K. The working principle of the spectrometer as well as its technical parameters and accuracy estimation are presented in this paper. The advantage of four-electrode over two-electrode measurement mode is shown by an example of Ce(0.9)Gd(0.1)O(1.95) solid electrolyte ceramic impedance measurements. PMID:23387663

  17. Four-electrode impedance spectrometer for investigation of solid ion conductors

    NASA Astrophysics Data System (ADS)

    Kežionis, A.; Butvilas, P.; Šalkus, T.; Kazlauskas, S.; Petrulionis, D.; Žukauskas, T.; Kazakevičius, E.; Orliukas, A. F.

    2013-01-01

    An impedance spectrometer capable of accurately measuring solid ion conducting sample impedance spectra by two- or four-electrode methods in either time or frequency domain has been built. The four-electrode measurement mode is implemented by constructing a differential amplifier with a very high input impedance and common mode rejection ratio over a wide frequency range. All of the measurements can be performed in frequencies ranging from 10 Hz to 2 MHz and sample temperatures up to 800 K. The working principle of the spectrometer as well as its technical parameters and accuracy estimation are presented in this paper. The advantage of four-electrode over two-electrode measurement mode is shown by an example of Ce0.9Gd0.1O1.95 solid electrolyte ceramic impedance measurements.

  18. Analysis of the transverse SPS beam coupling impedance with short and long bunches

    SciTech Connect

    Salvant,B.; Calaga, R.; de Maria, R.; Arduini, G.; Burkhardt, H.; Damerau, H.; Hofle, W.; Metral, E.; Papotti, G.; Rumolo, G.; Tomas, R.; White, S.

    2009-05-04

    The upgrade of the CERN Large Hadron Collider (LHC) would require a four- to five-fold increase of the single bunch intensity presently obtained in the Super Proton Synchrotron (SPS). Operating at such high single bunch intensities requires a detailed knowledge of the sources of SPS beam coupling impedance, so that longitudinal and transverse impedance reduction campaigns can be planned and performed effectively if needed. In this paper, the transverse impedance of the SPS is studied by injecting a single long bunch into the SPS, and observing its decay without RF. Longer bunches allow for higher frequency resolution of the longitudinal and transverse bunch spectra acquired with strip line couplers connected to a fast data acquisition. It also gives access to the frequency content of the transverse impedance. Results from measurements with short and long bunches in the SPS performed in 2008 are compared with simulations.

  19. Impedance spectroscopy investigation of electrophysical characteristics of the electrode-liquid crystal interface

    NASA Astrophysics Data System (ADS)

    Belyaev, B. A.; Drokin, N. A.

    2015-01-01

    The behavior of frequency dependences of the impedance of a capacitive measuring cell with a liquid crystal has been investigated in the frequency range from 10-1 to 105 Hz. A method for determining electrophysical characteristics of the liquid crystal in the bulk and at the liquid crystal-metal electrode interface has been proposed and tested for liquid crystals of the alkyl cyanobiphenyl series, which are doped with ionic surfactants. The method is based on the use of an equivalent electrical circuit, which makes it possible to approximate the impedance spectra with the required accuracy, and also on the determination of the frequency at the singular point in the impedance spectra, at which the reactive component of the electric current flowing through the liquid-crystal cell is negligible compared to the active component.

  20. Equivalent Electrical Circuit Representations of AC Quantized Hall Resistance Standards

    PubMed Central

    Cage, M. E.; Jeffery, A.; Matthews, J.

    1999-01-01

    We use equivalent electrical circuits to analyze the effects of large parasitic impedances existing in all sample probes on four-terminal-pair measurements of the ac quantized Hall resistance RH. The circuit components include the externally measurable parasitic capacitances, inductances, lead resistances, and leakage resistances of ac quantized Hall resistance standards, as well as components that represent the electrical characteristics of the quantum Hall effect device (QHE). Two kinds of electrical circuit connections to the QHE are described and considered: single-series “offset” and quadruple-series. (We eliminated other connections in earlier analyses because they did not provide the desired accuracy with all sample probe leads attached at the device.) Exact, but complicated, algebraic equations are derived for the currents and measured quantized Hall voltages for these two circuits. Only the quadruple-series connection circuit meets our desired goal of measuring RH for both ac and dc currents with a one-standard-deviation uncertainty of 10−8 RH or less during the same cool-down with all leads attached at the device. The single-series “offset” connection circuit meets our other desired goal of also measuring the longitudinal resistance Rx for both ac and dc currents during that same cool-down. We will use these predictions to apply small measurable corrections, and uncertainties of the corrections, to ac measurements of RH in order to realize an intrinsic ac quantized Hall resistance standard of 10−8 RH uncertainty or less.

  1. Superconducting shielded core reactor with reduced AC losses

    DOEpatents

    Cha, Yung S.; Hull, John R.

    2006-04-04

    A superconducting shielded core reactor (SSCR) operates as a passive device for limiting excessive AC current in a circuit operating at a high power level under a fault condition such as shorting. The SSCR includes a ferromagnetic core which may be either closed or open (with an air gap) and extends into and through a superconducting tube or superconducting rings arranged in a stacked array. First and second series connected copper coils each disposed about a portion of the iron core are connected to the circuit to be protected and are respectively wound inside and outside of the superconducting tube or rings. A large impedance is inserted into the circuit by the core when the shielding capability of the superconducting arrangement is exceeded by the applied magnetic field generated by the two coils under a fault condition to limit the AC current in the circuit. The proposed SSCR also affords reduced AC loss compared to conventional SSCRs under continuous normal operation.

  2. Analysis of ac Surface Photovoltages in Accumulation Region

    NASA Astrophysics Data System (ADS)

    Munakata, Chusuke

    1988-05-01

    Equations for ac surface photovoltages (SPVs) excited with a chopped photon beam (PB) in the accumulation region are proposed for such semiconductors as silicon and germanium. Following the previously reported half-sided junction model for the depleted or inverted region, equations for photocurrent density and surface impedance per unit area have been newly deduced. When the surface potential is highly negative in p-type semiconductors, the maximum ac SPV in the accumulation region is limited by the conductance due to majority carrier diffusion flow. This is compared with the strong inversion region, where the mathematically maximum SPV depends upon the minority carrier diffusion flow. The voltage ratio between the two maximum ac SPVs is the same as that previously reported using the different models for dc SPVs excited with a continuous PB.

  3. Spheromak Impedance and Current Amplification

    SciTech Connect

    Fowler, T K; Hua, D D; Stallard, B W

    2002-01-31

    It is shown that high current amplification can be achieved only by injecting helicity on the timescale for reconnection, {tau}{sub REC}, which determines the effective impedance of the spheromak. An approximate equation for current amplification is: dI{sub TOR}{sup 2}/dt {approx} I{sup 2}/{tau}{sub REC} - I{sub TOR}{sup 2}/{tau}{sub closed} where I is the gun current, I{sub TOR} is the spheromak toroidal current and {tau}{sub CLOSED} is the ohmic decay time of the spheromak. Achieving high current amplification, I{sub TOR} >> I, requires {tau}{sub REC} <<{tau}{sub CLOSED}. For resistive reconnection, this requires reconnection in a cold zone feeding helicity into a hot zone. Here we propose an impedance model based on these ideas in a form that can be implemented in the Corsica-based helicity transport code. The most important feature of the model is the possibility that {tau}{sub REC} actually increases as the spheromak temperature increases, perhaps accounting for the ''voltage sag'' observed in some experiments, and a tendency toward a constant ratio of field to current, B {proportional_to} I, or I{sub TOR} {approx} I. Program implications are discussed.

  4. A Comparative Study of Four Impedance Eduction Methodologies Using Several Test Liners

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.

    2013-01-01

    A comparative study of four commonly used impedance eduction methods is presented for a range of liner structures and test conditions. Two of the methods are restricted to uniform flow while the other two accommodate both uniform and boundary layer flows. Measurements on five liner structures (a rigid-wall insert, a ceramic tubular liner, a wire mesh liner, a low porosity conventional liner, and a high porosity conventional liner) are obtained using the NASA Langley Grazing Flow Impedance Tube. The educed impedance of each liner is presented for forty-two test conditions (three Mach numbers and fourteen frequencies). In addition, the effects of moving the acoustic source from upstream to downstream and the refractive effects of the mean boundary layer on the wire mesh liner are investigated. The primary conclusions of the study are that: (1) more accurate results are obtained for the upstream source, (2) the uniform flow methods produce nearly identical impedance spectra at and below Mach 0.3 but significant scatter in the educed impedance occurs at the higher Mach number, (3) there is better agreement in educed impedance among the methods for the conventional liners than for the rigid-wall insert, ceramic, or wire mesh liner, and (4) the refractive effects of the mean boundary layer on the educed impedance of the wire mesh liner are generally small except at Mach 0.5.

  5. Noninvasive electrical impedance sensor for in vivo tissue discrimination at radio frequencies.

    PubMed

    Dai, Yu; Du, Jun; Yang, Qing; Zhang, Jianxun

    2014-09-01

    Compared to traditional open surgery, minimally invasive surgery (MIS) allows for a more rapid and less painful recovery. However, the lack of significant haptic feedback in MIS can make tissue discrimination difficult. This paper tests a noninvasive electrical impedance sensor for in vivo discrimination of tissue types in MIS. The sensor consists of two stainless steel spherical electrodes used to measure the impedance spectra over the frequency range of 200 kHz to 5 MHz. The sensor helps ensure free movement on an organ surface and prevents soft tissues from being injured during impedance measurement. Since the recorded electrical impedance is correlated with the force pressed on the electrode and the mechanical property of the tissue, the electrode-tissue contact impedance is calculated theoretically. We show that the standard deviation of the impedance ratio at each frequency point is sufficient to distinguish different tissue types. Both in vitro experiment in a pig kidney and in vivo experiment in rabbit organs were performed to demonstrate the feasibility of the electrical impedance sensor. The experimental results indicated that the sensor, used with the proposed data-processing method, provides accurate and reliable biological tissue discrimination. PMID:24764269

  6. Bioelectrical impedance analysis as a laboratory activity: At the interface of physics and the body

    NASA Astrophysics Data System (ADS)

    Mylott, Elliot; Kutschera, Ellynne; Widenhorn, Ralf

    2014-05-01

    We present a novel laboratory activity on RC circuits aimed at introductory physics students in life-science majors. The activity teaches principles of RC circuits by connecting ac-circuit concepts to bioelectrical impedance analysis (BIA) using a custom-designed educational BIA device. The activity shows how a BIA device works and how current, voltage, and impedance measurements relate to bioelectrical characteristics of the human body. From this, useful observations can be made including body water, fat-free mass, and body fat percentage. The laboratory is engaging to pre-health and life-science students, as well as engineering students who are given the opportunity to observe electrical components and construction of a commonly used biomedical device. Electrical concepts investigated include alternating current, electrical potential, resistance, capacitance, impedance, frequency, phase shift, device design, and the use of such topics in biomedical analysis.

  7. Electrochemical impedance spectroscopy of metal alloys in the space transportation system launch environment

    NASA Technical Reports Server (NTRS)

    Calle, Luz

    1990-01-01

    AC impedance measurements were performed to investigate the corrosion resistance of 18 alloys under conditions similar to the Space Transportation System (STS) launch environment. The alloys were: (1) zirconium 702; (2) Hastelloy C-22, C-276, C-4, and B-2; (3) Inconel 600 and 825; (4) Ferralium 255; (5) Inco Alloy G-3; (6) 20Cb-3; (7) SS 904L, 304LN, 316L, 317L, and 304L; (8) ES 2205; and (9) Monel 400. AC impedance data were gathered for each alloy at various immersion times in 3.55 percent NaCl-0.1N HCl. Polarization resistance values were obtained for the Nyguist plots at each immersion time using the EQUIVALENT CIRCUIT software package available with the 388 electrochemical impedance software. Hastelloy C-22 showed the highest overall values for polarization resistance while Monel 400 and Inconel 600 had the lowest overall values. There was good general correlation between the corrosion performance of the alloys at the beach corrosion testing site, and the expected rate of corrosion as predicted based on the polarization resistance values obtained. The data indicate that electrochemical impedance spectroscopy can be used to predict the corrosion performance of metal alloys.

  8. Impedance studies on Li-ion cathodes

    SciTech Connect

    NAGASUBRAMANIAN, GANESAN

    2000-04-17

    This paper describes the author's 2- and 3-electrode impedance results of metal oxide cathodes. These results were extracted from impedance data on 18650 Li-ion cells. The impedance results indicate that the ohmic resistance of the cell is very nearly constant with state-of-charge (SOC) and temperature. For example, the ohmic resistance of 18650 Li-ion cells is around 60 m{Omega} for different SOCS (4.1V to 3.0V) and temperatures from 35 C to {minus}20 C. However, the interfacial impedance shows a modest increase with SOC and a huge increase of between 10 and 100 times with decreasing temperature. For example, in the temperature regime (35 C down to {minus}20 C) the overall cell impedance has increased from nearly 200 m{Omega} to 8,000 m{Omega}. Most of the increase in cell impedance comes from the metal oxide cathode/electrolyte interface.

  9. TRANSVERSE IMPEDANCE MEASUREMENT AT THE RHIC.

    SciTech Connect

    ZHANG,S.Y.; HUANG,H.; CAMERON,P.; DREES,A.; FLILLER,R.; SATOGATA,T.

    2002-06-02

    The RHIC transverse impedance was measured during the last operation run. Measurement of the imaginary part of the broadband impedance was the main goal. No large difference between the two rings was found nor in either plane. The measured tune shift is larger than the expected by a factor of 2.5 to 3. Several other issues such as the real part impedance measurement are also presented.

  10. Adaptive Impedance Control Of Redundant Manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun; Colbaugh, Richard D.; Glass, Kristin L.

    1994-01-01

    Improved method of controlling mechanical impedance of end effector of redundant robotic manipulator based on adaptive-control theory. Consists of two subsystems: adaptive impedance controller generating force-control inputs in Cartesian space of end effector to provide desired end-effector-impedance characteristics, and subsystem implementing algorithm that maps force-control inputs into torques applied to joints of manipulator. Accurate control of end effector and effective utilization of redundancy achieved simultaneously by use of method. Potential use to improve performance of such typical impedance-control tasks as deburring edges and accommodating transitions between unconstrained and constrained motions of end effectors.

  11. Inhomogeneous superconductor in an a.c. field: Application to the pseudogap region

    SciTech Connect

    Ovchinnikov, Yu.N.; Kresin, V.Z.

    2002-02-01

    The behavior of an inhomogeneous superconductor in an external a.c. field is studied. General equations describing the a.c. response are formulated. Special attention is paid to the case of a layered conductor containing superconducting ''islands''. A system of this type displays ''pseudogap'' properties. The surface impedance Z is evaluated. It is shown that the ReZ {ne} |ImZ| and their difference {Delta}Z {proportional_to} {omega}{sup -1/2}, {omega} is the frequency of the a.c. field.

  12. Electrical Impedance Tomography of Electrolysis

    PubMed Central

    Meir, Arie; Rubinsky, Boris

    2015-01-01

    The primary goal of this study is to explore the hypothesis that changes in pH during electrolysis can be detected with Electrical Impedance Tomography (EIT). The study has relevance to real time control of minimally invasive surgery with electrolytic ablation. To investigate the hypothesis, we compare EIT reconstructed images to optical images acquired using pH-sensitive dyes embedded in a physiological saline agar gel phantom treated with electrolysis. We further demonstrate the biological relevance of our work using a bacterial E.Coli model, grown on the phantom. The results demonstrate the ability of EIT to image pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E.coli model. The results are promising, and invite further experimental explorations. PMID:26039686

  13. Impedance Spectroscopy of Human Blood

    NASA Astrophysics Data System (ADS)

    Mesa, Francisco; Bernal, José J.; Sosa, Modesto A.; Villagómez, Julio C.; Palomares, Pascual

    2004-09-01

    The blood is one of the corporal fluids more used with analytical purposes. When the blood is extracted, immediately it is affected by agents that act on it, producing transformations in its elements. Among the effects of these transformations the hemolysis phenomenon stands out, which consists of the membrane rupture and possible death of the red blood cells. The main purpose of this investigation was the quantification of this phenomenon. A Solartron SI-1260 Impedance Spectrometer was used, which covers a frequency range of work from 1 μHz to 10 MHz, and its accuracy has been tested in the accomplishment of several applications. Measurements were performed on 3 mL human blood samples, from healthy donors. Reactive strips for sugar test of 2 μL, from Bayer, were used as electrodes, which allow gathering a portion of the sample, to be analyzed by the spectrometer. Preliminary results of these measurements are presented.

  14. Tevatron AC dipole system

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is an oscillating dipole magnet which can induce large amplitude oscillations without the emittance growth and decoherence. These properties make it a good tool to measure optics of a hadron synchrotron. The vertical AC dipole for the Tevatron is powered by an inexpensive high power audio amplifier since its operating frequency is approximately 20 kHz. The magnet is incorporated into a parallel resonant system to maximize the current. The use of a vertical pinger magnet which has been installed in the Tevatron made the cost relatively inexpensive. Recently, the initial system was upgraded with a more powerful amplifier and oscillation amplitudes up to 2-3{sigma} were achieved with the 980 GeV proton beam. This paper discusses details of the Tevatron AC dipole system and also shows its test results.

  15. Improvement of impedance spectroscopy methods: resonance analysis of samples

    NASA Astrophysics Data System (ADS)

    Balmus, Sorin-Bogdan; Ciomaga, Cristina E.; Horchidan, Nadejda; Mitoseriu, Liliana; Dumitru, Ioan

    2015-06-01

    An impedance spectroscopy method, using an Agilent E4991A RF Impedance/Material Analyzer, was employed for the investigation of radiofrequency and microwave dielectric characteristics for some ceramic materials with high dielectric permittivity. Experimental observations recorded single, double and even triple resonances in the permittivity spectra, while for the selected samples significantly different values of permittivity from the ones found in existing literature were directly measured and observed in the frequency range of 100 MHz-1 GHz. The specified material analyzer is designed to work within certain permittivity-frequency domains; working outside these limits leads to significant errors when carrying out direct measurements of permittivity. Having observed that the resonance measurements are not associated with the intrinsic material properties but with the sample resonances, we proposed a dielectric resonance cavity model for sample purposes and we determined the dielectric permittivity at different resonance frequencies. A scaling procedure, based on the computed values of permittivity, was applied in order to correct the directly measured permittivity spectra where the frequency was outside the resonance domains. The corrected data are in good agreement with those measured using other techniques and suggest that the proposed procedure extends the spectroscopy method currently used for high permittivity measurements. The sources of error for the proposed method were investigated.

  16. RF discharge impedance measurements using a new method to determine the stray impedances

    SciTech Connect

    Bakker, L.P.; Kroesen, G.M.W.; Hoog, F.J. de )

    1999-06-01

    The impedance of a capacitively coupled radio frequency discharge in a tubular fluorescent lamp filled with neon and mercury is measured. The stray impedances in the electrical network are determined using a new method that requires no extra instruments. The reflection of power is used to determine the stray impedances. Making use of a simple discharge impedance model, the electron density in the lamp is estimated.

  17. ac bidirectional motor controller

    NASA Technical Reports Server (NTRS)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  18. Studies of deionization and impedance spectroscopy for blood analyzer

    NASA Astrophysics Data System (ADS)

    Kwong, Charlotte C.; Li, Nan; Ho, Chih-Ming

    2005-11-01

    Blood analysis provides vital information for health conditions. For instance, typical infection response is correlated to an elevated White Blood Cell (WBC) count, while low Red Blood Cell (RBC) count, hemoglobin and hematocrit are caused by anemia or internal bleeding. We are developing two essential modules, deionization (DI) chip and microfluidic cytometer with impedance spectroscopy flow, for enabling the realization of a single platform miniaturized blood analyzer. In the proposed analyzer, blood cells are preliminarily sorted by Dielectrophoretic (DEP) means into sub-groups, differentiated and counted by impedance spectroscopy in a flow cytometer. DEP techniques have been demonstrated to stretch DNA, align Carbon Nanotubes (CNT) and trap cells successfully. However, DEP manipulation does not function in biological media with high conductivity. The DI module is designed to account for this challenge. H Filter will serve as an ion extraction platform in a microchamber. Sample and buffer do not mix well in micro scale allowing the ions being extracted by diffusion without increasing the volume. This can keep the downstream processing time short. Micro scale hydrodynamic focusing is employed to place single cell passing along the central plane of the flow cytometer module. By applying an AC electrical field, suspended cells are polarized, membrane capacitance C m, cytoplasm conductivity σ c, and cytoplasm permittivity ɛ c will vary as functions of frequency. Tracing back the monitored current, the numbers of individual cell species can be evaluated.

  19. Volume dependence of respiratory impedance in infants.

    PubMed

    Peták, F; Hayden, M J; Hantos, Z; Sly, P D

    1997-10-01

    We previously studied low-frequency respiratory impedance (Zrs) data at an elevated lung volume to separate airway and tissue mechanical properties in normal infants (Am. I. Respir. Crit. Care Med. 1996; 154:161-166). The aim of the present study was to determine the volume dependence of the airway and tissue mechanics by extending Zrs measurements to lower lung volumes. Zrs spectra between 0.5 and 21 Hz were measured in supine sleeping infants (n = 8; 7 to 26 mo of age) at mean transrespiratory pressures (Ptr[mean]) of 20, 10, and 0 cm H2O, during periods of apnea induced by inflating the infants' lungs to a pressure of 20 cm H2O through a face mask. At each inflation pressure, a model containing airway resistance (Raw) and inertance (law) and tissue damping (G) and elastance (H) was fitted to Zrs data. At FRC, the values of Raw, law, G, and H were 20.6+/-4.9 (SD) cm H2O x s/L, 0.037+/-0.014 cm H2O x s2/L, 39.6+/-10.3 cm H2O/L, and 147+/-35 cm H2O/L, respectively. Increase of Ptr(mean) caused a monotonous decrease in Raw (42+/-7% of the value at FRC), while law remained constant. The tissue parameters were minimal at a Ptr(mean) of 10 cm H2O (68+/-10% and 78+/-6% in G and H, respectively) and significantly higher at both 0 and 20 cm H2O. Although Zrs measurements can be made in most infants at lung volumes as low as FRC, an inflation pressure of 20 cm H2O provides a higher success rate and is therefore a more suitable condition for general use. PMID:9351618

  20. Alternating current impedance imaging of high-resistance membrane pores using a scanning electrochemical microscope. Application of membrane electrical shunts to increase measurement sensitivity and image contrast.

    PubMed

    Ervin, Eric Nathan; White, Henry S; Baker, Lane A; Martin, Charles R

    2006-09-15

    Whether an individual pore in a porous membrane can be imaged using scanning electrochemical microscopy (SECM), operated in ac impedance mode, is determined by the magnitude of the change in the total impedance of the imaging system as the SECM tip is scanned over the pore. In instances when the SECM tip resistance is small relative to the internal pore resistance, the total impedance changes by a negligible amount, rendering the pore invisible during impedance imaging. A simple solution to this problem is to introduce a low-impedance electrical shunt (i.e., a salt bridge) across the membrane. This principle is demonstrated by imaging polycarbonate membranes (6-12-microm thickness) containing between 1 and 2000 conical-shaped pores (60-nm- and 2.5-microm-diameter openings) using an approximately 1-microm-radius Pt tip. Theory and experiments show that image contrast (the change in ac current measured as the probe is scanned over the pore) is inversely proportional to the total resistance of the membrane and can be increased by a factor of approximately 50x by introducing a low-resistance electrical shunt across the membrane. Remarkably, SECM images of membranes containing a single high-resistance (approximately 1 G Omega) pore can only be imaged by short-circuiting the membrane. Image contrast also becomes independent of membrane resistance when an electrical shunt is used, allowing for more quantitative comparisons of the features in ac impedance images of different membranes. PMID:16970331

  1. An Analysis of Electrical Impedance Measurements Applied for Plant N Status Estimation in Lettuce (Lactuca sativa)

    PubMed Central

    Muñoz-Huerta, Rafael F.; de J. Ortiz-Melendez, Antonio; Guevara-Gonzalez, Ramon G.; Torres-Pacheco, Irineo; Herrera-Ruiz, Gilberto; Contreras-Medina, Luis M.; Prado-Olivarez, Juan; Ocampo-Velazquez, Rosalia V.

    2014-01-01

    Nitrogen plays a key role in crop yields. Hence, farmers may apply excessive N fertilizers to crop fields, inducing environmental pollution. Crop N monitoring methods have been developed to improve N fertilizer management, most of them based on leaf or canopy optical-property measurements. However, sensitivity to environmental interference remains an important drawback. Electrical impedance has been applied to determine the physiological and nutritional status of plant tissue, but no studies related to plant-N contents are reported. The objective of this article is to analyze how the electrical impedance response of plants is affected by their N status. Four sets of lettuce (Lactuca sativa L.) with a different N-source concentrations per set were used. Total nitrogen and electrical impedance spectra (in a 1 to 100 kHz frequency range) were measured five times per set, three times every other day. Minimum phase angles of impedance spectra were detected and analyzed, together with the frequency value in which they occurred, and their magnitude at that frequency. High and positive correlation was observed between plant N content and frequency values at minimum phase angle with no significant variations detected between days of measurement. These results suggest that electrical impedance can be sensitive to plant N status. PMID:25057134

  2. Far-infrared embedding impedance measurements

    NASA Technical Reports Server (NTRS)

    Neikirk, D. P.; Rutledge, D. B.

    1984-01-01

    A technique which allows the measurement of detector embedding impedance has been developed. By using a bismuth microbolometer as a variable resistance load the impedance of one element in a bow-tie antenna array operating at 94 GHz was inferred. The technique is frequency insensitive, and could be used throughout the far-infrared.

  3. How good is the impedance boundary condition?

    NASA Technical Reports Server (NTRS)

    Lee, Shung-Wu; Gee, W.

    1987-01-01

    The impedance boundary condition (IBC) is often used in scattering problems involving material-coated conducting bodies. It is shown that for some commonly encountered coating configurations, the value of the impedance varies significantly as functions of the incident angle and polarization. Hence, the use of IBC in a rigorously formulated problem may affect the accuracy of the final solution.

  4. FDTD modeling of thin impedance sheets

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. In this paper it is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods.

  5. Esophageal Impedance Monitoring: Clinical Pearls and Pitfalls.

    PubMed

    Ravi, Karthik; Katzka, David A

    2016-09-01

    The development of intraluminal esophageal impedance monitoring has improved our ability to detect and measure gastroesophageal reflux without dependence on acid content. This ability to detect previously unrecognized weak or nonacid reflux episodes has had important clinical implications in the diagnosis and management of gastroesophageal reflux disease (GERD). In addition, with the ability to assess bolus transit within the esophageal lumen, impedance monitoring has enhanced the recognition and characterization of esophageal motility disorders in patients with nonobstructive dysphagia. The assessment of the intraluminal movement of gas and liquid has also been proven to be of diagnostic value in conditions such as rumination syndrome and excessive belching. Further, alternative applications of impedance monitoring, such as the measurement of mucosal impedance, have provided novel insights into assessing esophageal mucosal integrity changes as a consequence of inflammatory change. Future applications for esophageal impedance monitoring also hold promise in esophageal conditions other than GERD. However, despite all of the clinical benefits afforded by esophageal impedance monitoring, important clinical and technical shortcomings limit its diagnostic value and must be considered when interpreting study results. Overinterpretation of studies or application of impedance monitoring in patients can have deleterious clinical implications. This review will highlight the clinical benefits and limitations of esophageal impedance monitoring and provide clinical pearls and pitfalls associated with this technology. PMID:27325223

  6. Possibilities of electrical impedance tomography in gynecology

    NASA Astrophysics Data System (ADS)

    V, Trokhanova O.; A, Chijova Y.; B, Okhapkin M.; V, Korjenevsky A.; S, Tuykin T.

    2013-04-01

    The paper describes results of comprehensive EIT diagnostics of mammary glands and cervix. The data were obtained from examinations of 170 patients by EIT system MEM (multi-frequency electrical impedance mammograph) and EIT system GIT (gynecological impedance tomograph). Mutual dependence is discussed.

  7. Active impedance matching of complex structural systems

    NASA Technical Reports Server (NTRS)

    Macmartin, Douglas G.; Miller, David W.; Hall, Steven R.

    1991-01-01

    Viewgraphs on active impedance matching of complex structural systems are presented. Topics covered include: traveling wave model; dereverberated mobility model; computation of dereverberated mobility; control problem: optimal impedance matching; H2 optimal solution; statistical energy analysis (SEA) solution; experimental transfer functions; interferometer actuator and sensor locations; active strut configurations; power dual variables; dereverberation of complex structure; dereverberated transfer function; compensators; and relative power flow.

  8. Dielectric and Impedance Spectroscopy of Barium Bismuth Vanadate Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Sutar, B. C.; Choudhary, R. N. P.; Das, Piyush R.

    2014-07-01

    Structural, micro-structural and electrical properties of barium bismuth vanadate Ba(Bi0.5V0.5)O3 ceramics were investigated. X-ray diffraction (XRD) analysis of the prepared material confirmed the formation of the compound with monoclinic crystal system. Scanning electron microscopy (SEM) of the compound exhibits well-defined grains that are uniformly distributed throughout the surface of the sample. Dielectric properties of the compound were studied as a function of temperature at different frequencies. An observation of dielectric anomaly at 295 °C is due to ferroelectric phase transition that was later confirmed by the appearance of hysteresis loop. Detailed studies of complex impedance spectroscopy have provided a better understanding of the relaxation process and correlations between the microstructure-electrical properties of the materials. The nature of frequency dependence of ac conductivity obeys the Debye power law. The dc conductivity, calculated from the ac conductivity spectrum, shows the negative temperature coefficient of resistance behavior similar to that of a semiconductor.

  9. Impedance of finite length resistive cylinder

    NASA Astrophysics Data System (ADS)

    Krinsky, S.; Podobedov, B.; Gluckstern, R. L.

    2004-11-01

    We determine the impedance of a cylindrical metal tube (resistor) of radius a, length g, and conductivity σ attached at each end to perfect conductors of semi-infinite length. Our main interest is in the asymptotic behavior of the impedance at high frequency (k≫1/a). In the equilibrium regime, ka2≪g, the impedance per unit length is accurately described by the well-known result for an infinite length tube with conductivity σ. In the transient regime, ka2≫g, where the contribution of transition radiation arising from the discontinuity in conductivity is important, we derive an analytic expression for the impedance and compute the short-range wakefield. The analytic results are shown to agree with numerical evaluation of the impedance.

  10. AC solar cell

    SciTech Connect

    Schutten, H.P.; Benjamin, J.A.; Lade, R.W.

    1986-03-18

    An AC solar cell is described comprising: a pair of PN junction type solar cells connected in antiparallel between a pair of main terminals; and means for electrically directing light alternatingly without mechanical movement on the PN junctions to generate an alternating potential across the main terminals.

  11. AC 67 Launch Video

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Live footage of the Unmanned Atlas Centaur (AC) 67 launch is presented on March 26, 1987 at the WESH television station in Florida. Lightning is shown after 49 seconds into the flight. The vehicle is totally destroyed due to a cloud-to-ground lightning flash.

  12. Reduction of Common-Mode Conducted Noise Emissions in PWM Inverter-fed AC Motor Drive Systems using Optimized Passive EMI Filter

    NASA Astrophysics Data System (ADS)

    Jettanasen, C.; Ngaopitakkul, A.

    2010-10-01

    Conducted electromagnetic interference (EMI) generated by PWM inverter-fed induction motor drive systems, which are currently widely used in many industrial and/or avionic applications, causes severe parasitic current problems, especially at high frequencies (HF). These restrict power electronic drive's evolution. In order to reduce or minimize these EMI problems, several techniques can be applied. In this paper, insertion of an optimized passive EMI filter is proposed. This filter is optimized by taking into account real impedances of each part of a considered AC motor drive system contrarily to commercial EMI filters designed by considering internal impedance of disturbance source and load, equal to 50Ω. Employing the latter EMI filter would make EMI minimization less effective. The proposed EMI filter optimization is mainly dedicated to minimize common mode (CM) currents due to its most dominant effects in this kind of system. The efficiency of the proposed optimization method using two-port network approach is deduced by comparing the minimized CM current spectra to an applied normative level (ex. DO-160D in aeronautics).

  13. On the Use of Experimental Methods to Improve Confidence in Educed Impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Watson, Willie R.

    2011-01-01

    Results from impedance eduction methods developed by NASA Langley Research Center are used throughout the acoustic liner community. In spite of recent enhancements, occasional anomalies persist with these methods, generally at frequencies where the liner produces minimal attenuation. This investigation demonstrates an experimental approach to educe impedance with increased confidence over a desired frequency range, by combining results from successive tests with different cavity depths. A series of tests is conducted with three wire-mesh facesheets, for which the results should be weakly dependent on source sound pressure level and mean grazing flow speed. First, a raylometer is used to measure the DC flow resistance of each facesheet. These facesheets are then mounted onto a frame and a normal incidence tube is used to determine their respective acoustic impedance spectra. A comparison of the acoustic resistance component with the DC flow resistance for each facesheet is used to validate the measurement process. Next, each facesheet is successively mounted onto three frames with different cavity depths, and a grazing flow impedance tube is used to educe their respective acoustic impedance spectra with and without mean flow. The no-flow results are compared with those measured in the normal incidence tube to validate the impedance eduction method. Since the anti-resonance frequency varies with cavity depth, each sample provides robust results over a different frequency range. Hence, a combination of results can be used to determine the facesheet acoustic resistance. When combined with the acoustic reactance, observed to be weakly dependent on the source sound pressure level and grazing flow Mach number, the acoustic impedance can be educed with increased confidence. Representative results of these tests are discussed, and the complete database is available in electronic format upon request.

