Science.gov

Sample records for ac impedance technique

  1. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  2. Study of metal corrosion using ac impedance techniques in the STS launch environment

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.

    1989-01-01

    AC impedance measurements were performed to investigate the corrosion resistance of 19 alloys under conditions similar to the STS launch environment. The alloys were: Zirconium 702, Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, Inconel 600, 7Mo + N, Ferralium 255, Inco Alloy G-3, 20Cb-3, SS 904L, Inconel 825, SS 304LN, SS 316L, SS 317L, ES 2205, SS 304L, Hastelloy B-2, and Monel 400. AC impedance data were gathered for each alloy after one hour immersion time in each of the following three electrolyte solutions: 3.55 percent NaCl, 3.55 percent NaCl-0.1N HCl, and 3.55 percent NaCl-1.0N HCl. The data were analyzed qualitatively using the Nyquist plot and quantitatively using the Bode plot. Polarization resistance, Rp, values were obtained using the Bode plot. Zirconium 702 was the most corrosion resistant alloy in the three electrolytes. The ordering of the other alloys according the their resistance to corrosion varied as the concentration of hydrochloric acid in the electrolyte increased. The corrosion resistance of Zirconium 702 and Ferralium 255 increased as the concentration of hydrochloric acid in the electrolyte increased. The corrosion resistance of the other 17 alloys decreased as the concentration of the hyrdochloric acid in the electrolyte increased.

  3. Determination of the Si-conducting polymer interfacial properties using A-C impedance techniques

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, G.; Di Stefano, Salvador; Moacanin, Jovan

    1985-01-01

    A study was made of the interfacial properties of poly(pyrrole) (PP) deposited electrochemically onto single crystal p-Si surfaces. The interfacial properties are dependent upon the counterions. The formation of 'quasi-ohmic' and 'nonohmic' contacts, respectively, of PP(ClO4) and PP films doped with other counterions (BF4 and para-toluene sulfonate) with p-Si, are explained in terms of the conductivity of these films and the flat band potential, V(fb), of PP relative to that of p-Si. The PP film seems to passivate or block intrinsic surface states present on the p-Si surface. The differences in the impedance behavior of para-toluene sulfonate doped and ClO4 doped PP are compared.

  4. AC impedance analysis of polypyrrole thin films

    NASA Technical Reports Server (NTRS)

    Penner, Reginald M.; Martin, Charles R.

    1987-01-01

    The AC impedance spectra of thin polypyrrole films were obtained at open circuit potentials from -0.4 to 0.4 V vs SCE. Two limiting cases are discussed for which simplified equivalent circuits are applicable. At very positive potentials, the predominantly nonfaradaic AC impedance of polypyrrole is very similar to that observed previously for finite porous metallic films. Modeling of the data with the appropriate equivalent circuit permits effective pore diameter and pore number densities of the oxidized film to be estimated. At potentials from -0.4 to -0.3 V, the polypyrrole film is essentially nonelectronically conductive and diffusion of polymer oxidized sites with their associated counterions can be assumed to be linear from the film/substrate electrode interface. The equivalent circuit for the polypyrrole film at these potentials is that previously described for metal oxide, lithium intercalation thin films. Using this model, counterion diffusion coefficients are determined for both semi-infinite and finite diffusion domains. In addition, the limiting low frequency resistance and capacitance of the polypyrrole thin fims was determined and compared to that obtained previously for thicker films of the polymer. The origin of the observed potential dependence of these low frequency circuit components is discussed.

  5. Characterization of flow-through electrode processes by AC impedance

    SciTech Connect

    Yuh, C.Y. ); Selman, J.R. )

    1993-04-01

    Flow-through porous electrodes, such as packed-bed and fluidized-bed electrodes, are attractive for electrowinning, electro-organic synthesis and flow-battery applications. The extensive surface area of the porous electrodes makes high volumetric reaction rate more possible than in a cell with smooth electrodes. Forced convection also enhances mass-transfer rate and hence reduces concentration polarization. AC-impedance method has been used successfully in characterizing a packed-bed flow-through electrode system. A macrohomogeneous model was developed to simulate the effect of structural, physical and flow parameters. The relative importance of kinetics and mass transfer can be inferred from the AC-impedance analysis. Kinetic information about copper deposition in supported cupric sulfate solution has been obtained successfully using this technique.

  6. Equivalent circuit models for ac impedance data analysis

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1990-01-01

    A least-squares fitting routine has been developed for the analysis of ac impedance data. It has been determined that the checking of the derived equations for a particular circuit with a commercially available electronics circuit program is essential. As a result of the investigation described, three equivalent circuit models were selected for use in the analysis of ac impedance data.

  7. Impedance, AC conductivity and dielectric behavior Adeninium Trichloromercurate (II)

    NASA Astrophysics Data System (ADS)

    Fersi, M. Amine; Chaabane, I.; Gargouri, M.

    2016-09-01

    In this work, we report the measurements impedance spectroscopy technique for the organic-inorganic hybrid compound (C5H6N5) HgCl3, 11/2H2O measured in the 209 Hz-5 MHz frequency range from 378 to 428 K. Besides, the Cole-Cole (Z″ versus Z‧) plots were well fitted to an equivalent circuit built up by a parallel combination of resistance (R), fractal capacitance (CPE) and capacitance (C). Furthermore, the AC conductivity was investigated as a function of temperature and frequency in the same range. The experiment results indicated that AC conductivity (σac) was proportional to σdc + A ωS . The obtained results are discussed in terms of the correlated barrier hopping (CBH) model. An agreement between the experimental and theoretical results suggests that the AC conductivity behavior of Adeninium Trichloromercurate (II) can be successfully explained by CBH model. The contribution of single polaron hopping to AC conductivity in a present alloy was also studied.

  8. Equivalent Circuits For AC-Impedance Analysis Of Corrosion

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1992-01-01

    Report presents investigation of equivalent circuits for ac-impedance analysis of corrosion. Impedance between specimen and electrolyte measured as function of frequency. Data used to characterize corrosion electrochemical system in terms of equivalent circuit. Eleven resistor/capacitor equivalent-circuit models were analyzed.

  9. New impedance and electrochemical image techniques for biological applications

    NASA Astrophysics Data System (ADS)

    Tao, N. J.

    2010-03-01

    A method to image local surface impedance and electrochemical current optically is developed for biological applications. The principle of the impedance imaging is based on sensitive dependence of surface plasmon resonance (SPR) on local surface charge density. The technique can image local surface impedance and charge while providing simultaneously a conventional surface plasmon resonance (SPR) image. By applying a potential modulation to a sensor surface, it is possible to obtain an image of the DC component, and the amplitude and phase images of the AC component. The DC image provides local molecular binding, as found in the conventional SPR imaging technique. The AC images are directly related to the local impedance of the surface. This imaging capability may be used as a new detection platform for DNA and protein microarrays, a new method for analyzing local molecular binding and interfacial processes and a new tool for imaging cells and tissues.

  10. AC impedance study of degradation of porous nickel battery electrodes

    NASA Technical Reports Server (NTRS)

    Lenhart, Stephen J.; Macdonald, D. D.; Pound, B. G.

    1987-01-01

    AC impedance spectra of porous nickel battery electrodes were recorded periodically during charge/discharge cycling in concentrated KOH solution at various temperatures. A transmission line model (TLM) was adopted to represent the impedance of the porous electrodes, and various model parameters were adjusted in a curve fitting routine to reproduce the experimental impedances. Degradation processes were deduced from changes in model parameters with electrode cycling time. In developing the TLM, impedance spectra of planar (nonporous) electrodes were used to represent the pore wall and backing plate interfacial impedances. These data were measured over a range of potentials and temperatures, and an equivalent circuit model was adopted to represent the planar electrode data. Cyclic voltammetry was used to study the characteristics of the oxygen evolution reaction on planar nickel electrodes during charging, since oxygen evolution can affect battery electrode charging efficiency and ultimately electrode cycle life if the overpotential for oxygen evolution is sufficiently low.

  11. Age-related changes in ac-impedance spectroscopy studies of normal human dentine: further investigations.

    PubMed

    Eldarrat, A H; High, A S; Kale, G M

    2010-01-01

    One of the age-related changes occurring in dentine structure is the formation of peritubular dentine on the inner walls of dentinal tubules leading to complete closure of tubules. Ac-impedance is safe, fast and non-invasive technique. In the last decade, the popularity of the technique has increased in dental research. Several investigators have used the technique to detect tooth cracks and caries. The results of in vitro studies showed that ac-impedance technique was more advanced for caries detection than visual and radiographic methods. However, other studies demonstrated that the accuracy of impedance measurements can be affected by many factors such as remineralization after tooth eruption. A study has been published on effect of age on impedance measurements by the authors for two age groups by employing ac-impedance spectroscopy. Therefore, the aim of this study was to demonstrate the importance of this technique by conducting further investigations on dentine samples of wider age groups. Dentine samples were prepared from extracted sound third molars of known patient age. The ac-impedance measurements were carried out over a wide range of frequency. After performing all electrical measurements, dentine samples were examined under SEM to correlate the electrical measurements with their structure. Impedance measurements showed that there were differences in impedance between young and old dentine. One-way ANOVA of the means of resistance and capacitance for all age groups (20, 25, 30, 40 and 50 years old dentine) revealed a significant difference (ANOVA, P < 0.0001) as a function of age. Applying Tukey's post hoc test, to the same data showed that this difference was due to the 50 years old dentine for resistance and was due to the 40 and 50 years old dentine for capacitance which were statistically different to all other groups. SEM investigation of dentine samples showed that young dentine is characterized by open dentinal tubules distributed all over the

  12. ac impedance measurements of molten salt thermal batteries

    NASA Astrophysics Data System (ADS)

    Singh, Pritpal; Guidotti, Ronald A.; Reisner c, David

    Non-destructive testing of thermal batteries without activating them is a challenging proposition. Molten salt thermal batteries are activated by raising their temperature to above the melting point of the salt constituting the electrolyte. One approach that we have considered is to raise the temperature of the molten salt electrolyte to a temperature below the melting point so that the battery does not get activated yet may provide sufficient mobility of the ionic species to be able to obtain some useful ac impedance measurements. This hypothesis was put to the test for two Li(Si)/FeS 2 molten salt batteries with two electrolytes of different melting points—a standard LiCl-KCl eutectic that melts at 352 °C and a LiBr-KBr-LiCl eutectic with a melting point of 319 °C. ac impedance measurements as a function of frequency and temperature below the melting point are presented for single cells and batteries.

  13. HVDC-AC system interaction from AC harmonics. Volume 1. Harmonic impedance calculations. Final report

    SciTech Connect

    Breuer, G D; Chow, J H; Lindh, C B; Miller, N W; Numrich, F H; Price, W W; Turner, A E; Whitney, R R

    1982-09-01

    Improved methods are needed to characterize ac system harmonic behavior for ac filter design for HVDC systems. The purpose of this General Electric Company RP1138 research is to evaluate the present filter design practice and to investigate methods for calculating system harmonic impedances. An overview of ac filter design for HVDC systems and a survey of literature related to filter design have been performed. Two methods for calculating system harmonic impedances have been investigated. In the measurement method, an instrumentation system for measuring system voltage and current has been assembled. Different schemes of using the measurements to calculate system harmonic impedances have been studied. In the analytical method, a procedure to include various operating conditions has been proposed. Computer programs for both methods have been prepared, and the results of the measurement and analytical methods analyzed. A conclusion of the project is that the measurement and analytical methods both provided reasonable results. There are correlations between the measured and analytical results for most harmonics, although there are discrepancies between the assumptions used in the two methods. A sensitivity approach has been proposed to further correlate the results. From the results of the analysis, it is recommended that both methods should be tested further. For the measurement method, more testing should be done to cover different system operating conditions. In the analytical method, more detailed models for representing system components should be studied. In addition, alternative statistical and sensitivity approaches should be attempted.

  14. AC impedance electrochemical modeling of lithium-ion positive electrodes.

    SciTech Connect

    Dees, D.; Gunen, E.; Abraham, D.; Jansen, A.; Prakash, J.; Chemical Engineering; IIT

    2004-01-01

    Under Department of Energy's Advanced Technology Development Program,various analytical diagnostic studies are being carried out to examine the lithium-ion battery technology for hybrid electric vehicle applications, and a series of electrochemical studies are being conducted to examine the performance of these batteries. An electrochemical model was developed to associate changes that were observed in the post-test analytical diagnostic studies with the electrochemical performance loss during testing of lithium ion batteries. While both electrodes in the lithium-ion cell have been studied using a similar electrochemical model, the discussion here is limited to modeling of the positive electrode. The positive electrode under study has a composite structure made of a layered nickel oxide (LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}) active material, a carbon black and graphite additive for distributing current, and a PVDF binder all on an aluminum current collector. The electrolyte is 1.2M LiPF{sub 6} dissolved in a mixture of EC and EMC and a Celgard micro-porous membrane is used as the separator. Planar test cells (positive/separator/negative) were constructed with a special fixture and two separator membranes that allowed the placement of a micro-reference electrode between the separator membranes [1]. Electrochemical studies including AC impedance spectroscopy were then conducted on the individual electrodes to examine the performance and ageing effects in the cell. The model was developed by following the work of Professor Newman at Berkeley [2]. The solid electrolyte interface (SEI) region, based on post-test analytical results, was assumed to be a film on the oxide and an oxide layer at the surface of the oxide. A double layer capacity was added in parallel with the Butler-Volmer kinetic expression. The pertinent reaction, thermodynamic, and transport equations were linearized for a small sinusoidal perturbation [3]. The resulting system of differential

  15. Potentiostatic and ac impedance studies of the hydrogen electrodes used in Ni/H2 batteries

    NASA Technical Reports Server (NTRS)

    Le Helloco, Jean-Guy; Bojkov, Hristo; Parthasarathy, Arvind; Srinivasan, Supramaniam; Appleby, A. J.

    1992-01-01

    In a study of electrode activity for hydrogen evolution and hydrogen ionization, knowledge of the detailed kinetics and of the surface coverage by adsorbed hydrogen is essential. In the Ni/H2 battery, the hydrogen electrode is subjected to high hydrogen pressure; elucidation of the variation of kinetic parameters with hydrogen pressure is therefore of interest. Potentiostatic and ac impedance spectroscopic techniques were used in the present study. The equivalent circuit of the reaction, the kinetic parameters, and their pressure dependence have been determined.

  16. Adaptive techniques in electrical impedance tomography reconstruction.

    PubMed

    Li, Taoran; Isaacson, David; Newell, Jonathan C; Saulnier, Gary J

    2014-06-01

    We present an adaptive algorithm for solving the inverse problem in electrical impedance tomography. To strike a balance between the accuracy of the reconstructed images and the computational efficiency of the forward and inverse solvers, we propose to combine an adaptive mesh refinement technique with the adaptive Kaczmarz method. The iterative algorithm adaptively generates the optimal current patterns and a locally-refined mesh given the conductivity estimate and solves for the unknown conductivity distribution with the block Kaczmarz update step. Simulation and experimental results with numerical analysis demonstrate the accuracy and the efficiency of the proposed algorithm.

  17. AC impedance spectroscopy studies on solid-state sintered zinc aluminum oxide (ZnAl2O4) ceramics

    NASA Astrophysics Data System (ADS)

    Kumar, B. Rajesh; Rao, T. Subba

    2012-07-01

    In the present investigation Zinc Aluminum Oxide (ZnAl2O4) is prepared by solid-state reaction technique. Dielectric constant (ɛ'), dielectric loss(tan δ), ac conductivity (σac) as a function of temperature are studied by varying frequencies from 100 Hz to 1MHz using an impedance analyzer. The dielectric constant and dielectric loss increases gradually with an increase of temperature, but it decreases with increase of frequency. The ac conductivity (σac) also increases with increases of frequency. The transition peaks for ZnAl2O4 are observed at 490°C, 510°C, 520°C for the frequencies 1 KHz, 10 KHz and 100 KHz. No transition peaks are found for the frequency 100 Hz and 1 MHz because of high conductive loss.

  18. Damage detection technique by measuring laser-based mechanical impedance

    SciTech Connect

    Lee, Hyeonseok; Sohn, Hoon

    2014-02-18

    This study proposes a method for measurement of mechanical impedance using noncontact laser ultrasound. The measurement of mechanical impedance has been of great interest in nondestructive testing (NDT) or structural health monitoring (SHM) since mechanical impedance is sensitive even to small-sized structural defects. Conventional impedance measurements, however, have been based on electromechanical impedance (EMI) using contact-type piezoelectric transducers, which show deteriorated performances induced by the effects of a) Curie temperature limitations, b) electromagnetic interference (EMI), c) bonding layers and etc. This study aims to tackle the limitations of conventional EMI measurement by utilizing laser-based mechanical impedance (LMI) measurement. The LMI response, which is equivalent to a steady-state ultrasound response, is generated by shooting the pulse laser beam to the target structure, and is acquired by measuring the out-of-plane velocity using a laser vibrometer. The formation of the LMI response is observed through the thermo-mechanical finite element analysis. The feasibility of applying the LMI technique for damage detection is experimentally verified using a pipe specimen under high temperature environment.

  19. Investigation of an Anomaly Observed in Impedance Eduction Techniques

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.; Parrott, T. L.

    2008-01-01

    An intensive investigation into the cause of anomalous behavior commonly observed in impedance eduction techniques is performed. The investigation consists of grid refinement studies, detailed evaluation of results at and near anti-resonance frequencies, comparisons of different model results with synthesized and measured data, assessment or optimization techniques, and evaluation or boundary condition effects. Results show that the root cause of the anomalous behavior is the sensitivity of the educed impedance to small errors in the measured termination resistance at frequencies near anti-resonance or cut-on of a higher-order mode. Evidence is presented to show that the common usage of an anechoic, plane wave termination boundary condition in ducts where the "true" termination is reflective may act as a trigger for these anomalies. Replacing the exit impedance boundary condition by an exit pressure condition is shown to reduce the anomalous results.

  20. Adaptive mesh refinement techniques for electrical impedance tomography.

    PubMed

    Molinari, M; Cox, S J; Blott, B H; Daniell, G J

    2001-02-01

    Adaptive mesh refinement techniques can be applied to increase the efficiency of electrical impedance tomography reconstruction algorithms by reducing computational and storage cost as well as providing problem-dependent solution structures. A self-adaptive refinement algorithm based on an a posteriori error estimate has been developed and its results are shown in comparison with uniform mesh refinement for a simple head model.

  1. Application of impedance measurement techniques to accelerating cavity mode characterization

    NASA Astrophysics Data System (ADS)

    Hanna, S. M.; Stefan, P. M.

    1993-11-01

    Impedance measurements, using a central wire to simulate the electron beam, were performed on a 52 MHz accelerating cavity at the National Synchrotron Light Source (NSLS). This cavity was recently installed in the X-ray storage ring at the NSLS as a part of an upgrade of the ring. To damp higher-order modes (HOM) in this cavity, damping antennas have been installed. We implemented the impedance measurement technique to characterize the cavity modes up to 1 GHz and confirm the effectiveness of the damping antennas. Scattering parameters were measured using a network analyzer (HP 8510B) with a personal computer as a controller. Analysis based on S and T parameters for the system was used to solve for the cavity impedance, Z( ω), as a function of the measured transmission response, S21( ω). Search techniques were used to find the shunt resistance Rsh, and Q from the calculated Z( ω) for different modes. Our results for {R}/{Q} showed good agreement with URMEL simulations. The values of Q were compared with other independent Q measurement techniques. Our analytical technique offers an alternative approach for cases where full thru-reflection-line (TRL) calibration is not feasible and a more time-effective technique for obtaining {R}/{Q}, compared with the bead-pull method.

  2. Evaluation of the electrode performance for PAFC by using acid absorption, acceleration and ac-impedance measurement

    SciTech Connect

    Kim, Chang-Soo; Song, Rak-Hyun; Choi, Byung-Woo

    1996-12-31

    In PAFC, the degradation on cathode electrode caused by carbon corrosion, platinum dissolution and growth is especially severe. An acceleration test is a good technique for evaluating the degradation of electrode performance, because it does not need long time. Coleman et al used thermal cycling and on-off cycling as an acceleration test. Song et al showed that hydrogen shortage decreased the electrode performance more rapidly than that of air shortage in gas shortage test. Honji et al reported that the rate of coarsening of Pt particle is rapid in open circuit potential and this is one of major causes on the performance degradation of electrode. The cathode performance has been studied by using acid absorption, acceleration and ac-impedance measurements as functions of the polytetrafluoroethylene (PTFE) contents and sintering temperatures of the electrode.

  3. An experimental technique for determining middle ear impedance.

    PubMed

    Blayney, A W; McAvoy, G J; Rice, H J; Williams, K R

    1996-03-01

    A two-microphone technique was used to determine the middle ear impedance of a live subject. The procedure involved the application of standing wave tube theory and the assumption that the ear canal behaves like an homogeneous cylinder with plane acoustic wave propagation up to a certain frequency--2 kHz for the current analysis. During experimentation the subject lay on a bench with his head braced against a wooden fixture. Acoustic pressures were recorded from the ear canal by the use of a spectrum analyser and probe microphones with flexible tips. Resultant impedance curves show middle ear natural frequencies at 831 Hz and 1,970 Hz with high levels of damping. The reactive impedance curves show the influence of stiffness and ossicular mass on middle ear sound transmission. An advantage of the approach is that using features of the recorded data it is possible to calculate the effective probe tip to eardrum distance required for the calculation of the middle ear impedance. The two-microphone technique appears to be a promising tool for assessing healthy and diseased middle ear function. PMID:8725514

  4. Eddy Current Rail Inspection Using AC Bridge Techniques

    PubMed Central

    Liu, Ze; Koffman, Andrew D; Waltrip, Bryan C; Wang, Yicheng

    2013-01-01

    AC bridge techniques commonly used for precision impedance measurements have been adapted to develop an eddy current sensor for rail defect detection. By using two detection coils instead of just one as in a conventional sensor, we can balance out the large baseline signals corresponding to a normal rail. We have significantly enhanced the detection sensitivity of the eddy current method by detecting and demodulating the differential signal of the two coils induced by rail defects, using a digital lock-in amplifier algorithm. We have also explored compensating for the lift-off effect of the eddy current sensor due to vibrations by using the summing signal of the detection coils to measure the lift-off distance. The dominant component of the summing signal is a constant resulting from direct coupling from the excitation coil, which can be experimentally determined. The remainder of the summing signal, which decreases as the lift-off distance increases, is induced by the secondary eddy current. This dependence on the lift-off distance is used to calibrate the differential signal, allowing for a more accurate characterization of the defects. Simulated experiments on a sample rail have been performed using a computer controlled X-Y moving table with the X-axis mimicking the train’s motion and the Y-axis mimicking the train’s vibrational bumping. Experimental results demonstrate the effectiveness of the new detection method. PMID:26401427

  5. Use of AC Impedance Analysis to Study Membrane Changes Related to Acid Secretion in Amphibian Gastric Mucosa

    PubMed Central

    Clausen, Chris; Machen, Terry E.; Diamond, Jared M.

    1983-01-01

    We have applied transepithelial AC impedance techniques to gastric mucosa to reconcile ultrastructural and electrophysiological findings about gastric acid secretion and the mucosal barrier. By fitting impedance data measured at different HCl secretion rates to equivalent circuit models, we extracted capacitances and resistances (as measures of membrane area and ionic conductance, respectively) for the apical and basolateral membranes. The impedance measurements were found to be incompatible with earlier equivalent circuit models that modeled membrane electrical properties as lumped circuits based on one or two cell types. A distributed circuit model was developed that assumed only one dominant electrical pathway (i.e., one cell type), but that incorporated electrical effects arising from long and narrow membrane-lined structures present in the epithelium (e.g., gastric crypts, tubulovesicles, lateral intercellular spaces). This morphologically based model was found to represent the measured data accurately, and to yield values for membrane capacitances consistent with morphometric measurements of membrane areas. The main physiological conclusions from this analysis were as follows: (a) The dominant transepithelial current pathway may reside in the oxyntic cells. (b) The transepithelial conductance increase associated with the onset of acid secretion is entirely due to increased conductance of the apical membrane. This is in turn due entirely to increased area of this membrane, resulting from incorporation of tubulovesicular membrane. (c) When membrane conductances are normalized to actual membrane area by use of membrane capacitances, it turns out that acid secretion is not associated with a change in specific ionic conductance (change in conductance per unit area) at either the apical or basolateral membrane. (d) The puzzlingly low value of transepithelial resistance (≤400 Ω-cm2) arises because there are hundreds or thousands of square centimeters of actual

  6. Development of a field-portable small-size impedance analyzer for structural health monitoring using the electromechanical impedance technique

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor; Xu, Buli

    2004-07-01

    Electromechanical (E/M) impedance method is emerging as an effective and powerful technique for structural health monitoring. The E/M impedance method utilizes as its main apparatus an impedance analyzer that reads the in-situ E/M impedance of piezoelectric wafer active sensors (PWAS) attached to the monitored structure. Laboratory-type impedance analyzers (e.g. HP4194) are bulky, heavy, and expensive. They cannot be easily carried into the field for on-site structural health monitoring. To address this issue, means of to reduce the size of the impedance analyzer making the impedance analyzer more compact and field-portable are explored. In this paper, we present a systematic approach to the development of a field-portable small-size impedance analyzer for structural health monitoring using the electromechanical impedance technique. Our approach consists of several developmental stages. First, we perform a simulation of the E/M Impedance technique and develop the software tools for analyzing the signal in a fast and efficient way while maintaining the desired accuracy. The objective of this signal processing part is to obtain the complex impedance, ZR+iZI)=|Z| angle arg Z, at a number of frequencies in a predetermined range. Several signal processing methods were explored such as: (a) integration method; (b) correlation method; (c) Discrete Fourier transform (DFT) method. Second, we discuss the hardware issues associated with the implementation of this approach. The hardware system architecture consists of several blocks: (a) reference signal generation; (b) voltage and current measurements; and (c) digital signal acquisition and processing. Practical results obtained during proof-of-concept experiments are presented and comparatively examined.

  7. An electrochemical study of corrosion protection by primer-topcoat systems on 4130 steel with ac impedance and dc methods

    NASA Technical Reports Server (NTRS)

    Mendrek, M. J.; Higgins, R. H.; Danford, M. D.

    1988-01-01

    To investigate metal surface corrosion and the breakdown of metal protective coatings, the ac impedance method is applied to six systems of primer coated and primer topcoated 4130 steel. Two primers were used: a zinc-rich epoxy primer and a red lead oxide epoxy primer. The epoxy-polyamine topcoat was used in four of the systems. The EG and G-PARC Model 368 ac impedance measurement system, along with dc measurements with the same system using the polarization resistance method, were used to monitor changing properties of coated 4230 steel disks immersed in 3.5 percent NaCl solutions buffered at pH 5.4 over periods of 40 to 60 days. The corrosion system can be represented by an electronic analog called an equivalent circuit consisting of resistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for the resistors and capacitors, that can be assigned in the equivalent circuit following a least-squares analysis of the data, describe changes that occur on the corroding metal surface and in the protective coatings. Two equivalent circuits have been determined that predict the correct Bode phase and magnitude of the experimental sample at different immersion times. The dc corrosion current density data are related to equivalent circuit element parameters. Methods for determining corrosion rate with ac impedance parameters are verified by the dc method.

  8. Implementation and Validation of an Impedance Eduction Technique

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.; Gerhold, Carl H.

    2011-01-01

    Implementation of a pressure gradient method of impedance eduction in two NASA Langley flow ducts is described. The Grazing Flow Impedance Tube only supports plane-wave sources, while the Curved Duct Test Rig supports sources that contain higher-order modes. Multiple exercises are used to validate this new impedance eduction method. First, synthesized data for a hard wall insert and a conventional liner mounted in the Grazing Flow Impedance Tube are used as input to the two impedance eduction methods, the pressure gradient method and a previously validated wall pressure method. Comparisons between the two results are excellent. Next, data measured in the Grazing Flow Impedance Tube are used as input to both methods. Results from the two methods compare quite favorably for sufficiently low Mach numbers but this comparison degrades at Mach 0.5, especially when the hard wall insert is used. Finally, data measured with a hard wall insert mounted in the Curved Duct Test Rig are used as input to the pressure gradient method. Significant deviation from the known solution is observed, which is believed to be largely due to 3-D effects in this flow duct. Potential solutions to this issue are currently being explored.

  9. A Computer Aided Broad Band Impedance Matching Technique Using a Comparison Reflectometer. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gordy, R. S.

    1972-01-01

    An improved broadband impedance matching technique was developed. The technique is capable of resolving points in the waveguide which generate reflected energy. A version of the comparison reflectometer was developed and fabricated to determine the mean amplitude of the reflection coefficient excited at points in the guide as a function of distance, and the complex reflection coefficient of a specific discontinuity in the guide as a function of frequency. An impedance matching computer program was developed which is capable of impedance matching the characteristics of each disturbance independent of other reflections in the guide. The characteristics of four standard matching elements were compiled, and their associated curves of reflection coefficient and shunt susceptance as a function of frequency are presented. It is concluded that an economical, fast, and reliable impedance matching technique has been established which can provide broadband impedance matches.

  10. Consideration of impedance matching techniques for efficient piezoelectric energy harvesting.

    PubMed

    Kim, Hyeoungwoo; Priya, Shashank; Stephanou, Harry; Uchino, Kenji

    2007-09-01

    This study investigates multiple levels of impedance-matching methods for piezoelectric energy harvesting in order to enhance the conversion of mechanical to electrical energy. First, the transduction rate was improved by using a high piezoelectric voltage constant (g) ceramic material having a magnitude of g33 = 40 x 10(-3) V m/N. Second, a transducer structure, cymbal, was optimized and fabricated to match the mechanical impedance of vibration source to that of the piezoelectric transducer. The cymbal transducer was found to exhibit approximately 40 times higher effective strain coefficient than the piezoelectric ceramics. Third, the electrical impedance matching for the energy harvesting circuit was considered to allow the transfer of generated power to a storage media. It was found that, by using the 10-layer ceramics instead of the single layer, the output current can be increased by 10 times, and the output load can be reduced by 40 times. Furthermore, by using the multilayer ceramics the output power was found to increase by 100%. A direct current (DC)-DC buck converter was fabricated to transfer the accumulated electrical energy in a capacitor to a lower output load. The converter was optimized such that it required less than 5 mW for operation.

  11. Consideration of impedance matching techniques for efficient piezoelectric energy harvesting.

    PubMed

    Kim, Hyeoungwoo; Priya, Shashank; Stephanou, Harry; Uchino, Kenji

    2007-09-01

    This study investigates multiple levels of impedance-matching methods for piezoelectric energy harvesting in order to enhance the conversion of mechanical to electrical energy. First, the transduction rate was improved by using a high piezoelectric voltage constant (g) ceramic material having a magnitude of g33 = 40 x 10(-3) V m/N. Second, a transducer structure, cymbal, was optimized and fabricated to match the mechanical impedance of vibration source to that of the piezoelectric transducer. The cymbal transducer was found to exhibit approximately 40 times higher effective strain coefficient than the piezoelectric ceramics. Third, the electrical impedance matching for the energy harvesting circuit was considered to allow the transfer of generated power to a storage media. It was found that, by using the 10-layer ceramics instead of the single layer, the output current can be increased by 10 times, and the output load can be reduced by 40 times. Furthermore, by using the multilayer ceramics the output power was found to increase by 100%. A direct current (DC)-DC buck converter was fabricated to transfer the accumulated electrical energy in a capacitor to a lower output load. The converter was optimized such that it required less than 5 mW for operation. PMID:17941391

  12. Label-free whole blood cell differentiation based on multiple frequency AC impedance and light scattering analysis in a micro flow cytometer.

    PubMed

    Simon, Peter; Frankowski, Marcin; Bock, Nicole; Neukammer, Jörg

    2016-06-21

    We developed a microfluidic sensor for label-free flow cytometric cell differentiation by combined multiple AC electrical impedance and light scattering analysis. The measured signals are correlated to cell volume, membrane capacity and optical properties of single cells. For an improved signal to noise ratio, the microfluidic sensor incorporates two electrode pairs for differential impedance detection. One-dimensional sheath flow focusing was implemented, which allows single particle analysis at kHz count rates. Various monodisperse particles and differentiation of leukocytes in haemolysed samples served to benchmark the microdevice applying combined AC impedance and side scatter analyses. In what follows, we demonstrate that AC impedance measurements at selected frequencies allow label-free discrimination of platelets, erythrocytes, monocytes, granulocytes and lymphocytes in whole blood samples involving dilution only. Immunofluorescence staining was applied to validate the results of the label-free cell analysis. Reliable differentiation and enumeration of cells in whole blood by AC impedance detection have the potential to support medical diagnosis for patients with haemolysis resistant erythrocytes or abnormally sensitive leucocytes, i.e. for patients suffering from anaemia or leukaemia.

  13. AC impedance modelling study on porous electrodes of proton exchange membrane fuel cells using an agglomerate model

    NASA Astrophysics Data System (ADS)

    Gerteisen, Dietmar; Hakenjos, Alex; Schumacher, Jürgen O.

    A one-dimensional model of the PEM fuel cell cathode is developed to analyse ac impedance spectra and polarisation curves. The porous gas diffusion electrode is assumed to consist of a network of dispersed catalyst (Pt/C) forming spherically shaped agglomerated zones that are filled with electrolyte. The coupled differential equation system describes: ternary gas diffusion in the backing (O2 , N2 , water vapour), Fickian diffusion and Tafel kinetics for the oxygen reduction reaction (ORR) inside the agglomerates, proton migration with ohmic losses and double-layer charging in the electrode. Measurements are made of a temperature-controlled fuel cell with a geometric area of 1.4 cm × 1.4 cm. Lateral homogeneity is ensured by using a high stoichiometry of λmin . The model predicts the behaviour of measured polarisation curves and impedance spectra. It is found that a better humidification of the electrode leads to a higher volumetric double-layer capacity. The catalyst layer resistance shows the same behaviour depending on the humidification as the membrane resistance. Model parameters, e.g. Tafel slope, ionic resistance and agglomerate radius are varied. A sensitivity analysis of the model parameters is conducted.

  14. An impedance technique for determining low-frequency payload environments

    NASA Technical Reports Server (NTRS)

    Payne, K. R.

    1979-01-01

    The technique presented is based on frequency domain analysis and eliminates the necessity of final eigen solution for coupled payload/booster systems. A demonstration of the technique using Titan flight data and a low frequency environment prediction for a Shuttle payload are included. Criteria and philosophy for the technique for future payloads is discussed.

  15. Application of alternating current impedance to fuel cell modeling

    SciTech Connect

    Springer, T.E.

    1999-05-02

    AC impedance has provided a useful diagnostic tool in the Los Alamos polymer electrolyte fuel cell (PEFC) program. The author reviews the techniques he has used in ac impedance modeling. These techniques include equation implementation, model simplification and verification, least squares fitting, application of two-dimensional Laplace equation solvers handling complex interfacial boundary conditions, and interpretation of impedance features. The separate features of the complete electrode model are explained by analytic examples.

  16. Corrosion behaviour of galvanized steel and electroplating steel in aqueous solution: AC impedance study and XPS

    NASA Astrophysics Data System (ADS)

    Lebrini, M.; Fontaine, G.; Gengembre, L.; Traisnel, M.; Lerasle, O.; Genet, N.

    2008-08-01

    The efficiency of a new triazole derivative, namely, 2-{(2-hydroxyethyl)[(4-methyl-1 H-1,2,3-benzotriazol-1-yl)methyl]amino}ethanol (TTA) has been studied for corrosion inhibition of galvanized steel and electroplating steel in aqueous solution. Corrosion inhibition was studied using electrochemical impedance spectroscopy (EIS). These studies have shown that TTA was a very good inhibitor. Data obtained from EIS show a frequency distribution and therefore a modelling element with frequency dispersion behaviour, a constant phase element (CPE) has been used. The corrosion behaviour of galvanized steel and electroplating steel in aqueous solution was also investigated in the presence of 4-methyl-1 H-benzotriazole (TTA unsubstituted) by EIS. These studies have shown that the ability of the molecule to adsorb on the steel surface was dependent on the group in triazole ring substituent. X-ray photoelectron spectroscopy surface analysis with TTA shows that it chemisorbed on surface of galvanized steel and electroplating steel.

  17. Application of the A.C. Admittance technique to double layer studies on polycrystalline gold electrodes

    NASA Astrophysics Data System (ADS)

    Fawcett, W. R.; Kovacova, Zuzana; Motheo, Arthur J.; Foss, Colby A., Jr.

    1992-02-01

    A detailed examination of the dependence of the a.c. admittance of a cell containing a polycrystalline gold electrode has been made in the double layer region as a function of d.c. potential, a.c. frequency, and electrode history. It is shown that the interfacial impedance of a gold electrode with a carefully prepared surface can be treated under these circumstances as a constant phase element when it is in contact with an aqueous solution containing 0.05 M KClO4. Analysis of the frequency dependence of the cell impedance gives the surface inhomogeneity parameter n which turns out to be very close to unity. Although the electrode surface is only slightly inhomogeneous on a microscopic scale, a very large frequency dispersion of the impedance is observed experimentally. A method of estimating the true specific capacity of the electrode is presented, and conditions for carrying out the experiments in a reproducible manner are discussed.

  18. Impedance measurement techniques for one-port and two-port networks.

    PubMed

    Bai, Mingsian R; Lo, Yi-Yang; Chen, You Siang

    2015-10-01

    A microphone array impedance matrix measurement technique is presented for linear and passive acoustic two-port networks. Two impedance tubes fitted with three non-uniformly spaced microphones are required in the measurement. The non-uniform spacing is intended to avoid ill-posedness problems in calculating two plane-wave components traveling in opposite directions. Based on the one-port measurement, acoustic two-port networks modeled with the source and the load connected are examined. Three experimental procedures, the two-load measurement method (TLMM), the reciprocal-constrained method (RCM), and the reciprocity-symmetry-constrained method (RSCM), are developed to measure the acoustic impedance matrix. Experiments are conducted for several acoustic two-port systems to verify the proposed techniques. The results demonstrate the efficacy of the three experimental procedures when applied to symmetrical and reciprocal systems. For asymmetrical systems, the TLMM and RCM are preferred over the RSCM for measuring the impedance matrix. On top of that, the non-uniform array in conjunction with TLMM is extended to a general electroacoustic two-port system, which can be regarded as a unique contribution of the present work. PMID:26520309

  19. Implementation of In-Situ Impedance Techniques on a Full Scale Aero-Engine System

    NASA Technical Reports Server (NTRS)

    Gaeta, R. J.; Mendoza, J. M.; Jones, M. G.

    2007-01-01

    Determination of acoustic liner impedance for jet engine applications remains a challenge for the designer. Although suitable models have been developed that take account of source amplitude and the local flow environment experienced by the liner, experimental validation of these models has been difficult. This is primarily due to the inability of researchers to faithfully mimic the environment in jet engine nacelles in the laboratory. An in-situ measurement technique, one that can be implemented in an actual engine, is desirable so an accurate impedance can be determined for future modeling and quality control. This paper documents the implementation of such a local acoustic impedance measurement technique that is used under controlled laboratory conditions as well as on full scale turbine engine liner test article. The objective for these series of in-situ measurements is to substantiate treatment design, provide understanding of flow effects on installed liner performance, and provide modeling input for fan noise propagation computations. A series of acoustic liner evaluation tests are performed that includes normal incidence tube, grazing incidence tube, and finally testing on a full scale engine on a static test stand. Lab tests were intended to provide insight and guidance for accurately measuring the impedance of the liner housed in the inlet of a Honeywell Tech7000 turbofan. Results have shown that one can acquire very reasonable liner impedance data for a full scale engine under realistic test conditions. Furthermore, higher fidelity results can be obtained by using a three-microphone coherence technique that can enhance signal-to-noise ratio at high engine power settings. This research has also confirmed the limitations of this particular type of in-situ measurement. This is most evident in the installation of instrumentation and its effect on what is being measured.

  20. Bio-impedance characterization technique with implantable neural stimulator using biphasic current stimulus.

    PubMed

    Lo, Yi-Kai; Chang, Chih-Wei; Liu, Wentai

    2014-01-01

    Knowledge of the bio-impedance and its equivalent circuit model at the electrode-electrolyte/tissue interface is important in the application of functional electrical stimulation. Impedance can be used as a merit to evaluate the proximity between electrodes and targeted tissues. Understanding the equivalent circuit parameters of the electrode can further be leveraged to set a safe boundary for stimulus parameters in order not to exceed the water window of electrodes. In this paper, we present an impedance characterization technique and implement a proof-of-concept system using an implantable neural stimulator and an off-the-shelf microcontroller. The proposed technique yields the parameters of the equivalent circuit of an electrode through large signal analysis by injecting a single low-intensity biphasic current stimulus with deliberately inserted inter-pulse delay and by acquiring the transient electrode voltage at three well-specified timings. Using low-intensity stimulus allows the derivation of electrode double layer capacitance since capacitive charge-injection dominates when electrode overpotential is small. Insertion of the inter-pulse delay creates a controlled discharge time to estimate the Faradic resistance. The proposed method has been validated by measuring the impedance of a) an emulated Randles cells made of discrete circuit components and b) a custom-made platinum electrode array in-vitro, and comparing estimated parameters with the results derived from an impedance analyzer. The proposed technique can be integrated into implantable or commercial neural stimulator system at low extra power consumption, low extra-hardware cost, and light computation.

  1. Technique for measurement of characteristic impedance and propagation constant for porous materials

    NASA Astrophysics Data System (ADS)

    Jung, Ki Won; Atchley, Anthony A.

    2005-09-01

    Knowledge of acoustic properties such as characteristic impedance and complex propagation constant is useful to characterize the acoustic behaviors of porous materials. Song and Bolton's four-microphone method [J. Acoust. Soc. Am. 107, 1131-1152 (2000)] is one of the most widely employed techniques. In this method two microphones are used to determine the complex pressure amplitudes for each side of a sample. Muehleisen and Beamer [J. Acoust. Soc. Am. 117, 536-544 (2005)] improved upon a four-microphone method by interchanging microphones to reduce errors due to uncertainties in microphone response. In this paper, a multiple microphone technique is investigated to reconstruct the pressure field inside an impedance tube. Measurements of the acoustic properties of a material having square cross-section pores is used to check the validity of the technique. The values of characteristic impedance and complex propagation constant extracted from the reconstruction agree well with predicted values. Furthermore, this technique is used in investigating the acoustic properties of reticulated vitreous carbon (RVC) in the range of 250-1100 Hz.

  2. A prototype system and reconstruction algorithms for electrical impedance technique in medical body imaging.

    PubMed

    Kim, Y; Woo, H W

    1987-01-01

    We have developed an impedance imaging system to reconstruct cross-sectional images of the body's electrical characteristics based on static tissue impedance. The hardware system consists of a data collection subsystem and the Intel 380 host microcomputer system with an Intel 80286 microprocessor, an Intel 80287 numeric data processor, and an Intel 80186 microprocessor-based display board. The system is capable of initiating a data collection from an array of current-sensing electrodes and reconstructing impedance images based on these data measurements. We have tested the data collection subsystem with physical phantom models, and we have found that the prototype system is capable of discriminating high resistivity regions in contrast with the low resistivity background. Our system is flexible in that each electrode's function (sensing currents, applying voltages, grounding body surfaces, and disconnected from the body) can be programmed individually so that a variety of electrode configurations for different projection techniques can be tested for optimal system performance. Various reconstruction algorithms have been developed and tested particularly for this imaging modality. Since a computer body model is needed for some impedance reconstruction algorithms, we have created two- and three-dimensional computer body models based on the finite element method approach, and verified our finite element modelling technique by building physical phantoms and comparing measured experimental results with simulation results predicted by the computer model. We have found that the sensitivity is a function of position, pixel size (image resolution) and background resistivity. We have also tried to compensate the low sensitivity of impedance changes in the central region.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Sensitive and rapid detection of pathogenic bacteria in small volumes using impedance spectroscopy technique.

    PubMed

    Pal, Namrata; Sharma, Shashank; Gupta, Shalini

    2016-03-15

    We illustrate a novel impedance immunosensor which rapidly and sensitively detects typhoid-causing infectious bacteria Salmonella enterica serovar (Salmonella typhi) in 10 μL of sample volume. The bacteria are tagged with gold nanoparticles (Au NPs) via high-affinity antigen-antibody interactions for enhanced signal amplification and selectivity. The cell-particle bioconjugates are then subjected to alternating current (AC) electric fields applied through interdigitated microelectrodes. The immunosensor performance is optimized with respect to electric field frequency, cell concentration, incubation times and the type of blocking agent to achieve a low limit of detection (LOD) of 100 CFU/mL. The approach is extendable to a wide spectrum of clinical diseases and offers an efficient and cost-effective solution for point-of-care diagnosis.

  4. Comparison of Acoustic Impedance Eduction Techniques for Locally-Reacting Liners

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Parrott, T. L.; Watson, W. R.

    2003-01-01

    Typical acoustic liners used in current aircraft inlets and aft-fan ducts consist of some type of perforated facesheet bonded to a honeycomb core. A number of techniques for determining the acoustic impedance of these locallyreacting liners have been developed over the last five decades. In addition, a number of models have been developed to predict the acoustic impedance of locallyreacting liners in the presence of grazing flow, and to use that information together with aeroacoustic propagation codes to assess the noise absorption provided by these liners. These prediction models have incorporated the results from databases acquired with specific impedance eduction techniques. Thus, while these prediction models are acceptable for liners that are similar to those tested in these databases, their application to new liner configurations must be viewed with caution. The primary purpose of this paper is to provide a comparison of impedance eduction techniques that have been implemented at various aerospace research laboratories in the United States (NASA Langley Research Center, General Electric Aircraft Engines, B. F. Goodrich and Boeing). A secondary purpose is to provide data for liner configurations that extend the porosity range beyond that which has been previously used in common aircraft engine nacelles. Two sets of liners were designed to study the effects of three parameters: perforate hole diameter, facesheet thickness and porosity. These two sets of liners were constructed for testing in each of the laboratories listed above. The first set of liners was designed to fit into the NASA Langley and Boeing test facilities. The second set was designed to fit into the General Electric Aircraft Engines and B. F. Goodrich test facilities. By using the same parent material, both sets of liners were identical to within the limits of material and fabrication variability. Baseline data were obtained in the normal incidence impedance tubes at NASA Langley and B. F

  5. Multifrequency impedance measurement technique for wireless characterization of microbiological cell cultures

    NASA Astrophysics Data System (ADS)

    Wissenwasser, J.; Vellekoop, M. J.; Kapferer, W.; Lepperdinger, G.; Heer, R.

    2011-11-01

    An impedance measurement system with probe signal frequencies up to 50 kHz with AC-probe voltages below 30 mV rms was integrated for wireless and battery-free monitoring of microbiological cell cultures. The here presented modular design and the use of state-of-the-art components greatly eases adoptions to a wide range of biotechnological applications without the need of bulky LCR-meters or potentiostats. The device had a power consumption of less than 2.5 mA at a 3.3 V single power supply and worked trouble-free within the humid environment of a cell culture incubator. Measurements on lumped RC-elements showed an error of less than 1% for absolute values and less than 1° regarding the phase of the complex impedance. The performance of sensor devices with interdigitated electrode structures for the measurement of adherent cell cultures was tested in the presence of phosphate-buffered saline solution in the humid atmosphere of an incubator for biological cell cultures.

  6. Bond-slip detection of concrete-encased composite structure using electro-mechanical impedance technique

    NASA Astrophysics Data System (ADS)

    Liang, Yabin; Li, Dongsheng; Parvasi, Seyed Mohammad; Kong, Qingzhao; Lim, Ing; Song, Gangbing

    2016-09-01

    Concrete-encased composite structure is a type of structure that takes the advantages of both steel and concrete materials, showing improved strength, ductility, and fire resistance compared to traditional reinforced concrete structures. The interface between concrete and steel profiles governs the interaction between these two materials under loading, however, debonding damage between these two materials may lead to severe degradation of the load transferring capacity which will affect the structural performance significantly. In this paper, the electro-mechanical impedance (EMI) technique using piezoceramic transducers was experimentally investigated to detect the bond-slip occurrence of the concrete-encased composite structure. The root-mean-square deviation is used to quantify the variations of the impedance signatures due to the presence of the bond-slip damage. In order to verify the validity of the proposed method, finite element model analysis was performed to simulate the behavior of concrete-steel debonding based on a 3D finite element concrete-steel bond model. The computed impedance signatures from the numerical results are compared with the results obtained from the experimental study, and both the numerical and experimental studies verify the proposed EMI method to detect bond slip of a concrete-encased composite structure.

  7. A bio-electromechanical imaging technique with combined electrical impedance and ultrasound tomography.

    PubMed

    Steiner, G; Soleimani, M; Watzenig, D

    2008-06-01

    Electrical impedance tomography (EIT) seeks to image the electrical conductivity of an object using electrical impedance measurement data at its periphery. Ultrasound reflection tomography (URT) is an imaging modality that is able to generate images of mechanical properties of the object in terms of acoustic impedance changes. Both URT and EIT have the potential to be used in various medical applications. In this paper we focus on breast tumour detection. Both URT and EIT belong to soft field tomography and suffer from the small amounts of available data and the inherently ill-posed nature of the inverse problems. These facts result in limited achievable reconstruction accuracy and resolution. A dual bio-electromechanical tomography system using ultrasound and electrical tomography is proposed in this paper to improve the detection of the small-size tumour. Data fusion techniques are implemented to combine the EIT/URT data. Based on simulations, we demonstrate the improvement of detection of small size anomalies and improved depth detection compared to single modality soft field tomography.

  8. A modal impedance technique for mid and high frequency analysis of an uncertain stiffened composite plate

    NASA Astrophysics Data System (ADS)

    Seçgin, A.; Kara, M.; Ozankan, A.

    2016-03-01

    A modal impedance technique is introduced for mid frequency vibration analyses. The approach is mainly based on statistical energy analysis (SEA), however loss factors are determined by not only driving but also contributed by transfer mobilities. The mobilities are computed by finite element modal analysis. The technique takes geometrical complexity and boundary condition into account to handle their mid-frequency effects. It is applied to a stiffened composite plate having randomized mass, i.e., uncertain plate. For the verification, several numerical and experimental tests are performed. Internal damping of subsystems is evaluated using power injection and is then fed to finite element software to perform numerical analyses. Monte Carlo simulation is employed for the uncertainty analyses. To imitate plate mass heterogeneity, many small masses are used in both numerical and experimental analysis. It is shown that the proposed technique can reliably be used for vibration analyses of uncertain complex structures from mid to high frequency regions.

  9. Modeling the electromechanical impedance technique for the assessment of dental implant stability.

    PubMed

    LaMalfa Ribolla, Emma; Rizzo, Piervincenzo

    2015-07-16

    We simulated the electromechanical impedance (EMI) technique to assess the stability of dental implants. The technique consists of bonding a piezoelectric transducer to the element to be monitored. When subjected to an electric field, the transducer induces structural excitations which, in turn, affect the transducer's electrical admittance. As the structural vibrations depend on the mechanical impedance of the element, the measurement of the transducer's admittance can be exploited to assess the element's health. In the study presented in this paper, we created a 3D finite element model to mimic a transducer bonded to the abutment of a dental implant placed in a host bone site. We simulated the healing that occurs after surgery by changing Young's modulus of the bone-implant interface. The results show that as Young's modulus of the interface increases, i.e. as the mechanical interlock of the implant within the bone is achieved, the electromechanical characteristic of the transducer changes. The model and the findings of this numerical study may be used in the future to predict and interpret experimental data, and to develop a robust and cost-effective method for the assessment of primary and secondary dental implant stability. PMID:26070645

  10. Sub-Frequency Interval Approach in Electromechanical Impedance Technique for Concrete Structure Health Monitoring

    PubMed Central

    Yang, Yaowen; Divsholi, Bahador Sabet

    2010-01-01

    The electromechanical (EM) impedance technique using piezoelectric lead zirconate titanate (PZT) transducers for structural health monitoring (SHM) has attracted considerable attention in various engineering fields. In the conventional EM impedance technique, the EM admittance of a PZT transducer is used as a damage indicator. Statistical analysis methods such as root mean square deviation (RMSD) have been employed to associate the damage level with the changes in the EM admittance signatures, but it is difficult to determine the location of damage using such methods. This paper proposes a new approach by dividing the large frequency (30–400 kHz) range into sub-frequency intervals and calculating their respective RMSD values. The RMSD of the sub-frequency intervals (RMSD-S) will be used to study the severity and location of damage. An experiment is carried out on a real size concrete structure subjected to artificial damage. It is observed that damage close to the PZT changes the high frequency range RMSD-S significantly, while the damage far away from the PZT changes the RMSD-S in the low frequency range significantly. The relationship between the frequency range and the PZT sensing region is also presented. Finally, a damage identification scheme is proposed to estimate the location and severity of damage in concrete structures. PMID:22163548

  11. Accuracy of two osmometers on standard samples: electrical impedance technique and freezing point depression technique

    NASA Astrophysics Data System (ADS)

    García-Resúa, Carlos; Pena-Verdeal, Hugo; Miñones, Mercedes; Gilino, Jorge; Giraldez, Maria J.; Yebra-Pimentel, Eva

    2013-11-01

    High tear fluid osmolarity is a feature common to all types of dry eye. This study was designed to establish the accuracy of two osmometers, a freezing point depression osmometer (Fiske 110) and an electrical impedance osmometer (TearLab™) by using standard samples. To assess the accuracy of the measurements provided by the two instruments we used 5 solutions of known osmolarity/osmolality; 50, 290 and 850 mOsm/kg and 292 and 338 mOsm/L. Fiske 110 is designed to be used in samples of 20 μl, so measurements were made on 1:9, 1:4, 1:1 and 1:0 dilutions of the standards. Tear Lab is addressed to be used in tear film and only a sample of 0.05 μl is required, so no dilutions were employed. Due to the smaller measurement range of the TearLab, the 50 and 850 mOsm/kg standards were not included. 20 measurements per standard sample were used and differences with the reference value was analysed by one sample t-test. Fiske 110 showed that osmolarity measurements differed statistically from standard values except those recorded for 290 mOsm/kg standard diluted 1:1 (p = 0.309), the 292 mOsm/L H2O sample (1:1) and 338 mOsm/L H2O standard (1:4). The more diluted the sample, the higher the error rate. For the TearLab measurements, one-sample t-test indicated that all determinations differed from the theoretical values (p = 0.001), though differences were always small. For undiluted solutions, Fiske 110 shows similar performance than TearLab. However, for the diluted standards, Fiske 110 worsens.

  12. Synthesis and characterization of cancrinite-type zeolite, and its ionic conductivity study by AC impedance analysis

    NASA Astrophysics Data System (ADS)

    Kriaa, A.; Ben Saad, K.; Hamzaoui, A. H.

    2012-12-01

    The synthesis of cancrinite in the system NaOH-SiO2-Al2O3-NaHCO3-H2O was performed, according to methods described in the literature, in an autoclave under hydrothermal conditions at T = 473 K. The electrical properties of cancrinite-type zeolite pellets were investigated by complex impedance spectroscopy in the temperature range 465-800°C. The effect of temperature on impedance parameters was studied using an impedance analyzer in a wide frequency range (1 Hz to 13 MHz). The real and imaginary parts of complex impedance trace semicircles in the complex plane are plotted. The bulk resistance of the material decreases with rise in temperature. This exhibits a typical negative temperature coefficient of resistance (NTCR) behavior of the material. The results of bulk electrical conductivity and its activation energy are presented. The modulus analysis suggests that the electrical transport processes in the material are very likely to be of electronic nature. Relaxation frequencies follow an Arrhenius behavior with activation energy values not comparable to those found for the electrical conductivity.

  13. Transonic flight flutter tests of a control surface utilizing an impedance response technique

    NASA Technical Reports Server (NTRS)

    Mirowitz, L. I.

    1975-01-01

    Transonic flight flutter tests of the XF3H-1 Demon Airplane were conducted utilizing a frequency response technique in which the oscillating rudder provides the means of system excitation. These tests were conducted as a result of a rudder flutter incident in the transonic speed range. The technique employed is presented including a brief theoretical development of basic concepts. Test data obtained during the flight are included and the method of interpretation of these data is indicated. This method is based on an impedance matching technique. It is shown that an artificial stabilizing device, such as a damper, may be incorporated in the system for test purposes without complicating the interpretation of the test results of the normal configuration. Data are presented which define the margin of stability introduced to the originally unstable rudder by design changes which involve higher control system stiffness and external damper. It is concluded that this technique of flight flutter testing is a feasible means of obtaining flutter stability information in flight.

  14. New Technique of AC drive in Tokamak using Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Matteucci, Jackson; Zolfaghari, Ali

    2013-10-01

    This study investigates a new technique of capturing the rotational energy of alternating permanent magnets in order to inductively drive an alternating current in tokamak devices. The use of rotational motion bypasses many of the pitfalls seen in typical inductive and non-inductive current drives. Three specific designs are presented and assessed in the following criteria: the profile of the current generated, the RMS loop voltage generated as compared to the RMS power required to maintain it, the system's feasibility from an engineering perspective. All of the analysis has been done under ideal E&M conditions using the Maxwell 3D program. Preliminary results indicate that it is possible to produce an over 99% purely toroidal current with a RMS d Φ/dt of over 150 Tm2/s, driven by 20 MW or less of rotational power. The proposed mechanism demonstrates several key advantages including an efficient mechanical drive system, the generation of pure toroidal currents, and the potential for a quasi-steady state fusion reactor. The following quantities are presented for various driving frequencies and magnet strengths: plasma current generated, loop voltage, torque and power required. This project has been supported by DOE Funding under the SULI program.

  15. Explanation of Anomalous Behavior Observed in Impedance Eduction Techniques Using Measured Data

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.

    2010-01-01

    Several enhancements that improve the accuracy and robustness of an impedance eduction technique that use an automatic optimizer are presented. These enhancements are then used to launch an intensive investigation into the cause of anomalous behavior that occurs for a small number of test conditions. This anomalous behavior is investigated for both a hardwall insert and a conventional liner. The primary conclusions of the study are that: (1) for the hard wall insert, the anomalies are due to narrow peaks in the objective function, (2) For the conventional liner, the anomalies are due to the presence of an extremely flat objective function, and (3) the anomalies appear to be triggered by inconsistencies between the duct propagation model and the measured data. At high frequencies, the duct propagation model may need to include the effects of higher-order duct modes, whereas at low frequencies, the effects of the mean boundary layer may have to be included.

  16. Measurement of the local aortic stiffness by a non-invasive bioelectrical impedance technique.

    PubMed

    Collette, Mathieu; Lalande, Alain; Willoteaux, Serge; Leftheriotis, Georges; Humeau, Anne

    2011-04-01

    Aortic stiffness measurement is well recognized as an independent predictor of cardiovascular mortality and morbidity. Recently, a simple method has been proposed for the evaluation of the local aortic stiffness (AoStiff) using a non-invasive bioelectrical impedance (BI) technique. This approach relies on a novel interpretation of the arterial stiffness where AoStiff is computed from the measurement of two new BI variables: (1) the local aortic flow resistance (AoRes) exerted by the drag forces onto the flow; (2) the local aortic wall distensibility (AoDist). Herein, we propose to detail and compare these three indices with the reference pulse wave velocity (PWV) measurement and the direct assessment of the aortic drag forces (DF) and distensibility (DS) obtained by the magnetic resonance imaging technique. Our results show a significant correlation between AoStiff and PWV (r = 0.79; P < 0.0001; 120 patients at rest; mean age 44 ± 16 years), and also between AoRes and DF (r = 0.95; P = 0.0011) and between AoDist and DS (r = 0.93; P = 0.0022) on eight patients at rest (mean age 52 ± 19 years). These first results suggest that local aortic stiffness can be explored reliably by the BI technique.

  17. Practical issues in the implementation of electro-mechanical impedance technique for NDE

    NASA Astrophysics Data System (ADS)

    Bhalla, Suresh; Naidu, Akshay S. K.; Ong, Chin W.; Soh, Chee-Kiong

    2002-11-01

    The electro-mechanical impedance (EMI) technique, which utilizes "smart" piezoceramic (PZT) patches as collocated actuator-sensors, has recently emerged as a powerful technique for diagnosing incipient damages in structures and machines. This technique utilizes the electro-mechanical admittance of a PZT patch surface bonded to the structure as the diagnostic signature of the structure. The operating frequency is typically maintained in the kHz range for optimum sensitivity in damage detection. However, there are many impediments to the practical application of the technique for NDE of real-life structures, such as aerospace systems, machine parts, and civil-infrastructures like buildings and bridges. The main challenge lies in achieving consistent behavior of the bonded PZT patch over sufficiently long periods, typically of the order of years, under "harsh" environment. This necessitates protecting the PZT patch from environmental effects. This paper reports a dedicated investigation stretched over several months to ascertain the long-term consistency of the electro-mechanical admittance signatures of PZT patches. Possible protection of the patch by means of suitable covering layer as well as the effects of the layer on damage sensitivity of the patch are also investigated. It is found that a suitable cover is necessary to protect the PZT patch, especially against humidity and to ensure long life. It is also found that the patch exhibits a high sensitivity to damage even in the presence of the protection layer. The paper also includes a brief discussion on few recent applications of the EMI technique and possible use of multiplexing to optimize sensor interrogation time.

