Monitoring method and apparatus using high-frequency carrier
Haynes, Howard D.
1996-01-01
A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device.
Monitoring method and apparatus using high-frequency carrier
Haynes, H.D.
1996-04-30
A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device. 6 figs.
Demodulation circuit for AC motor current spectral analysis
Hendrix, Donald E.; Smith, Stephen F.
1990-12-18
A motor current analysis method for the remote, noninvasive inspection of electric motor-operated systems. Synchronous amplitude demodulation and phase demodulation circuits are used singly and in combination along with a frequency analyzer to produce improved spectral analysis of load-induced frequencies present in the electric current flowing in a motor-driven system.
van Ede, Freek
2017-01-01
Beta and gamma oscillations are the dominant oscillatory activity in the human motor cortex (M1). However, their physiological basis and precise functional significance remain poorly understood. Here, we used transcranial magnetic stimulation (TMS) to examine the physiological basis and behavioral relevance of driving beta and gamma oscillatory activity in the human M1 using transcranial alternating current stimulation (tACS). tACS was applied using a sham-controlled crossover design at individualized intensity for 20 min and TMS was performed at rest (before, during, and after tACS) and during movement preparation (before and after tACS). We demonstrated that driving gamma frequency oscillations using tACS led to a significant, duration-dependent decrease in local resting-state GABAA inhibition, as quantified by short interval intracortical inhibition. The magnitude of this effect was positively correlated with the magnitude of GABAA decrease during movement preparation, when gamma activity in motor circuitry is known to increase. In addition, gamma tACS-induced change in GABAA inhibition was closely related to performance in a motor learning task such that subjects who demonstrated a greater increase in GABAA inhibition also showed faster short-term learning. The findings presented here contribute to our understanding of the neurophysiological basis of motor rhythms and suggest that tACS may have similar physiological effects to endogenously driven local oscillatory activity. Moreover, the ability to modulate local interneuronal circuits by tACS in a behaviorally relevant manner provides a basis for tACS as a putative therapeutic intervention. SIGNIFICANCE STATEMENT Gamma oscillations have a vital role in motor control. Using a combined tACS-TMS approach, we demonstrate that driving gamma frequency oscillations modulates GABAA inhibition in the human motor cortex. Moreover, there is a clear relationship between the change in magnitude of GABAA inhibition induced by tACS and the magnitude of GABAA inhibition observed during task-related synchronization of oscillations in inhibitory interneuronal circuits, supporting the hypothesis that tACS engages endogenous oscillatory circuits. We also show that an individual's physiological response to tACS is closely related to their ability to learn a motor task. These findings contribute to our understanding of the neurophysiological basis of motor rhythms and their behavioral relevance and offer the possibility of developing tACS as a therapeutic tool. PMID:28348136
Kelledes, William L.; St. John, Don K.
1992-01-01
The present invention maintains constant torque in an inverter driven AC induction motor during variations in rotor temperature. It is known that the torque output of a given AC induction motor is dependent upon rotor temperature. At rotor temperatures higher than the nominal operating condition the rotor impedance increases, reducing the rotor current and motor torque. In a similar fashion, the rotor impedance is reduced resulting in increased rotor current and motor torque when the rotor temperature is lower than the nominal operating condition. The present invention monitors the bus current from the DC supply to the inverter and adjusts the slip frequency of the inverter drive to maintain a constant motor torque. This adjustment is based upon whether predetermined conditions implying increased rotor temperature or decreased rotor temperature exist for longer that a predetermined interval of time.
NASA Technical Reports Server (NTRS)
1984-01-01
Kollmorgen Corporation's Mermaid II two person submersible is propeller-driven by a system of five DC brushless motors with new electronic controllers that originated in work performed in a NASA/DOE project managed by Lewis Research Center. A key feature of the system is electric commutation rather than mechanical commutation for converting AC current to DC.
Nowak, Magdalena; Hinson, Emily; van Ede, Freek; Pogosyan, Alek; Guerra, Andrea; Quinn, Andrew; Brown, Peter; Stagg, Charlotte J
2017-04-26
Beta and gamma oscillations are the dominant oscillatory activity in the human motor cortex (M1). However, their physiological basis and precise functional significance remain poorly understood. Here, we used transcranial magnetic stimulation (TMS) to examine the physiological basis and behavioral relevance of driving beta and gamma oscillatory activity in the human M1 using transcranial alternating current stimulation (tACS). tACS was applied using a sham-controlled crossover design at individualized intensity for 20 min and TMS was performed at rest (before, during, and after tACS) and during movement preparation (before and after tACS). We demonstrated that driving gamma frequency oscillations using tACS led to a significant, duration-dependent decrease in local resting-state GABA A inhibition, as quantified by short interval intracortical inhibition. The magnitude of this effect was positively correlated with the magnitude of GABA A decrease during movement preparation, when gamma activity in motor circuitry is known to increase. In addition, gamma tACS-induced change in GABA A inhibition was closely related to performance in a motor learning task such that subjects who demonstrated a greater increase in GABA A inhibition also showed faster short-term learning. The findings presented here contribute to our understanding of the neurophysiological basis of motor rhythms and suggest that tACS may have similar physiological effects to endogenously driven local oscillatory activity. Moreover, the ability to modulate local interneuronal circuits by tACS in a behaviorally relevant manner provides a basis for tACS as a putative therapeutic intervention. SIGNIFICANCE STATEMENT Gamma oscillations have a vital role in motor control. Using a combined tACS-TMS approach, we demonstrate that driving gamma frequency oscillations modulates GABA A inhibition in the human motor cortex. Moreover, there is a clear relationship between the change in magnitude of GABA A inhibition induced by tACS and the magnitude of GABA A inhibition observed during task-related synchronization of oscillations in inhibitory interneuronal circuits, supporting the hypothesis that tACS engages endogenous oscillatory circuits. We also show that an individual's physiological response to tACS is closely related to their ability to learn a motor task. These findings contribute to our understanding of the neurophysiological basis of motor rhythms and their behavioral relevance and offer the possibility of developing tACS as a therapeutic tool. Copyright © 2017 Nowak et al.
Drive control and position measurement of RailCab vehicles driven by linear motors
NASA Astrophysics Data System (ADS)
Pottharst, Andreas; Henke, Christian; Schneider, Tobias; Böcker, Joachim; Grotstollen, Horst
2006-11-01
The novel railway system RailCab makes use of autonomous vehicles which are driven by an AC linear motor. Depending on the track-side motor part, long-stator or short-stator operations are possible. The paper deals with the operation of the doubly-fed induction motor which is used for motion control and for transferring the energy required onboard the vehicle. This type of linear motor synchronization of the traveling fields generated by the stationary primary and moving secondary windings is an important and demanding task because the instantaneous positions of the vehicle or the primary traveling wave must be determined with high accuracy. The paper shows how this task is solved at the moment and what improvements are under development.
A linear magnetic motor and generator
NASA Technical Reports Server (NTRS)
Studer, P. A.
1980-01-01
In linear magnetic motor and generator suitable for remote and hostile environments, magnetic forces drive reciprocating shaft along its axis. Actuator shaft is located in center of cylindrical body and may be supported by either contacting or noncontacting bearings. When device operates as bidirectional motor, drive coil selectively adds and subtracts magnetic flux to and from flux paths, producing forces that drive actuator along axis. When actuator is driven by external reciprocating engine, device becomes ac generator.
System and method for determining stator winding resistance in an AC motor using motor drives
Lu, Bin; Habetler, Thomas G; Zhang, Pinjia
2013-02-26
A system and method for determining the stator winding resistance of AC motors is provided. The system includes an AC motor drive having an input connectable to an AC source and an output connectable to an input terminal of an AC motor, a pulse width modulation (PWM) converter having switches therein to control current flow and terminal voltages in the AC motor, and a control system connected to the PWM converter. The control system generates a command signal to cause the PWM converter to control an output of the AC motor drive corresponding to an input to the AC motor, selectively generates a modified command signal to cause the PWM converter to inject a DC signal into the output of the AC motor drive, and determines a stator winding resistance of the AC motor based on the DC signal of at least one of the voltage and current.
The interactive processes of accommodation and vergence.
Semmlow, J L; Bérard, P V; Vercher, J L; Putteman, A; Gauthier, G M
1994-01-01
A near target generates two different, though related stimuli: image disparity and image blur. Fixation of that near target evokes three motor responses: the so-called oculomotor "near triad". It has long been known that both disparity and blur stimuli are each capable of independently generating all three responses, and a recent theory of near triad control (the Dual Interactive Theory) describes how these stimulus components normally work together in the aid of near vision. However, this theory also indicates that when the system becomes unbalanced, as in high AC/A ratios of some accommodative esotropes, the two components will become antagonistic. In this situation, the interaction between the blur and disparity driven components exaggerates the imbalance created in the vergence motor output. Conversely, there is enhanced restoration when the AC/A ratio is effectively reduced surgically.
System and method for determining stator winding resistance in an AC motor
Lu, Bin [Kenosha, WI; Habetler, Thomas G [Snellville, GA; Zhang, Pinjia [Atlanta, GA; Theisen, Peter J [West Bend, WI
2011-05-31
A system and method for determining stator winding resistance in an AC motor is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of an AC motor. The circuit includes at least one contactor and at least one switch to control current flow and terminal voltages in the AC motor. The system also includes a controller connected to the circuit and configured to modify a switching time of the at least one switch to create a DC component in an output of the system corresponding to an input to the AC motor and determine a stator winding resistance of the AC motor based on the injected DC component of the voltage and current.
Lu, Bin [Kenosha, WI; Luebke, Charles John [Sussex, WI; Habetler, Thomas G [Snellville, GA; Zhang, Pinjia [Atlanta, GA; Becker, Scott K [Oak Creek, WI
2011-12-27
A system and method for measuring and controlling stator winding temperature in an AC motor while idling is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of a multi-phase AC motor. The circuit further includes a plurality of switching devices to control current flow and terminal voltages in the multi-phase AC motor and a controller connected to the circuit. The controller is configured to activate the plurality of switching devices to create a DC signal in an output of the motor control device corresponding to an input to the multi-phase AC motor, determine or estimate a stator winding resistance of the multi-phase AC motor based on the DC signal, and estimate a stator temperature from the stator winding resistance. Temperature can then be controlled and regulated by DC injection into the stator windings.
Improved transistorized AC motor controller for battery powered urban electric passenger vehicles
NASA Technical Reports Server (NTRS)
Peak, S. C.
1982-01-01
An ac motor controller for an induction motor electric vehicle drive system was designed, fabricated, tested, evaluated, and cost analyzed. A vehicle performance analysis was done to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of ac motor and ac controller requirements. The power inverter is a three-phase bridge using power Darlington transistors. The induction motor was optimized for use with an inverter power source. The drive system has a constant torque output to base motor speed and a constant horsepower output to maximum speed. A gear shifting transmission is not required. The ac controller was scaled from the base 20 hp (41 hp peak) at 108 volts dec to an expanded horsepower and battery voltage range. Motor reversal was accomplished by electronic reversal of the inverter phase sequence. The ac controller can also be used as a boost chopper battery charger. The drive system was tested on a dynamometer and results are presented. The current-controlled pulse width modulation control scheme yielded improved motor current waveforms. The ac controller favors a higher system voltage.
Feurra, Matteo; Pasqualetti, Patrizio; Bianco, Giovanni; Santarnecchi, Emiliano; Rossi, Alessandro; Rossi, Simone
2013-10-30
Imperceptible transcranial alternating current stimulation (tACS) changes the endogenous cortical oscillatory activity in a frequency-specific manner. In the human motor system, tACS coincident with the idling beta rhythm of the quiescent motor cortex increased the corticospinal output. We reasoned that changing the initial state of the brain (i.e., from quiescence to a motor imagery task that desynchronizes the local beta rhythm) might also change the susceptibility of the corticospinal system to resonance effects induced by beta-tACS. We tested this hypothesis by delivering tACS at different frequencies (theta, alpha, beta, and gamma) on the primary motor cortex at rest and during motor imagery. Motor-evoked potentials (MEPs) were obtained by transcranial magnetic stimulation (TMS) on the primary motor cortex with an online-navigated TMS-tACS setting. During motor imagery, the increase of corticospinal excitability was maximal with theta-tACS, likely reflecting a reinforcement of working memory processes required to mentally process and "execute" the cognitive task. As expected, the maximal MEPs increase with subjects at rest was instead obtained with beta-tACS, substantiating previous evidence. This dissociation provides new evidence of state and frequency dependency of tACS effects on the motor system and helps discern the functional role of different oscillatory frequencies of this brain region. These findings may be relevant for rehabilitative neuromodulatory interventions.
Variable-frequency inverter controls torque, speed, and braking in ac induction motors
NASA Technical Reports Server (NTRS)
Nola, F. J.
1974-01-01
Dc to ac inverter provides optimum frequency and voltage to ac induction motor, in response to different motor-load and speed requirements. Inverter varies slip frequency of motor in proportion to required torque. Inverter protects motor from high current surges, controls negative slip to apply braking, and returns energy stored in momentum of load to dc power source.
System and method for motor speed estimation of an electric motor
Lu, Bin [Kenosha, WI; Yan, Ting [Brookfield, WI; Luebke, Charles John [Sussex, WI; Sharma, Santosh Kumar [Viman Nagar, IN
2012-06-19
A system and method for a motor management system includes a computer readable storage medium and a processing unit. The processing unit configured to determine a voltage value of a voltage input to an alternating current (AC) motor, determine a frequency value of at least one of a voltage input and a current input to the AC motor, determine a load value from the AC motor, and access a set of motor nameplate data, where the set of motor nameplate data includes a rated power, a rated speed, a rated frequency, and a rated voltage of the AC motor. The processing unit is also configured to estimate a motor speed based on the voltage value, the frequency value, the load value, and the set of nameplate data and also store the motor speed on the computer readable storage medium.
A BAPTA employing rotary transformers, stepper motors and ceramic ball bearings
NASA Technical Reports Server (NTRS)
Auer, W.
1981-01-01
The utilization of rotary transformers as an alternative to slip rings for the power transfer from solar panels to a satellite's main body could be advantageous, especially if an ac bus system is taken into consideration. Different approaches with main emphasis on the electromagnetic design were investigated and showed efficiencies of up to 99% with a 3 kW power capability. A solidly preloaded pair of ball bearings with ceramic balls assures proper transformer air gaps and acceptable torque changes over temperature and temperature gradients. The bearing and power transfer assembly is driven by a direct drive stepper motor with inherent redundancy properties and needs no caging mechanism.
AC Application of HTS Conductors in Highly Dynamic Electric Motors
NASA Astrophysics Data System (ADS)
Oswald, B.; Best, K.-J.; Setzer, M.; Duffner, E.; Soell, M.; Gawalek, W.; Kovalev, L. K.
2006-06-01
Based on recent investigations we design highly dynamic electric motors up to 400 kW and linear motors up to 120 kN linear force using HTS bulk material and HTS tapes. The introduction of HTS tapes into AC applications in electric motors needs fundamental studies on double pancake coils under transversal magnetic fields. First theoretical and experimental results on AC field distributions in double-pancake-coils and corresponding AC losses will be presented. Based on these results the simulation of the motor performance confirms extremely high power density and efficiency of both types of electric motors. Improved characteristics of rare earth permanent magnets used in our motors at low temperatures give an additional technological benefit.
Effect of nucleus accumbens lesions on socially motivated behaviour of young domestic chicks.
Zachar, Gergely; Tóth, András Sebestyén; Balogh, Márton; Csillag, András
2017-06-01
Behaviour of young domestic chicks when isolated from conspecifics is influenced by two conflicting drives: fear of potential predator and craving for company. The nucleus accumbens (Ac) has been suggested to influence social behaviour, as well as motivation in goal-directed tasks. In this study, the Ac of 1-day-old domestic chicks was lesioned bilaterally, using radiofrequency method. Open field behaviour before and after presenting a silhouette of a bird of prey was recorded, followed by a behavioural test to measure group size preference and social motivation of chicks. Ac-lesioned individuals emitted more distress calls and ambulated more in the open field test, however, they reacted to the predatory stimulus very similarly to control chicks: their vocalization was reduced and the intergroup difference in motor activity also disappeared. There was no difference between the lesioned and control chicks in the latency to approach their conspecifics in the social motivation test, and both groups chose the larger flock (eight) of conspecifics over the smaller one (three). Concerning the role of Ac in social behaviour, a difference between lesioned and sham birds was evident here only in the absence of detectable stimulus (predator or conspecifics). These findings may reflect either decreased fear of exposure to predators or increased craving for conspecifics suggesting that the likely function of Ac is to modulate goal-driven, including socially driven, behaviours, especially when the direct stimulus representing the goal is absent. This is in harmony with the known promotion of impulsiveness by Ac lesions. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Development of magneto-rheologial fluid (MRF) based clutch for output torque control of AC motors
NASA Astrophysics Data System (ADS)
Nguyen, Q. Hung; Do, H. M. Hieu; Nguyen, V. Quoc; Nguyen, N. Diep; Le, D. Thang
2018-03-01
In industry, the AC motor is widely used because of low price, power availability, low cost maintenance. The main disadvantages of AC motors compared to DC motors are difficulty in speed and torque control, requiring expensive controllers with complex control algorithms. This is the basic limitations in the widespread adoption of AC motor systems for industrial automation. One feasible solution for AC motor control is using MRF (magneto-rheological fluid) based clutches (shortly called MR clutches) Although there have been many studies on MR clutches, most of these clutches used traditional configuration with coils wound on the middle cylindrical part and a compotator is used to supply power to the coils. Therefore, this type of MR clutches possesses many disadvantages such as high friction and unstable applied current due to commutator, complex structure which causes difficulty in manufacture, assembly, and maintenance. In addition, the bottleneck problem of magnetic field is also a challenging issue. In this research, we will develop a new type of MR clutches that overcomes the abovementioned disadvantages of traditional MR clutches and more suitable for application in controlling of AC motor. Besides, in this study, speed and torque control system for AC motors using developed MR clutches is designed and experimental validated.
Modelling and Simulation of Single-Phase Series Active Compensator for Power Quality Improvement
NASA Astrophysics Data System (ADS)
Verma, Arun Kumar; Mathuria, Kirti; Singh, Bhim; Bhuvaneshwari, G.
2017-10-01
A single-phase active series compensator is proposed in this work to reduce harmonic currents at the ac mains and to regulate the dc link voltage of a diode bridge rectifier (DBR) that acts as the front end converter for a voltage source inverter feeding an ac motor. This ac motor drive is used in any of the domestic, commercial or industrial appliances. Under fluctuating ac mains voltages, the dc link voltage of the DBR depicts wide variations and hence the ac motor is used at reduced rating as compared to its name-plate rating. The active series compensator proposed here provides dual functions of improving the power quality at the ac mains and regulating the dc link voltage thus averting the need for derating of the ac motor.
The application of Halbach cylinders to brushless ac servo motors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atallah, K.; Howe, D.
1998-07-01
Halbach cylinders are applied to brushless ac servo motors. It is shown that a sinusoidal back-emf waveform and a low cogging torque can be achieved without recourse to conventional design features such as distributed windings and/or stator/rotor skew. A technique for imparting a multipole Halbach magnetization distribution on an isotropic permanent magnet cylinder is described, and it is shown that the torque capability of a Halbach ac servo motor can be up to 33% higher than conventional brushless permanent magnet ac motors.
Effects of 10 Hz and 20 Hz Transcranial Alternating Current Stimulation on Automatic Motor Control.
Cappon, Davide; D'Ostilio, Kevin; Garraux, Gaëtan; Rothwell, John; Bisiacchi, Patrizia
2016-01-01
In a masked prime choice reaction task, presentation of a compatible prime increases the reaction time to the following imperative stimulus if the interval between mask and prime is around 80-250 ms. This is thought to be due to automatic suppression of the motor plan evoked by the prime, which delays reaction to the imperative stimulus. Oscillatory activity in motor networks around the beta frequency range of 20 Hz is important in suppression of movement. Transcranial alternating current at 20 Hz may be able to drive oscillations in the beta range. To investigate whether transcranial alternating current stimulation (tACS) at 20 Hz would increase automatic inhibition in a masked prime task. As a control we used 10 Hz tACS. Stimulation was delivered at alpha (10 Hz) and beta (20 Hz) frequency over the supplementary motor area and the primary motor cortex (simultaneous tACS of SMA-M1), which are part of the BG-cortical motor loop, during the execution of the subliminal masked prime left/right choice reaction task. We measured the effects on reaction times. Corticospinal excitability was assessed by measuring the amplitude of motor evoked potentials (MEPs) evoked in the first dorsal interosseous muscle by transcranial magnetic stimulation (TMS) over M1. The 10 and 20-Hz tACS over SMA-M1 had different effects on automatic inhibition. The 20 Hz tACS increased the duration of automatic inhibition whereas it was decreased by 10 Hz tACS. Neurophysiologically, 20 Hz tACS reduced the amplitude of MEPs evoked from M1, whereas there was no change after 10 Hz tACS. Automatic mechanisms of motor inhibition can be modulated by tACS over motor areas of cortex. tACS may be a useful additional tool to investigate the causal links between endogenous brain oscillations and specific cognitive processes. Copyright © 2016 Elsevier Inc. All rights reserved.
Photographic Video Disc Technology Assessment
1976-09-27
by a universal type motor that is driven from the ac power lines using a triac . The triac is controlled by a phase locked loop control circuit that...Regardless of signal format, direct analogue or an A/D converted digital signal, it is recorded by modulated laser beam and can be read out by either...was made to record with frequency modulation (FM) because of its immunity to noise at low frequencies where much of the system noise is. The usual
26. Port side of engine room looking forward from aft ...
26. Port side of engine room looking forward from aft bulkhead. This area contains mostly electrical equipment. Two single-cylinder steam-driven dynamos are located near the engine bed, one at right foreground, the other in background. At left in image are a motor-generator set installed to convert DC current (from dynamos) to AC current. Edge-on view of control panel appears near center of image. - Ferry TICONDEROGA, Route 7, Shelburne, Chittenden County, VT
Electric Drive Study. Volume 1
1987-12-21
CONDITIONER HIGH VOLTAGE DC ICONDITIONER 3 ,300-50 VOLT5), dCONTROL! Figure 5-4. Typical AC Drive System 20 system usable with an induction motor. The...controlling component in an AC drive is the motor power conditioner . This component changes the high voltage DC power to controlled AC power of...selected voltage and frequency which is applied to the drive motors. Since the vehicle gains stored energy as it is accelerated, the motor power conditioner
Power factor control system for AC induction motors
NASA Technical Reports Server (NTRS)
Nola, F. J. (Inventor)
1977-01-01
A power factor control system for use with ac induction motors was designed which samples lines voltage and current through the motor and decreases power input to the motor proportional to the detected phase displacement between current and voltage. This system provides, less power to the motor, as it is less loaded.
78 FR 32349 - Airworthiness Directives; Cessna Aircraft Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-30
... occurs first: Inspect the A/C compressor motor to determine whether P/N 1134104-1 or P/N 1134104-5 is... number of the A/C compressor motor can be conclusively determined from that review. (h) Inspection of..., any A/C compressor motor is found having P/N 1134104-1 or P/N 1134104-5: Within 30 days or 10 flight...
Cost Performance Estimating Relationships for Hybrid Electric Vehicle Components
2003-07-31
Permanent magnet motors are more likely to be used as generators, while AC induction motors are more efficiently used as motors. Inverters/controllers can...than permanent magnet motors . Switched Reluctance motors are also used on hybrid electric vehicles, but are not used as widely as either AC...induction or permanent magnet motors , and are not analyzed here. Methodology The motor estimates are based on power, with kilowatts being the unit of
Toward characterization of Huber's ball-bearing motor
NASA Astrophysics Data System (ADS)
Choo, Joo Liang; Soong, Wen Liang; Abbott, Derek
2005-02-01
A motor that can be powered up by either a DC or AC supply and rotates in either direction, based on the so-called Huber effect, is investigated. For the first time, this paper examines the motor characteristics under both DC and AC conditions, for quantitative comparisons. Earlier work has not examined, in detail, the effect of an AC supply on the Huber motor operation. Previous work on the Huber or ball-bearing motor suffered from alignment problems and here we describe a new methodology to address this. The new construction is also a step toward a micromotor realization. The motor, with its reduced dimensions, also has the advantage of reduced operating current. Since 1959, the principle of operation of this motor has remained an unsolved mystery and various theories exist in the literature. We show various empirical findings that shed some light on the hotly contested debate. The discovery of carbon on the bearings, under AC supply conditions, reported here creates a new open question. Motor acceleration versus torque characteristics are obtained, using a data acquisition system to facilitate dynamic real-time recording.
Neuronal mechanisms of motor learning and motor memory consolidation in healthy old adults.
Berghuis, K M M; Veldman, M P; Solnik, S; Koch, G; Zijdewind, I; Hortobágyi, T
2015-06-01
It is controversial whether or not old adults are capable of learning new motor skills and consolidate the performance gains into motor memory in the offline period. The underlying neuronal mechanisms are equally unclear. We determined the magnitude of motor learning and motor memory consolidation in healthy old adults and examined if specific metrics of neuronal excitability measured by magnetic brain stimulation mediate the practice and retention effects. Eleven healthy old adults practiced a wrist extension-flexion visuomotor skill for 20 min (MP, 71.3 years), while a second group only watched the templates without movements (attentional control, AC, n = 11, 70.5 years). There was 40 % motor learning in MP but none in AC (interaction, p < 0.001) with the skill retained 24 h later in MP and a 16 % improvement in AC. Corticospinal excitability at rest and during task did not change, but when measured during contraction at 20 % of maximal force, it strongly increased in MP and decreased in AC (interaction, p = 0.002). Intracortical inhibition at rest and during the task decreased and facilitation at rest increased in MP, but these metrics changed in the opposite direction in AC. These neuronal changes were especially profound at retention. Healthy old adults can learn a new motor skill and consolidate the learned skill into motor memory, processes that are most likely mediated by disinhibitory mechanisms. These results are relevant for the increasing number of old adults who need to learn and relearn movements during motor rehabilitation.
AC motor and generator requirements for isolated WECS
NASA Technical Reports Server (NTRS)
Park, G. L.; Mccleer, P. J.; Hanson, B.; Weinberg, B.; Krauss, O.
1985-01-01
After surveying electrically driven loads used on productive farms, the investigators chose three pumps for testing at voltages and frequencies far outside the normal operating range. These loads extract and circulate water and move heat via air, and all are critical to farm productivity. The object was to determine the envelope of supply voltage and frequency over which these loads would operate stably for time intervals under 1 hour. This information is among that needed to determine the feasibility of supplying critical loads, in case of a utility outage, from a wind driven alternator whose output voltage and frequency will vary dramatically in most continental wind regimes. Other related work is surveyed. The salient features and limitations of the test configurations used and the data reduction are described. The development of simulation models suitable for a small computer are outlined. The results are primarily displayed on the voltage frequency plane with the general conclusion that the particular pump models considered will operate over the range of 50 to 90 Hz and a voltage band which starts below rated, decreases as frequency decreases, and is limited on the high side by excessive motor heating. For example, centrifugal pump operating voltage ranges as extensive .4 to 1.4 appear possible. Particular problems with starting, stalling due to lack of motor torque, high speed cavitation, and likely overheating are addressed in a listing of required properties for wind driven alternators and their controllers needed for use in the isolated or stand alone configuration considered.
Precision electronic speed controller for an alternating-current
Bolie, Victor W.
1988-01-01
A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for and is particularly suitable for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. In the preferred embodiment, the motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of readonly memories, and a pair of digital-to-analog converters.
Whitmore, Ani S; Romski, Mary Ann; Sevcik, Rose A
2014-09-01
This exploratory study examined the potential secondary outcome of an early augmented language intervention that incorporates speech-generating devices (SGD) on motor skill use for children with developmental delays. The data presented are from a longitudinal study by Romski and colleagues. Toddlers in the augmented language interventions were either required (Augmented Communication-Output; AC-O) or not required (Augmented Communication-Input; AC-I) to use the SGD to produce an augmented word. Three standardized assessments and five event-based coding schemes measured the participants' language abilities and motor skills. Toddlers in the AC-O intervention used more developmentally appropriate motor movements and became more accurate when using the SGD to communicate than toddlers in the AC-I intervention. AAC strategies, interventionist/parent support, motor learning opportunities, and physical feedback may all contribute to this secondary benefit of AAC interventions that use devices.
Weight-Handling Equipment. Design Manual 38.1.
1982-06-01
Contact Rails ....... ................... 38.1-153 B-1. Torque-Speed Curves of Wound- Rotor Motor with Single-Phase Dynamic Braking Control...38.1-B-4 B-2. Torque-Speed Curves for Wound- Rotor Motor with DC Dynamic -Braking Lowering Control ... ........... . 38.1-B-6 B-3. Torque-Speed Curves...AC hoist and DC dynamic -braking lowering). (b) Wound- rotor motors. (i) Heavy-duty cranes using AC motors should have motors of the wound- rotor (slip
Frequency modulation drive for a piezoelectric motor
Mittas, Anthony
2001-01-01
A piezoelectric motor has peak performance at a specific frequency f.sub.1 that may vary over a range of frequencies. A drive system is disclosed for operating such a motor at peak performance without feedback. The drive system consists of the motor and an ac source connected to power the motor, the ac source repeatedly generating a frequency over a range from f.sub.1 -.DELTA.x to f.sub.1 +.DELTA.y.
Dynamometer Research Facilities | Wind | NREL
drivetrains by replacing the rotor and blades of a turbine with a powerful motor. The National Renewable -horsepower variable-speed induction motor, with AC grid connections of 120, 240, and 480 volts (V) and a dynamometer features a 3,351-horsepower (hp), 415-amp AC induction motor with variable-frequency drive that
NASA Astrophysics Data System (ADS)
Doumoto, Takafumi; Akagi, Hirofumi
This paper proposes a small-sized passive EMI filter for the purpose of eliminating high-frequency shaft voltage and ground leakage current from an ac motor. The motor is driven by a general-purpose PWM inverter connected to a three-phase grounded voltage source. The passive EMI filter requires access to the ungrounded neutral point of the motor. This unique circuit configuration makes the common-mode inductor effective in reducing the high-frequency common-mode voltage generated by the PWM inverter with a carrier frequency of 15kHz. As a result, both high-frequency shaft voltage and ground leakage current can be eliminated very efficiently. However, the common-mode inductor may not play any role in reducing the low-frequency common-mode voltage generated by the diode rectifier, so that a low-frequency component still remains in the shaft voltage. Such a low-frequency shaft voltage may not produce any bad effect on motor bearings. The validity and effectiveness of the EMI filter is verified by experimental results obtained from a 200-V 5-kVA laboratory system.
Sizing and modelling of photovoltaic water pumping system
NASA Astrophysics Data System (ADS)
Al-Badi, A.; Yousef, H.; Al Mahmoudi, T.; Al-Shammaki, M.; Al-Abri, A.; Al-Hinai, A.
2018-05-01
With the decline in price of the photovoltaics (PVs) their use as a power source for water pumping is the most attractive solution instead of using diesel generators or electric motors driven by a grid system. In this paper, a method to design a PV pumping system is presented and discussed, which is then used to calculate the required size of the PV for an existing farm. Furthermore, the amount of carbon dioxide emissions saved by the use of PV water pumping system instead of using diesel-fuelled generators or electrical motor connected to the grid network is calculated. In addition, an experimental set-up is developed for the PV water pumping system using both DC and AC motors with batteries. The experimental tests are used to validate the developed MATLAB model. This research work demonstrates that using the PV water pumping system is not only improving the living conditions in rural areas but it is also protecting the environment and can be a cost-effective application in remote locations.
29 CFR 1926.406 - Specific purpose equipment and installations.
Code of Federal Regulations, 2013 CFR
2013-07-01
...—disconnecting means—(1) Motor-generator, AC transformer, and DC rectifier arc welders. A disconnecting means shall be provided in the supply circuit for each motor-generator arc welder, and for each AC transformer...
29 CFR 1926.406 - Specific purpose equipment and installations.
Code of Federal Regulations, 2012 CFR
2012-07-01
...—disconnecting means—(1) Motor-generator, AC transformer, and DC rectifier arc welders. A disconnecting means shall be provided in the supply circuit for each motor-generator arc welder, and for each AC transformer...
Variable frequency inverter for ac induction motors with torque, speed and braking control
NASA Technical Reports Server (NTRS)
Nola, F. J. (Inventor)
1975-01-01
A variable frequency inverter was designed for driving an ac induction motor which varies the frequency and voltage to the motor windings in response to varying torque requirements for the motor so that the applied voltage amplitude and frequency are of optimal value for any motor load and speed requirement. The slip frequency of the motor is caused to vary proportionally to the torque and feedback is provided so that the most efficient operating voltage is applied to the motor. Winding current surge is limited and a controlled negative slip causes motor braking and return of load energy to a dc power source.
The Feasibility of Applying AC Driven Low-Temperature Plasma for Multi-Cycle Detonation Initiation
NASA Astrophysics Data System (ADS)
Zheng, Dianfeng
2016-11-01
Ignition is a key system in pulse detonation engines (PDE). As advanced ignition methods, nanosecond pulse discharge low-temperature plasma ignition is used in some combustion systems, and continuous alternating current (AC) driven low-temperature plasma using dielectric barrier discharge (DBD) is used for the combustion assistant. However, continuous AC driven plasmas cannot be used for ignition in pulse detonation engines. In this paper, experimental and numerical studies of pneumatic valve PDE using an AC driven low-temperature plasma igniter were described. The pneumatic valve was jointly designed with the low-temperature plasma igniter, and the numerical simulation of the cold-state flow field in the pneumatic valve showed that a complex flow in the discharge area, along with low speed, was beneficial for successful ignition. In the experiments ethylene was used as the fuel and air as oxidizing agent, ignition by an AC driven low-temperature plasma achieved multi-cycle intermittent detonation combustion on a PDE, the working frequency of the PDE reached 15 Hz and the peak pressure of the detonation wave was approximately 2.0 MPa. The experimental verifications of the feasibility in PDE ignition expanded the application field of AC driven low-temperature plasma. supported by National Natural Science Foundation of China (No. 51176001)
Advanced AC permanent magnet axial flux disc motor for electric passenger vehicle
NASA Technical Reports Server (NTRS)
Kliman, G. B.
1982-01-01
An ac permanent magnet axial flux disc motor was developed to operate with a thyristor load commutated inverter as part of an electric vehicle drive system. The motor was required to deliver 29.8 kW (40 hp) peak and 10.4 kW (14 hp) average with a maximum speed of 11,000 rpm. It was also required to run at leading power factor to commutate the inverter. Three motors were built.
Improved SCR ac Motor Controller for Battery Powered Urban Electric Vehicles
NASA Technical Reports Server (NTRS)
Latos, T. S.
1982-01-01
An improved ac motor controller, which when coupled to a standard ac induction motor and a dc propulsion battery would provide a complete electric vehicle power train with the exception of the mechanical transmission and drive wheels was designed. In such a system, the motor controller converts the dc electrical power available at the battery terminals to ac electrical power for the induction motor in response to the drivers commands. The performance requirements of a hypothetical electric vehicle with an upper weight bound of 1590 kg (3500 lb) were used to determine the power rating of the controller. Vehicle acceleration capability, top speed, and gradeability requisites were contained in the Society of Automotive Engineers (SAE) Schedule 227a(d) driving cycle. The important capabilities contained in this driving cycle are a vehicle acceleration requirement of 0 to 72.4 kmph (0 to 45 mph) in 28 seconds a top speed of 88.5 kmph (55 mph), and the ability to negotiate a 10% grade at 48 kmph (30 mph). A 10% grade is defined as one foot of vertical rise per 10 feet of horizontal distance.
Comparison of Solid State Inverters for AC Induction Motor Traction Propulsion Systems
DOT National Transportation Integrated Search
1980-12-01
This report is one of a series concerned with the application of ac machines as traction motors for railroad motive power. It presents results of a laboratory evaluation and computer analysis of different inverter systems. Three inverter systems, sin...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flynn, Charles Joseph
The objective of this project was to design and build a cost competitive, more efficient heating, ventilation, and air conditioning (HVAC) motor than what is currently available on the market. Though different potential motor architectures among QMP’s primary technology platforms were investigated and evaluated, including through the building of numerous prototypes, the project ultimately focused on scaling up QM Power, Inc.’s (QMP) Q-Sync permanent magnet synchronous motors from available sub-fractional horsepower (HP) sizes for commercial refrigeration fan applications to larger fractional horsepower sizes appropriate for HVAC applications, and to add multi-speed functionality. The more specific goal became the research, design,more » development, and testing of a prototype 1/2 HP Q-Sync motor that has at least two operating speeds and 87% peak efficiency compared to incumbent electronically commutated motors (EC or ECM, also known as brushless direct current (DC) motors), the heretofore highest efficiency HVACR fan motor solution, at approximately 82% peak efficiency. The resulting motor prototype built achieved these goals, hitting 90% efficiency and .95 power factor at full load and speed, and 80% efficiency and .7 power factor at half speed. Q-Sync, developed in part through a DOE SBIR grant (Award # DE-SC0006311), is a novel, patented motor technology that improves on electronically commutated permanent magnet motors through an advanced electronic circuit technology. It allows a motor to “sync” with the alternating current (AC) power flow. It does so by eliminating the constant, wasteful power conversions from AC to DC and back to AC through the synthetic creation of a new AC wave on the primary circuit board (PCB) by a process called pulse width modulation (PWM; aka electronic commutation) that is incessantly required to sustain motor operation in an EC permanent magnet motor. The Q-Sync circuit improves the power factor of the motor by removing all failure prone capacitors from the power stage. Q-Sync’s simpler electronics also result in higher efficiency because it eliminates the power required by the PCB to perform the obviated power conversions and PWM processes after line synchronous operating speed is reached in the first 5 seconds of operation, after which the PWM circuits drop out and a much less energy intensive “pass through” circuit takes over, allowing the grid-supplied AC power to sustain the motor’s ongoing operation.« less
High reduction transaxle for electric vehicle
Kalns, Ilmars
1987-01-01
A drivetrain (12) includes a transaxle assembly (16) for driving ground engaging wheels of a land vehicle powered by an AC motor. The transaxle includes a ratio change section having planetary gear sets (24, 26) and brake assemblies (28, 30). Sun gears (60, 62) of the gear sets are directly and continuously connected to an input drive shaft (38) driven by the motor. A first drive (78a) directly and continuously connects a planetary gear carrier (78) of gear sets (24) with a ring gear (68) of gear set (26). A second drive (80a) directly and continuously connects a planetary gear carrier (80) of gear set (26) with a sun gear (64) of a final speed reduction gear set (34) having a planetary gear carrier directly and continuously connected to a differential (22). Brakes (28, 30) are selectively engageable to respectively ground a ring gear 66 of gear set 24 and ring gear 68 of gear set 26.
Alternating Current Driven Organic Light Emitting Diodes Using Lithium Fluoride Insulating Layers
Liu, Shang-Yi; Chang, Jung-Hung; -Wen Wu, I.; Wu, Chih-I
2014-01-01
We demonstrate an alternating current (AC)-driven organic light emitting diodes (OLED) with lithium fluoride (LiF) insulating layers fabricated using simple thermal evaporation. Thermal evaporated LiF provides high stability and excellent capacitance for insulating layers in AC devices. The device requires a relatively low turn-on voltage of 7.1 V with maximum luminance of 87 cd/m2 obtained at 10 kHz and 15 Vrms. Ultraviolet photoemission spectroscopy and inverse photoemission spectroscopy are employed simultaneously to examine the electronic band structure of the materials in AC-driven OLED and to elucidate the operating mechanism, optical properties and electrical characteristics. The time-resolved luminance is also used to verify the device performance when driven by AC voltage. PMID:25523436
Optimization Evaluation, General Motors Former AC Rochester Facility, Sioux City, Iowa
The General Motors (GM) Former AC Rochester Facility (site) is located within the valley of the Missouri River in Sioux City, Iowa and is bounded by a steep loess bluff to the north, commercial properties to the east, and undeveloped properties to the...
Zaghi, Soroush; de Freitas Rezende, Larissa; de Oliveira, Laís Machado; El-Nazer, Rasheda; Menning, Sanne; Tadini, Laura; Fregni, Felipe
2010-08-02
There remains a lack of solid evidence showing whether transcranial stimulation with weak alternating current (transcranial alternating current stimulation, tACS) can in fact induce significant neurophysiological effects. Previously, a study in which tACS was applied for 2 and 5min with current density=0.16-0.25A/m(2) was unable to show robust effects on cortical excitability. Here we applied tACS at a significantly higher current density (0.80A/m(2)) for a considerably longer duration (20min) and were indeed able to demonstrate measurable changes to cortical excitability. Our results show that active 15Hz tACS of the motor cortex (electrodes placed at C3 and C4) significantly diminished the amplitude of motor evoked potentials and decreased intracortical facilitation (ICF) as compared to baseline and sham stimulation. In addition, we show that our method of sham tACS is a reliable control condition. These results support the notion that AC stimulation with weak currents can induce significant changes in brain excitability; in this case, 15Hz tACS led to a pattern of inhibition of cortical excitability. We propose that tACS may have a dampening effect on cortical networks and perhaps interfere with the temporal and spatial summation of weak subthreshold electric potentials. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
ac propulsion system for an electric vehicle
NASA Technical Reports Server (NTRS)
Geppert, S.
1980-01-01
It is pointed out that dc drives will be the logical choice for current production electric vehicles (EV). However, by the mid-80's, there is a good chance that the price and reliability of suitable high-power semiconductors will allow for a competitive ac system. The driving force behind the ac approach is the induction motor, which has specific advantages relative to a dc shunt or series traction motor. These advantages would be an important factor in the case of a vehicle for which low maintenance characteristics are of primary importance. A description of an EV ac propulsion system is provided, taking into account the logic controller, the inverter, the motor, and a two-speed transmission-differential-axle assembly. The main barrier to the employment of the considered propulsion system in EV is not any technical problem, but inverter transistor cost.
The ac propulsion system for an electric vehicle, phase 1
NASA Astrophysics Data System (ADS)
Geppert, S.
1981-08-01
A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.
The ac propulsion system for an electric vehicle, phase 1
NASA Technical Reports Server (NTRS)
Geppert, S.
1981-01-01
A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.
NASA Astrophysics Data System (ADS)
Kukhar, Egor I.
2018-01-01
Quasienergy spectrum of electrons in biased bigraphene subjected to the linear polarized high-frequency electromagnetic radiation has been derived. Quasienergy bands of ac-driven bigraphene have been investigated. Dynamical appearing of the saddle points in band structure of biased bigraphene and energy gap modification have been predicted. Electromagnetic field equation has been written using obtained quasienergy spectrum. The solution corresponding to the soliton-like electromagnetic wave has been obtained. The conditions of soliton-like wave generation in ac-driven bigraphene have been discussed.
Integral inverter/battery charger for use in electric vehicles
NASA Technical Reports Server (NTRS)
Thimmesch, D.
1983-01-01
The design and test results of a thyristor based inverter/charger are discussed. A battery charger is included integral to the inverter by using a subset of the inverter power circuit components. The resulting charger provides electrical isolation between the vehicle propulsion battery and ac line and is capable of charging a 25 kWh propulsion battery in 8 hours from a 220 volt ac line. The integral charger employs the inverter commutation components at a resonant ac/dc isolated converter rated at 3.6 kW. Charger efficiency and power factor at an output power of 3.6 kW are 86% and 95% respectively. The inverter, when operated with a matching polyphase ac induction motor and nominal 132 volt propulsion battery, can provide a peak shaft power of 34 kW (45 ph) during motoring operation and 45 kW (60 hp) during regeneration. Thyristors are employed for the inverter power switching devices and are arranged in an input-commutated topology. This configuration requires only two thyristors to commutate the six main inverter thyristors. Inverter efficiency during motoring operation at motor shaft speeds above 450 rad/sec (4300 rpm) is 92-94% for output power levels above 11 KW (15 hp). The combined ac inverter/charger package weighs 47 kg (103 lbs).
Experimental prototype of an electric elevator
NASA Astrophysics Data System (ADS)
Gaiceanu, M.; Epure, S.; Ciuta, S.
2016-08-01
The main objective is to achieve an elevator prototype powered by a three-phase voltage system via a bidirectional static power converter ac-ac with regenerating capability. In order to diminish the power size of the electric motor up to 1/3 of rated power, the elevator contains two carriages of the same weight, one serving as the payload, and the other as counterweight. Before proper operation of the static power converter, the capacitor must be charged at rated voltage via a precharge circuit. At the moment of stabilizing the DC voltage at nominal value, the AC-AC power converter can operates in the proper limits. The functions of the control structure are: the load control task, speed and torque controls. System includes transducers for current measuring, voltage sensors and encoder. As reserve power sources the hybrid battery-photovoltaic panels are used. The control voltage is modulated by implementing four types of pulse width modulations: sinusoidal, with reduced commutation, third order harmonic insertion, and the space vector modulation. Therefore, the prototype could operates with an increased efficiency, in spite of the existing ones. The experimental results confirm the well design of the chosen solution. The control solution assures bidirectional power flow control, precharge control, and load control and it is implemented on a digital signal processor. The elevator capacity is between 300-450 kg, and it is driven by using a 1.5 kW three-phase asynchronous machine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longhi, Stefano, E-mail: stefano.longhi@fisi.polimi.it
Quantum recurrence and dynamic localization are investigated in a class of ac-driven tight-binding Hamiltonians, the Krawtchouk quantum chain, which in the undriven case provides a paradigmatic Hamiltonian model that realizes perfect quantum state transfer and mirror inversion. The equivalence between the ac-driven single-particle Krawtchouk Hamiltonian H{sup -hat} (t) and the non-interacting ac-driven bosonic junction Hamiltonian enables to determine in a closed form the quasi energy spectrum of H{sup -hat} (t) and the conditions for exact wave packet reconstruction (dynamic localization). In particular, we show that quantum recurrence, which is predicted by the general quantum recurrence theorem, is exact for themore » Krawtchouk quantum chain in a dense range of the driving amplitude. Exact quantum recurrence provides perfect wave packet reconstruction at a frequency which is fractional than the driving frequency, a phenomenon that can be referred to as fractional dynamic localization.« less
Motor monitoring method and apparatus using high frequency current components
Casada, D.A.
1996-05-21
A motor current analysis method and apparatus for monitoring electrical-motor-driven devices are disclosed. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device. 16 figs.
Motor monitoring method and apparatus using high frequency current components
Casada, Donald A.
1996-01-01
A motor current analysis method and apparatus for monitoring electrical-motor-driven devices. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device.
Research and simulation of the decoupling transformation in AC motor vector control
NASA Astrophysics Data System (ADS)
He, Jiaojiao; Zhao, Zhongjie; Liu, Ken; Zhang, Yongping; Yao, Tuozhong
2018-04-01
Permanent magnet synchronous motor (PMSM) is a nonlinear, strong coupling, multivariable complex object, and transformation decoupling can solve the coupling problem of permanent magnet synchronous motor. This paper gives a permanent magnet synchronous motor (PMSM) mathematical model, introduces the permanent magnet synchronous motor vector control coordinate transformation in the process of modal matrix inductance matrix transform through the matrix related knowledge of different coordinates of diagonalization, which makes the coupling between the independent, realize the control of motor current and excitation the torque current coupling separation, and derived the coordinate transformation matrix, the thought to solve the coupling problem of AC motor. Finally, in the Matlab/Simulink environment, through the establishment and combination between the PMSM ontology, coordinate conversion module, built the simulation model of permanent magnet synchronous motor vector control, introduces the model of each part, and analyzed the simulation results.
Guerra, Andrea; Suppa, Antonio; Bologna, Matteo; D'Onofrio, Valentina; Bianchini, Edoardo; Brown, Peter; Di Lazzaro, Vincenzo; Berardelli, Alfredo
2018-03-24
Transcranial Alternating Current Stimulation (tACS) consists in delivering electric current to the brain using an oscillatory pattern that may entrain the rhythmic activity of cortical neurons. When delivered at gamma frequency, tACS modulates motor performance and GABA-A-ergic interneuron activity. Since interneuronal discharges play a crucial role in brain plasticity phenomena, here we co-stimulated the primary motor cortex (M1) in healthy subjects by means of tACS during intermittent theta-burst stimulation (iTBS), a transcranial magnetic stimulation paradigm known to induce long-term potentiation (LTP)-like plasticity. We measured and compared motor evoked potentials before and after gamma, beta and sham tACS-iTBS. While we delivered gamma-tACS, we also measured short-interval intracortical inhibition (SICI) to detect any changes in GABA-A-ergic neurotransmission. Gamma, but not beta and sham tACS, significantly boosted and prolonged the iTBS-induced after-effects. Interestingly, the extent of the gamma tACS-iTBS after-effects correlated directly with SICI changes. Overall, our findings point to a link between gamma oscillations, interneuronal GABA-A-ergic activity and LTP-like plasticity in the human M1. Gamma tACS-iTBS co-stimulation might represent a new strategy to enhance and prolong responses to plasticity-inducing protocols, thereby lending itself to future applications in the neurorehabilitation setting. Copyright © 2018 Elsevier Inc. All rights reserved.
Recent Advances in Alternating Current-Driven Organic Light-Emitting Devices.
Pan, Yufeng; Xia, Yingdong; Zhang, Haijuan; Qiu, Jian; Zheng, Yiting; Chen, Yonghua; Huang, Wei
2017-11-01
Organic light-emitting devices (OLEDs), typically operated with constant-voltage or direct-current (DC) power sources, are candidates for next-generation solid-state lighting and displays, as they are light, thin, inexpensive, and flexible. However, researchers have focused mainly on the device itself (e.g., development of novel materials, design of the device structure, and optical outcoupling engineering), and little attention has been paid to the driving mode. Recently, an alternative concept to DC-driven OLEDs by directly driving devices using time-dependent voltages or alternating current (AC) has been explored. Here, the effects of different device structures of AC-driven OLEDs, for example, double-insulation, single-insulation, double-injection, and tandem structure, on the device performance are systematically investigated. The formation of excitons and the dielectric layer, which are important to achieve high-performance AC-driven OLEDs, are carefully considered. The importance of gaining further understanding of the fundamental properties of AC-driven OLEDs is then discussed, especially as they relate to device physics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shipboard Aggregate Power Monitoring
2009-06-01
low pressure air serves to operate various valves and provide pneumatic power for certain plant equipment. The compressor is an Ingersoll-Rand NAXI...List of Figures Figure 1-1: Raw AC voltage and current measurements for recorded during a motor start-up. (1...filters, valves, etc.) of a given system. Figure 1-1: Raw AC voltage and current measurements recorded during a motor start-up. (1) Figure
Integrated Inverter And Battery Charger
NASA Technical Reports Server (NTRS)
Rippel, Wally E.
1988-01-01
Circuit combines functions of dc-to-ac inversion (for driving ac motor in battery-powered vehicle) and ac-to-dc conversion (for charging battery from ac line when vehicle not in use). Automatically adapts to either mode. Design of integrated inverter/charger eliminates need for duplicate components, saves space, reduces weight and cost of vehicle. Advantages in other applications : load-leveling systems, standby ac power systems, and uninterruptible power supplies.
Forward and reverse control system for induction motors
Wright, J.T.
1987-09-15
A control system for controlling the direction of rotation of a rotor of an induction motor includes an array of five triacs with one of the triacs applying a current of fixed phase to the windings of the rotor and four of the triacs being switchable to apply either hot ac current or return ac current to the stator windings so as to reverse the phase of current in the stator relative to that of the rotor and thereby reverse the direction of rotation of the rotor. Switching current phase in the stator is accomplished by operating the gates of pairs of the triacs so as to connect either hot ac current or return ac current to the input winding of the stator. 1 fig.
NASA Astrophysics Data System (ADS)
Harasztosi, Csaba; Gummer, Anthony W.
2011-11-01
The voltage-dependent chloride-channel blocker anthracene-9-carboxylic acid (9AC) has been found to reduce the imaginary but not the real part of the mechanical impedance of the organ of Corti, suggesting that the effective stiffness of outer hair cells (OHCs) is reduced by 9AC. To examine whether 9AC interacts directly with the motor protein prestin to reduce the membrane component of the impedance, the patch-clamp technique in whole-cell configuration was used to measure the nonlinear capacitance (NLC) of isolated OHCs and, as control, prestin-transfected human embryonic kidney 293 (HEK293) cells. Extracellular application of 9AC significantly reduced the NLC of both OHCs and HEK293 cells. Intracellular 9AC did not influence the blocking effect of the extracellular applied drug. These results suggest that 9AC interacts directly with prestin, reducing the effective stiffness of the motor, and that the interaction is extracellular.
NASA Astrophysics Data System (ADS)
Gourash, F.
1984-02-01
The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.