  14. AC Zeeman potentials for atom chip-based ultracold atoms

    NASA Astrophysics Data System (ADS)

    Fancher, Charles; Pyle, Andrew; Ziltz, Austin; Aubin, Seth

    2015-05-01

    We present experimental and theoretical progress on using the AC Zeeman force produced by microwave magnetic near-fields from an atom chip to manipulate and eventually trap ultracold atoms. These AC Zeeman potentials are inherently spin-dependent and can be used to apply qualitatively different potentials to different spin states simultaneously. Furthermore, AC Zeeman traps are compatible with the large DC magnetic fields necessary for accessing Feshbach resonances. Applications include spin-dependent trapped atom interferometry and experiments in 1D many-body physics. Initial experiments and results are geared towards observing the bipolar detuning-dependent nature of the AC Zeeman force at 6.8 GHz with ultracold 87Rb atoms trapped in the vicinity of an atom chip. Experimental work is also underway towards working with potassium isotopes at frequencies of 1 GHz and below. Theoretical work is focused on atom chip designs for AC Zeeman traps produced by magnetic near-fields, while also incorporating the effect of the related electric near-fields. Electromagnetic simulations of atom chip circuits are used for mapping microwave propagation in on-chip transmission line structures, accounting for the skin effect, and guiding impedance matching.

  15. Symmetric cell approach and impedance spectroscopy of high power lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Liu, J.; Amine, K.

    High power lithium-ion cells are a very promising energy source for practical hybrid vehicles. It is found that the impedance of the 18650 high-power cells using LiNi 0.8Co 0.2O 2 chemistry increases with time during the beginning period of storage. A symmetric cell approach is developed to distinguish the anode and cathode effects on the impedance rise. Cathode impedance, especially charge-transfer resistance, is identified as the main component of the cell impedance and is most responsible for the rise of the cell impedance during storage at room temperature. With analysis of impedance spectra from a variety of cells, the charge-transfer process is thought to take place at the interface between the electrolyte solution and the surface of surface layers on the electrode. We also propose that the surface layers might be mixed conductors of electrons and lithium ions, instead of pure lithium-ion conductors. The nature of the surface layers on the cathode is likely different from that of the surface layers on the anode.

  16. Symmetric cell approach and impedance spectroscopy of high power lithium-ion batteries.

    SciTech Connect

    Chen, C. H.; Liu, J.; Amine, K.; Chemical Engineering

    2001-06-15

    High power lithium-ion cells are a very promising energy source for practical hybrid vehicles. It is found that the impedance of the 18650 high-power cells using LiNi{sub 0.8}Co{sub 0.2}O{sub 2} chemistry increases with time during the beginning period of storage. A symmetric cell approach is developed to distinguish the anode and cathode effects on the impedance rise. Cathode impedance, especially charge-transfer resistance, is identified as the main component of the cell impedance and is most responsible for the rise of the cell impedance during storage at room temperature. With analysis of impedance spectra from a variety of cells, the charge-transfer process is thought to take place at the interface between the electrolyte solution and the surface of surface layers on the electrode. We also propose that the surface layers might be mixed conductors of electrons and lithium ions, instead of pure lithium-ion conductors. The nature of the surface layers on the cathode is likely different from that of the surface layers on the anode.

  17. Development and Validation of an Interactive Liner Design and Impedance Modeling Tool

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.; Jones, Michael G.; Buckley, James L.

    2012-01-01

    The Interactive Liner Impedance Analysis and Design (ILIAD) tool is a LabVIEW-based software package used to design the composite surface impedance of a series of small-diameter quarter-wavelength resonators incorporating variable depth and sharp bends. Such structures are useful for packaging broadband acoustic liners into constrained spaces for turbofan engine noise control applications. ILIAD s graphical user interface allows the acoustic channel geometry to be drawn in the liner volume while the surface impedance and absorption coefficient calculations are updated in real-time. A one-dimensional transmission line model serves as the basis for the impedance calculation and can be applied to many liner configurations. Experimentally, tonal and broadband acoustic data were acquired in the NASA Langley Normal Incidence Tube over the frequency range of 500 to 3000 Hz at 120 and 140 dB SPL. Normalized impedance spectra were measured using the Two-Microphone Method for the various combinations of channel configurations. Comparisons between the computed and measured impedances show excellent agreement for broadband liners comprised of multiple, variable-depth channels. The software can be used to design arrays of resonators that can be packaged into complex geometries heretofore unsuitable for effective acoustic treatment.

  18. The ST-ECF ACS Grism Hubble Legacy Archive Project

    NASA Astrophysics Data System (ADS)

    Kümmel, M.; Kuntschner, H.; Walsh, J. R.; Lombardi, M.; Stoehr, F.; Haase, J.; Hook, R. N.; Rosati, P.; Micol, A.; Fosbury, R.; Freudling, W.

    2009-09-01

    In 2006 the Space Telescope - European Coordinating Facility (ST-ECF), together with its partners at the STScI and the CADC, started a project to build a Hubble Legacy Archive (HLA): a collection of high-level Hubble data products and access tools to ease scientific analysis in the age of the Virtual Observatory. The ST-ECF has focused on providing extracted spectra from slitless spectroscopy HST images. The slitless NICMOS G141 data were presented at previous ADASS meetings and have already been released. In this contribution we present an overview of the ongoing project of processing the ACS/WFC G800L data which cover a larger area and contain more spectra. There are around 150 ACS/WFC G800L datasets covering an area of ˜ 600 arcmin^2, and we expect to extract and publish about 20,000 fully-calibrated spectra. We discuss the techniques and methods that were developed to automatically extract the spectra from the observations and present a selection of ACS/WFC G800L spectra as examples.

  19. Rotor damage detection by using piezoelectric impedance

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Tao, Y.; Mao, Y. F.

    2016-04-01

    Rotor is a core component of rotary machinery. Once the rotor has the damage, it may lead to a major accident. Thus the quantitative rotor damage detection method based on piezoelectric impedance is studied in this paper. With the governing equation of piezoelectric transducer (PZT) in a cylindrical coordinate, the displacement along the radius direction is derived. The charge of PZT is calculated by the electric displacement. Then, by the use of the obtained displacement and charge, an analytic piezoelectric impedance model of the rotor is built. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used to set up the damage detection model. The Electro-Mechanical (E/M) coupled impedance expression of an undamaged rotor is deduced with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection method is proposed. This method can directly calculate the change of bending stiffness of the structural elements, it follows that the rotor damage can be effectively detected. Finally, a preset damage configuration is used for the numerical simulation. The result shows that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.

  20. Tracking of electrochemical impedance of batteries

    NASA Astrophysics Data System (ADS)

    Piret, H.; Granjon, P.; Guillet, N.; Cattin, V.

    2016-04-01

    This paper presents an evolutionary battery impedance estimation method, which can be easily embedded in vehicles or nomad devices. The proposed method not only allows an accurate frequency impedance estimation, but also a tracking of its temporal evolution contrary to classical electrochemical impedance spectroscopy methods. Taking into account constraints of cost and complexity, we propose to use the existing electronics of current control to perform a frequency evolutionary estimation of the electrochemical impedance. The developed method uses a simple wideband input signal, and relies on a recursive local average of Fourier transforms. The averaging is controlled by a single parameter, managing a trade-off between tracking and estimation performance. This normalized parameter allows to correctly adapt the behavior of the proposed estimator to the variations of the impedance. The advantage of the proposed method is twofold: the method is easy to embed into a simple electronic circuit, and the battery impedance estimator is evolutionary. The ability of the method to monitor the impedance over time is demonstrated on a simulator, and on a real Lithium ion battery, on which a repeatability study is carried out. The experiments reveal good tracking results, and estimation performance as accurate as the usual laboratory approaches.

  1. Estimates of Acausal Joint Impedance Models

    PubMed Central

    Perreault, Eric J.

    2013-01-01

    Estimates of joint or limb impedance are commonly used in the study of how the nervous system controls posture and movement, and how that control is altered by injury to the neural or musculoskeletal systems. Impedance characterizes the dynamic relationship between an imposed perturbation of joint position and the torques generated in response. While there are many practical reasons for estimating impedance rather than its inverse, admittance, it is an acausal representation of the limb mechanics that can lead to difficulties in interpretation or use. The purpose of this study was to explore the acausal nature of nonparametric estimates of joint impedance representations to determine how they are influenced by common experimental and computational choices. This was accomplished by deriving discrete-time realizations of first-and second-order derivatives to illustrate two key difficulties in the physical interpretation of impedance impulse response functions. These illustrations were provided using both simulated and experimental data. It was found that the shape of the impedance impulse response depends critically on the selected sampling rate, and on the bandwidth and noise characteristics of the position perturbation used during the estimation process. These results provide important guidelines for designing experiments in which nonparametric estimates of impedance will be obtained, especially when those estimates are to be used in a multistep identification process. PMID:22907963

  2. Estimates of acausal joint impedance models.

    PubMed

    Westwick, David T; Perreault, Eric J

    2012-10-01

    Estimates of joint or limb impedance are commonly used in the study of how the nervous system controls posture and movement, and how that control is altered by injury to the neural or musculoskeletal systems. Impedance characterizes the dynamic relationship between an imposed perturbation of joint position and the torques generated in response. While there are many practical reasons for estimating impedance rather than its inverse, admittance, it is an acausal representation of the limb mechanics that can lead to difficulties in interpretation or use. The purpose of this study was to explore the acausal nature of nonparametric estimates of joint impedance representations to determine how they are influenced by common experimental and computational choices. This was accomplished by deriving discrete-time realizations of first- and second-order derivatives to illustrate two key difficulties in the physical interpretation of impedance impulse response functions. These illustrations were provided using both simulated and experimental data. It was found that the shape of the impedance impulse response depends critically on the selected sampling rate, and on the bandwidth and noise characteristics of the position perturbation used during the estimation process. These results provide important guidelines for designing experiments in which nonparametric estimates of impedance will be obtained, especially when those estimates are to be used in a multistep identification process. PMID:22907963

  3. Measurements of electrical impedance of biomedical objects.

    PubMed

    Frączek, Marcin; Kręcicki, Tomasz; Moron, Zbigniew; Krzywaźnia, Adam; Ociepka, Janusz; Rucki, Zbigniew; Szczepanik, Zdzisław

    2016-01-01

    Some basic problems related to measurements of electrical impedance of biological objects (bioimpedance) have been presented in this paper. Particularly problems arising from impedance occurring at the sensor-tissue interface (interfacial impedances) in contact measuring methods have been discussed. The influence of finite values of impedances of the current source and voltage measuring device has also been taken into consideration. A model of the impedance sensor for the four-electrode measurement method containing the interfacial, source and measuring device impedances has been given and its frequency characteristics obtained by the computer simulation have been presented. The influence of these impedances on the shape of frequency characteristic of the sensor model has been discussed. Measurements of bioimpedance of healthy and anomalous soft tissues have been described. Some experimental results, particularly the frequency characteristics of bioimpedance, have been shown. The presented results of measurement show that bioimpedance can be a valuable source of information about the tissues, so measurement of bioimpedance can be a useful supplement to other medical diagnostic methods. PMID:27151250

  4. Modified structural and frequency dependent impedance formalism of nanoscale BaTiO3 due to Tb inclusion

    NASA Astrophysics Data System (ADS)

    Borah, Manjit; Mohanta, Dambarudhar

    2016-05-01

    We report the effect of Tb-doping on the structural and high frequency impedance response of the nanoscale BaTiO3 (BT) systems. While exhibiting a mixed phase crystal structure, the nano-BT systems are found to evolve with edges, and facets. The interplanar spacing of crystal lattice fringes is ~0.25 nm. The Cole-Cole plots, in the impedance formalism, have demonstrated semicircles which are the characteristic feature of grain boundary resistance of several MΩ. A lowering of ac conductivity with doping was believed to be due to the manifestation of oxygen vacancies and vacancy ordering.

  5. Method to detect the end-point for PCR DNA amplification using an ionically labeled probe and measuring impedance change

    DOEpatents

    Miles, Robin R.; Belgrader, Phillip; Fuller, Christopher D.

    2007-01-02

    Impedance measurements are used to detect the end-point for PCR DNA amplification. A pair of spaced electrodes are located on a surface of a microfluidic channel and an AC or DC voltage is applied across the electrodes to produce an electric field. An ionically labeled probe will attach to a complementary DNA segment, and a polymerase enzyme will release the ionic label. This causes the conductivity of the solution in the area of the electrode to change. This change in conductivity is measured as a change in the impedance been the two electrodes.

  6. Single Mode Theory for Impedance Eduction in Large-Scale Ducts with Grazing Flow

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Gerhold, Carl H.; Jones, Michael G.; June, Jason C.

    2014-01-01

    An impedance eduction theory for a rigid wall duct containing an acoustic liner with an unknown impedance and uniform grazing flow is presented. The unique features of the theory are: 1) non-planar waves propagate in the hard wall sections of the duct, 2) input data consist solely of complex acoustic pressures acquired on a wall adjacent to the liner, and 3) multiple higher-order modes may exist in the direction perpendicular to the liner and the opposite rigid wall. The approach is to first measure the axial propagation constant of a dominant higher-order mode in the liner sample section. This axial propagation constant is then used in conjunction with a closed-form solution to a reduced form of the convected Helmholtz equation and the wall impedance boundary condition to educe the liner impedance. The theory is validated on a conventional liner whose impedance spectrum is educed in two flow ducts with different cross sections. For the frequencies and Mach numbers of interest, no higher-order modes propagate in the hard wall sections of the smaller duct. A benchmark method is used to educe the impedance spectrum in this duct. A dominant higher-order vertical mode propagates in the larger duct for similar test conditions, and the current theory is applied to educe the impedance spectrum. Results show that when the theory is applied to data acquired in the larger duct with a dominant higher-order vertical mode, the same impedance spectra is educed as that obtained in the small duct where only the plane wave mode is present and the benchmark method is used. This result holds for each higher-order vertical mode that is considered.

  7. Summary of the impedance working group

    SciTech Connect

    Chao, A.W.

    1995-05-01

    The impedance working group concentrated on the LHC design during the workshop. They look at the impedance contributions of liner, beam position monitors, shielded bellows, experimental chambers, superconducting cavities, recombination chambers, space charge, kickers, and the resistive wall. The group concluded that the impedance budgeting and the conceptual designs of the vacuum chamber components looked basically sound. It also noted, not surprisingly, that a large amount of studies are to be carried out further, and it ventured to give a partial list of these studies.

  8. FDTD modeling of thin impedance sheets

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond; Kunz, Karl

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. It is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods. These sheets are characterized by a discontinuity in the tangential magnetic field on either side of the sheet but no discontinuity in tangential electric field. This continuity, or single valued behavior of the electric field, allows the sheet current to be expressed in terms of an impedance multiplying this electric field.

  9. Koch fractal boundary patch over reactive impedance

    NASA Astrophysics Data System (ADS)

    Reddy V, Venkateshwar; Sarma, N. V. S. N.

    2013-04-01

    This paper describes the enhancement of bandwidth and miniaturization for patch antennas. Introduction of fractal structure (Square Koch) over reactive impedance surface (RIS) is used to enhance impedance bandwidth while minimizing the patch size. Comparison has been made with those of a single-layer (sub1) antenna and the corresponding dual-layer (RIS) antenna. Approximately double the impedance bandwidth is achieved with the proposed RIS Square Koch antenna 1 when compared with Square Koch antenna 1without RIS. There is a 55 % reduction in the patch size. The simulated results indicate that the presented antennas provide gain of about 2.5dBi over the entire band of frequencies.

  10. RHIC ABORT KICKER WITH REDUCED COUPLING IMPEDANCE.

    SciTech Connect

    HAHN,H.; DAVINO,D.

    2002-06-02

    Kicker magnets typically represent the most important contributors to the transverse impedance budget of accelerators and storage rings. Methods of reducing the impedance value of the SNS extraction kicker presently under construction and, in view of a future performance upgrade, that of the RHIC abort kicker have been thoroughly studied at this laboratory. In this paper, the investigation of a potential improvement from using ferrite different from the BNL standard CMD5005 is reported. Permeability measurements of several ferrite types have been performed. Measurements on two kicker magnets using CMD5005 and C2050 suggest that the impedance of a magnet without external resistive damping, such as the RHIC abort kicker, would benefit.

  11. Effect of Resonator Axis Skew on Normal Incidence Impedance

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Jones, Michael G.; Homeijer, Brian

    2003-01-01

    High by-pass turbofan engines have fewer fan blades and lower rotation speeds than their predecessors. Consequently, the noise suppression at the low frequency end of the noise spectra has become an increasing concern. This has led to a renewed emphasis on improving noise suppression efficiency of passive, duct liner treatments at the lower frequencies. For a variety of reasons, passive liners are comprised of locally-reacting, resonant absorbers. One reason for this design choice is to satisfy operational and economic requirements. The simplest liner design consists of a single layer of honeycomb core sandwiched between a porous facesheet and an impervious backing plate. These resonant absorbing structures are integrated into the nacelle wall and are very ef- ficient over a limited bandwidth centered on their resonance frequency. Increased noise suppression bandwidth and greater suppression at lower frequencies is typically achieved for conventional liners by increasing the liner depth and incorporating thin porous septa into the honeycomb core. However, constraints on liner depth in modern high by-pass engine nacelles severely limit the suppression bandwidth extension to lower frequencies. Also, current honeycomb core liners may not be suitable for irregular geometric volumes heretofore not considered. It is of interest, therefore, to find ways to circumvent liner depth restrictions and resonator cavity shape constraints. One way to increase effective liner depth is to skew the honeycomb core axis relative to the porous facesheet surface. Other possibilities are to alter resonator cavity shape, e.g. high aspect ratio, narrow channels that possibly include right angle bends, 180. channel fold-backs, and splayed channel walls to conform to irregular geometric constraints. These possibilities constitute the practical motivation for expanding impedance modeling capability to include unconventional resonator orientations and shapes. The work reported in this paper is

  12. AC power systems handbook

    SciTech Connect

    Whitaker, J.

    1991-01-01

    Transient disturbances are what headaches are made of. Whatever you call them-spikes, surges, are power bumps-they can take your equipment down and leave you with a complicated and expensive repair job. Protection against transient disturbances is a science that demands attention to detail. This book explains how the power distribution system works, what can go wrong with it, and how to protect a facility against abnormalities. system grounding and shielding are covered in detail. Each major method of transient protection is analyzed and its relative merits discussed. The book provides a complete look at the critical elements of the ac power system. Provides a complete look at the ac power system from generation to consumption. Discusses the mechanisms that produce transient disturbances and how to protect against them. Presents diagrams to facilitate system design. Covers new areas, such as the extent of the transient disturbance problem, transient protection options, and stand-by power systems.

  13. Cost-effective broad-band electrical impedance spectroscopy measurement circuit and signal analysis for piezo-materials and ultrasound transducers.

    PubMed

    Lewis, George K; Lewis, George K; Olbricht, William

    2008-10-01

    This paper explains the circuitry and signal processing to perform electrical impedance spectroscopy on piezoelectric materials and ultrasound transducers. Here, we measure and compare the impedance spectra of 2-5 MHz piezoelectrics, but the methodology applies for 700 kHz-20 MHz ultrasonic devices as well. Using a 12 ns wide 5 volt pulsing circuit as an impulse, we determine the electrical impedance curves experimentally using Ohm's law and fast Fourier transform (FFT), and compare results with mathematical models. The method allows for rapid impedance measurement for a range of frequencies using a narrow input pulse, digital oscilloscope and FFT techniques. The technique compares well to current methodologies such as network and impedance analyzers while providing additional versatility in the electrical impedance measurement. The technique is theoretically simple, easy to implement and completed with ordinary laboratory instrumentation for minimal cost. PMID:19081773

  14. Mutual impedance computation between printed dipoles

    NASA Astrophysics Data System (ADS)

    Alexopoulos, N. G.; Rana, I. E.

    1981-01-01

    The mutual impedance between microstrip dipoles printed on a grounded substrate is computed. Results for the microstrip dipoles in broadside, collinear, and echelon arrangements are presented. The significance of surface wave to mutual coupling is discussed.

  15. Antenna pattern control using impedance surfaces

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Liu, Kefeng; Tirkas, Panayiotis A.

    1993-01-01

    During the period of this research project, a comprehensive study of pyramidal horn antennas was conducted. Full-wave analytical and numerical techniques were developed to analyze horn antennas with or without impedance surfaces. Based on these full-wave analytic techniques, research was conducted on the use of impedance surfaces on the walls of the horn antennas to control the antenna radiation patterns without a substantial loss of antenna gain. It was found that the use of impedance surfaces could modify the antenna radiation patterns. In addition to the analytical and numerical models, experimental models were also constructed and they were used to validate the predictions. Excellent agreement between theoretical predictions and the measured data was obtained for pyramidal horns with perfectly conducting surfaces. Very good comparisons between numerical and experimental models were also obtained for horns with impedance surfaces.

  16. Acoustic input impedance measurements on brass instruments

    NASA Astrophysics Data System (ADS)

    Pyle, Robert W., Jr.

    2002-11-01

    Measurement of the acoustic input impedance of a brass instrument can reveal something about the instrument's intonation, its reasonable playing range, its tone color, and perhaps whether the mouthpiece used for the impedance measurement is appropriate for the instrument. Such measurements are made at sound-presssure levels much lower than those encountered under playing conditions. Thus, impedance measurements may offer the only feasible way to infer something about the playing characteristics of instruments, typically museum specimens, that are too rare or too fragile to be played. In this paper the effects of some of the available choices of sound source and stimulus signal on measurement accuracy will be explored. Driver-transducer nonlinearity, source impedance, signal-to-noise ratio, and any necessary signal processing will be discussed.

  17. A physical interpretation of impedance at conducting polymer/electrolyte junctions

    SciTech Connect

    Stavrinidou, Eleni; Sessolo, Michele; Sanaur, Sébastien; Malliaras, George G.; Winther-Jensen, Bjorn

    2014-01-15

    We monitor the process of dedoping in a planar junction between an electrolyte and a conducting polymer using electrochemical impedance spectroscopy performed during moving front measurements. The impedance spectra are consistent with an equivalent circuit of a time varying resistor in parallel with a capacitor. We show that the resistor corresponds to ion transport in the dedoped region of the film, and can be quantitatively described using ion density and drift mobility obtained from the moving front measurements. The capacitor, on the other hand, does not depend on time and is associated with charge separation at the moving front. This work offers a physical description of the impedance of conducting polymer/electrolyte interfaces based on materials parameters.

  18. Inversion of elastic impedance for unconsolidated sediments

    USGS Publications Warehouse

    Lee, Myung W.

    2006-01-01

    Elastic properties of gas-hydrate-bearing sediments are important for quantifying gas hydrate amounts as well as discriminating the gas hydrate effect on velocity from free gas or pore pressure. This paper presents an elastic inversion method for estimating elastic properties of gas-hydrate-bearing sediments from angle stacks using sequential inversion of P-wave impedance from the zero-offset stack and S-wave impedance from the far-offset stack without assuming velocity ratio.

  19. CSR Impedance for Non-Ultrarelativistic Beams

    SciTech Connect

    Li, Rui; Tsai, Cheng Y.

    2015-09-01

    For the analysis of the coherent synchrotron radiation (CSR)-induced microbunching gain in the low energy regime, such as when a high-brightness electron beam is transported through a low-energy merger in an energy-recovery linac (ERL) design, it is necessary to extend the CSR impedance expression in the ultrarelativistic limit to the non-ultrarelativistic regime. This paper presents our analysis of CSR impedance for general beam energies.

  20. Wave impedance of an atomically thin crystal.

    PubMed

    Merano, Michele

    2015-11-30

    I propose an expression for the electromagnetic wave impedance of a two-dimensional atomic crystal, and I deduce the Fresnel coefficients in terms of this quantity. It is widely known that a two-dimensional crystal can absorb light, if its conductivity is different from zero. It is less emphasized that they can also store a certain amount of electromagnetic energy. The concept of impedance is useful to quantify this point. PMID:26698783

  1. Diagnosis of PEMFC stack failures via electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Merida-Donis, Walter Roberto

    Two failure modes related to water management in Proton Exchange Membrane fuel cells (dehydration and flooding) were investigated using electrochemical impedance spectroscopy as a diagnosis tool. It was hypothesised that each failure mode corresponds to changes in the overall stack impedance that are observable in different frequency ranges. This hypothesis was corroborated experimentally. The experimental implementation required new testing hardware and techniques. A four-cell stack capable of delivering individually conditioned reactants to each cell was designed, built, tested, and characterised under a variety of operating conditions. This stack is the first reported prototype of its type. The stack was used to perform galvanostatic, impedance measurements in situ. The measurements were made at three different temperatures (62, 70 and 80°C), covering the current density range 0.1 to 1.0 A cm-2 , and the frequency range 0.1 to 4 x 105 Hz. The recorded data represent the first reported set of measurements covering these ranges. The failure modes were simulated on individual cells within the stack. The effects on individual cell and stack impedance were studied by measuring the changes in stack and cell impedances under flooding or dehydration conditions. Dehydration effects were measurable over a wide frequency range (0.5 to 105 Hz). In contrast, flooding effects were measurable in a narrower frequency range (0.5 to 102 Hz). Using these results, separate or concurrent impedance measurements in these frequency ranges (or narrow bands thereof) can be used to discern and identify the two failure modes quasi-instantaneously. Such detection was not possible with pre-existing, do techniques. The measured spectra were modelled by a simple equivalent circuit whose time constants corresponded to ideal (RC) and distributed (Warburg) components. The model was robust enough to fit all the measured spectra (for single cells and the stack), under normal and simulated

  2. Night Spectra Quest.

    ERIC Educational Resources Information Center

    Jacobs, Stephen

    1995-01-01

    Presents the Night Spectra Quest, a pocket-sized chart that identifies in color the spectra of all the common night lights and has an integrally mounted, holographic diffraction grating to look through. (JRH)

  3. Acoustic impedance microscopy for biological tissue characterization.

    PubMed

    Kobayashi, Kazuto; Yoshida, Sachiko; Saijo, Yoshifumi; Hozumi, Naohiro

    2014-09-01

    A new method for two-dimensional acoustic impedance imaging for biological tissue characterization with micro-scale resolution was proposed. A biological tissue was placed on a plastic substrate with a thickness of 0.5mm. A focused acoustic pulse with a wide frequency band was irradiated from the "rear side" of the substrate. In order to generate the acoustic wave, an electric pulse with two nanoseconds in width was applied to a PVDF-TrFE type transducer. The component of echo intensity at an appropriate frequency was extracted from the signal received at the same transducer, by performing a time-frequency domain analysis. The spectrum intensity was interpreted into local acoustic impedance of the target tissue. The acoustic impedance of the substrate was carefully assessed prior to the measurement, since it strongly affects the echo intensity. In addition, a calibration was performed using a reference material of which acoustic impedance was known. The reference material was attached on the same substrate at different position in the field of view. An acoustic impedance microscopy with 200×200 pixels, its typical field of view being 2×2 mm, was obtained by scanning the transducer. The development of parallel fiber in cerebella cultures was clearly observed as the contrast in acoustic impedance, without staining the specimen. The technique is believed to be a powerful tool for biological tissue characterization, as no staining nor slicing is required. PMID:24852259

  4. Modeling magnetically insulated devices using flow impedance

    SciTech Connect

    Mendel, C.W. Jr.; Rosenthal, S.E. )

    1995-04-01

    In modern pulsed power systems the electric field stresses at metal surfaces in vacuum transmission lines are so high that negative surfaces are space-charge-limited electron emitters. These electrons do not cause unacceptable losses because magnetic fields due to system currents result in net motion parallel to the electrodes. It has been known for several years that a parameter known as flow impedance is useful for describing these flows. Flow impedance is a measure of the separation between the anode and the mean position of the electron cloud, and it will be shown in this paper that in many situations flow impedance depends upon the geometry of the transmission line upstream of the point of interest. It can be remarkably independent of other considerations such as line currents and voltage. For this reason flow impedance is a valuable design parameter. Models of impedance transitions and voltage adders using flow impedance will be developed. Results of these models will be compared to two-dimensional, time-dependent, particle-in-cell simulations.

  5. AC electrophoretic deposition of organic-inorganic composite coatings.

    PubMed

    Yoshioka, T; Chávez-Valdez, A; Roether, J A; Schubert, D W; Boccaccini, A R

    2013-02-15

    Alternating current electrophoretic deposition (AC-EPD) of polyacrylic acid (PAA)-titanium oxide (TiO(2)) nanoparticle composites on stainless steel electrodes was investigated in basic aqueous solution. AC square wave with duty cycle of 80% was applied at a frequency of 1 kHz. FTIR-ATR spectra showed that both AC and direct current (DC) EPD successfully deposited PAA-TiO(2) composites. The deposition rate using AC-EPD was lower than that obtained in direct current DC-EPD. However, the microstructure and surface morphology of the deposited composite coatings were different depending on the type of electric field applied. AC-EPD applied for not more than 5 min led to smooth films without bubble formation, while DC-EPD for 1 min or more showed deposits with microstructural defects possibly as result of water electrolysis. AC-EPD was thus for the first time demonstrated to be a suitable technique to deposit organic-inorganic composite coatings from aqueous suspensions, showing that applying a square wave and frequency of 1 kHz leads to uniform PAA-TiO(2) composite coatings on conductive materials. PMID:23218240

  6. Fluctuation spectra in the NASA Lewis bumpy-torus plasma

    NASA Technical Reports Server (NTRS)

    Singh, C. M.; Krawczonek, W. M.; Roth, J. R.; Hong, J. Y.; Powers, E. J.

    1978-01-01

    The electrostatic potential fluctuation spectrum in the NASA Lewis bumpy-torus plasma was studied with capacitive probes in the low pressure (high impedance) mode and in the high pressure (low impedance) mode. Under different operating conditions, the plasma exhibited electrostatic potential fluctuations (1) at a set of discrete frequencies, (2) at a continuum of frequencies, and (3) as incoherent high-frequency turbulence. The frequencies and azimuthal wave numbers were determined from digitally implemented autopower and cross-power spectra. The azimuthal dispersion characteristics of the unstable waves were examined by varying the electrode voltage, the polarity of the voltage, and the neutral background density at a constant magnetic field strength.

  7. Experimental study of coupling impedance: Part I longitudinal impedance measurement techniques

    SciTech Connect

    Song, J.J.

    1991-10-22

    Beam coupling impedances for the 7-GeV APS storage ring have been numerically estimated. In order to confirm these calculations, measurements of the coupling impedance of various vacuum components around the main storage ring were done with a coaxial wire method. In this paper, the procedure of the longitudinal impedance measurement techniques will be described. As an example, sections of the Cu beam chamber, the Cu beam + antechambers, and the Al beam + antechambers were used as a device under test (DUT) to obtain the results. The transverse impedance measurements will be described in a separate paper.

  8. GaAs cryogenic readout electronics for high impedance detector arrays for far-infrared and submillimeter wavelength region

    NASA Astrophysics Data System (ADS)

    Nagata, H.; Matsuo, H.; Hibi, Y.; Kobayashi, J.; Nakahashi, M.; Ikeda, H.; Fujiwara, M.

    2009-11-01

    We have been developing cryogenic readout integrate circuits (ROICs) for high impedance submillimeter and far-infrared detectors: Our ROICs are constructed from SONY GaAs-JFETs, which have excellent performance even at less than 1 K. We designed ROICs consisting of analog readouts and digital circuits for 32-element SIS photon detectors fabricated in RIKEN. The analog readout is ac-coupled capacitive transimpedance amplifier (CTIA), which is composed of the two-stage amplifier. Some initial test results of the ac-coupled CTIA gave us the following performance; open loop gain of >740, power consumption ≈1.4 μW. The input referred noise is ≈4 μV/ √{Hz} at 1 Hz. These results suggest that low power and high sensitive cryogenic readout electronics are successfully developed for high impedance detectors.

  9. Non-contact multi-frequency magnetic induction spectroscopy system for industrial-scale bio-impedance measurement

    NASA Astrophysics Data System (ADS)

    O'Toole, M. D.; Marsh, L. A.; Davidson, J. L.; Tan, Y. M.; Armitage, D. W.; Peyton, A. J.

    2015-03-01

    Biological tissues have a complex impedance, or bio-impedance, profile which changes with respect to frequency. This is caused by dispersion mechanisms which govern how the electromagnetic field interacts with the tissue at the cellular and molecular level. Measuring the bio-impedance spectra of a biological sample can potentially provide insight into the sample’s properties and its cellular structure. This has obvious applications in the medical, pharmaceutical and food-based industrial domains. However, measuring the bio-impedance spectra non-destructively and in a way which is practical at an industrial scale presents substantial challenges. The low conductivity of the sample requires a highly sensitive instrument, while the demands of industrial-scale operation require a fast high-throughput sensor of rugged design. In this paper, we describe a multi-frequency magnetic induction spectroscopy (MIS) system suitable for industrial-scale, non-contact, spectroscopic bio-impedance measurement over a bandwidth of 156 kHz-2.5 MHz. The system sensitivity and performance are investigated using calibration and known reference samples. It is shown to yield rapid and consistently sensitive results with good long-term stability. The system is then used to obtain conductivity spectra of a number of biological test samples, including yeast suspensions of varying concentration and a range of agricultural produce, such as apples, pears, nectarines, kiwis, potatoes, oranges and tomatoes.