  18. Process techniques for human thoracic electrical bio-impedance signal in remote healthcare systems.

    PubMed

    Rahman, Muhammad Zia Ur; Mirza, Shafi Shahsavar

    2016-06-01

    Analysis of thoracic electrical bio-impedance (TEB) facilitates heart stroke volume in sudden cardiac arrest. This Letter proposes several efficient and computationally simplified adaptive algorithms to display high-resolution TEB component. In a clinical environment, TEB signal encounters with various physiological and non-physiological phenomenon, which masks the tiny features that are important in identifying the intensity of the stroke. Moreover, computational complexity is an important parameter in a modern wearable healthcare monitoring tool. Hence, in this Letter, the authors propose a new signal conditioning technique for TEB enhancement in remote healthcare systems. For this, the authors have chosen higher order adaptive filter as a basic element in the process of TEB. To improve filtering capability, convergence speed, to reduce computational complexity of the signal conditioning technique, the authors apply data normalisation and clipping the data regressor. The proposed implementations are tested on real TEB signals. Finally, simulation results confirm that proposed regressor clipped normalised higher order filter is suitable for a practical healthcare system. PMID:27382481

  19. A Real-time Electrical Impedance Based Technique to Measure Invasion of Endothelial Cell Monolayer by Cancer Cells

    PubMed Central

    Rahim, Said; Üren, Aykut

    2011-01-01

    Metastatic dissemination of malignant cells requires degradation of basement membrane, attachment of tumor cells to vascular endothelium, retraction of endothelial junctions and finally invasion and migration of tumor cells through the endothelial layer to enter the bloodstream as a means of transport to distant sites in the host1-3. Once in the circulatory system, cancer cells adhere to capillary walls and extravasate to the surrounding tissue to form metastatic tumors4,5. The various components of tumor cell-endothelial cell interaction can be replicated in vitro by challenging a monolayer of human umbilical vein endothelial cells (HUVEC) with cancer cells. Studies performed with electron and phase-contrast microscopy suggest that the in vitro sequence of events fairly represent the in vivo metastatic process6. Here, we describe an electrical-impedance based technique that monitors and quantifies in real-time the invasion of endothelial cells by malignant tumor cells. Giaever and Keese first described a technique for measuring fluctuations in impedance when a population of cells grow on the surface of electrodes7,8. The xCELLigence instrument, manufactured by Roche, utilizes a similar technique to measure changes in electrical impedance as cells attach and spread in a culture dish covered with a gold microelectrode array that covers approximately 80% of the area on the bottom of a well. As cells attach and spread on the electrode surface, it leads to an increase in electrical impedance9-12. The impedance is displayed as a dimensionless parameter termed cell-index, which is directly proportional to the total area of tissue-culture well that is covered by cells. Hence, the cell-index can be used to monitor cell adhesion, spreading, morphology and cell density. The invasion assay described in this article is based on changes in electrical impedance at the electrode/cell interphase, as a population of malignant cells invade through a HUVEC monolayer (Figure 1). The

  20. Arthroscopically Assisted Reconstruction of Acute Acromioclavicular Joint Dislocations: Anatomic AC Ligament Reconstruction With Protective Internal Bracing-The "AC-RecoBridge" Technique.

    PubMed

    Izadpanah, Kaywan; Jaeger, Martin; Ogon, Peter; Südkamp, Norbert P; Maier, Dirk

    2015-04-01

    An arthroscopically assisted technique for the treatment of acute acromioclavicular joint dislocations is presented. This pathology-based procedure aims to achieve anatomic healing of both the acromioclavicular ligament complex (ACLC) and the coracoclavicular ligaments. First, the acromioclavicular joint is reduced anatomically under macroscopic and radiologic control and temporarily transfixed with a K-wire. A single-channel technique using 2 suture tapes provides secure coracoclavicular stabilization. The key step of the procedure consists of the anatomic repair of the ACLC ("AC-Reco"). Basically, we have observed 4 patterns of injury: clavicular-sided, acromial-sided, oblique, and midportion tears. Direct and/or transosseous ACLC repair is performed accordingly. Then, an X-configured acromioclavicular suture tape cerclage ("AC-Bridge") is applied under arthroscopic assistance to limit horizontal clavicular translation to a physiological extent. The AC-Bridge follows the principle of internal bracing and protects healing of the ACLC repair. The AC-Bridge is tightened on top of the repair, creating an additional suture-bridge effect and promoting anatomic ACLC healing. We refer to this combined technique of anatomic ACLC repair and protective internal bracing as the "AC-RecoBridge." A detailed stepwise description of the surgical technique, including indications, technical pearls and pitfalls, and potential complications, is given.

  1. Arthroscopically Assisted Reconstruction of Acute Acromioclavicular Joint Dislocations: Anatomic AC Ligament Reconstruction With Protective Internal Bracing—The “AC-RecoBridge” Technique

    PubMed Central

    Izadpanah, Kaywan; Jaeger, Martin; Ogon, Peter; Südkamp, Norbert P.; Maier, Dirk

    2015-01-01

    An arthroscopically assisted technique for the treatment of acute acromioclavicular joint dislocations is presented. This pathology-based procedure aims to achieve anatomic healing of both the acromioclavicular ligament complex (ACLC) and the coracoclavicular ligaments. First, the acromioclavicular joint is reduced anatomically under macroscopic and radiologic control and temporarily transfixed with a K-wire. A single-channel technique using 2 suture tapes provides secure coracoclavicular stabilization. The key step of the procedure consists of the anatomic repair of the ACLC (“AC-Reco”). Basically, we have observed 4 patterns of injury: clavicular-sided, acromial-sided, oblique, and midportion tears. Direct and/or transosseous ACLC repair is performed accordingly. Then, an X-configured acromioclavicular suture tape cerclage (“AC-Bridge”) is applied under arthroscopic assistance to limit horizontal clavicular translation to a physiological extent. The AC-Bridge follows the principle of internal bracing and protects healing of the ACLC repair. The AC-Bridge is tightened on top of the repair, creating an additional suture-bridge effect and promoting anatomic ACLC healing. We refer to this combined technique of anatomic ACLC repair and protective internal bracing as the “AC-RecoBridge.” A detailed stepwise description of the surgical technique, including indications, technical pearls and pitfalls, and potential complications, is given. PMID:26052493

  2. Arthroscopically Assisted Reconstruction of Acute Acromioclavicular Joint Dislocations: Anatomic AC Ligament Reconstruction With Protective Internal Bracing-The "AC-RecoBridge" Technique.

    PubMed

    Izadpanah, Kaywan; Jaeger, Martin; Ogon, Peter; Südkamp, Norbert P; Maier, Dirk

    2015-04-01

    An arthroscopically assisted technique for the treatment of acute acromioclavicular joint dislocations is presented. This pathology-based procedure aims to achieve anatomic healing of both the acromioclavicular ligament complex (ACLC) and the coracoclavicular ligaments. First, the acromioclavicular joint is reduced anatomically under macroscopic and radiologic control and temporarily transfixed with a K-wire. A single-channel technique using 2 suture tapes provides secure coracoclavicular stabilization. The key step of the procedure consists of the anatomic repair of the ACLC ("AC-Reco"). Basically, we have observed 4 patterns of injury: clavicular-sided, acromial-sided, oblique, and midportion tears. Direct and/or transosseous ACLC repair is performed accordingly. Then, an X-configured acromioclavicular suture tape cerclage ("AC-Bridge") is applied under arthroscopic assistance to limit horizontal clavicular translation to a physiological extent. The AC-Bridge follows the principle of internal bracing and protects healing of the ACLC repair. The AC-Bridge is tightened on top of the repair, creating an additional suture-bridge effect and promoting anatomic ACLC healing. We refer to this combined technique of anatomic ACLC repair and protective internal bracing as the "AC-RecoBridge." A detailed stepwise description of the surgical technique, including indications, technical pearls and pitfalls, and potential complications, is given. PMID:26052493

  3. Carbon Nanotube-Based Supercapacitors with Excellent ac Line Filtering and Rate Capability via Improved Interfacial Impedance.

    PubMed

    Rangom, Yverick; Tang, Xiaowu Shirley; Nazar, Linda F

    2015-07-28

    We report the fabrication of high-performance, self-standing composite sp(2)-carbon supercapacitor electrodes using single-walled carbon nanotubes (CNTs) as conductive binder. The 3-D mesoporous mesh architecture of CNT-based composite electrodes grants unimpaired ionic transport throughout relatively thick films and allows superior performance compared to graphene-based devices at an ac line frequency of 120 Hz. Metrics of 601 μF/cm(2) with a -81° phase angle and a rate capability (RC) time constant of 199 μs are obtained for thin carbon films. The free-standing carbon films were obtained from a chlorosulfonic acid dispersion and interfaced to stainless steel current collectors with various surface treatments. CNT electrodes were able to cycle at 200 V/s and beyond, still showing a characteristic parallelepipedic cyclic votammetry shape at 1 kV/s. Current densities are measured in excess of 6400 A/g, and the electrodes retain more than 98% capacity after 1 million cycles. These promising results are attributed to a reduction of series resistance in the film through the CNT conductive network and especially to the surface treatment of the stainless steel current collector. PMID:26046685

  4. Carbon Nanotube-Based Supercapacitors with Excellent ac Line Filtering and Rate Capability via Improved Interfacial Impedance.

    PubMed

    Rangom, Yverick; Tang, Xiaowu Shirley; Nazar, Linda F

    2015-07-28

    We report the fabrication of high-performance, self-standing composite sp(2)-carbon supercapacitor electrodes using single-walled carbon nanotubes (CNTs) as conductive binder. The 3-D mesoporous mesh architecture of CNT-based composite electrodes grants unimpaired ionic transport throughout relatively thick films and allows superior performance compared to graphene-based devices at an ac line frequency of 120 Hz. Metrics of 601 μF/cm(2) with a -81° phase angle and a rate capability (RC) time constant of 199 μs are obtained for thin carbon films. The free-standing carbon films were obtained from a chlorosulfonic acid dispersion and interfaced to stainless steel current collectors with various surface treatments. CNT electrodes were able to cycle at 200 V/s and beyond, still showing a characteristic parallelepipedic cyclic votammetry shape at 1 kV/s. Current densities are measured in excess of 6400 A/g, and the electrodes retain more than 98% capacity after 1 million cycles. These promising results are attributed to a reduction of series resistance in the film through the CNT conductive network and especially to the surface treatment of the stainless steel current collector.

  5. Sonic impedance technique detects flaws in polyurethane foam spray-on insulation

    NASA Technical Reports Server (NTRS)

    Haralson, H. S.; Haynes, J. L.

    1970-01-01

    Sonic impedance testing detects voids and unbonded regions as small as 1 inch in diameter by 0.03 inch thick. Measurements are made manually or by automatic scanning and the readout is made by meter or recorder.

  6. Measuring the multi-frequency electrical impedance of the mouse gastrocnemius muscle using a tetrapolar technique

    NASA Astrophysics Data System (ADS)

    Li, J.; Fogerson, P. M.; Rutkove, S. B.

    2010-04-01

    Electrical impedance methods can be used to evaluate and monitor neuromuscular disease states. Recently, we have applied tetrapolar surface electrical impedance methods to the gastrocnemius muscle of the rat for this purpose and substantial changes in the impedance parameters after sciatic nerve crush can be identified. In order to be able to study additional animal models of nerve and muscle disease, however, it would highly desirable to be able to perform such impedance measurements in the mouse. Yet the small size of the mouse presents a substantial technical challenge. In this study, we evaluate a basic approach for performing such measurements. A series of thin, stainless steel strip electrodes affixed to the gastrocnemius and interfaced via a separate connector to the Imp SFB7® (Impedimed, Inc), provided an effective means for obtaining impedance data in the 20-500 kHz range. After two weeks, test-retest reproducibility was good, with intra-class correlation coefficients as high 0.84 and variability as low as 12.86 ± 6.18% in the 15 mice studied. Using this approach, it may now be possible to study impedance changes in a variety of mouse models of neuromuscular disease, including amyotrophic lateral sclerosis, spinal muscular atrophy, muscular dystrophy and Charcot-Marie-Tooth disease.

  7. AC impedance analysis of ionic and electronic conductivities in electrode mixture layers for an all-solid-state lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Siroma, Zyun; Sato, Tomohiro; Takeuchi, Tomonari; Nagai, Ryo; Ota, Akira; Ioroi, Tsutomu

    2016-06-01

    The ionic and electronic effective conductivities of an electrode mixture layers for all-solid-state lithium-ion batteries containing Li2Ssbnd P2S5 as a solid electrolyte were investigated by AC impedance measurements and analysis using a transmission-line model (TLM). Samples containing graphite (graphite electrodes) or LiNi0.5Co0.2Mn0.3O2 (NCM electrodes) as the active material were measured under a "substrate | sample | bulk electrolyte | sample | substrate" configuration (ion-electron connection) and a "substrate | sample | substrate" configuration (electron-electron connection). Theoretically, if the electronic resistance is negligibly small, which is the case with our graphite electrodes, measurement with the ion-electron connection should be effective for evaluating ionic conductivity. However, if the electronic resistance is comparable to the ionic resistance, which is the case with our NCM electrodes, the results with the ion-electron connection may contain some inherent inaccuracy. In this report, we theoretically and practically demonstrate the advantage of analyzing the results with the electron-electron connection, which gives both the ionic and electronic conductivities. The similarity of the behavior of ionic conductivity with the graphite and NCM electrodes confirms the reliability of this analysis.

  8. Impedance and AC conductivity study of nano crystalline, fine grained multiferroic bismuth ferrite (BiFeO3), synthesized by microwave sintering

    NASA Astrophysics Data System (ADS)

    Kolte, Jayant; Salame, Paresh H.; Daryapurkar, A. S.; Gopalan, P.

    2015-09-01

    In this paper, major reduction in sintering time,temperautre and significant improvement over final density of sitnered sample is reported for the microwave sintered nanocrystalline BiFeO3 (BFO) ceramic. Also, different sintering time and temperatures have been used to tailor the grain size and the final density of the resulting BFO ceramics synthesized from phase pure BFO nanoparticles ( d ¯ ≈ 10 n m ). Microwave sintering resulted in reducing the sintering time substantially (by 1h), and has resulted in submicron sized grains and high resistivity ˜1.8 GΩ-cm. The AC conductivity is seen to follow the Jonscher's power law behavior, suggesting correlated barrier hopping (CBH) mechanism in the sample. The role of oxygen vacancies at high temperature, due to volatility of bismuth, in dielectric and conductivity behavior is also discussed. Further, the sample displayed dielectric anomaly near magnetic transition temperature (˜180 °C) indicating bearing of magnetic moments on the dielectric properties. Using Impedance Spectroscopy (IS) we have established, the electrical heterogeneity of the ceramic BFO reavealing semiconducting nature of grains and insulating nature of grain boundary. This, formation of network of insulating grain boundaries and semiconducting grains could lead to formation of internal barrier layer capacitance (IBLC) leading to high dielectric constant in microwave sintered BFO.

  9. Electrical Impedance Spectroscopy-Based Defect Sensing Technique in Estimating Cracks

    PubMed Central

    Zhang, Tingting; Zhou, Liangdong; Ammari, Habib; Seo, Jin Keun

    2015-01-01

    A defect sensing method based on electrical impedance spectroscopy is proposed to image cracks and reinforcing bars in concrete structures. The method utilizes the frequency-dependent behavior of thin insulating cracks: low-frequency electrical currents are blocked by insulating cracks, whereas high-frequency currents can pass through thin cracks to probe the conducting bars. From various frequency-dependent electrical impedance tomography (EIT) images, we can show its advantage in terms of detecting both thin cracks with their thickness and bars. We perform numerical simulations and phantom experiments to support the feasibility of the proposed method. PMID:26007713

  10. A DEMO relevant fast wave current drive high harmonic antenna exploiting the high impedance technique

    SciTech Connect

    Milanesio, D. Maggiora, R.

    2015-12-10

    Ion Cyclotron (IC) antennas are routinely adopted in most of the existing nuclear fusion experiments, even though their main goal, i.e. to couple high power to the plasma (MW), is often limited by rather severe drawbacks due to high fields on the antenna itself and on the unmatched part of the feeding lines. In addition to the well exploited auxiliary ion heating during the start-up phase, some non-ohmic current drive (CD) at the IC range of frequencies may be explored in view of the DEMO reactor. In this work, we suggest and describe a compact high frequency DEMO relevant antenna, based on the high impedance surfaces concept. High-impedance surfaces are periodic metallic structures (patches) usually displaced on top of a dielectric substrate and grounded by means of vertical posts embedded inside the dielectric, in a mushroom-like shape. These structures present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. After a general introduction on the properties of high impedance surfaces, we analyze, by means of numerical codes, a dielectric based and a full metal solution optimized to be tested and benchmarked on the FTU experiment fed with generators at 433MHz.

  11. A DEMO relevant fast wave current drive high harmonic antenna exploiting the high impedance technique

    NASA Astrophysics Data System (ADS)

    Milanesio, D.; Maggiora, R.

    2015-12-01

    Ion Cyclotron (IC) antennas are routinely adopted in most of the existing nuclear fusion experiments, even though their main goal, i.e. to couple high power to the plasma (MW), is often limited by rather severe drawbacks due to high fields on the antenna itself and on the unmatched part of the feeding lines. In addition to the well exploited auxiliary ion heating during the start-up phase, some non-ohmic current drive (CD) at the IC range of frequencies may be explored in view of the DEMO reactor. In this work, we suggest and describe a compact high frequency DEMO relevant antenna, based on the high impedance surfaces concept. High-impedance surfaces are periodic metallic structures (patches) usually displaced on top of a dielectric substrate and grounded by means of vertical posts embedded inside the dielectric, in a mushroom-like shape. These structures present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. After a general introduction on the properties of high impedance surfaces, we analyze, by means of numerical codes, a dielectric based and a full metal solution optimized to be tested and benchmarked on the FTU experiment fed with generators at 433MHz.

  12. Kinetics of electrochemically controlled surface reactions on bulk and thin film metals studied with Fourier transform impedance spectroscopy and surface plasmon resonance techniques

    NASA Astrophysics Data System (ADS)

    Assiongbon, Kankoe A.

    2005-07-01

    In the work presented in this thesis, the surface sensitive electrochemical techniques of cyclic voltametry (CV), potential step (PS) and Fourier transform impedance spectroscopy (FT-EIS), as well as the optical technique of surface plasmon resonance (SPR), were used to probe a wide variety of surface processes at various metal/liquid interface. Three polycrystalline metals (Au, Ta and Cu) and a Cr-coated gold film were used for these studies in different aqueous environments. A combination of CV with FT-EIS and PS was used to investigate electronic and structural proprieties of a modified bulk electrode of Au. This experimental system involved under potential deposition (UPD) of Bi3+ on Au in a supporting aqueous electrolyte containing ClO-4 . UPD range of Bi3+ was determined, and adsorption kinetics of Bi3+ in the presence of coadsorbing anion, ClO-4 were quantified. Potentiodynamic growth of oxide films of Ta in the following electrolytes NaNO3, NaNO3 + 5wt% H2O2, NaOH and NaOH + 5wt% H2O2 had been investigated. The oxide films were grown in the range -0.1 → +0.4V (high electric field) at a scan rate of 10 mV/s. Time resolved A.C. impedance spectroscopy measurements in the frequency range (0.1--20 KHz) were performed to characterize the surface reactions of oxide formation. The results are interpreted in terms of charge conductivity O2- through the oxide film, and disintegration of H2O2 into OH-. In a high pH medium (pH 12), dissociation of H2O2 was catalytically enhanced. This led to destabilization of the electrogenerated tantalum oxide surface film in the form of a soluble hexatantalate species. In contrast with the electrolytes, NaNO3, NaNO3 + 5wt% H2O2, NaOH, where only the oxide growth was observed, the A.C. impedance spectroscopy measurements in NaOH + 5wt% H 2O2 showed competition between oxide formation and its removal. These results are relevant for chemical slurry design in chemical mechanical polishing (CMP) of Ta. Further investigations were

  13. Fatigue life estimation of a 1D aluminum beam under mode-I loading using the electromechanical impedance technique

    NASA Astrophysics Data System (ADS)

    Lim, Yee Yan; Kiong Soh, Chee

    2011-12-01

    Structures in service are often subjected to fatigue loads. Cracks would develop and lead to failure if left unnoticed after a large number of cyclic loadings. Monitoring the process of fatigue crack propagation as well as estimating the remaining useful life of a structure is thus essential to prevent catastrophe while minimizing earlier-than-required replacement. The advent of smart materials such as piezo-impedance transducers (lead zirconate titanate, PZT) has ushered in a new era of structural health monitoring (SHM) based on non-destructive evaluation (NDE). This paper presents a series of investigative studies to evaluate the feasibility of fatigue crack monitoring and estimation of remaining useful life using the electromechanical impedance (EMI) technique employing a PZT transducer. Experimental tests were conducted to study the ability of the EMI technique in monitoring fatigue crack in 1D lab-sized aluminum beams. The experimental results prove that the EMI technique is very sensitive to fatigue crack propagation. A proof-of-concept semi-analytical damage model for fatigue life estimation has been developed by incorporating the linear elastic fracture mechanics (LEFM) theory into the finite element (FE) model. The prediction of the model matches closely with the experiment, suggesting the possibility of replacing costly experiments in future.

  14. Sound diffraction at wall impedance discontinuities in a circular cylinder, investigated using Wiener-Hopf technique

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.

    1983-01-01

    Rigorous solutions are presented for sound diffraction in a circular cylinder with axial discontinuities of the wall admittance (or impedance). Analytical expressions are derived for the reflection and the transmission coefficients for duct modes. The results are discussed quantitatively in the limits of small admittance shifts (delta) and of low frequencies (ka). One of the results is the low frequency behavior of the reflection coefficient R(o) sub 00 of the fundamental mode. For the mode of a hardwall duct reflected from the junction with a softwall duct, (R(o) sub oo yields - (1-square root of (ka) square root of (2/i delta)); this result is in contrast to the frequency dependence of the reflection from the open end of a hardwall duct, for which R(o) sub oo yields - 1-(ka) squared/2 .

  15. The sensor of surface defects based on electrical impedance tomography technique

    NASA Astrophysics Data System (ADS)

    Ryndin, Eugeny A.; Isaeva, Alina S.

    2014-12-01

    This paper describes the application of electrical impedance tomography (EIT) to development of the surface defect sensor that can be used for structural health monitoring (such structural as bridge bearing, airframe, etc.). Thin conductive film with electrodes along its boundaries, as a sensor skin, is applied to structural surface. By using the corresponding boundary potential measurements and the value of applied current the both forward and inverse EIT problem were solved and method of defects detection in thin conductive film was created. This method allows calculating two-dimensional distribution of conductivity in film (conductivity map) and, indirectly, distribution of defects in it. The reconstruction defect efficiency criterion and the method of its calculation were proposed. The influence of initial data disturbance (non-uniform conductivity of the film as its roughness) on reconstruction defect efficiency without using all the combinations of current electrodes was examined.

  16. Impedance measurement technique for high-sensitivity cell detection in microstructures with non-uniform conductivity distribution.

    PubMed

    Faenza, Andrea; Bocchi, Massimo; Pecorari, Nicola; Franchi, Eleonora; Guerrieri, Roberto

    2012-05-01

    Particle detection in microstructures is a key procedure required by modern lab-on-a-chip devices. Unfortunately, state of the art approaches to impedance measuring as applied to cell detection do not perform well in regions characterized by non-homogeneous physical parameters due, for example, to the presence of air-liquid interfaces or when the particle-electrode distance is relatively high. This paper presents a robust impedance measurement technique and a circuit for detecting cells flowing in microstructures such as microchannels and microwells. Our solution makes use of an innovative three-electrode measurement scheme with asymmetric polarization in order to increase cell detection ability in microstructures featuring large electrode distances of up to 100 μm as well as to limit signal loss due to cell position relative to the electrodes. Compared to standard techniques, numerical simulations show that, with the proposed approach, the cell detection sensitivity is increased by more than 40%. In addition, we propose a custom circuit based on division instead of difference between signals, as in standard differential circuits, so as to reduce the baseline signal drift induced by non-homogeneous conductivity. A simplified analytical model shows an increase in the signal-to-noise-ratio comprised in the range 3.9-5.9. Experimental results, carried out using an open-microwell device made with flexible printed circuit board technology, are in agreement with simulations, suggesting a six-fold increase of the signal-to-noise ratio compared to the differential measurement technique. We were thus able to successfully monitor the process of isolating K562 leukemia cells inside open-microwells determining all single-cell events with no false positive detection.

  17. Scatterer size and concentration estimation technique based on a 3D acoustic impedance map from histologic sections

    NASA Astrophysics Data System (ADS)

    Mamou, Jonathan; Oelze, Michael L.; O'Brien, William D.; Zachary, James F.

    2001-05-01

    Accurate estimates of scatterer parameters (size and acoustic concentration) are beneficial adjuncts to characterize disease from ultrasonic backscatterer measurements. An estimation technique was developed to obtain parameter estimates from the Fourier transform of the spatial autocorrelation function (SAF). A 3D impedance map (3DZM) is used to obtain the SAF of tissue. 3DZMs are obtained by aligning digitized light microscope images from histologic preparations of tissue. Estimates were obtained for simulated 3DZMs containing spherical scatterers randomly located: relative errors were less than 3%. Estimates were also obtained from a rat fibroadenoma and a 4T1 mouse mammary tumor (MMT). Tissues were fixed (10% neutral-buffered formalin), embedded in paraffin, serially sectioned and stained with H&E. 3DZM results were compared to estimates obtained independently against ultrasonic backscatter measurements. For the fibroadenoma and MMT, average scatterer diameters were 91 and 31.5 μm, respectively. Ultrasonic measurements yielded average scatterer diameters of 105 and 30 μm, respectively. The 3DZM estimation scheme showed results similar to those obtained by the independent ultrasonic measurements. The 3D impedance maps show promise as a powerful tool to characterize ultrasonic scattering sites of tissue. [Work supported by the University of Illinois Research Board.

  18. Respiratory-gated electrical impedance tomography: a potential technique for quantifying stroke volume

    NASA Astrophysics Data System (ADS)

    Arshad, Saaid H.; Murphy, Ethan K.; Halter, Ryan J.

    2016-03-01

    Telemonitoring is becoming increasingly important as the proportion of the population living with cardiovascular disease (CVD) increases. Currently used health parameters in the suite of telemonitoring tools lack the sensitivity and specificity to accurately predict heart failure events, forcing physicians to play a reactive versus proactive role in patient care. A novel cardiac output (CO) monitoring device is proposed that leverages a custom smart phone application and a wearable electrical impedance tomography (EIT) system. The purpose of this work is to explore the potential of using respiratory-gated EIT to quantify stroke volume (SV) and assess its feasibility using real data. Simulations were carried out using the 4D XCAT model to create anatomically realistic meshes and electrical conductivity profiles representing the human thorax and the intrathoracic tissue. A single 5-second period respiration cycle with chest/lung expansion was modeled with end-diastole (ED) and end-systole (ES) heart volumes to evaluate how effective EIT-based conductivity changes represent clinically significant differences in SV. After establishing a correlation between conductivity changes and SV, the applicability of the respiratory-gated EIT was refined using data from the PhysioNet database to estimate the number of useful end-diastole (ED) and end-systole (ES) heart events attained over a 3.3 minute period. The area associated with conductivity changes was found to correlate to SV with a correlation coefficient of 0.92. A window of 12.5% around peak exhalation was found to be the optimal phase of the respiratory cycle from which to record EIT data. Within this window, ~47 useable ED and ES were found with a standard deviation of 28 using 3.3 minutes of data for 20 patients.

  19. Experimental investigation for an isolation technique on conducting the electromechanical impedance method in high-temperature pipeline facilities

    NASA Astrophysics Data System (ADS)

    Na, Wongi S.; Lee, Hyeonseok

    2016-11-01

    In general, the pipelines within a nuclear power plant facility may experience high temperatures up to several hundred degrees. Thus it is absolutely vital to monitor these pipes to prevent leakage of radioactive substances which may lead to a catastrophic outcome of the surrounding environment. Over the years, one of the structural health monitoring technique known as the electromechanical impedance (EMI) technique has been of great interests in various fields including civil infrastructures, mechanical and aerospace structures. Although it has one of the best advantages to be able for a single piezoelectric transducer to act as a sensor and an actuator, simultaneously, its low curie temperature makes it difficult for the EMI technique to be conducted at high temperature environment. To overcome this problem, this study shows a method to avoid attaching the piezoelectric transducer directly onto the target structure using a metal wire for damage detection at high temperature. By shifting the frequency to compensate the signature changes subjected to the variations in temperature, the experimental results indicate that damage identification is more successful above 200 oC, making the metal wire method suitable for the EMI technique at high temperature environment.

  20. The investigation of dielectric properties and ac conductivity of new ceramic diphosphate Ag0.6Na0.4FeP2O7 using impedance spectroscopy method

    NASA Astrophysics Data System (ADS)

    Nasri, S.; Megdiche, M.; Gargouri, M.

    2016-10-01

    In this paper, Ag0.6Na0.4FeP2O7 has been synthesized by solid state reaction method. The ceramic compound was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrational spectroscopy and impedance measurements. In fact, the investigated sample has shown single phase type monoclinic structure with P21/C space group. The frequency-dependent electrical data are analyzed in the frame-work of conductivity and electric modulus formalisms. The real and imaginary parts of complex impedance are well fitted to equivalent circuit model based on the Z-View-software. Besides, the observed frequency dependence of conductivity is found to obey Jonscher's universal law. The temperature dependence of both ac conductivity and the parameter s is reasonably well interpreted by the correlated barrier hopping (CBH). The theoretical fitting between the proposed model and the experimental data showed good agreement. The contribution of single polaron and bipolaron hopping to a.c. conductivity in present compound is also studied. The ionic conductivity is discussed on the basis of the structural characteristics of the sample.

  1. Practical issues related to the application of the electromechanical impedance technique in the structural health monitoring of civil structures: II. Numerical verification

    NASA Astrophysics Data System (ADS)

    Yang, Yaowen; Lim, Yee Yan; Kiong Soh, Chee

    2008-06-01

    This paper, the second in a two-part series, presents various finite element simulations on the interaction between a piezo-impedance transducer (lead zirconate titanate, PZT) and a structure, inclusive of the bonding layer, in the application of the electromechanical impedance (EMI) technique with varying temperature. Simulation of the PZT-structure interaction at the high frequency range (up to 1000 kHz) using the commercially available finite element method (FEM) software, ANSYS version 8.1, was successfully performed. Promising results were found when compared to the experimental results. Advantages over the conventional finite element analysis (FEA) based impedance model and the impedance based analytical models include higher accuracy, direct acquisition of electrical admittance/impedance, and the ability to model the PZT and the bonding layer as well as the ambient temperature. This finite element model also successfully verified some vital experimental observations in part I. This study proves that the FEM could emerge as an excellent alternative to experimentation in the study of the EMI technique.

  2. Dissection of the Mechanical Impedance Components of the Outer Hair Cell Using a Chloride-Channel Blocker

    NASA Astrophysics Data System (ADS)

    Harasztosi, Csaba; Gummer, Anthony W.

    2011-11-01

    The voltage-dependent chloride-channel blocker anthracene-9-carboxylic acid (9AC) has been found to reduce the imaginary but not the real part of the mechanical impedance of the organ of Corti, suggesting that the effective stiffness of outer hair cells (OHCs) is reduced by 9AC. To examine whether 9AC interacts directly with the motor protein prestin to reduce the membrane component of the impedance, the patch-clamp technique in whole-cell configuration was used to measure the nonlinear capacitance (NLC) of isolated OHCs and, as control, prestin-transfected human embryonic kidney 293 (HEK293) cells. Extracellular application of 9AC significantly reduced the NLC of both OHCs and HEK293 cells. Intracellular 9AC did not influence the blocking effect of the extracellular applied drug. These results suggest that 9AC interacts directly with prestin, reducing the effective stiffness of the motor, and that the interaction is extracellular.

  3. An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production.

    PubMed

    Conesa, Claudia; García-Breijo, Eduardo; Loeff, Edwin; Seguí, Lucía; Fito, Pedro; Laguarda-Miró, Nicolás

    2015-01-01

    Electrochemical Impedance Spectroscopy (EIS) has been used to develop a methodology able to identify and quantify fermentable sugars present in the enzymatic hydrolysis phase of second-generation bioethanol production from pineapple waste. Thus, a low-cost non-destructive system consisting of a stainless double needle electrode associated to an electronic equipment that allows the implementation of EIS was developed. In order to validate the system, different concentrations of glucose, fructose and sucrose were added to the pineapple waste and analyzed both individually and in combination. Next, statistical data treatment enabled the design of specific Artificial Neural Networks-based mathematical models for each one of the studied sugars and their respective combinations. The obtained prediction models are robust and reliable and they are considered statistically valid (CCR% > 93.443%). These results allow us to introduce this EIS-based technique as an easy, fast, non-destructive, and in-situ alternative to the traditional laboratory methods for enzymatic hydrolysis monitoring. PMID:26378537

  4. An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production.

    PubMed

    Conesa, Claudia; García-Breijo, Eduardo; Loeff, Edwin; Seguí, Lucía; Fito, Pedro; Laguarda-Miró, Nicolás

    2015-09-11

    Electrochemical Impedance Spectroscopy (EIS) has been used to develop a methodology able to identify and quantify fermentable sugars present in the enzymatic hydrolysis phase of second-generation bioethanol production from pineapple waste. Thus, a low-cost non-destructive system consisting of a stainless double needle electrode associated to an electronic equipment that allows the implementation of EIS was developed. In order to validate the system, different concentrations of glucose, fructose and sucrose were added to the pineapple waste and analyzed both individually and in combination. Next, statistical data treatment enabled the design of specific Artificial Neural Networks-based mathematical models for each one of the studied sugars and their respective combinations. The obtained prediction models are robust and reliable and they are considered statistically valid (CCR% > 93.443%). These results allow us to introduce this EIS-based technique as an easy, fast, non-destructive, and in-situ alternative to the traditional laboratory methods for enzymatic hydrolysis monitoring.

  5. An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production

    PubMed Central

    Conesa, Claudia; García-Breijo, Eduardo; Loeff, Edwin; Seguí, Lucía; Fito, Pedro; Laguarda-Miró, Nicolás

    2015-01-01

    Electrochemical Impedance Spectroscopy (EIS) has been used to develop a methodology able to identify and quantify fermentable sugars present in the enzymatic hydrolysis phase of second-generation bioethanol production from pineapple waste. Thus, a low-cost non-destructive system consisting of a stainless double needle electrode associated to an electronic equipment that allows the implementation of EIS was developed. In order to validate the system, different concentrations of glucose, fructose and sucrose were added to the pineapple waste and analyzed both individually and in combination. Next, statistical data treatment enabled the design of specific Artificial Neural Networks-based mathematical models for each one of the studied sugars and their respective combinations. The obtained prediction models are robust and reliable and they are considered statistically valid (CCR% > 93.443%). These results allow us to introduce this EIS-based technique as an easy, fast, non-destructive, and in-situ alternative to the traditional laboratory methods for enzymatic hydrolysis monitoring. PMID:26378537

  6. Bio-impedance detector for Staphylococcus aureus exposed to magnetic fields

    NASA Astrophysics Data System (ADS)

    Younis Yacoob Aldosky, Haval; Barwari, Waleed Jameel Omar; Salih Al-mlaly, Janan M.

    2012-12-01

    Rapid detection of viability and growth of pathogenic microorganisms is very important in many applications such as food and drug production, health care, and national defense. Measurements on the electrical characteristics of cells have been used successfully in the past to detect many different physiological events. The effect of electromagnetic fields on the growth of bacteria (Staphylococcus aureus) was studied with the bio-impedance technique. The growth situations of bacteria in the absence and presence of different intensities of static and alternative magnetic fields were examined and analyzed. The results show that the impedance of bacteria fell in the presence of DC magnetic fields. In contrast the impedance increased when the bacteria were exposed to AC magnetic fields. Based on these results the bacterial growth indicated by the change in the impedance is inhibited under DC magnetic fields and enhanced under AC fields.

  7. Effect of counterions on the formation of ohmic contact between p-Si and poly(pyrrole) film - An ac impedance analysis

    NASA Technical Reports Server (NTRS)

    Nagsubramanian, G.; Distefano, S.; Moacanin, J.

    1986-01-01

    Conditions under which poly(pyrrole) (PP) films form ohmic contact with single-crystal p-Si are described. Counterions affect both the conductivity and flatband potential, V(FB), values of poly(pyrrole). While paratoluene-sulfonate-doped PP acts like a switch, the impedance behavior of PP films doped with ClO4(-), BF4(-), or PF6(-) allows evaluation of the V(FB) of these films. The formation of 'quasi-ohmic' and 'nonohmic' contacts, respectively, of PP (ClO4) and PP films doped with other counterions, with p-Si, are explained in terms of conductivity of these films and V(FB) of PP films with respect to that of p-Si. PP film seems to passivate or block intrinsic surface states present on p-Si surface.

  8. AC loss reduction of TFA-MOD coated conductors in long length by laser scribing technique

    NASA Astrophysics Data System (ADS)

    Katayama, K.; Hirano, H.; Machi, T.; Takagi, Y.; Takahashi, Y.; Izumi, T.

    TFA-MOD process is expected to be promising for future applications since it can produce high performance YBCO coated conductors with low cost. Applying YBCO coated conductors to the power electric devices such as transformer, cable, motors, reduction of AC loss for long wire is necessary. Multifilamentation, which is one of the effective approaches for AC loss reduction, has been developed by the scribing process. YBCO coated conductors produced by our standard TFA-MOD process delaminated into two parts by the laser scribing. The delamination was clarified to occur within the superconducting layer caused by the defects such as pores in the superconducting layer. In order to reduce the defects in the superconducting layer, we modify the heat treatment profile performed on the decomposed precursor films by applying the interim annealing(550-600°C) before crystallization heat treatment(740-770°C). The interim annealed samples had much less and smaller pores than the standard processed ones. The peel strength measured by transverse tensile test was as high as the PLD derived coated conductors which was successfully scribed into five filaments resulting in 1/5 AC loss. A 50m long YBCO coated conductor with the characteristics of 398A/cmwidth was obtained and cut into 5 mm width, followed by the laser scribing process into five filaments. The multifilamentation process was successfully performed without delamination throughout the wire. The hysteresis loss was down to 1/N (N: number of filaments), as we aimed. The IC properties of the filaments were 29±4A, indicating the wire was uniformly fabricated.

  9. A More Accurate and Efficient Technique Developed for Using Computational Methods to Obtain Helical Traveling-Wave Tube Interaction Impedance

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1999-01-01

    The phenomenal growth of commercial communications has created a great demand for traveling-wave tube (TWT) amplifiers. Although the helix slow-wave circuit remains the mainstay of the TWT industry because of its exceptionally wide bandwidth, until recently it has been impossible to accurately analyze a helical TWT using its exact dimensions because of the complexity of its geometrical structure. For the first time, an accurate three-dimensional helical model was developed that allows accurate prediction of TWT cold-test characteristics including operating frequency, interaction impedance, and attenuation. This computational model, which was developed at the NASA Lewis Research Center, allows TWT designers to obtain a more accurate value of interaction impedance than is possible using experimental methods. Obtaining helical slow-wave circuit interaction impedance is an important part of the design process for a TWT because it is related to the gain and efficiency of the tube. This impedance cannot be measured directly; thus, conventional methods involve perturbing a helical circuit with a cylindrical dielectric rod placed on the central axis of the circuit and obtaining the difference in resonant frequency between the perturbed and unperturbed circuits. A mathematical relationship has been derived between this frequency difference and the interaction impedance (ref. 1). However, because of the complex configuration of the helical circuit, deriving this relationship involves several approximations. In addition, this experimental procedure is time-consuming and expensive, but until recently it was widely accepted as the most accurate means of determining interaction impedance. The advent of an accurate three-dimensional helical circuit model (ref. 2) made it possible for Lewis researchers to fully investigate standard approximations made in deriving the relationship between measured perturbation data and interaction impedance. The most prominent approximations made

  10. Electron Impedances

    SciTech Connect

    P Cameron

    2011-12-31

    It is only recently, and particularly with the quantum Hall effect and the development of nanoelectronics, that impedances on the scale of molecules, atoms and single electrons have gained attention. In what follows the possibility that characteristic impedances might be defined for the photon and the single free electron is explored is some detail, the premise being that the concepts of electrical and mechanical impedances are relevant to the elementary particle. The scale invariant quantum Hall impedance is pivotal in this exploration, as is the two body problem and Mach's principle.

  11. Mechanistic insights into UV-induced electron transfer from PCBM to titanium oxide in inverted-type organic thin film solar cells using AC impedance spectroscopy.

    PubMed

    Kuwabara, Takayuki; Iwata, Chiaki; Yamaguchi, Takahiro; Takahashi, Kohshin

    2010-08-01

    An inverted organic bulk-heterojunction solar cell containing amorphous titanium oxide (TiOx) as an electron collection electrode with the structure ITO/TiO(x)/[6,6]-phenyl C(61) butyric acid methyl ester (PCBM): regioregular poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxylenethiophene):poly(4-styrene sulfonic acid)/Au (TiO(x) cell) was fabricated. Its complicated photovoltaic properties were investigated by photocurrent-voltage and alternating current impedance spectroscopy measurements. The TiO(x) cell required a significant amount of time (approximately 60 min) to reach its maximum power conversion efficiency (PCE) of 2.6%. To investigate the reason for this slow photoresponse, we investigated the influences of UV light and water molecules adsorbed on the TiO(x) layer. Surface treatment of the TiO(x) cell with water induced a rapid photoresponse and enhanced the performance, giving a PCE of 2.97%. However, the durability of the treated cell was considerably inferior that of the untreated cell because of UV-induced photodegradation. The cause of the rapid photoresponse of the treated cell was attributed to the formation of hydrogen bonds between adsorbed water molecules and carbonyl oxygen atoms in PCBM close to the TiO(x) surface. When the TiO(x) surface was positively charged by UV-induced holes, the carbonyl oxygen in PCBM close to the TiO(x) surface can quickly join to the TiO(x) surface, rapidly transporting photogenerated electrons from PCBM to TiO(x) in competition with the photocatalyzed degradation. The experimental results suggested that the slow photoresponse of the untreated TiO(x) cell was because the morphology of the photoactive organic layer changed gradually upon irradiation to improve the transport of photocarriers at the TiO(x)/PCBM:P3HT interface.

  12. AC and Phase Sensing of Nanowires for Biosensing.

    PubMed

    Crescentini, Marco; Rossi, Michele; Ashburn, Peter; Lombardini, Marta; Sangiorgi, Enrico; Morgan, Hywel; Tartagni, Marco

    2016-04-19

    Silicon nanowires are label-free sensors that allow real-time measurements. They are economical and pave the road for point-of-care applications but require complex readout and skilled personnel. We propose a new model and technique for sensing nanowire sensors using alternating currents (AC) to capture both magnitude and phase information from the sensor. This approach combines the advantages of complex impedance spectroscopy with the noise reduction performances of lock-in techniques. Experimental results show how modifications of the sensors with different surface chemistries lead to the same direct-current (DC) response but can be discerned using the AC approach.

  13. AC and Phase Sensing of Nanowires for Biosensing

    PubMed Central

    Crescentini, Marco; Rossi, Michele; Ashburn, Peter; Lombardini, Marta; Sangiorgi, Enrico; Morgan, Hywel; Tartagni, Marco

    2016-01-01

    Silicon nanowires are label-free sensors that allow real-time measurements. They are economical and pave the road for point-of-care applications but require complex readout and skilled personnel. We propose a new model and technique for sensing nanowire sensors using alternating currents (AC) to capture both magnitude and phase information from the sensor. This approach combines the advantages of complex impedance spectroscopy with the noise reduction performances of lock-in techniques. Experimental results show how modifications of the sensors with different surface chemistries lead to the same direct-current (DC) response but can be discerned using the AC approach. PMID:27104577

  14. A preliminary study on the prediction of damaged areas on ordinary concrete and lightweight concrete using electromechanical impedance technique with different frequency ranges

    NASA Astrophysics Data System (ADS)

    Cho, K. J.; Na, S.; Jang, J. G.; Lee, H. K.

    2014-03-01

    The electromechanical impedance (EMI) method for NDE uses a single piezoelectric material to act as an actuator and a sensor simultaneously, and the EMI method is suitable for structures with complex surfaces. However, this technique still has wide range of problems which needs to be investigated. For one, locating damaged areas on a host structure precisely is known to be extremely difficult as this non-model based technique heavily relies on the variations in the impedance signatures. In this study, an attempt to locate the damaged areas on an ordinary concrete panel and a lightweight concrete panel using bottom ash is carried out by using different frequency ranges. Since the sensing range decreases as the excitation frequency of piezoelectric material increases, one can possibly predict the damaged areas by analyzing the impedance signatures from different frequency ranges. Statistical analysis method such as root mean square deviation (RMSD) is applied to determine the changes of the experimental structures, and the RMSD values of low frequency range and high frequency range are compared to verify the relationship between the frequency range and sensing range. Furthermore, the applicability of this method to locating the damaged areas is investigated on various materials including the lightweight concrete.

  15. High power dc/dc and dc/ac electrical power conversion techniques developed

    NASA Technical Reports Server (NTRS)

    Berryman, G.; White, W. T.

    1967-01-01

    Small magnetic amplifiers pass square waves through transformers and provide regulation by varying the pulse width on the secondary of the output power transformers. This pulse duration modulation is provided by a control rectifier technique or a phase-shift technique.

  16. Local impedance measurement of an electrode/single-pentacene-grain interface by frequency-modulation scanning impedance microscopy

    NASA Astrophysics Data System (ADS)

    Kimura, Tomoharu; Kobayashi, Kei; Yamada, Hirofumi

    2015-08-01

    The device performances of organic thin film transistors are often limited by the metal-organic interface because of the disordered molecular layers at the interface and the energy barriers against the carrier injection. It is important to study the local impedance at the interface without being affected by the interface morphology. We combined frequency modulation atomic force microscopy with scanning impedance microscopy (SIM) to sensitively measure the ac responses of the interface to an ac voltage applied across the interface and the dc potential drop at the interface. By using the frequency-modulation SIM (FM-SIM) technique, we characterized the interface impedance of a Pt electrode and a single pentacene grain as a parallel circuit of a contact resistance and a capacitance. We found that the reduction of the contact resistance was caused by the reduction of the energy level mismatch at the interface by the FM-SIM measurements, demonstrating the usefulness of the FM-SIM technique for investigation of the local interface impedance without being affected by its morphology.

  17. Local impedance measurement of an electrode/single-pentacene-grain interface by frequency-modulation scanning impedance microscopy

    SciTech Connect

    Kimura, Tomoharu; Yamada, Hirofumi; Kobayashi, Kei

    2015-08-07

    The device performances of organic thin film transistors are often limited by the metal–organic interface because of the disordered molecular layers at the interface and the energy barriers against the carrier injection. It is important to study the local impedance at the interface without being affected by the interface morphology. We combined frequency modulation atomic force microscopy with scanning impedance microscopy (SIM) to sensitively measure the ac responses of the interface to an ac voltage applied across the interface and the dc potential drop at the interface. By using the frequency-modulation SIM (FM-SIM) technique, we characterized the interface impedance of a Pt electrode and a single pentacene grain as a parallel circuit of a contact resistance and a capacitance. We found that the reduction of the contact resistance was caused by the reduction of the energy level mismatch at the interface by the FM-SIM measurements, demonstrating the usefulness of the FM-SIM technique for investigation of the local interface impedance without being affected by its morphology.

  18. Characterization of protein-immobilized polystyrene nanoparticles using impedance spectroscopy.

    PubMed

    Park, Soo-In; Lee, Sang-Yup

    2014-10-01

    A novel approach for characterization of non-conductive protein-immobilized nanoparticles using AC impedance spectroscopy combined with conductive atomic force microscopy was examined. As AC impedance spectroscopy can provide information on diverse electrical properties such as capacitance and inductance, it is applicable to the characterization of non-conductive substances. Several non-conductive protein-immobilized polystyrene nanoparticles were analyzed using AC impedance spectroscopy, and their impedance spectra were used as markers for nanoparticle identification. Analyses of impedance signals using an electrical circuit model established that the capacitance and inductance of each nanoparticle changed with the adsorbed protein and that impedance spectral differences were characteristic properties of the proteins. From this study, AC impedance spectroscopy was shown to be a useful tool for characterization of non-conductive nanoparticles and is expected to be applicable to the development of sensors for nanomaterials. PMID:25942903

  19. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  20. A new technique for simulating composite material. Task 2: Analytical solutions with Generalized Impedance Boundary Conditions (GIBCs)

    NASA Technical Reports Server (NTRS)

    Ricoy, M. A.; Volakis, J. L.

    1989-01-01

    The diffraction problem associated with a multilayer material slab recessed in a perfectly conducting ground plane is formulated and solved via the Generalized Scattering Matrix Formulation (GSMF) in conjunction with the dual integral equation approach. The multilayer slab is replaced by a surface obeying a generalized impedance boundary condition (GIBC) to facilitate the computation of the pertinent Wiener Hopf split functions and their zeros. Both E(sub z) and H(sub z) polarizations are considered and a number of scattering patterns are presented, some of which are compared to exact results available for a homogeneous recessed slab.

  1. A study of optothermal and AC impedance properties of Cr-doped Mn{sub 3}O{sub 4} sprayed thin films

    SciTech Connect

    Larbi, T.; Amara, A.; Ben Said, L.; Ouni, B.; Haj Lakhdar, M.; Amlouk, M.

    2015-10-15

    Highlights: • Outlining adequacy an original combination of several characterization means. • Structural, optical, thermal and electrical properties have been studied. • Opto- thermal analysis shows that band gap can be tuned through Cr doping. • Outlining physical properties for an eventual development of sensing components. - Abstract: Chrome-doped Mn{sub 3}O{sub 4} thin films were grown on the glass substrates by the spray pyrolysis technique at 350 °C. XRD diffraction and Raman spectroscopy analysis revealed that all samples have tetragonal spinel structure with a preferred orientation along the direction (1 0 1). Absorption coefficient has been measured using both transmission and mirage effect. The band gap energy decreases from 2.2 to 1.9 eV with Cr content while Urbach energy value increases from 354 to 473 meV. Also, thermal conductivity was evaluated. Finally, physical properties have been evaluated and discussed in terms of alteration of the band gap edges, electrical patterns and mirage effect.

  2. Impedance Scaling and Impedance Control

    NASA Astrophysics Data System (ADS)

    Chou, W.; Griffin, J.

    1997-05-01

    When a machine becomes really large, such as the Really Large Hadron Collider (RLHC),(G. W. Foster and E. Malamud, Fermilab-TM-1976 (June, 1996).) of which the circumference could reach the order of megameters, beam instability could be an essential bottleneck. This paper studies the scaling of the instability threshold vs. machine size when the coupling impedance scales in a ``normal'' way. It is shown that the beam would be intrinsically unstable for the RLHC. As a possible solution to this problem, it is proposed to introduce local impedance inserts for controlling the machine impedance. In the longitudinal plane, this could be done by using a heavily detuned rf cavity (e.g., a biconical structure), which could provide large imaginary impedance with the right sign (i.e., inductive or capacitive) while keeping the real part small. In the transverse direction, a carefully designed variation of the cross section of a beam pipe could generate negative impedance that would partially compensate the transverse impedance in one plane.

  3. The measurement of peripheral blood volume reactions to tilt test by the electrical impedance technique after exercise in athletes

    NASA Astrophysics Data System (ADS)

    Melnikov, A. A.; Popov, S. G.; Nikolaev, D. V.; Vikulov, A. D.

    2013-04-01

    We have investigated the distribution of peripheral blood volumes in different regions of the body in response to the tilt-test in endurance trained athletes after aerobic exercise. Distribution of peripheral blood volumes (ml/beat) simultaneously in six regions of the body (two legs, two hands, abdomen, neck and ECG) was assessed in response to the tilt-test using the impedance method (the impedance change rate (dZ/dT). Before and after exercise session cardiac stroke (CSV) and blood volumes in legs, arms and neck were higher in athletes both in lying and standing positions. Before exercise the increase of heart rate and the decrease of a neck blood volume in response to tilting was lower (p <0.05) but the decrease of leg blood volumes was higher (p<0.001) in athletes. The reactions in arms and abdomen blood volumes were similar. Also, the neck blood volumes as percentage of CSV (%/CSV) did not change in the control but increased in athletes (p <0.05) in response to the tilt test. After (10 min recovery) the aerobic bicycle exercise (mean HR = 156±8 beat/min, duration 30 min) blood volumes in neck and arms in response to the tilting were reduced equally, but abdomen (p<0.05) and leg blood volumes (p <0.001) were lowered more significantly in athletes. The neck blood flow (%/CSV) did not change in athletes but decreased in control (p<0.01), which was offset by higher tachycardia in response to tilt-test in controls after exercise. The data demonstrate greater orthostatic tolerance in athletes both before and after exercise during fatigue which is due to effective distribution of blood flows aimed at maintaining cerebral blood flow.

  4. Developing 226Ra and 227Ac age-dating techniques for nuclear forensics to gain insight from concordant and non-concordant radiochronometers

    DOE PAGES

    Kayzar, Theresa M.; Williams, Ross W.

    2015-09-26

    The model age or ‘date of purification’ of a nuclear material is an important nuclear forensic signature. In this study, chemical separation and MC-ICP-MS measurement techniques were developed for 226 Ra and 227Ac: grand-daughter nuclides in the 238U and 235U decay chains respectively. The 230Th-234U, 226Ra-238U, 231Pa-235U, and 227Ac-235U radiochronometers were used to calculate model ages for CRM-U100 standard reference material and two highly-enriched pieces of uranium metal from the International Technical Working Group Round Robin 3 Exercise. In conclusion, the results demonstrate the accuracy of the 226Ra-238U and 227Ac-235U chronometers and provide information about nuclide migration during uranium processing.

  5. An oppositional biogeography-based optimization technique to reconstruct organ boundaries in the human thorax using electrical impedance tomography.

    PubMed

    Rashid, A; Kim, B S; Khambampati, A K; Kim, S; Kim, K Y

    2011-07-01

    Electrical impedance tomography (EIT) is a non-invasive imaging modality which has been actively studied for its industrial as well as medical applications. However, the performance of the inverse algorithms to reconstruct the conductivity images using EIT is often sub-optimal. Several factors contribute to this poor performance, including high sensitivity of EIT to the measurement noise, the rounding-off errors, the inherent ill-posed nature of the problem and the convergence to a local minimum instead of the global minimum. Moreover, the performance of many of these inverse algorithms heavily relies on the selection of initial guess as well as the accurate calculation of a gradient matrix. Considering these facts, the need for an efficient optimization algorithm to reach the correct solution cannot be overstated. This paper presents an oppositional biogeography-based optimization (OBBO) algorithm to estimate the shape, size and location of organ boundaries in a human thorax using 2D EIT. The organ boundaries are expressed as coefficients of truncated Fourier series, while the conductivities of the tissues inside the thorax region are assumed to be known a priori. The proposed method is tested with the use of a realistic chest-shaped mesh structure. The robustness of the algorithm has been verified, first through repetitive numerical simulations by adding randomly generated measurement noise to the simulated voltage data, and then with the help of an experimental setup resembling the human chest. An extensive statistical analysis of the estimated parameters using OBBO and its comparison with the traditional modified Newton-Raphson (mNR) method are presented. The results demonstrate that OBBO has significantly better estimation performance compared to mNR. Furthermore, it has been found that OBBO is robust to the initial guess of the size and location of the boundaries as well as offering a reasonable solution when the a priori knowledge of the conductivity of the

  6. The investigation of the some body parameters of obese and (obese+diabetes) patients with using bioelectrical impedance analysis techniques

    NASA Astrophysics Data System (ADS)

    Yerlikaya, Emrah; Karageçili, Hasan; Aydin, Ruken Zeynep

    2016-04-01

    Obesity is a key risk for the development of hyperglycemia, hypertension, hyperlipidemia, insulin resistance and is totally referred to as the metabolic disorders. Diabetes mellitus, a metabolic disorder, is related with hyperglycemia, altered metabolism of lipids, carbohydrates and proteins. The minimum defining characteristic feature to identify diabetes mellitus is chronic and substantiated elevation of circulating glucose concentration. In this study, it is aimed to determine the body composition analyze of obese and (obese+diabetes) patients.We studied the datas taken from three independent groups with the body composition analyzer instrument. The body composition analyzer calculates body parameters, such as body fat ratio, body fat mass, fat free mass, estimated muscle mass, and base metabolic rate on the basis of data obtained by Dual Energy X-ray Absorptiometry using Bioelectrical Impedance Analysis. All patients and healthy subjects applied to Siirt University Medico and their datas were taken. The Statistical Package for Social Sciences version 21 was used for descriptive data analysis. When we compared and analyzed three groups datas, we found statistically significant difference between obese, (obese+diabetes) and control groups values. Anova test and tukey test are used to analyze the difference between groups and to do multiple comparisons. T test is also used to analyze the difference between genders. We observed the statistically significant difference in age and mineral amount p<0.00 between (diabetes+obese) and obese groups. Besides, when these patient groups and control group were analyzed, there were significant difference between most parameters. In terms of education level among the illiterate and university graduates; fat mass kg, fat percentage, internal lubrication, body mass index, water percentage, protein mass percentage, mineral percentage p<0.05, significant statistically difference were observed. This difference especially may result

  7. Developing high-sensitivity ethanol liquid sensors based on ZnO/porous Si nanostructure surfaces using an electrochemical impedance technique

    NASA Astrophysics Data System (ADS)

    Husairi, Mohd; Rouhi, Jalal; Alvin, Kevin; Atikah, Zainurul; Rusop, Muhammad; Abdullah, Saifollah

    2014-07-01

    ZnO nanostructures were synthesized on porous Si (PSi) substrates using the thermal catalytic-free immersion method. Crack-like ZnO nanostructures were formed on the bare, sponge-like PSi structures. An approach to fabricate chemical sensors based on the ZnO/PSi nanostructure arrays that uses an electrochemical impedance technique is reported. Sensor performance was evaluated for ethanol solutions by the morphology and defect structures of the ZnO nanostructure layer. Results indicate that the ZnO/PSi nanostructure chemical sensor exhibits rapid and high response to ethanol compared with a PSi nanostructure sensor because of its small particle size and an oxide layer acting as a capacitive layer on the PSi nanostructure surface.

  8. AC Impedance Behavior of LaNi3.55Mn0.4Al0.3Co0.6Fe0.15 Hydrogen-Storage Alloy: Effect of Surface Area

    NASA Astrophysics Data System (ADS)

    Tliha, M.; Khaldi, C.; Lamloumi, J.

    2016-04-01

    The decrease of Cobalt content in alloy is very beneficial to reduce the production cost of the alloy, whereas the effect of Co on cycle life of the AB5-type hydrogen-storage alloys is extremely important. Therefore, it is interesting to investigate low-Co and/or Co-free AB5-type alloys in which Co was substituted by other elements. Iron is a key element in the development of low-Co AB5-type alloys. The aim of this work is to systematically investigate the effect of the real surface area on the all kinetic properties of a low-Co LaNi3.55Mn0.4Al0.3Co0.6Fe0.15 alloy under cycling using electrochemical impedance spectroscopy (EIS) technique. All kinetic properties of the electrode, such as exchange density, limiting current density, high-rate charge/discharge ability, cycle life time, electrocatalytic activity, and diffusion rate are related to the real surface area. During the EIS analysis, interestingly, we found that with increasing number of charge/discharge cycles, the metal hydride alloy powders undergo micro-cracking into smaller particles, and thus the real surface area of the alloy increases, which then influences the kinetic properties of the electrode reactions.

  9. Impedance analysis of acupuncture points and pathways

    NASA Astrophysics Data System (ADS)

    Teplan, Michal; Kukučka, Marek; Ondrejkovičová, Alena

    2011-12-01

    Investigation of impedance characteristics of acupuncture points from acoustic to radio frequency range is addressed. Discernment and localization of acupuncture points in initial single subject study was unsuccessfully attempted by impedance map technique. Vector impedance analyses determined possible resonant zones in MHz region.

  10. Theory of the ac spin-valve effect.

    PubMed

    Kochan, Denis; Gmitra, Martin; Fabian, Jaroslav

    2011-10-21

    The spin-valve complex magnetoimpedance of symmetric ferromagnet-normal-metal-ferromagnet junctions is investigated within the drift-diffusion (standard) model of spin injection. The ac magnetoresistance-the real part difference of the impedances of the parallel and antiparallel magnetization configurations-exhibits an overall damped oscillatory behavior, as an interplay of the diffusion and spin relaxation times. In wide junctions the ac magnetoresistance oscillates between positive and negative values, reflecting resonant amplification and depletion of the spin accumulation, while the line shape for thin tunnel junctions is predicted to be purely Lorentzian. The ac spin-valve effect could be a technique to extract spin transport and spin relaxation parameters in the absence of a magnetic field and for a fixed sample size. PMID:22107552

  11. The feasibility of home monitoring of impedance with the forced oscillation technique in chronic obstructive pulmonary disease subjects.

    PubMed

    Timmins, Sophie C; Diba, Chantale; Thamrin, Cindy; Berend, Norbert; Salome, Cheryl M; King, Gregory G

    2013-01-01

    Respiratory system resistance (Rrs) and reactance (Xrs) measured by forced oscillation technique (FOT) can be potentially used for home monitoring in COPD. Our aims were to determine the technical acceptability, adherence and variability of unsupervised, home FOT measurements over ten consecutive days. Supervised spirometry and FOT measurements were made on ten clinically stable COPD subjects at their homes at the study initiation. Subjects then self-recorded FOT twice daily for ten consecutive days with data transmitted to the laboratory server via a 3G mobile network. Subjects had a mean (SD) age of 68(8) years, smoking history 38.4(8.7) pack/years, post-bronchodilator FEV1 42.4(12.0)% predicted, FEV1/FVC ratio 0.45(0.10), mean Rrs 121.7(26.1)% predicted and mean Xrs 746.8(330.3)% predicted. The supervised measurements of mean Rrs and mean Xrs were similar to the unsupervised measurements (p = 0.34 and p = 0.92, respectively). 197 of 200 possible measurements were transmitted, all of which were deemed to be technically acceptable. The within-subject standard deviation, Sw, of Rrs-total and Xrs-total were 0.47 and 1.0 cmH(2)O L s(-1), respectively. Subjects who have COPD make reliable, unsupervised FOT measurements at home with a high degree of adherence. The day-to-day variability of FOT measurements was similar to that of supervised laboratory recordings. These results support the conduct of larger, longer-term studies of FOT monitoring in COPD.

  12. A new on-chip all-digital three-phase full-bridge dc/ac power inverter with feedforward and frequency control techniques.

