Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air
NASA Astrophysics Data System (ADS)
Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Larsson, Anders; Kusano, Yukihiro
2014-12-01
Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light to the governing mechanism of the sustained spark-suppressed AC gliding arc discharge.
Water treatment by the AC gliding arc air plasma
NASA Astrophysics Data System (ADS)
Gharagozalian, Mehrnaz; Dorranian, Davoud; Ghoranneviss, Mahmood
2017-09-01
In this study, the effects of gliding arc (G Arc) plasma system on the treatment of water have been investigated experimentally. An AC power supply of 15 kV potential difference at 50 Hz frequency was employed to generate plasma. Plasma density and temperature were measured using spectroscopic method. The water was contaminated with staphylococcus aureus (Gram-positive) and salmonella bacteria (Gram-negative), and Penicillium (mold fungus) individually. pH, hydrogen peroxide, and nitride contents of treated water were measured after plasma treatment. Decontamination of treated water was determined using colony counting method. Results indicate that G Arc plasma is a powerful and green tool to decontaminate water without producing any byproducts.
Nitride micro-LEDs and beyond--a decade progress review.
Jiang, H X; Lin, J Y
2013-05-06
Since their inception, micro-size light emitting diode (µLED) arrays based on III-nitride semiconductors have emerged as a promising technology for a range of applications. This paper provides an overview on a decade progresses on realizing III-nitride µLED based high voltage single-chip AC/DC-LEDs without power converters to address the key compatibility issue between LEDs and AC power grid infrastructure; and high-resolution solid-state self-emissive microdisplays operating in an active driving scheme to address the need of high brightness, efficiency and robustness of microdisplays. These devices utilize the photonic integration approach by integrating µLED arrays on-chip. Other applications of nitride µLED arrays are also discussed.
Dimensionless factors for an alternating-current non-thermal arc plasma
NASA Astrophysics Data System (ADS)
Zhang, Si-Yuan; Li, Xiao-Song; Liu, Jin-Bao; Liu, Jing-Lin; Li, He-Ping; Zhu, Ai-Min
2016-12-01
A gliding arc discharge, as a source of warm plasma combining advantages of both thermal and cold plasmas, would have promising application prospects in the fields of fuel conversion, combustion enhancement, material synthesis, surface modifications, pollution control, etc. In order to gain insight into the features of an alternating-current gliding arc discharge plasma, three dimensionless factors, i.e., the extinction span (ψ), current lag (δ), and heating lag (χ) factors are proposed in this letter based on the measured waveforms of the discharge voltage and current in an AC gliding arc discharge plasma. The influences of the driving frequency of the power supply (f) on these three dimensionless parameters are investigated experimentally with the explanations on the physical meanings of these factors. The experimental results show that a higher value of f would lead to the lower values of ψ and δ, as well as a higher value of χ. These experimental phenomena indicate a lower threshold ignition voltage of the discharges, a lower current-growth inertia of the gliding arcs and a larger relative thermal inertia of the plasmas with increase the driving frequency of the power supply in the operating parameter range studied in this letter.
1991-08-01
parameters is an essential prerequisite when attempting to predict the performance of ASW sensors or weapon systems. Since a greater portion of the acoustic...operations at sea. Bad weather can result in a sever -’ ’ radation in the performance level of most sensor and weapon systems, axi- ...at of the...MS. February 9 to 11. 1983. Kibblewhite, A.C. 1985. Wave-wave interactions. microseisms, and infra - sonic ambient noise in the ocean. Journal of the
Using OBS Data to Constrain the Characteristics of Microseisms in South China Sea
NASA Astrophysics Data System (ADS)
Xiao, H.; Xue, M.; Yang, T.; Liu, C.; Hua, Q.; Xia, S.; Huo, D.; Huang, H.; Le, B. M.; Pan, M.; Li, L.
2016-12-01
It has long been recognized that ocean gravity waves can generate microseisms through the coupling with the solid earth. Their generation mechanisms, wave types and propagation have been studied and debated intensively. In this study, we are aiming to study microseisms in South China Sea. We use six OBS data from an OBS array experiment supported by Natural Science Foundation of China, all available land broadband seismic data, and all available global satellite data from May 01, 2012 through August 20, 2012 (UTC). We mainly apply four techniques, i.e., power spectrum density (PSD), correlation, temporal frequency spectrum, and frequency dependent polarization analysis to study microseisms in South China Sea. We found that 1) the energy level of microseisms observed on OBSs are higher than land stations and there is no SF (0.05-0.08Hz) on OBSs; 2) SPDF is predominant on both the DF band (0.1-0.5Hz) as well as the whole band of microseisms (0.05-0.5Hz) for both OBSs and Land stations; 3) DF microseisms are significantly intensified by typhoons; 4) the variations of microseisms correlate well with the variations of nearby significant ocean wave height; 5) LPDF microseisms and SPDF microseisms have different polarization directions at most stations, suggesting they are generated from different source area; 6) the predominant directions of SPDF microseisms are much more scattered than those of LPDF microseisms, probably implying that SPDF microseisms have multiple sources; 7) most of microseisms are probably a mixture of P, Love and Rayleigh waves in this region. From our study, we found that the source regions for microseisms observed near marginal seas such as South China Sea are local and do not overlap with the source regions for global microseisms.
NASA Astrophysics Data System (ADS)
Song, Ho-Jun; Kim, Ji-Woo; Kook, Min-Suk; Moon, Won-Jin; Park, Yeong-Joon
2010-09-01
AC-type microarc oxidation (MAO) and hydrothermal treatment techniques were used to enhance the bioactivity of commercially pure titanium (CP-Ti). The porous TiO 2 layer fabricated by the MAO treatment had a dominant anatase structure and contained Ca and P ions. The MAO-treated specimens were treated hydrothermally to form HAp crystallites on the titanium oxide layer in an alkaline aqueous solution (OH-solution) or phosphorous-containing alkaline solution (POH-solution). A small number of micro-sized hydroxyapatite (HAp) crystallites and a thin layer composed of nano-sized HAps were formed on the Ti-MAO-OH group treated hydrothermally in an OH-solution, whereas a large number of micro-sized HAp crystallites and dense anatase TiO 2 nanorods were formed on the Ti-MAO-POH group treated hydrothermally in a POH-solution. The layer of bone-like apatite that formed on the surface of the POH-treated sample after soaking in a modified simulated body fluid was thicker than that on the OH-treated samples.
14 CFR 171.259 - Performance requirements: General.
Code of Federal Regulations, 2010 CFR
2010-01-01
... V (±0.2 V).* AC line frequency (60 Hz), 57 Hz to 63 Hz (±0.2 Hz).* DC voltage (48 V), 44 V to 52 V (±0.5 V).* *Note: Where discrete values of the above frequency or voltages are specified for testing... runway localizer and glide path transmitter frequencies of an ISMLS must be in accordance with the...
Microseisms Generated by Super Typhoon Megi in the Western Pacific Ocean
NASA Astrophysics Data System (ADS)
Lin, Jianmin; Lin, Jian; Xu, Min
2017-12-01
Microseisms generated by the super typhoon Megi (13-24 October 2010) were detected on both land-based and island-based seismic stations. We applied temporal frequency spectrum analysis to investigate the temporal evolution of the microseisms. When Megi was over the deep basins of the Philippine Sea, only weak microseisms with short-period double frequency (SPDF, ˜0.20-0.40 Hz) were observed. However, after Megi traveled into the shallower waters of the South China Sea, microseisms with both long-period double frequency (LPDF, ˜0.12-0.20 Hz) and SPDF were recorded. The excitation source regions of the microseisms were analyzed using seismic waveform records and synthetic modeling in frequency domain. Results reveal that part of the LPDF microseisms were excited in coastal source regions, while the intensity of both LPDF and SPDF microseisms correlated well with the distance from seismic stations to the typhoon center. Synthetic computations of equivalent surface pressure and corresponding microseisms show that the wave-to-wave interaction induced by coastal reflection has primary effects on microseismic frequency band of ˜0.10-0.20 Hz. The coastal generation of the dispersive LPDF microseisms is also supported by the observation of ocean swells induced by Megi through the images of C-band ENVISAT-ASAR satellite during its migration process. Two source regions of the microseisms during the life span of Megi are finally distinguished: One was mainly located in the left-rear quadrant of the typhoon center that generated both LPDF and SPDF microseisms at shallow seas, while the other one was near the coasts that generated mostly LPDF microseisms.
Lakes as a Source of Short-Period (0.5-2 s) Microseisms
NASA Astrophysics Data System (ADS)
Xu, Yan; Koper, Keith D.; Burlacu, Relu
2017-10-01
We identify and document microseisms produced by wave action in six lakes: The Great Slave Lake, Lake Ontario, Yellowstone Lake, Dianchi Lake, Fuxian Lake, and Erhai Lake. The lakes span more than 2 orders of magnitude in size (areas of 210-27,000 km2) and sample a range of climatic and tectonic regimes in Canada, the U.S., and China. Lake-generated microseisms create spectral peaks at periods near 1 s and are often polarized as Rayleigh waves propagating away from the lake. In contrast to ocean-generated microseisms, lake-generated microseisms are only observed within about 25-30 km of the shoreline. This is consistent with the well-known high attenuation of short-period Rayleigh waves (Rg). It is unclear if lake-generated microseisms are produced by a linear shoaling process, analogous to primary ocean microseisms, or a nonlinear wave-wave interaction process, analogous to secondary ocean microseisms. If they are mainly produced by shoaling, lake-generated microseisms might provide a spatially integrated measure of shoreline erosion. Regardless of the source mechanism, lake-generated microseisms appear to provide a record of ice phenology for lakes that freeze in the winter. Such data could contribute to assessing the effects of climate change on high-latitude lakes in remote areas. Finally, it is likely that lake-generated microseisms are useful for imaging the geological structure of the shallow crust, information that is important for quantifying seismic hazard and can be difficult to obtain in urban areas where active source imaging is not feasible.
Lakes as a Source of Short-Period (0.5-2 sec) Microseisms
NASA Astrophysics Data System (ADS)
Koper, K. D.; Xu, Y.; Burlacu, R.
2017-12-01
We identify and document microseisms produced by wave action in six lakes: The Great Slave Lake, Lake Ontario, Yellowstone Lake, Dianchi Lake, Fuxian Lake, and Erhai Lake. The lakes span more than two orders of magnitude in size (areas of 210-27,000 km2) and sample a range of climatic and tectonic regimes in Canada, the U.S., and China. Lake generated microseisms create spectral peaks at periods near 1 s and are often polarized as Rayleigh waves propagating away from the lake. In contrast to ocean generated microseisms, lake generated microseisms are only observed within about 25-30 km of the shoreline. This is consistent with the well-known high attenuation of short-period Rayleigh waves (Rg). It is unclear if lake generated microseisms are produced by a linear shoaling process, analogous to primary ocean microseisms, or a non-linear wave-wave interaction process, analogous to secondary ocean microseisms. If they are mainly produced by shoaling, lake generated microseisms might provide a spatially integrated measure of shoreline erosion. From our preliminary results, lake generated microseisms appear to provide a record of ice phenology for lakes that freeze in the winter. Such data could contribute to assessing the effects of climate change on high-latitude lakes in remote areas. Finally, it is likely that lake generated microseisms are useful for imaging the geological structure of the shallow crust—information that is important for quantifying seismic hazard and can be difficult to obtain in urban areas where active source imaging is not feasible.
NASA Astrophysics Data System (ADS)
Landry, M. R.; Taylor, A. G.
2016-02-01
Phytoplankton community structure is shaped both by the bottom-up influences of the physical-chemical environment and by the top-down impacts of food webs. Emergent patterns in the contemporary ocean can thus be "null hypotheses" of future changes assuming that the underlying structuring relationships remain intact but only shift spatially. To provide such a context for the California Current Ecosystem (CCE) and adjacent open-ocean ecosystems, we used a combination of digital epifluorescence microscopy and flow cytometry to investigate variability of phytoplankton biomass, composition and size structure across gradients of ecosystem richness, as represented by total autotrophic carbon (AC). Biomass of large micro-sized (>20 µm) phytoplankton increases as a power function with system richness. Nano-sized cells (2-20 µm) increase at a lower rate at low AC, and level off at high AC. Pico-sized cells (<2-µm) do not clearly dominate at low AC and decline significantly at high AC, neither predicted by competition theory. This study provides several new insights into structural relationships and mechanisms in the CCE: 1) diatoms and dinoflagellates co-dominate the micro-phytoplankton size class throughout the range of system richness; 2) nano-phytoplankton co-dominate biomass in oligotrophic (low AC) waters, suggesting widespread mixotrophy rather than direct competition with pico-phytoplankton for nutrients; and 3) the pico-phytoplankton decline at high AC impacts small eukaryotes as well as photosynthetic bacteria, consistent with a broad stimulation of grazing pressure on all bacterial-sized cells in richer systems. Observed variability in heterotrophic bacteria and nano-flagellate grazers with system richness is consistent with this mechanism.
NASA Astrophysics Data System (ADS)
Donne, S. E.; Bean, C. J.; Dias, F.; Christodoulides, P.
2016-12-01
Ocean generated microseisms propagate mainly as Rayleigh and Love waves and are a result of the mechanical coupling between the ocean and the solid earth. There are two types of microseism, primary and secondary. Primary microseisms are generated when a travelling ocean wave enters shallow water or coastal regions and the associated pressure profile, which decays exponentially with depth, is non zero at the seafloor. Secondary microseisms on the other hand are generated by the second order non linear effect associated with a standing wave, through ocean wave- wave interactions. Secondary microseisms can therefore be generated in any water depth. The conditions required to generate secondary microseisms through wave- wave interactions are presented in Longuet-Higgins (1950) through the interaction of two travelling waves with the same wave period at an angle of 180 degrees. Equivalent surface pressure density (p2l) is modelled within the numerical ocean wave model, Wavewatch III and is the microseism source term. This work investigates the theoretical pressures associated with the interaction of two travelling waves with varying wave periods and wave amplitude at a range of incident angles. Theoretical seafloor pressures are calculated off the Southwest coast of Ireland and are compared with terrestrially recorded microseism data as well as oceanographic parameters and measured seafloor pressures. The results indicate that a broad range of sea state conditions can generate second order pressures at the seafloor which are consistent with measured seafloor measurements in the same location. While secondary microseism amplitudes may be used to infer ocean wave parameters this work has implications for doing so and these will be presented. Local seismic arrays in Ireland allow us to monitor and track the spatiotemporal evolution of these microseism source regions.
La Ferrara, Vera; Rametta, Gabriella; De Maria, Antonella
2015-07-01
Interconnected network of nanostructured polyaniline (PANI) is giving strong potential for enhancing device performances than bulk PANI counterparts. For nanostructured device processing, the main challenge is to get prototypes on large area by requiring precision, low cost and high rate assembly. Among processes meeting these requests, the alternate current electric fields are often used for nanostructure assembling. For the first time, we show the assembly of nanostructured PANI onto large electrode gaps (30-60 μm width) by applying alternate current electric fields, at low frequencies, to PANI particles dispersed in acetonitrile (ACN). An important advantage is the short assembly time, limited to 5-10 s, although electrode gaps are microsized. That encouraging result is due to a combination of forces, such as dielectrophoresis (DEP), induced-charge electrokinetic (ICEK) flow and alternate current electroosmotic (ACEO) flow, which speed up the assembly process when low frequencies and large electrode gaps are used. The main achievement of the present study is the development of ammonia sensors created by direct assembling of nanostructured PANI onto electrodes. Sensors exhibit high sensitivity to low gas concentrations as well as excellent reversibility at room temperature, even after storage in air. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ocean waves monitor system by inland microseisms
NASA Astrophysics Data System (ADS)
Lin, L. C.; Bouchette, F.; Chang, E. T. Y.
2016-12-01
Microseisms are continuous ground oscillations which have been wildly introduced for decades. It is well known that the microseismicity in the frequency band from 0.05 to about 1 Hz partly results from ocean waves, which has been first explained by Longuet-Higgins [1950]. The generation mechanism for such a microseismicity is based on nonlinear wave-wave interactions which drive pressure pulses within the seafloor. The resulting ground pressure fluctuations yield ground oscillations at a double frequency (DF) with respect to that of current ocean waves. In order to understand the characteristics of DF microseisms associated with different wave sources, we aim to analyze and interpret the spectra of DF microseisms by using the simple spectrum method [Rabinovich, 1997] at various inland seismometer along the Taiwan coast. This is the first monitoring system of ocean waves observed by inland seismometers in Taiwan. The method is applied to identify wave sources by estimating the spectral ratios of wave induced microseisms associated with local winds and typhoons to background spectra. Microseism amplitudes above 0.2 Hz show a good correlation with wind-driven waves near the coast. Comparison of microseism band between 0.1 and 0.2 Hz with buoys in the deep sea shows a strong correlation of seismic amplitude with storm generated waves, implying that such energy portion originates in remote regions. Results indicate that microseisms observed at inland sites can be a potential tool for the tracking of typhoon displacements and the monitoring of extreme ocean waves in real time. Real- time Microseism-Ocean Waves Monitoring Website (http://mwave.droppages.com/) Reference Rabinovich, A. B. (1997) "Spectral analysis of tsunami waves: Separation of source and topography effects," J. Geophys. Res., Vol. 102, p. 12,663-12,676. Longuet-Higgins, M.S. (1950) "A theory of origin of microseisms," Philos. Trans. R. Soc., A. 243, pp. 1-35.
NASA Astrophysics Data System (ADS)
Anthony, Robert E.; Aster, Richard C.; McGrath, Daniel
2017-01-01
The lack of landmasses, climatological low pressure, and strong circumpolar westerly winds between the latitudes of 50°S to 65°S produce exceptional storm-driven wave conditions in the Southern Ocean. This combination makes the Antarctic Peninsula one of Earth's most notable regions of high-amplitude wave activity and thus, ocean-swell-driven microseism noise in both the primary (direct wave-coastal region interactions) and secondary (direct ocean floor forcing due to interacting wave trains) period bands. Microseism observations are examined across 23 years (1993-2015) from Palmer Station (PMSA), on the west coast of the Antarctic Peninsula, and from East Falkland Island (EFI). These records provide a spatially integrative measure of both Southern Ocean wave amplitudes and the interactions between ocean waves and the solid Earth in the presence of sea ice, which can reduce wave coupling with the continental shelf. We utilize a spatiotemporal correlation-based approach to illuminate how the distribution of sea ice influences seasonal microseism power. We characterize primary and secondary microseism power due to variations in sea ice and find that primary microseism energy is both more sensitive to sea ice and more capable of propagating across ocean basins than secondary microseism energy. During positive phases of the Southern Annular Mode, sea ice is reduced in the Bellingshausen Sea and overall storm activity in the Drake Passage increases, thus strongly increasing microseism power levels.
NASA Astrophysics Data System (ADS)
Donne, Sarah; Bean, Christopher; Craig, David; Dias, Frederic; Christodoulides, Paul
2016-04-01
Microseisms are continuous seismic vibrations which propagate mainly as surface Rayleigh and Love waves. They are generated by the Earth's oceans and there are two main types; primary and secondary microseisms. Primary microseisms are generated through the interaction of travelling surface gravity ocean waves with the seafloor in shallow waters relative to the wavelength of the ocean wave. Secondary microseisms, on the other hand are generated when two opposing wave trains interact and a non-linear second order effect produces a pressure fluctuation which is depth independent. The conditions necessary to produce secondary microseisms are presented in Longuet-Higgins (1950) through the interaction of two travelling waves with the same wave period and which interact at an angle of 180 degrees. Equivalent surface pressure density (p2l) is modelled using the numerical ocean wave model Wavewatch III and this term is considered as the microseism source term. This work presents an investigation of the theoretical second order pressures generated through the interaction of travelling waves with varying wave amplitude, period and angle of incidence. Predicted seafloor pressures calculated off the Southwest coast of Ireland are compared with terrestrially recorded microseism records, measured seafloor pressures and oceanographic parameters. The work presented in this study suggests that a broad set of sea states can generate second order seafloor pressures that are consistent with seafloor pressure measurements. Local seismic arrays throughout Ireland allow us to investigate the temporal covariance of these seafloor pressures with microseism source locations.
Ban, Tomohiro; Ohue, Masahito; Akiyama, Yutaka
2018-04-01
The identification of comprehensive drug-target interactions is important in drug discovery. Although numerous computational methods have been developed over the years, a gold standard technique has not been established. Computational ligand docking and structure-based drug design allow researchers to predict the binding affinity between a compound and a target protein, and thus, they are often used to virtually screen compound libraries. In addition, docking techniques have also been applied to the virtual screening of target proteins (inverse docking) to predict target proteins of a drug candidate. Nevertheless, a more accurate docking method is currently required. In this study, we proposed a method in which a predicted ligand-binding site is covered by multiple grids, termed multiple grid arrangement. Notably, multiple grid arrangement facilitates the conformational search for a grid-based ligand docking software and can be applied to the state-of-the-art commercial docking software Glide (Schrödinger, LLC). We validated the proposed method by re-docking with the Astex diverse benchmark dataset and blind binding site situations, which improved the correct prediction rate of the top scoring docking pose from 27.1% to 34.1%; however, only a slight improvement in target prediction accuracy was observed with inverse docking scenarios. These findings highlight the limitations and challenges of current scoring functions and the need for more accurate docking methods. The proposed multiple grid arrangement method was implemented in Glide by modifying a cross-docking script for Glide, xglide.py. The script of our method is freely available online at http://www.bi.cs.titech.ac.jp/mga_glide/. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Characteristics of microseisms in South China
NASA Astrophysics Data System (ADS)
Xiao, H.; Xue, M.; Pan, M.
2017-12-01
Microseisms are generated by coupling ocean waves and the solid earth, and their main frequencies and sources vary in different regions of the world. We use continuous waveforms from three arrays along the southern coast of China to study the types and sources of microseisms in South China. Using cross-correlation functions and a three-component F-K analysis, we found that the main type of microseisms in this area propagates as surface waves, arriving mainly from the east and southeast. We also found that the surface waves have different characteristics: the Rayleigh waves and Love waves have diverse sources, are frequency dependent and have no obvious seasonal changes. In the 0.2-0.25 Hz frequency band, the Rayleigh and Love waves at the W01, W02 and ST arrays show the influences of common microseisms sources from Taiwan and the Luzon Strait. However, in the 0.27-0.5 Hz frequency band, the energy of the microseisms tends to be governed by the offshore sources near the stations. In addition, the Love waves have broader back azimuths than those of the Rayleigh waves, which may due to the energy transfer between Rayleigh and Love waves in the thick sediment layers.
Light propagation in the micro-size capillary injected by high temperature liquid
NASA Astrophysics Data System (ADS)
Li, Yan-jun; Li, Edward; Xiao, Hai
2016-11-01
The high temperature liquid is injected into the micro-size capillary and its light propagation behavior is investigated. We focus on two different liquid pumping methods. The first method can pump the high temperature liquid tin into the micro-size capillary by using a high pressure difference system. After pumping, a single mode fiber (SMF) connected with the optical carrier based microwave interferometry (OCMI) system is used to measure different liquid tin levels in the micro-size capillary. The second method can pump the room temperature engine oil into the capillary by using a syringe pump. This method can avoid the air bubbles when the liquids are pumped into the capillary.
NISHIDA, Kiwamu
2017-01-01
The ambient seismic wave field, also known as ambient noise, is excited by oceanic gravity waves primarily. This can be categorized as seismic hum (1–20 mHz), primary microseisms (0.02–0.1 Hz), and secondary microseisms (0.1–1 Hz). Below 20 mHz, pressure fluctuations of ocean infragravity waves reach the abyssal floor. Topographic coupling between seismic waves and ocean infragravity waves at the abyssal floor can explain the observed shear traction sources. Below 5 mHz, atmospheric disturbances may also contribute to this excitation. Excitation of primary microseisms can be attributed to topographic coupling between ocean swell and seismic waves on subtle undulation of continental shelves. Excitation of secondary microseisms can be attributed to non-linear forcing by standing ocean swell at the sea surface in both pelagic and coastal regions. Recent developments in source location based on body-wave microseisms enable us to estimate forcing quantitatively. For a comprehensive understanding, we must consider the solid Earth, the ocean, and the atmosphere as a coupled system. PMID:28769015
NASA Astrophysics Data System (ADS)
Anthony, R. E.; Ringler, A. T.; Wilson, D. C.
2018-04-01
During the winter of 2014, a weak polar vortex brought record cold temperatures to the north-central ("Midwest") United States, and the Great Lakes reached the highest extent of ice coverage (92.5%) since 1979. This event shut down the generation of seismic signals caused by wind-driven wave action within the lakes (termed "lake microseisms"), giving an unprecedented opportunity to isolate and characterize these novel signals through comparison with nonfrozen time periods. Using seismic records at 72 broadband stations, we observe Great Lakes microseism signals at distances >300 km from the lakes. In contrast to conventional oceanic microseisms, there is no clear relationship between the frequency content of the seismic signals (observed from 0.5-5-s period) and the dominant swell period or resonance periods of the lakes based on their bathymetric profiles. Thus, the exact generation mechanism is not readily explained by conventional microseism theory and warrants further investigation.
Slow Earthquakes in the Microseism Frequency Band (0.1-1.0 Hz) off Kii Peninsula, Japan
NASA Astrophysics Data System (ADS)
Kaneko, Lisa; Ide, Satoshi; Nakano, Masaru
2018-03-01
It is difficult to detect the signal of slow deformation in the 0.1-1.0 Hz frequency band between tectonic tremors and very low frequency events, where microseism noise is dominant. Here we provide the first evidence of slow earthquakes in this microseism band, observed by the DONET1 ocean bottom seismometer network, after an Mw 5.8 earthquake off Kii Peninsula, Japan, on 1 April 2016. The signals in the microseism band were accompanied by signals from active tremors, very low frequency events, and slow slip events that radiated from the shallow plate interface. We report the detection and locations of events across five frequency bands, including the microseism band. The locations and timing of the events estimated in the different frequency bands are similar, suggesting that these signals radiated from a common source. The observed variations in detectability for each band highlight the complexity of the slow earthquake process.
Toward scatter-free phosphors in white phosphor-converted light-emitting diodes
Park, Hoo Keun; Oh, Ji Hye; Rag Do, Young
2012-01-01
Scatter-free phosphors promise to suppress the scattering loss of conventional micro-size powder phosphors in white phosphor-converted light-emitting diodes (pc-LEDs). Large micro-size cube phosphors (~100 μm) are newly designed and prepared as scatter-free phosphors, combining the two scatter-free conditions of particles based on Mie’s scattering theory; the grain size or grain boundary was smaller than 50 nm and the particle size was larger than 30 μm. A careful evaluation of the conversion efficiency and packaging efficiency of the large micro-size cube phosphor-based white pc-LED demonstrated that large micro-size cube phosphors are an outstanding potential candidate for scatter-free phosphors in white pc-LEDs. The luminous efficacy and packaging efficiency of the Y3Al5O12:Ce3+ large micro-size cube phosphor-based pc-LEDs were 123.0 lm/W and 0.87 at 4300 K under 300 mA, which are 17% and 34% higher than those of commercial powder phosphor-based white LEDs (104.8 lm/W and 0.65), respectively. In addition, the introduction of large micro-size cube phosphors can reduce the wide variation in optical properties as a function of both the ambient temperature and applied current compared with those of conventional powder phosphor-based white LEDs. PMID:22535113
Observations of broad-band micro-seisms during reservoir stimulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sleefe, G.E.; Warpinski, N.R.; Engler, B.P.
During hydrocarbon reservoir stimulation such as hydraulic fracturing, the cracking and slippage of the formation results in the emission of seismic energy. The objective of this study was to determine the properties of these induced micro-seisms. A hydraulic fracture experiment was performed in the Piceance Basin of Western Colorado to induce and record micro-seismic events. The formation was subjected to four processes; breakdown/ballout, step-rate test, KCL mini-fracture, and linear-gel mini-fracture. Micro-seisms were acquired with an advanced three-component wall-locked seismic accelerometer package, placed in an observation well 211 ft offset from the well. During the two hours of formation treatment, moremore » than 1200 micro-seisms with signal-to-noise ratios in excess of 20 dB were observed. The observed micro-seisms had a nominally flat frequency from 100 Hz to 1500 Hz and lack the spurious tool-resonance effects evident in previous attempts to measure micro-seisms. Both p-wave and s-wave arrivals are clearly evident in the data set, and hodogram analysis yielded coherent estimates of the event locations. This paper describes the characteristics of the observed micro-seismic events (event occurrence, signal-to-noise ratios, and bandwidth) and illustrates that the new acquisition approach results in enhanced detectability and event location resolution.« less
Fan, Yi-Ou; Zhang, Ying-Hua; Zhang, Xiao-Peng; Liu, Bing; Ma, Yi-xin; Jin, Yi-he
2006-09-01
To compare the effects of nanosized and microsized silicon dioxide on spermatogenesis function of male rats exposed by inhalation. 45 male rats were randomly divided into control group and four experimental groups which were exposed by 100 mg/m3 or 300 mg/m3 nanosized and microsized silicon dioxide in inhalation chambers 2 hours every other day. Age-matched rats were exposed to room air with the same condition and served as controls. 65 days later, the testicular and epididymal viscera coefficients, the quantity and quality of sperm were examined and the histopathological assessment was done. The changes in biochemical parameters in serum and testes were also measured. Nanosized silicon dioxide could induce histopathological changes of testes in rats, and the effect was higher than that of microsized particles at the same concentration. Nanosized silicon dioxide could reduce the sperm counts of rats and the testicular LDH-C4 activities, increase MDA levels in the testes and the effect was higher than that of microsized particles at the same concentration. Nanosized silicon dioxide could lead to the reduction of sperm motility, testicular LDH-C4 activities and 8-hydroxydeoxyguanosine (8-OHdG) concentration in serum elevation in particles-exposed rats compared with the control animals, but there are no significant difference compared with that of microsized particles at the same concentration. The present findings suggest a different effect of impairment of sperm production and maturation induced by inhalation of nanosized and microsized silicon dioxide, and nanosized silicon dioxide exerted more severe reaction.
On microseisms recorded near the Ligurian coast (Italy) and their relationship with sea wave height
NASA Astrophysics Data System (ADS)
Ferretti, G.; Zunino, A.; Scafidi, D.; Barani, S.; Spallarossa, D.
2013-07-01
In this study, microseism recordings from a near coast seismic station and concurrent significant sea wave heights (H_{1/3}) are analysed to calibrate an empirical relation for predicting sea wave height in the Ligurian Sea. The study stems from the investigation of the damaging sea storms occurred in the Ligurian Sea between 2008 October and November. Analysing data collected in this time frame allows identification of two types of microseism signal, one associated to the local sea wave motion and one attributable to a remote source area. The former is dominated by frequencies greater than 0.2 Hz and the latter by frequencies between 0.07 and 0.14 Hz. Moreover, comparison of microseism spectrogram and significant sea wave heights reveals a strong correlation in that the spectral energy content of microseism results proportional to the sea wave height observed in the same time window. Hence, an extended data set including also observations from January to December 2011 is used to calibrate an empirical predictive relation for sea wave height whose functional form is a modified version of the classical definition of H_{1/3}. By means of a Markov chain Monte Carlo algorithm we set up a procedure to investigate the inverse problem and to find a set of parameter values for predicting sea wave heights from microseism.
A "hydrokinematic" method of measuring the glide efficiency of a human swimmer.
Naemi, Roozbeh; Sanders, Ross H
2008-12-01
The aim of this study was to develop and test a method of quantifying the glide efficiency, defined as the ability of the body to maintain its velocity over time and to minimize deceleration through a rectilinear glide. The glide efficiency should be determined in a way that accounts for both the inertial and resistive characteristics of the gliding body as well as the instantaneous velocity. A displacement function (parametric curve) was obtained from the equation of motion of the body during a horizontal rectilinear glide. The values of the parameters in the displacement curve that provide the best fit to the displacement-time data of a body during a rectilinear horizontal glide represent the glide factor and the initial velocity of the particular glide interval. The glide factor is a measure of glide efficiency and indicates the ability of the body to minimize deceleration at each corresponding velocity. The glide efficiency depends on the hydrodynamic characteristic of the body, which is influenced by the body's shape as well as by the body's size. To distinguish the effects of size and shape on the glide efficiency, a size-related glide constant and a shape-related glide coefficient were determined as separate entities. The glide factor is the product of these two parameters. The goodness of fit statistics indicated that the representative displacement function found for each glide interval closely represents the real displacement data of a body in a rectilinear horizontal glide. The accuracy of the method was indicated by a relative standard error of calculation of less than 2.5%. Also the method was able to distinguish between subjects in their glide efficiency. It was found that the glide factor increased with decreasing velocity. The glide coefficient also increased with decreasing Reynolds number. The method is sufficiently accurate to distinguish between individual swimmers in terms of their glide efficiency. The separation of glide factor to a size-related glide constant and a shape-related glide coefficient enabled the effect of size and shape to be quantified.
The Korean Prevocalic Palatal Glide: A Comparison with the Russian Glide and Palatalization.
Suh, Yunju; Hwang, Jiwon
2016-01-01
Phonetic studies of the Korean prevocalic glides have often suggested that they are shorter in duration than those of languages like English, and lack a prolonged steady state. In addition, the formant frequencies of the Korean labiovelar glide are reported to be greatly influenced by the following vowel. In this study the Korean prevocalic palatal glide is investigated vis-à-vis the two phonologically similar configurations of another language - the glide /j/ and the secondary palatalization of Russian, with regard to the inherent duration of the glide component, F2 trajectory, vowel-to-glide coarticulation and glide-to-vowel coarticulation. It is revealed that the Korean palatal glide is closer to the Russian palatalization in duration and F2 trajectory, indicating a lack of steady state, and to the Russian segmental glide in the vowel-to-glide coarticulation degree. When the glide-to-vowel coarticulation is considered, the Korean palatal glide is distinguished from both Russian categories. The results suggest that both the Korean palatal glide and the Russian palatalization involve significant articulatory overlap, the former with the vowel and the latter with the consonant. Phonological implications of such a difference in coarticulation pattern are discussed, as well as the comparison between the Korean labiovelar and palatal glides. © 2016 S. Karger AG, Basel.
Locating Microseism Sources Using Spurious Arrivals in Intercontinental Noise Correlations
NASA Astrophysics Data System (ADS)
Retailleau, Lise; Boué, Pierre; Stehly, Laurent; Campillo, Michel
2017-10-01
The accuracy of Green's functions retrieved from seismic noise correlations in the microseism frequency band is limited by the uneven distribution of microseism sources at the surface of the Earth. As a result, correlation functions are often biased as compared to the expected Green's functions, and they can include spurious arrivals. These spurious arrivals are seismic arrivals that are visible on the correlation and do not belong to the theoretical impulse response. In this article, we propose to use Rayleigh wave spurious arrivals detected on correlation functions computed between European and United States seismic stations to locate microseism sources in the Atlantic Ocean. We perform a slant stack on a time distance gather of correlations obtained from an array of stations that comprises a regional deployment and a distant station. The arrival times and the apparent slowness of the spurious arrivals lead to the location of their source, which is obtained through a grid search procedure. We discuss improvements in the location through this methodology as compared to classical back projection of microseism energy. This method is interesting because it only requires an array and a distant station on each side of an ocean, conditions that can be met relatively easily.
NASA Astrophysics Data System (ADS)
Juretzek, Carina; Hadziioannou, Céline
2014-05-01
Our knowledge about common and different origins of Love and Rayleigh waves observed in the microseism band of the ambient seismic noise field is still limited, including the understanding of source locations and source mechanisms. Multi-component array methods are suitable to address this issue. In this work we use a 3-component beamforming algorithm to obtain source directions and polarization states of the ambient seismic noise field within the primary and secondary microseism bands recorded at the Gräfenberg array in southern Germany. The method allows to distinguish between different polarized waves present in the seismic noise field and estimates Love and Rayleigh wave source directions and their seasonal variations using one year of array data. We find mainly coinciding directions for the strongest acting sources of both wave types at the primary microseism and different source directions at the secondary microseism.
Performance analysis of jump-gliding locomotion for miniature robotics.
Vidyasagar, A; Zufferey, Jean-Christohphe; Floreano, Dario; Kovač, M
2015-03-26
Recent work suggests that jumping locomotion in combination with a gliding phase can be used as an effective mobility principle in robotics. Compared to pure jumping without a gliding phase, the potential benefits of hybrid jump-gliding locomotion includes the ability to extend the distance travelled and reduce the potentially damaging impact forces upon landing. This publication evaluates the performance of jump-gliding locomotion and provides models for the analysis of the relevant dynamics of flight. It also defines a jump-gliding envelope that encompasses the range that can be achieved with jump-gliding robots and that can be used to evaluate the performance and improvement potential of jump-gliding robots. We present first a planar dynamic model and then a simplified closed form model, which allow for quantification of the distance travelled and the impact energy on landing. In order to validate the prediction of these models, we validate the model with experiments using a novel jump-gliding robot, named the 'EPFL jump-glider'. It has a mass of 16.5 g and is able to perform jumps from elevated positions, perform steered gliding flight, land safely and traverse on the ground by repetitive jumping. The experiments indicate that the developed jump-gliding model fits very well with the measured flight data using the EPFL jump-glider, confirming the benefits of jump-gliding locomotion to mobile robotics. The jump-glide envelope considerations indicate that the EPFL jump-glider, when traversing from a 2 m height, reaches 74.3% of optimal jump-gliding distance compared to pure jumping without a gliding phase which only reaches 33.4% of the optimal jump-gliding distance. Methods of further improving flight performance based on the models and inspiration from biological systems are presented providing mechanical design pathways to future jump-gliding robot designs.
NASA Astrophysics Data System (ADS)
Zhang, Xueling; Zhu, Weiyao; Cai, Qiang; Shi, Yutao; Wu, Xuehong; Jin, Tingxiang; Yang, Lianzhi; Song, Hongqing
2018-06-01
Although nano- and micro-scale phenomena for fluid flows are ubiquitous in tight oil reservoirs or in nano- or micro-sized channels, the mechanisms behind them remain unclear. In this study, we consider the wall-liquid interaction to investigate the flow mechanisms behind a compressible liquid flow in nano- or micro-sized circular tubes. We assume that the liquid is attracted by the wall surface primarily by the Lifshitz-van der Waals (LW) force, whereas electrostatic forces are negligible. The long-range LW force is thus introduced into the Navier-Stokes equations. The nonlinear equations of motion are decoupled by using the hydrodynamic vorticity-stream functions, from which an approximate analytical perturbation solution is obtained. The proposed model considers the LW force and liquid compressibility to obtain the velocity and pressure fields, which are consistent with experimentally observed micro-size effects. A smaller tube radius implies smaller dimensionless velocity, and when the tube radius decreases to a certain radius Rm, a fluid no longer flows, where Rm is the lower limit of the movable-fluid radius. The radius Rm is calculated, and the results are consistent with previous experimental results. These results reveal that micro-size effects are caused by liquid compressibility and wall-liquid interactions, such as the LW force, for a liquid flowing in nano- or micro-sized channels or pores. The attractive LW force enhances the flow's radial resistance, and the liquid compressibility transmits the radial resistance to the streaming direction via volume deformation, thereby decreasing the streaming velocity.
Bahlman, Joseph W.; Swartz, Sharon M.; Riskin, Daniel K.; Breuer, Kenneth S.
2013-01-01
Gliding is an efficient form of travel found in every major group of terrestrial vertebrates. Gliding is often modelled in equilibrium, where aerodynamic forces exactly balance body weight resulting in constant velocity. Although the equilibrium model is relevant for long-distance gliding, such as soaring by birds, it may not be realistic for shorter distances between trees. To understand the aerodynamics of inter-tree gliding, we used direct observation and mathematical modelling. We used videography (60–125 fps) to track and reconstruct the three-dimensional trajectories of northern flying squirrels (Glaucomys sabrinus) in nature. From their trajectories, we calculated velocities, aerodynamic forces and force coefficients. We determined that flying squirrels do not glide at equilibrium, and instead demonstrate continuously changing velocities, forces and force coefficients, and generate more lift than needed to balance body weight. We compared observed glide performance with mathematical simulations that use constant force coefficients, a characteristic of equilibrium glides. Simulations with varying force coefficients, such as those of live squirrels, demonstrated better whole-glide performance compared with the theoretical equilibrium state. Using results from both the observed glides and the simulation, we describe the mechanics and execution of inter-tree glides, and then discuss how gliding behaviour may relate to the evolution of flapping flight. PMID:23256188
Bahlman, Joseph W; Swartz, Sharon M; Riskin, Daniel K; Breuer, Kenneth S
2013-03-06
Gliding is an efficient form of travel found in every major group of terrestrial vertebrates. Gliding is often modelled in equilibrium, where aerodynamic forces exactly balance body weight resulting in constant velocity. Although the equilibrium model is relevant for long-distance gliding, such as soaring by birds, it may not be realistic for shorter distances between trees. To understand the aerodynamics of inter-tree gliding, we used direct observation and mathematical modelling. We used videography (60-125 fps) to track and reconstruct the three-dimensional trajectories of northern flying squirrels (Glaucomys sabrinus) in nature. From their trajectories, we calculated velocities, aerodynamic forces and force coefficients. We determined that flying squirrels do not glide at equilibrium, and instead demonstrate continuously changing velocities, forces and force coefficients, and generate more lift than needed to balance body weight. We compared observed glide performance with mathematical simulations that use constant force coefficients, a characteristic of equilibrium glides. Simulations with varying force coefficients, such as those of live squirrels, demonstrated better whole-glide performance compared with the theoretical equilibrium state. Using results from both the observed glides and the simulation, we describe the mechanics and execution of inter-tree glides, and then discuss how gliding behaviour may relate to the evolution of flapping flight.
Seasonality of P wave microseisms from NCF-based beamforming using ChinArray
NASA Astrophysics Data System (ADS)
Wang, Weitao; Gerstoft, Peter; Wang, Baoshan
2018-06-01
Teleseismic P wave microseisms produce interference signals with high apparent velocity in noise cross-correlation functions (NCFs). Sources of P wave microseisms can be located with NCFs from seismic arrays. Using the vertical-vertical component NCFs from a large-aperture array in southwestern China (ChinArray), we studied the P wave source locations and their seasonality of microseisms at two period bands (8-12 and 4-8 s) with an NCF-based beamforming method. The sources of P, PP and PKPbc waves are located. The ambiguity between P and PP source locations is analysed using averaged significant ocean wave height and sea surface pressure as constraints. The results indicate that the persistent P wave sources are mainly located in the deep oceans such as the North Atlantic, North Pacific and Southern Ocean, in agreement with previous studies. The Gulf of Alaska is found to generate P waves favouring the 8-12 s period band. The seasonality of P wave sources is consistent with the hemispheric storm pattern, which is stronger in local winter. Using the identified sources, arrival times of the interference signals are predicted and agree well with observations. The interference signals exhibit seasonal variation, indicating that body wave microseisms in southwestern China are from multiple seasonal sources.
Global dynamics of non-equilibrium gliding in animals.
Yeaton, Isaac J; Socha, John J; Ross, Shane D
2017-03-17
Gliding flight-moving horizontally downward through the air without power-has evolved in a broad diversity of taxa and serves numerous ecologically relevant functions such as predator escape, expanding foraging locations, and finding mates, and has been suggested as an evolutionary pathway to powered flight. Historically, gliding has been conceptualized using the idealized conditions of equilibrium, in which the net aerodynamic force on the glider balances its weight. While this assumption is appealing for its simplicity, recent studies of glide trajectories have shown that equilibrium gliding is not the norm for most species. Furthermore, equilibrium theory neglects the aerodynamic differences between species, as well as how a glider can modify its glide path using control. To investigate non-equilibrium glide behavior, we developed a reduced-order model of gliding that accounts for self-similarity in the equations of motion, such that the lift and drag characteristics alone determine the glide trajectory. From analysis of velocity polar diagrams of horizontal and vertical velocity from several gliding species, we find that pitch angle, the angle between the horizontal and chord line, is a control parameter that can be exploited to modulate glide angle and glide speed. Varying pitch results in changing locations of equilibrium glide configurations in the velocity polar diagram that govern passive glide dynamics. Such analyses provide a new mechanism of interspecies comparison and tools to understand experimentally-measured kinematics data and theory. In addition, this analysis suggests that the lift and drag characteristics of aerial and aquatic autonomous gliders can be engineered to passively alter glide trajectories with minimal control effort.
Time lapse photography as an approach to understanding glide avalanche activity
Hendrikx, Jordy; Peitzsch, Erich H.; Fagre, Daniel B.
2012-01-01
Avalanches resulting from glide cracks are notoriously difficult to forecast, but are a recurring problem for numerous avalanche forecasting programs. In some cases glide cracks are observed to open and then melt away in situ. In other cases, they open and then fail catastrophically as large, full-depth avalanches. Our understanding and management of these phenomena are currently limited. It is thought that an increase in the rate of snow gliding occurs prior to full-depth avalanche activity so frequent observation of glide crack movement can provide an index of instability. During spring 2011 in Glacier National Park, Montana, USA, we began an approach to track glide crack avalanche activity using a time-lapse camera focused on a southwest facing glide crack. This crack melted in-situ without failing as a glide avalanche, while other nearby glide cracks on north through southeast aspects failed. In spring 2012, a camera was aimed at a large and productive glide crack adjacent to the Going to the Sun Road. We captured three unique glide events in the field of view. Unfortunately, all of them either failed very quickly, or during periods of obscured view, so measurements of glide rate could not be obtained. However, we compared the hourly meteorological variables during the period of glide activity to the same variables prior to glide activity. The variables air temperature, relative humidity, air pressure, incoming and reflected long wave radiation, SWE, total precipitation, and snow depth were found to be statistically different for our cases examined. We propose that these are some of the potential precursors for glide avalanche activity, but do urge caution in their use, due to the simple approach and small data set size. It is hoped that by introducing a workable method to easily record glide crack movement, combined with ongoing analysis of the associated meteorological data, we will improve our understanding of when, or if, glide avalanche activity will ensue.
NASA Astrophysics Data System (ADS)
Anthony, R. E.; Aster, R. C.; Rowe, C. A.
2016-12-01
The Earth's seismic noise spectrum features two globally ubiquitous peaks near 8 and 16 s periods (secondary and primary bands) that arise when storm-generated ocean gravity waves are converted to seismic energy, predominantly into Rayleigh waves. Because of its regionally integrative nature, microseism intensity and other seismographic data from long running sites can provide useful proxies for wave state. Expanding an earlier study of global microseism trends (Aster et al., 2010), we analyze digitally-archived, up-to-date (through late 2016) multi-decadal seismic data from stations of global seismographic networks to characterize the spatiotemporal evolution of wave climate over the past >20 years. The IRIS Noise Tool Kit (Bahavair et al., 2013) is used to produce ground motion power spectral density (PSD) estimates in 3-hour overlapping time series segments. The result of this effort is a longer duration and more broadly geographically distributed PSD database than attained in previous studies, particularly for the primary microseism band. Integrating power within the primary and secondary microseism bands enables regional characterization of spatially-integrated trends in wave states and storm event statistics of varying thresholds. The results of these analyses are then interpreted within the context of recognized modes of atmospheric variability, including the particularly strong 2015-2016 El Niño. We note a number of statistically significant increasing trends in both raw microseism power and storm activity occurring at multiple stations in the Northwest Atlantic and Southeast Pacific consistent with generally increased wave heights and storminess in these regions. Such trends in wave activity have the potential to significantly influence coastal environments particularly under rising global sea levels.
NASA Astrophysics Data System (ADS)
Donne, S.; Bean, C. J.; Lokmer, I.; Lambkin, K.; Creamer, C.
2012-12-01
Ocean gravity waves are driven by atmospheric pressure systems. Their interactions with one another and reflection off coastlines generate pressure changes at the sea floor. These pressure fluctuations are the cause of continuous background seismic noise known as microseisms. The levels of microseism activity vary as a function of the sea state and increase during periods of intensive ocean wave activity. In 2011 a seismic network was deployed along the west coast of Ireland to continuously record microseisms generated in the Atlantic Ocean, as part of the Wave Observation (WaveObs) project based in University College Dublin. This project aims to determine the characteristics of the causative ocean gravity waves through calibration of the microseism data with ocean buoy data. In initial tests we are using a Backpropagation Feed-forward Artificial Neural Network (BP ANN) to establish the underlying relationships between microseisms and ocean waves. ANNs were originally inspired by studies of the mammalian brain and nervous system and are designed to learn by example. If successful these tools could then be used to estimate ocean wave heights and wave periods using a land-based seismic network and complement current wave observations being made offshore by marine buoys. Preliminary ANN results are promising with the network successfully able to reconstruct trends in ocean wave heights and periods. Microseisms can provide significant information about oceanic processes. With a deeper understanding of how these processes work there is potential for 1) locating and tracking the evolution of the largest waves in the Atlantic and 2) reconstructing the wave climate off the west coast of Ireland using legacy seismic data on a longer time scale than is currently available using marine based observations.
Observation of Snow cover glide on Sub-Alpine Coniferous Forests in Mount Zao, Northeastern Japan
NASA Astrophysics Data System (ADS)
Sasaki, A.; Suzuki, K.
2017-12-01
This is the study to clarify the snow cover glide behavior in the sub-alpine coniferous forests on Mount Zao, Northeastern Japan, in the winter of 2014-2015. We installed the glide-meter which is sled type, and measured the glide motion on the slope of Abies mariesii forest and its surrounding slope. In addition, we observed the air temperature, snow depth, density of snow, and snow temperature to discuss relationship between weather conditions and glide occurrence. The snow cover of the 2014-15 winter started on November 13th and disappeared on April 21st. The maximum snow depth was 242 cm thick, it was recorded at February 1st. The snow cover glide in the surrounding slope was occurred first at February 10th, although maximum snow depth recorded on February 1st. The glide motion in the surrounding slope is continuing and its velocity was 0.4 cm per day. The glide in the surrounding slope stopped at March 16th. The cumulative amount of the glide was 21.1 cm. The snow cover glide in the A. mariesii forest was even later occurred first at February 21st. The glide motion of it was intermittent and extremely small. On sub-alpine zone of Mount Zao, snow cover glide intensity is estimated to be 289 kg/m2 on March when snow water equivalent is maximum. At same period, maximum snow cover glide intensity is estimated to be about 1000 kg/m2 at very steep slopes where the slope angle is about 35 degree. Although potential of snow cover glide is enough high, the snow cover glide is suppressed by stem of A. mariesii trees, in the sub-alpine coniferous forest.
Anthony, Robert E.; Ringler, Adam; Wilson, David
2018-01-01
During the winter of 2014, a weak polar vortex brought record cold temperatures to the north‐central (“Midwest”) United States, and the Great Lakes reached the highest extent of ice coverage (92.5%) since 1979. This event shut down the generation of seismic signals caused by wind‐driven wave action within the lakes (termed “lake microseisms”), giving an unprecedented opportunity to isolate and characterize these novel signals through comparison with nonfrozen time periods. Using seismic records at 72 broadband stations, we observe Great Lakes microseism signals at distances >300 km from the lakes. In contrast to conventional oceanic microseisms, there is no clear relationship between the frequency content of the seismic signals (observed from ~0.5–5‐s period) and the dominant swell period or resonance periods of the lakes based on their bathymetric profiles. Thus, the exact generation mechanism is not readily explained by conventional microseism theory and warrants further investigation.
NASA Astrophysics Data System (ADS)
Tanimoto, Toshiro; Hadziioannou, Céline; Igel, Heiner; Wasserman, Joachim; Schreiber, Ulrich; Gebauer, André
2015-04-01
Using a colocated ring laser and an STS-2 seismograph, we estimate the ratio of Rayleigh-to-Love waves in the secondary microseism at Wettzell, Germany, for frequencies between 0.13 and 0.30 Hz. Rayleigh wave surface acceleration was derived from the vertical component of STS-2, and Love wave surface acceleration was derived from the ring laser. Surface wave amplitudes are comparable; near the spectral peak about 0.22 Hz, Rayleigh wave amplitudes are about 20% higher than Love wave amplitudes, but outside this range, Love wave amplitudes become higher. In terms of the kinetic energy, Rayleigh wave energy is about 20-35% smaller on average than Love wave energy. The observed secondary microseism at Wettzell thus consists of comparable Rayleigh and Love waves but contributions from Love waves are larger. This is surprising as the only known excitation mechanism for the secondary microseism, described by Longuet-Higgins (1950), is equivalent to a vertical force and should mostly excite Rayleigh waves.
Micro-sized microbial fuel cell: a mini-review.
Wang, Hsiang-Yu; Bernarda, Angela; Huang, Chih-Yung; Lee, Duu-Jong; Chang, Jo-Shu
2011-01-01
This review presents the development of micro-sized microbial fuel cells (including mL-scale and μL-scale setups), with summarization of their advantageous characteristics, fabrication methods, performances, potential applications and possible future directions. The performance of microbial fuel cells (MFCs) is affected by issues such as mass transport, reaction kinetics and ohmic resistance. These factors are manipulated in micro-sized MFCs using specially allocated electrodes constructed with specified materials having physically or chemically modified surfaces. Both two-chamber and air-breathing cathodes are promising configurations for mL-scale MFCs. However, most of the existing μL-scale MFCs generate significantly lower volumetric power density compared with their mL-counterparts because of the high internal resistance. Although μL-scale MFCs have not yet to provide sufficient power for operating conventional equipment, they show great potential in rapid screening of electrochemically microbes and electrode performance. Additional possible applications and future directions are also provided for the development of micro-sized MFCs. Copyright © 2010 Elsevier Ltd. All rights reserved.
Pyle, Moira L.; Koper, Keith D.; Euler, Garrett G.; ...
2015-04-20
We investigate source locations of P-wave microseisms within a narrow frequency band (0.67–1.33 Hz) that is significantly higher than the classic microseism band (~0.05–0.3 Hz). Employing a backprojection method, we analyze data recorded during January 2010 from five International Monitoring System arrays that border the Pacific Ocean. We develop a ranking scheme that allows us to combine beam power from multiple arrays to obtain robust locations of the microseisms. Some individual arrays exhibit a strong regional component, but results from the combination of all arrays show high-frequency P wave energy emanating from the North Pacific basin, in general agreement withmore » previous observations in the double-frequency (DF) microseism band (~0.1–0.3 Hz). This suggests that the North Pacific source of ambient P noise covers a broad range of frequencies and that the wave-wave interaction model is likely valid at shorter periods.« less
The descent of ant: field-measured performance of gliding ants.
Munk, Yonatan; Yanoviak, Stephen P; Koehl, M A R; Dudley, Robert
2015-05-01
Gliding ants avoid predatory attacks and potentially mortal consequences of dislodgement from rainforest canopy substrates by directing their aerial descent towards nearby tree trunks. The ecologically relevant measure of performance for gliding ants is the ratio of net horizontal to vertical distance traveled over the course of a gliding trajectory, or glide index. To study variation in glide index, we measured three-dimensional trajectories of Cephalotes atratus ants gliding in natural rainforest habitats. We determined that righting phase duration, glide angle, and path directness all significantly influence variation in glide index. Unsuccessful landing attempts result in the ant bouncing off its target and being forced to make a second landing attempt. Our results indicate that ants are not passive gliders and that they exert active control over the aerodynamic forces they experience during their descent, despite their apparent lack of specialized control surfaces. © 2015. Published by The Company of Biologists Ltd.
Simulation for F.C.C. deformation texture by modified pencil glide theory[Face Centered Cubic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masui, H.
1999-11-26
Inspired by the pencil glide theory for b.c.c. metal, modified pencil glide theory for f.c.c. metal was proposed, dividing the 12 glide systems of f.c.c. metal into three groups individually composed of eight {l{underscore}brace}111{r{underscore}brace}{l{underscore}angle}110{r{underscore}angle} glide systems around the principal axes X[100], Y[010] and Z[001]. These assumptions yielded two mathematical solutions {Omega}(3) and {Omega}(1). In {Omega}(3), from the three groups with four complete conjugated glide systems composed of, respectively, two glide systems of common {l{underscore}angle}110{r{underscore}angle} direction, only one group with the maximum plastic work may operate if the requirements are satisfied, otherwise glide systems in {Omega}(1) where one of the fourmore » conjugated glide systems is zero are activated. The model considering the 12 glide systems of f.c.c. as a whole explained many experimentally stable orientations in axisymmetric and rolling deformation. The differences between the two pencil glide theories for b.c.c. and f.c.c. are also discussed with data.« less
A practitioner's tool for assessing glide crack activity
Hendrikx, Jordy; Peitzsch, Erich H.; Fagre, Daniel B.
2010-01-01
Glide cracks can result in full-depth glide avalanche release. Avalanches from glide cracks are notoriously difficult to forecast, but are a reoccurring problem in a number of different avalanche forecasting programs across a range of snow climates. Despite this, there is no consensus for how to best manage, mitigate, or even observe glide cracks and the potential resultant avalanche activity. It is thought that an increase in the rate of snow gliding occurs prior to full-depth avalanche activity, so frequent measuring of glide crack movement provides an index of instability. Therefore, a comprehensive avalanche program with glide crack avalanche activity, should at the least, undertake some form of direct monitoring of glide crack movement. In this paper we present a simple, cheap and repeatable method to track glide crack activity using a series of stakes, reflectors and a laser rangefinder (LaserTech TruPulse360B) linked to a GPS (Trimble Geo XH). We tested the methodology in April 2010, on a glide crack above the Going to the Sun Road in Glacier National Park, Montana, USA. This study suggests a new method to better track the development and movement of glide cracks. It is hoped that by introducing a workable method to easily record glide crack movement, avalanche forecasters will improve their understanding of when, or if, avalanche activity will ensue. Our initial results suggest that these new observations, when combined with local micrometeorological data will result in improved process understanding and forecasting of these phenomena.
NASA Astrophysics Data System (ADS)
Guiffard, B.; Seveno, R.
2015-01-01
In this study, we report the magnetically induced electric field E 3 in Pb(Zr0.57Ti0.43)O3 (PZT) thin films, when they are subjected to both dynamic magnetic induction (magnitude B ac at 45 kHz) and static magnetic induction ( B dc) generated by a coil and a single permanent magnet, respectively. It is found that highest sensitivity to B dc——is achieved for the thin film with largest effective electrode. This magnetoelectric (ME) effect is interpreted in terms of coupling between eddy current-induced Lorentz forces (stress) in the electrodes of PZT and piezoelectricity. Such coupling was evidenced by convenient modelling of experimental variations of electric field magnitude with both B ac and B dc induction magnitudes, providing imperfect open circuit condition was considered. Phase angle of E 3 versus B dc could also be modelled. At last, the results show that similar to multilayered piezoelectric-magnetostrictive composite film, a PZT thin film made with a simple manufacturing process can behave as a static or dynamic magnetic field sensor. In this latter case, a large ME voltage coefficient of under B dc = 0.3 T was found. All these results may provide promising low-cost magnetic energy harvesting applications with microsized systems.
Where do ocean microseisms come from? A study of Love-to-Rayleigh wave ratios
NASA Astrophysics Data System (ADS)
Juretzek, C.; Hadziioannou, C.
2016-09-01
Our knowledge of the origin of Love waves in the ambient seismic noise is extremely limited. This applies in particular to constraints on source locations and source mechanisms for Love waves in the secondary microseism. Here three-component beamforming is used to distinguish between the differently polarized wave types in the primary and secondary microseismic noise fields, recorded at several arrays across Europe. We compare characteristics of Love and Rayleigh wave noise, such as source directions and frequency content, measure Love to Rayleigh wave ratios for different back azimuths, and look at the seasonal behavior of our measurements by using a full year of data in 2013. The beamforming results confirm previous observations that back azimuths for Rayleigh and Love waves in both microseismic bands mainly coincide. However, we observe differences in relative directional noise strength between both wave types for the primary microseism. At those frequencies, Love waves dominate on average, with kinetic Love-to-Rayleigh energy ratios ranging from 0.6 to 2.0. In the secondary microseism, the ratios are lower, between 0.4 and 1.2. The wave type ratio is directionally homogeneous, except for locations far from the coast. In the primary microseism, our results support the existence of different generation mechanisms. The contribution of a shear traction-type source mechanism is likely.
Uncovering the Mystery of Gliding Motility in the Myxobacteria
Nan, Beiyan; Zusman, David R.
2012-01-01
Bacterial gliding motility is the smooth movement of cells on solid surfaces unaided by flagella or pili. Many diverse groups of bacteria exhibit gliding, but the mechanism of gliding motility has remained a mystery since it was first observed more than a century ago. Recent studies on the motility of Myxococcus xanthus, a soil myxobacterium, suggest a likely mechanism for gliding in this organism. About forty M. xanthus genes were shown to be involved in gliding motility, and some of their protein products were labeled and localized within cells. These studies suggest that gliding motility in M. xanthus involves large multiprotein structural complexes, regulatory proteins, and cytoskeletal filaments. In this review, we summarize recent experiments that provide the basis for this emerging view of M. xanthus motility. We also discuss alternative models for gliding. PMID:21910630
Soil erosion by snow gliding - a first quantification attempt in a subalpine area in Switzerland
NASA Astrophysics Data System (ADS)
Meusburger, K.; Leitinger, G.; Mabit, L.; Mueller, M. H.; Walter, A.; Alewell, C.
2014-09-01
Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as a soil erosion agent for four different land use/land cover types in a subalpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide depositions, the fallout radionuclide 137Cs and modelling with the Revised Universal Soil Loss Equation (RUSLE). RUSLE permits the evaluation of soil loss by water erosion, the 137Cs method integrates soil loss due to all erosion agents involved, and the measurement of snow glide deposition sediment yield can be directly related to snow-glide-induced erosion. Further, cumulative snow glide distance was measured for the sites in the winter of 2009/2010 and modelled for the surrounding area and long-term average winter precipitation (1959-2010) with the spatial snow glide model (SSGM). Measured snow glide distance confirmed the presence of snow gliding and ranged from 2 to 189 cm, with lower values on the north-facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected and ongoing land use changes in the Alps. Snow glide erosion estimated from the snow glide depositions was highly variable with values ranging from 0.03 to 22.9 t ha-1 yr-1 in the winter of 2012/2013. For sites affected by snow glide deposition, a mean erosion rate of 8.4 t ha-1 yr-1 was found. The difference in long-term erosion rates determined with RUSLE and 137Cs confirms the constant influence of snow-glide-induced erosion, since a large difference (lower proportion of water erosion compared to total net erosion) was observed for sites with high snow glide rates and vice versa. Moreover, the difference between RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2 = 0.64; p < 0.005) and to the snow deposition sediment yields (R2 = 0.39; p = 0.13). The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding appears to be a crucial and non-negligible process impacting soil erosion patterns and magnitude in subalpine areas with similar topographic and climatic conditions.
Micro-Sized Enterprises, Innovation and Universities: A Welsh Perspective
ERIC Educational Resources Information Center
Jones, Paul; Patz, Ralf; Thomas, Brychan; McCarthy, Simon
2014-01-01
This study considers the linkage between micro-sized enterprises and other organizations, especially universities, in relation to the innovation process. The focus of the research is on non-start-up enterprises in Wales and how they develop their products. The research methodology adopted is a thematic literature review and the case study…
NASA Astrophysics Data System (ADS)
van Herwijnen, Alec; Failletaz, Jerome; Berhod, Nicole; Mitterer, Christoph
2013-04-01
Glide avalanches occur when the entire snowpack glides over the ground until an avalanche releases. These avalanches are difficult to forecast since the gliding process can take place over a few hours up to several weeks or months. The presence of liquid water at the interface between the snow cover and the ground surface is of primary importance as it reduces frictional support. Glide avalanches are often preceded by the opening of a tensile crack in the snow cover, called a glide crack. Past research has shown that glide crack opening accelerates prior to avalanche release. During the winter of 2012-2013, we monitored glide crack expansion using time-lapse photography in combination with a seismic sensor and two heat flux sensors on a slope with well documented glide avalanche activity in the Eastern Swiss Alps above Davos, Switzerland. To track changes in glide rates, the number of dark pixels in an area around the glide crack is counted in each image. Using this technique, we observed an increase in glide rates prior to avalanche release. Since the field site is located very close to the town of Davos, the seismic data was very noisy. Nevertheless, the accelerated snow gliding observed in the time-lapse images coincided with increased seismic activity. Overall, these results show that a combination of time-lapse photography with seismic monitoring could provide valuable insight into glide avalanche release. Recordings of the heat flux plates show that the energy input from the soil is fairly small and constant throughout the observed period. The results suggest that ground heat flux is a minor contributor to the water production at the snow-soil interface. Instead, the presence of water at the base of the snowpack is probably due to a strong hydraulic pressure gradient at the snow-soil interface.
Direction dependent Love and Rayleigh wave noise characteristics using multiple arrays across Europe
NASA Astrophysics Data System (ADS)
Juretzek, Carina; Perleth, Magdalena; Hadziioannou, Celine
2016-04-01
Seismic noise has become an important signal source for tomography and monitoring purposes. Better understanding of the noise field characteristics is crucial to further improve noise applications. Our knowledge about common and different origins of Love and Rayleigh waves in the microseism band is still limited. This applies in particular for constraints on source locations and source mechanisms of Love waves. Here, 3-component beamforming is used to distinguish between the different polarized wave types in the primary and secondary microseism noise field recorded at several arrays across Europe. We compare characteristics of Love and Rayleigh wave noise, such as source directions and frequency content. Further, Love to Rayleigh wave ratios are measured and a dependence on direction is found, especially in the primary microseism band. Estimates of the kinetic energy density ratios propose a dominance of coherent Love waves in the primary, but not in the secondary microseism band. The seasonality of the noise field characteristics is examined by using a full year of data in 2013 and is found to be stable.
Sialylated Receptor Setting Influences Mycoplasma pneumoniae Attachment and Gliding Motility.
Williams, Caitlin R; Chen, Li; Driver, Ashley D; Arnold, Edward A; Sheppard, Edward S; Locklin, Jason; Krause, Duncan C
2018-06-08
Mycoplasma pneumoniae is a common cause of human respiratory tract infections, including bronchitis and atypical pneumonia. M. pneumoniae binds glycoprotein receptors having terminal sialic acid residues via the P1 adhesin protein. Here we explored the impact of sialic acid presentation on M. pneumoniae adherence and gliding on surfaces coated with sialylated glycoproteins, or chemically functionalized with α-2,3- and α-2,6-sialyllactose ligated individually or in combination to a polymer scaffold in precisely controlled densities. In both models, gliding required a higher receptor density threshold than adherence, and receptor density influenced gliding frequency but not gliding speed. However, very high densities of α-2,3-sialyllactose actually reduced gliding frequency over peak levels observed at lower densities. Both α-2,3- and α-2,6-sialyllactose supported M. pneumoniae adherence, but gliding was only observed on the former. Finally, gliding on α-2,3-sialyllactose was inhibited on surfaces also conjugated with α-2,6-sialyllactose, suggesting that both moieties bind P1 despite the inability of the latter to support gliding. Our results indicate that the nature and density of host receptor moieties profoundly influences M. pneumoniae gliding, which could affect pathogenesis and infection outcome. Furthermore, precise functionalization of polymer scaffolds shows great promise for further analysis of sialic acid presentation and M. pneumoniae adherence and gliding. This article is protected by copyright. All rights reserved. © 2018 John Wiley & Sons Ltd.
A Comparison of Glide Force Characteristics Between 2 Prefilled Insulin Lispro Pens
Lennartz, Amanda H.; Ignaut, Debra A.
2015-01-01
Background: Glide force, average glide force, and glide force variability of the insulin lispro 200 units/mL pen (Eli Lilly and Company, Indianapolis, IN, USA) were compared to the Humalog® KwikPen® 100 units/mL pen (hereafter, KwikPen; Eli Lilly and Company, Indianapolis, IN, USA). Methods: Data were collected on 2 doses, 2 injection speeds, and 2 needle types. Results: Insulin lispro 200 units/mL pen showed significantly lower maximum glide force, average glide force, and glide force variability than the KwikPen across all combinations of dose size, dose speed, and needle type. Conclusions: The lower glide force observed with the insulin lispro 200 units/mL pen offers another treatment option for patients with type 1 or type 2 diabetes who require greater than 20 units of mealtime insulin daily. PMID:25591858
Gliding Motility of Babesia bovis Merozoites Visualized by Time-Lapse Video Microscopy
Asada, Masahito; Goto, Yasuyuki; Yahata, Kazuhide; Yokoyama, Naoaki; Kawai, Satoru; Inoue, Noboru; Kaneko, Osamu; Kawazu, Shin-ichiro
2012-01-01
Background Babesia bovis is an apicomplexan intraerythrocytic protozoan parasite that induces babesiosis in cattle after transmission by ticks. During specific stages of the apicomplexan parasite lifecycle, such as the sporozoites of Plasmodium falciparum and tachyzoites of Toxoplasma gondii, host cells are targeted for invasion using a unique, active process termed “gliding motility”. However, it is not thoroughly understood how the merozoites of B. bovis target and invade host red blood cells (RBCs), and gliding motility has so far not been observed in the parasite. Methodology/Principal Findings Gliding motility of B. bovis merozoites was revealed by time-lapse video microscopy. The recorded images revealed that the process included egress of the merozoites from the infected RBC, gliding motility, and subsequent invasion into new RBCs. The gliding motility of B. bovis merozoites was similar to the helical gliding of Toxoplasma tachyzoites. The trails left by the merozoites were detected by indirect immunofluorescence assay using antiserum against B. bovis merozoite surface antigen 1. Inhibition of gliding motility by actin filament polymerization or depolymerization indicated that the gliding motility was driven by actomyosin dependent process. In addition, we revealed the timing of breakdown of the parasitophorous vacuole. Time-lapse image analysis of membrane-stained bovine RBCs showed formation and breakdown of the parasitophorous vacuole within ten minutes of invasion. Conclusions/Significance This is the first report of the gliding motility of B. bovis. Since merozoites of Plasmodium parasites do not glide on a substrate, the gliding motility of B. bovis merozoites is a notable finding. PMID:22506073
Ecological and biomechanical insights into the evolution of gliding in mammals.
Byrnes, Greg; Spence, Andrew J
2011-12-01
Gliding has evolved independently at least six times in mammals. Multiple hypotheses have been proposed to explain the evolution of gliding. These include the evasion of predators, economical locomotion or foraging, control of landing forces, and habitat structure. Here we use a combination of comparative methods and ecological and biomechanical data collected from free-ranging animals to evaluate these hypotheses. Our comparative data suggest that the origins of gliding are often associated with shifts to low-quality diets including leaves and plant exudates. Further, data from free-ranging colugos suggest that although gliding is not more energetically economical than moving through the canopy, it is much faster, allowing shorter times of transit between foraging patches and therefore more time available to forage in a given patch. In addition to moving quickly, gliding mammals spend only a small fraction of their overall time engaged in locomotion, likely offsetting its high cost. Kinetic data for both take-off and landing suggest that selection on these behaviors could also have shaped the evolution of gliding. Glides are initiated by high-velocity leaps that are potentially effective in evading arboreal predators. Further, upon landing, the ability to control aerodynamic forces and reduce velocity prior to impact is likely key to extending distances of leaps or glides while reducing the likelihood of injury. It is unlikely that any one of these hypotheses exclusively explains the evolution of gliding, but by examining gliding in multiple groups of extant animals in ecological and biomechanical contexts, new insights into the evolution of gliding can be gained.
NASA Astrophysics Data System (ADS)
Guo, Z.; Aydin, A.; Xue, M.
2017-12-01
This research presents the power spectral density (PSD) of double-frequency (DF) microseisms in both vertical (V) and resultant horizontal (H) directions and horizontal-to-vertical spectral ratios (HVSR) of 13 continuous single point long-term ambient noise recordings (LTR) at 5 inland and 2 coastal locations selected in Mississippi Embayment, and frequency value and PSD at DF peak (PSD@DF), predominant frequency (f0) and HVSR value at f0 (HVSR@f0) at 234 single point short-term ambient noise recordings (STR) over a large range of unconsolidated sediment thickness (UST) in Northern Mississippi. By correlating PSD of LTRs with the simultaneous ocean wave climate data of Atlantic Ocean and Gulf of Mexico, DF microseisms observed in Northern Mississippi were shown to be shaped by a combined impact of wave climates of both Atlantic Ocean and Gulf of Mexico. Polarization analysis conducted separately for LTRs and STRs strengthen this conclusion. The LTRs show stable estimates of f0, on the other hand, time-dependent variations on HVSR@f0 value. The plots of DFH-UST, rather than DFV-UST, coincide well with plots of f0-UST within area where UST is larger than 300 m, which indicates that the shear wave resonance in thick sediments modifies the DF microseisms more obviously in horizontal direction than in vertical direction. Transfer functions between HVSR@f0 and ocean data indicates that the variation of HVSR@f0 is caused by variations of source location and energy level of DF microseisms, i.e. ocean wave activities in Atlantic Ocean and Gulf of Mexico. Additionally, 3D microseism spectra of each LTR and those of all STRs within each 100 m-UST group are converted into spatial spectral vectors and projected on stereographic nets. Patterns of the clusters formed by these projections show that the HVSR@f0 values are related to both UST and vibration source location and energy level.
New model of flap-gliding flight.
Sachs, Gottfried
2015-07-21
A new modelling approach is presented for describing flap-gliding flight in birds and the associated mechanical energy cost of travelling. The new approach is based on the difference in the drag characteristics between flapping and non-flapping due to the drag increase caused by flapping. Thus, the possibility of a gliding flight phase, as it exists in flap-gliding flight, yields a performance advantage resulting from the decrease in the drag when compared with continuous flapping flight. Introducing an appropriate non-dimensionalization for the mathematical relations describing flap-gliding flight, results and findings of generally valid nature are derived. It is shown that there is an energy saving of flap-gliding flight in the entire speed range compared to continuous flapping flight. The energy saving reaches the highest level in the lower speed region. The travelling speed of flap-gliding flight is composed of the weighted average of the differing speeds in the flapping and gliding phases. Furthermore, the maximum range performance achievable with flap-gliding flight and the associated optimal travelling speed are determined. Copyright © 2015 Elsevier Ltd. All rights reserved.