  10. Impedance Biosensing to detect food allergens, endocrine disrupting chemicals, and food pathogens

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Rajeswaran

    Electrochemical impedance biosensors can be viewed as an AC electroanalytical method for the analyte detection in the fields of biomedicine, environmental monitoring, and food and agriculture, amongst others. The most common format for AC impedance biosensing involves surface immobilization of an antibody, receptor protein, DNA strand, or other species capable of bio-recognition, and AC impedance detection of the binding event. Technological application of AC impedance biosensors has been hindered by several obstacles, including the more complex circuitry required for AC relative to DC electrochemistry, chemical and physical interference arising from non-specific adsorption, and the stability and reproducibility of protein immobilization. One focus of these PhD studies is on methods to reduce or compensate for non-specific adsorption, including sample dilution, site blocking with BSA, and the use of control electrodes onto which reference antibodies are immobilized. Examples that will be presented include impedance detection of food pathogens, such as Listeria monocytogenes, using a mouse monoclonal antibody immobilized onto an Au electrode. This yields detection limits of 5 CFU/ml and 4 CFU/ml for ideal solutions and filtered tomato extract, respectively. Control experiments with an Au electrode onto which a mouse monoclonal antibody to GAPDH is immobilized demonstrate that non-specific adsorption is insignificant for the system and methodology studied here. Control experiments with Salmonella enterica demonstrate no cross-reactivity to this food pathogen. In addition, Detection of two endocrine-disrupting chemicals (EDC), norfluoxetine and BDE-47, is reported here by impedance biosensing, with a detection limit of 8.5 and 1.3 ng/ml for norfluoxetine and BDE-47, respectively. Additional research has focused on alternative substrates and linker chemistries for protein immobilization, including the use of degenerate (highly doped) Si and bidendate thiol monolayer

  11. Low cost soil sensor based on impedance spectroscopy for in-situ measurement

    NASA Astrophysics Data System (ADS)

    Umar, Lazuardi; Setiadi, Rahmondia N.

    2015-04-01

    Soil moisture is a significant element in the water cycle, on an agricultural and in land interaction. In crop production, soil plays a key role as a physical support and a reservoir of water and nutrients. Decisions for optimized input rates of water are largely based on physical, chemical, and biological properties of soils. The aim of this work is to develop a low cost soil moisture sensor (SMS) based on impedance spectroscopy by means of magnitude ratio and phase difference detection method. Using impedance spectroscopy, more information can be delivered from real and imaginary part of the complex permittivity for several frequencies at the same moisture value. For this purpose, a probe has been designed which uses a simplified impedance measuring system to determine soil water content. The circuit sweeps at pre-programmed frequencies from 10 KHz to 10MHz with 10 mV AC amplitude. A local inceptisol soil of East Sumatra was especially selected for this investigation because measurements of soil moisture in peat swamp area were generally reported as challenging to analyze. Samples at defined soil moisture of 2%, 8%, 15% measured using commercial soil sensor Lutron PMS-714, was characterized. A model has been developed in order to correct the frequency influence upon the measurement. The results obtained by the sensor show good results with an overall mean error of 0.21% in impedance.

  12. Measurement of surface resistivity/conductivity of different organic thin films by a combination of optical shearography and electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Habib, Khaled

    2013-11-01

    Shearography techniques were applied again to measure the surface resistivity/conductivity of different organic thin films on a metallic substrate. The coatings were ACE premium-grey enamel (spray coating), a yellow Acrylic lacquer, and a gold nail polish on a carbon steel substrate. The investigation was focused on determining the in-plane displacement of the coatings by shearography between 20 and 60 °C. Then, the alternating current (AC) impedance (resistance) of the same coated samples was determined by electrochemical impedance spectroscopy (EIS) in 3.0% NaCl solution at room temperature. As a result, the proportionality constant (resistivity or conductivity = 1/surface resistivity) between the determined AC impedance and the in-plane displacement was obtained. The obtained resistivity of all investigated coatings, 40:15 × 106-24:6 × 109Ωcm, was found in the insulator range.

  13. Impedance spectroscopy studies in cobalt ferrite-reduced graphene oxide nanocomposite

    NASA Astrophysics Data System (ADS)

    Supriya, Sweety; Kumar, Sunil; Kar, Manoranjan

    2016-05-01

    (1-x)Cobalt ferrite-(x)reduced graphene oxidenanocomposites with x=0, 0.1, 0.2 and 0.3 were prepared by the ultrasonic method. The crystal symmetry modification due to reduced graphene oxide and cobalt ferrite interaction has been studied by employing the X-ray diffraction technique. Morphology of the samples was studied by the Field emission scanning electron microscopy (FE-SEM). Study on electrical properties of the cobalt ferrite-reduced graphene oxide nanocomposites explores the possible application of these composites as anode material. Impedance decreases with an increase in frequency as well as temperature, which supports an increase in ac electrical conductivity. The modified Debye relaxation model can explain the behavior of impedance in cobalt ferrite-reduced graphene oxide nanocomposites.

  14. Relationship between moisture content and electrical impedance of carrot slices during drying

    NASA Astrophysics Data System (ADS)

    Kertész, Ákos; Hlaváčová, Zuzana; Vozáry, Eszter; Staroňová, Lenka

    2015-01-01

    Electrical properties of food materials can give information about the inner structure and physiological state of biological tissues. Generally, the process of drying of fruits and vegetables is followed by weight loss. The aim of this study was to measure the impedance spectra of carrot slices during drying and to correlate impedance parameters to moisture content in different drying periods. Cylindrical slices were cut out from the carrot root along the axis. The slices were dried in a Venticell 111 air oven at 50°C. The weight of the slices was measured with a Denver SI-603 electronic analytical and precision balance. The weighing of the samples was performed every 30 min at the beginning of drying and every 60 min after the process. The moisture content of the samples was calculated on wet basis. The magnitude and phase angle of electrical impedance of the slices were measured with HP 4284A and 4285A precision LCR meters in the frequency range from 30 Hz to 1 MHz and from 75 kHz to 30 MHz, respectively, at voltage 1 V. The impedance measurement was performed after weighting. The change in the magnitude of impedance during drying showed a good correlation with the change in the moisture content.

  15. Identification of /sup 233/Ac

    SciTech Connect

    Chu, Y.Y.; Zhou, M.L.

    1983-09-01

    We report in this paper identification of the new isotope /sup 233/Ac. Uranium targets were irradiated with 28 GeV protons; after rapid retrieval of the target and separation of actinium from thorium, /sup 233/Ac was allowed to decay into the known /sup 233/Th daughter. Exhaustive chemical purification was employed to permit the identification of /sup 233/Th via its characteristic ..gamma.. radiations. The half-life derived for /sup 233/Ac from several experiments is 2.3 +- 0.3 min. The production cross section for /sup 233/Ac is 100 ..mu..b.

  16. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  17. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  18. Impedance spectroscopy of unetched CdTe/CdS solar cells—equivalent circuit analysis

    NASA Astrophysics Data System (ADS)

    Proskuryakov, Y. Y.; Durose, K.; Taele, B. M.; Oelting, S.

    2007-07-01

    A detailed study of electric and structural properties has been carried out on CdTe/CdS solar cells which deliberately were not subjected to etching by a nitric-phosphoric (NP) or bromine-methanol (Br-Me) acids, conventionally employed for the formation of Te-rich layer before back contacting. In the previous work [J. Appl. Phys. 101, 014505 (2007)] we have shown that cells that were not etched provide more extensive information on sample/material properties than the etched ones, as analyzed by admittance spectroscopy. Although seemingly being able to describe the distribution of defect energy levels, the admittance spectroscopy approach has a significant drawback because the underlying theoretical formulation does not take into account the frequency-dependent contribution from the back contact together with its influence on the trap contributions. In this work we use an alternative methodology for analysis of impedance data measured in dark conditions, which applies an equivalent circuit model to the experimental spectra. In particular, a complete model consisting of 10-12 elements is suggested, which describes all the sets of data taken at different temperatures, unambiguously separating the respective roles of p-n junction parameters, defect trap levels, back contact, as well as spatial inhomogeneities within the cell. It is essential that the values of the parameters used to describe ac response from trap levels and that from the back contact are found to be consistent with admittance and I-V measurements. In addition, the temperature dependence of the dark conductance (GJ) and capacitance (CJ) of the main p-n junction, as well as temperature dependence of back contact resistance (RB), were obtained and analyzed. It was found that GJ(T ) follows exp(T /T0) behavior which is characteristic of temperature-assisted tunneling, while CJ(T) agrees well with values of the high-frequency capacitance of the cell CHF(T). The T dependence of RB is found to follow

  19. Crosstalk Compensation for a Rapid, Higher Resolution Impedance Spectrum Measurement

    SciTech Connect

    Jon P. Christophersen; John L. Morrison; David M. Rose; William H. Morrison; Chester G. Motloch

    2012-03-01

    Batteries and other energy storage devices are playing larger roles in various industries (e.g., military, automotive, electric utilities, etc.) as the U.S. seeks to reduce its dependence on foreign energy resources. As such, there exists a significant need for accurate, robust state-of-health assessment techniques. Present techniques tend to focus on simple, passive monitoring of voltage and current at a given ambient temperature. However, this approach has the disadvantage of ignoring key elements of health, that is, changes in resistance growth and power fade. Impedance spectroscopy is considered a useful laboratory tool in gauging changes in the resistance and power performance, but it has not been widely considered as an onboard diagnostic tool due to the length of time required to complete the measurement. Cross-Talk Compensation (CTC) is a novel approach that enables rapid, high resolution impedance spectra measurements using a hardware platform that could be designed as an embedded system. This input signal consists of a sum-of-sines excitation current that has a known frequency spread and a duration of one period of the lowest frequency. The voltage response is then captured at a sufficiently fast sample rate. Previously developed rapid impedance spectrum measurement techniques either required a longer excitation signal or a sum-of-sines signal that was separated by harmonic frequencies to reduce or eliminate, respectively, the cross-talk interference in the calculated results. The distinct advantage of CTC, however, is that non-harmonic frequencies can now be included within the excitation signal while still keeping the signal duration at one period of the lowest frequency. Since the frequency spread of the input signal is known, the crosstalk interference between sinusoidal signals within the sum-of-sines at a given frequency of interest can be pre-determined and assigned to an error matrix. Consequently, the real and imaginary components of the

  20. Study on electromechanical impedance characteristics of part of structures made of CFRP

    NASA Astrophysics Data System (ADS)

    Malinowski, Paweł H.; Wandowski, Tomasz; Ostachowicz, Wiesław M.

    2016-04-01

    Carbon Fibre Reinforced Polymers (CFRP) are more and more used in many branches of industry. Researchers are developing numerous techniques of non-destructive assessment of the structures made out of CFRP such as guided waves, ultrasonics, laser induced fluorescence and others. In this research we focus on electromechanical impedance (EMI) technique. In this technique a piezoelectric sensor is either surface mounted or embedded into investigated host structure. The electrical quantities of the sensor are measured for wide frequency range. Due to piezoelectric effect the electrical response of the sensor is related to mechanical response of the structure to which the sensors is bonded to. In the reported research impedance spectra in the vicinity of the transducer thickness mode were investigated as well as the lower frequency range. The spectra that were analysed were gathered from samples with surface treatment such as thermal degradation and samples adhesively bonded with film adhesive with symmetric and unsymmetric bond. Moreover, the samples with modified adhesive bonds were investigated. These spectra for different cases were compared with reference measurement results gathered from pristine samples. Numerical indexes for comparison of the EMI characteristics were proposed. The comparison of the indexes was also conducted. In the experimental part of the research the piezoelectric transducer was mounted at the sample surface. Measurements were conducted using HIOKI Impedance Analyzer IM3570.

  1. Impedance spectroscopy of bacterial membranes: Co-enzyme Q diffusion in a finite diffusion layer

    PubMed Central

    Jeuken, Lars J.C.; Weiss, Sophie A; Henderson, Peter J.F.; Evans, Stephen D.; Bushby, Richard J.

    2013-01-01

    The inner membrane of Escherichia coli, over-expressing an ubiquinol oxidase, cytochrome bo3 (cbo3), was tethered in a planar configuration to a gold electrode. Electron transfer to cbo3 was achieved via native ubiquinol-8 or added ubiquinol-10 and impedance spectroscopy was used to characterise the diffusion properties of the ubiquinol/ubiquinone in the tethered membrane system. Spectra were obtained at varying DC potentials covering the potential window in which the voltammetric catalytic wave of cbo3 is visible. These spectra were compared to those obtained after addition of a potent inhibitor of cbo3, cyanide, and the difference in impedance was analysed using a derived equivalent circuit, which is similar to that of Open Finite-Length Diffusion (OFLD) or the finite Warburg circuit, but with the boundary conditions modified to account for the fact that ubiquinol reoxidation is limited by enzyme activity. Analysis of the impedance spectra of the tethered membrane system gave kinetic parameters that are consistent with values obtained using cyclic voltammetry. Importantly, the diffusion rate of ubiquinone (10−13 - 10−12 cm2/s) was found to be orders of magnitude lower than accepted values for lateral diffusion (10−8 - 10−7 cm2/s). It is hypothesised that this result represent perpendicular diffusion of quinone across the membrane, corresponding to a ‘flip’ time between 0.05 and 1 s. PMID:19551979

  2. Evaluation of Parallel-Element, Variable-Impedance, Broadband Acoustic Liner Concepts

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Howerton, Brian M.; Ayle, Earl

    2012-01-01

    Recent trends in aircraft engine design have highlighted the need for acoustic liners that provide broadband sound absorption with reduced liner thickness. Three such liner concepts are evaluated using the NASA normal incidence tube. Two concepts employ additive manufacturing techniques to fabricate liners with variable chamber depths. The first relies on scrubbing losses within narrow chambers to provide acoustic resistance necessary for sound absorption. The second employs wide chambers that provide minimal resistance, and relies on a perforated sheet to provide acoustic resistance. The variable-depth chambers used in both concepts result in reactance spectra near zero. The third liner concept employs mesh-caps (resistive sheets) embedded at variable depths within adjacent honeycomb chambers to achieve a desired impedance spectrum. Each of these liner concepts is suitable for use as a broadband sound absorber design, and a transmission line model is presented that provides good comparison with their respective acoustic impedance spectra. This model can therefore be used to design acoustic liners to accurately achieve selected impedance spectra. Finally, the effects of increasing the perforated facesheet thickness are demonstrated, and the validity of prediction models based on lumped element and wave propagation approaches is investigated. The lumped element model compares favorably with measured results for liners with thin facesheets, but the wave propagation model provides good comparisons for a wide range of facesheet thicknesses.

  3. Effects of Liner Geometry on Acoustic Impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Tracy, Maureen B.; Watson, Willie R.; Parrott, Tony L.

    2002-01-01

    Current aircraft engine nacelles typically contain acoustic liners consisting of perforated sheets bonded onto honeycomb cavities. Numerous models have been developed to predict the acoustic impedance of these liners in the presence of grazing flow, and to use that information with aeroacoustic propagation codes to assess nacelle liner noise suppression. Recent efforts have provided advances in impedance education methodologies that offer more accurate determinations of acoustic liner properties in the presence of grazing flow. The current report provides the results of a parametric study, in which a finite element method was used to assess the effects of variations of the following geometric parameters on liner impedance, with and without the presence of grazing flow: percent open area, sheet thickness, sheet thickness-to-hole diameter ratio and cavity depth. Normal incidence acoustic impedances were determined for eight acoustic liners, consisting of punched aluminum facesheets bonded to hexcell honeycomb cavities. Similar liners were tested in the NASA Langley Research Center grazing incidence tube to determine their response in the presence of grazing flow. The resultant data provide a quantitative assessment of the effects of these perforate, single-layer liner parameters on the acoustic impedance of the liner.

  4. Non-contact scanning electrical impedance imaging.

    PubMed

    Liu, Hongze; Hawkins, Aaron; Schultz, Stephen; Oliphant, Travis

    2004-01-01

    We are interested in applying electrical impedance imaging to a single cell because it has potential to reveal both cell anatomy and cell function. Unfortunately, classic impedance imaging techniques are not applicable to this small scale measurement due to their low resolution. In this paper, a different method of impedance imaging is developed based on a non-contact scanning system. In this system, the imaging sample is immersed in an aqueous solution allowing for the use of various probe designs. Among those designs, we discuss a novel shield-probe design that has the advantage of better signal-to-noise ratio with higher resolution compared to other probes. Images showing the magnitude of current for each scanned point were obtained using this configuration. A low-frequency linear physical model helps to relate the current to the conductivity at each point. Line-scan data of high impedance contrast structures can be shown to be a good fit to this model. The first two-dimensional impedance image of biological tissues generated by this technique is shown with resolution on the order of 100 mum. The image reveals details not present in the optical image. PMID:17271931

  5. Next Generation Plasma Impedance Probe Instrumentation Technique

    NASA Astrophysics Data System (ADS)

    Carlson, C. G.; Swenson, C. M.; Fish, C.

    2003-12-01

    Four Utah State University Plasma Impedance Probes (PIP) were part of NASA's Sequential Rocket Study of Descending Layers in the E-Region (E-Winds). The payloads were launched at 11:19 pm, 1:41 am, 2:50 am and 3:07 am on June 30 and July 1, 2003 from Wallops Island, Virginia into the nighttime D and E-regions. The PIP is a suite of instruments for observing relative and absolute electron densities, magnetic field strength, and electron-neutral collision frequency. The suite consists of a Plasma Frequency Probe, a Swept Impedance Probe, a Q probe, an experimental Ion Impedance probe, and a DC Langmuir probe. The first four instrument diagnostics are based on the impedance characteristics of an antenna immersed in plasma. Resonance effects at low frequencies (1-100 kHz) where ion dynamics become important were observed by the Ion Impedance Probe. This data set may lead to the first mid-latitude measurements of ion-neutral collision frequency and full conductivity measurements of the ionosphere. Preliminary analysis of flight data shows a considerable amount of sensitivity in all of the instruments that should allow for absolute electron density measurement in the 1 to 10 per cc range and comparable accuracy in electron neutral collision frequency. This paper presents the instrumentation techniques, calibrations and initial results for this flight.

  6. Antenna pattern control using impedence surfaces

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Liu, Kefeng

    1991-01-01

    During this research period, September 16, 1990 to March 15, 1991, a design method for selecting a low-loss impedance material coating for a horn antenna pattern control has been developed. This method and the stepped waveguide technique can be employed to accurately compute the electromagnetic wave phenomenon inside the transition region of the horn antenna, with or without the impedance surfaces, from the feed to the radiating aperture. For moment method solutions of the electric and magnetic current distributions on the radiating aperture and the outer surface of the horn antenna, triangular surface-patch modes are introduced to replace the sinusoidal surface-patch modes as expansion and testing functions to provide a more physical expansion of the current distributions. In the synthesis problem, a numerical optimization process is formulated to minimize the error function between the desired waveguide modes and the modes provided by the horn transition with impedance surfaces. Since the modes generated by the horn transition with impedance surface are computed by analytical techniques, the computational error involved in the synthesis of the antenna pattern is minimum. Therefore, the instability problem can be avoided. A preliminary implementation of the techniques has demonstrated that the developed theory of the horn antenna pattern control using the impedance surfaces is realizable.

  7. Tunable microwave impedance matching to a high impedance source using a Josephson metamaterial

    SciTech Connect

    Altimiras, Carles Parlavecchio, Olivier; Joyez, Philippe; Vion, Denis; Roche, Patrice; Esteve, Daniel; Portier, Fabien

    2013-11-18

    We report the efficient coupling of a 50  Ω microwave circuit to a high impedance conductor. We use an impedance transformer consisting of a λ/4 co-planar resonator whose inner conductor contains an array of superconducting quantum interference devices (SQUIDs), providing it with a tunable lineic inductance L∼80 μ{sub 0}, resulting in a characteristic impedance Z{sub C}∼1 kΩ. The impedance matching efficiency is characterized by measuring the shot noise power emitted by a dc biased tunnel junction connected to the resonator. We demonstrate matching to impedances in the 15 to 35 kΩ range with bandwidths above 100 MHz around a resonant frequency tunable between 4 and 6 GHz.

  8. Tunable microwave impedance matching to a high impedance source using a Josephson metamaterial

    NASA Astrophysics Data System (ADS)

    Altimiras, Carles; Parlavecchio, Olivier; Joyez, Philippe; Vion, Denis; Roche, Patrice; Esteve, Daniel; Portier, Fabien

    2013-11-01

    We report the efficient coupling of a 50 Ω microwave circuit to a high impedance conductor. We use an impedance transformer consisting of a λ/4 co-planar resonator whose inner conductor contains an array of superconducting quantum interference devices (SQUIDs), providing it with a tunable lineic inductance L ˜80 μ0, resulting in a characteristic impedance ZC˜1 k Ω. The impedance matching efficiency is characterized by measuring the shot noise power emitted by a dc biased tunnel junction connected to the resonator. We demonstrate matching to impedances in the 15 to 35 kΩ range with bandwidths above 100 MHz around a resonant frequency tunable between 4 and 6 GHz.

  9. Dielectric, ferroelectrics properties and impedance spectroscopy analysis of the [(Na0.535K0.480)0.966Li0.058](Nb0.90Ta0.10)O3-based lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Saidi, M.; Chaouchi, A.; D'Astorg, S.; Rguiti, M.; Courtois, C.

    2015-04-01

    Polycrystalline of [(Na0.535K0.480)0.966Li0.058](Nb0.90Ta0.10)O3 samples were prepared using the high-temperature solid-state reaction technique. X-ray diffraction (XRD) analysis indicates the formation of a single-phase with orthorhombic structure. AC impedance plots were used as tool to analyze the electrical behavior of the sample as a function of frequency at different temperatures. The AC impedance studies revealed the presence of grain effect, from 425°C onwards. Complex impedance analysis indicated non-Debye type dielectric relaxation. The Nyquist plot showed the negative temperature coefficient of resistance (NTCR) characteristic of NKLNT. The AC conductivity results were used to correlate with the barrier hopping (CBH) model to evaluate the binding energy (Wm), the minimum hopping distance (Rmin), the density of states at Fermi level (N(Ef)), and the activation energy of the compound.

  10. Propagation of waves along an impedance boundary

    NASA Technical Reports Server (NTRS)

    Wenzel, A. R.

    1974-01-01

    A theoretical analysis of the scalar wave field due to a point source above a plane impedance boundary is presented. A surface wave is found to be an essential component of the total wave field. It is shown that, as a result of ducting of energy by the surface wave, the amplitude of the total wave near the boundary can be greater than it would be if the boundary were perfectly reflecting. Asymptotic results, valid near the boundary, are obtained both for the case of finite impedance (the soft-boundary case) and for the limiting case in which the impedance becomes infinite (the hard-boundary case). In the latter, the wave amplitude in the farfield decreases essentially inversely as the horizontal propagation distance; in the former (if the surface-wave term is neglected), it decreases inversely as the square of the horizontal propagation distance.

  11. Ferrofluid Microwave Devices With Magnetically Controlled Impedances

    NASA Astrophysics Data System (ADS)

    Fannin, P. C.; Stefu, N.; Marin, C. N.; Malaescu, I.; Totoreanu, R.

    2010-08-01

    Ferrofluid filled transmission lines are microwave electronic devices. The complex dielectric permittivity and the complex magnetic permeability of a kerosene based ferrofluid with magnetite nanoparticles, in the frequency range (0.5-6) GHz were measured, for several values of polarising field, H. Afterwards, the input impedance of a short-circuited transmission line filled with this ferrofluid was computed using the equation Z = Zc tanh(γl). Here Zc and l are the characteristic impedance and the length of the coaxial line and γ is the propagation constant, depending on the dielectric and magnetic parameters of the material within the line. It is demonstrated how the impedance displays a frequency and polarizing field dependence, which has application in the design of magnetically controlled microwave devices.

  12. Respiratory acoustic impedance in left ventricular failure.

    PubMed

    Depeursinge, F B; Feihl, F; Depeursinge, C; Perret, C H

    1989-12-01

    The measurement of respiratory acoustic impedance (Zrs) by forced pseudorandom noise provides a simple means of assessing respiratory mechanics in nonintubated intensive care patients. To characterize the lung mechanical alterations induced by acute vascular congestion of the lung, Zrs was measured in 14 spontaneously breathing patients hospitalized for acute left ventricular failure. The Zrs data in the cardiac patients were compared with those of 48 semirecumbent normal subjects and those of 23 sitting asthmatic patients during allergen-induced bronchospasm. In the patients with acute left ventricular failure, the Zrs abnormalities noted were an excessive frequency dependence of resistance from 10 to 20 Hz and an abnormally low reactance at all frequencies, abnormalities qualitatively similar to those observed in the asthmatic patients but of lesser magnitude. Acute lung vascular congestion modifies the acoustic impedance of the respiratory system. Reflex-induced bronchospasm might be the main mechanism altering respiratory acoustic impedance in acute left ventricular failure. PMID:2582846

  13. Plasma Diagnostics by Antenna Impedance Measurements

    NASA Technical Reports Server (NTRS)

    Swenson, C. M.; Baker, K. D.; Pound, E.; Jensen, M. D.

    1993-01-01

    The impedance of an electrically short antenna immersed in a plasma provides an excellent in situ diagnostic tool for electron density and other plasma parameters. By electrically short we mean that the wavelength of the free-space electromagnetic wave that would be excited at the driving frequency is much longer than the physical size of the antenna. Probes using this impedance technique have had a long history with sounding rockets and satellites, stretching back to the early 1960s. This active technique could provide information on composition and temperature of plasmas for comet or planetary missions. Advantages of the impedance probe technique are discussed and two classes of instruments built and flown by SDL-USU for determining electron density (the capacitance and plasma frequency probes) are described.

  14. Impedance properties of circular microstrip antenna

    NASA Technical Reports Server (NTRS)

    Deshpande, M. D.; Bailey, M. C.

    1983-01-01

    A moment method solution to the input impedance of a circular microstrip antenna excited by either a microstrip feed or a coaxial probe is presented. Using the exact dyadic Green's function and the Fourier transform the problem is formulated in terms of Richmond's reaction integral equation from which the unknown patch current can be solved for. The patch current is expanded in terms of regular surface patch modes and an attachment mode (for probe excited case) which insures continuity of the current at probe/patch junction, proper polarization and p-dependance of patch current in the vicinity of the probe. The input impedance of a circular microstrip antenna is computed and compared with earlier results. Effect of attachment mode on the input impedance is also discussed.

  15. Wavelet analysis of the impedance cardiogram waveforms

    NASA Astrophysics Data System (ADS)

    Podtaev, S.; Stepanov, R.; Dumler, A.; Chugainov, S.; Tziberkin, K.

    2012-12-01

    Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt)max) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.

  16. Impedance Characteristics of the Plasma Absorption Probe

    NASA Astrophysics Data System (ADS)

    Yamazawa, Yohei

    2009-10-01

    The plasma absorption probe (PAP) is a diagnostics for determination of spatially resolved electron density.footnotetextH. Kokura, et al., Jpn. J. Appl. Phys. 38 5262 (1999). PAP has attracted considerable interest because of its applicability in a reactive plasma. The simple structure of the probe allows us a robust measurement while the mechanism of the absorption is complicated and there are still some uncertainty.footnotetextM. Lapke, et al., Appl. Phys. Lett. 90, 121502 (2007) In this study, we focus on the frequency characteristics of the impedance instead of the absorption spectrum. An electromagnetic field simulation reveals that there is only one parallel resonance in the impedance characteristics even in a case there are many peaks in absorption spectrum. Thus, the impedance characteristics provide a clue to understanding the mechanism.

  17. Cooling Floor AC Systems

    NASA Astrophysics Data System (ADS)

    Jun, Lu; Hao, Ding; Hong, Zhang; Ce, Gao Dian

    The present HVAC equipments for the residential buildings in the Hot-summer-and-Cold-winter climate region are still at a high energy consuming level. So that the high efficiency HVAC system is an urgently need for achieving the preset government energy saving goal. With its advantage of highly sanitary, highly comfortable and uniform of temperature field, the hot-water resource floor radiation heating system has been widely accepted. This paper has put forward a new way in air-conditioning, which combines the fresh-air supply unit and such floor radiation system for the dehumidification and cooling in summer or heating in winter. By analyze its advantages and limitations, we found that this so called Cooling/ Heating Floor AC System can improve the IAQ of residential building while keep high efficiency quality. We also recommend a methodology for the HVAC system designing, which will ensure the reduction of energy cost of users.

  18. Digital ac monitor

    DOEpatents

    Hart, George W.; Kern, Jr., Edward C.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer.

  19. Thermionic triode generates ac power

    NASA Technical Reports Server (NTRS)

    Kniazzeh, A. G. F.; Scharz, F. C.

    1970-01-01

    Electrostatic grid controls conduction cycle of thermionic diode to convert low dc output voltages to high ac power without undesirable power loss. An ac voltage applied to the grid of this new thermionic triode enables it to convert heat directly into high voltage electrical power.

  20. Automated ac galvanomagnetic measurement system

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Espy, P. N.

    1985-01-01

    An automated, ac galvanomagnetic measurement system is described. Hall or van der Pauw measurements in the temperature range 10-300 K can be made at a preselected magnetic field without operator attendance. Procedures to validate sample installation and correct operation of other system functions, such as magnetic field and thermometry, are included. Advantages of ac measurements are discussed.

  1. Optical input impedance of nanostrip antennas

    NASA Astrophysics Data System (ADS)

    Wang, Ivan; Du, Ya-ping

    2012-05-01

    We conduct an investigation into optical nanoantennas in the form of a strip dipole made from aluminum. With the finite-difference time domain simulation both optical input impedance and radiation efficiency of nanostrip antennas are addressed. An equivalent circuit is presented as well for the nanostrip antennas at optical resonances. The optical input resistance can be adjusted by varying the geometric parameters of antenna strips. By changing both strip area and strip length simultaneously, optical input resistance can be adjusted for matching impedance with an external feeding or loading circuit. It is found that the optical radiation efficiency does not change significantly when the size of a nanostrip antenna varies moderately.

  2. Protein Aggregation Measurement through Electrical Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Affanni, A.; Corazza, A.; Esposito, G.; Fogolari, F.; Polano, M.

    2013-09-01

    The paper presents a novel methodology to measure the fibril formation in protein solutions. We designed a bench consisting of a sensor having interdigitated electrodes, a PDMS hermetic reservoir and an impedance meter automatically driven by calculator. The impedance data are interpolated with a lumped elements model and their change over time can provide information on the aggregation process. Encouraging results have been obtained by testing the methodology on K-casein, a protein of milk, with and without the addition of a drug inhibiting the aggregation. The amount of sample needed to perform this measurement is by far lower than the amount needed by fluorescence analysis.

  3. Electrochemical Impedance Spectroscopy Of Metal Alloys

    NASA Technical Reports Server (NTRS)

    Macdowell, L. G.; Calle, L. M.

    1993-01-01

    Report describes use of electrochemical impedance spectroscopy (EIS) to investigate resistances of 19 alloys to corrosion under conditions similar to those of corrosive, chloride-laden seaside environment of Space Transportation System launch site. Alloys investigated: Hastelloy C-4, C-22, C-276, and B-2; Inconel(R) 600, 625, and 825; Inco(R) G-3; Monel 400; Zirconium 702; Stainless Steel 304L, 304LN, 316L, 317L, and 904L; 20Cb-3; 7Mo+N; ES2205; and Ferralium 255. Results suggest electrochemical impedance spectroscopy used to predict corrosion performances of metal alloys.

  4. Hole-Impeded-Doping-Superlattice LWIR Detectors

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1991-01-01

    Hole-Impeded-Doping-Superlattice (HIDS) InAs devices proposed for use as photoconductive or photovoltaic detectors of radiation in long-wavelength infrared (LWIR) range of 8 to 17 micrometers. Array of HIDS devices fabricated on substrates GaAs or Si. Radiation incident on black surface, metal contacts for picture elements serve as reactors, effectively doubling optical path and thereby increasing absorption of photons. Photoconductive detector offers advantages of high gain and high impedance; photovoltaic detector offers lower noise and better interface to multiplexer readouts.

  5. Impedance Scaling for Small Angle Transitions

    SciTech Connect

    Stupakov, G.; Bane, Karl; Zagorodnov, I.; /DESY

    2010-10-27

    Based on the parabolic equation approach to Maxwell's equations we have derived scaling properties of the high frequency impedance/short bunch wakefields of structures. For the special case of small angle transitions we have shown the scaling properties are valid for all frequencies. Using these scaling properties one can greatly reduce the calculation time of the wakefield/impedance of long, small angle, beam pipe transitions, like one often finds in insertion regions of storage rings. We have tested the scaling with wakefield simulations of 2D and 3D models of such transitions, and found that the scaling works well. In modern ring-based light sources one often finds insertion devices having extremely small vertical apertures (on the order of millimeters) to allow for maximal undulator fields reaching the beam. Such insertion devices require that there be beam pipe transitions from these small apertures to the larger cross-sections (normally on the order of centimeters) found in the rest of the ring. The fact that there may be many such transitions, and that these transitions introduce beam pipe discontinuities very close to the beam path, means that their impedance will be large and, in fact, may dominate the impedance budget of the entire ring. To reduce their impact on impedance, the transitions are normally tapered gradually over a long distance. The accurate calculation of the impedance or wakefield of these long transitions, which are typically 3D objects (i.e. they do not have cylindrical symmetry), can be quite a challenging numerical task. In this report we present a method of obtaining the impedance of a long, small angle transition from the calculation of a scaled, shorter one. Normally, the actual calculation is obtained from a time domain simulation of the wakefield in the structure, where the impedance can be obtained by performing a Fourier transform. We shall see that the scaled calculation reduces the computer time and memory requirements

  6. Photographic spectra of fireballs

    NASA Astrophysics Data System (ADS)

    Borovička, J.

    2016-01-01

    Two methods of spectroscopy of meteors using image intensified video cameras and classical photographic film cameras are compared. Video cameras provide large number of low resolution spectra of meteors of normal brightness, which can be used for statistical studies. Large format film cameras have been used through the history and provide high resolution spectra, which can be used to derive temperature, density and absolute abundances of various elements in the radiating plasma. The sensitivity of films is, however, low and only spectra of bright meteors (fireballs) can be studied. Examples of photographic fireball spectra are provided.

  7. Crack spectra analysis

    SciTech Connect

    Tiernan, M.

    1980-09-01

    Crack spectra derived from velocity data have been shown to exhibit systematics which reflect microstructural and textural differences between samples (Warren and Tiernan, 1980). Further research into both properties and information content of crack spectra have yielded the following: Spectral features are reproducible even at low pressures; certain observed spectral features may correspond to non-in-situ crack populations created during sample retrieval; the functional form of a crack spectra may be diagnostic of the sample's grain texture; hysteresis is observed in crack spectra between up and down pressure runs - it may be due to friction between the faces of closed crack populations.