    PubMed

    Chen, Jiann-Jong; Kung, Che-Min

    2010-09-01

    The communication speed between components is far from satisfactory. To achieve high speed, simple control system configuration, and low cost, a new on-chip all-digital three-phase dc/ac power inverter using feedforward and frequency control techniques is proposed. The controller of the proposed power inverter, called the shift register, consists of six-stage D-latch flip-flops with a goal of achieving low-power consumption and area efficiency. Variable frequency is achieved by controlling the clocks of the shift register. One advantage regarding the data signal (D) and the common clock (CK) is that, regardless of the phase difference between the two, all of the D-latch flip-flops are capable of delaying data by one CK period. To ensure stability, the frequency of CK must be six times higher than that of D. The operation frequency of the proposed power inverter ranges from 10 Hz to 2 MHz, and the maximum output loading current is 0.8 A. The prototype of the proposed circuit has been fabricated with TSMC 0.35 μm 2P4M CMOS processes. The total chip area is 2.333 x 1.698 mm2. The three-phase dc/ac power inverter is applicable in uninterrupted power supplies, cold cathode fluorescent lamps, and motors, because of its ability to convert the dc supply voltage into the three-phase ac power sources.

  13. Impedance Measurement Box

    ScienceCinema

    Christophersen, Jon

    2016-07-12

    Energy storage devices, primarily batteries, are now more important to consumers, industries and the military. With increasing technical complexity and higher user expectations, there is also a demand for highly accurate state-of-health battery assessment techniques. IMB incorporates patented, proprietary, and tested capabilities using control software and hardware that can be part of an embedded monitoring system. IMB directly measures the wideband impedance spectrum in seconds during battery operation with no significant impact on service life. It also can be applied to batteries prior to installation, confirming health before entering active service, as well as during regular maintenance. For more information about this project, visit http://www.inl.gov/rd100/2011/impedance-measurement-box/

  14. Impedance Measurement Box

    SciTech Connect

    Christophersen, Jon

    2011-01-01

    Energy storage devices, primarily batteries, are now more important to consumers, industries and the military. With increasing technical complexity and higher user expectations, there is also a demand for highly accurate state-of-health battery assessment techniques. IMB incorporates patented, proprietary, and tested capabilities using control software and hardware that can be part of an embedded monitoring system. IMB directly measures the wideband impedance spectrum in seconds during battery operation with no significant impact on service life. It also can be applied to batteries prior to installation, confirming health before entering active service, as well as during regular maintenance. For more information about this project, visit http://www.inl.gov/rd100/2011/impedance-measurement-box/

  15. Dielectric, ferroelectrics properties and impedance spectroscopy analysis of the [(Na0.535K0.480)0.966Li0.058](Nb0.90Ta0.10)O3-based lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Saidi, M.; Chaouchi, A.; D'Astorg, S.; Rguiti, M.; Courtois, C.

    2015-04-01

    Polycrystalline of [(Na0.535K0.480)0.966Li0.058](Nb0.90Ta0.10)O3 samples were prepared using the high-temperature solid-state reaction technique. X-ray diffraction (XRD) analysis indicates the formation of a single-phase with orthorhombic structure. AC impedance plots were used as tool to analyze the electrical behavior of the sample as a function of frequency at different temperatures. The AC impedance studies revealed the presence of grain effect, from 425°C onwards. Complex impedance analysis indicated non-Debye type dielectric relaxation. The Nyquist plot showed the negative temperature coefficient of resistance (NTCR) characteristic of NKLNT. The AC conductivity results were used to correlate with the barrier hopping (CBH) model to evaluate the binding energy (Wm), the minimum hopping distance (Rmin), the density of states at Fermi level (N(Ef)), and the activation energy of the compound.

  16. Measurement of surface resistivity/conductivity of different organic thin films by a combination of optical shearography and electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Habib, Khaled

    2013-11-01

    Shearography techniques were applied again to measure the surface resistivity/conductivity of different organic thin films on a metallic substrate. The coatings were ACE premium-grey enamel (spray coating), a yellow Acrylic lacquer, and a gold nail polish on a carbon steel substrate. The investigation was focused on determining the in-plane displacement of the coatings by shearography between 20 and 60 °C. Then, the alternating current (AC) impedance (resistance) of the same coated samples was determined by electrochemical impedance spectroscopy (EIS) in 3.0% NaCl solution at room temperature. As a result, the proportionality constant (resistivity or conductivity = 1/surface resistivity) between the determined AC impedance and the in-plane displacement was obtained. The obtained resistivity of all investigated coatings, 40:15 × 106-24:6 × 109Ωcm, was found in the insulator range.

  17. ADVANCES IN IMPEDANCE THEORY

    SciTech Connect

    Stupakov, G.; /SLAC

    2009-06-05

    We review recent progress in the following areas of the impedance theory: calculation of impedance of tapers and small angle collimators; optical approximation and parabolic equation for the high-frequency impedance; impedance due to resistive inserts in a perfectly conducting pipe.

  18. (abstract) Scaling Nominal Solar Cell Impedances for Array Design

    NASA Technical Reports Server (NTRS)

    Mueller, Robert L; Wallace, Matthew T.; Iles, Peter

    1994-01-01

    This paper discusses a task the objective of which is to characterize solar cell array AC impedance and develop scaling rules for impedance characterization of large arrays by testing single solar cells and small arrays. This effort is aimed at formulating a methodology for estimating the AC impedance of the Mars Pathfinder (MPF) cruise and lander solar arrays based upon testing single cells and small solar cell arrays and to create a basis for design of a single shunt limiter for MPF power control of flight solar arrays having very different inpedances.

  19. Synthesis and Characterization of Ba(Zr{sub x}Ti{sub 1-x})O{sub 3} Solid Solutions Using Impedance Spectroscopic Techniques

    SciTech Connect

    Bajpai, P. K.; Mohan, C. R. K.

    2011-11-22

    Technologically important solid solutions of Ba(Zr{sub x}Ti{sub 1-x})O{sub 3} are synthesized using conventional solid state route. Relatively dense and single phase ceramics are confirmed using X-ray diffraction. Homogeneous and micron size grain growth is characterized using SEM. Impedance spectroscopy is used to study the electrical properties of ceramics. Broad and diffuse impedance loss peak is observed above 250 deg. C, which shifts towards higher frequency with increase in temperature. The distribution of relaxation frequency may be associated with the B-site cationic disorder due to the random distribution of (Zr{sup 4+}/Ti{sup +4}) having different ionic radii. Impedance relaxation obeys the Arrhenius relation with activation energy, E{tau} is 0.31 eV and 0.48 eV for BZT compositions with x = 0.10 and 0.15 respectively. Equivalent circuit representation using two RC element coupled in parallel is used to analyse the impedance response.

  20. Technique for reduction of mechanical losses in AC superconducting coils due to thermal expansion properties of various FRP bobbins

    NASA Astrophysics Data System (ADS)

    Sekine, N.; Tada, S.; Higuchi, T.; Furumura, Y.; Takao, T.; Yamanaka, A.

    2005-10-01

    We reported about reduction of mechanical losses in AC superconducting coils. The method is the use of FRP bobbins fabricated with special fibers. Since their FRPs have negative thermal expansion coefficient to the fiber direction, the FRP bobbins expand to the circumferential direction during cooling down. In case of the superconducting coils with such FRP bobbins, the winding tensions do not decrease during cooling down. Therefore, the mechanical losses are reduced by the suppression of wire's vibration. Their special FRPs are a Dyneema® fiber reinforced plastic (DFRP), a Dyneema and glass fiber reinforced plastic (DGFRP), and a Zylon® fiber reinforced plastic (ZFRP). These materials have negative thermal expansion coefficient to the fiber direction, however, the amplitudes of thermal expansion are various by the quantity or quality of the fiber. In this paper, the values of thermal expansion were actually measured, and it was discussed about the influence on the mechanical losses. At the experimental results, the mechanical loss was small, so that the thermal strain to the circumferential direction on the coil was large. Moreover, in case of the coils with sufficiently strong winding tensions at coil-operating temperature, the mechanical losses vanished.

  1. Plasmonic-Based Electrochemical Impedance Spectroscopy: Application to Molecular Binding

    PubMed Central

    Lu, Jin; Wang, Wei; Wang, Shaopeng; Shan, Xiaonan; Li, Jinghong; Tao, Nongjian

    2012-01-01

    Plasmonic-based electrochemical impedance spectroscopy (P-EIS) is developed to investigate molecular binding on surfaces. Its basic principle relies on the sensitive dependence of surface plasmon resonance (SPR) signal on surface charge density, which is modulated by applying an AC potential to a SPR chip surface. The AC component of the SPR response gives the electrochemical impedance, and the DC component provides the conventional SPR detection. The plasmonic-based impedance measured over a range of frequency is in quantitative agreement with the conventional electrochemical impedance. Compared to the conventional SPR detection, P-EIS is sensitive to molecular binding taking place on the chip surface, and less sensitive to bulk refractive index changes or non-specific binding. Moreover, this new approach allows for simultaneous SPR and surface impedance analysis of molecular binding processes. PMID:22122514

  2. Synthesis, dielectric behavior and impedance measurement studies of Cr-substituted Zn-Mn ferrites

    SciTech Connect

    Hankare, P.P.; Patil, R.P.; Garadkar, K.M.; Sasikala, R.; Chougule, B.K.

    2011-03-15

    Graphical abstract: Variation of dielectric constant with frequency. Research highlights: {yields} Sol-gel route synthesized spherical crystalline nanoparticles of ZnMn{sub 1-x}Cr{sub x}FeO{sub 4}. {yields} XRD, DTA, FTIR, SEM, dielectric and impedance study. {yields} The ferrites show concentration dependence of ac electrical conductivity. {yields} Impedance response is dominated by grain boundary behavior. -- Abstract: Nanocrystalline ZnMn{sub 1-x}Cr{sub x}FeO{sub 4} (1.0 {>=} x {>=} 0) ferrites were synthesized by sol-gel technique. X-ray diffraction (XRD) confirmed the formation of single phasic cubic spinel lattice for all the compositions studied. Lattice parameter shows a decreasing trend with an increase in Cr content in the compositions. Formation of spherical nanoparticles was revealed by scanning electron microscopy (SEM) analysis. Infrared spectroscopic studies revealed two main absorption bands in the range 400-800 cm{sup -1} arising due to tetrahedral (A) and octahedral (B) site vibrations. Dielectric constant, dielectric loss tangent, ac conductivity and complex impedance were measured as a function of frequency in the range 20 Hz to 1 MHz. Frequency dependence of dielectric constant shows dielectric dispersion due to the Maxwell-Wagner type of interfacial polarization. The role of chromium in modifying structural and dielectric properties of these ferrites has been explained.

  3. Impedance of the amphibian lens.

    PubMed

    Duncan, G; Patmore, L; Pynsent, P B

    1981-03-01

    1. The electrical resistance of the perfused frog lens was measured using separate internal current passing and voltage measuring electrodes. 2. The resistance values obtained using voltage clamp and direct and alternating current techniques were in good agreement. 3. The voltage transients induced in response to current steps were multi-exponential in form. Increasing the external K concentration reduced both the amplitude of the voltage response and the rise time. 4. The impedance characteristics were investigated in more detail using alternating current analysis techniques. 5. In an equivalent-circuit modelling study it was assumed that there were two major pathways for current flow in the lens. The first through the surface membranes and the second through the inner fibre membranes via the narrow extracellular spaces. 6. The experimental impedance loci could not be adequately fitted by a simple two time constant model and a third time constant was introduced which may represent diffusion polarization effects in the extracellular spaces. 7. The three time constant model gave good and consistent fits to impedance data from a number of preparations. 8. The form of the impedance loci was also dependent on the external K concentration, but the only fitted parameter which changed consistently with external K was the surface membrane resistance (Rs).

  4. Impedance of the amphibian lens.

    PubMed Central

    Duncan, G; Patmore, L; Pynsent, P B

    1981-01-01

    1. The electrical resistance of the perfused frog lens was measured using separate internal current passing and voltage measuring electrodes. 2. The resistance values obtained using voltage clamp and direct and alternating current techniques were in good agreement. 3. The voltage transients induced in response to current steps were multi-exponential in form. Increasing the external K concentration reduced both the amplitude of the voltage response and the rise time. 4. The impedance characteristics were investigated in more detail using alternating current analysis techniques. 5. In an equivalent-circuit modelling study it was assumed that there were two major pathways for current flow in the lens. The first through the surface membranes and the second through the inner fibre membranes via the narrow extracellular spaces. 6. The experimental impedance loci could not be adequately fitted by a simple two time constant model and a third time constant was introduced which may represent diffusion polarization effects in the extracellular spaces. 7. The three time constant model gave good and consistent fits to impedance data from a number of preparations. 8. The form of the impedance loci was also dependent on the external K concentration, but the only fitted parameter which changed consistently with external K was the surface membrane resistance (Rs). PMID:6973626

  5. ac bidirectional motor controller

    NASA Technical Reports Server (NTRS)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  6. Influence of temperature on the electric, dielectric and AC conductivity properties of nano-crystalline zinc substituted cobalt ferrite synthesized by solution combustion technique

    NASA Astrophysics Data System (ADS)

    Rani, Ritu; Kumar, Gagan; Batoo, Khalid M.; Singh, M.

    2014-06-01

    Cobalt-zinc nanoferrites with formulae Co ZnFeO, where x = 0.0, 0.1, 0.2 and 0.3, have been synthesized by solution combustion technique. The variation of DC resistivity with temperature shows the semiconducting behavior of all nanoferrites. The dielectric properties such as dielectric constant (') and dielectric loss tangent (tan are investigated as a function of temperature and frequency. Dielectric constant and loss tangent are found to be increasing with an increase in temperature while with an increase in frequency both, ' and tan , are found to be decreasing. The dielectric properties have been explained on the basis of space charge polarization according to Maxwell-Wagner's two-layer model and the hopping of charge between Fe and Fe. Further, a very high value of dielectric constant and a low value of tan are the prime achievements of the present work. The AC electrical conductivity ( is studied as a function of temperature as well as frequency and is observed to be increasing with the increase in temperature and frequency.

  7. Wakefields and coupling impedances

    NASA Astrophysics Data System (ADS)

    Kurennoy, Sergey

    1995-02-01

    After a short introduction of the wake potentials and coupling impedances, a few new results in impedance calculations are discussed. The first example is a new analytical method for calculating impedances of axisymmetric structures in the low frequency range, below the cutoff frequency of the vacuum chamber. The second example demonstrates that even very small discontinuities on a smooth waveguide can result in appearance of trapped modes, with frequencies slightly below the waveguide cutoff frequency. The high-frequency (above the cutoff) behavior of the coupling impedance of many small discontinuities is discussed in the third example.

  8. Dielectric and impedance behavior of neodymium substituted strontium hexaferrite

    NASA Astrophysics Data System (ADS)

    Bhat, Bilal Hamid; Samad, Rubiya; Want, Basharat

    2016-09-01

    In this study, dielectric behavior and complex impedance of neodymium (Nd) substituted strontium hexaferrite system: Sr1- x Nd x Fe12O19 ( x = 0.0, 0.05, 0.1, 0.15, 0. 20), synthesized by citrate precursor technique, have been evaluated as a function of applied frequency and temperature. Variation of dielectric constant and dielectric loss with frequency shows the identical behavior for all the compositions. The value of dielectric constant increases with Nd doping. Relaxation process is observed in the composition x = 0.20, and the peaks in this composition shift toward the higher-frequency region as the temperature increases. The dielectric constants show temperature-independent behavior at low temperature, whereas at higher temperatures it increases for all the frequencies. The AC conductivity follows Jonscher's power law, showing that conduction mechanism is due to polaron hopping. Complex impedance as a function of composition and temperature is used to examine the role of grain and grain boundary in the prepared material. Cole-cole plot shows only one semicircle up to x = 0.15, while as for x = 0.20 two semicircles are observed. The conduction mechanism is explained on the basis of both grain and grain boundary.

  9. Studies of deionization and impedance spectroscopy for blood analyzer

    NASA Astrophysics Data System (ADS)

    Kwong, Charlotte C.; Li, Nan; Ho, Chih-Ming

    2005-11-01

    Blood analysis provides vital information for health conditions. For instance, typical infection response is correlated to an elevated White Blood Cell (WBC) count, while low Red Blood Cell (RBC) count, hemoglobin and hematocrit are caused by anemia or internal bleeding. We are developing two essential modules, deionization (DI) chip and microfluidic cytometer with impedance spectroscopy flow, for enabling the realization of a single platform miniaturized blood analyzer. In the proposed analyzer, blood cells are preliminarily sorted by Dielectrophoretic (DEP) means into sub-groups, differentiated and counted by impedance spectroscopy in a flow cytometer. DEP techniques have been demonstrated to stretch DNA, align Carbon Nanotubes (CNT) and trap cells successfully. However, DEP manipulation does not function in biological media with high conductivity. The DI module is designed to account for this challenge. H Filter will serve as an ion extraction platform in a microchamber. Sample and buffer do not mix well in micro scale allowing the ions being extracted by diffusion without increasing the volume. This can keep the downstream processing time short. Micro scale hydrodynamic focusing is employed to place single cell passing along the central plane of the flow cytometer module. By applying an AC electrical field, suspended cells are polarized, membrane capacitance C m, cytoplasm conductivity σ c, and cytoplasm permittivity ɛ c will vary as functions of frequency. Tracing back the monitored current, the numbers of individual cell species can be evaluated.

  10. Linearly tapered slot antenna impedance characteristics

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1995-01-01

    The paper presents for the first time an experimental technique to de-embed the input impedance of a LTSA from the measured reflection coefficient. The results show that the input impedance is dependent on the semi-flare angle and the length of the LTSA. The Re(Z(sub in)) is large when the electrical length of the LTSA is small and is on the order of few thousand ohms. However for an electrically large LTSA the Re(Z(sub in)) is in the range of 55 to 130 ohms. These results have potential applications in the design of broad band impedance matching networks for LTSA.

  11. Antenna pattern control using impedance surfaces

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Liu, Kefeng; Tirkas, Panayiotis A.

    1993-01-01

    During the period of this research project, a comprehensive study of pyramidal horn antennas was conducted. Full-wave analytical and numerical techniques were developed to analyze horn antennas with or without impedance surfaces. Based on these full-wave analytic techniques, research was conducted on the use of impedance surfaces on the walls of the horn antennas to control the antenna radiation patterns without a substantial loss of antenna gain. It was found that the use of impedance surfaces could modify the antenna radiation patterns. In addition to the analytical and numerical models, experimental models were also constructed and they were used to validate the predictions. Excellent agreement between theoretical predictions and the measured data was obtained for pyramidal horns with perfectly conducting surfaces. Very good comparisons between numerical and experimental models were also obtained for horns with impedance surfaces.

  12. A 4-compartment model based validation of air displacement plethysmography, dual energy X-ray absorptiometry, skinfold technique & bio-electrical impedance for measuring body fat in Indian adults

    PubMed Central

    Kuriyan, Rebecca; Thomas, Tinku; Ashok, Sangeetha; J, Jayakumar; Kurpad, Anura V.

    2014-01-01

    Background & objectives: Many methods are available for measuring body fat of an individual, each having its own advantages and limitations. The primary objective of the present study was to validate body fat estimates from individual methods using the 4-compartment (4C) model as reference. The second objective was to obtain estimates of hydration of fat free mass (FFM) using the 4C model. Methods: The body fat of 39 adults (19 men and 20 women) aged 20-40 yr was estimated using air displacement plethysmography (ADP), dual energy X-ray absorptiometry (DEXA), 4-skinfold technique and bio-electrical impedance (BIA). Total body water was estimated using isotope dilution method. Results: All the methods underestimated body fat when compared to 4C model, except for DEXA and the mean difference from the reference was lowest for DEXA and ADP. The precision of the fat mass estimated from 4C model using the propagation of error was 0.25 kg, while the mean hydration factor obtained by the 4C model was found to be 0.74 ± 0.02 in the whole group of men and women. Interpretations & conclusion: The results of the present study suggest that DEXA and ADP methods can provide reasonably accurate estimates of body fat, while skinfold and bio-electrical impedance methods require the use of population specific equations. PMID:25027079

  13. Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review

    PubMed Central

    Bera, Tushar Kanti

    2014-01-01

    Under the alternating electrical excitation, biological tissues produce a complex electrical impedance which depends on tissue composition, structures, health status, and applied signal frequency, and hence the bioelectrical impedance methods can be utilized for noninvasive tissue characterization. As the impedance responses of these tissue parameters vary with frequencies of the applied signal, the impedance analysis conducted over a wide frequency band provides more information about the tissue interiors which help us to better understand the biological tissues anatomy, physiology, and pathology. Over past few decades, a number of impedance based noninvasive tissue characterization techniques such as bioelectrical impedance analysis (BIA), electrical impedance spectroscopy (EIS), electrical impedance plethysmography (IPG), impedance cardiography (ICG), and electrical impedance tomography (EIT) have been proposed and a lot of research works have been conducted on these methods for noninvasive tissue characterization and disease diagnosis. In this paper BIA, EIS, IPG, ICG, and EIT techniques and their applications in different fields have been reviewed and technical perspective of these impedance methods has been presented. The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends. PMID:27006932

  14. Impedance Matching of Tapered Slot Antenna using a Dielectric Transformer

    NASA Technical Reports Server (NTRS)

    Simons, R. N.; Lee, R. Q.

    1998-01-01

    A new impedance matching technique for tapered slot antennas using a dielectric transformer is presented. The technique is demonstrated by measuring the input impedance, Voltage Standing Wave Ratio (VSWR) and the gain of a Vivaldi antenna (VA). Measured results at Ka-Band frequencies are presented and discussed.

  15. Study of corrosion of super martensitic stainless steel under alternating current in artificial seawater with electrochemical impedance spectroscopy

    SciTech Connect

    Reyes, T.; Bhola, S.; Olson, D. L.; Mishra, B.

    2011-06-23

    The assessment of corrosion requires the use of tools able to quantify the corrosion but often times also qualify it. Electrochemical Impedance Spectroscopy (EIS) is a laboratory tool that can provide both qualification and quantification of corrosion. EIS was successfully used to compare the thickness of the corrosion products formed during the application of different alternating current (AC) densities as well as to characterize pitting. When EIS is applied at the open circuit potential, the technique is nondestructive and predicts the corrosion behavior of the electrode. It can also be used at cathodic potentials while still being nondestructive, providing information about the electrode reaction kinetics, diffusion and electrical double layer.

  16. Impedance spectroscopic analysis of composite electrode from activated carbon/conductive materials/ruthenium oxide for supercapacitor applications

    SciTech Connect

    Taer, E.; Awitdrus,; Farma, R.; Deraman, M. Talib, I. A.; Ishak, M. M.; Omar, R.; Dolah, B. N. M.; Basri, N. H.; Othman, M. A. R.; Kanwal, S.

    2015-04-16

    Activated carbon powders (ACP) were produced from the KOH treated pre-carbonized rubber wood sawdust. Different conductive materials (graphite, carbon black and carbon nanotubes (CNTs)) were added with a binder (polivinylidene fluoride (PVDF)) into ACP to improve the supercapacitive performance of the activated carbon (AC) electrodes. Symmetric supercapacitor cells, fabricated using these AC electrodes and 1 molar H{sub 2}SO{sub 4} electrolyte, were analyzed using a standard electrochemical impedance spectroscopy technique. The addition of graphite, carbon black and CNTs was found effective in reducing the cell resistance from 165 to 68, 23 and 49 Ohm respectively, and increasing the specific capacitance of the AC electrodes from 3 to 7, 17, 32 F g{sup −1} respectively. Since the addition of CNTs can produce the highest specific capacitance, CNTs were chosen as a conductive material to produce AC composite electrodes that were added with 2.5 %, 5 % and 10 % (by weight) electro-active material namely ruthenium oxide; PVDF binder and CNTs contents were kept at 5 % by weight in each AC composite produced. The highest specific capacitance of the cells obtained in this study was 86 F g{sup −1}, i.e. for the cell with the resistance of 15 Ohm and composite electrode consists of 5 % ruthenium oxide.

  17. Impedance spectroscopic analysis of composite electrode from activated carbon/conductive materials/ruthenium oxide for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Taer, E.; Deraman, M.; Talib, I. A.; Awitdrus, Farma, R.; Ishak, M. M.; Omar, R.; Dolah, B. N. M.; Basri, N. H.; Othman, M. A. R.; Kanwal, S.

    2015-04-01

    Activated carbon powders (ACP) were produced from the KOH treated pre-carbonized rubber wood sawdust. Different conductive materials (graphite, carbon black and carbon nanotubes (CNTs)) were added with a binder (polivinylidene fluoride (PVDF)) into ACP to improve the supercapacitive performance of the activated carbon (AC) electrodes. Symmetric supercapacitor cells, fabricated using these AC electrodes and 1 molar H2SO4 electrolyte, were analyzed using a standard electrochemical impedance spectroscopy technique. The addition of graphite, carbon black and CNTs was found effective in reducing the cell resistance from 165 to 68, 23 and 49 Ohm respectively, and increasing the specific capacitance of the AC electrodes from 3 to 7, 17, 32 F g-1 respectively. Since the addition of CNTs can produce the highest specific capacitance, CNTs were chosen as a conductive material to produce AC composite electrodes that were added with 2.5 %, 5 % and 10 % (by weight) electro-active material namely ruthenium oxide; PVDF binder and CNTs contents were kept at 5 % by weight in each AC composite produced. The highest specific capacitance of the cells obtained in this study was 86 F g-1, i.e. for the cell with the resistance of 15 Ohm and composite electrode consists of 5 % ruthenium oxide.

  18. Impedance Noise Identification for State-of-Health Prognostics

    SciTech Connect

    Jon P. Christophersen; Chester G. Motloch; John L. Morrison; Ian B. Donnellan; William H. Morrison

    2008-07-01

    Impedance Noise Identification is an in-situ method of measuring battery impedance as a function of frequency using a random small signal noise excitation source. Through a series of auto- and cross-correlations and Fast Fourier Transforms, the battery complex impedance as a function of frequency can be determined. The results are similar to those measured under a lab-scale electrochemical impedance spectroscopy measurement. The lab-scale measurements have been shown to correlate well with resistance and power data that are typically used to ascertain the remaining life of a battery. To this end, the Impedance Noise Identification system is designed to acquire the same type of data as an on-board tool. A prototype system is now under development, and results are being compared to standardized measurement techniques such as electrochemical impedance spectroscopy. A brief description of the Impedance Noise Identification hardware system and representative test results are presented.

  19. Impedance modelling of pipes

    NASA Astrophysics Data System (ADS)

    Creasy, M. Austin

    2016-03-01

    Impedance models of pipes can be used to estimate resonant frequencies of standing waves and model acoustic pressure of closed and open ended pipes. Modelling a pipe with impedance methods allows additional variations to the pipe to be included in the overall model as a system. Therefore an actuator can be attached and used to drive the system and the impedance model is able to include the dynamics of the actuator. Exciting the pipe system with a chirp signal allows resonant frequencies to be measured in both the time and frequency domain. The measurements in the time domain are beneficial for introducing undergraduates to resonances without needing an understanding of fast Fourier transforms. This paper also discusses resonant frequencies in open ended pipes and how numerous texts incorrectly approximate the resonant frequencies for this specific pipe system.

  20. Impedance spectroscopy of thin-film CdTe/CdS solar cells under varied illumination

    NASA Astrophysics Data System (ADS)

    Proskuryakov, Y. Y.; Durose, K.; Al Turkestani, M. K.; Mora-Seró, I.; Garcia-Belmonte, G.; Fabregat-Santiago, F.; Bisquert, J.; Barrioz, V.; Lamb, D.; Irvine, S. J. C.; Jones, E. W.

    2009-08-01

    The electrical properties of CdTe/CdS solar cells grown by metal organic chemical vapor deposition were investigated by a technique of impedance measurements under varied intensity of AM1.5 illumination. A generalized impedance model was developed and applied to a series of CdTe/CdS cells with variations in structure and doping. The light measurements were compared to the conventional ac measurements in dark under varied dc bias, using the same methodology for equivalent circuit analysis in both cases. Detailed information on the properties of the device structure was obtained, including the properties of the main p-n junction under light, minority carrier lifetime, back contact, as well as the effect of the blocking ZnO layer incorporated between the transparent conductor and CdS layers. In particular, the comparison between samples with different chemical concentrations of As has shown that the total device impedance and the series resistance are strongly increased at lower As densities, resulting in the lower collection current and efficiencies. At the same time the minority carrier lifetime was found to be one order of magnitude larger for the lowest value of As density, when compared to the optimized devices.

  1. Current density distribution in cylindrical Li-Ion cells during impedance measurements

    NASA Astrophysics Data System (ADS)

    Osswald, P. J.; Erhard, S. V.; Noel, A.; Keil, P.; Kindermann, F. M.; Hoster, H.; Jossen, A.

    2016-05-01

    In this work, modified commercial cylindrical lithium-ion cells with multiple separate current tabs are used to analyze the influence of tab pattern, frequency and temperature on electrochemical impedance spectroscopy. In a first step, the effect of different current tab arrangements on the impedance spectra is analyzed and possible electrochemical causes are discussed. In a second step, one terminal is used to apply a sinusoidal current while the other terminals are used to monitor the local potential distribution at different positions along the electrodes of the cell. It is observed that the characteristic decay of the voltage amplitude along the electrode changes non-linearly with frequency, where high-frequent currents experience a stronger attenuation along the current collector than low-frequent currents. In further experiments, the decay characteristic is controlled by the cell temperature, driven by the increasing resistance of the current collector and the enhanced kinetic and transport properties of the active material and electrolyte. Measurements indicate that the ac current distribution depends strongly on the frequency and the temperature. In this context, the challenges for electrochemical impedance spectroscopy as cell diagnostic technique for commercial cells are discussed.

  2. Biosensor arrays based on the degradation of thin polymer films interrogated by scanning photoinduced impedance microscopy.

    PubMed

    Zhou, Yinglin; Jiang, Shihong; Krause, Steffi; Chazalviel, Jean-Noël

    2007-12-01

    Disposable sensors based on the degradation of thin films as a result of an enzymatic reaction have been developed into efficient enzyme detectors. Film degradation has traditionally been monitored using surface plasmon resonance (SPR), quartz crystal microbalance (QCM), or classical ac impedance measurements. The enzyme detection principle has now been integrated with an array technology derived from a recently developed impedance imaging technique, scanning photoinduced impedance microscopy (SPIM). SPIM is based on photocurrent measurements at field-effect structures. The material under investigation is commonly deposited onto a semiconductor-insulator substrate. In this work, field-effect capacitors were replaced by hydrogenated amorphous silicon (a-Si:H) n-i-p photodiode structures, which have recently been shown to be suitable for SPIM measurements with good lateral resolution. To demonstrate the feasibility of SPIM for the characterization of biosensor arrays, polymer dots of the inert polymer cellulose acetate and an alpha-chymotrypsin-sensitive poly(ester amide) were deposited onto a-Si:H n-i-p/SiO2 structures and their enzymatic degradation was monitored using a laser scanning setup.

  3. Superconducting active impedance converter

    DOEpatents

    Ginley, David S.; Hietala, Vincent M.; Martens, Jon S.

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  4. Superconducting active impedance converter

    DOEpatents

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1993-11-16

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures.

  5. Developing 226Ra and 227Ac age-dating techniques for nuclear forensics to gain insight from concordant and non-concordant radiochronometers

    SciTech Connect

    Kayzar, Theresa M.; Williams, Ross W.

    2015-09-26

    The model age or ‘date of purification’ of a nuclear material is an important nuclear forensic signature. In this study, chemical separation and MC-ICP-MS measurement techniques were developed for 226 Ra and 227Ac: grand-daughter nuclides in the 238U and 235U decay chains respectively. The 230Th-234U, 226Ra-238U, 231Pa-235U, and 227Ac-235U radiochronometers were used to calculate model ages for CRM-U100 standard reference material and two highly-enriched pieces of uranium metal from the International Technical Working Group Round Robin 3 Exercise. In conclusion, the results demonstrate the accuracy of the 226Ra-238U and 227Ac-235U chronometers and provide information about nuclide migration during uranium processing.

  6. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba; Christopher J. Ziolkowski

    2004-06-30

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  7. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba

    2003-10-01

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  8. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba

    2003-04-01

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a thin film sensor conformal with the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is capacitively coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD

  9. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba

    2003-01-30

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a thin film sensor conformal with the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is capacitively coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD

  10. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba

    2002-08-30

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a thin film sensor conformal with the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is capacitively coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD

  11. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba

    2002-11-27

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a thin film sensor conformal with the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is capacitively coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD

  12. Impedance spectroscopy for the detection and identification of unknown toxins

    NASA Astrophysics Data System (ADS)

    Riggs, B. C.; Plopper, G. E.; Paluh, J. L.; Phamduy, T. B.; Corr, D. T.; Chrisey, D. B.

    2012-06-01

    Advancements in biological and chemical warfare has allowed for the creation of novel toxins necessitating a universal, real-time sensor. We have used a function-based biosensor employing impedance spectroscopy using a low current density AC signal over a range of frequencies (62.5 Hz-64 kHz) to measure the electrical impedance of a confluent epithelial cell monolayer at 120 sec intervals. Madin Darby canine kidney (MDCK) epithelial cells were grown to confluence on thin film interdigitated gold electrodes. A stable impedance measurement of 2200 Ω was found after 24 hrs of growth. After exposure to cytotoxins anthrax lethal toxin and etoposide, the impedance decreased in a linear fashion resulting in a 50% drop in impedance over 50hrs showing significant difference from the control sample (~20% decrease). Immunofluorescent imaging showed that apoptosis was induced through the addition of toxins. Similarities of the impedance signal shows that the mechanism of cellular death was the same between ALT and etoposide. A revised equivalent circuit model was employed in order to quantify morphological changes in the cell monolayer such as tight junction integrity and cell surface area coverage. This model showed a faster response to cytotoxin (2 hrs) compared to raw measurements (20 hrs). We demonstrate that herein that impedance spectroscopy of epithelial monolayers serves as a real-time non-destructive sensor for unknown pathogens.

  13. Impedances of Tevatron separators

    SciTech Connect

    K. Y. Ng

    2003-05-28

    The impedances of the Tevatron separators are revisited and are found to be negligibly small in the few hundred MHz region, except for resonances at 22.5 MHz. The later are contributions from the power cables which may drive head-tail instabilities if the bunch is long enough.

  14. Longitudinal impedance of RHIC

    SciTech Connect

    Blaskiewicz, M.; Brennan, J. M.; Mernick, K.

    2015-05-03

    The longitudinal impedance of the two RHIC rings has been measured using the effect of potential well distortion on longitudinal Schottky measurements. For the blue RHIC ring Im(Z/n) = 1.5±0.2Ω. For the yellow ring Im(Z/n) = 5.4±1Ω.

  15. Implantable Impedance Plethysmography

    PubMed Central

    Theodor, Michael; Ruh, Dominic; Ocker, Martin; Spether, Dominik; Förster, Katharina; Heilmann, Claudia; Beyersdorf, Friedhelm; Manoli, Yiannos; Zappe, Hans; Seifert, Andreas

    2014-01-01

    We demonstrate by theory, as well as by ex vivo and in vivo measurements that impedance plethysmography, applied extravascularly directly on large arteries, is a viable method for monitoring various cardiovascular parameters, such as blood pressure, with high accuracy. The sensor is designed as an implant to monitor cardiac events and arteriosclerotic progression over the long term. PMID:25123467

  16. High Impedance Comparator for Monitoring Water Resistivity.

    ERIC Educational Resources Information Center

    Holewinski, Paul K.

    1984-01-01

    A high-impedance comparator suitable for monitoring the resistivity of a deionized or distilled water line supplying water in the 50 Kohm/cm-2 Mohm/cm range is described. Includes information on required circuits (with diagrams), sensor probe assembly, and calibration techniques. (JN)

  17. Recycler short kicker beam impedance

    SciTech Connect

    Crisp, Jim; Fellenz, Brian; /Fermilab

    2009-07-01

    Measured longitudinal and calculated transverse beam impedance is presented for the short kicker magnets being installed in the Fermilab Recycler. Fermi drawing number ME-457159. The longitudinal impedance was measured with a stretched wire and the Panofsky equation was used to estimate the transverse impedance. The impedance of 3319 meters (the Recycler circumference) of stainless vacuum pipe is provided for comparison. Although measurements where done to 3GHz, impedance was negligible above 30MHz. The beam power lost to the kicker impedance is shown for a range of bunch lengths. The measurements are for one kicker assuming a rotation frequency of 90KHz. Seven of these kickers are being installed.

  18. Lithium ionic mobility study in xLi{sub 2}CO{sub 3}-yLiI (x = 95-70, y = 5-30 wt.%) solid electrolyte by impedance spectroscopy technique

    SciTech Connect

    Omar, Mohd Khari; Ahmad, Azizah Hanom

    2015-08-28

    A detailed systematic study on the effects of different amount (wt.%) of LiI addition on the electrical conductivity and dielectric behavior of the xLi{sub 2}CO{sub 3}-xLiI (x = 95-70, y = 5-30 wt.%) electrolyte system was carried out. The samples with different compositions were prepared and ground by mechanical milling method. The electrical and dielectric properties of the samples over a range of frequency (50Hz – 1MHz) were investigated by deploying electrical impedance spectroscopy (EIS) technique in a series of temperature set (298–373K). Normally, Li{sub 2}CO{sub 3} itself shows a very low electrical conductivity (10{sup −5} Scm{sup −1}). However, the electrical conductivity of the system was found to be increased (10{sup −3} Scm{sup −1}) as the lithium salt (LiI) were introduced to the system. The dielectric analysis displayed that the activation energy was inversely proportional to the increment of LiI (wt.%). As the electrical conductivity reached their maximum value (4.63 × 10{sup −3} Scm{sup −1}) at the 20 wt.% of LiI, the activation energy was dropped to the minimum (0.1 eV). The electrical conductivity increases with the temperature (298 – 373K) indicate that the system obeys Arrhenius law.

  19. The Impedance Response of Semiconductors: An Electrochemical Engineering Perspective.

    ERIC Educational Resources Information Center

    Orazem, Mark E.

    1990-01-01

    Shows that the principles learned in the study of mass transport, thermodynamics, and kinetics associated with electrochemical systems can be applied to the transport and reaction processes taking place within a semiconductor. Describes impedance techniques and provides several graphs illustrating impedance data for diverse circuit systems. (YP)

  20. Epigastric impedance: a non-invasive method for the assessment of gastric emptying and motility.

    PubMed Central

    McClelland, G R; Sutton, J A

    1985-01-01

    The impedance of the epigastrium to a 4 mA, 100 KHz AC current increases while liquids of low electrical conductivity are being drunk. Logically, the decline which follows occurs as the liquid leaves the stomach. This impedance measurement of gastric emptying proved comparable with the dye dilution method. In a placebo controlled trial the impedance method recorded significantly faster gastric emptying rates after metoclopramide. The impedance trace contains regular activity in the 2-4 cycle/min range consistent with gastric contractions. This non-invasive and technically simple method may thus provide a measure of simultaneous gastric emptying rates and motility. PMID:3891533

  1. Numerical modelling errors in electrical impedance tomography.

    PubMed

    Dehghani, Hamid; Soleimani, Manuchehr

    2007-07-01

    Electrical impedance tomography (EIT) is a non-invasive technique that aims to reconstruct images of internal impedance values of a volume of interest, based on measurements taken on the external boundary. Since most reconstruction algorithms rely on model-based approximations, it is important to ensure numerical accuracy for the model being used. This work demonstrates and highlights the importance of accurate modelling in terms of model discretization (meshing) and shows that although the predicted boundary data from a forward model may be within an accepted error, the calculated internal field, which is often used for image reconstruction, may contain errors, based on the mesh quality that will result in image artefacts.

  2. Impedance calculation for ferrite inserts

    SciTech Connect

    Breitzmann, S.C.; Lee, S.Y.; Ng, K.Y.; /Fermilab

    2005-01-01

    Passive ferrite inserts were used to compensate the space charge impedance in high intensity space charge dominated accelerators. They study the narrowband longitudinal impedance of these ferrite inserts. they find that the shunt impedance and the quality factor for ferrite inserts are inversely proportional to the imaginary part of the permeability of ferrite materials. They also provide a recipe for attaining a truly passive space charge impedance compensation and avoiding narrowband microwave instabilities.

  3. Acoustic ground impedance meter

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1984-01-01

    A method and apparatus are presented for measuring the acoustic impedance of a surface in which the surface is used to enclose one end of the chamber of a Helmholz resonator. Acoustic waves are generated in the neck of the resonator by a piston driven by a variable speed motor through a cam assembly. The acoustic waves are measured in the chamber and the frequency of the generated acoustic waves is measured by an optical device. These measurements are used to compute the compliance and conductance of the chamber and surface combined. The same procedure is followed with a calibration plate having infinite acoustic impedance enclosing the chamber of the resonator to compute the compliance and conductance of the chamber alone. Then by subtracting, the compliance and conductance for the surface is obtained.

  4. Superconducting active impedance converter

    SciTech Connect

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1992-12-31

    This invention is comprised of a transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10--80 K temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  5. Impedance Measurement Box

    SciTech Connect

    Morrison, William

    2014-11-20

    The IMB 50V software provides functionality for design of impedance measurement tests or sequences of tests, execution of these tests or sequences, processing measured responses and displaying and saving of the results. The software consists of a Graphical User Interface that allows configuration of measurement parameters and test sequencing, a core engine that controls test sequencing, execution of measurements, processing and storage of results and a hardware/software data acquisition interface with the IMB hardware system.

  6. AC properties of low-pass RC filters embedded in printed circuit boards

    NASA Astrophysics Data System (ADS)

    Winiarski, Paweł; Kłossowicz, Adam; Steplewski, Wojciech; Borecki, Janusz; Nitsch, Karol; Dziedzic, Andrzej

    2013-07-01

    Impedance Spectroscopy (IS) is a widely used measurement technique for determining the characteristics of a variety of materials and systems. Analysis of object's AC-response can allow determine of different electrical properties due to its structure. IS can also be used to study electronic components such as gas and humidity sensors, thermistors, varistors, capacitors or resistors. The resulting impedance spectrum can be approximated by electrical equivalent circuit. However, It is difficult to find papers dedicated to the electronic systems investigated by IS method. For this reason authors analyzed properties of RC low-pass filters embedded in printed circuit boards using IS technique. These four-contact structures were made of special Ohmega/FaradFlex® composite material. It consists of a resistive/capacitive core containing OhmegaPly RCM layer (resistive NiP alloy) laminated to FaradFlex dielectric of Oak-Mitsui company. Analysis of the measurements results using impedance spectroscopy allowed a more precise determination of the filter parameters than an analysis using standard method based on ideal components. Additionally selected filters were subjected to one of the aging process (thermal aging or thermal-humidity exposure), and found that this results in a frequency shift of the filter.

  7. Gynecologic electrical impedance tomograph

    NASA Astrophysics Data System (ADS)

    Korjenevsky, A.; Cherepenin, V.; Trokhanova, O.; Tuykin, T.

    2010-04-01

    Electrical impedance tomography extends to the new and new areas of the medical diagnostics: lungs, breast, prostate, etc. The feedback from the doctors who use our breast EIT diagnostic system has induced us to develop the 3D electrical impedance imaging device for diagnostics of the cervix of the uterus - gynecologic impedance tomograph (GIT). The device uses the same measuring approach as the breast imaging system: 2D flat array of the electrodes arranged on the probe with handle is placed against the body. Each of the 32 electrodes of the array is connected in turn to the current source while the rest electrodes acquire the potentials on the surface. The current flows through the electrode of the array and returns through the remote electrode placed on the patient's limb. The voltages are measured relative to another remote electrode. The 3D backprojection along equipotential surfaces is used to reconstruct conductivity distribution up to approximately 1 cm in depth. Small number of electrodes enables us to implement real time imaging with a few frames per sec. rate. The device is under initial testing and evaluation of the imaging capabilities and suitability of usage.

  8. Acoustic ground impedance meter

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1981-01-01

    A compact, portable instrument was developed to measure the acoustic impedance of the ground, or other surfaces, by direct pressure-volume velocity measurement. A Helmholz resonator, constructed of heavy-walled stainless steel but open at the bottom, is positioned over the surface having the unknown impedance. The sound source, a cam-driven piston of known stroke and thus known volume velocity, is located in the neck of the resonator. The cam speed is a variable up to a maximum 3600 rpm. The sound pressure at the test surface is measured by means of a microphone flush-mounted in the wall of the chamber. An optical monitor of the piston displacement permits measurement of the phase angle between the volume velocity and the sound pressure, from which the real and imaginary parts of the impedance can be evaluated. Measurements using a 5-lobed cam can be made up to 300 Hz. Detailed design criteria and results on a soil sample are presented.

  9. Analytical Method for Selecting a Rectification Technique for a Piezoelectric Generator based on Admittance Measurement

    NASA Astrophysics Data System (ADS)

    Mateu, Loreto; Zessin, Henrik; Spies, Peter

    2013-12-01

    AC-DC converters employed for harvesting power from piezoelectric transducers can be divided into linear (i.e. diode bridge) and non-linear (i.e. synchronized switch harvesting on inductor, SSHI). This paper presents an analytical technique based on the measurement of the impedance circle of the piezoelectric element to determine whether either diode bridge or SSHI converter harvests more of the available power at the piezoelectric element.

  10. A microprocessor-based digital feeder monitor with high-impedance fault detection

    SciTech Connect

    Patterson, R.; Tyska, W.; Russell, B.D.

    1994-12-31

    The high impedance fault detection technology developed at Texas A&M University after more than a decade of research, funded in large part by the Electric Power Research Institute, has been incorporated into a comprehensive monitoring device for overhead distribution feeders. This digital feeder monitor (DFM) uses a high waveform sampling rate for the ac current and voltage inputs in conjunction with a high-performance reduced instruction set (RISC) microprocessor to obtain the frequency response required for arcing fault detection and power quality measurements. Expert system techniques are employed to assure security while maintaining dependability. The DFM is intended to be applied at a distribution substation to monitor one feeder. The DFM is packaged in a non-drawout case which fits the panel cutout for a GE IAC overcurrent relay to facilitate retrofits at the majority of sites were electromechanical overcurrent relays already exist.

  11. Impedance studies of a green blend polymer electrolyte based on PVA and Aloe-vera

    NASA Astrophysics Data System (ADS)

    Selvalakshmi, S.; Mathavan, T.; Vijaya, N.; Selvasekarapandian, Premalatha, M.; Monisha, S.

    2016-05-01

    The development of polymer electrolyte materials for energy generating and energy storage devices is a challenge today. A new type of blended green electrolyte based on Poly-vinyl alcohol (PVA) and Aloe-vera has been prepared by solution casting technique. The blending of polymers may lead to the increase in stability due to one polymer portraying itself as a mechanical stiffener and the other as a gelled matrix supported by the other. The prepared blend electrolytes were subjected to Ac impedance studies. It has been found out that the polymer film in which 1 gm of PVA was dissolved in 40 ml of Aloe-vera extract exhibits highest conductivity and its value is 3.08 × 10-4 S cm-1.

  12. Towards a graphene-based quantum impedance standard

    SciTech Connect

    Kalmbach, C.-C.; Schurr, J. Ahlers, F. J.; Müller, A.; Novikov, S.; Lebedeva, N.; Satrapinski, A.

    2014-08-18

    Precision measurements of the quantum Hall resistance with alternating current (ac) in the kHz range were performed on epitaxial graphene in order to assess its suitability as a quantum standard of impedance. The quantum Hall plateaus measured with alternating current were found to be flat within one part in 10{sup 7}. This is much better than for plain GaAs quantum Hall devices and shows that the magnetic-flux-dependent capacitive ac losses of the graphene device are less critical. The observed frequency dependence of about −8 × 10{sup −8}/kHz is comparable in absolute value to the positive frequency dependence of plain GaAs devices, but the negative sign is attributed to stray capacitances which we believe can be minimized by a careful design of the graphene device. Further improvements thus may lead to a simpler and more user-friendly quantum standard for both resistance and impedance.

  13. Module Twelve: Series AC Resistive-Reactive Circuits; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The module covers series circuits which contain both resistive and reactive components and methods of solving these circuits for current, voltage, impedance, and phase angle. The module is divided into six lessons: voltage and impedance in AC (alternating current) series circuits, vector computations, rectangular and polar notation, variational…

  14. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    PubMed Central

    Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo

    2015-01-01

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications. PMID:25938973

  15. AC conductivity and its scaling behavior in MgO-Li2O-B2O3-Bi2O3 glasses

    NASA Astrophysics Data System (ADS)

    Purnima, M.; Bale, Shashidhar; Samee, M. A.; Ahmmad, Shaik Kareem; Rahman, Syed

    2013-02-01

    In the present work, the compositional dependence of density, refractive index and glass transition temperature of xMgO-(25-x)Li2O-50B2O3-25Bi2O3 glasses is studied. Impedance spectroscopy technique is employed on these samples and the data are analyzed using Cole-Cole type impedance response function. The AC conductivity behavior of the present glasses has been investigated in the frequency range from 100 Hz to 1 MHz and as a function of temperature the measured AC data are analyzed using the Jonscher’s universal power law to explain the observed dispersive behavior of the electrical conductivity. The temperature and composition dependence scaling behavior in the AC conductivity are satisfactorily explained by scaling the AC conductivity σ‧(ω) by hopping frequency ωp. The frequency response of dielectric constant ɛ‧ and dielectric loss tanδ as a function of temperature were studied. The tanδ peak shifts to higher frequency with increasing temperature, indicating dipolar relaxation character of dielectric loss in the present glasses.

  16. Study of Influence of Electrode Geometry on Impedance Spectroscopy

    SciTech Connect

    Ahmed, Riaz; Reifsnider, Kenneth L

    2011-01-01

    Electrochemical Impedance Spectroscopy (EIS) is a powerful and proven tool for analyzing AC impedance response. A conventional three electrode EIS method was used to perform the investigation in the present study. Saturated potassium chloride solution was used as the electrolyte and three different material rods were used as working electrodes. Different configurations of electrode area were exposed to the electrolyte as an active area to investigate electrode geometry effects. Counter to working electrode distance was also altered while keeping the working electrode effective area constant to explore the AC response dependence on the variation of ion travel distance. Some controlled experiments were done to validate the experimental setup and to provide a control condition for comparison with experimental results. A frequency range of 100 mHz to 1 MHz was used for all experiments. In our analysis, we have found a noteworthy influence of electrode geometry on AC impedance response. For all electrodes, impedance decreases with the increase of effective area of the electrolyte. High frequency impedance is not as dependent on geometry as low frequency response. The observed phase shift angle drops in the high frequency region with increased working electrode area, whereas at low frequency the reverse is true. Resistance and capacitive reactance both decrease with an increase of area, but resistance response is more pronounce than reactance. For lower frequencies, small changes in working area produce very distinctive EIS variations. Electrode material as well as geometry was systematically varied in the present study. From these and other studies, we hope to develop a fundamental foundation for understanding specific changes in local geometry in fuel cell (and other) electrodes as a method of designing local morphology for specific performance.

  17. Development of impedance matching technologies for ICRF antenna arrays

    SciTech Connect

    Pinsker, R.I.

    1998-03-01

    All high power ICRF heating systems include devices for matching the input impedance of the antenna array to the generator output impedance. For most types of antennas used, the input impedance is strongly time-dependent on timescales as rapid as 10-4 s, while the rf generators used are capable of producing full power only into a stationary load impedance. Hence, the dynamic response of the matching method is of great practical importance. In this paper, world-wide developments in this field over the past decade are reviewed. These techniques may be divided into several classes. The edge plasma parameters that determine the antenna array`s input impedance may be controlled to maintain a fixed load impedance. The frequency of the rf source can be feedback controlled to compensate for changes in the edge plasma conditions, or fast variable tuning elements in the transmission line between the generator output and the antenna input connections can provide the necessary time-varying impedance transformation. In lossy passive schemes, reflected power due to the time-varying impedance of the antenna array is diverted to a dummy load. Each of these techniques can be applied to a pre-existing antenna system. If a new antenna is to be designed, recent advances allow the antenna array to have the intrinsic property of presenting a constant load to the feeding transmission lines despite the varying load seen by each antenna in the array.

  18. Impedance group summary

    NASA Astrophysics Data System (ADS)

    Blaskiewicz, M.; Dooling, J.; Dyachkov, M.; Fedotov, A.; Gluckstern, R.; Hahn, H.; Huang, H.; Kurennoy, S.; Linnecar, T.; Shaposhnikova, E.; Stupakov, G.; Toyama, T.; Wang, J. G.; Weng, W. T.; Zhang, S. Y.; Zotter, B.

    1999-12-01

    The impedance working group was charged to reply to the following 8 questions relevant to the design of high-intensity proton machines such as the SNS or the FNAL driver. These questions were first discussed one by one in the whole group, then each ne of them assigned to one member to summarize. On the lst morning these contributions were publicly read, re-discussed and re-written where required—hence they are not the opinion of a particular person, but rather the averaged opinion of all members of the working group. (AIP)

  19. Computational Study on the Steady-state Impedance of Saturated-core Superconducting Fault Current Limiter

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Tang, Y.; Liang, S.; Ren, L.; Wang, Z.; Xu, Y.

    This paper presents the electromagnetic analysis of a high voltage saturated-core superconducting fault current limiter (SCSFCL). The numerical analyses of a three-dimensional (3D) model is shown, and the specific parameters are given. The model focus on the steady-state impedance of the limiter when connected to the power grid. It analyzed the dependence of steady-state impedance on the AC coil current, and the relationship between oil gap and coil inductance. The results suggest that, adding oil gap between slice of silicon steel can reduce the core cross-section, restrain the ultraharmonic and decrease the steady-state impedance. As the core cross-section of AC limb decreased from 4344 cm2 to 3983 cm2, the total harmonic distortion for voltage decreased from 2.4% to 1.8%, and the impedance decreased from 1.082 Ω to 1.069 Ω(Idc=400A,Iac=1296A).

  20. AC conductivity and relaxation mechanism in (Nd1/2Li1/2)(Fe1/2V1/2)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Nath, Susmita; Barik, Subrat Kumar; Choudhary, R. N. P.

    2016-05-01

    In the present study we have synthesized polycrystalline sample of (Nd1/2Li1/2)(Fe1/2V1/2)O3 ceramic by a standard high-temperature solid-state reaction technique. Studies of dielectric and electrical properties of the compound have been carried out in a wide range of temperature (RT - 400 °C) and frequency (1kHz - 1MHz) using complex impedance spectroscopic technique. The imaginary vs. real component of the complex impedance plot (Nyquist plot) of the prepared sample exhibits the existence of grain, grain boundary contributions in the complex electrical parameters and negative temperature coefficient of resistance (NTCR) type behavior like semiconductor. Details study of ac conductivity plot reveals that the material obeys universal Jonscher's power law.

  1. Scheme for rapid adjustment of network impedance

    DOEpatents

    Vithayathil, John J.

    1991-01-01

    A static controlled reactance device is inserted in series with an AC electric power transmission line to adjust its transfer impedance. An inductor (reactor) is serially connected with two back-to-back connected thyristors which control the conduction period and hence the effective reactance of the inductor. Additional reactive elements are provided in parallel with the thyristor controlled reactor to filter harmonics and to obtain required range of variable reactance. Alternatively, the static controlled reactance device discussed above may be connected to the secondary winding of a series transformer having its primary winding connected in series to the transmission line. In a three phase transmission system, the controlled reactance device may be connected in delta configuration on the secondary side of the series transformer to eliminate triplen harmonics.

  2. Ionospheric effects to antenna impedance

    NASA Technical Reports Server (NTRS)

    Bethke, K. H.

    1986-01-01

    The reciprocity between high power satellite antennas and the surrounding plasma are examined. The relevant plasma states for antenna impedance calculations are presented and plasma models, and hydrodynamic and kinetic theory, are discussed. A theory from which a variation in antenna impedance with regard to the radiated power can be calculated for a frequency range well above the plasma resonance frequency is give. The theory can include photo and secondary emission effects in antenna impedance calculations.

  3. Measurement of shear impedances of viscoelastic fluids

    SciTech Connect

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, A.C.

    1996-12-31

    Shear-wave reflection coefficients from a solid/fluid interface are derived for non-Newtonian fluids that can be described by Maxwell, Voigt, and power-law fluid models. Based on model calculations, we have identified the measurable effects on the reflection coefficients due to fluid non-Newtonian behavior. The models are used to interpret the viscosity data obtained by a technique based on shear impedance measurement.

  4. Optically stimulated differential impedance spectroscopy

    DOEpatents

    Maxey, Lonnie C; Parks, II, James E; Lewis, Sr., Samuel A; Partridge, Jr., William P

    2014-02-18

    Methods and apparatuses for evaluating a material are described. Embodiments typically involve use of an impedance measurement sensor to measure the impedance of a sample of the material under at least two different states of illumination. The states of illumination may include (a) substantially no optical stimulation, (b) substantial optical stimulation, (c) optical stimulation at a first wavelength of light, (d) optical stimulation at a second wavelength of light, (e) a first level of light intensity, and (f) a second level of light intensity. Typically a difference in impedance between the impedance of the sample at the two states of illumination is measured to determine a characteristic of the material.

  5. IMPEDANCE OF FINITE LENGTH RESISTOR

    SciTech Connect

    KRINSKY, S.; PODOBEDOV, B.; GLUCKSTERN, R.L.

    2005-05-15

    We determine the impedance of a cylindrical metal tube (resistor) of radius a, length g, and conductivity {sigma}, attached at each end to perfect conductors of semi-infinite length. Our main interest is in the asymptotic behavior of the impedance at high frequency, k >> 1/a. In the equilibrium regime, , the impedance per unit length is accurately described by the well-known result for an infinite length tube with conductivity {sigma}. In the transient regime, ka{sup 2} >> g, we derive analytic expressions for the impedance and wakefield.

  6. Transthoracic defibrillation: effect of sternotomy on chest impedance.

    PubMed

    Kerber, R E; Vance, S; Schomer, S J; Mariano, D J; Charbonnier, F

    1992-07-01

    The purpose of this study was to determine the effect of sternotomy on transthoracic impedance, a major determinant of current flow and defibrillation success. Transthoracic impedance was determined by using a validated test-pulse technique that does not require actual shocks. Seventeen patients undergoing median sternotomy were studied prospectively. Transthoracic impedance was determined before operation, 3 to 5 days after operation and (in eight patients) greater than or equal to 1 month after operation. When measured using paddle electrodes placed in the standard apex-right parasternal defibrillating position, transthoracic impedance declined after sternotomy in all patients, from 77 +/- 18 to 59 +/- 17 omega (p less than 0.01); smaller declines were demonstrated by using other electrode positions. Transthoracic impedance remained below the preoperative level in the eight patients who underwent a second set of measurements at least 1 month after operation. Six normal subjects not undergoing sternotomy underwent serial transthoracic impedance measurements at least 5 days apart; mean transthoracic impedance did not change. It is concluded that transthoracic impedance declines after sternotomy. At any operator-selected energy level a higher current flow will result after sternotomy; this may facilitate postoperative defibrillation.

  7. Monolithically compatible impedance measurement

    DOEpatents

    Ericson, Milton Nance; Holcomb, David Eugene

    2002-01-01

    A monolithic sensor includes a reference channel and at least one sensing channel. Each sensing channel has an oscillator and a counter driven by the oscillator. The reference channel and the at least one sensing channel being formed integrally with a substrate and intimately nested with one another on the substrate. Thus, the oscillator and the counter have matched component values and temperature coefficients. A frequency determining component of the sensing oscillator is formed integrally with the substrate and has an impedance parameter which varies with an environmental parameter to be measured by the sensor. A gating control is responsive to an output signal generated by the reference channel, for terminating counting in the at least one sensing channel at an output count, whereby the output count is indicative of the environmental parameter, and successive ones of the output counts are indicative of changes in the environmental parameter.

  8. Impedance in School Screening Programs.

    ERIC Educational Resources Information Center

    Robarts, John T.

    1985-01-01

    This paper examines the controversy over use of impedance screening in public schools to identify students with hearing problems, including otitis media, a common ear condition in infants and young children. It cites research that questions the value of pure tone screening as a single test and raises critics' objections to the use of impedance,…

  9. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, T.E.

    1999-03-16

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks. 2 figs.

  10. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, Thomas E.

    1999-01-01

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks.

  11. Bioelectrical impedance analysis for bovine milk: Preliminary results

    NASA Astrophysics Data System (ADS)

    Bertemes-Filho, P.; Valicheski, R.; Pereira, R. M.; Paterno, A. S.

    2010-04-01

    This work reports the investigation and analysis of bovine milk quality by using biological impedance measurements using electrical impedance spectroscopy (EIS). The samples were distinguished by a first chemical analysis using Fourier transform midinfrared spectroscopy (FTIR) and flow citometry. A set of milk samples (100ml each) obtained from 17 different cows in lactation with and without mastitis were analyzed with the proposed technique using EIS. The samples were adulterated by adding distilled water and hydrogen peroxide in a controlled manner. FTIR spectroscopy and flow cytometry were performed, and impedance measurements were made in a frequency range from 500Hz up to 1MHz with an implemented EIS system. The system's phase shift was compensated by measuring saline solutions. It was possible to show that the results obtained with the Bioelectrical Impedance Analysis (BIA) technique may detect changes in the milk caused by mastitis and the presence of water and hydrogen peroxide in the bovine milk.

  12. [Experimental study on electrical impedance properties of human hepatoma cells].