Properies of the microseism wave field in Australia from three component array data
NASA Astrophysics Data System (ADS)
Gal, Martin; Reading, Anya; Ellingsen, Simon; Koper, Keith; Burlacu, Relu; Tkalčić, Hrvoje
2016-04-01
In the last two decades, ambient noise studies in the range of 1-20 seconds have predominantly focused on the analysis of source regions for Rayleigh and P waves. The theoretical excitation of these phases is well understood for primary microseisms (direct coupling of gravity waves in sloping shallow bathymetry) and secondary microseisms (wave-wave interaction) and correlates well with observations. For Love waves, the excitation mechanism in the secondary microseism band is to date unknown. It has been shown, that LQ waves can exhibit larger amplitudes than Rg waves for certain frequencies. Therefore detailed analysis of the wave field are necessary to find indications on the generation mechanism. We analyse data from two spiral-shaped arrays located in Australia, the Pilbara Array (PSAR) in the North-West and an array in South Queensland (SQspa) in the East. The two arrays are different in aperture and allow for the study of primary and secondary microseisms with SQspa and higher secondary microseisms with PSAR. We use a deconvolution enhanced beamforming approach, which is based on the CLEAN algorithm. It allows the accurate detection of weaker sources and the estimation of power levels on each component or wave type. For PSAR we evaluate 1 year of data in the frequency range of 0.35-1 Hz and find fundamental and higher mode Rg and LQ waves. For the low end of the frequency range, we find the strongest fundamental mode Rg waves to originate from multiple direction, but confined to coastline reflectors, i.e. coastlines that are perpendicular to the main swell direction, while higher mode Rg waves are mainly generated in the Great Australian Bight. For higher frequencies, the source locations of Rg waves move toward the north coast, which is closest to the array and we see an increase in the Lg phase. The majority of fundamental LQ waves are generated at the west coast of Australia and we find some agreement between low frequency Rg and LQ source locations, which becomes uncorrelated with increasing frequency. For higher mode LQ waves the generation region is in the south-west, where Australia is exposed to direct swells from the Antarctic. In the case of Rg-to-LQ power ratio, we find a frequency and backazimuth dependence. Results from SQspa allow lower frequency arrivals around the primary and secondary microseism peak to be investigated.
Slow earthquakes in microseism frequency band (0.1-2 Hz) off the Kii peninsula
NASA Astrophysics Data System (ADS)
Kaneko, L.; Ide, S.; Nakano, M.
2017-12-01
Slow earthquakes are divided into deep tectonic tremors, very low frequency (VLF) events, and slow slip events (SSE), each of which is observed in a different frequency band. Tremors are observed above 2 Hz, and VLF signals are visible mainly in 0.01-0.05 Hz. It was generally very difficult to find signals of slow underground deformation at frequencies between them, i.e., 0.1-2Hz, where microseism noise is dominant. However, after a Mw 5.9 plate boundary earthquake off the Kii peninsula on April 1st, 2016, sufficiently large signals have been observed in the microseism band, accompanied with signals from active tremors, VLFEs, and SSEs by the ocean bottom seismometer network DONET maintained by JAMSTEC and NIED. This is the first observation of slow earthquakes in the microseism frequency band. Here we report the detection and location of events in this band, and compare them with the spatial and temporal distributions of ordinary tectonic tremors above 2 Hz and VLF events. We used continuous records of 20 broadband seismometers of DONET from April 1st to 12th. We detected events by calculating arrival time differences between stations using an envelope correlation method of Ide (2010). Unlike ordinary applications, we repeated analyses for seismograms bandpass-filtered in four separated frequency bands, 0.1-1, 1-2, 2-4, and 4-8 Hz. For each band, we successfully detected events and determined their hypocenter locations. Many VLF events have also been detected in this region in the frequency band of 0.03-0.05 Hz, with location and focal mechanism using a method of Nakano et al. (2008). In the 0.1-1 Hz microseism band, hypocenters were determined mainly on April 10th, when microseism noises are small and signal amplitudes are quite large. In several time windows, events were detected in all four bands, and located within the 2-sigma error ellipses, with similar source time functions. Sometimes, events were detected in two or three bands, suggesting wide variations of in wave radiation at different frequencies. Although the location errors are not always small enough to confirm the collocation of sources, due to uncertainty in structure, we can confirm seismic wave are radiated in the microseism band from slow earthquake, which is considered as a continuous, broadband, and complicated phenomenon.
Assessing the importance of terrain parameters on glide avalanche release
NASA Astrophysics Data System (ADS)
Peitzsch, E.; Hendrikx, J.; Fagre, D. B.
2013-12-01
Glide snow avalanches are dangerous and difficult to predict. Despite recent research there is still a lack of understanding regarding the controls of glide avalanche release. Glide avalanches often occur in similar terrain or the same locations annually and observations suggest that topography may be critical. Thus, to gain an understanding of the terrain component of these types of avalanches we examined terrain parameters associated with glide avalanche release as well as areas of consistent glide crack formation but no subsequent avalanches. Glide avalanche occurrences visible from the Going-to-the-Sun Road corridor in Glacier National Park, Montana from 2003-2013 were investigated using an avalanche database derived of daily observations each year from April 1 to June 15. This yielded 192 glide avalanches in 53 distinct avalanche paths. Each avalanche occurrence was digitized in a GIS using satellite, oblique, and aerial imagery as reference. Topographical parameters such as area, slope, aspect, elevation and elevation were then derived for the entire dataset utilizing GIS tools and a 10m DEM. Land surface substrate and surface geology were derived from National Park Service Inventory and Monitoring maps and U.S. Geological Survey surface geology maps, respectively. Surface roughness and glide factor were calculated using a four level classification index. . Then, each avalanche occurrence was aggregated to general avalanche release zones and the frequencies were compared. For this study, glide avalanches released in elevations ranging from 1300 to 2700 m with a mean aspect of 98 degrees (east) and a mean slope angle of 38 degrees. The mean profile curvature for all glide avalanches was 0.15 and a plan curvature of -0.01, suggesting a fairly linear surface (i.e. neither convex nor concave). The glide avalanches occurred in mostly bedrock made up of dolomite and limestone slabs and talus deposits with very few occurring in alpine meadows. However, not all glide avalanches failed as cohesive slabs on this bedrock surface. Consequently, surface roughness proved to be a useful descriptive variable to discriminate between slopes that avalanched and those that did not. Annual 'repeat offender' glide avalanche paths were characterized by smooth outcropping rock plates with stratification planes parallel to the slope. Combined with aspect these repeat offenders were also members of the highest glide category. Using this understanding of the role of topographic parameters on glide avalanche activity, a spatial terrain based model was developed to identify other areas with high glide avalanche potential outside of our immediate observation area.
Assessing the importance of terrain parameters on glide avalanche release
Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.
2014-01-01
Glide snow avalanches are dangerous and difficult to predict. Despite recent research there is still a lack of understanding regarding the controls of glide avalanche release. Glide avalanches often occur in similar terrain or the same locations annually and observations suggest that topography may be critical. Thus, to gain an understanding of the terrain component of these types of avalanches we examined terrain parameters associated with glide avalanche release as well as areas of consistent glide crack formation but no subsequent avalanches. Glide avalanche occurrences visible from the Going-to-the-Sun Road corridor in Glacier National Park, Montana from 2003-2013 were investigated using an avalanche database derived of daily observations each year from April 1 to June 15. This yielded 192 glide avalanches in 53 distinct avalanche paths. Each avalanche occurrence was digitized in a GIS using satellite, oblique, and aerial imagery as reference. Topographical parameters such as area, slope, aspect, elevation and elevation were then derived for the entire dataset utilizing GIS tools and a 10m DEM. Land surface substrate and surface geology were derived from National Park Service Inventory and Monitoring maps and U.S. Geological Survey surface geology maps, respectively. Surface roughness and glide factor were calculated using a four level classification index. . Then, each avalanche occurrence was aggregated to general avalanche release zones and the frequencies were compared. For this study, glide avalanches released in elevations ranging from 1300 to 2700 m with a mean aspect of 98 degrees (east) and a mean slope angle of 38 degrees. The mean profile curvature for all glide avalanches was 0.15 and a plan curvature of -0.01, suggesting a fairly linear surface (i.e. neither convex nor concave). The glide avalanches occurred in mostly bedrock made up of dolomite and limestone slabs and talus deposits with very few occurring in alpine meadows. However, not all glide avalanches failed as cohesive slabs on this bedrock surface. Consequently, surface roughness proved to be a useful descriptive variable to discriminate between slopes that avalanched and those that did not. Annual 'repeat offender' glide avalanche paths were characterized by smooth outcropping rock plates with stratification planes parallel to the slope. Combined with aspect these repeat offenders were also members of the highest glide category. Using this understanding of the role of topographic parameters on glide avalanche activity, a spatial terrain based model was developed to identify other areas with high glide avalanche potential outside of our immediate observation area.
Zhu, Yongtao
2013-01-01
The phylum Bacteroidetes is large and diverse, with rapid gliding motility and the ability to digest macromolecules associated with many genera and species. Recently, a novel protein secretion system, the Por secretion system (PorSS), was identified in two members of the phylum, the gliding bacterium Flavobacterium johnsoniae and the nonmotile oral pathogen Porphyromonas gingivalis. The components of the PorSS are not similar in sequence to those of other well-studied bacterial secretion systems. The F. johnsoniae PorSS genes are a subset of the gliding motility genes, suggesting a role for the secretion system in motility. The F. johnsoniae PorSS is needed for assembly of the gliding motility apparatus and for secretion of a chitinase, and the P. gingivalis PorSS is involved in secretion of gingipain protease virulence factors. Comparative analysis of 37 genomes of members of the phylum Bacteroidetes revealed the widespread occurrence of gliding motility genes and PorSS genes. Genes associated with other bacterial protein secretion systems were less common. The results suggest that gliding motility is more common than previously reported. Microscopic observations confirmed that organisms previously described as nonmotile, including Croceibacter atlanticus, “Gramella forsetii,” Paludibacter propionicigenes, Riemerella anatipestifer, and Robiginitalea biformata, exhibit gliding motility. Three genes (gldA, gldF, and gldG) that encode an apparent ATP-binding cassette transporter required for F. johnsoniae gliding were absent from two related gliding bacteria, suggesting that the transporter may not be central to gliding motility. PMID:23123910
Functional anatomy of gliding membrane muscles in the sugar glider (Petaurus breviceps).
Endo, H; Yokokawa, K; Kurohmaru, M; Hayashi, Y
1998-02-01
In order to clarify the morphological adaptation for gliding behavior in the marsupial mammals, the gliding membrane muscles in the sugar glider (Petaurus breviceps) were observed. Unlike the styliform cartilage in flying squirrels, the sugar glider has a well-developed tibiocarpalis muscle in the most lateral area of the gliding membrane. The gliding membrane substantially consists of the humerodorsalis and tibioabdominalis muscle complex. We believe that the thick tibiocarpalis bundle and the humerodorsalis and tibioabdominalis muscle complex may serve as a membrane controller in the gliding behavior. A characteristic thin membranous structure between the cutaneous and deeper muscles was observed. In addition to the direct powerful control exerted by trunk and limb movement, we suggest that indirect power conduction by this thin membranous structure may contribute to gliding membrane control.
Electrolytic plating apparatus for discrete microsized particles
Mayer, Anton
1976-11-30
Method and apparatus are disclosed for electrolytically producing very uniform coatings of a desired material on discrete microsized particles. Agglomeration or bridging of the particles during the deposition process is prevented by imparting a sufficiently random motion to the particles that they are not in contact with a powered cathode for a time sufficient for such to occur.
Electroless plating apparatus for discrete microsized particles
Mayer, Anton
1978-01-01
Method and apparatus are disclosed for producing very uniform coatings of a desired material on discrete microsized particles by electroless techniques. Agglomeration or bridging of the particles during the deposition process is prevented by imparting a sufficiently random motion to the particles that they are not in contact with each other for a time sufficient for such to occur.
Shallow-water seismoacoustic noise generated by tropical storms Ernesto and Florence.
Traer, James; Gerstoft, Peter; Bromirski, Peter D; Hodgkiss, William S; Brooks, Laura A
2008-09-01
Land-based seismic observations of double frequency (DF) microseisms generated during tropical storms Ernesto and Florence are dominated by signals in the 0.15-0.5 Hz band. In contrast, data from sea floor hydrophones in shallow water (70 m depth, 130 km off the New Jersey coast) show dominant signals in the ocean gravity-wave frequency band, 0.02-0.18 Hz, and low amplitudes from 0.18 to 0.3 Hz, suggesting significant opposing wave components necessary for DF microseism generation were negligible at the site. Florence produced large waves over deep water while Ernesto only generated waves in coastal regions, yet both storms produced similar spectra. This suggests near-coastal shallow water as the dominant region for observed microseism generation.
Microseisms at Palisades. III - Microseisms and microbaroms
NASA Technical Reports Server (NTRS)
Rind, D.
1980-01-01
Microseisms (seismic surface waves) in the frequency range of 0.1-1 Hz recorded at Palisades, N.Y., are compared with microbaroms (infrasound) in the same frequency range recorded simultaneously. Both are thought to be generated by interfering ocean waves, and the question addressed is how often does their comparison imply that they have the same source. Compared were their approximate regions of formation, the formation conditions (both meteorological and oceanographic), amplitude variations, and frequency spectra. It is concluded that for the signals recorded at this location the two phenomena appear to have the same ocean wave sources two-thirds of the times and at least some of the remaining times one of the signals is prevented from arriving owing to propagation difficulties.
[Sensory illusions in hang-gliding].
Bousquet, F; Bizeau, A; Resche-Rigon, P; Taillemite, J P; De Rotalier
1997-01-01
Sensory illusions in hang-gliding and para-gliding. Hang-gliding and para-gliding are at the moment booming sports. Sensory illusions are physiological phenomena sharing the wrong perception of the pilote's real position in space. These phenomena are very familiar to aeroplane pilotes, they can also be noticed on certain conditions with hang-gliding pilotes. There are many and various sensory illusions, but only illusions of vestibular origin will be dealt with in this article. Vestibular physiology is reminded with the working principle of a semicircular canal. Physiology and laws of physics explain several sensory illusions, especially when the pilote loses his visual landmarks: flying through a cloud, coriolis effect. Also some specific stages of hang-gliding foster those phenomena: spiraling downwards, self-rotation, following an asymetric closing of the parachute, spin on oneself. Therefore a previous briefing for the pilotes seems necessary.
Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.; Reardon, Blase
2010-01-01
Wet slab and glide slab snow avalanches are dangerous and yet can be particularly difficult to predict. Both wet slab and glide slab avalanches are thought to depend upon free water moving through the snowpack but are driven by different processes. In Glacier National Park, Montana, both types of avalanches can occur in the same year and affect the Going-to-the-Sun Road (GTSR). Both wet slab and glide slab avalanches along the GTSR from 2003-2010 are investigated. Meteorological data from two high-elevation weather stations and one SNOTEL site are used in conjunction with an avalanche database and snowpit profiles. These data were used to characterize years when only glide slab avalanches occurred and those years when both glide slab and wet slab avalanches occurred. Results of 168 glide slab and 57 wet slab avalanches along the GTSR suggest both types of avalanche occurrence depend on sustained warming periods with intense solar radiation (or rain on snow) to produce free water in the snowpack. Differences in temperature and net radiation metrics between wet slab and glide slab avalanches emerge as one moves from one day to seven days prior to avalanche occurrence. On average, a more rapid warming precedes wet slab avalanche occurrence. Glide slab and wet slab avalanches require a similar amount of net radiation. Wet slab avalanches do not occur every year, while glide slab avalanches occur annually. These results aim to enhance understanding of the required meteorological conditions for wet slab and glide slab avalanches and aid in improved wet snow avalanche forecasting.
Natural glide slab avalanches, Glacier National Park, USA: A unique hazard and forecasting challenge
Reardon, Blase; Fagre, Daniel B.; Dundas, Mark; Lundy, Chris
2006-01-01
In a museum of avalanche phenomena, glide cracks and glide avalanches might be housed in the “strange but true” section. These oddities are uncommon in most snow climates and tend to be isolated to specific terrain features such as bedrock slabs. Many glide cracks never result in avalanches, and when they do, the wide range of time between crack formation and slab failure makes them highly unpredictable. Despite their relative rarity, glide cracks and glide avalanches pose a regular threat and complex forecasting challenge during the annual spring opening of the Going-to-the-Sun Road in Glacier National Park, U.S.A. During the 2006 season, a series of unusual glide cracks delayed snow removal operations by over a week and provided a unique opportunity to record detailed observations of glide avalanches and characterize their occurrence and associated weather conditions. Field observations were from snowpits, crown profiles and where possible, measurements of slab thickness, bed surface slope angle, substrate and other physical characteristics. Weather data were recorded at one SNOTEL site and two automated stations located from 0.6-10 km of observed glide slab avalanches. Nearly half (43%) of the 35 glide slab avalanches recorded were Class D2-2.5, with 15% Class D3-D3.5. The time between glide crack opening and failure ranged from 2 days to over six weeks, and the avalanches occurred in cycles associated with loss of snow water equivalent and spikes in temperature and radiation. We conclude with suggest ions for further study.
Detection of bio-signature by microscopy and mass spectrometry
NASA Astrophysics Data System (ADS)
Tulej, M.; Wiesendanger, R.; Neuland, M., B.; Meyer, S.; Wurz, P.; Neubeck, A.; Ivarsson, M.; Riedo, V.; Moreno-Garcia, P.; Riedo, A.; Knopp, G.
2017-09-01
We demonstrate detection of micro-sized fossilized bacteria by means of microscopy and mass spectrometry. The characteristic structures of lifelike forms are visualized with a micrometre spatial resolution and mass spectrometric analyses deliver elemental and isotope composition of host and fossilized materials. Our studies show that high selectivity in isolation of fossilized material from host phase can be achieved while applying a microscope visualization (location), a laser ablation ion source with sufficiently small laser spot size and applying depth profiling method. Our investigations shows that fossilized features can be well isolated from host phase. The mass spectrometric measurements can be conducted with sufficiently high accuracy and precision yielding quantitative elemental and isotope composition of micro-sized objects. The current performance of the instrument allows the measurement of the isotope fractionation in per mill level and yield exclusively definition of the origin of the investigated species by combining optical visualization of investigated samples (morphology and texture), chemical characterization of host and embedded in the host micro-sized structure. Our isotope analyses involved bio-relevant B, C, S, and Ni isotopes which could be measured with sufficiently accuracy to conclude about the nature of the micro-sized objects.
Estimates of Rayleigh-to-Love wave ratio in microseisms by co-located Ring Laser and STS-2
NASA Astrophysics Data System (ADS)
Tanimoto, Toshiro; Hadziioannou, Céline; Igel, Heiner; Wassermann, Joachim; Schreiber, Ulrich; Gebauer, André
2015-04-01
In older studies of microseisms (seismic noise), it was often assumed that microseisms, especially the secondary microseisms (0.1-0.3 Hz), mainly consist of Rayleigh waves. However, it has become clear that there exists a large amount of Love-wave energy mixed in it (e.g., Nishida et al., 2008). However, its confirmation is not necessarily straightforward and often required an array of seismographs. In this study, we take advantage of two co-located instruments, a Ring Laser and an STS-2 type seismograph, at Wettzell (WET), Germany (Schreiber et al., 2009). The Ring Laser records rotation (its vertical component) and is thus only sensitive to Love waves. The vertical component of STS-2 seismograph is only sensitive to Rayleigh waves. Therefore, a combination of the two instruments provides a unique opportunity to separate Rayleigh waves and Love waves in microseisms. The question we address in this paper is the ratio of Rayleigh waves to Love waves in microseisms. For both instruments, we analyze data from 2009 to 2014. Our basic approach is to create stacked vertical acceleration spectra for Rayleigh waves from STS-2 and stacked transverse acceleration spectra for Love waves from Ring Laser. The two spectra at Earth's surface can then be compared directly by their amplitudes. The first step in our analysis is a selection of time portions (each six-hour long) that are least affected by earthquakes. We do this by examining the GCMT (Global Centroid Moment Tensor) catalogue and also checking the PSDs for various frequency ranges. The second step is to create stacked (averaged) Fourier spectra from those selected time portions. The key is to use the same time portions for the STS-2 and the Ring Laser data so that the two can be directly compared. The vertical spectra from STS-2 are converted to acceleration spectra. The Ring Laser rotation spectra are first obtained in the unit of radians/sec (rotation rate). But as the Ring Laser spectra are dominated by fundamental-mode Love waves, the rotation spectra can be converted to transverse (SH) acceleration by multiplying them by the factor 2xCp where Cp is the Love-wave phase velocity. We used a seismic model by Fichtner et al. (2013) at WET to estimate Love-wave phase velocity. This conversion from rotation to transverse acceleration was first extensively used by Igel et al. (2005) for the analysis of lower frequency Love waves and the same relation holds for our spectral data. The two spectra provide the ratio of surface amplitudes. In the frequency range of secondary microseisms (0.10-0.35 Hz), they are comparable; near the spectral peak (~0.20 Hz), Rayleigh waves are about 20 percent larger in amplitudes but outside this peak region, Love waves have comparable or slightly larger amplitudes than Rayleigh waves. Therefore, the secondary microseisms at WET consist of similar contributions from Rayleigh waves and Love waves.
Gliding Motility of Mycoplasma mobile on Uniform Oligosaccharides.
Kasai, Taishi; Hamaguchi, Tasuku; Miyata, Makoto
2015-09-01
The binding and gliding of Mycoplasma mobile on a plastic plate covered by 53 uniform oligosaccharides were analyzed. Mycoplasmas bound to and glided on only 21 of the fixed sialylated oligosaccharides (SOs), showing that sialic acid is essential as the binding target. The affinities were mostly consistent with our previous results on the inhibitory effects of free SOs and suggested that M. mobile recognizes SOs from the nonreducing end with four continuous sites as follows. (i and ii) A sialic acid at the nonreducing end is tightly recognized by tandemly connected two sites. (iii) The third site is recognized by a loose groove that may be affected by branches. (iv) The fourth site is recognized by a large groove that may be enhanced by branches, especially those with a negative charge. The cells glided on uniform SOs in manners apparently similar to those of the gliding on mixed SOs. The gliding speed was related inversely to the mycoplasma's affinity for SO, suggesting that the detaching step may be one of the speed determinants. The cells glided faster and with smaller fluctuations on the uniform SOs than on the mixtures, suggesting that the drag caused by the variation in SOs influences gliding behaviors. Mycoplasma is a group of bacteria generally parasitic to animals and plants. Some Mycoplasma species form a protrusion at a pole, bind to solid surfaces, and glide in the direction of the protrusion. These procedures are essential for parasitism. Usually, mycoplasmas glide on mixed sialylated oligosaccharides (SOs) derived from glycoprotein and glycolipid. Since gliding motility on uniform oligosaccharides has never been observed, this study gives critical information about recognition and interaction between receptors and SOs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Dynamics of glide avalanches and snow gliding
NASA Astrophysics Data System (ADS)
Ancey, Christophe; Bain, Vincent
2015-09-01
In recent years, due to warmer snow cover, there has been a significant increase in the number of cases of damage caused by gliding snowpacks and glide avalanches. On most occasions, these have been full-depth, wet-snow avalanches, and this led some people to express their surprise: how could low-speed masses of wet snow exert sufficiently high levels of pressure to severely damage engineered structures designed to carry heavy loads? This paper reviews the current state of knowledge about the formation of glide avalanches and the forces exerted on simple structures by a gliding mass of snow. One particular difficulty in reviewing the existing literature on gliding snow and on force calculations is that much of the theoretical and phenomenological analyses were presented in technical reports that date back to the earliest developments of avalanche science in the 1930s. Returning to these primary sources and attempting to put them into a contemporary perspective are vital. A detailed, modern analysis of them shows that the order of magnitude of the forces exerted by gliding snow can indeed be estimated correctly. The precise physical mechanisms remain elusive, however. We comment on the existing approaches in light of the most recent findings about related topics, including the physics of granular and plastic flows, and from field surveys of snow and avalanches (as well as glaciers and debris flows). Methods of calculating the forces exerted by glide avalanches are compared quantitatively on the basis of two case studies. This paper shows that if snow depth and density are known, then certain approaches can indeed predict the forces exerted on simple obstacles in the event of glide avalanches or gliding snow cover.
Kwak, Sang Won; Ha, Jung-Hong; Cheung, Gary Shun-Pan; Kim, Hyeon-Cheol; Kim, Sung Kyo
2018-03-01
The purpose of this study was to compare in vitro torque generation during instrumentation with or without glide path establishment. Endo-training resin blocks with J-shaped canals were randomly divided into 2 groups according to glide path establishment (with or without) and subdivided into 2 subgroups with shaping instruments (WaveOne [Dentsply Maillefer, Ballaigues, Switzerland] or WaveOne Gold [Dentsply Maillefer]) (n = 15). For the glide path-established group, the glide path was prepared using ProGlider (Dentsply Maillefer). During the instrumentation with WaveOne or WaveOne Gold, in vitro torque was measured. The acquired data were analyzed with software. The maximum torque and total torque (the sum of the generated torque) were calculated. The data were statistically evaluated using 2-way analysis of variance and the Duncan post hoc comparison to examine any correlation of torque generation with glide path establishment and nickel-titanium instruments. The significance level was set at 95%. The generated total torque by WaveOne Gold was significantly reduced by glide path establishment (P < .05), whereas glide path establishment did not induce significant changes in the maximum torque for both file systems. WaveOne Gold with a glide path showed the lowest total torque generation among all groups (P < .05). WaveOne generated a higher maximum torque than WaveOne Gold regardless of the establishment of a glide path (P < .05). Under the limitations of this study, glide path establishment and the mechanical property of instruments have a significant influence on torque generation. It is recommended to create the glide path and use a flexible file to reduce torque generation and, consequently, the risk of file fracture and root dentin damage. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Soil erosion by snow gliding - a first quantification attempt in a sub-alpine area, Switzerland
NASA Astrophysics Data System (ADS)
Meusburger, K.; Leitinger, G.; Mabit, L.; Mueller, M. H.; Walter, A.; Alewell, C.
2014-03-01
Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as soil erosion agent for four different land use/land cover types in a sub-alpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide deposits, the fallout radionuclide 137Cs, and modelling with the Revised Universal Soil Loss Equation (RUSLE). The RUSLE model is suitable to estimate soil loss by water erosion, while the 137Cs method integrates soil loss due to all erosion agents involved. Thus, we hypothesise that the soil erosion rates determined with the 137Cs method are higher and that the observed discrepancy between the soil erosion rate of RUSLE and the 137Cs method is related to snow gliding and sediment concentrations in the snow glide deposits. Cumulative snow glide distance was measured for the sites in the winter 2009/10 and modelled for the surrounding area with the Spatial Snow Glide Model (SSGM). Measured snow glide distance ranged from 2 to 189 cm, with lower values at the north facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is important information with respect to conservation planning and expected land use changes in the Alps. Our hypothesis was confirmed: the difference of RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2= 0.64; p < 0.005) and snow sediment yields (R2 = 0.39; p = 0.13). A high difference (lower proportion of water erosion compared to total net erosion) was observed for high snow glide rates and vice versa. The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding is a key process impacting soil erosion pattern and magnitude in sub-alpine areas with similar topographic and climatic conditions.
Locomotor performance and cost of transport in the northern flying squirrel Glaucomys sabrinus.
John S. Scheibe; Winston P. Smith; Jill Bassham; Dawn Magness
2006-01-01
We assess locomotor performance by northern flying squirrels Glartcontys sabrinus Shaw, 1801 and test the hypothesis that gliding locomotion is energetically cheaper than quadrupedal locomotion. We measured 168 glides by 82 northern flying squirrels in Alaska. Mean glide distances varied from 12.46 m to 14.39 m, with a maximum observed glide...
Synthesis of micro-sized interconnected Si-C composites
Wang, Donghai; Yi, Ran; Dai, Fang
2016-02-23
Embodiments provide a method of producing micro-sized Si--C composites or doped Si--C and Si alloy-C with interconnected nanoscle Si and C building blocks through converting commercially available SiO.sub.x (0
Discriminants and Detectors: Seismological Studies of Tsunami Earthquakes and Hurricane Microseisms
NASA Astrophysics Data System (ADS)
Ebeling, Carl W.
High energy natural hazards have potential to cause great damage and significant loss of life, but understanding of many lags behind what is required to mitigate their impacts. Of specific concern here are the estimation of tsunami hazard in the eastern Mediterranean; the more timely identification of tsunami earthquakes; and the use of microseisms to identify “missing” hurricanes, thus augmenting the traditional—but short, incomplete, and biased—observational hurricane record. Earthquake energy estimation and time- and frequency-domain time-series analyses applied to an array of historical analog and modern digital seismological data are used to address these problems. Improved estimations of the location, depth, moment magnitude, and focal mechanism of four of the largest Hellenic Arc earthquakes in the last century help to better understand seismic hazard there. Seismological reassessments combined with hydrodynamic simulations show that the tsunamis associated with two of them were not triggered by the earthquakes themselves but instead involved submarine slumping. Moments and estimates of radiated energy from 67 earthquakes taking place in the last twenty years in oceanic environments and recorded at regional and teleseismic distances are used to develop an empirical correction to the robust tsunami earthquake discriminant Theta. This extends its applicability to regional distances, thereby allowing earlier discrimination of tsunami earthquakes. Microseisms, which result from the interaction of ocean swell generated by energetic storms, are shown here to carry information about parent hurricanes and under favorable conditions can be used to detect them. Power variations of microseisms recorded at the Harvard, Massachusetts seismic station demonstrate that Saffir-Simpson category 5 hurricane Andrew (1992) can be identified when it is ˜2,000 km from the station and still at sea. Applied to an expanded data set of 66 hurricanes between 1992 and 2007 with Saffir-Simpson categories ranging from 2 to 5, microseism power and frequency content analyses indicate that some additional energetic hurricanes can be detected. However, because these methods detect even the most intense hurricanes inconsistently and do not reject non-hurricane storms, a robust detection methodology cannot be based on them alone. These methods do have the potential to improve understanding of the microseism wavefield in general.
ERIC Educational Resources Information Center
Kuroda, Tsuyoshi; Nakajima, Yoshitaka; Eguchi, Shuntarou
2012-01-01
The gap transfer illusion is an auditory illusion where a temporal gap inserted in a longer glide tone is perceived as if it were in a crossing shorter glide tone. Psychophysical and phenomenological experiments were conducted to examine the effects of sound-pressure-level (SPL) differences between crossing glides on the occurrence of the gap…
Zhao, Biao; Lin, Jiangfeng; Deng, Jianping; Liu, Dong
2018-05-14
Core/shell particles constructed by polymer shell and silica core have constituted a significant category of advanced functional materials. However, constructing microsized optically active helical polymer core/shell particles still remains as a big academic challenge due to the lack of effective and universal preparation methods. In this study, a seed-surface grafting precipitation polymerization (SSGPP) strategy is developed for preparing microsized core/shell particles with SiO 2 as core on which helically substituted polyacetylene is covalently bonded as shell. The resulting core/shell particles exhibit fascinating optical activity and efficiently induce enantioselective crystallization of racemic threonine. Taking advantage of the preparation strategy, novel achiral polymeric and hybrid core/shell particles are also expected. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chen, Bing-Hong; Chuang, Shang-I.; Duh, Jenq-Gong
2016-11-01
Using spatial and interfacial control, the micro-sized silicon waste from wafer slurry could greatly increase its retention potential as a green resource for silicon-based anode in lithium ion batteries. Through step by step spatial and interfacial control for electrode, the cyclability of recycled waste gains potential performance from its original poor retention property. In the stages of spatial control, the electrode stabilizers of active, inactive and conductive additives were mixed into slurries for maintaining architecture and conductivity of electrode. In addition, a fusion electrode modification of interfacial control combines electrolyte additive, technique of double-plasma enhanced carbon shield (D-PECS) to convert the chemical bond states and to alter the formation of solid electrolyte interphases (SEIs) in the first cycle. The depth profiles of chemical composition from external into internal electrode illustrate that the fusion electrode modification not only forms a boundary to balance the interface between internal and external electrodes but also stabilizes the SEIs formation and soothe the expansion of micro-sized electrode. Through these effect approaches, the performance of micro-sized Si waste electrode can be boosted from its serious capacity degradation to potential retention (200 cycles, 1100 mAh/g) and better meet the requirements for facile and cost-effective in industrial production.
Impact of snow gliding on soil redistribution for a sub-alpine area in Switzerland
NASA Astrophysics Data System (ADS)
Meusburger, K.; Leitinger, G.; Mabit, L.; Mueller, M. H.; Alewell, C.
2013-07-01
The aim of this study is to assess the importance of snow gliding as soil erosion agent for four different land use/land cover types in a sub-alpine area in Switzerland. The 14 investigated sites are located close to the valley bottom at approximately 1500 m a.s.l., while the elevation of the surrounding mountain ranges is about 2500 m a.s.l. We used two different approaches to estimate soil erosion rates: the fallout radionuclide 137Cs and the Revised Universal Soil Loss Equation (RUSLE). The RUSLE model is suitable to estimate soil loss by water erosion, while the 137Cs method integrates soil loss due to all erosion agents involved. Thus, we hypothesise that the soil erosion rates determined with the 137Cs method are higher and that the observed discrepancy between the erosion rate of RUSLE and the 137Cs method is related to snow gliding. Cumulative snow glide distance was measured for the sites in the winter 2009/2010 and modelled for the surrounding area with the Spatial Snow Glide Model (SSGM). Measured snow glide distance range from 0 to 189 cm with lower values for the north exposed slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected land use changes in the Alps. Our hypothesis was confirmed, the difference of RUSLE and 137Cs erosion rates was correlated to the measured snow glide distance (R2 = 0.73; p < 0.005). A high difference (lower proportion of water erosion compared to total net erosion) was observed for high snow glide rates and vice versa. The SSGM reproduced the relative difference of the measured snow glide values between different land use/land cover types. The resulting map highlights the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding is a key process impacting soil erosion pattern and magnitude in sub-alpine areas with similar topographic and climatic conditions.
Wieskotten, S; Dehnhardt, G; Mauck, B; Miersch, L; Hanke, W
2010-11-01
The mystacial vibrissae of harbour seals (Phoca vitulina) constitute a highly sensitive hydrodynamic receptor system enabling the seals to detect and follow hydrodynamic trails. In the wild, hydrodynamic trails, as generated by swimming fish, consist of cyclic burst-and-glide phases, associated with various differences in the physical parameters of the trail. Here, we investigated the impact of glide phases on the trackability of differently aged hydrodynamic trails in a harbour seal. As fish are not easily trained to swim certain paths with predetermined burst-and-glide phases, the respective hydrodynamic trails were generated using a remote-controlled miniature submarine. Gliding phases in hydrodynamic trails had a negative impact on the trackability when trails were 15 s old. The seal lost the generated trails more often within the transition zones, when the submarine switched from a burst to a glide moving pattern. Hydrodynamic parameter analysis (particle image velocimetry) revealed that the smaller dimensions and faster decay of hydrodynamic trails generated by the gliding submarine are responsible for the impaired success of the seal tracking the gliding phase. Furthermore, the change of gross water flow generated by the submarine from a rearwards-directed stream in the burst phase to a water flow passively dragged behind the submarine during gliding might influence the ability of the seal to follow the trail as this might cause a weaker deflection of the vibrissae. The possible ecological implications of intermittent swimming behaviour in fish for piscivorous predators are discussed.
Strongly gliding harmonic tremor during the 2009 eruption of Redoubt Volcano
Hotovec, Alicia J.; Prejean, Stephanie G.; Vidale, John E.; Gomberg, Joan S.
2013-01-01
During the 2009 eruption of Redoubt Volcano, Alaska, gliding harmonic tremor occurred prominently before six nearly consecutive explosions during the second half of the eruptive sequence. The fundamental frequency repeatedly glided upward from < 1 Hz to as high as 30 Hz in less than 10 min, followed by a relative seismic quiescence of 10 to 60 s immediately prior to explosion. High frequency (5 to 20 Hz) gliding returned during the extrusive phase, and lasted for 20 min to 3 h at a time. Although harmonic tremor is not uncommon at volcanoes, tremor at such high frequencies is a rare observation. These frequencies approach or exceed the plausible upper limits of many models that have been suggested for volcanic tremor. We also analyzed the behavior of a swarm of repeating earthquakes that immediately preceded the first instance of pre-explosion gliding harmonic tremor. We find that these earthquakes share several traits with upward gliding harmonic tremor, and favor the explanation that the gliding harmonic tremor at Redoubt Volcano is created by the superposition of increasingly frequent and regular, repeating stick–slip earthquakes through the Dirac comb effect.
Discrimination of nonlinear frequency glides.
Thyer, Nick; Mahar, Doug
2006-05-01
Discrimination thresholds for short duration nonlinear tone glides that differed in glide rate were measured in order to determine whether cues related to rate of frequency change alone were sufficient for discrimination. Thresholds for rising and falling nonlinear glides of 50-ms and 400-ms duration, spanning three frequency excursions (0.5, 1, and 2 ERBs) at three center frequencies (0.5, 2.0, and 6.0 kHz) were measured. Results showed that glide discrimination was possible when duration and initial and final frequencies were identical. Thresholds were of a different order to those found in previous studies using linear frequency glides where endpoint frequency or duration information is available as added cues. The pattern of results was suggestive of a mechanism sensitive to spectral changes in time. Thresholds increased as the rate of transition span increased, particularly above spans of 1 ERB. The Weber fraction associated with these changes was 0.6-0.7. Overall, the results were consistent with an excitation pattern model of nonlinear glide detection that has difficulty in tracking signals with rapid frequency changes that exceed the width of an auditory filter and are of short duration.
Mink, Justine E; Rojas, Jhonathan P; Logan, Bruce E; Hussain, Muhammad M
2012-02-08
Microbial fuel cells (MFCs) are an environmentally friendly method for water purification and self-sustained electricity generation using microorganisms. Microsized MFCs can also be a useful power source for lab-on-a-chip and similar integrated devices. We fabricated a 1.25 μL microsized MFC containing an anode of vertically aligned, forest type multiwalled carbon nanotubes (MWCNTs) with a nickel silicide (NiSi) contact area that produced 197 mA/m(2) of current density and 392 mW/m(3) of power density. The MWCNTs increased the anode surface-to-volume ratio, which improved the ability of the microorganisms to couple and transfer electrons to the anode. The use of nickel silicide also helped to boost the output current by providing a low resistance contact area to more efficiently shuttle electrons from the anode out of the device. © 2012 American Chemical Society
GLobal Integrated Design Environment (GLIDE): A Concurrent Engineering Application
NASA Technical Reports Server (NTRS)
McGuire, Melissa L.; Kunkel, Matthew R.; Smith, David A.
2010-01-01
The GLobal Integrated Design Environment (GLIDE) is a client-server software application purpose-built to mitigate issues associated with real time data sharing in concurrent engineering environments and to facilitate discipline-to-discipline interaction between multiple engineers and researchers. GLIDE is implemented in multiple programming languages utilizing standardized web protocols to enable secure parameter data sharing between engineers and researchers across the Internet in closed and/or widely distributed working environments. A well defined, HyperText Transfer Protocol (HTTP) based Application Programming Interface (API) to the GLIDE client/server environment enables users to interact with GLIDE, and each other, within common and familiar tools. One such common tool, Microsoft Excel (Microsoft Corporation), paired with its add-in API for GLIDE, is discussed in this paper. The top-level examples given demonstrate how this interface improves the efficiency of the design process of a concurrent engineering study while reducing potential errors associated with manually sharing information between study participants.
Klomp, D. A.; Stuart-Fox, D.; Das, I.; Ord, T. J.
2014-01-01
Populations of the Bornean gliding lizard, Draco cornutus, differ markedly in the colour of their gliding membranes. They also differ in local vegetation type (mangrove forest versus lowland rainforest) and consequently, the colour of falling leaves (red and brown/black in mangrove versus green, brown and black in rainforest). We show that the gliding membranes of these lizards closely match the colours of freshly fallen leaves in the local habitat as they appear to the visual system of birds (their probable predators). Furthermore, gliding membranes more closely resembled colours of local fallen leaves than standing foliage or fallen leaves in the other population's habitat. This suggests that the two populations have diverged in gliding membrane coloration to match the colours of their local falling leaves, and that mimicking falling leaves is an adaptation that functions to reduce predation by birds. PMID:25540157
Aerodynamic Characteristics and Glide-Back Performance of Langley Glide-Back Booster
NASA Technical Reports Server (NTRS)
Pamadi, Bandu N.; Covell, Peter F.; Tartabini, Paul V.; Murphy, Kelly J.
2004-01-01
NASA-Langley Research Center is conducting system level studies on an-house concept of a small launch vehicle to address NASA's needs for rapid deployment of small payloads to Low Earth Orbit. The vehicle concept is a three-stage system with a reusable first stage and expendable upper stages. The reusable first stage booster, which glides back to launch site after staging around Mach 3 is named the Langley Glide-Back Booster (LGBB). This paper discusses the aerodynamic characteristics of the LGBB from subsonic to supersonic speeds, development of the aerodynamic database and application of this database to evaluate the glide back performance of the LGBB. The aerodynamic database was assembled using a combination of wind tunnel test data and engineering level analysis. The glide back performance of the LGBB was evaluated using a trajectory optimization code and subject to constraints on angle of attack, dynamic pressure and normal acceleration.
Director gliding in a nematic liquid crystal layer: Quantitative comparison with experiments
NASA Astrophysics Data System (ADS)
Mema, E.; Kondic, L.; Cummings, L. J.
2018-03-01
The interaction between nematic liquid crystals and polymer-coated substrates may lead to slow reorientation of the easy axis (so-called "director gliding") when a prolonged external field is applied. We consider the experimental evidence of zenithal gliding observed by Joly et al. [Phys. Rev. E 70, 050701 (2004), 10.1103/PhysRevE.70.050701] and Buluy et al. [J. Soc. Inf. Disp. 14, 603 (2006), 10.1889/1.2235686] as well as azimuthal gliding observed by S. Faetti and P. Marianelli [Liq. Cryst. 33, 327 (2006), 10.1080/02678290500512227], and we present a simple, physically motivated model that captures the slow dynamics of gliding, both in the presence of an electric field and after the electric field is turned off. We make a quantitative comparison of our model results and the experimental data and conclude that our model explains the gliding evolution very well.
Hartmann, R C; Peters, O A; de Figueiredo, J A P; Rossi-Fedele, G
2018-04-28
The role and effect of glide path preparation in root canal treatment remain controversial. This systematic review aims to compare apical transportation and canal centring of different glide path preparation techniques, with or without subsequent engine-driven root canal preparation. A database search in PubMed, PubMed Central, Embase, Scopus, EBSCO Dentistry & Oral Sciences Source and Virtual Health Library was conducted, using appropriate key words to identify the effect of glide path preparation (or its absence) on apical transportation and canal centring. An assessment for the risk of bias in included studies was carried out. Amongst 2146 studies, 18 satisfied the inclusion criteria. Nine studies assessed glide path preparation per se, comparing apical transportation and canal centring of rotary systems and/or manual files; eleven further investigations examined the efficacy of the glide path prior to final canal preparation with different engine-driven systems. Risk of bias and other study design features with potential influence on study outcomes and clinical implications were assessed. Based on the available evidence, and within the limitation of the studies included, preparation of a glide path using rotary sequences performs similarly (in most of the component studies) or significantly better than manual preparation when assessing apical transportation or canal centring. When compared to the absence of a glide path, canal shaping following glide path preparation was of similar, or significantly better quality, in regard to apical transportation or canal centring. © 2018 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Alexander, David E.; Gong, Enpu; Martin, Larry D.; Burnham, David A.; Falk, Amanda R.
2010-01-01
Fossils of the remarkable dromaeosaurid Microraptor gui and relatives clearly show well-developed flight feathers on the hind limbs as well as the front limbs. No modern vertebrate has hind limbs functioning as independent, fully developed wings; so, lacking a living example, little agreement exists on the functional morphology or likely flight configuration of the hindwing. Using a detailed reconstruction based on the actual skeleton of one individual, cast in the round, we developed light-weight, three-dimensional physical models and performed glide tests with anatomically reasonable hindwing configurations. Models were tested with hindwings abducted and extended laterally, as well as with a previously described biplane configuration. Although the hip joint requires the hindwing to have at least 20° of negative dihedral (anhedral), all configurations were quite stable gliders. Glide angles ranged from 3° to 21° with a mean estimated equilibrium angle of 13.7°, giving a lift to drag ratio of 4.1:1 and a lift coefficient of 0.64. The abducted hindwing model’s equilibrium glide speed corresponds to a glide speed in the living animal of 10.6 m·s−1. Although the biplane model glided almost as well as the other models, it was structurally deficient and required an unlikely weight distribution (very heavy head) for stable gliding. Our model with laterally abducted hindwings represents a biologically and aerodynamically reasonable configuration for this four-winged gliding animal. M. gui’s feathered hindwings, although effective for gliding, would have seriously hampered terrestrial locomotion. PMID:20133792
Dagna, Alberto; El Abed, Rashid; Hussain, Sameeha; Abu-Tahun, Ibrahim H; Visai, Livia; Bertoglio, Federico; Bosco, Floriana; Beltrami, Riccardo; Poggio, Claudio; Kim, Hyeon-Cheol
2017-11-01
This study compared the amount of apically extruded bacteria during the glide-path preparation by using multi-file and single-file glide-path establishing nickel-titanium (NiTi) rotary systems. Sixty mandibular first molar teeth were used to prepare the test apparatus. They were decoronated, blocked into glass vials, sterilized in ethylene oxide gas, infected with a pure culture of Enterococcus faecalis, randomly assigned to 5 experimental groups, and then prepared using manual stainless-steel files (group KF) and glide-path establishing NiTi rotary files (group PF with PathFiles, group GF with G-Files, group PG with ProGlider, and group OG with One G). At the end of canal preparation, 0.01 mL NaCl solution was taken from the experimental vials. The suspension was plated on brain heart infusion agar and colonies of bacteria were counted, and the results were given as number of colony-forming units (CFU). The manual instrumentation technique tested in group KF extruded the highest number of bacteria compared to the other 4 groups ( p < 0.05). The 4 groups using rotary glide-path establishing instruments extruded similar amounts of bacteria. All glide-path establishment instrument systems tested caused a measurable apical extrusion of bacteria. The manual glide-path preparation showed the highest number of bacteria extruded compared to the other NiTi glide-path establishing instruments.
New OBS network deployment offshore Ireland
NASA Astrophysics Data System (ADS)
Le Pape, Florian; Bean, Chris; Craig, David; Jousset, Philippe; Horan, Clare; Hogg, Colin; Donne, Sarah; McCann, Hannah; Möllhoff, Martin; Kirk, Henning; Ploetz, Aline
2016-04-01
With the presence of the stormy NE Atlantic, Ireland is ideally located to investigate further our understanding of ocean generated microseisms and use noise correlation methods to develop seismic imaging in marine environments as well as time-lapse monitoring. In order to study the microseismic activity offshore Ireland, 10 Broad Band Ocean Bottom Seismographs (OBSs) units including hydrophones have been deployed in January 2016 across the shelf offshore Donegal and out into the Rockall Trough. This survey represents the first Broadband passive study in this part of the NE Atlantic. The instruments will be recovered in August 2016 providing 8 months worth of data to study microseisms but also the offshore seismic activity in the area. One of the main goal of the survey is to investigate the spatial and temporal distributions of dominant microseism source regions, close to the microseism sources. Additionally we will study the coupling of seismic and acoustic signals at the sea bed and its evolution in both the deep water and continental shelf areas. Furthermore, the survey also aims to investigate further the relationship between sea state conditions (e.g. wave height, period), seafloor pressure variations and seismic data recorded on both land and seafloor. Finally, the deployed OBS network is also the first ever attempt to closely monitor local offshore earthquakes in Ireland. Ireland seismicity although relatively low can reduce slope stability and poses the possibility of triggering large offshore landslides and local tsunamis.
NASA Astrophysics Data System (ADS)
Gal, M.; Reading, A. M.; Ellingsen, S. P.; Koper, K. D.; Burlacu, R.; Gibbons, S. J.
2016-07-01
Microseisms in the period of 2-10 s are generated in deep oceans and near coastal regions. It is common for microseisms from multiple sources to arrive at the same time at a given seismometer. It is therefore desirable to be able to measure multiple slowness vectors accurately. Popular ways to estimate the direction of arrival of ocean induced microseisms are the conventional (fk) or adaptive (Capon) beamformer. These techniques give robust estimates, but are limited in their resolution capabilities and hence do not always detect all arrivals. One of the limiting factors in determining direction of arrival with seismic arrays is the array response, which can strongly influence the estimation of weaker sources. In this work, we aim to improve the resolution for weaker sources and evaluate the performance of two deconvolution algorithms, Richardson-Lucy deconvolution and a new implementation of CLEAN-PSF. The algorithms are tested with three arrays of different aperture (ASAR, WRA and NORSAR) using 1 month of real data each and compared with the conventional approaches. We find an improvement over conventional methods from both algorithms and the best performance with CLEAN-PSF. We then extend the CLEAN-PSF framework to three components (3C) and evaluate 1 yr of data from the Pilbara Seismic Array in northwest Australia. The 3C CLEAN-PSF analysis is capable in resolving a previously undetected Sn phase.
Investigating the ocean generated acoustic/seismic wavefields in NE Atlantic
NASA Astrophysics Data System (ADS)
Le Pape, F.; Bean, C. J.; Craig, D.; Jousset, P.; Donne, S. E.; Möllhoff, M.
2017-12-01
In this study, we look at the comparison of 3D simulations of acoustic and seismic waves propagation with OBS data recorded across the shelf offshore Ireland and out into the Rockall Trough. Real and synthetic observations are combined to characterize both acoustic and seismic wavefields in the marine environment and particularly study secondary microseisms propagation from deep to shallow water to the land. Whereas the recorded OBS data show a strong change in the energy of "noise events" in the primary microseism band from the shelf to the land, the secondary microseism band is associated with stronger signal in the deep water compared to the shelf area. Furthermore, the data also highlight seasonal variations in the seismic and acoustic wavefields likely related to changes in noise source locations. The 3D simulations of acoustic and seismic waves propagation in the Rockall Trough look promising to reconcile deep ocean, shelf and land seismic observations as well as the effect of the water column and sediments thickness on "seismic ambient noise" generation and propagation. For instance, the simulations reveal interesting results on the acoustic/seismic coupling and its implication on the secondary microseisms source origin. This project is part of the Irish Centre for Research in Applied Geoscience (ICRAG), funded under the SFI Research Centres Programme and is co-funded under the European Regional Development Fund.
Very sensitive α-Al2O3:C polycrystals for thermoluminescent dosimetry.
Fontainha, Críssia Carem Paiva; Alves, Neriene; Ferraz, Wilmar Barbosa; de Faria, Luiz Oliveira
2018-05-07
New materials have been widely investigated for ionizing radiation dosimetry for medical procedures. Carbon-doped alumina (α-Al 2 O 3 :C) have been reported to be excellent thermoluminescent (TL) and optically stimulated luminescence (OSL) radiation dosimeters. In the present study, we have synthetized nano and micro-sized α-Al 2 O 3 :C polycrystals, doped with different percentages of carbon atoms aiming to compare their efficiency as TL dosimeters. The dosimetric characteristics for X ray and gamma fields were investigated. Samples doped with different amounts of carbon atoms were sintered under different atmosphere conditions, at temperatures ranging from 1300 °C to 1750 °C. Among the investigated samples, the micro-sized alumina doped with 0.01% of carbon and sintered at 1700 °C under reducing atmosphere, has presented a very high TL output. The main TL peak is centered at 250 °C and has a linear behavior with photon dose in the dose range of 0.02-to-5000 mGy, with correlation coefficient very close to one (0.99991). Samples produced by using nanosized alumina have shown much lower TL output when compared to the samples with microsized alumina. The micro-sized alumina obtained by the methodology used in this work is a suitable candidate to be explored for application in X and Gamma radiation dosimetry. Copyright © 2018. Published by Elsevier Ltd.
On the formation of glide-snow avalanches
NASA Astrophysics Data System (ADS)
Mitterer, C.; Schweizer, J.
2012-12-01
On steep slopes the full snowpack can glide on the ground; tension cracks may open and eventually the slope may fail as a glide-snow avalanche. Due to their large mass they have considerable destructive potential. Glide-snow avalanches typically occur when the snow-soil interface is moist or wet so that basal friction is reduced. The occurrence, however, of glide cracks and their evolution to glide avalanches are still poorly understood. Consequently, glides are difficult to predict as (i) not all cracks develop into an avalanche, and (ii) for those that do, the time between crack opening and avalanche event might vary from hours to weeks - or on the other hand be so short that there is no warning at all by crack opening. To improve our understanding we monitored several slopes and related glide snow activity to meteorological data. In addition, we explored conditions that favor the formation of a thin wet basal snowpack layer with a physical-based model representing water and heat flux at the snow-soil interface. The statistical analyses revealed that glide-snow avalanche activity might be associated to an early season and a spring condition. While early season conditions tend to have warm and dry autumns followed by heavy snowfalls, spring conditions showed good agreement with increasing air temperature. The model indicates that energy (summer heat) stored in the ground might be sufficient to melt snow at the bottom of the snowpack. Due to capillary forces, water will rise for a few centimeters into the snowpack and thereby reduce friction at the interface. Alternatively, we demonstrate that also in the absence of melt water production at the bottom of the snowpack water may accumulate in the bottom layer due to an upward flux into the snowpack if a dry snowpack overlies a wet soil. The particular conditions that are obviously required at the snow-soil interface explain the strong winter-to-winter variations in snow gliding.
Jackson, Allison J.; Whitelaw, Jamie A.; Pall, Gurman; Black, Jennifer Ann; Ferguson, David J. P.; Tardieux, Isabelle; Mogilner, Alex; Meissner, Markus
2014-01-01
Apicomplexan parasites are thought to actively invade the host cell by gliding motility. This movement is powered by the parasite's own actomyosin system, and depends on the regulated polymerisation and depolymerisation of actin to generate the force for gliding and host cell penetration. Recent studies demonstrated that Toxoplasma gondii can invade the host cell in the absence of several core components of the invasion machinery, such as the motor protein myosin A (MyoA), the microneme proteins MIC2 and AMA1 and actin, indicating the presence of alternative invasion mechanisms. Here the roles of MyoA, MLC1, GAP45 and Act1, core components of the gliding machinery, are re-dissected in detail. Although important roles of these components for gliding motility and host cell invasion are verified, mutant parasites remain invasive and do not show a block of gliding motility, suggesting that other mechanisms must be in place to enable the parasite to move and invade the host cell. A novel, hypothetical model for parasite gliding motility and invasion is presented based on osmotic forces generated in the cytosol of the parasite that are converted into motility. PMID:24632839
Schulte, Kevin L.; France, Ryan M.; McMahon, William E.; ...
2016-11-17
In this work we develop control over dislocation glide dynamics in Ga xIn 1-xP compositionally graded buffer layers (CGBs) through control of CuPt ordering on the group-III sublattice. The ordered structure is metastable in the bulk, so any glissile dislocation that disrupts the ordered pattern will release stored energy, and experience an increased glide force. Here we show how this connection between atomic ordering and dislocation glide force can be exploited to control the threading dislocation density (TDD) in Ga xIn 1-xP CGBs. When ordered Ga xIn 1-xP is graded from the GaAs lattice constant to InP, the order parametermore » ..eta.. decreases as x decreases, and dislocation glide switches from one set of glide planes to the other. This glide plane switch (GPS) is accompanied by the nucleation of dislocations on the new glide plane, which typically leads to increased TDD. We develop control of the GPS position within a Ga xIn 1-xP CGB through manipulation of deposition temperature, surfactant concentration, and strain-grading rate. We demonstrate a two-stage Ga xIn 1-xP CGB from GaAs to InP with sufficiently low TDD for high performance devices, such as the 4-junction inverted metamorphic multi-junction solar cell, achieved through careful control the GPS position. Here, experimental results are analyzed within the context of a model that considers the force balance on dislocations on the two competing glide planes as a function of the degree of ordering.« less
Håkansson, Sebastian; Morisaki, Hiroshi; Heuser, John; Sibley, L. David
1999-01-01
Toxoplasma gondii is a member of the phylum Apicomplexa, a diverse group of intracellular parasites that share a unique form of gliding motility. Gliding is substrate dependent and occurs without apparent changes in cell shape and in the absence of traditional locomotory organelles. Here, we demonstrate that gliding is characterized by three distinct forms of motility: circular gliding, upright twirling, and helical rotation. Circular gliding commences while the crescent-shaped parasite lies on its right side, from where it moves in a counterclockwise manner at a rate of ∼1.5 μm/s. Twirling occurs when the parasite rights itself vertically, remaining attached to the substrate by its posterior end and spinning clockwise. Helical gliding is similar to twirling except that it occurs while the parasite is positioned horizontally, resulting in forward movement that follows the path of a corkscrew. The parasite begins lying on its left side (where the convex side is defined as dorsal) and initiates a clockwise revolution along the long axis of the crescent-shaped body. Time-lapse video analyses indicated that helical gliding is a biphasic process. During the first 180o of the turn, the parasite moves forward one body length at a rate of ∼1–3 μm/s. In the second phase, the parasite flips onto its left side, in the process undergoing little net forward motion. All three forms of motility were disrupted by inhibitors of actin filaments (cytochalasin D) and myosin ATPase (butanedione monoxime), indicating that they rely on an actinomyosin motor in the parasite. Gliding motility likely provides the force for active penetration of the host cell and may participate in dissemination within the host and thus is of both fundamental and practical interest. PMID:10564254
Henry, Molly J.; McAuley, J. Devin
2013-01-01
A number of accounts of human auditory perception assume that listeners use prior stimulus context to generate predictions about future stimulation. Here, we tested an auditory pitch-motion hypothesis that was developed from this perspective. Listeners judged either the time change (i.e., duration) or pitch change of a comparison frequency glide relative to a standard (referent) glide. Under a constant-velocity assumption, listeners were hypothesized to use the pitch velocity (Δf/Δt) of the standard glide to generate predictions about the pitch velocity of the comparison glide, leading to perceptual distortions along the to-be-judged dimension when the velocities of the two glides differed. These predictions were borne out in the pattern of relative points of subjective equality by a significant three-way interaction between the velocities of the two glides and task. In general, listeners’ judgments along the task-relevant dimension (pitch or time) were affected by expectations generated by the constant-velocity standard, but in an opposite manner for the two stimulus dimensions. When the comparison glide velocity was faster than the standard, listeners overestimated time change, but underestimated pitch change, whereas when the comparison glide velocity was slower than the standard, listeners underestimated time change, but overestimated pitch change. Perceptual distortions were least evident when the velocities of the standard and comparison glides were matched. Fits of an imputed velocity model further revealed increasingly larger distortions at faster velocities. The present findings provide support for the auditory pitch-motion hypothesis and add to a larger body of work revealing a role for active prediction in human auditory perception. PMID:23936462
Henry, Molly J; McAuley, J Devin
2013-01-01
A number of accounts of human auditory perception assume that listeners use prior stimulus context to generate predictions about future stimulation. Here, we tested an auditory pitch-motion hypothesis that was developed from this perspective. Listeners judged either the time change (i.e., duration) or pitch change of a comparison frequency glide relative to a standard (referent) glide. Under a constant-velocity assumption, listeners were hypothesized to use the pitch velocity (Δf/Δt) of the standard glide to generate predictions about the pitch velocity of the comparison glide, leading to perceptual distortions along the to-be-judged dimension when the velocities of the two glides differed. These predictions were borne out in the pattern of relative points of subjective equality by a significant three-way interaction between the velocities of the two glides and task. In general, listeners' judgments along the task-relevant dimension (pitch or time) were affected by expectations generated by the constant-velocity standard, but in an opposite manner for the two stimulus dimensions. When the comparison glide velocity was faster than the standard, listeners overestimated time change, but underestimated pitch change, whereas when the comparison glide velocity was slower than the standard, listeners underestimated time change, but overestimated pitch change. Perceptual distortions were least evident when the velocities of the standard and comparison glides were matched. Fits of an imputed velocity model further revealed increasingly larger distortions at faster velocities. The present findings provide support for the auditory pitch-motion hypothesis and add to a larger body of work revealing a role for active prediction in human auditory perception.
Mink, Justine E; Hussain, Muhammad Mustafa
2013-08-27
Microbial fuel cells (MFCs) are a promising alternative energy source that both generates electricity and cleans water. Fueled by liquid wastes such as wastewater or industrial wastes, the microbial fuel cell converts waste into energy. Microsized MFCs are essentially miniature energy harvesters that can be used to power on-chip electronics, lab-on-a-chip devices, and/or sensors. As MFCs are a relatively new technology, microsized MFCs are also an important rapid testing platform for the comparison and introduction of new conditions or materials into macroscale MFCs, especially nanoscale materials that have high potential for enhanced power production. Here we report a 75 μL microsized MFC on silicon using CMOS-compatible processes and employ a novel nanomaterial with exceptional electrochemical properties, multiwalled carbon nanotubes (MWCNTs), as the on-chip anode. We used this device to compare the usage of the more commonly used but highly expensive anode material gold, as well as a more inexpensive substitute, nickel. This is the first anode material study done using the most sustainably designed microsized MFC to date, which utilizes ambient oxygen as the electron acceptor with an air cathode instead of the chemical ferricyanide and without a membrane. Ferricyanide is unsustainable, as the chemical must be continuously refilled, while using oxygen, naturally found in air, makes the device mobile and is a key step in commercializing this for portable technology such as lab-on-a-chip for point-of-care diagnostics. At 880 mA/m(2) and 19 mW/m(2) the MWCNT anode outperformed the others in both current and power densities with between 6 and 20 times better performance. All devices were run for over 15 days, indicating a stable and high-endurance energy harvester already capable of producing enough power for ultra-low-power electronics and able to consistently power them over time.
Kulkova, Julia; Moritz, Niko; Suokas, Esa O; Strandberg, Niko; Leino, Kari A; Laitio, Timo T; Aro, Hannu T
2014-12-01
Bioresorbable suture anchors and interference screws have certain benefits over equivalent titanium-alloy implants. However, there is a need for compositional improvement of currently used bioresorbable implants. We hypothesized that implants made of poly(l-lactide-co-glycolide) (PLGA) compounded with nanostructured particles of beta-tricalcium phosphate (β-TCP) would induce stronger osteointegration than implants made of PLGA compounded with microsized β-TCP particles. The experimental nanostructured self-reinforced PLGA (85L:15G)/β-TCP composite was made by high-energy ball-milling. Self-reinforced microsized PLGA (95L:5G)/β-TCP composite was prepared by melt-compounding. The composites were characterized by gas chromatography, Ubbelohde viscometry, scanning electron microscopy, laser diffractometry, and standard mechanical tests. Four groups of implants were prepared for the controlled laboratory study employing a minipig animal model. Implants in the first two groups were prepared from nanostructured and microsized PLGA/β-TCP composites respectively. Microroughened titanium-alloy (Ti6Al4V) implants served as positive intra-animal control, and pure PLGA implants as negative control. Cone-shaped implants were inserted in a random order unilaterally in the anterior cortex of the femoral shaft. Eight weeks after surgery, the mechanical strength of osteointegration of the implants was measured by a push-out test. The quality of new bone surrounding the implant was assessed by microcomputed tomography and histology. Implants made of nanostructured PLGA/β-TCP composite did not show improved mechanical osteointegration compared with the implants made of microsized PLGA/β-TCP composite. In the intra-animal comparison, the push-out force of two PLGA/β-TCP composites was 35-60% of that obtained with Ti6Al4V implants. The implant materials did not result in distinct differences in quality of new bone surrounding the implant. Copyright © 2014 Elsevier Ltd. All rights reserved.
Klomp, D A; Stuart-Fox, D; Das, I; Ord, T J
2014-12-01
Populations of the Bornean gliding lizard, Draco cornutus, differ markedly in the colour of their gliding membranes. They also differ in local vegetation type (mangrove forest versus lowland rainforest) and consequently, the colour of falling leaves (red and brown/black in mangrove versus green, brown and black in rainforest). We show that the gliding membranes of these lizards closely match the colours of freshly fallen leaves in the local habitat as they appear to the visual system of birds (their probable predators). Furthermore, gliding membranes more closely resembled colours of local fallen leaves than standing foliage or fallen leaves in the other population's habitat. This suggests that the two populations have diverged in gliding membrane coloration to match the colours of their local falling leaves, and that mimicking falling leaves is an adaptation that functions to reduce predation by birds. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Onboard Determination of Vehicle Glide Capability for Shuttle Abort Flight Managment (SAFM)
NASA Technical Reports Server (NTRS)
Straube, Timothy; Jackson, Mark; Fill, Thomas; Nemeth, Scott
2002-01-01
When one or more main engines fail during ascent, the flight crew of the Space Shuttle must make several critical decisions and accurately perform a series of abort procedures. One of the most important decisions for many aborts is the selection ofa landing site. Several factors influence the ability to reach a landing site, including the spacecraft point of atmospheric entry, the energy state at atmospheric entry, the vehicle glide capability from that energy state, and whether one or more suitable landing sites are within the glide capability. Energy assessment is further complicated by the fact that phugoid oscillations in total energy influence glide capability. Once the glide capability is known, the crew must select the "best" site option based upon glide capability and landing site conditions and facilities. Since most of these factors cannot currently be assessed by the crew in flight, extensive planning is required prior to each mission to script a variety of procedures based upon spacecraft velocity at the point of engine failure (or failures). The results of this preflight planning are expressed in tables and diagrams on mission-specific cockpit checklists. Crew checklist procedures involve leafing through several pages of instructions and navigating a decision tree for site selection and flight procedures - all during a time critical abort situation. With the advent of the Cockpit Avionics Upgrade (CAU), the Shuttle will have increased on-board computational power to help alleviate crew workload during aborts and provide valuable situational awareness during nominal operations. One application baselined for the CAU computers is Shuttle Abort Flight Management (SAFM), whose requirements have been designed and prototyped. The SAFM application includes powered and glided flight algorithms. This paper describes the glided flight algorithm which is dispatched by SAFM to determine the vehicle glide capability and make recommendations to the crew for site selection as well as to monitor glide capability while in route to the selected site. Background is provided on Shuttle entry guidance as well as the various types of Shuttle aborts. SAFM entry requirements and cockpit disp lays are discussed briefly to provide background for Glided Flight algorithm design considerations. The central principal of the Glided Flight algorithm is the use of energy-over-weight (EOW) curves to determine range and crossrange boundaries. The major challenges of this technique are exo-atmospheric flight, and phugoid oscillations in energy. During exo-atmospheric flight, energy is constant, so vehicle EOW is not sufficient to determine glide capability. The paper describes how the exo-atmospheric problem is solved by propagating the vehicle state to an "atmospheric pullout" state defined by Shuttle guidance parameters.
Effects of Glide Path on the Centering Ability and Preparation Time of Two Reciprocating Instruments
Coelho, Marcelo Santos; Fontana, Carlos Eduardo; Kato, Augusto Shoji; de Martin, Alexandre Sigrist; da Silveira Bueno, Carlos Eduardo
2016-01-01
Introduction: The aim of this in vitro study was to evaluate the effects of establishing glide path on the centering ability and preparation time of two single-file reciprocating systems in mesial root canals of mandibular molars. Methods and Materials: Sixty extracted mandibular molars with curvatures of 25-39 degrees and separate foramina for the mesiobuccal and mesiolingual canals, were divided into four groups (n=15); WaveOne+glide path; WaveOne; Reciproc+glide path and Reciproc. Non-patent canals were excluded and only one canal in each tooth was instrumented. A manual glide path was established in first and third groups with #10, 15 and 20 hand K-files. Preparation was performed with reciprocating in-and-out motion, with a 3-4 mm amplitude and slight apical pressure. Initial and final radiographs were taken to analyze the amount of dentin removed in the instrumented canals. The radiographs were superimposed with an image editing software and examined to assess discrepancies at 3-, 6- and 9-mm distances from the apex. The Kruskal-Wallis test was used for statistical analysis. The level of significance was set at 0.05. Results: Preparation in groups without glide paths was swifter than the other groups (P=0.001). However, no difference was observed regarding centering ability. Conclusion: Establishing a glide path increased the total instrumentation time for preparing curved canals with WaveOne and Reciproc instruments. Glide path had no influence on the centering ability of these systems. PMID:26843875
Meyers, Ron A; Stakebake, Eric F
2005-01-01
As a postural behavior, gliding and soaring flight in birds requires less energy than flapping flight. Slow tonic and slow twitch muscle fibers are specialized for sustained contraction with high fatigue resistance and are typically found in muscles associated with posture. Albatrosses are the elite of avian gliders; as such, we wanted to learn how their musculoskeletal system enables them to maintain spread-wing posture for prolonged gliding bouts. We used dissection and immunohistochemistry to evaluate muscle function for gliding flight in Laysan and Black-footed albatrosses. Albatrosses possess a locking mechanism at the shoulder composed of a tendinous sheet that extends from origin to insertion throughout the length of the deep layer of the pectoralis muscle. This fascial "strut" passively maintains horizontal wing orientation during gliding and soaring flight. A number of muscles, which likely facilitate gliding posture, are composed exclusively of slow fibers. These include Mm. coracobrachialis cranialis, extensor metacarpi radialis dorsalis, and deep pectoralis. In addition, a number of other muscles, including triceps scapularis, triceps humeralis, supracoracoideus, and extensor metacarpi radialis ventralis, were found to have populations of slow fibers. We believe that this extensive suite of uniformly slow muscles is associated with sustained gliding and is unique to birds that glide and soar for extended periods. These findings suggest that albatrosses utilize a combination of slow muscle fibers and a rigid limiting tendon for maintaining a prolonged, gliding posture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulte, Kevin L.; France, Ryan M.; McMahon, William E.
In this work we develop control over dislocation glide dynamics in Ga xIn 1-xP compositionally graded buffer layers (CGBs) through control of CuPt ordering on the group-III sublattice. The ordered structure is metastable in the bulk, so any glissile dislocation that disrupts the ordered pattern will release stored energy, and experience an increased glide force. Here we show how this connection between atomic ordering and dislocation glide force can be exploited to control the threading dislocation density (TDD) in Ga xIn 1-xP CGBs. When ordered Ga xIn 1-xP is graded from the GaAs lattice constant to InP, the order parametermore » ..eta.. decreases as x decreases, and dislocation glide switches from one set of glide planes to the other. This glide plane switch (GPS) is accompanied by the nucleation of dislocations on the new glide plane, which typically leads to increased TDD. We develop control of the GPS position within a Ga xIn 1-xP CGB through manipulation of deposition temperature, surfactant concentration, and strain-grading rate. We demonstrate a two-stage Ga xIn 1-xP CGB from GaAs to InP with sufficiently low TDD for high performance devices, such as the 4-junction inverted metamorphic multi-junction solar cell, achieved through careful control the GPS position. Here, experimental results are analyzed within the context of a model that considers the force balance on dislocations on the two competing glide planes as a function of the degree of ordering.« less
14 CFR 171.265 - Glide path performance requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... impressed on the microwave carrier of the radiated glide slope signal in the form of a unique summation of... TRANSPORTATION (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Interim Standard Microwave... assumption that the aircraft is heading directly toward the facility. (a) The glide slope antenna system must...
14 CFR 171.265 - Glide path performance requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... impressed on the microwave carrier of the radiated glide slope signal in the form of a unique summation of... TRANSPORTATION (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Interim Standard Microwave... assumption that the aircraft is heading directly toward the facility. (a) The glide slope antenna system must...
14 CFR 171.265 - Glide path performance requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... impressed on the microwave carrier of the radiated glide slope signal in the form of a unique summation of... TRANSPORTATION (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Interim Standard Microwave... assumption that the aircraft is heading directly toward the facility. (a) The glide slope antenna system must...
14 CFR 171.265 - Glide path performance requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... impressed on the microwave carrier of the radiated glide slope signal in the form of a unique summation of... TRANSPORTATION (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Interim Standard Microwave... assumption that the aircraft is heading directly toward the facility. (a) The glide slope antenna system must...
14 CFR 23.71 - Glide: Single-engine airplanes.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Glide: Single-engine airplanes. 23.71... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.71 Glide: Single-engine airplanes. The maximum horizontal distance traveled in still air, in nautical miles...
14 CFR 23.71 - Glide: Single-engine airplanes.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Glide: Single-engine airplanes. 23.71... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.71 Glide: Single-engine airplanes. The maximum horizontal distance traveled in still air, in nautical miles...
14 CFR 23.71 - Glide: Single-engine airplanes.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Glide: Single-engine airplanes. 23.71... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.71 Glide: Single-engine airplanes. The maximum horizontal distance traveled in still air, in nautical miles...
14 CFR 23.71 - Glide: Single-engine airplanes.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Glide: Single-engine airplanes. 23.71 Section 23.71 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Glide: Single-engine airplanes. The maximum horizontal distance traveled in still air, in nautical miles...
14 CFR 23.71 - Glide: Single-engine airplanes.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Glide: Single-engine airplanes. 23.71 Section 23.71 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Glide: Single-engine airplanes. The maximum horizontal distance traveled in still air, in nautical miles...