  8. Phase-sensitive detection of both inductive and non-inductive ac voltages in ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Weiler, Mathias; Shaw, Justin M.; Nembach, Hans T.; Schoen, Martin A.; Boone, Carl T.; Silva, Thomas J.

    2014-03-01

    Spin pumping causes significant damping in ultrathin ferromagnetic/normal metal (NM) multilayers via spin-current generation of both dc and ac character in the NM system. While the nonlinear dc component has been investigated in detail by utilization of the inverse spin Hall effect (iSHE) in NMs, much less is known about the linear ac component that is presumably much larger in the small-excitation limit. We measured generated ac voltages in a wide variety of Permalloy/NM multilayers via vector-network-analyzer ferromagnetic resonance. We employ a custom, impedance-matched, broadband microwave coupler that features a ferromagnetic thin film reference resonator to accurately compare ac voltage amplitudes and phases between varieties of multilayers. By use of the fact that inductive and ac iSHE signals are phase-shifted by π/2, we find that inductive signals are major contributors in all investigated samples. It is only by comparison of the phase and amplitude of the recorded ac voltages between multiple samples that we can extract the non-inductive contributions due to spin-currents. Voltages due to the ac iSHE in Permalloy(10nm)/platinum(5nm) bilayers are weaker than inductive signals, in agreement with calculations based upon recent theoretical predictions. M.W. acknowledges financial support by the German Academic Exchange service (DAAD).

  9. AC conductivity and Dielectric Study of Chalcogenide Glasses of Se-Te-Ge System

    NASA Astrophysics Data System (ADS)

    Salman, Fathy

    2004-01-01

    The ac conductivity and dielectric properties of glassy system SexTe79 - xGe21, with x = 11, 14, 17 at.%, has been studied at temperatures 300 to 450 K and over a wide range of frequencies (50 Hz to 500 kHz). Experimental results indicate that the ac conductivity and the dielectric constants depend on temperature, frequency and Se content. The conductivity as a function of frequency exhibited two components: dc conductivity s dc, and ac conductivity s ac, where s ac ˜ w s. The mechanism of ac conductivity can be reasonably interpreted in terms of the correlated barrier hopping model (CBH). The activation energies are estimated and discussed. The dependence of ac conductivity and dielectric constants on the Se content x can be interpreted as the effect of Se fraction on the positional disorder. The impedance plot at each temperature appeared as a semicircle passes through the origin. Each semicircle is represented by an equivalent circuit of parallel resistance Rb and capacitance Cb.

  10. Non-destructive monitoring of fiber orientation using AC-IS: An industrial-scale application

    SciTech Connect

    Ozyurt, Nilufer . E-mail: ozyurtnil@itu.edu.tr; Mason, Thomas O.; Shah, Surendra P.

    2006-09-15

    A comprehensive study has been undertaken to investigate the ability of AC-impedance spectroscopy (AC-IS) to non-destructively monitor the fiber dispersion of conductive fiber-reinforced cement-based materials. Previous work showed that AC-IS effectively monitors various fiber dispersion issues in lab-scale steel fiber-reinforced specimens. In this part of the study, AC-IS was used to study fiber orientation in an industrial-scale pre-cast concrete beam. A conventional method-image analysis (IA)-was used to verify the results of AC-IS measurements. The results of AC-IS and IA were found to match very well in experimental uncertainty. Splitting tensile tests and bending tests were conducted on the parts of the beam to study the effects of fiber orientation on the mechanical performance. The results of the mechanical tests also confirmed the results of AC-IS with splitting tensile strengths increasing as the alignment of fibers increased.

  11. Impedance and modulus spectroscopic study of nano hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Jogiya, B. V.; Jethava, H. O.; Tank, K. P.; Raviya, V. R.; Joshi, M. J.

    2016-05-01

    Hydroxyapatite (Ca10 (PO4)6 (OH)2, HAP) is the main inorganic component of the hard tissues in bones and also important material for orthopedic and dental implant applications. Nano HAP is of great interest due to its various bio-medical applications. In the present work the nano HAP was synthesized by using surfactant mediated approach. Structure and morphology of the synthesized nano HAP was examined by the Powder XRD and TEM. Impedance study was carried out on pelletized sample in a frequency range of 100Hz to 20MHz at room temperature. The variation of dielectric constant, dielectric loss, and a.c. conductivity with frequency of applied field was studied. The Nyquist plot as well as modulus plot was drawn. The Nyquist plot showed two semicircle arcs, which indicated the presence of grain and grain boundary effect in the sample. The typical behavior of the Nyquist plot was represented by equivalent circuit having two parallel RC combinations in series.

  12. The development of the miniaturized waveform receiver with the function measuring Antenna Impedance in space plasmas

    NASA Astrophysics Data System (ADS)

    Ishii, H.; Kojima, H.; Fukuhara, H.; Okada, S.; Yamakawa, H.

    2012-04-01

    Plasma wave is one of the most essential physical quantities in the solar terrestrial physics. The role of plasma wave receiver onboard satellites is to detect plasma waves in space with a good signal to noise ratio. There are two types of plasma wave receivers, the sweep frequency analyzer and the waveform capture. While the sweep frequency analyzer provides plasma wave spectra, the waveform capture obtains waveforms with phase information that is significant in studying nonlinear phenomena. Antenna sensors to observe electric fields of the plasma waves show different features in plasmas from in vacuum. The antenna impedances have specific characteristics in the frequency domain because of the dispersion of plasmas. These antenna impedances are expressed with complex number. We need to know not only the antenna impedances but also the transfer functions of plasma wave receiver's circuits in order to calibrate observed waveforms precisely. The impedances of the electric field antennas are affected by a state of surrounding plasmas. Since satellites run through various regions with different plasma parameters, we precisely should measure the antenna impedances onboard spacecraft. On the contrary, we can obtain the plasma density and by measuring the antenna impedances. Several formulas of the antenna impedance measurement system were proposed. A synchronous detection method is used on the BepiColombo Mercury Magnetospheric Orbiter (MMO), which will be launched in 2014. The digital data are stored in the onboard memory. They are read out and converted to the analog waveforms by D/A converter. They are fed into the input of the preamplifiers of antenna sensors through a resistor. We can calculate a transfer function of the circuit by applying the synchronous detection method to the output waveform from waveform receivers and digital data as a signal source. The size of this system is same as an A5 board. In recent years, Application Specific Integrated Circuit (ASIC

  13. An ac bridge readout for bolometric detectors

    NASA Technical Reports Server (NTRS)

    Rieke, F. M.; Lange, A. E.; Beeman, J. W.; Haller, E. E.

    1989-01-01

    The authors have developed a bolometer readout circuit which greatly improves the low-frequency stability of bolometric detectors. The circuit uses an ac bias voltage and two matched bolometers and allows stable dc bolometer operation for integration times greater than 10 s. In astronomical applications the readout allows for qualitatively different observation modes (e.g. staring or slow-drift scanning) which are particularly well suited for space observations and for the use of arrays. In many applications the readout can increase sensitivity. The authors present noise spectra for 4He temperature bolometers with no excess noise at frequencies greater than 0.1 Hz. The measured optical responsivity of a bolometer operated with the present readout is the same as that of a bolometer operated with a conventional readout.

  14. Moderately nonlinear diffuse-charge dynamics under an ac voltage

    NASA Astrophysics Data System (ADS)

    Stout, Robert F.; Khair, Aditya S.

    2015-09-01

    The response of a symmetric binary electrolyte between two parallel, blocking electrodes to a moderate amplitude ac voltage is quantified. The diffuse charge dynamics are modeled via the Poisson-Nernst-Planck equations for a dilute solution of point-like ions. The solution to these equations is expressed as a Fourier series with a voltage perturbation expansion for arbitrary Debye layer thickness and ac frequency. Here, the perturbation expansion in voltage proceeds in powers of Vo/(kBT /e ) , where Vo is the amplitude of the driving voltage and kBT /e is the thermal voltage with kB as Boltzmann's constant, T as the temperature, and e as the fundamental charge. We show that the response of the electrolyte remains essentially linear in voltage amplitude at frequencies greater than the RC frequency of Debye layer charging, D /λDL , where D is the ion diffusivity, λD is the Debye layer thickness, and L is half the cell width. In contrast, nonlinear response is predicted at frequencies below the RC frequency. We find that the ion densities exhibit symmetric deviations from the (uniform) equilibrium density at even orders of the voltage amplitude. This leads to the voltage dependence of the current in the external circuit arising from the odd orders of voltage. For instance, the first nonlinear contribution to the current is O (Vo3) which contains the expected third harmonic but also a component oscillating at the applied frequency. We use this to compute a generalized impedance for moderate voltages, the first nonlinear contribution to which is quadratic in Vo. This contribution predicts a decrease in the imaginary part of the impedance at low frequency, which is due to the increase in Debye layer capacitance with increasing Vo. In contrast, the real part of the impedance increases at low frequency, due to adsorption of neutral salt from the bulk to the Debye layer.

  15. Impedance adaptation methods of the piezoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Kim, Hyeoungwoo

    In this study, the important issues of energy recovery were addressed and a comprehensive investigation was performed on harvesting electrical power from an ambient mechanical vibration source. Also discussed are the impedance matching methods used to increase the efficiency of energy transfer from the environment to the application. Initially, the mechanical impedance matching method was investigated to increase mechanical energy transferred to the transducer from the environment. This was done by reducing the mechanical impedance such as damping factor and energy reflection ratio. The vibration source and the transducer were modeled by a two-degree-of-freedom dynamic system with mass, spring constant, and damper. The transmissibility employed to show how much mechanical energy that was transferred in this system was affected by the damping ratio and the stiffness of elastic materials. The mechanical impedance of the system was described by electrical system using analogy between the two systems in order to simply the total mechanical impedance. Secondly, the transduction rate of mechanical energy to electrical energy was improved by using a PZT material which has a high figure of merit and a high electromechanical coupling factor for electrical power generation, and a piezoelectric transducer which has a high transduction rate was designed and fabricated. The high g material (g33 = 40 [10-3Vm/N]) was developed to improve the figure of merit of the PZT ceramics. The cymbal composite transducer has been found as a promising structure for piezoelectric energy harvesting under high force at cyclic conditions (10--200 Hz), because it has almost 40 times higher effective strain coefficient than PZT ceramics. The endcap of cymbal also enhances the endurance of the ceramic to sustain ac load along with stress amplification. In addition, a macro fiber composite (MFC) was employed as a strain component because of its flexibility and the high electromechanical coupling

  16. Implementation of Impedance Method in Syncope Treatment

    NASA Astrophysics Data System (ADS)

    Pęczalski, Kazimierz; Wojciechowski, Dariusz; Dunajski, Zbigniew; Pałko, Tadeusz

    2007-01-01

    Current syncope treatment by cardiac pacing is limited to patients developing cardiodepressive reaction. There is strong need to apply this method to other types of reaction. Presented method shows, that impedance method can be applied for early detection of vasodepressive syncope. Thus the method can be applied for antivasovagal pacing in syncopic patients.

  17. Acoustic grazing flow impedance using waveguide principles

    NASA Technical Reports Server (NTRS)

    Armstrong, D. L.

    1971-01-01

    A grazing flow apparatus was designed to measure the impedance of acoustic materials when installed in environments that subject the material to grazing airflow. The design of the apparatus and the data analysis technique is based on the solution of the convected wave equation in an infinite length waveguide.

  18. Electrical Impedance Tomography Technology (EITT) Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J.

    2014-01-01

    Development of a portable, lightweight device providing two-dimensional tomographic imaging of the human body using impedance mapping. This technology can be developed to evaluate health risks and provide appropriate medical care on the ISS, during space travel and on the ground.

  19. Energy-storage of a prescribed impedance

    NASA Technical Reports Server (NTRS)

    Smith, W. E.

    1969-01-01

    General mathematical expression found for energy storage shows that for linear, passive networks there is a minimum possible energy storage corresponding to a prescribed impedance. The electromagnetic energy storage is determined at different excitation frequencies through analysis of the networks terminal and reactance characteristics.

  20. Explicit Expressions of Impedances and Wake Functions

    SciTech Connect

    Ng, K.Y.; Bane, K,; /SLAC

    2012-06-11

    Sections 3.2.4 and 3.2.5 of the Handbook of Accelerator Physics and Engineering on Landau damping are combined and updated. The new addition includes impedances and wakes for multi-layer beam pipe, optical model, diffraction model, and cross-sectional transition.

  1. Explicit expressions of impedances and wake functions

    SciTech Connect

    Ng, K.Y.; Bane, K,; /SLAC

    2010-10-01

    Sections 3.2.4 and 3.2.5 of the Handbook of Accelerator Physics and Engineering on Landau damping are combined and updated. The new addition includes impedances and wakes for multi-layer beam pipe, optical model, diffraction model, and cross-sectional transition.

  2. Bioelectrical Impedance and Body Composition Assessment

    ERIC Educational Resources Information Center

    Martino, Mike

    2006-01-01

    This article discusses field tests that can be used in physical education programs. The most common field tests are anthropometric measurements, which include body mass index (BMI), girth measurements, and skinfold testing. Another field test that is gaining popularity is bioelectrical impedance analysis (BIA). Each method has particular strengths…

  3. Impedance-matched drilling telemetry system

    DOEpatents

    Normann, Randy A.; Mansure, Arthur J.

    2008-04-22

    A downhole telemetry system that uses inductance or capacitance as a mode through which signal is communicated across joints between assembled lengths of pipe wherein efficiency of signal propagation through a drill string, for example, over multiple successive pipe segments is enhanced through matching impedances associated with the various telemetry system components.

  4. High Impedance Comparator for Monitoring Water Resistivity.

    ERIC Educational Resources Information Center

    Holewinski, Paul K.

    1984-01-01

    A high-impedance comparator suitable for monitoring the resistivity of a deionized or distilled water line supplying water in the 50 Kohm/cm-2 Mohm/cm range is described. Includes information on required circuits (with diagrams), sensor probe assembly, and calibration techniques. (JN)

  5. Impedance spectroscopy with field-effect transistor arrays for the analysis of anti-cancer drug action on individual cells.

    PubMed

    Susloparova, A; Koppenhöfer, D; Vu, X T; Weil, M; Ingebrandt, S

    2013-02-15

    In this study, impedance spectroscopy measurements of silicon-based open-gate field-effect transistor (FET) devices were utilized to study the adhesion status of cancer cells at a single cell level. We developed a trans-impedance amplifier circuit for the FETs with a higher bandwidth compared to a previously described system. The new system was characterized with a fast lock-in amplifier, which enabled measuring of impedance spectra up to 50 MHz. We studied cellular activities, including cell adhesion and anti-cancer drug induced apoptosis of human embryonic kidney (HEK293) and human lung adenocarcinoma epithelial (H441) cells. A well-known chemotherapeutic drug, topotecan hydrochloride, was used to investigate the effect of this drug to tumor cells cultured on the FET devices. The presence of the drug resulted in a 20% change in the amplitude of the impedance spectra at 200 kHz as a result of the induced apoptosis process. Real-time impedance measurements were performed inside an incubator at a constant frequency. The experimental results can be interpreted with an equivalent electronic circuit to resolve the influence of the system parameters. The developed method could be applied for the analysis of the specificity and efficacy of novel anti-cancer drugs in cancer therapy research on a single cell level in parallelized measurements. PMID:22795530

  6. The application of electrochemical impedance spectroscopy for characterizing the degradation of Ni(OH)2/NiOOH electrodes

    NASA Technical Reports Server (NTRS)

    Macdonald, D. D.; Pound, B. G.; Lenhart, S. J.

    1989-01-01

    Electrochemical impedance spectra of rolled and bonded and sintered porous nickel battery electrodes were recorded periodically during charge/discharge cycling in concentrated KOH solution at various temperatures. A transmission line model (TLM) was adopted to represent the impedance of the porous electrodes, and various model parameters were adjusted in a curve fitting routine to reproduce the experimental impedances. Degradation processes for rolled and bonded electrodes were deduced from changes in model parameters with electrode cycling time. In developing the TLM, impedance spectra of planar (non-porous) electrodes were used to represent the pore wall and backing plate interfacial impedances. These data were measured over a range of potentials and temperatures, and an equivalent circuit model was adopted to represent the planar electrode data. Cyclic voltammetry was used to study the characteristics of the oxygen evolution reaction on planar nickel electrodes during charging, since oxygen evolution can affect battery electrode charging efficiency and ultimately electrode cycle life if the overpotential for oxygen evolution is sufficiently low. Transmission line modeling results suggest that porous rolled and bonded nickel electrodes undergo restructuring during charge/discharge cycling prior to failure.

  7. Development of a new rapid measurement technique for fish embryo membrane permeability studies using impedance spectroscopy

    PubMed Central

    Zhang, T.; Wang, R.Y.; Bao, Q-Y.; Rawson, D.M.

    2006-01-01

    Information on fish embryo membrane permeability is vital in their cryopreservation. Whilst conventional volumetric measurement based assessment methods have been widely used in fish embryo membrane permeability studies, they are lengthy and reduce the capacity for multi-embryo measurement during an experimental run. A new rapid ‘real-time’ measurement technique is required to determine membrane permeability during cryoprotectant treatment. In this study, zebrafish (Danio rerio) embryo membrane permeability to cryoprotectants was investigated using impedance spectroscopy. An embryo holding cell, capable of holding up to 10 zebrafish embryos was built incorporating the original system electrods for measuring the impedance spectra. The holding cell was tested with deionised water and a series of KCl solutions with known conductance values to confirm the performance of the modified system. Untreated intact embryos were then tested to optimise the loading capacity and sensitivity of the system. To study the impedance changes of zebrafish embryos during cryoprotectant exposure, three, six or nine embryos at 50% epiboly stage were loaded into the holding cell in egg water, which was then removed and replaced by 0.5, 1.0, 2.0 or 3 M methanol or dimethyl sulfoxide (DMSO). The impedance changes of the loaded embryos in different cryoprotectant solutions were monitored over 30 min at 22 °C, immediately following embryo exposure to cryoprotectants, at the frequency range of 10–106 Hz. The impedance changes of the embryos in egg water were used as controls. Results from this study showed that the optimum embryo loading level was six embryos per cell for each experimental run. The optimum frequency was identified at 103.14 or 1380 Hz which provided good sensitivity and reproducibility. Significant impedance changes were detected after embryos were exposed to different concentrations of cryoprotectants. The results agreed well with those obtained from conventional

  8. A microchip integrating cell array positioning with in situ single-cell impedance measurement.

    PubMed

    Guo, Xiaoliang; Zhu, Rong; Zong, Xianli

    2015-10-01

    This paper presents a novel microarray chip integrating cell positioning with in situ, real-time and long-time impedance measurement on a single cell. The microchip integrates a plurality of quadrupole-electrode units (termed positioning electrodes) patterned into an array with pairs of planar electrodes (termed measuring electrodes) located at the centers of each quadrupole-electrode unit. The positioning electrodes are utilized to trap and position living cells onto the measuring electrodes based on negative dielectrophoresis (nDEP), while the measuring electrodes are used to measure impedances of the trapped single cells. Each measuring electrode has a small footprint area of 7 × 7 μm(2) to ensure inhabiting only one single cell on it. However, the electrode with a small surface area has a low double-layer capacitance when it is immersed in a liquid solution, thus generating a large double-layer impedance, which reduces the sensitivity for impedance measurement on the single cell. To enlarge the effective surface areas of the measuring electrodes, a novel surface-modification process is proposed to controllably construct gold nanostructures on the surfaces of the measuring electrodes while the positioning electrodes are unstained. The double layer capacitances of the modified electrodes are increased by about one order after surface-modification. The developed microchip is used to monitor the adhering behavior of a single HeLa cell by measuring its impedance spectra in real time. The measured impedance is analyzed and used to extract cellular electrical parameters, which demonstrated that the cell compresses the electrical double layer in the process of adherence and adheres onto the measuring electrodes after 4-5 hours. PMID:26282920

  9. Operation Method for AC Motor Control during Power Interruption in Direct AC/AC Converter System

    NASA Astrophysics Data System (ADS)

    Shizu, Keiichiro; Azuma, Satoshi

    Direct AC/AC converters have been studied due to their potential use in power converters with no DC-link capacitor, which can contribute to the miniaturization of power converters. However, the absence of a DC-link capacitor makes it difficult to control the AC motor during power interruption. First, this paper proposes a system that realizes AC motor control during power interruption by utilizing a clamp capacitor. In general, direct AC/AC converters have a clamp circuit consisting of a rectifier diode(s) and a clamp capacitor in order to avoid over-voltages. In the proposed system, there is an additional semiconductor switch reverse-parallel to the rectifier diode(s), and the clamp capacitor voltage can be utilized for AC motor control by turning on the additional switch. Second, this paper discusses an operation method for AC motor control and clamp capacitor voltage control during power interruption. In the proposed method “DC-link voltage control”, the kinetic energy in the AC motor is transformed into electrical energy and stored in the clamp capacitor; the clamp capacitor is therefore charged and the capacitor voltage is controlled to remain constant at an instruction value. Third, this paper discusses a switching operation during power interruption. A dead-time is introduced between the operation of turning off all switches on the rectifier side and the operation of turning on the additional switch, which prevents the occurrence of a short circuit between the interrupted power source and the clamp capacitor. Finally, experimental results are presented. During power interruptions, an output current was continuously obtained and the clamp capacitor voltage was maintained to be equal to the instruction value of the capacitor voltage. These results indicate that both AC motor control and capacitor voltage control were successfully achieved by using the proposed system.

  10. Aortic Input Impedance during Nitroprusside Infusion

    PubMed Central

    Pepine, Carl J.; Nichols, W. W.; Curry, R. C.; Conti, C. Richard

    1979-01-01

    Beneficial effects of nitroprusside infusion in heart failure are purportedly a result of decreased afterload through “impedance” reduction. To study the effect of nitroprusside on vascular factors that determine the total load opposing left ventricular ejection, the total aortic input impedance spectrum was examined in 12 patients with heart failure (cardiac index <2.0 liters/min per m2 and left ventricular end diastolic pressure >20 mm Hg). This input impedance spectrum expresses both mean flow (resistance) and pulsatile flow (compliance and wave reflections) components of vascular load. Aortic root blood flow velocity and pressure were recorded continuously with a catheter-tip electromagnetic velocity probe in addition to left ventricular pressure. Small doses of nitroprusside (9-19 μg/min) altered the total aortic input impedance spectrum as significant (P < 0.05) reductions in both mean and pulsatile components were observed within 60-90 s. With these acute changes in vascular load, left ventricular end diastolic pressure declined (44%) and stroke volume increased (20%, both P < 0.05). Larger nitroprusside doses (20-38 μg/min) caused additional alteration in the aortic input impedance spectrum with further reduction in left ventricular end diastolic pressure and increase in stroke volume but no additional changes in the impedance spectrum or stroke volume occurred with 39-77 μg/min. Improved ventricular function persisted when aortic pressure was restored to control values with simultaneous phenylephrine infusion in three patients. These data indicate that nitroprusside acutely alters both the mean and pulsatile components of vascular load to effect improvement in ventricular function in patients with heart failure. The evidence presented suggests that it may be possible to reduce vascular load and improve ventricular function independent of aortic pressure reduction. PMID:457874

  11. Discerning Apical and Basolateral Properties of HT-29/B6 and IPEC-J2 Cell Layers by Impedance Spectroscopy, Mathematical Modeling and Machine Learning

    PubMed Central

    Schmid, Thomas; Bogdan, Martin; Günzel, Dorothee

    2013-01-01

    Quantifying changes in partial resistances of epithelial barriers in vitro is a challenging and time-consuming task in physiology and pathophysiology. Here, we demonstrate that electrical properties of epithelial barriers can be estimated reliably by combining impedance spectroscopy measurements, mathematical modeling and machine learning algorithms. Conventional impedance spectroscopy is often used to estimate epithelial capacitance as well as epithelial and subepithelial resistance. Based on this, the more refined two-path impedance spectroscopy makes it possible to further distinguish transcellular and paracellular resistances. In a next step, transcellular properties may be further divided into their apical and basolateral components. The accuracy of these derived values, however, strongly depends on the accuracy of the initial estimates. To obtain adequate accuracy in estimating subepithelial and epithelial resistance, artificial neural networks were trained to estimate these parameters from model impedance spectra. Spectra that reflect behavior of either HT-29/B6 or IPEC-J2 cells as well as the data scatter intrinsic to the used experimental setup were created computationally. To prove the proposed approach, reliability of the estimations was assessed with both modeled and measured impedance spectra. Transcellular and paracellular resistances obtained by such neural network-enhanced two-path impedance spectroscopy are shown to be sufficiently reliable to derive the underlying apical and basolateral resistances and capacitances. As an exemplary perturbation of pathophysiological importance, the effect of forskolin on the apical resistance of HT-29/B6 cells was quantified. PMID:23840862

  12. Discerning apical and basolateral properties of HT-29/B6 and IPEC-J2 cell layers by impedance spectroscopy, mathematical modeling and machine learning.

    PubMed

    Schmid, Thomas; Bogdan, Martin; Günzel, Dorothee

    2013-01-01

    Quantifying changes in partial resistances of epithelial barriers in vitro is a challenging and time-consuming task in physiology and pathophysiology. Here, we demonstrate that electrical properties of epithelial barriers can be estimated reliably by combining impedance spectroscopy measurements, mathematical modeling and machine learning algorithms. Conventional impedance spectroscopy is often used to estimate epithelial capacitance as well as epithelial and subepithelial resistance. Based on this, the more refined two-path impedance spectroscopy makes it possible to further distinguish transcellular and paracellular resistances. In a next step, transcellular properties may be further divided into their apical and basolateral components. The accuracy of these derived values, however, strongly depends on the accuracy of the initial estimates. To obtain adequate accuracy in estimating subepithelial and epithelial resistance, artificial neural networks were trained to estimate these parameters from model impedance spectra. Spectra that reflect behavior of either HT-29/B6 or IPEC-J2 cells as well as the data scatter intrinsic to the used experimental setup were created computationally. To prove the proposed approach, reliability of the estimations was assessed with both modeled and measured impedance spectra. Transcellular and paracellular resistances obtained by such neural network-enhanced two-path impedance spectroscopy are shown to be sufficiently reliable to derive the underlying apical and basolateral resistances and capacitances. As an exemplary perturbation of pathophysiological importance, the effect of forskolin on the apical resistance of HT-29/B6 cells was quantified. PMID:23840862

  13. Investigation of electrical properties of Mn doped tin oxide nanoparticles using impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Azam, Ameer; Ahmed, Arham S.; Chaman, M.; Naqvi, A. H.

    2010-11-01

    Manganese doped tin oxide nanoparticles with manganese content varying from 0 to 15 mol % were synthesized using sol-gel method. The structural and compositional analysis was carried out using x-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive x-ray analysis (EDAX). Dielectric and impedance spectroscopy was carried out at room temperature to explore the electrical properties of Mn doped SnO2. XRD analysis indicated the formation of single phase rutile type tetragonal structure of all the samples. The crystallite size was observed to vary from 16.2 to 7.1 nm as the Mn content was increased. The XRD, SEM, and EDAX results corroborated the successful doping of Mn in the SnO2 matrix. Complex impedance analysis was used to distinguish the grain and grain boundary contributions to the system, suggesting the dominance of grain boundary resistance in the doped samples. The dielectric constant ɛ', dielectric loss tan δ and ac conductivity σac were studied as a function of frequency and composition and the behavior has been explained on the basis of Maxwell-Wagner interfacial model. All the dielectric parameters were found to decrease with the increase in doping concentration. Moreover, it has been observed that the dielectric loss approaches to zero in case of high dopant concentration (9%, 15%) at high frequencies.

  14. Thermoporometry and impedance analysis to study dynamics of water and polymer present in hydrogel.

    PubMed

    Selestin Raja, I; Nishad Fathima, Nishter

    2015-01-01

    Though various conventional methods are available to explore hydrogels, they have drawbacks such as analysis in solid state and failure to give insights into individual components of hydrogel viz. water (dispersion medium) and hydrophilic polymers (dispersed phase). The combined study of porosity and dielectric nature of hydrogel succeeds, in this context, as it investigates both the components individually. In this study, we have taken well-known hydrogel system gelatin-polyvinyl alcohol (PVA) cross linked with genipin. Thermoporometry has been used to investigate the state of water and porosity whereas Alternative Current (AC) impedance analysis has been used to study about nature of polymers through dielectric properties in hydrogel. The influence of physic-chemical properties was examined with SEM and in vitro drug release using catechin. The study revealed that increasing concentration of PVA to gelatin has retained excessive bound water molecules exhibiting high polarity in each polymeric component. Further, it is shown that reduction in pore size and high reactivity with drug molecules have led to lower initial release and increase total amount of release. We conclude that non-conventional methods such as thermoporometry and AC impedance analysis yield more valuable information about hydrogel, which can aid in designing appropriate biomaterial for intended drug release. PMID:25199869

  15. Action spectra again?

    PubMed

    Coohill, T P

    1991-11-01

    Action spectroscopy has a long history and is of central importance to photobiological studies. Action spectra were among the first assays to point to chlorophyll as the molecule most responsible for plant growth and to DNA as the genetic material. It is useful to construct action spectra early in the investigation of new areas of photobiological research in an attempt to determine the wavelength limits of the radiation region causing the studied response. But due to the severe absorption of ultraviolet (UV) radiation by biological samples, UV action spectra were first limited to small cells (bacteria and fungi). Advances in techniques (e.g. single cell culture) and analysis allowed accurate action spectra to be reported even for mammalian cells. But precise analytical action spectra are often difficult to obtain when large, pigmented, or groups of cells are investigated. Here some action spectra are limited in interpretation and merely supply a wavelength vs effect curve. When polychromatic sources are employed, the interpretation of action spectra is even more complex and formidable. But such polychromatic action spectra can be more directly related to ambient responses. Since precise action spectra usually require the completion of a relatively large number of careful experiments using somewhat sophisticated equipment over a range of at least six wavelengths, they are often not pursued. But they remain central to the elucidation of the effect being studied. The worldwide community has agreed that stratospheric ozone is depleting, with the possibility of a consequent rise in the amount of UV-B (290-320 nm) reaching the earth's surface. It is therefore essential that new action spectra be completed for UV-B effects on a large variety of responses of human, animal, and aquatic plant systems. Combining these action spectra with the known amounts of UV-B reaching the biosphere can give rise to solar UV effectiveness spectra that, in turn, can give rise to estimates

  16. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  17. The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell.

    PubMed

    Manohar, Aswin K; Bretschger, Orianna; Nealson, Kenneth H; Mansfeld, Florian

    2008-04-01

    Electrochemical impedance spectroscopy (EIS) has been used to determine several electrochemical properties of the anode and cathode of a mediator-less microbial fuel cell (MFC) under different operational conditions. These operational conditions included a system with and without the bacterial catalyst and EIS measurements at the open-circuit potential of the anode and the cathode or at an applied cell voltage. In all cases the impedance spectra followed a simple one-time-constant model (OTCM) in which the solution resistance is in series with a parallel combination of the polarization resistance and the electrode capacitance. Analysis of the impedance spectra showed that addition of Shewanella oneidensis MR-1 to a solution of buffer and lactate greatly increased the rate of the lactate oxidation at the anode under open-circuit conditions. The large decrease of open-circuit potential of the anode increased the cell voltage of the MFC and its power output. Measurements of impedance spectra for the MFC at different cell voltages resulted in determining the internal resistance (R(int)) of the MFC and it was found that R(int) is a function of cell voltage. Additionally, R(int) was equal to R(ext) at the cell voltage corresponding to maximum power, where R(ext) is the external resistance that must be applied across the circuit to obtain the maximum power output. PMID:18294928

  18. Brain Maturation in Neonatal Rodents is Impeded by Sevoflurane Anesthesia

    PubMed Central

    Makaryus, Rany; Lee, Hedok; Feng, Tian; Park, June-Hee; Nedergaard, Maiken; Jacob, Zvi; Enikolopov, Grigori; Benveniste, Helene

    2015-01-01

    Background A wealth of data shows neuronal demise after general anesthesia in the very young rodent brain. Here we apply proton magnetic resonance spectroscopy (1HMRS), testing the hypothesis that neurotoxic exposure during peak synaptogenesis can be tracked via changes in neuronal metabolites. Methods 1HMRS spectra was acquired in the brain (thalamus) of neonatal rat pups 24- and 48 h after sevoflurane exposure on post-natal day (PND) 7 and 15, and in unexposed, sham controls. A repeated measure ANOVA was performed to examine if changes in metabolites were different between exposed and unexposed groups. Sevoflurane-induced neurotoxicity on PND7 was confirmed by immunohistochemistry. Results In unexposed PND7 pups (N=21), concentration of NAA ([NAA]) increased by 16% from PND8 to PND9, whereas in exposed PND7 pups (N=19), [NAA] did not change and concentration of choline compounds ([GPC+PCh]) decreased by 25%. In PND15 rats, [NAA] increased from PND16 to PND17 for both the exposed (N=14) and unexposed (N=16) groups. Two-way ANOVA for PND7 pups demonstrated changes over time observed in [NAA] (p=0.031) and [GPC+PCh] (p=0.024) were different between those two groups. Conclusions We demonstrated that normal [NAA] increase from PND8 to PND9 was impeded in sevoflurane-exposed rats when exposed at PND7; however, not impeded when exposed on PND15. Furthermore, we showed that non-invasive 1HMRS is sufficiently sensitive to detect subtle differences in developmental time trajectory of [NAA]. This is potentially clinically relevant since 1HMRS can be applied across species, and may be useful in providing evidence of neurotoxicity in the human neonatal brain. PMID:26181336

  19. The application of electrochemical impedance spectroscopy for characterizing the degradation of Ni(OH)2/NiOOH electrodes

    NASA Technical Reports Server (NTRS)

    Macdonald, Digby D.