    PubMed

    Fang, Yun; Tang, Zhiyuan; Zhang, Qian; Zhao, Xin; Ma, Qing

    2014-10-01

    The AC impedance of human hepatoma SMMC-7721 cells were measured in our laboratory by Agilent 4294A impedance analyzer in the frequency range of 0.01-100 MHz. And then the effect of hematocrit on electrical impedance characteristics of hepatoma cells was observed by electrical impedance spectroscopy, Bode diagram, Nyquist diagram and Nichols diagram. The results showed that firstly, there is a frequency dependence, i.e., the increment of real part and the imaginary part of complex electrical impedance (δZ', δZ"), the increment of the amplitude modulus of complex electrical impedance (δ[Z *]) and phase angle (δθ) were all changed with the increasing frequency. Secondly, it showed cell volume fraction (CVF) dependence, i. e. , the increment of low-frequency limit (δZ'0, δ[Z*] 0), peak (δZ"(p), δθ(p)), area and radius (Nyquist diagram, Nichols diagram) were all increased along with the electric field frequency. Thirdly, there was the presence of two characteristic frequencies: the first characteristic frequency (f(c1)) and the second characteristic frequency (f(c2)), which were originated respectively in the polarization effects of two interfaces that the cell membrane and extracellular fluid, cell membrane and cytoplasm. A conclusion can be drawn that the electrical impedance spectroscopy is able to be used to observe the electrical characteristics of human hepatoma cells, and therefore this method can be used to investigate the electrophysiological mechanisms of liver cancer cells, and provide research tools and observation parameters, and it also has important theoretical value and potential applications for screening anticancer drugs. PMID:25764724

  13. ACS: ALMA Common Software

    NASA Astrophysics Data System (ADS)

    Chiozzi, Gianluca; Šekoranja, Matej

    2013-02-01

    ALMA Common Software (ACS) provides a software infrastructure common to all ALMA partners and consists of a documented collection of common patterns and components which implement those patterns. The heart of ACS is based on a distributed Component-Container model, with ACS Components implemented as CORBA objects in any of the supported programming languages. ACS provides common CORBA-based services such as logging, error and alarm management, configuration database and lifecycle management. Although designed for ALMA, ACS can and is being used in other control systems and distributed software projects, since it implements proven design patterns using state of the art, reliable technology. It also allows, through the use of well-known standard constructs and components, that other team members whom are not authors of ACS easily understand the architecture of software modules, making maintenance affordable even on a very large project.

  14. Impedance analysis of porous carbon electrodes to predict rate capability of electric double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Yoo, Hyun Deog; Jang, Jong Hyun; Ryu, Ji Heon; Park, Yuwon; Oh, Seung M.

    2014-12-01

    Electrochemical impedance analysis is performed to predict the rate capability of two commercial activated carbon electrodes (RP20 and MSP20) for electric double-layer capacitor. To this end, ac impedance data are fitted with an equivalent circuit that comprises ohmic resistance and impedance of intra-particle pores. To characterize the latter, ionic accessibility into intra-particle pores is profiled by using the fitted impedance parameters, and the profiles are transformed into utilizable capacitance plots as a function of charge-discharge rate. The rate capability that is predicted from the impedance analysis is well-matched with that observed from a charge-discharge rate test. It is found that rate capability is determined by ionic accessibility as well as ohmic voltage drop. A lower value in ionic accessibility for MSP20 is attributed to smaller pore diameter, longer length, and higher degree of complexity in pore structure.

  15. Measurement of steel corrosion in concrete by impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartholomew, Paul; Sumsion, Eric; Guthrie, Spencer; Mazzeo, Brian

    2010-10-01

    Steel corrosion is a major problem for aging bridge structures. The steel corrodes as chloride ions migrate to the buried steel. The properties of the corroded steel-concrete interface change due to the corrosion and can be measured by impedance spectroscopy. A new spectrometer was built to measure concrete slabs. A fitting function to the impedance spectra was used to determine relevant parameters correlated with corrosion. Data from the laboratory and the field demonstrate the utility of this technique.

  16. Application of impedance spectroscopy to SOFC research

    SciTech Connect

    Hsieh, G.; Mason, T.O.; Pederson, L.R.

    1996-12-31

    With the resurgence of interest in solid oxide fuel cells and other solid state electrochemical devices, techniques originally developed for characterizing aqueous systems are being adapted and applied to solid state systems. One of these techniques, three-electrode impedance spectroscopy, is particularly powerful as it allows characterization of subcomponent and interfacial properties. Obtaining accurate impedance spectra, however, is difficult as reference electrode impedance is usually non-negligible and solid electrolytes typically have much lower conductance than aqueous solutions. Faidi et al and Chechirlian et al have both identified problems associated with low conductivity media. Other sources of error are still being uncovered. Ford et al identified resistive contacts with large time constants as a possibility, while Me et al showed that the small contact capacitance of the reference electrode was at fault. Still others show that instrument limitations play a role. Using the voltage divider concept, a simplified model that demonstrates the interplay of these various factors, predicts the form of possible distortions, and offers means to minimize errors is presented.

  17. Development on electromagnetic impedance function modeling and its estimation

    SciTech Connect

    Sutarno, D.

    2015-09-30

    Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim at reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition

  18. Development on electromagnetic impedance function modeling and its estimation

    NASA Astrophysics Data System (ADS)

    Sutarno, D.

    2015-09-01

    Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim at reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition

  19. Impedance-estimation methods, modeling methods, articles of manufacture, impedance-modeling devices, and estimated-impedance monitoring systems

    DOEpatents

    Richardson, John G.

    2009-11-17

    An impedance estimation method includes measuring three or more impedances of an object having a periphery using three or more probes coupled to the periphery. The three or more impedance measurements are made at a first frequency. Three or more additional impedance measurements of the object are made using the three or more probes. The three or more additional impedance measurements are made at a second frequency different from the first frequency. An impedance of the object at a point within the periphery is estimated based on the impedance measurements and the additional impedance measurements.

  20. I/O impedance controller

    DOEpatents

    Ruesch, Rodney; Jenkins, Philip N.; Ma, Nan

    2004-03-09

    There is disclosed apparatus and apparatus for impedance control to provide for controlling the impedance of a communication circuit using an all-digital impedance control circuit wherein one or more control bits are used to tune the output impedance. In one example embodiment, the impedance control circuit is fabricated using circuit components found in a standard macro library of a computer aided design system. According to another example embodiment, there is provided a control for an output driver on an integrated circuit ("IC") device to provide for forming a resistor divider network with the output driver and a resistor off the IC device so that the divider network produces an output voltage, comparing the output voltage of the divider network with a reference voltage, and adjusting the output impedance of the output driver to attempt to match the output voltage of the divider network and the reference voltage. Also disclosed is over-sampling the divider network voltage, storing the results of the over sampling, repeating the over-sampling and storing, averaging the results of multiple over sampling operations, controlling the impedance with a plurality of bits forming a word, and updating the value of the word by only one least significant bit at a time.

  1. Impedance and dielectric properties of mercury cuprate at nonsuperconducting state

    NASA Astrophysics Data System (ADS)

    Özdemir, Z. Güven; Çataltepe, Ö. Aslan; Onbaşlı, Ü.

    2015-10-01

    In this paper, impedance and dielectric properties of nonsuperconducting state of the mercury-based cuprate have been investigated by impedance measurements within the frequency interval of 10 Hz-10 MHz for the first time. The dielectric loss factor (tgδ) and ac conductivity (σac) parameters have also been calculated for non-superconducting state. According to impedance spectroscopy analysis, the equivalent circuit of the mercury cuprate system manifests itself as a semicircle in the Nyquist plot that corresponds to parallel connected resistance-capacitance circuit. The oscillation frequency of the circuit has been determined as approximately 45 kHz which coincides with the low frequency radio waves. Moreover, it has been revealed that the mercury-based cuprate investigated has high dielectric constants and hence it may be utilized in microelectronic industry such as capacitors, memory devices etc., at room temperature. In addition, negative capacitance (NC) effect has been observed for the mercury cuprate regardless of the operating temperatures at nonsuperconducting state. Referring to dispersions in dielectric properties, the main contribution to dielectric response of the system has been suggested as dipolar and interfacial polarization mechanisms.

  2. AC methods for detection and monitoring of crevice corrosion

    NASA Astrophysics Data System (ADS)

    Rawat, Ashwani Kumar

    reduces the solution resistance, and hence, eliminates the iR drop between the crevice and the probing electrodes. Successful detection of locally corroding macroscopic sites on interior and/or exterior surfaces of structural elements was first accomplished by using a Segmented Counter Electrode Approach (SCEA) and a Magnetometer Approach (MA). These detection methods confirmed that the locally corroding macroscopic sites (simulated crevice sites) possess lower interfacial impedance, thereby resulting in the preferential leakage of applied current/voltage signals from these sites. Next, the use of EIS for the detection of crevice corrosion in naturally corroding IN625 and SS316L alloys in seawater clearly indicated the feasibility of this technique to detect the crevice corrosion. Methodology involving the incorporation of a Counter Electrode (CE) and a Reference Electrode (RE) inside the crevice former (O-ring) represents an innovative approach to monitoring and characterizing the crevice corrosion while obtaining the true local information from inside the crevice environments. The initiation and propagation of crevice corrosion can be detected sensitively by monitoring the changes in crevice polarization resistance (Rsb{p}). This methodology represents a very sensitive technique for in situ, non-destructive, and real time the detection and monitoring of crevice corrosion. Finally, for the successful practical application of any innovative methodology, the technique has to be non-detrimental. There would be a concern that AC signals applied to the crevice for EIS, may promote crevice initiation. It was found that for AC perturbations in the range of practically important amplitudes (10.0-50.0 mV peak-to-peak), no discernible damage, even after repeated harsher application, was observed.

  3. Computer simulations of the impedance response of lithium rechargeable batteries

    SciTech Connect

    Doyle, M.; Meyers, J.P.; Newman, J.

    2000-01-01

    A mathematical model is developed to simulate the impedance response of a wide range of lithium rechargeable battery systems. The mathematical model is a macroscopic model of a full-cell sandwich utilizing porous electrode theory to treat the electrode region and concentrated solution theory for transport processes in solution. Insertion processes are described with charge-transfer kinetic expressions and solid-phase diffusion of lithium into the active electrode material. The impedance model assumes steady-state conditions and a linear response with the perturbation applied about the open-circuit condition for the battery. The simulated impedance response of a specific system, the lithium-polymer cell Li{vert{underscore}bar}PEO{sub 18}LiCF{sub 3}So{sub 3}{vert{underscore}bar}LiTiS{sub 2}, is analyzed in more detail to illustrate several features of the impedance behavior. Particular attention is paid to the measurement of solid-phase lithium-ion diffusion coefficients in the insertion electrodes using impedance techniques. A number of complications that can lead to errors in diffusion-coefficient measurements based on impedance techniques are discussed.

  4. Input impedance of microstrip antennas

    NASA Technical Reports Server (NTRS)

    Deshpande, M. D.; Bailey, M. C.

    1982-01-01

    Using Richmond's reaction integral equation, an expression is derived for the input impedance of microstrip patch antennas excited by either a microstrip line or a coaxial probe. The effects of the finite substrate thickness, a dielectric protective cover, and associated surface waves are properly included by the use of the exact dyadic Green's function. Using the present formulation the input impedance of a rectangular microstrip antenna is determined and compared with experimental and earlier calculated results.

  5. Very long period magnetotellurics at Tucson Observatory: Estimation of impedances

    SciTech Connect

    Egbert, G.D.; Booker, J.R.; Schultz, A.

    1992-10-10

    Eleven years (1932-1942) of electric potential and magnetic measurements at the Tucson observatory represent a unique very long period magnetotelluric (MT) data set. The authors report on a careful reanalysis of this data using modern processing techniques. They have developed and used novel methods for separating out the quasi-periodic daily variation fields and for cleaning up outliers and filling in missing data in the time domain. MT impedance tensors, estimated using the cleaned and filled data and using robust frequency domain methods, are well determined and smoothly varying for periods between 4 hours and 10 days. At longer periods the electric field data are swamped by large-amplitude incoherent noise, particularly after the third year of the experiment. Although they find no evidence for contamination of any field components by oceanic motional induction at tidal periods, the MT impedance estimates do show evidence of small systematic biases due to finite spatial scale geomagnetic sources at harmonics of the daily variation period. These periods are thus removed from the time series and not used in further analysis. They show that the resulting impedance tensor is well modeled by a real, frequency-independent distortion of a scalar impedance, which is consistent with non-inductive distortion of the electric fields by local surface geology. To estimate the undetermined static shift of the MT impedance, the authors compare the long-period MT results to equivalent MT impedances determined from 46 years of geomagnetic data. Combining the geomagnetic and undistorted MT impedances results in scalar impedance estimates for periods 0.17 < T < 91 days of unprecedented precision. However, for periods less than one day, the phase and amplitude of this impedance, while individually consistent, are not mutually consistent with any one-dimensional conductivity distribution. 51 refs., 19 figs., 4 tabs.

  6. Concentration dependence of nanochannel impedance and the determination of surface charge

    NASA Astrophysics Data System (ADS)

    Schiffbauer, Jarrod; Liel, Uri; Yossifon, Gilad

    2014-03-01

    In this paper, we demonstrate the variation of nanochannel impedance with bulk (reservoir) electrolyte concentration. The impedance of a nanochannel is shown to correspond to a characteristic deformed semicircular arc. The degree of deformation decreases with increasing concentration, and at a sufficiently low concentration the complex impedance saturates, becoming essentially independent of the reservoir concentration. This behavior is indicative of a surface-conduction dominant regime. Here we demonstrate that this effect extends beyond dc conductance and affects the ac response of the system as well, including both phase relationship and magnitude. The nanochannel resistance, obtained from low-voltage ac measurements, is then used to extract the nanochannel surface charge density. This is found to increase in magnitude with increasing electrolyte concentration.

  7. Study of AC/RF properties of SRF ingot niobium

    SciTech Connect

    Dhakal, Pashupati; Tsindlekht, Menachem I; Genkin, Valery M; Ciovati, Gianluigi; Myneni, Ganapati Rao

    2013-09-01

    In an attempt to correlate the performance of superconducting radiofrequency cavities made of niobium with the superconducting properties, we present the results of the magnetization and ac susceptibility of the niobium used in the superconducting radiofrequency cavity fabrication. The samples were subjected to buffer chemical polishing (BCP) surface and high temperature heat treatments, typically applied to the cavities fabrications. The analysis of the results show the different surface and bulk ac conductivity for the samples subjected to BCP and heat treatment. Furthermore, the RF surface impedance is measured on the sample using a TE011 microwave cavity for a comparison to the low frequency measurements.

  8. Introducing AC inductive reactance with a power tool

    NASA Astrophysics Data System (ADS)

    Bryant, Wesley; Baker, Blane

    2016-09-01

    The concept of reactance in AC electrical circuits is often non-intuitive and difficult for students to grasp. In order to address this lack of conceptual understanding, classroom exercises compare the predicted resistance of a power tool, based on electrical specifications, to measured resistance. Once students discover that measured resistance is smaller than expected, they are asked to explain these observations using previously studied principles of magnetic induction. Exercises also introduce the notion of inductive reactance and impedance in AC circuits and, ultimately, determine self-inductance of the motor windings within the power tool.

  9. Some boundary problems in electrical impedance tomography.

    PubMed

    Pidcock, M; Ciulli, S; Ispas, S

    1996-11-01

    Accurate mathematical modelling is important in the development of iterative image reconstruction algorithms for electrical impedance tomography (EIT). In such schemes the forward problem of calculating the electric potential from Neumann boundary data is solved many times. One aspect of this problem which has received some attention is the mathematical modelling of the electrodes used in the technique. In this paper we describe an integral equation formulation of a boundary value problem associated with this tissue and we indicate some of the ways in which this formulation can be used to obtain numerical and analytic results.

  10. Bioelectrical impedance modelling of gentamicin pharmacokinetic parameters.

    PubMed

    Zarowitz, B J; Pilla, A M; Peterson, E L

    1989-10-01

    1. Bioelectrical impedance analysis was used to develop descriptive models of gentamicin pharmacokinetic parameters in 30 adult in-patients receiving therapy with gentamicin. 2. Serial blood samples obtained from each subject at steady state were analyzed and used to derive gentamicin pharmacokinetic parameters. 3. Multiple regression equations were developed for clearance, elimination rate constant and volume of distribution at steady state and were all statistically significant at P less than 0.05. 4. Clinical validation of this innovative technique is warranted before clinical use is recommended.

  11. Damage Assessment of Aerospace Structural Components by Impedance Based Health Monitoring

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Martin, Richard E.; Sawicki, Jerzy T.; Baaklini, George Y.

    2005-01-01

    This paper addresses recent efforts at the NASA Glenn Research Center at Lewis Field relating to the set-up and assessment of electro-mechanical (E/M) impedance based structural health monitoring. The overall aim is the application of the impedance based technique to aeronautic and space based structural components. As initial steps, a laboratory was created, software written, and experiments conducted on aluminum plates in undamaged and damaged states. A simulated crack, in the form of a narrow notch at various locations, was analyzed using piezoelectric-ceramic (PZT: lead, zirconate, titarate) patches as impedance measuring transducers. Descriptions of the impedance quantifying hardware and software are provided as well as experimental results. In summary, an impedance based health monitoring system was assembled and tested. The preliminary data showed that the impedance based technique was successful in recognizing the damage state of notched aluminum plates.

  12. AC magnetohydrodynamic microfluidic switch

    SciTech Connect

    Lemoff, A V; Lee, A P

    2000-03-02

    A microfluidic switch has been demonstrated using an AC Magnetohydrodynamic (MHD) pumping mechanism in which the Lorentz force is used to pump an electrolytic solution. By integrating two AC MHD pumps into different arms of a Y-shaped fluidic circuit, flow can be switched between the two arms. This type of switch can be used to produce complex fluidic routing, which may have multiple applications in {micro}TAS.

  13. Report of the SSC impedance workshop

    SciTech Connect

    1985-10-28

    This workshop focused attention on the transverse, single-bunch instability and the detailed analysis of the broadband impedance which would drive it. Issues discussed included: (1) single bunch stability -- impact of impedance frequency shape, coupled-mode vs. fast blowup regimes, possible stopband structure; (2) numerical estimates of transverse impedance of inner bellows and sliding contact shielded bellows; (3) analytic estimates of pickup and kicker impedance contributions; and (4) feasibility studies of wire and beam measurements of component impedance.

  14. Electrical impedance along connective tissue planes associated with acupuncture meridians

    PubMed Central

    Ahn, Andrew C; Wu, Junru; Badger, Gary J; Hammerschlag, Richard; Langevin, Helene M

    2005-01-01

    Background Acupuncture points and meridians are commonly believed to possess unique electrical properties. The experimental support for this claim is limited given the technical and methodological shortcomings of prior studies. Recent studies indicate a correspondence between acupuncture meridians and connective tissue planes. We hypothesized that segments of acupuncture meridians that are associated with loose connective tissue planes (between muscles or between muscle and bone) visible by ultrasound have greater electrical conductance (less electrical impedance) than non-meridian, parallel control segments. Methods We used a four-electrode method to measure the electrical impedance along segments of the Pericardium and Spleen meridians and corresponding parallel control segments in 23 human subjects. Meridian segments were determined by palpation and proportional measurements. Connective tissue planes underlying those segments were imaged with an ultrasound scanner. Along each meridian segment, four gold-plated needles were inserted along a straight line and used as electrodes. A parallel series of four control needles were placed 0.8 cm medial to the meridian needles. For each set of four needles, a 3.3 kHz alternating (AC) constant amplitude current was introduced at three different amplitudes (20, 40, and 80 μAmps) to the outer two needles, while the voltage was measured between the inner two needles. Tissue impedance between the two inner needles was calculated based on Ohm's law (ratio of voltage to current intensity). Results At the Pericardium location, mean tissue impedance was significantly lower at meridian segments (70.4 ± 5.7 Ω) compared with control segments (75.0 ± 5.9 Ω) (p = 0.0003). At the Spleen location, mean impedance for meridian (67.8 ± 6.8 Ω) and control segments (68.5 ± 7.5 Ω) were not significantly different (p = 0.70). Conclusion Tissue impedance was on average lower along the Pericardium meridian, but not along the Spleen

  15. Isolation of sequences flanking Ac insertion sites by Ac casting.

    PubMed

    Wang, Dafang; Peterson, Thomas

    2013-01-01

    Localizing Ac insertions is a fundamental task in studying Ac-induced mutation and chromosomal rearrangements involving Ac elements. Researchers may sometimes be faced with the situation in which the sequence flanking one side of an Ac/Ds element is known, but the other flank is unknown. Or, a researcher may have a small sequence surrounding the Ac/Ds insertion site and needs to obtain additional flanking genomic sequences. One way to rapidly clone unknown Ac/Ds flanking sequences is via a PCR-based method termed Ac casting. This approach utilizes the somatic transposition activity of Ac during plant development, and provides an efficient means for short-range genome walking. Here we describe the principle of Ac casting, and show how it can be applied to isolate Ac macrotransposon insertion sites.

  16. Electrochemical impedance spectroscopy of supercapacitors: A novel analysis approach using evolutionary programming

    NASA Astrophysics Data System (ADS)

    Oz, Alon; Hershkovitz, Shany; Tsur, Yoed

    2014-11-01

    In this contribution we present a novel approach to analyze impedance spectroscopy measurements of supercapacitors. Transforming the impedance data into frequency-dependent capacitance allows us to use Impedance Spectroscopy Genetic Programming (ISGP) in order to find the distribution function of relaxation times (DFRT) of the processes taking place in the tested device. Synthetic data was generated in order to demonstrate this technique and a model for supercapacitor ageing process has been obtained.

  17. Use of impedance plethysmography to continually monitor bone marrow blood flow

    NASA Technical Reports Server (NTRS)

    Montgomery, L. D.; Mcewen, G. N., Jr.; Gerber, R. L.; Cann, C. E.; Morey, E. R.

    1984-01-01

    An impedance-plethysmographic technique is described which can be used to quantify temporal bone-marrow blood-flow changes. Results obtained with the impedance technique compare favorably with the data from simultaneously administered microspheres. Injection of sympathomimetic drugs produced measurable responses: isoproterenol caused a significant increase in bone-marrow blood flow within 1 min, and levarterenol decreased bone-marrow blood flow. Data obtained with impedance plethysmography suggest that the technique is feasible for multiple measurements on the same animal and that the technique can be used to study acute or chronic changes in bone-marrow blood flow following various experimental treatments.

  18. Impedances of Laminated Vacuum Chambers

    SciTech Connect

    Burov, A.; Lebedev, V.; /Fermilab

    2011-06-22

    First publications on impedance of laminated vacuum chambers are related to early 70s: those are of S. C. Snowdon [1] and of A. G. Ruggiero [2]; fifteen years later, a revision paper of R. Gluckstern appeared [3]. All the publications were presented as Fermilab preprints, and there is no surprise in that: the Fermilab Booster has its laminated magnets open to the beam. Being in a reasonable mutual agreement, these publications were all devoted to the longitudinal impedance of round vacuum chambers. The transverse impedance and the flat geometry case were addressed in more recent paper of K. Y. Ng [4]. The latest calculations of A. Macridin et al. [5] revealed some disagreement with Ref. [4]; this fact stimulated us to get our own results on that matter. Longitudinal and transverse impendances are derived for round and flat laminated vacuum chambers. Results of this paper agree with Ref. [5].

  19. A high frequency electromagnetic impedance imaging system

    SciTech Connect

    Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex

    2003-01-15

    Non-invasive, high resolution geophysical mapping of the shallow subsurface is necessary for delineation of buried hazardous wastes, detecting unexploded ordinance, verifying and monitoring of containment or moisture contents, and other environmental applications. Electromagnetic (EM) techniques can be used for this purpose since electrical conductivity and dielectric permittivity are representative of the subsurface media. Measurements in the EM frequency band between 1 and 100 MHz are very important for such applications, because the induction number of many targets is small and the ability to determine the subsurface distribution of both electrical properties is required. Earlier workers were successful in developing systems for detecting anomalous areas, but quantitative interpretation of the data was difficult. Accurate measurements are necessary, but difficult to achieve for high-resolution imaging of the subsurface. We are developing a broadband non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using an EM impedance approach similar to the MT exploration technique. Electric and magnetic sensors were tested to ensure that stray EM scattering is minimized and the quality of the data collected with the high-frequency impedance (HFI) system is good enough to allow high-resolution, multi-dimensional imaging of hidden targets. Additional efforts are being made to modify and further develop existing sensors and transmitters to improve the imaging capability and data acquisition efficiency.

  20. Electrical impedance imaging of water distribution in the root zone

    NASA Astrophysics Data System (ADS)

    Newill, P.; Karadaglić, D.; Podd, F.; Grieve, B. D.; York, T. A.

    2014-05-01

    The paper describes a technique that is proposed for imaging water transport in and around the root zone of plants using distributed measurements of electrical impedance. The technique has the potential to analyse sub-surface phenotypes, for instance drought tolerance traits in crop breeding programmes. The technical aim is to implement an automated, low cost, instrument for high-throughput screening. Ultimately the technique is targeted at in-field, on-line, measurements. For demonstration purposes the present work considers measurements on laboratory scale rhizotrons housing growing maize plants. Each rhizotron is fitted with 60 electrodes in a rectangular array. To reduce electrochemical effects the capacitively coupled contactless conductivity (C4D) electrodes have an insulating layer on the surface and the resistance of the bulk material is deduced from spectroscopic considerations. Electrical impedance is measured between pairs of electrodes to build up a two-dimensional map. A modified electrical model of such electrodes is proposed which includes the resistive and reactive components of both the insulating layer and the bulk material. Measurements taken on a parallel-plate test cell containing water confirm that the C4D technique is able to measure electrical impedance. The test cell has been used to explore the effects of water content, compaction and temperature on measurements in soil. Results confirm that electrical impedance measurements are very sensitive to moisture content. Impedance fraction changes up to 20% are observed due to compaction up to a pressure of 0.21 kg cm-2 and a temperature fraction sensitivity of about 2%/°C. The effects of compaction and temperature are most significant under dry conditions. Measurements on growing maize reveal the changes in impedance across the rhizotron over a period of several weeks. Results are compared to a control vessel housing only soil.

  1. Dynamic Characterization of Dendrite Deposition and Growth in Li-Surface by Electrochemical Impedance Spectroscopy

    SciTech Connect

    Hernandez-Maya, R; Rosas, O; Saunders, J; Castaneda, H

    2015-01-13

    The evolution of dendrite formation is characterized by DC and AC electrochemical techniques. Interfacial mechanisms for lithium deposition are described and quantified by electrochemical impedance spectroscopy (EIS) between a lithium electrode and a graphite electrode. The initiation and growth of dendrites in the lithium surface due to the cathodic polarization conditions following anodic dissolution emulate long term cycling process occurring in the lithium electrodes. The dendrite initiation at the lithium/organic electrolyte interface is proposed to be performed through a combination of layering and interfacial reactions during different cathodic conditions. The growth is proposed to be performed by surface geometrical deposition. In this work, we use EIS in galvanostatic mode to assess the initiation and growth stages of dendrites by the accumulation of precipitates formed under different current conditions. The lithium/organic solvent experimental system using frequency domain techniques is validated by the theoretical approach using a deterministic model that accounts for the faradaic processes at the interface assuming a coverage fraction of the electrodic surface affected by the dendritic growth. (C) 2015 The Electrochemical Society. All rights reserved.

  2. Electro-mechanical analogies for modeling the structural impedance response

    NASA Astrophysics Data System (ADS)

    Zagrai, Andrei

    2007-04-01

    Electro-mechanical (E/M) impedance is a powerful structural identification and health monitoring (SHM) technique that allows for inferring high-frequency structural dynamic characteristics directly by interrogating a network of embedded piezoelectric active sensors. In recent years, there has been a considerable interest in expanding range of applications of the electromechanical impedance technique, its synergistic integration into complementary SHM methodologies, and miniaturizing the associated impedance measurement circuitry. The present work is aimed at developing an E/M impedance modeling approach that explores analogies between electrical and mechanical systems and permits representation of the mechanical system elements in terms of equivalent electrical circuits. The advantage of such a representation is that analytical modeling is substantially simplified by considering a network of electrical elements, mechanical quantities are incorporated directly into the electrical model of a measurement unit, and modern circuit design, simulation and analysis software tools can be employed to improve the method performance. The electro-mechanical model of a piezoelectric impedance sensor is discussed and development of the electrical circuit representation of the sensor-structure interaction is presented. The proposed electrical and existing mechanical models are compared showing a good agreement. Applicability of the developed modeling approach is discussed and examples of numerical calculations are provided. It is suggested that describing a sensor-structure electro-mechanical system in terms of electro-mechanical analogies could simplify analytical modeling and improve instrumentation design.

  3. IMPEDANCE ALARM SYSTEM

    DOEpatents

    Cowen, R.G.

    1959-09-29

    A description is given of electric protective systems and burglar alarm systems of the capacitance type in which the approach of an intruder at a place to be protected varies the capacitance in an electric circuit and the change is thereafter communicated to a remote point to actuate an alarm. According to the invention, an astable transitor multi-vibrator has the amplitude at its output voltage controlled by a change in the sensing capacitance. The sensing capacitance is effectively connected between collector and base of one stage of the multivibrator circuit through the detector-to-monitor line. The output of the detector is a small d-c voltage across the detector-to-monitor line. This d- c voltage is amplified and monitored at the other end of the line, where an appropriate alarm is actuated if a sudden change in the voltage occurs. The present system has a high degree of sensitivity and is very difficult to defeat by known techniques.

  4. Fabrication of alumina films with laminated structures by ac anodization

    NASA Astrophysics Data System (ADS)

    Segawa, Hiroyo; Okano, Hironaga; Wada, Kenji; Inoue, Satoru

    2014-02-01

    Anodization techniques by alternating current (ac) are introduced in this review. By using ac anodization, laminated alumina films are fabricated. Different types of alumina films consisting of 50-200 nm layers were obtained by varying both the ac power supply and the electrolyte. The total film thickness increased with an increase in the total charge transferred. The thickness of the individual layers increased with the ac voltage; however, the anodization time had little effect on the film thickness. The laminated alumina films resembled the nacre structure of shells, and the different morphologies exhibited by bivalves and spiral shells could be replicated by controlling the rate of increase of the applied potentials.

  5. Characteristic impedance of microstrip lines

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.; Deshpande, M. D.

    1989-01-01

    The dyadic Green's function for a current embedded in a grounded dielectric slab is used to analyze microstrip lines at millimeter wave frequencies. The dyadic Green's function accounts accurately for fringing fields and dielectric cover over the microstrip line. Using Rumsey's reaction concept, an expression for the characteristic impedance is obtained. The numerical results are compared with other reported results.

  6. Investigation of nanocrystalline CdS/Si diode using complex impedance spectroscopy

    SciTech Connect

    El-Gendy, Y.A.; Yahia, I.S.; Yakuphanoglu, F.

    2012-11-15

    Highlights: ► CdS/n-Si device was fabricated as a heterostructure. ► AFM was used to examine the structure of CdS/n-Si. ► Complex impedance Z′and Z″were calculated. ► AC conductivity was explained by the power law relation. ► CBH model was used to describe the AC conduction mechanism. -- Abstract: CdS/n-Si device was fabricated via depositing CdS thin film onto pre-cleaned n-silicon substrates. The atomic force microscope was used to examine the crystal size of the deposited films and its roughness. The AC conductivity and the real part of complex impedance Z′as a function of frequency at different temperatures were studied. The AC conductivity dependence of the applied frequency was explained on the basis of the power law relation. The bulk resistance has been calculated at different temperatures from the complex impedance Z″. The temperature dependence of capacitance for CdS/n-Si device at different frequencies was also investigated.

  7. A Monte Carlo simulation of range for an invasive impedance respiration monitor.

    PubMed

    Valenta, H L; Fischer, S K

    1990-01-01

    One method of rate responsive pacing utilizes an analog of minute ventilation as the input to the rate control algorithm. A measure of the intravenous impedance along the pacing catheter is a convenient means of determining minute ventilation. Design of the impedance converter requires a knowledge of the range of DC and AC impedance signals. During normal and deep breathing, 116 AC measurements were taken from 34 Electrophysiology (EP) patients and 31 DC measurements were taken from 13 EP patients. The patient data produced skewed distributions with a normal AC mean of 0.45 +/- 0.40 ohms p-p, a deep AC mean of 2.0 +/- 1.6 ohms and a DC mean of 44 +/- 13 ohms. An eight variable static model was derived from prior work. Five of the physiological variables were chosen from established clinical ranges, one geometrical variable was chosen from prior work and two were selected by matching the statistics of a Monte Carlo analysis of the model with the statistics of the patient data. The blood resistivity was obtained from prior work. A simulation of 1000 measurements produced a normal breathing range of 0 to 2.24 ohms, a deep breathing range of 0 to 9.6 ohms and a DC range of 19 to 100 ohms. PMID:2334765

  8. An approximate solution to improve computational efficiency of impedance-type payload load prediction

    NASA Technical Reports Server (NTRS)

    White, C. W.

    1981-01-01

    The computational efficiency of the impedance type loads prediction method was studied. Three goals were addressed: devise a method to make the impedance method operate more efficiently in the computer; assess the accuracy and convenience of the method for determining the effect of design changes; and investigate the use of the method to identify design changes for reduction of payload loads. The method is suitable for calculation of dynamic response in either the frequency or time domain. It is concluded that: the choice of an orthogonal coordinate system will allow the impedance method to operate more efficiently in the computer; the approximate mode impedance technique is adequate for determining the effect of design changes, and is applicable for both statically determinate and statically indeterminate payload attachments; and beneficial design changes to reduce payload loads can be identified by the combined application of impedance techniques and energy distribution review techniques.

  9. Calibration of electrical impedance tomography

    SciTech Connect

    Daily, W; Ramirez, A

    2000-05-01

    Over the past 10 years we have developed methods for imaging the electrical resistivity of soil and rock formations. These technologies have been called electrical resistance tomography of ERT (e.g. Daily and Owen, 1991). Recently we have been striving to extend this capability to include images of electric impedance--with a new nomenclature of electrical impedance tomography or EIT (Ramirez et al., 1999). Electrical impedance is simply a generalization of resistance. Whereas resistance is the zero frequency ratio of voltage and current, impedance includes both the magnitude and phase relationship between voltage and current at frequency. This phase and its frequency behavior is closely related to what in geophysics is called induced polarization or (Sumner, 1976). Why is this phase or IP important? IP is known to be related to many physical phenomena of importance so that image of IP will be maps of such things as mineralization and cation exchange IP (Marshall and Madden, 1959). Also, it is likely that IP, used in conjunction with resistivity, will yield information about the subsurface that can not be obtained by either piece of information separately. In order to define the accuracy of our technologies to image impedance we have constructed a physical model of known impedance that can be used as a calibration standard. It consists of 616 resistors, along with some capacitors to provide the reactive response, arranged in a three dimensional structure as in figure 1. Figure 2 shows the construction of the network and defines the coordinate system used to describe it. This network of components is a bounded and discrete version of the unbounded and continuous medium with which we normally work (the subsurface). The network has several desirable qualities: (1) The impedance values are known (to the accuracy of the component values). (2) The component values and their 3D distribution is easily controlled. (3) Error associated with electrode noise is eliminated. (4

  10. Equivalent Electrical Circuit Representations of AC Quantized Hall Resistance Standards

    PubMed Central

    Cage, M. E.; Jeffery, A.; Matthews, J.

    1999-01-01

    We use equivalent electrical circuits to analyze the effects of large parasitic impedances existing in all sample probes on four-terminal-pair measurements of the ac quantized Hall resistance RH. The circuit components include the externally measurable parasitic capacitances, inductances, lead resistances, and leakage resistances of ac quantized Hall resistance standards, as well as components that represent the electrical characteristics of the quantum Hall effect device (QHE). Two kinds of electrical circuit connections to the QHE are described and considered: single-series “offset” and quadruple-series. (We eliminated other connections in earlier analyses because they did not provide the desired accuracy with all sample probe leads attached at the device.) Exact, but complicated, algebraic equations are derived for the currents and measured quantized Hall voltages for these two circuits. Only the quadruple-series connection circuit meets our desired goal of measuring RH for both ac and dc currents with a one-standard-deviation uncertainty of 10−8 RH or less during the same cool-down with all leads attached at the device. The single-series “offset” connection circuit meets our other desired goal of also measuring the longitudinal resistance Rx for both ac and dc currents during that same cool-down. We will use these predictions to apply small measurable corrections, and uncertainties of the corrections, to ac measurements of RH in order to realize an intrinsic ac quantized Hall resistance standard of 10−8 RH uncertainty or less.

  11. Superconducting shielded core reactor with reduced AC losses

    DOEpatents

    Cha, Yung S.; Hull, John R.

    2006-04-04

    A superconducting shielded core reactor (SSCR) operates as a passive device for limiting excessive AC current in a circuit operating at a high power level under a fault condition such as shorting. The SSCR includes a ferromagnetic core which may be either closed or open (with an air gap) and extends into and through a superconducting tube or superconducting rings arranged in a stacked array. First and second series connected copper coils each disposed about a portion of the iron core are connected to the circuit to be protected and are respectively wound inside and outside of the superconducting tube or rings. A large impedance is inserted into the circuit by the core when the shielding capability of the superconducting arrangement is exceeded by the applied magnetic field generated by the two coils under a fault condition to limit the AC current in the circuit. The proposed SSCR also affords reduced AC loss compared to conventional SSCRs under continuous normal operation.

  12. Tevatron AC dipole system

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is an oscillating dipole magnet which can induce large amplitude oscillations without the emittance growth and decoherence. These properties make it a good tool to measure optics of a hadron synchrotron. The vertical AC dipole for the Tevatron is powered by an inexpensive high power audio amplifier since its operating frequency is approximately 20 kHz. The magnet is incorporated into a parallel resonant system to maximize the current. The use of a vertical pinger magnet which has been installed in the Tevatron made the cost relatively inexpensive. Recently, the initial system was upgraded with a more powerful amplifier and oscillation amplitudes up to 2-3{sigma} were achieved with the 980 GeV proton beam. This paper discusses details of the Tevatron AC dipole system and also shows its test results.

  13. AC-3 audio coder

    NASA Astrophysics Data System (ADS)

    Todd, Craig

    1995-12-01

    AC-3 is a system for coding up to 5.1 channels of audio into a low bit-rate data stream. High quality may be obtained with compression ratios approaching 12-1 for multichannel audio programs. The high compression ratio is achieved by methods which do not increase decoder memory, and thus cost. The methods employed include: the transmission of a high frequency resolution spectral envelope; and a novel forward/backward adaptive bit allocation algorithm. In order to satisfy practical requirements of an emissions coder, the AC-3 syntax includes a number of features useful to broadcasters and consumers. These features include: loudness uniformity between programs; dynamic range control; and broadcaster control of downmix coefficients. The AC-3 coder has been formally selected for inclusion of the U.S. HDTV broadcast standard, and has been informally selected for several additional applications.

  14. Simulating Reflex Induced Changes in the Acoustic Impedance of the Ear.

    ERIC Educational Resources Information Center

    Sirlin, Mindy W.; Levitt, Harry

    1991-01-01

    A simple procedure for measuring changes in the acoustic impedance of the ear is described. The technique has several applications, including simulation using a standard coupler of changes in real ear impedance produced by the acoustic reflex, and calibration of response time of an otoadmittance meter. (Author/DB)

  15. Low-cost digital impedance meter for the detection of micro-organisms.

    PubMed

    Felice, C J; Clavin, O E; Spinelli, J C; Valentinuzzi, M E; Gallo, B V

    1988-10-01

    The digital impedance meter is a microprocessor-based instrument able to detect, quantify and identify micro-organisms. The equipment makes use of the bipolar technique of measuring the impedance modulus of six cells containing inoculated culture broth. It performs temperature compensation automatically. Growth curves are stored in memory as time course events and can be displayed on any suitable device.

  16. An impedance study on admiralty brass dezincification originated by microbiologically influenced corrosion.

    PubMed

    Ibars, J R; Polo, J L; Moreno, D A; Ranninger, C; Bastidas, J M

    2004-09-30

    In this article we describe a field study of biofouling and microbiologically influenced corrosion (MIC) of admiralty brass heat exchanger tubes in contact with running fresh water on the river Tagus close to Almaraz nuclear power plant in Spain. Dezincification originated by biofouling and MIC was studied using impedance, polarization resistance, gravimetric, scanning electron microscopy (SEM), and X-ray diffraction (XRD) measurements. Close correlation was observed between the biofilms formed and the corrosion process (dezincification) using the different experimental techniques. Impedance data showed a capacitive behavior including two time constants. Kramers-Kronig (KK) transforms were used to validate impedance data. The admiralty tubes' impedance data satisfied the KK relations.

  17. An impedance study on admiralty brass dezincification originated by microbiologically influenced corrosion.

    PubMed

    Ibars, J R; Polo, J L; Moreno, D A; Ranninger, C; Bastidas, J M

    2004-09-30

    In this article we describe a field study of biofouling and microbiologically influenced corrosion (MIC) of admiralty brass heat exchanger tubes in contact with running fresh water on the river Tagus close to Almaraz nuclear power plant in Spain. Dezincification originated by biofouling and MIC was studied using impedance, polarization resistance, gravimetric, scanning electron microscopy (SEM), and X-ray diffraction (XRD) measurements. Close correlation was observed between the biofilms formed and the corrosion process (dezincification) using the different experimental techniques. Impedance data showed a capacitive behavior including two time constants. Kramers-Kronig (KK) transforms were used to validate impedance data. The admiralty tubes' impedance data satisfied the KK relations. PMID:15334412

  18. Study on A.C. electrical properties of pure and L-serine doped ADP crystals

    NASA Astrophysics Data System (ADS)

    Joshi, J. H.; Dixit, K. P.; Joshi, M. J.; Parikh, K. D.

    2016-05-01

    Ammonium Dihydrogen Phosphate (ADP) crystals have a wide range of applications in integrated and nonlinear optics. Amino acids having significant properties like molecular chirality, zwitter ionic nature, etc. attracted many researchers to dope them in various NLO crystals. In the present study, pure and different weight percentage L-serine doped ADP crystals were grown by slow solvent evaporation technique at room temperature. The A.C. electrical study was carried out for palletized samples at room temperature. The Nyquist plot showed two semi circles for pure ADP indicated the effect of grain and grain boundary, whereas the doped ADP samples exhibited the single semi circle suggesting the effect of grain. The values resistance and capacitance for grain and grain boundary were calculated. The effect of doping was clearly seen in the grain capacitance and resistance values. The dielectric constant and dielectric loss decreased with increase in frequency for all samples. The Jonscher power law was applied for A.C. conductivity for pure and doped ADP samples. The imaginary part of modulus and impedance versus frequency were drawn and the value of stretch exponent (β) was calculated for all the samples.

  19. A new three-dimensional electromechanical impedance model for an embedded dual-PZT transducer

    NASA Astrophysics Data System (ADS)

    Wang, Dansheng; Li, Zhi; Zhu, Hongping

    2016-07-01

    In the past twenty years, the electromechanical (EM) impedance technique has been investigated extensively in the mechanical, aviation and civil engineering fields. Many different EM impedance models have been proposed to characterize the interaction between the surface-bonded PZT transducer and the host structure. This paper formulates a new three-dimensional EM impedance model characterizing the interaction between an embedded circle dual-PZT transducer and the host structure based on the effective impedance concept. The proposed model is validated by experimental results from a group of smart cement cubes, in which three circle dual-PZT transducers are embedded respectively. In addition, a new EM impedance measuring method for the dual-PZT transducer is also introduced. In the measuring method, only a common signal generator and an oscilloscope are needed, by which the exciting and receiving voltage signals are obtained respectively. Combined with fast Fourier transform the EM impedance signatures of the dual-PZT transducers are obtained.

  20. Dielectric and impedance spectroscopic studies of neodymium gallate

    NASA Astrophysics Data System (ADS)

    Sakhya, Anup Pradhan; Dutta, Alo; Sinha, T. P.

    2016-05-01

    The AC electrical properties of a polycrystalline neodymium gallate, NdGaO3 (NGO), synthesized by the sol-gel method have been investigated by employing impedance spectroscopy in the frequency range from 42 Hz to 5 MHz and in the temperature range from 323 K to 593 K. The X-ray diffraction analysis shows that the compound crystallizes in the orthorhombic phase with Pbnm space group at room temperature. Two relaxation processes with different relaxation times are observed from the impedance as well as modulus spectroscopic measurements, which have been attributed to the grain and the grain boundary effects at different temperatures in NGO. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element in parallel. It has been observed that the value of the capacitance and the resistance associated with the grain boundary is higher than those associated with the grain. The temperature dependent electrical conductivity shows the negative temperature coefficient of resistance. The frequency dependent conductivity spectra are found to follow the power law.

  1. Characterization of active metamaterials based on negative impedance converters

    NASA Astrophysics Data System (ADS)

    Rajab, K. Z.; Fan, Y. F.; Hao, Y.

    2012-11-01

    Negative impedance converters (NICs) are used to create impedance loads that can effectively cancel the inductive properties of magnetic dipoles, resulting in active metamaterials with increased bandwidth and reduced loss for μ-near-zero (MNZ) and negative-Re(μ) (MNG) media. We demonstrate techniques for analyzing the stability and characterizing the magnetic properties of effective media loaded with NICs. Specifically, we apply the Nyquist criterion to validate the stability of sample active metamaterials. It is shown that the practical NIC-loaded metamaterial may maintain stability and reduce dispersion, albeit with reduced performance as compared to the ideal NIC load.

  2. Electrochemical Impedance Of Inorganic-Zinc-Coated Steel

    NASA Technical Reports Server (NTRS)

    Macdowell, Louis G.

    1992-01-01

    Report describes preliminary experiments to evaluate both direct-current and alternating-current electrochemical impedance measurements as candidate techniques for use in accelerated corrosion testing of mild-steel panels coated with inorganic zinc-rich primers and exposed to seaside air. Basic idea behind experiments to compare electrochemical impedance measurements with anticorrosion performances of coating materials to determine whether measurements can be used to predict performances. Part of continuing program to identify anticorrosion coating materials protecting steel panels adequately for as long as 5 years and beyond.

  3. Basic concepts of induced AC voltages on pipelines

    SciTech Connect

    Kirkpatrick, E.L.

    1995-07-01

    The phenomena of induced AC on pipelines sharing common rights-of-way with overhead high-voltage electrical transmission power lines is discussed. Basic concepts and techniques for personnel safety and some pipeline protective measures are reviewed.

  4. The quantum Hall impedance standard

    NASA Astrophysics Data System (ADS)

    Schurr, J.; Kučera, J.; Pierz, K.; Kibble, B. P.

    2011-02-01

    Alternating current measurements of double-shielded quantum Hall devices have revealed a fascinating property of which only a quantum effect is capable: it can detect its own frequency dependence and convert it to a current dependence which can be used to eliminate both of them. According to an experimentally verified model, the residual frequency dependence is smaller than the measuring uncertainty of 1.3 × 10-9 kHz-1. In this way, a highly precise quantum standard of impedance can be established, without having to correct for any calculated frequency dependence and without the need for any artefact with a calculated frequency dependence. Nothing else like that is known to us and we hope that our results encourage other national metrology institutes to also apply it to impedance metrology and further explore its beautiful properties.

  5. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of...

  6. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of...

  7. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral...

  8. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral...

  9. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of...

  10. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of...

  11. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral...

  12. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral...

  13. [Research on Electrical Impedance Tomography Technology].

    PubMed

    Chang, Feiba; Zhang, Hehua; Yan, Lexian; Yin, Jun

    2016-01-01

    This article reviews the principle of electrical impedance tomography imaging and measurement system; focuses on electrical impedance tomography imaging detection system of incentive mode and several typical image reconstruction algorithm of electrical impedance imaging; and objectively compares and effectively evaluates several image reconstruction algorithm.

  14. Data analysis in multiple-frequency bioelectrical impedance analysis.

    PubMed

    Cornish, B H; Ward, L C

    1998-05-01

    The performance of three analytical methods for multiple-frequency bioelectrical impedance analysis (MFBIA) data was assessed. The methods were the established method of Cole and Cole, the newly proposed method of Siconolfi and co-workers and a modification of this procedure. Method performance was assessed from the adequacy of the curve fitting techniques, as judged by the correlation coefficient and standard error of the estimate, and the accuracy of the different methods in determining the theoretical values of impedance parameters describing a set of model electrical circuits. The experimental data were well fitted by all curve-fitting procedures (r = 0.9 with SEE 0.3 to 3.5% or better for most circuit-procedure combinations). Cole-Cole modelling provided the most accurate estimates of circuit impedance values, generally within 1-2% of the theoretical values, followed by the Siconolfi procedure using a sixth-order polynomial regression (1-6% variation). None of the methods, however, accurately estimated circuit parameters when the measured impedances were low (< 20 omega) reflecting the electronic limits of the impedance meter used. These data suggest that Cole-Cole modelling remains the preferred method for the analysis of MFBIA data.

  15. Piezogenerator impedance matching using Mason equivalent circuit for harvester identification

    NASA Astrophysics Data System (ADS)

    Li, Yang; Richard, Claude

    2014-04-01

    Any piezoelectric generator structure can be modeled close to its resonance by an equivalent circuit derived from the well known Mason equivalent circuit. This equivalent circuit can therefore be used in order to optimize the harvested power using usual electrical impedance matching. The objective of this paper is to illustrate the full process leading to the definition of the proper passive load allowing the optimization of the harvested energy of any harvesting device. First, the electric equivalent circuit of the generator is derived from the Mason equivalent circuit of a seismic harvester. Theoretical ideal impedance matching and optimal load analyze is then given emphasizing the fact that for a given acceleration a constant optimal output power is achievable for any frequency as long as the optimal load is feasible. Identification of the equivalent circuit of an experimental seismic harvester is then derived and matched impedance is defined both theoretically and experimentally. Results demonstrate that an optimal load can always be obtained and that the corresponding output power is constant. However, it is very sensitive to this impedance, and that even if impedance matching is a longtime well known technique, it is not really experimentally and practically achievable.

  16. Microfluidic impedance cytometry of tumour cells in blood.

    PubMed

    Spencer, Daniel; Hollis, Veronica; Morgan, Hywel

    2014-11-01

    The dielectric properties of tumour cells are known to differ from normal blood cells, and this difference can be exploited for label-free separation of cells. Conventional measurement techniques are slow and cannot identify rare circulating tumour cells (CTCs) in a realistic timeframe. We use high throughput single cell microfluidic impedance cytometry to measure the dielectric properties of the MCF7 tumour cell line (representative of CTCs), both as pure populations and mixed with whole blood. The data show that the MCF7 cells have a large membrane capacitance and size, enabling clear discrimination from all other leukocytes. Impedance analysis is used to follow changes in cell viability when cells are kept in suspension, a process which can be understood from modelling time-dependent changes in the dielectric properties (predominantly membrane conductivity) of the cells. Impedance cytometry is used to enumerate low numbers of MCF7 cells spiked into whole blood. Chemical lysis is commonly used to remove the abundant erythrocytes, and it is shown that this process does not alter the MCF7 cell count or change their dielectric properties. Combining impedance cytometry with magnetic bead based antibody enrichment enables MCF7 cells to be detected down to 100 MCF7 cells in 1 ml whole blood, a log 3.5 enrichment and a mean recovery of 92%. Microfluidic impedance cytometry could be easily integrated within complex cell separation systems for identification and enumeration of specific cell types, providing a fast in-line single cell characterisation method.

  17. A systematic uncertainty analysis for liner impedance eduction technology

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Bodén, Hans

    2015-11-01

    The so-called impedance eduction technology is widely used for obtaining acoustic properties of liners used in aircraft engines. The measurement uncertainties for this technology are still not well understood though it is essential for data quality assessment and model validation. A systematic framework based on multivariate analysis is presented in this paper to provide 95 percent confidence interval uncertainty estimates in the process of impedance eduction. The analysis is made using a single mode straightforward method based on transmission coefficients involving the classic Ingard-Myers boundary condition. The multivariate technique makes it possible to obtain an uncertainty analysis for the possibly correlated real and imaginary parts of the complex quantities. The results show that the errors in impedance results at low frequency mainly depend on the variability of transmission coefficients, while the mean Mach number accuracy is the most important source of error at high frequencies. The effect of Mach numbers used in the wave dispersion equation and in the Ingard-Myers boundary condition has been separated for comparison of the outcome of impedance eduction. A local Mach number based on friction velocity is suggested as a way to reduce the inconsistencies found when estimating impedance using upstream and downstream acoustic excitation.

  18. Wideband impedance spectrum analyzer for process automation applications.

    PubMed

    Doerner, Steffen; Schneider, Thomas; Hauptmann, Peter R

    2007-10-01

    For decades impedance spectroscopy is used in technical laboratories and research departments to investigate effects or material characteristics that affect the impedance spectrum of the sensor. Establishing this analytical approach for process automation and stand-alone applications will deliver additional and valuable information beside traditional measurement techniques such as the measurement of temperature, flow rate, and conductivity, among others. As yet, most of the current impedance analysis methods are suited for laboratory applications only since they involve stand-alone network analyzers that are slow, expensive, large, or immobile. Furthermore, those systems offer a large range of functionality that is not being used in process control and other fields of application. We developed a sensor interface based on high speed direct digital signal processing offering wideband impedance spectrum analysis with high resolution for frequency adjustment, excellent noise rejection, very high measurement rate, and convenient data exchange to common interfaces. The electronics has been implemented on two small circuit boards and it is well suited for process control applications such as monitoring phase transitions, characterization of fluidal systems, and control of biological processes. The impedance spectrum analyzer can be customized easily for different measurement applications by adapting the appropriate sensor module. It has been tested for industrial applications, e.g., dielectric spectroscopy and high temperature gas analysis.

  19. Coupling impedances of small discontinuities: Dependence on beam velocity

    NASA Astrophysics Data System (ADS)

    Kurennoy, Sergey S.

    2006-05-01

    The beam coupling impedances of small discontinuities of an accelerator vacuum chamber have been calculated [e.g., Kurennoy, Gluckstern, and Stupakov, Phys. Rev. E 52, 4354 (1995)PLEEE81063-651X10.1103/PhysRevE.52.4354] for ultrarelativistic beams using the Bethe diffraction theory. Here we extend the results to an arbitrary beam velocity. The vacuum chamber is assumed to have an arbitrary, but uniform along the beam path, cross section. The longitudinal and transverse coupling impedances are derived in terms of series over cross-section eigenfunctions, while the discontinuity shape enters via its polarizabilities. Simple explicit formulas for two important particular cases—circular and rectangular chamber cross sections—are presented. The impedance dependence on the beam velocity exhibits some unusual features: for example, the reactive impedance, which dominates in the ultrarelativistic limit, can vanish at a certain beam velocity, or its magnitude can exceed the ultrarelativistic value many times. In addition, we demonstrate that the same technique, the field expansion into a series of cross-section eigenfunctions, is convenient for calculating the space-charge impedance of uniform beam pipes with arbitrary cross section.

  20. Electron density dependence of impedance probe plasma potential measurements

    SciTech Connect

    Walker, D. N.; Blackwell, D. D.; Amatucci, W. E.

    2015-08-15

    In earlier works, we used spheres of various sizes as impedance probes in demonstrating a method of determining plasma potential, φ{sub p}, when the probe radius is much larger than the Debye length, λ{sub D}. The basis of the method in those works [Walker et al., Phys. Plasmas 13, 032108 (2006); ibid. 15, 123506 (2008); ibid. 17, 113503 (2010)] relies on applying a small amplitude signal of fixed frequency to a probe in a plasma and, through network analyzer-based measurements, determining the complex reflection coefficient, Γ, for varying probe bias, V{sub b}. The frequency range of the applied signal is restricted to avoid sheath resonant effects and ion contributions such that ω{sub pi} ≪ ω ≪ ω{sub pe}, where ω{sub pi} is the ion plasma frequency and ω{sub pe} is the electron plasma frequency. For a given frequency and applied bias, both Re(Z{sub ac}) and Im(Z{sub ac}) are available from Γ. When Re(Z{sub ac}) is plotted versus V{sub b}, a minimum predicted by theory occurs at φ{sub p} [Walker et al., Phys. Plasmas 17, 113503 (2010)]. In addition, Im(Z{sub ac}) appears at, or very near, a maximum at φ{sub p}. As n{sub e} decreases and the sheath expands, the minimum becomes harder to discern. The purpose of this work is to demonstrate that when using network analyzer-based measurements, Γ itself and Im(Z{sub ac}) and their derivatives are useful as accompanying indicators to Re(Z{sub ac}) in these difficult cases. We note the difficulties encountered by the most commonly used plasma diagnostic, the Langmuir probe. Spherical probe data is mainly used in this work, although we present limited data for a cylinder and a disk. To demonstrate the effect of lowered density as a function of probe geometry, we compare the cylinder and disk using only the indicator Re(Z{sub ac})

  1. Impedance microflow cytometry for viability studies of microorganisms

    NASA Astrophysics Data System (ADS)

    Di Berardino, Marco; Hebeisen, Monika; Hessler, Thomas; Ziswiler, Adrian; Largiadèr, Stephanie; Schade, Grit

    2011-02-01

    Impedance-based Coulter counters and its derivatives are widely used cell analysis tools in many laboratories and use normally DC or low frequency AC to perform these electrical analyses. The emergence of micro-fabrication technologies in the last decade, however, provides a new means of measuring electrical properties of cells. Microfluidic approaches combined with impedance spectroscopy measurements in the radio frequency (RF) range increase sensitivity and information content and thus push single cell analyses beyond simple cell counting and sizing applications towards multiparametric cell characterization. Promising results have been shown already in the fields of cell differentiation and blood analysis. Here we emphasize the potential of this technology by presenting new data obtained from viability studies on microorganisms. Impedance measurements of several yeast and bacteria strains performed at frequencies around 10 MHz enable an easy discrimination between dead and viable cells. Moreover, cytotoxic effects of antibiotics and other reagents, as well as cell starvation can also be monitored easily. Control analyses performed with conventional flow cytometers using various fluorescent dyes (propidium iodide, oxonol) indicate a good correlation and further highlight the capability of this device. The label-free approach makes on the one hand the use of usually expensive fluorochromes obsolete, on the other hand practically eliminates laborious sample preparation procedures. Until now, online cell monitoring was limited to the determination of viable biomass, which provides rather poor information of a cell culture. Impedance microflow cytometry, besides other aspects, proposes a simple solution to these limitations and might become an important tool for bioprocess monitoring applications in the biotech industry.

  2. Recent applications of AC electrokinetics in biomolecular analysis on microfluidic devices.

    PubMed

    Sasaki, Naoki

    2012-01-01

    AC electrokinetics is a generic term that refers to an induced motion of particles and fluids under nonuniform AC electric fields. The AC electric fields are formed by application of AC voltages to microelectrodes, which can be easily integrated into microfluidic devices by standard microfabrication techniques. Moreover, the magnitude of the motion is large enough to control the mass transfer on the devices. These advantages are attractive for biomolecular analysis on the microfluidic devices, in which the characteristics of small space and microfluidics have been mainly employed. In this review, I describe recent applications of AC electrokinetics in biomolecular analysis on microfluidic devices. The applications include fluid pumping and mixing by AC electrokinetic flow, and manipulation of biomolecules such as DNA and proteins by various AC electrokinetic techniques. Future prospects for highly functional biomolecular analysis on microfluidic devices with the aid of AC electrokinetics are also discussed.

  3. Constant current loop impedance measuring system that is immune to the effects of parasitic impedances

    NASA Technical Reports Server (NTRS)

    Anderson, Karl F. (Inventor)

    1994-01-01

    A constant current loop measuring system is provided for measuring a characteristic of an environment. The system comprises a first impedance positionable in the environment, a second impedance coupled in series with said first impedance and a parasitic impedance electrically coupled to the first and second impedances. A current generating device, electrically coupled in series with the first and second impedances, provides a constant current through the first and second impedances to produce first and second voltages across the first and second impedances, respectively, and a parasitic voltage across the parasitic impedance. A high impedance voltage measuring device measures a voltage difference between the first and second voltages independent of the parasitic voltage to produce a characteristic voltage representative of the characteristic of the environment.

  4. Algorithmic Error Correction of Impedance Measuring Sensors

    PubMed Central

    Starostenko, Oleg; Alarcon-Aquino, Vicente; Hernandez, Wilmar; Sergiyenko, Oleg; Tyrsa, Vira

    2009-01-01

    This paper describes novel design concepts and some advanced techniques proposed for increasing the accuracy of low cost impedance measuring devices without reduction of operational speed. The proposed structural method for algorithmic error correction and iterating correction method provide linearization of transfer functions of the measuring sensor and signal conditioning converter, which contribute the principal additive and relative measurement errors. Some measuring systems have been implemented in order to estimate in practice the performance of the proposed methods. Particularly, a measuring system for analysis of C-V, G-V characteristics has been designed and constructed. It has been tested during technological process control of charge-coupled device CCD manufacturing. The obtained results are discussed in order to define a reasonable range of applied methods, their utility, and performance. PMID:22303177

  5. Quartz tuning fork based microwave impedance microscopy

    NASA Astrophysics Data System (ADS)

    Cui, Yong-Tao; Ma, Eric Yue; Shen, Zhi-Xun

    2016-06-01

    Microwave impedance microscopy (MIM), a near-field microwave scanning probe technique, has become a powerful tool to characterize local electrical responses in solid state samples. We present the design of a new type of MIM sensor based on quartz tuning fork and electrochemically etched thin metal wires. Due to a higher aspect ratio tip and integration with tuning fork, such design achieves comparable MIM performance and enables easy self-sensing topography feedback in situations where the conventional optical feedback mechanism is not available, thus is complementary to microfabricated shielded stripline-type probes. The new design also enables stable differential mode MIM detection and multiple-frequency MIM measurements with a single sensor.

  6. Wave guide impedance matching method and apparatus

    DOEpatents

    Kronberg, James W.

    1990-01-01

    A technique for modifying the end portion of a wave guide, whether hollow or solid, carrying electromagnetic, acoustic or optical energy, to produce a gradual impedance change over the length of the end portion, comprising the cutting of longitudinal, V-shaped grooves that increase in width and depth from beginning of the end portion of the wave guide to the end of the guide so that, at the end of the guide, no guide material remains and no surfaces of the guide as modified are perpendicular to the direction of energy flow. For hollow guides, the grooves are cut beginning on the interior surface; for solid guides, the grooves are cut beginning on the exterior surface. One or more resistive, partially conductive or nonconductive sleeves can be placed over the exterior of the guide and through which the grooves are cut to smooth the transition to free space.