14 CFR 29.71 - Helicopter angle of glide: Category B.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Helicopter angle of glide: Category B. 29... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.71 Helicopter angle of glide: Category B. For each category B helicopter, except multiengine helicopters meeting the...
14 CFR 29.71 - Helicopter angle of glide: Category B.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Helicopter angle of glide: Category B. 29... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.71 Helicopter angle of glide: Category B. For each category B helicopter, except multiengine helicopters meeting the...
14 CFR 29.71 - Helicopter angle of glide: Category B.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Helicopter angle of glide: Category B. 29... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.71 Helicopter angle of glide: Category B. For each category B helicopter, except multiengine helicopters meeting the...
14 CFR 29.71 - Helicopter angle of glide: Category B.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Helicopter angle of glide: Category B. 29... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.71 Helicopter angle of glide: Category B. For each category B helicopter, except multiengine helicopters meeting the...
14 CFR 29.71 - Helicopter angle of glide: Category B.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Helicopter angle of glide: Category B. 29... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.71 Helicopter angle of glide: Category B. For each category B helicopter, except multiengine helicopters meeting the...
Airway management in a bleeding adult following tonsillectomy: a case report.
Brar, Manjit Singh
2009-12-01
A 37-year-old morbidly obese man with a history of obstructive sleep apnea underwent elective tonsillectomy. The patient was successfully intubated with an 8.0-mm regular cuffed endotracheal tube. A large video laryngoscope (GlideScope, Verathon Inc, Bothell, Washington) was used for intubation, as airway assessment indicated a potentially difficult airway. The surgery was uneventful, but active bleeding was noticed in the oropharynx after extubation. The patient was reintubated, again with the use of a GlideScope. The bleeding site was cauterized, and the patient was extubated after meeting the criteria for an awake extubation. He was discharged home the following day. Eight days postoperatively, the patient returned to the emergency center with spontaneous bleeding from the oropharynx. He was taken to the operating room and, based on the previous GlideScope use, an attempt was made to intubate the patient with a GlideScope. The attempt failed, as the GlideScope screen was blurred by the presence of blood in the oropharynx, even though the oropharynx was suctioned. Resuctioning and reinsertion of the GlideScope probe did not provide an adequate visual field. After 2 failed attempts, the use of the GlideScope was abandoned. Subsequently, the patient's trachea was successfully intubated with a size 4 Macintosh blade.
Design of protein-responsive micro-sized hydrogels for self-regulating microfluidic systems
NASA Astrophysics Data System (ADS)
Hirayama, Mayu; Tsuruta, Kazuhiro; Kawamura, Akifumi; Ohara, Masayuki; Shoji, Kan; Kawano, Ryuji; Miyata, Takashi
2018-03-01
Diagnosis sensors using micro-total analysis systems (µ-TAS) have been developed for detecting target biomolecules such as proteins and saccharides because they are signal biomolecules for monitoring body conditions and diseases. In this study, biomolecularly stimuli-responsive micro-sized hydrogels that exhibited quick shrinkage in response to lectin concanavalinA (ConA) were prepared in a microchannel by photopolymerization using a fluorescence microscope. In preparing the micro-size hydrogels, glycosyloxyethyl methacrylate (GEMA) as a ligand monomer was copolymerized with a crosslinker in the presence of template ConA in molecular imprinting. The ConA-imprinted micro-hydrogel showed greater shrinkage in response to target ConA than nonimprinted micro-hydrogel. When a buffer solution was switched to an aqueous ConA solution in the Y-shaped microchannel, the flow rates changed quickly because of the responsive shrinkage of the micro-hydrogel prepared in the microchannel. These results suggest that the ConA-imprinted micro-hydrogel acted as a self-regulated microvalve in microfluidic systems.
Nano-plastics in the aquatic environment.
Mattsson, K; Hansson, L-A; Cedervall, T
2015-10-01
The amount of plastics released to the environment in modern days has increased substantially since the development of modern plastics in the early 1900s. As a result, concerns have been raised by the public about the impact of plastics on nature and on, specifically, aquatic wildlife. Lately, much attention has been paid to macro- and micro-sized plastics and their impact on aquatic organisms. However, micro-sized plastics degrade subsequently into nano-sizes whereas nano-sized particles may be released directly into nature. Such particles have a different impact on aquatic organisms than larger pieces of plastic due to their small size, high surface curvature, and large surface area. This review describes the possible sources of nano-sized plastic, its distribution and behavior in nature, the impact of nano-sized plastic on the well-being of aquatic organisms, and the difference of impact between nano- and micro-sized particles. We also identify research areas which urgently need more attention and suggest experimental methods to obtain useful data.
NASA Astrophysics Data System (ADS)
Anthony, Robert Ernest
During the past decade, there has been rapidly growing interest in using the naturally occurring seismic noise field to study oceanic, atmospheric, and surface processes. As many seismic noise sources, are non-impulsive and vary over a broad range of time scales (e.g., minutes to decades), they are commonly analyzed using spectral analysis or other hybrid time-frequency domain methods. The PQLX community data analysis program, and the recently released Noise Tool Kit that I co-developed with Incorporated Research Institutions for Seismology's Data Management Center are used here to characterize seismic noise for a variety of environmental targets across a broad range of frequencies. The first two chapters of the dissertation place a strong emphasis on analysis of environmental microseism signals, which occur between 1-25 s period and are dominated by seismic surface waves excited by multiple ocean-solid Earth energy transfer processes. I move away from microseisms in Chapter 3 to investigate the generally higher frequency seismic signals (> 0.33 Hz) generated by fluvial systems. In Chapter 1, I analyze recently collected, broadband data from temporary and permanent Antarctic stations to quantitatively assess background seismic noise levels across the continent between 2007-2012, including substantial previously unsampled sections of the Antarctic continental interior. I characterize three-component noise levels between 0.15-150 s using moving window probability density function-derived metrics and analyze seismic noise levels in multiple frequency bands to examine different noise sources. These metrics reveal and quantify patterns of significant seasonal and geographic noise variations across the continent, including the strong effects of seasonal sea ice variation on the microseism, at a new level of resolution. Thorough analysis of the seismic noise environment and its relation to instrumentation and siting techniques in the Polar Regions facilitates new science opportunities and the optimization of deployment strategies for future seismological research in the Polar Regions, and in mountain glacier systems. Chapter 2 details the analysis of 23 years of microseism observations on the Antarctic Peninsula to investigate wave-sea ice interactions and assess the influence of the Southern Annular Mode (SAM) on storm activity and wave state in the Drake Passage. The lack of landmasses, climatological low pressure, and strong circumpolar westerly winds between latitudes of 50°S to 65°S produce exceptional Southern Ocean storm-driven wave conditions. This combination makes the Antarctic Peninsula one of Earth's most notable regions of high amplitude wave activity and one of the planet's strongest sources of ocean-swell driven microseism noise in both the primary (direct wave-coastal region interactions) and secondary (direct ocean floor forcing due to interacting wave trains) period bands. Microseism observations are examined from 1993-2015 from long running seismographs located at Palmer Station (PMSA), on the west coast of the Antarctic Peninsula, and from the sub-Antarctic East Falkland Island (EFI). These records provide a spatially integrative measure of Southern Ocean amplitudes and of the degree of coupling between ocean waves and the solid earth with and without the presence of sea ice (which can reduce wave coupling with the continental shelf). A spatiotemporal correlation-based approach illuminates how the distribution of sea ice influences seasonal primary and secondary microseism power. I characterize primary and secondary microseism power due to variations in sea ice, and find that primary microseism energy is both more sensitive to sea ice and more capable of propagating across ocean basins than secondary microseism energy. During positive phases of the SAM, sea ice is reduced in the Bellingshausen Sea and overall storm activity in the Drake Passage increases, resulting in strongly increased microseism power levels. The field of fluvial seismology has emerged during the past decade, with seismic recordings near fluvial systems showing potential for a continuous, inexpensive, and non-invasive method of measuring flow and, in some cases, bed-load transport, in streams and rivers. In Chapter 3, I extend this research to the South Fork of the Cache la Poudre River in Northern Colorado where I deployed a small seismoaccoustic array while simultaneous measurements of discharge, suspended sediment concentrations, and precipitation were obtained. By placing seismometers within unprecedented proximity to the channel ( 1 m, and during some time periods submerged), I found a broad range of frequencies excited by discharge, including novel, low-frequency (< 1 Hz) signals. After calibrating horizontal seismic power with flow rates over the course of a rainstorm event for individual sensors, I show that horizontal seismogram power in the 0.33-2 Hz band can be used to accurately invert for fluvial discharge with simple regressions, once a site is properly calibrated to a traditional hydrograph. These signals likely arise from local sensor tilt as the seismometer is directly forced by channel flow and show promise for augmenting seismic monitoring of fluvial systems by introducing a technique to estimate discharge rates from outside the channel with easily deployed noninvasive instrumentation.
Filová, Elena; Suchý, Tomáš; Sucharda, Zbyněk; Šupová, Monika; Žaloudková, Margit; Balík, Karel; Lisá, Věra; Šlouf, Miroslav; Bačáková, Lucie
2014-01-01
Hydroxyapatite (HA) is considered to be a bioactive material that favorably influences the adhesion, growth, and osteogenic differentiation of osteoblasts. To optimize the cell response on the hydroxyapatite composite, it is desirable to assess the optimum concentration and also the optimum particle size. The aim of our study was to prepare composite materials made of polydimethylsiloxane, polyamide, and nano-sized (N) or micro-sized (M) HA, with an HA content of 0%, 2%, 5%, 10%, 15%, 20%, 25% (v/v) (referred to as N0–N25 or M0–M25), and to evaluate them in vitro in cultures with human osteoblast-like MG-63 cells. For clinical applications, fast osseointegration of the implant into the bone is essential. We observed the greatest initial cell adhesion on composites M10 and N5. Nano-sized HA supported cell growth, especially during the first 3 days of culture. On composites with micro-size HA (2%–15%), MG-63 cells reached the highest densities on day 7. Samples M20 and M25, however, were toxic for MG-63 cells, although these composites supported the production of osteocalcin in these cells. On N2, a higher concentration of osteopontin was found in MG-63 cells. For biomedical applications, the concentration range of 5%–15% (v/v) nano-size or micro-size HA seems to be optimum. PMID:25125978
The change in retentive force of magnetic attachment by abrasion.
Huang, Yuanjin; Tawada, Yasuyuki; Hata, Yoshiaki; Watanabe, Fumihiko
2008-07-01
Magnets are frequently applied to removable dentures as retentive attachments. A magnet-retained removable overdenture might be slightly shifted from side to side by eccentric movement in the mouth, and the surface of magnetic attachment may be worn as a result. However, the relationship between the retentive force of magnetic attachment and its surface abrasion has not been reported. The purpose of this research is to investigate this relationship. Ten Mgfit DX 400 magnetic attachments for natural tooth roots were used for this experiment. The magnetic attachments were embedded in autopolymerizing acrylic resin, and ten pairs of specimens were fabricated. A 5-mm repeated gliding motion was applied on each pair of specimens until 30 000, 50 000, or 90 000 cycles had been achieved. The abrasion machine was under 5 kg loading, and the slide speed was 60 times/min. The retentive force of magnetic attachment was measured with a tension gauge at (1) before gliding; (2) after 30 000 gliding cycles; (3)after 50 000 gliding cycles; or (4) after 90 000 gliding cycles. The average change of retentive force of ten magnetic attachments after 30 000, 50 000, and 90 000 gliding cycles was 0.016 N, 0.003 N, and -0.008 N, respectively. The change was statistically analyzed using a paired-sample t test, which showed that the number of gliding cycles did not affect the retentive force of magnetic attachment significantly. The surface of magnetic attachment after gliding was observed by a microscope, and the abrasion of this attachment surface is clearly seen.
Glides and Phonological Change in Mombasan Swahili.
ERIC Educational Resources Information Center
Kelly, John
1991-01-01
A study of the pronunciation of an adult male Swahili speaker, a native and long-term resident of Mombasa Old Town, supplemented with notes on other adult speakers, suggests a new account of glides and phonological change in this variation of the language. The asymmetrical distribution of the two glide types (palatal and labiovelar) is analyzed…
Aerial manoeuvrability in wingless gliding ants (Cephalotes atratus)
Yanoviak, Stephen P.; Munk, Yonatan; Kaspari, Mike; Dudley, Robert
2010-01-01
In contrast to the patagial membranes of gliding vertebrates, the aerodynamic surfaces used by falling wingless ants to direct their aerial descent are unknown. We conducted ablation experiments to assess the relative contributions of the hindlegs, midlegs and gaster to gliding success in workers of the Neotropical arboreal ant Cephalotes atratus (Hymenoptera: Formicidae). Removal of hindlegs significantly reduced the success rate of directed aerial descent as well as the glide index for successful flights. Removal of the gaster alone did not significantly alter performance relative to controls. Equilibrium glide angles during successful targeting to vertical columns were statistically equivalent between control ants and ants with either the gaster or the hindlegs removed. High-speed video recordings suggested possible use of bilaterally asymmetric motions of the hindlegs to effect body rotations about the vertical axis during targeting manoeuvre. Overall, the control of gliding flight was remarkably robust to dramatic anatomical perturbations, suggesting effective control mechanisms in the face of adverse initial conditions (e.g. falling upside down), variable targeting decisions and turbulent wind gusts during flight. PMID:20236974
NASA Astrophysics Data System (ADS)
Drouet, Julie; Dupuy, Laurent; Onimus, Fabien; Mompiou, Frédéric; Perusin, Simon; Ambard, Antoine
2014-06-01
The mechanical behavior of Pressurized Water Reactor fuel cladding tubes made of zirconium alloys is strongly affected by neutron irradiation due to the high density of radiation induced dislocation loops. In order to investigate the interaction mechanisms between gliding dislocations and loops in zirconium, a new nodal dislocation dynamics code, adapted to Hexagonal Close Packed metals, has been used. Various configurations have been systematically computed considering different glide planes, basal or prismatic, and different characters, edge or screw, for gliding dislocations with -type Burgers vectors. Simulations show various interaction mechanisms such as (i) absorption of a loop on an edge dislocation leading to the formation of a double super-jog, (ii) creation of a helical turn, on a screw dislocation, that acts as a strong pinning point or (iii) sweeping of a loop by a gliding dislocation. It is shown that the clearing of loops is more favorable when the dislocation glides in the basal plane than in the prismatic plane explaining the easy dislocation channeling in the basal plane observed after neutron irradiation by transmission electron microscopy.
Analysis on typhoon-induced microseisms from ocean bottom seismometer array
NASA Astrophysics Data System (ADS)
Lee, Tzu-Chuan; Lin, Jing-Yi
2013-04-01
Ocean-bottom seismometer (OBS) is usually used for active sources and passive listening experiments, such as air guns, explosives, earthquakes and other signals. In fact, the seismometer records not only the seismic waveforms but also noises generated by winds, waves, tides and other external forces. From the end of August to early September 2011, 15 OBSs were deployed offshore northeastern Taiwan for a recording period of about 20 days. At the end of August, the typhoon NANMADOL formed in the western Pacific and moved northwestward from the East Philippines and finally landed on the island of Taiwan. Due to storms or pressure changes caused by the typhoon, elastic waves would be directly or indirectly produced and recorded by the seismometers. In this study, by analyzing the seismic signals collected by the OBSs and the BATS stations, we investigate the influence induced by the changes of typhoon path and intensity on the submarine seismic noises. Preliminary results indicate that the seismic energy change related to the typhoon occurred mainly at 0.2-0.5 Hz, which is a relatively low frequency compared to that of earthquakes. The amplitude of this low-frequency noise increased when the distance between the typhoon and seismometer decreased. By comparing the seismic waves with the data collected from the marine weather buoy, we observed a positive correlation between the power of the low frequency microseisms and the wave height. This clearly indicates that the typhoon was the main source of microseisms during their passing. Owing to the ocean waves generated by the typhoon, the pressure altered by the water column change and recorded by the seismometers as seismic waves before being transmitted to the sea?oor. The spectrum analysis shows the presence of a high energy signals at 0.2-1 Hz with a period of about 12 hours which could be related to the tidal movements. In addition, the amplitude of the recorded microseisms is also affected by the depth of seismometers. In general, the deeper the seismometer is located, the smaller the amplitude of microseisms it recorded. All these observations show the seismic signal can respond to the wave and wind changes. However, some exceptions, probably induced by site effect, are observed. Analysis based on the data recorded by hydrophones and inland stations displays consistent results with that of geophones, showing that ocean wave heights appear to be the main origin of the low frequency microseisms signals. Therefore, we suggest that the low frequency ground motions are mostly induced by nearby water pressure ?elds, and transmitted through the rock to the stations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Shi; Bei, Hongbin; Robertson, Ian M.
2017-06-08
One-dimensional glide of loops during ion irradiation at 773 K in a series of Ni-containing concentrated solid solution alloys has been observed directly during experiments conducted inside a transmission electron microscope. It was found that the frequency of the oscillatory motion of the loop, the loop glide velocity as well as the loop jump distance were dependent on the composition of the alloy and the size of the loop. Loop glide was most common for small loops and occurred more frequently in the less complex alloys, being highest in Ni, then NiCo, NiFe and NiCoFeCr. As a result, no measurablemore » loop glide occurred in the NiCoCr, NiCoFeCrMn and NiCoFeCrPd alloys.« less
A Mesozoic gliding mammal from northeastern China.
Meng, Jin; Hu, Yaoming; Wang, Yuanqing; Wang, Xiaolin; Li, Chuankui
2006-12-14
Gliding flight has independently evolved many times in vertebrates. Direct evidence of gliding is rare in fossil records and is unknown in mammals from the Mesozoic era. Here we report a new Mesozoic mammal from Inner Mongolia, China, that represents a previously unknown group characterized by a highly specialized insectivorous dentition and a sizable patagium (flying membrane) for gliding flight. The patagium is covered with dense hair and supported by an elongated tail and limbs; the latter also bear many features adapted for arboreal life. This discovery extends the earliest record of gliding flight for mammals to at least 70 million years earlier in geological history, and demonstrates that early mammals were diverse in their locomotor strategies and lifestyles; they had experimented with an aerial habit at about the same time as, if not earlier than, when birds endeavoured to exploit the sky.
Efficiency of lift production in flapping and gliding flight of swifts.
Henningsson, Per; Hedenström, Anders; Bomphrey, Richard J
2014-01-01
Many flying animals use both flapping and gliding flight as part of their routine behaviour. These two kinematic patterns impose conflicting requirements on wing design for aerodynamic efficiency and, in the absence of extreme morphing, wings cannot be optimised for both flight modes. In gliding flight, the wing experiences uniform incident flow and the optimal shape is a high aspect ratio wing with an elliptical planform. In flapping flight, on the other hand, the wing tip travels faster than the root, creating a spanwise velocity gradient. To compensate, the optimal wing shape should taper towards the tip (reducing the local chord) and/or twist from root to tip (reducing local angle of attack). We hypothesised that, if a bird is limited in its ability to morph its wings and adapt its wing shape to suit both flight modes, then a preference towards flapping flight optimization will be expected since this is the most energetically demanding flight mode. We tested this by studying a well-known flap-gliding species, the common swift, by measuring the wakes generated by two birds, one in gliding and one in flapping flight in a wind tunnel. We calculated span efficiency, the efficiency of lift production, and found that the flapping swift had consistently higher span efficiency than the gliding swift. This supports our hypothesis and suggests that even though swifts have been shown previously to increase their lift-to-drag ratio substantially when gliding, the wing morphology is tuned to be more aerodynamically efficient in generating lift during flapping. Since body drag can be assumed to be similar for both flapping and gliding, it follows that the higher total drag in flapping flight compared with gliding flight is primarily a consequence of an increase in wing profile drag due to the flapping motion, exceeding the reduction in induced drag.
Topçuoğlu, H S; Düzgün, S; Akpek, F; Topçuoğlu, G; Aktı, A
2016-06-01
To evaluate the effect of a glide path on the amount of apically extruded debris during canal preparation using single-file systems in curved canals. Ninety extracted mandibular molar teeth were randomly assigned to six groups (n = 15 for each group) for canal instrumentation. Endodontic access cavities were prepared in each tooth. In three of the six groups, a glide path was not created whereas a glide path was created using PathFile instruments on the mesial canals of all teeth in the remaining three groups. The mesial canals of the teeth were then instrumented with the following single-file instrument systems: WaveOne, Reciproc and OneShape. Debris extruded apically during instrumentation was collected into pre-weighed Eppendorf tubes. The tubes were then stored in an incubator at 70 °C for 5 days. The weight of the dry extruded debris was established by subtracting the pre-instrumentation and post-instrumentation weight of the Eppendorf tubes for each group. The data obtained were analysed using one-way analysis of variance (anova) and Tukey's post hoc tests. The OneShape file was associated with less debris extrusion than the Reciproc and WaveOne files when canal instrumentation was performed without a glide path (P < 0.05). However, no significant difference was found between the Reciproc and WaveOne files (P > 0.05). There was no significant difference amongst the OneShape, Reciproc and WaveOne files when a glide path was created before canal preparation in curved root canals (P > 0.05). All systems extruded significantly less debris in groups with a glide path than in groups without a glide path (P < 0.05). All instruments were associated with apical extrusion of debris. Creating a glide path prior to canal instrumentation reduced the amount of apically extruded debris in curved canals. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Efficiency of Lift Production in Flapping and Gliding Flight of Swifts
Henningsson, Per; Hedenström, Anders; Bomphrey, Richard J.
2014-01-01
Many flying animals use both flapping and gliding flight as part of their routine behaviour. These two kinematic patterns impose conflicting requirements on wing design for aerodynamic efficiency and, in the absence of extreme morphing, wings cannot be optimised for both flight modes. In gliding flight, the wing experiences uniform incident flow and the optimal shape is a high aspect ratio wing with an elliptical planform. In flapping flight, on the other hand, the wing tip travels faster than the root, creating a spanwise velocity gradient. To compensate, the optimal wing shape should taper towards the tip (reducing the local chord) and/or twist from root to tip (reducing local angle of attack). We hypothesised that, if a bird is limited in its ability to morph its wings and adapt its wing shape to suit both flight modes, then a preference towards flapping flight optimization will be expected since this is the most energetically demanding flight mode. We tested this by studying a well-known flap-gliding species, the common swift, by measuring the wakes generated by two birds, one in gliding and one in flapping flight in a wind tunnel. We calculated span efficiency, the efficiency of lift production, and found that the flapping swift had consistently higher span efficiency than the gliding swift. This supports our hypothesis and suggests that even though swifts have been shown previously to increase their lift-to-drag ratio substantially when gliding, the wing morphology is tuned to be more aerodynamically efficient in generating lift during flapping. Since body drag can be assumed to be similar for both flapping and gliding, it follows that the higher total drag in flapping flight compared with gliding flight is primarily a consequence of an increase in wing profile drag due to the flapping motion, exceeding the reduction in induced drag. PMID:24587260
Soaring energetics and glide performance in a moving atmosphere
Reynolds, Kate V.; Thomas, Adrian L. R.
2016-01-01
Here, we analyse the energetics, performance and optimization of flight in a moving atmosphere. We begin by deriving a succinct expression describing all of the mechanical energy flows associated with gliding, dynamic soaring and thermal soaring, which we use to explore the optimization of gliding in an arbitrary wind. We use this optimization to revisit the classical theory of the glide polar, which we expand upon in two significant ways. First, we compare the predictions of the glide polar for different species under the various published models. Second, we derive a glide optimization chart that maps every combination of headwind and updraft speed to the unique combination of airspeed and inertial sink rate at which the aerodynamic cost of transport is expected to be minimized. With these theoretical tools in hand, we test their predictions using empirical data collected from a captive steppe eagle (Aquila nipalensis) carrying an inertial measurement unit, global positioning system, barometer and pitot tube. We show that the bird adjusts airspeed in relation to headwind speed as expected if it were seeking to minimize its aerodynamic cost of transport, but find only weak evidence to suggest that it adjusts airspeed similarly in response to updrafts during straight and interthermal glides. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’. PMID:27528788
Effortful Pitch Glide: A Potential New Exercise Evaluated by Dynamic MRI
ERIC Educational Resources Information Center
Miloro, Keri Vasquez; Pearson, William G., Jr.; Langmore, Susan E.
2014-01-01
Purpose: The purpose of this study was to compare the biomechanics of the effortful pitch glide (EPG) with swallowing using dynamic MRI. The EPG is a combination of a pitch glide and a pharyngeal squeeze maneuver for targeting laryngeal and pharyngeal muscles. The authors hypothesized that the EPG would elicit significantly greater structural…
NASA Astrophysics Data System (ADS)
Zhu, Jiajian; Sun, Zhiwei; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Salewski, Mirko; Leipold, Frank; Kusano, Yukihiro
2014-07-01
We demonstrate a plasma discharge which is generated between two diverging electrodes and extended into a gliding arc in non-equilibrium condition by an air flow at atmospheric pressure. Effects of the air flow rates on the dynamics, ground-state OH distributions and spectral characterization of UV emission of the gliding arc were investigated by optical methods. High-speed photography was utilized to reveal flow-rate dependent dynamics such as ignitions, propagation, short-cutting events, extinctions and conversions of the discharge from glowtype to spark-type. Short-cutting events and ignitions occur more frequently at higher flow rates. The anchor points of the gliding arc are mostly steady at the top of the electrodes at lower flow rates whereas at higher flow rates they glide up along the electrodes most of the time. The afterglow of fully developed gliding arcs is observed to decay over hundreds of microseconds after being electronically short-cut by a newly ignited arc. The extinction time decreases with the increase of the flow rate. The frequency of the conversion of a discharge from glow-type to spark-type increases with the flow rate. Additionally, spatial distributions of ground-state OH were investigated using planar laser-induced fluorescence. The results show that the shape, height, intensity and thickness of ground-state OH distribution vary significantly with air flow rates. Finally, UV emission of the gliding arc is measured using optical emission spectroscopy and it is found that the emission intensity of NO γ (A-X), OH (A-X) and N2 (C-B) increase with the flow rates showing more characteristics of spark-type arcs. The observed phenomena indicate the significance of the interaction between local turbulence and the gliding arc.
Theoretical aspects and the experience of studying spectra of low-frequency microseisms
NASA Astrophysics Data System (ADS)
Birialtsev, E.; Vildanov, A.; Eronina, E.; Rizhov, D.; Rizhov, V.; Sharapov, I.
2009-04-01
The appearance of low-frequency spectral anomalies in natural microseismic noise over oil and gas deposits is observed since 1989 in different oil and gas regions (S. Arutunov, S. Dangel, G. Goloshubin). Several methods of prospecting and exploration of oil and gas deposits based on this effect (NTK ANCHAR, Spectraseis AG). There are several points of view (S. Arutunov, E. Birialtsev, Y. Podladchikov) about the physical model of effect which are based on fundamentally different geophysical mechanisms. One of them is based on the hypothesis of generation of the microseismic noise in to an oil and gas reservoir. Another point of view is based on the mechanism of the filtering microseismic noise in the geological medium where oil and gas reservoir is the contrast layer. For the first hypothesis an adequate quantity physical-mathematical model is absent. Second hypothesis has a discrepancy of distribution energy on theoretical calculated frequencies of waveguides «ground surface - oil deposit» eigenmodes. The fundamental frequency (less than 1 Hz for most cases) should have a highest amplitude as opposed to the regular observation range is 1-10 Hz. During 2005-2008 years by specialists of «Gradient» JSC were processed microsesmic signals from more 50 geological objects. The parameters of low-frequency anomalies were compared with medium properties (porosity, saturation and viscosity) defined according to drilling, allowed to carry out a statistical analysis and to establish some correlation. This paper presents results of theoretical calculation of spectra of microseisms in the zone of oil and gas deposits by mathematical modeling of propagation of seismic waves and comparing spectra of model microseisms with actually observed. Mathematical modeling of microseismic vibrations spectra showed good correlation of theoretical spectra and observed in practice. This is proof the applicability of microseismic methods of exploration for oil and gas. Correlation between spectral parameters of microseisms and reservoir parameters were investigated on results of subsequent drilling. Dependences of the low-frequency seismic signal from collecting properties of the reservoir which have been identified indicate that the change in the spectrum of microseisms occurs when changing filtration and capacitive properties of the reservoir-collector. Changes of physical properties of oil also affect to spectral anomalies of the microseismic field. Obtained dependencies of the influence of a deposit and fluid parameters on spectral characteristics of microseisms are consistent with theoretical ideas about the nature of this influence. In general, performed the research allows confirming previously expressed hypothesis according the physical model of effect of low-frequency spectral anomalies in natural microseismic noise over oil and gas deposits and significantly refining the approach in the method of interpretation. Since the 2005 year the method of interpretation of microseismic spectrum anomalies which based on the hypothesis of filtering microseisms by geological medium widely are using by «Gradient» JSC on the territory of the Volga-Ural oil province. About 70 wells were drills according to results of our researches. According by results of independent experts the effectiveness of the forecasting is more 80%.
Elizabeth A. Flaherty; Merav Ben-David; Winston P. Smith
2010-01-01
Gliding allows mammals to exploit canopy habitats of old-growth forests possibly as a means to save energy. To assess costs of quadrupedal locomotion for a gliding arboreal mammal, we used open-flow respirometry and a variable-speed treadmill to measure oxygen consumption and to calculate cost of transport, excess exercise oxygen consumption, and excess post-exercise...
Fast optimization of glide vehicle reentry trajectory based on genetic algorithm
NASA Astrophysics Data System (ADS)
Jia, Jun; Dong, Ruixing; Yuan, Xuejun; Wang, Chuangwei
2018-02-01
An optimization method of reentry trajectory based on genetic algorithm is presented to meet the need of reentry trajectory optimization for glide vehicle. The dynamic model for the glide vehicle during reentry period is established. Considering the constraints of heat flux, dynamic pressure, overload etc., the optimization of reentry trajectory is investigated by utilizing genetic algorithm. The simulation shows that the method presented by this paper is effective for the optimization of reentry trajectory of glide vehicle. The efficiency and speed of this method is comparative with the references. Optimization results meet all constraints, and the on-line fast optimization is potential by pre-processing the offline samples.
Root canal anatomy preservation of WaveOne reciprocating files with or without glide path.
Berutti, Elio; Paolino, Davide Salvatore; Chiandussi, Giorgio; Alovisi, Mario; Cantatore, Giuseppe; Castellucci, Arnaldo; Pasqualini, Damiano
2012-01-01
This study evaluated the influence of glide path on canal curvature and axis modification after instrumentation with WaveOne Primary reciprocating files. Thirty ISO 15, 0.02 taper Endo Training Blocks were used. In group 1, glide path was created with PathFile 1, 2, and 3 at working length, whereas in group 2, glide path was not performed. In both groups, canals were shaped with WaveOne Primary reciprocating files at working length. Preinstrumentation and postinstrumentation digital images were superimposed and processed with Matlab r2010b software to analyze the curvature radius ratio (CRr) and the relative axis error (rAe), representing canal curvature modification. Data were analyzed with 1-way balanced analyses of variance at 2 levels (P < .05). Glide path was found to be extremely significant for both CRr parameter (F = 9.59; df = 1; P = .004) and rAe parameter (F = 13.55; df = 1; P = .001). Canal modifications seem to be significantly reduced when previous glide path is performed by using the new WaveOne nickel-titanium single-file system. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Barbosa, Tiago M.; Costa, Mário J.; Morais, Jorge E; Moreira, Marc; Silva, António J.; Marinho, Daniel A.
2012-01-01
The aim of this research was to develop a path-flow analysis model to highlight the relationships between buoyancy and prone gliding tests and some selected anthropometrical and biomechanical variables. Thirty-eight young male swimmers (12.97 ± 1.05 years old) with several competitive levels were evaluated. It were assessed the body mass, height, fat mass, body surface area, vertical buoyancy, prone gliding after wall push-off, stroke length, stroke frequency and velocity after a maximal 25 [m] swim. The confirmatory model included the body mass, height, fat mass, prone gliding test, stroke length, stroke frequency and velocity. All theoretical paths were verified except for the vertical buoyancy test that did not present any relationship with anthropometrical and biomechanical variables nor with the prone gliding test. The good-of-fit from the confirmatory path-flow model, assessed with the standardized root mean square residuals (SRMR), is considered as being close to the cut-off value, but even so not suitable of the theory (SRMR = 0.11). As a conclusion, vertical buoyancy and prone gliding tests are not the best techniques to assess the swimmer’s hydrostatic and hydrodynamic profile, respectively. PMID:23486528
Gliding flight in a jackdaw: a wind tunnel study.
Rosén, M; Hedenström, A
2001-03-01
We examined the gliding flight performance of a jackdaw Corvus monedula in a wind tunnel. The jackdaw was able to glide steadily at speeds between 6 and 11 m s(-1). The bird changed its wingspan and wing area over this speed range, and we measured the so-called glide super-polar, which is the envelope of fixed-wing glide polars over a range of forward speeds and sinking speeds. The glide super-polar was an inverted U-shape with a minimum sinking speed (V(ms)) at 7.4 m s(-1) and a speed for best glide (V(bg)) at 8.3 m s(-)). At the minimum sinking speed, the associated vertical sinking speed was 0.62 m s(-1). The relationship between the ratio of lift to drag (L:D) and airspeed showed an inverted U-shape with a maximum of 12.6 at 8.5 m s(-1). Wingspan decreased linearly with speed over the whole speed range investigated. The tail was spread extensively at low and moderate speeds; at speeds between 6 and 9 m s(-1), the tail area decreased linearly with speed, and at speeds above 9 m s(-1) the tail was fully furled. Reynolds number calculated with the mean chord as the reference length ranged from 38 000 to 76 000 over the speed range 6-11 m s(-1). Comparisons of the jackdaw flight performance were made with existing theory of gliding flight. We also re-analysed data on span ratios with respect to speed in two other bird species previously studied in wind tunnels. These data indicate that an equation for calculating the span ratio, which minimises the sum of induced and profile drag, does not predict the actual span ratios observed in these birds. We derive an alternative equation on the basis of the observed span ratios for calculating wingspan and wing area with respect to forward speed in gliding birds from information about body mass, maximum wingspan, maximum wing area and maximum coefficient of lift. These alternative equations can be used in combination with any model of gliding flight where wing area and wingspan are considered to calculate sinking rate with respect to forward speed.
Thermal Stress Behavior of Micro- and Nano-Size Aluminum Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanabusa, T.; Kusaka, K.; Nishida, M.
2008-03-17
In-situ observation of thermal stresses in thin films deposited on silicon substrate was made by X-ray and synchrotron radiation. Specimens prepared in this experiment were micro- and nano-size thin aluminum films with and without passivation film. The thickness of the film was 1 micrometer for micro-size films and 10, 20 and 50 nanometer for nano-size films. The stress measurement in micro-size films was made by X-ray radiation whereas the measurement of nano-size films was made by synchrotron radiation. Residual stress measurement revealed tensile stresses in all as-deposited films. Thermal stresses were measured in a series of heating- and cooling-stage. Thermalmore » stress behavior of micro-size films revealed hysteresis loop during a heating and cooling process. The width of a hysteresis loop was larger in passivated film that unpassivated film. No hysteresis loops were observed in nano-size films with SiO{sub 2} passivation. Strengthning mechanism in thin films was discussed on a passivation film and a film thickness.« less
NASA Astrophysics Data System (ADS)
Zhou, Jian; Tang, Hongbo
2018-05-01
This paper introduces a facile and effective route to decorate micro-sized silver particle surfaces with Ag/AgI nanoclusters through a wet chemical reaction at room temperature using iodine and ethanol as reactant and solvent, respectively. Photosensitivity of AgI is utilized in the route, and AgI decomposes into Ag upon contact with sunshine, forming Ag/AgI nanoclusters. The modified micro-sized Ag particles showed sinterability even at 200°C and formed rigid electrical conductive networks at 350°C. Moreover, sintered film containing the modified Ag particles reached the best conductivity, 9.35 mΩ/sq, after sintering at 350°C for 20 min, while the film with untreated control Ag particles obtained its best conductivity at 400°C. The excellent sinterability should be attributed to the nanoclusters which served as a sintering aid during the heating process. However, increase of sintering temperature and time destroyed densification and conductivity of the sintered film containing the modified particles.
ILS Glide Slope Performance Prediction. Volume B
1974-09-01
figures are identical in both volumes. . Abottec A mathematical model for predicting the performance of ILS glide slope arrays in the presence of...irregularities on the performance of ILS Glide Slope antenna systems, a mathematical -electromagnetic scattering computer model has been developed. This work was...Antenna ........... 4-4 9. Test Case Results ..................................... r-3 ix PART I. IEO -j 1.INTRODUCTION IA mathematical model has been
Dislocation onset and nearly axial glide in carbon nanotubes under torsion
NASA Astrophysics Data System (ADS)
Zhang, D.-B.; James, R. D.; Dumitricǎ, T.
2009-02-01
The torsional plastic response of single-walled carbon nanotubes is studied with tight-binding objective molecular dynamics. In contrast with plasticity under elongation and bending, a torsionally deformed carbon nanotube can slip along a nearly axial helical path, which introduces a distinct (+1,-1) change in wrapping indexes. The low energy realization occurs without loss in mass via nucleation of a 5-7-7-5 dislocation dipole, followed by glide of 5-7 kinks. The possibility of nearly axial glide is supported by the obtained dependence of the plasticity onset on chirality and handedness and by the presented calculations showing the energetic advantage of the slip path and of the initial glide steps.
NASA Technical Reports Server (NTRS)
Reeder, John P.
1959-01-01
Flight tests were made to determine the capability of positioning a gliding airplane for a landing on a 5,000-foot runway with special reference to the gliding flight of a satellite vehicle of fixed configuration upon reentry into the earth's atmosphere. The lift-drag ratio and speed of the airplane in the glides were varied through as large a range as possible. The results showed a marked tendency to undershoot the runway when the lift-drag ratios were below certain values, depending upon the speed in the glide. A straight line dividing the successful approaches from the undershoots could be drawn through a lift-drag ratio of about 3 at 100 knots and through a lift-drag ratio of about 7 at 185 knots. Provision of a drag device would be very beneficial, particularly in reducing the tendency toward undershooting at the higher speeds.
Kobayashi, Akira; Yokogawa, Hideaki; Sugiyama, Kazuhisa
2012-01-01
We describe a modified technique for loading donor corneal endothelial lamella onto a Busin glide® without causing wrinkles, as part of the procedure of Descemet-stripping automated endothelial keratoplasty. Briefly, after punching out a composite of the donor-endothelial lamella and a microkeratome-dissected cap, several drops of dispersive ophthalmic viscosurgical device are placed onto the endothelial surface. The Busin glide surface is then wetted with several drops of balanced salt solution. After the composite is transferred onto the Busin glide, hydrodissection of the potential space between the donor-endothelial lamella and the microkeratome-dissected cap is carefully performed to enable smooth detachment of these two lamellae. Whereas simply dragging the donor-endothelial lamella directly onto the glide can cause wrinkling or folding of the donor lamella, this technique enables smooth detachment of the composite without wrinkle or fold formation, and results in less endothelial cell damage. PMID:22927732
Novel mechanisms power bacterial gliding motility.
Nan, Beiyan; Zusman, David R
2016-07-01
For many bacteria, motility is essential for survival, growth, virulence, biofilm formation and intra/interspecies interactions. Since natural environments differ, bacteria have evolved remarkable motility systems to adapt, including swimming in aqueous media, and swarming, twitching and gliding on solid and semi-solid surfaces. Although tremendous advances have been achieved in understanding swimming and swarming motilities powered by flagella, and twitching motility powered by Type IV pili, little is known about gliding motility. Bacterial gliders are a heterogeneous group containing diverse bacteria that utilize surface motilities that do not depend on traditional flagella or pili, but are powered by mechanisms that are less well understood. Recently, advances in our understanding of the molecular machineries for several gliding bacteria revealed the roles of modified ion channels, secretion systems and unique machinery for surface movements. These novel mechanisms provide rich source materials for studying the function and evolution of complex microbial nanomachines. In this review, we summarize recent findings made on the gliding mechanisms of the myxobacteria, flavobacteria and mycoplasmas. © 2016 John Wiley & Sons Ltd.
Development of a Long-Range Gliding Underwater Vehicle Utilizing Java Sun SPOT Technology
2008-09-01
release; distribution is unlimited DEVELOPMENT OF A LONG-RANGE GLIDING UNMANNED UNDERWATER VEHICLE UTILIZING JAVA SUN SPOT TECHNOLOGY by...TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE: Development of a Long-Range Gliding Underwater Vehicle Utilizing Java Sun SPOT...vehicle. Further work is needed to demonstrate the efficiency and effectiveness of this design. 15. NUMBER OF PAGES 117 14. SUBJECT TERMS Java
Aerodynamic consequences of wing morphing during emulated take-off and gliding in birds.
Klaassen van Oorschot, Brett; Mistick, Emily A; Tobalske, Bret W
2016-10-01
Birds morph their wings during a single wingbeat, across flight speeds and among flight modes. Such morphing may allow them to maximize aerodynamic performance, but this assumption remains largely untested. We tested the aerodynamic performance of swept and extended wing postures of 13 raptor species in three families (Accipitridae, Falconidae and Strigidae) using a propeller model to emulate mid-downstroke of flapping during take-off and a wind tunnel to emulate gliding. Based on previous research, we hypothesized that (1) during flapping, wing posture would not affect maximum ratios of vertical and horizontal force coefficients (C V :C H ), and that (2) extended wings would have higher maximum C V :C H when gliding. Contrary to each hypothesis, during flapping, extended wings had, on average, 31% higher maximum C V :C H ratios and 23% higher C V than swept wings across all biologically relevant attack angles (α), and, during gliding, maximum C V :C H ratios were similar for the two postures. Swept wings had 11% higher C V than extended wings in gliding flight, suggesting flow conditions around these flexed raptor wings may be different from those in previous studies of swifts (Apodidae). Phylogenetic affiliation was a poor predictor of wing performance, due in part to high intrafamilial variation. Mass was only significantly correlated with extended wing performance during gliding. We conclude that wing shape has a greater effect on force per unit wing area during flapping at low advance ratio, such as take-off, than during gliding. © 2016. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Bartelt, P.; Feistl, T.; Bühler, Y.; Buser, O.
2012-08-01
When a full-depth tensile crack opens in the mountain snowcover, internal forces are transferred from the fracture crown to the stauchwall. The stauchwall is located at the lower limit of a gliding zone and must carry the weight of the snowcover. The stauchwall can fail, leading to full-depth snow avalanches, or, it can withstand the stress redistribution. The snowcover often finds a new static equilibrium, despite the initial crack. We present a model describing how the snowcover reacts to the sudden transfer of the forces from the crown to the stauchwall. Our goal is to find the conditions for failure and the start of full-depth avalanches. The model balances the inertial forces of the gliding snowcover with the viscoelastic response of the stauchwall. We compute stresses, strain-rates and deformations during the stress redistribution and show that a new equilibrium state is not found directly, but depends on the viscoelastic properties of the snow, which are density and temperature dependent. During the stress redistribution the stauchwall encounters stresses and strain-rates that can be much higher than at the final equilibrium state. Because of the excess strain-rates, the stauchwall can fail in brittle compression before reaching the new equilibrium. Snow viscosity and the length of the gliding snow region are the two critical parameters governing the transition from stable snowpack gliding to avalanche flow. The model reveals why the formation of gliding snow avalanches is height invariant and how technical measures to prevent snowpack glide can be optimized to improve avalanche mitigation.
GLobal Integrated Design Environment
NASA Technical Reports Server (NTRS)
Kunkel, Matthew; McGuire, Melissa; Smith, David A.; Gefert, Leon P.
2011-01-01
The GLobal Integrated Design Environment (GLIDE) is a collaborative engineering application built to resolve the design session issues of real-time passing of data between multiple discipline experts in a collaborative environment. Utilizing Web protocols and multiple programming languages, GLIDE allows engineers to use the applications to which they are accustomed in this case, Excel to send and receive datasets via the Internet to a database-driven Web server. Traditionally, a collaborative design session consists of one or more engineers representing each discipline meeting together in a single location. The discipline leads exchange parameters and iterate through their respective processes to converge on an acceptable dataset. In cases in which the engineers are unable to meet, their parameters are passed via e-mail, telephone, facsimile, or even postal mail. The result of this slow process of data exchange would elongate a design session to weeks or even months. While the iterative process remains in place, software can now exchange parameters securely and efficiently, while at the same time allowing for much more information about a design session to be made available. GLIDE is written in a compilation of several programming languages, including REALbasic, PHP, and Microsoft Visual Basic. GLIDE client installers are available to download for both Microsoft Windows and Macintosh systems. The GLIDE client software is compatible with Microsoft Excel 2000 or later on Windows systems, and with Microsoft Excel X or later on Macintosh systems. GLIDE follows the Client-Server paradigm, transferring encrypted and compressed data via standard Web protocols. Currently, the engineers use Excel as a front end to the GLIDE Client, as many of their custom tools run in Excel.
Swimming gaits, passive drag and buoyancy of diving sperm whales Physeter macrocephalus.
Miller, Patrick J O; Johnson, Mark P; Tyack, Peter L; Terray, Eugene A
2004-05-01
Drag and buoyancy are two primary external forces acting on diving marine mammals. The strength of these forces modulates the energetic cost of movement and may influence swimming style (gait). Here we use a high-resolution digital tag to record depth, 3-D orientation, and sounds heard and produced by 23 deep-diving sperm whales in the Ligurian Sea and Gulf of Mexico. Periods of active thrusting versus gliding were identified through analysis of oscillations measured by a 3-axis accelerometer. Accelerations during 382 ascent glides of five whales (which made two or more steep ascents and for which we obtained a measurement of length) were strongly affected by depth and speed at Reynold's numbers of 1.4-2.8x10(7). The accelerations fit a model of drag, air buoyancy and tissue buoyancy forces with an r(2) of 99.1-99.8% for each whale. The model provided estimates (mean +/- S.D.) of the drag coefficient (0.00306+/-0.00015), air carried from the surface (26.4+/-3.9 l kg(-3) mass), and tissue density (1030+/-0.8 kg m(-3)) of these five animals. The model predicts strong positive buoyancy forces in the top 100 m of the water column, decreasing to near neutral buoyancy at 250-850 m. Mean descent speeds (1.45+/-0.19 m s(-1)) were slower than ascent speeds (1.63+/-0.22 m s(-1)), even though sperm whales stroked steadily (glides 5.3+/-6.3%) throughout descents and employed predominantly stroke-and-glide swimming (glides 37.7+/-16.4%) during ascents. Whales glided more during portions of dives when buoyancy aided their movement, and whales that glided more during ascent glided less during descent (and vice versa), supporting the hypothesis that buoyancy influences behavioural swimming decisions. One whale rested at approximately 10 m depth for more than 10 min without fluking, regulating its buoyancy by releasing air bubbles.
Wang, Qingcui; Guo, Lu; Bao, Ming; Chen, Lihan
2015-01-01
Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: ‘element motion’ (EM) or ‘group motion’ (GM). In “EM,” the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in “GM,” both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms) from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside). Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of GM as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50–230 ms) in the long glide was perceived to be shorter than that within both the short glide and the ‘gap-transfer’ auditory configurations in the same physical intervals (gaps). The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role. PMID:26042055
Wang, Qingcui; Guo, Lu; Bao, Ming; Chen, Lihan
2015-01-01
Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: 'element motion' (EM) or 'group motion' (GM). In "EM," the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in "GM," both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms) from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside). Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of GM as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50-230 ms) in the long glide was perceived to be shorter than that within both the short glide and the 'gap-transfer' auditory configurations in the same physical intervals (gaps). The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role.
Arslan, Zehra İpek; Solak, Mine
2017-01-01
Objective Cricoid pressure is useful in fasted patients requiring emergency intubation. We compared the effect of cricoid pressure on laryngeal view during Macintosh, McGrath MAC X-Blade and GlideScope video laryngoscopy. Methods After obtaining approval from the Human Research Ethics Committee and written informed consent from patients, we enrolled 120 patients (American Society of Anesthesiologists I–II, age 18–65 years) undergoing elective surgery that required endotracheal intubation in this prospective randomised study. Patients were divided into three groups (Macintosh, McGrath MAC X-Blade and GlideScope). Results Demographic and airway variables were similar in the groups. Cormack-Lehane grades were improved or unchanged on using cricoid pressure in Macintosh and McGrath MAC X-Blade groups. However, laryngeal views worsened in 12 patients (30%), remained unchanged in 26 patients (65%) and improved in 2 patients (5%) in the GlideScope group (p<0.001). Insertion and intubation times for Macintosh and McGrath MAC X-Blade video laryngoscopes were similar. Insertion times for GlideScope and Macintosh video laryngoscopes were similar, but were longer than those for the McGrath MAC X-Blade video laryngoscope (p=0.02). Tracheal intubation took longer with the GlideScope video laryngoscope than with the other devices (p<0.001 and p=0.003). Mean arterial pressures after insertion increased significantly in Macintosh and GlideScope groups (p=0.004 and p=0.001, respectively) compared with post-induction values. Heart rates increased after insertion in all three groups compared with post-induction values (p<0.001). Need for optimisation manoeuvres and postoperative minor complications were comparable in all three groups. Conclusion Although all three devices are useful for normal or difficult intubation, cricoid pressure improved Cormack-Lehane grades of Macintosh and McGrath MAC X-Blade video laryngoscopes but statistically significantly worsened that of the GlideScope video laryngoscope. PMID:29359076
Vorster, Martin; van der Vyver, Peet J; Paleker, Farzana
2018-05-01
The aim of this study was to compare the glide path preparation times of stainless steel hand files, PathFiles (Dentsply Sirona, Ballaigues, Switzerland), and the WaveOne Gold Glider (Dentsply Sirona). The preparation times for final root canal shaping with the Primary WaveOne Gold instrument in extracted human molar teeth with and without prior glide path preparation were also recorded and compared. Mesiobuccal canals of 60 extracted human mandibular molars (curvature angles between 25° and 35° and radii <10 mm) were selected and randomly divided into 4 groups with 15 canals each. Canals were negotiated to patency with a #8 K-file. Canal preparations were performed by a single operator using precurved #10-15-20 stainless steel manual K-files (the K-file group), a #10 stainless steel manual K-file followed by PathFiles #1-3 (the PathFile group), a #10 stainless steel manual K-file followed by WaveOne Gold Glider (the WaveOne Gold Glider group), or no further glide path preparation. Final canal preparation of all 60 canals was performed with the Primary WaveOne Gold instrument. Glide path and final preparation times were recorded. Glide path enlargement was statistically significantly fastest in the WaveOne Gold Glider group (19.7 ± 5.6 seconds) followed by the PathFile group (41.0 ± 6.8 seconds) and then the K-file group (81.2 ± 26.3 seconds) using analysis of variance (ANOVA) and Kruskal-Wallis tests (P < .0001). No statistically significant difference in the mean final preparation times was found among the WaveOne Gold Glider (23.1 ± 6.0 seconds), PathFile (24.4 ± 4.9 seconds), and K-file groups (27.2 ± 9.5 seconds). All 3 groups were statistically significantly faster than the no glide path preparation group (35.4 ± 10.2 seconds) using ANOVA (P = .0004) and Kruskal-Wallis tests (P = .0010). Preparation time with the Primary WaveOne Gold file was statistically significantly reduced when the file was used in combination with any of the glide path preparation techniques. The WaveOne Gold Glider performed statistically significantly faster in glide path preparation time than the other glide path preparation techniques. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Development of high-energy silicon-based anode materials for lithium-ion storage
NASA Astrophysics Data System (ADS)
Yi, Ran
The emerging markets of electric vehicles (EV) and hybrid electric vehicles (HEV) generate a tremendous demand for low-cost lithium-ion batteries (LIBs) with high energy and power densities, and long cycling life. The development of such LIBs requires development of low cost, high-energy-density cathode and anode materials. Conventional anode materials in commercial LIBs are primarily synthetic graphite-based materials with a capacity of ˜370 mAh/g. Improvements in anode performance, particularly in anode capacity, are essential to achieving high energy densities in LIBs for EV and HEV applications. This dissertation focuses on development of micro-sized silicon-carbon (Si-C) composites as anode materials for high energy and power densities LIBs. First, a new, low-cost, large-scale approach was developed to prepare a micro-sized Si-C composite with excellent performance as an anode material for LIBs. The composite shows a reversible capacity of 1459 mAh/g after 200 cycles at 1 A/g (97.8% capacity retention) and excellent high rate performance of 700 mAh/g at 12.8 A/g, and also has a high tap density of 0.78 g/cm3. The structure of the composite, micro-sized as a whole, features the interconnected nanoscale size of the Si building blocks and the uniform carbon filling, which enables the maximum utilization of silicon even when the micro-sized particles break into small pieces upon cycling. To understand the effects of key parameters in designing the micro-sized Si-C composites on their electrochemical performance and explore how to optimize them, the influence of Si nanoscale building block size and carbon coating on the electrochemical performance of the micro-sized Si-C composites were investigated. It has been found that the critical Si building block size is 15 nm, which enables a high capacity without compromising the cycling stability, and that carbon coating at higher temperature improves the 1st cycle coulombic efficiency (CE) and the rate capability. Corresponding reasons underneath electrochemical performance have been revealed by various characterizations. Combining both optimized Si building block size and carbon coating temperature, the resultant composite can sustain 600 cycles at 1.2 A/g with a fixed lithiation capacity of 1200 mAh/g, the best cycling performance with such a high capacity for micro-sized Si-based anodes. To further improve the the rate capability of Si-based anode materials, an effecitive method of facile boron doping was demonstrated. Boron-doped Si-C composite can deliver a high capacity of 575 mAh/g at 6.4 A/g without addition of any conductive additives, 80% higher than that of undoped composite. Compared to the obvious capacity fading of undoped Si-C composite, boron-doped Si-C composite maintains its capacity well upon long cycling at a high current density. Electrochemical impedance spectroscopy (EIS) measurement shows boron-doped Si-C composite has lower charge transfer resistance, which helps improve its rate capability. A novel micro-sized graphene/Si-C composite (G/Si-C) was then developed to translate the performance of such micro-sized Si-C composites from the material level to the electrode level aiming to achieve high areal capacities (mAh/cm2) besides gravimetric capacities (mAh/g). Owing to dual conductive networks both within single particles formed by carbon and between different particles formed by graphene, low electrical resistance can be maintained at high mass loading, which enables a high degree of material utilization. Areal capacity thus increases almost linearly with mass loading. As a result, G/Si-C exhibits a high areal capacity of 3.2 mAh/cm2 after 100 cycles with high coulombic efficiency (average 99.51% from 2nd to 100th cycle), comparable to that of commercial anodes. Finally, a micro-sized Si-based material (B-Si/SiO2/C) featuring high rate performance was developed via a facile route without use of toxic hydrofluoric acid. A Li-ion hybrid battery constructed of such a Si-based anode and a porous carbon cathode was demonstrated with both high power and energy densities. Boron-doping is employed to improve the rate capability of B-Si/SiO2/C. At a high current density of 6.4 A/g, B-Si/SiO 2/C delivers a capacity of 685 mAh/g, 2.4 times that of the undoped Si/SiO2/C. Benefiting from the high rate performance along with low working voltage, high capacity and good cycling stability of B-Si/SiO 2/C, the hybrid battery exhibits a high energy density of 128 Wh/kg at 1229 W/kg. Even when power density increases to the level of a conventional supercapacitor (9704 W/kg), 89 Wh/kg can be obtained, the highest values of any hybrid battery to date. Long cycling life (capacity retention of 70% after 6000 cycles) and low self-discharge rate (voltage retention of 82% after 50 hours) are also achieved.
Gliding in convection currents
NASA Technical Reports Server (NTRS)
Georgii, W
1935-01-01
A survey of the possibilities of gliding in convection currents reveals that heretofore only the most simple kind of ascending convection currents, that is, the "thermic" of insolation, has been utilized to any extent. With the increasing experience in gliding, the utilization of the peculiar nature of the "wind thermic" and increased glider speed promises further advances. Evening, ocean, and height "thermic" are still in the exploration stage, and therefore not amenable to survey in their effects.
Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.; Reardon, Blase
2012-01-01
The results suggest that the role of air temperature and snowpack settlement appear to be the most important variables in wet slab and glide avalanche occurrence. When applied to the 2011 season, the results of the CART model are encouraging and they enhance our understanding of some of the required meteorological and snowpack conditions for wet slab and glide avalanche occurrence.
2016-06-01
instruments into the root canal system, manufacturers recommend creating a glide path to reduce the risk of instrument fracture due to taper lock . This...Results The two groups had almost identical mean and standard...The groups had identical median values of 85 seconds, and there was no significant difference between the groups (Mann-Whitney U test; p=0.15; two
Two-leg Su-Schrieffer-Heeger chain with glide reflection symmetry
NASA Astrophysics Data System (ADS)
Zhang, Shao-Liang; Zhou, Qi
2017-06-01
The Su-Schrieffer-Heeger (SSH) model lays the foundation of many important concepts in quantum topological matters. Here, we show that a spin-dependent double-well optical lattice allows one to couple two topologically distinct SSH chains in the bulk and realize a glided-two-leg SSH model that respects the glide reflection symmetry. Such a model gives rise to intriguing quantum phenomena beyond the paradigm of a traditional SSH model. It is characterized by Wilson lines that require non-Abelian Berry connections, and the interplay between the glide symmetry and interaction automatically leads to charge fractionalization without jointing two lattice potentials at an interface. Our work demonstrates the versatility of ultracold atoms to create new theoretical models for studying topological matters.
Arias, Ana; de Vasconcelos, Rafaela Andrade; Hernández, Alexis; Peters, Ove A
2017-03-01
The purpose of this study was to assess the ex vivo torsional performance of a novel rotary system in small root canals after 2 different glide path preparations. Each independent canal of 8 mesial roots of mandibular molars was randomly assigned to achieve a reproducible glide path with a new set of either PathFile #1 (Dentsply Maillefer, Ballaigues, Switzerland) and #2 or ProGlider (Dentsply Maillefer) after negotiation with a 10 K-file. After glide path preparation, root canals in both groups were shaped with the same sequence of ProTaper Gold (Dentsply Tulsa Dental Specialties, Tulsa, OK) following the directions for use recommended by the manufacturer. A total of 16 new sets of each instrument of the ProTaper Gold (PTG) system were used. The tests were run in a standardized fashion in a torque-testing platform. Peak torque (Ncm) and force (N) were registered during the shaping procedure and compared with Student t tests after normal distribution of data was confirmed. No significant differences were found for any of the instruments in peak torque or force after the 2 different glide path preparations (P > .05). Data presented in this study also serve as a basis for the recommended torque for the use of PTG instruments. Under the conditions of this study, differences in the torsional performance of PTG rotary instruments after 2 different glide path preparations could not be shown. The different geometry of glide path rotary systems seemed to have no effect on peak torque and force induced by PTG rotary instruments when shaping small root canals in extracted teeth. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Ribeiro, Daniel Cury; de Castro, Marcelo Peduzzi; Sole, Gisela; Vicenzino, Bill
2016-04-01
Manual therapy enhances pain-free range of motion and reduces pain levels, but its effect on shoulder muscle activity is unclear. This study aimed to assess the effects of a sustained glenohumeral postero-lateral glide during elevation on shoulder muscle activity. Thirty asymptomatic individuals participated in a repeated measures study of the electromyographic activity of the supraspinatus, infraspinatus, posterior deltoid, and middle deltoid. Participants performed four sets of 10 repetitions of shoulder scaption and abduction with and without a glide of the glenohumeral joint. Repeated-measures multivariate analysis of variance (MANOVA) was used to assess the effects of movement direction (scaption and abduction), and condition (with and without glide) (within-subject factors) on activity level of each muscle (dependent variables). Significant MANOVAs were followed-up with repeated-measures one-way analysis of variance. During shoulder scaption with glide, the supraspinatus showed a reduction of 4.1% maximal isometric voluntary contraction (MVIC) (95% CI 2.4, 5.8); and infraspinatus 1.3% MVIC (95% CI 0.5, 2.1). During shoulder abduction with a glide, supraspinatus presented a reduction of 2.5% MVIC (95% CI 1.1, 4.0), infraspinatus 2.1% MVIC (95% CI 1.0, 3.2), middle deltoid 2.2% MVIC (95% CI = 0.4, 4.1), posterior deltoid 2.1% MVIC (95% CI 1.3, 2.8). In asymptomatic individuals, sustained glide reduced shoulder muscle activity compared to control conditions. This might be useful in enhancing shoulder movement in clinical populations. Reductions in muscle activity might result from altered joint mechanics, including simply helping to lift the arm, and/or through changing afferent sensory input about the shoulder. Copyright © 2015 Elsevier Ltd. All rights reserved.
Exploiting Glide Symmetry in Planar EBG Structures
NASA Astrophysics Data System (ADS)
Mouris, Boules A.; Quevedo-Teruel, Oscar; Thobaben, Ragnar
2018-02-01
Periodic structures such as electromagnetic band gap (EBG) structures can be used to prevent the propagation of electromagnetic waves within a certain frequency range known as the stop band. One of the main limitations of using EBG structures at low frequencies is their relatively large size. In this paper, we investigate the possibility of using glide symmetry in planar EBG structures to reduce their size. Simulated results demonstrate that exploiting glide symmetry in EBG structures can lead to size reduction.
Lubrication of dislocation glide in MgO by hydrous defects
NASA Astrophysics Data System (ADS)
Skelton, Richard; Walker, Andrew M.
2018-02-01
Water-related defects, principally in the form of protonated cation vacancies, are potentially able to weaken minerals under high-stress or low-temperature conditions by reducing the Peierls stress required to initiate dislocation glide. In this study, we use the Peierls-Nabarro (PN) model to determine the effect of protonated Mg vacancies on the 1/2<110>{110} and 1/2<110>{100} slip systems in MgO. This PN model is parameterized using generalized stacking fault energies calculated using plane-wave density functional theory, with and without protonated Mg vacancies present at the glide plane. It found that these defects increase dislocation core widths and reduce the Peierls stress over the entire pressure range 0-125 GPa. Furthermore, 1/2<110>{110} slip is found to be more sensitive to the presence of protonated vacancies which increases in the pressure at which {100} becomes the easy glide plane for 1/2<110> screw dislocations. These results demonstrate, for a simple mineral system, that water-related defects can alter the deformation behavior of minerals in the glide-creep regime by reducing the stress required to move dislocations by glide. (Mg, Fe)O is the most anisotropic mineral in the Earth's lower mantle, so the differential sensitivity of the major slip systems in MgO to hydrous defects has potential implications for the interpretation of the seismic anisotropy in this region.
NASA Astrophysics Data System (ADS)
Kuo, Chun-Fu; Chu, Shu-Chun
2013-03-01
Optical vortices possess several special properties, including carrying optical angular momentum (OAM) and exhibiting zero intensity. Vortex array laser beams have attracts many interests due to its special mesh field distributions, which show great potential in the application of multiple optical traps and dark optical traps. Previously study developed an Ince-Gaussian Mode (IGM)-based vortex array laser beam1. This study develops a simulation model based on the discrete dipole approximation (DDA) method for calculating the resultant force acting on a micro-sized spherical dielectric particle that situated at the beam waist of the IGM-based vortex array laser beams1.
Motrescu, Iuliana; Nagatsu, Masaaki
2016-05-18
With respect to microsized surface functionalization techniques we proposed the use of a maskless, versatile, simple tool, represented by a nano- or microcapillary atmospheric pressure plasma jet for producing microsized controlled etching, chemical vapor deposition, and chemical modification patterns on polymeric surfaces. In this work we show the possibility of size-controlled surface amination, and we discuss it as a function of different processing parameters. Moreover, we prove the successful connection of labeled sugar chains on the functionalized microscale patterns, indicating the possibility to use ultrafine capillary atmospheric pressure plasma jets as versatile tools for biosensing, tissue engineering, and related biomedical applications.
NASA Astrophysics Data System (ADS)
Aborkin, A. V.; Alymov, M. I.; Arkhipov, V. E.; Khrenov, D. S.
2018-02-01
Heterogeneous coatings have been deposited by the cold gas-dynamic spraying of mechanically synthesized AMg2/graphite + Al2O3 powders. A specific feature of the coatings formed is the existence of a two-level micro-and nanocomposite structure. It has been established that an increase in the content of microsized Al2O3 particles in the mixture from 10 to 30 wt % produces a twofold increase in the thickness of the coating deposited for the same time period from 140 to 310 μm. A further growth in the content of microsized Al2O3 particles in the mixture up to 50 wt % leads to a decrease in the thickness of the coating formed to 40 μm. The manufactured coatings have a high microhardness ranging from 1.7 to 3.2 GPa depending on their composition. The high microhardness of these coatings is caused by an increase in the hardness of the matrix material due to the creation of a nanocomposite structure, which strengthens the immobilization of microsized Al2O3 particles in it, thus improving the properties of the heterogeneous coating as a whole.
Ambient Noise Tomography and Microseism Directionalities across the Juan de Fuca Plate
NASA Astrophysics Data System (ADS)
Tian, Ye
Ambient noise tomography has been well developed over the past decade and proven to be effective in studying the crust and upper mantle structure beneath the Earth’s continents. With new seismic array deployments beginning in the oceans, the application of the tomographic methods based on ambient noise observed at ocean bottom seismometers (OBSs) has become an important topic for research. In this thesis, I investigate the application of ambient noise tomography to oceanic bottom seismic data recorded by the Cascadia Initiative experiment across the Juan de Fuca plate. With higher local noise levels recorded by OBSs, I find that traditional data processing procedures used in ambient noise tomography produce measurable Rayleigh wave Green’s functions between deep ocean stations, whereas the shallow water stations are severely contaminated by both tilt noise and compliance noise and require new methods of processing. Because the local noise level varies across the study region, four semi-independent studies are conducted to both utilize the quieter deep-water stations and to address the problem posed by noisy shallow water stations. First, I construct an age-dependent shear wave speed model of the crust and uppermost mantle with 18 deep-water stations near the Juan de Fuca Ridge. The model possess a shallow low shear velocity zone near the ridge and has its sedimentary thickness, lithospheric thickness, and mantle shear wave speeds increase systematically with age Second, I investigate the locations and mechanisms of microseism generation using ambient noise cross-correlations constructed between 61 OBSs and 42 continental stations near the western US coast and find that the primary and secondary microseisms are generated at different locations and possibly have different physical mechanisms. Third, I show that tilt and compliance noise on the vertical components of the OBSs can be reduced substantially using the horizontal components and the differential pressure gauge records. Removal of these types of noise improves the signal-to-noise ratio of ambient noise cross-correlations significantly at beyond 10 sec period. Lastly, I present a new single-station method to estimate the microseism Rayleigh wave strength and directionality based on the horizontal-to-vertical transfer function. The high spatial and temporal resolution of this method may open up the microseism Rayleigh waves for a wider range of studies.
TauG-guidance of transients in expressive musical performance.
Schogler, Benjaman; Pepping, Gert-Jan; Lee, David N
2008-08-01
The sounds in expressive musical performance, and the movements that produce them, offer insight into temporal patterns in the brain that generate expression. To gain understanding of these brain patterns, we analyzed two types of transient sounds, and the movements that produced them, during a vocal duet and a bass solo. The transient sounds studied were inter-tone f (0)(t)-glides (the continuous change in fundamental frequency, f (0)(t), when gliding from one tone to the next), and attack intensity-glides (the continuous rise in sound intensity when attacking, or initiating, a tone). The temporal patterns of the inter-tone f (0)(t)-glides and attack intensity-glides, and of the movements producing them, all conformed to the mathematical function, tau (G)(t) (called tauG), predicted by General Tau Theory, and assumed to be generated in the brain. The values of the parameters of the tau (G)(t) function were modulated by the performers when they modulated musical expression. Thus the tau (G)(t) function appears to be a fundamental of brain activity entailed in the generation of expressive temporal patterns of movement and sound.
Aydin, Ugur; Karataslioglu, Emrah
2017-01-01
Canal transportation is a common sequel caused by rotary instruments. The purpose of the present study is to evaluate the degree of transportation after the use of Reciproc single-file instruments with or without glide path files. Thirty resin blocks with L-shaped canals were divided into three groups ( n = 10). Group 1 - canals were prepared with Reciproc-25 file. Group 2 - glide path file-G1 was used before Reciproc. Group 3 - glide path files-G1 and G2 were used before Reciproc. Pre- and post-instrumentation images were superimposed under microscope, and resin removed from the inner and outer surfaces of the root canal was calculated throughout 10 points. Statistical analysis was performed with Kruskal-Wallis test and post hoc Dunn test. For coronal and middle one-thirds, there was no significant difference among groups ( P > 0.05). For apical section, transportation of Group 1 was significantly higher than other groups ( P < 0.05). Using glide path files before Reciproc single-file system reduced the degree of apical canal transportation.
A Jurassic gliding euharamiyidan mammal with an ear of five auditory bones
NASA Astrophysics Data System (ADS)
Han, Gang; Mao, Fangyuan; Bi, Shundong; Wang, Yuanqing; Meng, Jin
2017-11-01
Gliding is a distinctive locomotion type that has been identified in only three mammal species from the Mesozoic era. Here we describe another Jurassic glider that belongs to the euharamiyidan mammals and shows hair details on its gliding membrane that are highly similar to those of extant gliding mammals. This species possesses a five-boned auditory apparatus consisting of the stapes, incus, malleus, ectotympanic and surangular, representing, to our knowledge, the earliest known definitive mammalian middle ear. The surangular has not been previously identified in any mammalian middle ear, and the morphology of each auditory bone differs from those of known mammals and their kin. We conclude that gliding locomotion was probably common in euharamiyidans, which lends support to idea that there was a major adaptive radiation of mammals in the mid-Jurassic period. The acquisition of the auditory bones in euharamiyidans was related to the formation of the dentary-squamosal jaw joint, which allows a posterior chewing movement, and must have evolved independently from the middle ear structures of monotremes and therian mammals.
Depletion force induced collective motion of microtubules driven by kinesin
NASA Astrophysics Data System (ADS)
Inoue, Daisuke; Mahmot, Bulbul; Kabir, Arif Md. Rashedul; Farhana, Tamanna Ishrat; Tokuraku, Kiyotaka; Sada, Kazuki; Konagaya, Akihiko; Kakugo, Akira
2015-10-01
Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being considered a model system to experimentally investigate various aspects of group behavior and pattern formation by self-propelled objects. In the in vitro gliding assay, cytoskeletal filaments F-actin or microtubules are driven by the surface immobilized associated biomolecular motors myosin or dynein respectively. Although the F-actin/myosin or microtubule/dynein system was found to be promising in understanding the collective motion and pattern formation by self-propelled objects, the most widely used biomolecular motor system microtubule/kinesin could not be successfully employed so far in this regard. Failure in exhibiting collective motion by kinesin driven microtubules is attributed to the intrinsic properties of kinesin, which was speculated to affect the behavior of individual gliding microtubules and mutual interactions among them. In this work, for the first time, we have demonstrated the collective motion of kinesin driven microtubules by regulating the mutual interaction among the gliding microtubules, by employing a depletion force among them. Proper regulation of the mutual interaction among the gliding microtubules through the employment of the depletion force was found to allow the exhibition of collective motion and stream pattern formation by the microtubules. This work offers a universal means for demonstrating the collective motion using the in vitro gliding assay of biomolecular motor systems and will help obtain a meticulous understanding of the fascinating coordinated behavior and pattern formation by self-propelled objects.Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being considered a model system to experimentally investigate various aspects of group behavior and pattern formation by self-propelled objects. In the in vitro gliding assay, cytoskeletal filaments F-actin or microtubules are driven by the surface immobilized associated biomolecular motors myosin or dynein respectively. Although the F-actin/myosin or microtubule/dynein system was found to be promising in understanding the collective motion and pattern formation by self-propelled objects, the most widely used biomolecular motor system microtubule/kinesin could not be successfully employed so far in this regard. Failure in exhibiting collective motion by kinesin driven microtubules is attributed to the intrinsic properties of kinesin, which was speculated to affect the behavior of individual gliding microtubules and mutual interactions among them. In this work, for the first time, we have demonstrated the collective motion of kinesin driven microtubules by regulating the mutual interaction among the gliding microtubules, by employing a depletion force among them. Proper regulation of the mutual interaction among the gliding microtubules through the employment of the depletion force was found to allow the exhibition of collective motion and stream pattern formation by the microtubules. This work offers a universal means for demonstrating the collective motion using the in vitro gliding assay of biomolecular motor systems and will help obtain a meticulous understanding of the fascinating coordinated behavior and pattern formation by self-propelled objects. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02213d
Effect of turbulent flow on an atmospheric-pressure AC powered gliding arc discharge
NASA Astrophysics Data System (ADS)
Kong, Chengdong; Gao, Jinlong; Zhu, Jiajian; Ehn, Andreas; Aldén, Marcus; Li, Zhongshan
2018-06-01
A high-power gliding arc (GA) discharge was generated in a turbulent air flow driven by a 35 kHz alternating current electric power supply. The effects of the flow rate on the characteristics of the GA discharge were investigated using combined optical and electrical diagnostics. Phenomenologically, the GA discharge exhibits two types of discharge, i.e., glow type and spark type, depending on the flow rates and input powers. The glow-type discharge, which has peak currents of hundreds of milliamperes, is sustained at low flow rates. The spark-type discharge, which is characterized by a sharp current spike of several amperes with duration of less than 1 μs, occurs more frequently as the flow rate increases. Higher input power can suppress spark-type discharges in moderate turbulence, but this effect becomes weak under high turbulent conditions. Physically, the transition between glow- and spark-type is initiated by the short cutting events and the local re-ignition events. Short cutting events occur owing to the twisting, wrinkling, and stretching of the plasma columns that are governed by the relatively large vortexes in the flow. Local re-ignition events, which are defined as re-ignition along plasma columns, are detected in strong turbulence due to increment of the impedance of the plasma column and consequently the internal electric field strength. It is suggested that the vortexes with length scales smaller than the size of the plasma can penetrate into the plasma column and promote mixing with surroundings to accelerate the energy dissipation. Therefore, the turbulent flow influences the GA discharges by ruling the short cutting events with relatively large vortexes and the local re-ignition events with small vortexes.