NASA Technical Reports Server (NTRS)
Gourash, F.
1984-01-01
The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.
NASA Technical Reports Server (NTRS)
Miller, D. W.
1981-01-01
A prototype of a linear inertial reaction actuation (damper) device employing a flexure-pivoted reaction (proof) mass is discussed. The mass is driven by an electromechanic motor using a dc electromagnetic field and an ac electromagnetic drive. During the damping process, the actuator dissipates structural kinetic energy as heat through electromagnetic damping. A model of the inertial, stiffness and damping properties is presented along with the characteristic differential equations describing the coupled response of the actuator and structure. The equations, employing the dynamic coefficients, are oriented in the form of a feedback control network in which distributed sensors are used to dictate actuator response leading to a specified amount of structural excitation or damping.
Microgravity heat pump for space station thermal management.
Domitrovic, R E; Chen, F C; Mei, V C; Spezia, A L
2003-01-01
A highly efficient recuperative vapor compression heat pump was developed and tested for its ability to operate independent of orientation with respect to gravity while maximizing temperature lift. The objective of such a heat pump is to increase the temperature of, and thus reduce the size of, the radiative heat rejection panels on spacecrafts such as the International Space Station. Heat pump operation under microgravity was approximated by gravitational-independent experiments. Test evaluations include functionality, efficiency, and temperature lift. Commercially available components were used to minimize costs of new hardware development. Testing was completed on two heat pump design iterations--LBU-I and LBU--II, for a variety of operating conditions under the variation of several system parameters, including: orientation, evaporator water inlet temperature (EWIT), condenser water inlet temperature (CWIT), and compressor speed. The LBU-I system employed an ac motor, belt-driven scroll compressor, and tube-in-tube heat exchangers. The LBU-II system used a direct-drive AC motor compressor assembly and plate heat exchangers. The LBU-II system in general outperformed the LBU-I system on all accounts. Results are presented for all systems, showing particular attention to those states that perform with a COP of 4.5 +/- 10% and can maintain a temperature lift of 55 degrees F (30.6 degrees C) +/- 10%. A calculation of potential radiator area reduction shows that points with maximum temperature lift give the greatest potential for reduction, and that area reduction is a function of heat pump efficiency and a stronger function of temperature lift.
Speed control for synchronous motors
NASA Technical Reports Server (NTRS)
Packard, H.; Schott, J.
1981-01-01
Feedback circuit controls fluctuations in speed of synchronous ac motor. Voltage proportional to phase angle is developed by phase detector, rectified, amplified, compared to threshold, and reapplied positively or negatively to motor excitation circuit. Speed control reduces wow and flutter of audio turntables and tape recorders, and enhances hunting in gyroscope motors.
New propulsion components for electric vehicles
NASA Technical Reports Server (NTRS)
Secunde, R. R.
1982-01-01
Improved component technology is described. This includes electronically commutated permanent magnet motors of both drum and disk configurations, an unconventional brush commutated motor, ac induction motors, various controllers, transmissions and complete systems. One or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.
AC motor controller with 180 degree conductive switches
NASA Technical Reports Server (NTRS)
Oximberg, Carol A. (Inventor)
1995-01-01
An ac motor controller is operated by a modified time-switching scheme where the switches of the inverter are on for electrical-phase-and-rotation intervals of 180.degree. as opposed to the conventional 120.degree.. The motor is provided with three-phase drive windings, a power inverter for power supplied from a dc power source consisting of six switches, and a motor controller which controls the current controlled switches in voltage-fed mode. During full power, each switch is gated continuously for three successive intervals of 60.degree. and modulated for only one of said intervals. Thus, during each 60.degree. interval, the two switches with like signs are on continuously and the switch with the opposite sign is modulated.
Progress on advanced dc and ac induction drives for electric vehicles
NASA Technical Reports Server (NTRS)
Schwartz, H. J.
1982-01-01
Progress is reported in the development of complete electric vehicle propulsion systems, and the results of tests on the Road Load Simulator of two such systems representative of advanced dc and ac drive technology are presented. One is the system used in the DOE's ETV-1 integrated test vehicle which consists of a shunt wound dc traction motor under microprocessor control using a transistorized controller. The motor drives the vehicle through a fixed ratio transmission. The second system uses an ac induction motor controlled by transistorized pulse width modulated inverter which drives through a two speed automatically shifted transmission. The inverter and transmission both operate under the control of a microprocessor. The characteristics of these systems are also compared with the propulsion system technology available in vehicles being manufactured at the inception of the DOE program and with an advanced, highly integrated propulsion system upon which technology development was recently initiated.
Horita, Haruhito; Kobayashi, Masahiko; Liu, Wan-chun; Oka, Kotaro; Jarvis, Erich D.; Wada, Kazuhiro
2012-01-01
Mechanisms for the evolution of convergent behavioral traits are largely unknown. Vocal learning is one such trait that evolved multiple times and is necessary in humans for the acquisition of spoken language. Among birds, vocal learning is evolved in songbirds, parrots, and hummingbirds. Each time similar forebrain song nuclei specialized for vocal learning and production have evolved. This finding led to the hypothesis that the behavioral and neuroanatomical convergences for vocal learning could be associated with molecular convergence. We previously found that the neural activity-induced gene dual specificity phosphatase 1 (dusp1) was up-regulated in non-vocal circuits, specifically in sensory-input neurons of the thalamus and telencephalon; however, dusp1 was not up-regulated in higher order sensory neurons or motor circuits. Here we show that song motor nuclei are an exception to this pattern. The song nuclei of species from all known vocal learning avian lineages showed motor-driven up-regulation of dusp1 expression induced by singing. There was no detectable motor-driven dusp1 expression throughout the rest of the forebrain after non-vocal motor performance. This pattern contrasts with expression of the commonly studied activity-induced gene egr1, which shows motor-driven expression in song nuclei induced by singing, but also motor-driven expression in adjacent brain regions after non-vocal motor behaviors. In the vocal non-learning avian species, we found no detectable vocalizing-driven dusp1 expression in the forebrain. These findings suggest that independent evolutions of neural systems for vocal learning were accompanied by selection for specialized motor-driven expression of the dusp1 gene in those circuits. This specialized expression of dusp1 could potentially lead to differential regulation of dusp1-modulated molecular cascades in vocal learning circuits. PMID:22876306
Trade Electricity. Motors & Controls--Level 3. Standardized Curriculum.
ERIC Educational Resources Information Center
New York City Board of Education, Brooklyn, NY. Office of Occupational and Career Education.
This curriculum guide consists of seven modules on motors and controls, one of the three divisions of the standardized trade electricity curriculum in high schools in New York City. The seven modules cover the following subjects: energy conservation wiring, direct current (DC) motor repair and rewinding, DC motor controls, alternating current (AC)…
A Computer Model for Teaching the Dynamic Behavior of AC Contactors
ERIC Educational Resources Information Center
Ruiz, J.-R. R.; Espinosa, A. G.; Romeral, L.
2010-01-01
Ac-powered contactors are extensively used in industry in applications such as automatic electrical devices, motor starters, and heaters. In this work, a practical session that allows students to model and simulate the dynamic behavior of ac-powered electromechanical contactors is presented. Simulation is carried out using a rigorous parametric…
Fuzzy efficiency optimization of AC induction motors
NASA Technical Reports Server (NTRS)
Jani, Yashvant; Sousa, Gilberto; Turner, Wayne; Spiegel, Ron; Chappell, Jeff
1993-01-01
This paper describes the early states of work to implement a fuzzy logic controller to optimize the efficiency of AC induction motor/adjustable speed drive (ASD) systems running at less than optimal speed and torque conditions. In this paper, the process by which the membership functions of the controller were tuned is discussed and a controller which operates on frequency as well as voltage is proposed. The membership functions for this dual-variable controller are sketched. Additional topics include an approach for fuzzy logic to motor current control which can be used with vector-controlled drives. Incorporation of a fuzzy controller as an application-specific integrated circuit (ASIC) microchip is planned.
Electromagnetic phenomena analysis in brushless DC motor with speed control using PWM method
NASA Astrophysics Data System (ADS)
Ciurys, Marek Pawel
2017-12-01
Field-circuit model of a brushless DC motor with speed control using PWM method was developed. Waveforms of electrical and mechanical quantities of the designed motor with a high pressure vane pump built in a rotor of the motor were computed. Analysis of electromagnetic phenomena in the system: single phase AC network - converter - BLDC motor was carried out.
Continuous Energy Improvement in Motor Driven Systems - A Guidebook for Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert A. McCoy and John G. Douglass
2014-02-01
This guidebook provides a step-by-step approach to developing a motor system energy-improvement action plan. An action plan includes which motors should be repaired or replaced with higher efficiency models, recommendations on maintaining a spares inventory, and discussion of improvements in maintenance practices. The guidebook is the successor to DOE’s 1997 Energy Management for Motor Driven Systems. It builds on its predecessor publication by including topics such as power transmission systems and matching driven equipment to process requirements in addition to motors.
1987-03-01
compound promises to reduce weight of future permanent magnet motors by 20 to 30 percent; a similar reduction is expected in size (approximately 20...drive systems. The AC permanent magnet (brushless DC motor) is rapidly evolving and will replace most electrically excited machines. Permanent magnet motors using
Department of Energy Semiannual Regulatory Agenda
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-20
... Water Heaters; and (2) Energy Efficiency Standards for Certain Commercial and Industrial Electric Motors... Standards for Certain Commercial and Industrial Electric Motors..... 1904-AC28 Energy Efficiency and... FOR CERTAIN COMMERCIAL AND INDUSTRIAL ELECTRIC MOTORS Legal Authority: 42 USC 6313(b)(4)(B) Abstract...
75 FR 79759 - Regulatory Agenda
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-20
... Efficiency Standards for Certain Commercial and Industrial Electric Motors. The Plan appears in both the... Commercial and Industrial Electric Motors..... 1904-AC28 Energy Efficiency and Renewable Energy--Completed... COMMERCIAL AND INDUSTRIAL ELECTRIC MOTORS Legal Authority: 42 USC 6313(b)(4)(B) Abstract: The Energy Policy...
Naro, Antonino; Milardi, Demetrio; Cacciola, Alberto; Russo, Margherita; Sciarrone, Francesca; La Rosa, Gianluca; Bramanti, Alessia; Bramanti, Placido; Calabrò, Rocco Salvatore
2017-08-01
Several cerebellar functions related to upper limb motor control have been studied using non-invasive brain stimulation paradigms. We have recently shown that transcranial alternating current stimulation (tACS) may be a promising approach in shaping the plasticity of cerebellum-brain pathways in a safe and effective manner. This study aimed to assess whether cerebellar tACS at different frequencies may tune M1-leg excitability and modify gait control in healthy human subjects. To this end, we tested the effects of different cerebellar tACS frequencies over the right cerebellar hemisphere (at 10, 50, and 300 Hz, besides a sham-tACS) on M1-leg excitability, cerebellum-brain inhibition (CBI), and gait parameters in a sample of 25 healthy volunteers. Fifty and 300 Hz tACS differently modified M1-leg excitability and CBI from both lower limbs, without significant gait perturbations. We hypothesize that tACS aftereffect may depend on a selective entrainment of distinct cerebellar networks related to lower limb motor functions. Therefore, cerebellar tACS might represent a useful tool to modulate walking training in people with cerebellum-related gait impairment, given that tACS may potentially reset abnormal cerebellar circuitries.
Characterization and snubbing of a bidirectional MCT in a resonant ac link converter
NASA Technical Reports Server (NTRS)
Lee, Tony; Elbuluk, Malik E.; Zinger, Donald S.
1993-01-01
The MOS-Controlled Thyristor (MCT) is emerging as a powerful switch that combines the better characteristics of existing power devices. A study of switching stresses on an MCT switch under zero voltage resonant switching is presented. The MCT is used as a bidirectional switch in an ac/ac pulse density modulated inverter for induction motor drive. Current and voltage spikes are observed and analyzed with variations in the timing of the switching. Different snubber circuit configurations are under investigation to minimize the effect of these transients. The results will be extended to study and test the MCT switching in a medium power (5 hp) induction motor drive.
Na+-driven bacterial flagellar motors.
Imae, Y; Atsumi, T
1989-12-01
Bacterial flagellar motors are the reversible rotary engine which propels the cell by rotating a helical flagellar filament as a screw propeller. The motors are embedded in the cytoplasmic membrane, and the energy for rotation is supplied by the electrochemical potential of specific ions across the membrane. Thus, the analysis of motor rotation at the molecular level is linked to an understanding of how the living system converts chemical energy into mechanical work. Based on the coupling ions, the motors are divided into two types; one is the H+-driven type found in neutrophiles such as Bacillus subtilis and Escherichia coli and the other is the Na+-driven type found in alkalophilic Bacillus and marine Vibrio. In this review, we summarize the current status of research on the rotation mechanism of the Na+-driven flagellar motors, which introduces several new aspects in the analysis.
Quantum dynamics of light-driven chiral molecular motors.
Yamaki, Masahiro; Nakayama, Shin-ichiro; Hoki, Kunihito; Kono, Hirohiko; Fujimura, Yuichi
2009-03-21
The results of theoretical studies on quantum dynamics of light-driven molecular motors with internal rotation are presented. Characteristic features of chiral motors driven by a non-helical, linearly polarized electric field of light are explained on the basis of symmetry argument. The rotational potential of the chiral motor is characterized by a ratchet form. The asymmetric potential determines the directional motion: the rotational direction is toward the gentle slope of the asymmetric potential. This direction is called the intuitive direction. To confirm the unidirectional rotational motion, results of quantum dynamical calculations of randomly-oriented molecular motors are presented. A theoretical design of the smallest light-driven molecular machine is presented. The smallest chiral molecular machine has an optically driven engine and a running propeller on its body. The mechanisms of transmission of driving forces from the engine to the propeller are elucidated by using a quantum dynamical treatment. The results provide a principle for control of optically-driven molecular bevel gears. Temperature effects are discussed using the density operator formalism. An effective method for ultrafast control of rotational motions in any desired direction is presented with the help of a quantum control theory. In this method, visible or UV light pulses are applied to drive the motor via an electronic excited state. A method for driving a large molecular motor consisting of an aromatic hydrocarbon is presented. The molecular motor is operated by interactions between the induced dipole of the molecular motor and the electric field of light pulses.
EFFICIENCY OPTIMIZATIN CONTROL OF AC INDUCTION MOTORS: INITIAL LABORATORY RESULTS
The report discusses the development of a fuzzy logic, energy-optimizing controller to improve the efficiency of motor/drive combinations that operate at varying loads and speeds. This energy optimizer is complemented by a sensorless speed controller that maintains motor shaft re...
Torsional actuator motor using solid freeform fabricated PZT ceramics
NASA Astrophysics Data System (ADS)
Kim, Chulho; Wu, Carl C. M.; Bender, Barry
2004-07-01
A torsional actuator has been developed at NRL utilizing the high piezoelectric shear coefficient, d15. This torsional actuator uses an even number of alternately poled segments of electroactive PZT. Under an applied electric field, the torsional actuator produces large angular displacement and a high torque. The solid freeform fabrication technique of the laminated object manufacturing (LOM) is used for rapid prototyping of torsional actuator with potential cost and time saving. First step to demonstrate the feasibility of the LOM technique for the torsional actuator device fabrication is to make near net shape segments. We report a prototype PZT torsional actuator using LOM prepared PZT-5A segments. Fabrication processes and test results are described. The torsional actuator PZT-5A tube has dimensions of 13 cm long, 2.54 cm OD and 1.9 cm ID. Although the piezoelectric strain is small, it may be converted into large displacement via accumulation of the small single cycle displacements over many cycles using AC driving voltage such as with a rotary 'inchworm' actuator or an ultrasonic rotary motor. A working prototype of a full-cycle motor driven by the piezoelectric torsional actuator has been achieved. The rotational speed is 1,200 rpm under 200 V/cm field at the resonant frequency of 4.5 kHz.
Eseonu, Chikezie I; Rincon-Torroella, Jordina; ReFaey, Karim; Lee, Young M; Nangiana, Jasvinder; Vivas-Buitrago, Tito; Quiñones-Hinojosa, Alfredo
2017-09-01
A craniotomy with direct cortical/subcortical stimulation either awake or under general anesthesia (GA) present 2 approaches for removing eloquent region tumors. With a reported higher prevalence of intraoperative seizures occurring during awake resections of perirolandic lesions, oftentimes, surgery under GA is chosen for these lesions. To evaluate a single-surgeon's experience with awake craniotomies (AC) vs surgery under GA for resecting perirolandic, eloquent, motor-region gliomas. Between 2005 and 2015, a retrospective analysis of 27 patients with perirolandic, eloquent, motor-area gliomas that underwent an AC were case-control matched with 31 patients who underwent surgery under GA for gliomas in the same location. All patients underwent direct brain stimulation with neuromonitoring and perioperative risk factors, extent of resection, complications, and discharge status were assessed. The postoperative Karnofsky Performance Score (KPS) was significantly lower for the GA patients at 81.1 compared to the AC patients at 93.3 ( P = .040). The extent of resection for GA patients was 79.6% while the AC patients had an 86.3% resection ( P = .136). There were significantly more 100% total resections in the AC patients 25.9% compared to the GA group (6.5%; P = .041). Patients in the GA group had a longer mean length of hospitalization of 7.9 days compared to the AC group at 4.2 days ( P = .049). We show that AC can be performed with more frequent total resections, better postoperative KPS, shorter hospitalizations, as well as similar perioperative complication rates compared to surgery under GA for perirolandic, eloquent motor-region glioma. Copyright © 2017 by the Congress of Neurological Surgeons
New propulsion components for electric vehicles
NASA Astrophysics Data System (ADS)
Secunde, R. R.
Improved component technology is described. This includes electronically commutated permanent magnet motors of both drum and disk configurations, an unconventional brush commutated motor, ac induction motors, various controllers, transmissions and complete systems. One or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors. Previously announced in STAR as N83-25982
New propulsion components for electric vehicles
NASA Technical Reports Server (NTRS)
Secunde, R. R.
1983-01-01
Improved component technology is described. This includes electronically commutated permanent magnet motors of both drum and disk configurations, an unconventional brush commutated motor, ac induction motors, various controllers, transmissions and complete systems. One or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors. Previously announced in STAR as N83-25982
Konrad, C.E.; Boothe, R.W.
1994-02-15
A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements. 6 figures.
Konrad, C.E.; Boothe, R.W.
1996-01-23
A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements. 6 figs.
Konrad, Charles E.; Boothe, Richard W.
1996-01-01
A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.
Konrad, Charles E.; Boothe, Richard W.
1994-01-01
A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.
A PWM transistor inverter for an ac electric vehicle drive
NASA Technical Reports Server (NTRS)
Slicker, J. M.
1981-01-01
A prototype system consisting of closely integrated motor, inverter, and transaxle has been built in order to demonstrate the feasibility of a three-phase ac transistorized inverter for electric vehicle applications. The microprocessor-controlled inverter employs monolithic power transistors to drive an oil-cooled, three-phase induction traction motor at a peak output power of 30 kW from a 144 V battery pack. Transistor safe switching requirements are discussed, and a circuit is presented for recovering trapped snubber inductor energy at transistor turn-off.
Ferguson, Marcus C; Nayyar, Tultul; Deutch, Ariel Y; Ansah, Twum A
2010-01-01
Clinical observations have suggested that ritanserin, a 5-HT(2A/C) receptor antagonist may reduce motor deficits in persons with Parkinson's Disease (PD). To better understand the potential antiparkinsonian actions of ritanserin, we compared the effects of ritanserin with the selective 5-HT(2A) receptor antagonist M100907 and the selective 5-HT(2C) receptor antagonist SB 206553 on motor impairments in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-treated mice exhibited decreased performance on the beam-walking apparatus. These motor deficits were reversed by acute treatment with L-3,4-dihydroxyphenylalanine (levodopa). Both the mixed 5-HT(2A/C) antagonist ritanserin and the selective 5-HT(2A) antagonist M100907 improved motor performance on the beam-walking apparatus. In contrast, SB 206553 was ineffective in improving the motor deficits in MPTP-treated mice. These data suggest that 5-HT(2A) receptor antagonists may represent a novel approach to ameliorate motor symptoms of Parkinson's disease. Published by Elsevier Ltd.
5-HT2A receptor antagonists improve motor impairments in the MPTP mouse model of Parkinson's disease
Ferguson, Marcus C.; Nayyar, Tultul; Deutch, Ariel Y.; Ansah, Twum A.
2010-01-01
Clinical observations have suggested that ritanserin, a 5-HT2A/C receptor antagonist may reduce motor deficits in persons with Parkinson's Disease (PD). To better understand the potential antiparkinsonian actions of ritanserin, we compared the effects of ritanserin with the selective 5-HT2A receptor antagonist M100907 and the selective 5-HT2C receptor antagonist SB 206553 on motor impairments in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-treated mice exhibited decreased performance on the beam-walking apparatus. These motor deficits were reversed by acute treatment with L-3,4-dihydroxyphenylalanine (levodopa). Both the mixed 5-HT2A/C antagonist ritanserin and the selective 5-HT2A antagonist M100907 improved motor performance on the beam-walking apparatus. In contrast, SB 206553 was ineffective in improving the motor deficits in MPTP-treated mice. These data suggest that 5-HT2A receptor antagonists may represent a novel approach to ameliorate motor symptoms of Parkinson's disease. PMID:20361986
Performance Analysis of Three-Phase Induction Motor with AC Direct and VFD
NASA Astrophysics Data System (ADS)
Kumar, Dinesh
2018-03-01
The electrical machine analysis and performance calculation is a very important aspect of efficient drive system design. The development of power electronics devices and power converters provide smooth speed control of Induction Motors by changing the frequency of input supply. These converters, on one hand are providing a more flexible speed control that also leads to problems of harmonics and their associated ailments like pulsating torque, distorted current and voltage waveforms, increasing losses etc. This paper includes the performance analysis of three phase induction motor with three-phase AC direct and variable frequency drives (VFD). The comparison has been concluded with respect to various parameters. MATLAB-SIMULINKTM is used for the analysis.
NASA Astrophysics Data System (ADS)
Qi, Xiao-Hua; Yan, Hui-Jie; Yang, Liang; Hua, Yue; Ren, Chun-Sheng
2017-08-01
In this work, a driven voltage consisting of AC high voltage with a superimposed positive pulse bias voltage ("AC+ Positive pulse bias" voltage) is adopted to study the performance of a surface dielectric barrier discharge plasma actuator under atmospheric conditions. To compare the performance of the actuator driven by single-AC voltage and "AC+ Positive pulse bias" voltage, the actuator-induced thrust force and power consumption are measured as a function of the applied AC voltage, and the measured results indicate that the thrust force can be promoted significantly after superimposing the positive pulse bias voltage. The physical mechanism behind the thrust force changes is analyzed by measuring the optical properties, electrical characteristics, and surface potential distribution. Experimental results indicate that the glow-like discharge in the AC voltage half-cycle, next to the cycle where a bias voltage pulse has been applied, is enhanced after applying the positive pulse bias voltage, and this perhaps is the main reason for the thrust force increase. Moreover, surface potential measurement results reveal that the spatial electric field formed by the surface charge accumulation after positive pulse discharge can significantly affect the applied external electric field, and this perhaps can be responsible for the experimental phenomenon that the decrease of thrust force is delayed by pulse bias voltage action after the filament discharge occurs in the glow-like discharge region. The schlieren images further verify that the actuator-induced airflow velocity increases with the positive pulse voltage.
Improvement of thermal radiation characteristic of AC servomotor using Al-CNT composite material
NASA Astrophysics Data System (ADS)
Kikuchi, Y.; Wakiwaka, H.; Yanagihara, M.
2018-02-01
This study deals with a high thermal conductivity material of aluminum-carbon nanotube (CNT) composite with carbon fiber (CF) and the high radiation performance of AC servomotor using a stator made of nanotube composite material. The composite fabrication process was performed by melting a mixture of granular aluminum of less than 200 μm and CNT under conditions of pressed atmosphere at the same time. Two kinds of motors made using aluminum and the composite were evaluated to confirm the effect of thermal conductivity as the motor stator. A test rod of the composite with 14 wt% CF-7 wt% CNT-aluminum indicated the excellent thermal conductivity of 169 W/(mK) in the radial direction and 173 W/(mK) in the lengthwise direction. According to the obtained temperature radiation characteristic of the AC servomotor, the composite stator using CNT decreased the consumption energy to 16% compared to the conventional one. As a result, the highly efficient motor improved the radiation characteristic using the CNT composite stator.
Controlling An Inverter-Driven Three-Phase Motor
NASA Technical Reports Server (NTRS)
Dolland, C.
1984-01-01
Control system for three-phase permanent-magnet motor driven by linecommutated inverter uses signals generated by integrating back emf of each phase of motor. High-pass filter network eliminates low-frequency components from control loop while maintaining desired power factor.
NASA Technical Reports Server (NTRS)
Gwaltney, D. A.
2002-01-01
A FY 2001 Center Director's Discretionary Fund task to develop a test platform for the development, implementation. and evaluation of adaptive and other advanced control techniques for brushless DC (BLDC) motor-driven mechanisms is described. Important applications for BLDC motor-driven mechanisms are the translation of specimens in microgravity experiments and electromechanical actuation of nozzle and fuel valves in propulsion systems. Motor-driven aerocontrol surfaces are also being utilized in developmental X vehicles. The experimental test platform employs a linear translation stage that is mounted vertically and driven by a BLDC motor. Control approaches are implemented on a digital signal processor-based controller for real-time, closed-loop control of the stage carriage position. The goal of the effort is to explore the application of advanced control approaches that can enhance the performance of a motor-driven actuator over the performance obtained using linear control approaches with fixed gains. Adaptive controllers utilizing an exact model knowledge controller and a self-tuning controller are implemented and the control system performance is illustrated through the presentation of experimental results.
Alternating-Current Motor Drive for Electric Vehicles
NASA Technical Reports Server (NTRS)
Krauthamer, S.; Rippel, W. E.
1982-01-01
New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.
NASA Astrophysics Data System (ADS)
Si, Liu-Gang; Guo, Ling-Xia; Xiong, Hao; Wu, Ying
2018-02-01
We investigate the high-order-sideband generation (HSG) in a hybrid cavity electro-photomechanical system in which an optical cavity is driven by two optical fields (a monochromatic pump field and a nanosecond Gaussian probe pulse with huge numbers of wave cycles), and at the same time a microwave cavity is driven by a monochromatic ac voltage bias. We show that even if the input powers of two driven optical fields are comparatively low the HSG spectra can be induced and enhanced, and the sideband plateau is extended remarkably with the power of the ac voltage bias increasing. It is also shown that the driven ac voltage bias has profound effects on the carrier-envelope-phase-dependent effects of the HSG in the hybrid cavity electro-photomechanical system. Our research may provide an effective way to control the HSG of optical fields by using microwave fields in cavity optomechanics systems.
Low backlash direct drive actuator
Kuklo, Thomas C.
1994-01-01
A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw.
A new standing-wave-type linear ultrasonic motor based on in-plane modes.
Shi, Yunlai; Zhao, Chunsheng
2011-05-01
This paper presents a new standing-wave-type linear ultrasonic motor using combination of the first longitudinal and the second bending modes. Two piezoelectric plates in combination with a metal thin plate are used to construct the stator. The superior point of the stator is its isosceles triangular structure part of the stator, which can amplify the displacement in horizontal direction of the stator in perpendicular direction when the stator is operated in the first longitudinal mode. The influence of the base angle θ of the triangular structure part on the amplitude of the driving foot has been analyzed by numerical analysis. Four prototype stators with different angles θ have been fabricated and the experimental investigation of these stators has validated the numerical simulation. The overall dimensions of the prototype stators are no more than 40 mm (length) × 20 mm (width) × 5 mm (thickness). Driven by an AC signal with the driving frequency of 53.3 kHz, the no-load speed and the maximal thrust of the prototype motor using the stator with base angle 20° were 98 mm/s and 3.2N, respectively. The effective elliptical motion trajectory of the contact point of the stator can be achieved by the isosceles triangular structure part using only two PZTs, and thus it makes the motor low cost in fabrication, simple in structure and easy to realize miniaturization. Copyright © 2010 Elsevier B.V. All rights reserved.
Clinical application of the modified medially-mounted motor-driven hip gear joint for paraplegics.
Sonoda, S; Imahori, R; Saitoh, E; Tomita, Y; Domen, K; Chino, N
2000-04-15
This paper describes a motor-driven orthosis for paraplegics which has been developed. This orthosis is composed of a medially-mounted motor-driven hip joint and bilateral knee-ankle-foot orthosis. With the gear mechanism, the virtual axis of the hip joint of this orthosis is almost as high as the anatomical hip joint. A paraplegic patient with an injury level of T10/11 walked using bilateral lofstrand crutches and this new orthosis with or without the motor system. The motor is initiated by pushing a button attached at the edge of the grab of the crutches. Faster cadence and speed and smaller rotation angle of the trunk was obtained in motor walking compared with non-motor walking. The patient did not feel fearful of falling. The benefit of motor orthosis is that it can be used even in patients with lower motor lesions and that it provides stable regulation of hip flexion movement in spastic patients. In conclusion, this motor orthosis will enhance paraplegic walking.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-15
...; refrigeration parts; dishwashing machine parts; drying machine parts; water inlet valves; AC/DC fan motors; AC... harnesses of copper; turbidity sensors; and, sensor--spray arms (duty rate ranges from duty- free to 6.5...
Non-Invasive Electrical Brain Stimulation Montages for Modulation of Human Motor Function.
Curado, Marco; Fritsch, Brita; Reis, Janine
2016-02-04
Non-invasive electrical brain stimulation (NEBS) is used to modulate brain function and behavior, both for research and clinical purposes. In particular, NEBS can be applied transcranially either as direct current stimulation (tDCS) or alternating current stimulation (tACS). These stimulation types exert time-, dose- and in the case of tDCS polarity-specific effects on motor function and skill learning in healthy subjects. Lately, tDCS has been used to augment the therapy of motor disabilities in patients with stroke or movement disorders. This article provides a step-by-step protocol for targeting the primary motor cortex with tDCS and transcranial random noise stimulation (tRNS), a specific form of tACS using an electrical current applied randomly within a pre-defined frequency range. The setup of two different stimulation montages is explained. In both montages the emitting electrode (the anode for tDCS) is placed on the primary motor cortex of interest. For unilateral motor cortex stimulation the receiving electrode is placed on the contralateral forehead while for bilateral motor cortex stimulation the receiving electrode is placed on the opposite primary motor cortex. The advantages and disadvantages of each montage for the modulation of cortical excitability and motor function including learning are discussed, as well as safety, tolerability and blinding aspects.
Precision electronic speed controller for an alternating-current motor
Bolie, V.W.
A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. The motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The speed error signal is generated by a novel vernier-logic circuit which is drift-free and highly sensitive to small speed changes. The phase error is also computed by digital logic, with adjustable sensitivity around a 0 mid-scale value. The drift error signal, generated by long-term counting of the phase error, is used to compensate for any slow changes in the average friction drag on the motor. An auxillary drift-byte status sensor prevents any disruptive overflow or underflow of the drift-error counter. An adjustable clocked-delay unit is inserted between the controller and the source of the reference pulse train to permit phase alignment of the rotor to any desired offset angle. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of read-only memories, and a pair of digital-to-analog converters.
Cytoskeletal motor-driven active self-assembly in in vitro systems
Lam, A. T.; VanDelinder, V.; Kabir, A. M. R.; ...
2015-11-11
Molecular motor-driven self-assembly has been an active area of soft matter research for the past decade. Because molecular motors transform chemical energy into mechanical work, systems which employ molecular motors to drive self-assembly processes are able to overcome kinetic and thermodynamic limits on assembly time, size, complexity, and structure. Here, we review the progress in elucidating and demonstrating the rules and capabilities of motor-driven active self-assembly. Lastly, we focus on the types of structures created and the degree of control realized over these structures, and discuss the next steps necessary to achieve the full potential of this assembly mode whichmore » complements robotic manipulation and passive self-assembly.« less
Inukai, Yasuto; Saito, Kei; Sasaki, Ryoki; Tsuiki, Shota; Miyaguchi, Shota; Kojima, Sho; Masaki, Mitsuhiro; Otsuru, Naofumi; Onishi, Hideaki
2016-01-01
Transcranial direct current stimulation (tDCS) is a representative non-invasive brain stimulation method (NIBS). tDCS increases cortical excitability not only in healthy individuals, but also in stroke patients where it contributes to motor function improvement. Recently, two additional types of transcranial electrical stimulation (tES) methods have been introduced that may also prove beneficial for stimulating cortical excitability; these are transcranial random noise stimulation (tRNS) and transcranial alternating current stimulation (tACS). However, comparison of tDCS with tRNS and tACS, in terms of efficacy in cortical excitability alteration, has not been reported thus far. We compared the efficacy of the three different tES methods for increasing cortical excitability using the same subject population and same current intensity. Fifteen healthy subjects participated in this study. Similar stimulation patterns (1.0 mA and 10 min) were used for the three conditions of stimulation (tDCS, tRNS, and tACS). Cortical excitability was explored via single-pulse TMS elicited motor evoked potentials (MEPs). Compared with pre-measurements, MEPs significantly increased with tDCS, tACS, and tRNS ( p < 0.05). Compared with sham measurements, significant increases in MEPs were also observed with tRNS and tACS ( p < 0.05), but not with tDCS. In addition, a significant correlation of the mean stimulation effect was observed between tRNS and tACS ( p = 0.019, r = 0.598). tRNS induced a significant increase in MEP compared with the Pre or Sham at all time points. tRNS resulted in the largest significant increase in MEPs. These findings suggest that tRNS is the most effective tES method and should be considered as part of a treatment plan for improving motor function in stroke patients.
Speed of the bacterial flagellar motor near zero load depends on the number of stator units.
Nord, Ashley L; Sowa, Yoshiyuki; Steel, Bradley C; Lo, Chien-Jung; Berry, Richard M
2017-10-31
The bacterial flagellar motor (BFM) rotates hundreds of times per second to propel bacteria driven by an electrochemical ion gradient. The motor consists of a rotor 50 nm in diameter surrounded by up to 11 ion-conducting stator units, which exchange between motors and a membrane-bound pool. Measurements of the torque-speed relationship guide the development of models of the motor mechanism. In contrast to previous reports that speed near zero torque is independent of the number of stator units, we observe multiple speeds that we attribute to different numbers of units near zero torque in both Na + - and H + -driven motors. We measure the full torque-speed relationship of one and two H + units in Escherichia coli by selecting the number of H + units and controlling the number of Na + units in hybrid motors. These experiments confirm that speed near zero torque in H + -driven motors increases with the stator number. We also measured 75 torque-speed curves for Na + -driven chimeric motors at different ion-motive force and stator number. Torque and speed were proportional to ion-motive force and number of stator units at all loads, allowing all 77 measured torque-speed curves to be collapsed onto a single curve by simple rescaling. Published under the PNAS license.
Speed of the bacterial flagellar motor near zero load depends on the number of stator units
Nord, Ashley L.; Sowa, Yoshiyuki; Steel, Bradley C.; Lo, Chien-Jung; Berry, Richard M.
2017-01-01
The bacterial flagellar motor (BFM) rotates hundreds of times per second to propel bacteria driven by an electrochemical ion gradient. The motor consists of a rotor 50 nm in diameter surrounded by up to 11 ion-conducting stator units, which exchange between motors and a membrane-bound pool. Measurements of the torque–speed relationship guide the development of models of the motor mechanism. In contrast to previous reports that speed near zero torque is independent of the number of stator units, we observe multiple speeds that we attribute to different numbers of units near zero torque in both Na+- and H+-driven motors. We measure the full torque–speed relationship of one and two H+ units in Escherichia coli by selecting the number of H+ units and controlling the number of Na+ units in hybrid motors. These experiments confirm that speed near zero torque in H+-driven motors increases with the stator number. We also measured 75 torque–speed curves for Na+-driven chimeric motors at different ion-motive force and stator number. Torque and speed were proportional to ion-motive force and number of stator units at all loads, allowing all 77 measured torque–speed curves to be collapsed onto a single curve by simple rescaling. PMID:29078322
Low backlash direct drive actuator
Kuklo, T.C.
1994-10-25
A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw. 10 figs.
Novel AC Servo Rotating and Linear Composite Driving Device for Plastic Forming Equipment
NASA Astrophysics Data System (ADS)
Liang, Jin-Tao; Zhao, Sheng-Dun; Li, Yong-Yi; Zhu, Mu-Zhi
2017-07-01
The existing plastic forming equipment are mostly driven by traditional AC motors with long transmission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In order to realize high performance forming processes, the driving device should be improved, especially for complicated processing motions. Based on electric servo direct drive technology, a novel AC servo rotating and linear composite driving device is proposed, which features implementing both spindle rotation and feed motion without transmission, so that compact structure and precise control can be achieved. Flux switching topology is employed in the rotating drive component for strong robustness, and fractional slot is employed in the linear direct drive component for large force capability. Then the mechanical structure for compositing rotation and linear motion is designed. A device prototype is manufactured, machining of each component and the whole assembly are presented respectively. Commercial servo amplifiers are utilized to construct the control system of the proposed device. To validate the effectiveness of the proposed composite driving device, experimental study on the dynamic test benches are conducted. The results indicate that the output torque can attain to 420 N·m and the dynamic tracking errors are less than about 0.3 rad in the rotating drive. the dynamic tracking errors are less than about 1.6 mm in the linear feed. The proposed research provides a method to construct high efficiency and accuracy direct driving device in plastic forming equipment.
Development and Test of an Eddy-Current Clutch-Propulsion System
DOT National Transportation Integrated Search
1973-10-01
This report covers the Phase 1 effort which is to develop and to test an/AC-propulsion system for personal rapid- transit vehicles. This propulsion system incorporates an AC-induction motor in conjunction with an eddy-current clutch and brake. Also i...
ATP synthase--a marvellous rotary engine of the cell.
Yoshida, M; Muneyuki, E; Hisabori, T
2001-09-01
ATP synthase can be thought of as a complex of two motors--the ATP-driven F1 motor and the proton-driven Fo motor--that rotate in opposite directions. The mechanisms by which rotation and catalysis are coupled in the working enzyme are now being unravelled on a molecular scale.
Offline detection of broken rotor bars in AC induction motors
NASA Astrophysics Data System (ADS)
Powers, Craig Stephen
ABSTRACT. OFFLINE DETECTION OF BROKEN ROTOR BARS IN AC INDUCTION MOTORS. The detection of the broken rotor bar defect in medium- and large-sized AC induction machines is currently one of the most difficult tasks for the motor condition and monitoring industry. If a broken rotor bar defect goes undetected, it can cause a catastrophic failure of an expensive machine. If a broken rotor bar defect is falsely determined, it wastes time and money to physically tear down and inspect the machine only to find an incorrect diagnosis. Previous work in 2009 at Baker/SKF-USA in collaboration with the Korea University has developed a prototype instrument that has been highly successful in correctly detecting the broken rotor bar defect in ACIMs where other methods have failed. Dr. Sang Bin and his students at the Korea University have been using this prototype instrument to help the industry save money in the successful detection of the BRB defect. A review of the current state of motor conditioning and monitoring technology for detecting the broken rotor bar defect in ACIMs shows improved detection of this fault is still relevant. An analysis of previous work in the creation of this prototype instrument leads into the refactoring of the software and hardware into something more deployable, cost effective and commercially viable.
Implementation of Temperature Sequential Controller on Variable Speed Drive
NASA Astrophysics Data System (ADS)
Cheong, Z. X.; Barsoum, N. N.
2008-10-01
There are many pump and motor installations with quite extensive speed variation, such as Sago conveyor, heating, ventilation and air conditioning (HVAC) and water pumping system. A common solution for these applications is to run several fixed speed motors in parallel, with flow control accomplish by turning the motors on and off. This type of control method causes high in-rush current, and adds a risk of damage caused by pressure transients. This paper explains the design and implementation of a temperature speed control system for use in industrial and commercial sectors. Advanced temperature speed control can be achieved by using ABB ACS800 variable speed drive-direct torque sequential control macro, programmable logic controller and temperature transmitter. The principle of direct torque sequential control macro (DTC-SC) is based on the control of torque and flux utilizing the stator flux field orientation over seven preset constant speed. As a result of continuous comparison of ambient temperature to the references temperatures; electromagnetic torque response is particularly fast to the motor state and it is able maintain constant speeds. Experimental tests have been carried out by using ABB ACS800-U1-0003-2, to validate the effectiveness and dynamic respond of ABB ACS800 against temperature variation, loads, and mechanical shocks.
Electric vehicle motors and controllers
NASA Technical Reports Server (NTRS)
Secunde, R. R.
1981-01-01
Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.
Electric vehicle motors and controllers
NASA Astrophysics Data System (ADS)
Secunde, R. R.
Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-28
... industrial electric motors under section 342(b) of the Energy Policy and Conservation Act (EPCA). DOE will.../electric_motors.html . For information on obtaining a copy of the framework document, see the supplementary... Electric Motors, Docket No. EERE-2010-BT-STD-0027 and/or RIN 1904-AC28, 1000 Independence Avenue, SW...
AC/DC current ratio in a current superimposition variable flux reluctance machine
NASA Astrophysics Data System (ADS)
Kohara, Akira; Hirata, Katsuhiro; Niguchi, Noboru; Takahara, Kazuaki
2018-05-01
We have proposed a current superimposition variable flux reluctance machine for traction motors. The torque-speed characteristics of this machine can be controlled by increasing or decreasing the DC current. In this paper, we discuss an AC/DC current ratio in the current superimposition variable flux reluctance machine. The structure and control method are described, and the characteristics are computed using FEA in several AC/DC ratios.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-28
... metal mountings, housings for wax motors, appliance fans, water filters, various DC motors, various AC..., pressure sensors and thermostats (duty rate ranges from duty-free to 8.6%). Public comment is invited from...
NASA Astrophysics Data System (ADS)
Kondo, Keiichiro; Hata, Hiroshi; Yuki, Kazuaki; Naganuma, Katsunori; Matsuoka, Koichi; Hasebe, Toshio
This paper is aimed at providing the designing method of a permanent magnet synchronous motor (PMSM) control system for the high-speed and the single-phase AC powered Gauge Changing Train (GCT). The state-of-the-art electrical motive unit is equipped with downsized direct drive type PMSMs for the simplified gauge changeable truck. Due to the feeding the AC single phase power, we propose a beat-less control for PMSMs. We verify the development results of designing procedures by the experimental results of operation on a high-speed test line in Colorado, USA.
Gallasch, Eugen; Rafolt, Dietmar; Postruznik, Magdalena; Fresnoza, Shane; Christova, Monica
2018-04-19
Rotation of a static magnet over the motor cortex (MC) generates a transcranial alternating magnetic field (tAMF), and a linked alternating electrical field. The aim of this transcranial magnetic stimulation (TMS) study is to investigate whether such fields are able to influence MC excitability, and whether there are parallels to tACS induced effects. Fourteen healthy volunteers received 20 Hz tAMF stimulation over the MC, over the vertex, and 20 Hz tACS over the MC, each with a duration of 15 min. TMS assessments were performed before and after the interventions. Changes in motor evoked potentials (MEP), short interval intra-cortical inhibition (SICI) and intra-cortical facilitation (ICF) were evaluated. The tACS and the tAMF stimulation over the MC affected cortical excitability in a different way. After tAMF stimulation MEP amplitudes and ICF decreased and the effect of SICI increased. After tACS MEP amplitudes increased and there were no effects on SICI and ICF. The recorded single and paired pulse MEPs indicate a general decrease of MC excitability following 15 min of tAMF stimulation. The effects demonstrate that devices based on rotating magnets are potentially suited to become a novel brain stimulation tool in clinical neurophysiology. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Solar powered actuator with continuously variable auxiliary power control
NASA Technical Reports Server (NTRS)
Nola, F. J. (Inventor)
1984-01-01
A solar powered system is disclosed in which a load such as a compressor is driven by a main induction motor powered by a solar array. An auxiliary motor shares the load with the solar powered motor in proportion to the amount of sunlight available, is provided with a power factor controller for controlling voltage applied to the auxiliary motor in accordance with the loading on that motor. In one embodiment, when sufficient power is available from the solar cell, the auxiliary motor is driven as a generator by excess power from the main motor so as to return electrical energy to the power company utility lines.
NASA Technical Reports Server (NTRS)
Ellis, R. C.; Fink, R. A.; Moore, E. A.
1987-01-01
The Common Drive Unit (CDU) is a high reliability rotary actuator with many versatile applications in mechanism designs. The CDU incorporates a set of redundant motor-brake assemblies driving a single output shaft through differential. Tachometers provide speed information in the AC version. Operation of both motors, as compared to the operation of one motor, will yield the same output torque with twice the output speed.
A hybrid electromechanical solid state switch for ac power control
NASA Technical Reports Server (NTRS)
1972-01-01
Bidirectional thyristor coupled to a series of actuator driven electromechanical contacts generates hybrid electromechanical solid state switch for ac power control. Device is useful in power control applications where zero crossover switching is required.
Dynamic model tracking design for low inertia, high speed permanent magnet ac motors.
Stewart, P; Kadirkamanathan, V
2004-01-01
Permanent magnet ac (PMAC) motors have existed in various configurations for many years. The advent of rare-earth magnets and their associated highly elevated levels of magnetic flux makes the permanent magnet motor attractive for many high performance applications from computer disk drives to all electric racing cars. The use of batteries as a prime storage element carries a cost penalty in terms of the unladen weight of the vehicle. Minimizing this cost function requires the minimum electric motor size and weight to be specified, while still retaining acceptable levels of output torque. This tradeoff can be achieved by applying a technique known as flux weakening which will be investigated in this paper. The technique allows the speed range of a PMAC motor to be greatly increased, giving a constant power range of more than 4:1. A dynamic model reference controller is presented which has advantages in ease of implementation, and is particularly suited to dynamic low inertia applications such as clutchless gear changing in high performance electric vehicles. The benefits of this approach are to maximize the torque speed envelope of the motor, particularly advantageous when considering low inertia operation. The controller is examined experimentally, confirming the predicted performance.
34. Interior of elevator tower, Block 31, looking northeast. Otis ...
34. Interior of elevator tower, Block 31, looking northeast. Otis Tandem Gearless Elevator Hoist (1941); floor selector (far left), in foreground is the motor generator set which includes exciter (left), AC motor (center), DC generator (right); beyond is the passenger motor (right), hoist cable and drum (center), freight motor (left). - Columbia Basin Project, Grand Coulee Dam & Franklin D. Roosevelt Lake, Across Columbia River, Southeast of Town of Grand Coulee, Grand Coulee, Grant County, WA
Electrical power generating system
NASA Technical Reports Server (NTRS)
Nola, F. J. (Inventor)
1983-01-01
A power generating system for adjusting coupling an induction motor, as a generator, to an A.C. power line wherein the motor and power line are connected through a triac is described. The triac is regulated to normally turn on at a relatively late point in each half cycle of its operation, whereby at less than operating speed, and thus when the induction motor functions as a motor rather than as a generator, power consumption from the line is substantially reduced.
Investigation of the part-load performance of two 1.12 MW regenerative marine gas turbines
NASA Astrophysics Data System (ADS)
Korakianitis, T.; Beier, K. J.
1994-04-01
Regenerative and intercooled-regenerative gas turbine engines with low pressure ratio have significant efficiency advantages over traditional aero-derivative engines of higher pressure ratios, and can compete with modern diesel engines for marine propulsion. Their performance is extremely sensitive to thermodynamic-cycle parameter choices and the type of components. The performances of two 1.12 MW (1500 hp) regenerative gas turbines are predicted with computer simulations. One engine has a single-shaft configuration, and the other has a gas-generator/power-turbine combination. The latter arrangement is essential for wide off-design operating regime. The performance of each engine driving fixed-pitch and controllable-pitch propellers, or an AC electric bus (for electric-motor-driven propellers) is investigated. For commercial applications the controllable-pitch propeller may have efficiency advantages (depending on engine type and shaft arrangements). For military applications the electric drive provides better operational flexibility.
77 FR 50644 - Airworthiness Directives; Cessna Airplane Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-22
... airplanes that have P/N 1134104-1 or 1134104-5 A/C compressor motor installed; an aircraft logbook check for... following: (1) Inspect the number of hours on the A/C compressor hour meter; and (2) Check the aircraft.... Do the replacement following Cessna Aircraft Company Model 525 Maintenance Manual, Revision 23, dated...
A Megawatt Power Module for Ship Service - Supplement. Volume 1: Program Technical Report
2007-06-01
Alternator” otherwise known as an “AC Homopolar ” or “Synchronous Homopolar ” machine for this application. The various motor /generator machine...After reviewing alternative motor /generator technologies as discussed above, a Homopolar Inductor Alternator (HIA) was selected for the technology...integrated flywheel energy storage system with homopolar inductor motor /generator and high-frequency drive”, Industry Applications, IEEE Transactions on
Hall, Claire E; Yao, Zhi; Choi, Minee; Tyzack, Giulia E; Serio, Andrea; Luisier, Raphaelle; Harley, Jasmine; Preza, Elisavet; Arber, Charlie; Crisp, Sarah J; Watson, P Marc D; Kullmann, Dimitri M; Abramov, Andrey Y; Wray, Selina; Burley, Russell; Loh, Samantha H Y; Martins, L Miguel; Stevens, Molly M; Luscombe, Nicholas M; Sibley, Christopher R; Lakatos, Andras; Ule, Jernej; Gandhi, Sonia; Patani, Rickie
2017-05-30
Motor neurons (MNs) and astrocytes (ACs) are implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but their interaction and the sequence of molecular events leading to MN death remain unresolved. Here, we optimized directed differentiation of induced pluripotent stem cells (iPSCs) into highly enriched (> 85%) functional populations of spinal cord MNs and ACs. We identify significantly increased cytoplasmic TDP-43 and ER stress as primary pathogenic events in patient-specific valosin-containing protein (VCP)-mutant MNs, with secondary mitochondrial dysfunction and oxidative stress. Cumulatively, these cellular stresses result in synaptic pathology and cell death in VCP-mutant MNs. We additionally identify a cell-autonomous VCP-mutant AC survival phenotype, which is not attributable to the same molecular pathology occurring in VCP-mutant MNs. Finally, through iterative co-culture experiments, we uncover non-cell-autonomous effects of VCP-mutant ACs on both control and mutant MNs. This work elucidates molecular events and cellular interplay that could guide future therapeutic strategies in ALS. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Utilizing zero-sequence switchings for reversible converters
Hsu, John S.; Su, Gui-Jia; Adams, Donald J.; Nagashima, James M.; Stancu, Constantin; Carlson, Douglas S.; Smith, Gregory S.
2004-12-14
A method for providing additional dc inputs or outputs (49, 59) from a dc-to-ac inverter (10) for controlling motor loads (60) comprises deriving zero-sequence components (V.sub.ao, V.sub.bo, and V.sub.co) from the inverter (10) through additional circuit branches with power switching devices (23, 44, 46), transforming the voltage between a high voltage and a low voltage using a transformer or motor (42, 50), converting the low voltage between ac and dc using a rectifier (41, 51) or an H-bridge (61), and providing at least one low voltage dc input or output (49, 59). The transformation of the ac voltage may be either single phase or three phase. Where less than a 100% duty cycle is acceptable, a two-phase modulation of the switching signals controlling the inverter (10) reduces switching losses in the inverter (10). A plurality of circuits for carrying out the invention are also disclosed.
Use of an AC induction motor system for producing finger movements in human subjects.
Proudlock, F A; Scott, J J
1998-12-01
This report describes the set-up and evaluation of a novel system for producing precise finger movements, for tests of movement perception. The specifications were to construct a system using commercially available components that were easy to use but which offered both flexibility and also high precision control. The system was constructed around an industrial AC induction motor with an optical encoder, controlled by an AC servo digital control module that could be programmed using a simple, high-level language. This set-up fulfilled the requirements regarding position and velocity control for a range of movements and also the facility for the subject to move the joint voluntarily while still attached to the motor. However a number of problems were encountered, the most serious being the level of vibration and the inability to vary the torque during movements. The vibration was reduced to the point where it did not affect the subject, by the introduction of mechanical dampening using an anti-vibration coupling and a pneumatic splint. The torque control could not be modified during rotation and so the system could only be operated using constant torque for any given movement.
Light-Driven Chiral Molecular Motors for Passive Agile Filters
2014-05-20
liquid crystal , we fabricated the self-organized, phototubable 3D photonic superstructure, i.e. photoresponsive monodisperse cholesteric liquid...systems for applications. Here the new light-driven chiral molecular switch and upconversion nanoparticles, doped in a liquid crystal media, were...the bottom-up nanofabrication of intelligent molecular devices. Light-driven chiral molecular switches or motors in liquid crystal (LC) media that
Code of Federal Regulations, 2010 CFR
2010-10-01
... Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS TRANSPORTATION OF HAZARDOUS MATERIALS; DRIVING AND... is driven. However, the vehicle may be driven to the nearest safe place to perform the required...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umans, S.D.