  7. Local impedance imaging of boron-doped polycrystalline diamond thin films

    SciTech Connect

    Zieliński, A.; Ryl, J.; Burczyk, L.; Darowicki, K.

    2014-09-29

    Local impedance imaging (LII) was used to visualise surficial deviations of AC impedances in polycrystalline boron-doped diamond (BDD). The BDD thin film electrodes were deposited onto the highly doped silicon substrates via microwave plasma-enhanced CVD. The studied boron dopant concentrations, controlled by the [B]/[C] ratio in plasma, ranged from 1 × 10{sup 16} to 2 × 10{sup 21} atoms cm{sup −3}. The BDD films displayed microcrystalline structure, while the average size of crystallites decreased from 1 to 0.7 μm with increasing [B]/[C] ratios. The application of LII enabled a direct and high-resolution investigation of local distribution of impedance characteristics within the individual grains of BDD. Such an approach resulted in greater understanding of the microstructural control of properties at the grain level. We propose that the obtained surficial variation of impedance is correlated to the areas of high conductance which have been observed at the grain boundaries by using LII. We also postulate that the origin of high conductivity is due to either preferential boron accumulation, the presence of defects, or sp{sup 2} regions in the intragrain regions. The impedance modulus recorded by LII was in full agreement with the bulk impedance measurements. Both variables showed a decreasing trend with increasing [B]/[C] ratios, which is consistent with higher boron incorporation into BDD film.

  8. AC power systems handbook

    SciTech Connect

    Whitaker, J.

    1991-01-01

    Transient disturbances are what headaches are made of. Whatever you call them-spikes, surges, are power bumps-they can take your equipment down and leave you with a complicated and expensive repair job. Protection against transient disturbances is a science that demands attention to detail. This book explains how the power distribution system works, what can go wrong with it, and how to protect a facility against abnormalities. system grounding and shielding are covered in detail. Each major method of transient protection is analyzed and its relative merits discussed. The book provides a complete look at the critical elements of the ac power system. Provides a complete look at the ac power system from generation to consumption. Discusses the mechanisms that produce transient disturbances and how to protect against them. Presents diagrams to facilitate system design. Covers new areas, such as the extent of the transient disturbance problem, transient protection options, and stand-by power systems.

  9. Increased Ac excision (iae): Arabidopsis thaliana mutations affecting Ac transposition.

    PubMed

    Jarvis, P; Belzile, F; Page, T; Dean, C

    1997-05-01

    The maize transposable element Ac is highly active in the heterologous hosts tobacco and tomato, but shows very much reduced levels of activity in Arabidopsis. A mutagenesis experiment was undertaken with the aim of identifying Arabidopsis host factors responsible for the observed low levels of Ac activity. Seed from a line carrying a single copy of the Ac element inserted into the streptomycin phosphotransferase (SPT) reporter fusion, and which displayed typically low levels of Ac activity, were mutagenized using gamma rays. Nineteen mutants displaying high levels of somatic Ac activity, as judged by their highly variegated phenotypes, were isolated after screening the M2 generation on streptomycin-containing medium. The mutations fall into two complementation groups, iae1 and iae2, are unlinked to the SPT::Ac locus and segregate in a Mendelian fashion. The iae1 mutation is recessive and the iae2 mutation is semi-dominant. The iae1 and iae2 mutants show 550- and 70-fold increases, respectively, in the average number of Ac excision sectors per cotyledon. The IAE1 locus maps to chromosome 2, whereas the SPT::Ac reporter maps to chromosome 3. A molecular study of Ac activity in the iae1 mutant confirmed the very high levels of Ac excision predicted using the phenotypic assay, but revealed only low levels of Ac re-insertion. Analyses of germinal transposition in the iae1 mutant demonstrated an average germinal excision frequency of 3% and a frequency of independent Ac re-insertions following germinal excision of 22%. The iae mutants represents a possible means of improving the efficiency of Ac/Ds transposon tagging systems in Arabidopsis, and will enable the dissection of host involvement in Ac transposition and the mechanisms employed for controlling transposable element activity.

  10. Organic electrochemical transistors for cell-based impedance sensing

    NASA Astrophysics Data System (ADS)

    Rivnay, Jonathan; Ramuz, Marc; Leleux, Pierre; Hama, Adel; Huerta, Miriam; Owens, Roisin M.

    2015-01-01

    Electrical impedance sensing of biological systems, especially cultured epithelial cell layers, is now a common technique to monitor cell motion, morphology, and cell layer/tissue integrity for high throughput toxicology screening. Existing methods to measure electrical impedance most often rely on a two electrode configuration, where low frequency signals are challenging to obtain for small devices and for tissues with high resistance, due to low current. Organic electrochemical transistors (OECTs) are conducting polymer-based devices, which have been shown to efficiently transduce and amplify low-level ionic fluxes in biological systems into electronic output signals. In this work, we combine OECT-based drain current measurements with simultaneous measurement of more traditional impedance sensing using the gate current to produce complex impedance traces, which show low error at both low and high frequencies. We apply this technique in vitro to a model epithelial tissue layer and show that the data can be fit to an equivalent circuit model yielding trans-epithelial resistance and cell layer capacitance values in agreement with literature. Importantly, the combined measurement allows for low biases across the cell layer, while still maintaining good broadband signal.

  11. Organic electrochemical transistors for cell-based impedance sensing

    SciTech Connect

    Rivnay, Jonathan E-mail: owens@emse.fr; Ramuz, Marc; Hama, Adel; Huerta, Miriam; Owens, Roisin M. E-mail: owens@emse.fr; Leleux, Pierre

    2015-01-26

    Electrical impedance sensing of biological systems, especially cultured epithelial cell layers, is now a common technique to monitor cell motion, morphology, and cell layer/tissue integrity for high throughput toxicology screening. Existing methods to measure electrical impedance most often rely on a two electrode configuration, where low frequency signals are challenging to obtain for small devices and for tissues with high resistance, due to low current. Organic electrochemical transistors (OECTs) are conducting polymer-based devices, which have been shown to efficiently transduce and amplify low-level ionic fluxes in biological systems into electronic output signals. In this work, we combine OECT-based drain current measurements with simultaneous measurement of more traditional impedance sensing using the gate current to produce complex impedance traces, which show low error at both low and high frequencies. We apply this technique in vitro to a model epithelial tissue layer and show that the data can be fit to an equivalent circuit model yielding trans-epithelial resistance and cell layer capacitance values in agreement with literature. Importantly, the combined measurement allows for low biases across the cell layer, while still maintaining good broadband signal.

  12. Measurement of volume resistivity/conductivity of metallic alloy in inhibited seawater by optical interferometry techniques

    SciTech Connect

    Habib, K.

    2011-03-15

    Optical interferometry techniques were used for the first time to measure the volume resistivity/conductivity of carbon steel samples in seawater with different concentrations of a corrosion inhibitor. In this investigation, the real-time holographic interferometry was carried out to measure the thickness of anodic dissolved layer or the total thickness, U{sub total}, of formed oxide layer of carbon steel samples during the alternating current (ac) impedance of the samples in blank seawater and in 5-20 ppm TROS C-70 inhibited seawater, respectively. In addition, a mathematical model was derived in order to correlate between the ac impedance (resistance) and the surface (orthogonal) displacement of the surface of the samples in solutions. In other words, a proportionality constant [resistivity ({rho}) or conductivity ({sigma})= 1/{rho}] between the determined ac impedance [by electrochemical impedance spectroscopy (EIS) technique] and the orthogonal displacement (by the optical interferometry techniques) was obtained. The value of the resistivity of the carbon steel sample in the blank seawater was found similar to the value of the resistivity of the carbon steel sample air, around 1 x 10{sup -5}{Omega} cm. On the contrary, the measured values of the resistivity of the carbon steel samples were 1.85 x 10{sup 7}, 3.35 x 10{sup 7}, and 1.7 x 10{sup 7}{Omega} cm in 5, 10, and 20 ppm TROS C-70 inhibited seawater solutions, respectively. Furthermore, the determined value range of {rho} of the formed oxide layers, from 1.7 x 10{sup 7} to 3.35 x 10{sup 7}{Omega} cm, is found in a reasonable agreement with the one found in literature for the Fe oxide-hydroxides, i.e., goethite ({alpha}-FeOOH) and for the lepidocrocite ({gamma}-FeOOH), 1 x 10{sup 9}{Omega} cm. The {rho} value of the Fe oxide-hydroxides, 1 x 10{sup 9}{Omega} cm, was found slightly higher than the {rho} value range of the formed oxide layer of the present study. This is because the former value was determined

  13. Impedance spectroscopy of food mycotoxins

    NASA Astrophysics Data System (ADS)

    Bilyy, Oleksandr I.; Yaremyk, Roman Ya.; Kotsyumbas, Ihor Ya.; Kotsyumbas, Halyna I.

    2012-01-01

    A new analytical method of high-selective detection of mycotoxins in food and feed are considered. A method is based on optical registration the changes of conduct of the electric polarized bacterial agents in solution at the action of the external gradient electric fields. Measuring are conducted in integrated electrode-optical cuvette of the special construction, which provides the photometric analysis of forward motion of the objects registration in liquid solution under act of the enclosed electric field and simultaneous registration of kinetics of change of electrical impedance parameters solution and electrode system.

  14. Analyses of Impedance Microstructure and Wave Propagation Characteristics in Rocks

    NASA Astrophysics Data System (ADS)

    Prasad, M.; Mukerji, T.

    2002-12-01

    Seismic methods are our primary tools to image subsurface structures and to derive information about microstructural properties at subsurface that are pertinent to exploration. However, velocity - physical property transforms are mostly empirical or qualitative in nature, mainly because microstructural descriptions are qualitative. Although, sedimentary systems produce distinctive textures that influence physical properties and seismic signatures, these textures are not quantified in terms comparable to seismic. We present a method to quantify microsctructure in terms of acoustic impedance and show how these microstructural impedance maps can be used to analyze wave propagation characteristics in rocks. Using image analyses techniques, the texture of the calibrated scanned images is quantified by spatial autocorrelation functions and binary morphological operations. Parametric modeling of the empirical autocorrelation functions is used to estimate the textural anisotropy. We quantify microstructural impedance anisotropy and compare these textural maps to ultrasonic velocity anisotropy measurements. Inclusion based effective medium theory is used to upscale the impedances at the microstructural scale to the core plug scale. In the example of optically opaque kerogen-rich shales, we find that 1. Acoustic impedance in kerogen shales increases with shale maturity, 2. Impedance measured on a micrometer scale and centimeter scale match well, indicating that seismic wave propagation are controlled by the microtexture 3. With increasing maturity, there is a transition from kerogen supported to grain supported framework We thank the Fraunhofer Institute for Nondestructive Testing (IZfP) for use of AM facilities, Walter Arnold (IZfP) for discussions about acoustic microscopy, ARCO and SRB Project for support. This work was performed under the auspices of National Science Foundation (Grant No. EAR 0074330) and Department of Energy (Award No. DE-FC26-01BC15354).

  15. Electrochemical impedance spectroscopy of metal alloys in the space transportation system launch environment

    NASA Technical Reports Server (NTRS)

    Calle, Luz

    1990-01-01

    AC impedance measurements were performed to investigate the corrosion resistance of 18 alloys under conditions similar to the Space Transportation System (STS) launch environment. The alloys were: (1) zirconium 702; (2) Hastelloy C-22, C-276, C-4, and B-2; (3) Inconel 600 and 825; (4) Ferralium 255; (5) Inco Alloy G-3; (6) 20Cb-3; (7) SS 904L, 304LN, 316L, 317L, and 304L; (8) ES 2205; and (9) Monel 400. AC impedance data were gathered for each alloy at various immersion times in 3.55 percent NaCl-0.1N HCl. Polarization resistance values were obtained for the Nyguist plots at each immersion time using the EQUIVALENT CIRCUIT software package available with the 388 electrochemical impedance software. Hastelloy C-22 showed the highest overall values for polarization resistance while Monel 400 and Inconel 600 had the lowest overall values. There was good general correlation between the corrosion performance of the alloys at the beach corrosion testing site, and the expected rate of corrosion as predicted based on the polarization resistance values obtained. The data indicate that electrochemical impedance spectroscopy can be used to predict the corrosion performance of metal alloys.

  16. Journal bearing impedance descriptions for rotordynamic applications

    NASA Technical Reports Server (NTRS)

    Childs, D.; Moes, H.; Van Leeuwen, H.

    1976-01-01

    The paper deals with the development of analytic descriptions for plain circumferentially-symmetric fluid journal bearings, which are suitable for use in rotor dynamic analysis. The bearing impedance vector is introduced, which defines the bearing reaction force components as a function of the bearing motion. Impedances are derived directly for the Ocvirk (short) and Sommerfeld (long) bearings, and the relationships between the impedance vector and the more familiar mobility vector are developed and used to derive analytic impedance for finite-length bearings. The static correctness of the finite-length cavitating impedance is verified. Analytic stiffness and damping coefficient definitions are derived in terms of an impedance vector for small motion around an equilibrium position and demonstrated for the finite-length cavitating impedance. Nonlinear transient rotordynamic simulations are presented for the short pi and 2-pi impedances and the finite-length cavitating impedance. It is shown that finite-length impedance yields more accurate results for substantially less computer time than the short-bearing numerical-pressure-integration approach.

  17. Corrosion behavior of boride layers evaluated by the EIS technique

    NASA Astrophysics Data System (ADS)

    Campos, I.; Palomar-Pardavé, M.; Amador, A.; VillaVelázquez, C.; Hadad, J.

    2007-09-01

    The corrosion behavior of boride layers at the AISI 304 steel surface is evaluated in the present study. Electrochemical impedance spectroscopy (EIS) technique was used for the evaluation of the polarization resistance at the steel surface, with the aid of AUTOLAB potentiostat. Samples were treated with boron paste thickness of 4 and 5 mm, in the range of temperatures 1123 ≤ T ≤ 1273 K and exposed time of 4 and 6 h. The electrochemical technique employed 10 mV AC with a frequency scan range from 8 kHz to 3 mHz in deaerated 0.1 M NaCl solution. Nyquist diagrams show that the highest values of corrosion resistance are present in the samples borided at the temperature of 1273 K, with treatment time of 4 h and 4 mm of boron paste thickness. The values of corrosion resistance on borided steels are compared with the porosity exhibited in the layers.

  18. Damage Diagnosis in Semiconductive Materials Using Electrical Impedance Measurements

    NASA Technical Reports Server (NTRS)

    Ross, Richard W.; Hinton, Yolanda L.

    2008-01-01

    Recent aerospace industry trends have resulted in an increased demand for real-time, effective techniques for in-flight structural health monitoring. A promising technique for damage diagnosis uses electrical impedance measurements of semiconductive materials. By applying a small electrical current into a material specimen and measuring the corresponding voltages at various locations on the specimen, changes in the electrical characteristics due to the presence of damage can be assessed. An artificial neural network uses these changes in electrical properties to provide an inverse solution that estimates the location and magnitude of the damage. The advantage of the electrical impedance method over other damage diagnosis techniques is that it uses the material as the sensor. Simple voltage measurements can be used instead of discrete sensors, resulting in a reduction in weight and system complexity. This research effort extends previous work by employing finite element method models to improve accuracy of complex models with anisotropic conductivities and by enhancing the computational efficiency of the inverse techniques. The paper demonstrates a proof of concept of a damage diagnosis approach using electrical impedance methods and a neural network as an effective tool for in-flight diagnosis of structural damage to aircraft components.

  19. Spheromak Impedance and Current Amplification

    SciTech Connect

    Fowler, T K; Hua, D D; Stallard, B W

    2002-01-31

    It is shown that high current amplification can be achieved only by injecting helicity on the timescale for reconnection, {tau}{sub REC}, which determines the effective impedance of the spheromak. An approximate equation for current amplification is: dI{sub TOR}{sup 2}/dt {approx} I{sup 2}/{tau}{sub REC} - I{sub TOR}{sup 2}/{tau}{sub closed} where I is the gun current, I{sub TOR} is the spheromak toroidal current and {tau}{sub CLOSED} is the ohmic decay time of the spheromak. Achieving high current amplification, I{sub TOR} >> I, requires {tau}{sub REC} <<{tau}{sub CLOSED}. For resistive reconnection, this requires reconnection in a cold zone feeding helicity into a hot zone. Here we propose an impedance model based on these ideas in a form that can be implemented in the Corsica-based helicity transport code. The most important feature of the model is the possibility that {tau}{sub REC} actually increases as the spheromak temperature increases, perhaps accounting for the ''voltage sag'' observed in some experiments, and a tendency toward a constant ratio of field to current, B {proportional_to} I, or I{sub TOR} {approx} I. Program implications are discussed.

  20. Large aperture ac interferometer for optical testing.

    PubMed

    Moore, D T; Murray, R; Neves, F B

    1978-12-15

    A 20-cm clear aperture modified Twyman-Green interferometer is described. The system measures phase with an AC technique called phase-lock interferometry while scanning the aperture with a dual galvanometer scanning system. Position information and phase are stored in a minicomputer with disk storage. This information is manipulated with associated software, and the wavefront deformation due to a test component is graphically displayed in perspective and contour on a CRT terminal. PMID:20208642

  1. Rapid Impedance Spectrum Measurements for Onboard State-of-Health Applications

    SciTech Connect

    Jon P. Christophersen; John L. Morrison; Chinh D. Ho

    2012-06-01

    Rapid impedance measurements can provide a useful online tool for improved state-of-health estimation. A validation study has been initiated at the Idaho National Laboratory for a rapid impedance technique known as Harmonic Compensated Synchronous Detection. This technique enables capturing the impedance spectra over a broad frequency range within about ten seconds. Commercially available lithium-ion cells are being calendar-life aged at 50°C with reference performance tests at 30°C every 32.5 days to gauge degradation The cells have completed the first set of reference performance tests and preliminary results are presented. The spectra change as a function of temperature and depth-of-discharge condition, as expected. The data indicate that the rapid impedance measurement technique is a benign measurement tool that can be successfully used to gauge changes in the corresponding pulse resistance.

  2. Data recovery from reduced electrode connection in electrical impedance tomography.

    PubMed

    Taktak, A; Record, P; Gadd, R; Rolfe, P

    1996-09-01

    In electrical impedance tomography, a single channel failure causes distortion to the overall image. Mathematical modelling and curve-fitting techniques were used to recover corrupted data. A single channel was disconnected in two experiments on a saline-filled dish with one and two objects, respectively. Voltage gradient data were then synthesized from the overall shape of the curve and reconstructed. The technique demonstrated a considerable improvement in the image quality. We conclude that the technique can be adapted in applications where channel failure can occur regularly such as neonatal monitoring.

  3. TRANSVERSE IMPEDANCE MEASUREMENT AT THE RHIC.

    SciTech Connect

    ZHANG,S.Y.; HUANG,H.; CAMERON,P.; DREES,A.; FLILLER,R.; SATOGATA,T.

    2002-06-02

    The RHIC transverse impedance was measured during the last operation run. Measurement of the imaginary part of the broadband impedance was the main goal. No large difference between the two rings was found nor in either plane. The measured tune shift is larger than the expected by a factor of 2.5 to 3. Several other issues such as the real part impedance measurement are also presented.

  4. Factors affecting bioelectrical impedance measurements in humans.

    PubMed

    Deurenberg, P; Weststrate, J A; Paymans, I; van der Kooy, K

    1988-12-01

    In several groups of young healthy subjects the effect of the ingestion of a meal, of drinking normal tea or beef tea, of exercise and of the menstrual cycle on body impedance was assessed. The day-to-day reproducibility of the method was also investigated under standardized conditions. Two to four hours after ingestion of a meal, body impedance had decreased by about 13-17 Ohms in comparison with body impedance in the fasting state. Drinking 200 ml of normal tea did not result in a change of body impedance, but drinking 200 ml beef tea lowered the body impedance significantly by 4 +/- 4 Ohms. Moderate exercise on a bicycle ergometer (90 min, 100 W) did not influence body impedance, but strenuous exercise (90 min, 175 W) resulted in a decrease of 9 +/- 11 Ohms in body impedance. In general, changes in body impedance during the menstrual cycle were small, and only the difference between measurements of body impedance 1 week before the onset of the menstruation and again 1 week after menstruation (8 +/- 9 Ohms) was statistically significant. Under standardized conditions (in the morning, in the fasting state after emptying the bladder) the within-person between-day variation was found to be 2.8 per cent (13 Ohms).

  5. Adaptive Impedance Control Of Redundant Manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun; Colbaugh, Richard D.; Glass, Kristin L.

    1994-01-01

    Improved method of controlling mechanical impedance of end effector of redundant robotic manipulator based on adaptive-control theory. Consists of two subsystems: adaptive impedance controller generating force-control inputs in Cartesian space of end effector to provide desired end-effector-impedance characteristics, and subsystem implementing algorithm that maps force-control inputs into torques applied to joints of manipulator. Accurate control of end effector and effective utilization of redundancy achieved simultaneously by use of method. Potential use to improve performance of such typical impedance-control tasks as deburring edges and accommodating transitions between unconstrained and constrained motions of end effectors.

  6. Tunable nanogap devices for ultra-sensitive electrochemical impedance biosensing.

    PubMed

    Lu, Yong; Guo, Zheng; Song, Jing-Jing; Huang, Qin-An; Zhu, Si-Wei; Huang, Xing-Jiu; Wei, Yan

    2016-01-28

    A wealth of research has been available discussing nanogap devices for detecting very small quantities of biomolecules by observing their electrical behavior generally performed in dry conditions. We report that a gold nanogapped electrode with tunable gap length for ultra-sensitive detection of streptavidin based on electrochemical impedance technique. The gold nanogap is fabricated using simple monolayer film deposition and in-situ growth of gold nanoparticles in a traditional interdigitated array (IDA) microelectrode. The electrochemical impedance biosensor with a 25-nm nanogap is found to be ultra-sensitive to the specific binding of streptavidin to biotin. The binding of the streptavidin hinder the electron transfer between two electrodes, resulting in a large increase in electron-transfer resistance (Ret) for operating the impedance. A linear relation between the relative Ret and the logarithmic value of streptavidin concentration is observed in the concentration range from 1 pM (picomolar) to 100 nM (nanomolar). The lowest detectable concentration actually measured reaches 1 pM. We believe that such an electrochemical impedance nanogap biosensor provides a useful approach towards biomolecular detection that could be extended to a number of other systems.

  7. Tunable nanogap devices for ultra-sensitive electrochemical impedance biosensing.

    PubMed

    Lu, Yong; Guo, Zheng; Song, Jing-Jing; Huang, Qin-An; Zhu, Si-Wei; Huang, Xing-Jiu; Wei, Yan

    2016-01-28

    A wealth of research has been available discussing nanogap devices for detecting very small quantities of biomolecules by observing their electrical behavior generally performed in dry conditions. We report that a gold nanogapped electrode with tunable gap length for ultra-sensitive detection of streptavidin based on electrochemical impedance technique. The gold nanogap is fabricated using simple monolayer film deposition and in-situ growth of gold nanoparticles in a traditional interdigitated array (IDA) microelectrode. The electrochemical impedance biosensor with a 25-nm nanogap is found to be ultra-sensitive to the specific binding of streptavidin to biotin. The binding of the streptavidin hinder the electron transfer between two electrodes, resulting in a large increase in electron-transfer resistance (Ret) for operating the impedance. A linear relation between the relative Ret and the logarithmic value of streptavidin concentration is observed in the concentration range from 1 pM (picomolar) to 100 nM (nanomolar). The lowest detectable concentration actually measured reaches 1 pM. We believe that such an electrochemical impedance nanogap biosensor provides a useful approach towards biomolecular detection that could be extended to a number of other systems. PMID:26755137

  8. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  9. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  10. Modified sparse regularization for electrical impedance tomography.

    PubMed

    Fan, Wenru; Wang, Huaxiang; Xue, Qian; Cui, Ziqiang; Sun, Benyuan; Wang, Qi

    2016-03-01

    Electrical impedance tomography (EIT) aims to estimate the electrical properties at the interior of an object from current-voltage measurements on its boundary. It has been widely investigated due to its advantages of low cost, non-radiation, non-invasiveness, and high speed. Image reconstruction of EIT is a nonlinear and ill-posed inverse problem. Therefore, regularization techniques like Tikhonov regularization are used to solve the inverse problem. A sparse regularization based on L1 norm exhibits superiority in preserving boundary information at sharp changes or discontinuous areas in the image. However, the limitation of sparse regularization lies in the time consumption for solving the problem. In order to further improve the calculation speed of sparse regularization, a modified method based on separable approximation algorithm is proposed by using adaptive step-size and preconditioning technique. Both simulation and experimental results show the effectiveness of the proposed method in improving the image quality and real-time performance in the presence of different noise intensities and conductivity contrasts. PMID:27036798

  11. Modified sparse regularization for electrical impedance tomography.

    PubMed

    Fan, Wenru; Wang, Huaxiang; Xue, Qian; Cui, Ziqiang; Sun, Benyuan; Wang, Qi

    2016-03-01

    Electrical impedance tomography (EIT) aims to estimate the electrical properties at the interior of an object from current-voltage measurements on its boundary. It has been widely investigated due to its advantages of low cost, non-radiation, non-invasiveness, and high speed. Image reconstruction of EIT is a nonlinear and ill-posed inverse problem. Therefore, regularization techniques like Tikhonov regularization are used to solve the inverse problem. A sparse regularization based on L1 norm exhibits superiority in preserving boundary information at sharp changes or discontinuous areas in the image. However, the limitation of sparse regularization lies in the time consumption for solving the problem. In order to further improve the calculation speed of sparse regularization, a modified method based on separable approximation algorithm is proposed by using adaptive step-size and preconditioning technique. Both simulation and experimental results show the effectiveness of the proposed method in improving the image quality and real-time performance in the presence of different noise intensities and conductivity contrasts.

  12. Impedance Spectroscopy of Human Blood

    NASA Astrophysics Data System (ADS)

    Mesa, Francisco; Bernal, José J.; Sosa, Modesto A.; Villagómez, Julio C.; Palomares, Pascual

    2004-09-01

    The blood is one of the corporal fluids more used with analytical purposes. When the blood is extracted, immediately it is affected by agents that act on it, producing transformations in its elements. Among the effects of these transformations the hemolysis phenomenon stands out, which consists of the membrane rupture and possible death of the red blood cells. The main purpose of this investigation was the quantification of this phenomenon. A Solartron SI-1260 Impedance Spectrometer was used, which covers a frequency range of work from 1 μHz to 10 MHz, and its accuracy has been tested in the accomplishment of several applications. Measurements were performed on 3 mL human blood samples, from healthy donors. Reactive strips for sugar test of 2 μL, from Bayer, were used as electrodes, which allow gathering a portion of the sample, to be analyzed by the spectrometer. Preliminary results of these measurements are presented.

  13. Electrical Impedance Tomography of Electrolysis

    PubMed Central

    Meir, Arie; Rubinsky, Boris

    2015-01-01

    The primary goal of this study is to explore the hypothesis that changes in pH during electrolysis can be detected with Electrical Impedance Tomography (EIT). The study has relevance to real time control of minimally invasive surgery with electrolytic ablation. To investigate the hypothesis, we compare EIT reconstructed images to optical images acquired using pH-sensitive dyes embedded in a physiological saline agar gel phantom treated with electrolysis. We further demonstrate the biological relevance of our work using a bacterial E.Coli model, grown on the phantom. The results demonstrate the ability of EIT to image pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E.coli model. The results are promising, and invite further experimental explorations. PMID:26039686

  14. Maxwell's mixing equation revisited: characteristic impedance equations for ellipsoidal cells.

    PubMed

    Stubbe, Marco; Gimsa, Jan

    2015-07-21

    We derived a series of, to our knowledge, new analytic expressions for the characteristic features of the impedance spectra of suspensions of homogeneous and single-shell spherical, spheroidal, and ellipsoidal objects, e.g., biological cells of the general ellipsoidal shape. In the derivation, we combined the Maxwell-Wagner mixing equation with our expression for the Clausius-Mossotti factor that had been originally derived to describe AC-electrokinetic effects such as dielectrophoresis, electrorotation, and electroorientation. The influential radius model was employed because it allows for a separation of the geometric and electric problems. For shelled objects, a special axial longitudinal element approach leads to a resistor-capacitor model, which can be used to simplify the mixing equation. Characteristic equations were derived for the plateau levels, peak heights, and characteristic frequencies of the impedance as well as the complex specific conductivities and permittivities of suspensions of axially and randomly oriented homogeneous and single-shell ellipsoidal objects. For membrane-covered spherical objects, most of the limiting cases are identical to-or improved with respect to-the known solutions given by researchers in the field. The characteristic equations were found to be quite precise (largest deviations typically <5% with respect to the full model) when tested with parameters relevant to biological cells. They can be used for the differentiation of orientation and the electric properties of cell suspensions or in the analysis of single cells in microfluidic systems. PMID:26200856

  15. Identification of /sup 233/Ac

    SciTech Connect

    Chu, Y.Y.; Zhou, M.L.

    1983-09-01

    We report in this paper identification of the new isotope /sup 233/Ac. Uranium targets were irradiated with 28 GeV protons; after rapid retrieval of the target and separation of actinium from thorium, /sup 233/Ac was allowed to decay into the known /sup 233/Th daughter. Exhaustive chemical purification was employed to permit the identification of /sup 233/Th via its characteristic ..gamma.. radiations. The half-life derived for /sup 233/Ac from several experiments is 2.3 +- 0.3 min. The production cross section for /sup 233/Ac is 100 ..mu..b.

  16. AC and DC power transmission

    SciTech Connect

    Not Available

    1985-01-01

    The technical and economic assessment of AC and DC transmission systems; long distance transmission, cable transmission, system inter-connection, voltage support, reactive compensation, stabilisation of systems; parallel operation of DC links with AC systems; comparison between alternatives for particular schemes. Design and application equipment: design, testing and application of equipment for HVDC, series and shunt static compensated AC schemes, including associated controls. Installations: overall design of stations and conductor arrangements for HVDC, series and shunt static AC schemes including insulation co-ordination. System analysis and modelling.

  17. Alternating parity structure in doubly odd /sup 218/Ac

    SciTech Connect

    Debray, M.E.; Davidson, M.; Kreiner, A.J.; Davidson, J.; Falcone, G.; Hojman, D.; Santos, D.

    1989-03-01

    States in doubly odd /sup 218/Ac have been studied using in-beam ..cap alpha..-, ..gamma..-, and e/sup -/-spectroscopy techniques mainly through the /sup 209/Bi(/sup 12/C,3n)= fusion-evaporation reaction. /sup 218/Ac shows a band structure, with interleaved states of alternating parities connected by enhanced B(E1) transitions, which is strikingly similar to the one in its isotone /sup 217/Ra.

  18. Investigation of conduction and relaxation phenomena in BaZrxTi1-xO3 (x=0.05) by impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Mahajan, Sandeep; Haridas, Divya; Ali, S. T.; Munirathnam, N. R.; Sreenivas, K.; Thakur, O. P.; Prakash, Chandra

    2014-10-01

    In present study we have prepared ferroelectric BaZrxTi1-xO3 (x=0.05) ceramic by conventional solid state reaction route and studied its electrical properties as a function of temperature and frequency. X-ray diffraction (XRD) analysis shows single-phase formation of the compound with orthorhombic crystal structure at room temperature. Impedance and electric modulus spectroscopy analysis in the frequency range of 40 Hz-1 MHz at high temperature (200-600 °C) suggests two relaxation processes with different time constant are involved which are attributed to bulk and grain boundary effects. Frequency dependent dielectric plot at different temperature shows normal variation with frequency while dielectric loss (tanδ) peak was found to obey an Arrhenius law with activation energy of 1.02 eV. The frequency-dependent AC conductivity data were also analyzed in a wide temperature range. In present work we have studied the role of grain and grain boundaries on the electrical behaviour of Zr-doped BaTiO3 and their dependence on temperature and frequency by complex impedance and modulus spectroscopy (CIS) technique in a wide frequency (40 Hz-1 MHz) and high temperature range.

  19. Impedance spectroscopy of manganite films prepared by metalorganic chemical vapor deposition.

    PubMed

    Nakamura, Toshihiro; Homma, Kohei; Tachibana, Kunihide

    2011-09-01

    Polycrystalline Pr(1-x)CaxMnO3 (PCMO) films were prepared by liquid source metalorganic chemical vapor deposition using in situ infrared spectroscopic monitoring. The electric properties of the PCMO-based devices with Ni and Al electrodes (Ni-PCMO-Ni and Al-PCMO-Al devices) were studied by dc current-voltage (I-V) measurements and ac impedance spectroscopy. The current varied linearly with the applied voltage in Ni-PCMO-Ni devices, while nonlinear behavior was observed in I-V curves for Al-PCMO-Al devices. Impedance spectra were also different between Ni-PCMO-Ni and Al-PCMO-Al devices. The Cole-Cole plots for the Ni-PCMO-Ni devices showed only a single semicircular arc, which was assigned to the PCMO bulk impedance. Impedance spectra for the Al-PCMO-Al devices had two distinct components, which could be attributed to the PCMO bulk and to the interface between the PCMO film and the Al electrode, respectively. The bias dependence of the impedance spectra suggested that the resistance switching in the Al-PCMO-Al devices was mainly due to the resistance change in the interface between the film and the electrode. The metal electrode plays an important role in the resistance switching in the PCMO-based devices. The choice of the optimum metal electrodes is essential to the ReRAM application of the manganite-based devices.

  20. Measurement of cardiac stroke volume by impedance cardiography in the last trimester of pregnancy.

    PubMed

    Milsom, I; Forssman, L; Sivertsson, R; Dottori, O

    1983-01-01

    Simultaneous determination of cardiac stroke volume by impedance cardiography and the dye dilution technique was compared in 10 women during the last trimester of pregnancy. Measurements were performed in different body positions to investigate the influence of body position on stroke volume. The correlation coefficient for all measurements was 0.87. Mean stroke volume determined by impedance cardiography was significantly (p less than 001) lower than mean stroke volume calculated by the dye dilution technique. There was no significant difference between the mean change in stroke volume determined by the two techniques during serial measurements. The reproducibility of individual impedance-determined stroke volumes (6.1 ml) did not differ significantly from individual values obtained by dye dilution (9.3 ml). Maximum mean impedance-determined stroke volume was recorded in the left lateral position (83.8 +/- 4.0 ml). Mean stroke volume was significantly (p less than 0.01) reduced in the supine position (17.9%). A smaller (14.4%) reduction was registered in the right lateral position. These changes in stroke volume according to body position were equally evident by both methods. Impedance cardiography is a safe, reliable, non-invasive technique for the measurement of changes in stroke volume during late pregnancy. The ability of impedance cardiography to determine changes in stroke volume was unaffected by changes in body position.

  1. Impedance adaptation methods of the piezoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Kim, Hyeoungwoo

    In this study, the important issues of energy recovery were addressed and a comprehensive investigation was performed on harvesting electrical power from an ambient mechanical vibration source. Also discussed are the impedance matching methods used to increase the efficiency of energy transfer from the environment to the application. Initially, the mechanical impedance matching method was investigated to increase mechanical energy transferred to the transducer from the environment. This was done by reducing the mechanical impedance such as damping factor and energy reflection ratio. The vibration source and the transducer were modeled by a two-degree-of-freedom dynamic system with mass, spring constant, and damper. The transmissibility employed to show how much mechanical energy that was transferred in this system was affected by the damping ratio and the stiffness of elastic materials. The mechanical impedance of the system was described by electrical system using analogy between the two systems in order to simply the total mechanical impedance. Secondly, the transduction rate of mechanical energy to electrical energy was improved by using a PZT material which has a high figure of merit and a high electromechanical coupling factor for electrical power generation, and a piezoelectric transducer which has a high transduction rate was designed and fabricated. The high g material (g33 = 40 [10-3Vm/N]) was developed to improve the figure of merit of the PZT ceramics. The cymbal composite transducer has been found as a promising structure for piezoelectric energy harvesting under high force at cyclic conditions (10--200 Hz), because it has almost 40 times higher effective strain coefficient than PZT ceramics. The endcap of cymbal also enhances the endurance of the ceramic to sustain ac load along with stress amplification. In addition, a macro fiber composite (MFC) was employed as a strain component because of its flexibility and the high electromechanical coupling

  2. Impedance as a method to sense proximity at the electrode-retina interface.

    PubMed

    Ray, Aditi; Chan, Leanne Lai-Hang; Gonzalez, Alejandra; Humayun, Mark S; Weiland, James D

    2011-12-01

    Precise positioning of a stimulating electrode in the eye is not possible by simple visualization. However, reliable measurement of responses to retinal stimulation requires consistent positioning. The present study focuses on impedance measurement techniques to sense the proximity of the electrode to the retina. A platinum-iridium stimulation electrode was placed inside the rat eye and impedance was recorded at different positions of the stimulating electrode relative to the retina. The presence of robust electrically evoked response in the superior colliculus indicates that the electrode may not have to be in absolute contact in order to elicit a neural response. Optical coherence tomography imaging confirmed the distance-impedance relationship. PMID:21984523

  3. Digital ac monitor

    DOEpatents

    Hart, G.W.; Kern, E.C. Jr.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer. 24 figs.

  4. Digital ac monitor

    DOEpatents

    Hart, George W.; Kern, Jr., Edward C.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer.

  5. Cooling Floor AC Systems

    NASA Astrophysics Data System (ADS)

    Jun, Lu; Hao, Ding; Hong, Zhang; Ce, Gao Dian

    The present HVAC equipments for the residential buildings in the Hot-summer-and-Cold-winter climate region are still at a high energy consuming level. So that the high efficiency HVAC system is an urgently need for achieving the preset government energy saving goal. With its advantage of highly sanitary, highly comfortable and uniform of temperature field, the hot-water resource floor radiation heating system has been widely accepted. This paper has put forward a new way in air-conditioning, which combines the fresh-air supply unit and such floor radiation system for the dehumidification and cooling in summer or heating in winter. By analyze its advantages and limitations, we found that this so called Cooling/ Heating Floor AC System can improve the IAQ of residential building while keep high efficiency quality. We also recommend a methodology for the HVAC system designing, which will ensure the reduction of energy cost of users.

  6. Active impedance matching of complex structural systems

    NASA Technical Reports Server (NTRS)

    Macmartin, Douglas G.; Miller, David W.; Hall, Steven R.

    1991-01-01

    Viewgraphs on active impedance matching of complex structural systems are presented. Topics covered include: traveling wave model; dereverberated mobility model; computation of dereverberated mobility; control problem: optimal impedance matching; H2 optimal solution; statistical energy analysis (SEA) solution; experimental transfer functions; interferometer actuator and sensor locations; active strut configurations; power dual variables; dereverberation of complex structure; dereverberated transfer function; compensators; and relative power flow.

  7. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Impedance phlebograph. 870.2750 Section 870.2750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance...

  8. Esophageal Impedance Monitoring: Clinical Pearls and Pitfalls.

    PubMed

    Ravi, Karthik; Katzka, David A

    2016-09-01

    The development of intraluminal esophageal impedance monitoring has improved our ability to detect and measure gastroesophageal reflux without dependence on acid content. This ability to detect previously unrecognized weak or nonacid reflux episodes has had important clinical implications in the diagnosis and management of gastroesophageal reflux disease (GERD). In addition, with the ability to assess bolus transit within the esophageal lumen, impedance monitoring has enhanced the recognition and characterization of esophageal motility disorders in patients with nonobstructive dysphagia. The assessment of the intraluminal movement of gas and liquid has also been proven to be of diagnostic value in conditions such as rumination syndrome and excessive belching. Further, alternative applications of impedance monitoring, such as the measurement of mucosal impedance, have provided novel insights into assessing esophageal mucosal integrity changes as a consequence of inflammatory change. Future applications for esophageal impedance monitoring also hold promise in esophageal conditions other than GERD. However, despite all of the clinical benefits afforded by esophageal impedance monitoring, important clinical and technical shortcomings limit its diagnostic value and must be considered when interpreting study results. Overinterpretation of studies or application of impedance monitoring in patients can have deleterious clinical implications. This review will highlight the clinical benefits and limitations of esophageal impedance monitoring and provide clinical pearls and pitfalls associated with this technology.

  9. Esophageal Impedance Monitoring: Clinical Pearls and Pitfalls.

    PubMed

    Ravi, Karthik; Katzka, David A

    2016-09-01

    The development of intraluminal esophageal impedance monitoring has improved our ability to detect and measure gastroesophageal reflux without dependence on acid content. This ability to detect previously unrecognized weak or nonacid reflux episodes has had important clinical implications in the diagnosis and management of gastroesophageal reflux disease (GERD). In addition, with the ability to assess bolus transit within the esophageal lumen, impedance monitoring has enhanced the recognition and characterization of esophageal motility disorders in patients with nonobstructive dysphagia. The assessment of the intraluminal movement of gas and liquid has also been proven to be of diagnostic value in conditions such as rumination syndrome and excessive belching. Further, alternative applications of impedance monitoring, such as the measurement of mucosal impedance, have provided novel insights into assessing esophageal mucosal integrity changes as a consequence of inflammatory change. Future applications for esophageal impedance monitoring also hold promise in esophageal conditions other than GERD. However, despite all of the clinical benefits afforded by esophageal impedance monitoring, important clinical and technical shortcomings limit its diagnostic value and must be considered when interpreting study results. Overinterpretation of studies or application of impedance monitoring in patients can have deleterious clinical implications. This review will highlight the clinical benefits and limitations of esophageal impedance monitoring and provide clinical pearls and pitfalls associated with this technology. PMID:27325223

  10. Possibilities of electrical impedance tomography in gynecology

    NASA Astrophysics Data System (ADS)

    V, Trokhanova O.; A, Chijova Y.; B, Okhapkin M.; V, Korjenevsky A.; S, Tuykin T.

    2013-04-01

    The paper describes results of comprehensive EIT diagnostics of mammary glands and cervix. The data were obtained from examinations of 170 patients by EIT system MEM (multi-frequency electrical impedance mammograph) and EIT system GIT (gynecological impedance tomograph). Mutual dependence is discussed.

  11. Cloning of the Aegiceras corniculatum class I chitinase gene (AcCHI I) and the response of AcCHI I mRNA expression to cadmium stress.

    PubMed

    Wang, Li-Ying; Wang, You-Shao; Cheng, Hao; Zhang, Jing-Ping; Yeok, Foong Swee

    2015-10-01

    Chitinases in terrestrial plants have been reported these are involved in heavy metal tolerance/detoxification. This is the first attempt to reveal chitinase gene (AcCHI I) and its function on metal detoxification in mangroves Aegiceras corniculatum. RT-PCR and RACE techniques were used to clone AcCHI I, while real-time quantitative PCR was employed to assess AcCHI I mRNA expressions in response to Cadmium (Cd). The deduced AcCHI I protein consists of 316 amino acids, including a signal peptide region, a chitin-binding domain (CBD) and a catalytic domain. Protein homology modeling was performed to identify potential features in AcCHI I. The CBD structure of AcCHI I might be critical for metal tolerance/homeostasis of the plant. Clear tissue-specific differences in AcCHI I expression were detected, with higher transcript levels detected in leaves. Results demonstrated that a short duration of Cd exposure (e.g., 3 days) promoted AcCHI I expression in roots. Upregulated expression was also detected in leaves under 10 mg/kg Cd concentration stress. The present study demonstrates that AcCHI I may play an important role in Cd tolerance/homeostasis in the plant. Further studies of the AcCHI I protein, gene overexpression, the promoter and upstream regulation will be necessary for clarifying the functions of AcCHI I. PMID:26044931

  12. Cloning of the Aegiceras corniculatum class I chitinase gene (AcCHI I) and the response of AcCHI I mRNA expression to cadmium stress.

    PubMed

    Wang, Li-Ying; Wang, You-Shao; Cheng, Hao; Zhang, Jing-Ping; Yeok, Foong Swee

    2015-10-01

    Chitinases in terrestrial plants have been reported these are involved in heavy metal tolerance/detoxification. This is the first attempt to reveal chitinase gene (AcCHI I) and its function on metal detoxification in mangroves Aegiceras corniculatum. RT-PCR and RACE techniques were used to clone AcCHI I, while real-time quantitative PCR was employed to assess AcCHI I mRNA expressions in response to Cadmium (Cd). The deduced AcCHI I protein consists of 316 amino acids, including a signal peptide region, a chitin-binding domain (CBD) and a catalytic domain. Protein homology modeling was performed to identify potential features in AcCHI I. The CBD structure of AcCHI I might be critical for metal tolerance/homeostasis of the plant. Clear tissue-specific differences in AcCHI I expression were detected, with higher transcript levels detected in leaves. Results demonstrated that a short duration of Cd exposure (e.g., 3 days) promoted AcCHI I expression in roots. Upregulated expression was also detected in leaves under 10 mg/kg Cd concentration stress. The present study demonstrates that AcCHI I may play an important role in Cd tolerance/homeostasis in the plant. Further studies of the AcCHI I protein, gene overexpression, the promoter and upstream regulation will be necessary for clarifying the functions of AcCHI I.

  13. PREFACE: XV International Conference on Electrical Bio-Impedance (ICEBI) & XIV Conference on Electrical Impedance Tomography (EIT)

    NASA Astrophysics Data System (ADS)

    Pliquett, Uwe

    2013-04-01

    . Structures down to sub-micrometer range and complex impedance measurements tools integrated at single chips are now affordable. Moreover, the introduction of alternative signals and data processing algorithms focuses on very fast and parallel electrical characterization which in turn pushes this technique to new applications and markets. Electrical impedance tomography today yields pictures in real time with a resolution that was impossible 10 years ago. The XVth International Conference on Electrical Bio-Impedance in conjunction with the XIVth Electrical Impedance Tomography ICEBI/EIT 2013 organized by the Institute for Bioprocessing and Analytical Measurement Techniques, Heilbad Heiligenstadt, Germany, together with the EIT-group at the University of Göttingen, Germany, brings world leading scientists in these fields together. It is a platform to present the latest developments in instrumentation and signal processing but also points to new applications, especially in the field of biosensors and non-linear phenomena. Two Keynote lectures will extend the view of the participants above the mainstream of bio-impedance measurement. Friederich Kremer (University of Leipzig) delivers the plenary lecture on broad bandwidth dielectric spectroscopy. New achievements in the research of ligand gated ionic channels will be presented by Klaus Benndorf (University of Jena). Leading scientists in the field of bio-impedance measurement, such as, Sverre Grimnes, Orjan Martinsen, Andrea Robitzki, Richard Bayford, Jan Gimsa and Mart Min will give lectures for students but also more experienced scientists in a pre-conference tutorial which is a good opportunity to learn or refresh the basics. List of committees Conference Chair Dr Uwe Pliquett Professor Dieter Beckmann Institut für Bioprozess- und Analysenmesstechnik eV, Rosenhof, Heilbad Heiligenstadt, Germany Technical Program Chair Maik Hiller Conventus Congressmanagement & Marketing GmbH, Carl-Pulfrich-Str. 1 - 07745 Jena Pre

  14. Mechanical impedance measurement and damage detection using noncontact laser ultrasound.

    PubMed

    Lee, Hyeonseok; Lim, Hyeong Uk; Hong, Jung-Wuk; Sohn, Hoon

    2014-06-01

    This Letter proposes a mechanical impedance (MI) measurement technique using noncontact laser ultrasound. The ultrasound is generated by shooting a pulse laser beam onto a target structure, and its response is measured using a laser vibrometer. Once ultrasound propagation converges to structural vibration, MI is formed over the entire structure. Because noncontact lasers are utilized, this technique is applicable in harsh environments, free of electromagnetic interference, and able to perform wide-range scanning. The formation of MI and its feasibility for damage detection are verified through thermo-mechanical finite element analysis and lab-scale experiments.

  15. Hardware Specific Integration Strategy for Impedance-Based Structural Health Monitoring of Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Owen, Robert B.; Gyekenyesi, Andrew L.; Inman, Daniel J.; Ha, Dong S.

    2011-01-01

    The Integrated Vehicle Health Management (IVHM) Project, sponsored by NASA's Aeronautics Research Mission Directorate, is conducting research to advance the state of highly integrated and complex flight-critical health management technologies and systems. An effective IVHM system requires Structural Health Monitoring (SHM). The impedance method is one such SHM technique for detection and monitoring complex structures for damage. This position paper on the impedance method presents the current state of the art, future directions, applications and possible flight test demonstrations.

  16. Impedance Discontinuity Reduction Between High-Speed Differential Connectors and PCB Interfaces

    NASA Technical Reports Server (NTRS)

    Navidi, Sal; Agdinaoay, Rodell; Walter, Keith

    2013-01-01

    High-speed serial communication (i.e., Gigabit Ethernet) requires differential transmission and controlled impedances. Impedance control is essential throughout cabling, connector, and circuit board construction. An impedance discontinuity arises at the interface of a high-speed quadrax and twinax connectors and the attached printed circuit board (PCB). This discontinuity usually is lower impedance since the relative dielectric constant of the board is higher (i.e., polyimide approx. = 4) than the connector (Teflon approx. = 2.25). The discontinuity can be observed in transmit or receive eye diagrams, and can reduce the effective link margin of serial data networks. High-speed serial data network transmission improvements can be made at the connector-to-board interfaces as well as improving differential via hole impedances. The impedance discontinuity was improved by 10 percent by drilling a 20-mil (approx. = 0.5-mm) hole in between the pin of a differential connector spaced 55 mils (approx. = 1.4 mm) apart as it is attached to the PCB. The effective dielectric constant of the board can be lowered by drilling holes into the board material between the differential lines in a quadrax or twinax connector attachment points. The differential impedance is inversely proportional to the square root of the relative dielectric constant. This increases the differential impedance and thus reduces the above described impedance discontinuity. The differential via hole impedance can also be increased in the same manner. This technique can be extended to multiple smaller drilled holes as well as tapered holes (i.e., big in the middle followed by smaller ones diagonally).

  17. Modified structural and frequency dependent impedance formalism of nanoscale BaTiO3 due to Tb inclusion

    NASA Astrophysics Data System (ADS)

    Borah, Manjit; Mohanta, Dambarudhar

    2016-05-01

    We report the effect of Tb-doping on the structural and high frequency impedance response of the nanoscale BaTiO3 (BT) systems. While exhibiting a mixed phase crystal structure, the nano-BT systems are found to evolve with edges, and facets. The interplanar spacing of crystal lattice fringes is ~0.25 nm. The Cole-Cole plots, in the impedance formalism, have demonstrated semicircles which are the characteristic feature of grain boundary resistance of several MΩ. A lowering of ac conductivity with doping was believed to be due to the manifestation of oxygen vacancies and vacancy ordering.

  18. Method to detect the end-point for PCR DNA amplification using an ionically labeled probe and measuring impedance change

    DOEpatents

    Miles, Robin R.; Belgrader, Phillip; Fuller, Christopher D.

    2007-01-02

    Impedance measurements are used to detect the end-point for PCR DNA amplification. A pair of spaced electrodes are located on a surface of a microfluidic channel and an AC or DC voltage is applied across the electrodes to produce an electric field. An ionically labeled probe will attach to a complementary DNA segment, and a polymerase enzyme will release the ionic label. This causes the conductivity of the solution in the area of the electrode to change. This change in conductivity is measured as a change in the impedance been the two electrodes.

  19. Impedance matching wireless power transmission system for biomedical devices.

    PubMed

    Lum, Kin Yun; Lindén, Maria; Tan, Tian Swee

    2015-01-01

    For medical application, the efficiency and transmission distance of the wireless power transfer (WPT) are always the main concern. Research has been showing that the impedance matching is one of the critical factors for dealing with the problem. However, there is not much work performed taking both the source and load sides into consideration. Both sides matching is crucial in achieving an optimum overall performance, and the present work proposes a circuit model analysis for design and implementation. The proposed technique was validated against experiment and software simulation. Result was showing an improvement in transmission distance up to 6 times, and efficiency at this transmission distance had been improved up to 7 times as compared to the impedance mismatch system. The system had demonstrated a near-constant transfer efficiency for an operating range of 2cm-12cm. PMID:25980873

  20. Impedance matched joined drill pipe for improved acoustic transmission

    DOEpatents

    Moss, William C.

    2000-01-01

    An impedance matched jointed drill pipe for improved acoustic transmission. A passive means and method that maximizes the amplitude and minimize the temporal dispersion of acoustic signals that are sent through a drill string, for use in a measurement while drilling telemetry system. The improvement in signal transmission is accomplished by replacing the standard joints in a drill string with joints constructed of a material that is impedance matched acoustically to the end of the drill pipe to which it is connected. Provides improvement in the measurement while drilling technique which can be utilized for well logging, directional drilling, and drilling dynamics, as well as gamma-ray spectroscopy while drilling post shot boreholes, such as utilized in drilling post shot boreholes.

  1. High accuracy particle analysis using sheathless microfluidic impedance cytometry.

    PubMed

    Spencer, Daniel; Caselli, Federica; Bisegna, Paolo; Morgan, Hywel

    2016-07-01

    This paper describes a new design of microfluidic impedance cytometer enabling accurate characterization of particles without the need for focusing. The approach uses multiple pairs of electrodes to measure the transit time of particles through the device in two simultaneous different current measurements, a transverse (top to bottom) current and an oblique current. This gives a new metric that can be used to estimate the vertical position of the particle trajectory through the microchannel. This parameter effectively compensates for the non-uniform electric field in the channel that is an unavoidable consequence of the use of planar parallel facing electrodes. The new technique is explained and validated using numerical modelling. Impedance data for 5, 6 and 7 μm particles are collected and compared with simulations. The method gives excellent coefficient of variation in (electrical) radius of particles of 1% for a sheathless configuration.

  2. Estimating surface acoustic impedance with the inverse method.

    PubMed

    Piechowicz, Janusz

    2011-01-01

    Sound field parameters are predicted with numerical methods in sound control systems, in acoustic designs of building and in sound field simulations. Those methods define the acoustic properties of surfaces, such as sound absorption coefficients or acoustic impedance, to determine boundary conditions. Several in situ measurement techniques were developed; one of them uses 2 microphones to measure direct and reflected sound over a planar test surface. Another approach is used in the inverse boundary elements method, in which estimating acoustic impedance of a surface is expressed as an inverse boundary problem. The boundary values can be found from multipoint sound pressure measurements in the interior of a room. This method can be applied to arbitrarily-shaped surfaces. This investigation is part of a research programme on using inverse methods in industrial room acoustics. PMID:21939599

  3. Rotor damage detection by using piezoelectric impedance

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Tao, Y.; Mao, Y. F.

    2016-04-01

    Rotor is a core component of rotary machinery. Once the rotor has the damage, it may lead to a major accident. Thus the quantitative rotor damage detection method based on piezoelectric impedance is studied in this paper. With the governing equation of piezoelectric transducer (PZT) in a cylindrical coordinate, the displacement along the radius direction is derived. The charge of PZT is calculated by the electric displacement. Then, by the use of the obtained displacement and charge, an analytic piezoelectric impedance model of the rotor is built. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used to set up the damage detection model. The Electro-Mechanical (E/M) coupled impedance expression of an undamaged rotor is deduced with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection method is proposed. This method can directly calculate the change of bending stiffness of the structural elements, it follows that the rotor damage can be effectively detected. Finally, a preset damage configuration is used for the numerical simulation. The result shows that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.

  4. Estimates of Acausal Joint Impedance Models

    PubMed Central

    Perreault, Eric J.

    2013-01-01

    Estimates of joint or limb impedance are commonly used in the study of how the nervous system controls posture and movement, and how that control is altered by injury to the neural or musculoskeletal systems. Impedance characterizes the dynamic relationship between an imposed perturbation of joint position and the torques generated in response. While there are many practical reasons for estimating impedance rather than its inverse, admittance, it is an acausal representation of the limb mechanics that can lead to difficulties in interpretation or use. The purpose of this study was to explore the acausal nature of nonparametric estimates of joint impedance representations to determine how they are influenced by common experimental and computational choices. This was accomplished by deriving discrete-time realizations of first-and second-order derivatives to illustrate two key difficulties in the physical interpretation of impedance impulse response functions. These illustrations were provided using both simulated and experimental data. It was found that the shape of the impedance impulse response depends critically on the selected sampling rate, and on the bandwidth and noise characteristics of the position perturbation used during the estimation process. These results provide important guidelines for designing experiments in which nonparametric estimates of impedance will be obtained, especially when those estimates are to be used in a multistep identification process. PMID:22907963

  5. Tracking of electrochemical impedance of batteries

    NASA Astrophysics Data System (ADS)

    Piret, H.; Granjon, P.; Guillet, N.; Cattin, V.

    2016-04-01

    This paper presents an evolutionary battery impedance estimation method, which can be easily embedded in vehicles or nomad devices. The proposed method not only allows an accurate frequency impedance estimation, but also a tracking of its temporal evolution contrary to classical electrochemical impedance spectroscopy methods. Taking into account constraints of cost and complexity, we propose to use the existing electronics of current control to perform a frequency evolutionary estimation of the electrochemical impedance. The developed method uses a simple wideband input signal, and relies on a recursive local average of Fourier transforms. The averaging is controlled by a single parameter, managing a trade-off between tracking and estimation performance. This normalized parameter allows to correctly adapt the behavior of the proposed estimator to the variations of the impedance. The advantage of the proposed method is twofold: the method is easy to embed into a simple electronic circuit, and the battery impedance estimator is evolutionary. The ability of the method to monitor the impedance over time is demonstrated on a simulator, and on a real Lithium ion battery, on which a repeatability study is carried out. The experiments reveal good tracking results, and estimation performance as accurate as the usual laboratory approaches.

  6. Fast electric dipole transitions in Ra-Ac nuclei

    SciTech Connect

    Ahmad, I.

    1985-01-01

    Lifetime of levels in /sup 225/Ra, /sup 225/Ac, and /sup 227/Ac have been measured by delayed coincidence techniques and these have been used to determine the E1 gamma-ray transition probabilities. The reduced E1 transition probabilities. The reduced E1 transition probabilities in /sup 225/Ra and /sup 225/Ac are about two orders of magnitude larger than the values in mid-actinide nuclei. On the other hand, the E1 rate in /sup 227/Ac is similar to those measured in heavier actinides. Previous studies suggest the presence of octupole deformation in all the three nuclei. The present investigation indicates that fast E1 transitions occur for nuclei with octupole deformation. However, the studies also show that there is no one-to-one correspondence between E1 rate and octupole deformation. 13 refs., 4 figs.

  7. Operation Method for AC Motor Control during Power Interruption in Direct AC/AC Converter System

    NASA Astrophysics Data System (ADS)

    Shizu, Keiichiro; Azuma, Satoshi

    Direct AC/AC converters have been studied due to their potential use in power converters with no DC-link capacitor, which can contribute to the miniaturization of power converters. However, the absence of a DC-link capacitor makes it difficult to control the AC motor during power interruption. First, this paper proposes a system that realizes AC motor control during power interruption by utilizing a clamp capacitor. In general, direct AC/AC converters have a clamp circuit consisting of a rectifier diode(s) and a clamp capacitor in order to avoid over-voltages. In the proposed system, there is an additional semiconductor switch reverse-parallel to the rectifier diode(s), and the clamp capacitor voltage can be utilized for AC motor control by turning on the additional switch. Second, this paper discusses an operation method for AC motor control and clamp capacitor voltage control during power interruption. In the proposed method “DC-link voltage control”, the kinetic energy in the AC motor is transformed into electrical energy and stored in the clamp capacitor; the clamp capacitor is therefore charged and the capacitor voltage is controlled to remain constant at an instruction value. Third, this paper discusses a switching operation during power interruption. A dead-time is introduced between the operation of turning off all switches on the rectifier side and the operation of turning on the additional switch, which prevents the occurrence of a short circuit between the interrupted power source and the clamp capacitor. Finally, experimental results are presented. During power interruptions, an output current was continuously obtained and the clamp capacitor voltage was maintained to be equal to the instruction value of the capacitor voltage. These results indicate that both AC motor control and capacitor voltage control were successfully achieved by using the proposed system.

  8. ACS CCD Stability Monitor

    NASA Astrophysics Data System (ADS)

    Grogin, Norman

    2012-10-01

    A moderately crowded stellar field in the cluster 47 Tuc {6 arcmin West of the cluster core} is observed every four months with the WFC. The first visit exercises the full suite of broad and narrow band imaging filters and sub-array modes; following visits observe with only the six most popular Cycle 18 filters in full-frame mode. The positions and magnitudes of objects will be used to monitor local and large scale variations in the plate scale and the sensitivity of the detectors and to derive an independent measure of the detector CTE. One exposure in each sub-array mode with the WFC will allow us to verify that photometry obtained in full-frame and in sub-array modes are repeatable to better than 1%. This test is important for the ACS Photometric Cross-Calibration program, which uses sub-array exposures. This program may receive additional orbits to investigate ORIENT-dependent geometric distortion, which motivates the ORIENT and BETWEEN requirement on the first visit.

  9. Optical impedance spectroscopy with single-mode electro-active-integrated optical waveguides.

    PubMed

    Han, Xue; Mendes, Sergio B

    2014-02-01

    An optical impedance spectroscopy (OIS) technique based on a single-mode electro-active-integrated optical waveguide (EA-IOW) was developed to investigate electron-transfer processes of redox adsorbates. A highly sensitive single-mode EA-IOW device was used to optically follow the time-dependent faradaic current originated from a submonolayer of cytochrome c undergoing redox exchanges driven by a harmonic modulation of the electric potential at several dc bias potentials and at several frequencies. To properly retrieve the faradaic current density from the ac-modulated optical signal, we introduce here a mathematical formalism that (i) accounts for intrinsic changes that invariably occur in the optical baseline of the EA-IOW device during potential modulation and (ii) provides accurate results for the electro-chemical parameters. We are able to optically reconstruct the faradaic current density profile against the dc bias potential in the working electrode, identify the formal potential, and determine the energy-width of the electron-transfer process. In addition, by combining the optically reconstructed faradaic signal with simple electrical measurements of impedance across the whole electrochemical cell and the capacitance of the electric double-layer, we are able to determine the time-constant connected to the redox reaction of the adsorbed protein assembly. For cytochrome c directly immobilized onto the indium tin oxide (ITO) surface, we measured a reaction rate constant of 26.5 s(-1). Finally, we calculate the charge-transfer resistance and pseudocapacitance associated with the electron-transfer process and show that the frequency dependence of the redox reaction of the protein submonolayer follows as expected the electrical equivalent of an RC-series admittance diagram. Above all, we show here that OIS with single-mode EA-IOW's provide strong analytical signals that can be readily monitored even for small surface-densities of species involved in the redox

  10. Summary of the impedance working group

    SciTech Connect

    Chao, A.W.