A methodology for boost-glide transport technology planning
NASA Technical Reports Server (NTRS)
Repic, E. M.; Olson, G. A.; Milliken, R. J.
1974-01-01
A systematic procedure is presented by which the relative economic value of technology factors affecting design, configuration, and operation of boost-glide transport can be evaluated. Use of the methodology results in identification of first-order economic gains potentially achievable by projected advances in each of the definable, hypersonic technologies. Starting with a baseline vehicle, the formulas, procedures and forms which are integral parts of this methodology are developed. A demonstration of the methodology is presented for one specific boost-glide system.
14 CFR 171.267 - Glide path automatic monitor system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... control points when any of the following occurs: (1) A shift of the mean ISMLS glide path angle equivalent... TRANSPORTATION (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Interim Standard Microwave...
14 CFR 171.267 - Glide path automatic monitor system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... control points when any of the following occurs: (1) A shift of the mean ISMLS glide path angle equivalent... TRANSPORTATION (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Interim Standard Microwave...
14 CFR 171.267 - Glide path automatic monitor system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... control points when any of the following occurs: (1) A shift of the mean ISMLS glide path angle equivalent... TRANSPORTATION (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Interim Standard Microwave...
Decomposition of naphthalene by dc gliding arc gas discharge.
Yu, Liang; Li, Xiaodong; Tu, Xin; Wang, Yu; Lu, Shengyong; Yan, Jianhua
2010-01-14
Gliding arc discharge has been proved to be effective in treatment of gas and liquid contaminants. In this study, physical characteristics of dc gliding arc discharge and its application to naphthalene destruction are investigated with different external resistances and carrier gases. The decomposition rate increases with increasing of oxygen concentration and decreases with external resistance. This value can be achieved up to 92.3% at the external resistance of 50 kOmega in the oxygen discharge, while the highest destruction energy efficiency reaches 3.6 g (kW h)(-1) with the external resistance of 93 kOmega. Possible reaction pathways and degradation mechanisms in the plasma with different gases are proposed by qualitative analysis of postdestructed products. In the air and oxygen gliding arc discharges, the naphthalene degradation is mainly governed by reactions with oxygen-derived radicals.
Nano-aquarium fabrication with cut-off filter for mechanism study of Phormidium assemblage
NASA Astrophysics Data System (ADS)
Hanada, Y.; Sugioka, K.; Ishikawa, I.; Kawano, H.; Miyawaki, A.; Midorikawa, K.
2010-02-01
We demonstrate fabrication of microfluidic chips integrated with different functional elements such as optical filters and optical waveguide for mechanism study of gliding movement of Phormidium to a seedling root using a femtosecond (fs) laser. Fs laser direct writing followed by annealing and successive wet etching in dilute hydrofluoric (HF) acid solution resulted in formation of three dimensional (3D) hollow microstructures embedded in a photostructurable glass. The embedded microfludic structures enabled us to easily and efficiently observe Phormidium gliding to the seedling root, which accelerates growth of the seedling. In addition, fabrication of optical filter and optical waveguide integrated with the microfluidic structures in the microchip clarified the mechanism of the gliding movement. Such microchips, referred to as a nano-aquarium, realize the efficient and highly functional observation and analysis of the gliding movement of Phormidium.
NASA Astrophysics Data System (ADS)
Xiong, Charles Zhaoxi; Alexandradinata, A.
2018-03-01
It is demonstrated that fermionic/bosonic symmetry-protected topological (SPT) phases across different dimensions and symmetry classes can be organized using geometric constructions that increase dimensions and symmetry-reduction maps that change symmetry groups. Specifically, it is shown that the interacting classifications of SPT phases with and without glide symmetry fit into a short exact sequence, so that the classification with glide is constrained to be a direct sum of cyclic groups of order 2 or 4. Applied to fermionic SPT phases in the Wigner-Dyson class AII, this implies that the complete interacting classification in the presence of glide is Z4⊕Z2⊕Z2 in three dimensions. In particular, the hourglass-fermion phase recently realized in the band insulator KHgSb must be robust to interactions. Generalizations to spatiotemporal glide symmetries are discussed.
Peierls-Nabarro modeling of dislocations in UO2
NASA Astrophysics Data System (ADS)
Skelton, Richard; Walker, Andrew M.
2017-11-01
Under conditions of high stress or low temperature, glide of dislocations plays an important role in the deformation of UO2. In this paper, the Peierls-Nabarro model is used to calculate the core widths and Peierls stresses of ½<110> edge and screw dislocations gliding on {100}, {110}, and {111}. The energy of the inelastic displacement field in the dislocation core is parameterized using generalized stacking fault energies, which are calculated atomistically using interatomic potentials. We use seven different interatomic potential models, representing the variety of different models available for UO2. The different models broadly agree on the relative order of the strengths of the different slip systems, with the 1/2<110>{100} edge dislocation predicted to be the weakest slip system and 1/2<110>{110} the strongest. However, the calculated Peierls stresses depend strongly on the interatomic potential used, with values ranging between 2.7 and 12.9 GPa for glide of 1/2<110>{100} edge dislocations, 16.4-32.3 GPa for 1/2<110>{110} edge dislocations, and 6.8-13.6 GPa for 1/2<110>{111} edge dislocations. The glide of 1/2<110> screw dislocations in UO2 is also found to depend on the interatomic potential used, with some models predicting similar Peierls stresses for glide on {100} and {111}, while others predict a unique easy glide direction. Comparison with previous fully atomistic calculations show that the Peierls-Nabarro model can accurately predict dislocation properties in UO2.
Lubricin Surface Modification Improves Tendon Gliding After Tendon Repair in a Canine Model in Vitro
Taguchi, Manabu; Sun, Yu-Long; Zhao, Chunfeng; Zobitz, Mark E.; Cha, Chung-Ja; Jay, Gregory D.; An, Kai-Nan; Amadio, Peter C.
2011-01-01
This study investigated the effects of lubricin on the gliding of repaired flexor digitorum profundus (FDP) tendons in vitro. Canine FDP tendons were completely lacerated, repaired with a modified Pennington technique, and treated with one of the following solutions: saline, carbodiimide derivatized gelatin/hyaluronic acid (cd-HA-gelatin), carbodiimide derivatized gelatin to which lubricin was added in a second step (cd-gelatin + lubricin), or carbodiimide derivatized gelatin/HA + lubricin (cd-HA-gelatin + lubricin). After treatment, gliding resistance was measured up to 1,000 cycles of simulated flexion/extension motion. The increase in average and peak gliding resistance in cd-HA-gelatin, cd-gelatin + lubricin, and cd-HA-gelatin + lubricin tendons was less than the control tendons after 1,000 cycles (p < 0.05). The increase in average gliding resistance of cd-HA-gelatin + lubricin treated tendons was also less than that of the cd-HA-gelatin treated tendons (p < 0.05). The surfaces of the repaired tendons and associated pulleys were assessed qualitatively with scanning electron microscopy and appeared smooth after 1,000 cycles of tendon motion for the cd-HA-gelatin, cd-gelatin + lubricin, and cd-HA-gelatin + lubricin treated tendons, while that of the saline control appeared roughened. These results suggest that tendon surface modification can improve tendon gliding ability, with a trend suggesting that lubricin fixed on the repaired tendon may provide additional improvement over that provided by HA and gelatin alone. PMID:18683890
Investigation of gliding flight by flying fish
NASA Astrophysics Data System (ADS)
Park, Hyungmin; Jeon, Woo-Pyung; Choi, Haecheon
2006-11-01
The most successful flight capability of fish is observed in the flying fish. Furthermore, despite the difference between two medium (air and water), the flying fish is well evolved to have an excellent gliding performance as well as fast swimming capability. In this study, flying fish's morphological adaptation to gliding flight is experimentally investigated using dry-mounted darkedged-wing flying fish, Cypselurus Hiraii. Specifically, we examine the effects of the pectoral and pelvic fins on the aerodynamic performance considering (i) both pectoral and pelvic fins, (ii) pectoral fins only, and (iii) body only with both fins folded. Varying the attack angle, we measure the lift, drag and pitching moment at the free-stream velocity of 12m/s for each case. Case (i) has higher lift-to-drag ratio (i.e. longer gliding distance) and more enhanced longitudinal static stability than case (ii). However, the lift coefficient is smaller for case (i) than for case (ii), indicating that the pelvic fins are not so beneficial for wing loading. The gliding performance of flying fish is compared with those of other fliers and is found to be similar to those of insects such as the butterfly and fruitfly.
Light-duty vehicle CO2 targets consistent with 450 ppm CO2 stabilization.
Winkler, Sandra L; Wallington, Timothy J; Maas, Heiko; Hass, Heinz
2014-06-03
We present a global analysis of CO2 emission reductions from the light-duty vehicle (LDV) fleet consistent with stabilization of atmospheric CO2 concentration at 450 ppm. The CO2 emission reductions are described by g CO2/km emission targets for average new light-duty vehicles on a tank-to-wheel basis between 2010 and 2050 that we call CO2 glide paths. The analysis accounts for growth of the vehicle fleet, changing patterns in driving distance, regional availability of biofuels, and the changing composition of fossil fuels. New light-duty vehicle fuel economy and CO2 regulations in the U.S. through 2025 and in the EU through 2020 are broadly consistent with the CO2 glide paths. The glide path is at the upper end of the discussed 2025 EU range of 68-78 g CO2/km. The proposed China regulation for 2020 is more stringent than the glide path, while the 2017 Brazil regulation is less stringent. Existing regulations through 2025 are broadly consistent with the light-duty vehicle sector contributing to stabilizing CO2 at approximately 450 ppm. The glide paths provide long-term guidance for LDV powertrain/fuel development.
Strong focusing effect of 660 nm laser by microsized tapered glass tubes with different diameters
NASA Astrophysics Data System (ADS)
Lin, Chongnan; Luo, Xujia; Zhu, Xiaoyang; Zhu, Li; Wang, Hongcheng; Zhang, Ao; Xu, Runyu; Qu, Zheng; Chen, Ximeng; Zhang, Weiyi; Shao, Jianxiong
2017-09-01
A laser with a wavelength of 660 nm was focused by microsized tapered glass tubes with different diameters of the exit. By using the 3-μm optical fiber and micrometer displacement stages, we measured the light intensity distribution around the focal spot, the focal distance, and the transmission coefficient of the light transmitted through these tubes. The focusing effect for the glass tubes with smaller outlet diameters of the exit was found to be much stronger than those with larger diameters of the exit. Furthermore, the dependence of the size and distance and the maximum intensity of the focal spot on the tubes' diameter of exit are obtained.
Ubiquity of quantum zero-point fluctuations in dislocation glide
NASA Astrophysics Data System (ADS)
Landeiro Dos Reis, Marie; Choudhury, Anshuman; Proville, Laurent
2017-03-01
Modeling the dislocation glide through atomic scale simulations in Al, Cu, and Ni and in solid solution alloys Al(Mg) and Cu(Ag), we show that in the course of the plastic deformation the variation of the crystal zero-point energy (ZPE) and the dislocation potential energy barriers are of opposite sign. The multiplicity of situations where we have observed the same trend allows us to conclude that quantum fluctuations, giving rise to the crystal ZPE, make easier the dislocation glide in most materials, even those constituted of atoms heavier than H and He.
Richter, Berna I; Ostermeier, Sven; Turger, Anke; Denkena, Berend; Hurschler, Christof
2010-06-15
Material wear testing is an important technique in the development and evaluation of materials for use in implant for total knee arthroplasty. Since a knee joint induces a complex rolling-gliding movement, standardised material wear testing devices such as Pin-on-Disc or Ring-on-Disc testers are suitable to only a limited extent because they generate pure gliding motion only. A rolling-gliding wear simulator was thus designed, constructed and implemented, which simulates and reproduces the rolling-gliding movement and loading of the knee joint on specimens of simplified geometry. The technical concept was to run a base-plate, representing the tibia plateau, against a pivoted cylindrical counter-body, representing one femur condyle under an axial load. A rolling movement occurs as a result of the friction and pure gliding is induced by limiting the rotation of the cylindrical counter-body. The set up also enables simplified specimens handling and removal for gravimetrical wear measurements. Long-term wear tests and gravimetrical wear measurements were carried out on the well known material pairings: cobalt chrome-polyethylene, ceramic-polyethylene and ceramic-ceramic, over three million motion cycles to allow material comparisons to be made. The observed differences in wear rates between cobalt-chrome on polyethylene and ceramic on polyethylene pairings were similar to the differences of published data for existing material-pairings. Test results on ceramic-ceramic pairings of different frontal-plane geometry and surface roughness displayed low wear rates and no fracture failures. The presented set up is able to simulate the rolling-gliding movement of the knee joint, is easy to use, and requires a minimum of user intervention or monitoring. It is suitable for long-term testing, and therefore a useful tool for the investigation of new and promising materials which are of interest for application in knee joint replacement implants.
Pawar, Ajinkya M.; Pawar, Mansing; Kfir, Anda; Thakur, Bhagyashree; Mutha, Pooja; Banga, Kulwinder Singh
2017-01-01
Aim: The aim of this study was to test the effect of new protocol of glide path preparation by 20/0.04 rotary file on apical extrusion of debris when instrumenting fine curved mesial canals in mandibular molars with Self-adjusting File (SAF) and compare it to a glide path prepared by 20/0.02 hand K-file and rotary OneShape (OS) and reciprocating WaveOne (WO) file instrumentation. Materials and Methods: Sixty mandibular molars with curved mesial roots were selected and randomly divided into three groups (n = 20) for instrumentation. In two groups, glide path was prepared using 20/0.02 K-file for instrumentation by OS (size 25/0.06 taper) and WO (size 25/0.08 taper) files; in the remaining group, 20/0.04 rotary file was used for glide path preparation and instrumented by SAF (1.5 mm). The debris extruded during instrumentation was collected in preweighed Eppendorf tubes and stored in an incubator at 70°C for 5 days. Tubes containing the dry extruded debris were then weighed. One-way analysis of variance (ANOVA) was applied to the weights obtained, followed by Tukey's post hoc test for multiple comparison. Results: The mean debris (g) extruded apically was 0.000651 ± 0.000291, 0.000823 ± 0.000319, and 0.000473 ± 0.000238 for Group 1 (20/0.02 + OS), Group 2 (20/0.02 + WO), and Group 3 (20/0.04 + SAF), respectively. The groups exhibited a significant difference (P < 0.01; ANOVA). Group 3 resulted in least debris extrusion compared to Groups 1 and 2 (P < 0.01; Tukey's post hoc test). Conclusion: Glide path prepared to size 20/0.04 and SAF 1.5 mm instrumentation produce less debris in curved mesial canals of mandibular molars, compared to glide path established by 20/0.02 and instrumentation by OS and WO files. PMID:28855758
Özyürek, Taha; Uslu, Gülşah; Yılmaz, Koray; Gündoğar, Mustafa
2018-06-01
The purpose of this article was to compare the cyclic fatigue resistance of Reciproc and Reciproc Blue files (VDW GmbH, Munich, Germany) that were used to prepare root canals of mandibular molar teeth with or without a glide path. Sixty Reciproc R25 and 60 Reciproc Blue R25 files were used. The Reciproc and Reciproc Blue groups were divided into 3 subgroups (ie, as received condition, used without a glide path, and used with a glide path). All the instruments were rotated in a stainless steel artificial canal with an inner diameter of 1.5 mm, a 60° angle of curvature, and a radius of curvature of 5 mm until fracture occurred. The number of cycle to fracture was calculated, and the length of the fractured segments was measured. The Kruskal-Wallis test was performed to statistically analyze the data using SPSS 21.0 software (IBM Corp, Armonk, NY) at a 5% significance level. The cyclic fatigue resistance of as received condition Reciproc Blue files was found to be higher than as received condition Reciproc files (P < .05). Reciproc Blue files used for root canal preparation showed higher cyclic fatigue resistance than Reciproc files used for root canal preparation (P < .05). There was no statistically significant difference between Reciproc and Reciproc Blue files used with a glide path and without a glide path (P > .05). There was no statistically significant difference in the mean length of the fractured fragments of the instruments (P > .05). Within the limitations of this in vitro study, it was concluded that creating a glide path using ProGlider files had no effect on the cyclic fatigue resistance of RPC and RPC Blue files. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Energy consumption of ProTaper Next X1 after glide path with PathFiles and ProGlider.
Berutti, Elio; Alovisi, Mario; Pastorelli, Michele Angelo; Chiandussi, Giorgio; Scotti, Nicola; Pasqualini, Damiano
2014-12-01
Instrument failure caused by excessive torsional stress can be controlled by creating a manual or mechanical glide path. The ProGlider single-file system (Dentsply Maillefer, Ballaigues, Switzerland) was recently introduced to perform a mechanical glide path. This study was designed to compare the effect of a glide path performed with PathFiles (Dentsply Maillefer) and ProGlider on torque, time, and pecking motion required for ProTaper Next X1 (Dentsply Maillefer) to reach the full working length in simulated root canals. Forty Endo Training Blocks (Dentsply Maillefer) were used. Twenty were prepared with a mechanical glide path using PathFiles 1 and 2 (the PathFile group), and 20 were prepared with a mechanical glide path using a ProGlider single file (the ProGlider group). All samples were shaped with ProTaper Next X1 driven by an endodontic motor connected to a digital wattmeter. The required torque for root canal instrumentation was analyzed by evaluating the electrical power consumption of the endodontic engine. Electric power consumption (mW/h), elapsed time (seconds), and number of pecking motions required to reach the full working length with ProTaper Next X1 were calculated. Differences among groups were analyzed with the parametric Student t test for independent data (P < .05). Elapsed time and electric power consumption were significantly different between groups (P = .0001 for both). ProGlider appears to perform more efficiently than PathFiles in decreasing electric power consumption of ProTaper Next X1 to reach the full working length. This study confirmed the ability of ProGlider to reduce stress in ProTaper Next X1 during shaping through a glide path and preliminary middle and coronal preflaring. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
2010-01-01
Background Material wear testing is an important technique in the development and evaluation of materials for use in implant for total knee arthroplasty. Since a knee joint induces a complex rolling-gliding movement, standardised material wear testing devices such as Pin-on-Disc or Ring-on-Disc testers are suitable to only a limited extent because they generate pure gliding motion only. Methods A rolling-gliding wear simulator was thus designed, constructed and implemented, which simulates and reproduces the rolling-gliding movement and loading of the knee joint on specimens of simplified geometry. The technical concept was to run a base-plate, representing the tibia plateau, against a pivoted cylindrical counter-body, representing one femur condyle under an axial load. A rolling movement occurs as a result of the friction and pure gliding is induced by limiting the rotation of the cylindrical counter-body. The set up also enables simplified specimens handling and removal for gravimetrical wear measurements. Long-term wear tests and gravimetrical wear measurements were carried out on the well known material pairings: cobalt chrome-polyethylene, ceramic-polyethylene and ceramic-ceramic, over three million motion cycles to allow material comparisons to be made. Results The observed differences in wear rates between cobalt-chrome on polyethylene and ceramic on polyethylene pairings were similar to the differences of published data for existing material-pairings. Test results on ceramic-ceramic pairings of different frontal-plane geometry and surface roughness displayed low wear rates and no fracture failures. Conclusions The presented set up is able to simulate the rolling-gliding movement of the knee joint, is easy to use, and requires a minimum of user intervention or monitoring. It is suitable for long-term testing, and therefore a useful tool for the investigation of new and promising materials which are of interest for application in knee joint replacement implants. PMID:20550669
New gliding mammaliaforms from the Jurassic
NASA Astrophysics Data System (ADS)
Meng, Qing-Jin; Grossnickle, David M.; Liu, Di; Zhang, Yu-Guang; Neander, April I.; Ji, Qiang; Luo, Zhe-Xi
2017-08-01
Stem mammaliaforms are Mesozoic forerunners to mammals, and they offer critical evidence for the anatomical evolution and ecological diversification during the earliest mammalian history. Two new eleutherodonts from the Late Jurassic period have skin membranes and skeletal features that are adapted for gliding. Characteristics of their digits provide evidence of roosting behaviour, as in dermopterans and bats, and their feet have a calcaneal calcar to support the uropagatium as in bats. The new volant taxa are phylogenetically nested with arboreal eleutherodonts. Together, they show an evolutionary experimentation similar to the iterative evolutions of gliders within arboreal groups of marsupial and placental mammals. However, gliding eleutherodonts possess rigid interclavicle-clavicle structures, convergent to the avian furculum, and they retain shoulder girdle plesiomorphies of mammaliaforms and monotremes. Forelimb mobility required by gliding occurs at the acromion-clavicle and glenohumeral joints, is different from and convergent to the shoulder mobility at the pivotal clavicle-sternal joint in marsupial and placental gliders.
Dynamic and spectroscopic characteristics of atmospheric gliding arc in gas-liquid two-phase flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tu, X.; Yu, L.; Yan, J. H.
In this study, an atmospheric alternating-current gliding arc device in gas-liquid two-phase flow has been developed for the purpose of waste water degradation. The dynamic behavior of the gas-liquid gliding arc is investigated through the oscillations of electrical signals, while the spatial evolution of the arc column is analyzed by high speed photography. Different arc breakdown regimes are reported, and the restrike mode is identified as the typical fluctuation characteristic of the hybrid gliding arc in air-water mixture. Optical emission spectroscopy is employed to investigate the active species generated in the gas-liquid plasma. The axial evolution of the OH (309more » nm) intensity is determined, while the rotational and vibrational temperatures of the OH are obtained by a comparison between the experimental and simulated spectra. The significant discrepancy between the rotational and translational temperatures has also been discussed.« less
Notes on the technique of landing airplanes equipped with wing flaps
NASA Technical Reports Server (NTRS)
Gough, Melvin N
1936-01-01
The proper landing of airplanes equipped with flaps, although probably no more difficult than landing without them, requires a different technique. The effects of flaps on the aerodynamics characteristics of a wing are given and, with the aid of figures and diagrams, a detailed comparison of the glide and landing of an airplane with and without flaps is made. The dangers attending improper execution and the importance of such factors as air speed fuselage attitude, glide-path angle, and control manipulation, upon all of which a pilot bases his judgement, are emphasized. Of most importance in connection with the use of flaps are: the maintenance of a sufficient margin of speed above the stall; a decisive use of the controls at the proper time; more cautious use of power during the approach glide; and, above all, the willingness to accept the steep nose-down attitude necessary in the glide resulting from the use of flaps.
Nguyen, Van Toan; Nguyen, Viet Chien; Nguyen, Van Duy; Hoang, Si Hong; Hugo, Nguyen; Nguyen, Duc Hoa; Nguyen, Van Hieu
2016-01-15
Ultrasensitive and selective hydrogen gas sensor is vital component in safe use of hydrogen that requires a detection and alarm of leakage. Herein, we fabricated a H2 sensing devices by adopting a simple design of planar-type structure sensor in which the heater, electrode, and sensing layer were patterned on the front side of a silicon wafer. The SnO2 thin film-based sensors that were sensitized with microsized Pd islands were fabricated at a wafer-scale by using a sputtering system combined with micro-electronic techniques. The thicknesses of SnO2 thin film and microsized Pd islands were optimized to maximize the sensing performance of the devices. The optimized sensor could be used for monitoring hydrogen gas at low concentrations of 25-250 ppm, with a linear dependence to H2 concentration and a fast response and recovery time. The sensor also showed excellent selectivity for monitoring H2 among other gases, such as CO, NH3, and LPG, and satisfactory characteristics for ensuring safety in handling hydrogen. The hydrogen sensing characteristics of the sensors sensitized with Pt and Au islands were also studied to clarify the sensing mechanisms. Copyright © 2015 Elsevier B.V. All rights reserved.
A study on geometry effect of transmission coil for micro size magnetic induction coil
NASA Astrophysics Data System (ADS)
Lee, Kyung Hwa; Jun, Byoung Ok; Kim, Seunguk; Lee, Gwang Jun; Ryu, Mingyu; Choi, Ji-Woong; Jang, Jae Eun
2016-05-01
The effects of transmission (Tx) coil structure have been studied for micro-size magnetic induction coil. The size of the receiving (Rx) coil should be shrunk to the micrometer level for the various new applications such as micro-robot and wireless body implanted devices. In case of the macro-scale magnetic induction coil, the power transmission efficiency is generally considered to be higher as the inductance of the transmission coil became larger; however, the large size difference between macro-size Tx coil and micro-size Rx coil can decrease the power transmission efficiency due to the difference of resonance frequency. Here, we study a correlation of the power transmission with the size and distance between the macro-size Tx and micro-size Rx coils using magnetic induction technique. The maximum power efficiency was 0.28/0.23/0.13/0.12% at the distance of 0.3/1/3/5 cm between Rx and Tx coil. In addition, more efficient wireless power transferring method is suggested with a floating coil for the body implantable devices. The voltage output increased up to 5.4 mV than the original one Tx coil system. The results demonstrated the foundational wireless power transferring system with enhanced power efficiency.
NASA Astrophysics Data System (ADS)
Aborkin, A. V.; Sobol'kov, A. V.; Elkin, A. I.; Arkhipov, V. E.
2018-01-01
The method of cold gas-dynamic spraying of mechanically synthesized powders based on a nanocrystalline AlMg2 matrix reinforced with graphene-like structures and micro-sized corundum particles was used for obtaining hybrid coatings. A feature of the formed coatings is the presence of a two-level micro- and nanocomposite structure. It was found that an increase in the content of corundum microdimensional particles in the mixture from 10 to 30% by weight contributes to an increase in the thickness of the coating obtained at the same time by a factor of 2 from 140 to 310 μm. Further increase in the content of a mixture of micron-sized corundum particles to 50% by weight leads to a decrease in the thickness of the coating formed to 40 μm. The resulting coatings correspond to a high microhardness, varying depending on the composition in the range from 1.7 GPa to 3.2 GPa. The high hardness of the coatings is due to the increase in the hardness of the matrix material due to the creation of a nanocomposite structure, which increases the strength of fixing micro-sized corundum particles therein, improving the characteristics of the heterogeneous coating as a whole.
Jain, Niharika; Pawar, Ajinkya M.; Ukey, Piyush D.; Jain, Prashant K.; Thakur, Bhagyashree; Gupta, Abhishek
2017-01-01
Objectives: To compare the relative axis modification and canal concentricity after glide path preparation with 20/0.02 hand K-file (NITIFLEX®) and 20/0.04 rotary file (HyFlex™ CM) with subsequent instrumentation with 1.5 mm self-adjusting file (SAF). Materials and Methods: One hundred and twenty ISO 15, 0.02 taper, Endo Training Blocks (Dentsply Maillefer, Ballaigues, Switzerland) were acquired and randomly divided into following two groups (n = 60): group 1, establishing glide path till 20/0.02 hand K-file (NITIFLEX®) followed by instrumentation with 1.5 mm SAF; and Group 2, establishing glide path till 20/0.04 rotary file (HyFlex™ CM) followed by instrumentation with 1.5 mm SAF. Pre- and post-instrumentation digital images were processed with MATLAB R 2013 software to identify the central axis, and then superimposed using digital imaging software (Picasa 3.0 software, Google Inc., California, USA) taking five landmarks as reference points. Student's t-test for pairwise comparisons was applied with the level of significance set at 0.05. Results: Training blocks instrumented with 20/0.04 rotary file and SAF were associated less deviation in canal axis (at all the five marked points), representing better canal concentricity compared to those, in which glide path was established by 20/0.02 hand K-files followed by SAF instrumentation. Conclusion: Canal geometry is better maintained after SAF instrumentation with a prior glide path established with 20/0.04 rotary file. PMID:28855752
Fernández, David; Sallam, Hesham M.; Cronin, Drew T.; Esara Echube, José Manuel
2016-01-01
The “scaly-tailed squirrels” of the rodent family Anomaluridae have a long evolutionary history in Africa, and are now represented by two gliding genera (Anomalurus and Idiurus) and a rare and obscure genus (Zenkerella) that has never been observed alive by mammalogists. Zenkerella shows no anatomical adaptations for gliding, but has traditionally been grouped with the glider Idiurus on the basis of craniodental similarities, implying that either the Zenkerella lineage lost its gliding adaptations, or that Anomalurus and Idiurus evolved theirs independently. Here we present the first nuclear and mitochondrial DNA sequences of Zenkerella, based on recently recovered whole-body specimens from Bioko Island (Equatorial Guinea), which show unambiguously that Zenkerella is the sister taxon of Anomalurus and Idiurus. These data indicate that gliding likely evolved only once within Anomaluridae, and that there were no subsequent evolutionary reversals. We combine this new molecular evidence with morphological data from living and extinct anomaluromorph rodents and estimate that the lineage leading to Zenkerella has been evolving independently in Africa since the early Eocene, approximately 49 million years ago. Recently discovered fossils further attest to the antiquity of the lineage leading to Zenkerella, which can now be recognized as a classic example of a “living fossil,” about which we know remarkably little. The osteological markers of gliding are estimated to have evolved along the stem lineage of the Anomalurus–Idiurus clade by the early Oligocene, potentially indicating that this adaptation evolved in response to climatic perturbations at the Eocene–Oligocene boundary (∼34 million years ago). PMID:27602286
Lake Generated Microseisms at Yellowstone Lake as a Record of Ice Phenology
NASA Astrophysics Data System (ADS)
Mohd Mokhdhari, A. A.; Koper, K. D.; Burlacu, R.
2017-12-01
It has recently been shown that wave action in lakes produces microseisms, which generate noise peaks in the period range of 0.8-1.2 s as recorded by nearby seismic stations. Such noise peaks have been observed at seven seismic stations (H17A, LKWY, B208, B944, YTP, YLA, and YLT) located within 2 km of the Yellowstone Lake shoreline. Initial work using 2016 data shows that the variations in the microseism signals at Yellowstone Lake correspond with the freezing and thawing of lake ice: the seismic noise occurs more frequently in the spring, summer, and fall, and less commonly in the winter. If this can be confirmed, then lake-generated microseisms could provide a consistent measure of the freezing and melting dates of high-latitude lakes in remote areas. The seismic data would then be useful in assessing the effects of climate change on the ice phenology of those lakes. In this work, we analyze continuous seismic data recorded by the seven seismic stations around Yellowstone Lake for the years of 1995 to 2016. We generate probability distribution functions of power spectral density for each station to observe the broad elevation of energy near a period of 1 s. The time dependence of this 1-s seismic noise energy is analyzed by extracting the power spectral density at 1 s from every processed hour. The seismic observations are compared to direct measurements of the dates of ice-out and freeze-up as reported by rangers at Yellowstone National Park. We examine how accurate the seismic data are in recording the freezing and melting of Yellowstone Lake, and how the accuracy changes as a function of the number of stations used. We also examine how sensitive the results are to the particular range of periods that are analyzed.
STS-41 Discovery, OV-103, glides over concrete runway 22 at EAFB, California
NASA Technical Reports Server (NTRS)
1990-01-01
STS-41 Discovery, Orbiter Vehicle (OV) 103, with nose landing gear (NLG) and main landing gear (MLG) deployed, glides over concrete runway 22 at Edwards Air Force Base (EAFB), California, prior to touchdown.
NASA Astrophysics Data System (ADS)
Bugti, M. N.; Mann, P.
2016-12-01
Previous workers have described the effects both downslope motion of salt and shale along straight margins and the more complex three-dimensional cases of downslope salt motion and deformation: 1) radial, divergent gliding off of coastal salients accompanied by strike-parallel extension increasing downslope; and 2) radial, convergent gliding into coastal reentrants or "corners" accompanied by strike-parallel contraction and differential loading increasing downslope. The northwestern Gulf of Mexico (GOM) forms a sharp, right-angle corner defined northeastern shelf of Mexico and South Texas and the shelf of the northern GOM; in a similar way the northwestern GOM forms a sharp, right-angle corner defined by the northern shelf of the GOM and the shelf of west Florida. Despite their physical separation by over 700 km, both the NW and NE GOM corners exhibit similar salt structures not observed in adjacent areas outside of the two corners. These corner-related features include: 1) detached salt stocks with positive surface expression; we interpret the detached salt stocks as reflecting a higher degree of radial convergent gliding and compression from three sides into the bend areas; 2) slightly elongate, surficial, diapir shapes with positive bathymetric expression and ranging in diameter from 2 to 22 km and localized fold axes with the long diapiric axes and fold axes aligned parallel to the bisector of the bend; these features are also attributed to radial convergent gliding into the bend areas; 3) zones of deformation at depth that occupy the corner areas: the northwestern GOM corresponds to the Port Isabel passive-margin fold and thrust belt and the northeastern GOM corresponds to the Mississippi Canyon fold and thrust belt; while these are older convergent features we propose that they are being reactivated by the corner-centric, gravity-driven process of radial, convergent gliding; and 4) salt welds in both corner areas record more intensive and complete salt extrusion of salt; outside the corner areas salt canopies and the lack of salt welds indicates a less convergent environment for salt. These two proposed areas of radial convergent gliding are compared to other examples of radial, convergent gliding described by previous workers in the Gulf of Lions and Santos basins.
ILS Glide Slope Performance Prediction Multipath Scattering
DOT National Transportation Integrated Search
1976-12-01
A mathematical model has been developed which predicts the performance of ILS glide slope systems subject to multipath scattering and the effects of irregular terrain contours. The model is discussed in detail and then applied to a test case for purp...
Force generation by groups of migrating bacteria
Koch, Matthias D.; Liu, Guannan; Stone, Howard A.; Shaevitz, Joshua W.
2017-01-01
From colony formation in bacteria to wound healing and embryonic development in multicellular organisms, groups of living cells must often move collectively. Although considerable study has probed the biophysical mechanisms of how eukaryotic cells generate forces during migration, little such study has been devoted to bacteria, in particular with regard to the question of how bacteria generate and coordinate forces during collective motion. This question is addressed here using traction force microscopy. We study two distinct motility mechanisms of Myxococcus xanthus, namely, twitching and gliding. For twitching, powered by type-IV pilus retraction, we find that individual cells exert local traction in small hotspots with forces on the order of 50 pN. Twitching bacterial groups also produce traction hotspots, but with forces around 100 pN that fluctuate rapidly on timescales of <1.5 min. Gliding, the second motility mechanism, is driven by lateral transport of substrate adhesions. When cells are isolated, gliding produces low average traction on the order of 1 Pa. However, traction is amplified approximately fivefold in groups. Advancing protrusions of gliding cells push, on average, in the direction of motion. Together, these results show that the forces generated during twitching and gliding have complementary characters, and both forces have higher values when cells are in groups. PMID:28655845
Force generation by groups of migrating bacteria.
Sabass, Benedikt; Koch, Matthias D; Liu, Guannan; Stone, Howard A; Shaevitz, Joshua W
2017-07-11
From colony formation in bacteria to wound healing and embryonic development in multicellular organisms, groups of living cells must often move collectively. Although considerable study has probed the biophysical mechanisms of how eukaryotic cells generate forces during migration, little such study has been devoted to bacteria, in particular with regard to the question of how bacteria generate and coordinate forces during collective motion. This question is addressed here using traction force microscopy. We study two distinct motility mechanisms of Myxococcus xanthus , namely, twitching and gliding. For twitching, powered by type-IV pilus retraction, we find that individual cells exert local traction in small hotspots with forces on the order of 50 pN. Twitching bacterial groups also produce traction hotspots, but with forces around 100 pN that fluctuate rapidly on timescales of <1.5 min. Gliding, the second motility mechanism, is driven by lateral transport of substrate adhesions. When cells are isolated, gliding produces low average traction on the order of 1 Pa. However, traction is amplified approximately fivefold in groups. Advancing protrusions of gliding cells push, on average, in the direction of motion. Together, these results show that the forces generated during twitching and gliding have complementary characters, and both forces have higher values when cells are in groups.
DOE Office of Scientific and Technical Information (OSTI.GOV)
France, R. M.; Geisz, J. F.; Steiner, M. A.
Surface crosshatch roughness typically develops during the growth of lattice-mismatched compositionally graded buffers and can limit misfit dislocation glide. In this study, the crosshatch roughness during growth of a compressive GaInP/GaAs graded buffer is reduced by increasing the phosphine partial pressure throughout the metamorphic growth. Changes in the average misfit dislocation length are qualitatively determined by characterizing the threading defect density and residual strain. The decrease of crosshatch roughness leads to an increase in the average misfit dislocation glide length, indicating that the surface roughness is limiting dislocation glide. Growth rate is also analyzed as a method to reduce surfacemore » crosshatch roughness and increase glide length, but has a more complicated relationship with glide kinetics. Using knowledge gained from these experiments, high quality inverted GaInAs 1 eV solar cells are grown on a GaInP compositionally graded buffer with reduced roughness and threading dislocation density. The open circuit voltage is only 0.38 V lower than the bandgap potential at a short circuit current density of 15 mA/cm{sup 2}, suggesting that there is very little loss due to the lattice mismatch.« less
The effects of real and illusory glides on pure-tone frequency discrimination.
Lyzenga, J; Carlyon, R P; Moore, B C J
2004-07-01
Experiment 1 measured pure-tone frequency difference limens (DLs) at 1 and 4 kHz. The stimuli had two steady-state portions, which differed in frequency for the target. These portions were separated by a middle section of varying length, which consisted of a silent gap, a frequency glide, or a noise burst (conditions: gap, glide, and noise, respectively). The noise burst created an illusion of the tone continuing through the gap. In the first condition, the stimuli had an overall duration of 500 ms. In the second condition, stimuli had a fixed 50-ms middle section, and the overall duration was varied. DLs were lower for the glide than for the gap condition, consistent with the idea that the auditory system contains a mechanism specific for the detection of dynamic changes. DLs were generally lower for the noise than for the gap condition, suggesting that this mechanism extracts information from an illusory glide. In a second experiment, pure-tone frequency direction-discrimination thresholds were measured using similar stimuli as for the first experiment. For this task, the type of the middle section hardly affected the thresholds, suggesting that the frequency-change detection mechanism does not facilitate the identification of the direction of frequency changes.
Adaptive glide slope control for parafoil and payload aircraft
NASA Astrophysics Data System (ADS)
Ward, Michael
Airdrop systems provide a unique capability of delivering large payloads to undeveloped and inaccessible locations. Traditionally, these systems have been unguided, requiring large landing zones and drops from low altitude. The invention of the steerable, gliding, ram-air parafoil enabled the possibility of precision aerial payload delivery. In practice, the gliding ability of the ram-air parafoil can actually create major problems for airdrop systems by making them more susceptible to winds and allowing them to achieve far greater miss distances than were previously possible. Research and development work on guided airdrop systems has focused primarily on evolutionary improvements to the guidance algorithm, while the navigation and control algorithms have changed little since the initial autnomous systems were developed. Furthermore, the control mechanisms have not changed since the invention of the ram-air canopy in the 1960’s. The primary contributions of this dissertation are: (1) the development of a reliable and robust method to identify a flight dynamic model for a parafoil and payload aircraft using minimal sensor data; (2) the first demonstration in flight test of the ability to achieve large changes in glide slope over ground using coupled incidence angle variation and trailing edge brake deflection; (3) the first development of a control law to implement glide slope control on an autonomous system; (4) the first flight tests of autonomous landing with a glide slope control mechanism demonstrating an improvement in landing accuracy by a factor of 2 or more in especially windy conditions, and (5) the first demonstrations in both simulation and flight test of the ability to perform in-flight system identification to adapt the internal control mappings to flight data and provide dramatic improvements in landing accuracy when there is a significant discrepancy between the assumed and actual flight characteristics.
Flipper stroke rate and venous oxygen levels in free-ranging California sea lions.
Tift, Michael S; Hückstädt, Luis A; McDonald, Birgitte I; Thorson, Philip H; Ponganis, Paul J
2017-04-15
The depletion rate of the blood oxygen store, development of hypoxemia and dive capacity are dependent on the distribution and rate of blood oxygen delivery to tissues while diving. Although blood oxygen extraction by working muscle would increase the blood oxygen depletion rate in a swimming animal, there is little information on the relationship between muscle workload and blood oxygen depletion during dives. Therefore, we examined flipper stroke rate, a proxy of muscle workload, and posterior vena cava oxygen profiles in four adult female California sea lions ( Zalophus californianus ) during foraging trips at sea. Flipper stroke rate analysis revealed that sea lions minimized muscle metabolism with a stroke-glide strategy when diving, and exhibited prolonged glides during the descent of deeper dives (>100 m). During the descent phase of these deep dives, 55±21% of descent was spent gliding, with the longest glides lasting over 160 s and covering a vertical distance of 340 m. Animals also consistently glided to the surface from 15 to 25 m depth during these deeper dives. Venous hemoglobin saturation ( S O 2 ) profiles were highly variable throughout dives, with values occasionally increasing during shallow dives. The relationship between S O 2 and flipper stroke rate was weak during deeper dives, while this relationship was stronger during shallow dives. We conclude that (1) the depletion of oxygen in the posterior vena cava in deep-diving sea lions is not dependent on stroke effort, and (2) stroke-glide patterns during dives contribute to a reduction of muscle metabolic rate. © 2017. Published by The Company of Biologists Ltd.
Nitrogen Fixation by Gliding Arc Plasma: Better Insight by Chemical Kinetics Modelling.
Wang, Weizong; Patil, Bhaskar; Heijkers, Stjin; Hessel, Volker; Bogaerts, Annemie
2017-05-22
The conversion of atmospheric nitrogen into valuable compounds, that is, so-called nitrogen fixation, is gaining increased interest, owing to the essential role in the nitrogen cycle of the biosphere. Plasma technology, and more specifically gliding arc plasma, has great potential in this area, but little is known about the underlying mechanisms. Therefore, we developed a detailed chemical kinetics model for a pulsed-power gliding-arc reactor operating at atmospheric pressure for nitrogen oxide synthesis. Experiments are performed to validate the model and reasonable agreement is reached between the calculated and measured NO and NO 2 yields and the corresponding energy efficiency for NO x formation for different N 2 /O 2 ratios, indicating that the model can provide a realistic picture of the plasma chemistry. Therefore, we can use the model to investigate the reaction pathways for the formation and loss of NO x . The results indicate that vibrational excitation of N 2 in the gliding arc contributes significantly to activating the N 2 molecules, and leads to an energy efficient way of NO x production, compared to the thermal process. Based on the underlying chemistry, the model allows us to propose solutions on how to further improve the NO x formation by gliding arc technology. Although the energy efficiency of the gliding-arc-based nitrogen fixation process at the present stage is not comparable to the world-scale Haber-Bosch process, we believe our study helps us to come up with more realistic scenarios of entering a cutting-edge innovation in new business cases for the decentralised production of fertilisers for agriculture, in which low-temperature plasma technology might play an important role. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Schwiesau, Jens; Fritz, Bernhard; Kutzner, Ines; Bergmann, Georg; Grupp, Thomas M
2014-01-01
The wear behaviour of total knee arthroplasty (TKA) is dominated by two wear mechanisms: the abrasive wear and the delamination of the gliding components, where the second is strongly linked to aging processes and stress concentration in the material. The addition of vitamin E to the bulk material is a potential way to reduce the aging processes. This study evaluates the wear behaviour and delamination susceptibility of the gliding components of a vitamin E blended, ultra-high molecular weight polyethylene (UHMWPE) cruciate retaining (CR) total knee arthroplasty. Daily activities such as level walking, ascending and descending stairs, bending of the knee, and sitting and rising from a chair were simulated with a data set received from an instrumented knee prosthesis. After 5 million test cycles no structural failure of the gliding components was observed. The wear rate was with 5.62 ± 0.53 mg/million cycles falling within the limit of previous reports for established wear test methods.
Schwiesau, Jens; Fritz, Bernhard; Kutzner, Ines; Bergmann, Georg; Grupp, Thomas M.
2014-01-01
The wear behaviour of total knee arthroplasty (TKA) is dominated by two wear mechanisms: the abrasive wear and the delamination of the gliding components, where the second is strongly linked to aging processes and stress concentration in the material. The addition of vitamin E to the bulk material is a potential way to reduce the aging processes. This study evaluates the wear behaviour and delamination susceptibility of the gliding components of a vitamin E blended, ultra-high molecular weight polyethylene (UHMWPE) cruciate retaining (CR) total knee arthroplasty. Daily activities such as level walking, ascending and descending stairs, bending of the knee, and sitting and rising from a chair were simulated with a data set received from an instrumented knee prosthesis. After 5 million test cycles no structural failure of the gliding components was observed. The wear rate was with 5.62 ± 0.53 mg/million cycles falling within the limit of previous reports for established wear test methods. PMID:25506594
Jacot, Damien; Tosetti, Nicolò; Pires, Isa; Stock, Jessica; Graindorge, Arnault; Hung, Yu-Fu; Han, Huijong; Tewari, Rita; Kursula, Inari; Soldati-Favre, Dominique
2016-12-14
Apicomplexa exhibit a unique form of substrate-dependent gliding motility central for host cell invasion and parasite dissemination. Gliding is powered by rearward translocation of apically secreted transmembrane adhesins via their interaction with the parasite actomyosin system. We report a conserved armadillo and pleckstrin homology (PH) domain-containing protein, termed glideosome-associated connector (GAC), that mediates apicomplexan gliding motility, invasion, and egress by connecting the micronemal adhesins with the actomyosin system. TgGAC binds to and stabilizes filamentous actin and specifically associates with the transmembrane adhesin TgMIC2. GAC localizes to the apical pole in invasive stages of Toxoplasma gondii and Plasmodium berghei, and apical positioning of TgGAC depends on an apical lysine methyltransferase, TgAKMT. GAC PH domain also binds to phosphatidic acid, a lipid mediator associated with microneme exocytosis. Collectively, these findings indicate a central role for GAC in spatially and temporally coordinating gliding motility and invasion. Copyright © 2016 Elsevier Inc. All rights reserved.
Investigations of Lateral Stability of a Glide Bomb Using Automatic Control Having No Time Lag
NASA Technical Reports Server (NTRS)
Sponder, E. W.
1950-01-01
The investigation of the lateral stability of an automatically controlled glide bomb led also to the attempt of clarifying the influence of a phugoid oscillation or of any general longitudinal oscillation on the lateral stability of a glide bomb. Under the assumption that its period of oscillation considerably exceeds the rolling and yawing oscillation and that c(sub a) is, at least in sections, practically constant, the result of this test is quite simple. It becomes clear that the influence of the phugoid oscillation may be replaced by suitable variation of the rolling-yawing moment on a rectilinear flight path instead of the phugoid oscillation. If the flying weight of the glide bomb of unchanged dimensions is increased, an increase of the flight velocity will be more favorable than an increase of the lift coefficient. The arrangement of the control permits lateral stability to be achieved in every case; a minimum rolling moment due to sideslip proves of great help.
Santos, Jorge M; Egarter, Saskia; Zuzarte-Luís, Vanessa; Kumar, Hirdesh; Moreau, Catherine A; Kehrer, Jessica; Pinto, Andreia; da Costa, Mário; Franke-Fayard, Blandine; Janse, Chris J; Frischknecht, Friedrich; Mair, Gunnar R
2017-01-01
Gliding motility allows malaria parasites to migrate and invade tissues and cells in different hosts. It requires parasite surface proteins to provide attachment to host cells and extracellular matrices. Here, we identify the Plasmodium protein LIMP (the name refers to a gliding phenotype in the sporozoite arising from epitope tagging of the endogenous protein) as a key regulator for adhesion during gliding motility in the rodent malaria model P. berghei. Transcribed in gametocytes, LIMP is translated in the ookinete from maternal mRNA, and later in the sporozoite. The absence of LIMP reduces initial mosquito infection by 50%, impedes salivary gland invasion 10-fold, and causes a complete absence of liver invasion as mutants fail to attach to host cells. GFP tagging of LIMP caused a limping defect during movement with reduced speed and transient curvature changes of the parasite. LIMP is an essential motility and invasion factor necessary for malaria transmission. DOI: http://dx.doi.org/10.7554/eLife.24109.001 PMID:28525314
Hodd, Jack A R; Doyle, D John; Gupta, Shipra; Dalton, Jarrod E; Cata, Juan P; Brewer, Edward J; James, Monyulona; Sessler, Daniel I
2011-10-01
The AP Advance (APA) is a videolaryngoscope with interchangeable blades: intubators can choose standard Macintosh blades or a difficult-airway blade with increased curvature and a channel to guide the tube to the larynx. The APA may therefore be comparably effective in both normal and difficult airways. We tested the hypotheses that intubation with the APA is no slower than Macintosh laryngoscopy for normal mannequin airways, and that it is no slower than videolaryngoscopy using a GlideScope Ranger in difficult mannequin airways. Medical professionals whose roles potentially include tracheal intubation were trained with each device. Participants intubated simulated (Laerdal SimMan) normal and difficult airways with the APA, GlideScope, and a conventional Macintosh blade. Speed of intubation was compared using Cox proportional hazards regression, with a hazard ratio >0.8 considered noninferior. We also compared laryngeal visualization, failures, and participant preferences. Unadjusted intubation times in the normal airway with the APA and Macintosh were virtually identical (median, 22 vs 23 seconds); after adjustment for effects of experience, order, and period, the hazard ratio (95% confidence interval) comparing APA with Macintosh laryngoscopy was 0.87 (0.65, 1.17), which was not significantly more than our predefined noninferiority boundary of 0.8 (P = 0.26). Intubation with the APA was faster than with the GlideScope in difficult airways (hazard ratio = 7.6 [5.0, 11.3], P < 0.001; median, 20 vs 59 seconds). All participants intubated the difficult airway mannequin with the APA, whereas 33% and 37% failed with the GlideScope and Macintosh, respectively. In the difficult airway, 99% of participants achieved a Cormack and Lehane grade I to II view with the APA, versus 85% and 33% with the GlideScope and Macintosh, respectively. When asked to choose 1 device overall, 82% chose the APA. Intubation times were similar with the APA and Macintosh laryngoscopes in mannequins with normal airways. However, intubation with the APA was significantly faster than with the GlideScope in the difficult mannequin simulation.
Cruising the rain forest floor: butterfly wing shape evolution and gliding in ground effect.
Cespedes, Ann; Penz, Carla M; DeVries, Philip J
2015-05-01
Flight is a key innovation in the evolutionary success of insects and essential to dispersal, territoriality, courtship and oviposition. Wing shape influences flight performance and selection likely acts to maximize performance for conducting essential behaviours that in turn results in the evolution of wing shape. As wing shape also contributes to fitness, optimal shapes for particular flight behaviours can be assessed with aerodynamic predictions and placed in an ecomorphological context. Butterflies in the tribe Haeterini (Nymphalidae) are conspicuous members of understorey faunas in lowland Neotropical forests. Field observations indicate that the five genera in this clade differ in flight height and behaviour: four use gliding flight at the forest floor level, and one utilizes flapping flight above the forest floor. Nonetheless, the association of ground level gliding flight behaviour and wing shape has never been investigated in this or any other butterfly group. We used landmark-based geometric morphometrics to test whether wing shapes in Haeterini and their close relatives reflected observed flight behaviours. Four genera of Haeterini and some distantly related Satyrinae showed significant correspondence between wing shape and theoretical expectations in performance trade-offs that we attribute to selection for gliding in ground effect. Forewing shape differed between sexes for all taxa, and male wing shapes were aerodynamically more efficient for gliding flight than corresponding females. This suggests selection acts differentially on male and female wing shapes, reinforcing the idea that sex-specific flight behaviours contribute to the evolution of sexual dimorphism. Our study indicates that wing shapes in Haeterini butterflies evolved in response to habitat-specific flight behaviours, namely gliding in ground effect along the forest floor, resulting in ecomorphological partitions of taxa in morphospace. The convergent flight behaviour and wing morphology between tribes of Satyrinae suggest that the flight environment may offset phylogenetic constraints. Overall, this study provides a basis for exploring similar patterns of wing shape evolution in other taxa that glide in ground effect. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Akbarzadeh, Seyed Reza; Taghavi Gillani, Maryar; Tabari, Masoumeh; Morovatdar, Negar
2017-01-01
Background Difficult intubation is dangerous and sometimes fatal, especially in patients with obesity. In difficult intubation cases the best device should be applied to decrease the risk of complications. The current study aimed at comparing laryngoscopes, Macintosh, McCoy, GlideScope® and devices for intubation purposes. Methods A total of 102 patients with obesity and ASA (American society of anesthesiologists) class I or II, and body mass index (BMI) of > 30 kg/m2 were selected. After obtaining the informed consent, the patients were divided into 3 groups based on the 3 laryngoscope types. Preoperative airway assessment including the Mallampati score, thyromental distance (TMD), and neck circumference was performed and all the patients were anesthetized based on the same protocol. Subsequently, all of the patients were intubated using a Macintosh, McCoy, or GlideScope® laryngoscope. Laryngoscopy time, Cormack-Lehane score (1 - 4), and the percentage of glottic opening (POGO; 1 - 100) were evaluated. Data were analyzed using SPSS version 16, and results were considered statistically significant at P ≤ 0.05. Results There was no significant difference between demographic characteristics and preoperative airway evaluations. The shortest and longest laryngoscopy time were obtained in the GlideScope® and McCoy laryngoscope groups, respectively (P = 0.001). The highest Cormack-Lehane score was obtained using the GlideScope® method (P = 0.04). The POGO was higher and, therefore, more appropriate in the McCoy laryngoscope group (P = 0.009). A direct relationship was observed between neck circumference (P = 0.008), BMI (P = 0.023), Mallampati score (P = 0.000), and laryngoscopy. Conclusions In the current study, the shortest and longest intubation time in patients with obesity was observed in the GlideScope® and the McCoy laryngoscope groups, respectively. Moreover, the direct relationships of BMI and neck circumference with laryngoscopy time were observed in all 3 groups. These results suggested using GlideScope® in patients with high BMI to reduce laryngoscopy time. PMID:29696123
All-inkjet-printed flexible ZnO micro photodetector for a wearable UV monitoring device.
Tran, Van-Thai; Wei, Yuefan; Yang, Hongyi; Zhan, Zhaoyao; Du, Hejun
2017-03-03
Fabrication of small-sized patterns of inorganic semiconductor onto flexible substrates is a major concern when manufacturing wearable devices for measuring either biometric or environmental parameters. In this study, micro-sized flexible ZnO UV photodetectors have been thoroughly prepared by a facile inkjet printing technology and followed with heat treatments. A simple ink recipe of zinc acetate precursor solution was investigated. It is found that the substrate temperature during zinc precursor ink depositing has significant effects on ZnO pattern shape, film morphology, and crystallization. The device fabricated from the additive manufacturing approach has good bendability, Ohmic contact, short response time as low as 0.3 s, and high on/off ratio of 3525. We observed the sensor's dependence of response/decay time by the illuminating UV light intensity. The whole process is based on additive manufacturing which has many benefits such as rapid prototyping, saving material, being environmentally friendly, and being capable of creating high-resolution patterns. In addition, this method can be applied to flexible substrates, which makes the device more applicable for applications requiring flexibility such as wearable devices. The proposed all-inkjet-printing approach for a micro-sized ZnO UV photodetector would significantly simplify the fabrication process of micro-sized inorganic semiconductor-based devices. A potential application is real-time monitoring of UV light exposure to warn users about unsafe direct sunlight to implement suitable avoidance solutions.
Li, Kuo-Tseng; Wu, Ling-Huey
2017-05-05
Supported olefin polymerization catalysts can prevent reactor-fouling problems and produce uniform polymer particles. Constrained geometry complexes (CGCs) have less sterically hindered active sites than bis-cyclopentadienyl metallocene catalysts. In the literature, micrometer-sized silica particles were used for supporting CGC catalysts, which might have strong mass transfer limitations. This study aims to improve the activity of supported CGC catalysts by using nanometer-sized silica. Ti[(C₅Me₄)SiMe₂(N t Bu)]Cl₂, a "constrained-geometry" titanium catalyst, was supported on MAO-treated silicas (nano-sized and micro-sized) by an impregnation method. Ethylene homo-polymerization and co-polymerization with 1-octene were carried out in a temperature range of 80-120 °C using toluene as the solvent. Catalysts prepared and polymers produced were characterized. For both catalysts and for both reactions, the maximum activities occurred at 100 °C, which is significantly higher than that (60 °C) reported before for supported bis-cyclopentadienyl metallocene catalysts containing zirconium, and is lower than that (≥140 °C) used for unsupported Ti[(C₅Me₄)SiMe₂(N t Bu)]Me₂ catalyst. Activities of nano-sized catalyst were 2.6 and 1.6 times those of micro-sized catalyst for homopolymerization and copolymerization, respectively. The former produced polymers with higher crystallinity and melting point than the latter. In addition, copolymer produced with nanosized catalyst contained more 1-octene than that produced with microsized catalyst.
Kinematic, kinetic and EMG analysis of four front crawl flip turn techniques.
Pereira, Suzana Matheus; Ruschel, Caroline; Hubert, Marcel; Machado, Leandro; Roesler, Helio; Fernandes, Ricardo Jorge; Vilas-Boas, João Paulo
2015-01-01
This study aimed to analyse the kinematic, kinetic and electromyographic characteristics of four front crawl flip turn technique variants. The variants distinguished from each other by differences in body position (i.e., dorsal, lateral, ventral) during rolling, wall support, pushing and gliding phases. Seventeen highly trained swimmers (17.9 ± 3.2 years old) participated in interventional sessions and performed three trials of each variant, being monitored with a 3-D video system, a force platform and an electromyography (EMG) system. Studied variables: rolling time and distance, wall support time, push-off time, peak force and horizontal impulse at wall support and push-off, centre of mass horizontal velocity at the end of the push-off, gliding time, centre of mass depth, distance, average and final velocity during gliding, total turn time and electrical activity of Gastrocnemius Medialis, Tibialis Anterior, Biceps Femoris and Vastus Lateralis muscles. Depending on the variant, total turn time ranged from 2.37 ± 0.32 to 2.43 ± 0.33 s, push-off force from 1.86 ± 0.33 to 1.92 ± 0.26 BW and centre of mass velocity during gliding from 1.78 ± 0.21 to 1.94 ± 0.22 m · s(-1). The variants were not distinguishable in terms of kinematical, kinetic and EMG parameters during the rolling, wall support, pushing and gliding phases.
Meyers, R A; Mathias, E
1997-09-01
Gliding flight is a postural activity which requires the wings to be held in a horizontal position to support the weight of the body. Postural behaviors typically utilize isometric contractions in which no change in length takes place. Due to longer actin-myosin interactions, slow contracting muscle fibers represent an economical means for this type of contraction. In specialized soaring birds, such as vultures and pelicans, a deep layer of the pectoralis muscle, composed entirely of slow fibers, is believed to perform this function. Muscles involved in gliding posture were examined in California gulls (Larus californicus) and tested for the presence of slow fibers using myosin ATPase histochemistry and antibodies. Surprisingly small numbers of slow fibers were found in the M. extensor metacarpi radialis, M. coracobrachialis cranialis, and M. coracobrachialis caudalis, which function in wrist extension, wing protraction, and body support, respectively. The low number of slow fibers in these muscles and the absence of slow fibers in muscles associated with wing extension and primary body support suggest that gulls do not require slow fibers for their postural behaviors. Gulls also lack the deep belly to the pectoralis found in other gliding birds. Since bird muscle is highly oxidative, we hypothesize that fast muscle fibers may function to maintain wing position during gliding flight in California gulls.
NASA Astrophysics Data System (ADS)
Du, Chang Ming; Wang, Jing; Zhang, Lu; Xia Li, Hong; Liu, Hui; Xiong, Ya
2012-01-01
Gliding arc discharge has been investigated in recent years as an innovative physicochemical technique for contaminated water treatment at atmospheric pressure and ambient temperature. In this study we tested a gas-liquid gliding arc discharge reactor, the bacterial suspension of which was treated circularly. When the bacterial suspension was passed through the electrodes and circulated at defined flow rates, almost 100% of the bacteria were killed in less than 3.0 min. Experimental results showed that it is possible to achieve an abatement of 7.0 decimal logarithm units within only 30 s. Circulation flow rates and types of feeding gas caused a certain impact on bacteria inactivation, but the influences are not obvious. So, under the promise of sterilization effect, industrial applications can select their appropriate operating conditions. All inactivation curves presented the same three-phase profile showing an apparent sterilization effect. Analysis of the scanning electron microscope images of bacterial cells supports the speculation that the gas-liquid gliding arc discharge plasma is acting under various mechanisms driven essentially by oxidation and the effect of electric field. These results enhance the possibility of applying gas-liquid gliding arc discharge decontamination systems to disinfect bacterial-contaminated water. Furthermore, correlational research indicates the potential applications of this technology in rapid sterilization of medical devices, spacecraft and food.
Noten, Suzie; Meeus, Mira; Stassijns, Gaetane; Van Glabbeek, Francis; Verborgt, Olivier; Struyf, Filip
2016-05-01
To systematically review the literature for efficacy of isolated articular mobilization techniques in patients with primary adhesive capsulitis (AC) of the shoulder. PubMed and Web of Science were searched for relevant studies published before November 2014. Additional references were identified by manual screening of the reference lists. All English language randomized controlled trials evaluating the efficacy of mobilization techniques on range of motion (ROM) and pain in adult patients with primary AC of the shoulder were included in this systematic review. Twelve randomized controlled trials involving 810 patients were included. Two reviewers independently screened the articles, scored methodologic quality, and extracted data for analysis. The review was conducted and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. All studies were assessed in duplicate for risk of bias using the Physiotherapy Evidence Database Scale for randomized controlled trials. The efficacy of 7 different types of mobilization techniques was evaluated. Angular mobilization (n=2), Cyriax approach (n=1), and Maitland technique (n=6) showed improvement in pain score and ROM. With respect to translational mobilizations (n=1), posterior glides are preferred to restore external rotation. Spine mobilizations combined with glenohumeral stretching and both angular and translational mobilization (n=1) had a superior effect on active ROM compared with sham ultrasound. High-intensity mobilization (n=1) showed less improvement in the Constant Murley Score than a neglect group. Finally, positive long-term effects of the Mulligan technique (n=1) were found on both pain and ROM. Overall, mobilization techniques have beneficial effects in patients with primary AC of the shoulder. Because of preliminary evidence for many mobilization techniques, the Maitland technique and combined mobilizations seem recommended at the moment. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
DOT National Transportation Integrated Search
1971-05-01
Forty instrument rated commercial and ATR pilots with 250 to 12,271 flight hours each flew ten simulated ILS approaches in a single engine, general aviation aircraft. Divided into five groups, each group used a different glide slope cue display in co...
Code of Federal Regulations, 2014 CFR
2014-01-01
... height of 200 feet or less above the horizontal plane containing the threshold. Glide path means that locus of points in the vertical plane containing the runway center line at which the DDM is zero, which... sector (full) means the sector in the vertical plane containing the ISMLS glide path and limited by the...
Shiraki, Yusuke; Tsuruta, Kazuhiro; Morimoto, Junpei; Ohba, Chihiro; Kawamura, Akifumi; Yoshida, Ryo; Kawano, Ryuji; Uragami, Tadashi; Miyata, Takashi
2015-03-01
Microdevices designed for practical environmental pollution monitoring need to detect specific pollutants such as dioxins. Bisphenol A (BPA) has been widely used as a monomer for the synthesis of polycarbonate and epoxy resins. However, the recent discovery of its high potential ability to disrupt human endocrine systems has made the development of smart systems and microdevices for its detection and removal necessary. Molecule-responsive microsized hydrogels with β-cycrodextrin (β-CD) as ligands are prepared by photopolymerization using a fluorescence microscope. The molecule-responsive micro-hydrogels show ultra-quick shrinkage in response to target BPA. Furthermore, the flow rate of a microchannel is autonomously regulated by the molecule-responsive shrinking of their hydrogels as smart microvalves. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Uebayashi, Hirotoshi; Kawabe, Hidenori; Kamae, Katsuhiro
2012-05-01
Estimating the velocity structure of microseisms based on the horizontal-to-vertical spectral ratio (HVSR) is an extremely practical means of modelling the subsurface structure necessary for strong ground motion predictions. Thus, beyond the traditional framework of the 1-D velocity structure, the HVSR, derived from observation records of microseisms (microtremors with a frequency of about 1 Hz or lower originating from ocean waves) in areas where the sediment-bedrock interface has irregular topographies, was reproduced by finite differential method (FDM)-based simulation. This study was conducted for the Osaka sedimentary basin, the sediment-bedrock interface of which is three-dimensionally complicated and contains grabens, steps and ramps, because high-precision models for this basin have been constructed based on a wide range of existing exploration information. The HVSRs of two components (the east-west direction and the north-south direction to the vertical direction) derived from the FDM simulations were both well reproduced in terms of not only the peak frequency (HVfp) but also the spectral curves for a number of observation sites above the sediment-bedrock interface with complex geological features. These results suggest that with a sufficient number of observation sites for microtremors and highly accurate a priori information on geophysical constants in the sedimentary layer that spatially serves as the reference, the irregular-shaped sediment-bedrock interface may be estimated based on how well the HVSR curves and the HVfp agree between the observations and simulations. Furthermore, the FDM simulations confirmed observed phenomena such as the polarization of the amplitude of horizontal motions and broad or 'plateau-like' HVSR peaks of microseisms in grabens and step structures. It was determined that the HVfps in areas with these strong irregularities are higher than the peak frequency of Rayleigh wave ellipticity for the fundamental mode (RHVfp) based on the 1-D velocity structure. In addition, there was a difference of about 20 per cent at most between the HVfp derived from FDM simulations and the RHVfp in areas where the depth of the sediment-bedrock interface varies only slightly.
14 CFR 121.360 - Ground proximity warning-glide slope deviation alerting system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... person may operate a turbine-powered airplane unless it is equipped with a ground proximity warning... system incorporates a Mode 4 flap warning inhibition control; and (2) An outline of all input sources... turbine-powered airplane unless it is equipped with a ground proximity warning/glide slope deviation...
14 CFR 121.360 - Ground proximity warning-glide slope deviation alerting system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... person may operate a turbine-powered airplane unless it is equipped with a ground proximity warning... system incorporates a Mode 4 flap warning inhibition control; and (2) An outline of all input sources... turbine-powered airplane unless it is equipped with a ground proximity warning/glide slope deviation...
Kawamoto, Akihiro; Matsuo, Lisa; Kato, Takayuki; Yamamoto, Hiroki
2016-01-01
ABSTRACT Mycoplasma pneumoniae, a pathogenic bacterium, glides on host surfaces using a unique mechanism. It forms an attachment organelle at a cell pole as a protrusion comprised of knoblike surface structures and an internal core. Here, we analyzed the three-dimensional structure of the organelle in detail by electron cryotomography. On the surface, knoblike particles formed a two-dimensional array, albeit with limited regularity. Analyses using a nonbinding mutant and an antibody showed that the knoblike particles correspond to a naplike structure that has been observed by negative-staining electron microscopy and is likely to be formed as a complex of P1 adhesin, the key protein for binding and gliding. The paired thin and thick plates feature a rigid hexagonal lattice and striations with highly variable repeat distances, respectively. The combination of variable and invariant structures in the internal core and the P1 adhesin array on the surface suggest a model in which axial extension and compression of the thick plate along a rigid thin plate is coupled with attachment to and detachment from the substrate during gliding. PMID:27073090
NASA Technical Reports Server (NTRS)
Watson, D. M.; Hardy, G. H.; Warner, D. N., Jr.
1983-01-01
An automatic landing system was developed for the Augmentor Wing Jet STOL Research Airplane to establish the feasibility and examine the operating characteristics of a powered-lift STOL transport flying a steep, microwave landing system (MLS) glide slope to automatically land on a STOL port. The flight test results address the longitudinal aspects of automatic powered lift STOL airplane operation including glide slope tracking on the backside of the power curve, flare, and touchdown. Three different autoland control laws were evaluated to demonstrate the tradeoff between control complexity and the resulting performance. The flight test and simulation methodology used in developing conventional jet transport systems was applied to the powered-lift STOL airplane. The results obtained suggest that an automatic landing system for a powered-lift STOL airplane operating into an MLS-equipped STOL port is feasible. However, the airplane must be provided with a means of rapidly regulation lift to satisfactorily provide the glide slope tracking and control of touchdown sink rate needed for automatic landings.
Evers, Stefanie; Thoreson, Andrew R; Smith, Jay; Zhao, Chunfeng; Geske, Jennifer R; Amadio, Peter C
2018-01-01
The aim of this study was to assess alterations in median nerve (MN) biomechanics within the carpal tunnel resulting from ultrasound-guided hydrodissection in a cadaveric model. Twelve fresh frozen human cadaver hands were used. MN gliding resistance was measured at baseline and posthydrodissection, by pulling the nerve proximally and then returning it to the origin. Six specimens were treated with hydrodissection, and 6 were used as controls. In the hydrodissection group there was a significant reduction in mean peak gliding resistance of 92.9 ± 34.8 mN between baseline and immediately posthydrodissection (21.4% ± 10.5%; P = 0.001). No significant reduction between baseline and the second cycle occurred in the control group: 9.6 ± 29.8 mN (0.4% ± 5.3%; P = 0.467). Hydrodissection can decrease the gliding resistance of the MN within the carpal tunnel, at least in wrists unaffected by carpal tunnel syndrome. A clinical trial of hydrodissection seems justified. Muscle Nerve 57: 25-32, 2018. © 2017 Wiley Periodicals, Inc.
An in vitro comparison of root canal transportation by reciproc file with and without glide path.
Nazarimoghadam, Kiumars; Daryaeian, Mohammad; Ramazani, Nahid
2014-09-01
The aim of ideal canal preparation is to prevent iatrogenic aberrations such as transportation. The aim of this study was to evaluate the root canal transportation by Reciproc file with and without glide path. Thirty acrylic-resin blocks with a curvature of 60° and size#10 (2% taper) were assigned into two groups (n= 15). In group 1, the glide path was performed using stainless steel k-files size#10 and 15 at working length In group 2, canals were prepared with Reciproc file system at working length. By using digital imaging software (AutoCAD 2008), the pre-instrumentation and post-instrumentation digital images were superimposed over, taking the landmarks as reference points. Then the radius of the internal and external curve of the specimens was calculated at three α, β and γ points (1mm to apex as α, 3mm to apex as β, and 5mm to apex as γ). The data were statically analyzed using the independent T-test and Mann-Whitney U test by SPSS version 16. Glide path was found significant for only external curve in the apical third of the canal; that is, 5mm to apex (P=0.005). But in the other third, canal modification was not significant (P> 0.008). Canal transportation in the apical third of the canal seems to be significantly reduced when glide path is performed using reciprocating files.
An In Vitro Comparison of Root Canal Transportation by Reciproc File With and Without Glide Path
Nazarimoghadam, Kiumars; Daryaeian, Mohammad; Ramazani, Nahid
2014-01-01
Objective: The aim of ideal canal preparation is to prevent iatrogenic aberrations such as transportation. The aim of this study was to evaluate the root canal transportation by Reciproc file with and without glide path. Materials and Methods: Thirty acrylic-resin blocks with a curvature of 60° and size#10 (2% taper) were assigned into two groups (n= 15). In group 1, the glide path was performed using stainless steel k-files size#10 and 15 at working length In group 2, canals were prepared with Reciproc file system at working length. By using digital imaging software (AutoCAD 2008), the pre-instrumentation and post-instrumentation digital images were superimposed over, taking the landmarks as reference points. Then the radius of the internal and external curve of the specimens was calculated at three α, β and γ points (1mm to apex as α, 3mm to apex as β, and 5mm to apex as γ). The data were statically analyzed using the independent T-test and Mann-Whitney U test by SPSS version 16. Results: Glide path was found significant for only external curve in the apical third of the canal; that is, 5mm to apex (P=0.005). But in the other third, canal modification was not significant (P> 0.008). Conclusion: Canal transportation in the apical third of the canal seems to be significantly reduced when glide path is performed using reciprocating files. PMID:25628682
Marinho, Daniel A; Barbosa, Tiago M; Rouboa, Abel I; Silva, António J
2011-09-01
Nowadays the underwater gliding after the starts and the turns plays a major role in the overall swimming performance. Hence, minimizing hydrodynamic drag during the underwater phases should be a main aim during swimming. Indeed, there are several postures that swimmers can assume during the underwater gliding, although experimental results were not conclusive concerning the best body position to accomplish this aim. Therefore, the purpose of this study was to analyse the effect in hydrodynamic drag forces of using different body positions during gliding through computational fluid dynamics (CFD) methodology. For this purpose, two-dimensional models of the human body in steady flow conditions were studied. Two-dimensional virtual models had been created: (i) a prone position with the arms extended at the front of the body; (ii) a prone position with the arms placed alongside the trunk; (iii) a lateral position with the arms extended at the front and; (iv) a dorsal position with the arms extended at the front. The drag forces were computed between speeds of 1.6 m/s and 2 m/s in a two-dimensional Fluent(®) analysis. The positions with the arms extended at the front presented lower drag values than the position with the arms aside the trunk. The lateral position was the one in which the drag was lower and seems to be the one that should be adopted during the gliding after starts and turns.