    1989-01-01

    The use of wide-band electrochemical impedance spectroscopy is described for characterizing the degradation of porous Ni(OH)2/NiOOH electrodes in concentrated KOH electrolyte solutions. The impedance spectra are interpreted in terms of a finite electrical transmission line and the changes in the components of the electrical analog are followed as a function of cycle number. The degradation of the capacity of rolled and bonded Ni(OH)2/NiOOH electrodes is caused by rupture of ohmic contacts within the active mass and by restructuring which results in a decrease in the number of active pores.

  20. Interpulse multifrequency electrical impedance measurements during electroporation of adherent differentiated myotubes.

    PubMed

    García-Sánchez, Tomás; Azan, Antoine; Leray, Isabelle; Rosell-Ferrer, Javier; Bragós, Ramon; Mir, Lluis M

    2015-10-01

    In this study, electrical impedance spectroscopy measurements are performed during electroporation of monolayers of differentiated myotubes. The time resolution of the system (1 spectrum/ms) enable 860 full spectra (21 frequencies from 5 kHz to 1.3 MHz) to be acquired during the time gap between consecutive pulses (interpulse) of a classical electroporation treatment (8 pulses, 100 μs, 1 Hz). Additionally, the characteristics of the custom microelectrode assembly used allow the experiments to be performed directly in situ in standard 24 multi-well plates. The impedance response dynamics are studied for three different electric field intensities (400, 800 and 1200 V/cm). The multifrequency information, analysed with the Cole model, reveals a short-term impedance recovery after each pulse in accordance with the fast resealing of the cell membrane, and a long-term impedance decay over the complete treatment in accordance with an accumulated effect pulse after pulse. The analysis shows differences between the lowest electric field condition and the other two, suggesting that different mechanisms that may be related with the reversibility of the process are activated. As a result of the multifrequency information, the system is able to measure simultaneously the conductivity variations due to ion diffusion during electroporation. Finally, in order to reinforce the physical interpretation of the results, a complementary electrical equivalent model is used. PMID:26123676

  1. Theoretical models for electrochemical impedance spectroscopy and local ζ-potential of unfolded proteins in nanopores

    PubMed Central

    Vitarelli, Michael J.; Talaga, David S.

    2013-01-01

    Single solid-state nanopores find increasing use for electrical detection and/or manipulation of macromolecules. These applications exploit the changes in signals due to the geometry and electrical properties of the molecular species found within the nanopore. The sensitivity and resolution of such measurements are also influenced by the geometric and electrical properties of the nanopore. This paper continues the development of an analytical theory to predict the electrochemical impedance spectra of nanopores by including the influence of the presence of an unfolded protein using the variable topology finite Warburg impedance model previously published by the authors. The local excluded volume of, and charges present on, the segment of protein sampled by the nanopore are shown to influence the shape and peak frequency of the electrochemical impedance spectrum. An analytical theory is used to relate the capacitive response of the electrical double layer at the surface of the protein to both the charge density at the protein surface and the more commonly measured zeta potential. Illustrative examples show how the theory predicts that the varying sequential regions of surface charge density and excluded volume dictated by the protein primary structure may allow for an impedance-based approach to identifying unfolded proteins. PMID:24050368

  2. Radiation impedance study of a capacitive micromachined ultrasonic transducer by finite element analysis.

    PubMed

    Bayram, Baris

    2015-08-01

    In this study, radiation impedance of a capacitive micromachined ultrasonic transducer composed of square-shaped membranes arranged in m × m configuration (m = 1 - 5) is investigated using finite element analysis (FEA) of a commercially available software package(ANSYS). Radiation impedance is calculated for immersed membranes operating in conventional and collapse modes. Individual membrane response within the multi-membrane configuration is analyzed, and excited modes and their effects on radiation impedance and the pressure spectra are reported. This FEA provides an accurate behavior of the acoustic coupling of a thin membrane in a multi-membrane configuration, and extends above the anti-resonance frequency. The first resonance frequency of the membrane is excited for m × m (m ≥ 3) configuration in conventional mode and for m × m (m ≥ 2) configuration in collapse mode. Therefore, this frequency is determined to be responsible for the adverse effects observed in radiation impedance and pressure spectrum. A membrane configuration, which is missing the central membrane from the full m × m configuration is proposed, and is investigated with the FEA. This study is beneficial for the design of precise transducers suited for biomedical applications. PMID:26328680

  3. Impedance Alterations in Healthy and Diseased Mice During Electrically Induced Muscle Contraction.

    PubMed

    Sanchez, Benjamin; Li, Jia; Geisbush, Tom; Bardia, Ramon Bragos; Rutkove, Seward B

    2016-08-01

    Alterations in the health of muscles can be evaluated through the use of electrical impedance myography (EIM). To date, however, nearly all work in this field has relied upon the measurement of muscle at rest. To provide an insight into the contractile mechanisms of healthy and disease muscle, we evaluated the alterations in the spectroscopic impedance behavior of muscle during the active process of muscle contraction. The gastrocnemii from a total of 13 mice were studied (five wild type, four muscular dystrophy animals, and four amyotrophic lateral sclerosis animals). Muscle contraction was induced via monophasic current pulse stimulation of the sciatic nerve. Simultaneously, multisine EIM (1 kHz to 1 MHz) and force measurements of the muscle were performed. Stimulation was applied at three different rates to produce mild, moderate, and strong contractions. We identified changes in both single and multifrequency data, as assessed by the Cole impedance model parameters. The processes of contraction and relaxation were clearly identified in the impedance spectra and quantified via derivative plots. Reductions in the center frequency fc were observed during the contraction consistent with the increasing muscle fiber diameter. Different EIM stimulation rate-dependencies were also detected across the three groups of animals. PMID:24800834

  4. Imaging and characterizing root systems using electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Kemna, A.; Weigand, M.; Kelter, M.; Pfeifer, J.; Zimmermann, E.; Walter, A.

    2011-12-01

    Root architecture, growth, and activity play an essential role regarding the nutrient uptake of roots in soils. While in recent years advances could be achieved concerning the modeling of root systems, measurement methods capable of imaging, characterizing, and monitoring root structure and dynamics in a non-destructive manner are still lacking, in particular at the field scale. We here propose electrical impedance tomography (EIT) for the imaging of root systems. The approach takes advantage of the low-frequency capacitive electrical properties of the soil-root interface and the root tissue. These properties are based on the induced migration of ions in an externally applied electric field and give rise to characteristic impedance spectra which can be measured by means of electrical impedance spectroscopy. The latter technique was already successfully applied in the 10 Hz to 1 MHz range by Ozier-Lafontaine and Bajazet (2005) to monitor root growth of tomato. We here apply the method in the 1 mHz to 45 kHz range, requiring four-electrode measurements, and demonstrate its implementation and potential in an imaging framework. Images of real and imaginary components of complex electrical conductivity are computed using a finite-element based inversion algorithm with smoothness-constraint regularization. Results from laboratory measurements on rhizotrons with different root systems (barley, rape) show that images of imaginary conductivity delineate the spatial extent of the root system under investigation, while images of real conductivity show a less clear response. As confirmed by numerical simulations, the latter could be explained by the partly compensating electrical conduction properties of epidermis (resistive) and inner root cells (conductive), indicating the limitations of conventional electrical resistivity tomography. The captured spectral behavior exhibits two distinct relaxation processes with Cole-Cole type signatures, which we interpret as the responses

  5. A network model to correlate conformational change and the impedance spectrum of single proteins

    NASA Astrophysics Data System (ADS)

    Alfinito, Eleonora; Pennetta, Cecilia; Reggiani, Lino

    2008-02-01

    Integrated nanodevices based on proteins or biomolecules are attracting increasing interest in today's research. In fact, it has been shown that proteins such as azurin and bacteriorhodopsin manifest some electrical properties that are promising for the development of active components of molecular electronic devices. Here we focus on two relevant kinds of protein: bovine rhodopsin, prototype of G-protein-coupled-receptor (GPCR) proteins, and the enzyme acetylcholinesterase (AChE), whose inhibition is one of the most qualified treatments of Alzheimer's disease. Both these proteins exert their function starting with a conformational change of their native structure. Our guess is that such a change should be accompanied with a detectable variation of their electrical properties. To investigate this conjecture, we present an impedance network model of proteins, able to estimate the different impedance spectra associated with the different configurations. The distinct types of conformational change of rhodopsin and AChE agree with their dissimilar electrical responses. In particular, for rhodopsin the model predicts variations of the impedance spectra up to about 30%, while for AChE the same variations are limited to about 10%, which supports the existence of a dynamical equilibrium between its native and complexed states.

  6. Damage detection of concrete beam based on embedded PZT impedance transducer encapsulated by cement

    NASA Astrophysics Data System (ADS)

    Wang, Dansheng; Zhu, Hongping; Yuan, Junqiang; Li, Jinghui; Li, Yu

    2012-04-01

    Piezoelectric material, such as, Lead Zirconate Titanate (PZT) can be use as sensing and/or actuating element for structural health monitoring due to its direct and converse piezoelectric effects. In this study, several fabricated PZT impedance transducers encapsulated by cement were embedded into a plain concrete beam to detect the surface crack damage. By monitoring the electromechanical (EM) admittance spectra of the embedded transducers, the structural surface crack damage was investigated. From the experimental results it is found that the shape of the electrical admittance spectra curve of the embedded PZT transducers hardly changes before and after surface crack is of presence, and the EM admittance spectra exhibits tiny change in amplitude with the increase of crack depth, which indicate that the embedded PZT transducers into concrete are insensitive to surface crack damage.

  7. Ac traction gets on track

    SciTech Connect

    O`Connor, L.

    1995-09-01

    This article describes inverter-based ac traction systems which give freight locomotives greater adhesion, pulling power, and braking capacity. In the 1940s, dc traction replaced the steam engine as a source of train propulsion, and it has ruled the freight transportation industry ever since. But now, high-performance ac-traction systems, with their unprecedented levels of pulling power and adhesion, are becoming increasingly common on America`s freight railroads. In thousands of miles of demonstration tests, today`s ac-traction systems have outperformed traditional dc-motor driven systems. Major railroad companies are convinced enough of the benefits of ac traction to have integrated it into their freight locomotives.

  8. Creating dynamic equivalent PV circuit models with impedance spectroscopy for arc-fault modeling.

    SciTech Connect

    Johnson, Jay Dean; Kuszmaul, Scott S.; Strauch, Jason E.; Schoenwald, David Alan

    2011-06-01

    Article 690.11 in the 2011 National Electrical Code{reg_sign} (NEC{reg_sign}) requires new photovoltaic (PV) systems on or penetrating a building to include a listed arc fault protection device. Currently there is little experimental or empirical research into the behavior of the arcing frequencies through PV components despite the potential for modules and other PV components to filter or attenuate arcing signatures that could render the arc detector ineffective. To model AC arcing signal propagation along PV strings, the well-studied DC diode models were found to inadequately capture the behavior of high frequency arcing signals. Instead dynamic equivalent circuit models of PV modules were required to describe the impedance for alternating currents in modules. The nonlinearities present in PV cells resulting from irradiance, temperature, frequency, and bias voltage variations make modeling these systems challenging. Linearized dynamic equivalent circuits were created for multiple PV module manufacturers and module technologies. The equivalent resistances and capacitances for the modules were determined using impedance spectroscopy with no bias voltage and no irradiance. The equivalent circuit model was employed to evaluate modules having irradiance conditions that could not be measured directly with the instrumentation. Although there was a wide range of circuit component values, the complex impedance model does not predict filtering of arc fault frequencies in PV strings for any irradiance level. Experimental results with no irradiance agree with the model and show nearly no attenuation for 1 Hz to 100 kHz input frequencies.

  9. A compact wideband precision impedance measurement system based on digital auto-balancing bridge

    NASA Astrophysics Data System (ADS)

    Hu, Binxin; Wang, Jinyu; Song, Guangdong; Zhang, Faxiang

    2016-05-01

    The ac impedance spectroscopy measurements are predominantly taken by using impedance analyzers based on analog auto-balancing bridge. However, those bench-top analyzers are generally complicated, bulky and expensive, thus limiting their usage in industrial field applications. This paper presents the development of a compact wideband precision measurement system based on digital auto-balancing bridge. The methods of digital auto-balancing bridge and digital lock-in amplifier are analyzed theoretically. The overall design and several key sections including null detector, direct digital synthesizer-based sampling clock, and digital control unit are introduced in detail. The results show that the system achieves a basic measurement accuracy of 0.05% with a frequency range of 20 Hz–2 MHz. The advantages of versatile measurement capacity, fast measurement speed, small size and low cost make it quite suitable for industrial field applications. It is demonstrated that this system is practical and effective by applying in determining the impedance-temperature characteristic of a motor starter PTC thermistor.

  10. Scattering by a groove in an impedance plane

    NASA Technical Reports Server (NTRS)

    Bindiganavale, Sunil; Volakis, John L.

    1993-01-01

    An analysis of two-dimensional scattering from a narrow groove in an impedance plane is presented. The groove is represented by a impedance surface and the problem reduces to that of scattering from an impedance strip in an otherwise uniform impedance plane. On the basis of this model, appropriate integral equations are constructed using a form of the impedance plane Green's functions involving rapidly convergent integrals. The integral equations are solved by introducing a single basis representation of the equivalent current on the narrow impedance insert. Both transverse electric (TE) and transverse magnetic (TM) polarizations are treated. The resulting solution is validated by comparison with results from the standard boundary integral method (BIM) and a high frequency solution. It is found that the presented solution for narrow impedance inserts can be used in conjunction with the high frequency solution for the characterization of impedance inserts of any given width.

  11. Inter-Changeability of Impedance Devices for Lymphedema Assessment.

    PubMed

    van Zanten, Malou; Piller, Neil; Ward, Leigh C

    2016-06-01

    Impedance technology is a popular technique for the early detection of lymphedema. The preferred approach is to use bioimpedance spectroscopy (BIS), with measurements being made with the subject lying supine, although attempts have been made to use single or multiple frequency impedance measurements obtained while the subject is standing. The aim of the present study was to determine the equivalence of these different approaches. Impedance measurements of the individual limbs of 37 healthy individuals were determined using both a stand-on, multi-frequency impedance device and a supine impedance spectroscopy instrument. Significant differences were found between the instruments in both absolute impedance values and, importantly, inter-limb impedance ratios. Since impedance ratios in healthy individuals provide the reference standard for detection of lymphedema, these data indicate that the methods are not interchangeable. Consideration of the errors associated with each method indicates that the BIS remains the preferred method for lymphedema detection. PMID:26574711

  12. Thermodynamic analysis of spectra

    SciTech Connect

    Mitchell, G. E.; Shriner, J. F. Jr.

    2008-04-04

    Although random matrix theory had its initial application to neutron resonances, there is a relative scarcity of suitable nuclear data. The primary reason for this is the sensitivity of the standard measures used to evaluate spectra--the spectra must be essential pure (no state with a different symmetry) and complete (no states missing). Additional measures that are less sensitive to these experimental limitations are of significant value. The standard measure for long range order is the {delta}{sub 3} statistic. In the original paper that introduced this statistic, Dyson and Mehta also attempted to evaluate spectra with thermodynamic variables obtained from the circular orthogonal ensemble. We consider the thermodynamic 'internal energy' and evaluate its sensitivity to experimental limitations such as missing and spurious levels. Monte Carlo simulations suggest that the internal energy is less sensitive to mistakes than is {delta}{sub 3}, and thus the internal energy can serve as a addition to the tool kit for evaluating experimental spectra.

  13. Stimuli dependent impedance of conductive magnetorheological elastomers

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Xuan, Shouhu; Dong, Bo; Xu, Feng; Gong, Xinglong

    2016-02-01

    The structure dependent impedance of conductive magnetorheological elastomers (MREs) under different loads and magnetic fields has been studied in this work. By increasing the weight fraction of iron particles, the conductivity of the MREs increased. Dynamic mechanical measurements and synchrotron radiation x-ray computed tomography (SR-CT) were used and they provided reasons for the electrical properties changing significantly under pressure and magnetic field stimulation. The high sensitivity of MREs to external stimuli renders them suitable for application in force or magnetic field sensors. The equivalent circuit model was proposed to analyze the impedance response of MREs and it fits the experimental results very well. Each circuit component reflected the change of the inner interface under different conditions, thus relative changes in the microstructure could be distinguished. This method could be used not only to detect the structural changes in the MRE but also to provide a great deal of valuable information for the further understanding of the MR mechanism.

  14. Readout electrode assembly for measuring biological impedance

    NASA Technical Reports Server (NTRS)

    Montgomery, L. D.; Moody, D. L., Jr. (Inventor)

    1976-01-01

    The invention comprises of a pair of readout ring electrodes which are used in conjunction with apparatus for measuring the electrical impedance between different points in the body of a living animal to determine the amount of blood flow therebetween. The readout electrodes have independently adjustable diameters to permit attachment around different parts of the body between which it is desired to measure electric impedance. The axial spacing between the electrodes is adjusted by a pair of rods which have a first pair of ends fixedly attached to one electrode and a second pair of ends slidably attached to the other electrode. Indicia are provided on the outer surface of the ring electrodes and on the surface of the rods to permit measurement of the circumference and spacing between the ring electrodes.

  15. Impedance issues in the CERN SPS

    NASA Astrophysics Data System (ADS)

    Linnecar, T.

    1999-12-01

    The future use of the CERN SPS accelerator as injector for the Large Hadron Collider, LHC, and the possible use of the SPS as a neutrino source for the Gran Sasso experiment are pushing the maximum intensity requirements of the accelerator much higher than achieved up to now. At the same time the requirements on beam quality are becoming far more stringent. The SPS machine, built in the 70's, is not a "smooth" machine. It contains many discontinuities in vacuum chamber cross-section and many cavity-like objects, as well as the 5 separate RF systems at present installed. All these lead to a high impedance, seen by the beam, spread over a wide frequency range. As a result there is a constant fight against instabilities, both single and multi bunch, as the intensity increases. A program of studies is under way in the SPS to identify, reduce, and remove where possible the sources of these impedances.

  16. Impedance of a beam tube with antechamber

    SciTech Connect

    Barry, W.; Lambertson, G.R.; Voelker, F.

    1986-08-01

    A beam vacuum chamber was proposed to allow synchrotron light to radiate from a circulating electron beam into an antechamber containing photon targets, pumps, etc. To determine the impedance such a geometry would present to the beam, electromagnetic measurements were carried out on a section of chamber using for low frequencies a current-carrying wire and for up to 16 GHz, a resonance perturbation method. Because the response of such a chamber would depend on upstream and downstream restrictions of aperture yet to be determined, the resonance studies were analyzed in some generality. The favorable conclusion of these studies is that the antechamber makes practically no contribution to either the longitudinal or the transverse impedances.

  17. Automatic digital-analog impedance plethysmograph

    NASA Astrophysics Data System (ADS)

    Goy, C. B.; Mauro, K. A.; Yanicelli, L. M.; Parodi, N. F.; Gómez López, M. A.; Herrera, M. C.

    2016-04-01

    Venous occlusion plethysmography (VOP) is a traditional method widely used to assess limb blood circulation. One common mode to record VOP is by means of evaluating limb volume changes using impedance plethysmography (IP). In this paper the design and implementation of an automatic digital-analog impedance plethysmograph (ADAIP) for VOP is presented. The system is tested using precision resistances in order to calculate its repeatability. Then its global performance is assessed by means of VOP recordings on the upper and me lower limb of a healthy volunteer. The obtained repeatability was very high (95%), and the VOP recordings where the expected ones. It can be concluded that the whole system performs well and that it is suitable for automatic VOP recording.

  18. Impedance characteristics of terawatt ion diodes

    NASA Astrophysics Data System (ADS)

    Mendel, C. W., Jr.; Desjarlais, M. P.; Pointon, T. D.; Quintenz, J. P.; Rosenthal, S. E.; Seidel, D. B.; Slutz, S. A.

    Light ion fusion research has developed ion diodes that have unique properties when compared to other ion diodes. These diodes involve relativistic electrons, ion beam stagnation pressures that compress the magnetic field to the order of 10 Tesla, and large space charge and particle current effects throughout the accelerating region. These diodes have required new theories and models to account for effects that previously were unimportant. One of the most important effects of the magnetic field compression and large space charge has been impedance collapse. The impedance collapse can lead to poor energy transfer efficiency, beam debunching, and rapid change of the beam focus. The current understanding of these effects is discussed including some of the methods used to ameliorate them, and the future directions the theory and modeling will take.

  19. Enhanced Method for Cavity Impedance Calculations

    SciTech Connect

    Frank Marhauser, Robert Rimmer, Kai Tian, Haipeng Wang

    2009-05-01

    With the proposal of medium to high average current accelerator facilities the demand for cavities with extremely low Higher Order Mode (HOM) impedances is increasing. Modern numerical tools are still under development to more thoroughly predict impedances that need to take into account complex absorbing boundaries and lossy materials. With the usually large problem size it is preferable to utilize massive parallel computing when applicable and available. Apart from such computational issues, we have developed methods using available computer resources to enhance the information that can be extracted from a cavities? wakefield computed in time domain. In particular this is helpful for a careful assessment of the extracted RF power and the mitigation of potential beam break-up or emittance diluting effects, a figure of merit for the cavity performance. The method is described as well as an example of its implementation.

  20. Nonlinear acoustic impedance of thermoacoustic stack

    NASA Astrophysics Data System (ADS)

    Ge, Huan; Fan, Li; Xiao, Shu-yu; Tao, Sha; Qiu, Mei-chen; Zhang, Shu-yi; Zhang, Hui

    2012-09-01

    In order to optimize the performances of the thermoacoustic refrigerator working with the high sound pressure level, the nonlinear acoustic characteristics of the thermoacoustic stack in the resonant pipe are studied. The acoustic fluid impedance of the stack made of copper mesh and set up in a resonant pipe is measured in the acoustic fields with different intensities. It is found that when the sound pressure level in the pipe increases to a critical value, the resistance of the stack increases nonlinearly with the sound pressure, while the reactance of the stack keeps constant. Based on the experimental results, a theory model is set up to describe the acoustic characteristics of the stack, according to the rigid frame theory and Forchheimmer equation. Furthermore, the influences of the sound pressure level, operating frequency, volume porosity, and length of the stack on the nonlinear impedance of the stack are evaluated.

  1. Superconducting surface impedance under radiofrequency field

    DOE PAGESBeta

    Xiao, Binping P.; Reece, Charles E.; Kelley, Michael J.

    2013-04-26

    Based on BCS theory with moving Cooper pairs, the electron states distribution at 0K and the probability of electron occupation with finite temperature have been derived and applied to anomalous skin effect theory to obtain the surface impedance of a superconductor under radiofrequency (RF) field. We present the numerical results for Nb and compare these with representative RF field-dependent effective surface resistance measurements from a 1.5 GHz resonant structure.

  2. Equivalent impedance of a rough interface

    NASA Astrophysics Data System (ADS)

    Zhuk, N. P.; Tret'iakov, O. A.

    1987-10-01

    An equivalent-impedance (EI) dyad is constructed for a rough and plane (on the average) interface dividing two plane-stratified magnetodielectric media. Its characteristics are related to those of a smooth surface and to the scattering properties of the roughnesses. It is shown that the Hermitian part of an EI dyad is formed through field scattering by roughnesses into the propagating natural modes of the regular medium.

  3. Impedance analysis of nanocarbon DSSC electrodes

    NASA Astrophysics Data System (ADS)

    Gagliardi, S.; Giorgi, L.; Giorgi, R.; Lisi, N.; Dikonimos Makris, Th.; Salernitano, E.; Rufoloni, A.

    2009-07-01

    Carbon nanoparticles and multiwall carbon nanotubes were deposited on an Optically Transparent Electrode (OTE) for application in Dye Sensitised Solar Cells (DSSCs) as counter electrode materials. Electrochemical Impedance Spectroscopy (EIS) was used to evaluate the behaviour in a I3-/I electrolyte solution. Results were compared to commercial Pt catalysed OTE and polycrystalline graphite. Multiwalled carbon nanotubes show low series resistance and low charge transfer resistance promising an improved fill factor (and efficiency) in DSSCs assembled with such materials as counter electrodes.

  4. Impedance Matched Absorptive Thermal Blocking Filters

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Chuss, D. T.; Rostem, K.; U-Yen, K.

    2014-01-01

    We have designed, fabricated and characterized absorptive thermal blocking filters for cryogenic microwave applications. The transmission line filter's input characteristic impedance is designed to match 50O and its response has been validated from 0-to-50GHz. The observed return loss in the 0-to-20GHz design band is greater than 20 dB and shows graceful degradation with frequency. Design considerations and equations are provided that enable this approach to be scaled and modified for use in other applications.

  5. Impedance Matched Absorptive Thermal Blocking Filters

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Chuss, D. T.; U-Yen, K.; Rostem, K.

    2014-01-01

    We have designed, fabricated and characterized absorptive thermal blocking filters for cryogenic microwave applications. The transmission line filter's input characteristic impedance is designed to match 50 Omega and its response has been validated from 0-to-50GHz. The observed return loss in the 0-to-20GHz design band is greater than 20 dB and shows graceful degradation with frequency. Design considerations and equations are provided that enable this approach to be scaled and modified for use in other applications.

  6. Measurement of shear impedances of viscoelastic fluids

    SciTech Connect

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, A.C.

    1996-12-31

    Shear-wave reflection coefficients from a solid/fluid interface are derived for non-Newtonian fluids that can be described by Maxwell, Voigt, and power-law fluid models. Based on model calculations, we have identified the measurable effects on the reflection coefficients due to fluid non-Newtonian behavior. The models are used to interpret the viscosity data obtained by a technique based on shear impedance measurement.

  7. Antenna pattern control using impedance surfaces

    NASA Astrophysics Data System (ADS)

    Balanis, Constantine A.; Liu, Kefeng

    1992-09-01

    During this research period, we have effectively transferred existing computer codes from CRAY supercomputer to work station based systems. The work station based version of our code preserved the accuracy of the numerical computations while giving a much better turn-around time than the CRAY supercomputer. Such a task relieved us of the heavy dependence of the supercomputer account budget and made codes developed in this research project more feasible for applications. The analysis of pyramidal horns with impedance surfaces was our major focus during this research period. Three different modeling algorithms in analyzing lossy impedance surfaces were investigated and compared with measured data. Through this investigation, we discovered that a hybrid Fourier transform technique, which uses the eigen mode in the stepped waveguide section and the Fourier transformed field distributions across the stepped discontinuities for lossy impedances coating, gives a better accuracy in analyzing lossy coatings. After a further refinement of the present technique, we will perform an accurate radiation pattern synthesis in the coming reporting period.

  8. On the directional symmetry of the impedance

    SciTech Connect

    Heifets, S.A.

    1990-03-01

    The independence of the impedance on the beam direction is an important feature of an accelerator structure, in particular, for the electron-positron storage rings where bunches of opposite charges travel through the same vacuum chamber in opposite directions. Recently Gluckstern and Zotter considered a cylindrically symmetric but longitudinally asymmetric cavity with side pipes of equal radii. They were able to prove that for a relativistic particle the longitudinal impedance of the cavity with an arbitrary shape is independent of the direction in which the beam travels through it. Their result corroborates numerical observations of the independence of the wakefield obtained with the code TBCI. Bisognano gave an elegant proof of the same statement. His approach is based on a reciprocity relation applied to the tensor Green's function. I follow here his idea in a somewhat simpler way to obtain more general and physically transparent proof of this property for both longitudinal and transverse impedances. The result is valid for a cavity with no azimuthal symmetry and for arbitrary particle velocity, as soon as it may be considered constant. At the same time the limits of its validity are shown.

  9. PEP-X IMPEDANCE AND INSTABILITY CALCULATIONS

    SciTech Connect

    Bane, K.L.F.; Lee, L.-Q.; Ng, C.; Stupakov, G.; au Wang, L.; Xiao, L.; /SLAC

    2010-08-25

    PEP-X, a next generation, ring-based light source is designed to run with beams of high current and low emittance. Important parameters are: energy 4.5 GeV, circumference 2.2 km, beam current 1.5 A, and horizontal and vertical emittances, 185 pm by 8 pm. In such a machine it is important that impedance driven instabilities not degrade the beam quality. In this report they study the strength of the impedance and its effects in PEP-X. For the present, lacking a detailed knowledge of the vacuum chamber shape, they create a straw man design comprising important vacuum chamber objects to be found in the ring, for which they then compute the wake functions. From the wake functions they generate an impedance budget and a pseudo-Green function wake representing the entire ring, which they, in turn, use for performing microwave instability calculations. In this report they, in addition, consider in PEP-X the transverse mode-coupling, multi-bunch transverse, and beam-ion instabilities.

  10. Impedance spectroscopic analysis of composite electrode from activated carbon/conductive materials/ruthenium oxide for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Taer, E.; Deraman, M.; Talib, I. A.; Awitdrus, Farma, R.; Ishak, M. M.; Omar, R.; Dolah, B. N. M.; Basri, N. H.; Othman, M. A. R.; Kanwal, S.

    2015-04-01

    Activated carbon powders (ACP) were produced from the KOH treated pre-carbonized rubber wood sawdust. Different conductive materials (graphite, carbon black and carbon nanotubes (CNTs)) were added with a binder (polivinylidene fluoride (PVDF)) into ACP to improve the supercapacitive performance of the activated carbon (AC) electrodes. Symmetric supercapacitor cells, fabricated using these AC electrodes and 1 molar H2SO4 electrolyte, were analyzed using a standard electrochemical impedance spectroscopy technique. The addition of graphite, carbon black and CNTs was found effective in reducing the cell resistance from 165 to 68, 23 and 49 Ohm respectively, and increasing the specific capacitance of the AC electrodes from 3 to 7, 17, 32 F g-1 respectively. Since the addition of CNTs can produce the highest specific capacitance, CNTs were chosen as a conductive material to produce AC composite electrodes that were added with 2.5 %, 5 % and 10 % (by weight) electro-active material namely ruthenium oxide; PVDF binder and CNTs contents were kept at 5 % by weight in each AC composite produced. The highest specific capacitance of the cells obtained in this study was 86 F g-1, i.e. for the cell with the resistance of 15 Ohm and composite electrode consists of 5 % ruthenium oxide.

  11. Impedance spectroscopic analysis of composite electrode from activated carbon/conductive materials/ruthenium oxide for supercapacitor applications

    SciTech Connect

    Taer, E.; Awitdrus,; Farma, R.; Deraman, M. Talib, I. A.; Ishak, M. M.; Omar, R.; Dolah, B. N. M.; Basri, N. H.; Othman, M. A. R.; Kanwal, S.

    2015-04-16

    Activated carbon powders (ACP) were produced from the KOH treated pre-carbonized rubber wood sawdust. Different conductive materials (graphite, carbon black and carbon nanotubes (CNTs)) were added with a binder (polivinylidene fluoride (PVDF)) into ACP to improve the supercapacitive performance of the activated carbon (AC) electrodes. Symmetric supercapacitor cells, fabricated using these AC electrodes and 1 molar H{sub 2}SO{sub 4} electrolyte, were analyzed using a standard electrochemical impedance spectroscopy technique. The addition of graphite, carbon black and CNTs was found effective in reducing the cell resistance from 165 to 68, 23 and 49 Ohm respectively, and increasing the specific capacitance of the AC electrodes from 3 to 7, 17, 32 F g{sup −1} respectively. Since the addition of CNTs can produce the highest specific capacitance, CNTs were chosen as a conductive material to produce AC composite electrodes that were added with 2.5 %, 5 % and 10 % (by weight) electro-active material namely ruthenium oxide; PVDF binder and CNTs contents were kept at 5 % by weight in each AC composite produced. The highest specific capacitance of the cells obtained in this study was 86 F g{sup −1}, i.e. for the cell with the resistance of 15 Ohm and composite electrode consists of 5 % ruthenium oxide.

  12. Electrochemical impedance spectroscopy studies of lithium diffusion in doped manganese oxide

    SciTech Connect

    Johnson, B.J.; Doughty, D.H.; Voigt, J.A.; Boyle, T.J.

    1996-06-01

    Cathode performance is critical to lithium ion rechargeable battery performance; effects of doping lithium manganese oxide cathode materials on cathode performance are being investigated. In this paper, Li diffusion in Al-doped LiMn{sub 2}O{sub 4} was studied and found to be controlled by the quantity of Al dopant. Electrochemical cycling was conducted at 0.5mA/cm{sub 2}; electrochemical impedance spectra were taken at open circuit potential, with impedance being measured at 65 kHz-0.01 Hz. As the Al dopant level was increased, the Li diffusion rate decreased; this was attributed to the decreased lattice parameter of the doped oxide.

  13. Nickel doped spinel lithium manganate some insights using opto-impedance

    NASA Astrophysics Data System (ADS)

    Ragavendran, K.; Nakkiran, A.; Kalyani, P.; Veluchamy, A.; Jagannathan, R.

    2008-04-01

    Opto-impedance studies on spinel type pristine and Ni-doped LiMn 2O 4, an important cathode system for Li-ion batteries have revealed the difference in electronic structure arising out of the Ni-substitution. The opto-impedance spectra of Ni-doped LiMn 2O 4 even under dark condition exhibits a more complex structure(two semicircles with some skewed structure) suggesting the presence of defect structure(s) remaining dormant which upon UV shining get merged to form a single semicircle. Qualitatively this aliovalent substitution modifies the charge transfer state and activates a defect initiated Warburg diffusion process with a time scale of ˜ 50 μs.