    1995-05-01

    The impedance working group concentrated on the LHC design during the workshop. They look at the impedance contributions of liner, beam position monitors, shielded bellows, experimental chambers, superconducting cavities, recombination chambers, space charge, kickers, and the resistive wall. The group concluded that the impedance budgeting and the conceptual designs of the vacuum chamber components looked basically sound. It also noted, not surprisingly, that a large amount of studies are to be carried out further, and it ventured to give a partial list of these studies.

  11. Universal impedance fluctuations in wave chaotic systems.

    PubMed

    Hemmady, Sameer; Zheng, Xing; Ott, Edward; Antonsen, Thomas M; Anlage, Steven M

    2005-01-14

    We experimentally investigate theoretical predictions of universal impedance fluctuations in wave chaotic systems using a microwave analog of a quantum chaotic infinite square well potential. We emphasize the use of the radiation impedance to remove the nonuniversal effects of the particular coupling between the outside world and the scatterer. Specific predictions that we test include the probability density functions (PDFs) of the real and imaginary parts of the universal impedance, the equality of the variances of these PDFs, and the dependence of these PDFs on a single loss parameter.

  12. In situ measurement of tissue impedance using an inductive coupling interface circuit.

    PubMed

    Chiu, Hung-Wei; Chuang, Jia-min; Lu, Chien-Chi; Lin, Wei-Tso; Lin, Chii-Wann; Lin, Mu-Lien

    2013-06-01

    In this work, a method of an inductive coupling impedance measurement (ICIM) is proposed for measuring the nerve impedance of a dorsal root ganglion (DRG) under PRF stimulation. ICIM provides a contactless interface for measuring the reflected impedance by an impedance analyzer with a low excitation voltage of 7 mV. The paper develops a calibration procedure involving a 50-Ω reference resistor to calibrate the reflected resistance for measuring resistance of the nerve in the test. A de-embedding technique to build the equivalent transformer circuit model for the ICIM circuit is also presented. A batteryless PRF stimulator with ICIM circuit demonstrated good accuracy for the acute measurement of DRG impedance both in situ and in vivo. Besides, an in vivo animal experiment was conducted to show that the effectiveness of pulsed radiofrequency (PRF) stimulation in relieving pain gradually declined as the impedance of the stimulated nerve increased. The experiment also revealed that the excitation voltage for measuring impedance below 25 mV can prevent the excitation of a nonlinear response of DRG.

  13. A finite element propagation model for extracting normal incidence impedance in nonprogressive acoustic wave fields

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.; Tanner, Sharon E.; Parrott, Tony L.

    1995-01-01

    A propagation model method for extracting the normal incidence impedance of an acoustic material installed as a finite length segment in a wall of a duct carrying a nonprogressive wave field is presented. The method recasts the determination of the unknown impedance as the minimization of the normalized wall pressure error function. A finite element propagation model is combined with a coarse/fine grid impedance plane search technique to extract the impedance of the material. Results are presented for three different materials for which the impedance is known. For each material, the input data required for the prediction scheme was computed from modal theory and then contaminated by random error. The finite element method reproduces the known impedance of each material almost exactly for random errors typical of those found in many measurement environments. Thus, the method developed here provides a means for determining the impedance of materials in a nonprogressirve wave environment such as that usually encountered in a commercial aircraft engine and most laboratory settings.

  14. Transthoracic electrical impedance during external defibrillation: comparison of measured and modelled waveforms.

    PubMed

    Al Hatib, F; Trendafilova, E; Daskalov, I

    2000-02-01

    The transthoracic electrical impedance is an important defibrillation parameter, affecting the defibrillating current amplitude and energy, and therefore the defibrillation efficiency. A close relationship between transthoracic impedance and defibrillation success rate was observed. Pre-shock measurements (using low amplitude high frequency current) of the impedance were considered a solution for selection of adequate shock voltages or for current-based defibrillation dosage. A recent approach, called 'impedance-compensating defibrillation' was implemented, where the pulse duration was controlled with respect to the impedance measured during the initial phase of the shock. These considerations raised our interest in reassessment of the transthoracic impedance characteristics and the corresponding measurement methods. The purpose of this work is to study the variations of the transthoracic impedance by a continuous measurement technique during the defibrillation shock and comparing the data with results obtained by modelling. Voltage and current impulse waveforms were acquired during cardioversion of patients with atrial fibrillation or flutter. The same type of defibrillation pulse was taken from dogs after induction of fibrillation. The electrodes were located in the anterior position, for both the patients and animals.

  15. Experimental impedance investigation of an ultracapacitor at different conditions for electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Hu, Xiaosong; Wang, Zhenpo; Sun, Fengchun; Dorrell, David G.

    2015-08-01

    Ultracapacitors (UCs) are being increasingly deployed as a short-term energy storage device in various energy systems including uninterruptable power supplies, electrified vehicles, renewable energy systems, and wireless communication. They exhibit excellent power density and energy efficiency. The dynamic behavior of a UC, however, strongly depends on its impedance characteristics. In this paper, the impedance characteristics of a commercial UC are experimentally investigated through the well-adopted Electrochemical Impedance Spectroscopy (EIS) technique. The implications of the UC operating conditions (i.e., temperature and state of charge (SOC)) to the impedance are systematically examined. The results show that the impedance is highly sensitive to the temperature and SOC; and the temperature effect is more significant. In particular, the coupling effect between the temperature and SOC is illustrated, as well as the high-efficiency SOC window, which is highlighted. To further verify the reliability of the EIS-based investigation and to probe the sensitivity of UC parameters to the operating conditions, a dynamic model is characterized by fitting the collected impedance data. The interdependence of UC parameters (i.e., capacitance and resistance elements) on the temperature and SOC is quantitatively revealed. The impedance-based model is demonstrated to be accurate in two driving-cycle tests.

  16. Sensitivity of multiple frequency bioelectrical impedance analysis to changes in ion status.

    PubMed

    Rees, A E; Ward, L C; Cornish, B H; Thomas, B J

    1999-11-01

    Bioelectrical impedance analysis has found extensive application as a simple noninvasive method for the assessment of body fluid volumes. The measured impedance is, however, not only related to the volume of fluid but also to its inherent resistivity. The primary determinant of the resistivities of body fluids is the concentration of ions. The aim of this study was to investigate the sensitivity of bioelectrical impedance analysis to bodily ion status. Whole body impedance over a range of frequencies (4-1012 kHz) of rats was measured during infusion of various concentrations of saline into rats concomitant with measurement of total body and intracellular water by tracer dilution techniques. Extracellular resistance (R0), intracellular resistance (R(i)) and impedance at the characteristic frequency (Z(c)) were calculated. R0 and Z(c) were used to predict extracellular and total body water respectively using previously published formulae. The results showed that whilst R0 and Z(c) decreased proportionately to the amount of NaCl infused, R(i) increased only slightly. Impedances at the end of infusion predicted increases in TBW and ECW of approximately 4-6% despite a volume increase of less than 0.5% in TBW due to the volume of fluid infused. These data are discussed in relation to the assumption of constant resistivity in the prediction of fluid volumes from impedance data.

  17. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  18. Phase-sensitive detection of both inductive and non-inductive ac voltages in ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Weiler, Mathias; Shaw, Justin M.; Nembach, Hans T.; Schoen, Martin A.; Boone, Carl T.; Silva, Thomas J.

    2014-03-01

    Spin pumping causes significant damping in ultrathin ferromagnetic/normal metal (NM) multilayers via spin-current generation of both dc and ac character in the NM system. While the nonlinear dc component has been investigated in detail by utilization of the inverse spin Hall effect (iSHE) in NMs, much less is known about the linear ac component that is presumably much larger in the small-excitation limit. We measured generated ac voltages in a wide variety of Permalloy/NM multilayers via vector-network-analyzer ferromagnetic resonance. We employ a custom, impedance-matched, broadband microwave coupler that features a ferromagnetic thin film reference resonator to accurately compare ac voltage amplitudes and phases between varieties of multilayers. By use of the fact that inductive and ac iSHE signals are phase-shifted by π/2, we find that inductive signals are major contributors in all investigated samples. It is only by comparison of the phase and amplitude of the recorded ac voltages between multiple samples that we can extract the non-inductive contributions due to spin-currents. Voltages due to the ac iSHE in Permalloy(10nm)/platinum(5nm) bilayers are weaker than inductive signals, in agreement with calculations based upon recent theoretical predictions. M.W. acknowledges financial support by the German Academic Exchange service (DAAD).

  19. AC conductivity and Dielectric Study of Chalcogenide Glasses of Se-Te-Ge System

    NASA Astrophysics Data System (ADS)

    Salman, Fathy

    2004-01-01

    The ac conductivity and dielectric properties of glassy system SexTe79 - xGe21, with x = 11, 14, 17 at.%, has been studied at temperatures 300 to 450 K and over a wide range of frequencies (50 Hz to 500 kHz). Experimental results indicate that the ac conductivity and the dielectric constants depend on temperature, frequency and Se content. The conductivity as a function of frequency exhibited two components: dc conductivity s dc, and ac conductivity s ac, where s ac ˜ w s. The mechanism of ac conductivity can be reasonably interpreted in terms of the correlated barrier hopping model (CBH). The activation energies are estimated and discussed. The dependence of ac conductivity and dielectric constants on the Se content x can be interpreted as the effect of Se fraction on the positional disorder. The impedance plot at each temperature appeared as a semicircle passes through the origin. Each semicircle is represented by an equivalent circuit of parallel resistance Rb and capacitance Cb.

  20. Cost-effective broad-band electrical impedance spectroscopy measurement circuit and signal analysis for piezo-materials and ultrasound transducers.

    PubMed

    Lewis, George K; Lewis, George K; Olbricht, William

    2008-10-01

    This paper explains the circuitry and signal processing to perform electrical impedance spectroscopy on piezoelectric materials and ultrasound transducers. Here, we measure and compare the impedance spectra of 2-5 MHz piezoelectrics, but the methodology applies for 700 kHz-20 MHz ultrasonic devices as well. Using a 12 ns wide 5 volt pulsing circuit as an impulse, we determine the electrical impedance curves experimentally using Ohm's law and fast Fourier transform (FFT), and compare results with mathematical models. The method allows for rapid impedance measurement for a range of frequencies using a narrow input pulse, digital oscilloscope and FFT techniques. The technique compares well to current methodologies such as network and impedance analyzers while providing additional versatility in the electrical impedance measurement. The technique is theoretically simple, easy to implement and completed with ordinary laboratory instrumentation for minimal cost. PMID:19081773

  1. Anode heating/cleaning and its effects on diode impedance in Self-Magnetic Pinch (SMP) Experiments

    NASA Astrophysics Data System (ADS)

    Renk, Timothy; Simpson, Sean; Zier, Jacob; Weber, Bruce

    2015-11-01

    The SMP diode is fielded on both the RITS-6 (3.5-8.5 MV) and Mercury (5.5 MV) accelerators, located at Sandia and the Naval Research Laboratory, respectively. This diode utilizes a hollowed metal cathode to produce focused electron beams (<3 mm diameter) onto a high-Z converter for flash x-ray applications. We observe on some shots unexplained impedance collapse beyond what may be attributed to normal A-K gap closure. This could be caused by gas evolution off the as-provided hardware making up the anode and cathode. The goal of heating the anode is to remove gases trapped within the bulk of the Ta anode, and so reduce the volume of evolving gases near the A-K gap. Two heating techniques have been investigated, a short-pulse (~1 sec) resulting in high Ta temperature (~3000 °C), and a longer (~100 sec) heating of the Ta to lower peak temperature (~1000 °C). Initial experiments indicate a modest improvement to diode performance. Additional experiments are ongoing, and latest results will be reported. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Acoustic input impedance measurements on brass instruments

    NASA Astrophysics Data System (ADS)

    Pyle, Robert W., Jr.

    2002-11-01

    Measurement of the acoustic input impedance of a brass instrument can reveal something about the instrument's intonation, its reasonable playing range, its tone color, and perhaps whether the mouthpiece used for the impedance measurement is appropriate for the instrument. Such measurements are made at sound-presssure levels much lower than those encountered under playing conditions. Thus, impedance measurements may offer the only feasible way to infer something about the playing characteristics of instruments, typically museum specimens, that are too rare or too fragile to be played. In this paper the effects of some of the available choices of sound source and stimulus signal on measurement accuracy will be explored. Driver-transducer nonlinearity, source impedance, signal-to-noise ratio, and any necessary signal processing will be discussed.

  3. Solid state parameters, structure elucidation, High Resolution X-Ray Diffraction (HRXRD), phase matching, thermal and impedance analysis on L-Proline trichloroacetate (L-PTCA) NLO single crystals.

    PubMed

    Kalaiselvi, P; Raj, S Alfred Cecil; Jagannathan, K; Vijayan, N; Bhagavannarayana, G; Kalainathan, S

    2014-11-11

    Nonlinear optical single crystal of L-Proline trichloroacetate (L-PTCA) was successfully grown by Slow Evaporation Solution Technique (SEST). The grown crystals were subjected to single crystal X-ray diffraction analysis to confirm the structure. From the single crystal XRD data, solid state parameters were determined for the grown crystal. The crystalline perfection has been evaluated using high resolution X-ray diffractometer. The frequencies of various functional groups were identified from FTIR spectral analysis. The percentage of transmittance was obtained from UV Visible spectral analysis. TGA-DSC measurements indicate the thermal stability of the crystal. The dielectric constant, dielectric loss and ac conductivity were measured by the impedance analyzer. The DC conductivity was calculated by the cole-cole plot method.

  4. Increases in cerebrovascular impedance in older adults.

    PubMed

    Zhu, Yong-Sheng; Tseng, Benjamin Y; Shibata, Shigeki; Levine, Benjamin D; Zhang, Rong

    2011-08-01

    This study explored a novel method for measuring cerebrovascular impedance to quantify the relationship between pulsatile changes in cerebral blood flow (CBF) and arterial pressure. Arterial pressure in the internal or common carotid artery (applanation tonometry), CBF velocity in the middle cerebral artery (transcranial Doppler), and end-tidal CO(2) (capnography) were measured in six young (28 ± 4 yr) and nine elderly subjects (70 ± 6 yr). Transfer function method was used to estimate cerebrovascular impedance. Under supine resting conditions, CBF velocity was reduced in the elderly despite the fact that they had higher arterial pressure than young subjects. As expected, cerebrovascular resistance index was increased in the elderly. In both young and elderly subjects, impedance modulus was reduced gradually in the frequency range of 0.78-8 Hz. Phase was negative in the range of 0.78-4.3 Hz and fluctuated at high frequencies. Compared with the young, impedance modulus increased by 38% in the elderly in the range of 0.78-2 Hz and by 39% in the range of 2-4 Hz (P < 0.05). Moreover, increases in impedance were correlated with reductions in CBF velocity. Collectively, these findings demonstrate the feasibility of assessing cerebrovascular impedance using the noninvasive method developed in this study. The estimated impedance modulus and phase are similar to those observed in the systemic circulation and other vascular beds. Moreover, increases in impedance in the elderly suggest that arterial stiffening, besides changes in cerebrovascular resistance, contributes to reduction in CBF with age.

  5. Inversion of elastic impedance for unconsolidated sediments

    USGS Publications Warehouse

    Lee, Myung W.

    2006-01-01

    Elastic properties of gas-hydrate-bearing sediments are important for quantifying gas hydrate amounts as well as discriminating the gas hydrate effect on velocity from free gas or pore pressure. This paper presents an elastic inversion method for estimating elastic properties of gas-hydrate-bearing sediments from angle stacks using sequential inversion of P-wave impedance from the zero-offset stack and S-wave impedance from the far-offset stack without assuming velocity ratio.

  6. CSR Impedance for Non-Ultrarelativistic Beams

    SciTech Connect

    Li, Rui; Tsai, Cheng Y.

    2015-09-01

    For the analysis of the coherent synchrotron radiation (CSR)-induced microbunching gain in the low energy regime, such as when a high-brightness electron beam is transported through a low-energy merger in an energy-recovery linac (ERL) design, it is necessary to extend the CSR impedance expression in the ultrarelativistic limit to the non-ultrarelativistic regime. This paper presents our analysis of CSR impedance for general beam energies.

  7. Duct wall impedance control as an advanced concept for acoustic suppression enhancement. [engine noise reduction

    NASA Technical Reports Server (NTRS)

    Dean, P. D.

    1978-01-01

    A systems concept procedure is described for the optimization of acoustic duct liner design for both uniform and multisegment types. The concept was implemented by the use of a double reverberant chamber flow duct facility coupled with sophisticated computer control and acoustic analysis systems. The optimization procedure for liner insertion loss was based on the concept of variable liner impedance produced by bias air flow through a multilayer, resonant cavity liner. A multiple microphone technique for in situ wall impedance measurements was used and successfully adapted to produce automated measurements for all liner configurations tested. The complete validation of the systems concept was prevented by the inability to optimize the insertion loss using bias flow induced wall impedance changes. This inability appeared to be a direct function of the presence of a higher order energy carrying modes which were not influenced significantly by the wall impedance changes.

  8. Crosstalk Compensation for a Rapid, Higher Resolution Impedance Spectrum Measurement

    SciTech Connect

    Jon P. Christophersen; John L. Morrison; David M. Rose; William H. Morrison; Chester G. Motloch

    2012-03-01

    Batteries and other energy storage devices are playing larger roles in various industries (e.g., military, automotive, electric utilities, etc.) as the U.S. seeks to reduce its dependence on foreign energy resources. As such, there exists a significant need for accurate, robust state-of-health assessment techniques. Present techniques tend to focus on simple, passive monitoring of voltage and current at a given ambient temperature. However, this approach has the disadvantage of ignoring key elements of health, that is, changes in resistance growth and power fade. Impedance spectroscopy is considered a useful laboratory tool in gauging changes in the resistance and power performance, but it has not been widely considered as an onboard diagnostic tool due to the length of time required to complete the measurement. Cross-Talk Compensation (CTC) is a novel approach that enables rapid, high resolution impedance spectra measurements using a hardware platform that could be designed as an embedded system. This input signal consists of a sum-of-sines excitation current that has a known frequency spread and a duration of one period of the lowest frequency. The voltage response is then captured at a sufficiently fast sample rate. Previously developed rapid impedance spectrum measurement techniques either required a longer excitation signal or a sum-of-sines signal that was separated by harmonic frequencies to reduce or eliminate, respectively, the cross-talk interference in the calculated results. The distinct advantage of CTC, however, is that non-harmonic frequencies can now be included within the excitation signal while still keeping the signal duration at one period of the lowest frequency. Since the frequency spread of the input signal is known, the crosstalk interference between sinusoidal signals within the sum-of-sines at a given frequency of interest can be pre-determined and assigned to an error matrix. Consequently, the real and imaginary components of the

  9. Development of electrical impedance tomography of microwave ablation

    NASA Astrophysics Data System (ADS)

    McEwan, A.; Wi, H.; Nguyen, D. T.; Jones, P.; Lam, V.; Hawthorne, W. J.; Barry, M. A.; Oh, T. I.

    2014-04-01

    In this study we assess the feasibility of electrical impedance tomography (EIT) to track the temperature changes during ablation in an ex-vivo ovine liver and in-vivo porcine model. 208 tetrapolar electrical impedance measurements were obtained at 30 frame/s from a 16 electrode EIT system. In the porcine model ventilation artefact was removed by low pass filtering and successful ablation related impedance change image sequences were reconstructed from four of nine liver ablations. This study indicates feasibility of the technique but was limited in the porcine model due to electrode difficulties and the difficulty in positioning the microwave applicator under ultrasound. EIT is more convenient and lower cost than other temperature monitoring methods such as MRI but spatial resolution is constrained by the relatively low number of independent measurements and ill posed reconstruction problem. Future improvements include the use of an internal electrode that could be in practice located on the microwave applicator to provide the reconstruction algorithm with improved prior information and local information of conductivity changes due to ablation.

  10. Time-domain fitting of battery electrochemical impedance models

    NASA Astrophysics Data System (ADS)

    Alavi, S. M. M.; Birkl, C. R.; Howey, D. A.

    2015-08-01

    Electrochemical impedance spectroscopy (EIS) is an effective technique for diagnosing the behaviour of electrochemical devices such as batteries and fuel cells, usually by fitting data to an equivalent circuit model (ECM). The common approach in the laboratory is to measure the impedance spectrum of a cell in the frequency domain using a single sine sweep signal, then fit the ECM parameters in the frequency domain. This paper focuses instead on estimation of the ECM parameters directly from time-domain data. This may be advantageous for parameter estimation in practical applications such as automotive systems including battery-powered vehicles, where the data may be heavily corrupted by noise. The proposed methodology is based on the simplified refined instrumental variable for continuous-time fractional systems method ('srivcf'), provided by the Crone toolbox [1,2], combined with gradient-based optimisation to estimate the order of the fractional term in the ECM. The approach was tested first on synthetic data and then on real data measured from a 26650 lithium-ion iron phosphate cell with low-cost equipment. The resulting Nyquist plots from the time-domain fitted models match the impedance spectrum closely (much more accurately than when a Randles model is assumed), and the fitted parameters as separately determined through a laboratory potentiostat with frequency domain fitting match to within 13%.

  11. ONERA-NASA Cooperative Effort on Liner Impedance Eduction

    NASA Technical Reports Server (NTRS)

    Primus, Julien; Piot, Estelle; Simon, Frank; Jones, Michael G.; Watson, Willie R

    2013-01-01

    As part of a cooperation between ONERA and NASA, the liner impedance eduction methods developed by the two research centers are compared. The NASA technique relies on an objective function built on acoustic pressure measurements located on the wall opposite the test liner, and the propagation code solves the convected Helmholtz equation in uniform ow using a finite element method that implements a continuous Galerkin discretization. The ONERA method uses an objective function based either on wall acoustic pressure or on acoustic velocity acquired above the liner by Laser Doppler Anemometry, and the propagation code solves the linearized Euler equations by a discontinuous Galerkin discretization. Two acoustic liners are tested in both ONERA and NASA ow ducts and the measured data are treated with the corresponding impedance eduction method. The first liner is a wire mesh facesheet mounted onto a honeycomb core, designed to be linear with respect to incident sound pressure level and to grazing ow velocity. The second one is a conventional, nonlinear, perforate-over-honeycomb single layer liner. Configurations without and with ow are considered. For the nonlinear liner, the comparison of liner impedance educed by NASA and ONERA shows a sensitivity to the experimental conditions, namely to the nature of the source and to the sample width.

  12. An adaptive high and low impedance fault detection method

    SciTech Connect

    Yu, D.C. ); Khan, S.H. )

    1994-10-01

    An integrated high impedance fault (HIF) and low impedance fault (LIF) detection method is proposed in this paper. For a HIF detection, the proposed technique is based on a number of characteristics of the HIF current. These characteristics are: fault current magnitude, magnitude of the 3rd harmonic current, magnitude of the 5th harmonic current, the angle of the third harmonic current, the angle difference between the third harmonics current and the fundamental voltage, negative sequence current of HIF. These characteristics are identified by modeling the distribution feeders in EMTP. Apart from these characteristics, the above ambient (average) negative sequence current is also considered. An adjustable block out region around the average load current is provided. The average load current is calculated at every 18,000 cycles (5 minutes) interval. This adaptive feature will not only make the proposed scheme more sensitive to the low fault current, but it will also prevent the relay from tripping during the normal load current. In this paper, the logic circuit required for implementing the proposed HIF detection methods is also included. With minimal modifications, the logic developed for the HIF detection can be applied for the low impedance fault (LIF) detection. A complete logic circuit which detects both the HIF and LIF is proposed. Using this combined logic, the need of installing separate devices for HIF and LIF detection can be eliminated.

  13. Analysis of the impedance resonance of piezoelectric multi-fiber composite stacks

    NASA Astrophysics Data System (ADS)

    Sherrit, S.; Djrbashian, A.; Bradford, S. C.

    2013-04-01

    Multi-Fiber Composites™ (MFC's) produced by Smart Materials Corp behave essentially like thin planar stacks where each piezoelectric layer is composed of a multitude of fibers. We investigate the suitability of using previously published inversion techniques [9] for the impedance resonances of monolithic co-fired piezoelectric stacks to the MFC™ to determine the complex material constants from the impedance data. The impedance equations examined in this paper are those based on the derivation by Martin [5,6,10]. The utility of resonance techniques to invert the impedance data to determine the small signal complex material constants are presented for a series of MFC's. The technique was applied to actuators with different geometries and the real coefficients were determined to be similar within changes of the boundary conditions due to change of geometry. The scatter in the imaginary coefficient was found to be larger. The technique was also applied to the same actuator type but manufactured in different batches with some design changes in the non active portion of the actuator and differences in the dielectric and the electromechanical coupling between the two batches were easily measureable. It is interesting to note that strain predicted by small signal impedance analysis is much lower than high field stains. Since the model is based on material properties rather than circuit constants, it could be used for the direct evaluation of specific aging or degradation mechanisms in the actuator as well as batch sorting and adjustment of manufacturing processes.

  14. Load monitoring of pin-connected structures using piezoelectric impedance measurement

    NASA Astrophysics Data System (ADS)

    Liang, Yabin; Li, Dongsheng; Parvasi, Seyed Mohammad; Song, Gangbing

    2016-10-01

    This paper presents a feasibility study on a developed impedance-based technique using Lead Zirconate Titanate patches for load monitoring of pin-connected structures, which are widely used in construction industry. The basic principle behind the load-monitoring technique is to utilize a high-frequency excitation signal (typically >30 kHz) through a surface-bonded piezoelectric sensor/actuator to detect changes in mechanical impedance of the structure due to the variations in structural loads. In order to verify the effectiveness of the developed technique, a tension-controllable structure with a pin connection was fabricated and investigated in this study. A load monitoring index was used to correlate the dominating peak frequency of the real part of the electrical impedance signature to the pin connection load. Experimental results obtained from twenty repeated tests prove that the proposed load-monitoring index increases as the load on the pin connection increases due to the enlarging true contact area of the pin connection. A 3D finite element method was also used to simulate and analyze the impedance signature of a pin connection model. Very good agreement exists between the numerical simulation’s results and the experimental results which demonstrates that the impedance-based technique can successfully be used to monitor the loading status of pin connections in practical applications.

  15. Analysis of the Impedance Resonance of Piezoelectric Multi-Fiber Composite Stacks

    NASA Technical Reports Server (NTRS)

    Sherrit, S.; Djrbashian, A.; Bradford, S C

    2013-01-01

    Multi-Fiber CompositesTM (MFC's) produced by Smart Materials Corp behave essentially like thin planar stacks where each piezoelectric layer is composed of a multitude of fibers. We investigate the suitability of using previously published inversion techniques for the impedance resonances of monolithic co-fired piezoelectric stacks to the MFCTM to determine the complex material constants from the impedance data. The impedance equations examined in this paper are those based on the derivation. The utility of resonance techniques to invert the impedance data to determine the small signal complex material constants are presented for a series of MFC's. The technique was applied to actuators with different geometries and the real coefficients were determined to be similar within changes of the boundary conditions due to change of geometry. The scatter in the imaginary coefficient was found to be larger. The technique was also applied to the same actuator type but manufactured in different batches with some design changes in the non active portion of the actuator and differences in the dielectric and the electromechanical coupling between the two batches were easily measureable. It is interesting to note that strain predicted by small signal impedance analysis is much lower than high field stains. Since the model is based on material properties rather than circuit constants, it could be used for the direct evaluation of specific aging or degradation mechanisms in the actuator as well as batch sorting and adjustment of manufacturing processes.

  16. Modeling magnetically insulated devices using flow impedance

    SciTech Connect

    Mendel, C.W. Jr.; Rosenthal, S.E. )

    1995-04-01

    In modern pulsed power systems the electric field stresses at metal surfaces in vacuum transmission lines are so high that negative surfaces are space-charge-limited electron emitters. These electrons do not cause unacceptable losses because magnetic fields due to system currents result in net motion parallel to the electrodes. It has been known for several years that a parameter known as flow impedance is useful for describing these flows. Flow impedance is a measure of the separation between the anode and the mean position of the electron cloud, and it will be shown in this paper that in many situations flow impedance depends upon the geometry of the transmission line upstream of the point of interest. It can be remarkably independent of other considerations such as line currents and voltage. For this reason flow impedance is a valuable design parameter. Models of impedance transitions and voltage adders using flow impedance will be developed. Results of these models will be compared to two-dimensional, time-dependent, particle-in-cell simulations.

  17. Impedance Biosensing to detect food allergens, endocrine disrupting chemicals, and food pathogens

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Rajeswaran

    Electrochemical impedance biosensors can be viewed as an AC electroanalytical method for the analyte detection in the fields of biomedicine, environmental monitoring, and food and agriculture, amongst others. The most common format for AC impedance biosensing involves surface immobilization of an antibody, receptor protein, DNA strand, or other species capable of bio-recognition, and AC impedance detection of the binding event. Technological application of AC impedance biosensors has been hindered by several obstacles, including the more complex circuitry required for AC relative to DC electrochemistry, chemical and physical interference arising from non-specific adsorption, and the stability and reproducibility of protein immobilization. One focus of these PhD studies is on methods to reduce or compensate for non-specific adsorption, including sample dilution, site blocking with BSA, and the use of control electrodes onto which reference antibodies are immobilized. Examples that will be presented include impedance detection of food pathogens, such as Listeria monocytogenes, using a mouse monoclonal antibody immobilized onto an Au electrode. This yields detection limits of 5 CFU/ml and 4 CFU/ml for ideal solutions and filtered tomato extract, respectively. Control experiments with an Au electrode onto which a mouse monoclonal antibody to GAPDH is immobilized demonstrate that non-specific adsorption is insignificant for the system and methodology studied here. Control experiments with Salmonella enterica demonstrate no cross-reactivity to this food pathogen. In addition, Detection of two endocrine-disrupting chemicals (EDC), norfluoxetine and BDE-47, is reported here by impedance biosensing, with a detection limit of 8.5 and 1.3 ng/ml for norfluoxetine and BDE-47, respectively. Additional research has focused on alternative substrates and linker chemistries for protein immobilization, including the use of degenerate (highly doped) Si and bidendate thiol monolayer

  18. On the accuracy of bore reconstruction from input impedance measurements: application to bassoon crook measurements.

    PubMed

    Dalmont, Jean-Pierre; Curtit, Marthe; Yahaya, Ahmad Fazli

    2012-01-01

    The determination of a pipe bore from the measured reflection function is a technique that has reached a certain maturity. However, the measurement of the reflection function in the time domain (pulse reflectometry) requires equipment that is rather difficult to operate. On the other hand, the techniques for measuring the input impedance have reached an unquestionable maturity with respect to measurement setup and to calibration. It is thus likely that impedance measurements might be able to give the same information. By doing simulations, it is first shown that the reflection function deduced from the input impedance gives access to the bore with a precision comparable with that obtained with pulse reflectometry. It is then shown that the accuracy obtained with measurements is of the same order as that obtained from simulations. The technique is then used for the dimensional inspection of bassoon crooks.

  19. Dielectric, Impedance and Conduction Behavior of Double Perovskite Pr2CuTiO6 Ceramics

    NASA Astrophysics Data System (ADS)

    Mahato, Dev K.; Sinha, T. P.

    2016-08-01

    Polycrystalline Pr2CuTiO6 (PCT) ceramics exhibits dielectric, impedance and modulus characteristics as a possible material for microelectronic devices. PCT was synthesized through the standard solid-state reaction method. The dielectric permittivity, impedance and electric modulus of PCT have been studied in a wide frequency (100 Hz-1 MHz) and temperature (303-593 K) range. Structural analysis of the compound revealed a monoclinic phase at room temperature. Complex impedance Cole-Cole plots are used to interpret the relaxation mechanism, and grain boundary contributions towards conductivity have been estimated. From electrical modulus formalism polarization and conductivity relaxation behavior in PCT have been discussed. Normalization of the imaginary part of impedance (Z″) and the normalized imaginary part of modulus (M″) indicates contributions from both long-range and localized relaxation effects. The grain boundary resistance along with their relaxation frequencies are plotted in the form of an Arrhenius plot with activation energy 0.45 eV and 0.46 eV, respectively. The ac conductivity mechanism has been discussed.

  20. Pipeline coating impedance effects on powerline fault current coupling

    SciTech Connect

    Dabkowski, J.

    1989-12-01

    Prior research leading to the development of predictive electromagnetic coupling computer codes has shown that the coating conductance is the principal factor in determining the response of a pipeline to magnetic induction from an overhead power transmission line. Under power line fault conditions, a high voltage may stress the coating causing a significant change in its conductance, and hence, the coupling response. Based upon laboratory experimentation and analysis, a model has been developed which allows prediction of the modified coating characteristics when subjected to high voltage during fault situations. Another program objective was the investigation of a method to determine the high voltage behavior of an existing coating from low voltage in situ field measurements. Such a method appeared conceptually feasible for non-porous coatings whose conductance is primarily a result of current leakage through existing holidays. However, limited testing has shown that difficulties in determining the steel-electrolyte capacitance limit the application of the method Methods for field measurement of the pipeline coating conductance were also studied for both dc ad ac signal excitation. Ac techniques offer the advantage that cathodic protection current interruption is not required, thus eliminating depolarization effects. However, ac field measurement techniques need additional refinement before these methods can be generally applied. 53 figs.

  1. Artificial impedance ground planes for low profile antenna applications

    NASA Astrophysics Data System (ADS)

    McMichael, Ian T.

    Recent interest in artificial impedance surfaces for low-profile antennas has led to extensive research with the goal of optimizing the ground plane's characteristics for a given antenna configuration and broadening the operational bandwidth, or alternatively creating a multi-band functionality. A method of determining the optimal reflection phase for a low-profile dipole antenna over an electromagnetic band gap (EBG) ground plane has been developed based on image theory and is presented with experimental and numerical validation. A new artificial impedance surface has also been developed, which is composed of an annular slot ring on a thin grounded dielectric. The main difference between the proposed ground plane and a conventional EBG is that the high impedance condition exists only in the vicinity of the slot and is therefore best suited for antennas with a current distribution that has a similar shape as the annular slot ring. It is shown that a loop antenna positioned closely over an annular slot loaded ground plane exhibits approximately the same gain as a loop antenna over a conventional EBG ground plane. The advantage of the new structure is its lack of periodicity, which significantly eases manufacturing. Additionally, it is shown that multiple concentric slot rings can be designed into the ground plane, which excites multiple resonances in low-profile wideband antennas. The result is a multi-band high impedance ground plane constructed using a simple arrangement of annular slots. Finally, a manufacturing technique is presented for the application of arbitrarily configured EBG antennas to handheld dual-sensor landmine detection systems. It is shown that creating an EBG antenna using very thin layers of metal will enable it to be used for ground penetrating radar (GPR) when it is co-located with a low frequency metal detector without compromising the operation of the metal detector. The potential benefit of such an antenna would be a lower profile sensor

  2. AC electrophoretic deposition of organic-inorganic composite coatings.

    PubMed

    Yoshioka, T; Chávez-Valdez, A; Roether, J A; Schubert, D W; Boccaccini, A R

    2013-02-15

    Alternating current electrophoretic deposition (AC-EPD) of polyacrylic acid (PAA)-titanium oxide (TiO(2)) nanoparticle composites on stainless steel electrodes was investigated in basic aqueous solution. AC square wave with duty cycle of 80% was applied at a frequency of 1 kHz. FTIR-ATR spectra showed that both AC and direct current (DC) EPD successfully deposited PAA-TiO(2) composites. The deposition rate using AC-EPD was lower than that obtained in direct current DC-EPD. However, the microstructure and surface morphology of the deposited composite coatings were different depending on the type of electric field applied. AC-EPD applied for not more than 5 min led to smooth films without bubble formation, while DC-EPD for 1 min or more showed deposits with microstructural defects possibly as result of water electrolysis. AC-EPD was thus for the first time demonstrated to be a suitable technique to deposit organic-inorganic composite coatings from aqueous suspensions, showing that applying a square wave and frequency of 1 kHz leads to uniform PAA-TiO(2) composite coatings on conductive materials. PMID:23218240

  3. AC electrophoretic deposition of organic-inorganic composite coatings.

    PubMed

    Yoshioka, T; Chávez-Valdez, A; Roether, J A; Schubert, D W; Boccaccini, A R

    2013-02-15

    Alternating current electrophoretic deposition (AC-EPD) of polyacrylic acid (PAA)-titanium oxide (TiO(2)) nanoparticle composites on stainless steel electrodes was investigated in basic aqueous solution. AC square wave with duty cycle of 80% was applied at a frequency of 1 kHz. FTIR-ATR spectra showed that both AC and direct current (DC) EPD successfully deposited PAA-TiO(2) composites. The deposition rate using AC-EPD was lower than that obtained in direct current DC-EPD. However, the microstructure and surface morphology of the deposited composite coatings were different depending on the type of electric field applied. AC-EPD applied for not more than 5 min led to smooth films without bubble formation, while DC-EPD for 1 min or more showed deposits with microstructural defects possibly as result of water electrolysis. AC-EPD was thus for the first time demonstrated to be a suitable technique to deposit organic-inorganic composite coatings from aqueous suspensions, showing that applying a square wave and frequency of 1 kHz leads to uniform PAA-TiO(2) composite coatings on conductive materials.

  4. Singularities of mixed boundary value problems in electrical impedance tomography.

    PubMed

    Pidcock, M; Ciulli, S; Ispas, S

    1995-08-01

    The importance of accurate mathematical modelling in the development of image reconstruction algorithms for electrical impedance tomography (EIT) has been discussed in a number of recent papers. It is particularly important in iterative reconstruction schemes where the forward problem of calculating the electric potential from Neumann boundary data is solved many times. One area which needs to be considered it the mathematical modelling of the electrodes used in the technique. In this paper we discuss one of the more sophisticated models which has been proposed and present the results of a number of numerical and analytic calculations which we have made as a contribution to the understanding of this question.

  5. Piezo impedance sensors to monitor degradation of biological structure

    NASA Astrophysics Data System (ADS)

    Annamdas, Kiran Kishore Kumar; Annamdas, Venu Gopal Madhav

    2010-04-01

    In some countries it is common to have wooden structures in their homes, especially Japan. However, metals and its alloys are the most widely used engineering materials in construction of any military or civil structure. Re-visiting natural disasters like the recent Haiti earthquake (12 Jan 2010) or Katrina (cyclones) reminds the necessity to have better housing infrastructure with robust monitoring systems. Traditionally wood (green material) was accepted as excellent rehabilitation material, after any disaster. In recent times, the recycling materials extracted from inorganic, biodegradable wastes are converted into blocks or sheets, and are also used to assist public in rehabilitation camps. The key issue which decreases the life of these rehabilitated structure including green materials (like wood) is unnecessary degradation or deterioration over time due to insect or acid attack or rain/ice fall. The recycling material also needs monitoring to protect them against acid or rain/ice attacks. Thus, a few health monitoring techniques have emerged in the recent past. Electromechanical Impedance technique is one such technique, which is simple but robust to detect variations in the integrity of structures. In this paper, impedance based piezoceramic sensor was bonded on wooden sample, which was subjected to degradation in presence of acids. Variations in mass of plank are studied.

  6. Impedance based sensor technology to monitor stiffness of biological structures

    NASA Astrophysics Data System (ADS)

    Annamdas, Venu Gopal Madhav; Annamdas, Kiran Kishore Kumar

    2010-04-01

    In countries like USA or Japan it is not so uncommon to have wooden structures in their homes. However, metals and its alloys are the most widely used engineering materials in construction of any military or civil structure. Revisiting natural disasters like the recent Haiti earthquake (12 Jan 2010) or Katrina (cyclones) reminds the necessity to have better housing infrastructure with robust monitoring systems. Traditionally wood is accepted as excellent rehabilitation material, after any disaster. The recycling materials extracted from in-organic, biodegradable wastes, also can be used for rehabilitation. The key issue which dampens the life of these rehabilitated structure including green materials (like wood) is unnecessary deposits (nails, screws, bolts etc)/damages due to insect attack. Thus, a few health monitoring techniques have emerged in the recent past. Electromechanical Impedance technique is one such technique, which is simple but robust to detect variations in the integrity of structures. In this paper, impedance based piezoceramic sensor was bonded on wooden sample, which was used to study changes due to metallic (steel nails) deposits at various locations. A study of weight deposits on aluminum plate was used for comparisons.

  7. Mechanical impedance measurements for improved cost-effective process monitoring

    NASA Astrophysics Data System (ADS)

    Clopet, Caroline R.; Pullen, Deborah A.; Badcock, Rodney A.; Ralph, Brian; Fernando, Gerard F.; Mahon, Steve W.

    1999-06-01

    The aerospace industry has seen a considerably growth in composite usage over the past ten years, especially with the development of cost effective manufacturing techniques such as Resin Transfer Molding and Resin Infusion under Flexible Tooling. The relatively high cost of raw material and conservative processing schedules has limited their growth further in non-aerospace technologies. In-situ process monitoring has been explored for some time as a means to improving the cost efficiency of manufacturing with dielectric spectroscopy and optical fiber sensors being the two primary techniques developed to date. A new emerging technique is discussed here making use of piezoelectric wafers with the ability to sense not only aspects of resin flow but also to detect the change in properties of the resin as it cures. Experimental investigations to date have shown a correlation between mechanical impedance measurements and the mechanical properties of cured epoxy systems with potential for full process monitoring.

  8. Rapid Impedance Spectrum Measurements for State-of-Health Assessment of Energy Storage Devices

    SciTech Connect

    Jon P. Christophersen; John L. Morrison; Chester G. Motloch; William H. Morrison

    2012-04-01

    Harmonic compensated synchronous detection (HCSD) is a technique that can be used to measure wideband impedance spectra within seconds based on an input sum-of-sines signal having a frequency spread separated by harmonics. The battery (or other energy storage device) is excited with a sum-of-sines current signal that has a duration of at least one period of the lowest frequency. The voltage response is then captured and synchronously detected at each frequency of interest to determine the impedance spectra. This technique was successfully simulated using a simplified battery model and then verified with commercially available Sanyo lithium-ion cells. Simulations revealed the presence of a start-up transient effect when only one period of the lowest frequency is included in the excitation signal. This transient effect appears to only influence the low-frequency impedance measurements and can be reduced when a longer input signal is used. Furthermore, lithium-ion cell testing has indicated that the transient effect does not seem to impact the charge transfer resistance in the mid-frequency region. The degradation rates for the charge transfer resistance measured from the HCSD technique were very similar to the changes observed from standardized impedance spectroscopy methods. Results from these studies, therefore, indicate that HCSD is a viable, rapid alternative approach to acquiring impedance spectra.

  9. Ultrahigh impedance method to assess electrostatic accelerator performance

    NASA Astrophysics Data System (ADS)

    Lobanov, Nikolai R.; Linardakis, Peter; Tsifakis, Dimitrios

    2015-06-01

    This paper describes an investigation of problem-solving procedures to troubleshoot electrostatic accelerators. A novel technique to diagnose issues with high-voltage components is described. The main application of this technique is noninvasive testing of electrostatic accelerator high-voltage grading systems, measuring insulation resistance, or determining the volume and surface resistivity of insulation materials used in column posts and acceleration tubes. In addition, this technique allows verification of the continuity of the resistive divider assembly as a complete circuit, revealing if an electrical path exists between equipotential rings, resistors, tube electrodes, and column post-to-tube conductors. It is capable of identifying and locating a "microbreak" in a resistor and the experimental validation of the transfer function of the high impedance energy control element. A simple and practical fault-finding procedure has been developed based on fundamental principles. The experimental distributions of relative resistance deviations (Δ R /R ) for both accelerating tubes and posts were collected during five scheduled accelerator maintenance tank openings during 2013 and 2014. Components with measured Δ R /R >±2.5 % were considered faulty and put through a detailed examination, with faults categorized. In total, thirty four unique fault categories were identified and most would not be identifiable without the new technique described. The most common failure mode was permanent and irreversible insulator current leakage that developed after being exposed to the ambient environment. As a result of efficient in situ troubleshooting and fault-elimination techniques, the maximum values of |Δ R /R | are kept below 2.5% at the conclusion of maintenance procedures. The acceptance margin could be narrowed even further by a factor of 2.5 by increasing the test voltage from 40 V up to 100 V. Based on experience over the last two years, resistor and insulator

  10. A comparison of skinfolds and leg-to-leg bioelectrical impedance for the assessment of body composition in children

    PubMed Central

    Goss, Fredric; Robertson, Robert; Williams, Allison; Sward, Kathy; Abt, Kristi; Ladewig, Melissa; Timmer, Jeffrey; Dixon, Curt

    2003-01-01

    Background This field-based investigation examined the congruence between skinfolds and bioelectrical impedance in assessing body composition in children. Methods Subjects were 162 female and 160 male children 10–15 years of age. Skinfold measures obtained at the triceps and medial calf and a leg-to-leg bioelectrical impedance system were used to determine percent fat using child-specific equations. Pearson product moment correlations were performed on the percent fat values obtained using skinfolds and bioelectric impedance for the entire data set. Separate correlations were also conducted on gender and age/gender subsets. Dependent t tests were used to compare the two techniques. Results Percent fat did not differ between skinfolds and bioelectrical impedance for the total subject pool. Bioelectrical impedance overestimated percent fat in girls by 2.6% and underestimated percent fat in boys by 1.7% (p < 0.01). Correlations between skinfolds and bioelectrical impedance ranged from r = 0.51 to r = 0.90. Conclusions Leg-to-leg bioelectrical impedance may be a viable alternative field assessment technique that is comparable to skinfolds. The small differences in percent fat between the two techniques may have limited practical significance in school-based health-fitness settings. PMID:14498990

  11. Effects of Liner Geometry on Acoustic Impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Tracy, Maureen B.; Watson, Willie R.; Parrott, Tony L.

    2002-01-01

    Current aircraft engine nacelles typically contain acoustic liners consisting of perforated sheets bonded onto honeycomb cavities. Numerous models have been developed to predict the acoustic impedance of these liners in the presence of grazing flow, and to use that information with aeroacoustic propagation codes to assess nacelle liner noise suppression. Recent efforts have provided advances in impedance education methodologies that offer more accurate determinations of acoustic liner properties in the presence of grazing flow. The current report provides the results of a parametric study, in which a finite element method was used to assess the effects of variations of the following geometric parameters on liner impedance, with and without the presence of grazing flow: percent open area, sheet thickness, sheet thickness-to-hole diameter ratio and cavity depth. Normal incidence acoustic impedances were determined for eight acoustic liners, consisting of punched aluminum facesheets bonded to hexcell honeycomb cavities. Similar liners were tested in the NASA Langley Research Center grazing incidence tube to determine their response in the presence of grazing flow. The resultant data provide a quantitative assessment of the effects of these perforate, single-layer liner parameters on the acoustic impedance of the liner.

  12. Vascular impedance analysis in human pulmonary circulation.

    PubMed

    Zhou, Qinlian; Gao, Jian; Huang, Wei; Yen, Michael

    2006-01-01

    Vascular impedance is determined by morphometry and mechanical properties of the vascular system, as well as the rheology of the blood. The interactions between all these factors are complicated and difficult to investigate solely by experiments. A mathematical model representing the entire system of human pulmonary circulation was constructed based on experimentally measured morphometric and elasticity data of the vessels. The model consisted of 16 orders of arteries and 15 orders of veins. The pulmonary arteries and veins were considered as elastic tubes and their impedance was calculated based on Womersley's theory. The flow in capillaries was described by the "sheet-flow" theory. The model yielded an impedance modulus spectrum that fell steeply from a high value at 0 Hz to a minimum around 1.5 Hz. At about 4 Hz, it reached a second high and then oscillated around a relatively small value at higher frequencies. Characteristic impedance was 27.9 dyn-sec/cm5. Influence of variations in vessel geometry and elasticity on impedance spectra was analyzed. Simulation results showed good agreement with experimental measurements. PMID:16817653

  13. Impedance of silver oxide-zinc cells

    NASA Technical Reports Server (NTRS)

    Frank, H. A.; Long, W. L.; Uchiyama, A. A.

    1976-01-01

    Over 100 sealed AgO-Zn cells were subjected to prolonged periods of storage over a range of temperatures and storage modes including open circuit, trickle charge, and float charge. Impedances of these cells were monitored throughout, and at the end of the storage period their transient voltage characteristics were observed at the onset of discharge. Results revealed that the impedances of these cells tended to increase with storage time; the magnitude of the impedance rise was dependent primarily on temperature and to a lesser degree on storage mode. Typical values for 50 A-hr cells were usually less than 100 mohm immediately after activation and from 1 to 30 ohm after 6-10 months of storage. Transient voltages of these cells droped sharply during the first msec of discharge and then rose to a stablized value during the following few seconds. The magnitude of the initial drop and the stabilized voltage values were found to be related to impedance but not in a linear manner. The magnitude and duration of the low transient voltages may be unacceptable in some applications of these cells. The impedance variations are attributed to changes occurring at the positive electrode.

  14. Tunable microwave impedance matching to a high impedance source using a Josephson metamaterial

    SciTech Connect

    Altimiras, Carles Parlavecchio, Olivier; Joyez, Philippe; Vion, Denis; Roche, Patrice; Esteve, Daniel; Portier, Fabien

    2013-11-18

    We report the efficient coupling of a 50  Ω microwave circuit to a high impedance conductor. We use an impedance transformer consisting of a λ/4 co-planar resonator whose inner conductor contains an array of superconducting quantum interference devices (SQUIDs), providing it with a tunable lineic inductance L∼80 μ{sub 0}, resulting in a characteristic impedance Z{sub C}∼1 kΩ. The impedance matching efficiency is characterized by measuring the shot noise power emitted by a dc biased tunnel junction connected to the resonator. We demonstrate matching to impedances in the 15 to 35 kΩ range with bandwidths above 100 MHz around a resonant frequency tunable between 4 and 6 GHz.

  15. Combined optical coherence phase microscopy and impedance sensing measurements of differentiating adipose derived stem cells

    NASA Astrophysics Data System (ADS)

    Bagnaninchi, P. O.

    2010-02-01

    There is a growing interest in monitoring differentiating stem cells in 2D culture without the use of labelling agents. In this study we explore the feasibility of a multimodality method that combines impedance sensing (IS) and optical coherence phase microscopy (OCPM) to monitor the main biological events associated with adipose derived stem cells differentiation into different lineages. Adipose derived stem cells were cultured in Mesenpro RS medium on gold electrode arrays. The system (ECIS, Applied biophysics) is connected to a lock-in amplifier controlled by a computer, and the complex impedance is derived from the in phase and out of phase voltages. Multi-frequency measurements spanning from 500Hz to 100 kHz are recorded every 2 minutes. The Optical coherence phase microscope is build around a Thorlabs engine (930nm FWHM: 90nm) and connected to a custom build microscope probe. The IS and OCPM were successfully integrated. The electrode area (250um) was imaged with a lateral resolution of 1.5um during impedance measurements. Impedance sensing gave an average measurement of differentiation, as a change in impedance over the electrode area, whereas OCPM provides additional information on the cellular events occurring on top of the electrode. The information retrieved from OCPM will feed a mathematical model correlating cellular differentiation and impedance variation. In this study we have demonstrated the feasibility of integrating two non-invasive monitoring techniques that will be instrumental in designing stem cell based screening assays.

  16. Ferrofluid Microwave Devices With Magnetically Controlled Impedances

    NASA Astrophysics Data System (ADS)

    Fannin, P. C.; Stefu, N.; Marin, C. N.; Malaescu, I.; Totoreanu, R.

    2010-08-01

    Ferrofluid filled transmission lines are microwave electronic devices. The complex dielectric permittivity and the complex magnetic permeability of a kerosene based ferrofluid with magnetite nanoparticles, in the frequency range (0.5-6) GHz were measured, for several values of polarising field, H. Afterwards, the input impedance of a short-circuited transmission line filled with this ferrofluid was computed using the equation Z = Zc tanh(γl). Here Zc and l are the characteristic impedance and the length of the coaxial line and γ is the propagation constant, depending on the dielectric and magnetic parameters of the material within the line. It is demonstrated how the impedance displays a frequency and polarizing field dependence, which has application in the design of magnetically controlled microwave devices.

  17. Wavelet analysis of the impedance cardiogram waveforms

    NASA Astrophysics Data System (ADS)

    Podtaev, S.; Stepanov, R.; Dumler, A.; Chugainov, S.; Tziberkin, K.

    2012-12-01

    Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt)max) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.

  18. Propagation of waves along an impedance boundary

    NASA Technical Reports Server (NTRS)

    Wenzel, A. R.

    1974-01-01

    A theoretical analysis of the scalar wave field due to a point source above a plane impedance boundary is presented. A surface wave is found to be an essential component of the total wave field. It is shown that, as a result of ducting of energy by the surface wave, the amplitude of the total wave near the boundary can be greater than it would be if the boundary were perfectly reflecting. Asymptotic results, valid near the boundary, are obtained both for the case of finite impedance (the soft-boundary case) and for the limiting case in which the impedance becomes infinite (the hard-boundary case). In the latter, the wave amplitude in the farfield decreases essentially inversely as the horizontal propagation distance; in the former (if the surface-wave term is neglected), it decreases inversely as the square of the horizontal propagation distance.

  19. Impedance properties of circular microstrip antenna

    NASA Technical Reports Server (NTRS)

    Deshpande, M. D.; Bailey, M. C.

    1983-01-01

    A moment method solution to the input impedance of a circular microstrip antenna excited by either a microstrip feed or a coaxial probe is presented. Using the exact dyadic Green's function and the Fourier transform the problem is formulated in terms of Richmond's reaction integral equation from which the unknown patch current can be solved for. The patch current is expanded in terms of regular surface patch modes and an attachment mode (for probe excited case) which insures continuity of the current at probe/patch junction, proper polarization and p-dependance of patch current in the vicinity of the probe. The input impedance of a circular microstrip antenna is computed and compared with earlier results. Effect of attachment mode on the input impedance is also discussed.

  20. Distribution of Activator (Ac) Throughout the Maize Genome for Use in Regional Mutagenesis

    PubMed Central

    Kolkman, Judith M.; Conrad, Liza J.; Farmer, Phyllis R.; Hardeman, Kristine; Ahern, Kevin R.; Lewis, Paul E.; Sawers, Ruairidh J. H.; Lebejko, Sara; Chomet, Paul; Brutnell, Thomas P.

    2005-01-01

    A collection of Activator (Ac)-containing, near-isogenic W22 inbred lines has been generated for use in regional mutagenesis experiments. Each line is homozygous for a single, precisely positioned Ac element and the Ds reporter, r1-sc:m3. Through classical and molecular genetic techniques, 158 transposed Ac elements (tr-Acs) were distributed throughout the maize genome and 41 were precisely placed on the linkage map utilizing multiple recombinant inbred populations. Several PCR techniques were utilized to amplify DNA fragments flanking tr-Ac insertions up to 8 kb in length. Sequencing and database searches of flanking DNA revealed that the majority of insertions are in hypomethylated, low- or single-copy sequences, indicating an insertion site preference for genic sequences in the genome. However, a number of Ac transposition events were to highly repetitive sequences in the genome. We present evidence that suggests Ac expression is regulated by genomic context resulting in subtle variations in Ac-mediated excision patterns. These tr-Ac lines can be utilized to isolate genes with unknown function, to conduct fine-scale genetic mapping experiments, and to generate novel allelic diversity in applied breeding programs. PMID:15520264

  1. Comparison of bio-impedance spectroscopy and multi-frequency bio-impedance analysis for the assessment of extracellular and total body water in surgical patients.

    PubMed

    Hannan, W J; Cowen, S J; Plester, C E; Fearon, K C; deBeau, A

    1995-12-01

    1. Measurements of extracellular and total body water provide useful information on the nutritional status of surgical patients and may be estimated from whole-body bio-impedance measurements at different frequencies. 2. Resistance and reactance were measured at 50 frequencies from 5kHz to 1MHz in 29 surgical patients (17 males, 12 females) with a wide range of extracellular to total body water ratios. 3. A fit to the spectrum of reactance versus resistance data gave predicted resistances at frequencies zero and infinity. Values of extracellular and total body water determined by this bio-impedance spectroscopy technique were regressed against values obtained from radioisotope dilution. The standard errors of the estimate were 1.8931 and 3.2591 respectively. 4. Resistance indices (height2/resistance) at selected frequencies gave the highest correlations with extracellular and total body water at 5kHz and 200kHz respectively, and prediction equations derived from multiple stepwise regressions also showed these to be the optimum frequencies. The standard errors of the estimate for this multi-frequency bio-impedance analysis method were 1.9371 and 2.6061 for extracellular and total body water respectively. 5. To assess the ability of the two methods to measure changes in extracellular and total body water, reproducibility was assessed from repeat measurements 10 min apart in a subgroup of 15 patients. Bio-impedance spectroscopy gave mean coefficients of variation for extracellular and total body water of 0.9% and 3.0% respectively. For multi-frequency bio-impedance analysis the corresponding coefficients of variation were 0.9% and 0.6%. 6. It is concluded that a simple impedance analyser operating at only two frequencies compares favourably with the more complex spectroscopy technique for the determination of extracellular and total body water in surgical patients. PMID:8549085

  2. Vibration Method for Tracking the Resonant Mode and Impedance of a Microwave Cavity

    NASA Technical Reports Server (NTRS)

    Barmatz, M.; Iny, O.; Yiin, T.; Khan, I.

    1995-01-01

    A vibration technique his been developed to continuously maintain mode resonance and impedance much between a constant frequency magnetron source and resonant cavity. This method uses a vibrating metal rod to modulate the volume of the cavity in a manner equivalent to modulating an adjustable plunger. A similar vibrating metal rod attached to a stub tuner modulates the waveguide volume between the source and cavity. A phase sensitive detection scheme determines the optimum position of the adjustable plunger and stub turner during processing. The improved power transfer during the heating of a 99.8% pure alumina rod was demonstrated using this new technique. Temperature-time and reflected power-time heating curves are presented for the cases of no tracking, impedance tracker only, mode tracker only and simultaneous impedance and mode tracking. Controlled internal melting of an alumina rod near 2000 C using both tracking units was also demonstrated.

  3. Investigation of piezoelectric impedance-based health monitoring of structure interface debonding

    NASA Astrophysics Data System (ADS)

    Xiao, Li; Chen, Guofeng; Chen, Xiaoming; Qu, Wenzhong

    2016-04-01

    Various damages might occur during the solid rocket motor (SRM) manufacturing/operational phase, and the debonding of propellant/insulator/composite case interfaces is one of damage types which determine the life of a motor. The detection of such interface debonding damage will be beneficial for developing techniques for reliable nondestructive evaluation (NDE) and structural health monitoring (SHM). Piezoelectric sensors are widely used for structural health monitoring technique. In particular, electromechanical impedance (EMI) techniques give simple and low-cost solutions for detecting damage in various structures. In this work, piezoelectric EMI structural health monitoring technique is applied to identify the debonding condition of propellant/insulator interface structure using finite element method and experimental investigation. A three-dimensional coupled field finite element model is developed using the software ANSYS and the harmonic analysis is conducted for high-frequency impedance analysis procedure. In the experimental study, the impedance signals were measured from PZT and MFC sensors outside attached to composite case monitoring the different debonding conditions between the propellant and insulator. Root mean square deviation (RMSD) based damage index is conducted to quantify the changes i n impedance for different de bonding conditions and frequency range. Simulation and experimental results confirmed that the EMI technique can be used effectively for detecting the debonding damage in SRM and is expected to be useful for future application of real SRM's SHM.

  4. Impedance Scaling for Small Angle Transitions

    SciTech Connect

    Stupakov, G.; Bane, Karl; Zagorodnov, I.; /DESY

    2010-10-27

    Based on the parabolic equation approach to Maxwell's equations we have derived scaling properties of the high frequency impedance/short bunch wakefields of structures. For the special case of small angle transitions we have shown the scaling properties are valid for all frequencies. Using these scaling properties one can greatly reduce the calculation time of the wakefield/impedance of long, small angle, beam pipe transitions, like one often finds in insertion regions of storage rings. We have tested the scaling with wakefield simulations of 2D and 3D models of such transitions, and found that the scaling works well. In modern ring-based light sources one often finds insertion devices having extremely small vertical apertures (on the order of millimeters) to allow for maximal undulator fields reaching the beam. Such insertion devices require that there be beam pipe transitions from these small apertures to the larger cross-sections (normally on the order of centimeters) found in the rest of the ring. The fact that there may be many such transitions, and that these transitions introduce beam pipe discontinuities very close to the beam path, means that their impedance will be large and, in fact, may dominate the impedance budget of the entire ring. To reduce their impact on impedance, the transitions are normally tapered gradually over a long distance. The accurate calculation of the impedance or wakefield of these long transitions, which are typically 3D objects (i.e. they do not have cylindrical symmetry), can be quite a challenging numerical task. In this report we present a method of obtaining the impedance of a long, small angle transition from the calculation of a scaled, shorter one. Normally, the actual calculation is obtained from a time domain simulation of the wakefield in the structure, where the impedance can be obtained by performing a Fourier transform. We shall see that the scaled calculation reduces the computer time and memory requirements

  5. Protein Aggregation Measurement through Electrical Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Affanni, A.; Corazza, A.; Esposito, G.; Fogolari, F.; Polano, M.

    2013-09-01

    The paper presents a novel methodology to measure the fibril formation in protein solutions. We designed a bench consisting of a sensor having interdigitated electrodes, a PDMS hermetic reservoir and an impedance meter automatically driven by calculator. The impedance data are interpolated with a lumped elements model and their change over time can provide information on the aggregation process. Encouraging results have been obtained by testing the methodology on K-casein, a protein of milk, with and without the addition of a drug inhibiting the aggregation. The amount of sample needed to perform this measurement is by far lower than the amount needed by fluorescence analysis.