NASA Astrophysics Data System (ADS)
Baisner, Anette Jægerfeldt; Andersen, Jonas Lembcke; Findsen, Anders; Yde Granath, Simon Wilhelm; Madsen, Karin Ølgaard; Desholm, Mark
2010-11-01
An increased focus on renewable energy has led to the planning and construction of marine wind farms in Europe. Since several terrestrial studies indicate that raptors are especially susceptible to wind turbine related mortality, a Spatial Planning Tool is needed so that wind farms can be sited, in an optimal way, to minimize risk of collisions. Here we use measurements of body mass, wingspan and wing area of eight European raptor species, to calculate their Best Glide Ratio (BGR). The BGR was used to construct a linear equation, which, by the use of initial take-off altitude, could be used to calculate a Theoretical Maximum Distance (TMD) from the coast, attained by these soaring-gliding raptor species. If the nearest turbine, of future marine wind farms, is placed farther away from the coast than the estimated TMD, the collision risk between the turbine blades and these gliding raptors will be minimized. The tool was demonstrated in a case study at the Rødsand II wind farm in Denmark. Data on raptor migration altitude were gathered by radar. From the TMD attained by registered soaring-gliding raptors in the area, we concluded that the Rødsand II wind farm is not sited ideally, from an ornithological point of view, as potentially all three registered species are at risk of gliding through the area swept by the turbine rotor blades, and thereby at risk of colliding with the wind turbines.
Thresholds for linear amplitude change of a continuous pure tone.
Jerlvall, L B; Arlinger, S D; Holmgren, E C
1978-01-01
The human auditory sensitivity in detecting linear amplitude change of a continuous pure tone has been studied in normal-hearing subjects. It is shown that for short glide durations (less than 100 ms) the duration of the following plateau exerts a significant influence on the DLI. The average DLI at 1 kHz and 60 dB HL was found to be of the order of 0.8 dB when the intensity glide had a duration of 10 ms and was followed by a much longer plateau. For longer glide durations (greater than or equal to 200 ms) the DLI increased significantly as compared with shorter durations. There was no significant difference between increasing and decreasing intensity change. Significantly larger DLIs were found at 250 and 500 Hz than at 1, 2 and 4 kHz. The sound level was found to have a significant influence on the DLI. At low levels of 40 dB HL, and lower, the increase in DLI for detecting sound levels is highly significant. A falling exponential function offers a mathematical description of the relationship with good fit. It is concluded that an integrating mechanism with an integration time of approx. 200 ms could explain the auditory ability to detect linear amplitude glides of a continuous tone. The results are discussed in relation to previous intensity discrimination data, where pulse pairs, continuous intensity modulation or intensity glides were used as stimuli.
Baisner, Anette Jaegerfeldt; Andersen, Jonas Lembcke; Findsen, Anders; Yde Granath, Simon Wilhelm; Madsen, Karin Olgaard; Desholm, Mark
2010-11-01
An increased focus on renewable energy has led to the planning and construction of marine wind farms in Europe. Since several terrestrial studies indicate that raptors are especially susceptible to wind turbine related mortality, a Spatial Planning Tool is needed so that wind farms can be sited, in an optimal way, to minimize risk of collisions. Here we use measurements of body mass, wingspan and wing area of eight European raptor species, to calculate their Best Glide Ratio (BGR). The BGR was used to construct a linear equation, which, by the use of initial take-off altitude, could be used to calculate a Theoretical Maximum Distance (TMD) from the coast, attained by these soaring-gliding raptor species. If the nearest turbine, of future marine wind farms, is placed farther away from the coast than the estimated TMD, the collision risk between the turbine blades and these gliding raptors will be minimized. The tool was demonstrated in a case study at the Rødsand II wind farm in Denmark. Data on raptor migration altitude were gathered by radar. From the TMD attained by registered soaring-gliding raptors in the area, we concluded that the Rødsand II wind farm is not sited ideally, from an ornithological point of view, as potentially all three registered species are at risk of gliding through the area swept by the turbine rotor blades, and thereby at risk of colliding with the wind turbines.
Gliding Swifts Attain Laminar Flow over Rough Wings
Lentink, David; de Kat, Roeland
2014-01-01
Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1–2% of chord length on the upper surface—10,000 times rougher than sailplane wings. Sailplanes depend on extreme wing smoothness to increase the area of laminar flow on the wing surface and minimize drag for extended glides. To understand why the swift does not rely on smooth wings, we used a stethoscope to map laminar flow over preserved wings in a low-turbulence wind tunnel. By combining laminar area, lift, and drag measurements, we show that average area of laminar flow on swift wings is 69% (n = 3; std 13%) of their total area during glides that maximize flight distance and duration—similar to high-performance sailplanes. Our aerodynamic analysis indicates that swifts attain laminar flow over their rough wings because their wing size is comparable to the distance the air travels (after a roughness-induced perturbation) before it transitions from laminar to turbulent. To interpret the function of swift wing roughness, we simulated its effect on smooth model wings using physical models. This manipulation shows that laminar flow is reduced and drag increased at high speeds. At the speeds at which swifts cruise, however, swift-like roughness prolongs laminar flow and reduces drag. This feature gives small birds with rudimentary wings an edge during the evolution of glide performance. PMID:24964089
Rhodes, Ryan G.; Samarasam, Mudiarasan Napoleon; Shrivastava, Abhishek; van Baaren, Jessica M.; Pochiraju, Soumya; Bollampalli, Sreelekha; McBride, Mark J.
2010-01-01
Cells of the gliding bacterium Flavobacterium johnsoniae move rapidly over surfaces. Mutations in gldN cause a partial defect in gliding. A novel bacteriophage selection strategy was used to aid construction of a strain with a deletion spanning gldN and the closely related gene gldO in an otherwise wild-type F. johnsoniae UW101 background. Bacteriophage transduction was used to move a gldN mutation into F. johnsoniae UW101 to allow phenotypic comparison with the gldNO deletion mutant. Cells of the gldN mutant formed nonspreading colonies on agar but retained some ability to glide in wet mounts. In contrast, cells of the gldNO deletion mutant were completely nonmotile, indicating that cells require GldN, or the GldN-like protein GldO, to glide. Recent results suggest that Porphyromonas gingivalis PorN, which is similar in sequence to GldN, has a role in protein secretion across the outer membrane. Cells of the F. johnsoniae gldNO deletion mutant were defective in localization of the motility protein SprB to the cell surface, suggesting that GldN may be involved in secretion of components of the motility machinery. Cells of the gldNO deletion mutant were also deficient in chitin utilization and were resistant to infection by bacteriophages, phenotypes that may also be related to defects in protein secretion. PMID:20038590
Heelys and street gliders injuries: a new type of pediatric injury.
Vioreanu, Mihai; Sheehan, Eoin; Glynn, Aaron; Casidy, Noelle; Stephens, Michael; McCormack, Damian
2007-06-01
Our goals were to highlight an increasing trend in orthopedic injuries in children as a result of "heeling" or "street gliding," to describe injuries sustained by children using Heelys (HSL, Carrollton, TX) and Street Gliders (Glowgadgets Ltd, Bristol, United Kingdom), and to increase public awareness and prevent such injuries. We prospectively recorded the data of all roller shoes injuries referred to our department during the summer school holiday. Using a data-collection sheet, we recorded demographic data, type of injury, mechanism and place of injury, heeling or street-gliding experience, use of safety equipment, methods of treatment, and intention to continue heeling or street gliding after recovery from injury. Over a 10-week period, 67 children suffered orthopedic injuries while using Heelys or Street Gliders. There were 56 girls and 11 boys with a mean age of 9.6 years. Upper limbs were the most common location of injury. Distal radius fractures were the most prevalent, followed by supracondylar fractures, elbow dislocations, and hand fractures. The majority of children suffered the injury while heeling or street gliding outdoors. Interestingly, 20% of the injuries happened while trying Heelys or Street Gliders for the first time, and 36% of the injuries occurred while learning (using 1-5 times) how to use them. None of the children used any sort of protective gear at the time of the injury. The majority of the injured children expressed their intention to continue heeling or street gliding after complete recovery from their injury. Our study shows that the majority of children with injuries from heeling or street gliding are girls. We recommend close supervision of children using Heelys or Street Gliders during the steep learning curve and usage of protective gear at all times. These new types of injuries have a serious impact on child health and constitute a burden for the pediatric orthopedic service.
Dhahri, Samia; Ramonda, Michel; Marlière, Christian
2013-01-01
We present a study about AFM imaging of living, moving or self-immobilized bacteria in their genuine physiological liquid medium. No external immobilization protocol, neither chemical nor mechanical, was needed. For the first time, the native gliding movements of Gram-negative Nostoc cyanobacteria upon the surface, at speeds up to 900 µm/h, were studied by AFM. This was possible thanks to an improved combination of a gentle sample preparation process and an AFM procedure based on fast and complete force-distance curves made at every pixel, drastically reducing lateral forces. No limitation in spatial resolution or imaging rate was detected. Gram-positive and non-motile Rhodococcus wratislaviensis bacteria were studied as well. From the approach curves, Young modulus and turgor pressure were measured for both strains at different gliding speeds and are ranging from 20±3 to 105±5 MPa and 40±5 to 310±30 kPa depending on the bacterium and the gliding speed. For Nostoc, spatially limited zones with higher values of stiffness were observed. The related spatial period is much higher than the mean length of Nostoc nodules. This was explained by an inhomogeneous mechanical activation of nodules in the cyanobacterium. We also observed the presence of a soft extra cellular matrix (ECM) around the Nostoc bacterium. Both strains left a track of polymeric slime with variable thicknesses. For Rhodococcus, it is equal to few hundreds of nanometers, likely to promote its adhesion to the sample. While gliding, the Nostoc secretes a slime layer the thickness of which is in the nanometer range and increases with the gliding speed. This result reinforces the hypothesis of a propulsion mechanism based, for Nostoc cyanobacteria, on ejection of slime. These results open a large window on new studies of both dynamical phenomena of practical and fundamental interests such as the formation of biofilms and dynamic properties of bacteria in real physiological conditions. PMID:23593493
Jafra, Anudeep; Gombar, Satinder; Kapoor, Dheeraj; Sandhu, Harpreet Singh; Kumari, Kamlesh
2018-01-01
Background: The aim of the study was to compare the ease the intubation using GlideScope video laryngoscope and Macintosh laryngoscope in adult patients undergoing elective surgery under general anesthesia. Materials and Methods: A total of 200 American Society of Anesthesiologists I–II patients of either sex, in the age group of 18–60 years were included in the study. Patients were randomly allocated to two groups. We assessed ease of intubation depending on time to tracheal intubation, number of attempts, glottic view (Cormack–Lehane grade [CL grade] and percentage of glottis opening [POGO]) and intubation difficulty score (IDS), hemodynamic variables and any intra- and post-operative adverse events. Results: The rate of successful endotracheal intubation (ETI) in both groups was 100% in the first attempt. The time required for successful ETI was 24.89 ± 5.574 in Group G and 20.68 ± 3.637 in Group M (P < 0.001) found to be statistically significant. There was significant improvement in glottic view with GlideScope (as assessed by POGO score 66.71 ± 29.929 and 94.40 ± 10.476 in group G and 75.85 ± 26.969 and 74.20 ± 29.514 Group M and CL grading [P < 0.001]). A comparison of mean IDS between two groups revealed intubation was easier with the use of GlideScope. The hemodynamic response to intubation was significantly lesser with the use of GlideScope when compared with Macintosh laryngoscope. The incidence of adverse events, though minor like superficial lip or tongue bleed, was similar in two groups. Conclusions: GlideScope offers superiority over Macintosh laryngoscope in terms of laryngeal views and the difficulty encountered at ETI in an unselected population. PMID:29628839
Yu, Haitong; Liu, Dong; Duan, Yuanyuan; Wang, Xiaodong
2014-04-07
Opacified aerogels are particulate thermal insulating materials in which micrometric opacifier mineral grains are surrounded by silica aerogel nanoparticles. A geometric model was developed to characterize the spectral properties of such microsize grains surrounded by much smaller particles. The model represents the material's microstructure with the spherical opacifier's spectral properties calculated using the multi-sphere T-matrix (MSTM) algorithm. The results are validated by comparing the measured reflectance of an opacified aerogel slab against the value predicted using the discrete ordinate method (DOM) based on calculated optical properties. The results suggest that the large particles embedded in the nanoparticle matrices show different scattering and absorption properties from the single scattering condition and that the MSTM and DOM algorithms are both useful for calculating the spectral and radiative properties of this particulate system.
NASA Astrophysics Data System (ADS)
Xie, J.; Ni, S.; Chu, R.; Xia, Y.
2017-12-01
Accurate seismometer clock plays an important role in seismological studies including earthquake location and tomography. However, some seismic stations may have clock drift larger than 1 second, especially in early days of global seismic network. The 26 s Persistent Localized (PL) microseism event in the Gulf of Guinea sometime excites strong and coherent signals, and can be used as repeating source for assessing stability of seismometer clocks. Taking station GSC/TS in southern California, USA as an example, the 26 s PL signal can be easily observed in the ambient Noise Cross-correlation Function (NCF) between GSC/TS and a remote station. The variation of travel-time of this 26 s signal in the NCF is used to infer clock error. A drastic clock error is detected during June, 1992. This short-term clock error is confirmed by both teleseismic and local earthquake records with a magnitude of ±25 s. Using 26 s PL source, the clock can be validated for historical records of sparsely distributed stations, where usual NCF of short period microseism (<20 s) might be less effective due to its attenuation over long interstation distances. However, this method suffers from cycling problem, and should be verified by teleseismic/local P waves. The location change of the 26 s PL source may influence the measured clock drift, using regional stations with stable clock, we estimate the possible location change of the source.
River as a part of ground battlefield
NASA Astrophysics Data System (ADS)
Vračar, Miodrag S.; Pokrajac, Ivan; Okiljević, Predrag
2013-05-01
The rivers are in some circumstances part of the ground battlefield. Microseisms induced at the riverbed or ground at the river surrounding might be consequence of military activities (military ground transports, explosions, troop's activities, etc). Vibrations of those fluid-solid structures are modeled in terms of solid displacement and change of fluid pressure. This time varying fluid pressure in river, which originates from ground microseisms, is possible to detect with hydrophones. Therefore, hydroacoustic measurements in rivers enables detecting, identification and localization various types of military noisy activities at the ground as and those, which origin is in the river water (hydrodynamics of water flow, wind, waves, river vessels, etc). In this paper are presented river ambient noise measurements of the three great rivers: the Danube, the Sava and the Tisa, which flows in north part of Serbia in purpose to establish limits in detection of the ground vibrations in relatively wide frequency range from zero to 20 kHz. To confirm statement that the river is a part of ground battlefield, and that hydroacoustic noise is possible to use in detecting and analyzing ground microseisms induced by civil or military activities, some previous collected data of hydroacoustic noise measurement in the rivers are used. The data of the river ambient noise include noise induced by civil engineering activities, that ordinary take place in large cities, noise that produced ships and ambient noise of the river when human activities are significantly reduced. The poly spectral method was used in analysis such events.
Coupled factors influencing detachment of nano- and micro-sized particles from primary minima.
Shen, Chongyang; Lazouskaya, Volha; Jin, Yan; Li, Baoguo; Ma, Zhiqiang; Zheng, Wenjuan; Huang, Yuanfang
2012-06-01
This study examined the detachments of nano- and micro-sized colloids from primary minima in the presence of cation exchange by laboratory column experiments. Colloids were initially deposited in columns packed with glass beads at 0.2 M CaCl(2) in the primary minima of Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies. Then, the columns were flushed with NaCl solutions with different ionic strengths (i.e., 0.001, 0.01, 0.1 and 0.2 M). Detachments were observed at all ionic strengths and were particularly significant for the nanoparticle. The detachments increased with increasing electrolyte concentration for the nanoparticle whereas increased from 0.001 M to 0.01 M and decreased with further increasing electrolyte concentration for the micro-sized colloid. The observations were attributed to coupled influence of cation exchange, short-range repulsion, surface roughness, surface charge heterogeneity, and deposition in the secondary minima. The detachments of colloids from primary minima challenge the common belief that colloid interaction in primary minimum is irreversible and resistant to disturbance in solution ionic strength and composition. Although the significance of surface roughness, surface charge heterogeneity, and secondary minima on colloid deposition has been widely recognized, our study implies that they also play important roles in colloid detachment. Whereas colloid detachment is frequently associated with decrease of ionic strength, our results show that increase of ionic strength can also cause detachment due to influence of cation exchange. Copyright © 2012 Elsevier B.V. All rights reserved.
All-inkjet-printed flexible ZnO micro photodetector for a wearable UV monitoring device
NASA Astrophysics Data System (ADS)
Tran, Van-Thai; Wei, Yuefan; Yang, Hongyi; Zhan, Zhaoyao; Du, Hejun
2017-03-01
Fabrication of small-sized patterns of inorganic semiconductor onto flexible substrates is a major concern when manufacturing wearable devices for measuring either biometric or environmental parameters. In this study, micro-sized flexible ZnO UV photodetectors have been thoroughly prepared by a facile inkjet printing technology and followed with heat treatments. A simple ink recipe of zinc acetate precursor solution was investigated. It is found that the substrate temperature during zinc precursor ink depositing has significant effects on ZnO pattern shape, film morphology, and crystallization. The device fabricated from the additive manufacturing approach has good bendability, Ohmic contact, short response time as low as 0.3 s, and high on/off ratio of 3525. We observed the sensor’s dependence of response/decay time by the illuminating UV light intensity. The whole process is based on additive manufacturing which has many benefits such as rapid prototyping, saving material, being environmentally friendly, and being capable of creating high-resolution patterns. In addition, this method can be applied to flexible substrates, which makes the device more applicable for applications requiring flexibility such as wearable devices. The proposed all-inkjet-printing approach for a micro-sized ZnO UV photodetector would significantly simplify the fabrication process of micro-sized inorganic semiconductor-based devices. A potential application is real-time monitoring of UV light exposure to warn users about unsafe direct sunlight to implement suitable avoidance solutions.
Conventional Prompt Global Strike and Long-Range Ballistic Missiles: Background and Issues
2015-02-06
Air Force Programs ................................................................................................................. 13 The FALCON ...glide technologies that would mate a rocket booster with a hypersonic glide vehicle. Congress has generally supported the rationale for the PGS mission...M., “U.S. General: Precise Long-Range Missiles may Enable Big Nuclear Cuts,” Inside the Pentagon, April 28, 2005. Conventional Prompt Global Strike
Conventional Prompt Global Strike and Long-Range Ballistic Missiles: Background and Issues
2014-05-05
13 The FALCON Study...bombers, cruise missiles, ballistic missiles, and boost-glide technologies that would mate a rocket booster with a hypersonic glide vehicle. Congress has...Strategic Command, Hearing, April 4, 2005. 23 Grossman, Elaine M., “U.S. General: Precise Long-Range Missiles may Enable Big Nuclear Cuts,” Inside the
Remote Photoregulated Ring Gliding in a [2]Rotaxane via a Molecular Effector.
Tron, Arnaud; Pianet, Isabelle; Martinez-Cuezva, Alberto; Tucker, James H R; Pisciottani, Luca; Alajarin, Mateo; Berna, Jose; McClenaghan, Nathan D
2017-01-06
A molecular barbiturate messenger, which is reversibly released/captured by a photoswitchable artificial molecular receptor, is shown to act as an effector to control ring gliding on a distant hydrogen-bonding [2]rotaxane. Thus, light-driven chemical communication governing the operation of a remote molecular machine is demonstrated using an information-rich neutral molecule.
Kick, Glide, Pole! Cross-Country Skiing Fun (Part II)
ERIC Educational Resources Information Center
Duoos, Bridget A.
2012-01-01
Part I of Kick, Glide, Pole! Cross-Country Skiing Fun, which was published in last issue, discussed how to select cross-country ski equipment, dress for the activity and the biomechanics of the diagonal stride. Part II focuses on teaching the diagonal stride technique and begins with a progression of indoor activities. Incorporating this fun,…
ERIC Educational Resources Information Center
Liu, Fang; Xu, Yi; Patel, Aniruddh D.; Francart, Tom; Jiang, Cunmei
2012-01-01
This study examined whether "melodic contour deafness" (insensitivity to the direction of pitch movement) in congenital amusia is associated with specific types of pitch patterns (discrete versus gliding pitches) or stimulus types (speech syllables versus complex tones). Thresholds for identification of pitch direction were obtained using discrete…
Analysis of a Meteorological Database for London Heathrow in the Context of Wake Vortex Hazards
NASA Astrophysics Data System (ADS)
Agnew, P.; Ogden, D. J.; Hoad, D. J.
2003-04-01
A database of meteorological parameters collected by aircraft arriving at LHR has recently been compiled. We have used the recorded variation of temperature and wind with height to deduce the 'wake vortex behaviour class' (WVBC) along the glide slope, as experienced by each flight. The integrated state of the glide slope has been investigated, allowing us to estimate the proportion of time for which the wake vortex threat is reduced, due to either rapid decay or transport off the glide slope. A numerical weather prediction model was used to forecast the meteorological parameters for periods coinciding with the aircraft data. This allowed us to perform a comparison of forecast WVBC with those deduced from the aircraft measurements.
NASA Technical Reports Server (NTRS)
Fischel, Jack; Watson, James M
1951-01-01
A wind-tunnel investigation was made to determine the characteristics of spoiler ailerons used as speed brakes or glide-path controls on an NACA 65-210 wing and an NACA 65-215 wing equipped with full-span slotted flaps. Several plug aileron and retractable-aileron configurations were investigated on two wing models with the full-span flaps retracted and deflected. Tests were made at various Mach numbers between 0.13 and 0.71. The results of this investigation have indicated that the use of plug or retractable ailerons, either alone or in conjunction with wing flaps, as speed brakes or glide-path controls is feasible and very effective.
Aitkin, L M; Nelson, J E
1989-01-01
Two specialized features are described in the auditory system of Acrobates pygmaeus, a small gliding marsupial. Firstly, the ear canal includes a transverse disk of bone that partly occludes the canal near the eardrum. The resultant narrow-necked chamber above the eardrum appears to attenuate sound across a broad frequency range, except at 27-29 kHz at which a net gain of sound pressure occurs. Secondly, the lateral medulla is hypertrophied at the level of the cochlear nucleus, forming a massive lateral lobe comprised of multipolar cells and granule cells. This lobe has connections with the auditory nerve and the cerebellum. Speculations are advanced about the functions of these structures in gliding behaviour and predator avoidance.
Bill Dana in front of HL-10 after flight H-24-37
1969-09-03
NASA research pilot Bill Dana after his fourth free flight (1 glide and 3 powered) in the HL-10. This particular flight reached a maximum speed of Mach 1.45. Dana made a total of nine HL-10 flights (1 glide and 8 powered), and his lifting body experience as a whole included several car tow and 1 air tow flights in the M2-F1; 4 glide and 15 powered flights in the M2-F3; and 2 powered flights in the X-24B. He is wearing a pressure suit for protection against the cockpit depressurizing at high altitudes. The air conditioner box held by the ground crewman provides cool air to prevent overheating.
Kawashima, Tomokazu; Thorington, Richard W; Bohaska, Paula W; Sato, Fumi
2017-02-01
A long-standing issue in squirrel evolution and development is the origin of the styliform cartilage of flying squirrels, which extends laterally from the carpus to support the gliding membrane (patagium). Because the styliform cartilage is one of the uniquely specialized structures permitting gliding locomotion, the knowledge of its origin and surrounding transformation is key for understanding their aerodynamic evolution. The developmental study that would definitely answer this question would be difficult due to the rarity of embryological material. Instead, anatomical examinations have suggested two major hypotheses on the homology of the styliform cartilage: the pisiform bone of other mammals, or an additional carpal structure, such as the ulnar sesamoid of some of the other mammals or the hypothenar cartilage of the non-gliding squirrels. To test these hypotheses, a detailed examination of the anatomy of the carpus of gliding and non-gliding squirrels, and the colugo were undertaken. Based on physical and virtual dissections of the carpus, this study showed that both the pisiform bone and styliform cartilage were present in flying squirrels. This finding is further supported by demonstration that a "true Palmaris longus," with innervation typical for this muscle, inserts on the styliform cartilage. Taken together, our osteological, muscular, and neurological results suggest that the styliform cartilage was transformed in flying squirrels from an initially superficial and ulnar-derived anlagen into its current form. Anat Rec, 300:340-352, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Vijayakumar, Balakrishnan; Parasuraman, Subramani; Raveendran, Ramasamy; Velmurugan, Devadasan
2014-01-01
Background: Cleistanthins A and B are isolated compounds from the leaves of Cleistanthus collinus Roxb (Euphorbiaceae). This plant is poisonous in nature which causes cardiovascular abnormalities such as hypotension, nonspecific ST-T changes and QTc prolongation. The biological activity predictions spectra of the compounds show the presence of antihypertensive, diuretic and antitumor activities. Objective: Objective of the present study was to determine the in silico molecular interaction of cleistanthins A and B with Angiotensin I- Converting Enzyme (ACE-I) using Induced Fit Docking (IFD) protocols. Materials and Methods: All the molecular modeling calculations like IFD docking, binding free energy calculation and ADME/Tox were carried out using Glide software (Schrödinger LLC 2009, USA) in CentOS EL-5 workstation. Results: The IFD complexes showed favorable docking score, glide energy, glide emodel, hydrogen bond and hydrophobic interactions between the active site residues of ACE-I and the compounds. Binding free energy was calculated for the IFD complexes using Prime MM-GBSA method. The conformational changes induced by the inhibitor at the active site of ACE-I were observed based on changes of the back bone Cα atoms and side-chain chi (x) angles. The various physicochemical properties were calculated for these compounds. Both cleistanthins A and B showed better docking score, glide energy and glide emodel when compared to captopril inhibitor. Conclusion: These compounds have successively satisfied all the in silico parameters and seem to be potent inhibitors of ACE-I and potential candidates for hypertension. PMID:25298685
NASA Astrophysics Data System (ADS)
Asghar, Z.; Ali, N.; Anwar Bég, O.; Javed, T.
2018-06-01
Gliding bacteria are virtually everywhere. These organisms are phylogenetically diverse with their hundreds of types, different shapes and several modes of motility. One possible mode of gliding motility in the rod shaped bacteria is that they propel themselves by producing undulating waves in their body. Few bacteria glides near the solid surface over the slime without any aid of flagella so the classical Navier-Stokes equations are incapable of explaining the slime rheology at the microscopic level. Micropolar fluid dynamics however provides a solid framework for mimicking bacterial physical phenomena at both micro and nano-scales, and therefore we use the micropolar fluid to characterize the rheology of a thin layer of slime and its dominant microrotation effects. It is also assumed that there is a certain degree of slip between slime and bacterial undulating surface and also between slime and solid substrate. The flow equations are formulated under long wavelength and low Reynolds number assumptions. Exact expressions for stream function and pressure gradient are obtained. The speed of the gliding bacteria is numerically calculated by using a modified Newton-Raphson method. Slip effects and effects of non-Newtonian slime parameters on bacterial speed and power are also quantified. In addition, when the glider is fixed, the effects of slip and rheological properties of micropolar slime parameters on the velocity, micro-rotation (angular velocity) of spherical slime particles, pressure rise per wavelength, pumping and trapping phenomena are also shown graphically and discussed in detail. The study is relevant to emerging biofuel cell technologies and also bacterial biophysics.
NASA Astrophysics Data System (ADS)
Gao, Siwen; Fivel, Marc; Ma, Anxin; Hartmaier, Alexander
2017-05-01
A three-dimensional (3D) discrete dislocation dynamics (DDD) creep model is developed to investigate creep behavior under uniaxial tensile stress along the crystallographic [001] direction in Ni-base single crystal superalloys, which takes explicitly account of dislocation glide, climb and vacancy diffusion, but neglects phase transformation like rafting of γ‧ precipitates. The vacancy diffusion model takes internal stresses by dislocations and mismatch strains into account and it is coupled to the dislocation dynamics model in a numerically efficient way. This model is helpful for understanding the fundamental creep mechanisms in superalloys and clarifying the effects of dislocation glide and climb on creep deformation. In cases where the precipitate cutting rarely occurs, e.g. due to the high anti-phase boundary energy and the lack of superdislocations, the dislocation glide in the γ matrix and the dislocation climb along the γ/γ‧ interface dominate plastic deformation. The simulation results show that a high temperature or a high stress both promote dislocation motion and multiplication, so as to cause a large creep strain. Dislocation climb accelerated by high temperature only produces a small plastic strain, but relaxes the hardening caused by the filling γ channels and lets dislocations further glide and multiply. The strongest variation of vacancy concentration occurs in the horizontal channels, where more mixed dislocations exit and tend to climb. The increasing internal stresses due to the increasing dislocation density are easily overcome by dislocations under a high external stress that leads to a long-term dislocation glide accompanied by multiplication.
Pournajafian, Ali Reza; Ghodraty, Mohammad Reza; Faiz, Seyed Hamid Reza; Rahimzadeh, Poupak; Goodarzynejad, Hamidreza; Dogmehchi, Enseyeh
2014-01-01
Background: To determine if the GlideScope® videolaryngoscope (GVL) could attenuate the hemodynamic responses to orotracheal intubation compared with conventional Macintosh laryngoscope. Objectives: The aim of this relatively large randomized trial was to compare the hemodynamic stress responses during laryngoscopy and tracheal intubation using GVL versus MCL amongst healthy adult individuals receiving general anesthesia for elective surgeries. Patients and Methods: Ninety five healthy adult patients with American Society of Anesthesiologists physical status class I or II that were scheduled for elective surgery under general anesthesia were randomly allocated to either Macintosh or GlideScope arms. All patients received a standardized protocol of general anesthesia. Hemodynamic changes associated with intubation were recorded before and at 1, 3 and 5 minutes after the intubation. The time taken to perform endotracheal intubation was also noted in both groups. Results: Immediately before laryngoscopy (pre-laryngoscopy), the values of all hemodynamic variables did not differ significantly between the two groups (All P values > 0.05). Blood pressures and HR values changed significantly over time within the groups. Time to intubation was significantly longer in the GlideScope (15.9 ± 6.7 seconds) than in the Macintosh group (7.8 ± 3.7 sec) (P< 0.001). However, there were no significant differences between the two groups in hemodynamic responses at all time points. Conclusions: The longer intubation time using GVL suggests that the benefit of GVL could become apparent if the time taken for orotracheal intubation could be decreased in GlideScope group. PMID:24910788
Unilateral posterior crossbite and mastication.
Rilo, Benito; da Silva, José Luis; Mora, María Jesús; Cadarso-Suárez, Carmen; Santana, Urbano
2007-05-01
This study was designed to characterize masticatory-cycle morphology, and distance of the contact glide in the closing masticatory stroke, in adult subjects with uncorrected unilateral posterior crossbite (UPXB), comparing the results obtained with those obtained in a parallel group of normal subjects. Mandibular movements (masticatory movements and laterality movements with dental contact) were registered using a gnathograph (MK-6I Diagnostic System) during unilateral chewing of a piece of gum. Traces were recorded on the crossbite and non-crossbite sides in the crossbite group, and likewise on both sides in the non-crossbite group. Mean contact glide distance on the crossbite side in the UPXB group was significantly lower than in the control group (p<0.001), and mean contact glide distance on the non-crossbite side in the UPXB group was significantly lower than in the control group (p=0.042). Cycle morphology was abnormal during chewing on the crossbite side, with the frequency distribution of cycle types differing significantly from that for the noncrossbite side and that for the control group (p<0.001). Patients with crossbite showed alterations in both contact glide distances and masticatory cycle morphology. These alterations are probably adaptive responses allowing maintenance of adequate masticatory function despite the crossbite.
Wake analysis of aerodynamic components for the glide envelope of a jackdaw (Corvus monedula).
KleinHeerenbrink, Marco; Warfvinge, Kajsa; Hedenström, Anders
2016-05-15
Gliding flight is a relatively inexpensive mode of flight used by many larger bird species, where potential energy is used to cover the cost of aerodynamic drag. Birds have great flexibility in their flight configuration, allowing them to control their flight speed and glide angle. However, relatively little is known about how this flexibility affects aerodynamic drag. We measured the wake of a jackdaw (Corvus monedula) gliding in a wind tunnel, and computed the components of aerodynamic drag from the wake. We found that induced drag was mainly affected by wingspan, but also that the use of the tail has a negative influence on span efficiency. Contrary to previous work, we found no support for the separated primaries being used in controlling the induced drag. Profile drag was of similar magnitude to that reported in other studies, and our results suggest that profile drag is affected by variation in wing shape. For a folded tail, the body drag coefficient had a value of 0.2, rising to above 0.4 with the tail fully spread, which we conclude is due to tail profile drag. © 2016. Published by The Company of Biologists Ltd.
Locomotion of neutrally buoyant fish with flexible caudal fin.
Iosilevskii, Gil
2016-06-21
Historically, burst-and-coast locomotion strategies have been given two very different explanations. The first one was based on the assumption that the drag of an actively swimming fish is greater than the drag of the same fish in motionless glide. Fish reduce the cost of locomotion by swimming actively during a part of the swimming interval, and gliding through the remaining part. The second one was based on the assumption that muscles perform efficiently only if their contraction rate exceeds a certain threshold. Fish reduce the cost of locomotion by using an efficient contraction rate during a part of the swimming interval, and gliding through the remaining part. In this paper, we suggest yet a third explanation. It is based on the assumption that propulsion efficiency of a swimmer can increase with thrust. Fish reduce the cost of locomotion by alternating high thrust, and hence more efficient, bursts with passive glides. The paper presents a formal analysis of the respective burst-and-coast strategy, shows that the locomotion efficiency can be practically as high as the propulsion efficiency during burst, and shows that the other two explanations can be considered particular cases of the present one. Copyright © 2016 Elsevier Ltd. All rights reserved.
On low temperature glide of dissociated <1 1 0> dislocations in strontium titanate
NASA Astrophysics Data System (ADS)
Ritterbex, Sebastian; Hirel, Pierre; Carrez, Philippe
2018-05-01
An elastic interaction model is presented to quantify low temperature plasticity of SrTiO3 via glide of dissociated <1 1 0>{1 1 0} screw dislocations. Because <1 1 0> dislocations are dissociated, their glide, controlled by the kink-pair mechanism at T < 1050 K, involves the formation of kink-pairs on partial dislocations, either simultaneously or sequentially. Our model yields results in good quantitative agreement with the observed non-monotonic mechanical behaviour of SrTiO3. This agreement allows to explain the experimental results in terms of a (progressive) change in <1 1 0>{1 1 0} glide mechanism, from simultaneous nucleation of two kink-pairs along both partials at low stress, towards nucleation of single kink-pairs on individual partials if resolved shear stress exceeds a critical value of 95 MPa. High resolved shear stress allows thus for the activation of extra nucleation mechanisms on dissociated dislocations impossible to occur under the sole action of thermal activation. We suggest that stress condition in conjunction with core dissociation is key to the origin of non-monotonic plastic behaviour of SrTiO3 at low temperatures.
Tamulonis, Carlos; Postma, Marten; Kaandorp, Jaap
2011-01-01
Cyanobacteria form a very large and diverse phylum of prokaryotes that perform oxygenic photosynthesis. Many species of cyanobacteria live colonially in long trichomes of hundreds to thousands of cells. Of the filamentous species, many are also motile, gliding along their long axis, and display photomovement, by which a trichome modulates its gliding according to the incident light. The latter has been found to play an important role in guiding the trichomes to optimal lighting conditions, which can either inhibit the cells if the incident light is too weak, or damage the cells if too strong. We have developed a computational model for gliding filamentous photophobic cyanobacteria that allows us to perform simulations on the scale of a Petri dish using over 105 individual trichomes. Using the model, we quantify the effectiveness of one commonly observed photomovement strategy—photophobic responses—in distributing large populations of trichomes optimally over a light field. The model predicts that the typical observed length and gliding speeds of filamentous cyanobacteria are optimal for the photophobic strategy. Therefore, our results suggest that not just photomovement but also the trichome shape itself improves the ability of the cyanobacteria to optimize their light exposure. PMID:21789215
Measured noise reductions resulting from modified approach procedures for business jet aircraft
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Putnam, T. W.; Lasagna, P. L.; Parish, O. O.
1975-01-01
Five business jet airplanes were flown to determine the noise reductions that result from the use of modified approach procedures. The airplanes tested were a Gulfstream 2, JetStar, Hawker Siddeley 125-400, Sabreliner-60 and LearJet-24. Noise measurements were made 3, 5, and 7 nautical miles from the touchdown point. In addition to a standard 3 deg glide slope approach, a 4 deg glide slope approach, a 3 deg glide slope approach in a low-drag configuration, and a two-segment approach were flown. It was found that the 4 deg approach was about 4 EPNdB quieter than the standard 3 deg approach. Noise reductions for the low-drag 3 deg approach varied widely among the airplanes tested, with an average of 8.5 EPNdB on a fleet-weighted basis. The two-segment approach resulted in noise reductions of 7 to 8 EPNdB at 3 and 5 nautical miles from touchdown, but only 3 EPNdB at 7 nautical miles from touchdown when the airplanes were still in level flight prior to glide slope intercept. Pilot ratings showed progressively increasing workload for the 4 deg, low-drag 3 deg, and two-segment approaches.
Development of the Gliding Hole of the Dynamics Compression Plate
NASA Astrophysics Data System (ADS)
Salim, U. A.; Suyitno; Magetsari, R.; Mahardika, M.
2017-02-01
The gliding hole of the dynamics compression plate is designed to facilitate relative movement of pedicle screw during surgery application. The gliding hole shape is then geometrically complex. The gliding hole manufactured using machining processes used to employ ball-nose cutting tool. Then, production cost is expensive due to long production time. This study proposed to increase productivity of DCP products by introducing forming process (cold forming). The forming process used to involve any press tool devices. In the closed die forming press tool is designed with little allowance, then work-pieces is trapped in the mould after forming. Therefore, it is very important to determine hole geometry and dimensions of raw material in order to success on forming process. This study optimized the hole sizes with both geometry analytics and experiments. The success of the forming process was performed by increasing the holes size on the raw materials. The holes size need to be prepared is diameter of 5.5 mm with a length of 11.4 mm for the plate thickness 3 mm and diameter of 6 mm with a length of 12.5 mm for the plate thickness 4 mm.
NASA Astrophysics Data System (ADS)
O'Reilly, Andrew J.; Quitoriano, Nathaniel
2018-01-01
Uniaxially strained Si1-xGex channels have been proposed as a solution for high mobility channels in next-generation MOSFETS to ensure continued device improvement as the benefits from further miniaturisation are diminishing. Previously proposed techniques to deposit uniaxially strained Si1-xGex epilayers on Si (0 0 1) substrates require multiple deposition steps and only yielded thin strips of uniaxially strained films. A lateral liquid-phase epitaxy (LLPE) technique was developed to deposit a blanket epilayer of asymmetrically strained Si97.4Ge2.6 on Si in a single step, where the epilayer was fully strained in the growth direction and 31% strain-relaxed in the orthogonal direction. The LLPE technique promoted the glide of misfit dislocations, which nucleated in a region with an orthogonal misfit dislocation network, into a region where the dislocation nucleation was inhibited. This created an array of parallel misfit dislocations which were the source of the asymmetric strain. By observing the thicknesses at which the dislocation network transitions from orthogonal to parallel and at which point dislocation glide is exhausted, the separate critical thicknesses for dislocation nucleation and dislocation glide can be determined.
Snakes on a plane: modeling flexible active nematics
NASA Astrophysics Data System (ADS)
Selinger, Robin
Active soft matter systems of self-propelled rod-shaped particles exhibit ordered phases and collective behavior that are remarkably different from their passive analogs. In nature, many self-propelled rod-shaped particles, such as gliding bacteria and kinesin-driven microtubules, are flexible and can bend. We model these ``living liquid crystals'' to explore their phase behavior, dynamics, and pattern formation. We model particles as short polymers via molecular dynamics with a Langevin thermostat and various types of activity, substrate, and environments. For self-propelled polar particles gliding on a solid substrate, we map out the phase diagram as a function of particle density and flexibility. We compare simulated defect structures to those observed in colonies of gliding myxobacteria; compare spooling behavior to that observed in microtubule gliding assays; and analyze emergence of nematic and polar order. Next we explore pattern formation of self-propelled polar particles under flexible encapsulation, and on substrates with non-uniform Gaussian curvature. Lastly, we impose an activity mechanism that mimics extensile shear, study flexible particles both on solid substrates and coupled to a lipid membrane, and discuss comparisons to relevant experiments. Work performed in collaboration with Michael Varga (Kent State) and Luca Giomi (Universiteit Leiden.) Work supported by NSF DMR-1409658.
Destruction of acenaphthene, fluorene, anthracene and pyrene by a dc gliding arc plasma reactor.
Yu, Liang; Tu, Xin; Li, Xiaodong; Wang, Yu; Chi, Yong; Yan, Jianhua
2010-08-15
In this study, four kinds of PAHs (polycyclic aromatic hydrocarbons) i.e. acenaphthene, fluorene, anthracene and pyrene are used as targets for investigation of PAHs treatment process assisted by dc gliding arc discharge. The effects of carrier gas and external resistance on the PAHs decomposition process are discussed. The results indicate that the destruction rate can be achieved to the highest with the carrier gas of oxygen and the external resistance of 50 kOmega independent of type of PAHs. Furthermore, experimental results suggest that destruction energy efficiency of gliding arc plasma would be improved by treating higher concentration pollutants. Based on the analysis of experimental results, possible destruction mechanisms in different gas discharge are discussed. Copyright 2010 Elsevier B.V. All rights reserved.
Practical Tests with the "auto Control Slot." Part II : Discussion
NASA Technical Reports Server (NTRS)
Lachmann, G
1930-01-01
For some time the D.V.L. has been investigating the question of applicability of Handley Page slotted wings to German airplanes. Comparitive gliding tests were made with open and closed slots on an Albatros L 75 airplane equipped with the Handley Page "auto control slots." This investigation served to determine the effect of the auto control slot on the properties and performances of airplanes at large angles of attack. The most important problems were whether the angle of glide at small angles of attack can be increased by the adoption of the auto control slot and, in particular, as to whether the flight characteristics at large angles of attack are improved thereby and equilibrium in gliding flight is guaranteed even at larger than ordinary angles of attack.
Practical Tests with the "auto Control Slot." Part I : Lecture
NASA Technical Reports Server (NTRS)
Lachmann, G
1930-01-01
For some time the D.V.L. has been investigating the question of applicability of Handley Page slotted wings to German airplanes. Comparitive gliding tests were made with open and closed slots on an Albatros L 75 airplane equipped with the Handley Page "auto control slots." This investigation served to determine the effect of the auto control slot on the properties and performances of airplanes at large angles of attack. The most important problems were whether the angle of glide at small angles of attack can be increased by the adoption of the auto control slot and, in particular, as to whether the flight characteristics at large angles of attack are improved thereby and equilibrium in gliding flight is guaranteed even at larger than ordinary angles of attack.
Leading-edge vortex lifts swifts.
Videler, J J; Stamhuis, E J; Povel, G D E
2004-12-10
The current understanding of how birds fly must be revised, because birds use their hand-wings in an unconventional way to generate lift and drag. Physical models of a common swift wing in gliding posture with a 60 degrees sweep of the sharp hand-wing leading edge were tested in a water tunnel. Interactions with the flow were measured quantitatively with digital particle image velocimetry at Reynolds numbers realistic for the gliding flight of a swift between 3750 and 37,500. The results show that gliding swifts can generate stable leading-edge vortices at small (5 degrees to 10 degrees) angles of attack. We suggest that the flow around the arm-wings of most birds can remain conventionally attached, whereas the swept-back hand-wings generate lift with leading-edge vortices.
NASA Technical Reports Server (NTRS)
Treybig, J. H.
1975-01-01
Thermal and equilibrium glide boundaries were used to analyze and/or design shuttle orbiter entry trajectories. Plots are presented of orbiter thermal and equilibrium glide boundaries in the drag/mass-relative velocity dynamic pressure-relative velocity, and altitude-relative velocity planes for an orbiter having a 32,000 pound payload and a 67.5% center of gravity location. These boundaries were defined for control points 1 through 4 of the shuttle orbiter for 40 deg-30 deg and 38 deg-28 deg ramped angle of attack entry profiles and 40 deg, 38 deg, 35 deg, 30 deg, 28 deg, and 25 deg constant angle of attack entry profiles each at 20 deg, 15 deg, and 10 deg constant body flap settings.
GLIDES â Efficient Energy Storage from ORNL
Momen, Ayyoub M.; Abu-Heiba, Ahmad; Odukomaiya, Wale; Akinina, Alla
2018-06-25
The research shown in this video features the GLIDES (Ground-Level Integrated Diverse Energy Storage) project, which has been under development at Oak Ridge National Laboratory (ORNL) since 2013. GLIDES can store energy via combined inputs of electricity and heat, and deliver dispatchable electricity. Supported by ORNLâs Laboratory Directorâs Research and Development (LDRD) fund, this energy storage system is low-cost, and hybridizes compressed air and pumped-hydro approaches to allow for storage of intermittent renewable energy at high efficiency. A U.S. patent application for this novel energy storage concept has been submitted, and research findings suggest it has the potential to be a flexible, low-cost, scalable, high-efficiency option for energy storage, especially useful in residential and commercial buildings.
Test of the Peierls-Nabarro model for dislocations in silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Q.; Joos, B.; Duesbery, M.S.
1995-11-01
We show, using an atomistic model with a Stillinger-Weber potential (SWP), that in the absence of reconstruction, the basic assumption of the Peierls-Nabarro (PN) model that the dislocation core is spread within the glide plane is verified for silicon. The Peierls stress (PS) obtained from the two models are in quantitative agreement ({approx}0.3{mu}), when restoring forces obtained from first principles generalized stacking-fault energy surfaces are used in the PN model [B. Joos, Q. Ren, and M. S. Duesbery, Phys. Rev. B {bold 50}, 5890 (1994)]. The PS was found to be isotropic in the glide plane. Within the SWP modelmore » no evidence of dissociation in the shuffle dislocations is found but glide sets do separate into two partials.« less
GLIDES – Efficient Energy Storage from ORNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momen, Ayyoub M.; Abu-Heiba, Ahmad; Odukomaiya, Wale
2016-03-01
The research shown in this video features the GLIDES (Ground-Level Integrated Diverse Energy Storage) project, which has been under development at Oak Ridge National Laboratory (ORNL) since 2013. GLIDES can store energy via combined inputs of electricity and heat, and deliver dispatchable electricity. Supported by ORNL’s Laboratory Director’s Research and Development (LDRD) fund, this energy storage system is low-cost, and hybridizes compressed air and pumped-hydro approaches to allow for storage of intermittent renewable energy at high efficiency. A U.S. patent application for this novel energy storage concept has been submitted, and research findings suggest it has the potential to bemore » a flexible, low-cost, scalable, high-efficiency option for energy storage, especially useful in residential and commercial buildings.« less
Seasonal variation of seismic ambient noise level at King Sejong Station, Antarctica
NASA Astrophysics Data System (ADS)
Lee, W.; Sheen, D.; Seo, K.; Yun, S.
2009-12-01
The generation of the secondary- or double-frequency (DF) microseisms with dominant frequencies between 0.1 and 0.5 Hz has been explained by nonlinear second-order pressure perturbations on the ocean bottom due to the interference of two ocean waves of equal wavelengths traveling in opposite directions. Korea Polar Research Institute (KOPRI) has been operating a broadband seismic station (KSJ1) at King George Island (KGI), Antarctica, since 2001. Examining the ambient seismic noise level for the period from 2006 to 2008 at KSJ1, we found a significant seasonal variation in the frequency range 0.1-0.5 Hz. Correlation of the DF peaks with significant ocean wave height and peak wave period models indicates that the oceanic infragravity waves in the Drake Passage is a possible source to excite the DF microseisms at KGI. Location of King Sejong Station, Antarctica Seasonal variations of DF peak, significant wave height, and peak wave period
Study on Silicon Microstructure Processing Technology Based on Porous Silicon
NASA Astrophysics Data System (ADS)
Shang, Yingqi; Zhang, Linchao; Qi, Hong; Wu, Yalin; Zhang, Yan; Chen, Jing
2018-03-01
Aiming at the heterogeneity of micro - sealed cavity in silicon microstructure processing technology, the technique of preparing micro - sealed cavity of porous silicon is proposed. The effects of different solutions, different substrate doping concentrations, different current densities, and different etching times on the rate, porosity, thickness and morphology of the prepared porous silicon were studied. The porous silicon was prepared by different process parameters and the prepared porous silicon was tested and analyzed. For the test results, optimize the process parameters and experiments. The experimental results show that the porous silicon can be controlled by optimizing the parameters of the etching solution and the doping concentration of the substrate, and the preparation of porous silicon with different porosity can be realized by different doping concentration, so as to realize the preparation of silicon micro-sealed cavity, to solve the sensor sensitive micro-sealed cavity structure heterogeneous problem, greatly increasing the application of the sensor.
NASA Astrophysics Data System (ADS)
Zhang, C.; Yuan, H.; Zhang, N.; Xu, L. X.; Li, B.; Cheng, G. D.; Wang, Y.; Gui, Q.; Fang, J. C.
2017-12-01
Negatively charged nitrogen-vacancy (NV-) center ensembles in diamond have proved to have great potential for use in highly sensitive, small-package solid-state quantum sensors. One way to improve sensitivity is to produce a high-density NV- center ensemble on a large scale with a long coherence lifetime. In this work, the NV- center ensemble is prepared in type-Ib diamond using high energy electron irradiation and annealing, and the transverse relaxation time of the ensemble—T 2—was systematically investigated as a function of the irradiation electron dose and annealing time. Dynamical decoupling sequences were used to characterize T 2. To overcome the problem of low signal-to-noise ratio in T 2 measurement, a coupled strip lines waveguide was used to synchronously manipulate NV- centers along three directions to improve fluorescence signal contrast. Finally, NV- center ensembles with a high concentration of roughly 1015 mm-3 were manipulated within a ~10 µs coherence time. By applying a multi-coupled strip-lines waveguide to improve the effective volume of the diamond, a sub-femtotesla sensitivity for AC field magnetometry can be achieved. The long-coherence high-density large-scale NV- center ensemble in diamond means that types of room-temperature micro-sized solid-state quantum sensors with ultra-high sensitivity can be further developed in the near future.
ERIC Educational Resources Information Center
Schnitzler, Christophe; Seifert, Ludovic; Chollet, Didier
2012-01-01
We recently published an article on arm coordination and performance level in 400-m front-crawl swimming in Research Quarterly for Exercise and Sport (Schnitzler, Seifert, & Chollet, 2011). The index of coordination (IdC) was used to quantify interarm coordination. Our results showed that expert swimmers exhibited lower IdC than recreational…
Holden, Daniel; Socha, John J; Cardwell, Nicholas D; Vlachos, Pavlos P
2014-02-01
A prominent feature of gliding flight in snakes of the genus Chrysopelea is the unique cross-sectional shape of the body, which acts as the lifting surface in the absence of wings. When gliding, the flying snake Chrysopelea paradisi morphs its circular cross-section into a triangular shape by splaying its ribs and flattening its body in the dorsoventral axis, forming a geometry with fore-aft symmetry and a thick profile. Here, we aimed to understand the aerodynamic properties of the snake's cross-sectional shape to determine its contribution to gliding at low Reynolds numbers. We used a straight physical model in a water tunnel to isolate the effects of 2D shape, analogously to studying the profile of an airfoil of a more typical flyer. Force measurements and time-resolved (TR) digital particle image velocimetry (DPIV) were used to determine lift and drag coefficients, wake dynamics and vortex-shedding characteristics of the shape across a behaviorally relevant range of Reynolds numbers and angles of attack. The snake's cross-sectional shape produced a maximum lift coefficient of 1.9 and maximum lift-to-drag ratio of 2.7, maintained increases in lift up to 35 deg, and exhibited two distinctly different vortex-shedding modes. Within the measured Reynolds number regime (Re=3000-15,000), this geometry generated significantly larger maximum lift coefficients than many other shapes including bluff bodies, thick airfoils, symmetric airfoils and circular arc airfoils. In addition, the snake's shape exhibited a gentle stall region that maintained relatively high lift production even up to the highest angle of attack tested (60 deg). Overall, the cross-sectional geometry of the flying snake demonstrated robust aerodynamic behavior by maintaining significant lift production and near-maximum lift-to-drag ratios over a wide range of parameters. These aerodynamic characteristics help to explain how the snake can glide at steep angles and over a wide range of angles of attack, but more complex models that account for 3D effects and the dynamic movements of aerial undulation are required to fully understand the gliding performance of flying snakes.
Sengupta, Soma; Banerjee, Sarita; Sinha, Biswadip; Mukherjee, Biswajit
2016-04-01
Delivering diclofenac diethylamine transdermally by means of a hydrogel is an approach to reduce or avoid systemic toxicity of the drug while providing local action for a prolonged period. In the present investigation, a process was developed to produce nanosize particles (about 10 nm) of diclofenac diethylamine in situ during the development of hydrogel, using simple mixing technique. Hydrogel was developed with polyvinyl alcohol (PVA) (5.8% w/w) and carbopol 71G (1.5% w/w). The formulations were evaluated on the basis of field emission scanning electron microscopy, texture analysis, and the assessment of various physiochemical properties. Viscosity (163-165 cps for hydrogel containing microsize drug particles and 171-173 cps for hydrogel containing nanosize drug particles, respectively) and swelling index (varied between 0.62 and 0.68) data favor the hydrogels for satisfactory topical applications. The measured hardness of the different hydrogels was uniform indicating a uniform spreadability. Data of in vitro skin (cadaver) permeation for 10 h showed that the enhancement ratios of the flux of the formulation containing nanosize drug (without the permeation enhancer) were 9.72 and 1.30 compared to the formulation containing microsized drug and the marketed formulations, respectively. In vivo plasma level of the drug increased predominantly for the hydrogel containing nanosize drug-clusters. The study depicts a simple technique for preparing hydrogel containing nanosize diclofenac diethylamine particles in situ, which can be commercially viable. The study also shows the advantage of the experimental transdermal hydrogel with nanosize drug particles over the hydrogel with microsize drug particles.
Effects of serum on cytotoxicity of nano- and micro-sized ZnO particles
NASA Astrophysics Data System (ADS)
Hsiao, I.-Lun; Huang, Yuh-Jeen
2013-09-01
Although an increasing number of in vitro studies are being published regarding the cytotoxicity of nanomaterials, the components of the media for toxicity assays have often varied according to the needs of the scientists. Our aim for this study was to evaluate the influence of serum—in this case, fetal bovine serum—in a cell culture medium on the toxicity of nano-sized (50-70 nm) and micro-sized (<1 μm) ZnO on human lung epithelial cells (A549). The nano- and micro-sized ZnO both exhibited their highest toxicity when exposed to serum-free media, in contrast to exposure in media containing 5 or 10 % serum. This mainly comes not only from the fact that ZnO particles in the serum-free media have a higher dosage-per-cell ratio, which results from large aggregates of particles, rapid sedimentation, absence of protein protection, and lower cell growth rate, but also that extracellular Zn2+ release contributes to cytotoxicity. Although more extracellular Zn2+ release was observed in serum-containing media, it did not contribute to nano-ZnO cytotoxicity. Furthermore, non-dissolved particles underwent size-dependent particle agglomeration, resulting in size-dependent toxicity in both serum-containing and serum-free media. A low correlation between cytotoxicity and inflammation endpoints in the serum-free medium suggested that some signaling pathways were changed or induced. Since cell growth, transcription behavior for protein production, and physicochemical properties of ZnO particles all were altered in serum-free media, we recommend the use of a serum-containing medium when evaluating the cytotoxicity of NPs.
Characteristics of seismic noises excited from three typhoons in the western Pacific
NASA Astrophysics Data System (ADS)
Park, S.; Choi, E.; Hong, T. K.
2017-12-01
Typhoons play an important role in the atmospheric circulation. Strong winds from typhoons excite ocean waves that accompany seismic noises. The primary and double frequency microseisms are dominant in frequencies of 0.05-0.1 Hz and 0.1-0.4 Hz. We investigate the characteristics of seismic noises from three typhoons that include Son-tinh in October 2012, Bopha in November 2012, and Soulik in July 2013. The peak wind speeds were 148-184 km/h, and the central atmospheric pressures reached 925-955 hPa. The typhoons passed through the western Pacific to South China Sea. We analyzed the temporal changes in spectral amplitudes of seismic noises during typhoon periods. The amplitude of seismic noises increases with decreasing distance between typhoon and seismic station. We observe large spectral amplitudes in frequencies of 0.1-0.4 Hz, which corresponds to the dominant frequencies of the double frequency microseism. The seismic energy in the frequency band of the primary frequency microseism was relatively weak. The seismic-noise amplitudes displays high correlation with the equivalent pressures on ocean bottom from Wave Watch III model. The observation suggests that the seismic noises may be originated from the ocean waves. The dominant frequency of seismic noises generally increases after passage across the stations due to the dispersion of ocean waves. Also, the dominant frequencies of seismic noises from the typhoons in the South China Sea appear to be higher than those from the typhoons in the Pacific. This feature may allow us to identify the origin of seismic noises and the nature of typhoons.
NASA Technical Reports Server (NTRS)
Jewel, Joseph W., Jr.; Whitten, James B.
1960-01-01
An investigation has been conducted to determine the problems involved in an emergency method of guiding a gliding vehicle from high altitudes to a high key position (initial position) above a landing field. A jet airplane in a simulated flameout condition, conventional ground-tracking radar, and a scaled wire for guidance programming on the radar plotting board were used in the tests. Starting test altitudes varied from 30,000 feet to 46,500 feet, and starting positions ranged 8.4 to 67 nautical miles from the high key. Specified altitudes of the high key were 12,000, 10,000 or 4,000 feet. Lift-drag ratios of the aircraft of either 17, 16, or 6 were held constant during any given flight; however, for a few flights the lift-drag ratio was varied from 11 to 6. Indicated airspeeds were held constant at either 160 or 250 knots. Results from these tests indicate that a gliding vehicle having a lift-drag ratio of 16 and an indicated approach speed of 160 knots can be guided to within 800 feet vertically and 2,400 feet laterally of a high key position. When the lift-drag ratio of the vehicle is reduced to 6 and the indicated approach speed is raised to 250 knots, the radar controller was able to guide the vehicle to within 2,400 feet vertically and au feet laterally of the high key. It was also found that radar stations which give only azimuth-distance information could control the glide path of a gliding vehicle as well as stations that receive azimuth-distance-altitude information, provided that altitude information is supplied by the pilot.
Topçuoğlu, Hüseyin Sinan; Düzgün, Salih; Akpek, Firdevs; Topçuoğlu, Gamze
2016-11-01
This study evaluated the effect of creating a glide path and apical preparation size on the incidence of apical cracks during canal preparation in mandibular molar teeth with curved canals. One hundred and forty extracted teeth were used. The teeth were randomly assigned to one control group or six experimental groups (n = 20 per group) for canal preparation. No preparation was performed on teeth in the control group. In three of the six experimental groups, a glide path was not created; a glide path was created on the curved mesial canals of all teeth in the remaining three experimental groups. All teeth in experimental groups were then instrumented with the following systems: Reciproc, WaveOne (WO), and ProTaper Next (PTN). Digital images of the apical root surfaces of these teeth were recorded before preparation, after instrumentation with size 25 files, and after instrumentation with size 40 files. The images were then inspected for the presence of any new apical cracks and propagation. There was no significant difference between the experimental groups during canal preparation using size 25 files (p > 0.05). Reciproc and WO caused more new apical cracks than did PTN during canal preparation using size 40 files (p < 0.05). However, canal preparation using size 40 files did not cause propagation of existing cracks (p > 0.05). Performing a glide path prior to canal preparation did not change the incidence of apical crack during preparation. Additionally, increasing apical preparation size may increase the incidence of apical crack during canal preparation. SCANNING 38:585-590, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
Lupton, Emily J; Roth, Alison; Patrapuvich, Rapatbhorn; Maher, Steve P; Singh, Naresh; Sattabongkot, Jetsumon; Adams, John H
2015-04-01
The pre-erythrocytic stages of Plasmodium vivax and Plasmodium falciparum remain challenging for experimental research in part due to limited access to sporozoites. An important factor limiting availability is the laboratory support required for producing infected mosquitoes and the ephemeral nature of isolated extracellular sporozoites. This study was undertaken to investigate methods to improve the availability of this limited resource by extending the longevity of the extracellular sporozoites after mosquito dissection. Our goal in this study was to determine whether buffer conditions more closely mimicking the insect microenvironment could prolong longevity of ex vivo P. vivax and P. falciparum sporozoites. The study compared the current standard dissection buffer RPMI1640 to Hank's Balanced Salt Solution with 1g/L glucose (HBSS-1) or 2g/L glucose (HBSS-2) and Grace's Insect Medium for ability to extend longevity of ex vivo P. vivax and P. falciparum sporozoites. The effect of each buffer on sporozoite viability was evaluated by measuring sporozoite gliding motility at 0, 4, 8, and 24h post-dissection from mosquito salivary glands. Comparisons of mean gliding percentages of ex vivo sporozoites in the different buffers and time points found that RPMI and Grace's both showed strong gliding at 0h. In contrast, by 4h post-dissection sporozoites in RPMI consistently had the lowest gliding activity, whereas sporozoites in Grace's had significantly more gliding compared to all other buffers at almost all time points. Our results indicate that P. vivax and P. falciparum sporozoites maintained in insect media rather than the standard dissection buffer RPMI and HBSS retain viability better over time. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Postoperative pain after manual and mechanical glide path: a randomized clinical trial.
Pasqualini, Damiano; Mollo, Livio; Scotti, Nicola; Cantatore, Giuseppe; Castellucci, Arnaldo; Migliaretti, Giuseppe; Berutti, Elio
2012-01-01
This prospective randomized clinical trial evaluated the incidence of postoperative pain after glide path performed with PathFile (PF) (Dentsply Maillefer, Ballaigues, Switzerland) versus stainless-steel K-file (KF). In 149 subjects, the mechanical glide path was performed with nickel-titanium (NiTi) rotary PF; in 146 subjects, the manual glide path was performed with stainless-steel KFs. Postoperative pain, analgesics consumption, and the number of days to complete pain resolution were evaluated in the following 7 days. An analysis of variance model for repeated measures was used to compare the variation of pain-scale values (P < .05). The Student's t test for continuous variables normally distributed, the nonparametric Mann-Whitney U test for the nonnormally distributed variables, and the chi-square test for dichotomous variables were used (P < .05). Despite homogeneous baseline conditions at diagnosis, tooth type, pain prevalence, and scores, the postoperative pain prevalence curves in PF group evidenced a more favorable trend in terms of time to pain resolution compared with the KF group (P = .004). The difference was also evident in the model adjusted for analgesics consumption in both groups (P = .012). The mean analgesics intake per subject was significantly higher in the KF group (3.7 ± 2.2) compared with the PF group (2 ± 1.7) (P < .001). Mean pain stop values were also significantly higher in the KF group (2.7) compared with the PF group (1.7) (P = .001). The glide path with NiTi Rotary PF leads to less postoperative pain and faster symptom resolution. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
de Carvalho, Guilherme Moreira; Sponchiado Junior, Emílio Carlos; Garrido, Angela Delfina Bittencourt; Lia, Raphael Carlos Comelli; Garcia, Lucas da Fonseca Roberti; Marques, André Augusto Franco
2015-12-01
The aim of this study was to evaluate the apical transportation, the centering ability, and the cleaning effectiveness of a reciprocating single-file system associated to different glide path techniques. The mesial root canals of 52 mandibular molars were randomly distributed into 4 groups (n = 13) according to the different glide path techniques used before biomechanical preparation with Reciproc System (RS): KF/RS (sizes 10 and 15 K-files), NGP/RS (no glide path, only reciprocating system), PF/RS (sizes 13, 16, and 19 PathFile instruments), and NP (no preparation). Cone-beam computed tomography analysis was performed before and after instrumentation for apical third images acquisition. Apical transportation and its direction were evaluated by using the formula D = (X1 - X2) - (Y1 - Y2), and the centering ability was analyzed by the formula CC = (X1 - X2/Y1 - Y2 or Y1 - Y2/X1 - X2). The samples were submitted to histologic processing and analyzed under a digital microscope for debris quantification. The values were statistically analyzed (Kruskal-Wallis, the Dunn multiple comparisons test, P < .05). All groups had similar apical transportation values, with no significant difference among them (P > .05). Groups had a tendency toward transportation in the mesial direction. No technique had perfect centering ability (=1.0), with no significant difference among them. KF/RS had larger amount of debris, with statistically significant difference in comparison with NGP/RS (P > .05). The different glide path techniques promoted minimal apical transportation, and the reciprocating single-file system tested remained relatively centralized within the root canal. Also, the different techniques interfered in the cleaning effectiveness of the reciprocating system. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Biomechanical measures of knee joint mobilization.
Silvernail, Jason L; Gill, Norman W; Teyhen, Deydre S; Allison, Stephen C
2011-08-01
The purpose of this study was to quantify the biomechanical properties of specific manual therapy techniques in patients with symptomatic knee osteoarthritis. Twenty subjects (7 female/13 male, age 54±8 years, ht 1·7±0·1 m, wt 94·2±21·8 kg) participated in this study. One physical therapist delivered joint mobilizations (tibiofemoral extension and flexion; patellofemoral medial-lateral and inferior glide) at two grades (Maitland's grade III and grade IV). A capacitance-based pressure mat was used to capture biomechanical characteristics of force and frequency during 2 trials of 15 second mobilizations. Statistical analysis included intraclass correlation coefficient (ICC(3,1)) for intrarater reliability and 2×4 repeated measures analyses of variance and post-hoc comparison tests. Force (Newtons) measurements (mean, max.) for grade III were: extension 45, 74; flexion 39, 61; medial-lateral glide 20, 34; inferior glide 16, 27. Force (Newtons) measurements (mean, max.) for grade IV were: extension 57, 76; flexion 47, 68; medial-lateral glide 23, 36; inferior glide 18, 35. Frequency (Hz) measurements were between 0·9 and 1·2 for grade III, and between 2·1 and 2·4 for grade IV. ICCs were above 0·90 for almost all measures. Maximum force measures were between the ranges reported for cervical and lumbar mobilization at similar grades. Mean force measures were greater at grade IV than III. Oscillation frequency and peak-to-peak amplitude measures were consistent with the grade performed (i.e. greater frequency at grade IV, greater peak-to-peak amplitude at grade III). Intrarater reliability for force, peak-to-peak amplitude and oscillation frequency for knee joint mobilizations was excellent.
Biomechanical measures of knee joint mobilization
Silvernail, Jason L; Gill, Norman W; Teyhen, Deydre S; Allison, Stephen C
2011-01-01
Background and purpose The purpose of this study was to quantify the biomechanical properties of specific manual therapy techniques in patients with symptomatic knee osteoarthritis. Methods Twenty subjects (7 female/13 male, age 54±8 years, ht 1·7±0·1 m, wt 94·2±21·8 kg) participated in this study. One physical therapist delivered joint mobilizations (tibiofemoral extension and flexion; patellofemoral medial–lateral and inferior glide) at two grades (Maitland’s grade III and grade IV). A capacitance-based pressure mat was used to capture biomechanical characteristics of force and frequency during 2 trials of 15 second mobilizations. Statistical analysis included intraclass correlation coefficient (ICC3,1) for intrarater reliability and 2×4 repeated measures analyses of variance and post-hoc comparison tests. Results Force (Newtons) measurements (mean, max.) for grade III were: extension 45, 74; flexion 39, 61; medial–lateral glide 20, 34; inferior glide 16, 27. Force (Newtons) measurements (mean, max.) for grade IV were: extension 57, 76; flexion 47, 68; medial–lateral glide 23, 36; inferior glide 18, 35. Frequency (Hz) measurements were between 0·9 and 1·2 for grade III, and between 2·1 and 2·4 for grade IV. ICCs were above 0·90 for almost all measures. Discussion and conclusion Maximum force measures were between the ranges reported for cervical and lumbar mobilization at similar grades. Mean force measures were greater at grade IV than III. Oscillation frequency and peak-to-peak amplitude measures were consistent with the grade performed (i.e. greater frequency at grade IV, greater peak-to-peak amplitude at grade III). Intrarater reliability for force, peak-to-peak amplitude and oscillation frequency for knee joint mobilizations was excellent. PMID:22851879
Critical Motor Number for Fractional Steps of Cytoskeletal Filaments in Gliding Assays
Li, Xin; Lipowsky, Reinhard; Kierfeld, Jan
2012-01-01
In gliding assays, filaments are pulled by molecular motors that are immobilized on a solid surface. By varying the motor density on the surface, one can control the number of motors that pull simultaneously on a single filament. Here, such gliding assays are studied theoretically using Brownian (or Langevin) dynamics simulations and taking the local force balance between motors and filaments as well as the force-dependent velocity of the motors into account. We focus on the filament stepping dynamics and investigate how single motor properties such as stalk elasticity and step size determine the presence or absence of fractional steps of the filaments. We show that each gliding assay can be characterized by a critical motor number, . Because of thermal fluctuations, fractional filament steps are only detectable as long as . The corresponding fractional filament step size is where is the step size of a single motor. We first apply our computational approach to microtubules pulled by kinesin-1 motors. For elastic motor stalks that behave as linear springs with a zero rest length, the critical motor number is found to be , and the corresponding distributions of the filament step sizes are in good agreement with the available experimental data. In general, the critical motor number depends on the elastic stalk properties and is reduced to for linear springs with a nonzero rest length. Furthermore, is shown to depend quadratically on the motor step size . Therefore, gliding assays consisting of actin filaments and myosin-V are predicted to exhibit fractional filament steps up to motor number . Finally, we show that fractional filament steps are also detectable for a fixed average motor number as determined by the surface density (or coverage) of the motors on the substrate surface. PMID:22927953
Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight
2017-01-01
Slotted wing tips of birds are commonly considered an adaptation to improve soaring performance, despite their presence in species that neither soar nor glide. We used particle image velocimetry to measure the airflow around the slotted wing tip of a jackdaw (Corvus monedula) as well as in its wake during unrestrained flight in a wind tunnel. The separated primary feathers produce individual wakes, confirming a multi-slotted function, in both gliding and flapping flight. The resulting multi-cored wingtip vortex represents a spreading of vorticity, which has previously been suggested as indicative of increased aerodynamic efficiency. Considering benefits of the slotted wing tips that are specific to flapping flight combined with the wide phylogenetic occurrence of this configuration, we propose the hypothesis that slotted wings evolved initially to improve performance in powered flight. PMID:28539482
NASA Astrophysics Data System (ADS)
Sugioka, Koji; Hanada, Yasutaka; Kawano, Hiroyuki; Ishikawa, Ikuko S.; Miyawaki, Atsushi; Midorikawa, Katsumi
2010-10-01
We demonstrate to fabricate microfluidic chips integrated with some functional elements such as optical attenuators and optical waveguides by femtosecond (fs) laser direct writing for mechanism study of gliding movement of Phormidium to a seedling root. Femtosecond laser irradiation followed by annealing and wet etching in dilute hydrofluoric (HF) acid solution resulted in formation of three-dimensional (3D) hollow microstructures embedded in a photosensitive glass. The embedded microfludic structures enabled us to easily and efficiently observe Phormidium gliding to the seedling root, which accelerates growth of the vegetable seedling. In addition, integration of optical attenuators and optical waveguides into the microfluidic structures in the microchip clarified the mechanism of the gliding movement of Phormidium. Such microchips, referred to as nanoaquariums, realized the highly efficient and functional observation and analysis of various microorganisms.
Mimicking glide symmetry dispersion with coupled slot metasurfaces
NASA Astrophysics Data System (ADS)
Camacho, Miguel; Mitchell-Thomas, Rhiannon C.; Hibbins, Alastair P.; Sambles, J. Roy; Quevedo-Teruel, Oscar
2017-09-01
In this letter, we demonstrate that the dispersion properties associated with glide symmetry can be achieved in systems that only possess reflection symmetry by balancing the influence of two sublattices. We apply this approach to a pair of coupled slots cut into an infinite perfectly conducting plane. Each slot is notched on either edge, with the complete two-slot system having only mirror symmetry. By modifying the relative size of the notches on either side of the slots, we show that a linear dispersion relation with a degeneracy with non-zero group velocity at the Brillouin zone boundary can be achieved. These properties, until now, only found in systems with glide symmetry are numerically and experimentally validated. We also show that these results can be used for the design of ultra-wideband one-dimensional leaky wave antennas in coplanar waveguide technology.
Jarvis, Steve; Harris, Don
2010-02-01
Low-hours solo glider pilots have a high risk of accidents compared to more experienced pilots. Numerous taxonomies for causal accident analysis have been produced for powered aviation but none of these is suitable for gliding, so a new taxonomy was required. A human factors taxonomy specifically for glider operations was developed and used to analyse all UK gliding accidents from 2002 to 2006 for their overall causes as well as factors specific to low hours pilots. Fifty-nine categories of pilot-related accident causation emerged, which were formed into progressively larger categories until four overall human factors groups were arrived at: 'judgement'; 'handling'; 'strategy'; 'attention'. 'Handling' accounted for a significantly higher proportion of injuries than other categories. Inexperienced pilots had considerably more accidents in all categories except 'strategy'. Approach control (path judgement, airbrake and speed handling) as well as landing flare misjudgement were chiefly responsible for the high accident rate in early solo glider pilots. Statement of Relevance: This paper uses extant accident data to produce a taxonomy of underlying human factors causes to analyse gliding accidents and identify the specific causes associated with low hours pilots. From this specific, well-targeted remedial measures can be identified.
Transposon Insertions of magellan-4 That Impair Social Gliding Motility in Myxococcus xanthus
Youderian, Philip; Hartzell, Patricia L.