  14. Electrochemical cell design for the impedance studies of chlorine evolution at DSA(®) anodes.

    PubMed

    Silva, J F; Dias, A C; Araújo, P; Brett, C M A; Mendes, A

    2016-08-01

    A new electrochemical cell design suitable for the electrochemical impedance spectroscopy (EIS) studies of chlorine evolution on Dimensionally Stable Anodes (DSA(®)) has been developed. Despite being considered a powerful tool, EIS has rarely been used to study the kinetics of chlorine evolution at DSA anodes. Cell designs in the open literature are unsuitable for the EIS analysis at high DSA anode current densities for chlorine evolution because they allow gas accumulation at the electrode surface. Using the new cell, the impedance spectra of the DSA anode during chlorine evolution at high sodium chloride concentration (5 mol dm(-3) NaCl) and high current densities (up to 140 mA cm(-2)) were recorded. Additionally, polarization curves and voltammograms were obtained showing little or no noise. EIS and polarization curves evidence the role of the adsorption step in the chlorine evolution reaction, compatible with the Volmer-Heyrovsky and Volmer-Tafel mechanisms. PMID:27587166

  15. Tracheo-bronchial soft tissue and cartilage resonances in the subglottal acoustic input impedance.

    PubMed

    Lulich, Steven M; Arsikere, Harish

    2015-06-01

    This paper offers a re-evaluation of the mechanical properties of the tracheo-bronchial soft tissues and cartilage and uses a model to examine their effects on the subglottal acoustic input impedance. It is shown that the values for soft tissue elastance and cartilage viscosity typically used in models of subglottal acoustics during phonation are not accurate, and corrected values are proposed. The calculated subglottal acoustic input impedance using these corrected values reveals clusters of weak resonances due to soft tissues (SgT) and cartilage (SgC) lining the walls of the trachea and large bronchi, which can be observed empirically in subglottal acoustic spectra. The model predicts that individuals may exhibit SgT and SgC resonances to variable degrees, depending on a number of factors including tissue mechanical properties and the dimensions of the trachea and large bronchi. Potential implications for voice production and large pulmonary airway tissue diseases are also discussed. PMID:26093432

  16. Oblique impacts into low impedance layers

    NASA Astrophysics Data System (ADS)

    Stickle, A. M.; Schultz, P. H.

    2009-12-01

    Planetary impacts occur indiscriminately, in all locations and materials. Varied geologic settings can have significant effects on the impact process, including the coupling between the projectile and target, the final damage patterns and modes of deformation that occur. For example, marine impact craters are not identical to impacts directly into bedrock or into sedimentary materials, though many of the same fundamental processes occur. It is therefore important, especially when considering terrestrial impacts, to understand how a low impedance sedimentary layer over bedrock affects the deformation process during and after a hypervelocity impact. As a first step, detailed comparisons between impacts and hydrocode models were performed. Experiments performed at the NASA Ames Vertical Gun Range of oblique impacts into polymethylmethacrylate (PMMA) targets with low impedance layers were performed and compared to experiments of targets without low impedance layers, as well as to hydrocode models under identical conditions. Impact velocities ranged from 5 km/s to 5.6 km/s, with trajectories from 30 degrees to 90 degrees above the horizontal. High-speed imaging provided documentation of the sequence and location of failure due to impact, which was compared to theoretical models. Plasticine and ice were used to construct the low impedance layers. The combination of experiments and models reveals the modes of failure due to a hypervelocity impact. How such failure is manifested at large scales can present a challenge for hydrocodes. CTH models tend to overestimate the amount of damage occurring within the targets and have difficulties perfectly reproducing morphologies; nevertheless, they provide significant and useful information about the failure modes and style within the material. CTH models corresponding to the experiments allow interpretation of the underlying processes involved as well as provide a benchmark for the experimental analysis. The transparency of PMMA

  17. The Influence of Segmental Impedance Analysis in Predicting Validity of Consumer Grade Bioelectrical Impedance Analysis Devices

    NASA Astrophysics Data System (ADS)

    Sharp, Andy; Heath, Jennifer; Peterson, Janet

    2008-05-01

    Consumer grade bioelectric impedance analysis (BIA) instruments measure the body's impedance at 50 kHz, and yield a quick estimate of percent body fat. The frequency dependence of the impedance gives more information about the current pathway and the response of different tissues. This study explores the impedance response of human tissue at a range of frequencies from 0.2 - 102 kHz using a four probe method and probe locations standard for segmental BIA research of the arm. The data at 50 kHz, for a 21 year old healthy Caucasian male (resistance of 180φ±10 and reactance of 33φ±2) is in agreement with previously reported values [1]. The frequency dependence is not consistent with simple circuit models commonly used in evaluating BIA data, and repeatability of measurements is problematic. This research will contribute to a better understanding of the inherent difficulties in estimating body fat using consumer grade BIA devices. [1] Chumlea, William C., Richard N. Baumgartner, and Alex F. Roche. ``Specific resistivity used to estimate fat-free mass from segmental body measures of bioelectrical impedance.'' Am J Clin Nutr 48 (1998): 7-15.

  18. Impedance analysis of fibroblastic cell layers measured by electric cell-substrate impedance sensing

    NASA Astrophysics Data System (ADS)

    Lo, Chun-Min; Ferrier, Jack

    1998-06-01

    Impedance measurements of cell layers cultured on gold electrode surfaces obtained by electric cell-substrate impedance sensing provide morphological information such as junctional resistance and cell-substrate separation. Previously, a model that assumes that cells have a disklike shape and that electric currents flow radially underneath the ventral cell surface and then through the paracellular space has been used to theoretically calculate the impedance of the cell-covered electrode. In this paper we propose an extended model of impedance analysis for cell layers where cellular shape is rectangular. This is especially appropriate for normal fibroblasts in culture. To verify the model, we analyze impedance data obtained from four different kinds of fibroblasts that display a long rectangular shape. In addition, we measure the average cell-substrate separation of human gingival fibroblasts at different temperatures. At temperatures of 37, 22, and 4 °C, the average separation between ventral cell surface and substratum are 46, 55, and 89 nm, respectively.

  19. Electrochemical impedance spectroscopy based MEMS sensors for phthalates detection in water and juices

    NASA Astrophysics Data System (ADS)

    Zia, Asif I.; Mohd Syaifudin, A. R.; Mukhopadhyay, S. C.; Yu, P. L.; Al-Bahadly, I. H.; Gooneratne, Chinthaka P.; Kosel, Jǘrgen; Liao, Tai-Shan

    2013-06-01

    Phthalate esters are ubiquitous environmental and food pollutants well known as endocrine disrupting compounds (EDCs). These developmental and reproductive toxicants pose a grave risk to the human health due to their unlimited use in consumer plastic industry. Detection of phthalates is strictly laboratory based time consuming and expensive process and requires expertise of highly qualified and skilled professionals. We present a real time, non-invasive, label free rapid detection technique to quantify phthalates' presence in deionized water and fruit juices. Electrochemical impedance spectroscopy (EIS) technique applied to a novel planar inter-digital (ID) capacitive sensor plays a vital role to explore the presence of phthalate esters in bulk fluid media. The ID sensor with multiple sensing gold electrodes was fabricated on silicon substrate using micro-electromechanical system (MEMS) device fabrication technology. A thin film of parylene C polymer was coated as a passivation layer to enhance the capacitive sensing capabilities of the sensor and to reduce the magnitude of Faradic current flowing through the sensor. Various concentrations, 0.002ppm through to 2ppm of di (2-ethylhexyl) phthalate (DEHP) in deionized water, were exposed to the sensing system by dip testing method. Impedance spectra obtained was analysed to determine sample conductance which led to consequent evaluation of its dielectric properties. Electro-chemical impedance spectrum analyser algorithm was employed to model the experimentally obtained impedance spectra. Curve fitting technique was applied to deduce constant phase element (CPE) equivalent circuit based on Randle's equivalent circuit model. The sensing system was tested to detect different concentrations of DEHP in orange juice as a real world application. The result analysis indicated that our rapid testing technique is able to detect the presence of DEHP in all test samples distinctively.

  20. Label-Free Impedance Biosensors: Opportunities and Challenges

    PubMed Central

    Daniels, Jonathan S.; Pourmand, Nader

    2007-01-01

    Impedance biosensors are a class of electrical biosensors that show promise for point-of-care and other applications due to low cost, ease of miniaturization, and label-free operation. Unlabeled DNA and protein targets can be detected by monitoring changes in surface impedance when a target molecule binds to an immobilized probe. The affinity capture step leads to challenges shared by all label-free affinity biosensors; these challenges are discussed along with others unique to impedance readout. Various possible mechanisms for impedance change upon target binding are discussed. We critically summarize accomplishments of past label-free impedance biosensors and identify areas for future research. PMID:18176631

  1. Wakefield and impedance studies of a liner using MAFIA

    NASA Astrophysics Data System (ADS)

    Chou, W.; Barts, T.

    1993-12-01

    The liner is a perforated beam tube which is coaxial with an outer bore tube. The 3D code MAFIA version 3.1 is used to study the wakefields, impedances, and resonances of this structure. The short range wakes and low frequency (below the cutoff) impedances are in agreement with the theoretical model. The long range wakes and high frequency resonances are associated with the distribution of the holes (or slots). The dependence of the impedance on the size, shape, and pattern of the holes (or slots) is studied. The impact of the liner impedance on the SSC impedance budget is discussed.

  2. Real-time measurement of glucose using chrono-impedance technique on a second generation biosensor.

    PubMed

    Mayorga Martinez, Carmen C; Treo, Ernesto F; Madrid, Rossana E; Felice, Carmelo C

    2011-11-15

    Chrono-impedance technique (CIT) was implemented as a new transduction method for real time measurement of glucose in a biosensor system based in carbon paste (CP)/Ferrocene (FC)/glucose oxidase (GOx). The system presents high selectivity because the optimal stimulation signal composed by a 165mV DC potential and 50mV(RMS) AC signal at 0.4Hz was used. The low DC potential used decreased the interfering species effect and the biosensor showed a linear impedance response toward glucose detection at concentrations from 0mM to 20mM,with 0.9853 and 0.9945 correlation coefficient for impedance module (|Z|) and phase (Φ), respectively. The results of quadruplicate sets reveal the high repeatability and reproducibility of the measurements with a relative standard deviation (RSD) less than 10%. CIT presented good accuracy (within 10% of the actual value) and precision did not exceed 15% of RSD for high concentration values and 20% for the low concentration ones. In addition, a high correlation coefficient (R(2)=0.9954) between chrono-impedance and colorimetric methods was obtained. On the other hand, when two samples prepared at the same conditions were measured in parallel with both methods (the measurement was repeated four times), it should be noticed that student's t-test produced no difference between the two mentioned methods (p=1). The biosensor system hereby presented is highly specific to glucose detection and shows a better linear range than the one reported on the previous article. PMID:21907557

  3. Superconducting fault current-limiter with variable shunt impedance

    DOEpatents

    Llambes, Juan Carlos H; Xiong, Xuming

    2013-11-19

    A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.

  4. Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review

    PubMed Central

    Bera, Tushar Kanti

    2014-01-01

    Under the alternating electrical excitation, biological tissues produce a complex electrical impedance which depends on tissue composition, structures, health status, and applied signal frequency, and hence the bioelectrical impedance methods can be utilized for noninvasive tissue characterization. As the impedance responses of these tissue parameters vary with frequencies of the applied signal, the impedance analysis conducted over a wide frequency band provides more information about the tissue interiors which help us to better understand the biological tissues anatomy, physiology, and pathology. Over past few decades, a number of impedance based noninvasive tissue characterization techniques such as bioelectrical impedance analysis (BIA), electrical impedance spectroscopy (EIS), electrical impedance plethysmography (IPG), impedance cardiography (ICG), and electrical impedance tomography (EIT) have been proposed and a lot of research works have been conducted on these methods for noninvasive tissue characterization and disease diagnosis. In this paper BIA, EIS, IPG, ICG, and EIT techniques and their applications in different fields have been reviewed and technical perspective of these impedance methods has been presented. The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends. PMID:27006932

  5. Mechanism of the formation for thoracic impedance change.

    PubMed

    Kuang, Ming-Xing; Xiao, Qiu-Jin; Cui, Chao-Ying; Kuang, Nan-Zhen; Hong, Wen-Qin; Hu, Ai-Rong

    2010-03-01

    The purpose of this study is to investigate the mechanism of the formation for thoracic impedance change. On the basis of Ohm's law and the electrical field distribution in the cylindrical volume conductor, the formula about the thoracic impedance change are deduced, and they are demonstrated with the model experiment. The results indicate that the thoracic impedance change caused by single blood vessel is directly proportional to the ratio of the impedance change to the basal impedance of the blood vessel itself, to the length of the blood vessel appearing between the current electrodes, and to the basal impedance between two detective electrodes on the chest surface, while it is inversely proportional to the distance between the blood vessel and the line joining two detective electrodes. The thoracic impedance change caused by multiple blood vessels together is equal to the algebraic addition of all thoracic impedance changes resulting from the individual blood vessels. That is, the impedance changes obey the principle of adding scalars in the measurement of the electrical impedance graph. The present study can offer the theoretical basis for the waveform reconstruction of Impedance cardiography (ICG). PMID:20336823

  6. UNIVERSAL AUTO-CALIBRATION FOR A RAPID BATTERY IMPEDANCE SPECTRUM MEASUREMENT DEVICE

    SciTech Connect

    Jon P. Christophersen; John L. Morrison; William H. Morrison

    2014-03-01

    Electrochemical impedance spectroscopy has been shown to be a valuable tool for diagnostics and prognostics of energy storage devices such as batteries and ultra-capacitors. Although measurements have been typically confined to laboratory environments, rapid impedance spectrum measurement techniques have been developed for on-line, embedded applications as well. The prototype hardware for the rapid technique has been validated using lithium-ion batteries, but issues with calibration had also been identified. A new, universal automatic calibration technique was developed to address the identified issues while also enabling a more simplified approach. A single, broad-frequency range is used to calibrate the system and then scaled to the actual range and conditions used when measuring a device under test. The range used for calibration must be broad relative to the expected measurement conditions for the scaling to be successful. Validation studies were performed by comparing the universal calibration approach with data acquired from targeted calibration ranges based on the expected range of performance for the device under test. First, a mid-level shunt range was used for calibration and used to measure devices with lower and higher impedance. Next, a high excitation current level was used for calibration, followed by measurements using lower currents. Finally, calibration was performed over a wide frequency range and used to measure test articles with a lower set of frequencies. In all cases, the universal calibration approach compared very well with results acquired following a targeted calibration. Additionally, the shunts used for the automated calibration technique were successfully characterized such that the rapid impedance measurements compare very well with laboratory-scale measurements. These data indicate that the universal approach can be successfully used for onboard rapid impedance spectra measurements for a broad set of test devices and range of

  7. Impedance Noise Identification for State-of-Health Prognostics

    SciTech Connect

    Jon P. Christophersen; Chester G. Motloch; John L. Morrison; Ian B. Donnellan; William H. Morrison

    2008-07-01

    Impedance Noise Identification is an in-situ method of measuring battery impedance as a function of frequency using a random small signal noise excitation source. Through a series of auto- and cross-correlations and Fast Fourier Transforms, the battery complex impedance as a function of frequency can be determined. The results are similar to those measured under a lab-scale electrochemical impedance spectroscopy measurement. The lab-scale measurements have been shown to correlate well with resistance and power data that are typically used to ascertain the remaining life of a battery. To this end, the Impedance Noise Identification system is designed to acquire the same type of data as an on-board tool. A prototype system is now under development, and results are being compared to standardized measurement techniques such as electrochemical impedance spectroscopy. A brief description of the Impedance Noise Identification hardware system and representative test results are presented.

  8. A review of impedance measurements of whole cells.

    PubMed

    Xu, Youchun; Xie, Xinwu; Duan, Yong; Wang, Lei; Cheng, Zhen; Cheng, Jing

    2016-03-15

    Impedance measurement of live biological cells is widely accepted as a label free, non-invasive and quantitative analytical method to assess cell status. This method is easy-to-use and flexible for device design and fabrication. In this review, three typical techniques for impedance measurement, i.e., electric cell-substrate impedance sensing, Impedance flow cytometry and electric impedance spectroscopy, are reviewed from the aspects of theory, to electrode design and fabrication, and applications. Benefiting from the integration of microelectronic and microfluidic techniques, impedance sensing methods have expanded their applications to nearly all aspects of biology, including living cell counting and analysis, cell biology research, cancer research, drug screening, and food and environmental safety monitoring. The integration with other techniques, the fabrication of devices for certain biological assays, and the development of point-of-need diagnosis devices is predicted to be future trend for impedance sensing techniques. PMID:26513290

  9. Frequency-difference electrical impedance tomography: Phantom imaging experiments

    NASA Astrophysics Data System (ADS)

    Ahn, Sujin; Jun, Sung Chan; Seo, Jin Keun; Lee, Jeehyun; Woo, Eung Je; Holder, David

    2010-04-01

    Frequency-difference electrical impedance tomography (fdEIT) using a weighted voltage difference has been proposed as a means to provide images of admittivity changes at different frequencies. This weighted difference method is an effective way to extract anomaly information while eliminating background effects by unknown boundary geometry, uncertainty in electrode positions and other systematic measurement artefacts. It also properly handles the interplay between conductivity and permittivity in measured boundary voltage data. Though the proposed fdEIT algorithm is promising for applications such as detection of hemorrhagic stroke and breast cancer, more validation studies are needed. In this paper, we performed two-and three-dimensional numerical simulations and phantom experiments. Backgrounds of imaging objects were either saline or carrot pieces suspended in saline. We used carrot pieces to simulate a more realistic frequency-dependent admittivity distribution. Test objects were banana, potato or conductive gel with known admittivity spectra. When the background was saline, both simple and weighted difference approaches produced reasonably accurate images. The weighted difference method yielded better images from two-dimensional imaging objects with background of carrot pieces. For the three-dimensional head-shaped phantom, the advantage of the weighted frequency difference method over the simple difference method is not as obvious as in the case of the two-dimensional phantom. It is unclear if this is due to measurement errors or limitations in the linear algorithm. Further refinement and validation of the frequency difference image reconstructions are currently in progress.

  10. Quantification of the specific membrane capacitance of single cells using a microfluidic device and impedance spectroscopy measurement.

    PubMed

    Tan, Qingyuan; Ferrier, Graham A; Chen, Brandon K; Wang, Chen; Sun, Yu

    2012-09-01

    The specific membrane capacitance (SMC) is an electrical parameter that correlates with both the electrical activity and morphology of the plasma membrane, which are physiological markers for cellular phenotype and health. We have developed a microfluidic device that enables impedance spectroscopy measurements of the SMC of single biological cells. Impedance spectra induced by single cells aspirated into the device are captured over a moderate frequency range (5 kHz-1 MHz). Maximum impedance sensitivity is achieved using a tapered microfluidic channel, which effectively routes electric fields across the cell membranes. The SMC is extracted by curve-fitting impedance spectra to an equivalent circuit model. From our measurement, acute myeloid leukemia (AML) cells are found to exhibit larger SMC values in hypertonic solutions as compared with those in isotonic solutions. In addition, AML cell phenotypes (AML2 and NB4) exhibiting varying metastatic potential yield distinct SMC values (AML2: 16.9 ± 1.9 mF/m(2) (n = 23); NB4: 22.5 ± 4.7 mF/m(2) (n = 23)). Three-dimensional finite element simulations of the microfluidic device confirm the feasibility of this approach. PMID:23940502

  11. Techniques for beam impedance measurements above cutoff

    SciTech Connect

    Lambertson, G.R.; Jacob, A.F.; Rimmer, R.A.; Voelker, F.

    1990-08-01

    Methods for measuring beam impedance above cutoff have been very limited. For design work on the ALS we have developed two techniques that yield data in the frequency domain with high sensitivity. The first is an extension of the wire method; the second utilizes traveling TM waves to simulate the beam's fields at the wall, and thus avoids the mechanical difficulties of mounting the wire. It is also more sensitive than the other method but the interpretation is complicated by the presence of higher order modes. With either method we were able to detect resonant peaks smaller than 1 Ohm at 10 GHz.

  12. Method for conducting nonlinear electrochemical impedance spectroscopy

    DOEpatents

    Adler, Stuart B.; Wilson, Jamie R.; Huff, Shawn L.; Schwartz, Daniel T.

    2015-06-02

    A method for conducting nonlinear electrochemical impedance spectroscopy. The method includes quantifying the nonlinear response of an electrochemical system by measuring higher-order current or voltage harmonics generated by moderate-amplitude sinusoidal current or voltage perturbations. The method involves acquisition of the response signal followed by time apodization and fast Fourier transformation of the data into the frequency domain, where the magnitude and phase of each harmonic signal can be readily quantified. The method can be implemented on a computer as a software program.

  13. Bioelectrical impedance assessment of wound healing.

    PubMed

    Lukaski, Henry C; Moore, Micheal

    2012-01-01

    Objective assessment of wound healing is fundamental to evaluate therapeutic and nutritional interventions and to identify complications. Despite availability of many techniques to monitor wounds, there is a need for a safe, practical, accurate, and effective method. A new method is localized bioelectrical impedance analysis (BIA) that noninvasively provides information describing cellular changes that occur during healing and signal complications to wound healing. This article describes the theory and application of localized BIA and provides examples of its use among patients with lower leg wounds. This promising method may afford clinicians a novel technique for routine monitoring of interventions and surveillance of wounds. PMID:22401341

  14. Broadband Planar 5:1 Impedence Transformer

    NASA Technical Reports Server (NTRS)

    Ehsan, Negar; Hsieh, Wen-Ting; Moseley, Samuel H.; Wollack, Edward J.

    2015-01-01

    This paper presents a broadband Guanella-type planar impedance transformer that transforms so 50 omega to 10 omega with a 10 dB bandwidth of 1-14GHz. The transformer is designed on a flexible 50 micrometer thick polyimide substrate in microstrip and parallel-plate transmission line topologies, and is Inspired by the traditional 4:1 Guanella transformer. Back-to-back transformers were designed and fabricated for characterization in a 50 omega system. Simulated and measured results are in excellent agreement.

  15. Two-Point Stretchable Electrode Array for Endoluminal Electrochemical Impedance Spectroscopy Measurements of Lipid-Laden Atherosclerotic Plaques.

    PubMed

    Packard, René R Sevag; Zhang, XiaoXiao; Luo, Yuan; Ma, Teng; Jen, Nelson; Ma, Jianguo; Demer, Linda L; Zhou, Qifa; Sayre, James W; Li, Rongsong; Tai, Yu-Chong; Hsiai, Tzung K

    2016-09-01

    Four-point electrode systems are commonly used for electric impedance measurements of biomaterials and tissues. We introduce a 2-point system to reduce electrode polarization for heterogeneous measurements of vascular wall. Presence of endoluminal oxidized low density lipoprotein (oxLDL) and lipids alters the electrochemical impedance that can be measured by electrochemical impedance spectroscopy (EIS). We developed a catheter-based 2-point micro-electrode configuration for intravascular deployment in New Zealand White rabbits. An array of 2 flexible round electrodes, 240 µm in diameter and separated by 400 µm was microfabricated and mounted on an inflatable balloon catheter for EIS measurement of the oxLDL-rich lesions developed as a result of high-fat diet-induced hyperlipidemia. Upon balloon inflation, the 2-point electrode array conformed to the arterial wall to allow deep intraplaque penetration via alternating current (AC). The frequency sweep from 10 to 300 kHz generated an increase in capacitance, providing distinct changes in both impedance (Ω) and phase (ϕ) in relation to varying degrees of intraplaque lipid burden in the aorta. Aortic endoluminal EIS measurements were compared with epicardial fat tissue and validated by intravascular ultrasound and immunohistochemistry for plaque lipids and foam cells. Thus, we demonstrate a new approach to quantify endoluminal EIS via a 2-point stretchable electrode strategy. PMID:26857007

  16. Characterizing and Modeling the Noise and Complex Impedance of Feedhorn-Coupled TES Polarimeters

    SciTech Connect

    Appel, J. W.; Beall, J. A.; Essinger-Hileman, T.; Parker, L. P.; Staggs, S. T.; Visnjic, C.; Zhao, Y.; Austermann, J. E.; Halverson, N. W.; Henning, J. W.; Simon, S. M.; Becker, D.; Britton, J.; Cho, H. M.; Hilton, G. C.; Irwin, K. D.; Niemack, M. D.; Yoon, K. W.; Benson, B. A.; Bleem, L. E.

    2009-12-16

    We present results from modeling the electrothermal performance of feedhorn-coupled transition edge sensor (TES) polarimeters under development for use in cosmic microwave background (CMB) polarization experiments. Each polarimeter couples radiation from a corrugated feedhorn through a planar orthomode transducer, which transmits power from orthogonal polarization modes to two TES bolometers. We model our TES with two- and three-block thermal architectures. We fit the complex impedance data at multiple points in the TES transition. From the fits, we predict the noise spectra. We present comparisons of these predictions to the data for two TESes on a prototype polarimeter.

  17. Resolving the grain boundary and lattice impedance of hot-pressed Li7La3Zr2O12 garnet electrolytes

    DOE PAGESBeta

    Tenhaeff, Wyatt E.; Wang, Yangyang; Sokolov, Alexei P.; Wolfenstine, Jeff; Sakamoto, Jeffrey; Dudney, Nancy J.; Rangasamy, Ezhiyl

    2013-07-24

    Here, the cubic-stabilized garnet solid electrolyte with a nominal composition of Li6.28Al0.24La3Zr2O12 is thoroughly characterized by impedance spectroscopy. By varying the frequency of the applied AC signal over 11 orders of magnitude for characterizations from –100 to +60 °C, the relative contributions of grain and grain boundary conduction are unambiguously resolved.

  18. Estimation of defect activation energy around pn interfaces of Cu(In,Ga)Se2 solar cells using impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakakura, Hidenori; Itagaki, Masayuki; Sugiyama, Mutsumi

    2016-01-01

    We investigate the defect activation energy around the pn interface of Cu(In,Ga)Se2 (CIGS)-based solar cells using a simple electrochemical impedance spectroscopy. By applying AC and DC voltages to the solar cells, we observed an “inductive” element around the pn interface, which is ignored in conventional deep-level transient spectroscopy or admittance spectroscopy. A defect model is evaluated by proposing an equivalent circuit that includes a positive/negative constant phase element (CPE) to represent the area around the CdS/CIGS interface. By fitting the impedance data, the CPE index and CPE constant show a relationship with the defect activation energy or defect concentration. This result is significant because it may help reveal the defect properties of CIGS solar cells or any other semiconductor devices.

  19. Atomic Spectra Database (ASD)

    National Institute of Standards and Technology Data Gateway

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  20. Development of AC-driven liquid electrode plasma for sensitive detection of metals

    NASA Astrophysics Data System (ADS)

    Van Khoai, Do; Miyahara, Hidekazu; Yamamoto, Tamotsu; Trong Tue, Phan; Okino, Akitoshi; Takamura, Yuzuru

    2016-02-01

    A novel liquid electrode plasma (LEP) driven by AC, which is used as an excitation source for elemental analysis, has been developed for the first time. The conditions such as chip layout and flow rate were found to produce the plasma in the channel. The mechanism of AC LEP generation was determined. AC LEP could be sustained in the resin channel with no severe damage on the channel. The emission spectra of electrolyte, lead and cadmium solution were obtained and compared with those generated by DC LEP. AC LEP was developed for the quantitative determination of lead and cadmium with limits of detection of 75.0 µg/L (ppb) and 4.5 µg/L (ppb), respectively. The novel plasma source is promising for on-chip combination and integration because it could be maintained at low flow rates on a resin-based platform.

  1. Arts of electrical impedance tomographic sensing

    PubMed Central

    Wang, Mi; Wang, Qiang; Karki, Bishal

    2016-01-01

    This paper reviews governing theorems in electrical impedance sensing for analysing the relationships of boundary voltages obtained from different sensing strategies. It reports that both the boundary voltage values and the associated sensitivity matrix of an alternative sensing strategy can be derived from a set of full independent measurements and sensitivity matrix obtained from other sensing strategy. A new sensing method for regional imaging with limited measurements is reported. It also proves that the sensitivity coefficient back-projection algorithm does not always work for all sensing strategies, unless the diagonal elements of the transformed matrix, ATA, have significant values and can be approximate to a diagonal matrix. Imaging capabilities of few sensing strategies were verified with static set-ups, which suggest the adjacent electrode pair sensing strategy displays better performance compared with the diametrically opposite protocol, with both the back-projection and multi-step image reconstruction methods. An application of electrical impedance tomography for sensing gas in water two-phase flows is demonstrated. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185968

  2. A high frequency electromagnetic impedance imaging system

    SciTech Connect

    Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex

    2003-01-15

    Non-invasive, high resolution geophysical mapping of the shallow subsurface is necessary for delineation of buried hazardous wastes, detecting unexploded ordinance, verifying and monitoring of containment or moisture contents, and other environmental applications. Electromagnetic (EM) techniques can be used for this purpose since electrical conductivity and dielectric permittivity are representative of the subsurface media. Measurements in the EM frequency band between 1 and 100 MHz are very important for such applications, because the induction number of many targets is small and the ability to determine the subsurface distribution of both electrical properties is required. Earlier workers were successful in developing systems for detecting anomalous areas, but quantitative interpretation of the data was difficult. Accurate measurements are necessary, but difficult to achieve for high-resolution imaging of the subsurface. We are developing a broadband non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using an EM impedance approach similar to the MT exploration technique. Electric and magnetic sensors were tested to ensure that stray EM scattering is minimized and the quality of the data collected with the high-frequency impedance (HFI) system is good enough to allow high-resolution, multi-dimensional imaging of hidden targets. Additional efforts are being made to modify and further develop existing sensors and transmitters to improve the imaging capability and data acquisition efficiency.

  3. Arts of electrical impedance tomographic sensing.

    PubMed

    Wang, Mi; Wang, Qiang; Karki, Bishal

    2016-06-28

    This paper reviews governing theorems in electrical impedance sensing for analysing the relationships of boundary voltages obtained from different sensing strategies. It reports that both the boundary voltage values and the associated sensitivity matrix of an alternative sensing strategy can be derived from a set of full independent measurements and sensitivity matrix obtained from other sensing strategy. A new sensing method for regional imaging with limited measurements is reported. It also proves that the sensitivity coefficient back-projection algorithm does not always work for all sensing strategies, unless the diagonal elements of the transformed matrix, A(T)A, have significant values and can be approximate to a diagonal matrix. Imaging capabilities of few sensing strategies were verified with static set-ups, which suggest the adjacent electrode pair sensing strategy displays better performance compared with the diametrically opposite protocol, with both the back-projection and multi-step image reconstruction methods. An application of electrical impedance tomography for sensing gas in water two-phase flows is demonstrated. This article is part of the themed issue 'Supersensing through industrial process tomography'. PMID:27185968

  4. Impedance and modulus spectroscopy analysis of Mn0.5Zn0.5Fe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Aireddy, H.; Bidayat, U.; Das, A. K.

    2013-02-01

    Nanocrystalline spinel ferrite of Mn0.5Zn0.5Fe2O4 was prepared by sol-gel method. Structural analysis using high resolution X-ray diffraction, scanning electron microscope, and high resolution transmission electron microscope, reveals the formation of single phase compound in cubic symmetry of spinel structure. The variation of impedance spectra with temperature indicates retention of typical negative temperature coefficient of resistivity, and the presence of temperature dependent electrical relaxation phenomena. Complex modulus spectra confirmed the presence of non-Debye type single relaxation process. The relaxation observed at low temperatures and low frequencies corresponds to grain boundary polarization.

  5. Method of Adjusting Acoustic Impedances for Impedance-Tunable Acoustic Segments

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H (Inventor); Nark, Douglas M. (Inventor); Jones, Michael G. (Inventor); Parrott, Tony L. (Inventor); Lodding, Kenneth N. (Inventor)

    2012-01-01

    A method is provided for making localized decisions and taking localized actions to achieve a global solution. In an embodiment of the present invention, acoustic impedances for impedance-tunable acoustic segments are adjusted. A first acoustic segment through an N-th acoustic segment are defined. To start the process, the first acoustic segment is designated as a leader and a noise-reducing impedance is determined therefor. This is accomplished using (i) one or more metrics associated with the acoustic wave at the leader, and (ii) the metric(s) associated with the acoustic wave at the N-th acoustic segment. The leader, the N-th acoustic segment, and each of the acoustic segments exclusive of the leader and the N-th acoustic segment, are tuned to the noise-reducing impedance. The current leader is then excluded from subsequent processing steps. The designation of leader is then given one of the remaining acoustic segments, and the process is repeated for each of the acoustic segments through an (N-1)-th one of the acoustic segments.

  6. Plasma Impedance Spectrum Analyzer (PISA): an advanced impedance probe for measuring plasma density and other parameters

    NASA Astrophysics Data System (ADS)

    Rowland, D. E.; Pfaff, R. F.; Uribe, P.; Burchill, J.

    2006-12-01

    High-accuracy, high-cadence measurements of ionospheric electron density between 100 and a few x 106 / cc and electron temperature from 200 K to a few thousand K are of critical importance for understanding conductivity, Joule heating rates, and instability growth rates. We present results from the development of an impedance probe at NASA GSFC and show its strengths relative to other measurement techniques. Complementary measurement techniques such as Langmuir Probes, while providing extremely high measurement cadence, suffer from uncertainties in calibration, surface contamination effects, and wake/sheath effects. Impedance Probes function by measuring the phase shift between the voltage on a long antenna and the current flowing from the antenna into the plasma as a function of frequency. At frequencies for which the phase shift is zero, a plasma resonance is assumed to exist. These resonances depend on a variety of plasma parameters, including the electron density, electron temperature, and magnetic field strength, as well as the antenna geometry, angle between the antenna and the magnetic field, and sheath / Debye length effects, but do not depend on the surface properties of the antenna. Previous impedance probe designs which "lock" onto the upper hybrid resonance are susceptible to losing lock in low-density environments. Information about other resonances, including the series resonance (which strongly depends on temperature) and other resonances which may occur near the upper hybrid, confounding its identification, are typically not transmitted. The novel features of the GSFC Impedance Probe (PISA) include: 1) A white noise generator that stimulates a wide range of frequencies simultaneously, allowing the instrument to send down the entire impedance frequency spectrum every few milliseconds. This allows identification of all resonance frequencies, including the series resonance which depends on temperature. 2) DC bias voltage stepping to bring the antenna

  7. Study of corrosion of super martensitic stainless steel under alternating current in artificial seawater with electrochemical impedance spectroscopy

    SciTech Connect

    Reyes, T.; Bhola, S.; Olson, D. L.; Mishra, B.

    2011-06-23

    The assessment of corrosion requires the use of tools able to quantify the corrosion but often times also qualify it. Electrochemical Impedance Spectroscopy (EIS) is a laboratory tool that can provide both qualification and quantification of corrosion. EIS was successfully used to compare the thickness of the corrosion products formed during the application of different alternating current (AC) densities as well as to characterize pitting. When EIS is applied at the open circuit potential, the technique is nondestructive and predicts the corrosion behavior of the electrode. It can also be used at cathodic potentials while still being nondestructive, providing information about the electrode reaction kinetics, diffusion and electrical double layer.

  8. The ac53, ac78, ac101, and ac103 Genes Are Newly Discovered Core Genes in the Family Baculoviridae

    PubMed Central

    Garavaglia, Matías Javier; Miele, Solange Ana Belén; Iserte, Javier Alonso; Belaich, Mariano Nicolás

    2012-01-01

    The family Baculoviridae is a large group of insect viruses containing circular double-stranded DNA genomes of 80 to 180 kbp, which have broad biotechnological applications. A key feature to understand and manipulate them is the recognition of orthology. However, the differences in gene contents and evolutionary distances among the known members of this family make it difficult to assign sequence orthology. In this study, the genome sequences of 58 baculoviruses were analyzed, with the aim to detect previously undescribed core genes because of their remote homology. A routine based on Multi PSI-Blast/tBlastN and Multi HaMStR allowed us to detect 31 of 33 accepted core genes and 4 orthologous sequences in the Baculoviridae which were not described previously. Our results show that the ac53, ac78, ac101 (p40), and ac103 (p48) genes have orthologs in all genomes and should be considered core genes. Accordingly, there are 37 orthologous genes in the family Baculoviridae. PMID:22933288

  9. Simple Equipment for Imaging AC.

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Anayama, Takayuki

    2003-01-01

    Presents an effective way to demonstrate the difference between direct current and alternating current using red and green LEDs. Describes how to make a tool that shows how an AC voltage changes with time using the afterimage effect of the LEDs. (Author/NB)

  10. Semiconductor ac static power switch

    NASA Technical Reports Server (NTRS)

    Vrancik, J.

    1968-01-01

    Semiconductor ac static power switch has long life and high reliability, contains no moving parts, and operates satisfactorily in severe environments, including high vibration and shock conditions. Due to their resistance to shock and vibration, static switches are used where accidental switching caused by mechanical vibration or shock cannot be tolerated.

  11. Energy saving in ac generators

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1980-01-01

    Circuit cuts no-load losses, without sacrificing full-load power. Phase-contro circuit includes gate-controlled semiconductor switch that cuts off applied voltage for most of ac cycle if generator idling. Switch "on" time increases when generator is in operation.

  12. Structural properties and impedance spectroscopy of excimer laser ablated Zr substituted BaTiO3 thin films

    NASA Astrophysics Data System (ADS)

    James, A. R.; Prakash, Chandra; Prasad, G.

    2006-04-01

    BaZr0.15Ti0.85O3 thin films were deposited on Pt-coated Si substrates using the pulsed excimer laser ablation technique. X-ray diffraction and atomic force microscope techniques were used to study the structural characteristics of the films. Films with good crystalline quality, with an average grain size of 0.5 µm were obtained, under various oxygen background pressures. Ferroelectric hysteresis loops recorded on the films deposited at 26.66 Pa oxygen pressure showed the best properties. To gain a further understanding of the electrical properties of these films, impedance spectroscopy was used and data acquired at several different temperatures. AC conductivity plots showed the presence of space charge conduction at low frequencies; however, at high frequencies, all the curves merged and expectedly showed an almost dc conduction behaviour. The activation energy obtained from ac conductivity data may be attributed to oxygen vacancy motion.

  13. Multi-Object Spectroscopy: Automatic Extraction and Previewing of Spectra

    NASA Astrophysics Data System (ADS)

    Pirzkal, Norbert; Kerber, Florian

    With multi-object spectroscopy becoming an integral part of modern astronomical instrumentation, the amount of such data in archives is bound to increase manyfold in the very near future. One challenge is to make individual spectra easily accessible for preview by the archive users. We have used aXe, a software package developed to perform slitless spectral extraction for the Advanced Camera for Surveys (ACS) on the HST, to extract spectra from FORS MXU data. One key element of routine spectral extraction is that the extraction process must be robust, take place in a reasonable amount of time, and be general enough so that it works equally well independently of the type of spectrum. We believe that the current approach to the extraction of spectra from FORS MXU satisfy these conditions while being more sophisticated than a simple quick and dirty box extraction method. The extraction process follows the general principle of ACS spectral extraction which is outlined in [1] and [2]. This allows us to perform tilted spectral extraction and to produce wavelength calibrated spectra which can be readily examined using current spectral analysis tools which are part of IRAF.

  14. Impedance measurements of the Spallation Neutron Source extraction kicker system

    NASA Astrophysics Data System (ADS)

    Hahn, H.

    2004-10-01

    Transverse coupling impedance measurements of the Spallation Neutron Source (SNS) beam extraction system were performed and the results are here reported. The SNS beam extraction system is composed from 14 subsystems, each of which consists of a vertical kicker magnet plus a pulse forming network (PFN). Impedance bench measurements were performed on one large and one small aperture magnet, stand-alone as well as assembled with the first-article production PFN. The impedance measuring methods to cover the interesting frequency range from below 1 to 100MHz are described in considerable detail. The upper frequency range is properly covered by the conventional twin-wire method but it had to be supplemented at the low-frequency end by a direct input impedance measurement at the magnet busbar. Required modifications of the PFN to maintain the impedance budget are discussed. The total impedance estimate was finally obtained by quadratic scaling with vertical aperture from the two tested kicker subsystems.

  15. Transverse beam coupling impedance of the CERN Proton Synchrotron

    NASA Astrophysics Data System (ADS)

    Persichelli, S.; Migliorati, M.; Biancacci, N.; Gilardoni, S.; Metral, E.; Salvant, B.

    2016-04-01

    Beam coupling impedance is a fundamental parameter to characterize the electromagnetic interaction of a particle beam with the surrounding environment. Synchrotron machine performances are critically affected by instabilities and collective effects triggered by beam coupling impedance. In particular, transverse beam coupling impedance is expected to impact beam dynamics of the CERN Proton Synchrotron (PS), since a significant increase in beam intensity is foreseen within the framework of the LHC Injectors Upgrade (LIU) project. In this paper we describe the study of the transverse beam coupling impedance of the PS, taking into account the main sources of geometrical impedance and the contribution of indirect space charge at different energies. The total machine impedance budget, determined from beam-based dedicated machine measurement sessions, is also discussed and compared with the theoretical model.

  16. Impedance analysis of the PEP-II vacuum chamber

    SciTech Connect

    Ng, C.K.; Weiland, T.

    1995-05-01

    The PEP-II high energy ring (HER) vacuum chamber consists of a copper tube with periodically spaced pumping slots. The impedance of the vacuum chamber due to the slots is analyzed. Both narrow-band and broadband impedances are considered as well as longitudinal and transverse components thereof. It is found that although the broad-band impedance is tolerable, the narrow-band impedance may exceed the instability limit given by the natural damping with no feedback system on. Traveling wave modes in the chamber are the major source of this high value narrow-band impedance. We also study the dependences of the impedance on the slot length and the geometrical cross section.

  17. Electrical impedance tomography: so close to touching the holy grail

    PubMed Central

    2014-01-01

    Electrical impedance tomography is a new technology giving us lung imaging that may allow lung function to be monitored at the bedside. Several applications have been studied to guide mechanical ventilation at the bedside with electrical impedance tomography. Positive end-expiratory pressure trials guided by electrical impedance tomography are relevant in terms of recruited volume or homogeneity of the lung. Tidal impedance variation is a new parameter of electrical impedance tomography that may help physicians with ventilator settings in acute respiratory distress syndrome patients. This parameter is able to identify the onset of overdistention in the nondependent part and recruitment in the dependent part. Electrical impedance tomography presents a big step forward in mechanical ventilation. PMID:25041593

  18. Validation of a Numerical Method for Determining Liner Impedance

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.; Tanner, Sharon E.; Parrott, Tony L.

    1996-01-01

    This paper reports the initial results of a test series to evaluate a method for determining the normal incidence impedance of a locally reacting acoustically absorbing liner, located on the lower wall of a duct in a grazing incidence, multi-modal, non-progressive acoustic wave environment without flow. This initial evaluation is accomplished by testing the methods' ability to converge to the known normal incidence impedance of a solid steel plate, and to the normal incidence impedance of an absorbing test specimen whose impedance was measured in a conventional normal incidence tube. The method is shown to converge to the normal incident impedance values and thus to be an adequate tool for determining the impedance of specimens in a grazing incidence, multi-modal, nonprogressive acoustic wave environment for a broad range of source frequencies.

  19. Transverse impedance measurement in RHIC and the AGS

    SciTech Connect

    Biancacci, Nicolo; Blaskiewicz, M.; Dutheil, Y.; Liu, C.; Mernick, M.; Minty, M.; White, S. M.

    2014-05-12

    The RHIC luminosity upgrade program aims for an increase of the polarized proton luminosity by a factor 2. To achieve this goal a significant increase in the beam intensity is foreseen. The beam coupling impedance could therefore represent a source of detrimental effects for beam quality and stability at high bunch intensities. For this reason it is essential to quantify the accelerator impedance budget and the major impedance sources, and possibly cure them. In this MD note we summarize the results of the 2013 transverse impedance measurements in the AGS and RHIC. The studies have been performed measuring the tune shift as a function of bunch intensity and deriving the total accelerator machine transverse impedance. For RHIC, we could obtain first promising results of impedance localization measurements as well.

  20. Performance of TES X-ray Microcalorimeters with AC Bias Read-Out at MHz Frequencies

    NASA Astrophysics Data System (ADS)

    Akamatsu, H.; Gottardi, L.; Adams, J.; Bandler, S.; Bruijn, M.; Chervenak, J.; Eckart, M.; Finkbeiner, F.; den Hartog, R.; Hoevers, H.; Kelley, R.; Kilbourne, C.; van der Kuur, J.; van den Linden, A. J.; Porter, F.; Sadleir, J.; Smith, S.; Kiviranta, M.

    2014-08-01

    At SRON we are developing Frequency Domain Multiplexing for the read-out of superconducting transition edge sensor microcalorimeters for future X-ray astrophysical missions. We will report on the performance of Goddard Space Flight Center pixels under AC bias in the MHz frequency range. Superconducting flux transformers are used to improve the impedance matching between the low ohmic TESs and the SQUID. We connected 5 pixels to the LC filters with resonant frequencies ranging between 1 and 5 MHz. For X-ray photons of 6 keV we measured a best X-ray energy resolution of 3.6 eV at 1.4 MHz, consistent with the integrated Noise Equivalent Power. In addition, we improved the electrical circuit by optimizing the coupling ratio of the impedance matching transformer. In addition, we improved electrical circuit for impedance matching; modified transformer coupling ratio. As a result, we got the integrated noise equivalent power resolution of 2.7 eV at 2.5 MHz. A characterization of the detector response as a function of the AC bias voltage, bias frequency and the applied magnetic field is presented.

  1. Stars and their Spectra

    NASA Astrophysics Data System (ADS)

    Kaler, James B.

    1997-03-01

    This unique and informative text describes how stars are classified according to their spectral qualities and temperature. James Kaler explains the alphabet of stellar astronomy, running from cool M stars to hot O stars, and tells the story of their evolution. Before embarking on a voyage of cosmic discovery, the author discusses the fundamental properties of stars, their atomic structure and the formation of spectra. Then, Kaler considers each star type individually and explores its spectra in detail. A review of unusual, hard-to-classify stars, and a discussion of data related to the birth, life and death of stars round out the text. This book is an important resource for all amateur astronomers and students of astronomy. Professionals will find it a refreshing read as well.

  2. Parmeterization of spectra

    NASA Technical Reports Server (NTRS)

    Cornish, C. R.

    1983-01-01

    Following reception and analog to digital conversion (A/D) conversion, atmospheric radar backscatter echoes need to be processed so as to obtain desired information about atmospheric processes and to eliminate or minimize contaminating contributions from other sources. Various signal processing techniques have been implemented at mesosphere-stratosphere-troposphere (MST) radar facilities to estimate parameters of interest from received spectra. Such estimation techniques need to be both accurate and sufficiently efficient to be within the capabilities of the particular data-processing system. The various techniques used to parameterize the spectra of received signals are reviewed herein. Noise estimation, electromagnetic interference, data smoothing, correlation, and the Doppler effect are among the specific points addressed.

  3. Barnacle Bill Spectra

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These IMP spectra show the characteristics of the rock surface measured by the Alpha Proton X-Ray Spectrometer (blue), the soil trapped in pits on the rock surface (red), and the deposit of bright drift on the top of the rock. The area measured by the APXS has the properties expected for nearly unweathered igneous rock, and the soil trapped in the pits is intermediate to the unweathered rock and the highly weathered drift material.

  4. Multispectral processing without spectra

    NASA Astrophysics Data System (ADS)

    Drew, Mark S.; Finlayson, Graham D.

    2003-07-01

    It is often the case that multiplications of whole spectra, component by component, must be carried out, for example when light reflects from or is transmitted through materials. This leads to particularly taxing calculations, especially in spectrally based ray tracing or radiosity in graphics, making a full-spectrum method prohibitively expensive. Nevertheless, using full spectra is attractive because of the many important phenomena that can be modeled only by using all the physics at hand. We apply to the task of spectral multiplication a method previously used in modeling RGB-based light propagation. We show that we can often multiply spectra without carrying out spectral multiplication. In previous work J. Opt. Soc. Am. A 11 , 1553 (1994) we developed a method called spectral sharpening, which took camera RGBs to a special sharp basis that was designed to render illuminant change simple to model. Specifically, in the new basis, one can effectively model illuminant change by using a diagonal matrix rather than the 33 linear transform that results from a three-component finite-dimensional model G. Healey and D. Slater, J. Opt. Soc. Am. A 11 , 3003 (1994). We apply this idea of sharpening to the set of principal components vectors derived from a representative set of spectra that might reasonably be encountered in a given application. With respect to the sharp spectral basis, we show that spectral multiplications can be modeled as the multiplication of the basis coefficients. These new product coefficients applied to the sharp basis serve to accurately reconstruct the spectral product. Although the method is quite general, we show how to use spectral modeling by taking advantage of metameric surfaces, ones that match under one light but not another, for tasks such as volume rendering. The use of metamers allows a user to pick out or merge different volume structures in real time simply by changing the lighting. 2003 Optical Society of America

  5. Multispectral processing without spectra.

    PubMed

    Drew, Mark S; Finlayson, Graham D

    2003-07-01

    It is often the case that multiplications of whole spectra, component by component, must be carried out,for example when light reflects from or is transmitted through materials. This leads to particularly taxing calculations, especially in spectrally based ray tracing or radiosity in graphics, making a full-spectrum method prohibitively expensive. Nevertheless, using full spectra is attractive because of the many important phenomena that can be modeled only by using all the physics at hand. We apply to the task of spectral multiplication a method previously used in modeling RGB-based light propagation. We show that we can often multiply spectra without carrying out spectral multiplication. In previous work [J. Opt. Soc. Am. A 11, 1553 (1994)] we developed a method called spectral sharpening, which took camera RGBs to a special sharp basis that was designed to render illuminant change simple to model. Specifically, in the new basis, one can effectively model illuminant change by using a diagonal matrix rather than the 3 x 3 linear transform that results from a three-component finite-dimensional model [G. Healey and D. Slater, J. Opt. Soc. Am. A 11, 3003 (1994)]. We apply this idea of sharpening to the set of principal components vectors derived from a representative set of spectra that might reasonably be encountered in a given application. With respect to the sharp spectral basis, we show that spectral multiplications can be modeled as the multiplication of the basis coefficients. These new product coefficients applied to the sharp basis serve to accurately reconstruct the spectral product. Although the method is quite general, we show how to use spectral modeling by taking advantage of metameric surfaces, ones that match under one light but not another, for tasks such as volume rendering. The use of metamers allows a user to pick out or merge different volume structures in real time simply by changing the lighting. PMID:12868625

  6. Impedance Matched to Vacuum, Invisible Edge, Diffraction Suppressed Mirror

    NASA Technical Reports Server (NTRS)

    Hagopian, John G. (Inventor); Roman, Patrick A. (Inventor); Shiri, Sharham (Inventor); Wollack, Edward J. (Inventor)

    2015-01-01

    Diffraction suppressed mirrors having an invisible edge are disclosed for incident light at both targeted wavelengths and broadband incident light. The mirrors have a first having at least one discontiguous portion having a plurality of nanostructured apertures. The discontiguous mirror portion impedance matches a relatively high impedance portion of the mirror to a relatively low impedance portion of the mirror, thereby reducing the diffraction edge effect otherwise present in a conventional mirror.

  7. Mutual impedance of nonplanar-skew sinusoidal dipoles

    NASA Technical Reports Server (NTRS)

    Richmond, J. H.; Geary, N. H.

    1975-01-01

    The mutual impedance expressions for parallel dipoles in terms of sine-integrals and cosine-integrals have been published by King (1957). The investigation reported provides analogous expressions for nonparallel dipoles. The expressions presented are most useful when the monopoles are close together. The theory of moment methods shows an approach for employing the mutual impedance of filamentary sinusoidal dipoles to calculate the impedance and scattering properties of straight and bent wires with small but finite diameter.

  8. Mutual impedance of nonplanar-skew sinusoidal dipoles

    NASA Technical Reports Server (NTRS)

    Richmond, J. H.; Geary, N. H.

    1974-01-01

    The mutual impedance of nonplanar-skew sinusoidal dipoles is presented as a summation of several exponential integrals with complex arguments. Mathematical models are developed to show the near-zone field of the sinusoidal dipole. The mutual impedance of coupled dipoles is expressed as the sum of four monopole-mobopole impedances to simplify the analysis procedure. The subroutines for solving the parameters of the dipoles are discussed.

  9. Impedance Spectroscopic Investigation of Proton Conductivity in Nafion Using Transient Electrochemical Atomic Force Microscopy (AFM)

    PubMed Central

    Hink, Steffen; Wagner, Norbert; Bessler, Wolfgang G.; Roduner, Emil

    2012-01-01

    Spatially resolved impedance spectroscopy of a Nafion polyelectrolyte membrane is performed employing a conductive and Pt-coated tip of an atomic force microscope as a point-like contact and electrode. The experiment is conducted by perturbing the system by a rectangular voltage step and measuring the incurred current, followed by Fourier transformation and plotting the impedance against the frequency in a conventional Bode diagram. To test the potential and limitations of this novel method, we present a feasibility study using an identical hydrogen atmosphere at a well-defined relative humidity on both sides of the membrane. It is demonstrated that good quality impedance spectra are obtained in a frequency range of 0.2–1000 Hz. The extracted polarization curves exhibit a maximum current which cannot be explained by typical diffusion effects. Simulation based on equivalent circuits requires a Nernst element for restricted diffusion in the membrane which suggests that this effect is based on the potential dependence of the electrolyte resistance in the high overpotential region. PMID:24958175

  10. Impedance studies of a green blend polymer electrolyte based on PVA and Aloe-vera

    NASA Astrophysics Data System (ADS)

    Selvalakshmi, S.; Mathavan, T.; Vijaya, N.; Selvasekarapandian, Premalatha, M.; Monisha, S.

    2016-05-01

    The development of polymer electrolyte materials for energy generating and energy storage devices is a challenge today. A new type of blended green electrolyte based on Poly-vinyl alcohol (PVA) and Aloe-vera has been prepared by solution casting technique. The blending of polymers may lead to the increase in stability due to one polymer portraying itself as a mechanical stiffener and the other as a gelled matrix supported by the other. The prepared blend electrolytes were subjected to Ac impedance studies. It has been found out that the polymer film in which 1 gm of PVA was dissolved in 40 ml of Aloe-vera extract exhibits highest conductivity and its value is 3.08 × 10-4 S cm-1.

  11. Voltammetric and impedance behaviours of surface-treated nano-crystalline diamond film electrodes

    SciTech Connect

    Liu, F. B.; Jing, B.; Cui, Y.; Di, J. J.; Qu, M.

    2015-04-15

    The electrochemical performances of hydrogen- and oxygen-terminated nano-crystalline diamond film electrodes were investigated by cyclic voltammetry and AC impedance spectroscopy. In addition, the surface morphologies, phase structures, and chemical states of the two diamond films were analysed by scanning probe microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, respectively. The results indicated that the potential window is narrower for the hydrogen-terminated nano-crystalline diamond film than for the oxygen-terminated one. The diamond film resistance and capacitance of oxygen-terminated diamond film are much larger than those of the hydrogen-terminated diamond film, and the polarization resistances and double-layer capacitance corresponding to oxygen-terminated diamond film are both one order of magnitude larger than those corresponding to the hydrogen-terminated diamond film. The electrochemical behaviours of the two diamond film electrodes are discussed.

  12. Traveling-wave electrokinetic micropumps: velocity, electrical current, and impedance measurements.

    PubMed

    García-Sánchez, P; Ramos, A; Green, N G; Morgan, H

    2008-09-01

    An array of microelectrodes covered in an electrolyte and energized by a traveling-wave potential produces net movement of the fluid. Arrays of platinum microelectrodes of two different characteristic sizes have been studied. For both sizes of arrays, at low voltages (<2 V pp) the electrolyte flow is in qualitative agreement with the linear theory of ac electroosmosis. At voltages above a threshold, the direction of fluid flow is reversed. The electrical impedance of the electrode-electrolyte system was measured after the experiments, and changes in the electrical properties of the electrolyte were observed. Measurements of the electrical current during pumping of the electrolyte are also reported. Transient behaviors in both electrical current and fluid velocity were observed. The Faradaic currents probably generate conductivity gradients in the liquid bulk, which in turn give rise to electrical forces. These effects are discussed in relation to the fluid flow observations. PMID:18672919

  13. A microprocessor-based digital feeder monitor with high-impedance fault detection

    SciTech Connect

    Patterson, R.; Tyska, W.; Russell, B.D.

    1994-12-31

    The high impedance fault detection technology developed at Texas A&M University after more than a decade of research, funded in large part by the Electric Power Research Institute, has been incorporated into a comprehensive monitoring device for overhead distribution feeders. This digital feeder monitor (DFM) uses a high waveform sampling rate for the ac current and voltage inputs in conjunction with a high-performance reduced instruction set (RISC) microprocessor to obtain the frequency response required for arcing fault detection and power quality measurements. Expert system techniques are employed to assure security while maintaining dependability. The DFM is intended to be applied at a distribution substation to monitor one feeder. The DFM is packaged in a non-drawout case which fits the panel cutout for a GE IAC overcurrent relay to facilitate retrofits at the majority of sites were electromechanical overcurrent relays already exist.

  14. Sensitive and rapid detection of pathogenic bacteria in small volumes using impedance spectroscopy technique.

    PubMed

    Pal, Namrata; Sharma, Shashank; Gupta, Shalini

    2016-03-15

    We illustrate a novel impedance immunosensor which rapidly and sensitively detects typhoid-causing infectious bacteria Salmonella enterica serovar (Salmonella typhi) in 10 μL of sample volume. The bacteria are tagged with gold nanoparticles (Au NPs) via high-affinity antigen-antibody interactions for enhanced signal amplification and selectivity. The cell-particle bioconjugates are then subjected to alternating current (AC) electric fields applied through interdigitated microelectrodes. The immunosensor performance is optimized with respect to electric field frequency, cell concentration, incubation times and the type of blocking agent to achieve a low limit of detection (LOD) of 100 CFU/mL. The approach is extendable to a wide spectrum of clinical diseases and offers an efficient and cost-effective solution for point-of-care diagnosis. PMID:26414023

  15. Impedance and self-discharge mechanism studies of nickel metal hydride batteries for energy storage applications

    NASA Astrophysics Data System (ADS)

    Zhu, Wenhua; Zhu, Ying; Tatarchuk, Bruce

    2013-04-01

    Nickel metal hydride battery packs have been found wide applications in the HEVs (hybrid electric vehicles) through the on-board rapid energy conservation and efficient storage to decrease the fossil fuel consumption rate and reduce CO2 emissions as well as other harmful exhaust gases. In comparison to the conventional Ni-Cd battery, the Ni-MH battery exhibits a relatively higher self-discharge rate. In general, there are quite a few factors that speed up the self-discharge of the electrodes in the sealed nickel metal hydride batteries. This disadvantage eventually reduces the overall efficiency of the energy conversion and storage system. In this work, ac impedance data were collected from the nickel metal hydride batteries. The self-discharge mechanism and battery capacity degradation were analyzed and discussed for further performance improvement.

  16. Internal impedance of steel-reinforced helically stranded conductors at commercial frequency

    NASA Astrophysics Data System (ADS)

    Merkushev, A. G.; Elagin, I. A.

    2015-04-01

    An original simplified mathematical model is proposed that describes the distribution of a harmonic electromagnetic field at a commercial frequency in steel-reinforced high-voltage cables with helically stranded single-layer winding. In the framework of the idealized physical concepts on which the proposed model is based, stranded conductors are treated as an anisotropic conducting layer. It is shown that taking into account the helical twist of conductors leads to the appearance of an axial magnetic field, the presence of which can significantly influence the level of ac losses. The model has been used to calculate the dependence of the internal impedance on the magnetic permeability of the steel core for commercial AS-70 grade steel-reinforced stranded aluminum cable. The results are compared to those obtained using a hollow cylinder model and full-scale numerical calculations using the finite element method.

  17. A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method.

    PubMed

    Liu, S X; Chen, X Y; Chen, X

    2007-05-01

    In the present work, a TiO2/activated carbon (AC) photocatalyst with high activity and easy separation was prepared using a hydrothermal method. Phenol, methyl orange (MO) and Cr(VI) were used as target pollutants to test the activity and decantability. SEM, XRD, FTIR, diffuse reflectance spectra (UV/DRS) and N2 adsorption isotherms were used to characterize the crystalline and electronic structure. Results show that the AC composite has a significant effect on the TiO2 activity. With suitable AC content, the TiO2/xAC catalysts prepared were much more active. The TiO2/5AC catalyst exhibited easy separation and less deactivation after several runs, and was less sensitive to pH changes. UV/DRS revealed that no electronic bandgap changes in TiO2 occurred on addition of the AC. SEM and XRD results suggest that better TiO2 distribution can be achieved when an optimal AC content is used. A Ti-O-C bond was formed and a slight conjugation effect appeared between the AC bulk and TiO2. The advantages of the obtained TiO2/5AC catalyst revealed its great practical potential in wastewater treatment. PMID:17049160

  18. Time-Domain Impedance Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Auriault, Laurent

    1996-01-01

    It is an accepted practice in aeroacoustics to characterize the properties of an acoustically treated surface by a quantity known as impedance. Impedance is a complex quantity. As such, it is designed primarily for frequency-domain analysis. Time-domain boundary conditions that are the equivalent of the frequency-domain impedance boundary condition are proposed. Both single frequency and model broadband time-domain impedance boundary conditions are provided. It is shown that the proposed boundary conditions, together with the linearized Euler equations, form well-posed initial boundary value problems. Unlike ill-posed problems, they are free from spurious instabilities that would render time-marching computational solutions impossible.

  19. Proceedings of the impedance and bunch instability workshop

    SciTech Connect

    Not Available

    1990-04-01

    This report discusses the following topics: impedance and bunch lengthening; single bunch stability in the ESRF; a longitudinal mode-coupling instability model for bunch lengthening; high-frequency behavior of longitudinal coupling impedance; beam-induced energy spreads at beam-pipe transitions; on the calculation of wake functions using MAFIA-T3 code; preliminary measurements of the bunch length and the impedance of LEP; measurements and simulations of collective effects in the CERN SPS; bunch lengthening in the SLC damping rings; and status of impedance measurements for the spring-8 storage ring.

  20. [Cardiac output monitoring by impedance cardiography in cardiac surgery].

    PubMed

    Shimizu, H; Seki, S; Mizuguchi, A; Tsuchida, H; Watanabe, H; Namiki, A

    1990-04-01

    The cardiac output monitoring by impedance cardiography, NCCOM3, was evaluated in adult patients (n = 12) who were subjected to coronary artery bypass grafting. Values of cardiac output measured by impedance cardiography were compared to those by the thermodilution method. Changes of base impedance level used as an index of thoracic fluid volume were also investigated before and after cardiopulmonary bypass (CPB). Correlation coefficient (r) of the values obtained by thermodilution with impedance cardiography was 0.79 and the mean difference was 1.29 +/- 16.9 (SD)% during induction of anesthesia. During the operation, r was 0.83 and the mean difference was -14.6 +/- 18.7%. The measurement by impedance cardiography could be carried out through the operation except when electro-cautery was used. Base impedance level before CPB was significantly lower as compared with that after CPB. There was a negative correlation between the base impedance level and central venous pressure (CVP). No patients showed any signs suggesting lung edema and all the values of CVP, pulmonary artery pressure and blood gas analysis were within normal ranges. From the result of this study, it was concluded that cardiac output monitoring by impedance cardiography was useful in cardiac surgery, but further detailed examinations will be necessary on the relationship between the numerical values of base impedance and the clinical state of the patients. PMID:2362347

  1. Impedance measurements for detecting pathogens attached to antibodies

    DOEpatents

    Miles, Robin R.; Venkateswaran, Kodumudi S.; Fuller, Christopher K.

    2004-12-28

    The use of impedance measurements to detect the presence of pathogens attached to antibody-coated beads. In a fluidic device antibodies are immobilized on a surface of a patterned interdigitated electrode. Pathogens in a sample fluid streaming past the electrode attach to the immobilized antibodies, which produces a change in impedance between two adjacent electrodes, which impedance change is measured and used to detect the presence of a pathogen. To amplify the signal, beads coated with antibodies are introduced and the beads would stick to the pathogen causing a greater change in impedance between the two adjacent electrodes.

  2. Measured longitudinal beam impedance of a Tevatron separator

    SciTech Connect

    James L Crisp; Brian J Fellenz

    2002-12-09

    Twenty two separators are currently installed in the Tevatron. The longitudinal impedance of one of these devices was recently measured with a stretched wire. The stretched wire technique can only measure impedance below the cutoff frequency (500MHz). The geometry of a separator is similar to an un-terminated stripline beam position detector. The separator plates occupy a 13.5'' ID vacuum tank, are 101'' long, 7.8'' wide, and have a 2'' gap between them. The differential characteristic impedance between the plates is estimated to be 81 {Gamma} and the common mode impedance plate to ground is about 42 {Gamma}.

  3. Multi-gap high impedance plasma opening switch

    DOEpatents

    Mason, Rodney J.

    1996-01-01

    A high impedance plasma opening switch having an anode and a cathode and at least one additional electrode placed between the anode and cathode. The presence of the additional electrodes leads to the creation of additional plasma gaps which are in series, increasing the net impedance of the switch. An equivalent effect can be obtained by using two or more conventional plasma switches with their plasma gaps wired in series. Higher impedance switches can provide high current and voltage to higher impedance loads such as plasma radiation sources.

  4. Multi-gap high impedance plasma opening switch

    DOEpatents

    Mason, R.J.

    1996-10-22

    A high impedance plasma opening switch having an anode and a cathode and at least one additional electrode placed between the anode and cathode is disclosed. The presence of the additional electrodes leads to the creation of additional plasma gaps which are in series, increasing the net impedance of the switch. An equivalent effect can be obtained by using two or more conventional plasma switches with their plasma gaps wired in series. Higher impedance switches can provide high current and voltage to higher impedance loads such as plasma radiation sources. 12 figs.

  5. In vivo impedance spectroscopy of deep brain stimulation electrodes

    NASA Astrophysics Data System (ADS)

    Lempka, Scott F.; Miocinovic, Svjetlana; Johnson, Matthew D.; Vitek, Jerrold L.; McIntyre, Cameron C.

    2009-08-01

    Deep brain stimulation (DBS) represents a powerful clinical technology, but a systematic characterization of the electrical interactions between the electrode and the brain is lacking. The goal of this study was to examine the in vivo changes in the DBS electrode impedance that occur after implantation and during clinically relevant stimulation. Clinical DBS devices typically apply high-frequency voltage-controlled stimulation, and as a result, the injected current is directly regulated by the impedance of the electrode-tissue interface. We monitored the impedance of scaled-down clinical DBS electrodes implanted in the thalamus and subthalamic nucleus of a rhesus macaque using electrode impedance spectroscopy (EIS) measurements ranging from 0.5 Hz to 10 kHz. To further characterize our measurements, equivalent circuit models of the electrode-tissue interface were used to quantify the role of various interface components in producing the observed electrode impedance. Following implantation, the DBS electrode impedance increased and a semicircular arc was observed in the high-frequency range of the EIS measurements, commonly referred to as the tissue component of the impedance. Clinically relevant stimulation produced a rapid decrease in electrode impedance with extensive changes in the tissue component. These post-operative and stimulation-induced changes in impedance could play an important role in the observed functional effects of voltage-controlled DBS and should be considered during clinical stimulation parameter selection and chronic animal research studies.

  6. Comprehensive characterization of thermophysical properties in solids using thermal impedance

    NASA Astrophysics Data System (ADS)

    Martínez-Flores, J. J.; Licea-Jiménez, L.; Pérez García, S. A.; Rodríguez-Viejo, J.; Alvarez-Quintana, J.

    2012-11-01

    Thermal impedance Zth(iω) is a way of defining the thermophysical characteristics and behavior of thermal systems. Existing photoacoustic and photothermal approaches based on thermal impedance formalism merely allows a partial thermal characterization of the materials (generally, either thermal diffusivity or thermal effusivity). In this work, a new approach based on the thermal impedance concept in terms of its characteristic thermal time constant is developed from thermal quadrupoles formalism. The approach outlined in this contribution presents a set of analytical equations in which through a single measurement of thermal impedance is sufficient to obtain a comprehensive characterization of the thermophysical properties of solid materials in a simple way.

  7. Voltage controller/current limiter for ac

    NASA Technical Reports Server (NTRS)

    Wu, T. T.

    1980-01-01

    Circuit protects ac power systems for overload failures, limits power surge and short-circuit currents to 150 percent of steady state level, regulates ac output voltage, and soft starts loads. Limiter generates dc error signal in response to line fluctuations and dumps power when overload is reached. Device is inserted between ac source and load.

  8. Moderately nonlinear diffuse-charge dynamics under an ac voltage.

    PubMed

    Stout, Robert F; Khair, Aditya S

    2015-09-01

    The response of a symmetric binary electrolyte between two parallel, blocking electrodes to a moderate amplitude ac voltage is quantified. The diffuse charge dynamics are modeled via the Poisson-Nernst-Planck equations for a dilute solution of point-like ions. The solution to these equations is expressed as a Fourier series with a voltage perturbation expansion for arbitrary Debye layer thickness and ac frequency. Here, the perturbation expansion in voltage proceeds in powers of V_{o}/(k_{B}T/e), where V_{o} is the amplitude of the driving voltage and k_{B}T/e is the thermal voltage with k_{B} as Boltzmann's constant, T as the temperature, and e as the fundamental charge. We show that the response of the electrolyte remains essentially linear in voltage amplitude at frequencies greater than the RC frequency of Debye layer charging, D/λ_{D}L, where D is the ion diffusivity, λ_{D} is the Debye layer thickness, and L is half the cell width. In contrast, nonlinear response is predicted at frequencies below the RC frequency. We find that the ion densities exhibit symmetric deviations from the (uniform) equilibrium density at even orders of the voltage amplitude. This leads to the voltage dependence of the current in the external circuit arising from the odd orders of voltage. For instance, the first nonlinear contribution to the current is O(V_{o}^{3}) which contains the expected third harmonic but also a component oscillating at the applied frequency. We use this to compute a generalized impedance for moderate voltages, the first nonlinear contribution to which is quadratic in V_{o}. This contribution predicts a decrease in the imaginary part of the impedance at low frequency, which is due to the increase in Debye layer capacitance with increasing V_{o}. In contrast, the real part of the impedance increases at low frequency, due to adsorption of neutral salt from the bulk to the Debye layer. PMID:26465471

  9. Corrosion Study Using Electrochemical Impedance Spectroscopy

    NASA Technical Reports Server (NTRS)

    Farooq, Muhammad Umar

    2003-01-01

    Corrosion is a common phenomenon. It is the destructive result of chemical reaction between a metal or metal alloy and its environment. Stainless steel tubing is used at Kennedy Space Center for various supply lines which service the orbiter. The launch pads are also made of stainless steel. The environment at the launch site has very high chloride content due to the proximity to the Atlantic Ocean. Also, during a launch, the exhaust products in the solid rocket boosters include concentrated hydrogen chloride. The purpose of this project was to study various alloys by Electrochemical Impedance Spectroscopy in corrosive environments similar to the launch sites. This report includes data and analysis of the measurements for 304L, 254SMO and AL-6XN in primarily neutral 3.55% NaCl. One set of data for 304L in neutral 3.55%NaCl + 0.1N HCl is also included.

  10. Wave guide impedance matching method and apparatus

    DOEpatents

    Kronberg, James W.

    1990-01-01

    A technique for modifying the end portion of a wave guide, whether hollow or solid, carrying electromagnetic, acoustic or optical energy, to produce a gradual impedance change over the length of the end portion, comprising the cutting of longitudinal, V-shaped grooves that increase in width and depth from beginning of the end portion of the wave guide to the end of the guide so that, at the end of the guide, no guide material remains and no surfaces of the guide as modified are perpendicular to the direction of energy flow. For hollow guides, the grooves are cut beginning on the interior surface; for solid guides, the grooves are cut beginning on the exterior surface. One or more resistive, partially conductive or nonconductive sleeves can be placed over the exterior of the guide and through which the grooves are cut to smooth the transition to free space.

  11. Esophageal Impedance Monitoring for Gastroesophageal Reflux

    PubMed Central

    Mousa, Hayat M.; Rosen, Rachel; Woodley, Frederick W.; Orsi, Marina; Armas, Daneila; Faure, Christophe; Fortunato, John; O'Connor, Judith; Skaggs, Beth; Nurko, Samuel

    2014-01-01

    Dual pH-multichannel intraluminal impedance (pH-MII) is a sensitive tool for evaluating overall gastroesophageal reflux disease, and particularly for permitting detection of nonacid reflux events. pH-MII technology is especially useful in the postprandial period or at other times when gastric contents are nonacidic. pH-MII was recently recognized by the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition as being superior to pH monitoring alone for evaluation of the temporal relation between symptoms and gastroesophageal reflux. In children, pHMII is useful to correlate symptoms with reflux (particularly nonacid reflux), to quantify reflux during tube feedings and the postprandial period, and to assess efficacy of antireflux therapy. This clinical review is simply an evidence-based overview addressing the indications, limitations, and recommended protocol for the clinical use of pH-MII in children. PMID:21240010

  12. Bioelectrical impedance analysis. What does it measure?

    NASA Technical Reports Server (NTRS)

    Schoeller, D. A.

    2000-01-01

    Bioelectrical impedance analysis (BIA) has been proposed for measuring fat-free mass, total body water, percent fat, body cell mass, intracellular water, and extracellular water: a veritable laboratory in a box. Although it is unlikely that BIA is quite this versatile, correlations have been demonstrated between BIA and all of these body compartments. At the same time, it is known that all of the compartments are correlated among themselves. Because of this, it is difficult to determine whether BIA is specific for any or all of these compartments. To investigate this question, we induced acute changes in total body water and its compartments over a 3-h period. Using this approach, we demonstrated that multifrequency BIA, using the Cole-Cole model to calculate the zero frequency and infinite frequency resistance, measures extracellular and intracellular water.

  13. Quartz tuning fork based microwave impedance microscopy

    NASA Astrophysics Data System (ADS)

    Cui, Yong-Tao; Ma, Eric Yue; Shen, Zhi-Xun

    2016-06-01

    Microwave impedance microscopy (MIM), a near-field microwave scanning probe technique, has become a powerful tool to characterize local electrical responses in solid state samples. We present the design of a new type of MIM sensor based on quartz tuning fork and electrochemically etched thin metal wires. Due to a higher aspect ratio tip and integration with tuning fork, such design achieves comparable MIM performance and enables easy self-sensing topography feedback in situations where the conventional optical feedback mechanism is not available, thus is complementary to microfabricated shielded stripline-type probes. The new design also enables stable differential mode MIM detection and multiple-frequency MIM measurements with a single sensor.

  14. Impedance characteristic of the GEC reference cell

    SciTech Connect

    Verdeyen, J.T.; Miller, P.A.

    1992-12-01

    One can make measurements of the electrical parameters (V, I, P) at the access terminals of a reactor, but it is more desirable to relate those parameters to that at the plasma terminals. Toward that end, the authors have made precision impedance measurements over the range of 1-108 MHz on the GEC RF Reference Cell with the plasma terminals open circuited, short circuited and inductively loaded. This enables them to infer an equivalent circuit which is consistent with the geometry of the cell and which agrees with the input measurements to a high degree of accuracy. Using this circuit, one can relate the plasma quantities to the terminal values with the standard ABCD matrix which is valid at all frequencies. The procedure for inferring this circuit and accounting for the resistive losses will be presented.

  15. Algorithmic Error Correction of Impedance Measuring Sensors

    PubMed Central

    Starostenko, Oleg; Alarcon-Aquino, Vicente; Hernandez, Wilmar; Sergiyenko, Oleg; Tyrsa, Vira

    2009-01-01

    This paper describes novel design concepts and some advanced techniques proposed for increasing the accuracy of low cost impedance measuring devices without reduction of operational speed. The proposed structural method for algorithmic error correction and iterating correction method provide linearization of transfer functions of the measuring sensor and signal conditioning converter, which contribute the principal additive and relative measurement errors. Some measuring systems have been implemented in order to estimate in practice the performance of the proposed methods. Particularly, a measuring system for analysis of C-V, G-V characteristics has been designed and constructed. It has been tested during technological process control of charge-coupled device CCD manufacturing. The obtained results are discussed in order to define a reasonable range of applied methods, their utility, and performance. PMID:22303177

  16. KRAKEN, a numerical model of RHIC impedances

    SciTech Connect

    Peggs, S.; Mane, V.

    1995-05-01

    The simulation code KRAKEN confirms analytical predictions of head-tail stability criteria, in the presence of momentum dependent linear coupling. It also confirms that resistive wall transverse wake fields are not a serious threat to strong head-tail stability in RHIC, at the vulnerable stage of proton injection. Equation 10, derived from the perspective of two macroparticles, potentially offers a very convenient seminumerical evaluation of the effects of arbitrary transverse wake potentials. It remains to be seen how well the two macroparticle results correlate with simulations using, say, 100 macroparticles. KRAKEN is still under rapid development. Future plans are to include resonant wakefields, multiple bunches, space charge wakefields, betatron detuning, and a connection to the detailed RHIC impedance database.

  17. Impedance matched thin metamaterials make metals absorbing.

    PubMed

    Mattiucci, N; Bloemer, M J; Aközbek, N; D'Aguanno, G

    2013-01-01

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others. PMID:24220284

  18. Impedance matched thin metamaterials make metals absorbing

    PubMed Central

    Mattiucci, N.; Bloemer, M. J.; Aközbek, N.; D'Aguanno, G.

    2013-01-01

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others. PMID:24220284

  19. Active acoustical impedance using distributed electrodynamical transducers.

    PubMed

    Collet, M; David, P; Berthillier, M

    2009-02-01

    New miniaturization and integration capabilities available from emerging microelectromechanical system (MEMS) technology will allow silicon-based artificial skins involving thousands of elementary actuators to be developed in the near future. SMART structures combining large arrays of elementary motion pixels coated with macroscopic components are thus being studied so that fundamental properties such as shape, stiffness, and even reflectivity of light and sound could be dynamically adjusted. This paper investigates the acoustic impedance capabilities of a set of distributed transducers connected with a suitable controlling strategy. Research in this domain aims at designing integrated active interfaces with a desired acoustical impedance for reaching an appropriate global acoustical behavior. This generic problem is intrinsically connected with the control of multiphysical systems based on partial differential equations (PDEs) and with the notion of multiscaled physics when a dense array of electromechanical systems (or MEMS) is considered. By using specific techniques based on PDE control theory, a simple boundary control equation capable of annihilating the wave reflections has been built. The obtained strategy is also discretized as a low order time-space operator for experimental implementation by using a dense network of interlaced microphones and loudspeakers. The resulting quasicollocated architecture guarantees robustness and stability margins. This paper aims at showing how a well controlled semidistributed active skin can substantially modify the sound transmissibility or reflectivity of the corresponding homogeneous passive interface. In Sec. IV, numerical and experimental results demonstrate the capabilities of such a method for controlling sound propagation in ducts. Finally, in Sec. V, an energy-based comparison with a classical open-loop strategy underlines the system's efficiency. PMID:19206865

  20. VizieR Online Data Catalog: Hubble Legacy Archive ACS grism data (Kuemmel+, 2011)

    NASA Astrophysics Data System (ADS)

    Kuemmel, M.; Rosati, P.; Fosbury, R.; Haase, J.; Hook, R. N.; Kuntschner, H.; Lombardi, M.; Micol, A.; Nilsson, K. K.; Stoehr, F.; Walsh, J. R.

    2011-09-01

    A public release of slitless spectra, obtained with ACS/WFC and the G800L grism, is presented. Spectra were automatically extracted in a uniform way from 153 archival fields (or "associations") distributed across the two Galactic caps, covering all observations to 2008. The ACS G800L grism provides a wavelength range of 0.55-1.00um, with a dispersion of 40Å/pixel and a resolution of ~80Å for point-like sources. The ACS G800L images and matched direct images were reduced with an automatic pipeline that handles all steps from archive retrieval, alignment and astrometric calibration, direct image combination, catalogue generation, spectral extraction and collection of metadata. The large number of extracted spectra (73,581) demanded automatic methods for quality control and an automated classification algorithm was trained on the visual inspection of several thousand spectra. The final sample of quality controlled spectra includes 47919 datasets (65% of the total number of extracted spectra) for 32149 unique objects, with a median iAB-band magnitude of 23.7, reaching 26.5 AB for the faintest objects. Each released dataset contains science-ready 1D and 2D spectra, as well as multi-band image cutouts of corresponding sources and a useful preview page summarising the direct and slitless data, astrometric and photometric parameters. This release is part of the continuing effort to enhance the content of the Hubble Legacy Archive (HLA) with highly processed data products which significantly facilitate the scientific exploitation of the Hubble data. In order to characterize the slitless spectra, emission-line flux and equivalent width sensitivity of the ACS data were compared with public ground-based spectra in the GOODS-South field. An example list of emission line galaxies with two or more identified lines is also included, covering the redshift range 0.2-4.6. Almost all redshift determinations outside of the GOODS fields are new. The scope of science projects possible

  1. Decomposition method of an electrical bio-impedance signal into cardiac and respiratory components.

    PubMed

    Krivoshei, A; Kukk, V; Min, M

    2008-06-01

    The paper presents a method for adaptive decomposition of an electrical bio-impedance (BI) signal into two components: cardiac and respiratory. The decomposition of a BI signal is not a trivial process because of the non-stationarity of the signal components and overlapping of their harmonic spectra. An application specific orthonormal basis (ASOB) was designed to solve the decomposition task using the Jacobi weighting function in the standard Gram-Schmidt process. The key element of the bio-impedance signal decomposer (BISD) is a model of the cardiac BI signal, which is constructed from the components of the ASOB and is intended for use in the BISD for on-line tracking of the cardiac BI signal. It makes it possible to separate the cardiac and respiratory components of the total BI signal in non-stationary conditions. In combination with the signal-shape locked loop (SSLL), the BISD allows us to decompose the BI signals with partially overlapping spectra. The proposed BISD based method is accomplished as a PC software digital system, but it is oriented towards applications in portable and stationary cardiac devices and in clinical settings. PMID:18544800

  2. Hydrogen-terminated detonation nanodiamond: Impedance spectroscopy and thermal stability studies

    NASA Astrophysics Data System (ADS)

    Su, Shi; Li, Jiangling; Kundrát, Vojtěch; Abbot, Andrew M.; Ye, Haitao

    2013-01-01

    In this paper, we investigated the effect of hydrogen termination on the electrical properties and impedance spectra of detonation nanodiamond. The impedance spectra revealed that the hydrogen-termination process increases the electrical conductivity by four orders of magnitude at room temperature. An equivalent circuit has been proposed to correlate with the conduction mechanism. Arrhenius plot showed that there were two different activation energy levels located at 0.089 eV and 0.63 eV between 50 °C and 400 °C. The possible physical mechanism corresponding to these activation energy levels has been discussed. Hydrogen-terminated detonation nanodiamond has been further annealed at different temperatures prior to FTIR and XPS measurements in order to understand their thermal stability. The results demonstrated that the surface oxidization occurred between 100 °C and 150 °C. However, the C-H bonds could partially survive when the temperature reaches 400 °C in air.

  3. Spectral properties of plasmon resonances in a random impedance network model of binary nanocomposites

    NASA Astrophysics Data System (ADS)

    Olekhno, N. A.; Beltukov, Y. M.; Parshin, D. A.

    2016-05-01

    One of the methods for the description of plasmon resonances in disordered metal-dielectric nanocomposites represents an initial composite as an electric network in the form of a lattice whose bonds are randomly arranged complex impedances. In this work, a general method is used to describe resonances in binary networks consisting of two types of impedances, which are arbitrary functions of the frequency [Th. Jonckheere and J.M. Luck, J. Phys. A 31, 3687 (1998)]. The generalization of the low-frequency L- C model where metal and dielectric regions in the lattice are replaced by inductive bonds L and capacitive bonds C d, respectively, has been considered. To analyze the spectrum of resonances in the entire optical region, a more accurate model involves the replacement of the metal regions by bonds in the form of parallel LC circuits with the resonant frequency equal to the plasma frequency of the metal ωp. The spectral properties of this model, as well as the model of a nanocomposite consisting of two metals with different plasma frequencies, have been considered. Analytical relations between the spectra of all such systems and the spectra of the initial L- C model have been established in the matrix representation. General expressions describing the dependence of the resonance spectrum of composites with arbitrary geometry on the permittivity of the matrix have been obtained.

  4. Low Field Electronic Behavior and Contact Impedance of Organic Single Crystal Transistors

    NASA Astrophysics Data System (ADS)

    Bittle, Emily; Basham, James; Jackson, Thomas; Jurchescu, Oana; Gundlach, David

    2015-03-01

    Organic electronic devices are attractive for a range of existing and emerging electronic applications. Most technological demonstrations of organic transistors rely on their large signal response for pixel control or logic. However, considerable application space requires analog circuits, e.g. distributed signal conditioning in sensor arrays. Charge transport and trapping mechanisms differ significantly in organic as compared to inorganic transistors, and as a result commonly used analogies to inorganic band transport theory can break down in response to small signal stimulus and at high frequencies required in some analog circuit applications. Therefore, a detailed investigation of organic transistor behavior at small signals is needed and is critical to developing design models for analog circuit applications. In this study, we look at the small signal AC impedance of small molecule, single crystal transistors to investigate ``ideal'' low field, high frequency electronic behavior. Using a transmission line model to fit the transistor channel coupled with a parallel resistor-capacitor model of the contact impedance, we are able to observe the behavior of the transistor channel and contacts separately at low field and high frequency. We determine the low field mobility of the device independent of contact resistance and show that rapidly changing contact resistance dominates the current flow at low gate voltage in DC current-voltage measurements.

  5. Combined impedance and dielectrophoresis portable device for point-of-care analysis

    NASA Astrophysics Data System (ADS)

    del Moral Zamora, B.; Colomer-Farrarons, J.; Mir-Llorente, M.; Homs-Corbera, A.; Miribel-Català, P.; Samitier-Martí, J.

    2011-05-01

    In the 90s, efforts arise in the scientific world to automate and integrate one or several laboratory applications in tinny devices by using microfluidic principles and fabrication technologies used mainly in the microelectronics field. It showed to be a valid method to obtain better reactions efficiency, shorter analysis times, and lower reagents consumption over existing analytical techniques. Traditionally, these fluidic microsystems able to realize laboratory essays are known as Lab-On-a-Chip (LOC) devices. The capability to transport cells, bacteria or biomolecules in an aqueous medium has significant potential for these microdevices, also known as micro-Total-Analysis Systems (uTAS) when their application is of analytical nature. In particular, the technique of dielectrophoresis (DEP) opened the possibility to manipulate, actuate or transport such biological particles being of great potential in medical diagnostics, environmental control or food processing. This technique consists on applying amplitude and frequency controlled AC signal to a given microsystem in order to manipulate or sort cells. Furthermore, the combination of this technique with electrical impedance measurements, at a single or multiple frequencies, is of great importance to achieve novel reliable diagnostic devices. This is because the sorting and manipulating mechanism can be easily combined with a fully characterizing method able to discriminate cells. The paper is focused in the electronics design of the quadrature DEP generator and the four-electrode impedance measurement modules. These together with the lab-on-a-chip device define a full conception of an envisaged Point-of-Care (POC) device.

  6. Measurement of Electrical Activation Energy in Black CVD Diamond Using Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ye, Haitao; Williams, Oliver A.; Jackman, Richard B.

    Dc current-voltage (I-V) measurement, Hall measurement, Deep-level transient-spectroscopy (DLTS), and flatband capacitance measurement have been used to investigate electrical activation energies in diamond. However, the deviations still exist in the published activation energies obtained by these methods. In this paper, we report the first measurement of impedance on free-standing diamond films from 0.1Hz to 10MHz up to 300°C. A wide range of CVD materials have been investigated, but here we concentrate on `black' diamond grown by MWPECVD. The Cole-Cole (Z' via Z'') plots are well fitted to a RC parallel circuit model and the equivalent Resistance and Capacitance for the diamond films have been estimated using the Zview curve fitting. The results show only one single semicircle response at each temperature measured. It was found that the resistance decreases from 62 MΩ at room temperature to 4 KΩ at 300°C, with an activation energy around 0.15eV. The equivalent capacitance is maintained at the level of 102 pF up to 300°C suggesting that the diamond grain boundaries are dominating the conduction. At 400°C, the impedance at low frequencies shows a linear tail, which can be explained that the AC polarization of diamond/Au interface occurs.

  7. Characterization of Molybdate Conversion Coatings for Aluminum Alloys by Electrochemical Impedance Spectroscopy

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina

    2000-01-01

    Electrochemical impedance spectroscopy (EIS) was used to investigate the corrosion inhibiting properties of newly developed proprietary molybdate conversion coatings on aluminum alloy 2024-T3 under immersion in aerated 5% (w/w) NaCl. Corrosion potential and EIS measurements were gathered for six formulations of the coating at several immersion times for two weeks. Nyquist as well as Bode plots of the data were obtained. The conversion-coated alloy panels showed an increase in the corrosion potential during the first 24 hours of immersion that later subsided and approached a steady value. Corrosion potential measurements indicated that formulations A, D, and F exhibit a protective effect on aluminum 2024-T3. The EIS spectra of the conversion-coated alloy were characterized by an impedance that is higher than the impedance of the bare alloy at all the immersion times. The low frequency impedance, Z(sub lf) (determined from the value at 0.05 Hz) for the conversion-coated alloy was higher at all the immersion times than that of the bare panel. This indicates improvement of corrosion resistance with addition of the molybdate conversion coating. Scanning electron microscopy (SEM) revealed the presence of cracks in the coating and the presence of cubic crystals believed to be calcium carbonate. Energy dispersive spectroscopy (EDS) of the test panels revealed the presence of high levels of aluminum, oxygen, and calcium but did not detect the presence of molybdenum on the test panels. X-ray photoelectron spectroscopy (XPS) indicated the presence of less than 0.01 atomic percent molybdenum on the surface of the coating.

  8. Simultaneous distribution of AC and DC power

    DOEpatents

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  9. Revealing membrane potential by advanced impedance spectroscopy: theoretical and experimental aspects

    NASA Astrophysics Data System (ADS)

    Gheorghiu, M.; Bratu, D.; Olaru, A.; Polonschii, C.; Gheorghiu, E.

    2013-04-01

    In spite of recent advancement of novel optical and electrical techniques, availability of non-invasive, label-free methods to assess membrane potential of living cells is still an open issue. The theory linking membrane potential to the low frequency α dispersion exhibited by suspensions of spherical shelled particles (presenting a net charge distribution on the inner side of the shell) has been pioneered in our previous studies with emphasis on the permittivity spectra. We now report on both theoretical and experimental aspects showing that whereas α dispersion is related to a rather large variation exhibited by the permittivity spectrum the decrement presented by impedance magnitude spectrum is either extremely small, or occurs (for large cells) at very low frequencies (~mHz) explaining the lack of experimental bioimpedance data on the matter. Based on the microscopic model we indicate that an appropriate design of the experiment may enable access to membrane potential as well as to other relevant parameters when investigating living cells and charged lipid vesicles. We discuss the effect on the low frequency of permittivity and impedance spectra of: I. Parameters pertaining to cell membrane i.e. (i) membrane potential, (ii) size of the cells/vesicles, (iii) conductivity; II. Conductivity of the outer medium. A novel measuring set-up has recently been developed within the International Centre of Biodynamics allowing for sensitive low frequency (~10mHz) four point (bio)impedance assays. Its capability to test theoretical predictions is reported as well. The far reaching implications of this study applicability for life sciences (noninvasive access to the dynamics of relevant cell parameters) as well as for biosensing applications, e.g. assess the cytotoxicity of a wide range of stimuli, will be outlined.

  10. ac-resistance-measuring instrument

    SciTech Connect

    Hof, P.J.

    1981-04-22

    An auto-ranging ac resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an ac excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance.

  11. Transient absorption spectra of the laser-dressed hydrogen atom

    NASA Astrophysics Data System (ADS)

    Murakami, Mitsuko; Chu, Shih-I.

    2013-10-01

    We present a theoretical study of transient absorption spectra of laser-dressed hydrogen atoms, based on numerical solutions of the time-dependent Schrödinger equation. The timing of absorption is controlled by the delay between an extreme ultra violet (XUV) pulse and an infrared (IR) laser field. The XUV pulse is isolated and several hundred attoseconds in duration, which acts as a pump to drive the ground-state electron to excited p states. The subsequent interaction with the IR field produces dressed states, which manifest as sidebands between the 1s-np absorption spectra separated by one IR-photon energy. We demonstrate that the population of dressed states is maximized when the timing of the XUV pulse coincides with the zero crossing of the IR field, and that their energies can be manipulated in a subcycle time scale by adding a chirp to the IR field. An alternative perspective to the problem is to think of the XUV pulse as a probe to detect the dynamical ac Stark shifts. Our results indicate that the accidental degeneracy of the hydrogen excited states is removed while they are dressed by the IR field, leading to large ac Stark shifts. Furthermore, we observe the Autler-Townes doublets for the n=2 and 3 levels using the 656 nm dressing field, but their separation does not agree with the prediction by the conventional three-level model that neglects the dynamical ac Stark shifts.

  12. Equivalent circuits of a self-assembled monolayer-based tunnel junction determined by impedance spectroscopy.

    PubMed

    Sangeeth, C S Suchand; Wan, Albert; Nijhuis, Christian A

    2014-08-01

    The electrical characteristics of molecular tunnel junctions are normally determined by DC methods. Using these methods it is difficult to discriminate the contribution of each component of the junctions, e.g., the molecule-electrode contacts, protective layer (if present), or the SAM, to the electrical characteristics of the junctions. Here we show that frequency-dependent AC measurements, impedance spectroscopy, make it possible to separate the contribution of each component from each other. We studied junctions that consist of self-assembled monolayers (SAMs) of n-alkanethiolates (S(CH2)(n-1)CH3 ≡ SC(n) with n = 8, 10, 12, or 14) of the form Ag(TS)-SC(n)//GaO(x)/EGaIn (a protective thin (~0.7 nm) layer of GaO(x) forms spontaneously on the surface of EGaIn). The impedance data were fitted to an equivalent circuit consisting of a series resistor (R(S), which includes the SAM-electrode contact resistance), the capacitance of the SAM (C(SAM)), and the resistance of the SAM (R(SAM)). A plot of R(SAM) vs n(C) yielded a tunneling decay constant β of 1.03 ± 0.04 n(C)(-1), which is similar to values determined by DC methods. The value of C(SAM) is similar to previously reported values, and R(S) (2.9-3.6 × 10(-2) Ω·cm(2)) is dominated by the SAM-top contact resistance (and not by the conductive layer of GaO(x)) and independent of n(C). Using the values of R(SAM), we estimated the resistance per molecule r as a function of n(C), which are similar to values obtained by single molecule experiments. Thus, impedance measurements give detailed information regarding the electrical characteristics of the individual components of SAM-based junctions. PMID:25036915

  13. Einstein spectra of quasars

    NASA Technical Reports Server (NTRS)

    Wilkes, Belinda J.

    1988-01-01

    The results of the initial stage of the CfA survey of quasar energy distributions are reviewed. Einstein imaging proportional counter spectra of 33 quasars have been studied by fitting a single power law slope and absorption by an equivalent column density of neutral hydrogen. Comparison with the higher energy HEAO-A2 data leads to a two-component model for the X-ray spectrum. The X-ray column density is systematically lower than the 21-cm measured Galactic column density along the same line of sight.

  14. Preliminary Results on Different Impedance Contrast Agents for Pulmonary Perfusion Imaging with Electrical Impedance Tomography

    NASA Astrophysics Data System (ADS)

    Nguyen, D. T.; Kosobrodov, R.; Barry, M. A.; Chik, W.; Pouliopoulos, J.; Oh, T. I.; Thiagalingam, A.; McEwan, A.

    2013-04-01

    Recent studies in animal models suggest that the use of small volume boluses of NaCl as an impedance contrast agent can significantly improve pulmonary perfusion imaging by Electrical Impedance Tomography (EIT). However, these studies used highly concentrated NaCl solution (20%) which may have adverse effects on the patients. In a pilot experiment, we address this problem by comparing a number of different Impedance Contrast Boluses (ICBs). Conductivity changes in the lungs of a sheep after the injection of four different ICBs were compared, including three NaCl-based ICBs and one glucose-based ICB. The following procedure was followed for each ICB. Firstly, ventilation was turned off to provide an apneic window of approximately 40s to image the conductivity changes due to the ICB. Each ICB was then injected through a pig-tail catheter directly into the right atrium. EIT images were acquired throughout the apnea to capture the conductivity change. For each ICB, the experiment was repeated three times. The three NaCl-based ICB exhibited similar behaviour in which following the injection of each of these ICBs, the conductivity of each lung predictably increased. The effect of the ICB of 5% glucose solution was inconclusive. A small decrease in conductivity in the left lung was observed in two out of three cases and none was discernible in the right lung.

  15. The Impedance Response of Semiconductors: An Electrochemical Engineering Perspective.

    ERIC Educational Resources Information Center

    Orazem, Mark E.

    1990-01-01

    Shows that the principles learned in the study of mass transport, thermodynamics, and kinetics associated with electrochemical systems can be applied to the transport and reaction processes taking place within a semiconductor. Describes impedance techniques and provides several graphs illustrating impedance data for diverse circuit systems. (YP)

  16. Impedance Matching of Tapered Slot Antenna using a Dielectric Transformer

    NASA Technical Reports Server (NTRS)

    Simons, R. N.; Lee, R. Q.

    1998-01-01

    A new impedance matching technique for tapered slot antennas using a dielectric transformer is presented. The technique is demonstrated by measuring the input impedance, Voltage Standing Wave Ratio (VSWR) and the gain of a Vivaldi antenna (VA). Measured results at Ka-Band frequencies are presented and discussed.

  17. An Inexpensive, Very High Impedance Digital Voltmeter for Selective Electrodes.

    ERIC Educational Resources Information Center

    Caceci, Marco S.

    1984-01-01

    Describes a compact, digital voltmeter which exceeds, both in accuracy and input impedance, most commercial pH meters and potentiometers. The instrument consists of two parts: a very high impedance hybrid operational amplifier used as a voltage follower (ICH8500/A, Intersil) and a four and one-half digits LED display panel meter (RP-4500,…

  18. Flip-Chip Carrier Would Match Microwave FET Impedances

    NASA Technical Reports Server (NTRS)

    Huang, H. C.

    1982-01-01

    Proposed field-effect transistor consists of three cells which make up one complete FET pellet. Pellet is flip-chip mounted on carrier with source grounded gate and drain posts connected directly to impedance-matching transmission-line segments. Impedance transformers are part of mounting and contact strips.

  19. Geometric beam coupling impedance of LHC secondary collimators

    NASA Astrophysics Data System (ADS)

    Frasciello, Oscar; Tomassini, Sandro; Zobov, Mikhail; Salvant, Benoit; Grudiev, Alexej; Mounet, Nicolas

    2016-02-01

    The High Luminosity LHC project is aimed at increasing the LHC luminosity by an order of magnitude. One of the key ingredients to achieve the luminosity goal is the beam intensity increase. In order to keep beam instabilities under control and to avoid excessive power losses a careful design of new vacuum chamber components and an improvement of the present LHC impedance model are required. Collimators are among the major impedance contributors. Measurements with beam have revealed that the betatron coherent tune shifts were higher by about a factor of 2 with respect to the theoretical predictions based on the LHC impedance model up to 2012. In that model the resistive wall impedance has been considered as the dominating impedance contribution for collimators. By carefully simulating also their geometric impedance we have contributed to the update of the LHC impedance model, reaching also a better agreement between the measured and simulated betatron tune shifts. During the just ended LHC Long Shutdown I (LSI), TCS/TCT collimators were replaced by new devices embedding BPMs and TT2-111R ferrite blocks. We present here preliminary estimations of their broad-band impedance, showing that an increase of about 20% is expected in the kick factors with respect to previous collimators without BPMs.

  20. Electrochemical impedance measurement of a carbon nanotube probe electrode.

    PubMed

    Inaba, Akira; Takei, Yusuke; Kan, Tetsuo; Matsumoto, Kiyoshi; Shimoyama, Isao

    2012-12-01

    We measured and analyzed the electrochemical impedance of carbon nanotube (CNT) probe electrodes fabricated through the physical separation of insulated CNT bridges. The fabricated CNT electrodes were free-standing CNTs that were completely covered with an insulator, except for their tips. Typical dimensions of the nanoelectrodes were 1-10 nm in CNT diameter, 80-300 nm in insulator diameter, 0.5-4 μm in exposed CNT length and 1-10 μm in probe length. The electrochemical impedance at frequencies ranging from 40 Hz to 1 MHz was measured in physiological saline. The measured impedance of the CNT electrode was constant at 32 MΩ at frequencies below 1 kHz and was inversely proportional to frequency at frequencies above 10 kHz. By means of comparison with the parasitic capacitive impedance of the insulator membrane, we confirmed that the electrode was sufficiently insulated such that the measured constant impedance was given by the exposed CNT tip. Consequently, we can use the CNT electrode for highly localized electrochemical impedance measurements below 1 kHz. Considering an equivalent circuit and the nanoscopic dimensions of the CNT electrode, we demonstrated that the constant impedance was governed by diffusion impedance, whereas the solution resistance, charge-transfer resistance and double-layer capacitance were negligible. PMID:23124171