  6. Acoustic impedance of curved multilayered duct liners

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.

    1973-01-01

    The effect of curvature of annular duct liners on the liner acoustic impedance is examined. Exact equations are derived for the impedance of point reacting liners which are made from an arbitrary number of thin cylindrical layers of porous material separated by small radially oriented cells. Equations are given for liners with convex curvature and for liners with concave curvature. For ducts with small curvature, it is shown that these equations reduce to the equations for a flat liner. It is shown, by analytical and numerical examples, that the effect of liner curvature is significant in practical noise reduction problems.

  7. Interlayer thermal conductivity of rubrene measured by ac-calorimetry

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Brill, J. W.

    2013-07-01

    We have measured the interlayer thermal conductivity of crystals of the organic semiconductor rubrene, using ac-calorimetry. Since ac-calorimetry is most commonly used for measurements of the heat capacity, we include a discussion of its extension for measurements of the transverse thermal conductivity of thin crystals of poor thermal conductors, including the limitations of the technique. For rubrene, we find that the interlayer thermal conductivity, ≈0.7 mW/cm . K, is several times smaller than the (previously measured) in-layer value, but its temperature dependence indicates that the interlayer mean free path is at least a few layers.

  8. Impedance and modulus spectroscopic study of nano hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Jogiya, B. V.; Jethava, H. O.; Tank, K. P.; Raviya, V. R.; Joshi, M. J.

    2016-05-01

    Hydroxyapatite (Ca10 (PO4)6 (OH)2, HAP) is the main inorganic component of the hard tissues in bones and also important material for orthopedic and dental implant applications. Nano HAP is of great interest due to its various bio-medical applications. In the present work the nano HAP was synthesized by using surfactant mediated approach. Structure and morphology of the synthesized nano HAP was examined by the Powder XRD and TEM. Impedance study was carried out on pelletized sample in a frequency range of 100Hz to 20MHz at room temperature. The variation of dielectric constant, dielectric loss, and a.c. conductivity with frequency of applied field was studied. The Nyquist plot as well as modulus plot was drawn. The Nyquist plot showed two semicircle arcs, which indicated the presence of grain and grain boundary effect in the sample. The typical behavior of the Nyquist plot was represented by equivalent circuit having two parallel RC combinations in series.

  9. Study of dielectric and impedance properties of Mn ferrites

    NASA Astrophysics Data System (ADS)

    Mujasam Batoo, Khalid

    2011-02-01

    The paper reports on the effect of Al substitution on the structural and electrical properties of bulk ferrite series of basic composition MnFe 2-2 xAl 2 xO 4 (0.0≤ x≤0.5) synthesized using solid state reaction method. XRD analysis confirms that all the samples exhibit single phase cubic spinel structure excluding presence of any secondary phase. The dielectric constant shows a normal behaviour with frequency, whereas the loss tangent exhibits an anomalous behaviour with frequency for all compositions. Variation of dielectric properties and ac conductivity with frequency reveals that the dispersion is due to Maxwell-Wagner type of interfacial polarization in general and hopping of charge between Fe +2 and Fe +3 as well as between Mn +2 and Mn +3 ions at octahedral sites. The complex impedance plane spectra shows the presence of two semicircles up to x=0.2, and only one semicircle for the higher values of x. The analysis of the data shows that the resistive and capacitive properties of the Mn ferrite are mainly due to processes associated with grain and grain boundaries.

  10. An Electrochemical Impedance Spectroscopy System for Monitoring Pineapple Waste Saccharification.

    PubMed

    Conesa, Claudia; Ibáñez Civera, Javier; Seguí, Lucía; Fito, Pedro; Laguarda-Miró, Nicolás

    2016-02-04

    Electrochemical impedance spectroscopy (EIS) has been used for monitoring the enzymatic pineapple waste hydrolysis process. The system employed consists of a device called Advanced Voltammetry, Impedance Spectroscopy & Potentiometry Analyzer (AVISPA) equipped with a specific software application and a stainless steel double needle electrode. EIS measurements were conducted at different saccharification time intervals: 0, 0.75, 1.5, 6, 12 and 24 h. Partial least squares (PLS) were used to model the relationship between the EIS measurements and the sugar determination by HPAEC-PAD. On the other hand, artificial neural networks: (multilayer feed forward architecture with quick propagation training algorithm and logistic-type transfer functions) gave the best results as predictive models for glucose, fructose, sucrose and total sugars. Coefficients of determination (R²) and root mean square errors of prediction (RMSEP) were determined as R² > 0.944 and RMSEP < 1.782 for PLS and R² > 0.973 and RMSEP < 0.486 for artificial neural networks (ANNs), respectively. Therefore, a combination of both an EIS-based technique and ANN models is suggested as a promising alternative to the traditional laboratory techniques for monitoring the pineapple waste saccharification step.

  11. Detection of Chamber Conditioning Through Optical Emission and Impedance Measurements

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.; Rao, M. V. V. S.; Sharma, Surendra P.; Meyyappan, Meyya

    2001-01-01

    During oxide etch processes, buildup of fluorocarbon residues on reactor sidewalls can cause run-to-run drift and will necessitate some time for conditioning and seasoning of the reactor. Though diagnostics can be applied to study and understand these phenomena, many of them are not practical for use in an industrial reactor. For instance, measurements of ion fluxes and energy by mass spectrometry show that the buildup of insulating fluorocarbon films on the reactor surface will cause a shift in both ion energy and current in an argon plasma. However, such a device cannot be easily integrated into a processing system. The shift in ion energy and flux will be accompanied by an increase in the capacitance of the plasma sheath. The shift in sheath capacitance can be easily measured by a common commercially available impedance probe placed on the inductive coil. A buildup of film on the chamber wall is expected to affect the production of fluorocarbon radicals, and thus the presence of such species in the optical emission spectrum of the plasma can be monitored as well. These two techniques are employed on a GEC (Gaseous Electronics Conference) Reference Cell to assess the validity of optical emission and impedance monitoring as a metric of chamber conditioning. These techniques are applied to experimental runs with CHF3 and CHF3/O2/Ar plasmas, with intermediate monitoring of pure argon plasmas as a reference case for chamber conditions.

  12. An Electrochemical Impedance Spectroscopy System for Monitoring Pineapple Waste Saccharification

    PubMed Central

    Conesa, Claudia; Ibáñez Civera, Javier; Seguí, Lucía; Fito, Pedro; Laguarda-Miró, Nicolás

    2016-01-01

    Electrochemical impedance spectroscopy (EIS) has been used for monitoring the enzymatic pineapple waste hydrolysis process. The system employed consists of a device called Advanced Voltammetry, Impedance Spectroscopy & Potentiometry Analyzer (AVISPA) equipped with a specific software application and a stainless steel double needle electrode. EIS measurements were conducted at different saccharification time intervals: 0, 0.75, 1.5, 6, 12 and 24 h. Partial least squares (PLS) were used to model the relationship between the EIS measurements and the sugar determination by HPAEC-PAD. On the other hand, artificial neural networks: (multilayer feed forward architecture with quick propagation training algorithm and logistic-type transfer functions) gave the best results as predictive models for glucose, fructose, sucrose and total sugars. Coefficients of determination (R2) and root mean square errors of prediction (RMSEP) were determined as R2 > 0.944 and RMSEP < 1.782 for PLS and R2 > 0.973 and RMSEP < 0.486 for artificial neural networks (ANNs), respectively. Therefore, a combination of both an EIS-based technique and ANN models is suggested as a promising alternative to the traditional laboratory techniques for monitoring the pineapple waste saccharification step. PMID:26861317

  13. An Electrochemical Impedance Spectroscopy System for Monitoring Pineapple Waste Saccharification.

    PubMed

    Conesa, Claudia; Ibáñez Civera, Javier; Seguí, Lucía; Fito, Pedro; Laguarda-Miró, Nicolás

    2016-01-01

    Electrochemical impedance spectroscopy (EIS) has been used for monitoring the enzymatic pineapple waste hydrolysis process. The system employed consists of a device called Advanced Voltammetry, Impedance Spectroscopy & Potentiometry Analyzer (AVISPA) equipped with a specific software application and a stainless steel double needle electrode. EIS measurements were conducted at different saccharification time intervals: 0, 0.75, 1.5, 6, 12 and 24 h. Partial least squares (PLS) were used to model the relationship between the EIS measurements and the sugar determination by HPAEC-PAD. On the other hand, artificial neural networks: (multilayer feed forward architecture with quick propagation training algorithm and logistic-type transfer functions) gave the best results as predictive models for glucose, fructose, sucrose and total sugars. Coefficients of determination (R²) and root mean square errors of prediction (RMSEP) were determined as R² > 0.944 and RMSEP < 1.782 for PLS and R² > 0.973 and RMSEP < 0.486 for artificial neural networks (ANNs), respectively. Therefore, a combination of both an EIS-based technique and ANN models is suggested as a promising alternative to the traditional laboratory techniques for monitoring the pineapple waste saccharification step. PMID:26861317

  14. Influence of heart motion on cardiac output estimation by means of electrical impedance tomography: a case study.

    PubMed

    Proença, Martin; Braun, Fabian; Rapin, Michael; Solà, Josep; Adler, Andy; Grychtol, Bartłomiej; Bohm, Stephan H; Lemay, Mathieu; Thiran, Jean-Philippe

    2015-06-01

    Electrical impedance tomography (EIT) is a non-invasive imaging technique that can measure cardiac-related intra-thoracic impedance changes. EIT-based cardiac output estimation relies on the assumption that the amplitude of the impedance change in the ventricular region is representative of stroke volume (SV). However, other factors such as heart motion can significantly affect this ventricular impedance change. In the present case study, a magnetic resonance imaging-based dynamic bio-impedance model fitting the morphology of a single male subject was built. Simulations were performed to evaluate the contribution of heart motion and its influence on EIT-based SV estimation. Myocardial deformation was found to be the main contributor to the ventricular impedance change (56%). However, motion-induced impedance changes showed a strong correlation (r = 0.978) with left ventricular volume. We explained this by the quasi-incompressibility of blood and myocardium. As a result, EIT achieved excellent accuracy in estimating a wide range of simulated SV values (error distribution of 0.57 ± 2.19 ml (1.02 ± 2.62%) and correlation of r = 0.996 after a two-point calibration was applied to convert impedance values to millilitres). As the model was based on one single subject, the strong correlation found between motion-induced changes and ventricular volume remains to be verified in larger datasets.

  15. Electrical impedance tomography spectroscopy method for characterising particles in solid-liquid phase

    SciTech Connect

    Zhao, Yanlin; Wang, Mi; Yao, Jun

    2014-04-11

    Electrical impedance tomography (EIT) is one of the process tomography techniques to provide an on-line non-invasive imaging for multiphase flow measurement. With EIT measurements, the images of impedance real part, impedance imaginary part, phase angle, and magnitude can be obtained. However, most of the applications of EIT in the process industries rely on the conductivity difference between two phases in fluids to obtain the concentration profiles. It is not common to use the imaginary part or phase angle due to the dominant change in conductivity or complication in the use of other impedance information. In a solid-liquid two phases system involving nano- or submicro-particles, characterisation of particles (e.g. particle size and concentration) have to rely on the measurement of impedance phase angle or imaginary part. Particles in a solution usually have an electrical double layer associated with their surfaces and can form an induced electrical dipole moment due to the polarization of the electrical double layer under the influence of an alternating electric field. Similar to EIT, electrical impedance spectroscopy (EIS) measurement can record the electrical impedance data, including impedance real part, imaginary part and phase angle (θ), which are caused by the polarization of the electrical double layer. These impedance data are related to the particle characteristics e.g. particle size, particle and ionic concentrations in the aqueous medium, therefore EIS method provides a capability for characterising the particles in suspensions. Electrical impedance tomography based on EIS measurement or namely, electrical impedance tomography spectroscopy (EITS) could image the spatial distribution of particle characteristics. In this paper, a new method, including test set-up and data analysis, for characterisation of particles in suspensions are developed through the experimental approach. The experimental results on tomographic imaging of colloidal particles

  16. Electrical impedance tomography spectroscopy method for characterising particles in solid-liquid phase

    NASA Astrophysics Data System (ADS)

    Zhao, Yanlin; Wang, Mi; Yao, Jun

    2014-04-01

    Electrical impedance tomography (EIT) is one of the process tomography techniques to provide an on-line non-invasive imaging for multiphase flow measurement. With EIT measurements, the images of impedance real part, impedance imaginary part, phase angle, and magnitude can be obtained. However, most of the applications of EIT in the process industries rely on the conductivity difference between two phases in fluids to obtain the concentration profiles. It is not common to use the imaginary part or phase angle due to the dominant change in conductivity or complication in the use of other impedance information. In a solid-liquid two phases system involving nano- or submicro-particles, characterisation of particles (e.g. particle size and concentration) have to rely on the measurement of impedance phase angle or imaginary part. Particles in a solution usually have an electrical double layer associated with their surfaces and can form an induced electrical dipole moment due to the polarization of the electrical double layer under the influence of an alternating electric field. Similar to EIT, electrical impedance spectroscopy (EIS) measurement can record the electrical impedance data, including impedance real part, imaginary part and phase angle (θ), which are caused by the polarization of the electrical double layer. These impedance data are related to the particle characteristics e.g. particle size, particle and ionic concentrations in the aqueous medium, therefore EIS method provides a capability for characterising the particles in suspensions. Electrical impedance tomography based on EIS measurement or namely, electrical impedance tomography spectroscopy (EITS) could image the spatial distribution of particle characteristics. In this paper, a new method, including test set-up and data analysis, for characterisation of particles in suspensions are developed through the experimental approach. The experimental results on tomographic imaging of colloidal particles

  17. Electrical impedance tomography problem with inaccurately known boundary and contact impedances.

    PubMed

    Kolehmainen, Ville; Lassas, Matti; Ola, Petri

    2008-10-01

    In electrical impedance tomography (EIT) electric currents are injected into a body with unknown electromagnetic properties through a set of contact electrodes at the boundary of the body. The resulting voltages are measured on the same electrodes and the objective is to reconstruct the unknown conductivity function inside the body based on these data. All the traditional approaches to the reconstruction problem assume that the boundary of the body and the electrode-skin contact impedances are known a priori. However, in clinical experiments one usually lacks the exact knowledge of the boundary and contact impedances, and therefore, approximate model domain and contact impedances have to be used in the image reconstruction. However, it has been noticed that even small errors in the shape of the computation domain or contact impedances can cause large systematic artefacts in the reconstructed images, leading to loss of diagnostically relevant information. In a recent paper (Kolehmainen , 2006), we showed how in the 2-D case the errors induced by the inaccurately known boundary can be eliminated as part of the image reconstruction and introduced a novel method for finding a deformed image of the original isotropic conductivity using the theory of TeichmUller mappings. In this paper, the theory and reconstruction method are extended to include the estimation of unknown contact impedances. The method is implemented numerically and tested with experimental EIT data. The results show that the systematic errors caused by inaccurately known boundary and contact impedances can efficiently be eliminated by the reconstruction method.

  18. Impedance Eduction in Ducts with Higher-Order Modes and Flow

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.

    2009-01-01

    An impedance eduction technique, previously validated for ducts with plane waves at the source and duct termination planes, has been extended to support higher-order modes at these locations. Inputs for this method are the acoustic pressures along the source and duct termination planes, and along a microphone array located in a wall either adjacent or opposite to the test liner. A second impedance eduction technique is then presented that eliminates the need for the microphone array. The integrity of both methods is tested using three sound sources, six Mach numbers, and six selected frequencies. Results are presented for both a hardwall and a test liner (with known impedance) consisting of a perforated plate bonded to a honeycomb core. The primary conclusion of the study is that the second method performs well in the presence of higher-order modes and flow. However, the first method performs poorly when most of the microphones are located near acoustic pressure nulls. The negative effects of the acoustic pressure nulls can be mitigated by a judicious choice of the mode structure in the sound source. The paper closes by using the first impedance eduction method to design a rectangular array of 32 microphones for accurate impedance eduction in the NASA LaRC Curved Duct Test Rig in the presence of expected measurement uncertainties, higher order modes, and mean flow.

  19. Detection of Alzheimer’s disease amyloid-beta plaque deposition by deep brain impedance profiling

    NASA Astrophysics Data System (ADS)

    Béduer, Amélie; Joris, Pierre; Mosser, Sébastien; Fraering, Patrick C.; Renaud, Philippe

    2015-04-01

    Objective. Alzheimer disease (AD) is the most common form of neurodegenerative disease in elderly people. Toxic brain amyloid-beta (Aß) aggregates and ensuing cell death are believed to play a central role in the pathogenesis of the disease. In this study, we investigated if we could monitor the presence of these aggregates by performing in situ electrical impedance spectroscopy measurements in AD model mice brains. Approach. In this study, electrical impedance spectroscopy measurements were performed post-mortem in APPPS1 transgenic mice brains. This transgenic model is commonly used to study amyloidogenesis, a pathological hallmark of AD. We used flexible probes with embedded micrometric electrodes array to demonstrate the feasibility of detecting senile plaques composed of Aß peptides by localized impedance measurements. Main results. We particularly focused on deep brain structures, such as the hippocampus. Ex vivo experiments using brains from young and old APPPS1 mice lead us to show that impedance measurements clearly correlate with the percentage of Aβ plaque load in the brain tissues. We could monitor the effects of aging in the AD APPPS1 mice model. Significance. We demonstrated that a localized electrical impedance measurement constitutes a valuable technique to monitor the presence of Aβ-plaques, which is complementary with existing imaging techniques. This method does not require prior Aβ staining, precluding the risk of variations in tissue uptake of dyes or tracers, and consequently ensuring reproducible data collection.

  20. Exploring the interfaces between metal electrodes and aqueous electrolytes with electrochemical impedance spectroscopy.

    PubMed

    Bandarenka, Aliaksandr S

    2013-10-01

    Electrochemical impedance spectroscopy (EIS) is one of the oldest electroanalytical techniques. With respect to the investigation of the electrode-electrolyte interfaces, it has gained wide popularity as a non-destructive, sensitive and highly informative method. A particularly attractive advantage is that it provides a unique opportunity to distinguish contributions from different processes which take place simultaneously at the electrode surface. During the past decade, considerable progress has been made in the field of impedance spectroscopy to advance data acquisition, modelling and spectra analysis. EIS has evolved from slow data acquisition procedures with semi-quantitative interpretation to innovative methodologies which allow simple operation and accurate analysis using hundreds or even thousands of spectra; these spectra can often be recorded as a result of a single experiment. Impedance spectroscopy is nowadays widely combined with other techniques, with successful application in areas ranging from analytical and physical chemistry to localized impedance microscopies. The focus of this review is on recent experimental and theoretical achievements in the characterisation of the interfaces between metal electrodes and aqueous electrolytes using EIS. Some key challenges to further increase the informative power of electrochemical impedance spectroscopy are also outlined.

  1. Estimating Hemodynamic Responses to the Wingate Test Using Thoracic Impedance

    PubMed Central

    Astorino, Todd A.; Bovee, Curtis; DeBoe, Ashley

    2015-01-01

    Techniques including direct Fick and Doppler echocardiography are frequently used to assess hemodynamic responses to exercise. Thoracic impedance has been shown to be a noninvasive alternative to these methods for assessing these responses during graded exercise to exhaustion, yet its feasibility during supramaximal bouts of exercise is relatively unknown. We used thoracic impedance to estimate stroke volume (SV) and cardiac output (CO) during the Wingate test (WAnT) and compared these values to those from graded exercise testing (GXT). Active men (n = 9) and women (n = 7) (mean age = 24.8 ± 5.9 yr) completed two Wingate tests and two graded exercise tests on a cycle ergometer. During exercise, heart rate (HR), SV, and CO were continuously estimated using thoracic impedance. Repeated measures analysis of variance was used to identify potential differences in hemodynamic responses across protocols. Results: Maximal SV (138.6 ± 37.4 mL vs. 135.6 ± 26.9 mL) and CO (24.5 ± 6.1 L·min-1 vs. 23.7 ± 5.1 L·min-1) were similar (p > 0.05) between repeated Wingate tests. Mean maximal HR was higher (p < 0.01) for GXT (185 ± 7 b·min-1) versus WAnT (177 ± 11 b·min-1), and mean SV was higher in response to WAnT (137.1 ± 32.1 mL) versus GXT (123.0 ± 32.0 mL), leading to similar maximal cardiac output between WAnT and GXT (23.9 ± 5.6 L·min-1 vs. 22.5 ± 6.0 L·min-1). Our data show no difference in hemodynamic responses in response to repeated administrations of the Wingate test. In addition, the Wingate test elicits similar cardiac output compared to progressive cycling to VO2max. Key points Measurement of cardiac output (CO), the rate of oxygen transport delivered by the heart to skeletal muscle, is not widely-employed in Exercise Physiology due to the level of difficulty and invasiveness characteristic of most techniques used to measure this variable. Nevertheless, thoracic impedance has been shown to provide a noninvasive and simpler approach to continuously

  2. The ac53, ac78, ac101, and ac103 Genes Are Newly Discovered Core Genes in the Family Baculoviridae

    PubMed Central

    Garavaglia, Matías Javier; Miele, Solange Ana Belén; Iserte, Javier Alonso; Belaich, Mariano Nicolás

    2012-01-01

    The family Baculoviridae is a large group of insect viruses containing circular double-stranded DNA genomes of 80 to 180 kbp, which have broad biotechnological applications. A key feature to understand and manipulate them is the recognition of orthology. However, the differences in gene contents and evolutionary distances among the known members of this family make it difficult to assign sequence orthology. In this study, the genome sequences of 58 baculoviruses were analyzed, with the aim to detect previously undescribed core genes because of their remote homology. A routine based on Multi PSI-Blast/tBlastN and Multi HaMStR allowed us to detect 31 of 33 accepted core genes and 4 orthologous sequences in the Baculoviridae which were not described previously. Our results show that the ac53, ac78, ac101 (p40), and ac103 (p48) genes have orthologs in all genomes and should be considered core genes. Accordingly, there are 37 orthologous genes in the family Baculoviridae. PMID:22933288

  3. Semiconductor ac static power switch

    NASA Technical Reports Server (NTRS)

    Vrancik, J.

    1968-01-01

    Semiconductor ac static power switch has long life and high reliability, contains no moving parts, and operates satisfactorily in severe environments, including high vibration and shock conditions. Due to their resistance to shock and vibration, static switches are used where accidental switching caused by mechanical vibration or shock cannot be tolerated.

  4. Design and validation of a multi-electrode bioimpedance system for enhancing spatial resolution of cellular impedance studies.

    PubMed

    Alexander, Frank A; Celestin, Michael; Price, Dorielle T; Nanjundan, Meera; Bhansali, Shekhar

    2013-07-01

    This paper reports the design and evaluation of a multi-electrode design that improves upon the statistical significance and spatial resolution of cellular impedance data measured using commercial electric cell-substrate impedance sensing (ECIS) systems. By evaluating cellular impedance using eight independent sensing electrodes, position-dependent impedance measurements can be recorded across the device and compare commonly used equivalent circuit and mathematical models for extraction of cell parameters. Data from the 8-electrode device was compared to data taken from commercial electric cell-substrate impedance sensing (ECIS) system by deriving a relationship between equivalent circuit and mathematically modelled parameters. The impedance systems were evaluated and compared by investigating the effects of arsenic trioxide (As2O3), a well-established chemotherapeutic agent, on ovarian cancer cells. Impedance spectroscopy, a non-destructive, label-free technique, was used to continuously measure the frequency-dependent cellular properties, without adversely affecting the cells. The importance of multiple measurements within a cell culture was demonstrated; and the data illustrated that the non-uniform response of cells within a culture required redundant measurements in order to obtain statistically significant data, especially for drug discovery applications. Also, a correlation between equivalent circuit modelling and mathematically modelled parameters was derived, allowing data to be compared across different modelling techniques.

  5. Impedance-matched drilling telemetry system

    DOEpatents

    Normann, Randy A.; Mansure, Arthur J.

    2008-04-22

    A downhole telemetry system that uses inductance or capacitance as a mode through which signal is communicated across joints between assembled lengths of pipe wherein efficiency of signal propagation through a drill string, for example, over multiple successive pipe segments is enhanced through matching impedances associated with the various telemetry system components.

  6. Explicit expressions of impedances and wake functions

    SciTech Connect

    Ng, K.Y.; Bane, K,; /SLAC

    2010-10-01

    Sections 3.2.4 and 3.2.5 of the Handbook of Accelerator Physics and Engineering on Landau damping are combined and updated. The new addition includes impedances and wakes for multi-layer beam pipe, optical model, diffraction model, and cross-sectional transition.

  7. Bioelectrical Impedance and Body Composition Assessment

    ERIC Educational Resources Information Center

    Martino, Mike

    2006-01-01

    This article discusses field tests that can be used in physical education programs. The most common field tests are anthropometric measurements, which include body mass index (BMI), girth measurements, and skinfold testing. Another field test that is gaining popularity is bioelectrical impedance analysis (BIA). Each method has particular strengths…

  8. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Impedance plethysmograph. 870.2770 Section 870.2770 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770...

  9. Impedance matching between ventricle and load.

    PubMed

    Piene, H

    1984-01-01

    Impedance matching in the cardiovascular system is discussed in light of two models of ventricle and load: a Thevenin equivalent consisting of a hydromotive pressure source and an internal, source resistance and compliance in parallel; and a time-varying compliance filled from a constant pressure source and ejecting into a load of three components, a central resistor, a compliance, and a peripheral resistance. According to the Thevenin analog, the energy source and the load are matched when the load resistance is T/t times the internal source resistance (T is total cycle length, t is systolic time interval). Both from this model and from the variable compliance model it appears that optimum matching between source and load depends on the compliance of the Windkessel, as low compliance shifts the matching load resistance to a low value. Animal experiments (isolated cat hearts) indicated that both left and right ventricles at normal loads work close to their maxima of output hydraulic power, and, according to experiments in the right ventricle, maximum power output is related to load resistance and compliance as predicted by the above models. From an experimentally determined relationship among instantaneous ventricular pressure and volume (right ventricle of isolated cat hearts), an optimum load impedance was calculated on the basis of the assumption that the ratio between stroke work and static, potential energy developed in the ventricular cavity is maximum. The optimum load impedance found by this procedure closely resembles the normal input impedance of the cat lung vessel bed. PMID:6507966

  10. Electrical Impedance Tomography Technology (EITT) Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J.

    2014-01-01

    Development of a portable, lightweight device providing two-dimensional tomographic imaging of the human body using impedance mapping. This technology can be developed to evaluate health risks and provide appropriate medical care on the ISS, during space travel and on the ground.

  11. Explicit Expressions of Impedances and Wake Functions

    SciTech Connect

    Ng, K.Y.; Bane, K,; /SLAC

    2012-06-11

    Sections 3.2.4 and 3.2.5 of the Handbook of Accelerator Physics and Engineering on Landau damping are combined and updated. The new addition includes impedances and wakes for multi-layer beam pipe, optical model, diffraction model, and cross-sectional transition.

  12. Mapping Electrochemical Heterogeneity at Iron Oxide Surfaces: A Local Electrochemical Impedance Study.

    PubMed

    Lucas, Marie; Boily, Jean-François

    2015-12-22

    Alternating current scanning electrochemical microscopy (AC-SECM) was used for the first time to map key electrochemical attributes of oriented hematite (α-Fe2O3) single crystal surfaces at the micron-scale. Localized electrochemical impedance spectra (LEIS) of the (001) and (012) faces provided insight into the spatial variations of local double layer capacitance (C(dl)) and charge transfer resistance (R(ad)). These parameters were extracted by LEIS measurements in the 0.4-8000 Hz range to probe the impedance response generated by the redistribution of water molecules and charge carriers (ions) under an applied AC. These were attributed to local variations in the local conductivity of the sample surfaces. Comparison with global EIS measurements on the same samples uncovered highly comparable frequency-resolved processes, that were broken down into contributions from the bulk hematite, the interface as well as the microelectrode/tip assembly. This work paves the way for new studies aimed at mapping electrochemical processes at the mesoscale on this environmentally and technologically important material.

  13. Investigation of electrical properties of Mn doped tin oxide nanoparticles using impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Azam, Ameer; Ahmed, Arham S.; Chaman, M.; Naqvi, A. H.

    2010-11-01

    Manganese doped tin oxide nanoparticles with manganese content varying from 0 to 15 mol % were synthesized using sol-gel method. The structural and compositional analysis was carried out using x-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive x-ray analysis (EDAX). Dielectric and impedance spectroscopy was carried out at room temperature to explore the electrical properties of Mn doped SnO2. XRD analysis indicated the formation of single phase rutile type tetragonal structure of all the samples. The crystallite size was observed to vary from 16.2 to 7.1 nm as the Mn content was increased. The XRD, SEM, and EDAX results corroborated the successful doping of Mn in the SnO2 matrix. Complex impedance analysis was used to distinguish the grain and grain boundary contributions to the system, suggesting the dominance of grain boundary resistance in the doped samples. The dielectric constant ɛ', dielectric loss tan δ and ac conductivity σac were studied as a function of frequency and composition and the behavior has been explained on the basis of Maxwell-Wagner interfacial model. All the dielectric parameters were found to decrease with the increase in doping concentration. Moreover, it has been observed that the dielectric loss approaches to zero in case of high dopant concentration (9%, 15%) at high frequencies.

  14. MONITORING ANTIBODY-ANTIGEN REACTIONS AT CONDUCTING POLYMER-BASED IMMUNOSENSORS USING IMPEDANCE SPECTROSCOPY. (R825323)

    EPA Science Inventory

    Abstract

    The mechanisms of antibody¯antigen (Ab¯Ag) interactions at conducting polypyrrole electrodes have been investigated using impedance spectroscopy techniques. The effects of the variation in ion exchange, solution composition, and...

  15. AC Loss Measurements on a 2G YBCO Coil

    SciTech Connect

    Rey, Christopher M; Duckworth, Robert C; Schwenterly, S W

    2011-01-01

    The Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES) to continue development of HTS power transformers. For compatibility with the existing power grid, a commercially viable HTS transformer will have to operate at high voltages in the range of 138 kV and above, and will have to withstand 550-kV impulse voltages as well. Second-generation (2G) YBCO coated conductors will be required for an economically-competitive design. In order to adequately size the refrigeration system for these transformers, the ac loss of these HTS coils must be characterized. Electrical AC loss measurements were conducted on a prototype high voltage (HV) coil with co-wound stainless steel at 60 Hz in a liquid nitrogen bath using a lock-in amplifier technique. The prototype HV coil consisted of 26 continuous (without splice) single pancake coils concentrically centered on a stainless steel former. For ac loss measurement purposes, voltage tap pairs were soldered across each set of two single pancake coils so that a total of 13 separate voltage measurements could be made across the entire length of the coil. AC loss measurements were taken as a function of ac excitation current. Results show that the loss is primarily concentrated at the ends of the coil where the operating fraction of critical current is the highest and show a distinct difference in current scaling of the losses between low current and high current regimes.

  16. Oxidative coupling of methane with ac and dc corona discharges

    SciTech Connect

    Liu, C.; Marafee, A.; Hill, B.; Xu, G.; Mallinson, R.; Lobban, L.

    1996-10-01

    The oxidative coupling of methane (OCM) is being actively studied for the production of higher hydrocarbons from natural gas. The present study concentrated on the oxidative conversion of methane in an atmospheric pressure, nonthermal plasma formed by ac or dc corona discharges. Methyl radicals are formed by reaction with negatively-charged oxygen species created in the corona discharge. The selectivity to products ethane and ethylene is affected by electrode polarity, frequency, and oxygen partial pressure in the feed. Higher C{sub 2} yields were obtained with the ac corona. All the ac corona discharges are initiated at room temperature (i.e., no oven or other heat source is used), and the temperature increases to 300--500 C due to the exothermic reactions and the discharge itself. The largest C{sub 2} yield is 21% with 43.3% methane conversion and 48.3% C{sub 2} selectivity at a flowrate of 100 cm{sup 3}/min when the ac corona is at 30 Hz, 5 kV (rms) input power was used. The methane conversion may be improved to more than 50% by increasing the residence time, but the C{sub 2} selectivity decreases. A reaction mechanism including the oxidative dehydrogenation (OXD) of ethane to ethylene is presented to explain the observed phenomena. The results suggest that ac and/or dc gas discharge techniques have significant promise for improving the economics of OCM processes.

  17. Aragonite coating solutions (ACS) based on artificial seawater

    NASA Astrophysics Data System (ADS)

    Tas, A. Cuneyt

    2015-03-01

    Aragonite (CaCO3, calcium carbonate) is an abundant biomaterial of marine life. It is the dominant inorganic phase of coral reefs, mollusc bivalve shells and the stalactites or stalagmites of geological sediments. Inorganic and initially precipitate-free aragonite coating solutions (ACS) of pH 7.4 were developed in this study to deposit monolayers of aragonite spherules or ooids on biomaterial (e.g., UHMWPE, ultrahigh molecular weight polyethylene) surfaces soaked in ACS at 30 °C. The ACS solutions of this study have been developed for the surface engineering of synthetic biomaterials. The abiotic ACS solutions, enriched with calcium and bicarbonate ions at different concentrations, essentially mimicked the artificial seawater composition and started to deposit aragonite after a long (4 h) incubation period at the tropical sea surface temperature of 30 °C. While numerous techniques for the solution deposition of calcium hydroxyapatite (Ca10(PO4)6(OH)2), of low thermodynamic solubility, on synthetic biomaterials have been demonstrated, procedures related to the solution-based surface deposition of high solubility aragonite remained uncommon. Monolayers of aragonite ooids deposited at 30 °C on UHMWPE substrates soaked in organic-free ACS solutions were found to possess nano-structures similar to the mortar-and-brick-type botryoids observed in biogenic marine shells. Samples were characterized using SEM, XRD, FTIR, ICP-AES and contact angle goniometry.

  18. The dynamic process of atmospheric water sorption in [EMIM][Ac] and mixtures of [EMIM][Ac] with biopolymers and CO2 capture in these systems.

    PubMed

    Chen, Yu; Sun, Xiaofu; Yan, Chuanyu; Cao, Yuanyuan; Mu, Tiancheng

    2014-10-01

    There are mainly three findings related to the dynamic process of atmospheric water sorption in the ionic liquid (IL) 1-ethyl-3-methlyl-imidazolium acetate ([EMIM][Ac]) and its mixtures with biopolymers (i.e., cellulose, chitin, and chitosan), and CO2 capture in these systems above. The analytical methods mainly include gravimetric hygroscopicity measurement and in situ infrared spectroscopy with the techniques of difference, derivative, deconvoluted attenuated total reflectance and two-dimensional correlation. These three findings are listed as below. (1) Pure [EMIM][Ac] only shows a two-regime pattern, while all the mixtures of [EMIM][Ac] with biopolymers (i.e., cellulose, chitin, and chitosan) present a three-regime tendency for the dynamic process of atmospheric water sorption. Specifically, the IL/chitosan mixture has a clear three-regime mode; the [EMIM][Ac]/chitin mixture has an unclear indiscernible regime 3; and the [EMIM][Ac]/cellulose mixture shows an indiscernible regime 2. (2) [EMIM][Ac] and its mixtures with biopolymers could physically absorb a trace amount of and chemically react with a much larger amount of CO2 from the air. The chemisorption capacity of CO2 in these pure and mixed systems is ordered as chitosan/[EMIM][Ac] mixture > chitin/[EMIM][Ac] mixture > cellulose/[EMIM][Ac] mixture > pure [EMIM][Ac] (ca. 0.09 mass ratio % g/g CO2/IL). (3) The CO2 solubility in [EMIM][Ac] decreases about 50% after being exposed to the atmospheric moist air for some specific time period.

  19. The dynamic process of atmospheric water sorption in [EMIM][Ac] and mixtures of [EMIM][Ac] with biopolymers and CO2 capture in these systems.

    PubMed

    Chen, Yu; Sun, Xiaofu; Yan, Chuanyu; Cao, Yuanyuan; Mu, Tiancheng

    2014-10-01

    There are mainly three findings related to the dynamic process of atmospheric water sorption in the ionic liquid (IL) 1-ethyl-3-methlyl-imidazolium acetate ([EMIM][Ac]) and its mixtures with biopolymers (i.e., cellulose, chitin, and chitosan), and CO2 capture in these systems above. The analytical methods mainly include gravimetric hygroscopicity measurement and in situ infrared spectroscopy with the techniques of difference, derivative, deconvoluted attenuated total reflectance and two-dimensional correlation. These three findings are listed as below. (1) Pure [EMIM][Ac] only shows a two-regime pattern, while all the mixtures of [EMIM][Ac] with biopolymers (i.e., cellulose, chitin, and chitosan) present a three-regime tendency for the dynamic process of atmospheric water sorption. Specifically, the IL/chitosan mixture has a clear three-regime mode; the [EMIM][Ac]/chitin mixture has an unclear indiscernible regime 3; and the [EMIM][Ac]/cellulose mixture shows an indiscernible regime 2. (2) [EMIM][Ac] and its mixtures with biopolymers could physically absorb a trace amount of and chemically react with a much larger amount of CO2 from the air. The chemisorption capacity of CO2 in these pure and mixed systems is ordered as chitosan/[EMIM][Ac] mixture > chitin/[EMIM][Ac] mixture > cellulose/[EMIM][Ac] mixture > pure [EMIM][Ac] (ca. 0.09 mass ratio % g/g CO2/IL). (3) The CO2 solubility in [EMIM][Ac] decreases about 50% after being exposed to the atmospheric moist air for some specific time period. PMID:25208304

  20. ac and dc percolative conductivity of magnetite-cellulose acetate composites

    SciTech Connect

    Chiteme, C.; McLachlan, D. S.; Sauti, G.

    2007-03-01

    ac and dc conductivity results for a percolating system, which consists of a conducting powder (magnetite) combined with an 'insulating' powder (cellulose acetate), are presented. Impedance and modulus spectra are obtained in a percolation system. The temperature dependence of the resistivity of the cellulose acetate is such that at 170 deg. C, it is essentially a conductor at frequencies below 0.059{+-}0.002 Hz, and a dielectric above. The percolation parameters, from the dc conductivity measured at 25 and 170 deg. C, are determined and discussed in relation to the ac results. The experimental results scale as a function of composition, temperature, and frequency. An interesting result is the correlation observed between the scaling parameter (f{sub ce}), obtained from a scaling of the ac measurements, and the peak frequency (f{sub cp}) of the arcs, obtained from impedance spectra, above the critical volume fraction. Scaling at 170 deg. C is not as good as at 25 deg. C, probably indicating a breakdown in scaling at the higher temperature. The modulus plots show the presence of two materials: a conducting phase dominated by the cellulose acetate and the isolated conducting clusters below the critical volume fraction {phi}{sub c}, as well as the interconnected conducting clusters above {phi}{sub c}. These results are confirmed by computer simulations using the two exponent phenomenological percolation equation. These results emphasize the need to analyze ac conductivity results in terms of both impedance and modulus spectra in order to get more insight into the behavior of composite materials.

  1. Aortic Input Impedance during Nitroprusside Infusion

    PubMed Central

    Pepine, Carl J.; Nichols, W. W.; Curry, R. C.; Conti, C. Richard

    1979-01-01

    Beneficial effects of nitroprusside infusion in heart failure are purportedly a result of decreased afterload through “impedance” reduction. To study the effect of nitroprusside on vascular factors that determine the total load opposing left ventricular ejection, the total aortic input impedance spectrum was examined in 12 patients with heart failure (cardiac index <2.0 liters/min per m2 and left ventricular end diastolic pressure >20 mm Hg). This input impedance spectrum expresses both mean flow (resistance) and pulsatile flow (compliance and wave reflections) components of vascular load. Aortic root blood flow velocity and pressure were recorded continuously with a catheter-tip electromagnetic velocity probe in addition to left ventricular pressure. Small doses of nitroprusside (9-19 μg/min) altered the total aortic input impedance spectrum as significant (P < 0.05) reductions in both mean and pulsatile components were observed within 60-90 s. With these acute changes in vascular load, left ventricular end diastolic pressure declined (44%) and stroke volume increased (20%, both P < 0.05). Larger nitroprusside doses (20-38 μg/min) caused additional alteration in the aortic input impedance spectrum with further reduction in left ventricular end diastolic pressure and increase in stroke volume but no additional changes in the impedance spectrum or stroke volume occurred with 39-77 μg/min. Improved ventricular function persisted when aortic pressure was restored to control values with simultaneous phenylephrine infusion in three patients. These data indicate that nitroprusside acutely alters both the mean and pulsatile components of vascular load to effect improvement in ventricular function in patients with heart failure. The evidence presented suggests that it may be possible to reduce vascular load and improve ventricular function independent of aortic pressure reduction. PMID:457874

  2. ACS Expands Role In High School Chemistry.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Describes some of the services and programs of special interests to high school chemistry teachers that are being provided by ACS, and meant to make ACS membership more attractive to the teachers. (GA)

  3. Dynamic electrochemical impedance spectroscopy reconstructed from continuous impedance measurement of single frequency during charging/discharging

    NASA Astrophysics Data System (ADS)

    Huang, Jun; Li, Zhe; Zhang, Jianbo

    2015-01-01

    In this study, a novel implementation of dynamic electrochemical impedance spectroscopy (DEIS) is proposed. The method first measures the impedance continuously at a single frequency during one charging/discharging cycle, then repeats the measurement at a number of other selected frequencies. The impedance spectrum at a specific SOC is obtained by interpolating and collecting the impedance at all of the selected frequencies. The charge transfer resistance, Rct, from the DEIS is smaller than that from the steady EIS in a wide state-of-charge (SOC) range from 0.4 to 1.0, the Rct during charging is generally smaller than that during discharging for the battery chemistry used in this study.

  4. Giant magnetoimpedance intrinsic impedance and voltage sensitivity of rapidly solidified Co66Fe2Cr4Si13B15 amorphous wire for highly sensitive sensors applications

    NASA Astrophysics Data System (ADS)

    Das, Tarun K.; Banerji, Pallab; Mandal, Sushil K.

    2016-11-01

    We report a systematic study of the influence of wire length, L, dependence of giant magneto-impedance (GMI) sensitivity of Co66Fe2Cr4Si13B15 soft magnetic amorphous wire of diameter ~100 µm developed by in-water quenching technique. The magnetization behaviour (hysteresis loops) of the wire with different length ( L = 1, 2, 3, 5, 8 and 10 cm) has been evaluated by fuxmetric induction method. It was observed that the behaviour of the hysteresis loops change drastically with the wire length, being attributed to the existence of a critical length, L C, found to be around 3 cm. GMI measurements have been taken using automated GMI measurement system and the GMI sensitivities in terms of intrinsic impedance sensitivity ( S Ω/Am -1) and voltage sensitivity ( S V/Am -1) of the wire have been evaluated under optimal bias field and excitation current. It was found that the maximum ( S Ω/Am -1) max ≈ 0.63 Ω/kAm-1/cm and ( S V/Am -1) max ≈ 3.10 V/kAm-1/cm were achieved at a critical length L C ~ 3 cm of the wire for an AC current of 5 mA and a frequency of 5 MHz. These findings provide crucial insights for optimization of the geometrical dimensions of magnetic sensing elements and important practical guidance for designing high sensitive GMI sensors. The relevant combinations of magnetic material parameters and operating conditions that optimize the sensitivity are highlighted.

  5. Structural and AC conductivity study of CdTe nanomaterials

    NASA Astrophysics Data System (ADS)

    Das, Sayantani; Banerjee, Sourish; Sinha, T. P.

    2016-04-01

    Cadmium telluride (CdTe) nanomaterials have been synthesized by soft chemical route using mercapto ethanol as a capping agent. Crystallization temperature of the sample is investigated using differential scanning calorimeter. X-ray diffraction and transmission electron microscope measurements show that the prepared sample belongs to cubic structure with the average particle size of 20 nm. Impedance spectroscopy is applied to investigate the dielectric relaxation of the sample in a temperature range from 313 to 593 K and in a frequency range from 42 Hz to 1.1 MHz. The complex impedance plane plot has been analyzed by an equivalent circuit consisting of two serially connected R-CPE units, each containing a resistance (R) and a constant phase element (CPE). Dielectric relaxation peaks are observed in the imaginary parts of the spectra. The frequency dependence of real and imaginary parts of dielectric permittivity is analyzed using modified Cole-Cole equation. The temperature dependence relaxation time is found to obey the Arrhenius law having activation energy ~0.704 eV. The frequency dependent conductivity spectra are found to follow the power law. The frequency dependence ac conductivity is analyzed by power law.

  6. A compact wideband precision impedance measurement system based on digital auto-balancing bridge

    NASA Astrophysics Data System (ADS)

    Hu, Binxin; Wang, Jinyu; Song, Guangdong; Zhang, Faxiang

    2016-05-01

    The ac impedance spectroscopy measurements are predominantly taken by using impedance analyzers based on analog auto-balancing bridge. However, those bench-top analyzers are generally complicated, bulky and expensive, thus limiting their usage in industrial field applications. This paper presents the development of a compact wideband precision measurement system based on digital auto-balancing bridge. The methods of digital auto-balancing bridge and digital lock-in amplifier are analyzed theoretically. The overall design and several key sections including null detector, direct digital synthesizer-based sampling clock, and digital control unit are introduced in detail. The results show that the system achieves a basic measurement accuracy of 0.05% with a frequency range of 20 Hz-2 MHz. The advantages of versatile measurement capacity, fast measurement speed, small size and low cost make it quite suitable for industrial field applications. It is demonstrated that this system is practical and effective by applying in determining the impedance-temperature characteristic of a motor starter PTC thermistor.

  7. Creating dynamic equivalent PV circuit models with impedance spectroscopy for arc-fault modeling.

    SciTech Connect

    Johnson, Jay Dean; Kuszmaul, Scott S.; Strauch, Jason E.; Schoenwald, David Alan

    2011-06-01

    Article 690.11 in the 2011 National Electrical Code{reg_sign} (NEC{reg_sign}) requires new photovoltaic (PV) systems on or penetrating a building to include a listed arc fault protection device. Currently there is little experimental or empirical research into the behavior of the arcing frequencies through PV components despite the potential for modules and other PV components to filter or attenuate arcing signatures that could render the arc detector ineffective. To model AC arcing signal propagation along PV strings, the well-studied DC diode models were found to inadequately capture the behavior of high frequency arcing signals. Instead dynamic equivalent circuit models of PV modules were required to describe the impedance for alternating currents in modules. The nonlinearities present in PV cells resulting from irradiance, temperature, frequency, and bias voltage variations make modeling these systems challenging. Linearized dynamic equivalent circuits were created for multiple PV module manufacturers and module technologies. The equivalent resistances and capacitances for the modules were determined using impedance spectroscopy with no bias voltage and no irradiance. The equivalent circuit model was employed to evaluate modules having irradiance conditions that could not be measured directly with the instrumentation. Although there was a wide range of circuit component values, the complex impedance model does not predict filtering of arc fault frequencies in PV strings for any irradiance level. Experimental results with no irradiance agree with the model and show nearly no attenuation for 1 Hz to 100 kHz input frequencies.

  8. Gastric Emptying Assessment in Frequency and Time Domain Using Bio-impedance: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Huerta-Franco, R.; Vargas-Luna, M.; Hernández, E.; Córdova, T.; Sosa, M.; Gutiérrez, G.; Reyes, P.; Mendiola, C.

    2006-09-01

    The impedance assessment to measure gastric emptying and in general gastric activity has been reported since 1985. The physiological interpretation of these measurements, is still under research. This technique usually uses a single frequency, and the conductivity parameter. The frequency domain and the Fourier analysis of the time domain behavior of the gastric impedance in different gastric conditions (fasting state, and after food administration) has not been explored in detail. This work presents some insights of the potentiality of these alternative methodologies to measure gastric activity.

  9. Electrochemical Impedance Analysis of β-TITANIUM Alloys as Implants in Ringers Lactate Solution

    NASA Astrophysics Data System (ADS)

    Bhola, Rahul; Bhola, Shaily M.; Mishra, Brajendra; Olson, David L.

    2010-02-01

    Commercially pure titanium and two β-titanium alloys, TNZT and TMZF, have been characterized using various electrochemical techniques for their corrosion behavior in Ringers lactate solution. The variation of corrosion potential and solution pH with time has been discussed. Electrochemical Impedance Spectroscopy has been used to fit the results into a circuit model. The stability of the oxides formed on the surface of these alloys has been correlated with impedance phase angles. Cyclic Potentiodynamic Polarization has been used to compute the corrosion parameters for the alloys. TMZF is found to be a better β-alloy as compared to TNZT.

  10. Detection of high impedance arcing faults using a multi-layer perceptron

    SciTech Connect

    Sultan, F.F.; Swift, G.W. ); Fedirchuk, D.J. )

    1992-10-01

    A feed-forward three-layer perceptron was trained by high impedance fault, fault-like load, and normal load current patterns, using the back-propagation training algorithm. This paper reports that the neural network parameters were embodied in a high impedance arcing faults detection algorithm, which uses a simple preprocessing technique to prepare the information input to the network. The algorithm was tested by traces of normal load current disturbed by currents of faults on dry and wet soil, an arc welder, computers, and fluorescent lights.

  11. ELECTROCHEMICAL IMPEDANCE ANALYSIS OF beta-TITANIUM ALLOYS AS IMPLANTS IN RINGERS LACTATE SOLUTION

    SciTech Connect

    Bhola, Rahul; Bhola, Shaily M.; Mishra, Brajendra; Olson, David L.

    2010-02-22

    Commercially pure titanium and two beta-titanium alloys, TNZT and TMZF, have been characterized using various electrochemical techniques for their corrosion behavior in Ringers lactate solution. The variation of corrosion potential and solution pH with time has been discussed. Electrochemical Impedance Spectroscopy has been used to fit the results into a circuit model. The stability of the oxides formed on the surface of these alloys has been correlated with impedance phase angles. Cyclic Potentiodynamic Polarization has been used to compute the corrosion parameters for the alloys. TMZF is found to be a better beta-alloy as compared to TNZT.

  12. [Estimation of biological tissue conductivity with contact-free magnetic impedance measurements].

    PubMed

    Cordes, Axel; Steffen, Matthias; Leonhardt, Steffen

    2010-04-01

    At present, there are several methods that utilize electrical conductivity of biological tissue, such as biological impedance spectroscopy (BIS). Because these techniques use conductivity values for further analysis (e.g., body water distribution, etc.), accuracy of conductivity measurement is crucial. Traditionally, most impedance-based techniques rely on conductive interaction between tissue and external electrical measurement devices. Thus, electrode properties can influence the results of conductivity measurements. In this study, a contact-free measurement technique is presented, which is based on magnetic induction of eddy currents and measurement of the tiny reinduced voltages in external measurement coils. Our results indicate that it is principally possible to determine conductivity of biological tissue with this technique.

  13. A Survey of Techniques for Approximate Computing

    DOE PAGES

    Mittal, Sparsh

    2016-03-18

    Approximate computing trades off computation quality with the effort expended and as rising performance demands confront with plateauing resource budgets, approximate computing has become, not merely attractive, but even imperative. Here, we present a survey of techniques for approximate computing (AC). We discuss strategies for finding approximable program portions and monitoring output quality, techniques for using AC in different processing units (e.g., CPU, GPU and FPGA), processor components, memory technologies etc., and programming frameworks for AC. Moreover, we classify these techniques based on several key characteristics to emphasize their similarities and differences. Finally, the aim of this paper is tomore » provide insights to researchers into working of AC techniques and inspire more efforts in this area to make AC the mainstream computing approach in future systems.« less

  14. Tuning electrode impedance for the electrical recording of biopotentials.

    PubMed

    Fontes, M A; de Beeck, M; Van Hoof, C; Neves, H P

    2010-01-01

    Tuning the electrode impedance through the DC biasing of iridium oxide is presented. Impedance reduction of up to two orders of magnitude was reproducibly observed in 20 microm diameter microelectrodes at a biasing of 1V.

  15. Scattering by a groove in an impedance plane

    NASA Technical Reports Server (NTRS)

    Bindiganavale, Sunil; Volakis, John L.

    1993-01-01

    An analysis of two-dimensional scattering from a narrow groove in an impedance plane is presented. The groove is represented by a impedance surface and the problem reduces to that of scattering from an impedance strip in an otherwise uniform impedance plane. On the basis of this model, appropriate integral equations are constructed using a form of the impedance plane Green's functions involving rapidly convergent integrals. The integral equations are solved by introducing a single basis representation of the equivalent current on the narrow impedance insert. Both transverse electric (TE) and transverse magnetic (TM) polarizations are treated. The resulting solution is validated by comparison with results from the standard boundary integral method (BIM) and a high frequency solution. It is found that the presented solution for narrow impedance inserts can be used in conjunction with the high frequency solution for the characterization of impedance inserts of any given width.

  16. Impedance cardiography using the Sramek-Bernstein method: accuracy and variability at rest and during exercise.

    PubMed Central

    Thomas, S H

    1992-01-01

    1. Sramek and Bernstein's method of impedance cardiography is a simple, non-invasive and inexpensive computerised way of measuring stroke volume and systolic time intervals. In this study measurements made using the method were compared with those found simultaneously using established reference techniques. 2. In healthy volunteers there was no significant bias (d) and narrow 95% limits of agreement (d +/- 2s) when impedance and mechanophonocardiographic measurements of pre-ejection period (PEP, d = 0.3, d + 2s = 7.3, d-2s = -6.6 ms), ventricular ejection time (VET, d = 1.5, d + 2s = 17.7, d-2s = 14.6 ms) and PEP/VET ratio were compared. 3. In critically ill patients there was moderate agreement between impedance and thermodilution measurements of stroke volume (d = 8.1 (P < 0.05), d + 2s = 35.5, d-2s = -19.4 ml) and drug-induced changes in stroke volume were accurately detected. 4. In healthy volunteers agreement between impedance and dye dilution measurements of stroke volume was moderate, and similar at rest and during exercise (d = 3.4, d-2s = -31.1, d + 2s = 37.9 ml), however impedance underestimated exercise-induced increases in stroke volume (P < 0.05). 5. In patients with coronary heart disease impedance measurements correlated with angiographic left ventricular ejection fraction included the PEP/VET ratio (r = -0.81), stroke volume index (r = 0.65) and Heather index (r = 0.58, all P < 0.001), however the PEP/VET ratio could not be used to estimate the left ventricular ejection fraction with sufficient accuracy. 6. This impedance method provides reproducible semi-quantitative measurements of cardiac performance and blood flow. Its use for making pharmacodynamic measurements can be justified when invasive methods are considered inappropriate. PMID:1493078

  17. Measurement of the 225Ac half-life.

    PubMed

    Pommé, S; Marouli, M; Suliman, G; Dikmen, H; Van Ammel, R; Jobbágy, V; Dirican, A; Stroh, H; Paepen, J; Bruchertseifer, F; Apostolidis, C; Morgenstern, A

    2012-11-01

    The (225)Ac half-life was determined by measuring the activity of (225)Ac sources as a function of time, using various detection techniques: α-particle counting with a planar silicon detector at a defined small solid angle and in a nearly-2π geometry, 4πα+β counting with a windowless CsI sandwich spectrometer and with a pressurised proportional counter, gamma-ray spectrometry with a HPGe detector and with a NaI(Tl) well detector. Depending on the technique, the decay was followed for 59-141 d, which is about 6-14 times the (225)Ac half-life. The six measurement results were in good mutual agreement and their mean value is T(1/2)((225)Ac)=9.920 (3)d. This half-life value is more precise and better documented than the currently recommended value of 10.0 d, based on two old measurements lacking uncertainty evaluations.

  18. Measurement of the 225Ac half-life.

    PubMed

    Pommé, S; Marouli, M; Suliman, G; Dikmen, H; Van Ammel, R; Jobbágy, V; Dirican, A; Stroh, H; Paepen, J; Bruchertseifer, F; Apostolidis, C; Morgenstern, A

    2012-11-01

    The (225)Ac half-life was determined by measuring the activity of (225)Ac sources as a function of time, using various detection techniques: α-particle counting with a planar silicon detector at a defined small solid angle and in a nearly-2π geometry, 4πα+β counting with a windowless CsI sandwich spectrometer and with a pressurised proportional counter, gamma-ray spectrometry with a HPGe detector and with a NaI(Tl) well detector. Depending on the technique, the decay was followed for 59-141 d, which is about 6-14 times the (225)Ac half-life. The six measurement results were in good mutual agreement and their mean value is T(1/2)((225)Ac)=9.920 (3)d. This half-life value is more precise and better documented than the currently recommended value of 10.0 d, based on two old measurements lacking uncertainty evaluations. PMID:22940415

  19. Applicability of Impedance Cardiography During Heart Failure Flare-Ups

    PubMed Central

    Sadauskas, Saulius; Naudžiūnas, Albinas; Unikauskas, Alvydas; Mašanauskienė, Edita; Bakšytė, Giedrė; Macas, Andrius

    2016-01-01

    Background Heart failure (HF) accounts for about 5% of all causes of urgent hospital admissions, and the overall mortality of HF patients within 1 year after hospitalization is 17–45%. Transthoracic impedance cardiography (ICG) is a safe, non-invasive diagnostic technique that helps to detect various parameters that define different cardiac functions. The aim of this study was to investigate the value of ICG parameters in patients hospitalized due to HF flare-ups. Material/Methods The study included 60 patients (24 women and 36 men) who were admitted to intensive care units because of an acute episode of HF without signs of myocardial infarction. The diagnosis of HF as the main reason for hospitalization was verified according to the universally accepted techniques. ICG data were compared to those obtained via other HF diagnostic techniques. Results A moderately strong relationship was found between the ejection fraction (EF) and the systolic time ratio (STR) r=−0.4 (p=0.002). Findings for STR and thoracic fluid content index (TFCI) differed after dividing the subjects into groups according to the EF (p<0.05). A moderately strong relationship was found between brain natriuretic peptide and TFCI r=0.425 (p=0.001), left cardiac work index (LCWI) r=−0.414 (p=0.001). Findings for TFCI, LCWI, and cardiac output differed after dividing the subjects into groups according to HF NYHA classes (p<0.05). Conclusions Transthoracic impedance cardiography parameters could be applied for the diagnostics and monitoring of HF, but further studies are required to evaluate the associations between ICG findings and HF. PMID:27721369

  20. Compressible turbulent channel flow with impedance boundary conditions

    NASA Astrophysics Data System (ADS)

    Scalo, Carlo; Bodart, Julien; Lele, Sanjiva

    2014-11-01

    We have performed large-eddy simulations of compressible turbulent channel flow at one bulk Reynolds number, Reb = 6900, for bulk Mach numbers Mb = 0.05, 0.2, 0.5, with linear acoustic impedance boundary conditions (IBCs). The IBCs are formulated in the time domain following Fung and Ju (2004) and coupled with a Navier-Stokes solver. The impedance model adopted is a three-parameter Helmholtz oscillator with resonant frequency tuned to the outer layer eddies. The IBC's resistance, R, has been varied in the range, R = 0.01, 0.10, 1.00. Tuned IBCs result in a noticeable drag increase for sufficiently high Mb and/or low R, exceeding 300% for Mb = 0.5 and R = 0.01, and thus represents a promising passive control technique for delaying boundary layer separation and/or enhancing wall heat transfer. Alterations to the turbulent flow structure are confined to the first 15% of the boundary layer thickness where the classical buffer-layer coherent vortical structures are replaced by an array of Kelvin-Helmholtz-like rollers. The non-zero asymptotic value of the Reynolds shear stress gradient at the wall results in the disappearance of the viscous sublayer and very early departure of the mean velocity profiles from the law of the wall.

  1. Determinants of pulmonary perfusion measured by electrical impedance tomography.

    PubMed

    Smit, Henk J; Vonk Noordegraaf, Anton; Marcus, J Tim; Boonstra, Anco; de Vries, Peter M; Postmus, Pieter E

    2004-06-01

    Electrical impedance tomography (EIT) is a non-invasive imaging technique for detecting blood volume changes that can visualize pulmonary perfusion. The two studies reported here tested the hypothesis that the size of the pulmonary microvascular bed, rather than stroke volume (SV), determines the EIT signal. In the first study, the impedance changes relating to the maximal pulmonary pulsatile blood volume during systole (Delta Z(sys)) were measured in ten healthy subjects, ten patients diagnosed with chronic obstructive pulmonary disease, who were considered to have a reduced pulmonary vascular bed, and ten heart failure patients with an assumed low cardiac output but with a normal lung parenchyma. Mean Delta Z(sys) (SD) in these groups was 261 (34)x10(-5), 196 (39)x10(-5) ( P<0.001) and 233 (61)x10(-5) arbitrary units (AU) (P=NS), respectively. In the second study, including seven healthy volunteers, Delta Z(sys) was measured at rest and during exercise on a recumbent bicycle while SV was measured by means of magnetic resonance imaging. The Delta Z(sys) at rest was 352 (53)x10(-5 ) and 345 (112)x10(-5 )AU during exercise (P=NS), whereas SV increased from 83 (21) to 105 (34) ml (P<0.05). The EIT signal likely reflects the size of the pulmonary microvascular bed, since neither a low cardiac output nor a change in SV of the heart appear to influence EIT.