2006-01-01
Myxococcus xanthus has two different mechanisms of motility, adventurous (A) motility, which permits individual cells to glide over solid surfaces, and social (S) motility, which permits groups of cells to glide. To identify the genes involved in S-gliding motility, we mutagenized a ΔaglU (A−) strain with the defective transposon, magellan-4, and screened for S− mutants that form nonmotile colonies. Sequence analysis of the sites of the magellan-4 insertions in these mutants and the alignment of these sites with the M. xanthus genome sequence show that two-thirds of these insertions lie within 27 of the 37 nonessential genes known to be required for social motility, including those necessary for the biogenesis of type IV pili, exopolysaccharide, and lipopolysaccharide. The remaining insertions also identify 31 new, nonessential genes predicted to encode both structural and regulatory determinants of S motility. These include three tetratricopeptide repeat proteins, several regulators of transcription that may control the expression of genes involved in pilus extension and retraction, and additional enzymes involved in polysaccharide metabolism. Three insertions that abolish S motility lie within genes predicted to encode glycolytic enzymes, suggesting that the signal for pilus retraction may be a simple product of exopolysaccharide catabolism. PMID:16299386
Martin, Barbara A.; Saiki, Michael K.; Fong, Darren
2009-01-01
This study was conducted to better understand the habitat requirements and environmental limiting factors of Syncaris pacifica, the California freshwater shrimp. This federally listed endangered species is native to perennial lowland streams in a few watersheds in northern California. Field sampling occurred in Lagunitas and Olema creeks at seasonal intervals from February 2003 to November 2004. Ten glides, five pools, and five riffles served as fixed sampling reaches, with eight glides, four pools, and four riffles located in Lagunitas Creek and the remainder in Olema Creek. A total of 1773 S. pacifica was counted during this study, all of which were captured along vegetated banks in Lagunitas Creek. Syncaris pacifica was most numerous in glides (64), then in pools (31), and lastly in riffles (5). According to logistic regression analysis, S. pacifica was mostly associated with submerged portions of streambank vegetation (especially overhanging vegetation such as ferns and blackberries, emergent vegetation such as sedge and brooklime, and fine roots associated with water hemlock, willow, sedge, and blackberries) along with low water current velocity and a sandy substrate. These seemingly favorable habitat conditions for S. pacifica were present in glides and pools in Lagunitas Creek, but not in Olema Creek. ?? 2009 The Crustacean Society.
Ondry, Justin C; Hauwiller, Matthew R; Alivisatos, A Paul
2018-04-24
Using in situ high-resolution TEM, we study the structure and dynamics of well-defined edge dislocations in imperfectly attached PbTe nanocrystals. We identify that attachment of PbTe nanocrystals on both {100} and {110} facets gives rise to b = a/2⟨110⟩ edge dislocations. Based on the Burgers vector of individual dislocations, we can identify the glide plane of the dislocations. We observe that defects in particles attached on {100} facets have glide planes that quickly intersect the surface, and HRTEM movies show that the defects follow the glide plane to the surface. For {110} attached particles, the glide plane is collinear with the attachment direction, which does not provide an easy path for the dislocation to reach the surface. Indeed, HRTEM movies of dislocations for {110} attached particles show that defect removal is much slower. Further, we observe conversion from pure edge dislocations in imperfectly attached particles to dislocations with mixed edge and screw character, which has important implications for crystal growth. Finally, we observe that dislocations initially closer to the surface have a higher speed of removal, consistent with the strong dislocation free surface attractive force. Our results provide important design rules for defect-free attachment of preformed nanocrystals into epitaxial assemblies.
The influence of linguistic experience on pitch perception in speech and nonspeech sounds
NASA Astrophysics Data System (ADS)
Bent, Tessa; Bradlow, Ann R.; Wright, Beverly A.
2003-04-01
How does native language experience with a tone or nontone language influence pitch perception? To address this question 12 English and 13 Mandarin listeners participated in an experiment involving three tasks: (1) Mandarin tone identification-a clearly linguistic task where a strong effect of language background was expected, (2) pure-tone and pulse-train frequency discrimination-a clearly nonlinguistic auditory discrimination task where no effect of language background was expected, and (3) pitch glide identification-a nonlinguistic auditory categorization task where some effect of language background was expected. As anticipated, Mandarin listeners identified Mandarin tones significantly more accurately than English listeners (Task 1) and the two groups' pure-tone and pulse-train frequency discrimination thresholds did not differ (Task 2). For pitch glide identification (Task 3), Mandarin listeners made more identification errors: in comparison with English listeners, Mandarin listeners more frequently misidentified falling pitch glides as level, and more often misidentified level pitch ``glides'' with relatively high frequencies as rising and those with relatively low frequencies as falling. Thus, it appears that the effect of long-term linguistic experience can extend beyond lexical tone category identification in syllables to pitch class identification in certain nonspeech sounds. [Work supported by Sigma Xi and NIH.
NASA Technical Reports Server (NTRS)
Decker, William A.; Bray, Richard S.; Simmons, Rickey C.; Tucker, George E.
1993-01-01
A piloted simulation experiment was conducted using the NASA Ames Research Center Vertical Motion Simulator to evaluate two cockpit display formats designed for manual control on steep instrument approaches for a civil transport tiltrotor aircraft. The first display included a four-cue (pitch, roll, power lever position, and nacelle angle movement prompt) flight director. The second display format provided instantaneous flight path angle information together with other symbols for terminal area guidance. Pilots evaluated these display formats for an instrument approach task which required a level flight conversion from airplane-mode flight to helicopter-mode flight while decelerating to the nominal approach airspeed. Pilots tracked glide slopes of 6, 9, 15 and 25 degrees, terminating in a hover for a vertical landing on a 150 feet square vertipad. Approaches were conducted with low visibility and ceilings and with crosswinds and turbulence, with all aircraft systems functioning normally and were carried through to a landing. Desired approach and tracking performance was achieved with generally satisfactory handling qualities using either display format on glide slopes up through 15 degrees. Evaluations with both display formats for a 25 degree glide slope revealed serious problems with glide slope tracking at low airspeeds in crosswinds and the loss of the intended landing spot from the cockpit field of view.
Actin Filament Polymerization Regulates Gliding Motility by Apicomplexan ParasitesV⃞
Wetzel, D.M.; Håkansson, S.; Hu, K.; Roos, D.; Sibley, L.D.
2003-01-01
Host cell entry by Toxoplasma gondii depends critically on actin filaments in the parasite, yet paradoxically, its actin is almost exclusively monomeric. In contrast to the absence of stable filaments in conventional samples, rapid-freeze electron microscopy revealed that actin filaments were formed beneath the plasma membrane of gliding parasites. To investigate the role of actin filaments in motility, we treated parasites with the filament-stabilizing drug jasplakinolide (JAS) and monitored the distribution of actin in live and fixed cells using yellow fluorescent protein (YFP)-actin. JAS treatment caused YFP-actin to redistribute to the apical and posterior ends, where filaments formed a spiral pattern subtending the plasma membrane. Although previous studies have suggested that JAS induces rigor, videomicroscopy demonstrated that JAS treatment increased the rate of parasite gliding by approximately threefold, indicating that filaments are rate limiting for motility. However, JAS also frequently reversed the normal direction of motility, disrupting forward migration and cell entry. Consistent with this alteration, subcortical filaments in JAS-treated parasites occurred in tangled plaques as opposed to the straight, roughly parallel orientation observed in control cells. These studies reveal that precisely controlled polymerization of actin filaments imparts the correct timing, duration, and directionality of gliding motility in the Apicomplexa. PMID:12589042
Rejman, Marek; Bilewski, Marek; Szczepan, Stefan; Klarowicz, Andrzej; Rudnik, Daria; Maćkała, Krzysztof
2017-01-01
The aim of this study was to analyse changes taking place within selected kinematic parameters of the swimming start, after completing a six-week plyometric training, assuming that the take-off power training improves its effectiveness. The experiment included nine male swimmers. In the pre-test the swimmers performed three starts focusing on the best performance. Next, a plyometric training programme, adapted from sprint running, was introduced in order to increase a power of the lower extremities. The programme entailed 75 minute sessions conducted twice a week. Afterwards, a post-test was performed, analogous to the pre-test. Spatio-temporal structure data of the swimming start were gathered from video recordings of the swimmer above and under water. Impulses triggered by the plyometric training contributed to a shorter start time (the main measure of start effectiveness) and glide time as well as increasing average take-off, flight and glide velocities including take-off, entry and glide instantaneous velocities. The glide angle decreased. The changes in selected parameters of the swimming start and its confirmed diagnostic values, showed the areas to be susceptible to plyometric training and suggested that applied plyometric training programme aimed at increasing take-off power enhances the effectiveness of the swimming start.
Plan demographics, participants' saving behavior, and target-date fund investments.
Park, Youngkyun
2009-05-01
This analysis explores (1) whether plan demographic characteristics would affect individual participant contribution rates and target-date fund investments and (2) equity glide paths for participants in relation to plan demographics by considering target replacement income and its success rate. PLAN DEMOGRAPHIC CHARACTERISTICS IN PARTICIPANT CONTRIBUTION RATES: This study finds empirical evidence that 401(k) plan participants' contribution rates differ by plan demographics based on participants' income and/or tenure. In particular, participants in 401(k) plans dominated by those with low income and short tenure tend to contribute less than those in plans dominated by participants with high income and long tenure. Future research will explore how participant contribution behavior may also be influenced by incentives provided by employers through matching formulae. PLAN DEMOGRAPHIC CHARACTERISTICS IN TARGET-DATE FUND INVESTMENTS: The study also finds empirical evidence that participants' investments in target-date funds with different equity allocations differ by plan demographics based on participants' income and/or tenure. In particular, target-date fund users with 90 percent or more of their account balances in target-date funds who are in 401(k) plans dominated by low-income and short-tenure participants tend to hold target-date funds with lower equity allocations, compared with their counterparts in plans dominated by high-income and long-tenure participants. Future research will focus on the extent to which these characteristics might influence the selection of target-date funds by plan sponsors. EQUITY GLIDE PATHS: Several stylized equity glide paths as well as alternative asset allocations are compared for participants at various starting ages to demonstrate the interaction between plan demographics and equity glide paths/asset allocations in terms of success rates in meeting various replacement income targets. The equity glide path/asset allocation providing the highest success rate at a particular replacement rate target will vary with the assumed starting date of the participant (see Figure 17). Given the highly stylized nature of the simulations in this Issue Brief it is important to note that the results are not intended to provide a single equity glide path solution in relation to plan demographics. Instead, they serve as a framework to be considered when plan sponsors make a selection concerning which target-date funds to include in their plan. IMPORTANCE OF PARTICIPANT CONTRIBUTION RATES: This analysis finds that although target-date funds with different equity glide paths affect the retirement income replacement success rate, participant contribution rates corresponding to different plan demographic characteristics have a stronger impact. AUTO FEATURES OF THE PPA: This Issue Brief provides a stylized study using observed contribution rates as of the 2007 plan year. However, with the passage of the Pension Protection Act of 2006 and its likely impact on plan design in the future (increased utilization of automatic enrollment and automatic contribution escalations), it is likely that contribution rates among the participants may become more homogenous. In such a scenario, it may be more likely that a single equity glide path would meet a wide range of demographic profiles.
NASA Astrophysics Data System (ADS)
Schreiber, J.; Leipner, H. S.
1988-11-01
The methods of in situ cathodoluminescence and scanning electron microscopy were used in a study of stimulated dislocation glide. Dislocations generated by deliberate surface damage were found to be highly mobile when excited above a certain threshold. A study was made of the dependence of the glide velocity on the excitation rate and the first quantitative results on low-temperature dislocation motion are reported.
STS-30 Atlantis, OV-104, glides toward a landing at EAFB, California
1989-05-08
STS030-S-126 (8 May 1989) --- The space shuttle Atlantis, as seen in a low angle view on its glide in from Earth orbit, heads toward a concrete runway at Edwards Air Force Base in California. Onboard were astronauts David M. Walker, STS-30 commander; Ronald J. Grabe, pilot; and astronauts Norman E. Thagard, Mary L. Cleave and Mark C. Lee ? all mission specialists. Photo credit: NASA
STS-30 Atlantis, OV-104, glides toward a landing at EAFB, California
1989-05-08
STS030-S-127 (8 May 1989) --- The space shuttle Atlantis, as seen in a low angle view on its glide in from Earth orbit, heads toward a concrete runway at Edwards Air Force Base in California. Onboard were astronauts David M. Walker, STS-30 commander; Ronald J. Grabe, pilot; and astronauts Norman E. Thagard, Mary L. Cleave and Mark C. Lee ? all mission specialists. Photo credit: NASA
Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight.
KleinHeerenbrink, Marco; Johansson, L Christoffer; Hedenström, Anders
2017-05-01
Slotted wing tips of birds are commonly considered an adaptation to improve soaring performance, despite their presence in species that neither soar nor glide. We used particle image velocimetry to measure the airflow around the slotted wing tip of a jackdaw ( Corvus monedula ) as well as in its wake during unrestrained flight in a wind tunnel. The separated primary feathers produce individual wakes, confirming a multi-slotted function, in both gliding and flapping flight. The resulting multi-cored wingtip vortex represents a spreading of vorticity, which has previously been suggested as indicative of increased aerodynamic efficiency. Considering benefits of the slotted wing tips that are specific to flapping flight combined with the wide phylogenetic occurrence of this configuration, we propose the hypothesis that slotted wings evolved initially to improve performance in powered flight. © 2017 The Author(s).
Zhang, Sheng; Sunami, Yuta; Hashimoto, Hiromu
2018-04-10
Dragonfly has excellent flight performance and maneuverability due to the complex vein structure of wing. In this research, nodus as an important structural element of the dragonfly wing is investigated through an experimental visualization approach. Three vein structures were fabricated as, open-nodus structure, closed-nodus structure (with a flex-limiter) and rigid wing. The samples were conducted in a wind tunnel with a high speed camera to visualize the deformation of wing structure in order to study the function of nodus structured wing in gliding flight. According to the experimental results, nodus has a great influence on the flexibility of the wing structure. Moreover, the closed-nodus wing (with a flex-limiter) enables the vein structure to be flexible without losing the strength and rigidity of the joint. These findings enhance the knowledge of insect-inspired nodus structured wing and facilitate the application of Micro Air Vehicle (MAV) in gliding flight.
Investigation of Aerodynamic Capabilities of Flying Fish in Gliding Flight
NASA Astrophysics Data System (ADS)
Park, H.; Choi, H.
In the present study, we experimentally investigate the aerodynamic capabilities of flying fish. We consider four different flying fish models, which are darkedged-wing flying fishes stuffed in actual gliding posture. Some morphological parameters of flying fish such as lateral dihedral angle of pectoral fins, incidence angles of pectoral and pelvic fins are considered to examine their effect on the aerodynamic performance. We directly measure the aerodynamic properties (lift, drag, and pitching moment) for different morphological parameters of flying fish models. For the present flying fish models, the maximum lift coefficient and lift-to-drag ratio are similar to those of medium-sized birds such as the vulture, nighthawk and petrel. The pectoral fins are found to enhance the lift-to-drag ratio and the longitudinal static stability of gliding flight. On the other hand, the lift coefficient and lift-to-drag ratio decrease with increasing lateral dihedral angle of pectoral fins.
Shear response of Σ3{112} twin boundaries in face-centered-cubic metals
NASA Astrophysics Data System (ADS)
Wang, J.; Misra, A.; Hirth, J. P.
2011-02-01
Molecular statics and dynamics simulations were used to study the mechanisms of sliding and migration of Σ3{112} incoherent twin boundaries (ITBs) under applied shear acting in the boundary in the face-centered-cubic (fcc) metals, Ag, Cu, Pd, and Al, of varying stacking fault energies. These studies revealed that (i) ITBs can dissociate into two phase boundaries (PBs), bounding the hexagonal 9R phase, that contain different arrays of partial dislocations; (ii) the separation distance between the two PBs scales inversely with increasing stacking fault energy; (iii) for fcc metals with low stacking fault energy, one of the two PBs migrates through the collective glide of partials, referred to as the phase-boundary-migration (PBM) mechanism; (iv) for metals with high stacking energy, ITBs experience a coupled motion (migration and sliding) through the glide of interface disconnections, referred to as the interface-disconnection-glide (IDG) mechanism.
Effects of Surface Passivation on Gliding Motility Assays
Maloney, Andy; Herskowitz, Lawrence J.; Koch, Steven J.
2011-01-01
In this study, we report differences in the observed gliding speed of microtubules dependent on the choice of bovine casein used as a surface passivator. We observed differences in both speed and support of microtubules in each of the assays. Whole casein, comprised of αs1, αs2, β, and κ casein, supported motility and averaged speeds of 966±7 nm/s. Alpha casein can be purchased as a combination of αs1 and αs2 and supported gliding motility and average speeds of 949±4 nm/s. Beta casein did not support motility very well and averaged speeds of 870±30 nm/s. Kappa casein supported motility very poorly and we were unable to obtain an average speed. Finally, we observed that mixing alpha, beta, and kappa casein with the proportions found in bovine whole casein supported motility and averaged speeds of 966±6 nm/s. PMID:21674032
Fatal gliding accidents in the United Kingdom: 1960-1980.
Cooke, J N; Balfour, A J; Underwood Ground, K E
1983-11-01
For many years, the Department of Aviation and Forensic Pathology of the RAF Institute of Pathology and Tropical Medicine has assisted in the medical investigation of fatal military and civil aircraft accidents, both in the U.K. and overseas. These included 33 glider accidents involving 39 deaths over the period 1960-1980. They do not include all the fatal gliding accidents in the U.K. because there is no mandatory obligation to call in the department, but probably represent over 50%. The Department is primarily interested in the nature of fatal injuries, the performance of safety equipment and the presence or absence of pre-existing medical factors which might have affected or caused the accident. It also makes recommendations intended to improve flight safety, and is often involved in the discussions between the British Gliding Association, the Civil Aviation Authority, and the other organizations involved.
Design criteria for flightpath and airspeed control for the approach and landing of STOL aircraft
NASA Technical Reports Server (NTRS)
Franklin, J. A.; Innis, R. C.; Hardy, G. H.; Stephenson, J. D.
1982-01-01
A flight research program was conducted to assess requirements for flightpath and airspeed control for glide-slope tracking during a precision approach and for flare control, particularly as applied to powered-lift, short takeoff and landing (STOL) aircraft. Ames Research Center's Augmentor Wing Research Aircraft was used to fly approaches on a 7.5 deg glide slope to landings on a 30 X 518 m (100 X 1700 ft) STOL runway. The dominant aircraft response characteristics determined were flightpath overshoot, flightpath-airspeed coupling, and initial flightpath response time. The significant contribution to control of the landing flare using pitch attitude was the short-term flightpath response. The limiting condition for initial flightpath response time for flare control with thrust was also identified. It is possible to define flying-qualities design criteria for glide-slope and flare control based on the aforementioned response characteristics.
Comparison of two head-up displays in simulated standard and noise abatement night visual approaches
NASA Technical Reports Server (NTRS)
Cronn, F.; Palmer, E. A., III
1975-01-01
Situation and command head-up displays were evaluated for both standard and two segment noise abatement night visual approaches in a fixed base simulation of a DC-8 transport aircraft. The situation display provided glide slope and pitch attitude information. The command display provided glide slope information and flight path commands to capture a 3 deg glide slope. Landing approaches were flown in both zero wind and wind shear conditions. For both standard and noise abatement approaches, the situation display provided greater glidepath accuracy in the initial phase of the landing approaches, whereas the command display was more effective in the final approach phase. Glidepath accuracy was greater for the standard approaches than for the noise abatement approaches in all phases of the landing approach. Most of the pilots preferred the command display and the standard approach. Substantial agreement was found between each pilot's judgment of his performance and his actual performance.
Method and device for landing aircraft dependent on runway occupancy time
NASA Technical Reports Server (NTRS)
Ghalebsaz Jeddi, Babak (Inventor)
2012-01-01
A technique for landing aircraft using an aircraft landing accident avoidance device is disclosed. The technique includes determining at least two probability distribution functions; determining a safe lower limit on a separation between a lead aircraft and a trail aircraft on a glide slope to the runway; determining a maximum sustainable safe attempt-to-land rate on the runway based on the safe lower limit and the probability distribution functions; directing the trail aircraft to enter the glide slope with a target separation from the lead aircraft corresponding to the maximum sustainable safe attempt-to-land rate; while the trail aircraft is in the glide slope, determining an actual separation between the lead aircraft and the trail aircraft; and directing the trail aircraft to execute a go-around maneuver if the actual separation approaches the safe lower limit. Probability distribution functions include runway occupancy time, and landing time interval and/or inter-arrival distance.
Analysis of microsize particulates
NASA Technical Reports Server (NTRS)
Blanchard, M. B.; Farlow, N. H.; Ferry, G. V.
1972-01-01
Unique methods for analyzing individual particles ranging in size from 0.01 to 1000 micrometers have been developed for investigation of nature of cosmic dust. Methods are applicable to particulate aerosols and contaminants characteristically encountered in studies of air pollution and in experiments designed to abate pollution.
Saratale, Rijuta Ganesh; Lee, Hee-Seok; Koo, Yong Eui; Saratale, Ganesh Dattatraya; Kim, Young Jun; Imm, Jee Young; Park, Yooheon
2018-04-01
The absorption kinetics of food ingredients such as nanoemulsified vitamin E and green tea microstructures were evaluated by the intestinal in situ single perfusion technique. Absorption rate, sub-acute oral toxicity and organ morphology in a rat model were examined. The intestinal in situ single perfusion technique and HPLC analysis were applied to investigate the absorption rate of selected materials by examining time-dependent changes in the serum levels of catechin and dl-α-tocopherol. The acute toxicity test and histopathological evaluation were applied to analyze the safety of microsized green tea and nanosized vitamin E in a rat model. Total serum dl-α-tocopherol levels significantly increased with nanosized vitamin E administration (P<0.05). Rats treated to nanosized vitamin E until 90min after administration showed significantly increased absorption rate of serum dl-α-tocopherol levels at each time point (10min interval) (P<0.001). Rats administered 2000mg/kg of nanosized vitamin E and microsized green tea did not show signs of acute toxicity or death after 14days of observation. In addition, macroscopic analysis showed that there were no changes in representative organ sections of rats following the oral administration of food-related nanoscale materials. We successfully demonstrated that using nanosized vitamin E increased absorption rate to a greater extent than normal food-related material, and these results occurs via safety analyses on food-related nanoscale materials for human consumption. These results could be useful for the design and development of novel nanoemulsified vitamin E and microsized green tea formulations that can overcome the problem of their bioavailability and improve their efficacy while still maintaining their essential therapeutic efficacies. Copyright © 2018 Elsevier Ltd. All rights reserved.
An investigation into a micro-sized droplet impinging on a surface with sharp wettability contrast
NASA Astrophysics Data System (ADS)
Lim, C. Y.; Lam, Y. C.
2014-10-01
An experimental investigation was conducted into a micro-sized droplet jetted onto a surface with sharp wettability contrast. The dynamics of micro-sized droplet impingement on a sharp wettability contrast surface, which is critical in inkjet printing technology, has not been investigated in the literature. Hydrophilic lines with line widths ranging from 27 to 53 µm, and contact angle ranging from 17° to 77°, were patterned on a hydrophobic surface with a contact angle of 107°. Water droplets with a diameter of 81 µm were impinged at various offset distances from the centre of the hydrophilic line. The evolution of the droplet upon impingement can be divided into three distinct phases, namely the kinematic phase, the translating phase where the droplet moves towards the centre of the hydrophilic line, and the conforming phase where the droplet spreads along the line. The key parameters affecting the conformability of the droplet to the hydrophilic line pattern are the ratio of the line width to the initial droplet diameter and the contact angle of the hydrophilic line. The droplet will only conform completely to the hydrophilic pattern if the line width is not overly small relative to the droplet and the contact angle of the hydrophilic line is sufficiently low. The impact offset distance does not affect the final shape and final location of the droplet, as long as part of the droplet touches the hydrophilic line upon impingement. This process has a significant impact on inkjet printing technology as high accuracy of inkjet droplet deposition and shape control can be achieved through wettability patterning.
Studying of welding aerosol using laser granulometry
NASA Astrophysics Data System (ADS)
Kirichenko, K. Y.; Gridasov, A. V.; Drozd, V. A.; Golokhvast, K. S.
2016-11-01
The paper presents results of a study of the size of the particles that arise during the welding process using laser granulometry method. It is shown that the welding aerosol - extremely dangerous for human and animal health and the source of nano- and micro-sized particles.
Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films
Chen, Yanan; Egan, Garth C.; Wan, Jiayu; Zhu, Shuze; Jacob, Rohit Jiji; Zhou, Wenbo; Dai, Jiaqi; Wang, Yanbin; Danner, Valencia A.; Yao, Yonggang; Fu, Kun; Wang, Yibo; Bao, Wenzhong; Li, Teng; Zachariah, Michael R.; Hu, Liangbing
2016-01-01
Nanoparticles hosted in conductive matrices are ubiquitous in electrochemical energy storage, catalysis and energetic devices. However, agglomeration and surface oxidation remain as two major challenges towards their ultimate utility, especially for highly reactive materials. Here we report uniformly distributed nanoparticles with diameters around 10 nm can be self-assembled within a reduced graphene oxide matrix in 10 ms. Microsized particles in reduced graphene oxide are Joule heated to high temperature (∼1,700 K) and rapidly quenched to preserve the resultant nano-architecture. A possible formation mechanism is that microsized particles melt under high temperature, are separated by defects in reduced graphene oxide and self-assemble into nanoparticles on cooling. The ultra-fast manufacturing approach can be applied to a wide range of materials, including aluminium, silicon, tin and so on. One unique application of this technique is the stabilization of aluminium nanoparticles in reduced graphene oxide film, which we demonstrate to have excellent performance as a switchable energetic material. PMID:27515900
GLIDE: a grid-based light-weight infrastructure for data-intensive environments
NASA Technical Reports Server (NTRS)
Mattmann, Chris A.; Malek, Sam; Beckman, Nels; Mikic-Rakic, Marija; Medvidovic, Nenad; Chrichton, Daniel J.
2005-01-01
The promise of the grid is that it will enable public access and sharing of immense amounts of computational and data resources among dynamic coalitions of individuals and institutions. However, the current grid solutions make several limiting assumptions that curtail their widespread adoption. To address these limitations, we present GLIDE, a prototype light-weight, data-intensive middleware infrastructure that enables access to the robust data and computational power of the grid on DREAM platforms.
Increase the glyde path diameter improves the centering ability of F6 Skytaper.
Troiano, Giuseppe; Dioguardi, Mario; Cocco, Armando; Zhurakivska, Khrystyna; Ciavarella, Domenico; Muzio, Lorenzo Lo
2018-01-01
The aim of this study was to assess the impact of glide path preparation, performed with PathGlider 0.15 (Komet Brasseler GmbH & Co., Lemgo, Germany) and PathGlider 0.20 (Komet Brasseler GmbH & Co., Lemgo, Germany), on the centering ability of 25-size F6 Skytaper in J-shape simulated root canals, compared with no glide path executed. Sixty J-shaped ISO 15 0.02 taper endo training blocks (Dentsply Maillefer) were assigned to three groups ( n = 20 for each group). Photographic images were taken on endoblocks before and after shaping procedures. After superimposition, the software AutoCAD 2013 (Autodesk Inc., San Rafael, USA) was used for record the centering and shaping ability at 9 different levels from the apex. Shaping procedures including the using of PathGlider 0.20 resulted in a lower amount of resin removed and in a clear improvement of centering ability of the Skytaper 0.25 at almost all reference point levels. Within the limitations of this study, it could be concluded that the glide path procedure, performed with the PathGlider 0.20 before the shaping with 25-size F6 Skytaper, might determine a lower amount of resin removed and a better centering ability compared with the groups without glide path procedure and those treated with PathGlider 0.15.
Increase the glyde path diameter improves the centering ability of F6 Skytaper
Troiano, Giuseppe; Dioguardi, Mario; Cocco, Armando; Zhurakivska, Khrystyna; Ciavarella, Domenico; Muzio, Lorenzo Lo
2018-01-01
Objective: The aim of this study was to assess the impact of glide path preparation, performed with PathGlider 0.15 (Komet Brasseler GmbH & Co., Lemgo, Germany) and PathGlider 0.20 (Komet Brasseler GmbH & Co., Lemgo, Germany), on the centering ability of 25-size F6 Skytaper in J-shape simulated root canals, compared with no glide path executed. Materials and Methods: Sixty J-shaped ISO 15 0.02 taper endo training blocks (Dentsply Maillefer) were assigned to three groups (n = 20 for each group). Photographic images were taken on endoblocks before and after shaping procedures. After superimposition, the software AutoCAD 2013 (Autodesk Inc., San Rafael, USA) was used for record the centering and shaping ability at 9 different levels from the apex. Results: Shaping procedures including the using of PathGlider 0.20 resulted in a lower amount of resin removed and in a clear improvement of centering ability of the Skytaper 0.25 at almost all reference point levels. Conclusions: Within the limitations of this study, it could be concluded that the glide path procedure, performed with the PathGlider 0.20 before the shaping with 25-size F6 Skytaper, might determine a lower amount of resin removed and a better centering ability compared with the groups without glide path procedure and those treated with PathGlider 0.15. PMID:29657530
Duerr, Adam E.; Miller, Tricia A.; Lanzone, Michael; Brandes, Dave; Cooper, Jeff; O'Malley, Kieran; Maisonneuve, Charles; Tremblay, Junior; Katzner, Todd
2012-01-01
To maximize fitness, flying animals should maximize flight speed while minimizing energetic expenditure. Soaring speeds of large-bodied birds are determined by flight routes and tradeoffs between minimizing time and energetic costs. Large raptors migrating in eastern North America predominantly glide between thermals that provide lift or soar along slopes or ridgelines using orographic lift (slope soaring). It is usually assumed that slope soaring is faster than thermal gliding because forward progress is constant compared to interrupted progress when birds pause to regain altitude in thermals. We tested this slope-soaring hypothesis using high-frequency GPS-GSM telemetry devices to track golden eagles during northbound migration. In contrast to expectations, flight speed was slower when slope soaring and eagles also were diverted from their migratory path, incurring possible energetic costs and reducing speed of progress towards a migratory endpoint. When gliding between thermals, eagles stayed on track and fast gliding speeds compensated for lack of progress during thermal soaring. When thermals were not available, eagles minimized migration time, not energy, by choosing energetically expensive slope soaring instead of waiting for thermals to develop. Sites suited to slope soaring include ridges preferred for wind-energy generation, thus avian risk of collision with wind turbines is associated with evolutionary trade-offs required to maximize fitness of time-minimizing migratory raptors. PMID:22558166
1985-01-01
Native microtubules prepared from extruded and dissociated axoplasm have been observed to transport organelles and vesicles unidirectionally in fresh preparations and more slowly and bidirectionally in older preparations. Both endogenous and exogenous (fluorescent polystyrene) particles in rapid Brownian motion alight on and adhere to microtubules and are transported along them. Particles can switch from one intersecting microtubule to another and move in either direction. Microtubular segments 1 to 30 microns long, produced by gentle homogenization, glide over glass surfaces for hundreds of micrometers in straight lines unless acted upon by obstacles. While gliding they transport particles either in the same (forward) direction and/or in the backward direction. Particle movement and gliding of microtubule segments require ATP and are insensitive to taxol (30 microM). It appears, therefore, that the mechanisms producing the motive force are very closely associated with the native microtubule itself or with its associated proteins. Although these movements appear irreconcilable with several current theories of fast axoplasmic transport, in this article we propose two models that might explain the observed phenomena and, by extension, the process of fast axoplasmic transport itself. The findings presented and the possible mechanisms proposed for fast axoplasmic transport have potential applications across the spectrum of microtubule-based motility processes. PMID:2580845
NASA Astrophysics Data System (ADS)
Maloney, Roger Andrew
This dissertation explores how the kinesin-1 and microtubule system is affected by surface passivation and water isotopes. Surface passivation was found to affect the gliding speed that microtubules exhibit in the gliding motility assay and the lengths of microtubules supported by the passivation. It was also found that gliding speeds of microtubules are very sensitive to temperature changes. Studies changing the water isotope were a first attempt to investigate if changing the solvent changed the osmotic pressure of the solution kinesin and microtubules were in. No osmotic pressure changes were observed, however, the experiments using different isotopes of water did illuminate the possibility that kinesin may be sensitive to viscosity changes in the solvent. This experiment also suggests further experiments that can be specifically designed to probe osmotic pressure changes. This thesis was also the first thesis ever, to the best of the author's knowledge, to be done in a completely open format. All information and notebook entries that are related to it, as well as the thesis itself, can be found on the website OpenWetWare. The thesis can also be found there including all the different versions that went into its editing. The philosophy and process of making data open and accessible to every one is also discussed.
Duerr, Adam E; Miller, Tricia A; Lanzone, Michael; Brandes, Dave; Cooper, Jeff; O'Malley, Kieran; Maisonneuve, Charles; Tremblay, Junior; Katzner, Todd
2012-01-01
To maximize fitness, flying animals should maximize flight speed while minimizing energetic expenditure. Soaring speeds of large-bodied birds are determined by flight routes and tradeoffs between minimizing time and energetic costs. Large raptors migrating in eastern North America predominantly glide between thermals that provide lift or soar along slopes or ridgelines using orographic lift (slope soaring). It is usually assumed that slope soaring is faster than thermal gliding because forward progress is constant compared to interrupted progress when birds pause to regain altitude in thermals. We tested this slope-soaring hypothesis using high-frequency GPS-GSM telemetry devices to track golden eagles during northbound migration. In contrast to expectations, flight speed was slower when slope soaring and eagles also were diverted from their migratory path, incurring possible energetic costs and reducing speed of progress towards a migratory endpoint. When gliding between thermals, eagles stayed on track and fast gliding speeds compensated for lack of progress during thermal soaring. When thermals were not available, eagles minimized migration time, not energy, by choosing energetically expensive slope soaring instead of waiting for thermals to develop. Sites suited to slope soaring include ridges preferred for wind-energy generation, thus avian risk of collision with wind turbines is associated with evolutionary trade-offs required to maximize fitness of time-minimizing migratory raptors.
Using physical models to study the gliding performance of extinct animals.
Koehl, M A R; Evangelista, Dennis; Yang, Karen
2011-12-01
Aerodynamic studies using physical models of fossil organisms can provide quantitative information about how performance of defined activities, such as gliding, depends on specific morphological features. Such analyses allow us to rule out hypotheses about the function of extinct organisms that are not physically plausible and to determine if and how specific morphological features and postures affect performance. The purpose of this article is to provide a practical guide for the design of dynamically scaled physical models to study the gliding of extinct animals using examples from our research on the theropod dinosaur, †Microraptor gui, which had flight feathers on its hind limbs as well as on its forelimbs. Analysis of the aerodynamics of †M. gui can shed light on the design of gliders with large surfaces posterior to the center of mass and provide functional information to evolutionary biologists trying to unravel the origins of flight in the dinosaurian ancestors and sister groups to birds. Measurements of lift, drag, side force, and moments in pitch, roll, and yaw on models in a wind tunnel can be used to calculate indices of gliding and parachuting performance, aerodynamic static stability, and control effectiveness in maneuvering. These indices permit the aerodynamic performance of bodies of different shape, size, stiffness, texture, and posture to be compared and thus can provide insights about the design of gliders, both biological and man-made. Our measurements of maximum lift-to-drag ratios of 2.5-3.1 for physical models of †M. gui suggest that its gliding performance was similar to that of flying squirrels and that the various leg postures that might have been used by †M. gui make little difference to that aspect of aerodynamic performance. We found that body orientation relative to the movement of air past the animal determines whether it is difficult or easy to maneuver.
Whitelaw, Jamie A; Latorre-Barragan, Fernanda; Gras, Simon; Pall, Gurman S; Leung, Jacqueline M; Heaslip, Aoife; Egarter, Saskia; Andenmatten, Nicole; Nelson, Shane R; Warshaw, David M; Ward, Gary E; Meissner, Markus
2017-01-18
Apicomplexan parasites employ a unique form of movement, termed gliding motility, in order to invade the host cell. This movement depends on the parasite's actomyosin system, which is thought to generate the force during gliding. However, recent evidence questions the exact molecular role of this system, since mutants for core components of the gliding machinery, such as parasite actin or subunits of the MyoA-motor complex (the glideosome), remain motile and invasive, albeit at significantly reduced efficiencies. While compensatory mechanisms and unusual polymerisation kinetics of parasite actin have been evoked to explain these findings, the actomyosin system could also play a role distinct from force production during parasite movement. In this study, we compared the phenotypes of different mutants for core components of the actomyosin system in Toxoplasma gondii to decipher their exact role during gliding motility and invasion. We found that, while some phenotypes (apicoplast segregation, host cell egress, dense granule motility) appeared early after induction of the act1 knockout and went to completion, a small percentage of the parasites remained capable of motility and invasion well past the point at which actin levels were undetectable. Those act1 conditional knockout (cKO) and mlc1 cKO that continue to move in 3D do so at speeds similar to wildtype parasites. However, these mutants are virtually unable to attach to a collagen-coated substrate under flow conditions, indicating an important role for the actomyosin system of T. gondii in the formation of attachment sites. We demonstrate that parasite actin is essential during the lytic cycle and cannot be compensated by other molecules. Our data suggest a conventional polymerisation mechanism in vivo that depends on a critical concentration of G-actin. Importantly, we demonstrate that the actomyosin system of the parasite functions in attachment to the surface substrate, and not necessarily as force generator.
Feather roughness reduces flow separation during low Reynolds number glides of swifts.
van Bokhorst, Evelien; de Kat, Roeland; Elsinga, Gerrit E; Lentink, David
2015-10-01
Swifts are aerodynamically sophisticated birds with a small arm and large hand wing that provides them with exquisite control over their glide performance. However, their hand wings have a seemingly unsophisticated surface roughness that is poised to disturb flow. This roughness of about 2% chord length is formed by the valleys and ridges of overlapping primary feathers with thick protruding rachides, which make the wing stiffer. An earlier flow study of laminar-turbulent boundary layer transition over prepared swift wings suggested that swifts can attain laminar flow at a low angle of attack. In contrast, aerodynamic design theory suggests that airfoils must be extremely smooth to attain such laminar flow. In hummingbirds, which have similarly rough wings, flow measurements on a 3D printed model suggest that the flow separates at the leading edge and becomes turbulent well above the rachis bumps in a detached shear layer. The aerodynamic function of wing roughness in small birds is, therefore, not fully understood. Here, we performed particle image velocimetry and force measurements to compare smooth versus rough 3D-printed models of the swift hand wing. The high-resolution boundary layer measurements show that the flow over rough wings is indeed laminar at a low angle of attack and a low Reynolds number, but becomes turbulent at higher values. In contrast, the boundary layer over the smooth wing forms open laminar separation bubbles that extend beyond the trailing edge. The boundary layer dynamics of the smooth surface varies non-linearly as a function of angle of attack and Reynolds number, whereas the rough surface boasts more consistent turbulent boundary layer dynamics. Comparison of the corresponding drag values, lift values and glide ratios suggests, however, that glide performance is equivalent. The increased structural performance, boundary layer robustness and equivalent aerodynamic performance of rough wings might have provided small (proto) birds with an evolutionary window to high glide performance. © 2015. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Urlaub, Morelia; Geersen, Jacob; Krastel, Sebastian; Schwenk, Tilmann
2017-04-01
The continental slope off Northwest Africa has experienced at least four mega-landslides, each affecting over 20,000 km2 of seafloor. Although the landslides lie more than 400 km apart, they have many similar characteristics, including stepped headwall patterns and several bedding-parallel glide planes at slope angles of <2°. This morphology suggests that failures took place along multiple mechanically weak sedimentary layers that are present at different stratigraphic depths. From all Northwest African mega-landslides the Cap Blanc Slide, situated off the coasts of Mauretania and West Sahara, offers an unprecedented possibility to advance our understanding of landslide causes. ODP site 658 (Leg 108) was drilled within the evacuation area of the slide, recovering its glide plane. In addition, site 658 also recovered the glide plane and the overlying undisturbed sedimentary sequence of a younger slope failure, which took place within the evacuation are of the main Cap Blanc Slide at some distance to the borehole. We use core-seismic integration to characterize the glide planes as well as to determine the timing of slope failures. The sediments just above both glide planes have particularly high biogenic opal contents owing to the presence of large amounts of diatom microfossils. Diatoms are hollow structures of microfossil skeletons, which contain large amounts of bound and intraskeletal water. When a critical stress level is exceeded during compaction, the microfossil shells break. The stored water is released causing a sudden increase in pore pressure, which may facilitate slope failure. We therefore suggest that diatom oozes acted as weak layers in the case of the Cap Blanc Slide. Pronounced biogenic opal maxima occur during glacial terminations and are expected all along the Northwest African continental margin. We thus hypothesize that mega-slides off Northwest Africa, and potentially also at other continental margins, are preconditioned by episodically high deposition of biogenic opal.
Alovisi, M; Cemenasco, A; Mancini, L; Paolino, D; Scotti, N; Bianchi, C C; Pasqualini, D
2017-04-01
To evaluate the ability of ProGlider instruments, PathFiles and K-files to maintain canal anatomy during glide path preparation using X-ray computed micro-tomography (micro-CT). Forty-five extracted maxillary first permanent molars were selected. Mesio-buccal canals were randomly assigned (n = 15) to manual K-file, PathFile or ProGlider groups for glide path preparation. Irrigation was achieved with 5% NaOCl and 10% EDTA. After glide path preparation, each canal was shaped with ProTaper Next X1 and X2 to working length. Specimens were scanned (isotropic voxel size 9.1 μm) for matching volumes and surface areas and post-treatment analyses. Canal volume, surface area, centroid shift, canal geometry variation through ratio of diameter ratios and ratio of cross-sectional areas were assessed in the apical and coronal levels and at the point of maximum canal curvature. One-way factorial anovas were used to evaluate the significance of instrument in the various canal regions. Post-glide path analysis revealed that instrument factor was significant at the apical level for both the ratio of diameter ratios and the ratio of cross-sectional areas (P < 0.001), with an improved maintenance of root canal geometry by ProGlider and PathFile. At the coronal level and point of maximum canal curvature, ProGlider demonstrated a tendency to pre-flare the root canal compared with K-file and PathFile. PathFile and ProGlider demonstrated a significantly lower centroid shift compared with K-file at the apical level (P = 0.023). Post-shaping analysis demonstrated a more centred preparation of ProGlider, compared with PathFile and K-files, with no significant differences for other parameters. Use of ProGlider instruments led to less canal transportation than PathFiles and K-files. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Santer, Roger D.; Rind, F. Claire; Simmons, Peter J.
2012-01-01
Many arthropods possess escape-triggering neural mechanisms that help them evade predators. These mechanisms are important neuroethological models, but they are rarely investigated using predator-like stimuli because there is often insufficient information on real predator attacks. Locusts possess uniquely identifiable visual neurons (the descending contralateral movement detectors, DCMDs) that are well-studied looming motion detectors. The DCMDs trigger ‘glides’ in flying locusts, which are hypothesised to be appropriate last-ditch responses to the looms of avian predators. To date it has not been possible to study glides in response to stimuli simulating bird attacks because such attacks have not been characterised. We analyse video of wild black kites attacking flying locusts, and estimate kite attack speeds of 10.8±1.4 m/s. We estimate that the loom of a kite’s thorax towards a locust at these speeds should be characterised by a relatively low ratio of half size to speed (l/|v|) in the range 4–17 ms. Peak DCMD spike rate and gliding response occurrence are known to increase as l/|v| decreases for simple looming shapes. Using simulated looming discs, we investigate these trends and show that both DCMD and behavioural responses are strong to stimuli with kite-like l/|v| ratios. Adding wings to looming discs to produce a more realistic stimulus shape did not disrupt the overall relationships of DCMD and gliding occurrence to stimulus l/|v|. However, adding wings to looming discs did slightly reduce high frequency DCMD spike rates in the final stages of object approach, and slightly delay glide initiation. Looming discs with or without wings triggered glides closer to the time of collision as l/|v| declined, and relatively infrequently before collision at very low l/|v|. However, the performance of this system is in line with expectations for a last-ditch escape response. PMID:23209660
Critical motor number for fractional steps of cytoskeletal filaments in gliding assays.
Li, Xin; Lipowsky, Reinhard; Kierfeld, Jan
2012-01-01
In gliding assays, filaments are pulled by molecular motors that are immobilized on a solid surface. By varying the motor density on the surface, one can control the number N of motors that pull simultaneously on a single filament. Here, such gliding assays are studied theoretically using brownian (or Langevin) dynamics simulations and taking the local force balance between motors and filaments as well as the force-dependent velocity of the motors into account. We focus on the filament stepping dynamics and investigate how single motor properties such as stalk elasticity and step size determine the presence or absence of fractional steps of the filaments. We show that each gliding assay can be characterized by a critical motor number, N(c). Because of thermal fluctuations, fractional filament steps are only detectable as long as N < N(c). The corresponding fractional filament step size is l/N where l is the step size of a single motor. We first apply our computational approach to microtubules pulled by kinesin-1 motors. For elastic motor stalks that behave as linear springs with a zero rest length, the critical motor number is found to be N(c) = 4, and the corresponding distributions of the filament step sizes are in good agreement with the available experimental data. In general, the critical motor number N(c) depends on the elastic stalk properties and is reduced to N(c) = 3 for linear springs with a nonzero rest length. Furthermore, N(c) is shown to depend quadratically on the motor step size l. Therefore, gliding assays consisting of actin filaments and myosin-V are predicted to exhibit fractional filament steps up to motor number N = 31. Finally, we show that fractional filament steps are also detectable for a fixed average motor number
High Atom Number in Microsized Atom Traps
2015-12-14
forces on the order of (hbar)(k) (Omega), where Omega is the laser Rabi frequency. We have observed behavior compatible with bichromatic slowing and... Rabi frequency. We have observed behavior compatible with bichromatic slowing and cooling of some atoms in atomic beam. Results were presented at the
Determination of the lift and drag characteristics of an airplane in flight
NASA Technical Reports Server (NTRS)
Green, Maurice W
1925-01-01
Flight tests to determine lift and drag characteristics are discussed. A review is given of the fundamental principles on which the tests are based and on the forces acting on an airplane in the various conditions of steady flight. Glide with and without propeller thrust and the relation between angle of attack and the indicated airspeed for different conditions of steady flight are discussed. The glide test procedure and the problem of the propeller are discussed.
Rilo, B; Fernández-Formoso, N; Mora, M J; Cadarso-Suárez, C; Santana, U
2009-08-01
This study was designed to characterize the distance of the contact glide in the closing masticatory stroke in healthy adult subjects, during chewing of three types of food (crustless bread, chewing gum and peanuts). Mandibular movements (masticatory movements and laterality movements with dental contact) were registered using a gnathograph (MK-6I Diagnostic System) on the right and left side during unilateral chewing of the three food types. Length of dental contact was measured in masticatory cycle, which is defined as where the terminal part of the chewing cycles could be superimposed on the pathways taken by the mandible during lateral excursions with occlusal contacts. The length of dental contact during mastication of chewing gum is 1.46 +/- 1 mm, during chewing of soft bread is 1.38 +/- 0.7 mm and during chewing of peanuts is 1.45 +/- 0.9 mm. There is no significant difference in the lengths of dental contact during mastication of three types of foods that enable direct tooth gliding.
Jarvis, Steve; Harris, Don
2009-08-01
Low-hours solo glider pilots have a high risk of accidents compared to more experienced pilots. Numerous taxonomies for causal accident analysis have been produced for powered aviation but none of these is suitable for gliding, so a new taxonomy was required. A human factors taxonomy specifically for glider operations was developed and used to analyse all UK gliding accidents from 2002 to 2006 for their overall causes as well as factors specific to low hours pilots. Fifty-nine categories of pilot-related accident causation emerged, which were formed into progressively larger categories until four overall human factors groups were arrived at: 'judgement'; 'handling'; 'strategy'; 'attention'. 'Handling' accounted for a significantly higher proportion of injuries than other categories. Inexperienced pilots had considerably more accidents in all categories except 'strategy'. Approach control (path judgement, airbrake and speed handling) as well as landing flare misjudgement were chiefly responsible for the high accident rate in early solo glider pilots.
Motion analysis and trials of the deep sea hybrid underwater glider Petrel-II
NASA Astrophysics Data System (ADS)
Liu, Fang; Wang, Yan-hui; Wu, Zhi-liang; Wang, Shu-xin
2017-03-01
A hybrid underwater glider Petrel-II has been developed and field tested. It is equipped with an active buoyancy unit and a compact propeller unit. Its working modes have been expanded to buoyancy driven gliding and propeller driven level-flight, which can make the glider work in strong currents, as well as many other complicated ocean environments. Its maximal gliding speed reaches 1 knot and the propelling speed is up to 3 knots. In this paper, a 3D dynamic model of Petrel-II is derived using linear momentum and angular momentum equations. According to the dynamic model, the spiral motion in the underwater space is simulated for the gliding mode. Similarly the cycle motion on water surface and the depth-keeping motion underwater are simulated for the level-flight mode. These simulations are important to the performance analysis and parameter optimization for the Petrel-II underwater glider. The simulation results show a good agreement with field trials.
Multiscale Model of Swarming Bacteria
NASA Astrophysics Data System (ADS)
Alber, Mark
2011-03-01
Many bacteria can rapidly traverse surfaces from which they are extracting nutrient for growth. They generate flat, spreading colonies, called swarms because they resemble swarms of insects. In the beginning of the talk, swarms of the M. xanthus will be described in detail. Individual M. xanthus cells are elongated; they always move in the direction of their long axis; and they are in constant motion, repeatedly touching each other. As a cell glides, the slime capsule of a cell interacts with the bare agar surface, non-oriented slime which arises from the surface contact with the slime capsule, or oriented slime trails. Remarkably, cells regularly reverse their gliding directions. In this talk a detailed cell- and behavior-based computational model of M. xanthus swarming will be used to demonstrate that reversals of gliding direction and cell bending are essential for swarming and that specific reversal frequencies result in optimal swarming rate of the whole population. This suggests that the circuit regulating reversals evolved to its current sensitivity under selection for growth achieved by swarming.
Evaluation of arm-leg coordination in flat breaststroke.
Chollet, D; Seifert, L; Leblanc, H; Boulesteix, L; Carter, M
2004-10-01
This study proposes a new method to evaluate arm-leg coordination in flat breaststroke. Five arm and leg stroke phases were defined with a velocity-video system. Five time gaps quantified the time between arm and leg actions during three paces of a race (200 m, 100 m and 50 m) in 16 top level swimmers. Based on these time gaps, effective glide, effective propulsion, effective leg insweep and effective recovery were used to identify the different stroke phases of the body. A faster pace corresponded to increased stroke rate, decreased stroke length, increased propulsive phases, shorter glide phases, and a shorter T1 time gap, which measured the effective body glide. The top level swimmers showed short time gaps (T2, T3, T4, measuring the timing of arm-leg recoveries), which reflected the continuity in arm and leg actions. The measurement of these time gaps thus provides a pertinent evaluation of swimmers' skill in adapting their arm-leg coordination to biomechanical constraints.
Pulsating gliding transition in the dynamics of levitating liquid nitrogen droplets
NASA Astrophysics Data System (ADS)
Snezhko, Alexey; Ben Jacob, Eshel; Aranson, Igor S.
2008-04-01
Hot surfaces can cause levitation of small liquid droplets if the temperature is kept above the Leidenfrost point (220 °C for water) due to the pressure formed because of rapid evaporation. Here, we demonstrate a new class of pulsating-gliding dynamic transitions in a special setting of the Leidenfrost effect at room temperatures and above a viscous fluid for droplets of liquid nitrogen. A whole range of highly dynamic patterns unfolds when droplets of liquid nitrogen are poured on the surface of another, more viscous liquid at room temperature. We also discovered that the levitating droplets induce vortex motion in the supporting viscous liquid. Depending on the viscosity of the supporting liquid, the nitrogen droplets either adopt an oscillating (pulsating) star-like shape with different azimuthal symmetries (from 2-9 petals) or glide on the surface with random trajectories. Thus, by varying the viscosity of the supporting liquid, we achieve controlled morphology and dynamics of Leidenfrost droplets.
Yadav, Satyesh Kumar; Shao, S.; Chen, Youxing; ...
2017-10-17
Here, using a newly developed embedded-atom-method potential for Mg–Nb, the semi-coherent Mg/Nb interface with the Kurdjumov–Sachs orientation relationship is studied. Atomistic simulations have been carried out to understand the shear strength of the interface, as well as the interaction between lattice glide dislocations and the interface. The interface shear mechanisms are dependent on the shear loading directions, through either interface sliding between Mg and Nb atomic layers or nucleation and gliding of Shockley partial dislocations in between the first two atomic planes in Mg at the interface. The shear strength for the Mg/Nb interface is found to be generally high,more » in the range of 0.9–1.3 GPa depending on the shear direction. As a consequence, the extents of dislocation core spread into the interface are considerably small, especially when compared to the case of other “weak” interfaces such as the Cu/Nb interface.« less
Dependence of crystal size on the catalytic performance of a porous coordination polymer.
Kiyonaga, Tomokazu; Higuchi, Masakazu; Kajiwara, Takashi; Takashima, Yohei; Duan, Jingui; Nagashima, Kazuro; Kitagawa, Susumu
2015-02-14
Submicrosized MOF-76(Yb) exhibits a higher catalytic performance for esterification than microsized MOF-76(Yb). Control of the crystal size of porous heterogeneous catalysts, such as PCP/MOFs, offers a promising approach to fabricating high-performance catalysts based on accessibility to the internal catalytic sites.
Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas
NASA Astrophysics Data System (ADS)
Zhang, Hao; Zhu, Fengsen; Tu, Xin; Bo, Zheng; Cen, Kefa; Li, Xiaodong
2016-05-01
In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate. supported by National Natural Science Foundation of China (No. 51576174), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120101110099) and the Fundamental Research Funds for the Central Universities (No. 2015FZA4011)
Balagam, Rajesh; Litwin, Douglas B.; Czerwinski, Fabian; Sun, Mingzhai; Kaplan, Heidi B.; Shaevitz, Joshua W.; Igoshin, Oleg A.
2014-01-01
Myxococcus xanthus is a model organism for studying bacterial social behaviors due to its ability to form complex multi-cellular structures. Knowledge of M. xanthus surface gliding motility and the mechanisms that coordinated it are critically important to our understanding of collective cell behaviors. Although the mechanism of gliding motility is still under investigation, recent experiments suggest that there are two possible mechanisms underlying force production for cell motility: the focal adhesion mechanism and the helical rotor mechanism, which differ in the biophysics of the cell–substrate interactions. Whereas the focal adhesion model predicts an elastic coupling, the helical rotor model predicts a viscous coupling. Using a combination of computational modeling, imaging, and force microscopy, we find evidence for elastic coupling in support of the focal adhesion model. Using a biophysical model of the M. xanthus cell, we investigated how the mechanical interactions between cells are affected by interactions with the substrate. Comparison of modeling results with experimental data for cell-cell collision events pointed to a strong, elastic attachment between the cell and substrate. These results are robust to variations in the mechanical and geometrical parameters of the model. We then directly measured the motor-substrate coupling by monitoring the motion of optically trapped beads and find that motor velocity decreases exponentially with opposing load. At high loads, motor velocity approaches zero velocity asymptotically and motors remain bound to beads indicating a strong, elastic attachment. PMID:24810164
Aerodynamics of gliding flight in common swifts.
Henningsson, P; Hedenström, A
2011-02-01
Gliding flight performance and wake topology of a common swift (Apus apus L.) were examined in a wind tunnel at speeds between 7 and 11 m s(-1). The tunnel was tilted to simulate descending flight at different sink speeds. The swift varied its wingspan, wing area and tail span over the speed range. Wingspan decreased linearly with speed, whereas tail span decreased in a nonlinear manner. For each airspeed, the minimum glide angle was found. The corresponding sink speeds showed a curvilinear relationship with airspeed, with a minimum sink speed at 8.1 m s(-1) and a speed of best glide at 9.4 m s(-1). Lift-to-drag ratio was calculated for each airspeed and tilt angle combinations and the maximum for each speed showed a curvilinear relationship with airspeed, with a maximum of 12.5 at an airspeed of 9.5 m s(-1). Wake was sampled in the transverse plane using stereo digital particle image velocimetry (DPIV). The main structures of the wake were a pair of trailing wingtip vortices and a pair of trailing tail vortices. Circulation of these was measured and a model was constructed that showed good weight support. Parasite drag was estimated from the wake defect measured in the wake behind the body. Parasite drag coefficient ranged from 0.30 to 0.22 over the range of airspeeds. Induced drag was calculated and used to estimate profile drag coefficient, which was found to be in the same range as that previously measured on a Harris' hawk.
Xu, Guang-Hui; Zhao, Li-Jun; Gao, Ke-Qin; Wu, Fei-Xiang
2013-01-07
Flying fishes are extraordinary aquatic vertebrates capable of gliding great distances over water by exploiting their enlarged pectoral fins and asymmetrical caudal fin. Some 50 species of extant flying fishes are classified in the Exocoetidae (Neopterygii: Teleostei), which have a fossil record no older than the Eocene. The Thoracopteridae is the only pre-Cenozoic group of non-teleosts that shows an array of features associated with the capability of over-water gliding. Until recently, however, the fossil record of the Thoracopteridae has been limited to the Upper Triassic of Austria and Italy. Here, we report the discovery of exceptionally well-preserved fossils of a new thoracopterid flying fish from the Middle Triassic of China, which represents the earliest evidence of an over-water gliding strategy in vertebrates. The results of a phylogenetic analysis resolve the Thoracopteridae as a stem-group of the Neopterygii that is more crown-ward than the Peltopleuriformes, yet more basal than the Luganoiiformes. As the first record of the Thoracopteride in Asia, this new discovery extends the geographical distribution of this group from the western to eastern rim of the Palaeotethys Ocean, providing new evidence to support the Triassic biological exchanges between Europe and southern China. Additionally, the Middle Triassic date of the new thoracopterid supports the hypothesis that the re-establishment of marine ecosystems after end-Permian mass extinction is more rapid than previously thought.
Xu, Guang-Hui; Zhao, Li-Jun; Gao, Ke-Qin; Wu, Fei-Xiang
2013-01-01
Flying fishes are extraordinary aquatic vertebrates capable of gliding great distances over water by exploiting their enlarged pectoral fins and asymmetrical caudal fin. Some 50 species of extant flying fishes are classified in the Exocoetidae (Neopterygii: Teleostei), which have a fossil record no older than the Eocene. The Thoracopteridae is the only pre-Cenozoic group of non-teleosts that shows an array of features associated with the capability of over-water gliding. Until recently, however, the fossil record of the Thoracopteridae has been limited to the Upper Triassic of Austria and Italy. Here, we report the discovery of exceptionally well-preserved fossils of a new thoracopterid flying fish from the Middle Triassic of China, which represents the earliest evidence of an over-water gliding strategy in vertebrates. The results of a phylogenetic analysis resolve the Thoracopteridae as a stem-group of the Neopterygii that is more crown-ward than the Peltopleuriformes, yet more basal than the Luganoiiformes. As the first record of the Thoracopteride in Asia, this new discovery extends the geographical distribution of this group from the western to eastern rim of the Palaeotethys Ocean, providing new evidence to support the Triassic biological exchanges between Europe and southern China. Additionally, the Middle Triassic date of the new thoracopterid supports the hypothesis that the re-establishment of marine ecosystems after end-Permian mass extinction is more rapid than previously thought. PMID:23118437
Xu, Guang-Hui; Zhao, Li-Jun; Shen, Chen-Chen
2015-01-01
Gliding adaptations in thoracopterid flying fishes represent a remarkable case of convergent evolution of overwater gliding strategy with modern exocoetid flying fishes, but the evolutionary origin of this strategy was poorly known in the thoracopterids because of lack of transitional forms. Until recently, all thoracopterids, from the Late Triassic of Austria and Italy and the Middle Triassic of South China, were highly specialized ‘four-winged’ gliders in having wing-like paired fins and an asymmetrical caudal fin with the lower caudal lobe notably larger than the upper lobe. Here, we show that the new genus Wushaichthys and the previously alleged ‘peltopleurid’ Peripeltopleurus, from the Middle Triassic (Ladinian, 235–242 Ma) of South China and near the Ladinian/Anisian boundary of southern Switzerland and northern Italy, respectively, represent the most primitive and oldest known thoracopterids. Wushaichthys, the most basal thoracopterid, shows certain derived features of this group in the skull. Peripeltopleurus shows a condition intermediate between Wushaichthys and Thoracopterus in having a slightly asymmetrical caudal fin but still lacking wing-like paired fins. Phylogenetic studies suggest that the evolution of overwater gliding of thoracopterids was gradual in nature; a four-stage adaption following the ‘cranial specialization–asymmetrical caudal fin–enlarged paired fins–scale reduction’ sequence has been recognized in thoracopterid evolution. Moreover, Wushaichthys and Peripeltopleurus bear hooklets on the anal fin of supposed males, resembling those of modern viviparious teleosts. Early thoracopterids probably had evolved a live-bearing reproductive strategy. PMID:25568155
Saber, S E D M; Schäfer, E
2016-11-01
To investigate the incidence of dentinal defects after preparation of severely curved root canals using the Reciproc single-file system with and without prior creation of a glide path. Mesial roots from extracted mandibular first molars were collected and scanned with CBCT to assess the morphology of the root canal systems. Three groups of 20 anatomically comparable specimens were generated. The control group was left unprepared, whilst the experimental groups were prepared with Reciproc R25 with and without a glide path (groups RG and R, respectively). Roots were then sectioned perpendicular to the long axis at 2, 4, 6, 8 and 10 mm from the apex, and coloured photographs of the sections at 40× were obtained. Two blinded examiners registered the presence of dentinal defects twice at 2-week interval. Data were statistically analysed using the Fisher exact and Cochran's Q tests. No defects were observed in the control group. The overall incidence of dentinal defects was 26% in group R and 24% in group RG, with no significant differences between them (P > 0.05). Dentinal defects occurred significantly more often in the middle and coronal thirds compared to the apical third of the canals (P < 0.05). Prior preparation of a glide path had no impact on the incidence of dentinal defects when using Reciproc files. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Chaput, Ludovic; Martinez-Sanz, Juan; Saettel, Nicolas; Mouawad, Liliane
2016-01-01
In a structure-based virtual screening, the choice of the docking program is essential for the success of a hit identification. Benchmarks are meant to help in guiding this choice, especially when undertaken on a large variety of protein targets. Here, the performance of four popular virtual screening programs, Gold, Glide, Surflex and FlexX, is compared using the Directory of Useful Decoys-Enhanced database (DUD-E), which includes 102 targets with an average of 224 ligands per target and 50 decoys per ligand, generated to avoid biases in the benchmarking. Then, a relationship between these program performances and the properties of the targets or the small molecules was investigated. The comparison was based on two metrics, with three different parameters each. The BEDROC scores with α = 80.5, indicated that, on the overall database, Glide succeeded (score > 0.5) for 30 targets, Gold for 27, FlexX for 14 and Surflex for 11. The performance did not depend on the hydrophobicity nor the openness of the protein cavities, neither on the families to which the proteins belong. However, despite the care in the construction of the DUD-E database, the small differences that remain between the actives and the decoys likely explain the successes of Gold, Surflex and FlexX. Moreover, the similarity between the actives of a target and its crystal structure ligand seems to be at the basis of the good performance of Glide. When all targets with significant biases are removed from the benchmarking, a subset of 47 targets remains, for which Glide succeeded for only 5 targets, Gold for 4 and FlexX and Surflex for 2. The performance dramatic drop of all four programs when the biases are removed shows that we should beware of virtual screening benchmarks, because good performances may be due to wrong reasons. Therefore, benchmarking would hardly provide guidelines for virtual screening experiments, despite the tendency that is maintained, i.e., Glide and Gold display better performance than FlexX and Surflex. We recommend to always use several programs and combine their results. Graphical AbstractSummary of the results obtained by virtual screening with the four programs, Glide, Gold, Surflex and FlexX, on the 102 targets of the DUD-E database. The percentage of targets with successful results, i.e., with BDEROC(α = 80.5) > 0.5, when the entire database is considered are in Blue, and when targets with biased chemical libraries are removed are in Red.
Suganya, Panneer S R; Kalva, Sukesh; Saleena, Lilly M
2014-01-01
Zinc plays a vital role in structural organization, regulation of function and stabilization of the folded protein, which ultimately activates or inactivates the binding sites of the protein. Its transition makes a major change in the protein and its binding affinity. The ligand binding aggrecanases can be influenced by Zn2+ ions; therefore the study focuses on checking the binding mode in the presence and absence of zinc using Docking and Molecular dynamics simulation. The crystal structure with zinc was considered as wild type (ADAMTS-4-1Zn2+, ADAMTS-5-1Zn2+) and the crystal structure without zinc was considered as the mutant type (ADAMTS-4-0Zn2+, ADAMTS-5-0Zn2+). Mutations were made manually by deleting the zinc atom. ADAMTS-4-1Zn2+ had the best Glide score of -12.66 kcal·mol−1, whereas ADAMTS-4-0Zn2+ had -11.69 kcal·mol−1. ADAMTS-4-1Zn2+ had the best glide energy of -72.29 kcal·mol−1, whereas ADAMTS-4-0Zn2+ had-68.44 kcal·mol−1. ADAMTS-4-1Zn2+ had the best glide e-model of -116.34, whereas ADAMTS-4-0Zn2+ had -104.264. The RMSD value for ADAMTS-4-1Zn2+ and ADAMTS-4-0Zn2+ was 1.9. These results suggested that the absence of zinc decreases the binding affinity of ADAMTS-4 with its inhibitor. ADAMTS-5-1Zn2+ had the best Glide score of -8.32 kcal·mol−1, whereas ADAMTS-5-0Zn2+ had -6.62 kcal·mol−1. ADAMTS-5-1Zn2+ had the best glide energy of -70.28 kcal·mol−1, whereas ADAMTS-5-0Zn2+ had -66.02 kcal·mol−1. ADAMTS-5-1Zn2+ had the best glide e-model of-108.484, whereas ADAMTS-5-0Zn2+ had -93.81. The RMSD value for ADAMTS-5-1Zn2+ and ADAMTS-5-0Zn2+ was 0.48Å. These results confirmed that the absence of zinc decreased the binding affinity of ADAMTS-5 with its inhibitor whereas the presence extended the docking energy range and strengthened the binding affinity. Per-residue interaction study, MM-GBSA and Molecular Dynamics showed that all the four complexes underwent extensive structural changes whereas the complex with zinc was stable throughout the simulation period.
Chemokinetic motility responses of the cyanobacterium oscillatoria terebriformis
NASA Technical Reports Server (NTRS)
Richardson, Laurie L.; Castenholz, Richard W.
1989-01-01
Oscillatoria terebriformis, a gliding, filamentous, thermophilic cyanobacterium, exhibited an inhibition of gliding motility upon exposure to fructose. The observed response was transient, and the duration of nonmotility was directly proportional to the concentration of fructose. Upon resumption of motility, the rate of motility was also inversely proportional to the concentration of fructose. Sulfide caused a similar response. The effect of sulfide was specific and not due to either anoxia or negative redox potential. Exposure to glucose, acetate, lactate, or mat interstitial water did not elicit any motility response.
The effect of weight and drag on the sinking speed and lift/drag ratio of gliders
NASA Technical Reports Server (NTRS)
Kosin, R
1934-01-01
The most important factors in evaluating performance of gliders are minimum sinking speed and minimum gliding angle. To assure their optimum value the energy necessary for flight, that is, the energy of lift and friction must be kept very low, or in other words, weight and total drag which have a decisive effect on the sinking speed and on the gliding angle, must be kept to a minimum. How great the effect of a reduction of these two quantities will be shown in the following.
Composition of zeotropic mixtures having predefined temperature glide
Mahmoud, Ahmad M.; Lee, Jaeseon; Luo, Dong
2015-05-26
A composition of a zeotropic mixture has a first chemical constituent and at least one second, different chemical constituent. The zeoptropic mixture has a temperature glide of 5.degree. C.-25.degree. C. with regard to its saturated vapor temperature and its saturated liquid temperature. The first chemical constituent is selected from 1,1,1,3,3-pentafluoropropane, 1,1,2,2,3-pentafluoropropane, 1,1,1,3,3-pentafluorobutane, methyl perfluoropropyl ether, 1,1,1,2,3,3-hexafluoropropane and 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone.
NASA Technical Reports Server (NTRS)
Mcmasters, J. H.
1979-01-01
As presently envisioned, the ultralight sailplane is intermediate in size, cost and performance between current hang gliders and the lower end of the traditional sailplane spectrum. In the design of an ultralight sailplane, safety, low cost, and operational simplicity were emphasized at the expense of absolute performance. An overview of the design requirements for an ultralight sailplane is presented. It was concluded that by a judicious combination of the technologies of hang gliding, human powered flight, conventional soaring and motor gliding, an operationally and economically viable class of ultralight, self-launching sailplanes can be developed.
Leaching of Silver from Silver-Impregnated Food Storage Containers
ERIC Educational Resources Information Center
Hauri, James F.; Niece, Brian K.
2011-01-01
The use of silver in commercial products has proliferated in recent years owing to its antibacterial properties. Food containers impregnated with micro-sized silver promise long food life, but there is some concern because silver can leach out of the plastic and into the stored food. This laboratory experiment gives students the opportunity to…
Acoustic-gravity waves, theory and application
NASA Astrophysics Data System (ADS)
Kadri, Usama; Farrell, William E.; Munk, Walter
2015-04-01
Acoustic-gravity waves (AGW) propagate in the ocean under the influence of both the compressibility of sea water and the restoring force of gravity. The gravity dependence vanishes if the wave vector is normal to the ocean surface, but becomes increasingly important as the wave vector acquires a horizontal tilt. They are excited by many sources, including non-linear surface wave interactions, disturbances of the ocean bottom (submarine earthquakes and landslides) and underwater explosions. In this introductory lecture on acoustic-gravity waves, we describe their properties, and their relation to organ pipe modes, to microseisms, and to deep ocean signatures by short surface waves. We discuss the generation of AGW by underwater earthquakes; knowledge of their behaviour with water depth can be applied for the early detection of tsunamis. We also discuss their generation by the non-linear interaction of surface gravity waves, which explains the major role they play in transforming energy from the ocean surface to the crust, as part of the microseisms phenomenon. Finally, they contribute to horizontal water transport at depth, which might affect benthic life.
Naumann, Meike; Schäfer, Christian; Brandner, Armin; Hofmann, Heiko J; Claus, Peter
2011-01-01
Summary Polymethylmethacrylate (PMMA)/ceria composite fibres were synthesized by using a sequential combination of polymer electrospinning, spray-coating with a sol, and a final calcination step to yield microstructured ceria tubes, which are composed of nanocrystalline ceria particles. The PMMA template is removed from the organic/inorganic hybrid material by radio frequency (rf) plasma etching followed by calcination of the ceramic green-body fibres. Microsized ceria (CeO2) tubes, with a diameter of ca. 0.75 µm, composed of nanocrystalline agglomerated ceria particles were thus obtained. The 1-D ceramic ceria material was characterized by X-ray diffraction, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), UV–vis and photoluminescence spectroscopy (PL), as well as thermogravimetric analysis (TGA). Its catalytic performance was studied in the direct carboxylation of methanol with carbon dioxide leading to dimethyl carbonate [(CH3O)2CO, DMC], which is widely employed as a phosgene and dimethyl sulfate substitute, and as well as a fuel additive. PMID:22259761
Sakai, Atsushi; Murayama, Yoshihiro; Fujiwara, Kei; Fujisawa, Takahiro; Sasaki, Saori; Kidoaki, Satoru; Yanagisawa, Miho
2018-04-25
Even though microgels are used in a wide variety of applications, determining their mechanical properties has been elusive because of the difficulties in analysis. In this study, we investigated the surface elasticity of a spherical microgel of gelatin prepared inside a lipid droplet by using micropipet aspiration. We found that gelation inside a microdroplet covered with lipid membranes increased Young's modulus E toward a plateau value E * along with a decrease in gel size. In the case of 5.0 wt % gelatin gelled inside a microsized lipid space, the E * for small microgels with R ≤ 50 μm was 10-fold higher (35-39 kPa) than that for the bulk gel (∼3 kPa). Structural analysis using circular dichroism spectroscopy and a fluorescence indicator for ordered beta sheets demonstrated that the smaller microgels contained more beta sheets in the structure than the bulk gel. Our finding indicates that the confinement size of gelling polymers becomes a factor in the variation of elasticity of protein-based microgels via secondary structure changes.
2018-01-01
Even though microgels are used in a wide variety of applications, determining their mechanical properties has been elusive because of the difficulties in analysis. In this study, we investigated the surface elasticity of a spherical microgel of gelatin prepared inside a lipid droplet by using micropipet aspiration. We found that gelation inside a microdroplet covered with lipid membranes increased Young’s modulus E toward a plateau value E* along with a decrease in gel size. In the case of 5.0 wt % gelatin gelled inside a microsized lipid space, the E* for small microgels with R ≤ 50 μm was 10-fold higher (35–39 kPa) than that for the bulk gel (∼3 kPa). Structural analysis using circular dichroism spectroscopy and a fluorescence indicator for ordered beta sheets demonstrated that the smaller microgels contained more beta sheets in the structure than the bulk gel. Our finding indicates that the confinement size of gelling polymers becomes a factor in the variation of elasticity of protein-based microgels via secondary structure changes. PMID:29721530
Uncertainty estimates in broadband seismometer sensitivities using microseisms
Ringler, Adam T.; Storm, Tyler L.; Gee, Lind S.; Hutt, Charles R.; Wilson, David C.
2015-01-01
The midband sensitivity of a seismic instrument is one of the fundamental parameters used in published station metadata. Any errors in this value can compromise amplitude estimates in otherwise high-quality data. To estimate an upper bound in the uncertainty of the midband sensitivity for modern broadband instruments, we compare daily microseism (4- to 8-s period) amplitude ratios between the vertical components of colocated broadband sensors across the IRIS/USGS (network code IU) seismic network. We find that the mean of the 145,972 daily ratios used between 2002 and 2013 is 0.9895 with a standard deviation of 0.0231. This suggests that the ratio between instruments shows a small bias and considerable scatter. We also find that these ratios follow a standard normal distribution (R 2 = 0.95442), which suggests that the midband sensitivity of an instrument has an error of no greater than ±6 % with a 99 % confidence interval. This gives an upper bound on the precision to which we know the sensitivity of a fielded instrument.
Tekin, H O; Singh, V P; Manici, T
2017-03-01
In the present work the effect of tungsten oxide (WO 3 ) nanoparticles on mass attenauation coefficients of concrete has been investigated by using MCNPX (version 2.4.0). The validation of generated MCNPX simulation geometry has been provided by comparing the results with standard XCOM data for mass attenuation coefficients of concrete. A very good agreement between XCOM and MCNPX have been obtained. The validated geometry has been used for definition of nano-WO 3 and micro-WO 3 into concrete sample. The mass attenuation coefficients of pure concrete and WO 3 added concrete with micro-sized and nano-sized have been compared. It was observed that shielding properties of concrete doped with WO 3 increased. The results of mass attenauation coefficients also showed that the concrete doped with nano-WO 3 significanlty improve shielding properties than micro-WO 3 . It can be concluded that addition of nano-sized particles can be considered as another mechanism to reduce radiation dose. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pressure Solution Creep and Textural Softening in Greenschist Facies Phyllonites
NASA Astrophysics Data System (ADS)
Wintsch, R. P.; Attenoukon, M.; Kunk, M. J.; McAleer, R. J.; Wathen, B.; Yi, D.
2016-12-01
We have found evidence for dissolution-precipitation creep (DPC) in phyllites and phyllonites naturally deformed at greenschist facies conditions. Since the experiments of Kronenberg et al. (1990) and Mares and Kronenberg (1993) micas are known to be among the weakest of rock-forming minerals. They deform by dislocation glide in their basal plane and when these micas are aligned and contiguous in an orientation favorable for glide they tend to localize strain into shear zones. Therefore, these closed-system experiments suggest that dislocation glide should be the dominant deformation mechanism in mica-rich shear zones from near surface through greenschist facies conditions. In contrast, in naturally deformed rocks we have found strong textural and chemical evidence that micas deform by dissolution-precipitation creep in phyllites at upper and lower greenschist facies conditions. In the Littleton Formation (N.H.) we find retrograde muscovite (pg5)-rich folia (Sn) truncating amphibolite facies Na-rich muscovite and biotite grains that define earlier foliations. Na-rich muscovite grains are also selectively replaced along crenulation axes and boudin necks where plastic and elastic strain are highest. In biotite grade regional metamorphic rocks in the Tananao schist of Taiwan muscovite-rich folia (Sn) truncate crenulated muscovite-biotite schists at high angles. In still lower (chlorite) grade phyllonitic fault zones marking terrane boundaries in southern New England (East Derby shear zone) and in Taiwan (Daugan shear zone) crenulated older fabrics are cut by new undeformed muscovite grains in chlorite-free planar folia. Further evidence for recrystallization rather than dislocation glide comes from the 40Ar/39Ar ages of muscovite in the new Sn folia younger than the age of the truncated folia. The younger ages in each case demonstrate that recrystallization was activated at lower shear stresses than dislocation glide, and that the recrystallization occurred at lower greenschist facies conditions below the closure temperature for diffusion of argon in muscovite. The increase in muscovite/chlorite ratios and change in microchemistry of Sn muscovite, the truncating microstructures, and isotopic results are all incompatible with deformation by dislocation creep.
A Concept of a Manned Satellite Reentry Which is Completed with a Glide Landing
NASA Technical Reports Server (NTRS)
Cheatham, Donald C. (Compiler)
1959-01-01
A concept for a manned satellite reentry from a near space orbit and a glide landing on a normal size airfield is presented. The reentry vehicle configuration suitable for this concept would employ a variable geometry feature in order that the reentry could be made at 90 deg. angle of attack and the landing could be made with a conventional glide approach. Calculated results for reentry at a flight-path angle of -1 deg. show that with an accuracy of 1 percent in the impulse of a retrorocket, the desired flight-path angle at reentry can be controlled within 0.02 deg. and the distance traveled to the reentry point, within 100 miles. The reentry point is arbitrarily defined as the point at which the satellite passes through an altitude of about 70 miles. Misalignment of the retrorocket by 10 deg. increased these errors by as much as 0.02 deg. and 500 miles. Intra-atmospheric trajectory calculations show that pure drag reentries starting with flight-path angles of -1 deg. or less produce a peak deceleration of 8g. Lift created by varying the angle of attack between 90 and 60 deg. is effective in decreasing the maximum deceleration and allows the range to the "recovery" point (where transition is made from reentry to gliding flight) to be increased by as much as 2,300 miles. A sideslip angle of 30 deg. allows lateral displacement of the flight path by as much as 60 deg. miles. Reaction controls would provide control-attitude alignment during the orbit phase. For the reentry phase this configuration should have low static longitudinal and roll stability in the 90 deg. angle-of-attack attitude. Control could be effected by leading-edge and trailing-edge flaps. Transition into the landing phase would be accomplished at an altitude of about 100,000 feet by unfolding the outer wing panels and pitching over to low angles of attack. Calculations indicate that glides can be made from the recovery point to airfields at ranges of from 150 to 200 miles, depending upon the orientation with respect to the original course.
Kan, Andrey; Tan, Yan-Hong; Angrisano, Fiona; Hanssen, Eric; Rogers, Kelly L; Whitehead, Lachlan; Mollard, Vanessa P; Cozijnsen, Anton; Delves, Michael J; Crawford, Simon; Sinden, Robert E; McFadden, Geoffrey I; Leckie, Christopher; Bailey, James; Baum, Jake
2014-05-01
Motility is a fundamental part of cellular life and survival, including for Plasmodium parasites--single-celled protozoan pathogens responsible for human malaria. The motile life cycle forms achieve motility, called gliding, via the activity of an internal actomyosin motor. Although gliding is based on the well-studied system of actin and myosin, its core biomechanics are not completely understood. Currently accepted models suggest it results from a specifically organized cellular motor that produces a rearward directional force. When linked to surface-bound adhesins, this force is passaged to the cell posterior, propelling the parasite forwards. Gliding motility is observed in all three life cycle stages of Plasmodium: sporozoites, merozoites and ookinetes. However, it is only the ookinetes--formed inside the midgut of infected mosquitoes--that display continuous gliding without the necessity of host cell entry. This makes them ideal candidates for invasion-free biomechanical analysis. Here we apply a plate-based imaging approach to study ookinete motion in three-dimensional (3D) space to understand Plasmodium cell motility and how movement facilitates midgut colonization. Using single-cell tracking and numerical analysis of parasite motion in 3D, our analysis demonstrates that ookinetes move with a conserved left-handed helical trajectory. Investigation of cell morphology suggests this trajectory may be based on the ookinete subpellicular cytoskeleton, with complementary whole and subcellular electron microscopy showing that, like their motion paths, ookinetes share a conserved left-handed corkscrew shape and underlying twisted microtubular architecture. Through comparisons of 3D movement between wild-type ookinetes and a cytoskeleton-knockout mutant we demonstrate that perturbation of cell shape changes motion from helical to broadly linear. Therefore, while the precise linkages between cellular architecture and actomyosin motor organization remain unknown, our analysis suggests that the molecular basis of cell shape may, in addition to motor force, be a key adaptive strategy for malaria parasite dissemination and, as such, transmission. © 2014 The Authors. Cellular Microbiology published by John Wiley & Sons Ltd.
A wing-assisted running robot and implications for avian flight evolution.
Peterson, K; Birkmeyer, P; Dudley, R; Fearing, R S
2011-12-01
DASH+Wings is a small hexapedal winged robot that uses flapping wings to increase its locomotion capabilities. To examine the effects of flapping wings, multiple experimental controls for the same locomotor platform are provided by wing removal, by the use of inertially similar lateral spars, and by passive rather than actively flapping wings. We used accelerometers and high-speed cameras to measure the performance of this hybrid robot in both horizontal running and while ascending inclines. To examine consequences of wing flapping for aerial performance, we measured lift and drag forces on the robot at constant airspeeds and body orientations in a wind tunnel; we also determined equilibrium glide performance in free flight. The addition of flapping wings increased the maximum horizontal running speed from 0.68 to 1.29 m s⁻¹, and also increased the maximum incline angle of ascent from 5.6° to 16.9°. Free flight measurements show a decrease of 10.3° in equilibrium glide slope between the flapping and gliding robot. In air, flapping improved the mean lift:drag ratio of the robot compared to gliding at all measured body orientations and airspeeds. Low-amplitude wing flapping thus provides advantages in both cursorial and aerial locomotion. We note that current support for the diverse theories of avian flight origins derive from limited fossil evidence, the adult behavior of extant flying birds, and developmental stages of already volant taxa. By contrast, addition of wings to a cursorial robot allows direct evaluation of the consequences of wing flapping for locomotor performance in both running and flying.
Transport efficiency of membrane-anchored kinesin-1 motors depends on motor density and diffusivity
Grover, Rahul; Fischer, Janine; Schwarz, Friedrich W.; Walter, Wilhelm J.; Schwille, Petra; Diez, Stefan
2016-01-01
In eukaryotic cells, membranous vesicles and organelles are transported by ensembles of motor proteins. These motors, such as kinesin-1, have been well characterized in vitro as single molecules or as ensembles rigidly attached to nonbiological substrates. However, the collective transport by membrane-anchored motors, that is, motors attached to a fluid lipid bilayer, is poorly understood. Here, we investigate the influence of motors’ anchorage to a lipid bilayer on the collective transport characteristics. We reconstituted “membrane-anchored” gliding motility assays using truncated kinesin-1 motors with a streptavidin-binding peptide tag that can attach to streptavidin-loaded, supported lipid bilayers. We found that the diffusing kinesin-1 motors propelled the microtubules in the presence of ATP. Notably, we found the gliding velocity of the microtubules to be strongly dependent on the number of motors and their diffusivity in the lipid bilayer. The microtubule gliding velocity increased with increasing motor density and membrane viscosity, reaching up to the stepping velocity of single motors. This finding is in contrast to conventional gliding motility assays where the density of surface-immobilized kinesin-1 motors does not influence the microtubule velocity over a wide range. We reason that the transport efficiency of membrane-anchored motors is reduced because of their slippage in the lipid bilayer, an effect that we directly observed using single-molecule fluorescence microscopy. Our results illustrate the importance of motor–cargo coupling, which potentially provides cells with an additional means of regulating the efficiency of cargo transport. PMID:27803325
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, G.P.; Ast, D.G.; Anderson, T.J.
1993-09-01
In a previous report [G. P. Watson, D. G. Ast, T. J. Anderson, and Y. Hayakawa, Appl. Phys. Lett. [bold 58], 2517 (1991)] we demonstrated that the motion of misfit dislocations in InGaAs, grown by organometallic vapor phase epitaxy on patterned GaAs substrates, can be impeded even if the strained epitaxial layer is continuous. Trenches etched into GaAs before growth are known to act as a barrier to misfit dislocation propagation [E. A. Fitzgerald, G. P. Watson, R. E. Proano, D. G. Ast, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, J. Appl. Phys. [bold 65], 2220 (1989)]more » when those trenches create discontinuities in the epitaxial layers; but even shallow trenches, with continuous strained layers following the surface features, can act as barriers. By considering the strain energy required to change the length of the dislocation glide segments that stretch from the interface to the free surface, a simple model is developed that explains the major features of the unique blocking action observed at the trench edges. The trench wall angle is found to be an important parameter in determining whether or not a trench will block dislocation glide. The predicted blocking angles are consistent with observations made on continuous 300 and 600 nm thick In[sub 0.04]Ga[sub 0.96]As films on patterned GaAs. Based on the model, a structure is proposed that may be used as a filter to yield misfit dislocations with identical Burgers vectors or dislocations which slip in only one glide plane.« less
Yılmaz, K; Uslu, G; Gündoğar, M; Özyürek, T; Grande, N M; Plotino, G
2018-01-31
To compare the cyclic fatigue resistance of the One G, ProGlider, HyFlex EDM and R-Pilot glide path NiTi files at body temperature. Twenty One G (size 14, .03 taper), 20 ProGlider (size 16, .02 taper), 20 HyFlex EDM (size 10, .05 taper) and 20 R-Pilot (size 12.5, .04 taper) instruments were operated in rotation at 300 rpm (One G, ProGlider and HyFlex) or in reciprocation (R-Pilot) at 35 °C in artificial canals that were manufactured by reproducing the size and taper of the instrument until fracture occurred. The time to fracture was recorded in seconds using a digital chronometer, and the length of the fractured fragments was registered. Mean data were analysed statistically using the Kruskal-Wallis test and post hoc Tukey tests via SPSS 21.0 software. The statistical significance level was set at 5%. The cyclic fatigue resistance of the R-Pilot files was significantly greater than the other instruments, and the One G was significantly lower (P < 0.05). There was no difference between the HyFlex EDM and the ProGlider (P > 0.05). No significant difference (P > 0.05) was evident in the mean length of the fractured fragments of the various instruments. The cyclic fatigue resistance of the R-Pilot reciprocating glide path file was significantly greater than that of the rotary HyFlex EDM, ProGlider and One G glide path files. © 2018 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Jeong, Jeung Yeol; Chung, Pill Ku; Yoo, Jae Chul
2017-01-01
Hyaluronate-based anti-adhesive agents are expected to enhance rotator cuff healing; however, their effect on the incidence and extent of postoperative complications such as stiffness and retears has not been investigated. From July 2012 to February 2013, 80 patients undergoing arthroscopic rotator cuff repair surgery were prospectively enrolled. Forty patients were assigned to the control group, while the other 40 were assigned to the injection group and received a Guardix-sol injection immediately after surgery. Passive range of motion, pain visual analog scale, and functional score were assessed at 8 weeks, 6 months, and 24 months postoperatively. Gliding motion between the deltoid muscle and the greater tuberosity of the proximal humerus was evaluated using ultrasonography at 2 and 8 weeks postoperatively, and tendon integrity was evaluated using magnetic resonance imaging at 6 months postoperatively. We found no significant difference between the groups regarding gliding motion at 2 weeks postoperatively. However, at 8 weeks, the incidence of poor gliding motion was 2.5% and 15% for the injected patients and control group, respectively, which was statistically significant. At 6 months after surgery, the retear rate between the two groups was not statistically significant. We found no statistically significant difference between the two groups regarding retear rate and clinical score throughout the follow-up period. We noted no complications related to the use of Guardix-sol. Patients who received the Guardix-sol injection showed improved gliding motion between the deltoid muscle and the greater tuberosity in the early postoperative period.
The detection of higher-order acoustic transitions is reflected in the N1 ERP.
Weise, Annekathrin; Schröger, Erich; Horváth, János
2018-01-30
The auditory system features various types of dedicated change detectors enabling the rapid parsing of auditory stimulation into distinct events. The activity of such detectors is reflected by the N1 ERP. Interestingly, certain acoustic transitions show an asymmetric N1 elicitation pattern: whereas first-order transitions (e.g., a change from a segment of constant frequency to a frequency glide [c-to-g change]) elicit N1, higher-order transitions (e.g., glide-to-constant [g-to-c] changes) do not. Consensus attributes this asymmetry to the absence of any available sensory mechanism that is able to rapidly detect higher-order changes. In contrast, our study provides compelling evidence for such a mechanism. We collected electrophysiological and behavioral data in a transient-detection paradigm. In each condition, a random (50%-50%) sequence of two types of tones occurred, which did or did not contain a transition (e.g., c-to-g and constant stimuli or g-to-c and glide tones). Additionally, the rate of pitch change of the glide varied (i.e., 10 vs. 40 semitones per second) in order to increase the number of responding neural assemblies. The rate manipulation modulated transient ERPs and behavioral detection performance for g-to-c transitions much stronger than for c-to-g transitions. The topographic and tomographic analyses suggest that the N1 response to c-to-g and also to g-to-c transitions emerged from the superior temporal gyrus. This strongly supports a sensory mechanism that allows the fast detection of higher-order changes. © 2018 Society for Psychophysiological Research.
Ducret, Adrien; Valignat, Marie-Pierre; Mouhamar, Fabrice; Mignot, Tâm; Theodoly, Olivier
2012-01-01
In biology, the extracellular matrix (ECM) promotes both cell adhesion and specific recognition, which is essential for central developmental processes in both eukaryotes and prokaryotes. However, live studies of the dynamic interactions between cells and the ECM, for example during motility, have been greatly impaired by imaging limitations: mostly the ability to observe the ECM at high resolution in absence of specific staining by live microscopy. To solve this problem, we developed a unique technique, wet-surface enhanced ellipsometry contrast (Wet-SEEC), which magnifies the contrast of transparent organic materials deposited on a substrate (called Wet-surf) with exquisite sensitivity. We show that Wet-SEEC allows both the observation of unprocessed nanofilms as low as 0.2 nm thick and their accurate 3D topographic reconstructions, directly by standard light microscopy. We next used Wet-SEEC to image slime secretion, a poorly defined property of many prokaryotic and eukaryotic organisms that move across solid surfaces in absence of obvious extracellular appendages (gliding). Using combined Wet-SEEC and fluorescent-staining experiments, we observed slime deposition by gliding Myxococcus xanthus cells at unprecedented resolution. Altogether, the results revealed that in this bacterium, slime associates preferentially with the outermost components of the motility machinery and promotes its adhesion to the substrate on the ventral side of the cell. Strikingly, analogous roles have been proposed for the extracellular proteoglycans of gliding diatoms and apicomplexa, suggesting that slime deposition is a general means for gliding organisms to adhere and move over surfaces. PMID:22665761
Xu, Guang-Hui; Zhao, Li-Jun; Shen, Chen-Chen
2015-01-01
Gliding adaptations in thoracopterid flying fishes represent a remarkable case of convergent evolution of overwater gliding strategy with modern exocoetid flying fishes, but the evolutionary origin of this strategy was poorly known in the thoracopterids because of lack of transitional forms. Until recently, all thoracopterids, from the Late Triassic of Austria and Italy and the Middle Triassic of South China, were highly specialized 'four-winged' gliders in having wing-like paired fins and an asymmetrical caudal fin with the lower caudal lobe notably larger than the upper lobe. Here, we show that the new genus Wushaichthys and the previously alleged 'peltopleurid' Peripeltopleurus, from the Middle Triassic (Ladinian, 235-242 Ma) of South China and near the Ladinian/Anisian boundary of southern Switzerland and northern Italy, respectively, represent the most primitive and oldest known thoracopterids. Wushaichthys, the most basal thoracopterid, shows certain derived features of this group in the skull. Peripeltopleurus shows a condition intermediate between Wushaichthys and Thoracopterus in having a slightly asymmetrical caudal fin but still lacking wing-like paired fins. Phylogenetic studies suggest that the evolution of overwater gliding of thoracopterids was gradual in nature; a four-stage adaption following the 'cranial specialization-asymmetrical caudal fin-enlarged paired fins-scale reduction' sequence has been recognized in thoracopterid evolution. Moreover, Wushaichthys and Peripeltopleurus bear hooklets on the anal fin of supposed males, resembling those of modern viviparious teleosts. Early thoracopterids probably had evolved a live-bearing reproductive strategy. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
2011-01-01
Background Out-of-hospital endotracheal intubation performed by paramedics using the Macintosh blade for direct laryngoscopy is associated with a high incidence of complications. The novel technique of video laryngoscopy has been shown to improve glottic view and intubation success in the operating room. The aim of this study was to compare glottic view, time of intubation and success rate of the McGrath® Series 5 and GlideScope® Ranger video laryngoscopes with the Macintosh laryngoscope by paramedics. Methods Thirty paramedics performed six intubations in a randomised order with all three laryngoscopes in an airway simulator with a normal airway. Subsequently, every participant performed one intubation attempt with each device in the same manikin with simulated cervical spine rigidity using a cervical collar. Glottic view, time until visualisation of the glottis and time until first ventilation were evaluated. Results Time until first ventilation was equivalent after three intubations in the first scenario. In the scenario with decreased cervical motion, the time until first ventilation was longer using the McGrath® compared to the GlideScope® and AMacintosh (p < 0.01). The success rate for endotracheal intubation was similar for all three devices. Glottic view was only improved using the McGrath® device (p < 0.001) compared to using the Macintosh blade. Conclusions The learning curve for video laryngoscopy in paramedics was steep in this study. However, these data do not support prehospital use of the McGrath® and GlideScope® devices by paramedics. PMID:21241469
Smith, Darren A; Saranga, Jacob; Pritchard, Andrew; Kommatas, Nikolaos A; Punnoose, Shinu Kovelal; Kale, Supriya Tukaram
2018-01-01
Mulligan's mobilisation-with-movement (MWM) techniques are proposed to achieve their clinical benefit via neurophysiological mechanisms. However, previous research has focussed on responses in the sympathetic nervous system only, and is not conclusive. An alternative measure of neurophysiological response to MWM is required to support or refute this mechanism of action. Recently, vibration threshold (VT) has been used to quantify changes in the sensory nervous system in patients experiencing musculoskeletal pain. To investigate the effect of a lateral glide MWM of the hip joint on vibration threshold compared to a placebo and control condition in asymptomatic volunteers. Fifteen asymptomatic volunteers participated in this single-blinded, randomised, within-subject, placebo, control design. Participants received each of three interventions in a randomised order; a lateral glide MWM of the hip joint into flexion, a placebo MWM, and a control intervention. Vibration threshold (VT) measures were taken at baseline and immediately after each intervention. Mean change in VT from baseline was calculated for each intervention and then analysed for between group differences using a one-way analysis of variance (ANOVA). A one-way ANOVA revealed no statistically significant differences between the three experimental conditions (P = 0.812). This small study found that a lateral glide MWM of the hip did not significantly change vibration threshold compared to a placebo and control intervention in an asymptomatic population. This study provides a method of using vibration threshold to investigate the potential neurophysiological effects of a manual therapy intervention that should be repeated in a larger, symptomatic population. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ordinola-Zapata, R; Bramante, C M; de Moraes, I G; Bernardineli, N; Garcia, R B; Gutmann, J L
2009-03-01
To analyse the gutta-percha filled area of C-shaped molar teeth root filled with the modified MicroSeal technique with reference to the radiographic features and the C-shaped canal configuration. Twenty-three mandibular second molar teeth with C-shaped roots were classified according to their radiographic features as: type I--merging, type II--symmetrical and type III--asymmetrical. The canals were root filled using a modified technique of the MicroSeal system. Horizontal sections at intervals of 600 mum were made 1 mm from the apex to the subpulpal floor level. The percentage of gutta-percha area from the apical, middle and coronal levels of the radiographic types was analysed using the Kruskal-Wallis test. Complementary analysis of the C-shaped canal configurations (C1, C2 and C3) determined from cross-sections from the apical third was performed in a similar way. No significant differences were found between the radiographic types in terms of the percentage of gutta-percha area at any level (P > 0.05): apical third, type I: 77.04%, II: 70.48% and III: 77.13%, middle third, type I: 95.72%, II: 93.17%, III: 91.13% and coronal level, type I: 98.30%, II: 98.25%, III: 97.14%. Overall, the percentage of the filling material was lower in the apical third (P < 0.05). No significant differences were found between the C-shaped canal configurations apically; C1: 72.64%, C2: 79.62%, C3: 73.51% (P > 0.05). The percentage of area filled with gutta-percha was similar in the three radiographic types and canal configuration categories of C-shaped molars. These results show the difficulty of achieving predictable filling of the root canal system when this anatomical variation exists. In general, the apical third was less completely filled.
NASA Astrophysics Data System (ADS)
Anthony, R. E.; Ringler, A. T.; Holland, A. A.; Wilson, D. C.
2017-12-01
The EarthScope USArray Transportable Array (TA) has now covered the US with 3-component broadband seismometers at approximately 70 km station spacing and deployment durations of approximately 2 years. This unprecedented coverage, combined with high-quality and near homogenous installation techniques, offers a novel dataset in which to characterize spatially varying levels of background seismic noise across the United States. We present background noise maps in period bands of interest to earthquake and imaging seismology across the US (lower 48 states and Alaska). Early results from the contiguous 48 states demonstrate that ambient noise levels within the body wave period band (1-5 s) vary by > 20 dB (rel. 1 (m/s2)2/Hz) with the highest noise levels occurring at stations located within sedimentary basins and lowest within the mountain ranges of the Western US. Additionally, stations around the Great Lakes observe heightened noise levels in this band beyond the aforementioned basin amplification. We attribute this observation to local swell activity in the Great Lakes generating short-period microseism signals. This suggests that lake-generated microseisms may be a significant source of noise for Alaskan deployments situated in close proximity to lakes to facilitate float plane access. We further investigate how basin amplification and short-period lake microseism signals may noticeably impact detection and signal-to-noise of teleseismic body wave signals during certain time periods. At longer-periods (> 20 s), we generally observe larger noise levels on the horizontal components of stations situated in basins or on soft sediment, likely caused by locally induced tilt of the sensor. We will present similar analysis from the initial Alaska TA dataset to quantitatively assess how utilization of posthole sensors affects signal-to-noise for the long-period horizontal wavefield.
Seasonal variation in Rayleigh-to-Love wave ratio in the secondary microseism
NASA Astrophysics Data System (ADS)
Tanimoto, T.; Hadziioannou, C.; Igel, H.; Wassermann, J. M.; Schreiber, U.; Gebauer, A.; Chow, B.
2015-12-01
The Ring Laser (the G-ring) at Wettzell (WET), Germany, is a rotation-measurement instrument that can monitor tiny variations in seismic noise. It essentially records only SH-type signals. Combined with a co-located seismograph (three-component seismograph STS-2), we can monitor the amount of Love waves from this instrument and that of Rayleigh waves from the STS seismograph. We report on seasonal variation of Rayleigh-to-Love wave ratio in the secondary microseism. The first step in our analysis is to obtain stacked Fourier spectra that were least affected by earthquakes. We used two earthquake catalogues to do this; the GCMT (Global Centroid Moment Tensor, Earthquakes M > 5.5) catalogue and the EMSC (European-Mediterranean Seismic Centre) catalogue for regional earthquakes (distance < 1000 km) with M > 4.5. We then created monthly averages of noise Fourier spectra for the frequency range 0.13-0.30 Hz using both the G-ring and STS data from 2009 to 2015. Monthly spectra show clear seasonal variations for the secondary microseism. We obtained surface vertical acceleration from STS and surface transverse acceleration from G-ring from which we can directly measure the Rayleigh-to-Love wave ratio. The procedure is the same with an account in our recent GRL paper (Tanimoto et al., 2015). Comparison between vertical acceleration and transverse acceleration shows that Rayleigh-wave surface amplitudes are about 20 percent larger than Love waves but in terms of kinetic energy this ratio will be different. We converted these ratios of surface amplitude to those of kinetic energy using an available earth model (Fichtner et al., 2013). The averaged ratio over the frequency band 0.13-0.30 Hz shows is in the range 0.6-0.8 in spring, autumn and winter but it increases to about 1.2 in summer. Except for the summer, the amount of Love waves are higher but the amount of Rayleigh waves increases in summer and appears to exceed that of Love waves.
Patel, Aniruddh D; Foxton, Jessica M; Griffiths, Timothy D
2005-12-01
Musically tone-deaf individuals have psychophysical deficits in detecting pitch changes, yet their discrimination of intonation contours in speech appears to be normal. One hypothesis for this dissociation is that intonation contours use coarse pitch contrasts which exceed the pitch-change detection thresholds of tone-deaf individuals (). We test this idea by presenting intonation contours for discrimination, both in the context of the original sentences in which they occur and in a "pure" form dissociated from any phonetic context. The pure form consists of gliding-pitch analogs of the original intonation contours which exactly follow their pattern of pitch and timing. If the spared intonation perception of tone-deaf individuals is due to the coarse pitch contrasts of intonation, then such individuals should discriminate the original sentences and the gliding-pitch analogs equally well. In contrast, we find that discrimination of the gliding-pitch analogs is severely degraded. Thus it appears that the dissociation between spoken and musical pitch perception in tone-deaf individuals is due to a deficit at a higher level than simple pitch-change detection.
Plastic deformation of tubular crystals by dislocation glide.
Beller, Daniel A; Nelson, David R
2016-09-01
Tubular crystals, two-dimensional lattices wrapped into cylindrical topologies, arise in many contexts, including botany and biofilaments, and in physical systems such as carbon nanotubes. The geometrical principles of botanical phyllotaxis, describing the spiral packings on cylinders commonly found in nature, have found application in all these systems. Several recent studies have examined defects in tubular crystals associated with crystalline packings that must accommodate a fixed tube radius. Here we study the mechanics of tubular crystals with variable tube radius, with dislocations interposed between regions of different phyllotactic packings. Unbinding and separation of dislocation pairs with equal and opposite Burgers vectors allow the growth of one phyllotactic domain at the expense of another. In particular, glide separation of dislocations offers a low-energy mode for plastic deformations of solid tubes in response to external stresses, reconfiguring the lattice step by step. Through theory and simulation, we examine how the tube's radius and helicity affects, and is in turn altered by, the mechanics of dislocation glide. We also discuss how a sufficiently strong bending rigidity can alter or arrest the deformations of tubes with small radii.
Wartel, Morgane; Czerwinski, Fabian; Le Gall, Anne-Valérie; Mauriello, Emilia M. F.; Bergam, Ptissam; Brun, Yves V.; Shaevitz, Joshua; Mignot, Tâm
2013-01-01
Eukaryotic cells utilize an arsenal of processive transport systems to deliver macromolecules to specific subcellular sites. In prokaryotes, such transport mechanisms have only been shown to mediate gliding motility, a form of microbial surface translocation. Here, we show that the motility function of the Myxococcus xanthus Agl-Glt machinery results from the recent specialization of a versatile class of bacterial transporters. Specifically, we demonstrate that the Agl motility motor is modular and dissociates from the rest of the gliding machinery (the Glt complex) to bind the newly expressed Nfs complex, a close Glt paralogue, during sporulation. Following this association, the Agl system transports Nfs proteins directionally around the spore surface. Since the main spore coat polymer is secreted at discrete sites around the spore surface, its transport by Agl-Nfs ensures its distribution around the spore. Thus, the Agl-Glt/Nfs machineries may constitute a novel class of directional bacterial surface transporters that can be diversified to specific tasks depending on the cognate cargo and machinery-specific accessories. PMID:24339744
Tautomer preference in PDB complexes and its impact on structure-based drug discovery.
Milletti, Francesca; Vulpetti, Anna
2010-06-28
Tautomer enrichment is a key step of ligand preparation prior to virtual screening. In this paper, we have investigated how tautomer preference in various media (water, gas phase, and crystal) compares to tautomer preference at the active site of the protein by analyzing the different possible H-bonding contacts for a set of 13 tautomeric structures. In addition, we have explored the impact of four different protocols for the enumeration of tautomers in virtual screening by using Flap, Glide, and Gold as docking tools on seven targets of the DUD data set. Excluding targets in which the binding does not involve tautomeric atoms (HSP90, p38, and VEGFR2), we found that the average receiver operating characteristic curve enrichment at 10% was 0.25 (Gold), 0.24 (Glide), and 0.50 (Flap) by considering only tautomers predicted to be unstable in water versus 0.41 (Gold), 0.56 (Glide), 0.51 (Flap) by limiting the enumeration process only to the predicted most stable tautomer. The inclusion of all tautomers (stable and unstable) yielded slightly poorer results than considering only the most stable form in water.
A protein secretion system linked to bacteroidete gliding motility and pathogenesis
Sato, Keiko; Naito, Mariko; Yukitake, Hideharu; Hirakawa, Hideki; Shoji, Mikio; McBride, Mark J.; Rhodes, Ryan G.; Nakayama, Koji
2009-01-01
Porphyromonas gingivalis secretes strong proteases called gingipains that are implicated in periodontal pathogenesis. Protein secretion systems common to other Gram-negative bacteria are lacking in P. gingivalis, but several proteins, including PorT, have been linked to gingipain secretion. Comparative genome analysis and genetic experiments revealed 11 additional proteins involved in gingipain secretion. Six of these (PorK, PorL, PorM, PorN, PorW, and Sov) were similar in sequence to Flavobacterium johnsoniae gliding motility proteins, and two others (PorX and PorY) were putative two-component system regulatory proteins. Real-time RT-PCR analysis revealed that porK, porL, porM, porN, porP, porT, and sov were down-regulated in P. gingivalis porX and porY mutants. Disruption of the F. johnsoniae porT ortholog resulted in defects in motility, chitinase secretion, and translocation of a gliding motility protein, SprB adhesin, to the cell surface, providing a link between a unique protein translocation system and a motility apparatus in members of the Bacteroidetes phylum. PMID:19966289
Flying fish accelerate at 5 G to leap from the water surface
NASA Astrophysics Data System (ADS)
Yang, Patricia; Phonekeo, Sulisay; Xu, Ke; Chang, Shui-Kai; Hu, David
2013-11-01
Flying fish can both swim underwater and glide in air. Transitioning from swimming to gliding requires penetration of the air-water interface, or breaking the ``surface tension barrier,'' a formidable task for juvenile flying fish measuring 1 to 5 cm in length. In this experimental investigation, we use high-speed videography to characterize the kinematics of juvenile flying fish as they leap from the water surface. During this process, which lasts 0.05 seconds, flying fish achieve body accelerations of 5 times earth's gravity and gliding speeds of 1.3 m/s, an order of magnitude higher than their steady swimming speed. We rationalize this anomalously high speed on the basis of the hydrodynamic and surface tension forces and torques experienced by the fish. Specifically, leaping fish experience skin friction forces only on the submerged part of their body, permitting them to achieve much higher speeds than in steady underwater swimming. We also perform experiments using a towed flying fish mimc to determine optimality of various parameters in this process, including body angle and start position with respect to the water surface.
Plastic deformation of tubular crystals by dislocation glide
NASA Astrophysics Data System (ADS)
Beller, Daniel A.; Nelson, David R.
2016-09-01
Tubular crystals, two-dimensional lattices wrapped into cylindrical topologies, arise in many contexts, including botany and biofilaments, and in physical systems such as carbon nanotubes. The geometrical principles of botanical phyllotaxis, describing the spiral packings on cylinders commonly found in nature, have found application in all these systems. Several recent studies have examined defects in tubular crystals associated with crystalline packings that must accommodate a fixed tube radius. Here we study the mechanics of tubular crystals with variable tube radius, with dislocations interposed between regions of different phyllotactic packings. Unbinding and separation of dislocation pairs with equal and opposite Burgers vectors allow the growth of one phyllotactic domain at the expense of another. In particular, glide separation of dislocations offers a low-energy mode for plastic deformations of solid tubes in response to external stresses, reconfiguring the lattice step by step. Through theory and simulation, we examine how the tube's radius and helicity affects, and is in turn altered by, the mechanics of dislocation glide. We also discuss how a sufficiently strong bending rigidity can alter or arrest the deformations of tubes with small radii.
Engineering Hydrodynamic AUV Hulls
NASA Astrophysics Data System (ADS)
Allen, J.
2016-12-01
AUV stands for autonomous underwater vehicle. AUVs are used in oceanography and are similar to gliders. MBARIs AUVs as well as other AUVs map the ocean floor which is very important. They also measure physical characteristics of the water, such as temperature and salinity. My science fair project for 4th grade was a STEM activity in which I built and tested 3 different AUV bodies. I wanted to find out which design was the most hydrodynamic. I tested three different lengths of AUV hulls to see which AUV would glide the farthest. The first was 6 inches. The second was 12 inches and the third was 18 inches. I used clay for the nosecone and cut a ruler into two and made it the fin. Each AUV used the same nosecone and fin. I tested all three designs in a pool. I used biomimicry to create my hypothesis. When I was researching I found that long slim animals swim fastest. So, my hypothesis is the longer AUV will glide farthest. In the end I was right. The longer AUV did glide the farthest.
Lentz, Christian S.; Sattler, Julia M.; Fendler, Martina; Gottwalt, Simon; Halls, Victoria S.; Strassel, Silke; Arriens, Sandra; Hannam, Jeffrey S.; Specht, Sabine; Famulok, Michael; Mueller, Ann-Kristin; Hoerauf, Achim
2014-01-01
wALADin1 benzimidazoles are specific inhibitors of δ-aminolevulinic acid dehydratase from Wolbachia endobacteria of filarial nematodes. We report that wALADin1 and two derivatives killed blood stage Plasmodium falciparum in vitro (50% inhibitory concentrations, 39, 7.7, and 12.8 μM, respectively). One of these derivatives inhibited gliding motility of Plasmodium berghei ANKA infectious sporozoites with nanomolar affinity and blocked invasion into hepatocytes but did not affect intrahepatocytic replication. Hence, wALADin1 benzimidazoles are tools to study gliding motility and potential antiplasmodial drug candidates. PMID:25313210
Research on motion model for the hypersonic boost-glide aircraft
NASA Astrophysics Data System (ADS)
Xu, Shenda; Wu, Jing; Wang, Xueying
2015-11-01
A motion model for the hypersonic boost-glide aircraft(HBG) was proposed in this paper, which also analyzed the precision of model through simulation. Firstly the trajectory of HBG was analyzed, and a scheme which divide the trajectory into two parts then build the motion model on each part. Secondly a restrained model of boosting stage and a restrained model of J2 perturbation were established, and set up the observe model. Finally the analysis of simulation results show the feasible and high-accuracy of the model, and raise a expectation for intensive research.
Glide path preparation in S-shaped canals with rotary pathfinding nickel-titanium instruments.
Ajuz, Natasha C C; Armada, Luciana; Gonçalves, Lucio S; Debelian, Gilberto; Siqueira, José F
2013-04-01
This study compared the incidence of deviation along S-shaped (double-curved) canals after glide path preparation with 2 nickel-titanium (NiTi) rotary pathfinding instruments and hand K-files. S-shaped canals from 60 training blocks were filled with ink, and preinstrumentation images were obtained by using a stereomicroscope. Glide path preparation was performed by an endodontist who used hand stainless steel K-files (up to size 20), rotary NiTi PathFile instruments (up to size 19), or rotary NiTi Scout RaCe instruments (up to size 20). Postinstrumentation images were taken by using exactly the same conditions as for the preinstrumentation images, and both pictures were superimposed. Differences along the S-shaped canal for the mesial and distal aspects were measured to evaluate the occurrence of deviation. Intragroup analysis showed that all instruments promoted some deviation in virtually all levels. Overall, regardless of the group, deviations were observed in the mesial wall at the canal terminus and at levels 4, 5, 6 and 7 mm and in the distal wall at levels 1, 2, and 3 mm. These levels corresponded to the inner walls of each curvature. Both rotary NiTi instruments performed significantly better than hand K-files at all levels (P < .05), except for PathFiles at the 0-mm level. ScoutRaCe instruments showed significantly better results than PathFiles at levels 0, 2, 3, 5, and 6 mm (P < .05). Findings suggest that rotary NiTi instruments are suitable for adequate glide path preparation because they promoted less deviation from the original canal anatomy when compared with hand-operated instruments. Of the 2 rotary pathfinding instruments, Scout RaCe showed an overall significantly better performance. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Cattenoz, Pierre B.; Popkova, Anna; Southall, Tony D.; Aiello, Giuseppe; Brand, Andrea H.; Giangrande, Angela
2016-01-01
High-throughput screens allow us to understand how transcription factors trigger developmental processes, including cell specification. A major challenge is identification of their binding sites because feedback loops and homeostatic interactions may mask the direct impact of those factors in transcriptome analyses. Moreover, this approach dissects the downstream signaling cascades and facilitates identification of conserved transcriptional programs. Here we show the results and the validation of a DNA adenine methyltransferase identification (DamID) genome-wide screen that identifies the direct targets of Glide/Gcm, a potent transcription factor that controls glia, hemocyte, and tendon cell differentiation in Drosophila. The screen identifies many genes that had not been previously associated with Glide/Gcm and highlights three major signaling pathways interacting with Glide/Gcm: Notch, Hedgehog, and JAK/STAT, which all involve feedback loops. Furthermore, the screen identifies effector molecules that are necessary for cell-cell interactions during late developmental processes and/or in ontogeny. Typically, immunoglobulin (Ig) domain–containing proteins control cell adhesion and axonal navigation. This shows that early and transiently expressed fate determinants not only control other transcription factors that, in turn, implement a specific developmental program but also directly affect late developmental events and cell function. Finally, while the mammalian genome contains two orthologous Gcm genes, their function has been demonstrated in vertebrate-specific tissues, placenta, and parathyroid glands, begging questions on the evolutionary conservation of the Gcm cascade in higher organisms. Here we provide the first evidence for the conservation of Gcm direct targets in humans. In sum, this work uncovers novel aspects of cell specification and sets the basis for further understanding of the role of conserved Gcm gene regulatory cascades. PMID:26567182
Türker, Sevinç-Aktemur
2015-01-01
Background This study aimed to compare glide path preparation of different pathfinding systems and their effects on the apical transportation of ProTaper Next (Dentsply Maillefer, Ballaigues, Switzerland) in mesial root canals of extracted human mandibular molars, using digital subtraction radiography. Material and Methods The mesial canals of 40 mandibular first molars (with curvature angles between 25° and 35°) were selected for this study. The specimens were divided randomly into 4 groups with 10 canals each. Glide paths were created in group 1 with #10, #15 and #20 K-type (Dentsply Maillefer, Ballaigues, Switzerland) stainless steel manual files; in group 2 with Path-File (Dentsply Maillefer) #1, #2, and #3 and in group 3 with #16 ProGlider (Dentsply Maillefer) rotary instruments; in group 4 no glide paths were created. All canals were instrumented up to ProTaper Next X2 to the working length. A double digital radiograph technique was used, pre and post-instrumentation, to assess whether apical transportation and/or aberration in root canal morphology occurred. Instrument failures were also recorded. The data were analyzed statistically using ANOVA and Tukey tests (p<0.05). Results No significant differences were found among groups regarding apical transportation (p>0.05). Two ProTaper Next instruments failed in-group 4. Conclusions Within the parameters of this study, there was no difference between the performance of path-finding files and ProTaper Next system maintained root canal curvature well and was safe to use either with path-finding files or alone. Key words:Glide path, PathFile, ProGlider, ProTaper Next, transportation. PMID:26330936
Interaction of gliding motion of bacteria with rheological properties of the slime.
Asghar, Z; Ali, N; Sajid, M
2017-08-01
Bacteria which do not have organelles of motility, such as flagella, adopt gliding as a mode of locomotion. In gliding motility bacterium moves under its own power by secreting a layer of slime on the substrate. The exact mechanism by which a glider achieves motility is yet in controversy but there are evidences which support the wave-like undulation on the surface of the organism, as a possible mechanism of motility. Based on this observation, a model of undulating sheet over a layer of slime is examined as a possible model of the gliding motion of a bacterium. Three different non-Newtonian constitutive equations namely, finite extendable nonlinear elastic-peterline (FENE-P), Simplified Phan-Thien-Tanner (SPTT) and Rabinowitsch equations are used to capture the rheological properties of the slime. It is found that the governing equation describing the fluid mechanics of the model under lubrication approximation is same for all the considered three constitutive equations. In fact, it involves a single non-Newtonian parameter which assumes different values for each of the considered constitutive relations. This differential equation is solved using both perturbation and semi-analytic procedure. The perturbation solution is exploited to get an estimate of the speed of the glider for different values of the non-Newtonian parameter. The solution obtained via semi-analytic procedure is used to investigate the important features of the flow field in the layer of the slime beneath the glider when the glider is held fixed. The expression of forces generated by the organism and power required for propulsion are also derived based on the perturbation analysis. Copyright © 2017 Elsevier Inc. All rights reserved.
Gilly, William F; Zeidberg, Louis D; Booth, J Ashley T; Stewart, Julia S; Marshall, Greg; Abernathy, Kyler; Bell, Lauren E
2012-09-15
We studied the locomotion and behavior of Dosidicus gigas using pop-up archival transmitting (PAT) tags to record environmental parameters (depth, temperature and light) and an animal-borne video package (AVP) to log these parameters plus acceleration along three axes and record forward-directed video under natural lighting. A basic cycle of locomotor behavior in D. gigas involves an active climb of a few meters followed by a passive (with respect to jetting) downward glide carried out in a fins-first direction. Temporal summation of such climb-and-glide events underlies a rich assortment of vertical movements that can reach vertical velocities of 3 m s(-1). In contrast to such rapid movements, D. gigas spends more than 80% of total time gliding at a vertical velocity of essentially zero (53% at 0±0.05 m s(-1)) or sinking very slowly (28% at -0.05 to -0.15 m s(-1)). The vertical distribution of squid was compared with physical features of the local water column (temperature, oxygen and light). Oxygen concentrations of ≤20 μmol kg(-1), characteristic of the midwater oxygen minimum zone (OMZ), can influence the daytime depth of squid, but this depends on location and season, and squid can 'decouple' from this environmental feature. Light is also an important factor in determining daytime depth, and temperature can limit nighttime depth. Vertical velocities were compared over specific depth ranges characterized by large differences in dissolved oxygen. Velocities were generally reduced under OMZ conditions, with faster jetting being most strongly affected. These data are discussed in terms of increased efficiency of climb-and-glide swimming and the potential for foraging at hypoxic depths.
NASA Astrophysics Data System (ADS)
Coster, Pauline; Beard, K. Christopher; Salem, Mustafa; Chaimanee, Yaowalak; Jaeger, Jean-Jacques
2015-10-01
Anomaluroid rodents show interesting biogeographic and macroevolutionary patterns, although their fossil record is meager and knowledge of the natural history of extant members of the clade remains inadequate. Living anomaluroids (Anomaluridae) are confined to equatorial parts of western and central Africa, but the oldest known fossil anomaluroid (Pondaungimys) comes from the late middle Eocene of Myanmar. The first appearance of anomaluroids in the African fossil record coincides with the first appearances of hystricognathous rodents and anthropoid primates there. Both of the latter taxa are widely acknowledged to have originated in Asia, suggesting that anomaluroids may show a concordant biogeographic pattern. Here we describe two new taxa of African Paleogene anomaluroids from sites in the Sirt Basin of central Libya. These include a new Eocene species of the nementchamyid genus Kabirmys, which ranks among the oldest African anomaluroids recovered to date, and a new genus and species of Anomaluridae from the early Oligocene, which appears to be closely related to extant Zenkerella, the only living non-volant anomalurid. Phylogenetic analyses incorporating the new Libyan fossils suggest that anomaluroids are not specially related to Zegdoumyidae, which are the only African rodents known to antedate the first appearance of anomaluroids there. The evolution of gliding locomotion in Anomaluridae appears to conflict with traditional assessments of relationships among living anomalurid taxa. If the historically accepted division of Anomaluridae into Anomalurinae (extant and Miocene Anomalurus and Miocene Paranomalurus) and Zenkerellinae (extant and Miocene Zenkerella and extant Idiurus) is correct, then either gliding locomotion evolved independently in Anomalurinae and Idiurus or non-volant Zenkerella evolved from a gliding ancestor. Anatomical data related to gliding in Anomaluridae are more consistent with a nontraditional systematic arrangement, whereby non-volant Zenkerella is the sister group of a clade including both Anomalurus and Idiurus.
Kinematics of ram filter feeding and beat-glide swimming in the northern anchovy Engraulis mordax.
Carey, Nicholas; Goldbogen, Jeremy A
2017-08-01
In the dense aquatic environment, the most adept swimmers are streamlined to reduce drag and increase the efficiency of locomotion. However, because they open their mouth to wide gape angles to deploy their filtering apparatus, ram filter feeders apparently switch between diametrically opposite swimming modes: highly efficient, streamlined 'beat-glide' swimming, and ram filter feeding, which has been hypothesized to be a high-cost feeding mode because of presumed increased drag. Ram filter-feeding forage fish are thought to play an important role in the flux of nutrients and energy in upwelling ecosystems; however, the biomechanics and energetics of this feeding mechanism remain poorly understood. We quantified the kinematics of an iconic forage fish, the northern anchovy, Engraulis mordax , during ram filter feeding and non-feeding, mouth-closed beat-glide swimming. Although many kinematic parameters between the two swimming modes were similar, we found that swimming speeds and tailbeat frequencies were significantly lower during ram feeding. Rather than maintain speed with the school, a speed which closely matches theoretical optimum filter-feeding speeds was consistently observed. Beat-glide swimming was characterized by high variability in all kinematic parameters, but variance in kinematic parameters was much lower during ram filter feeding. Under this mode, body kinematics are substantially modified, and E. mordax swims more slowly and with decreased lateral movement along the entire body, but most noticeably in the anterior. Our results suggest that hydrodynamic effects that come with deployment of the filtering anatomy may limit behavioral options during foraging and result in slower swimming speeds during ram filtration. © 2017. Published by The Company of Biologists Ltd.
Cyclic fatigue resistance of R-Pilot, WaveOne Gold Glider, and ProGlider glide path instruments.
Keskin, Cangül; İnan, Uğur; Demiral, Murat; Keleş, Ali
2018-02-17
The aim of the present study was to compare the cyclic fatigue resistance of R-Pilot (VDW; Munich, Germany) with ProGlider (Denstply Sirona; Ballaigues, Switzerland) and WaveOne Gold Glider (Denstply Sirona; Ballaigues, Switzerland) glide path instruments. R-Pilot, ProGlider, and WaveOne Gold Glider instruments were collected (n = 15) and tested in a dynamic cyclic fatigue test device, which has an artificial canal with 60° angle of curvature and a 5-mm radius of curvature. All instruments were operated until fracture occurred, and both time to fracture (TF) and the lengths of the fractured fragments were recorded. Mean and standard deviations of TF and fragment length were calculated for each reciprocating system. TF data and fractured fragment length data were subjected to one-way ANOVA and post-hoc Tukey tests (P < 0.05). Also a Weibull analysis was performed on TF data. The cyclic fatigue resistance values of the WaveOne Gold Glider and R-Pilot were significantly higher than those of the ProGlider (P < 0.05), with no significant difference between them (P > 0.05). Weibull analysis revealed that WaveOne Gold Glider showed the highest predicted TF value for 99% survival rate, which was followed by R-Pilot and ProGlider. Regarding the length of the fractured tips, there were no significant differences among the instruments (P > 0.05). The reciprocating WaveOne Gold Glider and R-Pilot instruments had significantly higher cyclic fatigue resistance than rotary ProGlider instruments. This study reported that novel reciprocating glide path instruments exhibited higher cyclic fatigue resistance than rotating glide path instrument.
Effect of repetitive pecking at working length for glide path preparation using G-file.
Ha, Jung-Hong; Jeon, Hyo-Jin; Abed, Rashid El; Chang, Seok-Woo; Kim, Sung-Kyo; Kim, Hyeon-Cheol
2015-05-01
Glide path preparation is recommended to reduce torsional failure of nickel-titanium (NiTi) rotary instruments and to prevent root canal transportation. This study evaluated whether the repetitive insertions of G-files to the working length maintain the apical size as well as provide sufficient lumen as a glide path for subsequent instrumentation. The G-file system (Micro-Mega) composed of G1 and G2 files for glide path preparation was used with the J-shaped, simulated resin canals. After inserting a G1 file twice, a G2 file was inserted to the working length 1, 4, 7, or 10 times for four each experimental group, respectively (n = 10). Then the canals were cleaned by copious irrigation, and lubricated with a separating gel medium. Canal replicas were made using silicone impression material, and the diameter of the replicas was measured at working length (D0) and 1 mm level (D1) under a scanning electron microscope. Data was analysed by one-way ANOVA and post-hoc tests (p = 0.05). The diameter at D0 level did not show any significant difference between the 1, 2, 4, and 10 times of repetitive pecking insertions of G2 files at working length. However, 10 times of pecking motion with G2 file resulted in significantly larger canal diameter at D1 (p < 0.05). Under the limitations of this study, the repetitive insertion of a G2 file up to 10 times at working length created an adequate lumen for subsequent apical shaping with other rotary files bigger than International Organization for Standardization (ISO) size 20, without apical transportation at D0 level.
Locomotion and the Cost of Hunting in Large, Stealthy Marine Carnivores.
Williams, Terrie M; Fuiman, Lee A; Davis, Randall W
2015-10-01
Foraging by large (>25 kg), mammalian carnivores often entails cryptic tactics to surreptitiously locate and overcome highly mobile prey. Many forms of intermittent locomotion from stroke-and-glide maneuvers by marine mammals to sneak-and-pounce behaviors by terrestrial canids, ursids, and felids are involved. While affording proximity to vigilant prey, these tactics are also associated with unique energetic costs and benefits to the predator. We examined the energetic consequences of intermittent locomotion in mammalian carnivores and assessed the role of these behaviors in overall foraging efficiency. Behaviorally-linked, three-axis accelerometers were calibrated to provide instantaneous locomotor behaviors and associated energetic costs for wild adult Weddell seals (Leptonychotes weddellii) diving beneath the Antarctic ice. The results were compared with previously published values for other marine and terrestrial carnivores. We found that intermittent locomotion in the form of extended glides, burst-and-glide swimming, and rollercoaster maneuvers while hunting silverfish (Pleuragramma antarcticum) resulted in a marked energetic savings for the diving seals relative to continuously stroking. The cost of a foraging dive by the seals decreased by 9.2-59.6%, depending on the proportion of time gliding. These energetic savings translated into exceptionally low transport costs during hunting (COTHUNT) for diving mammals. COTHUNT for Weddell seals was nearly six times lower than predicted for large terrestrial carnivores, and demonstrates the importance of turning off the propulsive machinery to facilitate cost-efficient foraging in highly active, air-breathing marine predators. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Leung, Jacqueline M.; Rould, Mark A.; Konradt, Christoph; Hunter, Christopher A.; Ward, Gary E.
2014-01-01
T. gondii uses substrate-dependent gliding motility to invade cells of its hosts, egress from these cells at the end of its lytic cycle and disseminate through the host organism during infection. The ability of the parasite to move is therefore critical for its virulence. T. gondii engages in three distinct types of gliding motility on coated two-dimensional surfaces: twirling, circular gliding and helical gliding. We show here that motility in a three-dimensional Matrigel-based environment is strikingly different, in that all parasites move in irregular corkscrew-like trajectories. Methods developed for quantitative analysis of motility parameters along the smoothed trajectories demonstrate a complex but periodic pattern of motility with mean and maximum velocities of 0.58±0.07 µm/s and 2.01±0.17 µm/s, respectively. To test how a change in the parasite's crescent shape might affect trajectory parameters, we compared the motility of Δphil1 parasites, which are shorter and wider than wild type, to the corresponding parental and complemented lines. Although comparable percentages of parasites were moving for all three lines, the Δphil1 mutant exhibited significantly decreased trajectory lengths and mean and maximum velocities compared to the parental parasite line. These effects were either partially or fully restored upon complementation of the Δphil1 mutant. These results show that alterations in morphology may have a significant impact on T. gondii motility in an extracellular matrix-like environment, provide a possible explanation for the decreased fitness of Δphil1 parasites in vivo, and demonstrate the utility of the quantitative three-dimensional assay for studying parasite motility. PMID:24489670
Heat transport system, method and material
Musinski, Donald L.
1987-01-01
A heat transport system, method and composite material in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure.
A Highly Stretchable and Robust Non-fluorinated Superhydrophobic Surface.
Ju, Jie; Yao, Xi; Hou, Xu; Liu, Qihan; Zhang, Yu Shrike; Khademhosseini, Ali
2017-08-21
Superhydrophobic surface simultaneously possessing exceptional stretchability, robustness, and non-fluorination is highly desirable in applications ranging from wearable devices to artificial skins. While conventional superhydrophobic surfaces typically feature stretchability, robustness, or non-fluorination individually, co-existence of all these features still remains a great challenge. Here we report a multi-performance superhydrophobic surface achieved through incorporating hydrophilic micro-sized particles with pre-stretched silicone elastomer. The commercial silicone elastomer (Ecoflex) endowed the resulting surface with high stretchability; the densely packed micro-sized particles in multi-layers contributed to the preservation of the large surface roughness even under large strains; and the physical encapsulation of the microparticles by silicone elastomer due to the capillary dragging effect and the chemical interaction between the hydrophilic silica and the elastomer gave rise to the robust and non-fluorinated superhydrophobicity. It was demonstrated that the as-prepared fluorine-free surface could preserve the superhydrophobicity under repeated stretching-relaxing cycles. Most importantly, the surface's superhydrophobicity can be well maintained after severe rubbing process, indicating wear-resistance. Our novel superhydrophobic surface integrating multiple key properties, i.e. stretchability, robustness, and non-fluorination, is expected to provide unique advantages for a wide range of applications in biomedicine, energy, and electronics.
Variation of phytoplankton assemblages along the Mozambique coast as revealed by HPLC and microscopy
NASA Astrophysics Data System (ADS)
Sá, C.; Leal, M. C.; Silva, A.; Nordez, S.; André, E.; Paula, J.; Brotas, V.
2013-05-01
This study is an integrated overview of pigment and microscopic analysis of phytoplankton communities throughout the Mozambican coast. Collected samples revealed notable patterns of phytoplankton occurrence and distribution, with community structure changing between regions and sample depth. Pigment data showed Delagoa Bight, Sofala Bank and Angoche as the most productive regions throughout the sampled area. In general, micro-sized phytoplankton, particularly diatoms, were important contributors to biomass both at surface and sub-surface maximum (SSM) samples, although were almost absent in the northern stations. In contrast, nano- and pico-sized phytoplankton revealed opposing patterns. Picophytoplankton were most abundant at surface, as opposed to nanophytoplankton, which were more abundant at the SSM. Microphytoplankton were associated with cooler southern water masses, while picophytoplankton were related to warmer northern water masses. Nanophytoplankton were found to increase their contribution to biomass with increasing SSM. Microscopy information on the genera and species level revealed the diatoms Chaetoceros spp., Proboscia alata, Pseudo-nitzschia spp., Cylindrotheca closterium and Hemiaulus haukii as the most abundant taxa of the micro-sized phytoplankton. Discosphaera tubifera and Emiliania huxleyi were the most abundant coccolithophores, nano-sized phytoplankton.
A micro-sized bio-solar cell for self-sustaining power generation.
Lee, Hankeun; Choi, Seokheun
2015-01-21
Self-sustainable energy sources are essential for a wide array of wireless applications deployed in remote field locations. Due to their self-assembling and self-repairing properties, "biological solar (bio-solar) cells" are recently gaining attention for those applications. The bio-solar cell can continuously generate electricity from microbial photosynthetic and respiratory activities under day-night cycles. Despite the vast potential and promise of bio-solar cells, they, however, have not yet successfully been translated into commercial applications, as they possess persistent performance limitations and scale-up bottlenecks. Here, we report an entirely self-sustainable and scalable microliter-sized bio-solar cell with significant power enhancement by maximizing solar energy capture, bacterial attachment, and air bubble volume in well-controlled microchambers. The bio-solar cell has a ~300 μL single chamber defined by laser-machined poly(methyl methacrylate) (PMMA) substrates and it uses an air cathode to allow freely available oxygen to act as an electron acceptor. We generated a maximum power density of 0.9 mW m(-2) through photosynthetic reactions of cyanobacteria, Synechocystis sp. PCC 6803, which is the highest power density among all micro-sized bio-solar cells.
NASA Astrophysics Data System (ADS)
Fan, Guangxin; Wen, Yin; Liu, Baozhong; Yang, Wenpeng
2018-02-01
Relationships between the performance and the crystallite size of the microsized spherical Li(Ni0.5Co0.2Mn0.3)O2 cathode material composed of aggregated nanosized primary particles have been comprehensively studied. The cathode material was synthesized by a high-temperature solid-state method. The results obtained by XRD, Rietveld refinement, SEM, HR-TEM, DSC, and galvanostatic test show that the crystallite size (XS) of Li(Ni0.5Co0.2Mn0.3)O2 is greatly affected by the temperature in the range of 750 to 820 °C. Most of all, the crystallite size plays a unique role in the performance of the material. That is, the electrochemical characteristics of Li(Ni0.5Co0.2Mn0.3)O2, such as discharge capacity, rate performance, and thermal stability, are closely related to the crystallite size. Furthermore, the retention of discharge capacity is determined by that of crystallite size in Li(Ni0.5Co0.2Mn0.3)O2 after 100 cycles.
Stress versus temperature dependence of activation energies for creep
NASA Technical Reports Server (NTRS)
Freed, A. D.; Raj, S. V.; Walker, K. P.
1992-01-01
The activation energy for creep at low stresses and elevated temperatures is associated with lattice diffusion, where the rate controlling mechanism for deformation is dislocation climb. At higher stresses and intermediate temperatures, the rate controlling mechanism changes from dislocation climb to obstacle-controlled dislocation glide. Along with this change in deformation mechanism occurs a change in the activation energy. When the rate controlling mechanism for deformation is obstacle-controlled dislocation glide, it is shown that a temperature-dependent Gibbs free energy does better than a stress-dependent Gibbs free energy in correlating steady-state creep data for both copper and LiF-22mol percent CaF2 hypereutectic salt.
Lentz, Christian S; Sattler, Julia M; Fendler, Martina; Gottwalt, Simon; Halls, Victoria S; Strassel, Silke; Arriens, Sandra; Hannam, Jeffrey S; Specht, Sabine; Famulok, Michael; Mueller, Ann-Kristin; Hoerauf, Achim; Pfarr, Kenneth M
2015-01-01
wALADin1 benzimidazoles are specific inhibitors of δ-aminolevulinic acid dehydratase from Wolbachia endobacteria of filarial nematodes. We report that wALADin1 and two derivatives killed blood stage Plasmodium falciparum in vitro (50% inhibitory concentrations, 39, 7.7, and 12.8 μM, respectively). One of these derivatives inhibited gliding motility of Plasmodium berghei ANKA infectious sporozoites with nanomolar affinity and blocked invasion into hepatocytes but did not affect intrahepatocytic replication. Hence, wALADin1 benzimidazoles are tools to study gliding motility and potential antiplasmodial drug candidates. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Yared, Ghassan
2015-02-01
This report introduces a novel technique that allows a safe and predictable canal negotiation, creation of a glide path and canal preparation with reciprocating nickel-titanium or stainless steel engine-driven instruments in canals where the use of rotary and the newly developed reciprocating instruments is contraindicated. In this novel technique, the instruments are used in reciprocating motion with very small angles. Hand files are not used regardless of the complexity of the canal anatomy. It also allows achieving predictable results in canal negotiation and glide path creation in challenging canals without the risk of instrument fracture.
2015-01-01
This report introduces a novel technique that allows a safe and predictable canal negotiation, creation of a glide path and canal preparation with reciprocating nickel-titanium or stainless steel engine-driven instruments in canals where the use of rotary and the newly developed reciprocating instruments is contraindicated. In this novel technique, the instruments are used in reciprocating motion with very small angles. Hand files are not used regardless of the complexity of the canal anatomy. It also allows achieving predictable results in canal negotiation and glide path creation in challenging canals without the risk of instrument fracture. PMID:25671218
Modeling defects and plasticity in MgSiO3 post-perovskite: Part 2-screw and edge [100] dislocations.
Goryaeva, Alexandra M; Carrez, Philippe; Cordier, Patrick
In this study, we propose a full atomistic study of [100] dislocations in MgSiO 3 post-perovskite based on the pairwise potential parameterized by Oganov et al. (Phys Earth Planet Inter 122:277-288, 2000) for MgSiO 3 perovskite. We model screw dislocations to identify planes where they glide easier. We show that despite a small tendency to core spreading in {011}, [100] screw dislocations glide very easily (Peierls stress of 1 GPa) in (010) where only Mg-O bonds are to be sheared. Crossing the Si-layers results in a higher lattice friction as shown by the Peierls stress of [100](001): 17.5 GPa. Glide of [100] screw dislocations in {011} appears also to be highly unfavorable. Whatever the planes, (010), (001) or {011}, edge dislocations are characterized by a wider core (of the order of 2 b ). Contrary to screw character, they bear negligible lattice friction (0.1 GPa) for each slip system. The layered structure of post-perovskite results in a drastic reduction in lattice friction opposed to the easiest slip systems compared to perovskite.
Active tails enhance arboreal acrobatics in geckos
Jusufi, Ardian; Goldman, Daniel I.; Revzen, Shai; Full, Robert J.
2008-01-01
Geckos are nature's elite climbers. Their remarkable climbing feats have been attributed to specialized feet with hairy toes that uncurl and peel in milliseconds. Here, we report that the secret to the gecko's arboreal acrobatics includes an active tail. We examine the tail's role during rapid climbing, aerial descent, and gliding. We show that a gecko's tail functions as an emergency fifth leg to prevent falling during rapid climbing. A response initiated by slipping causes the tail tip to push against the vertical surface, thereby preventing pitch-back of the head and upper body. When pitch-back cannot be prevented, geckos avoid falling by placing their tail in a posture similar to a bicycle's kickstand. Should a gecko fall with its back to the ground, a swing of its tail induces the most rapid, zero-angular momentum air-righting response yet measured. Once righted to a sprawled gliding posture, circular tail movements control yaw and pitch as the gecko descends. Our results suggest that large, active tails can function as effective control appendages. These results have provided biological inspiration for the design of an active tail on a climbing robot, and we anticipate their use in small, unmanned gliding vehicles and multisegment spacecraft. PMID:18347344
Energy Management of Manned Boost-Glide Vehicles: A Historical Perspective
NASA Technical Reports Server (NTRS)
Day, Richard E.
2004-01-01
As flight progressed from propellers to jets to rockets, the propulsive energy grew exponentially. With the development of rocket-only boosted vehicles, energy management of these boost-gliders became a distinct requirement for the unpowered return to base, alternate landing site, or water-parachute landing, starting with the X-series rocket aircraft and terminating with the present-day Shuttle. The problem presented here consists of: speed (kinetic energy) - altitude (potential energy) - steep glide angles created by low lift-to-drag ratios (L/D) - distance to landing site - and the bothersome effects of the atmospheric characteristics varying with altitude. The primary discussion regards post-boost, stabilized glides; however, the effects of centrifugal and geopotential acceleration are discussed as well. The aircraft and spacecraft discussed here are the X-1, X-2, X-15, and the Shuttle; and to a lesser, comparative extent, Mercury, Gemini, Apollo, and lifting bodies. The footprints, landfalls, and methods developed for energy management are also described. The essential tools required for energy management - simulator planning, instrumentation, radar, telemetry, extended land or water range, Mission Control Center (with specialist controllers), and emergency alternate landing sites - were first established through development of early concepts and were then validated by research flight tests.
Mucilage processing and secretion in the green alga closterium. I. Cytology and biochemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domozych, C.R.; Plante, K.; Blais, P.
1993-10-01
Placoderm desmids (Conjugales, Chlorophyta) such as Closterium exhibit a gliding locomotory behavior. This results from the forceful extrusion of an acidic polysaccharide from one pole of the cell causing the cell to glide in the opposite direction. A biochemical and cytological analysis of gliding behavior was performed. The mucilage is a high molecular weight polysaccharide rich in glucuronic acid and fucose. Under normal growth conditions, 3 [mu]g of mucilage is produced per cell in 30 days. Mucilage production increased 3-4 fold in cells challenged with low phosphate or nitrate conditions. A polyclonal antibody was raised against the mucilage and usedmore » in immunofluorescence studies. These results show that upon contact with another object Closterium aligns itself parallel to that object by a [open quotes]jack-knife[close quotes] motion. Subsequently, large amounts of mucilage are released to form elongate tubes enmeshing the cell with that object. In post-cytokinetic phases of the cell cycle, mucilage is extruded only through the pole of the developing semi-cell. Chlorotetracyclene-labeling of mucilage-secreting cells show a correlation between calcium-rich loci on the cell surface and sites of mucilage release. 20 refs., 25 figs., 1 tab.« less
The start in speed skating: from running to gliding.
de Koning, J J; Thomas, R; Berger, M; de Groot, G; van Ingen Schenau, G J
1995-12-01
The purpose of this study was to describe the push-off kinematics in speed skating using three-dimensional coordinates of elite male sprinters during the first part of a speed skating sprint. The velocity of the mass center of the skater's body VC, is decomposed into an "extension" velocity component VE, which is associated with the shortening and lengthening of the leg segment and a "rotational" velocity component Vr, which is the result of the rotation of the leg segment about the toe of the skate. It can be concluded that the mechanics of the first strokes of a sprint differ considerably from the mechanics of strokes later on. The first push-offs take place against fixed location on the ice. In these "running-like" push-offs the contribution of Vr in the forward direction is larger than the extension component Ve. Later on, the strokes are characterized by a gliding push-off in which Ve increases. In these gliding push-offs no direct relation exists between forward velocity of the skater and the extension in the joints. This allows skaters to obtain much higher velocities than can be obtained during running.
How Cheap Is Soaring Flight in Raptors? A Preliminary Investigation in Freely-Flying Vultures
Duriez, Olivier; Kato, Akiko; Tromp, Clara; Dell'Omo, Giacomo; Vyssotski, Alexei L.; Sarrazin, François; Ropert-Coudert, Yan
2014-01-01
Measuring the costs of soaring, gliding and flapping flight in raptors is challenging, but essential for understanding their ecology. Among raptors, vultures are scavengers that have evolved highly efficient soaring-gliding flight techniques to minimize energy costs to find unpredictable food resources. Using electrocardiogram, GPS and accelerometer bio-loggers, we report the heart rate (HR) of captive griffon vultures (Gyps fulvus and G. himalayensis) trained for freely-flying. HR increased three-fold at take-off (characterized by prolonged flapping flight) and landing (>300 beats-per-minute, (bpm)) compared to baseline levels (80–100 bpm). However, within 10 minutes after the initial flapping phase, HR in soaring/gliding flight dropped to values similar to baseline levels, i.e. slightly lower than theoretically expected. However, the extremely rapid decrease in HR was unexpected, when compared with other marine gliders, such as albatrosses. Weather conditions influenced flight performance and HR was noticeably higher during cloudy compared to sunny conditions when prolonged soaring flight is made easier by thermal ascending air currents. Soaring as a cheap locomotory mode is a crucial adaptation for vultures who spend so long on the wing for wide-ranging movements to find food. PMID:24454760
How cheap is soaring flight in raptors? A preliminary investigation in freely-flying vultures.
Duriez, Olivier; Kato, Akiko; Tromp, Clara; Dell'Omo, Giacomo; Vyssotski, Alexei L; Sarrazin, François; Ropert-Coudert, Yan
2014-01-01
Measuring the costs of soaring, gliding and flapping flight in raptors is challenging, but essential for understanding their ecology. Among raptors, vultures are scavengers that have evolved highly efficient soaring-gliding flight techniques to minimize energy costs to find unpredictable food resources. Using electrocardiogram, GPS and accelerometer bio-loggers, we report the heart rate (HR) of captive griffon vultures (Gyps fulvus and G. himalayensis) trained for freely-flying. HR increased three-fold at take-off (characterized by prolonged flapping flight) and landing (>300 beats-per-minute, (bpm)) compared to baseline levels (80-100 bpm). However, within 10 minutes after the initial flapping phase, HR in soaring/gliding flight dropped to values similar to baseline levels, i.e. slightly lower than theoretically expected. However, the extremely rapid decrease in HR was unexpected, when compared with other marine gliders, such as albatrosses. Weather conditions influenced flight performance and HR was noticeably higher during cloudy compared to sunny conditions when prolonged soaring flight is made easier by thermal ascending air currents. Soaring as a cheap locomotory mode is a crucial adaptation for vultures who spend so long on the wing for wide-ranging movements to find food.
NASA Astrophysics Data System (ADS)
Larsson, Kajsa; Hot, Dina; Gao, Jinlong; Kong, Chengdong; Li, Zhongshan; Aldén, Marcus; Bood, Joakim; Ehn, Andreas
2018-04-01
Ozone vapor, O3, is here visualized in a gliding arc discharge using photofragmentation laser-induced fluorescence. Ozone is imaged by first photodissociating the O3 molecule into an O radical and a vibrationally hot O2 fragment by a pump photon. Thereafter, the vibrationally excited O2 molecule absorbs a second (probe) photon that further transits the O2-molecule to an excited electronic state, and hence, fluorescence from the deexcitation process in the molecule can be detected. Both the photodissociation and excitation processes are achieved within one 248 nm KrF excimer laser pulse that is formed into a laser sheet and the fluorescence is imaged using an intensified CCD camera. The laser-induced signal in the vicinity of the plasma column formed by the gliding arc is confirmed to stem from O3 rather than plasma produced vibrationally hot O2. While both these products can be produced in plasmas a second laser pulse at 266 nm was utilized to separate the pump- from the probe-processes. Such arrangement allowed lifetime studies of vibrationally hot O2, which under these conditions were several orders of magnitude shorter than the lifetime of plasma-produced ozone.
Near-Optimal Guidance Method for Maximizing the Reachable Domain of Gliding Aircraft
NASA Astrophysics Data System (ADS)
Tsuchiya, Takeshi
This paper proposes a guidance method for gliding aircraft by using onboard computers to calculate a near-optimal trajectory in real-time, and thereby expanding the reachable domain. The results are applicable to advanced aircraft and future space transportation systems that require high safety. The calculation load of the optimal control problem that is used to maximize the reachable domain is too large for current computers to calculate in real-time. Thus the optimal control problem is divided into two problems: a gliding distance maximization problem in which the aircraft motion is limited to a vertical plane, and an optimal turning flight problem in a horizontal direction. First, the former problem is solved using a shooting method. It can be solved easily because its scale is smaller than that of the original problem, and because some of the features of the optimal solution are obtained in the first part of this paper. Next, in the latter problem, the optimal bank angle is computed from the solution of the former; this is an analytical computation, rather than an iterative computation. Finally, the reachable domain obtained from the proposed near-optimal guidance method is compared with that obtained from the original optimal control problem.
Zhang, Bin; Gurnaney, Harshad G; Stricker, Paul A; Galvez, Jorge A; Isserman, Rebecca S; Fiadjoe, John E
2018-05-09
The GlideScope Cobalt is one of the most commonly used videolaryngoscopes in pediatric anesthesia. Although visualization of the airway may be superior to direct laryngoscopy, users need to learn a new indirect way to insert the tracheal tube. Learning this indirect approach requires focused practice and instruction. Identifying the specific points during tube placement, during which clinicians struggle, would help with targeted education. We conducted this prospective observational study to determine the incidence and location of technical difficulties using the GlideScope, the success rates of various corrective maneuvers used, and the impact of technical difficulty on success rate. We conducted this observational study at our quaternary pediatric hospital between February 2014 and August 2014. We observed 200 GlideScope-guided intubations and documented key intubation-related outcomes. Inclusion criteria for patients were <6 years of age and elective surgery requiring endotracheal intubation. We documented the number of advancement maneuvers required to intubate the trachea, the location where technical difficulty occurred, the types of maneuvers used to address difficulties, and the tracheal intubation success rate. We used a bias-corrected bootstrapping method with 300 replicates to determine the 95% confidence interval (CI) around the rate of difficulty with an intubation attempt. After excluding attempts by inexperienced clinicians, there were 225 attempts in 187 patients, 58% (131 of 225; bootstrap CI, 51.6%-64.6%]) of the attempts had technical difficulties. Technical difficulty was most likely to occur when inserting the tracheal tube between the plane of the arytenoid cartilages to just beyond the vocal cords: "zone 3." Clockwise rotation of the tube was the most common successful corrective maneuver in zone 3. The overall tracheal intubation success rate was 98% (CI, 95%-99%); however, the first attempt success rate was only 80% (CI, 74%-86%). Patients with technical difficulty had more attempts (median [interquartile range], 2 [1-3] than those without technical difficulty median (interquartile range, 1 [1-1; P value <.01]). A variety of clinicians experience technical difficulties with the GlideScope Cobalt videolaryngoscope in children. These difficulties result in more tracheal intubation attempts, an important risk factor for intubation-associated complications. Targeted education of clinicians may reduce the incidence of technical difficulties.
Anisotropic plasticity of MgSiO3 post-perovskite from atomic scale modeling
NASA Astrophysics Data System (ADS)
Goryaeva, Alexandra; Carrez, Philippe; Cordier, Patrick
2016-04-01
In contrast to the lower mantle, the D″ layer exhibits significant seismic anisotropy both at the global and local scale [1]. Located right above the CMB, the D'' represents a very complex region and the causes of its pronounced anisotropy are still debated (CPO, oriented inclusions, layering, thermo-chemical heterogeneities etc). Among them, contribution of the post-perovskite rheology is commonly considered to be substantial. However, for this high-pressure phase, information about mechanical properties, probable slip systems, dislocations and their behavior under stress are still extremely challenging to obtain directly from experiments [3, 4]. Thus, we propose employing full atomistic modeling (based on the pairwise potential previously derived by [2]) to access the ability of MgSiO3 post-perovskite to deform by dislocation glide at 120 GPa. Lattice friction opposed to the dislocation glide in MgSiO3 post-perovskite is shown to be highly anisotropic. Thus, remarkably low values of Peierls stress (1 GPa) are found for the glide of [100] screw dislocations in (010), while glide in (001) requires almost 18 times larger stress values. In general, (010) plane is characterized by the lowest lattice friction which suggests (010) deformation textures. Comparison of our results with previous study of MgSiO3 perovskite (bridgmanite) [5], based on similar simulation approach, clearly shows that monotonous increase in Peierls stress of bridgmanite will be followed by a dramatic drop after the phase transition to the post-perovskite phase, which consequently suggests the D'' located at the CMB to be weaker than the overlying mantle. In addition to that, the observed evolution of CRSS with temperature clearly demonstrates that post-perovskite deforms in the athermal regime which backs up it to be a very weak phase and indicates its deformation by dislocation glide in contrast to high-lattice friction perovskite (bridgmanite) phase deformed by climb only. References [1] Panning M. and Romanowicz B., Geophys. J. Int., (2006), 167:361-379. [2] Oganov A. et al., Phys. Earth Planet. Int. (2000), 122:277-288. [3] Merkel S. et al. Science (2007), 316:1729-1732. [4] Miyagi L. et al. Science (2010), 329:1639-1641. [5] Hirel P. et al., Acta Mater (2014), 79:117-125.
Aerodynamic characteristics of flying fish in gliding flight.
Park, Hyungmin; Choi, Haecheon
2010-10-01
The flying fish (family Exocoetidae) is an exceptional marine flying vertebrate, utilizing the advantages of moving in two different media, i.e. swimming in water and flying in air. Despite some physical limitations by moving in both water and air, the flying fish has evolved to have good aerodynamic designs (such as the hypertrophied fins and cylindrical body with a ventrally flattened surface) for proficient gliding flight. Hence, the morphological and behavioral adaptations of flying fish to aerial locomotion have attracted great interest from various fields including biology and aerodynamics. Several aspects of the flight of flying fish have been determined or conjectured from previous field observations and measurements of morphometric parameters. However, the detailed measurement of wing performance associated with its morphometry for identifying the characteristics of flight in flying fish has not been performed yet. Therefore, in the present study, we directly measure the aerodynamic forces and moment on darkedged-wing flying fish (Cypselurus hiraii) models and correlated them with morphological characteristics of wing (fin). The model configurations considered are: (1) both the pectoral and pelvic fins spread out, (2) only the pectoral fins spread with the pelvic fins folded, and (3) both fins folded. The role of the pelvic fins was found to increase the lift force and lift-to-drag ratio, which is confirmed by the jet-like flow structure existing between the pectoral and pelvic fins. With both the pectoral and pelvic fins spread, the longitudinal static stability is also more enhanced than that with the pelvic fins folded. For cases 1 and 2, the lift-to-drag ratio was maximum at attack angles of around 0 deg, where the attack angle is the angle between the longitudinal body axis and the flying direction. The lift coefficient is largest at attack angles around 30∼35 deg, at which the flying fish is observed to emerge from the sea surface. From glide polar, we find that the gliding performance of flying fish is comparable to those of bird wings such as the hawk, petrel and wood duck. However, the induced drag by strong wing-tip vortices is one of the dominant drag components. Finally, we examine ground effect on the aerodynamic forces of the gliding flying fish and find that the flying fish achieves the reduction of drag and increase of lift-to-drag ratio by flying close to the sea surface.
Kesharwani, Rajesh Kumar; Singh, Durg Vijay; Misra, Krishna
2013-01-01
Cysteine proteases (falcipains), a papain-family of enzymes of Plasmodium falciparum, are responsible for haemoglobin degradation and thus necessary for its survival during asexual life cycle phase inside the human red blood cells while remaining non-functional for the human body. Therefore, these can act as potential targets for designing antimalarial drugs. The P. falciparum cysteine proteases, falcipain-II and falcipain- III are the enzymes which initiate the haemoglobin degradation, therefore, have been selected as targets. In the present study, we have designed new leupeptin analogues and subjected to virtual screening using Glide at the active site cavity of falcipain-II and falcipain-III to select the best docked analogues on the basis of Glide score and also compare with the result of AutoDock. The proposed analogues can be synthesized and tested in vivo as future potent antimalarial drugs. Protein falcipain-II and falcipain-III together with bounds inhibitors epoxysuccinate E64 (E64) and leupeptin respectively were retrieved from protein data bank (PDB) and latter leupeptin was used as lead molecule to design new analogues by using Ligbuilder software and refined the molecules on the basis of Lipinski rule of five and fitness score parameters. All the designed leupeptin analogues were screened via docking simulation at the active site cavity of falcipain-II and falcipain-III by using Glide software and AutoDock. The 104 new leupeptin-based antimalarial ligands were designed using structure-based drug designing approach with the help of Ligbuilder and subjected for virtual screening via docking simulation method against falcipain-II and falcipain-III receptor proteins. The Glide docking results suggest that the ligands namely result_037 shows good binding and other two, result_044 and result_042 show nearly similar binding than naturally occurring PDB bound ligand E64 against falcipain-II and in case of falcipain-III, 15 designed leupeptin analogues having better binding affinity compared to the PDB bound inhibitor of falcipain-III. The docking simulation results of falcipain-III with designed leupeptin analogues using Glide compared with AutoDock and find 80% similarity as better binder than leupeptin. These results further highlight new leupeptin analogues as promising future inhibitors for chemotherapeutic prevention of malaria. The result of Glide for falcipain-III has been compared with the result of AutoDock and finds very less differences in their order of binding affinity. Although there are no extra hydrogen bonds, however, equal number of hydrogen bonds with variable strength as compared to leupeptin along with the enhanced hydrophobic and electrostatic interactions in case of analogues supports our study that it holds the ligand molecules strongly within the receptor. The comparative e-pharmacophoric study also suggests and supports our predictions regarding the minimum features required in ligand molecule to behave as falcipain- III inhibitors and is also helpful in screening the large database as future antimalarial inhibitors.
NASA Astrophysics Data System (ADS)
Caduff, Rafael; Wiesmann, Andreas; Bühler, Yves
2016-04-01
Wet snow and full depth gliding avalanches commonly occur on slopes during springtime when air temperatures rise above 0°C for longer time. The increase in the liquid water content changes the mechanical properties of the snow pack. Until now, forecasts of wet snow avalanches are mainly done using weather data such as air and snow temperatures and incoming solar radiation. Even tough some wet snow avalanche events are indicated before the release by the formation of visible signs such as extension cracks or compressional bulges in the snow pack, a large number of wet snow avalanches are released without any previously visible signs. Continuous monitoring of critical slopes by terrestrial radar interferometry improves the scale of reception of differential movement into the range of millimetres per hour. Therefore, from a terrestrial and remote observation location, information on the mechanical state of the snow pack can be gathered on a slope wide scale. Recent campaigns in the Swiss Alps showed the potential of snow deformation measurements with a portable, interferometric real aperture radar operating at 17.2 GHz (1.76 cm wavelength). Common error sources for the radar interferometric measurement of snow pack displacements are decorrelation of the snow pack at different conditions, the influence of atmospheric disturbances on the interferometric phase and transition effects from cold/dry snow to warm/wet snow. Therefore, a critical assessment of those parameters has to be considered in order to reduce phase noise effects and retrieve accurate displacement measurements. The most recent campaign in spring 2015 took place in Davos Dorf/GR, Switzerland and its objective was to observe snow glide activity on the Dorfberg slope. A validation campaign using total station measurements showed good agreement to the radar interferometric line of sight displacement measurements in the range of 0.5 mm/h. The refinement of the method led to the detection of numerous gliding patches distributed over the entire slope. Typically, patches showing (full depth) snow gliding reach extensions from 5x10 metres up to 40x60 metres. Using a sampling interval of 1-3 minutes, the temporal displacement of such snow glide-hot spots can be tracked and thus revealing the individual signature of deformation. Nearly linear behaviour over several days, peaking in a final acceleration releasing an avalanche was observed as well characteristic acceleration and deceleration cycles during day and night could be captured. These cycles sometimes trigger an avalanche and sometimes reach a full stop of the differential snow glide movement. Findings of the different campaigns will be presented. We put them in the context for possible future campaigns that could be used to solve scientific questions regarding the mechanical properties of the snow pack. We evaluate the possibilities for the use of terrestrial radar interferometry for hazard management and avalanche forecast.
Heat transport system, method and material
Musinski, D.L.
1987-04-28
A heat transport system, method and composite material are disclosed in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure. 1 fig.
Characteristics of Broadband Seismic Noise in Taiwan and Neighboring Islands
NASA Astrophysics Data System (ADS)
Chen, Ching-Wei; Rau, Ruey-Juin
2017-04-01
We used seismic waveform data from 115 broad-band stations of BATS (Institute of Earth Science, Academia Sinica) and Central Weather Bureau Seismic Network from 2012 to 2016 for noise-level mapping in Taiwan and neighboring islands. We computed Power Spectral Density (PSD) for each station and analyzed long-term variance of microseism energy and polarizations of noise for severe weather events. The island of Taiwan is surrounded by ocean and the Central Range which has the highest peak Jade Mountain at 3,952 meters height occupies more than 66% of the island and departs it into the east and west coasts. The geographic settings then result in the high population density in the western plain and northern Taiwan. The dominant noise source in the microseism band (periods from 4-20 seconds) is the coupling between the near-coast ocean and sea floor which produces the high noise of averaging -130 dB along the west coastal area. In the eastern volcanic-arc coastal areas, the noise level is about 7% smaller than the west coast due to its deeper offshore water depth. As for the shorter periods (0.1-0.25 seconds) band, the so-called culture noise, an anthropic activity variance with the highest -103 dB can be identified in the metropolitan areas, such as the Taipei city and the noise level in the Central Range area is averaging -138 dB. Moreover, the noise also shows a daily and temporal evolution mainly related to the traffic effect. Furthermore, we determined the noise level for the entire island of Taiwan during 26-28 September, 2016, when the typhoon Megi hit the island and retrieved the enhancement of secondary microseism energy for each stations. Typhoon Megi landed in eastern and central Taiwan and reached the maximum wind speed of 45m/s in the surrounded eyewall. The Central Range, as a barrier, decreased the wind speed in southern Taiwan making an enhancement less than 10 dB, while in northern Taiwan where the direction the typhoon headed to, can reach more than 35 dB.
Geophysical Inversion with Adaptive Array Processing of Ambient Noise
NASA Astrophysics Data System (ADS)
Traer, James
2011-12-01
Land-based seismic observations of microseisms generated during Tropical Storms Ernesto and Florence are dominated by signals in the 0.15--0.5Hz band. Data from seafloor hydrophones in shallow water (70m depth, 130 km off the New Jersey coast) show dominant signals in the gravity-wave frequency band, 0.02--0.18Hz and low amplitudes from 0.18--0.3Hz, suggesting significant opposing wave components necessary for DF microseism generation were negligible at the site. Both storms produced similar spectra, despite differing sizes, suggesting near-coastal shallow water as the dominant region for observed microseism generation. A mathematical explanation for a sign-inversion induced to the passive fathometer response by minimum variance distortionless response (MVDR) beamforming is presented. This shows that, in the region containing the bottom reflection, the MVDR fathometer response is identical to that obtained with conventional processing multiplied by a negative factor. A model is presented for the complete passive fathometer response to ocean surface noise, interfering discrete noise sources, and locally uncorrelated noise in an ideal waveguide. The leading order term of the ocean surface noise produces the cross-correlation of vertical multipaths and yields the depth of sub-bottom reflectors. Discrete noise incident on the array via multipaths give multiple peaks in the fathometer response. These peaks may obscure the sub-bottom reflections but can be attenuated with use of Minimum Variance Distortionless Response (MVDR) steering vectors. A theory is presented for the Signal-to-Noise-Ratio (SNR) for the seabed reflection peak in the passive fathometer response as a function of seabed depth, seabed reflection coefficient, averaging time, bandwidth and spatial directivity of the noise field. The passive fathometer algorithm was applied to data from two drifting array experiments in the Mediterranean, Boundary 2003 and 2004, with 0.34s of averaging time. In the 2004 experiment, the response showed the array depth varied periodically with an amplitude of 1 m and a period of 7 s consistent with wave driven motion of the array. This introduced a destructive interference which prevents the SNR growing with averaging time, unless the motion is removed by use of a peak tracker.
Comparative study of flare control laws
NASA Technical Reports Server (NTRS)
Nadkarni, A. A.
1981-01-01
The development of a digital, three dimensional, automatic control law designed to achieve an optimal transition of a B-737 aircraft between glide slope conditions and the desired final touchdown condition is presented. The digital control law is a time invariant, state estimate feedback law, and the design is capable of using the microwave landing system. Major emphasis is placed on the reduction of aircraft noise in communities surroundings airports, the reduction of fuel consumption, the reduction of the effects of adverse weather conditions on aircraft operations, and the efficient use of airspace in congested terminal areas. Attention is also given to the development of the capability to perform automatic flares from steep glide slopes to precise touchdown locations.
From Red Cells to Snowboarding: A New Concept for a Train Track
NASA Astrophysics Data System (ADS)
Wu, Qianhong; Andreopoulos, Yiannis; Weinbaum, Sheldon
2004-11-01
Feng and Weinbaum [
NASA Technical Reports Server (NTRS)
Morris, C. E. K., Jr.
1981-01-01
Each cycle of the flight profile consists of climb while the vehicle is tracked and powered by a microwave beam, followed by gliding flight back to a minimum altitude. Parameter variations were used to define the effects of changes in the characteristics of the airplane aerodynamics, the power transmission systems, the propulsion system, and winds. Results show that wind effects limit the reduction of wing loading and increase the lift coefficient, two effective ways to obtain longer range and endurance for each flight cycle. Calculated climb performance showed strong sensitivity to some power and propulsion parameters. A simplified method of computing gliding endurance was developed.
NASA Astrophysics Data System (ADS)
O'Reilly, Andrew J.; Quitoriano, Nathaniel J.
2018-02-01
Si0.973Ge0.027 epilayers were grown on a Si (0 0 1) substrate by a lateral liquid-phase epitaxy (LLPE) technique. The lateral growth mechanism favoured the glide of misfit dislocations and inhibited the nucleation of new dislocations by maintaining the thickness less than the critical thicknesses for dislocation nucleation and greater than the critical thickness for glide. This promoted the formation of an array of long misfit dislocations parallel to the [1 1 0] growth direction and reduced the threading dislocation density to 103 cm-2, two orders of magnitude lower than the seed area with an isotropic misfit dislocation network.
NASA Astrophysics Data System (ADS)
Kauffeld, Michael; Mulroy, William; McLinden, Mark; Didion, David
1990-02-01
As part of the Department of Energy/Oak Ridge National Laboratory Building Equipment Research program, the National Institute of Standards and Technology constructed an experimental, easily reconfigurable, water-to-water, breadboard heat pump apparatus in order to compare pure R22 to nonazeotropic refrigerant mixtures. Performance of the heat pump charged with a range of compositions of the binary mixtures R22/RI14 and R13/R12 were compared to R22. The advantage claimed for mixtures in this application is improved thermodynamic efficiency as a result of gliding refrigerant temperatures in the evaporator and condenser in low lift, high glide applications typical of air conditioning.
NASA Technical Reports Server (NTRS)
Harris, Robert S., Jr.; Davidson, John R.
1962-01-01
General equations are developed for the design of efficient structures protected from thermal environments typical of those encountered in boost-glide or atmospheric-reentry conditions. The method is applied to insulated heat-sink stressed-skin structures and to internally cooled insulated structures. Plates loaded in compression are treated in detail. Under limited conditions of plate buckling, high loading, and short flight periods, and for aluminum structures only, the weights of both configurations are nearly equal. Load parameters are found and are similar to those derived in previous investigations for the restricted case of a constant equilibrium temperature at the outside surface of the insulation.
NASA Technical Reports Server (NTRS)
Tanner, C. S.; Glass, R. E.
1974-01-01
A series of noise measurements were made during engineering evaluation tests of two-segment approaches in a 727-200 aircraft equipped with acoustically treated nacelles. A two-segment approach having a 6-degree upper glide slope angle intercepting the Instrument Landing System (ILS) 2.9-degree glide slope at an altitude of 690 feet gave a 5-EPNdB decrease in measured noise at distances greater than 3 nautical miles from the runway threshold when compared with a normal ILS approach. Several of the noise measurements were taken under adverse weather conditions which were outside the specified limits of FAR Part 36. This may introduce uncertainties into the data from several approaches.
The advantage of an alternative substrate over Al/NiP disks
NASA Astrophysics Data System (ADS)
Jiaa, Chi L.; Eltoukhy, Atef
1994-02-01
Compact-size disk drives with high storage densities are in high demand due to the popularity of portable computers and workstations. The contact-start-stop (CSS) endurance performance must improve in order to accomodate the higher number of on/off cycles. In this paper, we looked at 65 mm thin-film canasite substrate disks and evaluated their mechanical performance. We compared them with conventional aluminum NiP-plated disks in surface topography, take-off time with changes of skew angles and radius, CSS, drag test and glide height performance, and clamping effect. In addition, a new post-sputter process aimed at the improvement of take-off and glide as well as CSS performances was investigated and demonstrated for the canasite disks. From the test results, it is indicated that canasite achieved a lower take-off velocity, higher clamping resistance, and better glide height and CSS endurance performance. This study concludes that a new generation disk drive equipped with canasite substrate disks will consume less power from the motor due to faster take-off and lighter weight, achieve higher recording density since the head flies lower, can better withstand damage from sliding friction during the CSS operations, and will be less prone to disk distortion from clamping due to its superior mechanical properties.
Gliding arc in tornado using a reverse vortex flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalra, Chiranjeev S.; Cho, Young I.; Gutsol, Alexander
The present article reports a new gliding arc (GA) system using a reverse vortex flow ('tornado') in a cylindrical reactor (gliding arc in tornado, or GAT), as used to preserve the main advantages of traditional GA systems and overcome their main drawbacks. The primary advantages of traditional GA systems retained in the present GAT are the possibility to generate transitional plasma and to avoid considerable electrode erosion. In contrast to a traditional GA, the new GAT system ensures much more uniform gas treatment and has a significantly larger gas residence time in the reactor. The present article also describes themore » design of the new reactor and its stable operation regime when the variation of GAT current is very small. These features are understood to be very important for most viable applications. Additionally the GAT provides near-perfect thermal insulation from the reactor wall, indicating that the present GAT does not require the reactor wall to be constructed of high-temperature materials. The new GAT system, with its unique properties such as a high level of nonequilibrium and a large residence time, looks very promising for many industrial applications including fuel conversion, carbon dioxide conversion to carbon monoxide and oxygen, surface treatment, waste treatment, flame stabilization, hydrogen sulfide treatment, etc.« less
The epidemiology of injury in hang-gliding and paragliding.
Rekand, Tiina
2012-01-01
Para- and hang-gliding are modern air sports that developed in the 20th century. Performers should possess technical skills and manage certified equipment for successful flight. Injuries may happen during the take-off, flight and landing. PubMed was searched using the search terms 'paragliding' and/or 'hang-gliding'. The reference lists of articles identified in the search strategy were also searched for relevant articles. The most common injuries are fractures, dislocations or sprains in the extremities, followed by spinal and head traumas. Multiple injuries after accidents are common. Collision with electrical wires may cause burn injuries. Fatal outcomes are caused by brain injuries, spinal cord injuries at the cervical level or aorta rupture. Accidents happen because of risk-taking behavior, lack of education or use of self-modified equipment. Observational studies have suggested the need for protection of the head, trunk and lower extremities. The measures proposed are often based on conclusions of observational studies and not proven through randomized studies. Better education along with focusing on possible risk factors will probably diminish the risks of hang- and paragliding. Large denominator-based case series, case-control and population-based studies are needed for assessment of the risks of hang- and paragliding. Copyright © 2012 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Abadier, Mina; Song, Haizheng; Sudarshan, Tangali S.; Picard, Yoosuf N.; Skowronski, Marek
2015-05-01
Transmission electron microscopy (TEM) and KOH etching were used to analyze the motion of dislocations after the conversion of basal plane dislocations (BPDs) to threading edge dislocations (TEDs) during 4H-SiC epitaxy. The locations of TED etch pits on the epilayer surface were shifted compared to the original locations of BPD etch pits on the substrate surface. The shift of the TED etch pits was mostly along the BPD line directions towards the up-step direction. For converted screw type BPDs, the conversion points were located below the substrate/epilayer interface. The shift distances in the step-flow direction were proportional to the depths of the BPD-TED conversion points below the substrate/epilayer interface. For converted mixed type BPDs, the conversion points were exactly at the interface. Through TEM analysis, it was concluded that the dislocation shift is caused by a combined effect of H2 etching prior to growth and glide of the threading segments during high temperature epitaxy. The TED glide is only possible for converted pure screw type BPDs and could present a viable means for eliminating BPDs from the epilayer during growth by moving the conversion point below the substrate/epilayer interface.
Arc dynamics of a pulsed DC nitrogen rotating gliding arc discharge
NASA Astrophysics Data System (ADS)
Zhu, Fengsen; Zhang, Hao; Li, Xiaodong; Wu, Angjian; Yan, Jianhua; Ni, Mingjiang; Tu, Xin
2018-03-01
In this study, a novel pulsed direct current (DC) rotating gliding arc (RGA) plasma reactor co-driven by an external magnetic field and a tangential gas flow has been developed. The dynamic characteristics of the rotating gliding arc have been investigated by means of numerical simulation and experiment. The simulation results show that a highly turbulent vortex flow can be generated at the bottom of the RGA reactor to accelerate the arc rotation after arc ignition, whereas the magnitude of gas velocity declined significantly along the axial direction of the RGA reactor. The calculated arc rotation frequency (14.4 Hz) is reasonably close to the experimental result (18.5 Hz) at a gas flow rate of 10 l min-1. In the presence of an external magnet, the arc rotation frequency is around five times higher than that of the RGA reactor without using a magnet, which suggests that the external magnetic field plays a dominant role in the maintenance of the arc rotation in the upper zone of the RGA reactor. In addition, when the magnet is placed outside the reactor reversely to form a reverse external magnetic field, the arc can be stabilized at a fixed position in the inner wall of the outer electrode at a critical gas flow rate of 16 l min-1.
Revealing the arc dynamics in a gliding arc plasmatron: a better insight to improve CO2 conversion
NASA Astrophysics Data System (ADS)
Ramakers, Marleen; Medrano, Jose A.; Trenchev, Georgi; Gallucci, Fausto; Bogaerts, Annemie
2017-12-01
A gliding arc plasmatron (GAP) is very promising for CO2 conversion into value-added chemicals, but to further improve this important application, a better understanding of the arc behavior is indispensable. Therefore, we study here for the first time the dynamic arc behavior of the GAP by means of a high-speed camera, for different reactor configurations and in a wide range of operating conditions. This allows us to provide a complete image of the behavior of the gliding arc. More specifically, the arc body shape, diameter, movement and rotation speed are analyzed and discussed. Clearly, the arc movement and shape relies on a number of factors, such as gas turbulence, outlet diameter, electrode surface, gas contraction and buoyance force. Furthermore, we also compare the experimentally measured arc movement to a state-of-the-art 3D-plasma model, which predicts the plasma movement and rotation speed with very good accuracy, to gain further insight in the underlying mechanisms. Finally, we correlate the arc dynamics with the CO2 conversion and energy efficiency, at exactly the same conditions, to explain the effect of these parameters on the CO2 conversion process. This work is important for understanding and optimizing the GAP for CO2 conversion.
Sato, Yuko; Hliscs, Marion; Dunst, Josefine; Goosmann, Christian; Brinkmann, Volker; Montagna, Georgina N.; Matuschewski, Kai
2016-01-01
Plasmodium relies on actin-based motility to migrate from the site of infection and invade target cells. Using a substrate-dependent gliding locomotion, sporozoites are able to move at fast speed (1–3 μm/s). This motility relies on a minimal set of actin regulatory proteins and occurs in the absence of detectable filamentous actin (F-actin). Here we report an overexpression strategy to investigate whether perturbations of F-actin steady-state levels affect gliding locomotion and host invasion. We selected two vital Plasmodium berghei G-actin–binding proteins, C-CAP and profilin, in combination with three stage-specific promoters and mapped the phenotypes afforded by overexpression in all three extracellular motile stages. We show that in merozoites and ookinetes, additional expression does not impair life cycle progression. In marked contrast, overexpression of C-CAP and profilin in sporozoites impairs circular gliding motility and salivary gland invasion. The propensity for productive motility correlates with actin accumulation at the parasite tip, as revealed by combinations of an actin-stabilizing drug and transgenic parasites. Strong expression of profilin, but not C-CAP, resulted in complete life cycle arrest. Comparative overexpression is an alternative experimental genetic strategy to study essential genes and reveals effects of regulatory imbalances that are not uncovered from deletion-mutant phenotyping. PMID:27226484
Zhao, Chunfeng; Sun, Yu-Long; Jay, Gregory D.; Moran, Steven L.; An, Kai-Nan; Amadio, Peter C.
2012-01-01
SUMMARY Although post-rehabilitation is routinely performed following flexor tendon repair, in some clinical scenarios post-rehabilitation must be delayed. We investigated modification of the tendon surface using carbodiimide derivatized hyaluronic acid and lubricin (cd-HA-Lub) to maintain gliding function following flexor tendon repair with postoperative immobilization in a in vivo canine model. Flexor digitorum profundus tendons from the 2nd and 5th digits of one forepaw of six dogs were transected and repaired. One tendon in each paw was treated with cd-HA-Lub; the other repaired tendon was not treated. Following tendon repair, a forearm cast was applied to fully immobilize the operated forelimb for 10 days, after which the animals were euthanized. Digit normalized work of flexion (nWOF) and tendon gliding resistance were assessed. The nWOF of the FDP tendons treated with cd-HA-Lub was significantly lower than the nWOF of the untreated tendons (p < 0.01). The gliding resistance of cd-HA-Lub treated tendons was also significantly lower than that of the untreated tendons (p < 0.05). Surface treatment with cd-HA-Lub following flexor tendon repair provides an opportunity to improve outcomes for patients in whom the post-operative therapy must be delayed after flexor tendon repair. PMID:22714687
Rhodes, Ryan G.; Nelson, Shawn S.; Pochiraju, Soumya; McBride, Mark J.
2011-01-01
Cells of Flavobacterium johnsoniae move rapidly over surfaces by a process known as gliding motility. Gld proteins are thought to comprise the gliding motor that propels cell surface adhesins, such as the 669-kDa SprB. A novel protein secretion apparatus called the Por secretion system (PorSS) is required for assembly of SprB on the cell surface. Genetic and molecular analyses revealed that sprB is part of a seven-gene operon spanning 29.3 kbp of DNA. In addition to sprB, three other genes of this operon (sprC, sprD, and sprF) are involved in gliding. Mutations in sprB, sprC, sprD, and sprF resulted in cells that failed to form spreading colonies on agar but that exhibited some motility on glass in wet mounts. SprF exhibits some similarity to Porphyromonas gingivalis PorP, which is required for secretion of gingipain protease virulence factors via the P. gingivalis PorSS. F. johnsoniae sprF mutants produced SprB protein but were defective in localization of SprB to the cell surface, suggesting a role for SprF in secretion of SprB. The F. johnsoniae PorSS is involved in secretion of extracellular chitinase in addition to its role in secretion of SprB. SprF was not needed for chitinase secretion and may be specifically required for SprB secretion by the PorSS. Cells with nonpolar mutations in sprC or sprD produced and secreted SprB and propelled it rapidly along the cell surface. Multiple paralogs of sprB, sprC, sprD, and sprF are present in the genome, which may explain why mutations in sprB, sprC, sprD, and sprF do not result in complete loss of motility and suggests the possibility that semiredundant SprB-like adhesins may allow movement of cells over different surfaces. PMID:21131497
Bartols, Andreas; Robra, Bernt-Peter; Walther, Winfried
2017-01-01
Reciproc instruments are the only contemporary root canal instruments where glide path preparation is no longer strictly demanded by the manufacturer. As the complete preparation of root canals is associated with success in endodontic treatment we wanted to assess the ability and find predictors for Reciproc instruments to reach full working length (RFWL) in root canals of maxillary molars in primary root canal treatment (1°RCTx) and retreatment (2°RCTx) cases. This retrospective study evaluated 255 endodontic treatment cases of maxillary molars. 180 were 1°RCTx and 75 2°RCTx. All root canals were prepared with Reciproc instruments. The groups were compared and in a binary logistic regression model predictors for RFWL were evaluated. A total of 926 root canals were treated with Reciproc without glide path preparation. This was possible in 885 canals (95.6%). In 1°RCTx cases 625 of 649 (96.3%) canals were RFWL and in 2°RCTx cases 260 of 277 (93.9%). In second and third mesiobuccal canals (MB2/3) 90 out of 101 (89.1%) were RFWL with Reciproc in 1°RCTx and in the 2°RCTx treatment group 49 out of 51 cases (96.1%). In mesio-buccal (MB1) canals "2°RCTx" was identified as negative predictor for RFWL (OR 0.24 (CI [0.08-0.77])). In MB2/3 canals full working length was reached less often (OR 0.04 (CI [0.01-0.31])) if the tooth was constricted and more often if MB2/3 and MB1 canals were convergent (OR 4.60 (CI [1.07-19.61])). Using Reciproc instruments, the vast majority of root canals in primary treatment and retreatment cases can be prepared without glide path preparation.
Fuzzy Logic Trajectory Design and Guidance for Terminal Area Energy Management
NASA Technical Reports Server (NTRS)
Burchett, Bradley
2003-01-01
The second generation reusable launch vehicle will leverage many new technologies to make flight to low earth orbit safer and more cost effective. One important capability will be completely autonomous flight during reentry and landing, thus making it unnecessary to man the vehicle for cargo missions with stringent weight constraints. Implementation of sophisticated new guidance and control methods will enable the vehicle to return to earth under less than favorable conditions. The return to earth consists of three phases--Entry, Terminal Area Energy Management (TAEM), and Approach and Landing. The Space Shuttle is programmed to fly all three phases of flight automatically, and under normal circumstances the astronaut-pilot takes manual control only during the Approach and Landing phase. The automatic control algorithms used in the Shuttle for TAEM and Approach and Landing have been developed over the past 30 years. They are computationally efficient, and based on careful study of the spacecraft's flight dynamics, and heuristic reasoning. The gliding return trajectory is planned prior to the mission, and only minor adjustments are made during flight for perturbations in the vehicle energy state. With the advent of the X-33 and X-34 technology demonstration vehicles, several authors investigated implementing advanced control methods to provide autonomous real-time design of gliding return trajectories thus enhancing the ability of the vehicle to adjust to unusual energy states. The bulk of work published to date deals primarily with the approach and landing phase of flight where changes in heading angle are small, and range to the runway is monotonically decreasing. These benign flight conditions allow for model simplification and fairly straightforward optimization. This project focuses on the TAEM phase of flight where mathematically precise methods have produced limited results. Fuzzy Logic methods are used to make onboard autonomous gliding return trajectory design robust to a wider energy envelope, and the possibility of control surface failures, thus increasing the flexibility of unmanned gliding recovery and landing.
NASA Technical Reports Server (NTRS)
Srinivasan, R.; Daw, M. S.; Noebe, R. D.; Mills, M. J.
2003-01-01
Ni-44at.% Al and Ni-50at.% single crystals were tested in compression in the hard (001) orientations. The dislocation processes and deformation behavior were studied as a function of temperature, strain and strain rate. A slip transition in NiAl occurs from alpha(111) slip to non-alphaaaaaaaaaaa9111) slip at intermediate temperatures. In Ni-50at.% Al single crystal, only alpha(010) dislocations are observed above the slip transition temperature. In contrast, alpha(101)(101) glide has been observed to control deformation beyond the slip transition temperature in Ni-44at.%Al. alpha(101) dislocations are observed primarily along both (111) directions in the glide plane. High-resolution transmission electron microscopy observations show that the core of the alpha(101) dislocations along these directions is decomposed into two alpha(010) dislocations, separated by a distance of approximately 2nm. The temperature window of stability for these alpha(101) dislocations depends upon the strain rate. At a strain rate of 1.4 x 10(exp -4)/s, lpha(101) dislocations are observed between 800 and 1000K. Complete decomposition of a alpha(101) dislocations into alpha(010) dislocations occurs beyond 1000K, leading to alpha(010) climb as the deformation mode at higher temperature. At lower strain rates, decomposition of a alpha(101) dislocations has been observed to occur along the edge orientation at temperatures below 1000K. Embedded-atom method calculations and experimental results indicate that alpha(101) dislocation have a large Peieris stress at low temperature. Based on the present microstructural observations and a survey of the literature with respect to vacancy content and diffusion in NiAl, a model is proposed for alpha(101)(101) glide in Ni-44at.%Al, and for the observed yield strength versus temperature behavior of Ni-Al alloys at intermediate and high temperatures.
NASA Astrophysics Data System (ADS)
Cordier, P.; Goryaeva, A.; Carrez, P.
2016-12-01
Dislocation motion in crystalline materials represents one of the most efficient mechanisms to produce plastic shear, the key mechanism for CPO development. Previous atomistic simulations show that MgSiO3 ppv is characterized by remarkably low lattice friction opposed to the glide of straight [100] screw dislocations in (010), while glide in (001) requires one order of magnitude larger stress values [1]. At finite temperature, dislocation glide occurs through nucleation and propagation of kink-pairs, i.e. dislocation does not move as a straight line, but partly bows out over the Peierls potential. We propose a theoretical study of a kink-pair formation mechanism for [100] screw dislocations in MgSiO3 ppv employing the line tension (LT) model [2] in conjunction with ab-initio atomic-scale modeling. The dislocation line tension, which plays a key role in dislocation dynamics, is computed at atomic scale as the energy increase resulting from individual atomic displacements due to the nucleation of a bow out. The estimated kink-pair formation enthalpy gives an access to evolution of critical resolved shear stress (CRSS) with temperature. Our results clearly demonstrate that at the lower mantle conditions, lattice friction in ppv vanishes for temperatures above ca. 600 K, i.e. ppv deforms in the athermal regime in contrast to the high-lattice friction bridgmanite [3]. Moreover, in the Earth's mantle, high-pressure Mg-ppv can be expected to be as ductile as MgO. Our simulations demonstrate that ppv contributes to a weak layer at the base of the mantle which is likely to promote alignment of (010) planes. In addition to that, we show that the high mobility of [100] dislocations results in a decrease of the apparent shear modulus (up to 15%) which contributes to a decrease of the shear wave velocity of about 7% and suggest that ppv induces energy dissipation and strong seismic attenuation in the D" layer. References[1] Goryaeva A, Carrez Ph & Cordier P (2015) Modeling defects and plasticity in MgSiO3 post-perovskite: Part 2 - screw and edge [100] dislocations. Phys. Chem. Miner. 45:793-803 [2] Seeger A (1984) in "Dislocations", CNRS, Paris, p. 141. [3] Kraych A, Carrez Ph & Cordier P (2016) On dislocation glide in MgSiO3 bridgmanite at high pressure and high-temperature. Earth Planet. Sci. Lett. submitted.
EBSD analysis of subgrain boundaries and dislocation slip systems in Antarctic and Greenland ice
NASA Astrophysics Data System (ADS)
Weikusat, Ilka; Kuiper, Ernst-Jan N.; Pennock, Gill M.; Kipfstuhl, Sepp; Drury, Martyn R.
2017-09-01
Ice has a very high plastic anisotropy with easy dislocation glide on basal planes, while glide on non-basal planes is much harder. Basal glide involves dislocations with the Burgers vector b = 〈a〉, while glide on non-basal planes can involve dislocations with b = 〈a〉, b = [c], and b = 〈c + a〉. During the natural ductile flow of polar ice sheets, most of the deformation is expected to occur by basal slip accommodated by other processes, including non-basal slip and grain boundary processes. However, the importance of different accommodating processes is controversial. The recent application of micro-diffraction analysis methods to ice, such as X-ray Laue diffraction and electron backscattered diffraction (EBSD), has demonstrated that subgrain boundaries indicative of non-basal slip are present in naturally deformed ice, although so far the available data sets are limited. In this study we present an analysis of a large number of subgrain boundaries in ice core samples from one depth level from two deep ice cores from Antarctica (EPICA-DML deep ice core at 656 m of depth) and Greenland (NEEM deep ice core at 719 m of depth). EBSD provides information for the characterization of subgrain boundary types and on the dislocations that are likely to be present along the boundary. EBSD analyses, in combination with light microscopy measurements, are presented and interpreted in terms of the dislocation slip systems. The most common subgrain boundaries are indicative of basal 〈a〉 slip with an almost equal occurrence of subgrain boundaries indicative of prism [c] or 〈c + a〉 slip on prism and/or pyramidal planes. A few subgrain boundaries are indicative of prism 〈a〉 slip or slip of 〈a〉 screw dislocations on the basal plane. In addition to these classical polygonization processes that involve the recovery of dislocations into boundaries, alternative mechanisms are discussed for the formation of subgrain boundaries that are not related to the crystallography of the host grain.The finding that subgrain boundaries indicative of non-basal slip are as frequent as those indicating basal slip is surprising. Our evidence of frequent non-basal slip in naturally deformed polar ice core samples has important implications for discussions on ice about plasticity descriptions, rate-controlling processes which accommodate basal glide, and anisotropic ice flow descriptions of large ice masses with the wider perspective of sea level evolution.
Sensors for low temperature application
Henderson, Timothy M.; Wuttke, Gilbert H.
1977-01-01
A method and apparatus for low temperature sensing which uses gas filled micro-size hollow glass spheres that are exposed in a confined observation area to a low temperature range (Kelvin) and observed microscopically to determine change of state, i.e., change from gaseous state of the contained gas to condensed state. By suitable indicia and classification of the spheres in the observation area, the temperature can be determined very accurately.
Wave-Wave Interactions, Microseisms, and Infrasonic Ambient Noise in the Ocean.
1984-08-16
Ondulatoires de la Mer en Profondeur Constante ou Decroissante," Ann. Ponts Chaussees 114, 25-87 (1944). 9. M. S. Longuet-Higgins, "A Theory of the...100 4..- EN I O M N A FIGUR -6...31 F. R. DiNapoli 32 P. Herstein 33 Director Naval Warfare Deputy Undersecretary Defense R&E Room 3D1048, Pentagon Washington, DC 20301 OASN (R,E&S
Seafloor Pressure Array Studies at Ultra-Low Frequencies
1991-01-01
broadband instrument design and deployment. In order to measure broadband noise routinely, a low frequency pressure gauge designed for deep ocean...below the microseism band (Moore et al, 1981). A differential pressure gauge , developed for low frequency recordings by Cox et al (1984) and sensitive to...design differential pressure gauge (Cox et al, 1984) with a sensitivity -3- ULF Seafloor Pressure Array Studies range of 0.01-5 Hz. The high
Micro air vehicle motion tracking and aerodynamic modeling
NASA Astrophysics Data System (ADS)
Uhlig, Daniel V.
Aerodynamic performance of small-scale fixed-wing flight is not well understood, and flight data are needed to gain a better understanding of the aerodynamics of micro air vehicles (MAVs) flying at Reynolds numbers between 10,000 and 30,000. Experimental studies have shown the aerodynamic effects of low Reynolds number flow on wings and airfoils, but the amount of work that has been conducted is not extensive and mostly limited to tests in wind and water tunnels. In addition to wind and water tunnel testing, flight characteristics of aircraft can be gathered through flight testing. The small size and low weight of MAVs prevent the use of conventional on-board instrumentation systems, but motion tracking systems that use off-board triangulation can capture flight trajectories (position and attitude) of MAVs with minimal onboard instrumentation. Because captured motion trajectories include minute noise that depends on the aircraft size, the trajectory results were verified in this work using repeatability tests. From the captured glide trajectories, the aerodynamic characteristics of five unpowered aircraft were determined. Test results for the five MAVs showed the forces and moments acting on the aircraft throughout the test flights. In addition, the airspeed, angle of attack, and sideslip angle were also determined from the trajectories. Results for low angles of attack (less than approximately 20 deg) showed the lift, drag, and moment coefficients during nominal gliding flight. For the lift curve, the results showed a linear curve until stall that was generally less than finite wing predictions. The drag curve was well described by a polar. The moment coefficients during the gliding flights were used to determine longitudinal and lateral stability derivatives. The neutral point, weather-vane stability and the dihedral effect showed some variation with different trim speeds (different angles of attack). In the gliding flights, the aerodynamic characteristics exhibited quasi-steady effects caused by small variations in the angle of attack. The quasi-steady effects, or small unsteady effects, caused variations in the aerodynamic characteristics (particularly incrementing the lift curve), and the magnitude of the influence depended on the angle-of-attack rate. In addition to nominal gliding flight, MAVs in general are capable of flying over a wide flight envelope including agile maneuvers such as perching, hovering, deep stall and maneuvering in confined spaces. From the captured motion trajectories, the aerodynamic characteristics during the numerous unsteady flights were gathered without the complexity required for unsteady wind tunnel tests. Experimental results for the MAVs show large flight envelopes that included high angles of attack (on the order of 90 deg) and high angular rates, and the aerodynamic coefficients had dynamic stall hysteresis loops and large values. From the large number of unsteady high angle-of-attack flights, an aerodynamic modeling method was developed and refined for unsteady MAV flight at high angles of attack. The method was based on a separation parameter that depended on the time history of the angle of attack and angle-of-attack rate. The separation parameter accounted for the time lag inherit in the longitudinal characteristics during dynamic maneuvers. The method was applied to three MAVs and showed general agreement with unsteady experimental results and with nominal gliding flight results. The flight tests with the MAVs indicate that modern motion tracking systems are capable of capturing the flight trajectories, and the captured trajectories can be used to determine the aerodynamic characteristics. From the captured trajectories, low Reynolds number MAV flight is explored in both nominal gliding flight and unsteady high angle-of-attack flight. Building on the experimental results, a modeling method for the longitudinal characteristics is developed that is applicable to the full flight envelope.
Toluene and acetaldehyde removal from air on to graphene-based adsorbents with microsized pores.
Kim, Ji Min; Kim, Ji Hoon; Lee, Chang Yeon; Jerng, Dong Wook; Ahn, Ho Seon
2018-02-15
Volatile organic compound (VOC) gases can cause harm to the human body with exposure over the long term even at very low concentrations (ppmv levels); thus, effective absorbents for VOC gas removal are an important issue. In this study, accordingly, graphene-based adsorbents with microsized pores were used as adsorbents to remove toluene and acetaldehyde gases at low concentrations (30ppm). Sufficient amounts of the adsorbents were prepared for use on filters and were loaded uniformly at 0.1-0.5g on a 50×50mm 2 area, to evaluate their adsorption features with low gas concentrations. The morphology and chemical composition of the adsorbents were characterized using scanning electron microscopy, N 2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy, and Raman spectroscopy. Microwave irradiation and heat treatment near 800°C under KOH activation resulted in enlargement of the pristine graphene surface and its specific surface area; maximum volume capacities of 3510m 3 /g and 630m 3 /g were observed for toluene and acetaldehyde gas. The high removal efficiency for toluene (98%) versus acetaldehyde (30%) gas was attributed to π-π interactions between the pristine graphene surface and toluene molecules. Copyright © 2017 Elsevier B.V. All rights reserved.
Liang, Caiyun; Wang, Zhenfeng; Wu, Lina; Zhang, Xiaochen; Wang, Huan; Wang, Zhijiang
2017-09-06
A novel light but strong SiC foam with hierarchical porous architecture was fabricated by using dough as raw material via carbonization followed by carbothermal reduction with silicon source. A significant synergistic effect is achieved by embedding meso- and nanopores in a microsized porous skeleton, which endows the SiC foam with high-performance electromagnetic interference (EMI) shielding, thermal insulation, and mechanical properties. The microsized skeleton withstands high stress. The meso- and nanosized pores enhance multiple reflection of the incident electromagnetic waves and elongate the path of heat transfer. For the hierarchical porous SiC foam with 72.8% porosity, EMI shielding can be higher than 20 dB, and specific EMI effectiveness exceeds 24.8 dB·cm 3 ·g -1 at a frequency of 11 GHz at 25-600 °C, which is 3 times higher than that of dense SiC ceramic. The thermal conductivity reaches as low as 0.02 W·m -1 ·K -1 , which is comparable to that of aerogel. The compressive strength is as high as 9.8 MPa. Given the chemical and high-temperature stability of SiC, the fabricated SiC foam is a promising candidate for modern aircraft and automobile applications.
Dielectric characteristics of CaCu3Ti4O12/P(VDF-TrFE) nanocomposites
NASA Astrophysics Data System (ADS)
Zhang, Lin; Shan, Xiaobing; Wu, Peixuan; Cheng, Z.-Y.
2012-06-01
Composite thin film is highly desirable for the dielectric applications. In order to develop composite thin film, a nanocomposite, in which nanosized CaCu3Ti4O12 (CCTO) particles are used as filler and P(VDF-TrFE) 55/45 mol% copolymer is used as polymer matrix, is investigated. The contents of CCTO in the nanocomposites range from 0% to 50 vol%. The dielectric property of these nanocomposites was characterized at frequencies ranging from 100 Hz to 1 MHz and at temperatures ranging from 200 K to 370 K. A dielectric constant of 62 with a loss of 0.05 was obtained in nanocomposite with 50 vol% CCTO at room temperature at 1 kHz. At the phase transition temperature (˜340 K) of the copolymer, a dielectric constant of 150 with a loss less than 0.1 was obtained in this nanocomposite. It is found that the dielectric loss of the nanocomposites is dominated by the polymer which has a relaxation process. Comparing to composites made using microsized CCTO, the nanocomposites exhibit a much lower dielectric loss and a lower dielectric constant. This indicates that the nanosized CCTO particles have a lower dielectric constant than the microsized CCTO particles.
Energy management - The delayed flap approach
NASA Technical Reports Server (NTRS)
Bull, J. S.
1976-01-01
Flight test evaluation of a Delayed Flap approach procedure intended to provide reductions in noise and fuel consumption is underway using the NASA CV-990 test aircraft. Approach is initiated at a high airspeed (240 kt) and in a drag configuration that allows for low thrust. The aircraft is flown along the conventional ILS glide slope. A Fast/Slow message display signals the pilot when to extend approach flaps, landing gear, and land flaps. Implementation of the procedure in commercial service may require the addition of a DME navigation aid co-located with the ILS glide slope transmitter. The Delayed Flap approach saves 250 lb of fuel over the Reduced Flap approach, with a 95 EPNdB noise contour only 43% as large.
Personnel launch system autoland development study
NASA Technical Reports Server (NTRS)
Bossi, J. A.; Langehough, M. A.; Tollefson, J. C.
1991-01-01
The Personnel Launch System (PLS) Autoland Development Study focused on development of the guidance and control system for the approach and landing (A/L) phase and the terminal area energy management (TAEM) phase. In the A/L phase, a straight-in trajectory profile was developed with an initial high glide slope, a pull-up and flare to lower glide slope, and the final flare touchdown. The TAEM system consisted of using a heading alignment cone spiral profile. The PLS autopilot was developed using integral LQG design techniques. The guidance and control design was verified using a nonlinear 6 DOF simulation. Simulation results demonstrated accurate steering during the TAEM phase and adequate autoland performance in the presence of wind turbulence and wind shear.
Gliding Motility Revisited: How Do the Myxobacteria Move without Flagella?
Mauriello, Emilia M. F.; Mignot, Tâm; Yang, Zhaomin; Zusman, David R.
2010-01-01
Summary: In bacteria, motility is important for a wide variety of biological functions such as virulence, fruiting body formation, and biofilm formation. While most bacteria move by using specialized appendages, usually external or periplasmic flagella, some bacteria use other mechanisms for their movements that are less well characterized. These mechanisms do not always exhibit obvious motility structures. Myxococcus xanthus is a motile bacterium that does not produce flagella but glides slowly over solid surfaces. How M. xanthus moves has remained a puzzle that has challenged microbiologists for over 50 years. Fortunately, recent advances in the analysis of motility mutants, bioinformatics, and protein localization have revealed likely mechanisms for the two M. xanthus motility systems. These results are summarized in this review. PMID:20508248
NASA Astrophysics Data System (ADS)
Sugioka, Koji; Hanada, Yasutaka; Midorikawa, Katsumi; Kawano, Hiroyuki; Ishikawa, Ikuko S.; Miyawaki, Atsushi
2011-12-01
We demonstrate to fabricate microfluidic chips integrated with some functional microcomponents such as optical attenuators and optical waveguides by femtosecond laser direct writing for understanding phenomena and functions of microorganisms. Femtosecond laser irradiation followed by annealing and wet etching in dilute hydrofluoric acid solution resulted in fabrication of three-dimensional microfludic structures embedded in a photosensitive glass. The embedded microfludic structures enabled us to easily and efficiently observe Phormidium gliding to the seedling root, which accelerates growth of the vegetable. In addition, integration of optical attenuators and optical waveguides into the microfluidic structures clarified the mechanism of the gliding movement of Phormidium. We termed such integrated microchips nanoaquariums, realizing the highly efficient and functional observation and analysis of various microorganisms.
Glide-plane symmetry and superconducting gap structure of iron-based superconductors
Wang, Yan; Berlijn, Tom; Hirschfeld, Peter J.; ...
2015-03-10
We consider the effect of glide-plane symmetry of the Fe-pnictogen/chalcogen layer in Fe-based superconductors on pairing in spin fluctuation models. Recent theories propose that so-called η-pairing states with nonzero total momentum can be realized and possess such exotic properties as odd parity spin singlet symmetry and time-reversal symmetry breaking. Here we show that when there is orbital weight at the Fermi level from orbitals with even and odd mirror reflection symmetry in z, η pairing is inevitable; however, we conclude from explicit calculation that the gap function appearing in observable quantities is identical to that found in earlier pseudocrystal momentummore » calculations with 1 Fe per unit cell.« less
Symmetries in geometrical optics: theory
NASA Astrophysics Data System (ADS)
Szilagyi, M.; Mui, P. H.
1995-12-01
A study of light and charged-particle optical systems with inversion, reflection, rotation, translation, and/or glide symmetries is presented. The constraints imposed by the various symmetries on the first-order properties of a lens are investigated. In particular, the mathematical structures of the deflection vectors and the transfer matrices are described for various symmetrical systems. In the course of studying the translation and the glide symmetries, a simple technique for characterizing a general system of N identical components in series (or cascade) is also developed, based on the linear algebra theory of factoring matrices into Jordan canonical forms. Applications of these results are presented in a follow-up paper [J. Opt. Soc. Am. 12, XXXX (1995)]. Copyright (c) 1995 Optical Society of America
Leaping shampoo glides on a lubricating air layer
NASA Astrophysics Data System (ADS)
Lee, S.; Li, E. Q.; Marston, J. O.; Bonito, A.; Thoroddsen, S. T.
2013-06-01
When a stream of shampoo is fed onto a pool in one's hand, a jet can leap sideways or rebound from the liquid surface in an intriguing phenomenon known as the Kaye effect. Earlier studies have debated whether non-Newtonian effects are the underlying cause of this phenomenon, making the jet glide on top of a shear-thinning liquid layer, or whether an entrained air layer is responsible. Herein we show unambiguously that the jet slides on a lubricating air layer. We identify this layer by looking through the pool liquid and observing its rupture into fine bubbles. The resulting microbubble sizes suggest this air layer is of submicron thickness. This thickness estimate is also supported by the tangential deceleration of the jet during the rebounding.
Leaping shampoo glides on a lubricating air layer.
Lee, S; Li, E Q; Marston, J O; Bonito, A; Thoroddsen, S T
2013-06-01
When a stream of shampoo is fed onto a pool in one's hand, a jet can leap sideways or rebound from the liquid surface in an intriguing phenomenon known as the Kaye effect. Earlier studies have debated whether non-Newtonian effects are the underlying cause of this phenomenon, making the jet glide on top of a shear-thinning liquid layer, or whether an entrained air layer is responsible. Herein we show unambiguously that the jet slides on a lubricating air layer. We identify this layer by looking through the pool liquid and observing its rupture into fine bubbles. The resulting microbubble sizes suggest this air layer is of submicron thickness. This thickness estimate is also supported by the tangential deceleration of the jet during the rebounding.
NASA Astrophysics Data System (ADS)
Russell, J. J.; Zou, J.; Moon, A. R.; Cockayne, D. J. H.
2000-08-01
Threading dislocation glide relieves strain in strained-layer heterostructures by increasing the total length of interface misfit dislocations. The blocking theory proposed by Freund [J. Appl. Phys. 68, 2073 (1990)] predicts the thickness above which gliding threading dislocations are able to overcome the resistance force produced by existing orthogonal misfit dislocations. A set of wedge-shaped samples of InxGa1-xAs/GaAs (x=0.04) strained-layer heterostructures was grown using molecular-beam epitaxy in order to test the theory of dislocation blocking over a range of thicknesses within one sample. Scanning cathodoluminescence microscopy techniques were used to image the misfit dislocations. The cathodoluminescence results confirm the model proposed by Freund.
Nano- and microsized cubic gel particles from cyclodextrin metal-organic frameworks.
Furukawa, Yuki; Ishiwata, Takumi; Sugikawa, Kouta; Kokado, Kenta; Sada, Kazuki
2012-10-15
Sweet cube o' mine: Bottom-up control of gel particles has been regarded as a great challenge. By employing internal cross-linking of cyclodextrin metal-organic frameworks, cubic sugar gels were formed with sharp edges that reflect the shape of the crystals. This enabled the fabrication of shape- and size-controlled polymer gels from porous crystals (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two-Axis Direct Fluid Shear Stress Sensor for Aerodynamic Applications
NASA Technical Reports Server (NTRS)
Bajikar, Sateesh S.; Scott, Michael A.; Adcock, Edward E.
2011-01-01
This miniature or micro-sized semiconductor sensor design provides direct, nonintrusive measurement of skin friction or wall shear stress in fluid flow situations in a two-axis configuration. The sensor is fabricated by microelectromechanical system (MEMS) technology, enabling small size and multiple, low-cost reproductions. The sensors may be fabricated by bonding a sensing element wafer to a fluid-coupling element wafer. Using this layered machine structure provides a truly three-dimensional device.
Generating high-quality single droplets for optical particle characterization with an easy setup
NASA Astrophysics Data System (ADS)
Xu, Jie; Ge, Baozhen; Meng, Rui
2018-06-01
The high-performance and micro-sized single droplet is significant for optical particle characterization. We develop a single-droplet generator (SDG) based on a piezoelectric inkjet technique with advantages of low cost and easy setup. By optimizing the pulse parameters, we achieve various size single droplets. Further investigations reveal that SDG generates single droplets of high quality, demonstrating good sphericity, monodispersity and a stable length of several millimeters.
Pitch glide effect induced by a nonlinear string-barrier interaction
NASA Astrophysics Data System (ADS)
Kartofelev, Dmitri; Stulov, Anatoli; Välimäki, Vesa
2015-10-01
Interactions of a vibrating string with its supports and other spatially distributed barriers play a significant role in the physics of many stringed musical instruments. It is well known that the tone of the string vibrations is determined by the string supports, and that the boundary conditions of the string termination may cause a short-lasting initial fundamental frequency shifting. Generally, this phenomenon is associated with the nonlinear modulation of the stiff string tension. The aim of this paper is to study the initial frequency glide phenomenon that is induced only by the string-barrier interaction, apart from other possible physical causes, and without the interfering effects of dissipation and dispersion. From a numerical simulation perspective, this highly nonlinear problem may present various difficulties, not the least of which is the risk of numerical instability. We propose a numerically stable and a purely kinematic model of the string-barrier interaction, which is based on the travelling wave solution of the ideal string vibration. The model is capable of reproducing the motion of the vibrating string exhibiting the initial fundamental frequency glide, which is caused solely by the complex nonlinear interaction of the string with its termination. The results presented in this paper can expand our knowledge and understanding of the timbre evolution and the physical principles of sound generation of numerous stringed instruments, such as lutes called the tambura, sitar and biwa.
Fine-scale genetic response to landscape change in a gliding mammal.
Goldingay, Ross L; Harrisson, Katherine A; Taylor, Andrea C; Ball, Tina M; Sharpe, David J; Taylor, Brendan D
2013-01-01
Understanding how populations respond to habitat loss is central to conserving biodiversity. Population genetic approaches enable the identification of the symptoms of population disruption in advance of population collapse. However, the spatio-temporal scales at which population disruption occurs are still too poorly known to effectively conserve biodiversity in the face of human-induced landscape change. We employed microsatellite analysis to examine genetic structure and diversity over small spatial (mostly 1-50 km) and temporal scales (20-50 years) in the squirrel glider (Petaurus norfolcensis), a gliding mammal that is commonly subjected to a loss of habitat connectivity. We identified genetically differentiated local populations over distances as little as 3 km and within 30 years of landscape change. Genetically isolated local populations experienced the loss of genetic diversity, and significantly increased mean relatedness, which suggests increased inbreeding. Where tree cover remained, genetic differentiation was less evident. This pattern was repeated in two landscapes located 750 km apart. These results lend support to other recent studies that suggest the loss of habitat connectivity can produce fine-scale population genetic change in a range of taxa. This gives rise to the prediction that many other vertebrates will experience similar genetic changes. Our results suggest the future collapse of local populations of this gliding mammal is likely unless habitat connectivity is maintained or restored. Landscape management must occur on a fine-scale to avert the erosion of biodiversity.
Incidents and Injuries in Foot-Launched Flying Extreme Sports.
Feletti, Francesco; Aliverti, Andrea; Henjum, Maggie; Tarabini, Marco; Brymer, Eric
2017-11-01
Participation rates in extreme sports have grown exponentially in the last 40 yr, often surpassing traditional sporting activities. The purpose of this study was to examine injury rates in foot-launched flying sports, i.e., sports in which a pilot foot-launches into flight with a wing already deployed. This paper is based on a retrospective analysis of the reports of incidents that occurred between 2000 and 2014 among the British Hang Gliding and Paragliding Association members. The majority of the 1411 reported injuries were in the lower limb, followed by the upper limb. The most common lower limb injury was to the ankle and included fractures, sprains, and dislocations. The distribution of injures was different in each discipline. The calculated yearly fatality rate (fatalities/100,000 participants) was 40.4 in hang gliding, 47.1 in paragliding, 61.9 in powered hang gliding and 83.4 in powered paragliding; the overall value for foot-launched flight sports was 43.9. Significant differences in injury rates and injury patterns were found among different sport disciplines that can be useful to steer research on safety, and adopt specific safety rules about flying, protective clothing and safety systems in each of these sports.Feletti F, Aliverti A, Henjum M, Tarabini M, Brymer E. Incidents and injuries in foot-launched flying extreme sports. Aerosp Med Hum Perform. 2017; 88(11):1016-1023.
Using economy of means to evolve transition rules within 2D cellular automata.
Ripps, David L
2010-01-01
Running a cellular automaton (CA) on a rectangular lattice is a time-honored method for studying artificial life on a digital computer. Commonly, the researcher wishes to investigate some specific or general mode of behavior, say, the ability of a coherent pattern of points to glide within the lattice, or to generate copies of itself. This technique has a problem: how to design the transitions table-the set of distinct rules that specify the next content of a cell from its current content and that of its near neighbors. Often the table is painstakingly designed manually, rule by rule. The problem is exacerbated by the potentially vast number of individual rules that need be specified to cover all combinations of center and neighbors when there are several symbols in the alphabet of the CA. In this article a method is presented to have the set of rules evolve automatically while running the CA. The transition table is initially empty, with rules being added as the need arises. A novel principle drives the evolution: maximum economy of means-maximizing the reuse of rules introduced on previous cycles. This method may not be a panacea applicable to all CA studies. Nevertheless, it is sufficiently potent to evolve sets of rules and associated patterns of points that glide (periodically regenerate themselves at another location) and to generate gliding "children" that then "mate" by collision.
NASA Astrophysics Data System (ADS)
Ajie Linarka, Utoyo; Riyanto Trilaksono, Bambang; Sagala, M. Faisal; Hidayat, Egi; Sopaheluwakan, Ardhasena; Rizal, Jose; Heriyanto, Eko; Amsal Harapan, Ferdika; Eka Syahputra Makmur, Erwin
2017-04-01
Conducting a sustained monitoring and surveying of physical ocean parameters for research or operational purposes using moorings and ships would require high cost. Development of an inexpensive instrument capable to perform such tasks not only could reduce cost and risks but also increase cruising range and depth. For that reason, a prototype of underwater glider was developed, named "GaneshBlue". GaneshBlue works based on gliding principles which utilizes pitch angle and buoyancy control for moving. For one gliding movement, GaneshBlue passed through 5 phases of surface, descent, transition, ascent and back to surface. The glider is equipped with basic navigation system and remote control, programmable survey planning, temperature and salinity sampling instruments, lithium batteries for power supply, and information processing software. A field test at the shallow water showed that GaneshBule has successfully demonstrated gliding and surfacing movements with surge motion speed reaching 20 cm s-1and 20 m in depths. During the field test the glider was also equipped with three instruments, i.e. Inertial Measurement Unit (IMU) to estimate glider's speed and orientation; MiniCT to acquire temperature and conductivity data; and Altisounder to determine its distance to sea surface and to seabed. In general, all the instruments performed well but filter algorithm needs to be implemented on data collection procedure to remove data outliers.
3D microstructuring inside glass by ultrafast laser
NASA Astrophysics Data System (ADS)
Sugioka, Koji; Hanada, Yasutaka; Midorikawa, Katsumi; Kawano, Hiroyuki; Ishikawa, Ikuko S.; Miyawaki, Atsushi
2012-01-01
We demonstrate three-dimensional (3D) microstructuring inside glass by ultrafast laser to fabricate microfluidic chips integrated with some functional microcomponents such as optical attenuators and optical waveguides. The fabricated microchips are applied to understand phenomena and functions of microorganisms and cyanobacteria. Ultrafast laser irradiation followed by thermal treatment and wet etching in dilute hydrofluoric acid solution resulted in fabrication of 3D microfludic structures embedded in a photosensitive glass. The embedded microfludic structures enabled us to easily and efficiently observe Phormidium gliding to the seedling root, which accelerates growth of the vegetable. In addition, integration of optical attenuators and optical waveguides into the microfluidic structures clarified the mechanism of the gliding movement of Phormidium. We termed such integrated microchips nanoaquariums, realizing the highly efficient and functional observation and analysis of various microorganisms.
Origin of the sensitivity in modeling the glide behaviour of dislocations
Pei, Zongrui; Stocks, George Malcolm
2018-03-26
The sensitivity in predicting glide behaviour of dislocations has been a long-standing problem in the framework of the Peierls-Nabarro model. The predictions of both the model itself and the analytic formulas based on it are too sensitive to the input parameters. In order to reveal the origin of this important problem in materials science, a new empirical-parameter-free formulation is proposed in the same framework. Unlike previous formulations, it includes only a limited small set of parameters all of which can be determined by convergence tests. Under special conditions the new formulation is reduced to its classic counterpart. In the lightmore » of this formulation, new relationships between Peierls stresses and the input parameters are identified, where the sensitivity is greatly reduced or even removed.« less
Dale Reed with model in front of M2-F1
1967-03-06
Dale Reed with a model of the M2-F1 in front of the actual lifting body. Reed used the model to show the potential of the lifting bodies. He first flew it into tall grass to test stability and trim, then hand-launched it from buildings for longer flights. Finally, he towed the lifting-body model aloft using a powered model airplane known as the "Mothership." A timer released the model and it glided to a landing. Dale's wife Donna used a 9 mm. camera to film the flights of the model. Its stability as it glided--despite its lack of wings--convinced Milt Thompson and some Flight Research Center engineers including the center director, Paul Bikle, that a piloted lifting body was possible.
Fautz, E; Rosenfelder, G; Grotjahn, L
1979-01-01
The fatty acids present in the total hydrolysates of several gliding bacteria (Myxococcus fulvus, Stigmatella aurantiaca, Cytophaga johnsonae, Cytophaga sp. strain samoa and Flexibacter elegans) were analyzed by combined gas-liquid chromatography and mass spectrometry. In addition to 13-methyl-tetradecanoic acid, 15-methyl-hexadecanoic acid, hexadecanoic acid, and hexadecenoic acid, 2- and 3-hydroxy fatty acids comprised up to 50% of the total fatty acids. The majority was odd-numbered and iso-branched. Small amounts of even-numbered and unbranched fatty acids were also present. Whereas 2-hydroxy-15-methyl hexadecanoic acid was characteristic for myxobacteria, 2-hydroxy-13-methyl-tetradecanoic acid, 3-hydroxy-13-methyl-tetradecanoic acid, and 3-hydroxy-15-methyl-hexadecanoic acid were dominant in the Cytophaga-Flexibacter group. PMID:118159
Flight-Simulated Launch-Pad-Abort-to-Landing Maneuvers for a Lifting Body
NASA Technical Reports Server (NTRS)
Jackson, E. Bruce; Rivers, Robert A.
1998-01-01
The results of an in-flight investigation of the feasibility of conducting a successful landing following a launch-pad abort of a vertically-launched lifting body are presented. The study attempted to duplicate the abort-to-land-ing trajectory from the point of apogee through final flare and included the steep glide and a required high-speed, low-altitude turn to the runway heading. The steep glide was flown by reference to ground-provided guidance. The low-altitude turn was flown visually with a reduced field- of-view duplicating that of the simulated lifting body. Results from the in-flight experiment are shown to agree with ground-based simulation results; however, these tests should not be regarded as a definitive due to performance and control law dissimilarities between the two vehicles.
Long-term Self-noise Estimates of Seismic Sensors From a High-noise Vault
NASA Astrophysics Data System (ADS)
Hicks, S. P.; Goessen, S.; Hill, P.; Rietbrock, A.
2017-12-01
To understand the detection capabilities of seismic stations and for reducing biases in ambient noise imaging, it is vital to assess the contribution of instrument self-noise to overall site noise. Self-noise estimates typically come from vault installations in continental interiors with very low ambient noise levels. However, this approach restricts the independent assessment of self-noise by individual end-users to assess any variations in their own instrument pools from nominal specifications given by manufacturers and from estimations given in comparative test papers. However, the calculation method should be adapted to variable installation conditions. One problem is that microseism noise can contaminate self-noise results caused by instrument misalignment errors or manufacturing limits; this effect becomes stronger where ambient noise is higher. Moreover, due to expected stochastic and time-varying sensor noise, estimates based on hand-picking small numbers of data segments may not accurately reflect true self-noise. We report on results from a self-noise test experiment of Güralp seismic instruments (3T, 3ESPC broadband seismometers, Fortis strong motion accelerometer) that were installed in the sub-surface vault of the Eskdalemuir Seismic Observatory in Scotland, UK over the period October 2016-August 2017. Due to vault's proximity to the ocean, secondary microseism noise is strong, so we efficiently compute the angle of misalignment that maximises waveform coherence with a reference sensor. Self-noise was calculated using the 3-sensor correlation technique and we compute probability density functions of self-noise to assess its spread over time. We find that not correcting for misalignments as low as 0.1° can cause self-noise to be artificially higher by up to 15 dB at frequencies of 0.1-1 Hz. Our method thus efficiently removes the effect of microseism contamination on self-noise; for example, it restores the minimum noise floor for a 360s - 50 Hz 3T to -195 dB at 0.2 Hz. Furthermore, based on the analysis of our calculated probability density functions, we find at long-periods (> 30 s) the average self-noise can be up to 5 dB higher than the minimum noise floor. We discuss the validity of these results in terms of making direct comparisons with self-noise results from much quieter installations.
The study of the effect of aluminum powders dispersion on the oxidation and kinetic characteristics
NASA Astrophysics Data System (ADS)
Gorbenko, T. I.; Gorbenko, M. V.; Orlova, M. P.; Volkov, S. A.
2017-11-01
Differential-scanning calorimetry (DSC) and thermogravimetric analysis (TG) were used to study micro-sized aluminum powder ASD-4 and nano-sized powder Alex. The dependence of the oxidation process on the dispersion of the sample particles is shown. The influence of thermogravimetric conditions on the thermal regime of the process was considered, and its kinetic parameters were determined. Calculations of the activation energy and the pre-exponential factor were carried out.
Three-dimensional boron particle loaded thermal neutron detector
Nikolic, Rebecca J.; Conway, Adam M.; Graff, Robert T.; Kuntz, Joshua D.; Reinhardt, Catherine; Voss, Lars F.; Cheung, Chin Li; Heineck, Daniel
2014-09-09
Three-dimensional boron particle loaded thermal neutron detectors utilize neutron sensitive conversion materials in the form of nano-powders and micro-sized particles, as opposed to thin films, suspensions, paraffin, etc. More specifically, methods to infiltrate, intersperse and embed the neutron nano-powders to form two-dimensional and/or three-dimensional charge sensitive platforms are specified. The use of nano-powders enables conformal contact with the entire charge-collecting structure regardless of its shape or configuration.
NASA Technical Reports Server (NTRS)
Liou, May-Fun; Lee, Byung Joon
2013-01-01
It is known that the adverse effects of shock wave boundary layer interactions in high speed inlets include reduced total pressure recovery and highly distorted flow at the aerodynamic interface plane (AIP). This paper presents a design method for flow control which creates perturbations in geometry. These perturbations are tailored to change the flow structures in order to minimize shock wave boundary layer interactions (SWBLI) inside supersonic inlets. Optimizing the shape of two dimensional micro-size bumps is shown to be a very effective flow control method for two-dimensional SWBLI. In investigating the three dimensional SWBLI, a square duct is employed as a baseline. To investigate the mechanism whereby the geometric elements of the baseline, i.e. the bottom wall, the sidewall and the corner, exert influence on the flow's aerodynamic characteristics, each element is studied and optimized separately. It is found that arrays of micro-size bumps on the bottom wall of the duct have little effect in improving total pressure recovery though they are useful in suppressing the incipient separation in three-dimensional problems. Shaping sidewall geometry is effective in re-distributing flow on the side wall and results in a less distorted flow at the exit. Subsequently, a near 50% reduction in distortion is achieved. A simple change in corner geometry resulted in a 2.4% improvement in total pressure recovery.