1992-12-01
Its rugged nature and straightforward design make the induction motor the most commonly used type of electric motor. This motor ranges in size fro the fractional-horsepower, single-phase motors found in household appliances to polyphase motors rated at thousands of horsepower for industrial applications. Volume 1 of this report describes the function of induction motors, their characteristics, and induction motor testing. Volume 2 describes the characteristics of high-efficiency induction motors, with emphasis on the techniques used to obtain high efficiency. This two-volume report is written in nontechnical language and is intended for readers who require background from applications, marketing, motor planning,more » or managerial perspective.« less
Powertrain system for a hybrid electric vehicle
Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.
1999-08-31
A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.
Powertrain system for a hybrid electric vehicle
Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.
1999-08-31
A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.
Highlights of 2009 motor vehicle crashes : summary of statistical findings
DOT National Transportation Integrated Search
2010-08-01
In 2009, 33,808 people died in motor vehicle traffic crashes in the United States the lowest number of deaths since 1950 (33,186 fatalities in 1950). This was a 9.7-percent decline in the number of people killed, from 37,423 in 2008 to 33,808, ac...
78 FR 38455 - Energy Conservation Program: Test Procedures for Electric Motors
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-26
... Conservation Program: Test Procedures for Electric Motors; Proposed Rule #0;#0;Federal Register / Vol. 78, No... 431 [Docket No. EERE-2012-BT-TP-0043] RIN 1904-AC89 Energy Conservation Program: Test Procedures for... establishing definitions, specifying testing set-up procedures necessary to test, and extending DOE's existing...
Peptide assembly-driven metal-organic framework (MOF) motors for micro electric generators
Ikezoe, Yasuhiro; Fang, Justin; Wasik, Tomasz L.; ...
2014-11-22
Peptide–metal–organic framework (Pep-MOF) motors, whose motions are driven by anisotropic surface tension gradients created via peptide self-assembly around frameworks, can rotate microscopic rotors and magnets fast enough to generate an electric power of 0.1 μW. Finally, a new rigid Pep-MOF motor can be recycled by refilling the peptide fuel into the nanopores of the MOF.
Method and apparatus for pulse width modulation control of an AC induction motor
Geppert, Steven; Slicker, James M.
1984-01-01
An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.
Method and apparatus for pulse width modulation control of an AC induction motor
NASA Technical Reports Server (NTRS)
Geppert, Steven (Inventor); Slicker, James M. (Inventor)
1984-01-01
An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.
Three phase AC motor controller
Vuckovich, Michael; Wright, Maynard K.; Burkett, John P.
1984-03-20
A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.
A fuzzy Petri-net-based mode identification algorithm for fault diagnosis of complex systems
NASA Astrophysics Data System (ADS)
Propes, Nicholas C.; Vachtsevanos, George
2003-08-01
Complex dynamical systems such as aircraft, manufacturing systems, chillers, motor vehicles, submarines, etc. exhibit continuous and event-driven dynamics. These systems undergo several discrete operating modes from startup to shutdown. For example, a certain shipboard system may be operating at half load or full load or may be at start-up or shutdown. Of particular interest are extreme or "shock" operating conditions, which tend to severely impact fault diagnosis or the progression of a fault leading to a failure. Fault conditions are strongly dependent on the operating mode. Therefore, it is essential that in any diagnostic/prognostic architecture, the operating mode be identified as accurately as possible so that such functions as feature extraction, diagnostics, prognostics, etc. can be correlated with the predominant operating conditions. This paper introduces a mode identification methodology that incorporates both time- and event-driven information about the process. A fuzzy Petri net is used to represent the possible successive mode transitions and to detect events from processed sensor signals signifying a mode change. The operating mode is initialized and verified by analysis of the time-driven dynamics through a fuzzy logic classifier. An evidence combiner module is used to combine the results from both the fuzzy Petri net and the fuzzy logic classifier to determine the mode. Unlike most event-driven mode identifiers, this architecture will provide automatic mode initialization through the fuzzy logic classifier and robustness through the combining of evidence of the two algorithms. The mode identification methodology is applied to an AC Plant typically found as a component of a shipboard system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umans, S.D.
1992-12-01
Its rugged nature and straightforward design make the induction motor the most commonly used type of electric motor. This motor ranges in size from the fractional-horsepower, single-phase motors found in household appliances to polyphase motors rated at thousands of horsepower for industrial applications. Volume 1 of this report describes the function of induction motors, their characteristics, and induction motor testing. Volume 2 describes the characteristics of high-efficiency induction motors, with emphasis on the techniques used to obtain high efficiency. This two-volume report is written in nontechnical language and is intended for readers who require background from an applications, marketing, motormore » planning, or managerial perspective.« less
Soliton motion in a parametrically ac-driven damped Toda lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasmussen, K.O.; Malomed, B.A.; Bishop, A.R.
We demonstrate that a staggered parametric ac driving term can support stable progressive motion of a soliton in a Toda lattice with friction, while an unstaggered driving force cannot. A physical context of the model is that of a chain of anharmonically coupled particles adsorbed on a solid surface of a finite size. The ac driving force is generated by a standing acoustic wave excited on the surface. Simulations demonstrate that the state left behind the moving soliton, with the particles shifted from their equilibrium positions, gradually relaxes back to the equilibrium state that existed before the passage of themore » soliton. The perturbation theory predicts that the ac-driven soliton exists if the amplitude of the drive exceeds a certain threshold. The analytical prediction for the threshold is in reasonable agreement with that found numerically. Collisions between two counterpropagating solitons is also simulated, demonstrating that the collisions are, effectively, fully elastic. {copyright} {ital 1998} {ital The American Physical Society}« less
Inverter Output Filter Effect on PWM Motor Drives of a Flywheel Energy Storage System
NASA Technical Reports Server (NTRS)
Santiago, Walter
2004-01-01
NASA Glenn Research Center (GRC) has been involved in the research and development of high speed flywheel systems for small satellite energy storage and attitude control applications. One research and development area has been the minimization of the switching noise produced by the pulsed width modulated (PWM) inverter that drives the flywheel permanent magnet motor/generator (PM M/G). This noise can interfere with the flywheel M/G hardware and the system avionics hampering the full speed performance of the flywheel system. One way to attenuate the inverter switching noise is by placing an AC filter at the three phase output terminals of the inverter with the filter neutral point connected to the DC link (DC bus) midpoint capacitors. The main benefit of using an AC filter in this fashion is the significant reduction of the inverter s high dv/dt switching and its harmonics components. Additionally, common mode (CM) and differential mode (DM) voltages caused by the inverter s high dv/dt switching are also reduced. Several topologies of AC filters have been implemented and compared. One AC filter topology consists of a two-stage R-L-C low pass filter. The other topology consists of the same two-stage R-L-C low pass filter with a series connected trap filter (an inductor and capacitor connected in parallel). This paper presents the analysis, design and experimental results of these AC filter topologies and the comparison between the no filter case and conventional AC filter.
Flexible, polymer gated, AC-driven organic electroluminescence devices
NASA Astrophysics Data System (ADS)
Xu, Junwei; Carroll, David L.
2017-08-01
Comparing rigid inorganic layer, polymeric semiconducting gate layer exhibits superior flexibility as well as efficient carrier manipulation in high frequency AC cycles. Mechanism of the carrier manipulation at the gate in forward and reversed bias of AC cycle is studied. The flexible PET-based AC-OEL device with poly[(9,9-bis(3'-((N,N-dimethyl)-Nethylammonium)- propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN-Br) gate shows a stable electroluminescent performance in frequency sweep with a color rendering index (CRI) over 81 at 2800K color temperature.
Tang, Tao; Chen, Sisi; Huang, Xuanlin; Yang, Tao; Qi, Bo
2018-01-01
High-performance position control can be improved by the compensation of disturbances for a gear-driven control system. This paper presents a mode-free disturbance observer (DOB) based on sensor-fusion to reduce some errors related disturbances for a gear-driven gimbal. This DOB uses the rate deviation to detect disturbances for implementation of a high-gain compensator. In comparison with the angular position signal the rate deviation between load and motor can exhibits the disturbances exiting in the gear-driven gimbal quickly. Due to high bandwidth of the motor rate closed loop, the inverse model of the plant is not necessary to implement DOB. Besides, this DOB requires neither complex modeling of plant nor the use of additive sensors. Without rate sensors providing angular rate, the rate deviation is easily detected by encoders mounted on the side of motor and load, respectively. Extensive experiments are provided to demonstrate the benefits of the proposed algorithm. PMID:29498643
Tang, Tao; Chen, Sisi; Huang, Xuanlin; Yang, Tao; Qi, Bo
2018-03-02
High-performance position control can be improved by the compensation of disturbances for a gear-driven control system. This paper presents a mode-free disturbance observer (DOB) based on sensor-fusion to reduce some errors related disturbances for a gear-driven gimbal. This DOB uses the rate deviation to detect disturbances for implementation of a high-gain compensator. In comparison with the angular position signal the rate deviation between load and motor can exhibits the disturbances exiting in the gear-driven gimbal quickly. Due to high bandwidth of the motor rate closed loop, the inverse model of the plant is not necessary to implement DOB. Besides, this DOB requires neither complex modeling of plant nor the use of additive sensors. Without rate sensors providing angular rate, the rate deviation is easily detected by encoders mounted on the side of motor and load, respectively. Extensive experiments are provided to demonstrate the benefits of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Li, Yuanying; Liu, Fengyi; Wang, Bin; Su, Qingqing; Wang, Wenliang; Morokuma, Keiji
2016-12-01
We report the light-driven isomerization mechanism of a fluorene-based light-driven rotary motor (corresponding to Feringa's 2nd generation rotary motor, [M. M. Pollard et al., Org. Biomol. Chem. 6, 507-512 (2008)]) at the complete active space self-consistent field (CASSCF) and spin-flip time-dependent density functional theory (TDDFT) (SFDFT) levels, combined with the complete active space second-order perturbation theory (CASPT2) single-point energy corrections. The good consistence between the SFDFT and CASSCF results confirms the capability of SFDFT in investigating the photoisomerization step of the light-driven molecular rotary motor, and proposes the CASPT2//SFDFT as a promising and effective approach in exploring photochemical processes. At the mechanistic aspect, for the fluorene-based motor, the S1/S0 minimum-energy conical intersection (MECIs) caused by pyramidalization of a fluorene carbon have relatively low energies and are easily accessible by the reactive molecule evolution along the rotary reaction path; therefore, the fluorene-type MECIs play the dominant role in nonadiabatic decay, as supported by previous experimental and theoretical works. Comparably, the other type of MECIs that results from pyramidalization of an indene carbon, which has been acting as the dominant nonadiabatic decay channel in the stilbene motor, is energetically inaccessible, thus the indene-type MECIs are "missing" in previous mechanistic studies including molecular dynamic simulations. A correlation between the geometric and electronic factors of MECIs and that of the S1 energy profile along the C═C rotary coordinate was found. The findings in current study are expected to deepen the understanding of nonadiabatic transition in the light-driven molecular rotary motor and provide insights into mechanistic tuning of their performance.
78 FR 75961 - Energy Conservation Program: Test Procedures for Electric Motors
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-13
... Conservation Program: Test Procedures for Electric Motors; Final Rule #0;#0;Federal Register / Vol. 78 , No... CFR Part 431 [Docket No. EERE-2012-BT-TP-0043] RIN 1904-AC89 Energy Conservation Program: Test.... ACTION: Final rule. SUMMARY: The U.S. Department of Energy (DOE) is amending the energy efficiency test...
ERIC Educational Resources Information Center
SUTTON, MACK C.
THIS GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING ALTERNATING CURRENT CONVENTIONAL MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 10 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, STUDY REFERENCES, SUPPLEMENTARY…
Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor
NASA Astrophysics Data System (ADS)
Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi
2018-01-01
The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.
Introducing AC inductive reactance with a power tool
NASA Astrophysics Data System (ADS)
Bryant, Wesley; Baker, Blane
2016-09-01
The concept of reactance in AC electrical circuits is often non-intuitive and difficult for students to grasp. In order to address this lack of conceptual understanding, classroom exercises compare the predicted resistance of a power tool, based on electrical specifications, to measured resistance. Once students discover that measured resistance is smaller than expected, they are asked to explain these observations using previously studied principles of magnetic induction. Exercises also introduce the notion of inductive reactance and impedance in AC circuits and, ultimately, determine self-inductance of the motor windings within the power tool.
Alfvén cascades in JET discharges with NBI-heating
NASA Astrophysics Data System (ADS)
Sharapov, S. E.; Alper, B.; Baranov, Yu. F.; Berk, H. L.; Borba, D.; Boswell, C.; Breizman, B. N.; Challis, C. D.; de Baar, M.; DeLa Luna, E.; Evangelidis, E. A.; Hacquin, S.; Hawkes, N. C.; Kiptily, V. G.; Pinches, S. D.; Sandquist, P.; Voitsekhovich, I.; Young, N. P.; Contributors, JET-EFDA
2006-10-01
Alfvén cascade (AC) eigenmodes excited by energetic ions accelerated with ion-cyclotron resonance heating in JET reversed-shear discharges are studied experimentally in high-density plasmas fuelled by neutral beam injection (NBI) and by deuterium pellets. The recently developed O-mode interferometry technique and Mirnov coils are employed for detecting ACs. The spontaneous improvements in plasma confinement (internal transport barrier (ITB) triggering events) and grand ACs are found to correlate within 0.2 s in JET plasmas with densities up to ~5 × 1019 m-3. Measurements with high time resolution show that ITB triggering events happen before 'grand' ACs in the majority of JET discharges, indicating that this improvement in confinement is likely to be associated with the decrease in the density of rational magnetic surfaces just before qmin(t) passes an integer value. Experimentally observed ACs excited by sub-Alfvénic NBI-produced ions with parallel velocities as low as V||NBI ap 0.2 · VA are found to be most likely associated with the geodesic acoustic effect that significantly modifies the shear-Alfvén dispersion relation at low frequency. Experiments were performed with a tritium NBI-blip (short time pulse) into JET plasmas with NBI-driven ACs. Although considerable NBI-driven AC activity was present, good agreement was found both in the radial profile and in the time evolution of DT neutrons between the neutron measurements and the TRANSP code modelling based on the Coulomb collision model, indicating the ACs have at most a small effect on fast particle confinement in this case.
Atmospheric Composition Data and Information Services Center (ACDISC)
NASA Technical Reports Server (NTRS)
Kempler, S.
2005-01-01
NASA's GSFC Earth Sciences (GES) Data and Information and Data Services Center (DISC) manages the archive, distribution and data access for atmospheric composition data from AURA'S OMI, MLS, and hopefully one day, HIRDLS instruments, as well as heritage datasets from TOMS, UARS, MODIS, and AIRS. This data is currently archived in the GES Distributed Active Archive Center (DAAC). The GES DISC has begun the development of a community driven data management system that's sole purpose is to manage and provide value added services to NASA's Atmospheric Composition (AC) Data. This system, called the Atmospheric Composition Data and Information Services Center (ACDISC) will provide access all AC datasets from the above mentioned instruments, as well as AC datasets residing at remote archive sites (e.g, LaRC DAAC) The goals of the ACDISC are to: 1) Provide a data center for Atmospheric Scientists, guided by Atmospheric Scientists; 2) Be absolutely responsive to the data and data service needs of the Atmospheric Composition (AC) community; 3) Provide services (i.e., expertise) that will facilitate the effortless access to and usage of AC data; 4) Collaborate with AC scientists to facilitate the use of data from multiple sensors for long term atmospheric research. The ACDISC is an AC specific, user driven, multi-sensor, on-line, easy access archive and distribution system employing data analysis and visualization, data mining, and other user requested techniques that facilitate science data usage. The purpose of this presentation is to provide the evolution path that the GES DISC in order to better serve AC data, and also to receive continued community feedback and further foster collaboration with AC data users and providers.
Tensegrity and motor-driven effective interactions in a model cytoskeleton
NASA Astrophysics Data System (ADS)
Wang, Shenshen; Wolynes, Peter G.
2012-04-01
Actomyosin networks are major structural components of the cell. They provide mechanical integrity and allow dynamic remodeling of eukaryotic cells, self-organizing into the diverse patterns essential for development. We provide a theoretical framework to investigate the intricate interplay between local force generation, network connectivity, and collective action of molecular motors. This framework is capable of accommodating both regular and heterogeneous pattern formation, arrested coarsening and macroscopic contraction in a unified manner. We model the actomyosin system as a motorized cat's cradle consisting of a crosslinked network of nonlinear elastic filaments subjected to spatially anti-correlated motor kicks acting on motorized (fibril) crosslinks. The phase diagram suggests there can be arrested phase separation which provides a natural explanation for the aggregation and coalescence of actomyosin condensates. Simulation studies confirm the theoretical picture that a nonequilibrium many-body system driven by correlated motor kicks can behave as if it were at an effective equilibrium, but with modified interactions that account for the correlation of the motor driven motions of the actively bonded nodes. Regular aster patterns are observed both in Brownian dynamics simulations at effective equilibrium and in the complete stochastic simulations. The results show that large-scale contraction requires correlated kicking.
Fine-Filament MgB2 Superconductor Wire
NASA Technical Reports Server (NTRS)
Cantu, Sherrie
2015-01-01
Hyper Tech Research, Inc., has developed fine-filament magnesium diboride (MgB2) superconductor wire for motors and generators used in turboelectric aircraft propulsion systems. In Phase I of the project, Hyper Tech demonstrated that MgB2 multifilament wires (<10 micrometers) could reduce alternating current (AC) losses that occur due to hysteresis, eddy currents, and coupling losses. The company refined a manufacturing method that incorporates a magnesium-infiltration process and provides a tenfold enhancement in critical current density over wire made by a conventional method involving magnesium-boron powder mixtures. Hyper Tech also improved its wire-drawing capability to fabricate fine multifilament strands. In Phase II, the company developed, manufactured, and tested the wire for superconductor and engineering current density and AC losses. Hyper Tech also fabricated MgB2 rotor coil packs for a superconducting generator. The ultimate goal is to enable low-cost, round, lightweight, low-AC-loss superconductors for motor and generator stator coils operating at 25 K in next-generation turboelectric aircraft propulsion systems.
Electromechanical systems with transient high power response operating from a resonant AC link
NASA Technical Reports Server (NTRS)
Burrows, Linda M.; Hansen, Irving G.
1992-01-01
The combination of an inherently robust asynchronous (induction) electrical machine with the rapid control of energy provided by a high frequency resonant AC link enables the efficient management of higher power levels with greater versatility. This could have a variety of applications from launch vehicles to all-electric automobiles. These types of systems utilize a machine which is operated by independent control of both the voltage and frequency. This is made possible by using an indirect field-oriented control method which allows instantaneous torque control in all four operating quadrants. Incorporating the AC link allows the converter in these systems to switch at the zero crossing of every half cycle of the AC waveform. This zero loss switching of the link allows rapid energy variations to be achieved without the usual frequency proportional switching loss. Several field-oriented control systems were developed by LeRC and General Dynamics Space Systems Division under contract to NASA. A description of a single motor, electromechanical actuation system is presented. Then, focus is on a conceptual design for an AC electric vehicle. This design incorporates an induction motor/generator together with a flywheel for peak energy storage. System operation and implications along with the associated circuitry are addressed. Such a system would greatly improve all-electric vehicle ranges over the Federal Urban Driving Cycle (FUD).
Code of Federal Regulations, 2010 CFR
2010-07-01
... PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.34 Motors. Explosion-proof electric motor assemblies intended for use in approved equipment in underground... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Motors. 18.34 Section 18.34 Mineral Resources...
Pleumeekers, M. M.; Nimeskern, L.; Koevoet, J. L. M.; Karperien, M.; Stok, K. S.; van Osch, G. J. V. M.
2018-01-01
Aims Combining mesenchymal stem cells (MSCs) and chondrocytes has great potential for cell-based cartilage repair. However, there is much debate regarding the mechanisms behind this concept. We aimed to clarify the mechanisms that lead to chondrogenesis (chondrocyte driven MSC-differentiation versus MSC driven chondroinduction) and whether their effect was dependent on MSC-origin. Therefore, chondrogenesis of human adipose-tissue-derived MSCs (hAMSCs) and bone-marrow-derived MSCs (hBMSCs) combined with bovine articular chondrocytes (bACs) was compared. Methods hAMSCs or hBMSCs were combined with bACs in alginate and cultured in vitro or implanted subcutaneously in mice. Cartilage formation was evaluated with biochemical, histological and biomechanical analyses. To further investigate the interactions between bACs and hMSCs, (1) co-culture, (2) pellet, (3) Transwell® and (4) conditioned media studies were conducted. Results The presence of hMSCs–either hAMSCs or hBMSCs—increased chondrogenesis in culture; deposition of GAG was most evidently enhanced in hBMSC/bACs. This effect was similar when hMSCs and bAC were combined in pellet culture, in alginate culture or when conditioned media of hMSCs were used on bAC. Species-specific gene-expression analyses demonstrated that aggrecan was expressed by bACs only, indicating a predominantly trophic role for hMSCs. Collagen-10-gene expression of bACs was not affected by hBMSCs, but slightly enhanced by hAMSCs. After in-vivo implantation, hAMSC/bACs and hBMSC/bACs had similar cartilage matrix production, both appeared stable and did not calcify. Conclusions This study demonstrates that replacing 80% of bACs by either hAMSCs or hBMSCs does not influence cartilage matrix production or stability. The remaining chondrocytes produce more matrix due to trophic factors produced by hMSCs. PMID:29489829
Pleumeekers, M M; Nimeskern, L; Koevoet, J L M; Karperien, M; Stok, K S; van Osch, G J V M
2018-01-01
Combining mesenchymal stem cells (MSCs) and chondrocytes has great potential for cell-based cartilage repair. However, there is much debate regarding the mechanisms behind this concept. We aimed to clarify the mechanisms that lead to chondrogenesis (chondrocyte driven MSC-differentiation versus MSC driven chondroinduction) and whether their effect was dependent on MSC-origin. Therefore, chondrogenesis of human adipose-tissue-derived MSCs (hAMSCs) and bone-marrow-derived MSCs (hBMSCs) combined with bovine articular chondrocytes (bACs) was compared. hAMSCs or hBMSCs were combined with bACs in alginate and cultured in vitro or implanted subcutaneously in mice. Cartilage formation was evaluated with biochemical, histological and biomechanical analyses. To further investigate the interactions between bACs and hMSCs, (1) co-culture, (2) pellet, (3) Transwell® and (4) conditioned media studies were conducted. The presence of hMSCs-either hAMSCs or hBMSCs-increased chondrogenesis in culture; deposition of GAG was most evidently enhanced in hBMSC/bACs. This effect was similar when hMSCs and bAC were combined in pellet culture, in alginate culture or when conditioned media of hMSCs were used on bAC. Species-specific gene-expression analyses demonstrated that aggrecan was expressed by bACs only, indicating a predominantly trophic role for hMSCs. Collagen-10-gene expression of bACs was not affected by hBMSCs, but slightly enhanced by hAMSCs. After in-vivo implantation, hAMSC/bACs and hBMSC/bACs had similar cartilage matrix production, both appeared stable and did not calcify. This study demonstrates that replacing 80% of bACs by either hAMSCs or hBMSCs does not influence cartilage matrix production or stability. The remaining chondrocytes produce more matrix due to trophic factors produced by hMSCs.
Peptide assembly-driven metal-organic framework (MOF) motors for micro electric generators.
Ikezoe, Yasuhiro; Fang, Justin; Wasik, Tomasz L; Uemura, Takashi; Zheng, Yongtai; Kitagawa, Susumu; Matsui, Hiroshi
2015-01-14
Peptide-metal-organic framework (Pep-MOF) motors, whose motions are driven by anisotropic surface tension gradients created via peptide self-assembly around frameworks, can rotate microscopic rotors and magnets fast enough to generate an electric power of 0.1 μW. A new rigid Pep-MOF motor can be recycled by refilling the peptide fuel into the nanopores of the MOF. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Richter, E.
1984-09-01
The work deals with the design and analysis study for the conceptual design of an economical high efficiency ac motor based on permanent magnets. The design and trade off studies have covered the material considerations, the design tradeoff options as well as transient and steady state performance considerations, and other options. The baseline comparison is the high efficiency induction motor. The permanent magnet (PM) motor must fit into the same frame size and surpass the induction motor on a life cost basis that includes 2.5 years of operation at a 50% duty cycle. It is shown that a motor based upon ferrite magnets does meet the objectives of the program in ratings of up to 25 hp. A 7.5 motor design is carried through the conceptual design stage.
Oza, Chintan S.
2015-01-01
Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. PMID:25948267
Early effect of intra-arterial treatment in ischemic stroke on aphasia recovery in MR CLEAN.
Crijnen, Yvette S; Nouwens, Femke; de Lau, Lonneke M L; Visch-Brink, Evy G; van de Sandt-Koenderman, Mieke W M E; Berkhemer, Olvert A; Fransen, Puck S S; Beumer, Debbie; van den Berg, Lucie A; Lingsma, Hester F; Roos, Yvo B W E M; van der Lugt, Aad; van Oostenbrugge, Robert J; van Zwam, Wim H; Majoie, Charles B L M; Dippel, Diederik W J
2016-05-31
To investigate the effect of intra-arterial treatment (IAT) on early recovery from aphasia in acute ischemic stroke. We hypothesized that the early effect of IAT on aphasia is smaller than the effect on motor deficits. We included patients with aphasia from the Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands (MR CLEAN), in which 500 patients with a proximal anterior circulation stroke were randomized to usual care plus IAT (<6 hours after stroke, mainly stent retrievers) or usual care alone. We estimated the effect of IAT on the shift on the NIH Stroke Scale (NIHSS) item language and the NIHSS item motor arm at 24 hours and 1 week after stroke with multivariable ordinal logistic regression as a common odds ratio, adjusted for prognostic variables (acOR). Differences between the effect of IAT on aphasia and on motor deficits were tested in a multilevel model with a multiplicative interaction term. Of the 288 patients with aphasia, 126 were assigned to IAT and 162 to usual care alone. The acOR for improvement of language score at 24 hours was 1.65 (95% confidence interval [CI] 1.05-2.60), and at 1 week 1.86 (95% CI 1.18-2.94). The acOR for improvement of motor deficit at 24 hours was 2.44 (95% CI 1.54-3.88), and at 1 week 2.32 (95% CI 1.43-3.77). The effect of IAT on language deficits was significantly different from the effect on motor deficits at 24 hours and 1 week (p = 0.005 and p = 0.011). IAT results in better early recovery from aphasia than usual care alone. The early effect of IAT on aphasia is smaller than the effect on motor deficits. This study provides Class II evidence that for patients with acute ischemic stroke IAT increases early recovery from aphasia and that the early effect on aphasia, as measured by the NIHSS, is smaller than the effect on motor deficits. © 2016 American Academy of Neurology.
Theory and Design of Electrical Rotating Machinery.
1980-04-01
6.17 Magnetic Circuit Design for a Homopolar Motor .. ..... 12 6.18 AC Losses in Superconducting Solenoids .. ........ . 12 6.19 AC Loss from the...have contributed to this program are as follows: W. J. Carr, Jr. - Consultant in Magnetics and * Superconductivity J. H. Murphy - Engineer, Cryogenics...Abstract: In some applications of multifilament superconduct - ing wire an appreciable component of a time dependent magnetic field exists along the
Preliminary research of a novel center-driven robot for upper extremity rehabilitation.
Cao, Wujing; Zhang, Fei; Yu, Hongliu; Hu, Bingshan; Meng, Qiaoling
2018-01-19
Loss of upper limb function often appears after stroke. Robot-assisted systems are becoming increasingly common in upper extremity rehabilitation. Rehabilitation robot provides intensive motor therapy, which can be performed in a repetitive, accurate and controllable manner. This study aims to propose a novel center-driven robot for upper extremity rehabilitation. A new power transmission mechanism is designed to transfer the power to elbow and shoulder joints from three motors located on the base. The forward and inverse kinematics equations of the center-driven robot (CENTROBOT) are deduced separately. The theoretical values of the scope of joint movements are obtained with the Denavit-Hartenberg parameters method. A prototype of the CENTROBOT is developed and tested. The elbow flexion/extension, shoulder flexion/extension and shoulder adduction/abduction can be realized of the center-driven robot. The angles value of joints are in conformity with the theoretical value. The CENTROBOT reduces the overall size of the robot arm, the influence of motor noise, radiation and other adverse factors by setting all motors on the base. It can satisfy the requirements of power and movement transmission of the robot arm.
49 CFR 392.7 - Equipment, inspection and use.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES General § 392.7 Equipment, inspection and use. (a) No commercial motor vehicle shall be driven...
Peptide Assembly-Driven Metal-Organic Framework (MOF) Motors for Micro Electric Generator
Ikezoe, Yasuhiro; Fang, Justin; Wasik, Tomasz L.; Uemura, Takashi; Zheng, Yongtai; Kitagawa, Susumu
2014-01-01
Peptide-MOF motors, whose motions are driven by anisotropic surface gradients created via peptide self-assembly around nanopores of MOFs, can rotate microscopic rotors and magnet fast enough to generate electric power of 0.1 µW. To make the peptide-MOF generator recyclable, a new MOF is applied as a host motor engine, which has a more rigid framework with higher H2O affinity so that peptide release occurs more efficiently via guest exchange without the destruction of MOF. PMID:25418936
NASA Astrophysics Data System (ADS)
Luo, Win-Jet; Yue, Cheng-Feng
2004-12-01
This paper investigates two-dimensional, time-dependent electroosmotic flows driven by an AC electric field via patchwise surface heterogeneities distributed along the microchannel walls. The time-dependent flow fields through the microchannel are simulated for various patchwise heterogeneous surface patterns using the backwards-Euler time stepping numerical method. Different heterogeneous surface patterns are found to create significantly different electrokinetic transport phenomena. It is shown that the presence of oppositely charged surface heterogeneities on the microchannel walls results in the formation of localized flow circulations within the bulk flow. These circulation regions grow and decay periodically in accordance with the applied periodic AC electric field intensity. The circulations provide an effective means of enhancing species mixing in the microchannel. A suitable design of the patchwise heterogeneous surface pattern permits the mixing channel length and the retention time required to attain a homogeneous solution to be reduced significantly.
Cortical inhibition and excitation by bilateral transcranial alternating current stimulation.
Cancelli, Andrea; Cottone, Carlo; Zito, Giancarlo; Di Giorgio, Marina; Pasqualetti, Patrizio; Tecchio, Franca
2015-01-01
Transcranial electric stimulations (tES) with amplitude-modulated currents are promising tools to enhance neuromodulation effects. It is essential to select the correct cortical targets and inhibitory/excitatory protocols to reverse changes in specific networks. We aimed at assessing the dependence of cortical excitability changes on the current amplitude of 20 Hz transcranial alternating current stimulation (tACS) over the bilateral primary motor cortex. We chose two amplitude ranges of the stimulations, around 25 μA/cm2 and 63 μA/cm2 from peak to peak, with three values (at steps of about 2.5%) around each, to generate, respectively, inhibitory and excitatory effects of the primary motor cortex. We checked such changes online through transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEPs). Cortical excitability changes depended upon current density (p = 0.001). Low current densities decreased MEP amplitudes (inhibition) while high current densities increased them (excitation). tACS targeting bilateral homologous cortical areas can induce online inhibition or excitation as a function of the current density.
Ono, Takashi; Mukaino, Masahiko; Ushiba, Junichi
2013-01-01
Resent studies suggest that brain-computer interface (BCI) training for chronic stroke patient is useful to improve their motor function of paretic hand. However, these studies does not show the extent of the contribution of the BCI clearly because they prescribed BCI with other rehabilitation systems, e.g. an orthosis itself, a robotic intervention, or electrical stimulation. We therefore compared neurological effects between interventions with neuromuscular electrical stimulation (NMES) with motor imagery and BCI-driven NMES, employing an ABAB experimental design. In epoch A, the subject received NMES on paretic extensor digitorum communis (EDC). The subject was asked to attempt finger extension simultaneously. In epoch B, the subject received NMES when BCI system detected motor-related electroencephalogram change while attempting motor imagery. Both epochs were carried out for 60 min per day, 5 days per week. As a result, EMG activity of EDC was enhanced by BCI-driven NMES and significant cortico-muscular coherence was observed at the final evaluation. These results indicate that the training by BCI-driven NMES is effective even compared to motor imagery combined with NMES, suggesting the superiority of closed-loop training with BCI-driven NMES to open-loop NMES for chronic stroke patients.
NASA Astrophysics Data System (ADS)
Berger, Andrew J.; Edwards, Eric R. J.; Nembach, Hans T.; Karenowska, Alexy D.; Weiler, Mathias; Silva, Thomas J.
2018-03-01
Functional spintronic devices rely on spin-charge interconversion effects, such as the reciprocal processes of electric field-driven spin torque and magnetization dynamics-driven spin and charge flow. Both dampinglike and fieldlike spin-orbit torques have been observed in the forward process of current-driven spin torque and dampinglike inverse spin-orbit torque has been well studied via spin pumping into heavy metal layers. Here, we demonstrate that established microwave transmission spectroscopy of ferromagnet/normal metal bilayers under ferromagnetic resonance can be used to inductively detect the ac charge currents driven by the inverse spin-charge conversion processes. This technique relies on vector network analyzer ferromagnetic resonance (VNA-FMR) measurements. We show that in addition to the commonly extracted spectroscopic information, VNA-FMR measurements can be used to quantify the magnitude and phase of all ac charge currents in the sample, including those due to spin pumping and spin-charge conversion. Our findings reveal that Ni80Fe20/Pt bilayers exhibit both dampinglike and fieldlike inverse spin-orbit torques. While the magnitudes of both the dampinglike and fieldlike inverse spin-orbit torque are of comparable scale to prior reported values for similar material systems, we observed a significant dependence of the dampinglike magnitude on the order of deposition. This suggests interface quality plays an important role in the overall strength of the dampinglike spin-to-charge conversion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallego-Marcos, Fernando; Sánchez, Rafael; Platero, Gloria
We analyze long-range transport through an ac driven triple quantum dot with a single electron. Resonant transitions between separated and detuned dots are mediated by the exchange of n photons with the time-dependent field. An effective model is proposed in terms of second order (cotunneling) processes which dominate the long-range transport between the edge quantum dots. The ac field renormalizes the inter dot hopping, modifying the level hybridization. It results in a non-trivial behavior of the current with the frequency and amplitude of the external ac field.
Zarei, Mina; Javidi, Maryam; Erfanian, Mahdi; Lomee, Mahdi; Afkhami, Farzaneh
2013-01-01
Cleaning and shaping is one of the most important phases in root canal therapy. Various rotary NiTi systems minimize accidents and facilitate the shaping process. Todays NiTi files are used with air-driven and electric handpieces. This study compared the canal centering after instrumentation using the ProTaper system using Endo IT, electric torque-control motor, and NSK air-driven handpiece. This ex vivo randomized controlled trial study involved 26 mesial mandibular root canals with 10 to 35° curvature. The roots were randomly divided into 2 groups of 13 canals each. The roots were mounted in an endodontic cube with acrylic resin, sectioned horizontally at 2, 6 and 10 mm from the apex and then reassembled. The canals were instrumented according to the manufacturer's instructions using ProTaper rotary files and electric torque-control motors (group 1) or air-driven handpieces (group 2). Photographs of the cross-sections included shots before and after instrumentation, and image analysis was performed using Photoshop software. The centering ability and canal transportation was also evaluated. Repeated measurement and independent t-test provided statistical analysis of canal transportation. The comparison of the rate of transportation toward internal or external walls between the two groups was not statistically significant (p = 0.62). Comparison of the rate of transportation of sections within one group was not significant (p = 0.28). Use of rotary NiTi file with either electric torquecontrol motor or air-driven handpiece had no effect on canal centering. NiTi rotary instruments can be used with air-driven motors without any considerable changes in root canal anatomy, however it needs the clinician to be expert.
2018-01-01
The design of a multicomponent system that aims at the direct visualization of a synthetic rotary motor at the single molecule level on surfaces is presented. The synthesis of two functional motors enabling photochemical rotation and fluorescent detection is described. The light-driven molecular motor is found to operate in the presence of a fluorescent tag if a rigid long rod (32 Å) is installed between both photoactive moieties. The photochemical isomerization and subsequent thermal helix inversion steps are confirmed by 1H NMR and UV–vis absorption spectroscopies. In addition, the tetra-acid functioned motor can be successfully grafted onto amine-coated quartz and it is shown that the light responsive rotary motion on surfaces is preserved. PMID:29741383
78 FR 49982 - Airworthiness Directives; Saab AB, Saab Aerosystems Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-16
...) Replacement Except as provided by paragraph (k) of this AD: Using the hour reading on the A/C compressor hour... accordance with paragraph (k)(1) of this AD until the conditions listed in paragraphs (j)(1)(i) through (j)(1... ducts to gain access to the drive motor. (4) Disconnect power leads from motor terminals (1/4-28). Tag...
NASA Astrophysics Data System (ADS)
Shao, Xinxin; Naghdy, Fazel; Du, Haiping
2017-03-01
A fault-tolerant fuzzy H∞ control design approach for active suspension of in-wheel motor driven electric vehicles in the presence of sprung mass variation, actuator faults and control input constraints is proposed. The controller is designed based on the quarter-car active suspension model with a dynamic-damping-in-wheel-motor-driven-system, in which the suspended motor is operated as a dynamic absorber. The Takagi-Sugeno (T-S) fuzzy model is used to model this suspension with possible sprung mass variation. The parallel-distributed compensation (PDC) scheme is deployed to derive a fault-tolerant fuzzy controller for the T-S fuzzy suspension model. In order to reduce the motor wear caused by the dynamic force transmitted to the in-wheel motor, the dynamic force is taken as an additional controlled output besides the traditional optimization objectives such as sprung mass acceleration, suspension deflection and actuator saturation. The H∞ performance of the proposed controller is derived as linear matrix inequalities (LMIs) comprising three equality constraints which are solved efficiently by means of MATLAB LMI Toolbox. The proposed controller is applied to an electric vehicle suspension and its effectiveness is demonstrated through computer simulation.
Oza, Chintan S; Giszter, Simon F
2015-05-06
Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. Copyright © 2015 the authors 0270-6474/15/357174-16$15.00/0.
Three-phase power factor controller with induced EMF sensing
NASA Technical Reports Server (NTRS)
Nola, F. J. (Inventor)
1984-01-01
A power factor controller for an ac induction motor is provided which is of the type comprising thyristor switches connected in series with the motor, phase detectors for sensing the motor current and voltage and providing an output proportional to the phase difference between the motor voltage and current, and a control circuit, responsive to the output of the phase detector and to a power factor command signal, for controlling switching of the thyristor. The invention involves sensing the induced emf produced by the motor during the time interval when the thyristor is off and for producing a corresponding feedback signal for controlling switching of the thyristor. The sensed emf is also used to enhance soft starting of the motor.
3D printed self-driven thumb-sized motors for in-situ underwater pollutant remediation
Yu, Fen; Hu, Qipeng; Dong, Lina; Cui, Xiao; Chen, Tingtao; Xin, Hongbo; Liu, Miaoxing; Xue, Chaowen; Song, Xiangwei; Ai, Fanrong; Li, Ting; Wang, Xiaolei
2017-01-01
Green fuel-driven thumb sized motors (TSM) were designed and optimized by 3D printing to explore their in-situ remediation applications in rare studied underwater area. Combined with areogel processing and specialized bacteria domestication, each tiny TSM could realize large area pollutant treatment precisely in an impressive half-automatically manner. PMID:28205596
3D printed self-driven thumb-sized motors for in-situ underwater pollutant remediation
NASA Astrophysics Data System (ADS)
Yu, Fen; Hu, Qipeng; Dong, Lina; Cui, Xiao; Chen, Tingtao; Xin, Hongbo; Liu, Miaoxing; Xue, Chaowen; Song, Xiangwei; Ai, Fanrong; Li, Ting; Wang, Xiaolei
2017-02-01
Green fuel-driven thumb sized motors (TSM) were designed and optimized by 3D printing to explore their in-situ remediation applications in rare studied underwater area. Combined with areogel processing and specialized bacteria domestication, each tiny TSM could realize large area pollutant treatment precisely in an impressive half-automatically manner.
Machine finishes balls to high degree of roundness
NASA Technical Reports Server (NTRS)
Angele, W.; Hill, J. P., Jr.
1972-01-01
Machine was developed to finish ball to roundness within 12.5 nm (half a microinch) from any types of hard material. Grinding and polishing to this tolerance is accomplished by lapping elements on four to six motor-driven spindles. Spindles are adjustably spring-loaded to ensure constant contact pressure on ball and are driven by variable speed electric motors.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-10
...) electric motor driven compressors in lieu of four previously authorized, as yet unbuilt, 4,700 hp natural gas engine driven compressors; and Two additional 5,750 hp electric motor drive compressor units. In... Energy Center, LLC; Notice of Intent to Prepare an Environmental Assessment for the Proposed Electric...
Method for assessing motor insulation on operating motors
Kueck, John D.; Otaduy, Pedro J.
1997-01-01
A method for monitoring the condition of electrical-motor-driven devices. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques.
Noncontinuous Super-Diffusive Dynamics of a Light-Activated Nanobottle Motor.
Xuan, Mingjun; Mestre, Rafael; Gao, Changyong; Zhou, Chang; He, Qiang; Sánchez, Samuel
2018-06-04
We report a carbonaceous nanobottle (CNB) motor for near infrared (NIR) light-driven jet propulsion. The bottle structure of the CNB motor is fabricated by soft-template-based polymerization. Upon illumination with NIR light, the photothermal effect of the CNB motor carbon shell causes a rapid increase in the temperature of the water inside the nanobottle and thus the ejection of the heated fluid from the open neck, which propels the CNB motor. The occurrence of an explosion, the on/off motion, and the swing behavior of the CNB motor can be modulated by adjusting the NIR light source. Moreover, we simulated the physical field distribution (temperature, fluid velocity, and pressure) of the CNB motor to demonstrate the mechanism of NIR light-driven jet propulsion. This NIR light-powered CNB motor exhibits fuel-free propulsion and control of the swimming velocity by external light and has great potential for future biomedical applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lewpiriyawong, Nuttawut; Xu, Guolin; Yang, Chun
2018-03-01
This paper presents the use of DC-biased AC electric field for enhancing cell trapping throughput in an insulator-based dielectrophoretic (iDEP) fluidic device with densely packed silica beads. Cell suspension is carried through the iDEP device by a pressure-driven flow. Under an applied DC-biased AC electric field, DEP trapping force is produced as a result of non-uniform electric field induced by the gap of electrically insulating silica beads packed between two mesh electrodes that allow both fluid and cells to pass through. While the AC component is mainly to control the magnitude of DEP trapping force, the DC component generates local electroosmotic (EO) flow in the cavity between the beads and the EO flow can be set to move along or against the main pressure-driven flow. Our experimental and simulation results show that desirable trapping is achieved when the EO flow direction is along (not against) the main flow direction. Using our proposed DC-biased AC field, the device can enhance the trapping throughput (in terms of the flowrate of cell suspension) up to five times while yielding almost the same cell capture rates as compared to the pure AC field case. Additionally, the device was demonstrated to selectively trap dead yeast cells from a mixture of flowing live and dead yeast cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
MacNeille, S.M.
1958-12-01
Control systems for automatic positioning of an electric motor operated vapor valve are described which is operable under the severe conditions existing in apparatus for electro-magnetlcally separating isotopes. In general, the system includes a rotor for turning the valve comprising two colls mounted mutually perpendicular to each other and also perpendicular to the magnetic field of the isotope separating apparatus. The coils are furnished with both a-c and d- c current by assoclate control circuitry and a position control is provided for varying the ratlo of the a-c currents in the coils and at the same time, but in an inverse manner, the ratio between the d-c currents in the coils is varied. With the present system the magnitude of the motor torque is constant for all valves of the rotor orientatlon angle.
49 CFR 392.11 - Railroad grade crossings; slowing down required.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES Driving of Commercial Motor Vehicles § 392.11 Railroad grade..., upon approaching a railroad grade crossing, be driven at a rate of speed which will permit said...
49 CFR 392.33 - Obscured lamps or reflective devices/material.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES Use of Lighted Lamps and Reflectors § 392.33 Obscured lamps or reflective devices/material. (a) No commercial motor vehicle shall be driven when any of the lamps...
Method for assessing motor insulation on operating motors
Kueck, J.D.; Otaduy, P.J.
1997-03-18
A method for monitoring the condition of electrical-motor-driven devices is disclosed. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques. 15 figs.
NASA Technical Reports Server (NTRS)
1997-01-01
Frank Nola invented the Power Factor Controller (PFC) at Marshall Space Flight Center more than a decade ago. Nola came up with a way to curb power wastage in AC induction motors. The PFC matches voltage with the motor's actual need by continuously sensing shifts between voltage and current. When it senses a light load it cuts the voltage to the minimum needed. Potential energy savings range from 8 to 65 percent.
1997-01-01
Frank Nola invented the Power Factor Controller (PFC) at Marshall Space Flight Center more than a decade ago. Nola came up with a way to curb power wastage in AC induction motors. The PFC matches voltage with the motor's actual need by continuously sensing shifts between voltage and current. When it senses a light load it cuts the voltage to the minimum needed. Potential energy savings range from 8 to 65 percent.
Astumian, R. D.
2017-01-01
The Nobel prize in Chemistry for 2016 was awarded to Jean Pierre Sauvage, Sir James Fraser Stoddart, and Bernard (Ben) Feringa for their contributions to the design and synthesis of molecular machines. While this field is still in its infancy, and at present there are no commercial applications, many observers have stressed the tremendous potential of molecular machines to revolutionize technology. However, perhaps the most important result so far accruing from the synthesis of molecular machines is the insight provided into the fundamental mechanisms by which molecular motors, including biological motors such as kinesin, myosin, FoF1 ATPase, and the flagellar motor, function. The ability to “tinker” with separate components of molecular motors allows asking, and answering, specific questions about mechanism, particularly with regard to light driven vs. chemistry driven molecular motors. PMID:28572896
NASA Astrophysics Data System (ADS)
Saleh, Omar A.; Fygenson, Deborah K.; Bertrand, Olivier J. N.; Park, Chang Young
2013-02-01
Research into the mechanics and fluctuations of living cells has revealed the key role played by the cytoskeleton, a gel of stiff filaments driven out of equilibrium by force-generating motor proteins. Inspired by the extraordinary mechanical functions that the cytoskeleton imparts to the cell, we sought to create an artificial gel with similar characteristics. We identified DNA, and DNA-based motor proteins, as functional counterparts to the constituents of the cytoskeleton. We used DNA selfassembly to create a gel, and characterized its fluctuations and mechanics both before and after activation by the motor. We found that certain aspects of the DNA gel quantitatively match those of cytoskeletal networks, indicating the universal features of motor-driven, non-equilibrium networks.
Loose coupling in the bacterial flagellar motor
Boschert, Ryan; Adler, Frederick R.; Blair, David F.
2015-01-01
Physiological properties of the flagellar rotary motor have been taken to indicate a tightly coupled mechanism in which each revolution is driven by a fixed number of energizing ions. Measurements that would directly test the tight-coupling hypothesis have not been made. Energizing ions flow through membrane-bound complexes formed from the proteins MotA and MotB, which are anchored to the cell wall and constitute the stator. Genetic and biochemical evidence points to a “power stroke” mechanism in which the ions interact with an aspartate residue of MotB to drive conformational changes in MotA that are transmitted to the rotor protein FliG. Each stator complex contains two separate ion-binding sites, raising the question of whether the power stroke is driven by one, two, or either number of ions. Here, we describe simulations of a model in which the conformational change can be driven by either one or two ions. This loosely coupled model can account for the observed physiological properties of the motor, including those that have been taken to indicate tight coupling; it also accords with recent measurements of motor torque at high load that are harder to explain in tight-coupling models. Under loads relevant to a swimming cell, the loosely coupled motor would perform about as well as a two-proton motor and significantly better than a one-proton motor. The loosely coupled motor is predicted to be especially advantageous under conditions of diminished energy supply, or of reduced temperature, turning faster than an obligatorily two-proton motor while using fewer ions. PMID:25825730
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Kyri; Dall'Anese, Emiliano; Summers, Tyler
This paper outlines a data-driven, distributionally robust approach to solve chance-constrained AC optimal power flow problems in distribution networks. Uncertain forecasts for loads and power generated by photovoltaic (PV) systems are considered, with the goal of minimizing PV curtailment while meeting power flow and voltage regulation constraints. A data- driven approach is utilized to develop a distributionally robust conservative convex approximation of the chance-constraints; particularly, the mean and covariance matrix of the forecast errors are updated online, and leveraged to enforce voltage regulation with predetermined probability via Chebyshev-based bounds. By combining an accurate linear approximation of the AC power flowmore » equations with the distributionally robust chance constraint reformulation, the resulting optimization problem becomes convex and computationally tractable.« less
Transport, shot noise, and topology in AC-driven dimer arrays
NASA Astrophysics Data System (ADS)
Niklas, Michael; Benito, Mónica; Kohler, Sigmund; Platero, Gloria
2016-11-01
We analyze an AC-driven dimer chain connected to a strongly biased electron source and drain. It turns out that the resulting transport exhibits fingerprints of topology. They are particularly visible in the driving-induced current suppression and the Fano factor. Thus, shot noise measurements provide a topological phase diagram as a function of the driving parameters. The observed phenomena can be explained physically by a mapping to an effective time-independent Hamiltonian and the emergence of edge states. Moreover, by considering quantum dissipation, we determine the requirements for the coherence properties in a possible experimental realization. For the computation of the zero-frequency noise, we develop an efficient method based on matrix-continued fractions.
Excitatory motor neurons are local oscillators for backward locomotion
Guan, Sihui Asuka; Fouad, Anthony D; Meng, Jun; Kawano, Taizo; Huang, Yung-Chi; Li, Yi; Alcaire, Salvador; Hung, Wesley; Lu, Yangning; Qi, Yingchuan Billy; Jin, Yishi; Alkema, Mark; Fang-Yen, Christopher
2018-01-01
Cell- or network-driven oscillators underlie motor rhythmicity. The identity of C. elegans oscillators remains unknown. Through cell ablation, electrophysiology, and calcium imaging, we show: (1) forward and backward locomotion is driven by different oscillators; (2) the cholinergic and excitatory A-class motor neurons exhibit intrinsic and oscillatory activity that is sufficient to drive backward locomotion in the absence of premotor interneurons; (3) the UNC-2 P/Q/N high-voltage-activated calcium current underlies A motor neuron’s oscillation; (4) descending premotor interneurons AVA, via an evolutionarily conserved, mixed gap junction and chemical synapse configuration, exert state-dependent inhibition and potentiation of A motor neuron’s intrinsic activity to regulate backward locomotion. Thus, motor neurons themselves derive rhythms, which are dually regulated by the descending interneurons to control the reversal motor state. These and previous findings exemplify compression: essential circuit properties are conserved but executed by fewer numbers and layers of neurons in a small locomotor network. PMID:29360035
Excitatory motor neurons are local oscillators for backward locomotion.
Gao, Shangbang; Guan, Sihui Asuka; Fouad, Anthony D; Meng, Jun; Kawano, Taizo; Huang, Yung-Chi; Li, Yi; Alcaire, Salvador; Hung, Wesley; Lu, Yangning; Qi, Yingchuan Billy; Jin, Yishi; Alkema, Mark; Fang-Yen, Christopher; Zhen, Mei
2018-01-23
Cell- or network-driven oscillators underlie motor rhythmicity. The identity of C. elegans oscillators remains unknown. Through cell ablation, electrophysiology, and calcium imaging, we show: (1) forward and backward locomotion is driven by different oscillators; (2) the cholinergic and excitatory A-class motor neurons exhibit intrinsic and oscillatory activity that is sufficient to drive backward locomotion in the absence of premotor interneurons; (3) the UNC-2 P/Q/N high-voltage-activated calcium current underlies A motor neuron's oscillation; (4) descending premotor interneurons AVA, via an evolutionarily conserved, mixed gap junction and chemical synapse configuration, exert state-dependent inhibition and potentiation of A motor neuron's intrinsic activity to regulate backward locomotion. Thus, motor neurons themselves derive rhythms, which are dually regulated by the descending interneurons to control the reversal motor state. These and previous findings exemplify compression: essential circuit properties are conserved but executed by fewer numbers and layers of neurons in a small locomotor network. © 2017, Gao et al.
Electroosmotic Flow Driven by DC and AC Electric Fields in Curved Microchannels
NASA Astrophysics Data System (ADS)
Chen, Jia-Kun; Luo, Win-Jet; Yang, Ruey-Jen
2006-10-01
The purpose of this study is to investigate electroosmotic flows driven by externally applied DC and AC electric fields in curved microchannels. For the DC electric driving field, the velocity distribution and secondary flow patterns are investigated in microchannels with various curvature ratios. We use the Dean number to describe the curvature effect of the flow field in DC electric field. The result implies that the effect of curvatures and the strength of the secondary flows become get stronger when the curvature ratio of C/A (where C is the radius of curvature of the microchannel and A is the half-height of rectangular curved tube.) is smaller. For the AC electric field, the velocity distribution and secondary flow patterns are investigated for driving frequencies in the range of 2.0 kHz (\\mathit{Wo}=0.71) to 11 kHz (\\mathit{Wo}=1.66). The numerical results reveal that the velocity at the center of the microchannel becomes lower at higher frequencies of the AC electric field and the strength of the secondary flow decreases. When the applied frequency exceeds 3.0 kHz (\\mathit{Wo}=0.87), vortices are no longer observed at the corners of the microchannel. Therefore, it can be concluded that the secondary flow induced at higher AC electric field frequencies has virtually no effect on the axial flow field in the microchannel.
STOPEM: A Simulation Interdiction Model of a Motorized Rifle Division.
1983-03-01
4 em t n - - tat ion - 4 Fig 1.9. Simulation Process (Ref 51:24) . 4 2 8 Illy ."’p 4 44. * s ~ ... .. ** % 0;7...10)= 14.964/A( 11) CALL FILEM-(1,A) A(2)-l.0 A(3)-33 A( 4 )-9 A(5)-l. I A(6)-2.2 A(7)-.iA5-\\XX(15)*1.65 A( 8 )=TRIAfG(A(5) ,A(7) ,A(’) , 4 ) A(C 11)-TRIAC...IA),30.0, 1) AC l2)-TRIAC(3.n,XX(IP),5.0, 3) AC 10)_n] 4 .R64/A( 11) CALL FILF.M( 1,A) AC 1)-In A(2)-l.0 A(3)-0 136 7 r r - . ,. - A5=1.6 A( 8
Gao, Wei; Pei, Allen; Wang, Joseph
2012-09-25
We demonstrate the first example of a water-driven bubble-propelled micromotor that eliminates the requirement for the common hydrogen peroxide fuel. The new water-driven Janus micromotor is composed of a partially coated Al-Ga binary alloy microsphere prepared via microcontact mixing of aluminum microparticles and liquid gallium. The ejection of hydrogen bubbles from the exposed Al-Ga alloy hemisphere side, upon its contact with water, provides a powerful directional propulsion thrust. Such spontaneous generation of hydrogen bubbles reflects the rapid reaction between the aluminum alloy and water. The resulting water-driven spherical motors can move at remarkable speeds of 3 mm s(-1) (i.e., 150 body length s(-1)), while exerting large forces exceeding 500 pN. Factors influencing the efficiency of the aluminum-water reaction and the resulting propulsion behavior and motor lifetime, including the ionic strength and environmental pH, are investigated. The resulting water-propelled Al-Ga/Ti motors move efficiently in different biological media (e.g., human serum) and hold considerable promise for diverse biomedical or industrial applications.
Velocity and Drag Forces on motor-protein-driven Vesicles in Cells
NASA Astrophysics Data System (ADS)
Hill, David; Holzwarth, George; Bonin, Keith
2002-10-01
In cells, vesicle transport is driven by motor proteins such as kinesin and dynein, which use the chemical energy of ATP to overcome drag. Using video-enhanced DIC microscopy at 8 frames/s, we find that vesicles in PC12 neurites move with an average velocity of 1.52 0.66 μm/s. The drag force and work required for such steady movement, calculated from Stokes' Law and the zero-frequency viscosity of the cytoplasm, suggest that multiple motors are required to move one vesicle. In buffer, single kinesin molecules move beads in 8-nm steps, each step taking only 50 μs [1]. The effects of such quick steps in cytoplasm, using viscoelastic moduli of COS7 cells, are small [2]. To measure drag forces more directly, we are using B-field-driven magnetic beads in PC12 cells to mimic kinesin-driven vesicles. [1] Nishiyama, M. et al., Nat. Cell Bio. 3, 425-428 (2001). [2] Holzwarth, Bonin, and Hill, Biophys J 82, 1784-1790 (2002).
Arai, Noriyoshi; Yasuoka, Kenji; Koishi, Takahiro; Ebisuzaki, Toshikazu; Zeng, Xiao Cheng
2013-06-12
The "asymmetric Brownian ratchet model", a variation of Feynman's ratchet and pawl system, is invoked to understand the kinesin walking behavior along a microtubule. The model system, consisting of a motor and a rail, can exhibit two distinct binding states, namely, the random Brownian state and the asymmetric potential state. When the system is transformed back and forth between the two states, the motor can be driven to "walk" in one direction. Previously, we suggested a fundamental mechanism, that is, bubble formation in a nanosized channel surrounded by hydrophobic atoms, to explain the transition between the two states. In this study, we propose a more realistic and viable switching method in our computer simulation of molecular motor walking. Specifically, we propose a thermosensitive polymer model with which the transition between the two states can be controlled by temperature pulses. Based on this new motor system, the stepping size and stepping time of the motor can be recorded. Remarkably, the "walking" behavior observed in the newly proposed model resembles that of the realistic motor protein. The bubble formation based motor not only can be highly efficient but also offers new insights into the physical mechanism of realistic biomolecule motors.
Decrease in Ground-Run Distance of Small Airplanes by Applying Electrically-Driven Wheels
NASA Astrophysics Data System (ADS)
Kobayashi, Hiroshi; Nishizawa, Akira
A new takeoff method for small airplanes was proposed. Ground-roll performance of an airplane driven by electrically-powered wheels was experimentally and computationally studied. The experiments verified that the ground-run distance was decreased by half with a combination of the powered driven wheels and propeller without increase of energy consumption during the ground-roll. The computational analysis showed the ground-run distance of the wheel-driven aircraft was independent of the motor power when the motor capability exceeded the friction between tires and ground. Furthermore, the distance was minimized when the angle of attack was set to the value so that the wing generated negative lift.
A motor-driven syringe-type gradient maker for forming immobilized pH gradient gels.
Fawcett, J S; Sullivan, J V; Chidakel, B E; Chrambach, A
1988-05-01
A motor driven gradient maker based on the commercial model (Jule Inc., Trumbull, CT) was designed for immobilized pH gradient gels to provide small volumes, rapid stirring and delivery, strict volume and temperature control and air exclusion. The device was constructed and by a convenient procedure yields highly reproducible gradients either in solution or on polyacrylamide gels.
Defocused Imaging of UV-Driven Surface-Bound Molecular Motors.
Krajnik, Bartosz; Chen, Jiawen; Watson, Matthew A; Cockroft, Scott L; Feringa, Ben L; Hofkens, Johan
2017-05-31
Synthetic molecular motors continue to attract great interest due to their ability to transduce energy into nanomechanical motion, the potential to do work and drive systems out-of-equilibrium. Of particular interest are unidirectional rotary molecular motors driven by chemical fuel or light. Probing the mechanistic details of their operation at the single-molecule level is hampered by the diffraction limit, which prevents the collection of dynamic positional information by traditional optical methods. Here, we use defocused wide-field imaging to examine the unidirectional rotation of individual molecular rotary motors on a quartz surface in unprecedented detail. The sequential occupation of nanomechanical states during the UV and heat-induced cycle of rotation are directly imaged in real-time. The approach will undoubtedly prove important in elucidating the mechanistic details and assessing the utility of novel synthetic molecular motors in the future.
Integrated regulation of motor-driven organelle transport by scaffolding proteins.
Fu, Meng-meng; Holzbaur, Erika L F
2014-10-01
Intracellular trafficking pathways, including endocytosis, autophagy, and secretion, rely on directed organelle transport driven by the opposing microtubule motor proteins kinesin and dynein. Precise spatial and temporal targeting of vesicles and organelles requires the integrated regulation of these opposing motors, which are often bound simultaneously to the same cargo. Recent progress demonstrates that organelle-associated scaffolding proteins, including Milton/TRAKs (trafficking kinesin-binding protein), JIP1, JIP3 (JNK-interacting proteins), huntingtin, and Hook1, interact with molecular motors to coordinate activity and sustain unidirectional transport. Scaffolding proteins also bind to upstream regulatory proteins, including kinases and GTPases, to modulate transport in the cell. This integration of regulatory control with motor activity allows for cargo-specific changes in the transport or targeting of organelles in response to cues from the complex cellular environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Quantum Hall effect in ac driven graphene: From the half-integer to the integer case
NASA Astrophysics Data System (ADS)
Ding, Kai-He; Lim, Lih-King; Su, Gang; Weng, Zheng-Yu
2018-01-01
We theoretically study the quantum Hall effect (QHE) in graphene with an ac electric field. Based on the tight-binding model, the structure of the half-integer Hall plateaus at σxy=±(n +1 /2 ) 4 e2/h (n is an integer) gets qualitatively changed with the addition of new integer Hall plateaus at σxy=±n (4 e2/h ) starting from the edges of the band center regime towards the band center with an increasing ac field. Beyond a critical field strength, a Hall plateau with σxy=0 can be realized at the band center, hence fully restoring a conventional integer QHE with particle-hole symmetry. Within a low-energy Hamiltonian for Dirac cones merging, we show a very good agreement with the tight-binding calculations for the Hall plateau transitions. We also obtain the band structure for driven graphene ribbons to provide a further understanding on the appearance of the new Hall plateaus, showing a trivial insulator behavior for the σxy=0 state. In the presence of disorder, we numerically study the disorder-induced destruction of the quantum Hall states in a finite driven sample and find that qualitative features known in the undriven disordered case are maintained.
Power And Propulsion Systems For Mobile Robotic Applications
NASA Astrophysics Data System (ADS)
Layuan, Li; Haiming, Zou
1987-02-01
Choosing the best power and propulsion systems for mobile robotic land vehicle applications requires consideration of technologies. The electric power requirements for onboard electronic and auxiliary equipment include 110/220 volt 60 Hz ac power as well as low voltage dc power. Weight and power are saved by either direct dc power distribution, or high frequency (20 kHz) ac power distribution. Vehicle control functions are performed electronically but steering, braking and traction power may be distributed electrically, mechanically or by fluid (hydraulic) means. Electric drive is practical, even for small vehicles, provided that advanced electric motors are used. Such electric motors have demonstrated power densities of 3.1 kilowatts per kilogram with devices in the 15 kilowatt range. Electric motors have a lower torque, but higher power density as compared to hydraulic or mechanical transmission systems. Power density being comparable, electric drives were selected to best meet the other requirements for robotic vehicles. Two robotic vehicle propulsion system designs are described to illustrate the implementation of electric drive over a vehicle size range of 250-7500 kilograms.
Course 3: Modelling Motor Protein Systems
NASA Astrophysics Data System (ADS)
Duke, T.
Contents 1 Making a move: Principles of energy transduction 1.1 Motor proteins and Carnot engines 1.2 Simple Brownian ratchet 1.3 Polymerization ratchet 1.4 Isothermal ratchets 1.5 Motor proteins as isothermal ratchets 1.6 Design principles for effective motors 2 Pulling together: Mechano-chemical model of actomyosin 2.1 Swinging lever-arm model 2.2 Mechano-chemical coupling 2.3 Equivalent isothermal ratchet 2.4 Many motors working together 2.5 Designed to work 2.6 Force-velocity relation 2.7 Dynamical instability and biochemical synchronization 2.8 Transient response ofmuscle 3 Motors at work: Collective properties of motor proteins 3.1 Dynamical instabilities 3.2 Bidirectional movement 3.3 Critical behaviour 3.4 Oscillations 3.5 Dynamic buckling instability 3.6 Undulation of flagella 4 Sense and sensitivity: Mechano-sensation in hearing 4.1 System performance 4.2 Mechano-sensors: Hair bundles 4.3 Active amplification 4.4 Self-tuned criticality 4.5 Motor-driven oscillations 4.6 Channel compliance and relaxation oscillations 4.7 Channel-driven oscillations 4.8 Hearing at the noise limit
Ruban, Angela; Malina, Katayun Cohen-Kashi; Cooper, Itzik; Graubardt, Nadine; Babakin, Leonid; Jona, Ghil; Teichberg, Vivian I
2015-01-01
The sporadic form of the disease affects the majority of amyotrophic lateral sclerosis (ALS) patients. The role of glutamate (Glu) excitotoxicity in ALS has been extensively documented and remains one of the prominent hypotheses of ALS pathogenesis. In light of this evidence, the availability of a method to remove excess Glu from brain and spinal cord extracellular fluids without the need to deliver drugs across the blood-brain barrier and with minimal or no adverse effects may provide a major therapeutic asset, which is the primary aim of this study. The therapeutic efficacy of the combined treatment with recombinant Glu-oxaloacetate-transaminase (rGOT) and its co-factor oxaloacetic acid (OxAc) has been tested in an animal model of sporadic ALS. We found that OxAc/rGOT treatment provides significant neuroprotection to spinal cord motor neurons. It also slows down the development of motor weakness and prolongs survival. In this study we bring evidence that the administration of Glu scavengers to rats with sporadic ALS inhibited the massive death of spinal cord motor neurons, slowed the onset of motor weakness and prolonged survival. This treatment may be of high clinical significance for the future treatment of chronic neurodegenerative diseases. © 2015 S. Karger AG, Basel.
Universal Linear Motor Driven Leg Press Dynamometer and Concept of Serial Stretch Loading.
Hamar, Dušan
2015-08-24
Paper deals with backgrounds and principles of universal linear motor driven leg press dynamometer and concept of serial stretch loading. The device is based on two computer controlled linear motors mounted to the horizontal rails. As the motors can keep either constant resistance force in selected position or velocity in both directions, the system allows simulation of any mode of muscle contraction. In addition, it also can generate defined serial stretch stimuli in a form of repeated force peaks. This is achieved by short segments of reversed velocity (in concentric phase) or acceleration (in eccentric phase). Such stimuli, generated at the rate of 10 Hz, have proven to be a more efficient means for the improvement of rate of the force development. This capability not only affects performance in many sports, but also plays a substantial role in prevention of falls and their consequences. Universal linear motor driven and computer controlled dynamometer with its unique feature to generate serial stretch stimuli seems to be an efficient and useful tool for enhancing strength training effects on neuromuscular function not only in athletes, but as well as in senior population and rehabilitation patients.
On the spontaneous collective motion of active matter
Wang, Shenshen; Wolynes, Peter G.
2011-01-01
Spontaneous directed motion, a hallmark of cell biology, is unusual in classical statistical physics. Here we study, using both numerical and analytical methods, organized motion in models of the cytoskeleton in which constituents are driven by energy-consuming motors. Although systems driven by small-step motors are described by an effective temperature and are thus quiescent, at higher order in step size, both homogeneous and inhomogeneous, flowing and oscillating behavior emerges. Motors that respond with a negative susceptibility to imposed forces lead to an apparent negative-temperature system in which beautiful structures form resembling the asters seen in cell division. PMID:21876141
On the spontaneous collective motion of active matter.
Wang, Shenshen; Wolynes, Peter G
2011-09-13
Spontaneous directed motion, a hallmark of cell biology, is unusual in classical statistical physics. Here we study, using both numerical and analytical methods, organized motion in models of the cytoskeleton in which constituents are driven by energy-consuming motors. Although systems driven by small-step motors are described by an effective temperature and are thus quiescent, at higher order in step size, both homogeneous and inhomogeneous, flowing and oscillating behavior emerges. Motors that respond with a negative susceptibility to imposed forces lead to an apparent negative-temperature system in which beautiful structures form resembling the asters seen in cell division.
Cui, Zhuang; Wang, Qian; Gao, Yayue; Wang, Jing; Wang, Mengyang; Teng, Pengfei; Guan, Yuguang; Zhou, Jian; Li, Tianfu; Luan, Guoming; Li, Liang
2017-01-01
The arrival of sound signals in the auditory cortex (AC) triggers both local and inter-regional signal propagations over time up to hundreds of milliseconds and builds up both intrinsic functional connectivity (iFC) and extrinsic functional connectivity (eFC) of the AC. However, interactions between iFC and eFC are largely unknown. Using intracranial stereo-electroencephalographic recordings in people with drug-refractory epilepsy, this study mainly investigated the temporal dynamic of the relationships between iFC and eFC of the AC. The results showed that a Gaussian wideband-noise burst markedly elicited potentials in both the AC and numerous higher-order cortical regions outside the AC (non-auditory cortices). Granger causality analyses revealed that in the earlier time window, iFC of the AC was positively correlated with both eFC from the AC to the inferior temporal gyrus and that to the inferior parietal lobule. While in later periods, the iFC of the AC was positively correlated with eFC from the precentral gyrus to the AC and that from the insula to the AC. In conclusion, dual-directional interactions occur between iFC and eFC of the AC at different time windows following the sound stimulation and may form the foundation underlying various central auditory processes, including auditory sensory memory, object formation, integrations between sensory, perceptional, attentional, motor, emotional, and executive processes.
A hybrid air conditioner driven by a hybrid solar collector
NASA Astrophysics Data System (ADS)
Al-Alili, Ali
The objective of this thesis is to search for an efficient way of utilizing solar energy in air conditioning applications. The current solar Air Conditioners (A/C)s suffer from low Coefficient of Performance (COP) and performance degradation in hot and humid climates. By investigating the possible ways of utilizing solar energy in air conditioning applications, the bottlenecks in these approaches were identified. That resulted in proposing a novel system whose subsystem synergy led to a COP higher than unity. The proposed system was found to maintain indoor comfort at a higher COP compared to the most common solar A/Cs, especially under very hot and humid climate conditions. The novelty of the proposed A/C is to use a concentrating photovoltaic/thermal collector, which outputs thermal and electrical energy simultaneously, to drive a hybrid A/C. The performance of the hybrid A/C, which consists of a desiccant wheel, an enthalpy wheel, and a vapor compression cycle (VCC), was investigated experimentally. This work also explored the use of a new type of desiccant material, which can be regenerated with a low temperature heat source. The experimental results showed that the hybrid A/C is more effective than the standalone VCC in maintaining the indoor conditions within the comfort zone. Using the experimental data, the COP of the hybrid A/C driven by a hybrid solar collector was found to be at least double that of the current solar A/Cs. The innovative integration of its subsystems allows each subsystem to do what it can do best. That leads to lower energy consumption which helps reduce the peak electrical loads on electric utilities and reduces the consumer operating cost since less energy is purchased during the on peak periods and less solar collector area is needed. In order for the proposed A/C to become a real alternative to conventional systems, its performance and total cost were optimized using the experimentally validated model. The results showed that for an electricity price of 0.12 $/kW-hr, the hybrid solar A/C's cumulative total cost will be less than that of a standard VCC after 17.5 years of operation.
Simulation of OSCM Concepts for HQ SACT
2007-06-01
effective method for creating understanding, identifying problems and developing solutions. • Simulation of a goal driven organization is a cost...effective method to visualize some aspects of the problem space Toolbox • The team used Extend™, a COTS product from Imagine That!® (http...Nations flow Model OSCM ATARES flow Batching A/C & Pallets Model ISAF Airbridge flow Flying and unbatching A/C Fleet Create resources Calculate flight
Traffic Flow of Interacting Self-Driven Particles: Rails and Trails, Vehicles and Vesicles
NASA Astrophysics Data System (ADS)
Chowdhury, Debashish
One common feature of a vehicle, an ant and a kinesin motor is that they all convert chemical energy, derived from fuel or food, into mechanical energy required for their forward movement; such objects have been modelled in recent years as self-driven particles. Cytoskeletal filaments, e.g., microtubules, form a rail network for intra-cellular transport of vesicular cargo by molecular motors like, for example, kinesins. Similarly, ants move along trails while vehicles move along lanes. Therefore, the traffic of vehicles and organisms as well as that of molecular motors can be modelled as systems of interacting self-driven particles; these are of current interest in non-equilibrium statistical mechanics. In this paper we point out the common features of these model systems and emphasize the crucial differences in their physical properties.
49 CFR 392.8 - Emergency equipment, inspection and use.
Code of Federal Regulations, 2010 CFR
2010-10-01
... CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES General § 392.8 Emergency equipment, inspection and use. No commercial motor vehicle shall be driven unless the driver thereof is satisfied that the emergency equipment...
49 CFR 397.3 - State and local laws, ordinances, and regulations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS TRANSPORTATION OF HAZARDOUS MATERIALS; DRIVING AND PARKING RULES General § 397.3 State and local laws, ordinances, and regulations. Every motor vehicle containing hazardous materials must be driven...
High-Torque, Lightweight, Pneumatically Driven Wrench For Small Spaces
NASA Technical Reports Server (NTRS)
Miller, Thomas W.
1995-01-01
Pneumatically driven wrench provides torque up to 3,000 lb. per ft. in small space. Designed to reach into 2.6 x 2.75 x 6 in. pocket. Weighs approximately 25 lbs. Includes reversible pneumatic motor (electric motor could be used instead) and slip clutch. Also includes device indicating total angle through which wrench turned bolt or nut. This feature used for turn-of-the-nut tightening method.
Han, Xiaobiao; Shen, Liqiang; Wang, Qijun; Cen, Xufeng; Wang, Jin; Wu, Meng; Li, Peng; Zhao, Wei; Zhang, Yu; Zhao, Guoping
2017-01-27
The high-affinity biosynthetic pathway for converting acetate to acetyl-coenzyme A (acetyl-CoA) is catalyzed by the central metabolic enzyme acetyl-coenzyme A synthetase (Acs), which is finely regulated both at the transcriptional level via cyclic AMP (cAMP)-driven trans-activation and at the post-translational level via acetylation inhibition. In this study, we discovered that cAMP directly binds to Salmonella enterica Acs (SeAcs) and inhibits its activity in a substrate-competitive manner. In addition, cAMP binding increases SeAcs acetylation by simultaneously promoting Pat-dependent acetylation and inhibiting CobB-dependent deacetylation, resulting in enhanced SeAcs inhibition. A crystal structure study and site-directed mutagenesis analyses confirmed that cAMP binds to the ATP/AMP pocket of SeAcs, and restrains SeAcs in an open conformation. The cAMP contact residues are well conserved from prokaryotes to eukaryotes, suggesting a general regulatory mechanism of cAMP on Acs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Chronometric Electrical Stimulation of Right Inferior Frontal Cortex Increases Motor Braking
Conner, Christopher R.; Aron, Adam R.; Tandon, Nitin
2013-01-01
The right inferior frontal cortex (rIFC) is important for stopping responses. Recent research shows that it is also activated when response emission is slowed down when stopping is anticipated. This suggests that rIFC also functions as a goal-driven brake. Here, we investigated the causal role of rIFC in goal-driven braking by using computer-controlled, event-related (chronometric), direct electrical stimulation (DES). We compared the effects of rIFC stimulation on trials in which responses were made in the presence versus absence of a stopping-goal (“Maybe Stop” [MS] vs “No Stop” [NS]). We show that DES of rIFC slowed down responses (compared with control-site stimulation) and that rIFC stimulation induced more slowing when motor braking was required (MS) compared with when it was not (NS). Our results strongly support a causal role of a rIFC-based network in inhibitory motor control. Importantly, the results extend this causal role beyond externally driven stopping to goal-driven inhibitory control, which is a richer model of human self-control. These results also provide the first demonstration of double-blind chronometric DES of human prefrontal cortex, and suggest that—in the case of rIFC—this could lead to augmentation of motor braking. PMID:24336725
Novel linear piezoelectric motor for precision position stage
NASA Astrophysics Data System (ADS)
Chen, Chao; Shi, Yunlai; Zhang, Jun; Wang, Junshan
2016-03-01
Conventional servomotor and stepping motor face challenges in nanometer positioning stages due to the complex structure, motion transformation mechanism, and slow dynamic response, especially directly driven by linear motor. A new butterfly-shaped linear piezoelectric motor for linear motion is presented. A two-degree precision position stage driven by the proposed linear ultrasonic motor possesses a simple and compact configuration, which makes the system obtain shorter driving chain. Firstly, the working principle of the linear ultrasonic motor is analyzed. The oscillation orbits of two driving feet on the stator are produced successively by using the anti-symmetric and symmetric vibration modes of the piezoelectric composite structure, and the slider pressed on the driving feet can be propelled twice in only one vibration cycle. Then with the derivation of the dynamic equation of the piezoelectric actuator and transient response model, start-upstart-up and settling state characteristics of the proposed linear actuator is investigated theoretically and experimentally, and is applicable to evaluate step resolution of the precision platform driven by the actuator. Moreover the structure of the two-degree position stage system is described and a special precision displacement measurement system is built. Finally, the characteristics of the two-degree position stage are studied. In the closed-loop condition the positioning accuracy of plus or minus <0.5 μm is experimentally obtained for the stage propelled by the piezoelectric motor. A precision position stage based the proposed butterfly-shaped linear piezoelectric is theoretically and experimentally investigated.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-02
..., AC motors, power supplies, heater tubs, LED light assemblies, triple level and push button switches, control panels, printed circuit boards, power cords, wire harnesses, EMI filters, pressure sensors...
46 CFR 12.15-9 - Examination requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... X X X 18. The procedure in preparing a turbine, reciprocating, or Diesel engine for standby; also... various types of generators and motors, both A.C. and D.C X X X 27. Operation, installation, and...
Electric dipole spin resonance in a quantum spin dimer system driven by magnetoelectric coupling
NASA Astrophysics Data System (ADS)
Kimura, Shojiro; Matsumoto, Masashige; Akaki, Mitsuru; Hagiwara, Masayuki; Kindo, Koichi; Tanaka, Hidekazu
2018-04-01
In this Rapid Communication, we propose a mechanism for electric dipole active spin resonance caused by spin-dependent electric polarization in a quantum spin gapped system. This proposal was successfully confirmed by high-frequency electron spin resonance (ESR) measurements of the quantum spin dimer system KCuCl3. ESR measurements by an illuminating linearly polarized electromagnetic wave reveal that the optical transition between the singlet and triplet states in KCuCl3 is driven by an ac electric field. The selection rule of the observed transition agrees with the calculation by taking into account spin-dependent electric polarization. We suggest that spin-dependent electric polarization is effective in achieving fast control of quantum spins by an ac electric field.
Design and performance tests of a distributed power-driven wheel loader
NASA Astrophysics Data System (ADS)
Jin, Xiaolin; Shi, Laide; Bian, Yongming
2010-03-01
An improved ZLM15B distributed power-driven wheel loader was designed, whose travel and brake system was accomplished by two permanent magnet synchronous motorized-wheels instead of traditional mechanical components, and whose hydraulic systems such as the working device system and steering system were both actuated by an induction motor. All above systems were flexibly coupled with 3-phase 380VAC electric power with which the diesel engine power is replaced. On the level cement road, traveling, braking, traction and steering tests were carried out separately under non-load and heavy-load conditions. Data show that machine speed is 5 km/h around and travel efficiency of motorized-wheels is above 95%; that machine braking deceleration is between 0.5 and 0.64 m/s2 but efficiency of motorized-wheels is less than 10%; that maximum machine traction is above 2t while efficiency of motorized-wheels is more than 90% and that adaptive differential steering can be smoothly achieved by motorized-wheels.
Design and performance tests of a distributed power-driven wheel loader
NASA Astrophysics Data System (ADS)
Jin, Xiaolin; Shi, Laide; Bian, Yongming
2009-12-01
An improved ZLM15B distributed power-driven wheel loader was designed, whose travel and brake system was accomplished by two permanent magnet synchronous motorized-wheels instead of traditional mechanical components, and whose hydraulic systems such as the working device system and steering system were both actuated by an induction motor. All above systems were flexibly coupled with 3-phase 380VAC electric power with which the diesel engine power is replaced. On the level cement road, traveling, braking, traction and steering tests were carried out separately under non-load and heavy-load conditions. Data show that machine speed is 5 km/h around and travel efficiency of motorized-wheels is above 95%; that machine braking deceleration is between 0.5 and 0.64 m/s2 but efficiency of motorized-wheels is less than 10%; that maximum machine traction is above 2t while efficiency of motorized-wheels is more than 90% and that adaptive differential steering can be smoothly achieved by motorized-wheels.
Note: A phase synchronization photography method for AC discharge.
Wu, Zhicheng; Zhang, Qiaogen; Ma, Jingtan; Pang, Lei
2018-05-01
To research discharge physics under AC voltage, a phase synchronization photography method is presented. By using a permanent-magnet synchronous motor to drive a photography mask synchronized with a discharge power supply, discharge images in a specific phase window can be recorded. Some examples of discharges photographed by this method, including the corona discharge in SF 6 and the corona discharge along the air/epoxy surface, demonstrate the feasibility of this method. Therefore, this method provides an effective tool for discharge physics researchers.
Note: A phase synchronization photography method for AC discharge
NASA Astrophysics Data System (ADS)
Wu, Zhicheng; Zhang, Qiaogen; Ma, Jingtan; Pang, Lei
2018-05-01
To research discharge physics under AC voltage, a phase synchronization photography method is presented. By using a permanent-magnet synchronous motor to drive a photography mask synchronized with a discharge power supply, discharge images in a specific phase window can be recorded. Some examples of discharges photographed by this method, including the corona discharge in SF6 and the corona discharge along the air/epoxy surface, demonstrate the feasibility of this method. Therefore, this method provides an effective tool for discharge physics researchers.
Methods, systems and apparatus for synchronous current regulation of a five-phase machine
Gallegos-Lopez, Gabriel; Perisic, Milun
2012-10-09
Methods, systems and apparatus are provided for controlling operation of and regulating current provided to a five-phase machine when one or more phases has experienced a fault or has failed. In one implementation, the disclosed embodiments can be used to synchronously regulate current in a vector controlled motor drive system that includes a five-phase AC machine, a five-phase inverter module coupled to the five-phase AC machine, and a synchronous current regulator.
NASA Technical Reports Server (NTRS)
Gonzalez, R.; Vandewalle, J.
1986-01-01
Redesigned actuator assembly weighs 50 percent less. Isolator valve operated by ac motor instead of usual dc solenoid. Valve weighs only 3 lb (1.4 kg). New valve functions with either two-phase or three-phase power. Developed for isolating fluids in propellant tanks, manifolds, and interconnecting lines of Space Shuttle reaction control and orbital maneuvering subsystems, valve suited to applications in which leakage must be kept to minimum at high pressure differences - in petroleum and chemical processing.
An AC-electromagnetic bearing for flywheel energy storage in space
NASA Technical Reports Server (NTRS)
Nikolajsen, Jorgen L.
1993-01-01
A repulsive type AC-electromagnetic bearing was developed and tested. It was conceived on the basis of the so-called Magnetic River suspension for high-speed trains. The appearance of the bearing is similar to the traditional DC-type electromagnetic bearing but the operating principle is different. The magnets are fed with alternating current instead of direct current and the rotor is fitted with a conducting sleeve (e.g. aluminum) instead of a ferromagnetic sleeve. The repulsion is due to induction of eddy-currents in the conducting sleeve. The bearing is inherently stable and requires no feedback control. It provides support in five degrees of freedom such that a short rotor may be fully supported by a single bearing. These capabilities were demonstrated experimentally. On the down side, the load carrying capacity and the damping obtained so far were quite low compared to the DC-type bearing. Also, significant heating of the conducting sleeve was experienced. The AC-bearing is essentially a modified induction motor and there are strong indications that it can be run both as a motor and as a generator with no commutator requirements. It is therefore considered to be a good candidate for support of energy storage flywheels in space.
Magnus-induced ratchet effects for skyrmions interacting with asymmetric substrates
NASA Astrophysics Data System (ADS)
Reichhardt, C.; Ray, D.; Olson Reichhardt, C. J.
2015-07-01
We show using numerical simulations that pronounced ratchet effects can occur for ac driven skyrmions moving over asymmetric quasi-one-dimensional substrates. We find a new type of ratchet effect called a Magnus-induced transverse ratchet that arises when the ac driving force is applied perpendicular rather than parallel to the asymmetry direction of the substrate. This transverse ratchet effect only occurs when the Magnus term is finite, and the threshold ac amplitude needed to induce it decreases as the Magnus term becomes more prominent. Ratcheting skyrmions follow ordered orbits in which the net displacement parallel to the substrate asymmetry direction is quantized. Skyrmion ratchets represent a new ac current-based method for controlling skyrmion positions and motion for spintronic applications.
NASA Astrophysics Data System (ADS)
He, Liangguo; Chu, Yuheng; Hao, Sai; Zhao, Xiaoyong; Dong, Yuge; Wang, Yong
2018-05-01
A novel, single-phase, harmonic-driven, inertial piezoelectric linear motor using an automatic clamping mechanism was designed, fabricated, and tested to reduce the sliding friction and simplify the drive mechanism and power supply control of the inertial motor. A piezoelectric bimorph and a flexible hinge were connected in series to form the automatic clamping mechanism. The automatic clamping mechanism was used as the driving and clamping elements. A dynamic simulation by Simulink was performed to prove the feasibility of the motor. The finite element method software COMSOL was used to design the structure of the motor. An experimental setup was built to validate the working principle and evaluate the performance of the motor. The prototype motor outputted a no-load velocity of 3.178 mm/s at a voltage of 220 Vp-p and a maximum traction force of 4.25 N under a preload force of 8 N. The minimum resolution of 1.14 μm was achieved at a driving frequency of 74 Hz, a driving voltage of 50 Vp-p, and a preload force of 0 N.
Floquet spin states in graphene under ac-driven spin-orbit interaction
NASA Astrophysics Data System (ADS)
López, A.; Sun, Z. Z.; Schliemann, J.
2012-05-01
We study the role of periodically driven time-dependent Rashba spin-orbit coupling (RSOC) on a monolayer graphene sample. After recasting the originally 4×4 system of dynamical equations as two time-reversal related two-level problems, the quasienergy spectrum and the related dynamics are investigated via various techniques and approximations. In the static case, the system is gapped at the Dirac point. The rotating wave approximation (RWA) applied to the driven system unphysically preserves this feature, while the Magnus-Floquet approach as well as a numerically exact evaluation of the Floquet equation show that this gap is dynamically closed. In addition, a sizable oscillating pattern of the out-of-plane spin polarization is found in the driven case for states that are completely unpolarized in the static limit. Evaluation of the autocorrelation function shows that the original uniform interference pattern corresponding to time-independent RSOC gets distorted. The resulting structure can be qualitatively explained as a consequence of the transitions induced by the ac driving among the static eigenstates, i.e., these transitions modulate the relative phases that add up to give the quantum revivals of the autocorrelation function. Contrary to the static case, in the driven scenario, quantum revivals (suppressions) are correlated to spin-up (down) phases.
NASA Astrophysics Data System (ADS)
Nanato, N.; Kobayashi, Y.
AC high temperature superconducting (HTS) coils have been developed for transformers, motors and so on. Quench detection and protection system are essential for safety operations of the AC HTS facilities. The balance voltage method is universally used for the quench detection and protection, however especially for AC operations, the method has risks in terms of high voltage sparks. Because the method needs a voltage tap soldered to a midpoint of the coil winding and the AC HTS facilities generally operate at high voltages and therefore high voltage sparks may occur at the midpoint with no insulation. We have proposed the active power method for the quench detection and protection. The method requires no voltage tap on the midpoint of the coil winding and therefore it has in-built effectiveness for the AC HTS facilities. In this paper, we show that the method can detect the quench in an HTS transformer and moreover our proposed quench protection circuits which consist of thyristors are simple and useful for the AC HTS facilities.
Horwood, Anna M.; Riddell, Patricia M.
2014-01-01
Purpose To propose an alternative and practical model to conceptualize clinical patterns of concomitant intermittent strabismus, heterophoria, and convergence and accommodation anomalies. Methods Despite identical ratios, there can be a disparity- or blur-biased “style” in three hypothetical scenarios: normal; high ratio of accommodative convergence to accommodation (AC/A) and low ratio of convergence accommodation to convergence (CA/C); low AC/A and high CA/C. We calculated disparity bias indices (DBI) to reflect these biases and provide early objective data from small illustrative clinical groups that fit these styles. Results Normal adults (n = 56) and children (n = 24) showed disparity bias (adult DBI 0.43 [95% CI, 0.50-0.36], child DBI 0.20 [95% CI, 0.31-0.07]; P = 0.001). Accommodative esotropia (n = 3) showed less disparity-bias (DBI 0.03). In the high AC/A–low CA/C scenario, early presbyopia (n = 22) showed mean DBI of 0.17 (95% CI, 0.28-0.06), compared to DBI of −0.31 in convergence excess esotropia (n=8). In the low AC/A–high CA/C scenario near exotropia (n = 17) showed mean DBI of 0.27. DBI ranged between 1.25 and −1.67. Conclusions Establishing disparity or blur bias adds to AC/A and CA/C ratios to explain clinical patterns. Excessive bias or inflexibility in near-cue use increases risk of clinical problems. PMID:25498466
Horwood, Anna M; Riddell, Patricia M
2014-12-01
To propose an alternative and practical model to conceptualize clinical patterns of concomitant intermittent strabismus, heterophoria, and convergence and accommodation anomalies. Despite identical ratios, there can be a disparity- or blur-biased "style" in three hypothetical scenarios: normal; high ratio of accommodative convergence to accommodation (AC/A) and low ratio of convergence accommodation to convergence (CA/C); low AC/A and high CA/C. We calculated disparity bias indices (DBI) to reflect these biases and provide early objective data from small illustrative clinical groups that fit these styles. Normal adults (n = 56) and children (n = 24) showed disparity bias (adult DBI 0.43 [95% CI, 0.50-0.36], child DBI 0.20 [95% CI, 0.31-0.07]; P = 0.001). Accommodative esotropia (n = 3) showed less disparity-bias (DBI 0.03). In the high AC/A-low CA/C scenario, early presbyopia (n = 22) showed mean DBI of 0.17 (95% CI, 0.28-0.06), compared to DBI of -0.31 in convergence excess esotropia (n=8). In the low AC/A-high CA/C scenario near exotropia (n = 17) showed mean DBI of 0.27. DBI ranged between 1.25 and -1.67. Establishing disparity or blur bias adds to AC/A and CA/C ratios to explain clinical patterns. Excessive bias or inflexibility in near-cue use increases risk of clinical problems. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Design of control system for optical fiber drawing machine driven by double motor
NASA Astrophysics Data System (ADS)
Yu, Yue Chen; Bo, Yu Ming; Wang, Jun
2018-01-01
Micro channel Plate (MCP) is a kind of large-area array electron multiplier with high two-dimensional spatial resolution, used as high-performance night vision intensifier. The high precision control of the fiber is the key technology of the micro channel plate manufacturing process, and it was achieved by the control of optical fiber drawing machine driven by dual-motor in this paper. First of all, utilizing STM32 chip, the servo motor drive and control circuit was designed to realize the dual motor synchronization. Secondly, neural network PID control algorithm was designed for controlling the fiber diameter fabricated in high precision; Finally, the hexagonal fiber was manufactured by this system and it shows that multifilament diameter accuracy of the fiber is +/- 1.5μm.
En route to surface-bound electric field-driven molecular motors.
Jian, Huahua; Tour, James M
2003-06-27
Four caltrop-shaped molecules that might be useful as surface-bound electric field-driven molecular motors have been synthesized. The caltrops are comprised of a pair of electron donor-acceptor arms and a tripod base. The molecular arms are based on a carbazole or oligo(phenylene ethynylene) core with a strong net dipole. The tripod base uses a silicon atom as its core. The legs of the tripod bear sulfur-tipped bonding units, as acetyl-protected benzylic thiols, for bonding to a gold surface. The geometry of the tripod base allows the caltrop to project upward from a metallic surface after self-assembly. Ellipsometric studies show that self-assembled monolayers of the caltrops are formed on Au surfaces with molecular thicknesses consistent with the desired upright-shaft arrangement. As a result, the zwitterionic molecular arms might be controllable when electric fields are applied around the caltrops, thereby constituting field-driven motors.
Advanced motor driven clamped borehole seismic receiver
Engler, B.P.; Sleefe, G.E.; Striker, R.P.
1993-02-23
A borehole seismic tool is described including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric motor in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.
Learning tactile skills through curious exploration
Pape, Leo; Oddo, Calogero M.; Controzzi, Marco; Cipriani, Christian; Förster, Alexander; Carrozza, Maria C.; Schmidhuber, Jürgen
2012-01-01
We present curiosity-driven, autonomous acquisition of tactile exploratory skills on a biomimetic robot finger equipped with an array of microelectromechanical touch sensors. Instead of building tailored algorithms for solving a specific tactile task, we employ a more general curiosity-driven reinforcement learning approach that autonomously learns a set of motor skills in absence of an explicit teacher signal. In this approach, the acquisition of skills is driven by the information content of the sensory input signals relative to a learner that aims at representing sensory inputs using fewer and fewer computational resources. We show that, from initially random exploration of its environment, the robotic system autonomously develops a small set of basic motor skills that lead to different kinds of tactile input. Next, the system learns how to exploit the learned motor skills to solve supervised texture classification tasks. Our approach demonstrates the feasibility of autonomous acquisition of tactile skills on physical robotic platforms through curiosity-driven reinforcement learning, overcomes typical difficulties of engineered solutions for active tactile exploration and underactuated control, and provides a basis for studying developmental learning through intrinsic motivation in robots. PMID:22837748
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawler, J.S.
2001-10-29
Previous theoretical work has shown that when all loss mechanisms are neglected the constant power speed range (CPSR) of a brushless dc motor (BDCM) is infinite when the motor is driven by the dual-mode inverter control (DMIC) [1,2]. In a physical drive, losses, particularly speed-sensitive losses, will limit the CPSR to a finite value. In this paper we report the results of laboratory testing of a low-inductance, 7.5-hp BDCM driven by the DMIC. The speed rating of the test motor rotor limited the upper speed of the testing, and the results show that the CPSR of the test machine ismore » greater than 6:1 when driven by the DMIC. Current wave shape, peak, and rms values remained controlled and within rating over the entire speed range. The laboratory measurements allowed the speed-sensitive losses to be quantified and incorporated into computer simulation models, which then accurately reproduce the results of lab testing. The simulator shows that the limiting CPSR of the test motor is 8:1. These results confirm that the DMIC is capable of driving low-inductance BDCMs over the wide CPSR that would be required in electric vehicle applications.« less
PV Array Driven Adjustable Speed Drive for a Lunar Base Heat Pump
NASA Technical Reports Server (NTRS)
Domijan, Alexander, Jr.; Buchh, Tariq Aslam
1995-01-01
A study of various aspects of Adjustable Speed Drives (ASD) is presented. A summary of the relative merits of different ASD systems presently in vogue is discussed. The advantages of using microcomputer based ASDs is now widely understood and accepted. Of the three most popular drive systems, namely the Induction Motor Drive, Switched Reluctance Motor Drive and Brushless DC Motor Drive, any one may be chosen. The choice would depend on the nature of the application and its requirements. The suitability of the above mentioned drive systems for a photovoltaic array driven ASD for an aerospace application are discussed. The discussion is based on the experience of the authors, various researchers and industry. In chapter 2 a PV array power supply scheme has been proposed, this scheme will have an enhanced reliability in addition to the other known advantages of the case where a stand alone PV array is feeding the heat pump. In chapter 3 the results of computer simulation of PV array driven induction motor drive system have been included. A discussion on these preliminary simulation results have also been included in this chapter. Chapter 4 includes a brief discussion on various control techniques for three phase induction motors. A discussion on different power devices and their various performance characteristics is given in Chapter 5.
Takekawa, Norihiro; Nishiyama, Masayoshi; Kaneseki, Tsuyoshi; Kanai, Tamotsu; Atomi, Haruyuki; Kojima, Seiji; Homma, Michio
2015-08-05
Aquifex aeolicus is a hyperthermophilic, hydrogen-oxidizing and carbon-fixing bacterium that can grow at temperatures up to 95 °C. A. aeolicus has an almost complete set of flagellar genes that are conserved in bacteria. Here we observed that A. aeolicus has polar flagellum and can swim with a speed of 90 μm s(-1) at 85 °C. We expressed the A. aeolicus mot genes (motA and motB), which encode the torque generating stator proteins of the flagellar motor, in a corresponding mot nonmotile mutant of Escherichia coli. Its motility was slightly recovered by expression of A. aeolicus MotA and chimeric MotB whose periplasmic region was replaced with that of E. coli. A point mutation in the A. aeolicus MotA cytoplasmic region remarkably enhanced the motility. Using this system in E. coli, we demonstrate that the A. aeolicus motor is driven by Na(+). As motor proteins from hyperthermophilic bacteria represent the earliest motor proteins in evolution, this study strongly suggests that ancient bacteria used Na(+) for energy coupling of the flagellar motor. The Na(+)-driven flagellar genes might have been laterally transferred from early-branched bacteria into late-branched bacteria and the interaction surfaces of the stator and rotor seem not to change in evolution.
Negative effect of the 5'-untranslated leader sequence on Ac transposon promoter expression.
Scortecci, K C; Raina, R; Fedoroff, N V; Van Sluys, M A
1999-08-01
Transposable elements are used in heterologous plant hosts to clone genes by insertional mutagenesis. The Activator (Ac) transposable element has been cloned from maize, and introduced into a variety of plants. However, differences in regulation and transposition frequency have been observed between different host plants. The cause of this variability is still unknown. To better understand the activity of the Ac element, we analyzed the Ac promoter region and its 5'-untranslated leader sequence (5' UTL). Transient assays in tobacco NT1 suspension cells showed that the Ac promoter is a weak promoter and its activity was localized by deletion analyses. The data presented here indicate that the core of the Ac promoter is contained within 153 bp fragment upstream to transcription start sites. An important inhibitory effect (80%) due to the presence of the 5' UTL was found on the expression of LUC reporter gene. Here we demonstrate that the presence of the 5' UTL in the constructs reduces the expression driven by either strong or weak promoters.
DC drive system for cine/pulse cameras
NASA Technical Reports Server (NTRS)
Gerlach, R. H.; Sharpsteen, J. T.; Solheim, C. D.; Stoap, L. J.
1977-01-01
Camera-drive functions are separated mechanically into two groups which are driven by two separate dc brushless motors. First motor, a 90 deg stepper, drives rotating shutter; second electronically commutated motor drives claw and film transport. Shutter is made of one piece but has two openings for slow and fast exposures.
Control system for several rotating mirror camera synchronization operation
NASA Astrophysics Data System (ADS)
Liu, Ningwen; Wu, Yunfeng; Tan, Xianxiang; Lai, Guoji
1997-05-01
This paper introduces a single chip microcomputer control system for synchronization operation of several rotating mirror high-speed cameras. The system consists of four parts: the microcomputer control unit (including the synchronization part and precise measurement part and the time delay part), the shutter control unit, the motor driving unit and the high voltage pulse generator unit. The control system has been used to control the synchronization working process of the GSI cameras (driven by a motor) and FJZ-250 rotating mirror cameras (driven by a gas driven turbine). We have obtained the films of the same objective from different directions in different speed or in same speed.
Elnady, Ahmed Mohamed; Zhang, Xin; Xiao, Zhen Gang; Yong, Xinyi; Randhawa, Bubblepreet Kaur; Boyd, Lara; Menon, Carlo
2015-01-01
Traditional, hospital-based stroke rehabilitation can be labor-intensive and expensive. Furthermore, outcomes from rehabilitation are inconsistent across individuals and recovery is hard to predict. Given these uncertainties, numerous technological approaches have been tested in an effort to improve rehabilitation outcomes and reduce the cost of stroke rehabilitation. These techniques include brain-computer interface (BCI), robotic exoskeletons, functional electrical stimulation (FES), and proprioceptive feedback. However, to the best of our knowledge, no studies have combined all these approaches into a rehabilitation platform that facilitates goal-directed motor movements. Therefore, in this paper, we combined all these technologies to test the feasibility of using a BCI-driven exoskeleton with FES (robotic training device) to facilitate motor task completion among individuals with stroke. The robotic training device operated to assist a pre-defined goal-directed motor task. Because it is hard to predict who can utilize this type of technology, we considered whether the ability to adapt skilled movements with proprioceptive feedback would predict who could learn to control a BCI-driven robotic device. To accomplish this aim, we developed a motor task that requires proprioception for completion to assess motor-proprioception ability. Next, we tested the feasibility of robotic training system in individuals with chronic stroke (n = 9) and found that the training device was well tolerated by all the participants. Ability on the motor-proprioception task did not predict the time to completion of the BCI-driven task. Both participants who could accurately target (n = 6) and those who could not (n = 3), were able to learn to control the BCI device, with each BCI trial lasting on average 2.47 min. Our results showed that the participants' ability to use proprioception to control motor output did not affect their ability to use the BCI-driven exoskeleton with FES. Based on our preliminary results, we show that our robotic training device has potential for use as therapy for a broad range of individuals with stroke.
Elnady, Ahmed Mohamed; Zhang, Xin; Xiao, Zhen Gang; Yong, Xinyi; Randhawa, Bubblepreet Kaur; Boyd, Lara; Menon, Carlo
2015-01-01
Traditional, hospital-based stroke rehabilitation can be labor-intensive and expensive. Furthermore, outcomes from rehabilitation are inconsistent across individuals and recovery is hard to predict. Given these uncertainties, numerous technological approaches have been tested in an effort to improve rehabilitation outcomes and reduce the cost of stroke rehabilitation. These techniques include brain–computer interface (BCI), robotic exoskeletons, functional electrical stimulation (FES), and proprioceptive feedback. However, to the best of our knowledge, no studies have combined all these approaches into a rehabilitation platform that facilitates goal-directed motor movements. Therefore, in this paper, we combined all these technologies to test the feasibility of using a BCI-driven exoskeleton with FES (robotic training device) to facilitate motor task completion among individuals with stroke. The robotic training device operated to assist a pre-defined goal-directed motor task. Because it is hard to predict who can utilize this type of technology, we considered whether the ability to adapt skilled movements with proprioceptive feedback would predict who could learn to control a BCI-driven robotic device. To accomplish this aim, we developed a motor task that requires proprioception for completion to assess motor-proprioception ability. Next, we tested the feasibility of robotic training system in individuals with chronic stroke (n = 9) and found that the training device was well tolerated by all the participants. Ability on the motor-proprioception task did not predict the time to completion of the BCI-driven task. Both participants who could accurately target (n = 6) and those who could not (n = 3), were able to learn to control the BCI device, with each BCI trial lasting on average 2.47 min. Our results showed that the participants’ ability to use proprioception to control motor output did not affect their ability to use the BCI-driven exoskeleton with FES. Based on our preliminary results, we show that our robotic training device has potential for use as therapy for a broad range of individuals with stroke. PMID:25870554
Multiscale modeling and simulation of microtubule-motor-protein assemblies
NASA Astrophysics Data System (ADS)
Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.
2015-12-01
Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.
Multiscale modeling and simulation of microtubule-motor-protein assemblies.
Gao, Tong; Blackwell, Robert; Glaser, Matthew A; Betterton, M D; Shelley, Michael J
2015-01-01
Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.
Multiscale modeling and simulation of microtubule–motor-protein assemblies
Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.
2016-01-01
Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate–consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation. PMID:26764729
1980-03-01
APL 061900283, Compressor, Motor , AC, 440 V, Valve, Solenoid Centrifugal, 230 gpm Air 300 hp Each C/E was identified to a distinguishable complexity...Deck and Hull Machinery D Rocket Handling Agitator-Paint Shaker Deck and Hull Machinery B Air Conditioner Refrigeration/Heating C Systems Air Ejector...Terminal Electrical Systems a Brake- Air Deck and Hull Machinery D Brake-Electric, Motor Operated Deck and Hull Machinery D Srake-Electric, Solenoid
NASA Technical Reports Server (NTRS)
1997-01-01
Power Efficiency Corporation, specifically formed to manufacture and develop products from NASA technology, has a license to a three-phase power factor controller originally developed by Frank Nola, an engineer at Marshall Space Flight Center. Power Efficiency and two major distributors, Performance Control and Edison Power Technologies, use the electronic control boards to assemble three different motor controllers: Power Commander, Performance Controller, and Energy Master. The company Power Factor Controller reduces excessive energy waste in AC induction motors. It is used in industries and applications where motors operate under variable loads, including elevators and escalators, machine tools, intake and exhaust fans, oil wells, conveyors, pumps, die casting, and compressors. Customer lists include companies such as May Department Stores, Caesars Atlantic City, Ford Motors, and American Axle.
An SCR inverter for electric vehicles
NASA Technical Reports Server (NTRS)
Latos, T.; Bosack, D.; Ehrlich, R.; Jahns, T.; Mezera, J.; Thimmesch, D.
1980-01-01
An inverter for an electric vehicle propulsion application has been designed and constructed to excite a polyphase induction motor from a fixed propulsion battery source. The inverter, rated at 35kW peak power, is fully regenerative and permits vehicle operation in both the forward and reverse directions. Thyristors are employed as the power switching devices arranged in a dc bus commutated topology. This paper describes the major role the controller plays in generating the motor excitation voltage and frequency to deliver performance similar to dc systems. Motoring efficiency test data for the controller are presented. It is concluded that an SCR inverter in conjunction with an ac induction motor is a viable alternative to present dc vehicle propulsion systems on the basis of performance and size criteria.
Local synaptic signaling enhances the stochastic transport of motor-driven cargo in neurons
NASA Astrophysics Data System (ADS)
Newby, Jay; Bressloff, Paul C.
2010-09-01
The tug-of-war model of motor-driven cargo transport is formulated as an intermittent trapping process. An immobile trap, representing the cellular machinery that sequesters a motor-driven cargo for eventual use, is located somewhere within a microtubule track. A particle representing a motor-driven cargo that moves randomly with a forward bias is introduced at the beginning of the track. The particle switches randomly between a fast moving phase and a slow moving phase. When in the slow moving phase, the particle can be captured by the trap. To account for the possibility that the particle avoids the trap, an absorbing boundary is placed at the end of the track. Two local signaling mechanisms—intended to improve the chances of capturing the target—are considered by allowing the trap to affect the tug-of-war parameters within a small region around itself. The first is based on a localized adenosine triphosphate (ATP) concentration gradient surrounding a synapse, and the second is based on a concentration of tau—a microtubule-associated protein involved in Alzheimer's disease—coating the microtubule near the synapse. It is shown that both mechanisms can lead to dramatic improvements in the capture probability, with a minimal increase in the mean capture time. The analysis also shows that tau can cause a cargo to undergo random oscillations, which could explain some experimental observations.
Ge, Zhengwei; Wang, Wei; Yang, Chun
2015-02-09
This paper reports rapid microfluidic electrokinetic concentration of deoxyribonucleic acid (DNA) with the Joule heating induced temperature gradient focusing (TGF) by using our proposed combined AC and DC electric field technique. A peak of 480-fold concentration enhancement of DNA sample is achieved within 40s in a simple poly-dimethylsiloxane (PDMS) microfluidic channel of a sudden expansion in cross-section. Compared to a sole DC field, the introduction of an AC field can reduce DC field induced back-pressure and produce sufficient Joule heating effects, resulting in higher concentration enhancement. Within such microfluidic channel structure, negative charged DNA analytes can be concentrated at a location where the DNA electrophoretic motion is balanced with the bulk flow driven by DC electroosmosis under an appropriate temperature gradient field. A numerical model accounting for a combined AC and DC field and back-pressure driven flow effects is developed to describe the complex Joule heating induced TGF processes. The experimental observation of DNA concentration phenomena can be explained by the numerical model. Copyright © 2014 Elsevier B.V. All rights reserved.
2013-01-01
Drugs that selectively activate estrogen receptor β (ERβ) are potentially safer than the nonselective estrogens currently used in hormonal replacement treatments that activate both ERβ and ERα. The selective ERβ agonist AC-186 was evaluated in a rat model of Parkinson’s disease induced through bilateral 6-hydroxydopamine lesions of the substantia nigra. In this model, AC-186 prevented motor, cognitive, and sensorimotor gating deficits and mitigated the loss of dopamine neurons in the substantia nigra, in males, but not in females. Furthermore, in male rats, 17β-estradiol, which activates ERβ and ERα with equal potency, did not show the same neuroprotective benefits as AC-186. Hence, in addition to a beneficial safety profile for use in both males and females, a selective ERβ agonist has a differentiated pharmacological profile compared to 17β-estradiol in males. PMID:23898966
R Dump Converter without DC Link Capacitor for an 8/6 SRM: Experimental Investigation
Kavitha, Pasumalaithevan; Umamaheswari, Bhaskaran
2015-01-01
The objective of this paper is to investigate the performance of 8/6 switched reluctance motor (SRM) when excited with sinusoidal voltage. The conventional R dump converter provides DC excitation with the help of capacitor. In this paper the converter used is the modified R dump converter without DC link capacitor providing AC or sinusoidal excitation. Torque ripple and speed ripple are investigated based on hysteresis current control. Constant and sinusoidal current references are considered for comparison in both DC and AC excitation. Extensive theoretical and experimental investigations are made to bring out the merits and demerits of AC versus DC excitation. It is shown that the constructionally simple SRM can be favorably controlled with simple R dump converter with direct AC excitation without need for DC link capacitor. A 4-phase 8/6 0.5 kW SRM is used for experimentation. PMID:25642452
R dump converter without DC link capacitor for an 8/6 SRM: experimental investigation.
Kavitha, Pasumalaithevan; Umamaheswari, Bhaskaran
2015-01-01
The objective of this paper is to investigate the performance of 8/6 switched reluctance motor (SRM) when excited with sinusoidal voltage. The conventional R dump converter provides DC excitation with the help of capacitor. In this paper the converter used is the modified R dump converter without DC link capacitor providing AC or sinusoidal excitation. Torque ripple and speed ripple are investigated based on hysteresis current control. Constant and sinusoidal current references are considered for comparison in both DC and AC excitation. Extensive theoretical and experimental investigations are made to bring out the merits and demerits of AC versus DC excitation. It is shown that the constructionally simple SRM can be favorably controlled with simple R dump converter with direct AC excitation without need for DC link capacitor. A 4-phase 8/6 0.5 kW SRM is used for experimentation.
Distribution-Agnostic Stochastic Optimal Power Flow for Distribution Grids: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Kyri; Dall'Anese, Emiliano; Summers, Tyler
2016-09-01
This paper outlines a data-driven, distributionally robust approach to solve chance-constrained AC optimal power flow problems in distribution networks. Uncertain forecasts for loads and power generated by photovoltaic (PV) systems are considered, with the goal of minimizing PV curtailment while meeting power flow and voltage regulation constraints. A data- driven approach is utilized to develop a distributionally robust conservative convex approximation of the chance-constraints; particularly, the mean and covariance matrix of the forecast errors are updated online, and leveraged to enforce voltage regulation with predetermined probability via Chebyshev-based bounds. By combining an accurate linear approximation of the AC power flowmore » equations with the distributionally robust chance constraint reformulation, the resulting optimization problem becomes convex and computationally tractable.« less
NASA Technical Reports Server (NTRS)
Pena, Joaquin; Hinchey, Michael G.; Sterritt, Roy; Ruiz-Cortes, Antonio; Resinas, Manuel
2006-01-01
Autonomic Computing (AC), self-management based on high level guidance from humans, is increasingly gaining momentum as the way forward in designing reliable systems that hide complexity and conquer IT management costs. Effectively, AC may be viewed as Policy-Based Self-Management. The Model Driven Architecture (MDA) approach focuses on building models that can be transformed into code in an automatic manner. In this paper, we look at ways to implement Policy-Based Self-Management by means of models that can be converted to code using transformations that follow the MDA philosophy. We propose a set of UML-based models to specify autonomic and autonomous features along with the necessary procedures, based on modification and composition of models, to deploy a policy as an executing system.
Atomic model for the membrane-embedded VO motor of a eukaryotic V-ATPase.
Mazhab-Jafari, Mohammad T; Rohou, Alexis; Schmidt, Carla; Bueler, Stephanie A; Benlekbir, Samir; Robinson, Carol V; Rubinstein, John L
2016-11-03
Vacuolar-type ATPases (V-ATPases) are ATP-powered proton pumps involved in processes such as endocytosis, lysosomal degradation, secondary transport, TOR signalling, and osteoclast and kidney function. ATP hydrolysis in the soluble catalytic V 1 region drives proton translocation through the membrane-embedded V O region via rotation of a rotor subcomplex. Variability in the structure of the intact enzyme has prevented construction of an atomic model for the membrane-embedded motor of any rotary ATPase. We induced dissociation and auto-inhibition of the V 1 and V O regions of the V-ATPase by starving the yeast Saccharomyces cerevisiae, allowing us to obtain a ~3.9-Å resolution electron cryomicroscopy map of the V O complex and build atomic models for the majority of its subunits. The analysis reveals the structures of subunits ac 8 c'c″de and a protein that we identify and propose to be a new subunit (subunit f). A large cavity between subunit a and the c-ring creates a cytoplasmic half-channel for protons. The c-ring has an asymmetric distribution of proton-carrying Glu residues, with the Glu residue of subunit c″ interacting with Arg735 of subunit a. The structure suggests sequential protonation and deprotonation of the c-ring, with ATP-hydrolysis-driven rotation causing protonation of a Glu residue at the cytoplasmic half-channel and subsequent deprotonation of a Glu residue at a luminal half-channel.
A study on the noise characteristics of polymer ball bearings under various lubrication conditions
NASA Astrophysics Data System (ADS)
Dinç, S. K.; Temiz, V.; Kamburoǧlu, E.
2013-12-01
Polymer bearings are generally praised by the manufacturers for running silently. However such statements never go beyond qualitative assumptions. Therefore, studying polymer ball bearing noise would have been meaningful solely on the perspective of silent running machinery. On the other hand, the service life of a polymer ball bearing is unpredictable and there's no preventive maintenance practice that provides data regarding the condition of a polymer ball bearing. In this study, we assume that an investigation of their noise characteristics could also reveal clues concerning their performances. The main objective of this study is to determine the noise characteristics of polymer ball bearings lubricated with different lubricant greases of varying viscosity grades through experimental means. Sound pressure level measurements of SKF brand polymer bearings with polypropylene rings, polypropylene cage and glass balls were made with a 1/2 inch microphone in 1/3-octave bands, at frequencies up to 12.5 kHz, under various radial loads and rotational speeds. The bearings were mounted on a shaft driven by an AC motor with stepless speed control, adjustable between 0 - 1400 rpm. The ball bearings were running inside an acoustic chamber designed for the insulation of environmental noise and the noise of the motor at target frequencies. The resulting sound pressure level spectra were evaluated and the effects of the lubrication conditions on the noise of the ball bearing and possible diagnostic insight that could be gained through studying bearing noise characteristics were discussed.
ac-driven vortices and the Hall effect in a superconductor with a tilted washboard pinning potential
NASA Astrophysics Data System (ADS)
Shklovskij, Valerij A.; Dobrovolskiy, Oleksandr V.
2008-09-01
The Langevin equation for a two-dimensional (2D) nonlinear guided vortex motion in a tilted cosine pinning potential in the presence of an ac is exactly solved in terms of a matrix continued fraction at arbitrary value of the Hall effect. The influence of an ac of arbitrary amplitude and frequency on the dc and ac magnetoresistivity tensors is analyzed. The ac density and frequency dependence of the overall shape and the number and position of the Shapiro steps on the anisotropic current-voltage characteristics are considered. The influence of a subcritical or overcritical dc on the time-dependent stationary ac longitudinal and transverse resistive vortex responses (on the frequency of an ac drive Ω ) in terms of the nonlinear impedance tensor Ẑ and the nonlinear ac response at Ω harmonics are studied. Analytical formulas for 2D temperature-dependent linear impedance tensor ẐL in the presence of a dc which depend on the angle α between the current-density vector and the guiding direction of the washboard planar pinning potential are derived and analyzed. Influence of α anisotropy and the Hall effect on the nonlinear power absorption by vortices is discussed.
Bi-directional flow induced by an AC electroosmotic micropump with DC voltage bias.
Islam, Nazmul; Reyna, Jairo
2012-04-01
This paper discusses the principle of biased alternating current electroosmosis (ACEO) and its application to move the bulk fluid in a microchannel, as an alternative to mechanical pumping methods. Previous EO-driven flow research has looked at the effect of electrode asymmetry and transverse traveling wave forms on the performance of electroosmotic pumps. This paper presents an analysis that was conducted to assess the effect of combining an AC signal with a DC (direct current) bias when generating the electric field needed to impart electroosmosis (EO) within a microchannel. The results presented here are numerical and experimental. The numerical results were generated through simulations performed using COMSOL 3.5a. Currently available theoretical models for EO flows were embedded in the software and solved numerically to evaluate the effects of channel geometry, frequency of excitation, electrode array geometry, and AC signal with a DC bias on the flow imparted on an electrically conducting fluid. Simulations of the ACEO flow driven by a constant magnitude of AC voltage over symmetric electrodes did not indicate relevant net flows. However, superimposing a DC signal over the AC signal on the same symmetric electrode array leads to a noticeable net forward flow. Moreover, changing the polarity of electrical signal creates a bi-directional flow on symmetrical electrode array. Experimental flow measurements were performed on several electrode array configurations. The mismatch between the numerical and experimental results revealed the limitations of the currently available models for the biased EO. However, they confirm that using a symmetric electrode array excited by an AC signal with a DC bias leads to a significant improvement in flow rates in comparison to the flow rates obtained in an asymmetric electrode array configuration excited just with an AC signal. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Magnus-induced ratchet effects for skyrmions interacting with asymmetric substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reichhardt, C.; Ray, D.; Reichhardt, C. J. Olson
2015-07-31
We show using numerical simulations that pronounced ratchet effects can occur for ac driven skyrmions moving over asymmetric quasi-one-dimensional substrates. We find a new type of ratchet effect called a Magnus-induced transverse ratchet that arises when the ac driving force is applied perpendicular rather than parallel to the asymmetry direction of the substrate. This transverse ratchet effect only occurs when the Magnus term is finite, and the threshold ac amplitude needed to induce it decreases as the Magnus term becomes more prominent. Ratcheting skyrmions follow ordered orbits in which the net displacement parallel to the substrate asymmetry direction is quantized.more » As a result, skyrmion ratchets represent a new ac current-based method for controlling skyrmion positions and motion for spintronic applications.« less
Design and performance analysis of a rotary traveling wave ultrasonic motor with double vibrators.
Dong, Zhaopeng; Yang, Ming; Chen, Zhangqi; Xu, Liang; Meng, Fan; Ou, Wenchu
2016-09-01
This paper presents the development of a rotary traveling wave ultrasonic motor, in which a vibrating stator and vibrating rotor are combined in one motor. The stator and rotor are designed as similar structures an elastic body and a piezoelectric ceramic ring. In exciting of the piezoelectric ceramics, the elastic body of the stator and rotor will generate respective traveling waves, which force each other forward in the contact zone. Based on the elliptical rule of particle motion and matching principle of vibration, the design rules of two vibrators are determined. The finite element method is used to design the sizes of vibrators to ensure that they operate in resonance, and the simulation is verified by measuring the vibration with an impedance analyzer. It is found out that to maintain an appropriate contact between the stator and rotor, two vibrators need to be designed with close resonance frequencies, different vibration amplitudes, and be driven by an identical driving frequency. To analyze this innovative contact mechanism, particle velocity synthesis theory and contact force analysis using Hertz contact model are carried out. Finally, a prototype is fabricated and tested to verify the theoretical results. The test results show that the output performance of the motor driven by the two vibrators is significantly improved compared to the motor driven by a sole stator or rotor, which confirms the validity of the double-vibrator motor concept. Copyright © 2016 Elsevier B.V. All rights reserved.
Onboard power line conditioning system for an electric or hybrid vehicle
Kajouke, Lateef A.; Perisic, Milun
2016-06-14
A power line quality conditioning system for a vehicle includes an onboard rechargeable direct current (DC) energy storage system and an onboard electrical system coupled to the energy storage system. The energy storage system provides DC energy to drive an electric traction motor of the vehicle. The electrical system operates in a charging mode such that alternating current (AC) energy from a power grid external to the vehicle is converted to DC energy to charge the DC energy storage system. The electrical system also operates in a vehicle-to-grid power conditioning mode such that DC energy from the DC energy storage system is converted to AC energy to condition an AC voltage of the power grid.
Control Demonstration of Multiple Doubly-Fed Induction Motors for Hybrid Electric Propulsion
NASA Technical Reports Server (NTRS)
Sadey, David J.; Bodson, Marc; Csank, Jeffrey T.; Hunker, Keith R.; Theman, Casey J.; Taylor, Linda M.
2017-01-01
The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application.The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application. DFIMs are attractive for several reasons, including but not limited to the ability to self-start, ability to operate sub- and super-synchronously, and requiring only fractionally rated power converters on a per-unit basis depending on the required range of operation. The focus of this paper is based specifically on the presentation and analysis of a novel strategy which allows for independent operation of each of the aforementioned doubly-fed induction motors. This strategy includes synchronization, soft-start, and closed loop speed control of each motor as a means of controlling output thrust; be it concurrently or differentially. The demonstration of this strategy has recently been proven out on a low power test bed using fractional horsepower machines. Simulation and hardware test results are presented in the paper.
NASA Astrophysics Data System (ADS)
Treephak, Kasem; Thongpron, Jutturit; Somsak, Dhirasak; Saelao, Jeerawan; Patcharaprakiti, Nopporn
2015-08-01
In this paper we propose the design and economic evaluation of the water pumping systems for rice cultivation using solar energy, gasoline fuel and compare both systems. The design of the water and gasoline engine pumping system were evaluated. The gasoline fuel cost used in rice cultivation in an area of 1.6 acres. Under same conditions of water pumping system is replaced by the photovoltaic system which is composed of a solar panel, a converter and an electric motor pump which is compose of a direct current (DC) motor or an alternating current (AC) motor with an inverter. In addition, the battery is installed to increase the efficiency and productivity of rice cultivation. In order to verify, the simulation and economic evaluation of the storage energy battery system with batteries and without batteries are carried out. Finally the cost of four solar pumping systems was evaluated and compared with that of the gasoline pump. The results showed that the solar pumping system can be used to replace the gasoline water pumping system and DC solar pump has a payback less than 10 years. The systems that can payback the fastest is the DC solar pumping system without batteries storage system. The system the can payback the slowest is AC solar pumping system with batteries storage system. However, VAC motor pump of 220 V can be more easily maintained than the motor pump of 24 VDC and batteries back up system can supply a more stable power to the pump system.
Ballard, A.E.; Brigham, H.R.
1958-10-28
An apparatus whereby relatlvely volatile solvents may be contacted with volatile or non-volatile material without certaln attendant hazards is described. A suitable apparatus for handling relatively volatlle liqulds may be constructed comprising a tank, and a closure covering the tank and adapted to be securely attached to an external suppont. The closure is provided with a rigidly mounted motor-driven agitator. This agitator is connected from the driving motor lnto the lnterlor of the tank through a gland adapted to be cooled witb inert gas thereby eliminating possible hazard due to frictional heat. The closure is arranged so that the tank may be removed from it without materially dlsturbing the closure which, as described, carrles the motor driven agitator and other parts.
1995-07-19
New renovated NASA Ames Research Center 12 foot Pressure Wind Tunnel, seen here is the single stage, 20 blade axial-flow fan powered by a 15,000 horsepower variable speed, synchronous electric motor that provides airflow in the closed-return, variable-density tunnel.
1995-07-19
New renovated NASA Ames Research Center 12 foot Pressure Wind Tunnel, seen here is the single stage, 20 blade axial-flow fan powered by a 15,000 horsepower variable speed, synchronous electric motor that provides airflow in the closed-return, variable-density tunnel.
Active, motor-driven mechanics in a DNA gel.
Bertrand, Olivier J N; Fygenson, Deborah Kuchnir; Saleh, Omar A
2012-10-23
Cells are capable of a variety of dramatic stimuli-responsive mechanical behaviors. These capabilities are enabled by the pervading cytoskeletal network, an active gel composed of structural filaments (e.g., actin) that are acted upon by motor proteins (e.g., myosin). Here, we describe the synthesis and characterization of an active gel using noncytoskeletal components. We use methods of base-pair-templated DNA self assembly to create a hybrid DNA gel containing stiff tubes and flexible linkers. We then activate the gel by adding the motor FtsK50C, a construct derived from the bacterial protein FtsK that, in vitro, has a strong and processive DNA contraction activity. The motors stiffen the gel and create stochastic contractile events that affect the positions of attached beads. We quantify the fluctuations of the beads and show that they are comparable both to measurements of cytoskeletal systems and to theoretical predictions for active gels. Thus, we present a DNA-based active gel whose behavior highlights the universal aspects of nonequilibrium, motor-driven networks.
Subnanometer Motion of Cargoes Driven by Thermal Gradients Along Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Barreiro, Amelia; Rurali, Riccardo; Hernández, Eduardo R.; Moser, Joel; Pichler, Thomas; Forró, László; Bachtold, Adrian
2008-05-01
An important issue in nanoelectromechanical systems is developing small electrically driven motors. We report on an artificial nanofabricated motor in which one short carbon nanotube moves relative to another coaxial nanotube. A cargo is attached to an ablated outer wall of a multiwalled carbon nanotube that can rotate and/or translate along the inner nanotube. The motion is actuated by imposing a thermal gradient along the nanotube, which allows for subnanometer displacements, as opposed to an electromigration or random walk effect.
NASA Technical Reports Server (NTRS)
Wood, M. E.
1980-01-01
Four wire Wye connected ac power systems exhibit peculiar steady state fault characteristics when the fourth wire of three phase induction motors is connected. The loss of one phase of power source due to a series or shunt fault results in currents higher than anticipated on the remaining two phases. A theoretical approach to compute the fault currents and voltages is developed. A FORTRAN program is included in the appendix.
Thermodynamic power stations at low temperatures
NASA Astrophysics Data System (ADS)
Malherbe, J.; Ployart, R.; Alleau, T.; Bandelier, P.; Lauro, F.
The development of low-temperature thermodynamic power stations using solar energy is considered, with special attention given to the choice of the thermodynamic cycle (Rankine), working fluids (frigorific halogen compounds), and heat exchangers. Thermomechanical conversion machines, such as ac motors and rotating volumetric motors are discussed. A system is recommended for the use of solar energy for irrigation and pumping in remote areas. Other applications include the production of cold of fresh water from brackish waters, and energy recovery from hot springs.
The history of articulators: the wonderful world of "grinders," Part 2.
Starcke, Edgar N; Engelmeier, Robert L
2012-04-01
This is the second article in a three-part series on the history of denture grinding devices. The first article reviewed the earliest attempts to mechanically grind the occlusion of artificial teeth from the manipulation of simple articulators to very elaborate and complex machines powered by hand cranks. This article explores motor-driven grinders, most driven by way of a belt-driven pulley powered by an external source. A few were self-contained; that is, the motor was mounted on the grinder base. There were basically two types of grinders: those with cast holders for mounting processed dentures and those with provisions for using articulators for that purpose. © 2012 by the American College of Prosthodontists.
Modeling of a rotary motor driven by an anisotropic piezoelectric composite laminate.
Zhu, M L; Lee, S R; Zhang, T Y; Tong, P
2000-01-01
This paper proposes an analytical model of a rotary motor driven by an anisotropic piezoelectric composite laminate. The driving element of the motor is a three-layer laminated plate. A piezoelectric layer is sandwiched between two anti-symmetric composite laminae. Because of the material anisotropy and the anti-symmetric configuration, torsional vibration can be induced through the inplane strain actuated by the piezoelectric layer. The advantages of the motor are its magnetic field immunity, simple structure, easy maintenance, low cost, and good low-speed performance. In this paper, the motor is considered to be a coupled dynamic system. The analytical model includes the longitudinal and torsional vibrations of the laminate and the rotating motion of the rotor under action of contact forces. The analytical model can predict the overall characteristics of the motor, including the modal frequency and the response of motion of the laminate, the rotating speed of the rotor, the input power, the output power, and the efficiency of the motor. The effects of the initial compressive force, the applied voltage, the moment of rotor inertia, and the frictional coefficient of the contact interface on the characteristics of the motor are simulated and discussed. A selection of the numerical results from the analytical model is confirmed by experimental data.
Motor current signature analysis method for diagnosing motor operated devices
Haynes, Howard D.; Eissenberg, David M.
1990-01-01
A motor current noise signature analysis method and apparatus for remotely monitoring the operating characteristics of an electric motor-operated device such as a motor-operated valve. Frequency domain signal analysis techniques are applied to a conditioned motor current signal to distinctly identify various operating parameters of the motor driven device from the motor current signature. The signature may be recorded and compared with subsequent signatures to detect operating abnormalities and degradation of the device. This diagnostic method does not require special equipment to be installed on the motor-operated device, and the current sensing may be performed at remote control locations, e.g., where the motor-operated devices are used in accessible or hostile environments.
A Method to Determine Supply Voltage of Permanent Magnet Motor at Optimal Design Stage
NASA Astrophysics Data System (ADS)
Matustomo, Shinya; Noguchi, So; Yamashita, Hideo; Tanimoto, Shigeya
The permanent magnet motors (PM motors) are widely used in electrical machinery, such as air conditioner, refrigerator and so on. In recent years, from the point of view of energy saving, it is necessary to improve the efficiency of PM motor by optimization. However, in the efficiency optimization of PM motor, many design variables and many restrictions are required. In this paper, the efficiency optimization of PM motor with many design variables was performed by using the voltage driven finite element analysis with the rotating simulation of the motor and the genetic algorithm.
Riecke, Lars; Peters, Judith C; Valente, Giancarlo; Kemper, Valentin G; Formisano, Elia; Sorger, Bettina
2017-05-01
A sound of interest may be tracked amid other salient sounds by focusing attention on its characteristic features including its frequency. Functional magnetic resonance imaging findings have indicated that frequency representations in human primary auditory cortex (AC) contribute to this feat. However, attentional modulations were examined at relatively low spatial and spectral resolutions, and frequency-selective contributions outside the primary AC could not be established. To address these issues, we compared blood oxygenation level-dependent (BOLD) responses in the superior temporal cortex of human listeners while they identified single frequencies versus listened selectively for various frequencies within a multifrequency scene. Using best-frequency mapping, we observed that the detailed spatial layout of attention-induced BOLD response enhancements in primary AC follows the tonotopy of stimulus-driven frequency representations-analogous to the "spotlight" of attention enhancing visuospatial representations in retinotopic visual cortex. Moreover, using an algorithm trained to discriminate stimulus-driven frequency representations, we could successfully decode the focus of frequency-selective attention from listeners' BOLD response patterns in nonprimary AC. Our results indicate that the human brain facilitates selective listening to a frequency of interest in a scene by reinforcing the fine-grained activity pattern throughout the entire superior temporal cortex that would be evoked if that frequency was present alone. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Lachance, Chantelle C; Korall, Alexandra M B; Russell, Colin M; Feldman, Fabio; Robinovitch, Stephen N; Mackey, Dawn C
2016-09-01
The aim of this study was to investigate the effects of flooring type and resident weight on external hand forces required to push floor-based lifts in long-term care (LTC). Novel compliant flooring is designed to reduce fall-related injuries among LTC residents but may increase forces required for staff to perform pushing tasks. A motorized lift may offset the effect of flooring on push forces. Fourteen female LTC staff performed straight-line pushes with two floor-based lifts (conventional, motor driven) loaded with passengers of average and 90th-percentile resident weights over four flooring systems (concrete+vinyl, compliant+vinyl, concrete+carpet, compliant+carpet). Initial and sustained push forces were measured by a handlebar-mounted triaxial load cell and compared to participant-specific tolerance limits. Participants rated pushing difficulty. Novel compliant flooring increased initial and sustained push forces and subjective ratings compared to concrete flooring. Compared to the conventional lift, the motor-driven lift substantially reduced initial and sustained push forces and perceived difficulty of pushing for all four floors and both resident weights. Participants exerted forces above published tolerance limits only when using the conventional lift on the carpet conditions (concrete+carpet, compliant+carpet). With the motor-driven lift only, resident weight did not affect push forces. Novel compliant flooring increased linear push forces generated by LTC staff using floor-based lifts, but forces did not exceed tolerance limits when pushing over compliant+vinyl. The motor-driven lift substantially reduced push forces compared to the conventional lift. Results may help to address risk of work-related musculoskeletal injury, especially in locations with novel compliant flooring. © 2016, Human Factors and Ergonomics Society.
Closed Loop Fuzzy Logic Controlled PV Based Cascaded Boost Five-Level Inverter System
NASA Astrophysics Data System (ADS)
Revana, Guruswamy; Kota, Venkata Reddy
2018-04-01
Recent developments in intelligent control methods and power electronics have produced PV based DC to AC converters related to AC drives. Cascaded boost converter and inverter find their way in interconnecting PV and Induction Motor. This paper deals with digital simulation and implementation of closed loop controlled five-level inverter based Photo-Voltaic (PV) system. The objective of this work is to reduce the harmonics using Multi Level Inverter based system. The DC output from the PV panel is boosted using cascaded-boost-converters. The DC output of these cascaded boost converters is applied to the bridges of the cascaded inverter. The AC output voltage is obtained by the series cascading of the output voltage of the two inverters. The investigations are done with Induction motor load. Cascaded boost-converter is proposed in the present work to produce the required DC Voltage at the input of the bridge inverter. A simple FLC is applied to CBFLIIM system. The FLC is proposed to reduce the steady state error. The simulation results are compared with the hardware results. The results of the comparison are made to show the improvement in dynamic response in terms of settling time and steady state error. Design procedure and control strategy are presented in detail.
Ahnert, Lieselotte; Teufl, Lukas; Ruiz, Nina; Piskernik, Bernhard; Supper, Barbara; Remiorz, Silke; Gesing, Alexander; Nowacki, Katja
2017-11-01
Play observations with a total of 400 toddlers and preschoolers were videotaped and rated for Intensity and Quality of play with their parents. Parents were asked about perceived stress and personality characteristics (Big 5). Child's motor, cognitive skills, temperament, and internalizing behaviors were assessed. Study 1 investigated the robustness of play across child age and gender, and examined differences between fathers and mothers. Study 2 explored the vulnerability of play with fathers of children born preterm (PT-fathers) and fathers who had experienced adverse childhoods (AC-fathers). Study 3 investigated child internalizing behaviors. Intensity of play was maintained almost independently of child age and gender. It was similar for AC- and PT-fathers, and similar to maternal Intensity. In contrast, paternal Quality of play was higher with boys and independent of fathers' personality and perceived parenting stress whereas maternal Quality of play was higher with girls and linked to mothers' perceived parenting competence, acceptability of the child, and neuroticism. AC-fathers scored significantly low on Quality, as did PT-fathers, but the Quality of their play became better with growing child age, birth weight, and cognitive (but not motor and temperament) scores. Finally, child internalizing behaviors were negatively related to paternal Quality of play. © 2017 Michigan Association for Infant Mental Health.
Closed Loop Fuzzy Logic Controlled PV Based Cascaded Boost Five-Level Inverter System
NASA Astrophysics Data System (ADS)
Revana, Guruswamy; Kota, Venkata Reddy
2017-12-01
Recent developments in intelligent control methods and power electronics have produced PV based DC to AC converters related to AC drives. Cascaded boost converter and inverter find their way in interconnecting PV and Induction Motor. This paper deals with digital simulation and implementation of closed loop controlled five-level inverter based Photo-Voltaic (PV) system. The objective of this work is to reduce the harmonics using Multi Level Inverter based system. The DC output from the PV panel is boosted using cascaded-boost-converters. The DC output of these cascaded boost converters is applied to the bridges of the cascaded inverter. The AC output voltage is obtained by the series cascading of the output voltage of the two inverters. The investigations are done with Induction motor load. Cascaded boost-converter is proposed in the present work to produce the required DC Voltage at the input of the bridge inverter. A simple FLC is applied to CBFLIIM system. The FLC is proposed to reduce the steady state error. The simulation results are compared with the hardware results. The results of the comparison are made to show the improvement in dynamic response in terms of settling time and steady state error. Design procedure and control strategy are presented in detail.
Lipid - Motor Interactions: Soap Opera or Symphony?
Pathak, Divya; Mallik, Roop
2017-02-01
Intracellular transport of organelles can be driven by multiple motor proteins that bind to the lipid membrane of the organelle and work as a team. We review present knowledge on how lipids orchestrate the recruitment of motors to a membrane. Looking beyond recruitment, we also discuss how heterogeneity and local mechanical properties of the membrane may influence function of motor-teams. These issues gain importance because phagocytosed pathogens use lipid-centric strategies to manipulate motors and survive in host cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
AC propulsion system for an electric vehicle, phase 2
NASA Astrophysics Data System (ADS)
Slicker, J. M.
1983-06-01
A second-generation prototype ac propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the Contractor's site. The system consisted of a Phase 2, 18.7 kw rated ac induction traction motor, a 192-volt, battery powered, pulse-width-modulated, transistorized inverter packaged for under rear seat installation, a 2-axis, 2-speed, automatically-shifted mechanical transaxle and a microprocessor-based powertrain/vehicle controller. A diagnostics computer to assist tuning and fault finding was fabricated. Dc-to-mechanical-system efficiency varied from 78% to 82% as axle speed/torque ranged from 159 rpm/788 nm to 65 rpm/328 nm. Track test efficiency results suggest that the ac system will be equal or superior to dc systems when driving urban cycles. Additional short-term work is being performed under a third contract phase (AC-3) to raise transaxle efficiency to predicted levels, and to improve starting and shifting characteristics. However, the long-term challenge to the system's viability remains inverter cost. A final report on the Phase 2 system, describing Phase 3 modifications, will be issued at the conclusion of AC-3.
AC propulsion system for an electric vehicle, phase 2
NASA Technical Reports Server (NTRS)
Slicker, J. M.
1983-01-01
A second-generation prototype ac propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the Contractor's site. The system consisted of a Phase 2, 18.7 kw rated ac induction traction motor, a 192-volt, battery powered, pulse-width-modulated, transistorized inverter packaged for under rear seat installation, a 2-axis, 2-speed, automatically-shifted mechanical transaxle and a microprocessor-based powertrain/vehicle controller. A diagnostics computer to assist tuning and fault finding was fabricated. Dc-to-mechanical-system efficiency varied from 78% to 82% as axle speed/torque ranged from 159 rpm/788 nm to 65 rpm/328 nm. Track test efficiency results suggest that the ac system will be equal or superior to dc systems when driving urban cycles. Additional short-term work is being performed under a third contract phase (AC-3) to raise transaxle efficiency to predicted levels, and to improve starting and shifting characteristics. However, the long-term challenge to the system's viability remains inverter cost. A final report on the Phase 2 system, describing Phase 3 modifications, will be issued at the conclusion of AC-3.
Light-induced propulsion of a giant liposome driven by peptide nanofibre growth.
Inaba, Hiroshi; Uemura, Akihito; Morishita, Kazushi; Kohiki, Taiki; Shigenaga, Akira; Otaka, Akira; Matsuura, Kazunori
2018-04-19
Light-driven nano/micromotors are attracting much attention, not only as molecular devices but also as components of bioinspired robots. In nature, several pathogens such as Listeria use actin polymerisation machinery for their propulsion. Despite the development of various motors, it remains challenging to mimic natural systems to create artificial motors propelled by fibre formation. Herein, we report the propulsion of giant liposomes driven by light-induced peptide nanofibre growth on their surface. Peptide-DNA conjugates connected by a photocleavage unit were asymmetrically introduced onto phase-separated giant liposomes. Ultraviolet (UV) light irradiation cleaved the conjugates and released peptide units, which self-assembled into nanofibres, driving the translational movement of the liposomes. The velocity of the liposomes reflected the rates of the photocleavage reaction and subsequent fibre formation of the peptide-DNA conjugates. These results showed that chemical design of the light-induced peptide nanofibre formation is a useful approach to fabricating bioinspired motors with controllable motility.
DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.
2006-08-29
Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.
Single mask, simple structure micro rotational motor driven by electrostatic comb-drive actuators
NASA Astrophysics Data System (ADS)
Pham, Phuc Hong; Viet Dao, Dzung; Dang, Lam Bao; Sugiyama, Susumu
2012-01-01
We report a design and fabrication of a new micro rotational motor (MRM) using silicon micromachining technology with the overall diameter of 2.4 mm. This motor utilizes four silicon electrostatic comb-drive actuators to drive the outer ring (or rotor) through ratchet teeth. The novel design of the anti-reverse structure helps us to overcome the gap problem after deep reactive ion etching of silicon. The MRM was fabricated by using silicon on insulator wafer with the thickness of the device layer being 30 µm and one mask only. The motor was successfully tested for performance. It was driven by periodic voltage with different frequencies ranging from 1 to 50 Hz. The angular velocity of the outer ratchet ring was proportional to the frequency. Moreover, when the driving frequency is lower than 30 Hz, the experiment results perfectly match the theoretical calculation.
NASA Astrophysics Data System (ADS)
Foster, Peter J.; Yan, Wen; Fürthauer, Sebastian; Shelley, Michael J.; Needleman, Daniel J.
2017-12-01
The cellular cytoskeleton is an active material, driven out of equilibrium by molecular motor proteins. It is not understood how the collective behaviors of cytoskeletal networks emerge from the properties of the network’s constituent motor proteins and filaments. Here we present experimental results on networks of stabilized microtubules in Xenopus oocyte extracts, which undergo spontaneous bulk contraction driven by the motor protein dynein, and investigate the effects of varying the initial microtubule density and length distribution. We find that networks contract to a similar final density, irrespective of the length of microtubules or their initial density, but that the contraction timescale varies with the average microtubule length. To gain insight into why this microscopic property influences the macroscopic network contraction time, we developed simulations where microtubules and motors are explicitly represented. The simulations qualitatively recapitulate the variation of contraction timescale with microtubule length, and allowed stress contributions from different sources to be estimated and decoupled.
Vibration Analysis and the Accelerometer
ERIC Educational Resources Information Center
Hammer, Paul
2011-01-01
Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prieto, M C; Whittal, R M; Baldwin, M A
2005-04-03
The Clostridial neurotoxins, botulinum and tetanus, gain entry into neuronal cells by protein recognition involving cell specific binding sites. The sialic or N-acetylneuraminic acid (NeuAc) residues of gangliosides attached to the surface of motor neurons are the suspected recognition and interaction points with Clostridial neurotoxins, although not necessarily the only ones. We have used electrospray ionization mass spectrometry (ESIMS) to examine formation of complexes between the tetanus toxin C fragment, or targeting domain, and carbohydrates containing NeuAc groups to determine how NeuAc residues contribute to ganglioside binding. ESI-MS was used to rapidly and efficiently measure dissociation constants for a numbermore » of related NeuAc-containing carbohydrates and NeuAc oligomers, information that has helped identify the structural features of gangliosides that determine their binding to tetanus toxin. The strength of the interactions between the C fragment and (NeuAc){sub n}, are consistent with the topography of the targeting domain of tetanus toxin and the nature of its carbohydrate binding sites. The results suggest that the targeting domain of tetanus toxin contains two binding sites that can accommodate NeuAc (or a dimer). This study also shows that NeuAc must play an important role in ganglioside binding and molecular recognition, a process critical for normal cell function and one frequently exploited by toxins, bacteria and viruses to facilitate their entrance into cells.« less
Macoun, Sarah J; Kerns, Kimberly A
2016-01-01
Attention deficit hyperactivity disorder (ADHD) may reflect a disorder of neural systems that regulate motor control. The current study investigates motor dysfunction in children with ADHD using a hierarchical motor-systems perspective where frontal-striatal/"medial" brain systems are viewed as regulating parietal/"lateral" brain systems in a top down manner, to inhibit automatic environmentally driven responses in favor of goal-directed behavior. It was hypothesized that due to frontal-striatal hypoactivation, children with ADHD would have difficulty with higher order motor control tasks felt to be dependent on these systems, yet have preserved general motor function. A total of 63 children-ADHD and matched controls-completed experimental motor tasks that required maintenance of internal motor representations and the ability to inhibit visually driven responses. Children also completed a measure of motor inhibition, and a portion of the sample completed general motor function tasks. On motor tasks that required them to maintain internal motor representations and to inhibit automatic motor responses, children with ADHD had significantly greater difficulty than controls, yet on measures of general motor dexterity, their performance was comparable. Children with ADHD displayed significantly greater intraindividual (subject) variability than controls. Intraindividual variability (IIV) contributed to variations in performance across the motor tasks, but did not account for all of the variance on all tasks. These findings suggest that children with ADHD may be more controlled by external stimuli than by internally represented information, possibly due to dysfunction of the medial motor system. However, it is likely that children with ADHD also display general motor-execution problems (as evidenced by IIV findings), suggesting that atypicalities may extend to both medial and lateral motor systems. Findings are interpreted within the context of contemporary theories regarding motor dysfunction in ADHD, and implications for understanding externalizing behaviors in ADHD are discussed.
Power Transfer in Physical Systems.
ERIC Educational Resources Information Center
Kaeck, Jack A.
1990-01-01
Explores the power transfer using (1) a simple electric circuit consisting of a power source with internal resistance; (2) two different mechanical systems (gravity driven and constant force driven); (3) ecological examples; and (4) a linear motor. (YP)
Hybrid-fuel bacterial flagellar motors in Escherichia coli
Sowa, Yoshiyuki; Homma, Michio; Ishijima, Akihiko; Berry, Richard M.
2014-01-01
The bacterial flagellar motor rotates driven by an electrochemical ion gradient across the cytoplasmic membrane, either H+ or Na+ ions. The motor consists of a rotor ∼50 nm in diameter surrounded by multiple torque-generating ion-conducting stator units. Stator units exchange spontaneously between the motor and a pool in the cytoplasmic membrane on a timescale of minutes, and their stability in the motor is dependent upon the ion gradient. We report a genetically engineered hybrid-fuel flagellar motor in Escherichia coli that contains both H+- and Na+-driven stator components and runs on both types of ion gradient. We controlled the number of each type of stator unit in the motor by protein expression levels and Na+ concentration ([Na+]), using speed changes of single motors driving 1-μm polystyrene beads to determine stator unit numbers. De-energized motors changed from locked to freely rotating on a timescale similar to that of spontaneous stator unit exchange. Hybrid motor speed is simply the sum of speeds attributable to individual stator units of each type. With Na+ and H+ stator components expressed at high and medium levels, respectively, Na+ stator units dominate at high [Na+] and are replaced by H+ units when Na+ is removed. Thus, competition between stator units for spaces in a motor and sensitivity of each type to its own ion gradient combine to allow hybrid motors to adapt to the prevailing ion gradient. We speculate that a similar process may occur in species that naturally express both H+ and Na+ stator components sharing a common rotor. PMID:24550452
Ruhnau, Philipp; Keitel, Christian; Lithari, Chrysa; Weisz, Nathan; Neuling, Toralf
2016-01-01
We tested a novel combination of two neuro-stimulation techniques, transcranial alternating current stimulation (tACS) and frequency tagging, that promises powerful paradigms to study the causal role of rhythmic brain activity in perception and cognition. Participants viewed a stimulus flickering at 7 or 11 Hz that elicited periodic brain activity, termed steady-state responses (SSRs), at the same temporal frequency and its higher order harmonics. Further, they received simultaneous tACS at 7 or 11 Hz that either matched or differed from the flicker frequency. Sham tACS served as a control condition. Recent advances in reconstructing cortical sources of oscillatory activity allowed us to measure SSRs during concurrent tACS, which is known to impose strong artifacts in magnetoencephalographic (MEG) recordings. For the first time, we were thus able to demonstrate immediate effects of tACS on SSR-indexed early visual processing. Our data suggest that tACS effects are largely frequency-specific and reveal a characteristic pattern of differential influences on the harmonic constituents of SSRs. PMID:27199707
A Framework to Survey the Energy Efficiency of Installed Motor Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Prakash; Hasanbeigi, Ali; McKane, Aimee
2013-08-01
While motors are ubiquitous throughout the globe, there is insufficient data to properly assess their level of energy efficiency across regional boundaries. Furthermore, many of the existing data sets focus on motor efficiency and neglect the connected drive and system. Without a comprehensive survey of the installed motor system base, a baseline energy efficiency of a country or region’s motor systems cannot be developed. The lack of data impedes government agencies, utilities, manufacturers, distributers, and energy managers when identifying where to invest resources to capture potential energy savings, creating programs aimed at reducing electrical energy consumption, or quantifying the impactsmore » of such programs. This paper will outline a data collection framework for use when conducting a survey under a variety of execution models to characterize motor system energy efficiency within a country or region. The framework is intended to standardize the data collected ensuring consistency across independently conducted surveys. Consistency allows for the surveys to be leveraged against each other enabling comparisons to motor system energy efficiencies from other regions. In creating the framework, an analysis of various motor driven systems, including compressed air, pumping, and fan systems, was conducted and relevant parameters characterizing the efficiency of these systems were identified. A database using the framework will enable policymakers and industry to better assess the improvement potential of their installed motor system base particularly with respect to other regions, assisting in efforts to promote improvements to the energy efficiency of motor driven systems.« less
Skyrmions Driven by Intrinsic Magnons
NASA Astrophysics Data System (ADS)
Psaroudaki, Christina; Loss, Daniel
2018-06-01
We study the dynamics of a Skyrmion in a magnetic insulating nanowire in the presence of time-dependent oscillating magnetic field gradients. These ac fields act as a net driving force on the Skyrmion via its own intrinsic magnetic excitations. In a microscopic quantum field theory approach, we include the unavoidable coupling of the external field to the magnons, which gives rise to time-dependent dissipation for the Skyrmion. We demonstrate that the magnetic ac field induces a super-Ohmic to Ohmic crossover behavior for the Skyrmion dissipation kernels with time-dependent Ohmic terms. The ac driving of the magnon bath at resonance results in a unidirectional helical propagation of the Skyrmion in addition to the otherwise periodic bounded motion.
Design of a probe for two-dimensional small angle detection
NASA Astrophysics Data System (ADS)
He, Haixia; Wang, Xuanze; Zhong, Yuning; Yang, Liangen; Cao, Hongduan
2008-10-01
A novel two-dimensional small angle probe is introduced, which is based on principle of auto-collimation and utilizes quadrant Si-photoelectric detector (QPD) as detection device. AC modulation, AC magnification and absolute value demodulation are incorporated to restrain the DC excursion caused by background light and noise etc and to improve the sensitivity and stability of angle detection. To ensure that while the laser is shining, the current signal (converted into voltage signal) of QPD also is linear to the AC modulation voltage, this paper adopted AC modulation signal (5400Hz) with a DC offset. AC magnification circuit with reasonable parameters is designed to inhibit DC drift and the impact of industrial frequency noise and to ensure good amplification to signal frequency at the same time. A piezoelectric-driven micro-angle generator is designed to demarcate the angle. The calibration data are input to single chip, and the measurement of angles can be shown in SMC1602A.
AC Current Driven Dynamic Vortex State in YBa2Cu3O7-x (Postprint)
2012-02-01
coexisting steady states of driven vortex motion with different characteristics: a quasi-static disordered glassy state in the sample interior and a...coexisting, vortex, plastic, dynamic, calculations, disordered , hysteretic, model, films, edges 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...characteris- tics: a quasi-static disordered glassy state in the sample interior and a dynamic state of plastic motion near the edges. Finite- element
Power-Quality Improvement in PFC Bridgeless SEPIC-Fed BLDC Motor Drive
NASA Astrophysics Data System (ADS)
Singh, Bhim; Bist, Vashist
2013-06-01
This article presents a design of a power factor correction (PFC)-based brushless DC (BLDC) motor drive. The speed control of BLDC motor is achieved by controlling the DC link voltage of the voltage source inverter (VSI) feeding BLDC motor using a single voltage sensor. A front-end bridgeless single-ended primary inductance converter (SEPIC) is used for DC link voltage control and PFC operation. A bridgeless SEPIC is designed to operate in discontinuous inductor current mode (DICM) thus utilizing a simple control scheme of voltage follower. An electronic commutation of BLDC motor is used for VSI to operate in a low-frequency operation for reduced switching losses in the VSI. Moreover, a bridgeless topology offers less conduction losses due to absence of diode bridge rectifier for further increasing the efficiency. The proposed BLDC motor drive is designed to operate over a wide range of speed control with an improved power-quality at the AC mains under the recommended international power-quality standards such as IEC 61000-3-2.
Zhu, Qianzheng; Wei, Shengcai; Sharma, Nidhi; Wani, Gulzar; He, Jinshan; Wani, Altaf A.
2017-01-01
Acetylated histone H3 lysine 56 (H3K56Ac) diminishes in response to DNA damage but is restored following DNA repair. Here, we report that CRL4DDB2 ubiquitin ligase preferentially regulates post-repair chromatin restoration of H3K56Ac through recruitment of histone chaperon CAF-1. We show that H3K56Ac accumulates at DNA damage sites. The restoration of H3K56Ac but not H3K27Ac, H3K18Ac and H3K14Ac depends on CAF-1 function, whereas all these acetylations are mediated by CBP/p300. The CRL4DDB2 components, DDB1, DDB2 and CUL4A, are also required for maintaining the H3K56Ac and H3K9Ac level in chromatin, and for restoring H3K56Ac following induction of DNA photolesions and strand breaks. Depletion of CUL4A decreases the recruitment of CAF-1 p60 and p150 to ultraviolet radiation- and phleomycin-induced DNA damage. Neddylation inhibition renders CRL4DDB2 inactive, decreases H3K56Ac level, diminishes CAF-1 recruitment and prevents H3K56Ac restoration. Mutation in the PIP box of DDB2 compromises its capability to elevate the H3K56Ac level but does not affect XPC ubiquitination. These results demonstrated a function of CRL4DDB2 in differential regulation of histone acetylation in response to DNA damage, suggesting a novel role of CRL4DDB2 in repair-driven chromatin assembly. PMID:29262658
Hypothyroid-induced acute compartment syndrome in all extremities.
Musielak, Matthew C; Chae, Jung Hee
2016-12-20
Acute compartment syndrome (ACS) is an uncommon complication of uncontrolled hypothyroidism. If unrecognized, this can lead to ischemia, necrosis and potential limb loss. A 49-year-old female presented with the sudden onset of bilateral lower and upper extremity swelling and pain. The lower extremity anterior compartments were painful and tense. The extensor surface of the upper extremities exhibited swelling and pain. Motor function was intact, however, limited due to pain. Bilateral lower extremity fasciotomies were performed. Postoperative Day 1, upper extremity motor function decreased significantly and paresthesias occurred. She therefore underwent bilateral forearm fasciotomies. The pathogenesis of hypothyroidism-induced compartment syndrome is unclear. Thyroid-stimulating hormone-induced fibroblast activation results in increased glycosaminoglycan deposition. The primary glycosaminoglycan in hypothyroid myxedematous changes is hyaluronic acid, which binds water causing edema. This increases vascular permeability, extravasation of proteins and impaired lymphatic drainage. These contribute to increased intra-compartmental pressure and subsequent ACS. Published by Oxford University Press and JSCR Publishing Ltd. All rights reserved. © The Author 2016.
Torsional Vibration Analysis of Reciprocating Compressor Trains driven by Induction Motors
NASA Astrophysics Data System (ADS)
Brunelli, M.; Fusi, A.; Grasso, F.; Pasteur, F.; Ussi, A.
2015-08-01
The dynamic study of electric motor driven compressors, for Oil&Gas (O&G) applications, are traditionally performed in two steps separating the mechanical and the electrical systems. The packager conducts a Torsional Vibration Analysis (TVA) modeling the mechanical system with a lumped parameter scheme, without taking into account the electrical part. The electric motor supplier later performs a source current pulsation analysis on the electric motor system, based on the TVA results. The mechanical and the electrical systems are actually linked by the electromagnetic effect. The effect of the motor air-gap on TVA has only recently been taken into account by adding a spring and a damper between motor and ground in the model. This model is more accurate than the traditional one, but is applicable only to the steady-state condition and still fails to consider the reciprocal effects between the two parts of the system. In this paper the torsional natural frequencies calculated using both the traditional and the new model have been compared. Furthermore, simulation of the complete system has been achieved through the use of LMS AMESim, multi-physics, one-dimensional simulation software that simultaneously solves the shafts rotation and electric motor voltage equation. Finally, the transient phenomena that occur during start-up have been studied.
A cycloidal wobble motor driven by shape memory alloy wires
NASA Astrophysics Data System (ADS)
Hwang, Donghyun; Higuchi, Toshiro
2014-05-01
A cycloidal wobble motor driven by shape memory alloy (SMA) wires is proposed. In realizing a motor driving mechanism well known as a type of reduction system, a cycloidal gear mechanism is utilized. It facilitates the achievement of bidirectional continuous rotation with high-torque capability, based on its high efficiency and high reduction ratio. The applied driving mechanism consists of a pin/roller based annular gear as a wobbler, a cycloidal disc as a rotor, and crankshafts to guide the eccentric wobbling motion. The wobbling motion of the annular gear is generated by sequential activation of radially phase-symmetrically placed SMA wires. Consequently the cycloidal disc is rotated by rolling contact based cycloidal gearing between the wobbler and the rotor. In designing the proposed motor, thermomechanical characterization of an SMA wire biased by extension springs is experimentally performed. Then, a simplified geometric model for the motor is devised to conduct theoretical assessment of design parametric effects on structural features and working performance. With consideration of the results from parametric analysis, a functional prototype three-phase motor is fabricated to carry out experimental verification of working performance. The observed experimental results including output torque, rotational speed, bidirectional positioning characteristic, etc obviously demonstrate the practical applicability and potentiality of the wobble motor.
Groombridge, Clifton E.
1996-01-01
An improvement to a coal processing system where hard materials found in the coal may cause jamming of either inflow or outflow rotary airlocks, each driven by a reversible motor. The instantaneous current used by the motor is continually monitored and compared to a predetermined value. If an overcurrent condition occurs, indicating a jamming of the airlock, a controller means starts a "soft" reverse rotation of the motor thereby clearing the jamming. Three patterns of the motor reversal are provided.
Evidence that convergence rather than accommodation controls intermittent distance exotropia.
Horwood, Anna M; Riddell, Patricia M
2012-03-01
This study considered whether vergence drives accommodation or accommodation drives vergence during the control of distance exotropia for near fixation. High accommodative convergence to accommodation (AC/A) ratios are often used to explain this control, but the role of convergence to drive accommodation (the CA/C relationship) is rarely considered. Atypical CA/C characteristics could equally, or better, explain common clinical findings. Nineteen distance exotropes, aged 4-11 years, were compared while controlling their deviation with 27 non-exotropic controls aged 5-9 years. Simultaneous vergence and accommodation responses were measured to a range of targets incorporating different combinations of blur, disparity and looming cues at four fixation distances between 2 m and 33 cm. Stimulus and response AC/A and CA/C ratios were calculated. Accommodation responses for near targets (p = 0.017) and response gains (p = 0.026) were greater in the exotropes than in the controls. Despite higher clinical stimulus AC/A ratios, the distance exotropes showed lower laboratory response AC/A ratios (p = 0.02), but significantly higher CA/C ratios (p = 0.02). All the exotropes, whether the angle changed most with lenses ('controlled by accommodation') or on occlusion ('controlled by fusion'), used binocular disparity not blur as their main cue to target distance. Increased vergence demand to control intermittent distance exotropia for near also drives significantly more accommodation. Minus lens therapy is more likely to act by correcting overaccommodation driven by controlling convergence, rather than by inducing blur-driven vergence. The use of convergence as a major drive to accommodation explains many clinical characteristics of distance exotropia, including apparently high near stimulus AC/A ratios. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.
Evidence that convergence rather than accommodation controls intermittent distance exotropia
Horwood, Anna M; Riddell, Patricia M
2015-01-01
Purpose This study considered whether vergence drives accommodation or accommodation drives vergence during the control of distance exotropia for near fixation. High accommodative convergence to accommodation (AC/A) ratios are often used to explain this control, but the role of convergence to drive accommodation (the CA/C relationship) is rarely considered. Atypical CA/C characteristics could equally, or better, explain common clinical findings. Methods 19 distance exotropes, aged 4-11 years, were compared while controlling their deviation with 27 non-exotropic controls aged 5-9 years. Simultaneous vergence and accommodation responses were measured to a range of targets incorporating different combinations of blur, disparity and looming cues at four fixation distances between 2m and 33cm. Stimulus and response AC/A and CA/C ratios were calculated. Results Accommodation responses for near targets (p=0.017) response gains (p=0.026) were greater in the exotropes than the controls. Despite higher clinical stimulus AC/A ratios, the distance exotropes showed lower laboratory response AC/A ratios (p=0.02), but significantly higher CA/C ratios (p=0.02). All the exotropes, whether the angle changed most with lenses (“controlled by accommodation”) or on occlusion (“controlled by fusion”), used binocular disparity not blur as their main cue to target distance. Conclusions Increased vergence demand to control intermittent distance exotropia for near also drives significantly more accommodation. Minus lens therapy is more likely to act by correcting over-accommodation driven by controlling convergence, rather than by inducing blur-driven vergence. The use of convergence as a major drive to accommodation explains many clinical characteristics of distance exotropia, including apparently high near stimulus AC/A ratios. PMID:22280437
Naber, Christoph K.; Urban, Philip; Ong, Paul J.; Valdes-Chavarri, Mariano; Abizaid, Alexandre A.; Pocock, Stuart J.; Fabbiocchi, Franco; Dubois, Christophe; Copt, Samuel; Greene, Samantha; Morice, Marie-Claude
2017-01-01
Aims Although a true clinical challenge, high bleeding risk patients with an acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI) have never been specifically studied. Leaders Free ACS, a pre-specified Leaders Free sub-study, determined efficacy, and safety of a combination of 1-month dual anti-platelet therapy (DAPT) with implantation of either a polymer-free Biolimus-A9-coated stent (BA9-DCS) or a bare-metal stent (BMS) in these patients. Methods and results Leaders Free included 2466 patients undergoing PCI who had at least 1 of 13 pre-defined factors for an increased bleeding risk. Of these, 659 ACS patients were included in this analysis (BA9-DCS 330, BMS 329). At 12-month follow-up, treatment with the BA9-DCS was more effective (clinically driven target-lesion revascularization 3.9 vs. 9.0%, P = 0.009) and safer (cumulative incidence of cardiac death, myocardial infarction, or definite or probable stent thrombosis 9.3 vs. 18.5%, P = 0.001), driven by significantly lower rates of cardiac mortality (3.4 vs. 6.9%, P = 0.049) and myocardial infarction (6.9 vs. 13.8%, P = 0.005). Conclusion We believe that the results of this sub-analysis from the Leaders Free trial are likely to significantly impact clinical practice for high bleeding risk patients presenting with an ACS: the use of a BMS can, in our view, no longer be recommended, and, given the paucity of available data for second-generation DES with shortened DAPT in these patients, the BA9-DCS should currently be considered as the device with the strongest evidence to support its use for this indication. PMID:27190095
A study of some features of ac and dc electric power systems for a space station
NASA Technical Reports Server (NTRS)
Hanania, J. I.
1983-01-01
This study analyzes certain selected topics in rival dc and high frequency ac electric power systems for a Space Station. The interaction between the Space Station and the plasma environment is analyzed, leading to a limit on the voltage for the solar array and a potential problem with resonance coupling at high frequencies. Certain problems are pointed out in the concept of a rotary transformer, and further development work is indicated in connection with dc circuit switching, special design of a transmission conductor for the ac system, and electric motors. The question of electric shock hazards, particularly at high frequency, is also explored. and a problem with reduced skin resistance and therefore increased hazard with high frequency ac is pointed out. The study concludes with a comparison of the main advantages and disadvantages of the two rival systems, and it is suggested that the choice between the two should be made after further studies and development work are completed.
Design and experiments of a linear piezoelectric motor driven by a single mode.
Liu, Zhen; Yao, Zhiyuan; Li, Xiang; Fu, Qianwei
2016-11-01
In this contribution, we propose a novel linear piezoelectric motor with a compact stator that is driven by a single mode. The linear piezoelectric motor can realize bidirectional motion by changing the vibration modes of the stator. Finite element analysis is performed to determine the required vibration mode of the stator and obtain the optimal stator structure and dimensions. Furthermore, the trajectories of the driving foot are analyzed with and without consideration of the mechanical contact with the slider. It is shown that the trajectory of the driving foot is an oblique line when disregarding the contact, and the trajectory becomes an oblique ellipse while taking into account the contact. Finally, a prototype of the motor is fabricated based on the results of finite element analysis. The optimization results show that the motor reaches its maximum thrust force of 4.0 kg, maximum thrust-weight ratio of 33.3, maximum unloaded velocity of 385 mm/s under the excitation of Mode-B, and maximum unloaded velocity of 315 mm/s under the excitation of Mode-L.
18. LOWER OIL ROOM DIABLO POWERHOUSE: GRAVITY OIL PUMPS POWERED ...
18. LOWER OIL ROOM DIABLO POWERHOUSE: GRAVITY OIL PUMPS POWERED BY LINCOLN AC MOTORS ON THE RIGHT AND TURBINE AIR DRY APPARATUS ON THE LEFT, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA
Preliminary power train design for a state-of-the-art electric vehicle
NASA Technical Reports Server (NTRS)
Mighdoll, P.; Hahn, W. F.
1978-01-01
Power train designs which can be implemented within the current state-of-the-art were identified by means of a review of existing electric vehicles and suitable off-the-shelf components. The affect of various motor/transmission combinations on vehicle range over the SAE J227a schedule D cycle was evaluated. The selected, state-of-the-art power train employs a dc series wound motor, SCR controller, variable speed transmission, regenerative braking, drum brakes and radial ply tires. Vehicle range over the SAE cycle can be extended by approximately 20% by the further development of separately excited, shunt wound DC motors and electrical controllers. Approaches which could improve overall power train efficiency, such as AC motor systems, are identified. However, future emphasis should remain on batteries, tires and lightweight structures if substantial range improvements are to be achieved.
Transverse ac-driven and geometric ratchet effects for vortices in conformal crystal pinning arrays
Reichhardt, Charles; Reichhardt, Cynthia Jane Olsen
2016-02-11
A conformal pinning array is created by taking a conformal transformation of a uniform hexagonal lattice to create a structure in which the sixfold ordering of the original lattice is preserved but which has a spatial gradient in the pinning site density. With a series of conformal arrays it is possible to create asymmetric substrates, and it was previously shown that when an ac drive is applied parallel to the asymmetry direction, a pronounced ratchet effect occurs with a net dc flow of vortices in the same direction as the ac drive. Here, in this article, we show that whenmore » the ac drive is applied perpendicular to the substrate asymmetry direction, it is possible to realize a transverse ratchet effect where a net dc flow of vortices is generated perpendicular to the ac drive. The conformal transverse ratchet effect is distinct from previous versions of transverse ratchets in that it occurs due to the generation of non-Gaussian transverse vortex velocity fluctuations by the plastic motion of vortices, so that the system behaves as a noise correlation ratchet. The transverse ratchet effect is much more pronounced in the conformal arrays than in random gradient arrays and is absent in square gradient arrays due the different nature of the vortex flow in each geometry. We show that a series of reversals can occur in the transverse ratchet effect due to changes in the vortex flow across the pinning gradient as a function of vortex filling, pinning strength, and ac amplitude. We also consider the case where a dc drive applied perpendicular to the substrate asymmetry direction generates a net flow of vortices perpendicular to the dc drive, producing what is known as a geometric or drift ratchet that again arises due to non-Gaussian dynamically generated fluctuations. The drift ratchet is more efficient than the ac driven ratchet and also exhibits a series of reversals for varied parameters. Lastly, our results should be general to a wide class of systems undergoing nonequilibrium dynamics on conformal substrates, such as colloidal particles on optical traps.« less
Coaxial Helicity Injection experiments in NSTX*
NASA Astrophysics Data System (ADS)
Raman, R.; Jarboe, T. R.; Gates, D.; Mueller, D.; Schaffer, M. J.; Maqueda, R.; Nelson, B. A.; Menard, J.; Soukhanovskii, V.; Paul, S.; Jardin, S.; Skinner, C. H.; Sabbagh, S.; Paoletti, F.; Stutman, D.; Lao, L.; Nagata, M.
2001-10-01
Coaxial helicity injection (CHI) can potentially eliminate inductive startup and thus the induction solenoid in spherical tori (ST), thereby greatly improving the ST fusion concept. CHI experiments on NSTX have produced 360 kA of toroidal current using about 25 kA of injector current. These have been produced in the preferred 'narrow flux foot print' condition in pulses that were sustained for 300 ms. A rotating n=1 mode, previously observed in optimized discharges on smaller STs driven by CHI and deemed necessary for transporting edge driven current to the interior of the discharge, has been observed for the first time in NSTX CHI discharges. The flux utilization efficiency continues to be high, approaching 100%. EFIT and TSC codes are being used to assess flux closure. This work is supported by the US DOE contract numbers: DE-AC02-76CH03073 and DE-AC05-00R22725.
Reversible Vector Ratchet Effect in Skyrmion Systems
NASA Astrophysics Data System (ADS)
Ma, Xiaoyu; Reichhardt, Charles; Reichhardt, Cynthia
Magnetic skyrmions are topological non-trivial spin textures found in several magnetic materials. Since their motion can be controlled using ultralow current densities, skyrmions are appealing for potential applications in spintronics as information carriers and processing devices. In this work, we studied the collective transport properties of driven skyrmions based on a particle-like model with molecular dynamics (MD) simulation. Our results show that ac driven skyrmions interacting with an asymmetric substrate provide a realization of a new class of ratchet system, which we call a vector ratchet, that arises due to the effect of the Magnus term on the skyrmion dynamics. In a vector ratchet, the dc motion induced by the ac drive can be described as a vector that can be rotated up to 360 degrees relative to the substrate asymmetry direction. This could represent a new method for controlling skyrmion motion for spintronic applications.
NASA Astrophysics Data System (ADS)
Singh, Sujay; Horrocks, Gregory; Marley, Peter M.; Shi, Zhenzhong; Banerjee, Sarbajit; Sambandamurthy, G.
2015-10-01
We discuss the mechanisms behind the electrically driven insulator-metal transition in single-crystalline VO2 nanobeams. Our dc and ac transport measurements and the versatile harmonic analysis method employed show that nonuniform Joule heating causes electronic inhomogeneities to develop within the nanobeam and is responsible for driving the transition in VO2. A Poole-Frenkel-like purely electric-field-induced transition is found to be absent, and the role of percolation near and away from the electrically driven transition in VO2 is also identified. The results and the harmonic analysis can be generalized to many strongly correlated materials that exhibit electrically driven transitions.
Development of a miniature motor-driven pulsatile LVAD driven by a fuzzy controller.
Okamoto, Eiji; Makino, Tsutomu; Tanaka, Shuji; Yasuda, Takahiko; Akasaka, Yuta; Tani, Makiko; Inoue, Yusuke; Mitoh, Ayumu; Mitamura, Yoshinori
2007-01-01
We have been developing a small, lightweight motor-driven pulsatile left ventricular assist device (LVAD) with a ball screw. The motor-driven LVAD consists of a brushless DC motor and a ball screw. The attractive magnetic force between Nd-Fe-B magnets (with a diameter of 5 mm and a thickness of 1.5 mm) mounted in holes in a silicone rubber sheet (thickness 2 mm) and an iron plate adhered onto the a diaphragm of the blood pump can provide optimum active blood filling during the pump filling phase. The LVAD has a stroke volume of 55 ml and an overall volume of 285 ml; it weighs 360 g. The controller mainly consists of a fuzzy logic position and velocity controller to apply doctors' and engineers' knowledge to control the LVAD. Each unit of the controller consists of a functionally independent program module for easy improvement of the controller's performance. The LVAD was evaluated in in vitro experiments using a mock circulation. A maximum pump outflow of 5.1 l/min was obtained at a drive rate of 95 bpm against an afterload of 95 mmHg, and active filling using the attractive magnetic force provided a pump output of 3.6 l/min at a drive rate of 75 bpm under a preload of 0 mmHg. The operating efficiency of the LVAD was measured at between 8% and 10.5%. While the LVAD can provide adequate pump outflow for cardiac assistance, further upgrading of the software and improvement of the blood pump are required to improve pump performance and efficiency.
Near infrared-modulated propulsion of catalytic Janus polymer multilayer capsule motors.
Wu, Yingjie; Si, Tieyan; Lin, Xiankun; He, Qiang
2015-01-11
The use of a near-infrared (NIR) laser for reversible modulation of a bubble-driven Janus polymer capsule motor is demonstrated. This process was mediated through illumination of the metal face of the Janus capsule motor at the critical concentration of peroxide fuel. Such an effective control of the propulsion of chemically powered microengines holds a considerable promise for diverse applications.
Asymmetric Brownian motor driven by bubble formation in a hydrophobic channel.
Arai, Noriyoshi; Yasuoka, Kenji; Koishi, Takahiro; Ebisuzaki, Toshikazu
2010-10-26
The "asymmetric brownian ratchet model" is a variation of Feynman's ratchet and pawl system proposed. In this model, a system consisting of a motor and a rail has two binding states. One is the random brownian state, and the other is the asymmetric potential state. When the system is alternatively switched between these states, the motor can be driven in one direction. This model is believed to explain nanomotor behavior in biological systems. The feasibility of the model has been demonstrated using electrical and magnetic forces; however, switching of these forces is unlikely to be found in biological systems. In this paper, we propose an original mechanism of transition between states by bubble formation in a nanosized channel surrounded by hydrophobic atoms. This amounts to a nanoscale motor system using bubble propulsion. The motor system consists of a hydrophobic motor and a rail on which hydrophobic patterns are printed. Potential asymmetry can be produced by using a left-right asymmetric pattern shape. Hydrophobic interactions are believed to play an important role in the binding of biomolecules and molecular recognition. The bubble formation is controlled by changing the width of the channel by an atomic distance (∼0.1 nm). Therefore, the motor is potentially more efficient than systems controlled by other forces, in which a much larger change in the motor position is necessary. We have simulated the bubble-powered motor using dissipative particle dynamics and found behavior in good agreement with that of motor proteins. Energy efficiency is as high as 60%.
State observer for synchronous motors
Lang, Jeffrey H.
1994-03-22
A state observer driven by measurements of phase voltages and currents for estimating the angular orientation of a rotor of a synchronous motor such as a variable reluctance motor (VRM). Phase voltages and currents are detected and serve as inputs to a state observer. The state observer includes a mathematical model of the electromechanical operation of the synchronous motor. The characteristics of the state observer are selected so that the observer estimates converge to the actual rotor angular orientation and velocity, winding phase flux linkages or currents.
Simulation and performance of brushless dc motor actuators
NASA Astrophysics Data System (ADS)
Gerba, A., Jr.
1985-12-01
The simulation model for a Brushless D.C. Motor and the associated commutation power conditioner transistor model are presented. The necessary conditions for maximum power output while operating at steady-state speed and sinusoidally distributed air-gap flux are developed. Comparison of simulated model with the measured performance of a typical motor are done both on time response waveforms and on average performance characteristics. These preliminary results indicate good agreement. Plans for model improvement and testing of a motor-driven positioning device for model evaluation are outlined.
R-134a emissions from vehicles.
Siegl, W O; Wallington, T J; Guenther, M T; Henney, T; Pawlak, D; Duffy, M
2002-02-15
We report the first study of R-134a (also known as HFC-134a and CF3CFH2) refrigerant leakage from air conditioning (AC) systems of modern vehicles. Twenty-eight light duty vehicles from five manufacturers (Ford, Toyota, Daimler Chrysler, General Motors, and Honda) were tested according to the USEPA (Federal) extended diurnal test procedure using the Sealed Housing for Evaporative Determination (SHED) apparatus. All tests were conducted using stationary vehicles with the motor and air conditioning system turned off. R-134a was measured using gas chromatography (GC) with a flame ionization detector (FID). All vehicles exhibited measurable R-134a leakage over the 2-day diurnal test. Leak rates of R-134a ranged from 0.01 to 0.36 g/day with an average of 0.07+/-0.07 g/day. When combined with leakage associated with vehicle operation, servicing, and disposal we estimate that the lifetime average R-134a emission rate from an AC equipped vehicle is 0.41+/-0.27 g/day (the majority of emissions are associated with vehicle servicing and disposal). Assuming that the average vehicle travels 10 000 miles per year we estimate that the global warming impact of R-134a leakage from an AC equipped vehicle is approximately 4-5% of that of the CO2 emitted by the vehicle. The results are discussed with respect to the contribution of vehicle emissions to global climate change.
Composite synchronization of three eccentric rotors driven by induction motors in a vibrating system
NASA Astrophysics Data System (ADS)
Kong, Xiangxi; Chen, Changzheng; Wen, Bangchun
2018-03-01
This paper addresses the problem of composite synchronization of three eccentric rotors (ERs) driven by induction motors in a vibrating system. The composite synchronous motion of three ERs is composed of the controlled synchronous motion of two ERs and the self-synchronous motion of the third ER. Combining an adaptive sliding mode control (ASMC) algorithm with a modified master-slave control structure, the controllers are designed to implement controlled synchronous motion of two ERs with zero phase difference. Based on Lyapunov stability theorem and Barbalat's lemma, the stability of the designed controllers is verified. On basis of controlled synchronization of two ERs, self-synchronization of the third ER is introduced to implement composite synchronous motion of three ERs. The feasibility of the proposed composite synchronization method is analyzed by numerical method. The effects of motor and structure parameters on composite synchronous motion are discussed. Experiments on a vibrating test bench driven by three ERs are operated to validate the effectiveness of the proposed composite synchronization method, including a comparison with self-synchronization method.
Solar receiver heliostat reflector having a linear drive and position information system
Horton, Richard H.
1980-01-01
A heliostat for a solar receiver system comprises an improved drive and control system for the heliostat reflector assembly. The heliostat reflector assembly is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e., heat receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The improved drive system includes linear stepping motors which comprise low weight, low cost, electronic pulse driven components. One embodiment comprises linear stepping motors controlled by a programmed, electronic microprocessor. Another embodiment comprises a tape driven system controlled by a position control magnetic tape.
Diagnostics of the Fermilab Tevatron using an AC dipole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyamoto, Ryoichi
2008-08-01
The Fermilab Tevatron is currently the world's highest energy colliding beam facility. Its counter-rotating proton and antiproton beams collide at 2 TeV center-of-mass. Delivery of such intense beam fluxes to experiments has required improved knowledge of the Tevatron's beam optical lattice. An oscillating dipole magnet, referred to as an AC dipole, is one of such a tool to non-destructively assess the optical properties of the synchrotron. We discusses development of an AC dipole system for the Tevatron, a fast-oscillating (f ~ 20 kHz) dipole magnet which can be adiabatically turned on and off to establish sustained coherent oscillations of themore » beam particles without affecting the transverse emittance. By utilizing an existing magnet and a higher power audio amplifier, the cost of the Tevatron AC dipole system became relatively inexpensive. We discuss corrections which must be applied to the driven oscillation measurements to obtain the proper interpretation of beam optical parameters from AC dipole studies. After successful operations of the Tevatron AC dipole system, AC dipole systems, similar to that in the Tevatron, will be build for the CERN LHC. We present several measurements of linear optical parameters (beta function and phase advance) for the Tevatron, as well as studies of non-linear perturbations from sextupole and octupole elements.« less
32 CFR 636.33 - Vehicle safety inspection criteria.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION (SPECIFIC INSTALLATIONS) Fort... the front and rear. This requirement does not apply to any motorcycle or motor-driven cycle... starburst or spider webbing effect greater than 3 inches by 3 inches. No opaque or solid material including...
32 CFR 636.33 - Vehicle safety inspection criteria.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION (SPECIFIC INSTALLATIONS) Fort... the front and rear. This requirement does not apply to any motorcycle or motor-driven cycle... starburst or spider webbing effect greater than 3 inches by 3 inches. No opaque or solid material including...
32 CFR 636.33 - Vehicle safety inspection criteria.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION (SPECIFIC INSTALLATIONS) Fort... the front and rear. This requirement does not apply to any motorcycle or motor-driven cycle... starburst or spider webbing effect greater than 3 inches by 3 inches. No opaque or solid material including...
Pan, Qiaosheng; Miao, Enming; Wu, Bingxuan; Chen, Weikang; Lei, Xiujun; He, Liangguo
2017-07-01
A novel, bio-inspired, single-phase driven piezoelectric linear motor (PLM) using an asymmetric stator was designed, fabricated, and tested to avoid mode degeneracy and to simplify the drive mechanism of a piezoelectric motor. A piezoelectric transducer composed of two piezoelectric stacks and a displacement amplifier was used as the driving element of the PLM. Two simple and specially designed claws performed elliptical motion. A numerical simulation was performed to design the stator and determine the feasibility of the design mechanism of the PLM. Moreover, an experimental setup was built to validate the working principles, as well as to evaluate the performance, of the PLM. The prototype motor outputs a no-load speed of 233.7 mm/s at a voltage of 180 V p-p and a maximum thrust force of 2.3 N under a preload of 10 N. This study verified the feasibility of the proposed design and provided a method to simplify the driving harmonic signal and structure of PLMs.
Hanson, Thomas F.
1982-01-01
A Magnus effect windmill for generating electrical power is disclosed. A large nacelle-hub mounted pivotally (in Azimuth) atop a support tower carries, in the example disclosed, three elongated barrels arranged in a vertical plane and extending symmetrically radially outwardly from the nacelle. The system provides spin energy to the barrels by internal mechanical coupling in the proper sense to cause, in reaction to an incident wind, a rotational torque of a predetermined sense on the hub. The rotating hub carries a set of power take-off rollers which ride on a stationary circular track in the nacelle. Shafts carry the power, given to the rollers by the wind driven hub, to a central collector or accumulator gear assembly whose output is divided to drive the spin mechanism for the Magnus barrels and the main electric generator. A planetary gear assembly is interposed between the collector gears and the spin mechanism functioning as a differential which is also connected to an auxiliary electric motor whereby power to the spin mechanism may selectively be provided by the motor. Generally, the motor provides initial spin to the barrels for start-up after which the motor is braked and the spin mechanism is driven as though by a fixed ratio coupling from the rotor hub. During high wind or other unusual conditions, the auxiliary motor may be unbraked and excess spin power may be used to operate the motor as a generator of additional electrical output. Interposed between the collector gears of the rotating hub and the main electric generator is a novel variable speed drive-fly wheel system which is driven by the variable speed of the wind driven rotor and which, in turn, drives the main electric generator at constant angular speed. Reference is made to the complete specification for disclosure of other novel aspects of the system such as, for example, the aerodynamic and structural aspects of the novel Magnus barrels as well as novel gearing and other power coupling combination apparatus of the invention. A reading of the complete specification is recommended for a full understanding of the principles and features of the disclosed system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockerbie, N. A.; Tokmakov, K. V.
This paper describes the design of, and results from, a calibration system for optical linear displacement (shadow) sensors. The shadow sensors were designed to detect “Violin-Mode” (VM) resonances in the 0.4 mm diameter silica fibre suspensions of the test masses/mirrors of Advanced Laser Interferometer Gravitational Wave Observatory gravitational wave interferometers. Each sensor illuminated the fibre under test, so as to cast its narrow shadow onto a “synthesized split photodiode” detector, the shadow falling over adjacent edges of the paired photodiodes. The apparatus described here translated a vertically orientated silica test fibre horizontally through a collimated Near InfraRed illuminating beam, whilstmore » simultaneously capturing the separate DC “shadow notch” outputs from each of the paired split photodiode detectors. As the ratio of AC to DC photocurrent sensitivities to displacement was known, a calibration of the DC response to quasi-static shadow displacement allowed the required AC sensitivity to vibrational displacement to be found. Special techniques are described for generating the required constant scan rate for the test fibre using a DC motor-driven stage, for removing “jitter” at such low translation rates from a linear magnetic encoder, and so for capturing the two shadow-notch signals at each micrometre of the test fibre's travel. Calibration, across the four detectors of this work, gave a vibrational responsivity in voltage terms of (9.45 ± 1.20) MV (rms)/m, yielding a VM displacement sensitivity of (69 ± 13) pm (rms)/√Hz, at 500 Hz, over the required measuring span of ±0.1 mm.« less
The role of awake craniotomy in reducing intraoperative visual field deficits during tumor surgery
Wolfson, Racheal; Soni, Neil; Shah, Ashish H.; Hosein, Khadil; Sastry, Ananth; Bregy, Amade; Komotar, Ricardo J.
2015-01-01
Objective: Homonymous hemianopia due to damage to the optic radiations or visual cortex is a possible consequence of tumor resection involving the temporal or occipital lobes. The purpose of this review is to present and analyze a series of studies regarding the use of awake craniotomy (AC) to decrease visual field deficits following neurosurgery. Materials and Methods: A literature search was performed using the Medline and PubMed databases from 1970 and 2014 that compared various uses of AC other than intraoperative motor/somatosensory/language mapping with a focus on visual field mapping. Results: For the 17 patients analyzed in this study, 14 surgeries resulted in quadrantanopia, 1 in hemianopia, and 2 without visual deficits. Overall, patient satisfaction with AC was high, and AC was a means to reduce surgery-related complications and cost related with the procedure. Conclusion AC is a safe and tolerable procedure that can be used effectively to map optic radiations and the visual cortices in order to preserve visual function during resection of tumors infiltrating the temporal and occipital lobes. In the majority of cases, a homonymous hemianopia was prevented and patients were left with a quadrantanopia that did not interfere with daily function. PMID:26396597
Motor-driven screwing and transporting tool for reactor pressure vessel head retaining fastenings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholz, M.
1977-09-13
The invention concerns a motor-driven screwing and transporting tool for tightening or loosening the threaded studs and associated tightening nuts of the head bolting of pressure vessels. After the tightening nuts are loosened or before they are tightened, the weight of the studs is taken over by rotating bearings that can be lifted, so that the studs with their tightening nuts can be screwed in or out, the screw threads of the studs being thus weight-relieved. The invention is intended primarily for nuclear reactor pressure vessels. 21 claims, 6 figures.
Advanced motor driven clamped borehole seismic receiver
Engler, Bruce P.; Sleefe, Gerard E.; Striker, Richard P.
1993-01-01
A borehole seismic tool including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric meter in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.
Note: Motor-piezoelectricity coupling driven high temperature fatigue device
NASA Astrophysics Data System (ADS)
Ma, Z. C.; Du, X. J.; Zhao, H. W.; Ma, X. X.; Jiang, D. Y.; Liu, Y.; Ren, L. Q.
2018-01-01
The design and performance evaluation of a novel high temperature fatigue device simultaneously driven by servo motor and piezoelectric actuator is our focus. The device integrates monotonic and cyclic loading functions with a maximum tensile load of 1800 N, driving frequency of 50 Hz, alternating load of 95 N, and maximum service temperature of 1200 °C. Multimodal fatigue tests with arbitrary combinations of static and dynamic loads are achieved. At temperatures that range from RT to 1100 °C, the tensile and tensile-fatigue coupling mechanical behaviors of UM Co50 alloys are investigated to verify the feasibility of the device.
Domain Wall Depinning in Random Media by ac Fields
NASA Astrophysics Data System (ADS)
Glatz, A.; Nattermann, T.; Pokrovsky, V.
2003-01-01
The viscous motion of an interface driven by an ac external field of frequency ω0 in a random medium is considered here in the nonadiabatic regime. The velocity exhibits a smeared depinning transition showing a double hysteresis which is absent in the adiabatic case ω0→0. Using scaling arguments and an approximate renormalization group calculation we explain the main characteristics of the hysteresis loop. In the low frequency limit these can be expressed in terms of the depinning threshold and the critical exponents of the adiabatic case.
Hershkovitz, Avital; Angel, Corina; Brill, Shai; Nissan, Ran
2018-04-01
Anticholinergic (AC) drugs are associated with significant impairment in cognitive and physical function which may affect rehabilitation in older people. We aimed to evaluate whether AC burden is associated with rehabilitation achievement in post-acute hip-fractured patients. A retrospective cohort study carried out in a post-acute geriatric rehabilitation center on 1019 hip-fractured patients admitted from January 2011 to October 2015. The Anticholinergic Cognitive Burden Scale (ACB) was used to quantify the AC burden. Main outcome measures included the Functional Independence Measure (FIM) instrument, motor FIM (mFIM), Montebello Rehabilitation Factor Score (MRFS) on the mFIM, and length of stay (LOS). The study population was divided into two groups: individuals with low admission AC burden (ACB ≤ 1) and those with high admission AC burden (ACB ≥ 2). The relationship between the admission AC burden and clinical, demographic and comorbidity variables was assessed using the Mann-Whitney and Chi square tests. A multiple linear regression model was used to estimate the association between admission AC burden and discharge FIM score after controlling for sociodemographic characteristics and chronic diseases. Patients with a high admission AC burden had a significantly higher rate of high education, a significantly lower rate reside at home, they waited a longer period of time from surgery to rehabilitation, were less independent pre-fracture, and presented with a higher rate of vascular disorders and depression compared with patients with a lower admission AC burden. These patients also exhibited a significantly lower FIM score on admission and at discharge, a lower FIM score change, and a lower achievement on the MRFS compared with patients with a lower admission AC burden. A multiple linear regression analysis showed that admission AC burden was significantly associated with the discharge FIM score after adjustment for confounding variables. High admission AC drug burden is significantly associated with less favorable discharge functional status in post-acute hip-fractured patients, independent of relevant risk factors.
Sawhney, Monakshi; Mehdian, Hossein; Kashin, Brian; Ip, Gregory; Bent, Maurice; Choy, Joyce; McPherson, Mark; Bowry, Richard
2016-06-01
Total knee arthroplasty is a painful surgery that requires early mobilization for successful joint function. Multimodal analgesia, including spinal analgesia, nerve blocks, periarticular infiltration (PI), opioids, and coanalgesics, has been shown to effectively manage postoperative pain. Both adductor canal (AC) and PI have been shown to manage pain without significantly impairing motor function. However, it is unclear which technique is most effective. This 3-arm trial examined the effect of AC block with PI (AC + PI) versus AC block only (AC) versus PI only (PI). The primary outcome was pain on walking at postoperative day (POD) 1. One hundred fifty-one patients undergoing unilateral total knee arthroplasty were included. Patients received either AC block with 30 mL of 0.5% ropivacaine or sham block. PI was performed intraoperatively with a 110-mL normal saline solution containing 300 mg ropivacaine, 10 mg morphine, and 30 mg ketorolac. Those patients randomly assigned to AC only received normal saline knee infiltration. On POD 1, participants who received AC + PI reported significantly lower pain numeric rating scale scores on walking (3.3) compared with those who received AC (6.2) or PI (4.9) (P < 0.0001). Participants who received AC reported significantly higher pain scores at rest and knee bend compared with those who received AC + PI or PI (P < 0.0001). The difference in pain scores between participants who received AC + PI and those who received AC was 2.83 (95% confidence interval, 1.58-4.09) and the difference between those who received AC + PI and those who received PI was 1.61 (95% confidence interval, 0.37-2.86). On POD 2, participants who received AC + PI reported significantly less pain on walking (4.4) compared with those who received AC (5.6) or PI (5.6) (P = 0.006). On POD 2, there was no difference between the groups for pain at rest or knee bending. Participants who received AC used more IV patient-controlled analgesia on POD 0. There was no difference between the groups regarding distance walked. Participants who received AC + PI reported significantly less pain on walking on PODs 1 and 2 compared with those who received AC only or PI only.
3. Photocopy of photograph, c. 1904. INTERIOR OF ORIGINAL POWER ...
3. Photocopy of photograph, c. 1904. INTERIOR OF ORIGINAL POWER HOUSE, SHOWING A ROPE DRIVEN WARREN 450 KW, 12,000 VOLT (LATER REWOUND TO 2,200 VOLT), 3 PHASE, 60 CYCLE, A.C. GENERATOR, WITH BELT-DRIVEN WARREN 7-1/2 KW, 125 VOLT, 4 POLE, 1,150 RPM EXCITER. (Courtesy of the Potomac Edison Company Library, Historical Data Files, Dam No. 5 listing) - Dam No. 5 Hydroelectric Plant, On Potomac River, Hedgesville, Berkeley County, WV
NASA Astrophysics Data System (ADS)
Mazilu, Irina; Gonzalez, Joshua
2008-03-01
From the point of view of a physicist, a bio-molecular motor represents an interesting non-equilibrium system and it is directly amenable to an analysis using standard methods of non-equilibrium statistical physics. We conduct a rigorous Monte Carlo study of three different driven lattice gas models that retain the basic behavior of three types of cytoskeletal molecular motors. Our models incorporate novel features such as realistic dynamics rules and complex motor-motor interactions. We are interested to have a deeper understanding of how various parameters influence the macroscopic behavior of these systems, what is the density profile and if the system undergoes a phase transition. On the analytical front, we computed the steady-state probability distributions exactly for the one of the models using the matrix method that was established in 1993 by B. Derrida et al. We also explored the possibilities offered by the ``Bethe ansatz'' method by mapping some well studied spin models into asymmetric simple exclusion models (already analyzed using computer simulations), and to use the results obtained for the spin models in finding an exact solution for our problem. We have exhaustive computational studies of the kinesin and dynein molecular motor models that prove to be very useful in checking our analytical work.
Microtubule defects influence kinesin-based transport in vitro.
NASA Astrophysics Data System (ADS)
Xu, Jing
Microtubules are protein polymers that form ``molecular highways'' for long-range transport within living cells. Molecular motors actively step along microtubules to shuttle cellular materials between the nucleus and the cell periphery; this transport is critical for the survival and health of all eukaryotic cells. Structural defects in microtubules exist, but whether these defects impact molecular motor-based transport remains unknown. Here, we report a new, to our knowledge, approach that allowed us to directly investigate the impact of such defects. Using a modified optical-trapping method, we examined the group function of a major molecular motor, conventional kinesin, when transporting cargos along individual microtubules. We found that microtubule defects influence kinesin-based transport in vitro. The effects depend on motor number: cargos driven by a few motors tended to unbind prematurely from the microtubule, whereas cargos driven by more motors tended to pause. To our knowledge, our study provides the first direct link between microtubule defects and kinesin function. The effects uncovered in our study may have physiological relevance in vivo. Supported by the UC Merced (to J.X.), NIH (NS048501 to S.J.K.), NSF (EF-1038697 to A.G.), and the James S. McDonnell Foundation (to A.G.). Work carried out at the Aspen Center for Physics was supported by NSF Grant PHY-1066293.
Engineered tug-of-war between kinesin and dynein controls direction of microtubule transport in vivo
Rezaul, Karim; Gupta, Dipika; Semenova, Irina; Ikeda, Kazuho; Kraikivski, Pavel; Yu, Ji; Cowan, Ann; Zaliapin, Ilya; Rodionov, Vladimir
2017-01-01
Bidirectional transport of membrane organelles along microtubules (MTs) is driven by plus-end directed kinesins and minus-end directed dynein bound to the same cargo. Activities of opposing MT motors produce bidirectional movement of membrane organelles and cytoplasmic particles along MT transport tracks. Directionality of MT-based transport might be controlled by a protein complex that determines which motor type is active at any given moment of time, or determined by the outcome of a tug-of-war between MT motors dragging cargo organelles in opposite directions. However, evidence in support of each mechanisms of regulation is based mostly on the results of theoretical analyses or indirect experimental data. Here, we test whether the direction of movement of membrane organelles in vivo can be controlled by the tug-of-war between opposing MT motors alone, by attaching large number of kinesin-1 motors to organelles transported by dynein to minus-ends of MTs. We find that recruitment of kinesin significantly reduces the length and velocity of minus-end-directed dynein-dependent MT runs, leading to a reversal of the overall direction of dynein-driven organelles in vivo. Therefore in the absence of external regulators tug-of-war between opposing MT motors alone is sufficient to determine the directionality of MT transport in vivo. PMID:26843027
Gao, Yunfeng; Spahn, Christoph; Heilemann, Mike; Kenney, Linda J
2018-06-19
Bacterial pathogens exploit eukaryotic pathways for their own end. Upon ingestion, Salmonella enterica serovar Typhimurium passes through the stomach and then catalyzes its uptake across the intestinal epithelium. It survives and replicates in an acidic vacuole through the action of virulence factors secreted by a type three secretion system located on Salmonella pathogenicity island 2 (SPI-2). Two secreted effectors, SifA and SseJ, are sufficient for endosomal tubule formation, which modifies the vacuole and enables Salmonella to replicate within it. Two-color, superresolution imaging of the secreted virulence factor SseJ and tubulin revealed that SseJ formed clusters of conserved size at regular, periodic intervals in the host cytoplasm. Analysis of SseJ clustering indicated the presence of a pearling effect, which is a force-driven, osmotically sensitive process. The pearling transition is an instability driven by membranes under tension; it is induced by hypotonic or hypertonic buffer exchange and leads to the formation of beadlike structures of similar size and regular spacing. Reducing the osmolality of the fixation conditions using glutaraldehyde enabled visualization of continuous and intact tubules. Correlation analysis revealed that SseJ was colocalized with the motor protein kinesin. Tubulation of the endoplasmic reticulum is driven by microtubule motors, and in the present work, we describe how Salmonella has coopted the microtubule motor kinesin to drive the force-dependent process of endosomal tubulation. Thus, endosomal tubule formation is a force-driven process catalyzed by Salmonella virulence factors secreted into the host cytoplasm during infection. IMPORTANCE This study represents the first example of using two-color, superresolution imaging to analyze the secretion of Salmonella virulence factors as they are secreted from the SPI-2 type three secretion system. Previous studies imaged effectors that were overexpressed in the host cytoplasm. The present work reveals an unusual force-driven process, the pearling transition, which indicates that Salmonella -induced filaments are under force through the interactions of effector molecules with the motor protein kinesin. This work provides a caution by highlighting how fixation conditions can influence the images observed.
A dry-cooled AC quantum voltmeter
NASA Astrophysics Data System (ADS)
Schubert, M.; Starkloff, M.; Peiselt, K.; Anders, S.; Knipper, R.; Lee, J.; Behr, R.; Palafox, L.; Böck, A. C.; Schaidhammer, L.; Fleischmann, P. M.; Meyer, H.-G.
2016-10-01
The paper describes a dry-cooled AC quantum voltmeter system operated up to kilohertz frequencies and 7 V rms. A 10 V programmable Josephson voltage standard (PJVS) array was installed on a pulse tube cooler (PTC) driven with a 4 kW air-cooled compressor. The operating margins at 70 GHz frequencies were investigated in detail and found to exceed 1 mA Shapiro step width. A key factor for the successful chip operation was the low on-chip power consumption of 65 mW in total. A thermal interface between PJVS chip and PTC cold stage was used to avoid a significant chip overheating. By installing the cryocooled PJVS array into an AC quantum voltmeter setup, several calibration measurements of dc standards and calibrator ac voltages up to 2 kHz frequencies were carried out to demonstrate the full functionality. The results are discussed and compared to systems with standard liquid helium cooling. For dc voltages, a direct comparison measurement between the dry-cooled AC quantum voltmeter and a liquid-helium based 10 V PJVS shows an agreement better than 1 part in 1010.
Torque ripple reduction of brushless DC motor based on adaptive input-output feedback linearization.
Shirvani Boroujeni, M; Markadeh, G R Arab; Soltani, J
2017-09-01
Torque ripple reduction of Brushless DC Motors (BLDCs) is an interesting subject in variable speed AC drives. In this paper at first, a mathematical expression for torque ripple harmonics is obtained. Then for a non-ideal BLDC motor with known harmonic contents of back-EMF, calculation of desired reference current amplitudes, which are required to eliminate some selected harmonics of torque ripple, are reviewed. In order to inject the reference harmonic currents to the motor windings, an Adaptive Input-Output Feedback Linearization (AIOFBL) control is proposed, which generates the reference voltages for three phases voltage source inverter in stationary reference frame. Experimental results are presented to show the capability and validity of the proposed control method and are compared with the vector control in Multi-Reference Frame (MRF) and Pseudo-Vector Control (P-VC) method results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Prakashan, A.; Mukunda, H. S.; Samuel, S. D.; Colaco, J. C.
1992-11-01
This paper addresses the design and development of a four degree of freedom industrial manipulator, with three liner axes in the positioning mechanism and one rotary axis in the orientation mechanism. The positioning mechanism joints are driven with dc servo motors fitted with incremental shaft encoders. The rotary joint of the orientation mechanism is driven by a stepping motor. The manipulator is controlled by an IBM 386 PC/AT. Microcomputer based interface cards have been developed for independent joint control. PID controllers for dc motors have been designed. Kinematic modeling, dynamic modeling, and path planning have been carried out to generate the control sequence to accomplish a given task with reference to source and destination state constraints. This project has been sponsored by the Department of Science and Technology, Government of India, New Delhi, and has been executed in collaboration with M/s Larsen & Toubro Ltd, Mysore, India.
Data-Driven Based Asynchronous Motor Control for Printing Servo Systems
NASA Astrophysics Data System (ADS)
Bian, Min; Guo, Qingyun
Modern digital printing equipment aims to the environmental-friendly industry with high dynamic performances and control precision and low vibration and abrasion. High performance motion control system of printing servo systems was required. Control system of asynchronous motor based on data acquisition was proposed. Iterative learning control (ILC) algorithm was studied. PID control was widely used in the motion control. However, it was sensitive to the disturbances and model parameters variation. The ILC applied the history error data and present control signals to approximate the control signal directly in order to fully track the expect trajectory without the system models and structures. The motor control algorithm based on the ILC and PID was constructed and simulation results were given. The results show that data-driven control method is effective dealing with bounded disturbances for the motion control of printing servo systems.
Development of an electrically driven molecular motor.
Murphy, Colin J; Sykes, E Charles H
2014-10-01
For molecules to be used as components in molecular machinery, methods are required that couple individual molecules to external energy sources in order to selectively excite motion in a given direction. While significant progress has been made in the construction of synthetic molecular motors powered by light and by chemical reactions, there are few experimental examples of electrically driven molecular motors. To this end, we pioneered the use of a new, stable and tunable molecular rotor system based on surface-bound thioethers to comprehensively study many aspects of molecular rotation. As biological molecular motors often operate at interfaces, our synthetic system is especially amenable to microscopic interrogation as compared to solution-based systems. Using scanning tunneling microscopy (STM) and density functional theory, we studied the rotation of surface-bound thioethers, which can be induced either thermally or by electrons from the STM tip in a two-terminal setup. Moreover, the temperature and electron flux can be adjusted to allow each rotational event to be monitored at the molecular scale in real time. This work culminated in the first experimental demonstration of a single-molecule electric motor, where the electrically driven rotation of a butyl methyl sulfide molecule adsorbed on a copper surface could be directionally biased. The direction and rate of the rotation are related to the chirality of both the molecule and the STM tip (which serves as the electrode), illustrating the importance of the symmetry of the metal contacts in atomic-scale electrical devices. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Belluscio, Mariano A; Riquelme, Luis A; Murer, M Gustavo
2007-05-01
During movement, inhibitory neurons in the basal ganglia output nuclei show complex modulations of firing, which are presumptively driven by corticostriatal and corticosubthalamic input. Reductions in discharge should facilitate movement by disinhibiting thalamic and brain stem nuclei while increases would do the opposite. A proposal that nigrostriatal dopamine pathway degeneration disrupts trans-striatal pathways' balance resulting in sustained overactivity of basal ganglia output nuclei neurons and Parkinson's disease clinical signs is not fully supported by experimental evidence, which instead shows abnormal synchronous oscillatory activity in animal models and patients. Yet, the possibility that variation in motor cortex activity drives transient overactivity in output nuclei neurons in parkinsonism has not been explored. In Sprague-Dawley rats with 6-hydroxydopamine (6-OHDA)-induced nigrostriatal lesions, approximately 50% substantia nigra pars reticulata (SNpr) units show abnormal cortically driven slow oscillations of discharge. Moreover, these units selectively show abnormal responses to motor cortex stimulation consisting in augmented excitations of an odd latency, which overlapped that of inhibitory responses presumptively mediated by the trans-striatal direct pathway in control rats. Delivering D1 or D2 dopamine agonists into the striatum of parkinsonian rats by reverse microdialysis reduced these abnormal excitations but had no effect on pathological oscillations. The present study establishes that dopamine-deficiency related changes of striatal function contribute to producing abnormally augmented excitatory responses to motor cortex stimulation in the SNpr. If a similar transient overactivity of basal ganglia output were driven by motor cortex input during movement, it could contribute to impeding movement initiation or execution in Parkinson's disease.
Straley, Megan E; Van Oeffelen, Wesley; Theze, Sarah; Sullivan, Aideen M; O'Mahony, Siobhain M; Cryan, John F; O'Keeffe, Gerard W
2017-07-01
The dopaminergic system is involved in motivation, reward and the associated motor activities. Mesodiencephalic dopaminergic neurons in the ventral tegmental area (VTA) regulate motivation and reward, whereas those in the substantia nigra (SN) are essential for motor control. Defective VTA dopaminergic transmission has been implicated in schizophrenia, drug addiction and depression whereas dopaminergic neurons in the SN are lost in Parkinson's disease. Maternal immune activation (MIA) leading to in utero inflammation has been proposed to be a risk factor for these disorders, yet it is unclear how this stimulus can lead to the diverse disturbances in dopaminergic-driven behaviors that emerge at different stages of life in affected offspring. Here we report that gestational age is a critical determinant of the subsequent alterations in dopaminergic-driven behavior in rat offspring exposed to lipopolysaccharide (LPS)-induced MIA. Behavioral analysis revealed that MIA on gestational day 16 but not gestational day 12 resulted in biphasic impairments in motor behavior. Specifically, motor impairments were evident in early life, which were resolved by adolescence, but subsequently re-emerged in adulthood. In contrast, reward seeking behaviors were altered in offspring exposed MIA on gestational day 12. These changes were not due to a loss of dopaminergic neurons per se in the postnatal period, suggesting that they reflect functional changes in dopaminergic systems. This highlights that gestational age may be a key determinant of how MIA leads to distinct alterations in dopaminergic-driven behavior across the lifespan of affected offspring. Copyright © 2016 Elsevier Inc. All rights reserved.
Constant Switching Frequency DTC for Matrix Converter Fed Speed Sensorless Induction Motor Drive
NASA Astrophysics Data System (ADS)
Mir, Tabish Nazir; Singh, Bhim; Bhat, Abdul Hamid
2018-05-01
The paper presents a constant switching frequency scheme for speed sensorless Direct Torque Control (DTC) of Matrix Converter fed Induction Motor Drive. The use of matrix converter facilitates improved power quality on input as well as motor side, along with Input Power Factor control, besides eliminating the need for heavy passive elements. Moreover, DTC through Space Vector Modulation helps in achieving a fast control over the torque and flux of the motor, with added benefit of constant switching frequency. A constant switching frequency aids in maintaining desired power quality of AC mains current even at low motor speeds, and simplifies input filter design of the matrix converter, as compared to conventional hysteresis based DTC. Further, stator voltage estimation from sensed input voltage, and subsequent stator (and rotor) flux estimation is done. For speed sensorless operation, a Model Reference Adaptive System is used, which emulates the speed dependent rotor flux equations of the induction motor. The error between conventionally estimated rotor flux (reference model) and the rotor flux estimated through the adaptive observer is processed through PI controller to generate the rotor speed estimate.
Expertise-related deactivation of the right temporoparietal junction during musical improvisation.
Berkowitz, Aaron L; Ansari, Daniel
2010-01-01
Musical training has been associated with structural changes in the brain as well as functional differences in brain activity when musicians are compared to nonmusicians on both perceptual and motor tasks. Previous neuroimaging comparisons of musicians and nonmusicians in the motor domain have used tasks involving prelearned motor sequences or synchronization with an auditorily presented sequence during the experiment. Here we use functional magnetic resonance imaging (fMRI) to examine expertise-related differences in brain activity between musicians and nonmusicians during improvisation--the generation of novel musical-motor sequences--using a paradigm that we previously used in musicians alone. Despite behaviorally matched performance, the two groups showed significant differences in functional brain activity during improvisation. Specifically, musicians deactivated the right temporoparietal junction (rTPJ) during melodic improvisation, while nonmusicians showed no change in activity in this region. The rTPJ is thought to be part of a ventral attentional network for bottom-up stimulus-driven processing, and it has been postulated that deactivation of this region occurs in order to inhibit attentional shifts toward task-irrelevant stimuli during top-down, goal-driven behavior. We propose that the musicians' deactivation of the rTPJ during melodic improvisation may represent a training-induced shift toward inhibition of stimulus-driven attention, allowing for a more goal-directed performance state that aids in creative thought.
The Cost of Brain Surgery: Awake vs Asleep Craniotomy for Perirolandic Region Tumors.
Eseonu, Chikezie I; Rincon-Torroella, Jordina; ReFaey, Karim; Quiñones-Hinojosa, Alfredo
2017-08-01
Cost effectiveness has become an important factor in the health care system, requiring surgeons to improve efficacy of procedures while reducing costs. An awake craniotomy (AC) with direct cortical stimulation (DCS) presents one method to resect eloquent region tumors; however, some authors assert that this procedure is an expensive alternative to surgery under general anesthesia (GA) with neuromonitoring. To evaluate the cost effectiveness and clinical outcomes between AC and GA patients. Retrospective analysis of a cohort of 17 patients with perirolandic gliomas who underwent an AC with DCS were case-control matched with 23 patients with perirolandic gliomas who underwent surgery under GA with neuromonitoring (ie, motor-evoked potentials, somatosensory-evoked potentials, phase reversal). Inpatient costs, quality-adjusted life years (QALY), extent of resection, and neurological outcome were compared between the groups. Total inpatient expense per patient was $34 804 in the AC group and $46 798 in the GA group ( P = .046). QALY score for the AC group was 0.97 and 0.47 for the GA group ( P = .041). The incremental cost per QALY for the AC group was $82 720 less than the GA group. Postoperative Karnofsky performance status was 91.8 in the AC group and 81.3 in the GA group (P = .047). Length of hospitalization was 4.12 days in the AC group and 7.61 days in the GA group ( P = .049). The total inpatient costs for awake craniotomies were lower than surgery under GA. This study suggests better cost effectiveness and neurological outcome with awake craniotomies for perirolandic gliomas. Copyright © 2017 by the Congress of Neurological Surgeons
NASA Astrophysics Data System (ADS)
Yamamoto, Kichiro; Shinohara, Katsuji; Furukawa, Shinya
An interior permanent magnet (IPM) motor drive system which has regenerating capability augmented by double-layer capacitors is proposed. The motor is driven by a PWM inverter with voltage booster. The voltage booster is used to control the dc link voltage in high speed region to improve the system efficiency. Furthermore, the double-layer capacitor as a storage element is combined with the PWM inverter with voltage booster to gain the efficiency for the regenerating operation. In this system, normally, the regenerative power does not return to a battery directly but is stored in the double-layer capacitors for the next motoring action to suppress the excessive regenerative current to battery, and the regenerative power returns to the battery when the regenerative energy is larger than a certain value. The charging current to the battery is controlled to a constant value to extend the life-time of the battery. The transient and steady state characteristics of the system for 1.5kW IPM motor are investigated by both simulation and experiment. Finally, the effectiveness of the system is demonstrated by the simulated and experimental results.
A nano universal joint made from curved double-walled carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Kun; Cai, Haifang; Shi, Jiao
2015-06-15
A nano universal joint is constructed from curved double-wall carbon nanotubes with a short outer tube as stator and a long inner tube as a rotor. When one end of the rotor is driven (by a rotary motor) to rotate, the same rotational speed but with different rotational direction will be induced at the other end of the rotor. This mechanism makes the joint useful for designing a flexible nanodevice with an adjustable output rotational signal. The motion transmission effect of the universal joint is analyzed using a molecular dynamics simulation approach. In particular, the effects of three factors aremore » investigated. The first factor is the curvature of the stator, which produces a different rotational direction of the rotor at the output end. The second is the bonding conditions of carbon atoms on the adjacent tube ends of the motor and the rotor, sp{sup 1} or sp{sup 2} atoms, which create different attraction between the motor and the rotor. The third is the rotational speed of the motor, which can be considered as the input signal of the universal joint. It is noted that the rotor's rotational speed is usually the same as that of the motor when the carbon atoms on the adjacent ends of the motor and the rotor are sp{sup 1} carbon atoms. When they become the new sp{sup 2} atoms, the rotor experiences a jump in rotational speed from a lower value to that of the motor. The mechanism of drops in potential of the motor is revealed. If the carbon atoms on the adjacent ends are sp{sup 2} atoms, the rotor rotates more slowly than the motor, whereas the rotational speed is stable when driven by a higher speed motor.« less
A nano universal joint made from curved double-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Cai, Kun; Cai, Haifang; Shi, Jiao; Qin, Qing H.
2015-06-01
A nano universal joint is constructed from curved double-wall carbon nanotubes with a short outer tube as stator and a long inner tube as a rotor. When one end of the rotor is driven (by a rotary motor) to rotate, the same rotational speed but with different rotational direction will be induced at the other end of the rotor. This mechanism makes the joint useful for designing a flexible nanodevice with an adjustable output rotational signal. The motion transmission effect of the universal joint is analyzed using a molecular dynamics simulation approach. In particular, the effects of three factors are investigated. The first factor is the curvature of the stator, which produces a different rotational direction of the rotor at the output end. The second is the bonding conditions of carbon atoms on the adjacent tube ends of the motor and the rotor, sp1 or sp2 atoms, which create different attraction between the motor and the rotor. The third is the rotational speed of the motor, which can be considered as the input signal of the universal joint. It is noted that the rotor's rotational speed is usually the same as that of the motor when the carbon atoms on the adjacent ends of the motor and the rotor are sp1 carbon atoms. When they become the new sp2 atoms, the rotor experiences a jump in rotational speed from a lower value to that of the motor. The mechanism of drops in potential of the motor is revealed. If the carbon atoms on the adjacent ends are sp2 atoms, the rotor rotates more slowly than the motor, whereas the rotational speed is stable when driven by a higher speed motor.
30 CFR 18.62 - Tests to determine explosion-proof characteristics.
Code of Federal Regulations, 2013 CFR
2013-07-01
... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES... be varied. Motor armatures and/or rotors will be stationary in some tests and revolving in others... distortion of the enclosure exceeding 0.040 inch per linear foot. (c) When a pressure exceeding 125 pounds...
30 CFR 18.62 - Tests to determine explosion-proof characteristics.
Code of Federal Regulations, 2014 CFR
2014-07-01
... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES... be varied. Motor armatures and/or rotors will be stationary in some tests and revolving in others... distortion of the enclosure exceeding 0.040 inch per linear foot. (c) When a pressure exceeding 125 pounds...
30 CFR 18.62 - Tests to determine explosion-proof characteristics.
Code of Federal Regulations, 2012 CFR
2012-07-01
... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES... be varied. Motor armatures and/or rotors will be stationary in some tests and revolving in others... distortion of the enclosure exceeding 0.040 inch per linear foot. (c) When a pressure exceeding 125 pounds...
30 CFR 18.62 - Tests to determine explosion-proof characteristics.
Code of Federal Regulations, 2011 CFR
2011-07-01
... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES... be varied. Motor armatures and/or rotors will be stationary in some tests and revolving in others... distortion of the enclosure exceeding 0.040 inch per linear foot. (c) When a pressure exceeding 125 pounds...
30 CFR 18.62 - Tests to determine explosion-proof characteristics.
Code of Federal Regulations, 2010 CFR
2010-07-01
... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES... be varied. Motor armatures and/or rotors will be stationary in some tests and revolving in others... electrical components during some of the tests. Not less than 16 explosion tests shall be conducted; however...
30 CFR 18.48 - Circuit-interrupting devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and.... Such a switch shall be designed to prevent electrical connection to the machine frame when the cable is... motor in the event the belt is stopped, or abnormally slowed down. Note: Short transfer-type conveyors...
49 CFR 178.338-17 - Pumps and compressors.
Code of Federal Regulations, 2010 CFR
2010-10-01
... PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.338-17 Pumps and compressors. (a) Liquid pumps and gas compressors, if used, must be of suitable design, adequately protected against breakage by collision, and kept in good condition. They may be driven by motor vehicle power take...
49 CFR 178.337-15 - Pumps and compressors.
Code of Federal Regulations, 2010 CFR
2010-10-01
... PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.337-15 Pumps and compressors. (a) Liquid pumps or gas compressors, if used, must be of suitable design, adequately protected against breakage by collision, and kept in good condition. They may be driven by motor vehicle power take...
29 CFR 1926.902 - Surface transportation of explosives.
Code of Federal Regulations, 2010 CFR
2010-07-01
... electric) shall not be transported in the same vehicle with other explosives. (e) Vehicles used for... prevent contact with containers of explosives. (h) Every motor vehicle or conveyance used for transporting... Carriers. (b) Motor vehicles or conveyances transporting explosives shall only be driven by, and be in the...
18 CFR 367.3940 - Account 394, Tools, shop and garage equipment.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) Ladders. (21) Lathes. (22) Machine tools. (23) Motor-driven tools. (24) Motors. (25) Pipe threading and..., shop and garage equipment. 367.3940 Section 367.3940 Conservation of Power and Water Resources FEDERAL... equipment. (a) This account must include the cost of tools, implements, and equipment used in construction...
Structural optimization of the Halbach array PM rim thrust motor
NASA Astrophysics Data System (ADS)
Cao, Haichuan; Chen, Weihu
2018-05-01
The Rim-driven Thruster (RDT) integrates the thrust motor and the propeller, which can effectively reduce the space occupied by the propulsion system, improve the propulsion efficiency, and thus has important research value and broad market prospects. The Halbach Permanent Magnet Rim Thrust Motor (HPMRTM) can improve the torque density of the propulsion motor by utilizing the unilateral magnetic field of the Halbach array. In this paper, the numerical method is used to study the electromagnetic performance of the motor under different Halbach array parameters. The relationship between motor parameters such as air-gap flux density, electromagnetic torque and Halbach array parameters is obtained, and then the motor structure is optimized. By comparing with Common Permanent Magnet RTM, the advantages of HPMRTM are verified.
Are we drunk yet? Motor versus cognitive cues of subjective intoxication.
Celio, Mark A; Usala, Julie M; Lisman, Stephen A; Johansen, Gerard E; Vetter-O'Hagen, Courtney S; Spear, Linda P
2014-02-01
Perception of alcohol intoxication presumably plays an important role in guiding behavior during a current drinking episode. Yet, there has been surprisingly little investigation of what aspects associated with intoxication are used by individuals to attribute their level of intoxication. Building on recent laboratory-based findings, this study employed a complex field-based design to explore the relative contributions of motor performance versus cognitive performance-specifically executive control-on self-attributions of intoxication. Individuals recruited outside of bars (N = 280; mean age = 22; range: 18 to 32) completed a structured interview, self-report questionnaire, and neuropsychological testing battery, and provided a breath alcohol concentration (BrAC) sample. Results of a multiple linear regression analysis demonstrated that current level of subjective intoxication was associated with current alcohol-related stimulant effects, current sedative effects, and current BrAC. After controlling for the unique variance accounted for by these factors, subjective intoxication was better predicted by simple motor speed, as indexed by performance on the Finger Tapping Test, than by executive control, as indexed by performance on the Trail Making Test. These results-generated from data collected in a naturally occurring setting-support previous findings from a more traditional laboratory-based investigation, thus illustrating the iterative process of linking field methodology and controlled laboratory experimentation. Copyright © 2013 by the Research Society on Alcoholism.
Introduction to the Control of Electric Motors.
ERIC Educational Resources Information Center
Spencer, Frederick
The fundamentals of electric circuits and electric machines are presented in the text, with an emphasis on the practical operation rather than on mathematical analyses of theories involved. The material contained in the text includes the fundamentals of both D.C. and A.C. circuits together with the principles of magnetism and electro-magnetic…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Zilai; Gough, Charles
The goal of this Cooperative Agreement was the development of a Next Generation Inverter for General Motors’ electrified vehicles, including battery electric vehicles, range extended electric vehicles, plug-in hybrid electric vehicles and hybrid electric vehicles. The inverter is a critical electronics component that converts battery power (DC) to and from the electric power for the motor (AC).
Understanding the Design, Function and Testing of Relays
ERIC Educational Resources Information Center
Adams, Roger E.; Lindbloom, Trent
2006-01-01
The increased use of electronics in today's automobiles has complicated the control of circuits and actuators. Manufacturers use relays to control a variety of complex circuits--for example, those involving actuators and other components like the A/C clutch, electronic cooling fans, and blower motors. Relays allow a switch or processor to control…
Integrating Linguistic, Motor, and Perceptual Information in Language Production
ERIC Educational Resources Information Center
Frank, Austin F.
2011-01-01
Speakers show remarkable adaptability in updating and correcting their utterances in response to changes in the environment. When an interlocutor raises an eyebrow or the AC kicks on and introduces ambient noise, it seems that speakers are able to quickly integrate this information into their speech plans and adapt appropriately. This ability to…
Servomotors. (Latest Citations from the Aerospace Database)
NASA Technical Reports Server (NTRS)
1996-01-01
The bibliography contains citations concerning the design, testing, and application of servomotors. AC, DC, and brushless motor drives are discussed. Applications are examined, including use in hydraulic presses; teleprinters; machine tools; sewing machines; and servocontrol devices for instrumentation, robots, and aircraft control. Testing methods evaluate precision, vibration and vibration reduction, and stability of servomotors.
27. View looking to port from ship's centerline toward main ...
27. View looking to port from ship's centerline toward main electrical control panel, behind which is DC-AC motor-generator set. DC dynamo appears at lower right of image, waste water overflow pipe from hot well appears in upper right of image. - Ferry TICONDEROGA, Route 7, Shelburne, Chittenden County, VT
Automatic start control for a three-phase electric motor using infrared sensors
NASA Astrophysics Data System (ADS)
Echenique Lima, Mario; Ramírez Arenas, Francisco; Rodríguez Pedroza, Griselda
2006-02-01
We introduce equipment for the automatic activation of a three-phase electric motor (1Hp, 3A, 240V AC) using 2 infrared sensors monitored by a Microchip microcontroller PIC16F62x@4Mhz for the control of a filling system. This project was carried out to Fabrica de Chocolates y Dulces Costanzo, where the automatization of cacao grain supply was required for a machine in charge of cleaning the cacao from its rind. This process demanded the monitoring of the filling level to avoid the spill of toasted cacao.
The influence of L-acetylcarnitine on reinnervation of the oculomotor nerve.
Pettorossi, V E; Draicchio, F; Fernandez, E; Pallini, R
1993-01-01
In guinea-pigs the oral administration of L-acetylcarnitine (L-AC) markedly favours the process of reinnervation of the oculomotor nerve sectioned at intracranial level. The gains of the horizontal and vertical vestibulo-ocular reflexes (HVOR, VVOR) were taken into consideration in testing the functional recovery of the nerve. As a consequence of the drug administration, 24 weeks after the operation the gains of the treated animals were higher than those of the controls. Reduction of misalignments of the stimulus-response orientation was also observed in treated animals as compared to the controls. This suggests that L-AC potentiates motor reinnervation by enhancing the nerve-growing processes and favouring a better consolidation of the appropriate neuromuscular synapses. The increased gain, and the improvement of the alignment in ocular responses, due to L-AC would allow for an increase of visual function during head movement by optimizing gaze stability.
PWM Inverter control and the application thereof within electric vehicles
Geppert, Steven
1982-01-01
An inverter (34) which provides power to an A.C. machine (28) is controlled by a circuit (36) employing PWM control strategy whereby A.C. power is supplied to the machine at a preselectable frequency and preselectable voltage. This is accomplished by the technique of waveform notching in which the shapes of the notches are varied to determine the average energy content of the overall waveform. Through this arrangement, the operational efficiency of the A.C. machine is optimized. The control circuit includes a micro-computer and memory element which receive various parametric inputs and calculate optimized machine control data signals therefrom. The control data is asynchronously loaded into the inverter through an intermediate buffer (38). In its preferred embodiment, the present invention is incorporated within an electric vehicle (10) employing a 144 VDC battery pack (32) and a three-phase induction motor (18).
EV drivetrain inverter with V/HZ optimization
Gritter, David J.; O'Neil, Walter K.
1986-01-01
An inverter (34) which provides power to an A.C. machine (28) is controlled by a circuit (36) employing PWM control strategy whereby A.C. power is supplied to the machine at a preselectable frequency and preselectable voltage. This is accomplished by the technique of waveform notching in which the shapes of the notches are varied to determine the average energy content of the overall waveform. Through this arrangement, the operational efficiency of the A.C. machine is optimized. The control circuit includes a micro-computer which calculates optimized machine control data signals from various parametric inputs and during steady state load conditions, seeks a best V/HZ ratio to minimize battery current drawn (system losses) from a D.C. power source (32). In the preferred embodiment, the present invention is incorporated within an electric vehicle (10) employing a 144 VDC battery pack and a three-phase induction motor (18).
Astumian, R. Dean
2015-01-01
A simple model for a chemically driven molecular walker shows that the elastic energy stored by the molecule and released during the conformational change known as the power-stroke (i.e., the free-energy difference between the pre- and post-power-stroke states) is irrelevant for determining the directionality, stopping force, and efficiency of the motor. Further, the apportionment of the dependence on the externally applied force between the forward and reverse rate constants of the power-stroke (or indeed among all rate constants) is irrelevant for determining the directionality, stopping force, and efficiency of the motor. Arguments based on the principle of microscopic reversibility demonstrate that this result is general for all chemically driven molecular machines, and even more broadly that the relative energies of the states of the motor have no role in determining the directionality, stopping force, or optimal efficiency of the machine. Instead, the directionality, stopping force, and optimal efficiency are determined solely by the relative heights of the energy barriers between the states. Molecular recognition—the ability of a molecular machine to discriminate between substrate and product depending on the state of the machine—is far more important for determining the intrinsic directionality and thermodynamics of chemo-mechanical coupling than are the details of the internal mechanical conformational motions of the machine. In contrast to the conclusions for chemical driving, a power-stroke is very important for the directionality and efficiency of light-driven molecular machines and for molecular machines driven by external modulation of thermodynamic parameters. PMID:25606678
The effect of surface grain reversal on the AC losses of sintered Nd-Fe-B permanent magnets
NASA Astrophysics Data System (ADS)
Moore, Martina; Roth, Stefan; Gebert, Annett; Schultz, Ludwig; Gutfleisch, Oliver
2015-02-01
Sintered Nd-Fe-B magnets are exposed to AC magnetic fields in many applications, e.g. in permanent magnet electric motors. We have measured the AC losses of sintered Nd-Fe-B magnets in a closed circuit arrangement using AC fields with root mean square-values up to 80 mT (peak amplitude 113 mT) over the frequency range 50 to 1000 Hz. Two magnet grades with different dysprosium content were investigated. Around the remanence point the low grade material (1.7 wt% Dy) showed significant hysteresis losses; whereas the losses in the high grade material (8.9 wt% Dy) were dominated by classical eddy currents. Kerr microscopy images revealed that the hysteresis losses measured for the low grade magnet can be mainly ascribed to grains at the sample surface with multiple domains. This was further confirmed when the high grade material was subsequently exposed to DC and AC magnetic fields. Here a larger number of surface grains with multiple domains are also present once the step in the demagnetization curve attributed to the surface grain reversal is reached and a rise in the measured hysteresis losses is evident. If in the low grade material the operating point is slightly offset from the remanence point, such that zero field is not bypassed, its AC losses can also be fairly well described with classical eddy current theory.
Is a wake-up call in order? Review of the evidence for awake craniotomy.
Paldor, Iddo; Drummond, Katharine J; Awad, Mohammed; Sufaro, Yuval Z; Kaye, Andrew H
2016-01-01
Awake craniotomy (AC) has been used in increasing frequency in the past few decades. It has mainly been used for resection of intrinsic tumors, but also, rarely, for other pathologies. The vast majority of reports specific to one pathology, however, have focused on resection of low grade glioma in the awake setting. Tumors in eloquent areas have mainly been resected when the patient is awake for the purpose of preservation of function. Motor function is the most documented, and most successfully preserved function. Other functions are harder to localize with direct electrical stimulation (DES), and thus more difficult to preserve. The success rate of DES localization correlates to the rate of function preservation. The effect of AC on extent of resection is inconsistent in the literature. Other functions, such as sensory and visuospatial recognition, have been protected during AC, but this is best performed in large, referral centers that have experience with the procedure. Other benefits to AC, such as cost-effectiveness and reduction in patient pain and anxiety, have also been reported. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhou, Mingxu; Duan, Qiangde; Zhu, Xiaofang; Guo, Zhiyan; Li, Yinchau; Hardwidge, Philip R; Zhu, Guoqiang
2013-05-13
The role of flagella in the pathogenesis of F4ac+ Enterotoxigenic Escherichia coli (ETEC) mediated neonatal and post-weaning diarrhea (PWD) is not currently understood. We targeted the reference C83902 ETEC strain (O8:H19:F4ac+ LT+ STa+ STb+), to construct isogenic mutants in the fliC (encoding the major flagellin protein), motA (encoding the flagella motor), and faeG (encoding the major subunit of F4 fimbriae) genes. Both the ΔfliC and ΔfaeG mutants had a reduced ability to adhere to porcine intestinal epithelial IPEC-J2 cells. F4 fimbriae expression was significantly down-regulated after deleting fliC, which revealed that co-regulation exists between flagella and F4 fimbriae. However, there was no difference in adhesion between the ΔmotA mutant and its parent strain. These data demonstrate that both flagella and F4 fimbriae are required for efficient F4ac+ ETEC adhesion in vitro.
Tao, Min; Liu, Lu; Shen, Meng; Zhi, Qiaoming; Gong, Fei-Ran; Zhou, Binhua P.; Wu, Yadi; Liu, Haiyan; Chen, Kai; Shen, Bairong; Wu, Meng-Yao; Shou, Liu-Mei; Li, Wei
2016-01-01
ABSTRACT Previous studies have indicated that inflammatory stimulation represses protein phosphatase 2A (PP2A), a well-known tumor suppressor. However, whether PP2A repression participates in pancreatic cancer progression has not been verified. We used lipopolysaccharide (LPS) and macrophage-conditioned medium (MCM) to establish in vitro inflammation models, and investigated whether inflammatory stimuli affect pancreatic cancer cell growth and invasion PP2A catalytic subunit (PP2Ac)-dependently. Via nude mouse models of orthotopic tumor xenografts and dibutyltin dichloride (DBTC)-induced chronic pancreatitis, we evaluated the effect of an inflammatory microenvironment on PP2Ac expression in vivo. We cloned the PP2Acα and PP2Acβ isoform promoters to investigate the PP2Ac transcriptional regulation mechanisms. MCM accelerated pancreatic cancer cell growth; MCM and LPS promoted cell invasion. DBTC promoted xenograft growth and metastasis, induced tumor-associated macrophage infiltration, promoted angiogenesis, activated the nuclear factor-κB (NF-κB) pathway, and repressed PP2Ac expression. In vitro, LPS and MCM downregulated PP2Ac mRNA and protein. PP2Acα overexpression attenuated JNK, ERK, PKC, and IKK phosphorylation, and impaired LPS/MCM-stimulated cell invasion and MCM-promoted cell growth. LPS and MCM activated the NF-κB pathway in vitro. LPS and MCM induced IKK and IκB phosphorylation, leading to p65/RelA nuclear translocation and transcriptional activation. Overexpression of the dominant negative forms of IKKα attenuated LPS and MCM downregulation of PP2Ac, suggesting inflammatory stimuli repress PP2Ac expression NF-κB pathway–dependently. Luciferase reporter gene assay verified that LPS and MCM downregulated PP2Ac transcription through an NF-κB–dependent pathway. Our study presents a new mechanism in inflammation-driven cancer progression through NF-κB pathway–dependent PP2Ac repression. PMID:26761431
Coupling with concentric contact around motor shaft for line start synchronous motor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melfi, Michael J.; Burdeshaw, Galen E.
A method comprises providing a line-start synchronous motor. The motor has a stator, a rotor core disposed within the stator, and a motor shaft. In accordance with a step of the method, a coupling for coupling a load to the motor is provided. The coupling has a motor shaft attachment portion configured to provide substantially concentric contact around the shaft at the end of the motor shaft. The coupling has a load attachment portion configured to operatively connect to a load. In accordance with a step of the method, a load is coupled to the motor with the coupling, andmore » driven from start to at least near synchronous speed during steady state operation of the motor with a load coupled thereto. The motor shaft attachment portion may comprise a bushing assembly with matching and opposed tapered surfaces that cooperate to secure the motor shaft attachment portion around the motor shaft.« less
Ha, Nguyen Ngoc; Cam, Le Minh; Ha, Nguyen Thi Thu; Goh, Bee-Min; Saunders, Martin; Jiang, Zhong-Tao; Altarawneh, Mohammednoor; Dlugogorski, Bogdan Z; El-Harbawi, Mohanad; Yin, Chun-Yang
2017-06-07
The prevalence of global arsenic groundwater contamination has driven widespread research on developing effective treatment systems including adsorption using various sorbents. The uptake of arsenic-based contaminants onto established sorbents such as activated carbon (AC) can be effectively enhanced via immobilization/impregnation of iron-based elements on the porous AC surface. Recent suggestions that AC pores structurally consist of an eclectic mix of curved fullerene-like sheets may affect the arsenic adsorption dynamics within the AC pores and is further complicated by the presence of nano-sized iron-based elements. We have therefore, attempted to shed light on the adsorptive interactions of arsenate-iron nanoparticles with curved fullerene-like sheets by using hybridized quantum mechanics/molecular mechanics (QMMM) calculations and microscopy characterization. It is found that, subsequent to optimization, chemisorption between HAsO 4 2- and the AC carbon sheet (endothermic process) is virtually non-existent - this observation is supported by experimental results. Conversely, the incorporation of iron nanoparticles (FeNPs) into the AC carbon sheet greatly facilitates chemisorption of HAsO 4 2- . Our calculation implies that iron carbide is formed at the junction between the iron and the AC interface and this tightly chemosorbed layer prevents detachment of the FeNPs on the AC surface. Other aspects including electronic structure/properties, carbon arrangement defects and rate of adsorptive interaction, which are determined using the Climbing-Image NEB method, are also discussed.
Design, manufacture, and test of coolant pump-motor assembly for Brayton power conversion system
NASA Technical Reports Server (NTRS)
Gabacz, L. E.
1973-01-01
The design, development, fabrication, and testing of seven coolant circulating pump-motor assemblies are discussed. The pump-motor assembly is driven by the nominal 44.4-volt, 400-Hz, 3-phase output of a nominal 56-volt dc input inverter. The pump-motor assembly will be used to circulate Dow Corning 200 liquid coolant for use in a Brayton cycle space power system. The pump-motor assembly develops a nominal head of 70 psi at 3.7 gpm with an over-all efficiency of 26 percent. The design description, drawings, photographs, reliability results, and developmental and acceptance test results are included.
Driven damped harmonic oscillator resonance with an Arduino
NASA Astrophysics Data System (ADS)
Goncalves, A. M. B.; Cena, C. R.; Bozano, D. F.
2017-07-01
In this paper we propose a simple experimental apparatus that can be used to show quantitative and qualitative results of resonance in a driven damped harmonic oscillator. The driven oscillation is made by a servo motor, and the oscillation amplitude is measured by an ultrasonic position sensor. Both are controlled by an Arduino board. The frequency of free oscillation measured was campatible with the resonance frequency that was measured.
Electroconvection in one-dimensional liquid crystal cells
NASA Astrophysics Data System (ADS)
Huh, Jong-Hoon
2018-04-01
We investigate the alternating current (ac) -driven electroconvection (EC) in one-dimensional cells (1DCs) under the in-plane switching mode. In 1DCs, defect-free EC can be realized. In the presence and absence of external multiplicative noise, the features of traveling waves (TWs), such as their Hopf frequency fH and velocity, are examined in comparison with those of conventional two-dimensional cells (2DCs) accompanying defects of EC rolls. In particular, we show that the defects significantly contribute to the features of the TWs. Additionally, owing to the defect-free EC in the 1DCs, the effects of the ac and noise fields on the TW are clarified. The ac field linearly increases fH, independent of the ac frequency f . The noise increases fH monotonically, but fH does not vary below a characteristic noise intensity VN*. In addition, soliton-like waves and unfamiliar oscillation of EC vortices in 1DCs are observed, in contrast to the localized EC (called worms) and the oscillation of EC rolls in 2DCs.
Control of microtubule trajectory within an electric field by altering surface charge density
Isozaki, Naoto; Ando, Suguru; Nakahara, Tasuku; Shintaku, Hirofumi; Kotera, Hidetoshi; Meyhöfer, Edgar; Yokokawa, Ryuji
2015-01-01
One of challenges for using microtubules (MTs) driven by kinesin motors in microfluidic environments is to control their direction of movement. Although applying physical biases to rectify MTs is prevalent, it has not been established as a design methodology in conjunction with microfluidic devices. In the future, the methodology is expected to achieve functional motor-driven nanosystems. Here, we propose a method to guide kinesin-propelled MTs in multiple directions under an electric field by designing a charged surface of MT minus ends labeled with dsDNA via a streptavidin-biotin interaction. MTs labeled with 20-bp or 50-bp dsDNA molecules showed significantly different trajectories according to the DNA length, which were in good agreement with values predicted from electrophoretic mobilities measured for their minus ends. Since the effective charge of labeled DNA molecules was equal to that of freely dispersed DNA molecules in a buffer solution, MT trajectory could be estimated by selecting labeling molecules with known charges. Moreover, the estimated trajectory enables to define geometrical sizes of a microfluidic device. This rational molecular design and prediction methodology allows MTs to be guided in multiple directions, demonstrating the feasibility of using molecular sorters driven by motor proteins. PMID:25567007
Control of microtubule trajectory within an electric field by altering surface charge density.
Isozaki, Naoto; Ando, Suguru; Nakahara, Tasuku; Shintaku, Hirofumi; Kotera, Hidetoshi; Meyhöfer, Edgar; Yokokawa, Ryuji
2015-01-08
One of challenges for using microtubules (MTs) driven by kinesin motors in microfluidic environments is to control their direction of movement. Although applying physical biases to rectify MTs is prevalent, it has not been established as a design methodology in conjunction with microfluidic devices. In the future, the methodology is expected to achieve functional motor-driven nanosystems. Here, we propose a method to guide kinesin-propelled MTs in multiple directions under an electric field by designing a charged surface of MT minus ends labeled with dsDNA via a streptavidin-biotin interaction. MTs labeled with 20-bp or 50-bp dsDNA molecules showed significantly different trajectories according to the DNA length, which were in good agreement with values predicted from electrophoretic mobilities measured for their minus ends. Since the effective charge of labeled DNA molecules was equal to that of freely dispersed DNA molecules in a buffer solution, MT trajectory could be estimated by selecting labeling molecules with known charges. Moreover, the estimated trajectory enables to define geometrical sizes of a microfluidic device. This rational molecular design and prediction methodology allows MTs to be guided in multiple directions, demonstrating the feasibility of using molecular sorters driven by motor proteins.
Enhanced Component Performance Study: Motor-Driven Pumps 1998–2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, John Alton
2016-02-01
This report presents an enhanced performance evaluation of motor-driven pumps at U.S. commercial nuclear power plants. The data used in this study are based on the operating experience failure reports from fiscal year 1998 through 2014 for the component reliability as reported in the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The motor-driven pump failure modes considered for standby systems are failure to start, failure to run less than or equal to one hour, and failure to run more than one hour; for normally running systems, the failure modes considered are failure to start and failure tomore » run. An eight hour unreliability estimate is also calculated and trended. The component reliability estimates and the reliability data are trended for the most recent 10-year period while yearly estimates for reliability are provided for the entire active period. Statistically significant increasing trends were identified in pump run hours per reactor year. Statistically significant decreasing trends were identified for standby systems industry-wide frequency of start demands, and run hours per reactor year for runs of less than or equal to one hour.« less
Dynamic simulation solves process control problem in Oman
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-11-16
A dynamic simulation study solved the process control problems for a Saih Rawl, Oman, gas compressor station operated by Petroleum Development of Oman (PDO). PDO encountered persistent compressor failure that caused frequent facility shutdowns, oil production deferment, and gas flaring. It commissioned MSE (Consultants) Ltd., U.K., to find a solution for the problem. Saih Rawl, about 40 km from Qarn Alam, produces oil and associated gas from a large number of low and high-pressure wells. Oil and gas are separated in three separators. The oil is pumped to Qarn Alam for treatment and export. Associated gas is compressed in twomore » parallel trains. Train K-1115 is a 350,000 standard cu m/day, four-stage reciprocating compressor driven by a fixed-speed electric motor. Train K-1120 is a 1 million standard cu m/day, four-stage reciprocating compressor driven by a fixed-speed electric motor. Train K-1120 is a 1 million standard cu m/day, four-stage centrifugal compressor driven by a variable-speed motor. The paper describes tripping and surging problems with the gas compressor and the control simplifications that solved the problem.« less
46 CFR 56.50-30 - Boiler feed piping.
Code of Federal Regulations, 2014 CFR
2014-10-01
... pump may be used for other purposes. (2) If two independently driven pumps are provided, each capable... requirements. (1) Steam vessels, and motor vessels fitted with steam driven electrical generators shall have at... the necessary connections for this purpose. The arrangement of feed pumps shall be in accordance with...
Integrating Undergraduate Students in Faculty-Driven Motor Behavior Research
ERIC Educational Resources Information Center
Robinson, Leah E.
2013-01-01
This article described the faculty-sponsored, faculty-driven approach to undergraduate research (UGR) at Auburn University. This approach is centered around research in the Pediatric Movement and Physical Activity Laboratory, and students can get elective course credit for their participation in UGR. The article also describes how students' roles…
Action potentials drive body wall muscle contractions in Caenorhabditis elegans
Gao, Shangbang; Zhen, Mei
2011-01-01
The sinusoidal locomotion exhibited by Caenorhabditis elegans predicts a tight regulation of contractions and relaxations of its body wall muscles. Vertebrate skeletal muscle contractions are driven by voltage-gated sodium channel–dependent action potentials. How coordinated motor outputs are regulated in C. elegans, which does not have voltage-gated sodium channels, remains unknown. Here, we show that C. elegans body wall muscles fire all-or-none, calcium-dependent action potentials that are driven by the L-type voltage-gated calcium and Kv1 voltage-dependent potassium channels. We further demonstrate that the excitatory and inhibitory motoneuron activities regulate the frequency of action potentials to coordinate muscle contraction and relaxation, respectively. This study provides direct evidence for the dual-modulatory model of the C. elegans motor circuit; moreover, it reveals a mode of motor control in which muscle cells integrate graded inputs of the nervous system and respond with all-or-none electrical signals. PMID:21248227
Robot Arm with Tendon Connector Plate and Linear Actuator
NASA Technical Reports Server (NTRS)
Bridgwater, Lyndon (Inventor); Millerman, Alexander (Inventor); Ihrke, Chris A. (Inventor); Diftler, Myron A. (Inventor); Nguyen, Vienny (Inventor)
2014-01-01
A robotic system includes a tendon-driven end effector, a linear actuator, a flexible tendon, and a plate assembly. The linear actuator assembly has a servo motor and a drive mechanism, the latter of which translates linearly with respect to a drive axis of the servo motor in response to output torque from the servo motor. The tendon connects to the end effector and drive mechanism. The plate assembly is disposed between the linear actuator assembly and the tendon-driven end effector and includes first and second plates. The first plate has a first side that defines a boss with a center opening. The second plate defines an accurate through-slot having tendon guide channels. The first plate defines a through passage for the tendon between the center opening and a second side of the first plate. A looped end of the flexible tendon is received within the tendon guide channels.
NASA Technical Reports Server (NTRS)
Noever, David A.; Koczor, Ronald J.; Roberson, Rick
1998-01-01
We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of large bulk-processed high-temperature superconductors. Podkietnov, et al (Podkietnov, E. and Nieminen, R. (1992) A Possibility of Gravitational Force Shielding by Bulk YBa2 Cu3 O7-x Superconductor, Physica C, C203:441-444.) have indicated that rotating AC fields play an essential role in their observed distortion of combined gravity and barometric pressure readings. We report experiments on large (15 cm diameter) bulk YBCO ceramic superconductors placed in the core of a three-phase, AC motor stator. The applied rotating field produces up to a 12,000 revolutions per minute magnetic field. The field intensity decays rapidly from the maximum at the outer diameter of the superconducting disk (less than 60 Gauss) to the center (less than 10 Gauss). This configuration was applied with and without a permanent DC magnetic field levitating the superconducting disk, with corresponding gravity readings indicating an apparent increase in observed gravity of less than 1 x 10(exp -6)/sq cm, measured above the superconductor. No effect of the rotating magnetic field or thermal environment on the gravimeter readings or on rotating the superconducting disk was noted within the high precision of the observation. Implications for propulsion initiatives and power storage flywheel technologies for high temperature superconductors will be discussed for various spacecraft and satellite applications.
Parkinson's Disease Subtypes in the Oxford Parkinson Disease Centre (OPDC) Discovery Cohort.
Lawton, Michael; Baig, Fahd; Rolinski, Michal; Ruffman, Claudio; Nithi, Kannan; May, Margaret T; Ben-Shlomo, Yoav; Hu, Michele T M
2015-01-01
Within Parkinson's there is a spectrum of clinical features at presentation which may represent sub-types of the disease. However there is no widely accepted consensus of how best to group patients. Use a data-driven approach to unravel any heterogeneity in the Parkinson's phenotype in a well-characterised, population-based incidence cohort. 769 consecutive patients, with mean disease duration of 1.3 years, were assessed using a broad range of motor, cognitive and non-motor metrics. Multiple imputation was carried out using the chained equations approach to deal with missing data. We used an exploratory and then a confirmatory factor analysis to determine suitable domains to include within our cluster analysis. K-means cluster analysis of the factor scores and all the variables not loading into a factor was used to determine phenotypic subgroups. Our factor analysis found three important factors that were characterised by: psychological well-being features; non-tremor motor features, such as posture and rigidity; and cognitive features. Our subsequent five cluster model identified groups characterised by (1) mild motor and non-motor disease (25.4%), (2) poor posture and cognition (23.3%), (3) severe tremor (20.8%), (4) poor psychological well-being, RBD and sleep (18.9%), and (5) severe motor and non-motor disease with poor psychological well-being (11.7%). Our approach identified several Parkinson's phenotypic sub-groups driven by largely dopaminergic-resistant features (RBD, impaired cognition and posture, poor psychological well-being) that, in addition to dopaminergic-responsive motor features may be important for studying the aetiology, progression, and medication response of early Parkinson's.
Effect of fee-for-service air-conditioning management in balancing thermal comfort and energy usage.
Chen, Chen-Peng; Hwang, Ruey-Lung; Shih, Wen-Mei
2014-11-01
Balancing thermal comfort with the requirement of energy conservation presents a challenge in hot and humid areas where air-conditioning (AC) is frequently used in cooling indoor air. A field survey was conducted in Taiwan to demonstrate the adaptive behaviors of occupants in relation to the use of fans and AC in a school building employing mixed-mode ventilation where AC use was managed under a fee-for-service mechanism. The patterns of using windows, fans, and AC as well as the perceptions of students toward the thermal environment were examined. The results of thermal perception evaluation in relation to the indoor thermal conditions were compared to the levels of thermal comfort predicted by the adaptive models described in the American Society of Heating, Refrigerating, and Air-Conditioning Engineers Standard 55 and EN 15251 and to that of a local model for evaluating thermal adaption in naturally ventilated buildings. A thermal comfort-driven adaptive behavior model was established to illustrate the probability of fans/AC use at specific temperature and compared to the temperature threshold approach to illustrate the potential energy saving the fee-for-service mechanism provided. The findings of this study may be applied as a reference for regulating the operation of AC in school buildings of subtropical regions.
Oral-Motor Function and Feeding Intervention
ERIC Educational Resources Information Center
Garber, June
2013-01-01
This article presents the elements of the Oral Motor Intervention section of the Infant Care Path for Physical Therapy in the Neonatal Intensive Care Unit (NICU). The types of physical therapy interventions presented in this path are evidence based as well as infant driven and family focused. In the context of anticipated maturation of…
The Race that Precedes Coactivation: Development of Multisensory Facilitation in Children
ERIC Educational Resources Information Center
Barutchu, Ayla; Crewther, David P.; Crewther, Sheila G.
2009-01-01
Rationale: The facilitating effect of multisensory integration on motor responses in adults is much larger than predicted by race-models and is in accordance with the idea of coactivation. However, the development of multisensory facilitation of endogenously driven motor processes and its relationship to the development of complex cognitive skills…
29 CFR 500.105 - DOT standards adopted by the Secretary.
Code of Federal Regulations, 2014 CFR
2014-07-01
... person possesses the following minimum qualifications: (A) No loss of foot, leg, hand or arm, (B) No mental, nervous, organic, or functional disease, likely to interfere with safe driving. (C) No loss of... loading—(A) Distribution and securing of load. No motor vehicle shall be driven nor shall any motor...
49 CFR 392.33 - Obscured lamps or reflective devices/material.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 5 2013-10-01 2013-10-01 false Obscured lamps or reflective devices/material. 392... REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES Use of Lighted Lamps and Reflectors § 392.33 Obscured lamps or reflective devices/material. (a) No commercial motor vehicle shall be driven when any of the lamps...
49 CFR 392.33 - Obscured lamps or reflective devices/material.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 5 2012-10-01 2012-10-01 false Obscured lamps or reflective devices/material. 392... REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES Use of Lighted Lamps and Reflectors § 392.33 Obscured lamps or reflective devices/material. (a) No commercial motor vehicle shall be driven when any of the lamps...
49 CFR 392.33 - Obscured lamps or reflective devices/material.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 5 2014-10-01 2014-10-01 false Obscured lamps or reflective devices/material. 392... REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES Use of Lighted Lamps and Reflectors § 392.33 Obscured lamps or reflective devices/material. (a) No commercial motor vehicle shall be driven when any of the lamps...
49 CFR 392.33 - Obscured lamps or reflective devices/material.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 5 2011-10-01 2011-10-01 false Obscured lamps or reflective devices/material. 392... REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES Use of Lighted Lamps and Reflectors § 392.33 Obscured lamps or reflective devices/material. (a) No commercial motor vehicle shall be driven when any of the lamps...
Parkinson's: a syndrome rather than a disease?
Titova, Nataliya; Padmakumar, C; Lewis, Simon J G; Chaudhuri, K Ray
2017-08-01
Emerging concepts suggest that a multitude of pathology ranging from misfolding of alpha-synuclein to neuroinflammation, mitochondrial dysfunction, and neurotransmitter driven alteration of brain neuronal networks lead to a syndrome that is commonly known as Parkinson's disease. The complex underlying pathology which may involve degeneration of non-dopaminergic pathways leads to the expression of a range of non-motor symptoms from the prodromal stage of Parkinson's to the palliative stage. Non-motor clinical subtypes, cognitive and non-cognitive, have now been proposed paving the way for possible subtype specific and non-motor treatments, a key unmet need currently. Natural history of these subtypes remains unclear and need to be defined. In addition to in vivo biomarkers which suggest variable involvement of the cholinergic and noradrenergic patterns of the Parkinson syndrome, abnormal alpha-synuclein accumulation have now been demonstrated in the gut, pancreas, heart, salivary glands, and skin suggesting that Parkinson's is a multi-organ disorder. The Parkinson's phenotype is thus not just a dopaminergic motor syndrome, but a dysfunctional multi-neurotransmitter pathway driven central and peripheral nervous system disorder that possibly ought to be considered a syndrome and not a disease.
Zhang, Jingming; Lanuza, Guillermo M.; Britz, Olivier; Wang, Zhi; Siembab, Valerie C.; Zhang, Ying; Velasquez, Tomoko; Alvarez, Francisco J.; Frank, Eric; Goulding, Martyn
2014-01-01
SUMMARY The reciprocal activation of flexor and extensor muscles constitutes the fundamental mechanism that tetrapod vertebrates use for locomotion and limb-driven reflex behaviors. This aspect of motor coordination is controlled by inhibitory neurons in the spinal cord; however, the identity of the spinal interneurons that serve this function is not known. Here we show that the production of an alternating flexor-extensor motor rhythm depends on the composite activities of two classes of ventrally-located inhibitory neurons, V1 and V2b interneurons (INs). Abrogating V1 and V2b IN-derived neurotransmission in the isolated spinal cord results in a synchronous pattern of L2 flexor-related and L5 extensor-related locomotor activity. Mice lacking V1 and V2b inhibition are unable to articulate their limb joints and display marked deficits in limb-driven reflex movements. Taken together, these findings identify V1- and V2b-derived neurons as the core interneuronal components of the limb central pattern generator (CPG) that coordinate flexor-extensor motor activity. PMID:24698273
An AAA Motor-Driven Mechanical Switch in Rpn11 Controls Deubiquitination at the 26S Proteasome.
Worden, Evan J; Dong, Ken C; Martin, Andreas
2017-09-07
Poly-ubiquitin chains direct protein substrates to the 26S proteasome, where they are removed by the deubiquitinase Rpn11 during ATP-dependent substrate degradation. Rapid deubiquitination is required for efficient degradation but must be restricted to committed substrates that are engaged with the ATPase motor to prevent premature ubiquitin chain removal and substrate escape. Here we reveal the ubiquitin-bound structure of Rpn11 from S. cerevisiae and the mechanisms for mechanochemical coupling of substrate degradation and deubiquitination. Ubiquitin binding induces a conformational switch of Rpn11's Insert-1 loop from an inactive closed state to an active β hairpin. This switch is rate-limiting for deubiquitination and strongly accelerated by mechanical substrate translocation into the AAA+ motor. Deubiquitination by Rpn11 and ubiquitin unfolding by the ATPases are in direct competition. The AAA+ motor-driven acceleration of Rpn11 is therefore important to ensure that poly-ubiquitin chains are removed only from committed substrates and fast enough to prevent their co-degradation. Copyright © 2017 Elsevier Inc. All rights reserved.
Dynamics of myosin-driven skeletal muscle contraction: I. Steady-state force generation.
Lan, Ganhui; Sun, Sean X
2005-06-01
Skeletal muscle contraction is a canonical example of motor-driven force generation. Despite the long history of research in this topic, a mechanistic explanation of the collective myosin force generation is lacking. We present a theoretical model of muscle contraction based on the conformational movements of individual myosins and experimentally measured chemical rate constants. Detailed mechanics of the myosin motor and the geometry of the sarcomere are taken into account. Two possible scenarios of force generation are examined. We find only one of the scenarios can give rise to a plausible contraction mechanism. We propose that the synchrony in muscle contraction is due to a force-dependent ADP release step. Computational results of a half sarcomere with 150 myosin heads can explain the experimentally measured force-velocity relationship and efficiency data. We predict that the number of working myosin motors increases as the load force is increased, thus showing synchrony among myosin motors during muscle contraction. We also find that titin molecules anchoring the thick filament are passive force generators in assisting muscle contraction.
Dynamics of Myosin-Driven Skeletal Muscle Contraction: I. Steady-State Force Generation
Lan, Ganhui; Sun, Sean X.
2005-01-01
Skeletal muscle contraction is a canonical example of motor-driven force generation. Despite the long history of research in this topic, a mechanistic explanation of the collective myosin force generation is lacking. We present a theoretical model of muscle contraction based on the conformational movements of individual myosins and experimentally measured chemical rate constants. Detailed mechanics of the myosin motor and the geometry of the sarcomere are taken into account. Two possible scenarios of force generation are examined. We find only one of the scenarios can give rise to a plausible contraction mechanism. We propose that the synchrony in muscle contraction is due to a force-dependent ADP release step. Computational results of a half sarcomere with 150 myosin heads can explain the experimentally measured force-velocity relationship and efficiency data. We predict that the number of working myosin motors increases as the load force is increased, thus showing synchrony among myosin motors during muscle contraction. We also find that titin molecules anchoring the thick filament are passive force generators in assisting muscle contraction. PMID:15778440
A novel type of rim thrust motor with Halbach array permanent magnet rotor
NASA Astrophysics Data System (ADS)
Cao, Haichuan; Chen, Weihu
2018-05-01
The Rim-driven Thruster (RDT) is a new type of marine electric thruster proposed in recent years. In this paper, the author proposed a new type of permanent magnet synchronous rim thrust motor (RTM). The motor uses a Halbach array permanent magnet rotor, which can improve the torque density of the propulsion motor by utilizing the unilateral magnetic field of the Halbach array. In this paper, the electromagnetic properties of the motor were measured and compared with that of the ordinary magnetic pole motor through numerical analysis. The results show that at the same power, the new motor can significantly reduce the thickness of the rotor's permanent magnet and yoke core, and has obvious advantages in power density, moment of inertia, dynamic performance, and cost.
Dephasing effects on ac-driven triple quantum dot systems
NASA Astrophysics Data System (ADS)
Maldonado, I.; Villavicencio, J.; Contreras-Pulido, L. D.; Cota, E.; Maytorena, J. A.
2018-05-01
We analyze the effect of environmental dephasing on the electrical current in an ac-driven triple quantum dot system in a symmetric Λ configuration. The current is explored by solving the time evolution equation of the density matrix as a function of the frequency and amplitude of the driving field. Two characteristic spectra are observed depending on the field amplitude. At the resonance condition, when the frequency matches the interdot energy difference, one spectrum shows a distinctive Fano-type peak, while the other, occurring at larger values of the field amplitude, exhibits a strong current suppression due to dynamic localization. In the former case we observe that the current maximum is reduced due to dephasing, while in the latter it is shown that dephasing partially alleviates the localization. In both cases, away from resonance, we observe current oscillations which are dephasing-enhanced for a wide range of frequencies. These effects are also discussed using Floquet theory, and analytical expressions for the electrical current are obtained within the rotating wave approximation.
NASA Astrophysics Data System (ADS)
Li, Chunguang; Inoue, Yoshio; Liu, Tao; Shibata, Kyoko; Oka, Koichi
Master-slave control is becoming increasingly popular in the development of robotic systems which can provide rehabilitation training for hemiplegic patients with a unilaterally disabled limb. However, the system structures and control strategies of existent master-slave systems are always complex. An innovative master-slave system implementing force feedback and motion tracking for a rehabilitation robot is presented in this paper. The system consists of two identical motors with a wired connection, and the two motors are located at the master and slave manipulator sites respectively. The slave motor tracks the motion of the master motor directly driven by a patient. As well, the interaction force produced at the slave site is fed back to the patient. Therefore, the impaired limb driven by the slave motor can imitate the motion of the healthy limb controlling the master motor, and the patient can regulate the control force of the healthy limb properly according to the force sensation. The force sensing and motion tracking are achieved simultaneously with neither force sensors nor sophisticated control algorithms. The system is characterized by simple structure, bidirectional controllability, energy recycling, and force feedback without a force sensor. Test experiments on a prototype were conducted, and the results appraise the advantages of the system and demonstrate the feasibility of the proposed control scheme for a rehabilitation robot.
Temperature Dependences of Torque Generation and Membrane Voltage in the Bacterial Flagellar Motor
Inoue, Yuichi; Baker, Matthew A.B.; Fukuoka, Hajime; Takahashi, Hiroto; Berry, Richard M.; Ishijima, Akihiko
2013-01-01
In their natural habitats bacteria are frequently exposed to sudden changes in temperature that have been shown to affect their swimming. With our believed to be new methods of rapid temperature control for single-molecule microscopy, we measured here the thermal response of the Na+-driven chimeric motor expressed in Escherichia coli cells. Motor torque at low load (0.35 μm bead) increased linearly with temperature, twofold between 15°C and 40°C, and torque at high load (1.0 μm bead) was independent of temperature, as reported for the H+-driven motor. Single cell membrane voltages were measured by fluorescence imaging and these were almost constant (∼120 mV) over the same temperature range. When the motor was heated above 40°C for 1–2 min the torque at high load dropped reversibly, recovering upon cooling below 40°C. This response was repeatable over as many as 10 heating cycles. Both increases and decreases in torque showed stepwise torque changes with unitary size ∼150 pN nm, close to the torque of a single stator at room temperature (∼180 pN nm), indicating that dynamic stator dissociation occurs at high temperature, with rebinding upon cooling. Our results suggest that the temperature-dependent assembly of stators is a general feature of flagellar motors. PMID:24359752
Self-oscillations in field emission nanowire mechanical resonators: a nanometric dc-ac conversion.
Ayari, Anthony; Vincent, Pascal; Perisanu, Sorin; Choueib, May; Gouttenoire, Vincent; Bechelany, Mikhael; Cornu, David; Purcell, Stephen T
2007-08-01
We report the observation of self-oscillations in a bottom-up nanoelectromechanical system (NEMS) during field emission driven by a constant applied voltage. An electromechanical model is explored that explains the phenomenon and that can be directly used to develop integrated devices. In this first study, we have already achieved approximately 50% dc/ac (direct to alternating current) conversion. Electrical self-oscillations in NEMS open up a new path for the development of high-speed, autonomous nanoresonators and signal generators and show that field emission (FE) is a powerful tool for building new nanocomponents.
Hidden transition in multiferroic and magnetodielectric CuCrO2 evidenced by ac-susceptibility
NASA Astrophysics Data System (ADS)
Shukla, Kaushak K.; Pal, Arkadeb; Singh, Abhishek; Singh, Rahul; Saha, J.; Sinha, A. K.; Ghosh, A. K.; Patnaik, S.; Awasthi, A. M.; Chatterjee, Sandip
2017-04-01
Ferroelectric polarization, magnetic-field dependence of the dielectric constant and ac and dc magnetizations of frustrated CuCrO2 have been measured. A new spin freezing transition below 32 K is observed which is thermally driven. The nature of the spin freezing is to be a single-ion process. Dilution by the replacements of Cr ions by magnetic Mn ions showed suppression of the spin freezing transition suggesting it to be fundamentally a single-ion freezing process. The observed freezing, which is seemingly associated to geometrical spin frustration, represents a novel form of magnetic glassy behavior.
Superconductors Enable Lower Cost MRI Systems
NASA Technical Reports Server (NTRS)
2013-01-01
The future looks bright, light, and green, especially where aircraft are concerned. The division of NASA s Fundamental Aeronautics Program called the Subsonic Fixed Wing Project is aiming to reach new heights by 2025-2035, improving the efficiency and environmental impact of air travel by developing new capabilities for cleaner, quieter, and more fuel efficient aircraft. One of the many ways NASA plans to reach its aviation goals is by combining new aircraft configurations with an advanced turboelectric distributed propulsion (TeDP) system. Jeff Trudell, an engineer at Glenn Research Center, says, "The TeDP system consists of gas turbines generating electricity to power a large number of distributed motor-driven fans embedded into the airframe." The combined effect increases the effective bypass ratio and reduces drag to meet future goals. "While room temperature components may help reduce emissions and noise in a TeDP system, cryogenic superconducting electric motors and generators are essential to reduce fuel burn," says Trudell. Superconductors provide significantly higher current densities and smaller and lighter designs than room temperature equivalents. Superconductors are also able to conduct direct current without resistance (loss of energy) below a critical temperature and applied field. Unfortunately, alternating current (AC) losses represent the major part of the heat load and depend on the frequency of the current and applied field. A refrigeration system is necessary to remove the losses and its weight increases with decreasing temperature. In 2001, a material called magnesium diboride (MgB2) was discovered to be superconducting. The challenge, however, has been learning to manufacture MgB2 inexpensively and in long lengths to wind into large coils while meeting the application requirements.
Comparison of success rates of orthodontic mini-screws by the insertion method.
Kim, Jung Suk; Choi, Seong Hwan; Cha, Sang Kwon; Kim, Jang Han; Lee, Hwa Jin; Yeom, Sang Seon; Hwang, Chung Ju
2012-10-01
The aim of this study was to compare the success rates of the manual and motor-driven mini-screw insertion methods according to age, gender, length of mini-screws, and insertion sites. We retrospectively reviewed 429 orthodontic mini-screw placements in 286 patients (102 in men and 327 in women) between 2005 and 2010 at private practice. Age, gender, mini-screw length, and insertion site were cross-tabulated against the insertion methods. The Cochran-Mantel-Haenszel test was performed to compare the success rates of the 2 insertion methods. The motor-driven method was used for 228 mini-screws and the manual method for the remaining 201 mini-screws. The success rates were similar in both men and women irrespective of the insertion method used. With respect to mini-screw length, no difference in success rates was found between motor and hand drivers for the 6-mm-long mini-screws (68.1% and 69.5% with the engine driver and hand driver, respectively). However, the 8-mm-long mini-screws exhibited significantly higher success rates (90.4%, p < 0.01) than did the 6-mm-long mini-screws when placed with the engine driver. The overall success rate was also significantly higher in the maxilla (p < 0.05) when the engine driver was used. Success rates were similar among all age groups regardless of the insertion method used. Taken together, the motor-driven insertion method can be helpful to get a higher success rate of orthodontic mini-screw placement.
Aerospace induction motor actuators driven from a 20-kHz power link
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1990-01-01
Aerospace electromechanical actuators utilizing induction motors are under development in sizes up to 40 kW. While these actuators have immediate application to the Advanced Launch System (ALS) program, several potential applications are currently under study including the Advanced Aircraft Program. Several recent advances developed for the Space Station Freedom have allowed induction motors to be selected as a first choice for such applications. Among these technologies are bi-directional electronics and high frequency power distribution techniques. Each of these technologies are discussed with emphasis on their impact upon induction motor operation.
Automation for Crushing and Screening Equipment to Produce Graded Paving Crushed Stone
NASA Astrophysics Data System (ADS)
Tikhonov, Anatoly; Velichkin, Vladimir
2017-10-01
This paper offers analysis of factors related to production and storage of graded crushed stone, which adversely impact the service life and wear resistance of asphalt-concrete motor road pavements. The paper describes external and technology-related parameters that may cause changes of the preset ratio in graded crushed stone. Control factors are described that ensure the formulated fraction ratio in crushed stone by controlling the operation mode of the crushing and screening equipment. The paper also contains an ACS flow chart for crushing and screening equipment engaged in continuous closed-cycle two-stage technology. Performance of the ACS to maintain the preset fractionated crushed stone ratio has been confirmed with a mathematical model.
Hybrid-secondary uncluttered induction machine
Hsu, John S.
2001-01-01
An uncluttered secondary induction machine (100) includes an uncluttered rotating transformer (66) which is mounted on the same shaft as the rotor (73) of the induction machine. Current in the rotor (73) is electrically connected to current in the rotor winding (67) of the transformer, which is not electrically connected to, but is magnetically coupled to, a stator secondary winding (40). The stator secondary winding (40) is alternately connected to an effective resistance (41), an AC source inverter (42) or a magnetic switch (43) to provide a cost effective slip-energy-controlled, adjustable speed, induction motor that operates over a wide speed range from below synchronous speed to above synchronous speed based on the AC line frequency fed to the stator.
ORNL diagnostic and modeling development for LAPD ICRF experiments
NASA Astrophysics Data System (ADS)
Isler, R. C.; Caughman, J. B. O.; Lau, C.; Martin, E. H.; Perkins, R. J.; Compernolle, B. Van; Vincena, S.; Tripathi, S. K. P.; Gekelman, W.
2017-10-01
PPPL, UCLA, and ORNL scientists have recently collaborated on a three week ICRF campaign at the upgraded LAPD device to study near field-plasma interactions associated with a single strap antenna driven at 2.38 MHz with 100 kW of RF power. This poster highlights ORNL involvement through implementation of the following diagnostics: an optical emission probe to measure neutral density, a retarding field energy analyzer to measure fast ions, phase locked imaging to measure line integrated RF-driven optical emission fluctuations, and an RF compensated triple Langmuir probe to measure density and temperature. To interpret the results of the experimental campaign a 3D cold plasma finite element model with realistic antenna and vacuum vessel geometry was developed in COMSOL. A summary of these results will be discussed. Highlights include a proof of principle localized and spatially resolved measurement of the neutral density, a strong increase in RF-driven optical emission fluctuations directly in front of the RF antenna strap, a shift in fast ion energies near the plasma edge, and qualitative agreement between the COMSOL cold plasma model with the various diagnostics. Funded by the DOE OFES (DE-AC05-00OR22725, DE-AC02-09CH11466, and DE-FC02-07ER54918) and the Univ. of California (12-LR-237124).
The bacterial actin MreB rotates, and rotation depends on cell-wall assembly.
van Teeffelen, Sven; Wang, Siyuan; Furchtgott, Leon; Huang, Kerwyn Casey; Wingreen, Ned S; Shaevitz, Joshua W; Gitai, Zemer
2011-09-20
Bacterial cells possess multiple cytoskeletal proteins involved in a wide range of cellular processes. These cytoskeletal proteins are dynamic, but the driving forces and cellular functions of these dynamics remain poorly understood. Eukaryotic cytoskeletal dynamics are often driven by motor proteins, but in bacteria no motors that drive cytoskeletal motion have been identified to date. Here, we quantitatively study the dynamics of the Escherichia coli actin homolog MreB, which is essential for the maintenance of rod-like cell shape in bacteria. We find that MreB rotates around the long axis of the cell in a persistent manner. Whereas previous studies have suggested that MreB dynamics are driven by its own polymerization, we show that MreB rotation does not depend on its own polymerization but rather requires the assembly of the peptidoglycan cell wall. The cell-wall synthesis machinery thus either constitutes a novel type of extracellular motor that exerts force on cytoplasmic MreB, or is indirectly required for an as-yet-unidentified motor. Biophysical simulations suggest that one function of MreB rotation is to ensure a uniform distribution of new peptidoglycan insertion sites, a necessary condition to maintain rod shape during growth. These findings both broaden the view of cytoskeletal motors and deepen our understanding of the physical basis of bacterial morphogenesis.
Design and Operation of a 4kW Linear Motor Driven Pulse Tube Cryocooler
NASA Astrophysics Data System (ADS)
Zia, J. H.
2004-06-01
A 4 kW electrical input Linear Motor driven pulse tube cryocooler has successfully been designed, built and tested. The optimum operation frequency is 60 Hz with a design refrigeration of >200 W at 80 K. The design exercise involved modeling and optimization in DeltaE software. Load matching between the cold head and linear motor was achieved by careful sizing of the transfer tube. The cryocooler makes use of a dual orifice inertance network and a single compliance tank for phase optimization and streaming suppression in the pulse tube. The in-line cold head design is modular in structure for convenient change-out and re-assembly of various components. The Regenerator consists of layers of two different grades of wire-mesh. The Linear motor is a clearance seal, dual opposed piston design from CFIC Inc. Initial results have demonstrated the refrigeration target of 200 W by liquefying Nitrogen from an ambient temperature and pressure. Overall Carnot efficiencies of 13% have been achieved and efforts to further improve efficiencies are underway. Linear motor efficiencies up to 84% have been observed. Experimental results have shown satisfactory compliance with model predictions, although the effects of streaming were not part of the model. Refrigeration loss due to streaming was minimal at the design operating conditions of 80 K.
77 FR 16175 - Station Blackout
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-20
... not have access to ADAMS or if there are problems in accessing the documents located in ADAMS, contact... with turbine trip and unavailability of the onsite emergency ac power system). Station blackout does... powered, such as turbine- or diesel-driven pumps. Thus, the reliability of such components, dc battery...
75 FR 57191 - Compliance With Interstate Motor Carrier Noise Emission Standards: Exhaust Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-20
... turbocharger (supercharger driven by exhaust gases) * * *.'' The language adopted by FHWA is essentially identical to that established by EPA, except that Sec. 325.91(b) specifically treats a turbocharger as a..., `` such as a turbocharger (supercharger driven by exhaust gases)'' be removed from 49 CFR 325.91(b). In...
40 CFR 85.1512 - Admission of catalyst and O2 sensor-equipped vehicles.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Importation of Motor..., where applicable, § 85.1510(c); and (iv) Has been driven outside the United States, Canada and Mexico or... purpose of this section, “driven outside the United States, Canada and Mexico” does not include mileage...
40 CFR 85.1512 - Admission of catalyst and O2 sensor-equipped vehicles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Importation of Motor..., where applicable, § 85.1510(c); and (iv) Has been driven outside the United States, Canada and Mexico or... purpose of this section, “driven outside the United States, Canada and Mexico” does not include mileage...
40 CFR 85.1512 - Admission of catalyst and O2 sensor-equipped vehicles.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Importation of Motor..., where applicable, § 85.1510(c); and (iv) Has been driven outside the United States, Canada and Mexico or... purpose of this section, “driven outside the United States, Canada and Mexico” does not include mileage...
40 CFR 85.1512 - Admission of catalyst and O2 sensor-equipped vehicles.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Importation of Motor..., where applicable, § 85.1510(c); and (iv) Has been driven outside the United States, Canada and Mexico or... purpose of this section, “driven outside the United States, Canada and Mexico” does not include mileage...
Electric drive motors for industrial robots
NASA Astrophysics Data System (ADS)
Fichtner, K.
1985-04-01
In robotized industrial plants it is possible to use electric motors in the technological process and also for control, assembly, transport, testing, and measurements. Particularly suitable for these applications are permanent-magnet d.c. motors. A new special series was developed for industrial robots with hinge joints in kinematic pairs. The complete drive includes thyristors or transistor controls with regulators and, if necessary, a line transformer as well as a servomotor with tachometer and odometer for speed, current, and position control. The drive is coupled to a robot tong through mechanical torque and force converters. In addition to a 0 to 4000 rpm speed regulation, without wobble at low speeds, and a high torque-to-weight ratio for repetitive short-time heavy duty, these low-inertia motors develop high starting and accelerating torques over the entire speed range. They operate from a 1 to O 220 V a.c. line through a rectifier. The motors are totally enclosed, or of open construction for better ventilation. Their windings have class F insulation for operation at ambient temperatures up to 40 C.
Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor
NASA Astrophysics Data System (ADS)
Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman
2016-02-01
Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.
Vectorial Command of Induction Motor Pumping System Supplied by a Photovoltaic Generator
NASA Astrophysics Data System (ADS)
Makhlouf, Messaoud; Messai, Feyrouz; Benalla, Hocine
2011-01-01
With the continuous decrease of the cost of solar cells, there is an increasing interest and needs in photovoltaic (PV) system applications following standard of living improvements. Water pumping system powered by solar-cell generators are one of the most important applications. The fluctuation of solar energy on one hand, and the necessity to optimise available solar energy on the other, it is useful to develop new efficient and flexible modes to control motors that entrain the pump. A vectorial control of an asynchronous motor fed by a photovoltaic system is proposed. This paper investigates a photovoltaic-electro mechanic chain, composed of a PV generator, DC-AC converter, a vector controlled induction motor and centrifugal pump. The PV generator is forced to operate at its maximum power point by using an appropriate search algorithm integrated in the vector control. The optimization is realized without need to adding a DC-DC converter to the chain. The motor supply is also ensured in all insolation conditions. Simulation results show the effectiveness and feasibility of such an approach.
1996-07-24
to fuel tank 27 aboard 23 test torpedo 26. Pressure switch 19B operates to close solenoid 24 valve 22A and concurrently open solenoid valve 22D...leading to a pump explosion. The boost pump 4 is driven by its 11 motor 14B and positive displacement pump 1 by its respective 12 motor 14A. Pressure ... switch 19A monitors the head pressure 13 created by the boost pump 4 and it will shut off the motor 14A of 14 the positive displacement pump 1 if
Nanoscale rotary motors driven by electron tunneling.
Wang, Boyang; Vuković, Lela; Král, Petr
2008-10-31
We examine by semiclassical molecular dynamics simulations the possibility of driving nanoscale rotary motors by electron tunneling. The model systems studied have a carbon nanotube shaft with covalently attached "isolating" molecular stalks ending with "conducting" blades. Periodic charging and discharging of the blades at two metallic electrodes maintains an electric dipole on the blades that is rotated by an external electric field. Our simulations demonstrate that these molecular motors can be efficient under load and in the presence of noise and defects.
21. INTERIOR VIEW, UNDER THE MAIN FLOOR SHOWING THE LINESHAFT ...
21. INTERIOR VIEW, UNDER THE MAIN FLOOR SHOWING THE LINESHAFT SYSTEM ONCE POWERED BY A STEAM ENGINE AND LATER BY TWO LARGE ELECTRICAL MILL MOTORS (NOTICE LARGE GEAR IN FOREGROUND) THAT OPERATED EACH NAIL MACHINE; PRESENTLY THE NAIL MACHINES ARE DRIVEN BY INDIVIDUAL ELECTRICAL MOTORS - LaBelle Iron Works, Thirtieth & Wood Streets, Wheeling, Ohio County, WV
Synchronization algorithm for three-phase voltages of an inverter and a grid
NASA Astrophysics Data System (ADS)
Nos, O. V.
2017-07-01
This paper presents the results of designing a joint phase-locked loop for adjusting the phase shifts (speed) and Euclidean norm of three-phase voltages of an inverter to the same grid parameters. The design can be used, in particular, to match the potentials of two parallel-connected power sources for the fundamental harmonic at the moments of switching the stator windings of an induction AC motor from a converter to a centralized power-supply system and back. Technical implementation of the developed synchronization algorithm will significantly reduce the inductance of the current-balancing reactor and exclude emergency operation modes in the electric motor power circuit.
Assessing and predicting drug-induced anticholinergic risks: an integrated computational approach.
Xu, Dong; Anderson, Heather D; Tao, Aoxiang; Hannah, Katia L; Linnebur, Sunny A; Valuck, Robert J; Culbertson, Vaughn L
2017-11-01
Anticholinergic (AC) adverse drug events (ADEs) are caused by inhibition of muscarinic receptors as a result of designated or off-target drug-receptor interactions. In practice, AC toxicity is assessed primarily based on clinician experience. The goal of this study was to evaluate a novel concept of integrating big pharmacological and healthcare data to assess clinical AC toxicity risks. AC toxicity scores (ATSs) were computed using drug-receptor inhibitions identified through pharmacological data screening. A longitudinal retrospective cohort study using medical claims data was performed to quantify AC clinical risks. ATS was compared with two previously reported toxicity measures. A quantitative structure-activity relationship (QSAR) model was established for rapid assessment and prediction of AC clinical risks. A total of 25 common medications, and 575,228 exposed and unexposed patients were analyzed. Our data indicated that ATS is more consistent with the trend of AC outcomes than other toxicity methods. Incorporating drug pharmacokinetic parameters to ATS yielded a QSAR model with excellent correlation to AC incident rate ( R 2 = 0.83) and predictive performance (cross validation Q 2 = 0.64). Good correlation and predictive performance ( R 2 = 0.68/ Q 2 = 0.29) were also obtained for an M2 receptor-specific QSAR model and tachycardia, an M2 receptor-specific ADE. Albeit using a small medication sample size, our pilot data demonstrated the potential and feasibility of a new computational AC toxicity scoring approach driven by underlying pharmacology and big data analytics. Follow-up work is under way to further develop the ATS scoring approach and clinical toxicity predictive model using a large number of medications and clinical parameters.
Acetyl Phosphate as a Primordial Energy Currency at the Origin of Life
NASA Astrophysics Data System (ADS)
Whicher, Alexandra; Camprubi, Eloi; Pinna, Silvana; Herschy, Barry; Lane, Nick
2018-03-01
Metabolism is primed through the formation of thioesters via acetyl CoA and the phosphorylation of substrates by ATP. Prebiotic equivalents such as methyl thioacetate and acetyl phosphate have been proposed to catalyse analogous reactions at the origin of life, but their propensity to hydrolyse challenges this view. Here we show that acetyl phosphate (AcP) can be synthesised in water within minutes from thioacetate (but not methyl thioacetate) under ambient conditions. AcP is stable over hours, depending on temperature, pH and cation content, giving it an ideal poise between stability and reactivity. We show that AcP can phosphorylate nucleotide precursors such as ribose to ribose-5-phosphate and adenosine to adenosine monophosphate, at modest ( 2%) yield in water, and at a range of pH. AcP can also phosphorylate ADP to ATP in water over several hours at 50 °C. But AcP did not promote polymerization of either glycine or AMP. The amino group of glycine was preferentially acetylated by AcP, especially at alkaline pH, hindering the formation of polypeptides. AMP formed small stacks of up to 7 monomers, but these did not polymerise in the presence of AcP in aqueous solution. We conclude that AcP can phosphorylate biologically meaningful substrates in a manner analogous to ATP, promoting the origins of metabolism, but is unlikely to have driven polymerization of macromolecules such as polypeptides or RNA in free solution. This is consistent with the idea that a period of monomer (cofactor) catalysis preceded the emergence of polymeric enzymes or ribozymes at the origin of life.
Excited state dynamics & optical control of molecular motors
NASA Astrophysics Data System (ADS)
Wiley, Ted; Sension, Roseanne
2014-03-01
Chiral overcrowded alkenes are likely candidates for light driven rotary molecular motors. At their core, these molecular motors are based on the chromophore stilbene, undergoing ultrafast cis/trans photoisomerization about their central double bond. Unlike stilbene, the photochemistry of molecular motors proceeds in one direction only. This unidirectional rotation is a result of helicity in the molecule induced by steric hindrance. However, the steric hindrance which ensures unidirectional excited state rotation, has the unfortunate consequence of producing large ground state barriers which dramatically decrease the overall rate of rotation. These molecular scale ultrafast motors have only recently been studied by ultrafast spectroscopy. Our lab has studied the photochemistry and photophysics of a ``first generation'' molecular motor with UV-visible transient absorption spectroscopy. We hope to use optical pulse shaping to enhance the efficiency and turnover rate of these molecular motors.
de Rengervé, Antoine; Andry, Pierre; Gaussier, Philippe
2015-04-01
Imitation and learning from humans require an adequate sensorimotor controller to learn and encode behaviors. We present the Dynamic Muscle Perception-Action(DM-PerAc) model to control a multiple degrees-of-freedom (DOF) robot arm. In the original PerAc model, path-following or place-reaching behaviors correspond to the sensorimotor attractors resulting from the dynamics of learned sensorimotor associations. The DM-PerAc model, inspired by human muscles, permits one to combine impedance-like control with the capability of learning sensorimotor attraction basins. We detail a solution to learn incrementally online the DM-PerAc visuomotor controller. Postural attractors are learned by adapting the muscle activations in the model depending on movement errors. Visuomotor categories merging visual and proprioceptive signals are associated with these muscle activations. Thus, the visual and proprioceptive signals activate the motor action generating an attractor which satisfies both visual and proprioceptive constraints. This visuomotor controller can serve as a basis for imitative behaviors. In addition, the muscle activation patterns can define directions of movement instead of postural attractors. Such patterns can be used in state-action couples to generate trajectories like in the PerAc model. We discuss a possible extension of the DM-PerAc controller by adapting the Fukuyori's controller based on the Langevin's equation. This controller can serve not only to reach attractors which were not explicitly learned, but also to learn the state/action couples to define trajectories.
High efficiency novel window air conditioner
Bansal, Pradeep
2015-07-24
This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore » R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less
High efficiency novel window air conditioner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, Pradeep
This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore » R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less
Microscale transport and sorting by kinesin molecular motors.
Jia, Lili; Moorjani, Samira G; Jackson, Thomas N; Hancock, William O
2004-03-01
As biomolecular detection systems shrink in size, there is an increasing demand for systems that transport and position materials at micron- and nanoscale dimensions. Our goal is to combine cellular transport machinery-kinesin molecular motors and microtubules-with integrated optoelectronics into a hybrid biological/engineered microdevice that will bind, transport, and detect specific proteins, DNA/RNA molecules, viruses, or cells. For microscale transport, 1.5 microm deep channels were created with SU-8 photoresist on glass, kinesin motors adsorbed to the bottom of the channels, and the channel walls used to bend and redirect microtubules moving over the immobilized motors. Novel channel geometries were investigated as a means to redirect and sort microtubules moving in these channels. We show that DC and AC electric fields are sufficient to transport microtubules in solution, establishing an approach for redirecting microtubules moving in channels. Finally, we inverted the geometry to demonstrate that kinesins can transport gold nanowires along surface immobilized microtubules, providing a model for nanoscale directed assembly.
Ben Amara, Heithem; Lee, Jung-Won; Kim, Jung-Ju; Kang, Yun-Mi; Kang, Eun-Jung; Koo, Ki-Tae
Evidence on the outcomes of functional loading placed in recombinant human bone morphogenetic protein 2 (rhBMP-2)/acellular collagen sponge (ACS)-induced bone is lacking. The aim of this study was to verify whether guided bone regeneration (GBR) with rhBMP-2/ACS enhances regeneration of missing bone and osseointegration of dental implants subject to functional loading. Two bilateral standardized large saddle-type defects (≈10 × 10 × 6 mm) were surgically created in each mandible of seven beagle dogs 2 months after tooth extraction. Defects were immediately reconstructed randomly using rhBMP-2 (O-BMP or InFuse) soaked in ACS, deproteinized bovine bone mineral (DBBM) granules, or ACS alone as surgical control and subsequently covered with collagen membrane. Screw-type sand-blasted, acid-etched dental implants were placed 3 months later into the reconstructed defects and into adjacent bone. Osseointegration was allowed to progress for 3 months before functional loading of 3 months until sacrifice. Significantly more bone fill was radiographically observed for GBR with rhBMP-2/ACS (O-BMP: 92.5%, InFuse: 79%) in comparison to the DBBM (52%) and ACS alone groups (56.6%). Osseointegration was achieved and maintained in all experimental defects challenged by prostheses-driven functional load. The bone density ranged from 37.49% in the ACS group to 64.9% in the rhBMP-2/ACS (InFuse) group with no significance. The highest mean percentage of BIC was found in rhBMP-2/ACS (InFuse: 52.98%) with no statistical difference. Crestal bone resorption was observed around implants placed in reconstructed areas without any significant difference. GBR with rhBMP-2/ACS provided the greatest bone fill among the three treatment procedures. GBR with rhBMP-2/ACS showed efficacy for placement, osseointegration, and functional loading of titanium implants in alveolar ridge defects.
Vanitharani, Ramachandran; Chellappan, Padmanabhan; Pita, Justin S.; Fauquet, Claude M.
2004-01-01
Posttranscriptional gene silencing (PTGS) in plants is a natural defense mechanism against virus infection. In mixed infections, virus synergism is proposed to result from suppression of the host defense mechanism by the viruses. Synergistic severe mosaic disease caused by simultaneous infection with isolates of the Cameroon strain of African cassava mosaic virus (ACMV-[CM]) and East African cassava mosaic Cameroon virus (EACMCV) in cassava and tobacco is characterized by a dramatic increase in symptom severity and a severalfold increase in viral-DNA accumulation by both viruses compared to that in singly infected plants. Here, we report that synergism between ACMV-[CM] and EACMCV is a two-way process, as the presence of the DNA-A component of ACMV-[CM] or EACMCV in trans enhanced the accumulation of viral DNA of EACMCV and ACMV-[CM], respectively, in tobacco BY-2 protoplasts. Furthermore, transient expression of ACMV-[CM] AC4 driven by the Cauliflower mosaic virus 35S promoter (p35S-AC4) enhanced EACMCV DNA accumulation by ∼8-fold in protoplasts, while p35S-AC2 of EACMCV enhanced ACMV-[CM] DNA accumulation, also by ∼8-fold. An Agrobacterium-based leaf infiltration assay determined that ACMV-[CM] AC4 and EACMCV AC2, the putative synergistic genes, were able to suppress PTGS induced by green fluorescent protein (GFP) and eliminated the short interfering RNAs associated with PTGS, with a correlated increase in GFP mRNA accumulation. In addition, we have identified AC4 of Sri Lankan cassava mosaic virus and AC2 of Indian cassava mosaic virus as suppressors of PTGS, indicating that geminiviruses evolved differently in regard to interaction with the host. The specific and different roles played by these AC2 and AC4 proteins of cassava geminiviruses in regulating anti-PTGS activity and their relation to synergism are discussed. PMID:15308741
Sánchez, J A; Kirk, M D
2001-12-01
Ingestion of seaweed by Aplysia is in part mediated by cerebral-buccal interneurons that drive rhythmic motor output from the buccal ganglia and in some cases cerebral-buccal interneurons act as members of the feeding central pattern generator. Here we document cooperative interactions between cerebral-buccal interneuron 2 and cerebral-buccal interneuron 12, characterize synaptic input to cerebral-buccal interneuron 2 and cerebral-buccal interneuron 12 from buccal peripheral nerve 2,3, describe a synaptic connection between cerebral-buccal interneuron 1 and buccal neuron B34, further characterize connections made by cerebral-buccal interneurons 2 and -12 with B34 and B61/62, and describe a novel, inhibitory connection made by cerebral-buccal interneuron 2 with a buccal neuron. When cerebral-buccal interneurons 2 and 12 were driven synchronously at low frequencies, ingestion-like buccal motor programs were elicited, and if either was driven alone, indirect synaptic input was recruited in the other cerebral-buccal interneuron. Stimulation of BN2,3 recruited both ingestion and rejection-like motor programs without firing in cerebral-buccal interneurons 2 or 12. During motor programs elicited by cerebral-buccal interneurons 2 or 12, high-voltage stimulation of BN2,3 inhibited firing in both cerebral-buccal interneurons. Our results suggest that cerebral-buccal interneurons 2 and 12 use cooperative interactions to modulate buccal motor programs, yet firing in cerebral-buccal interneurons 2 or 12 is not necessary for recruiting motor programs by buccal peripheral nerve BN2,3, even in preparations with intact cerebral-buccal pathways.
Electric-hybrid-vehicle simulation
NASA Astrophysics Data System (ADS)
Pasma, D. C.
The simulation of electric hybrid vehicles is to be performed using experimental data to model propulsion system components. The performance of an existing ac propulsion system will be used as the baseline for comparative purposes. Hybrid components to be evaluated include electrically and mechanically driven flywheels, and an elastomeric regenerative braking system.
ETV/COMBINED HEAT AND POWER AT A COMMERCIAL SUPERMARKET CAPSTONE 60 KW MICROTURBINE SYSTEM
The Environmental Technology Verification report discusses the technology and performance of the Capstone 60 Microturbine CHP System manufactured by Capstone Microturbine Corporation. This system is a 60 kW electrical generator that puts out 480 v AC at 60 Hz and that is driven b...
21 CFR 872.4200 - Dental handpiece and accessories.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Dental handpiece and accessories. 872.4200 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4200 Dental handpiece and accessories. (a) Identification. A dental handpiece and accessories is an AC-powered, water-powered, air-powered, or belt-driven...
21 CFR 872.4200 - Dental handpiece and accessories.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Dental handpiece and accessories. 872.4200 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4200 Dental handpiece and accessories. (a) Identification. A dental handpiece and accessories is an AC-powered, water-powered, air-powered, or belt-driven...
21 CFR 872.4200 - Dental handpiece and accessories.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Dental handpiece and accessories. 872.4200 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4200 Dental handpiece and accessories. (a) Identification. A dental handpiece and accessories is an AC-powered, water-powered, air-powered, or belt-driven...
21 CFR 872.4200 - Dental handpiece and accessories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental handpiece and accessories. 872.4200 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4200 Dental handpiece and accessories. (a) Identification. A dental handpiece and accessories is an AC-powered, water-powered, air-powered, or belt-driven...
21 CFR 872.4200 - Dental handpiece and accessories.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Dental handpiece and accessories. 872.4200 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4200 Dental handpiece and accessories. (a) Identification. A dental handpiece and accessories is an AC-powered, water-powered, air-powered, or belt-driven...
Depletion force induced collective motion of microtubules driven by kinesin
NASA Astrophysics Data System (ADS)
Inoue, Daisuke; Mahmot, Bulbul; Kabir, Arif Md. Rashedul; Farhana, Tamanna Ishrat; Tokuraku, Kiyotaka; Sada, Kazuki; Konagaya, Akihiko; Kakugo, Akira
2015-10-01
Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being considered a model system to experimentally investigate various aspects of group behavior and pattern formation by self-propelled objects. In the in vitro gliding assay, cytoskeletal filaments F-actin or microtubules are driven by the surface immobilized associated biomolecular motors myosin or dynein respectively. Although the F-actin/myosin or microtubule/dynein system was found to be promising in understanding the collective motion and pattern formation by self-propelled objects, the most widely used biomolecular motor system microtubule/kinesin could not be successfully employed so far in this regard. Failure in exhibiting collective motion by kinesin driven microtubules is attributed to the intrinsic properties of kinesin, which was speculated to affect the behavior of individual gliding microtubules and mutual interactions among them. In this work, for the first time, we have demonstrated the collective motion of kinesin driven microtubules by regulating the mutual interaction among the gliding microtubules, by employing a depletion force among them. Proper regulation of the mutual interaction among the gliding microtubules through the employment of the depletion force was found to allow the exhibition of collective motion and stream pattern formation by the microtubules. This work offers a universal means for demonstrating the collective motion using the in vitro gliding assay of biomolecular motor systems and will help obtain a meticulous understanding of the fascinating coordinated behavior and pattern formation by self-propelled objects.Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being considered a model system to experimentally investigate various aspects of group behavior and pattern formation by self-propelled objects. In the in vitro gliding assay, cytoskeletal filaments F-actin or microtubules are driven by the surface immobilized associated biomolecular motors myosin or dynein respectively. Although the F-actin/myosin or microtubule/dynein system was found to be promising in understanding the collective motion and pattern formation by self-propelled objects, the most widely used biomolecular motor system microtubule/kinesin could not be successfully employed so far in this regard. Failure in exhibiting collective motion by kinesin driven microtubules is attributed to the intrinsic properties of kinesin, which was speculated to affect the behavior of individual gliding microtubules and mutual interactions among them. In this work, for the first time, we have demonstrated the collective motion of kinesin driven microtubules by regulating the mutual interaction among the gliding microtubules, by employing a depletion force among them. Proper regulation of the mutual interaction among the gliding microtubules through the employment of the depletion force was found to allow the exhibition of collective motion and stream pattern formation by the microtubules. This work offers a universal means for demonstrating the collective motion using the in vitro gliding assay of biomolecular motor systems and will help obtain a meticulous understanding of the fascinating coordinated behavior and pattern formation by self-propelled objects. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02213d
ERIC Educational Resources Information Center
Ahrens, Fred; Mistry, Rajendra
2005-01-01
In product engineering there often arise design analysis problems for which a commercial software package is either unavailable or cost prohibitive. Further, these calculations often require successive iterations that can be time intensive when performed by hand, thus development of a software application is indicated. This case relates to the…
Sensor-less pseudo-sinusoidal drive for a permanent-magnet brushless ac motor
NASA Astrophysics Data System (ADS)
Liu, Li-Hsiang; Chern, Tzuen-Lih; Pan, Ping-Lung; Huang, Tsung-Mou; Tsay, Der-Min; Kuang, Jao-Hwa
2012-04-01
The precise rotor-position information is required for a permanent-magnet brushless ac motor (BLACM) drive. In the conventional sinusoidal drive method, either an encoder or a resolver is usually employed. For position sensor-less vector control schemes, the rotor flux estimation and torque components are obtained by complicated coordinate transformations. These computational intensive methods are susceptible to current distortions and parameter variations. To simplify the method complexity, this work presents a sensor-less pseudo-sinusoidal drive scheme with speed control for a three-phase BLACM. Based on the sinusoidal drive scheme, a floating period of each phase current is inserted for back electromotive force detection. The zero-crossing point is determined directly by the proposed scheme, and the rotor magnetic position and rotor speed can be estimated simultaneously. Several experiments for various active angle periods are undertaken. Furthermore, a current feedback control is included to minimize and compensate the torque fluctuation. The experimental results show that the proposed method has a competitive performance compared with the conventional drive manners for BLACM. The proposed scheme is straightforward, bringing the benefits of sensor-less drive and negating the need for coordinate transformations in the operating process.
An autonomous chemically fuelled small-molecule motor
NASA Astrophysics Data System (ADS)
Wilson, Miriam R.; Solà, Jordi; Carlone, Armando; Goldup, Stephen M.; Lebrasseur, Nathalie; Leigh, David A.
2016-06-01
Molecular machines are among the most complex of all functional molecules and lie at the heart of nearly every biological process. A number of synthetic small-molecule machines have been developed, including molecular muscles, synthesizers, pumps, walkers, transporters and light-driven and electrically driven rotary motors. However, although biological molecular motors are powered by chemical gradients or the hydrolysis of adenosine triphosphate (ATP), so far there are no synthetic small-molecule motors that can operate autonomously using chemical energy (that is, the components move with net directionality as long as a chemical fuel is present). Here we describe a system in which a small molecular ring (macrocycle) is continuously transported directionally around a cyclic molecular track when powered by irreversible reactions of a chemical fuel, 9-fluorenylmethoxycarbonyl chloride. Key to the design is that the rate of reaction of this fuel with reactive sites on the cyclic track is faster when the macrocycle is far from the reactive site than when it is near to it. We find that a bulky pyridine-based catalyst promotes carbonate-forming reactions that ratchet the displacement of the macrocycle away from the reactive sites on the track. Under reaction conditions where both attachment and cleavage of the 9-fluorenylmethoxycarbonyl groups occur through different processes, and the cleavage reaction occurs at a rate independent of macrocycle location, net directional rotation of the molecular motor continues for as long as unreacted fuel remains. We anticipate that autonomous chemically fuelled molecular motors will find application as engines in molecular nanotechnology.
Neural Mechanisms Underlying Motivation of Mental Versus Physical Effort
Daunizeau, Jean; Pessiglione, Mathias
2012-01-01
Mental and physical efforts, such as paying attention and lifting weights, have been shown to involve different brain systems. These cognitive and motor systems, respectively, include cortical networks (prefronto-parietal and precentral regions) as well as subregions of the dorsal basal ganglia (caudate and putamen). Both systems appeared sensitive to incentive motivation: their activity increases when we work for higher rewards. Another brain system, including the ventral prefrontal cortex and the ventral basal ganglia, has been implicated in encoding expected rewards. How this motivational system drives the cognitive and motor systems remains poorly understood. More specifically, it is unclear whether cognitive and motor systems can be driven by a common motivational center or if they are driven by distinct, dedicated motivational modules. To address this issue, we used functional MRI to scan healthy participants while performing a task in which incentive motivation, cognitive, and motor demands were varied independently. We reasoned that a common motivational node should (1) represent the reward expected from effort exertion, (2) correlate with the performance attained, and (3) switch effective connectivity between cognitive and motor regions depending on task demand. The ventral striatum fulfilled all three criteria and therefore qualified as a common motivational node capable of driving both cognitive and motor regions of the dorsal striatum. Thus, we suggest that the interaction between a common motivational system and the different task-specific systems underpinning behavioral performance might occur within the basal ganglia. PMID:22363208
Márquez-Ruiz, Javier; Ammann, Claudia; Leal-Campanario, Rocío; Ruffini, Giulio; Gruart, Agnès; Delgado-García, José M
2016-01-21
The use of brain-derived signals for controlling external devices has long attracted the attention from neuroscientists and engineers during last decades. Although much effort has been dedicated to establishing effective brain-to-computer communication, computer-to-brain communication feedback for "closing the loop" is now becoming a major research theme. While intracortical microstimulation of the sensory cortex has already been successfully used for this purpose, its future application in humans partly relies on the use of non-invasive brain stimulation technologies. In the present study, we explore the potential use of transcranial alternating-current stimulation (tACS) for synthetic tactile perception in alert behaving animals. More specifically, we determined the effects of tACS on sensory local field potentials (LFPs) and motor output and tested its capability for inducing tactile perception using classical eyeblink conditioning in the behaving animal. We demonstrated that tACS of the primary somatosensory cortex vibrissa area could indeed substitute natural stimuli during training in the associative learning paradigm.
Schrum, Phillip B.; Cohen, George H.
1993-01-01
Self-contained, waterproof, water-submersible, remote-controlled apparatus is provided for manipulating a device, such as an ultrasonic transducer for measuring crack propagation on an underwater specimen undergoing shock testing. The subject manipulator includes metal bellows for transmittal of angular motions without the use of rotating shaft seals or O-rings. Inside the manipulator, a first stepper motor controls angular movement. In the preferred embodiment, the bellows permit the first stepper motor to move an ultrasonic transducer .+-.45 degrees in a first plane and a second bellows permit a second stepper motor to move the transducer .+-.10 degrees in a second plane orthogonal to the first. In addition, an XY motor-driven table provides XY motion.
Modeling of the motion of the actin filament on the myosin motility assays
NASA Astrophysics Data System (ADS)
Young, Yuan; Shelley, Mike
2007-11-01
In motility assays, cytoskeletal actin filaments (actin filaments) glide over a surface coated with motor proteins, and the different modes of motion provide a simple measure of the force exerted by the motor proteins (Bourdieu, 1995). Motivated by these experiments, we consider the actin filament as a slender, elastic filament immersed in Stokesian flow, driven by a tangential forcing that mimics the force by the motor proteins. We find qualitative agreement on several points between our analysis and simulations and experimental observations. Furthermore, we study the correlation between filament transport and the characteristics of motion with the spatial pattern of motor protein density.
Modeling torque versus speed, shot noise, and rotational diffusion of the bacterial flagellar motor.
Mora, Thierry; Yu, Howard; Wingreen, Ned S
2009-12-11
We present a minimal physical model for the flagellar motor that enables bacteria to swim. Our model explains the experimentally measured torque-speed relationship of the proton-driven E. coli motor at various pH and temperature conditions. In particular, the dramatic drop of torque at high rotation speeds (the "knee") is shown to arise from saturation of the proton flux. Moreover, we show that shot noise in the proton current dominates the diffusion of motor rotation at low loads. This suggests a new way to probe the discreteness of the energy source, analogous to measurements of charge quantization in superconducting tunnel junctions.
High Precision Piezoelectric Linear Motors for Operations at Cryogenic Temperatures and Vacuum
NASA Technical Reports Server (NTRS)
Wong, D.; Carman, G.; Stam, M.; Bar-Cohen, Y.; Sen, A.; Henry, P.; Bearman, G.; Moacanin, J.
1995-01-01
The use of an electromechanical device for optically positioning a mirror system during the pre-project phase of the Pluto Fast Flyby mission was evaluated at JPL. The device under consideration was a piezoelectric driven linear motor functionally dependent upon a time varying electric field which induces displacements ranging from submicrons to millimeters with positioning accuracy within nanometers.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-10
... Society of Automotive Engineers (SAE) Recommended Practice J918b--Passenger Car Tire Performance Requirements and Test Procedures (January 1967). 2, 3 As part of the strength test, a plunger is driven into a...--Passenger Car Tire Performance Requirements and Test Procedures (January 1967) Section 3.1. \\5\\ FMVSS No...
Broadband Laser Ranging for Position Measurements in Shock Physics Experiments
NASA Astrophysics Data System (ADS)
Rhodes, Michelle; Bennett, Corey; Daykin, Edward; Younk, Patrick; Lalone, Brandon; Kostinski, Natalie
2017-06-01
Broadband laser ranging (BLR) is a recently developed measurement system that provides an attractive option for determining the position of shock-driven surfaces. This system uses broadband, picosecond (or femtosecond) laser pulses and a fiber interferometer to measure relative travel time to a target and to a reference mirror. The difference in travel time produces a delay difference between pulse replicas that creates a spectral beat frequency. The spectral beating is recorded in real time using a dispersive Fourier transform and an oscilloscope. BLR systems have been designed that measure position at 12.5-40 MHz with better than 100 micron accuracy over ranges greater than 10 cm. We will give an overview of the basic operating principles of these systems. Prepared by LLNL under Contract DE-AC52-07NA27344, by LANL under Contract DE-AC52-06NA25396, and by NSTec Contract DE-AC52-06NA25946.
Nakamura, Shuichi; Kami-ike, Nobunori; Yokota, Jun-ichi P.; Minamino, Tohru; Namba, Keiichi
2010-01-01
The bacterial flagellar motor can rotate in both counterclockwise (CCW) and clockwise (CW) directions. It has been shown that the sodium ion-driven chimeric flagellar motor rotates with 26 steps per revolution, which corresponds to the number of FliG subunits that form part of the rotor ring, but the size of the backward step is smaller than the forward one. Here we report that the proton-driven flagellar motor of Salmonella also rotates with 26 steps per revolution but symmetrical in both CCW and CW directions with occasional smaller backward steps in both directions. Occasional shift in the stepping positions is also observed, suggesting the frequent exchange of stators in one of the 11–12 possible anchoring positions around the rotor. These observations indicate that the elementary process of torque generation by the cyclic association/dissociation of the stator with every FliG subunit along the circumference of the rotor is symmetric in CCW and CW rotation even though the structure of FliG is highly asymmetric and suggests a 180° rotation of a FliG domain for the rotor-stator interaction to reverse the direction of rotation. PMID:20876126
Zhang, Jingming; Lanuza, Guillermo M; Britz, Olivier; Wang, Zhi; Siembab, Valerie C; Zhang, Ying; Velasquez, Tomoko; Alvarez, Francisco J; Frank, Eric; Goulding, Martyn
2014-04-02
Reciprocal activation of flexor and extensor muscles constitutes the fundamental mechanism that tetrapod vertebrates use for locomotion and limb-driven reflex behaviors. This aspect of motor coordination is controlled by inhibitory neurons in the spinal cord; however, the identity of the spinal interneurons that serve this function is not known. Here, we show that the production of an alternating flexor-extensor motor rhythm depends on the composite activities of two classes of ventrally located inhibitory neurons, V1 and V2b interneurons (INs). Abrogating V1 and V2b IN-derived neurotransmission in the isolated spinal cord results in a synchronous pattern of L2 flexor-related and L5 extensor-related locomotor activity. Mice lacking V1 and V2b inhibition are unable to articulate their limb joints and display marked deficits in limb-driven reflex movements. Taken together, these findings identify V1- and V2b-derived neurons as the core interneuronal components of the limb central pattern generator (CPG) that coordinate flexor-extensor motor activity. Copyright © 2014 Elsevier Inc. All rights reserved.
Luo, Win-Jet
2006-03-15
This paper investigates two-dimensional, time-dependent electroosmotic flow driven by an AC electric field via patchwise surface heterogeneities distributed along the micro-channel walls. The time-dependent flow fields through the micro-channel are simulated for various patchwise heterogeneous surface patterns using the backwards-Euler time stepping numerical method. Different heterogeneous surface patterns are found to create significantly different electrokinetic transport phenomena. The transient behavior characteristics of the generated electroosmotic flow are then discussed in terms of the influence of the patchwise surface heterogeneities, the direction of the applied AC electric field, and the velocity of the bulk flow. It is shown that the presence of oppositely charged surface heterogeneities on the micro-channel walls results in the formation of localized flow circulations within the bulk flow. These circulation regions grow and decay periodically in phase with the applied periodic AC electric field intensity. The location and rotational direction of the induced circulations are determined by the directions of the bulk flow velocity and the applied electric field.
Ratchet Effects, Negative Mobility, and Phase Locking for Skyrmions on Periodic Substrates
NASA Astrophysics Data System (ADS)
Reichhardt, Charles; Ray, Dipanjan; Olson Reichhardt, Cynthia
We examine the dynamics of skyrmions interacting with 1D and 2D periodic substrates in the presence of dc and ac drives. We find that the Magnus term strongly affects the skyrmion dynamics and that new kinds of phenomena can occur which are absent for overdamped ac and dc driven particles interacting with similar substrates. We show that it is possible to realize a Magnus induced ratchet for skyrmions interacting with an asymmetric potential, where the application of an ac drive can produce quantized dc motion of the skyrmions even when the ac force is perpendicular to the substrate asymmetry direction. For symmetric substrates it is also possible to achieve a negative mobility effect where the net skyrmion motion runs counter to an applied dc drive. Here, as a function of increasing dc drive, the velocity-force curves show a series of locking phases that have different features from the classic Shapiro steps found in overdamped systems. In the phase locking and ratcheting states, the skyrmions undergo intricate 2D orbits induced by the Magnus term.
[Improved design of permanent maglev impeller assist heart].
Qian, Kunxi; Zeng, Pei; Ru, Weimin; Yuan, Haiyu
2002-12-01
Magnetic bearing has no mechanical contact between the rotor and stator. And a rotary pump with magnetic bearing has therefore no mechanical wear and thrombosis due to bearing. The available magnetic bearings, however, are devised with electric magnets, need complicated control and remarkable energy consumption. Resultantly, it is difficult to apply an electric magnetic bearing to rotary pump without disturbing its simplicity, implantability and reliability. The authors have developed a levitated impeller pump merely with permanent magnets. The rotor is supported by permanent magnetic forces radially. On one side of the rotor, the impeller is fixed; and on the other side of the rotor, the driven magnets are mounted. Opposite to this driven magnets, a driving motor coil with iron corn magnets is fastened to the motor axis. Thereafter, the motor drives the rotor via a rotating magnetic field. By laboratory tests with saline, if the rotor stands still or rotates under 4,000 rpm, the rotor has one-point contact axially with the driving motor coil. The contacting point is located in the center of the rotor. As the rotating speed increases gradually to more than 4,000 rpm, the rotor will detache from the stator axially. Then the rotor will be fully levitated. Since the axial levitation is produced by hydraulic force and the driven magnets have a gyro-effect, the rotor rotates very steadly during levitation. As a left ventricular assist device, the pump works in a rotating speed range of 5,000-8,000 rpm, the levitation of the impeller hence is ensured by practical use of the pump.
Shimizu, H
1984-01-01
I would like to report some results obtained by Yano , Yamamoto and myself on a novel system ( Yano et al., 1982) we have named the actomyosin motor in which a rotor with attached F-actin rotates in a specific direction, driven by the ATP-splitting interaction with active fragments of myosin, heavy meromyosin or subfragment-1, in a solution containing MgATP. The actomyosin motor is not only interesting as a new kind of motor made of biological material but also, as a stream cell ( Yano , 1978; Yano et al., 1978; Yano & Shimizu, 1978; Shimizu & Yano , 1978; Shimizu, 1979), is suitable for the study of chemo-mechanical coupling by actin and active fragments of myosin. Active motion of the motor was observed in almost 100% of the experiments, when carefully performed.
Fogedby, Hans C; Metzler, Ralf; Svane, Axel
2004-08-01
We investigate by analytical means the stochastic equations of motion of a linear molecular motor model based on the concept of protein friction. Solving the coupled Langevin equations originally proposed by Mogilner et al. [Phys. Lett. A 237, 297 (1998)], and averaging over both the two-step internal conformational fluctuations and the thermal noise, we present explicit, analytical expressions for the average motion and the velocity-force relationship. Our results allow for a direct interpretation of details of this motor model which are not readily accessible from numerical solutions. In particular, we find that the model is able to predict physiologically reasonable values for the load-free motor velocity and the motor mobility.
Neural substrates underlying stimulation-enhanced motor skill learning after stroke
Lefebvre, Stéphanie; Dricot, Laurence; Laloux, Patrice; Gradkowski, Wojciech; Desfontaines, Philippe; Evrard, Frédéric; Peeters, André; Jamart, Jacques
2015-01-01
Motor skill learning is one of the key components of motor function recovery after stroke, especially recovery driven by neurorehabilitation. Transcranial direct current stimulation can enhance neurorehabilitation and motor skill learning in stroke patients. However, the neural mechanisms underlying the retention of stimulation-enhanced motor skill learning involving a paretic upper limb have not been resolved. These neural substrates were explored by means of functional magnetic resonance imaging. Nineteen chronic hemiparetic stroke patients participated in a double-blind, cross-over randomized, sham-controlled experiment with two series. Each series consisted of two sessions: (i) an intervention session during which dual transcranial direct current stimulation or sham was applied during motor skill learning with the paretic upper limb; and (ii) an imaging session 1 week later, during which the patients performed the learned motor skill. The motor skill learning task, called the ‘circuit game’, involves a speed/accuracy trade-off and consists of moving a pointer controlled by a computer mouse along a complex circuit as quickly and accurately as possible. Relative to the sham series, dual transcranial direct current stimulation applied bilaterally over the primary motor cortex during motor skill learning with the paretic upper limb resulted in (i) enhanced online motor skill learning; (ii) enhanced 1-week retention; and (iii) superior transfer of performance improvement to an untrained task. The 1-week retention’s enhancement driven by the intervention was associated with a trend towards normalization of the brain activation pattern during performance of the learned motor skill relative to the sham series. A similar trend towards normalization relative to sham was observed during performance of a simple, untrained task without a speed/accuracy constraint, despite a lack of behavioural difference between the dual transcranial direct current stimulation and sham series. Finally, dual transcranial direct current stimulation applied during the first session enhanced continued learning with the paretic limb 1 week later, relative to the sham series. This lasting behavioural enhancement was associated with more efficient recruitment of the motor skill learning network, that is, focused activation on the motor-premotor areas in the damaged hemisphere, especially on the dorsal premotor cortex. Dual transcranial direct current stimulation applied during motor skill learning with a paretic upper limb resulted in prolonged shaping of brain activation, which supported behavioural enhancements in stroke patients. PMID:25488186
Mechanistic logic underlying the axonal transport of cytosolic proteins
Scott, David A.; Das, Utpal; Tang, Yong; Roy, Subhojit
2011-01-01
Proteins vital to presynaptic function are synthesized in the neuronal perikarya and delivered into synapses via two modes of axonal transport. While membrane-anchoring proteins are conveyed in fast axonal transport via motor-driven vesicles, cytosolic proteins travel in slow axonal transport; via mechanisms that are poorly understood. We found that in cultured axons, populations of cytosolic proteins tagged to photoactivable-GFP (PA-GFP) move with a slow motor-dependent anterograde bias; distinct from vesicular-trafficking or diffusion of untagged PA-GFP. The overall bias is likely generated by an intricate particle-kinetics involving transient assembly and short-range vectorial spurts. In-vivo biochemical studies reveal that cytosolic proteins are organized into higher-order structures within axon-enriched fractions that are largely segregated from vesicles. Data-driven biophysical modeling best predicts a scenario where soluble molecules dynamically assemble into mobile supra-molecular structures. We propose a model where cytosolic proteins are transported by dynamically assembling into multi-protein complexes that are directly/indirectly conveyed by motors. PMID:21555071
Modeling of screening currents in coated conductor magnets containing up to 40000 turns
NASA Astrophysics Data System (ADS)
Pardo, E.
2016-08-01
Screening currents caused by varying magnetic fields degrade the homogeneity and stability of the magnetic fields created by REBCO coated conductor coils. They are responsible for the AC loss; which is also important for other power applications containing windings, such as transformers, motors and generators. Since real magnets contain coils exceeding 10000 turns, accurate modeling tools for this number of turns or above are necessary for magnet design. This article presents a fast numerical method to model coils with no loss of accuracy. We model a 10400-turn coil for its real number of turns and coils of up to 40000 turns with continuous approximation, which introduces negligible errors. The screening currents, the screening current induced field (SCIF) and the AC loss is analyzed in detail. The SCIF is at a maximum at the remnant state with a considerably large value. The instantaneous AC loss for an anisotropic magnetic-field dependent J c is qualitatively different than for a constant J c , although the loss per cycle is similar. Saturation of the magnetization currents at the end pancakes causes the maximum AC loss at the first ramp to increase with J c . The presented modeling tool can accurately calculate the SCIF and AC loss in practical computing times for coils with any number of turns used in real windings, enabling parameter optimization.