  2. Electromechanical impedance response of a cracked Timoshenko beam.

    PubMed

    Zhang, Yuxiang; Xu, Fuhou; Chen, Jiazhao; Wu, Cuiqin; Wen, Dongdong

    2011-01-01

    Typically, the Electromechanical Impedance (EMI) technique does not use an analytical model for basic damage identification. However, an accurate model is necessary for getting more information about any damage. In this paper, an EMI model is presented for predicting the electromechanical impedance of a cracked beam structure quantitatively. A coupled system of a cracked Timoshenko beam with a pair of PZT patches bonded on the top and bottom surfaces has been considered, where the bonding layers are assumed as a Kelvin-Voigt material. The shear lag model is introduced to describe the load transfer between the PZT patches and the beam structure. The beam crack is simulated as a massless torsional spring; the dynamic equations of the coupled system are derived, which include the crack information and the inertial forces of both PZT patches and adhesive layers. According to the boundary conditions and continuity conditions, the analytical expression of the admittance of PZT patch is obtained. In the case study, the influences of crack and the inertial forces of PZT patches are analyzed. The results show that: (1) the inertial forces affects significantly in high frequency band; and (2) the use of appropriate frequency range can improve the accuracy of damage identification. PMID:22164017

  3. A review on electrical impedance tomography for pulmonary perfusion imaging.

    PubMed

    Nguyen, D T; Jin, C; Thiagalingam, A; McEwan, A L

    2012-05-01

    Although electrical impedance tomography (EIT) for ventilation monitoring is on the verge of clinical trials, pulmonary perfusion imaging with EIT remains a challenge, especially in spontaneously breathing subjects. In anticipation of more research on this subject, we believe a thorough review is called for. In this paper, findings related to the physiological origins and electrical characteristics of this signal are summarized, highlighting properties that are particularly relevant to EIT. The perfusion impedance change signal is significantly smaller in amplitude compared with the changes due to ventilation. Therefore, the hardware used for this purpose must be more sensitive and more resilient to noise. In previous works, some signal- or image-processing methods have been required to separate these two signals. Three different techniques are reviewed in this paper, including the ECG-gating method, frequency-domain-filtering-based methods and a principal-component-analysis-based method. In addition, we review a number of experimental studies on both human and animal subjects that employed EIT for perfusion imaging, with promising results in the diagnosis of pulmonary embolism (PE) and pulmonary arterial hypertension as well as other potential applications. In our opinion, PE is most likely to become the main focus for perfusion EIT in the future, especially for heavily instrumented patients in the intensive care unit (ICU).

  4. Electrical impedance tomographic imaging of a single cell electroporation.

    PubMed

    Meir, Arie; Rubinsky, Boris

    2014-06-01

    A living cell placed in a high strength electric field, can undergo a process known as electroporation. It is believed that during electroporation nano-scale defects (pores) occur in the membrane of the cell, causing dramatic changes to the permeability of its membrane. Electroporation is an important technique in biotechnology and medicine and numerous methods are being developed to improve the understanding and use of the technology. We propose to extend the toolbox available for studying electroporation by generating impedance distribution images of the cell as it undergoes electroporation using Electrical Impedance Tomography (EIT). To investigate the feasibility of this concept, we develop a mathematical model of the process of electroporation in a single cell and of EIT of the process and show simulation results of a computer-based finite element model (FEM). Our work is an attempt to develop a new imaging tool for visualizing electroporation in a single cell, offering a different temporal and spatial resolution compared to the state of the art, which includes bulk measurements of electrical properties during single cell electroporation, patch clamp and voltage clamp measurement in single cells and optical imaging with colorimetric dyes during single cell electroporation. This paper is a preliminary theoretic feasibility study.

  5. Ag incorporated Mn3O4/AC nanocomposite based supercapacitor devices with high energy density and power density.

    PubMed

    Nagamuthu, S; Vijayakumar, S; Muralidharan, G

    2014-12-14

    Silver incorporated Mn3O4/amorphous carbon (AC) nanocomposites are synthesized by a green chemistry method. X-ray diffraction studies revealed the structural changes in Mn3O4/AC nanocomposites attributable to the addition of silver. Cyclic voltammetry, charge-discharge and ac-impedance studies indicated that the Ag-Mn3O4/AC-5 electrode was the most suitable candidate for supercapacitor applications. From the galvanostatic charge-discharge studies, a higher specific capacitance of 981 F g(-1) at a specific current of 1 A g(-1) was obtained. An Ag-Mn3O4/AC-symmetric supercapacitor consisting of an Ag-incorporated Mn3O4/AC composite as an anode as well as a cathode, and an asymmetric supercapacitor consisting of an Ag-incorporated Mn3O4/AC composite as a cathode and an activated carbon as an anode have been fabricated. The symmetric device exhibits a specific cell capacitance of 72 F g(-1) at a specific current of 1 A g(-1) whereas the asymmetric device delivers a specific cell capacitance of 180 F g(-1) at a high current rate of 10 A g(-1). The asymmetric supercapacitor device yields a high energy density of 81 W h kg(-1). This is higher than that of lead acid batteries and comparable with that of nickel hydride batteries.

  6. Comparison of different coil positions for ventilation monitoring with contact-less magnetic impedance measurements

    NASA Astrophysics Data System (ADS)

    Cordes, A.; Pollig, D.; Leonhardt, S.

    2010-04-01

    For monitoring the health status of individuals, proper monitoring of ventilation is desirable. Therefore, a continuous measurement technique is an advantage for many patients since it allows personal home care scenarios. As an example, monitoring of elderly people at home could enable them to live in their familiar environment on their own with the safety of a continuous monitoring. Therefore, a measurement technique without the restriction of mobility is required. Since it is possible to monitor ventilation with magnetic impedance measurements without conductive contact, this technique is well suited for the mentioned scenario. Integrated in a chair, a person's health state could be monitored in many situations, e.g. during meals, while watching TV or reading a book. In this paper, we compare different positions of coil arrays for a magnetic impedance measurement system integrated in a chair in order to monitor ventilation continuously. For limiting the costs and technical complexity of the magnetic impedance measurement system, we have a focus on coil configurations with one RF channel. To limit the needed space and thickness of the array in the backrest, planar gradiometer coil setups are investigated. All measurements will be performed with a new developed portable magnetic impedance measurement system and a standard office chair.

  7. Clinical applications of esophageal impedance monitoring and high-resolution manometry.

    PubMed

    Kessing, Boudewijn F; Smout, André J P M; Bredenoord, Albert J

    2012-06-01

    Esophageal impedance monitoring and high-resolution manometry (HRM) are useful tools in the diagnostic work-up of patients with upper gastrointestinal complaints. Impedance monitoring increases the diagnostic yield for gastroesophageal reflux disease in adults and children and has become the gold standard in the diagnostic work-up of reflux symptoms. Its role in the work-up for belching disorders and rumination seems promising. HRM is superior to other diagnostic tools for the evaluation of achalasia and contributes to a more specific classification of esophageal disorders in patients with non-obstructive dysphagia. The role of HRM in patients with dysphagia after laparoscopic placement of an adjustable gastric band seems promising. Future studies will further determine the clinical implications of the new insights which have been acquired with these techniques. This review aims to describe the clinical applications of impedance monitoring and HRM. PMID:22350944

  8. Longitudinal impedance measurement of an RK-TBA induction accelerating gap

    SciTech Connect

    Eylon, S.; Henestroza, E.; Kim, J.-S.; Houck, T.L.; Westenskow, G.A.; Yu, S.S.

    1997-05-01

    Induction accelerating gap designs are being studied for Relativistic Klystron Two-Beam Accelerator (RK-TBA) applications. The accelerating gap has to satisfy the following major requirements: hold-off of the applied accelerating voltage pulse, low transverse impedance to limit beam breakup, low longitudinal impedance at the beam-modulation frequency to minimize power loss. Various gap geometries, materials and novel insulating techniques were explored to optimize the gap design. We report on the experimental effort to evaluate the rf properties of the accelerating gaps in a simple pillbox cavity structure. The experimental cavity setup was designed using the AMOS, MAFIA and URMEL numerical codes. Longitudinal impedance measurements above beam-tube cut-off frequency using a single-wire measuring system are presented.

  9. Enhanced Method for Cavity Impedance Calculations

    SciTech Connect

    Frank Marhauser, Robert Rimmer, Kai Tian, Haipeng Wang

    2009-05-01

    With the proposal of medium to high average current accelerator facilities the demand for cavities with extremely low Higher Order Mode (HOM) impedances is increasing. Modern numerical tools are still under development to more thoroughly predict impedances that need to take into account complex absorbing boundaries and lossy materials. With the usually large problem size it is preferable to utilize massive parallel computing when applicable and available. Apart from such computational issues, we have developed methods using available computer resources to enhance the information that can be extracted from a cavities? wakefield computed in time domain. In particular this is helpful for a careful assessment of the extracted RF power and the mitigation of potential beam break-up or emittance diluting effects, a figure of merit for the cavity performance. The method is described as well as an example of its implementation.

  10. Stimuli dependent impedance of conductive magnetorheological elastomers

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Xuan, Shouhu; Dong, Bo; Xu, Feng; Gong, Xinglong

    2016-02-01

    The structure dependent impedance of conductive magnetorheological elastomers (MREs) under different loads and magnetic fields has been studied in this work. By increasing the weight fraction of iron particles, the conductivity of the MREs increased. Dynamic mechanical measurements and synchrotron radiation x-ray computed tomography (SR-CT) were used and they provided reasons for the electrical properties changing significantly under pressure and magnetic field stimulation. The high sensitivity of MREs to external stimuli renders them suitable for application in force or magnetic field sensors. The equivalent circuit model was proposed to analyze the impedance response of MREs and it fits the experimental results very well. Each circuit component reflected the change of the inner interface under different conditions, thus relative changes in the microstructure could be distinguished. This method could be used not only to detect the structural changes in the MRE but also to provide a great deal of valuable information for the further understanding of the MR mechanism.

  11. Automatic digital-analog impedance plethysmograph

    NASA Astrophysics Data System (ADS)

    Goy, C. B.; Mauro, K. A.; Yanicelli, L. M.; Parodi, N. F.; Gómez López, M. A.; Herrera, M. C.

    2016-04-01

    Venous occlusion plethysmography (VOP) is a traditional method widely used to assess limb blood circulation. One common mode to record VOP is by means of evaluating limb volume changes using impedance plethysmography (IP). In this paper the design and implementation of an automatic digital-analog impedance plethysmograph (ADAIP) for VOP is presented. The system is tested using precision resistances in order to calculate its repeatability. Then its global performance is assessed by means of VOP recordings on the upper and me lower limb of a healthy volunteer. The obtained repeatability was very high (95%), and the VOP recordings where the expected ones. It can be concluded that the whole system performs well and that it is suitable for automatic VOP recording.

  12. Nonlinear acoustic impedance of thermoacoustic stack

    NASA Astrophysics Data System (ADS)

    Ge, Huan; Fan, Li; Xiao, Shu-yu; Tao, Sha; Qiu, Mei-chen; Zhang, Shu-yi; Zhang, Hui

    2012-09-01

    In order to optimize the performances of the thermoacoustic refrigerator working with the high sound pressure level, the nonlinear acoustic characteristics of the thermoacoustic stack in the resonant pipe are studied. The acoustic fluid impedance of the stack made of copper mesh and set up in a resonant pipe is measured in the acoustic fields with different intensities. It is found that when the sound pressure level in the pipe increases to a critical value, the resistance of the stack increases nonlinearly with the sound pressure, while the reactance of the stack keeps constant. Based on the experimental results, a theory model is set up to describe the acoustic characteristics of the stack, according to the rigid frame theory and Forchheimmer equation. Furthermore, the influences of the sound pressure level, operating frequency, volume porosity, and length of the stack on the nonlinear impedance of the stack are evaluated.

  13. Impedance issues in the CERN SPS

    NASA Astrophysics Data System (ADS)

    Linnecar, T.

    1999-12-01

    The future use of the CERN SPS accelerator as injector for the Large Hadron Collider, LHC, and the possible use of the SPS as a neutrino source for the Gran Sasso experiment are pushing the maximum intensity requirements of the accelerator much higher than achieved up to now. At the same time the requirements on beam quality are becoming far more stringent. The SPS machine, built in the 70's, is not a "smooth" machine. It contains many discontinuities in vacuum chamber cross-section and many cavity-like objects, as well as the 5 separate RF systems at present installed. All these lead to a high impedance, seen by the beam, spread over a wide frequency range. As a result there is a constant fight against instabilities, both single and multi bunch, as the intensity increases. A program of studies is under way in the SPS to identify, reduce, and remove where possible the sources of these impedances.

  14. Impedance of a beam tube with antechamber

    SciTech Connect

    Barry, W.; Lambertson, G.R.; Voelker, F.

    1986-08-01

    A beam vacuum chamber was proposed to allow synchrotron light to radiate from a circulating electron beam into an antechamber containing photon targets, pumps, etc. To determine the impedance such a geometry would present to the beam, electromagnetic measurements were carried out on a section of chamber using for low frequencies a current-carrying wire and for up to 16 GHz, a resonance perturbation method. Because the response of such a chamber would depend on upstream and downstream restrictions of aperture yet to be determined, the resonance studies were analyzed in some generality. The favorable conclusion of these studies is that the antechamber makes practically no contribution to either the longitudinal or the transverse impedances.

  15. Impedance characteristics of terawatt ion diodes

    NASA Astrophysics Data System (ADS)

    Mendel, C. W., Jr.; Desjarlais, M. P.; Pointon, T. D.; Quintenz, J. P.; Rosenthal, S. E.; Seidel, D. B.; Slutz, S. A.

    Light ion fusion research has developed ion diodes that have unique properties when compared to other ion diodes. These diodes involve relativistic electrons, ion beam stagnation pressures that compress the magnetic field to the order of 10 Tesla, and large space charge and particle current effects throughout the accelerating region. These diodes have required new theories and models to account for effects that previously were unimportant. One of the most important effects of the magnetic field compression and large space charge has been impedance collapse. The impedance collapse can lead to poor energy transfer efficiency, beam debunching, and rapid change of the beam focus. The current understanding of these effects is discussed including some of the methods used to ameliorate them, and the future directions the theory and modeling will take.

  16. Signal conditioning circuit apparatus. [with constant input impedance

    NASA Technical Reports Server (NTRS)

    Holland, V. B. (Inventor)

    1975-01-01

    A signal conditioning circuit is described including operational amplifier, a variable source of offset potential, and four resistive impedance. The circuit has constant input impedance independent of gain and offset adjustments. Gain change is effected by varying one of the impedances in an amplifier feedback circuit; offset adjustment is effected through variation of the offset potential source.

  17. Modelling of epithelial tissue impedance measured using three different designs of probe.

    PubMed

    Jones, D M; Smallwood, R H; Hose, D R; Brown, B H; Walker, D C

    2003-05-01

    Impedance measurement is a promising technique for detecting pre-malignant changes in epithelial tissue. This paper considers how the design of the impedance probe affects the ability to discriminate between tissue types. To do this, finite element models of the electrical properties of squamous and glandular columnar epithelia have been used. The glandular tissue model is described here for the first time. Glandular mucosa is found in many regions of the gastrointestinal tract, such as the stomach and intestine, and has a large effective surface area. Firstly, the electrical properties of a small section of gland, with epithelial cells and supportive tissue, are determined. These properties are then used to build up a three-dimensional model of a whole section of mucosa containing many thousands of glands. Measurements using different types of impedance probe were simulated by applying different boundary conditions to the models. Transepithelial impedance, and tetrapolar measurement with a probe placed on the tissue surface have been modelled. In the latter case, the impedance can be affected by conductive fluid, such as mucus, on the tissue surface. This effect has been investigated, and a new design of probe, which uses a guard electrode to counteract this potential source of variability, is proposed.

  18. Impedance analysis of the organ of corti with magnetically actuated probes.

    PubMed

    Scherer, Marc P; Gummer, Anthony W

    2004-08-01

    An innovative method is presented to measure the mechanical driving point impedance of biological structures up to at least 40 kHz. The technique employs an atomic force cantilever with a ferromagnetic coating and an external magnetic field to apply a calibrated force to the cantilever. Measurement of the resulting cantilever velocity using a laser Doppler vibrometer yields the impedance. A key feature of the method is that it permits measurements for biological tissue in physiological solutions. The method was applied to measure the point impedance of the organ of Corti in situ, to elucidate the biophysical basis of cochlear amplification. The basilar membrane was mechanically clamped at its tympanic surface and the measurements conducted at different radial positions on the reticular lamina. The tectorial membrane was removed. The impedance was described by a generalized Voigt-Kelvin viscoelastic model, in which the stiffness was real-valued and independent of frequency, but the viscosity was complex-valued with positive real part, which was dependent on frequency and negative imaginary part, which was independent of frequency. There was no evidence for an inertial component. The magnitude of the impedance was greatest at the tunnel of Corti, and decreased monotonically in each of the radial directions. In the absence of inertia, the mechanical load on the outer hair cells causes their electromotile displacement responses to be reduced by only 10-fold over the entire range of auditory frequencies. PMID:15298940

  19. Application of implantable wireless biomicrosystem for monitoring nerve impedance of rat after sciatic nerve injury.

    PubMed

    Li, Yu-Ting; Peng, Chih-Wei; Chen, Lung-Tai; Lin, Wen-Shan; Chu, Chun-Hsun; Chen, Jia-Jin Jason

    2013-01-01

    Electrical stimulation is usually applied percutaneously for facilitating peripheral nerve regeneration. However, few studies have conducted long-term monitoring of the condition of nerve regeneration. This study implements an implantable biomicrosystem for inducing pulse current for aiding nerve repair and monitoring the time-course changes of nerve impedance for assessing nerve regeneration in sciatic nerve injury rat model. For long-term implantation, a transcutaneous magnetic coupling technique is adopted for power and data transmission. For in vivo study, the implanted module was placed in the rat's abdomen and the cuff electrode was wrapped around an 8-mm sciatic nerve gap of the rat for nerve impedance measurement for 42 days. One group of animals received monophasic constant current via the cuff electrode and a second group had no stimulation between days 8-21. The nerve impedance increased to above 150% of the initial value in the nerve regeneration groups with and without stimulation whereas the group with no nerve regeneration increased to only 113% at day 42. The impedance increase in nerve regeneration groups can be observed before evident functional recovery. Also, the nerve regeneration group that received electrical stimulation had relatively higher myelinated fiber density than that of no stimulation group, 20686 versus 11417 fiber/mm (2). The developed implantable biomicrosystem is proven to be a useful experimental tool for long-term stimulation in aiding nerve fiber growth as well as impedance assessment for understanding the time-course changes of nerve regeneration. PMID:23060343

  20. Electric impedance imaging of the mammary gland in the case of mastitis

    NASA Astrophysics Data System (ADS)

    Korotkova, M.; Karpov, A.

    2010-04-01

    The electric impedance mammography technique has been applied for several years. The aim of the research in hand is to reveal the peculiarities of the electric impedance imaging in various stages of the inflammatory process in the mammary gland. We have conducted an examination of twenty six patients: five of them in the stage of arterial hyperemia, eight in the stage of infiltration, three of them in the stage of abscess and ten in the stage of cicatrization. The examination was carried out on the "MEIK" (version 5.6) potencial electric impedance computer mammograph. The weighted reciprocal projection method was used to reconstruct the 3-D electric conductivity distribution of the examined organ. Any inflammatory process is phasic and always attended by the complex vascular alterations with exudation of liquid components of plasma, blood cells outwandering and stromal cells proliferation. Pathophysiological and histopathological peculiarities of each stage of the inflammatory process are well reflected in the electric impedance images. This fact enabled the authors of the research to define the electric impedance imaging as the histofunctional scanning.

  1. Simultaneous distribution of AC and DC power

    DOEpatents

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  2. Moderately nonlinear diffuse-charge dynamics under an ac voltage.

    PubMed

    Stout, Robert F; Khair, Aditya S

    2015-09-01

    The response of a symmetric binary electrolyte between two parallel, blocking electrodes to a moderate amplitude ac voltage is quantified. The diffuse charge dynamics are modeled via the Poisson-Nernst-Planck equations for a dilute solution of point-like ions. The solution to these equations is expressed as a Fourier series with a voltage perturbation expansion for arbitrary Debye layer thickness and ac frequency. Here, the perturbation expansion in voltage proceeds in powers of V_{o}/(k_{B}T/e), where V_{o} is the amplitude of the driving voltage and k_{B}T/e is the thermal voltage with k_{B} as Boltzmann's constant, T as the temperature, and e as the fundamental charge. We show that the response of the electrolyte remains essentially linear in voltage amplitude at frequencies greater than the RC frequency of Debye layer charging, D/λ_{D}L, where D is the ion diffusivity, λ_{D} is the Debye layer thickness, and L is half the cell width. In contrast, nonlinear response is predicted at frequencies below the RC frequency. We find that the ion densities exhibit symmetric deviations from the (uniform) equilibrium density at even orders of the voltage amplitude. This leads to the voltage dependence of the current in the external circuit arising from the odd orders of voltage. For instance, the first nonlinear contribution to the current is O(V_{o}^{3}) which contains the expected third harmonic but also a component oscillating at the applied frequency. We use this to compute a generalized impedance for moderate voltages, the first nonlinear contribution to which is quadratic in V_{o}. This contribution predicts a decrease in the imaginary part of the impedance at low frequency, which is due to the increase in Debye layer capacitance with increasing V_{o}. In contrast, the real part of the impedance increases at low frequency, due to adsorption of neutral salt from the bulk to the Debye layer. PMID:26465471

  3. Impedance Matched Absorptive Thermal Blocking Filters

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Chuss, D. T.; U-Yen, K.; Rostem, K.

    2014-01-01

    We have designed, fabricated and characterized absorptive thermal blocking filters for cryogenic microwave applications. The transmission line filter's input characteristic impedance is designed to match 50 Omega and its response has been validated from 0-to-50GHz. The observed return loss in the 0-to-20GHz design band is greater than 20 dB and shows graceful degradation with frequency. Design considerations and equations are provided that enable this approach to be scaled and modified for use in other applications.

  4. Impedance Matched Absorptive Thermal Blocking Filters

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Chuss, D. T.; Rostem, K.; U-Yen, K.

    2014-01-01

    We have designed, fabricated and characterized absorptive thermal blocking filters for cryogenic microwave applications. The transmission line filter's input characteristic impedance is designed to match 50O and its response has been validated from 0-to-50GHz. The observed return loss in the 0-to-20GHz design band is greater than 20 dB and shows graceful degradation with frequency. Design considerations and equations are provided that enable this approach to be scaled and modified for use in other applications.

  5. Superconducting surface impedance under radiofrequency field

    DOE PAGES

    Xiao, Binping P.; Reece, Charles E.; Kelley, Michael J.

    2013-04-26

    Based on BCS theory with moving Cooper pairs, the electron states distribution at 0K and the probability of electron occupation with finite temperature have been derived and applied to anomalous skin effect theory to obtain the surface impedance of a superconductor under radiofrequency (RF) field. We present the numerical results for Nb and compare these with representative RF field-dependent effective surface resistance measurements from a 1.5 GHz resonant structure.

  6. Impedance and electrically evoked compound action potential (ECAP) drop within 24 hours after cochlear implantation.

    PubMed

    Chen, Joshua Kuang-Chao; Chuang, Ann Yi-Chiun; Sprinzl, Georg Mathias; Tung, Tao-Hsin; Li, Lieber Po-Hung

    2013-01-01

    Previous animal study revealed that post-implantation electrical detection levels significantly declined within days. The impact of cochlear implant (CI) insertion on human auditory pathway in terms of impedance and electrically evoked compound action potential (ECAP) variation within hours after surgery remains unclear, since at this time frequency mapping can only commence weeks after implantation due to factors associated with wound conditions. The study presented our experiences with regards to initial switch-on within 24 hours, and thus the findings about the milieus inside cochlea within the first few hours after cochlear implantation in terms of impedance/ECAP fluctuations. The charts of fifty-four subjects with profound hearing impairment were studied. A minimal invasive approach was used for cochlear implantation, characterized by a small skin incision (≈ 2.5 cm) and soft techniques for cochleostomy. Impedance/ECAP was measured intro-operatively and within 24 hours post-operatively. Initial mapping within 24 hours post-operatively was performed in all patients without major complications. Impedance/ECAP became significantly lower measured within 24 hours post-operatively as compared with intra-operatively (p<0.001). There were no differences between pre-operative and post-operative threshold for air-conduction hearing. A significant drop of impedance/ECAP in one day after cochlear implantation was revealed for the first time in human beings. Mechanisms could be related to the restoration of neuronal sensitivity to the electrical stimulation, and/or the interaction between the matrix enveloping the electrodes and the electrical stimulation of the initial switch-on. Less wound pain/swelling and soft techniques both contributed to the success of immediate initial mapping, which implied a stable micro-environment inside the cochlea despite electrodes insertion. Our research invites further studies to correlate initial impedance/ECAP changes with long

  7. Impedance and Electrically Evoked Compound Action Potential (ECAP) Drop within 24 Hours after Cochlear Implantation

    PubMed Central

    Chen, Joshua Kuang-Chao; Chuang, Ann Yi-Chiun; Sprinzl, Georg Mathias; Tung, Tao-Hsin; Li, Lieber Po-Hung

    2013-01-01

    Previous animal study revealed that post-implantation electrical detection levels significantly declined within days. The impact of cochlear implant (CI) insertion on human auditory pathway in terms of impedance and electrically evoked compound action potential (ECAP) variation within hours after surgery remains unclear, since at this time frequency mapping can only commence weeks after implantation due to factors associated with wound conditions. The study presented our experiences with regards to initial switch-on within 24 hours, and thus the findings about the milieus inside cochlea within the first few hours after cochlear implantation in terms of impedance/ECAP fluctuations. The charts of fifty-four subjects with profound hearing impairment were studied. A minimal invasive approach was used for cochlear implantation, characterized by a small skin incision (≈2.5 cm) and soft techniques for cochleostomy. Impedance/ECAP was measured intro-operatively and within 24 hours post-operatively. Initial mapping within 24 hours post-operatively was performed in all patients without major complications. Impedance/ECAP became significantly lower measured within 24 hours post-operatively as compared with intra-operatively (p<0.001). There were no differences between pre-operative and post-operative threshold for air-conduction hearing. A significant drop of impedance/ECAP in one day after cochlear implantation was revealed for the first time in human beings. Mechanisms could be related to the restoration of neuronal sensitivity to the electrical stimulation, and/or the interaction between the matrix enveloping the electrodes and the electrical stimulation of the initial switch-on. Less wound pain/swelling and soft techniques both contributed to the success of immediate initial mapping, which implied a stable micro-environment inside the cochlea despite electrodes insertion. Our research invites further studies to correlate initial impedance/ECAP changes with long

  8. PEP-X IMPEDANCE AND INSTABILITY CALCULATIONS

    SciTech Connect

    Bane, K.L.F.; Lee, L.-Q.; Ng, C.; Stupakov, G.; au Wang, L.; Xiao, L.; /SLAC

    2010-08-25

    PEP-X, a next generation, ring-based light source is designed to run with beams of high current and low emittance. Important parameters are: energy 4.5 GeV, circumference 2.2 km, beam current 1.5 A, and horizontal and vertical emittances, 185 pm by 8 pm. In such a machine it is important that impedance driven instabilities not degrade the beam quality. In this report they study the strength of the impedance and its effects in PEP-X. For the present, lacking a detailed knowledge of the vacuum chamber shape, they create a straw man design comprising important vacuum chamber objects to be found in the ring, for which they then compute the wake functions. From the wake functions they generate an impedance budget and a pseudo-Green function wake representing the entire ring, which they, in turn, use for performing microwave instability calculations. In this report they, in addition, consider in PEP-X the transverse mode-coupling, multi-bunch transverse, and beam-ion instabilities.

  9. Interior impedance wedge diffraction with surface waves

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Griesser, Timothy

    1988-01-01

    The exact impedance wedge solution is evaluated asymptotically using the method of steepest descents for plane wave illumination at normal incidence. Uniform but different impedances on each face are considered for both soft and hard polarizations. The asymptotic solution isolates the incident, singly reflected, multiply reflected, diffracted, and surface wave fields. Multiply reflected fields of any order are permitted. The multiply reflected fields from the exact solution are written as ratios of auxiliary Maliuzhinets functions, whereas a geometrical analysis gives the reflected fields as products of reflection coefficients. These two representations are shown to be identical in magnitude, phase and the angular range over which they exist. The diffracted field includes four Fresnel transition functions as in the perfect conductor case, and the expressions for the appropriate discontinuities at the shadow boundaries are presented. The surface wave exists over a finite angular range and only for certain surface impedances. A surface wave transition field is included to retain continuity. Computations are presented for interior wedge diffractions although the formulation is valid for both exterior and interior wedges.

  10. Bioelectrical impedance analysis of bovine milk fat

    NASA Astrophysics Data System (ADS)

    Veiga, E. A.; Bertemes-Filho, P.

    2012-12-01

    Three samples of 250ml at home temperature of 20°C were obtained from whole, low fat and fat free bovine UHT milk. They were analysed by measuring both impedance spectra and dc conductivity in order to establish the relationship between samples related to fat content. An impedance measuring system was developed, which is based on digital oscilloscope, a current source and a FPGA. Data was measured by the oscilloscope in the frequency 1 kHz to 100 kHz. It was showed that there is approximately 7.9% difference in the conductivity between whole and low fat milk whereas 15.9% between low fat and free fat one. The change of fatness in the milk can be significantly sensed by both impedance spectra measurements and dc conductivity. This result might be useful for detecting fat content of milk in a very simple way and also may help the development of sensors for measuring milk quality, as for example the detection of mastitis.

  11. A vector impedance meter digitally controlled

    NASA Astrophysics Data System (ADS)

    Caranti, Giorgio M.; Ré, Miguel A.

    1991-12-01

    As with most similar equipment, the method consists in applying a sinusoidal voltage to an unknown impedance and measuring the current through it. The advantage of the developed equipment is that it allows independent and simultaneous measurement of the resistive and reactive components of the current through the sample impedance, thus making possible the determination of impedances in magnitude and phase. The measurements can be controlled with a computer using a digital interface. The instrument may also be controlled with a computer using a digital interface. The instrument may also be controlled manually from a front panel. The apparatus was designed to operate in the audio range 1 Hz-100 kHz for currents even below 1 μA. The analog outputs may either be connected to an X-Y recorder or the data can be acquired with a computer through an analog-to-digital converter. The laboratory tests have shown a good performance according to the design specifications. These tests have been carried out using discrete circuits made of calibrated components.

  12. On the directional symmetry of the impedance

    SciTech Connect

    Heifets, S.A.

    1990-03-01

    The independence of the impedance on the beam direction is an important feature of an accelerator structure, in particular, for the electron-positron storage rings where bunches of opposite charges travel through the same vacuum chamber in opposite directions. Recently Gluckstern and Zotter considered a cylindrically symmetric but longitudinally asymmetric cavity with side pipes of equal radii. They were able to prove that for a relativistic particle the longitudinal impedance of the cavity with an arbitrary shape is independent of the direction in which the beam travels through it. Their result corroborates numerical observations of the independence of the wakefield obtained with the code TBCI. Bisognano gave an elegant proof of the same statement. His approach is based on a reciprocity relation applied to the tensor Green's function. I follow here his idea in a somewhat simpler way to obtain more general and physically transparent proof of this property for both longitudinal and transverse impedances. The result is valid for a cavity with no azimuthal symmetry and for arbitrary particle velocity, as soon as it may be considered constant. At the same time the limits of its validity are shown.

  13. Influence of temperature on AC conductivity of nanocrystalline CuAlO2

    NASA Astrophysics Data System (ADS)

    Prakash, T.

    2012-07-01

    Nanocrystalline CuAlO2 was synthesized by mechanical alloying of Cu2O and α-Al2O3 powders in the molar ratio of 1:1 for 20 h in toluene medium with tungsten carbide balls and vials using planetary ball mill. The ball milling was carried out at 300 rpm with a ball to powder weight ratio of 10:1 and then annealed at 1373 K in a platinum crucible for 20 h to get CuAlO2 phase with average crystallite size 45 nm. Complex impedance spectroscopic measurement in the frequency region 1 Hz to 10 MHz between the temperatures 333 to 473 K was carried out for nanocrystalline CuAlO2 sample. The obtained complex impedance data was analyzed for AC conductivities, DC and AC conductivities correlations and crossover frequencies ( f co ). The BNN (Barton, Nakajima and Namikawa) relation was applied to understand the correlation between DC and AC conductivities. The observed experimental results were discussed in the paper.

  14. UNIVERSAL AUTO-CALIBRATION FOR A RAPID BATTERY IMPEDANCE SPECTRUM MEASUREMENT DEVICE

    SciTech Connect

    Jon P. Christophersen; John L. Morrison; William H. Morrison

    2014-03-01

    Electrochemical impedance spectroscopy has been shown to be a valuable tool for diagnostics and prognostics of energy storage devices such as batteries and ultra-capacitors. Although measurements have been typically confined to laboratory environments, rapid impedance spectrum measurement techniques have been developed for on-line, embedded applications as well. The prototype hardware for the rapid technique has been validated using lithium-ion batteries, but issues with calibration had also been identified. A new, universal automatic calibration technique was developed to address the identified issues while also enabling a more simplified approach. A single, broad-frequency range is used to calibrate the system and then scaled to the actual range and conditions used when measuring a device under test. The range used for calibration must be broad relative to the expected measurement conditions for the scaling to be successful. Validation studies were performed by comparing the universal calibration approach with data acquired from targeted calibration ranges based on the expected range of performance for the device under test. First, a mid-level shunt range was used for calibration and used to measure devices with lower and higher impedance. Next, a high excitation current level was used for calibration, followed by measurements using lower currents. Finally, calibration was performed over a wide frequency range and used to measure test articles with a lower set of frequencies. In all cases, the universal calibration approach compared very well with results acquired following a targeted calibration. Additionally, the shunts used for the automated calibration technique were successfully characterized such that the rapid impedance measurements compare very well with laboratory-scale measurements. These data indicate that the universal approach can be successfully used for onboard rapid impedance spectra measurements for a broad set of test devices and range of

  15. Electrical impedance measurements of root canal length.

    PubMed

    Meredith, N; Gulabivala, K

    1997-06-01

    Electronic methods are now widely used during endodontic treatment for the assessment of root canal length. These commonly measure the electrical resistance or impedance between the root canal and the buccal mucosa. A number of studies have been undertaken to determine the accuracy of commercially available instruments. The aims of this investigation were to determine the electrical impedance characteristics of the root canal and periapical tissues in vivo, measure the changes relative to the distance of an endodontic instrument from the apical constriction and propose an equivalent circuit modelling the periapical tissues. The length of the root canals of 20 previously untreated teeth were determined using radiographic and electronic methods. Minimal canal preparation was carried out and measurements were made with a size 10 K-Flex file. A microprocessor-controlled LCR analyser was used to measure the electrical impedance characteristics of each root canal. The instrument measured the series and parallel resistive (RS, RP) and capacitance (CS, CP) component of the tissues at two test frequencies, 100 Hz and 1 kHz. Measurements were made for each root canal when the diagnostic file was placed at the apical constriction and repeated when the file was withdrawn to -0.5, -1.0, -1.5, -2.0 and -5.0 mm from the foramen. Readings were taken for each canal after the canal had been dried with paper points, and flooded first with deionised water and then with sodium hypochlorite. The root canals were then prepared, cleaned and obturated using standard endodontic procedures. The LCR analyser selected the series resistance component as the major measurement parameter. There was a clear increase in series resistance (RS) with increasing distance from the radiographic apex for dry canals and those containing deionised water and sodium hypochlorite. The mean resistance for dry canals was markedly higher than for those containing fluid, ranging from 22.19 k omega to 92.07 k omega

  16. Assessment of breast tumor size in electrical impedance scanning

    NASA Astrophysics Data System (ADS)

    Kim, Sungwhan

    2012-02-01

    Electrical impedance scanning (EIS) is a newly introduced imaging technique for early breast cancer detection. In EIS, we apply a sinusoidal voltage between a hand-held electrode and a scanning probe placed on the breast skin to make current travel through the breast. We measure induced currents (Neumann data) through the scanning probe. In this paper, we investigate the frequency-dependent behavior of the induced complex potential and show how the frequency differential of the current measurement on the scanning probe reflects the contrast in complex conductivity values between surrounding and cancerous tissues. Furthermore, we develop the formula for breast tumor size using the frequency differential of the current measurement and provide its feasibility.

  17. Impedance adaptation for optimal robot-environment interaction

    NASA Astrophysics Data System (ADS)

    Ge, Shuzhi Sam; Li, Yanan; Wang, Chen

    2014-02-01

    In this paper, impedance adaptation is investigated for robots interacting with unknown environments. Impedance control is employed for the physical interaction between robots and environments, subject to unknown and uncertain environments dynamics. The unknown environments are described as linear systems with unknown dynamics, based on which the desired impedance model is obtained. A cost function that measures the tracking error and interaction force is defined, and the critical impedance parameters are found to minimise it. Without requiring the information of the environments dynamics, the proposed impedance adaptation is feasible in a large number of applications where robots physically interact with unknown environments. The validity of the proposed method is verified through simulation studies.

  18. Label-Free Impedance Biosensors: Opportunities and Challenges

    PubMed Central

    Daniels, Jonathan S.; Pourmand, Nader

    2007-01-01

    Impedance biosensors are a class of electrical biosensors that show promise for point-of-care and other applications due to low cost, ease of miniaturization, and label-free operation. Unlabeled DNA and protein targets can be detected by monitoring changes in surface impedance when a target molecule binds to an immobilized probe. The affinity capture step leads to challenges shared by all label-free affinity biosensors; these challenges are discussed along with others unique to impedance readout. Various possible mechanisms for impedance change upon target binding are discussed. We critically summarize accomplishments of past label-free impedance biosensors and identify areas for future research. PMID:18176631

  19. Selective anion sensing by a tris-amide CTV derivative: 1H NMR titration, self-assembled monolayers, and impedance spectroscopy.

    PubMed

    Zhang, Sheng; Echegoyen, Luis

    2005-02-16

    A hydrogen-bond forming tris(amide) receptor based on cyclotriveratrylene (CTV) was prepared. Self-assembled monolayers (SAMs) of the receptor were formed on gold surfaces. Desorption experiments show a surface coverage of 2.26 x 10(-10) mol/cm(2). (1)H NMR and UV measurements confirm that the receptor exhibits the highest affinity for acetate ions among the anions studied. Electrochemical impedance was used to investigate anion sensing by the SAMs and proved to be an efficient and convenient technique for detecting anions in aqueous solutions. Upon binding acetate anions, the monolayer-modified gold electrodes show a drastic increase of the R(ct) values when Fe(CN)(6)(3-/4-) is used as the redox probe. When the probe was changed to a positively charged one, Ru(NH3)(6)(3+/2+), the R(ct) values decreased monotonically as the acetate concentration was increased, thus confirming the accumulation of negative surface charge upon anion binding. H(2)PO(4-) shows some interference when sensing AcO-. Other monovalent anions such as Cl-, Br-, NO3(-) and HSO4(-) do not bind to the CTV receptor either in solution or on the surfaces. PMID:15701037

  20. Oblique impacts into low impedance layers

    NASA Astrophysics Data System (ADS)

    Stickle, A. M.; Schultz, P. H.

    2009-12-01

    Planetary impacts occur indiscriminately, in all locations and materials. Varied geologic settings can have significant effects on the impact process, including the coupling between the projectile and target, the final damage patterns and modes of deformation that occur. For example, marine impact craters are not identical to impacts directly into bedrock or into sedimentary materials, though many of the same fundamental processes occur. It is therefore important, especially when considering terrestrial impacts, to understand how a low impedance sedimentary layer over bedrock affects the deformation process during and after a hypervelocity impact. As a first step, detailed comparisons between impacts and hydrocode models were performed. Experiments performed at the NASA Ames Vertical Gun Range of oblique impacts into polymethylmethacrylate (PMMA) targets with low impedance layers were performed and compared to experiments of targets without low impedance layers, as well as to hydrocode models under identical conditions. Impact velocities ranged from 5 km/s to 5.6 km/s, with trajectories from 30 degrees to 90 degrees above the horizontal. High-speed imaging provided documentation of the sequence and location of failure due to impact, which was compared to theoretical models. Plasticine and ice were used to construct the low impedance layers. The combination of experiments and models reveals the modes of failure due to a hypervelocity impact. How such failure is manifested at large scales can present a challenge for hydrocodes. CTH models tend to overestimate the amount of damage occurring within the targets and have difficulties perfectly reproducing morphologies; nevertheless, they provide significant and useful information about the failure modes and style within the material. CTH models corresponding to the experiments allow interpretation of the underlying processes involved as well as provide a benchmark for the experimental analysis. The transparency of PMMA

  1. Potential applications of a small high-surface-area platinum electrode as an implanted impedance biosensor or recording electrode

    NASA Astrophysics Data System (ADS)

    Duan, Yvonne Y.; Millard, Rodney E.; Tykocinski, Michael; Lui, Xuguang; Clark, Graeme M.; Cowan, Robert S. C.

    2001-03-01

    A small Platinum (Pt) electrode (geometric area: ~0.43 mm2) was treated in an electrochemical etching process, to produce a highly porous columnar thin layer (~600 nm) on the surface of the electrode. The modified Pt electrode (Pt-p) showed similar electrical properties to a platinum-black electrode but with high mechanical integrity. Previous studies of chronic stimulation had also shown good biocompatibility and surface stability over several months implantation. This paper discusses the potential applications of the modified electrode as an implanted bio-sensor: (1) as a recording electrode compared to an untreated Pt electrode. (2) as a probe in detecting electrical characteristics of living biological material adjacent to the electrode in vivo, which may correlate to inflammation or trauma repair. Results of electrochemical impedance spectroscopy (EIS) revealed much lower electrode interface polarisation impedance, reduced overall electrode impedance, and a largely constant impedance above 100 Hz for the Pt-p electrode compared with untreated Pt electrodes. This provides a platform for recording biological events with low noise interference. Results of A.C. impedance spectroscopy of the high surface area electrode only reflect changes in the surrounding biological environment in the frequency range (1 k Hz to 100 k Hz), interference from electrode polarisation impedance can be neglected. The results imply that the surface-modified electrode is a good candidate for application to implantable biosensors for detecting bio-electric events. The modification procedure and its high surface area concept could have application to a smart MEMS device or microelectrode.

  2. Mechanism of the formation for thoracic impedance change.

    PubMed

    Kuang, Ming-Xing; Xiao, Qiu-Jin; Cui, Chao-Ying; Kuang, Nan-Zhen; Hong, Wen-Qin; Hu, Ai-Rong

    2010-03-01

    The purpose of this study is to investigate the mechanism of the formation for thoracic impedance change. On the basis of Ohm's law and the electrical field distribution in the cylindrical volume conductor, the formula about the thoracic impedance change are deduced, and they are demonstrated with the model experiment. The results indicate that the thoracic impedance change caused by single blood vessel is directly proportional to the ratio of the impedance change to the basal impedance of the blood vessel itself, to the length of the blood vessel appearing between the current electrodes, and to the basal impedance between two detective electrodes on the chest surface, while it is inversely proportional to the distance between the blood vessel and the line joining two detective electrodes. The thoracic impedance change caused by multiple blood vessels together is equal to the algebraic addition of all thoracic impedance changes resulting from the individual blood vessels. That is, the impedance changes obey the principle of adding scalars in the measurement of the electrical impedance graph. The present study can offer the theoretical basis for the waveform reconstruction of Impedance cardiography (ICG).

  3. Superconducting fault current-limiter with variable shunt impedance

    SciTech Connect

    Llambes, Juan Carlos H; Xiong, Xuming

    2013-11-19

    A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.

  4. Resolving the grain boundary and lattice impedance of hot-pressed Li7La3Zr2O12 garnet electrolytes

    DOE PAGES

    Tenhaeff, Wyatt E.; Wang, Yangyang; Sokolov, Alexei P.; Wolfenstine, Jeff; Sakamoto, Jeffrey; Dudney, Nancy J.; Rangasamy, Ezhiyl

    2013-07-24

    Here, the cubic-stabilized garnet solid electrolyte with a nominal composition of Li6.28Al0.24La3Zr2O12 is thoroughly characterized by impedance spectroscopy. By varying the frequency of the applied AC signal over 11 orders of magnitude for characterizations from –100 to +60 °C, the relative contributions of grain and grain boundary conduction are unambiguously resolved.

  5. Small-Signal ac Analysis

    NASA Technical Reports Server (NTRS)

    Jagielski, James M.; Chen, Jess

    1987-01-01

    Program simulates power circuits and systems. Small Signal A.C. Analysis program (SSAC) valuable tool for design and analysis of electrical-power-system circuits. By combining "black box" power-system components operating in specified manner, user characterizes system modeled. Menu-driven program proved simple and cost effective in development and modification of arbitrary power-system configurations. Package includes sample data from Dynamic Explorer satellite family. Results compared favorable to calculations from such general circuit-analysis programs as SPICE. Written in FORTRAN 77.

  6. Two-Point Stretchable Electrode Array for Endoluminal Electrochemical Impedance Spectroscopy Measurements of Lipid-Laden Atherosclerotic Plaques.

    PubMed

    Packard, René R Sevag; Zhang, XiaoXiao; Luo, Yuan; Ma, Teng; Jen, Nelson; Ma, Jianguo; Demer, Linda L; Zhou, Qifa; Sayre, James W; Li, Rongsong; Tai, Yu-Chong; Hsiai, Tzung K

    2016-09-01

    Four-point electrode systems are commonly used for electric impedance measurements of biomaterials and tissues. We introduce a 2-point system to reduce electrode polarization for heterogeneous measurements of vascular wall. Presence of endoluminal oxidized low density lipoprotein (oxLDL) and lipids alters the electrochemical impedance that can be measured by electrochemical impedance spectroscopy (EIS). We developed a catheter-based 2-point micro-electrode configuration for intravascular deployment in New Zealand White rabbits. An array of 2 flexible round electrodes, 240 µm in diameter and separated by 400 µm was microfabricated and mounted on an inflatable balloon catheter for EIS measurement of the oxLDL-rich lesions developed as a result of high-fat diet-induced hyperlipidemia. Upon balloon inflation, the 2-point electrode array conformed to the arterial wall to allow deep intraplaque penetration via alternating current (AC). The frequency sweep from 10 to 300 kHz generated an increase in capacitance, providing distinct changes in both impedance (Ω) and phase (ϕ) in relation to varying degrees of intraplaque lipid burden in the aorta. Aortic endoluminal EIS measurements were compared with epicardial fat tissue and validated by intravascular ultrasound and immunohistochemistry for plaque lipids and foam cells. Thus, we demonstrate a new approach to quantify endoluminal EIS via a 2-point stretchable electrode strategy.

  7. Two-Point Stretchable Electrode Array for Endoluminal Electrochemical Impedance Spectroscopy Measurements of Lipid-Laden Atherosclerotic Plaques.

    PubMed

    Packard, René R Sevag; Zhang, XiaoXiao; Luo, Yuan; Ma, Teng; Jen, Nelson; Ma, Jianguo; Demer, Linda L; Zhou, Qifa; Sayre, James W; Li, Rongsong; Tai, Yu-Chong; Hsiai, Tzung K

    2016-09-01

    Four-point electrode systems are commonly used for electric impedance measurements of biomaterials and tissues. We introduce a 2-point system to reduce electrode polarization for heterogeneous measurements of vascular wall. Presence of endoluminal oxidized low density lipoprotein (oxLDL) and lipids alters the electrochemical impedance that can be measured by electrochemical impedance spectroscopy (EIS). We developed a catheter-based 2-point micro-electrode configuration for intravascular deployment in New Zealand White rabbits. An array of 2 flexible round electrodes, 240 µm in diameter and separated by 400 µm was microfabricated and mounted on an inflatable balloon catheter for EIS measurement of the oxLDL-rich lesions developed as a result of high-fat diet-induced hyperlipidemia. Upon balloon inflation, the 2-point electrode array conformed to the arterial wall to allow deep intraplaque penetration via alternating current (AC). The frequency sweep from 10 to 300 kHz generated an increase in capacitance, providing distinct changes in both impedance (Ω) and phase (ϕ) in relation to varying degrees of intraplaque lipid burden in the aorta. Aortic endoluminal EIS measurements were compared with epicardial fat tissue and validated by intravascular ultrasound and immunohistochemistry for plaque lipids and foam cells. Thus, we demonstrate a new approach to quantify endoluminal EIS via a 2-point stretchable electrode strategy. PMID:26857007

  8. Performance degradation studies on an poly 2,5-benzimidazole high-temperature proton exchange membrane fuel cell using an accelerated degradation technique

    NASA Astrophysics Data System (ADS)

    Jung, Guo-Bin; Chen, Hsin-Hung; Yan, Wei-Mon

    2014-02-01

    In this work, the performance degradation of a poly 2,5-benzimidazole (ABPBI) based high-temperature proton exchange membrane fuel cell (HT-PEMFC) was examined using an accelerated degradation technique (ADT). Experiments using an ADT with 30 min intervals were performed by applying 1.5 V to a membrane electrode assembly (MEA) with hydrogen and nitrogen feeding to the anode and cathode, respectively, to simulate the high voltage generated during fuel cell shutdown and restart. The characterization of the MEAs was performed using in-situ and ex-situ electrochemical methods, such as polarization curves, AC impedance, and cyclic voltammetry (CV), and TEM imaging before and after the ADT experiments. The measured results demonstrated that the ADT testing could be used to dramatically reduce the duration of the degradation. The current output at 0.4 V decreased by 48% after performing ADT testing for 30 min. From the AC impedance, CV and RTGA measurements, the decline in cell performance was found to be primarily due to corrosion and thinning of the catalyst layer (or carbon support) during the first 30 min, leading to the dissolution and agglomeration of the platinum catalyst.

  9. Origin of Capacity Fading in Nano-Sized Co3O4Electrodes: Electrochemical Impedance Spectroscopy Study

    PubMed Central

    2008-01-01

    Transition metal oxides have been suggested as innovative, high-energy electrode materials for lithium-ion batteries because their electrochemical conversion reactions can transfer two to six electrons. However, nano-sized transition metal oxides, especially Co3O4, exhibit drastic capacity decay during discharge/charge cycling, which hinders their practical use in lithium-ion batteries. Herein, we prepared nano-sized Co3O4with high crystallinity using a simple citrate-gel method and used electrochemical impedance spectroscopy method to examine the origin for the drastic capacity fading observed in the nano-sized Co3O4anode system. During cycling, AC impedance responses were collected at the first discharged state and at every subsequent tenth discharged state until the 100th cycle. By examining the separable relaxation time of each electrochemical reaction and the goodness-of-fit results, a direct relation between the charge transfer process and cycling performance was clearly observed.

  10. Estimation of defect activation energy around pn interfaces of Cu(In,Ga)Se2 solar cells using impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakakura, Hidenori; Itagaki, Masayuki; Sugiyama, Mutsumi

    2016-01-01

    We investigate the defect activation energy around the pn interface of Cu(In,Ga)Se2 (CIGS)-based solar cells using a simple electrochemical impedance spectroscopy. By applying AC and DC voltages to the solar cells, we observed an “inductive” element around the pn interface, which is ignored in conventional deep-level transient spectroscopy or admittance spectroscopy. A defect model is evaluated by proposing an equivalent circuit that includes a positive/negative constant phase element (CPE) to represent the area around the CdS/CIGS interface. By fitting the impedance data, the CPE index and CPE constant show a relationship with the defect activation energy or defect concentration. This result is significant because it may help reveal the defect properties of CIGS solar cells or any other semiconductor devices.

  11. Pairing fluctuation ac conductivity of disordered thin films

    NASA Astrophysics Data System (ADS)

    Petković, Aleksandra; Vinokur, Valerii M.

    2013-09-01

    We study temperature T and frequency ω dependence of the in-plane fluctuation conductivity of a disordered superconducting film above the critical temperature. Our calculation is based on the nonlinear sigma model within the Keldysh technique. The fluctuation contributions of different physical origin are found and analyzed in a wide frequency range. In the low-frequency range, ω ≪ T, we reproduce the known leading terms and find additional subleading ones in the Aslamazov-Larkin and the Maki-Thompson contributions to the ac conductivity. We also calculate the density of states ac correction. In the dc case these contributions logarithmically depend on the Ginzburg-Landau rate and are considerably smaller that the leading ones. However, in the ac case an external finite-frequency electromagnetic field strongly suppresses the known Aslamazov-Larkin and Maki-Thompson ac contributions, while the corresponding new terms and the density of states contribution are weakly suppressed and therefore become relevant at finite frequencies.

  12. Direct Experimental Observation of a Practical AC Zeeman Force

    NASA Astrophysics Data System (ADS)

    Fancher, Charles; Pyle, Andrew; Rotunno, Andrew; Du, Shuangli; Aubin, Seth

    2016-05-01

    We present measurements of the spin-dependent AC Zeeman force produced by microwave magnetic near-field gradients on an atom chip. We measure the AC Zeeman force on ultracold 87 Rb atoms by observing its effect on the motion of atoms in free-fall and on those confined in a trap. We have studied the force as a function of microwave frequency detuning from a hyperfine transition at 6.8 GHz at several magnetic field strengths and have observed its characteristic bipolar and resonant features predicted by two-level dressed atom theory. We find that the force is several times the strength of gravity in our setup, and that it can be targeted to a specific hyperfine transition while leaving other hyperfine states and transitions relatively unaffected. We find that our measurements are reasonably consistent with theory and are working towards a parameter-free comparison. AC Zeeman potentials offer the possibility of targeting qualitatively different trapping potentials to different spin states, a capability currently absent from the toolbox of atomic quantum control techniques. In particular, an AC Zeeman potential could be used as the beamsplitter for a spin-dependent atom interferometer or for engineering a quantum gate. Work supported by AFOSR and W&M, and in part by AFRL.

  13. Effect of the magnetic material on AC losses in HTS conductors in AC magnetic field carrying AC transport current

    NASA Astrophysics Data System (ADS)

    Wan, Xing-Xing; Huang, Chen-Guang; Yong, Hua-Dong; Zhou, You-He

    2015-11-01

    This paper presents an investigation on the AC losses in several typical superconducting composite conductors using the H-formulation model. A single superconducting strip with ferromagnetic substrate or cores and a stack of coated conductors with ferromagnetic substrates are studied. We consider all the coated conductors carrying AC transport currents and simultaneously exposed to perpendicular AC magnetic fields. The influences of the amplitude, frequency, phase difference and ferromagnetic materials on the AC losses are investigated. The results show that the magnetization losses of single strip and stacked strips have similar characteristics. The ferromagnetic substrate can increase the magnetization loss at low magnetic field, and decrease the loss at high magnetic field. The ferromagnetic substrate can obviously increase the transport loss in stacked strips. The trends of total AC losses of single strip and stacked strips are similar when they are carrying current or exposed to a perpendicular magnetic field. The effect of the frequency on the total AC losses of single strip is related to the amplitude of magnetic field. The AC losses decrease with increasing frequency in low magnetic field region while increase in high magnetic field region. As the phase difference changes, there is a periodic variation for the AC losses. Moreover, when the strip is under only the transport current and magnetic field, the ferromagnetic cores will increase the AC losses for large transport current or field.

  14. Impedance analysis of an enhanced piezoelectric biosensor

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Ho

    This study investigated the usefulness and characteristics of a five-megahertz quartz crystal resonator oscillating in a thickness-shear mode as a sensor of biological pathogens such as Salmonella typhimurium . An impedance analyzer measured the impedance of the oscillating quartz crystal, which determined all mechanical properties of the oscillating quartz and its immediate environment. In this study, the impedance behavior of the bare crystal was characterized in air and in potassium phosphate buffer solution. The potassium phosphate buffer was a Newtonian liquid. The resonance frequency of the oscillating quartz shifted down about 900 Hz by contacting with the buffer. An immobilized-antibody layer on the quartz surface behaved like a rigid mass when immersed in the buffer solution. The quartz crystal with immobilized antibodies was characterized in various solutions containing antibody- coated paramagnetic microspheres and varying concentrations of Salmonella typhimurium (102 - 108 cells/ml). The Salmonella cells were captured by antibody- coated paramagnetic microspheres, and then these complexes were moved magnetically to the oscillating quartz and were captured by antibodies immobilized on the crystal surface. The response of the crystal was expressed in terms of equivalent circuit parameters. The motional inductance and the motional resistance increased as a function of the concentration of Salmonella. The viscous damping was the main contribution to the resistance and the inductance in a liquid environment. The load resistance was the most effective and sensitive circuit parameter. A magnetic force was a useful method to collect the complexes of Salmonella-microspheres on the crystal surface and enhance the response sensor. In this system, the detection limit, based on resistance monitoring, was about 103 cells/ml.

  15. Method for conducting nonlinear electrochemical impedance spectroscopy

    DOEpatents

    Adler, Stuart B.; Wilson, Jamie R.; Huff, Shawn L.; Schwartz, Daniel T.

    2015-06-02

    A method for conducting nonlinear electrochemical impedance spectroscopy. The method includes quantifying the nonlinear response of an electrochemical system by measuring higher-order current or voltage harmonics generated by moderate-amplitude sinusoidal current or voltage perturbations. The method involves acquisition of the response signal followed by time apodization and fast Fourier transformation of the data into the frequency domain, where the magnitude and phase of each harmonic signal can be readily quantified. The method can be implemented on a computer as a software program.

  16. Broadband Planar 5:1 Impedence Transformer

    NASA Technical Reports Server (NTRS)

    Ehsan, Negar; Hsieh, Wen-Ting; Moseley, Samuel H.; Wollack, Edward J.

    2015-01-01

    This paper presents a broadband Guanella-type planar impedance transformer that transforms so 50 omega to 10 omega with a 10 dB bandwidth of 1-14GHz. The transformer is designed on a flexible 50 micrometer thick polyimide substrate in microstrip and parallel-plate transmission line topologies, and is Inspired by the traditional 4:1 Guanella transformer. Back-to-back transformers were designed and fabricated for characterization in a 50 omega system. Simulated and measured results are in excellent agreement.

  17. Analysis of Conductor Impedances Accounting for Skin Effect and Nonlinear Permeability

    SciTech Connect

    Perkins, M P; Ong, M M; Brown, C G; Speer, R D

    2011-07-20

    It is often necessary to protect sensitive electrical equipment from pulsed electric and magnetic fields. To accomplish this electromagnetic shielding structures similar to Faraday Cages are often implemented. If the equipment is inside a facility that has been reinforced with rebar, the rebar can be used as part of a lighting protection system. Unfortunately, such shields are not perfect and allow electromagnetic fields to be created inside due to discontinuities in the structure, penetrations, and finite conductivity of the shield. In order to perform an analysis of such a structure it is important to first determine the effect of the finite impedance of the conductors used in the shield. In this paper we will discuss the impedances of different cylindrical conductors in the time domain. For a time varying pulse the currents created in the conductor will have different spectral components, which will affect the current density due to skin effects. Many construction materials use iron and different types of steels that have a nonlinear permeability. The nonlinear material can have an effect on the impedance of the conductor depending on the B-H curve. Although closed form solutions exist for the impedances of cylindrical conductors made of linear materials, computational techniques are needed for nonlinear materials. Simulations of such impedances are often technically challenging due to the need for a computational mesh to be able to resolve the skin depths for the different spectral components in the pulse. The results of such simulations in the time domain will be shown and used to determine the impedances of cylindrical conductors for lightning current pulses that have low frequency content.

  18. How well do cochlear implant intraoperative impedance measures predict postoperative electrode function?

    PubMed Central

    Goehring, Jenny L.; Hughes, Michelle L.; Baudhuin, Jacquelyn L.; Lusk, Rodney P.

    2012-01-01

    Objective Objectives were to: 1) evaluate the incidence of abnormal cochlear implant electrode impedance intraoperatively and at the initial activation, 2) identify the percentage of abnormalities that resolve by the initial activation, and 3) determine the incidence of normal intraoperative impedances that present as abnormal at the initial activation. Study Design Retrospective records review of intraoperative and postoperative cochlear implant electrode impedances. Setting Tertiary referral center. Patients Records were examined for 194 devices implanted in 165 pediatric and adult patients. Results Results indicate at least 1 open (OC) or short circuit (SC) in 12.4% (24/194) of devices intraoperatively, decreasing to 8.2% (16/194) postoperatively. OCs were more prevalent than SCs for intraoperative (92% vs. 8%) and postoperative (94% vs. 6%) intervals. Of the 3430 total electrodes, 78 had abnormal impedance intraoperatively. Sixty-four of those (82%) resolved by the postoperative interval (62 OC, 2 SC) while 14/78 (18%) remained abnormal postoperatively (12 OC, 2 SC). Six of 3430 (0.17%) electrodes had normal impedance intraoperatively but were abnormal postoperatively. Conclusions The incidence of SCs in the present study is likely underestimated due to poor sensitivity of monopolar coupling for detecting SCs. Intraoperative OCs have a high probability of resolving by the initial activation, particularly when contiguous electrodes are affected, and suggests limited need for the use of a backup device in these cases. Surgical technique and/or complications such as explant/reimplant or perilymphatic gushers may result in increased incidence of bubbles in the cochlea, and may play a role in abnormal intraoperative impedance results. PMID:23295726

  19. ac electroosmosis in rectangular microchannels.

    PubMed

    Campisi, Michele; Accoto, Dino; Dario, Paolo

    2005-11-22

    Motivated by the growing interest in ac electroosmosis as a reliable no moving parts strategy to control fluid motion in microfluidic devices for biomedical applications, such as lab-on-a-chip, we study transient and steady-state electrokinetic phenomena (electroosmosis and streaming currents) in infinitely extended rectangular charged microchannels. With the aid of Fourier series and Laplace transforms we provide a general formal solution of the problem, which is used to study the time-dependent response to sudden ac applied voltage differences in case of finite electric double layer. The Debye-Huckel approximation has been adopted to allow for an algebraic solution of the Poisson-Boltzmann problem in Fourier space. We obtain the expressions of flow velocity profiles, flow rates, streaming currents, as well as expressions of the complex hydraulic and electrokinetic conductances. We analyze in detail the dependence of the electrokinetic conductance on the extension of linear dimensions relative to the Debye length, with an eye on finite electric double layer effects. PMID:16351310

  20. Test plan for performance testing of the Eaton AC-3 electric vehicle

    SciTech Connect

    Crumley, R.L.; Heiselmann, H.W.

    1985-04-01

    An alternating current (ac) propulsion system for an electric vehicle has been developed and tested by the Eaton Corporation. The test bed vehicle is a modified 1981 Mercury Lynx. The test plan has been prepared specifically for the third modification to this test bed and identified as the Eaton AC-3. The scope of the EG and G testing at INEL to be done on the Eaton AC-3 will include coastdown and dynamometer tests but will not include environmental, on-road, or track testing. Coastdown testing will be performed in accordance with SAE J-1263 (SAE Recommended Practice for Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques).