Sample records for ac plasma electrolytic

  1. Strongly nonlinear dynamics of electrolytes in large ac voltages.

    PubMed

    Højgaard Olesen, Laurits; Bazant, Martin Z; Bruus, Henrik

    2010-07-01

    We study the response of a model microelectrochemical cell to a large ac voltage of frequency comparable to the inverse cell relaxation time. To bring out the basic physics, we consider the simplest possible model of a symmetric binary electrolyte confined between parallel-plate blocking electrodes, ignoring any transverse instability or fluid flow. We analyze the resulting one-dimensional problem by matched asymptotic expansions in the limit of thin double layers and extend previous work into the strongly nonlinear regime, which is characterized by two features--significant salt depletion in the electrolyte near the electrodes and, at very large voltage, the breakdown of the quasiequilibrium structure of the double layers. The former leads to the prediction of "ac capacitive desalination" since there is a time-averaged transfer of salt from the bulk to the double layers, via oscillating diffusion layers. The latter is associated with transient diffusion limitation, which drives the formation and collapse of space-charge layers, even in the absence of any net Faradaic current through the cell. We also predict that steric effects of finite ion sizes (going beyond dilute-solution theory) act to suppress the strongly nonlinear regime in the limit of concentrated electrolytes, ionic liquids, and molten salts. Beyond the model problem, our reduced equations for thin double layers, based on uniformly valid matched asymptotic expansions, provide a useful mathematical framework to describe additional nonlinear responses to large ac voltages, such as Faradaic reactions, electro-osmotic instabilities, and induced-charge electrokinetic phenomena.

  2. High voltage AC/AC electrochemical capacitor operating at low temperature in salt aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Abbas, Qamar; Béguin, François

    2016-06-01

    We demonstrate that an activated carbon (AC)-based electrochemical capacitor implementing aqueous lithium sulfate electrolyte in 7:3 vol:vol water/methanol mixture can operate down to -40 °C with good electrochemical performance. Three-electrode cell investigations show that the faradaic contributions related with hydrogen chemisorption in the negative AC electrode are thermodynamically unfavored at -40 °C, enabling the system to work as a typical electrical double-layer (EDL) capacitor. After prolonged floating of the AC/AC capacitor at 1.6 V and -40°C, the capacitance, equivalent series resistance and efficiency remain constant, demonstrating the absence of ageing related with side redox reactions at this temperature. Interestingly, when temperature is increased back to 24 °C, the redox behavior due to hydrogen storage reappears and the system behaves as a freshly prepared one.

  3. Plasma Electrolyte Distributions in Humans-Normal or Skewed?

    PubMed

    Feldman, Mark; Dickson, Beverly

    2017-11-01

    It is widely believed that plasma electrolyte levels are normally distributed. Statistical tests and calculations using plasma electrolyte data are often reported based on this assumption of normality. Examples include t tests, analysis of variance, correlations and confidence intervals. The purpose of our study was to determine whether plasma sodium (Na + ), potassium (K + ), chloride (Cl - ) and bicarbonate [Formula: see text] distributions are indeed normally distributed. We analyzed plasma electrolyte data from 237 consecutive adults (137 women and 100 men) who had normal results on a standard basic metabolic panel which included plasma electrolyte measurements. The skewness of each distribution (as a measure of its asymmetry) was compared to the zero skewness of a normal (Gaussian) distribution. The plasma Na + distribution was skewed slightly to the right, but the skew was not significantly different from zero skew. The plasma Cl - distribution was skewed slightly to the left, but again the skew was not significantly different from zero skew. On the contrary, both the plasma K + and [Formula: see text] distributions were significantly skewed to the right (P < 0.01 zero skew). There was also a suggestion from examining frequency distribution curves that K + and [Formula: see text] distributions were bimodal. In adults with a normal basic metabolic panel, plasma potassium and bicarbonate levels are not normally distributed and may be bimodal. Thus, statistical methods to evaluate these 2 plasma electrolytes should be nonparametric tests and not parametric ones that require a normal distribution. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  4. Electron beam irradiated polymer electrolyte film: Morphology, dielectric and AC conductivity studies

    NASA Astrophysics Data System (ADS)

    Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Vijeth, H.; Ganesh, S.; Devendrappa, H.

    2018-05-01

    The polymer (PVdF-co-HFP: LiClO4=90:10, PHL10) electrolyte films prepared by solution casting method and studied morphology, dielectric properties and ac conductivity before and after electron beam (EB) irradiation. The polarized optical micrographs reveals size of spherulite reduced with increasing EB dose represents increase in amorphousity. The dielectric measurements were studied at different temperatures and observed increase with frequency at different temperatures upon EB irradiation. The ac conductivity increases with frequency due to effect of EB dose.

  5. Polyfluorinated boron cluster based salts: A new electrolyte for application in nonaqueous asymmetric AC/Li 4Ti 5O 12 supercapacitors

    NASA Astrophysics Data System (ADS)

    Ionica-Bousquet, C. M.; Muñoz-Rojas, D.; Casteel, W. J.; Pearlstein, R. M.; Kumar, G. Girish; Pez, G. P.; Palacín, M. R.

    Solutions of novel fluorinated lithium dodecaborate (Li 2B 12F xH 12- x) salts have been evaluated as electrolytes in nonaqueous asymmetric supercapacitors with Li 4Ti 5O 12 as negative electrode, and activated carbon (AC) as positive electrode. The results obtained with these new electrolytes were compared with those obtained with cells built using standard 1 M LiPF 6 dissolved in ethylene carbonate and dimethyl carbonate (EC:DMC; 1:1, v/v) as electrolyte. The specific energy, rate capability, and cycling performances of nonaqueous asymmetric cells based on these new electrolyte salts were studied. Cells assembled using the new fluoroborate salts show excellent reversibility, coulombic efficiency, rate capability and improved cyclability when compared with the standard electrolyte. These features confirm the suitability of lithium-fluoro-borate based salts to be used in nonaqueous asymmetric supercapacitors.

  6. Electrolyte and plasma changes after ingestion of pickle juice, water, and a common carbohydrate-electrolyte solution.

    PubMed

    Miller, Kevin C; Mack, Gary; Knight, Kenneth L

    2009-01-01

    Health care professionals advocate that athletes who are susceptible to exercise-associated muscle cramps (EAMCs) should moderately increase their fluid and electrolyte intake by drinking sport drinks. Some clinicians have also claimed drinking small volumes of pickle juice effectively relieves acute EAMCs, often alleviating them within 35 seconds. Others fear ingesting pickle juice will enhance dehydration-induced hypertonicity, thereby prolonging dehydration. To determine if ingesting small quantities of pickle juice, a carbohydrate-electrolyte (CHO-e) drink, or water increases plasma electrolytes or other selected plasma variables. Crossover study. Exercise physiology laboratory. Nine euhydrated, healthy men (age = 25 +/- 2 years, height = 179.4 +/- 7.2 cm, mass = 86.3 +/- 15.9 kg) completed the study. Resting blood samples were collected preingestion (-0.5 minutes); immediately postingestion (0 minutes); and at 1, 5, 10, 15, 20, 25, 30, 45, and 60 minutes postingestion of 1 mL/kg body mass of pickle juice, CHO-e drink, or tap water. Plasma sodium concentration, plasma magnesium concentration, plasma calcium concentration, plasma potassium concentration, plasma osmolality, and changes in plasma volume were analyzed. Urine specific gravity, osmolality, and volume were also measured to characterize hydration status. Mean fluid intake was 86.3 +/- 16.7 mL. Plasma sodium concentration, plasma magnesium concentration, plasma calcium concentration, plasma osmolality, and plasma volume did not change during the 60 minutes after ingestion of each fluid (P >or= .05). Water ingestion slightly decreased plasma potassium concentration at 60 minutes (0.21 +/- 0.14 mg/dL [0.21 +/- 0.14 mmol/L]; P plasma electrolyte concentrations, plasma osmolality, or plasma volume in rested, euhydrated men. Concern that ingesting these volumes of pickle juice might exacerbate an

  7. High voltage AC plasma torches with long electric arcs for plasma-chemical applications

    NASA Astrophysics Data System (ADS)

    Surov, A. V.; Popov, S. D.; Serba, E. O.; Pavlov, A. V.; Nakonechny, Gh V.; Spodobin, V. A.; Nikonov, A. V.; Subbotin, D. I.; Borovskoy, A. M.

    2017-04-01

    Powerful AC plasma torches are in demand for a number of advanced plasma chemical applications, they can provide high enthalpy of the working gas. IEE RAS specialists have developed a number of models of stationary thermal plasma torches for continuous operation on air with the power from 5 to 500 kW, and on mixture of H2O, CO2 and CH4 up to 150 kW. AC plasma torches were tested on the pilot plasmachemical installations. Powerful AC plasma torch with hollow electrodes and the gas vortex stabilization of arc in cylindrical channels and its operation characteristics are presented. Lifetime of its continuous operation on air is 2000 hours and thermal efficiency is about 92%, the electric arc length between two electrodes of the plasma torch exceeds 2 m.

  8. Electrolyte and Plasma Changes After Ingestion of Pickle Juice, Water, and a Common Carbohydrate-Electrolyte Solution

    PubMed Central

    Miller, Kevin C.; Mack, Gary; Knight, Kenneth L.

    2009-01-01

    Abstract Context: Health care professionals advocate that athletes who are susceptible to exercise-associated muscle cramps (EAMCs) should moderately increase their fluid and electrolyte intake by drinking sport drinks. Some clinicians have also claimed drinking small volumes of pickle juice effectively relieves acute EAMCs, often alleviating them within 35 seconds. Others fear ingesting pickle juice will enhance dehydration-induced hypertonicity, thereby prolonging dehydration. Objective: To determine if ingesting small quantities of pickle juice, a carbohydrate-electrolyte (CHO-e) drink, or water increases plasma electrolytes or other selected plasma variables. Design: Crossover study. Setting: Exercise physiology laboratory. Patients or Other Participants: Nine euhydrated, healthy men (age  =  25 ± 2 years, height  =  179.4 ± 7.2 cm, mass  =  86.3 ± 15.9 kg) completed the study. Intervention(s): Resting blood samples were collected preingestion (−0.5 minutes); immediately postingestion (0 minutes); and at 1, 5, 10, 15, 20, 25, 30, 45, and 60 minutes postingestion of 1 mL/kg body mass of pickle juice, CHO-e drink, or tap water. Main Outcome Measure(s): Plasma sodium concentration, plasma magnesium concentration, plasma calcium concentration, plasma potassium concentration, plasma osmolality, and changes in plasma volume were analyzed. Urine specific gravity, osmolality, and volume were also measured to characterize hydration status. Results: Mean fluid intake was 86.3 ± 16.7 mL. Plasma sodium concentration, plasma magnesium concentration, plasma calcium concentration, plasma osmolality, and plasma volume did not change during the 60 minutes after ingestion of each fluid (P ≥ .05). Water ingestion slightly decreased plasma potassium concentration at 60 minutes (0.21 ± 0.14 mg/dL [0.21 ± 0.14 mmol/L]; P ≤ .05). Conclusions: At these volumes, ingestion of pickle juice and CHO-e drink did not cause substantial changes in plasma electrolyte

  9. Electrochemical testing of suspension plasma sprayed solid oxide fuel cell electrolytes

    NASA Astrophysics Data System (ADS)

    Waldbillig, D.; Kesler, O.

    Electrochemical performance of metal-supported plasma sprayed (PS) solid oxide fuel cells (SOFCs) was tested for three nominal electrolyte thicknesses and three electrolyte fabrication conditions to determine the effects of electrolyte thickness and microstructure on open circuit voltage (OCV) and series resistance (R s). The measured OCV values were approximately 90% of the Nernst voltages, and electrolyte area specific resistances below 0.1 Ω cm 2 were obtained at 750 °C for electrolyte thicknesses below 20 μm. Least-squares fitting was used to estimate the contributions to R s of the YSZ bulk material, its microstructure, and the contact resistance between the current collectors and the cells. It was found that the 96% dense electrolyte layers produced from high plasma gas flow rate conditions had the lowest permeation rates, the highest OCV values, and the smallest electrolyte-related voltage losses. Optimal electrolyte thicknesses were determined for each electrolyte microstructure that would result in the lowest combination of OCV loss and voltage loss due to series resistance for operating voltages of 0.8 V and 0.7 V.

  10. Spectroscopic investigation of plasma electrolytic borocarburizing on q235 low-carbon steel

    NASA Astrophysics Data System (ADS)

    Liu, Run; Wang, Bin; Wu, Jie; Xue, Wenbin; Jin, Xiaoyue; Du, Jiancheng; Hua, Ming

    2014-12-01

    A plasma electrolytic borocarburizing process (PEB/C) in borax electrolyte with glycerin additive was employed to fabricate a hardening layer on Q235 low-carbon steel. Optical emission spectroscopy (OES) was utilized to investigate the spectroscopy characteristics of plasma discharge around the steel during PEB/C process. Some plasma parameters were calculated in terms of OES. The electron temperature and electron concentration in plasma discharge zone is about 3000-12,000 K and 2 × 1022 m-3-1.4 × 1023 m-3. The atomic ionization degrees of iron, carbon and boron are 10-16-10-3, and 10-23-10-6, 10-19-10-4, respectively, which depend on discharge time. The surface morphology and cross-sectional microstructure of PEB/C hardening layer were observed, and the electrolyte decomposition and plasma discharge behaviors were discussed.

  11. Electrochemical performance of solid oxide fuel cells having electrolytes made by suspension and solution precursor plasma spraying

    NASA Astrophysics Data System (ADS)

    Marr, M.; Kuhn, J.; Metcalfe, C.; Harris, J.; Kesler, O.

    2014-01-01

    Yttria-stabilized zirconia (YSZ) electrolytes were deposited by suspension plasma spraying (SPS) and solution precursor plasma spraying (SPPS). The electrolytes were evaluated for permeability, microstructure, and electrochemical performance. With SPS, three different suspensions were tested to explore the influence of powder size distribution and liquid properties. Electrolytes made from suspensions of a powder with d50 = 2.6 μm were more gas-tight than those made from suspensions of a powder with d50 = 0.6 μm. A peak open circuit voltage of 1.00 V was measured at 750 °C with a cell with an electrolyte made from a suspension of d50 = 2.6 μm powder. The use of a flammable suspension liquid was beneficial for improving electrolyte conductivity when using lower energy plasmas, but the choice of liquid was less important when using higher energy plasmas. With SPPS, peak electrolyte conductivities were comparable to the peak conductivities of the SPS electrolytes. However, leak rates through the SPPS electrolytes were higher than those through the electrolytes made from suspensions of d50 = 2.6 μm powder. The electrochemical test data on SPPS electrolytes are the first reported in the literature.

  12. The Feasibility of Applying AC Driven Low-Temperature Plasma for Multi-Cycle Detonation Initiation

    NASA Astrophysics Data System (ADS)

    Zheng, Dianfeng

    2016-11-01

    Ignition is a key system in pulse detonation engines (PDE). As advanced ignition methods, nanosecond pulse discharge low-temperature plasma ignition is used in some combustion systems, and continuous alternating current (AC) driven low-temperature plasma using dielectric barrier discharge (DBD) is used for the combustion assistant. However, continuous AC driven plasmas cannot be used for ignition in pulse detonation engines. In this paper, experimental and numerical studies of pneumatic valve PDE using an AC driven low-temperature plasma igniter were described. The pneumatic valve was jointly designed with the low-temperature plasma igniter, and the numerical simulation of the cold-state flow field in the pneumatic valve showed that a complex flow in the discharge area, along with low speed, was beneficial for successful ignition. In the experiments ethylene was used as the fuel and air as oxidizing agent, ignition by an AC driven low-temperature plasma achieved multi-cycle intermittent detonation combustion on a PDE, the working frequency of the PDE reached 15 Hz and the peak pressure of the detonation wave was approximately 2.0 MPa. The experimental verifications of the feasibility in PDE ignition expanded the application field of AC driven low-temperature plasma. supported by National Natural Science Foundation of China (No. 51176001)

  13. 3-V Solid-State Flexible Supercapacitors with Ionic-Liquid-Based Polymer Gel Electrolyte for AC Line Filtering.

    PubMed

    Kang, Yu Jin; Yoo, Yongju; Kim, Woong

    2016-06-08

    State-of-the-art solid-state flexible supercapacitors with sufficiently fast response speed for AC line filtering application suffer from limited energy density. One of the main causes of the low energy density is the low cell voltage (1 V), which is limited by aqueous-solution-based gel electrolytes. In this work, we demonstrate for the first time a 3-V flexible supercapacitor for AC line filtering based on an ionic-liquid-based polymer gel electrolyte and carbon nanotube electrode material. The flexible supercapacitor exhibits an areal energy density that is more than 20 times higher than that of the previously demonstrated 1-V flexible supercapacitor (0.66 vs 0.03 μWh/cm(2)) while maintaining excellent capacitive behavior at 120 Hz. The supercapacitor shows a maximum areal power density of 1.5 W/cm(2) and a time constant of 1 ms. The improvement of the cell voltage while maintaining the fast-response capability greatly improves the potential of supercapacitors for high-frequency applications in wearable and/or portable electronics.

  14. Composition of highly concentrated silicate electrolytes and ultrasound influencing the plasma electrolytic oxidation of magnesium

    NASA Astrophysics Data System (ADS)

    Simchen, F.; Rymer, L.-M.; Sieber, M.; Lampke, T.

    2017-03-01

    Magnesium and its alloys are increasingly in use as lightweight construction materials. However, their inappropriate corrosion and wear resistance often prevent their direct practical use. The plasma electrolytic oxidation (PEO) is a promising, environmentally friendly method to improve the surface characteristics of magnesium materials by the formation of oxide coatings. These PEO layers contain components of the applied electrolyte and can be shifted in their composition by increasing the concentration of the electrolyte constituents. Therefore, in contrast to the use of conventional low concentrated electrolytes, the process results in more stable protective coatings, in which electrolyte species are the dominating constitutes. In the present work, the influence of the composition of highly concentrated alkaline silicate electrolytes with additives of phosphate and glycerol on the quality of PEO layers on the magnesium alloy AZ31 was examined. The effect of ultrasound coupled into the electrolyte bath was also considered. The process was monitored by recording the electrical process variables with a transient recorder and by observation of the discharge phenomena on the sample surface with a camera. The study was conducted on the basis of a design of experiments. The effects of the process parameter variation are considered with regard to the coatings thickness, hardness and corrosion resistance. Information about the statistical significance of the effects of the parameters on the considered properties is obtained by an analysis of variance (ANOVA).

  15. Plasma electrolytic oxidation of Titanium Aluminides

    NASA Astrophysics Data System (ADS)

    Morgenstern, R.; Sieber, M.; Grund, T.; Lampke, T.; Wielage, B.

    2016-03-01

    Due to their outstanding specific mechanical and high-temperature properties, titanium aluminides exhibit a high potential for lightweight components exposed to high temperatures. However, their application is limited through their low wear resistance and the increasing high-temperature oxidation starting from about 750 °C. By the use of oxide ceramic coatings, these constraints can be set aside and the possible applications of titanium aluminides can be extended. The plasma electrolytic oxidation (PEO) represents a process for the generation of oxide ceramic conversion coatings with high thickness. The current work aims at the clarification of different electrolyte components’ influences on the oxide layer evolution on alloy TNM-B1 (Ti43.5Al4Nb1Mo0.1B) and the creation of compact and wear resistant coatings. Model experiments were applied using a ramp-wise increase of the anodic potential in order to show the influence of electrolyte components on the discharge initiation and the early stage of the oxide layer growth. The production of PEO layers with technically relevant thicknesses close to 100 μm was conducted in alkaline electrolytes with varying amounts of Na2SiO3·5H2O and K4P2O7 under symmetrically pulsed current conditions. Coating properties were evaluated with regard to morphology, chemical composition, hardness and wear resistance. The addition of phosphates and silicates leads to an increasing substrate passivation and the growth of compact oxide layers with higher thicknesses. Optimal electrolyte compositions for maximum coating hardness and thickness were identified by statistical analysis. Under these conditions, a homogeneous inner layer with low porosity can be achieved. The frictional wear behavior of the compact coating layer is superior to a hard anodized layer on aluminum.

  16. Effect upon biocompatibility and biocorrosion properties of plasma electrolytic oxidation in trisodium phosphate electrolytes.

    PubMed

    Kim, Yu-Kyoung; Park, Il-Song; Lee, Kwang-Bok; Bae, Tae-Sung; Jang, Yong-Seok; Oh, Young-Min; Lee, Min-Ho

    2016-03-01

    Surface modification to improve the corrosion resistance and biocompatibility of the Mg-Al-Zn-Ca alloy was conducted via plasma electrolytic oxidation (PEO) in an electrolyte that included phosphate. Calcium phosphate can be easily induced on the surface of a PEO coating that includes phosphate in a physiological environment because Ca(2+) ions in body fluids can be combined with PO4 (3-). Cytotoxicity of the PEO coating formed in electrolytes with various amounts of Na3PO4 was identified. In particular, the effects that PEO films have upon oxidative stress and differentiation of osteoblast activity were studied. As the concentration of Na3PO4 in the electrolyte increased, the oxide layer was found to become thicker, which increased corrosion resistance. However, the PEO coating formed in electrolytes with over 0.2 M of added Na3PO4 exhibited more microcracks and larger pores than those formed in smaller Na3PO4 concentrations owing to a large spark discharge. A nonuniform oxide film that included more phosphate caused more cytotoxicity and oxidative stress, and overabundant phosphate content in the oxide layer interrupted the differentiation of osteoblasts. The corrosion resistance of the magnesium alloy and the thickness of the oxide layer were increased by the addition of Na3PO4 in the electrolyte for PEO treatment. However, excessive phosphate content in the oxide layer led to oxidative stress, which resulted in reduced cell viability and activity.

  17. Plasma electrolytic liquefaction of cellulosic biomass

    NASA Astrophysics Data System (ADS)

    Dingliang, TANG; Xianhui, ZHANG; Si-ze, YANG

    2018-04-01

    In this paper, the rapid liquefaction of a corncob was achieved by plasma electrolysis, providing a new method for cellulosic biomass liquefaction. The liquefaction rate of the corncob was 95% after 5 min with polyethylene glycol and glycerol as the liquefying agent. The experiments not only showed that H+ ions catalyzed the liquefaction of the corncob, but also that using accelerated H+ ions, which were accelerated by an electric field, could effectively improve the liquefaction efficiency. There was an obvious discharge phenomenon, in which the generated radicals efficiently heated the solution and liquefied the biomass, in the process of plasma electrolytic liquefaction. Finally, the optimum parameters of the corncob liquefaction were obtained by experimentation, and the liquefaction products were analyzed.

  18. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    DOEpatents

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  19. Water treatment by the AC gliding arc air plasma

    NASA Astrophysics Data System (ADS)

    Gharagozalian, Mehrnaz; Dorranian, Davoud; Ghoranneviss, Mahmood

    2017-09-01

    In this study, the effects of gliding arc (G Arc) plasma system on the treatment of water have been investigated experimentally. An AC power supply of 15 kV potential difference at 50 Hz frequency was employed to generate plasma. Plasma density and temperature were measured using spectroscopic method. The water was contaminated with staphylococcus aureus (Gram-positive) and salmonella bacteria (Gram-negative), and Penicillium (mold fungus) individually. pH, hydrogen peroxide, and nitride contents of treated water were measured after plasma treatment. Decontamination of treated water was determined using colony counting method. Results indicate that G Arc plasma is a powerful and green tool to decontaminate water without producing any byproducts.

  20. Surface Charge at the Oxide/Electrolyte Interface: Toward Optimization of Electrolyte Composition for Treatment of Aluminum and Magnesium by Plasma Electrolytic Oxidation.

    PubMed

    Nominé, Alexandre; Martin, Julien; Noël, Cédric; Henrion, Gérard; Belmonte, Thierry; Bardin, Ilya V; Lukeš, Petr

    2016-02-09

    Controlling microdischarges in plasma electrolytic oxidation is of great importance in order to optimize coating quality. The present study highlights the relationship between the polarity at which breakdown occurs and the electrolyte pH as compared with the isoelectric point (IEP). It is found that working at a pH higher than the IEP of the grown oxide prevents the buildup of detrimental cathodic discharges. The addition of phosphates results in a shift in the IEP to a lower value and therefore promotes anodic discharges at the expense of cathodic ones.

  1. Method of Electrolyte-Plasma Surface Hardening of 65G and 20GL Low-Alloy Steels Samples

    NASA Astrophysics Data System (ADS)

    Rakhadilov, Bauyrzhan; Zhurerova, Laila; Pavlov, Alexander

    2016-08-01

    This work is devoted to formation of modified surface layers in 65G and 20GL steels which using for the manufacture of railway transport parts, as well as the study of influence of the parametersof electrolyte-plasma surface hardening methodon the changes in structural-phase states, improving of wear-resistance. The process of electrolyte-plasma surface hardening of 65G and 20GL steels samples conducted in the electrolyte from water solution of 20% sodium carbonate, in the mode ~850°C - 2 seconds, ∼⃒1200°C - 3 seconds. It is established that in the initial state 20GL steel has ferrite-pearlite structure, and the 60G steel consists of pearlite and cement structure. After application of electrolyte-plasma surface hardening is observed the formation of carbides particles and martensite phase components in the structure of 20GL and 60G steels. It is determined that after electrolyte-plasma surface hardening with heating time - 2 seconds, the abrasive wear-resistance of 65G and 20GL steels increased to 1.3 times and 1.2 times, respectively, and the microhardness is increased to 1.6 times and 1.3 times, respectively.

  2. Addressing Theory and Performance Enhancements for the Independent Sustain and Address AC Plasma Display

    NASA Astrophysics Data System (ADS)

    Warren, Kevin Wilson

    The Independent Sustain and Address (ISA) AC plasma panel is a flat, flicker-free, gas discharge type of display device. This display technology promises to reduce both the cost of manufacturing and operation of AC plasma displays. The ISA technology uses a vastly different mechanism to change the state of the display pixels than the standard AC plasma technology. This addressing mechanism is an exploitation of some of the natural characteristics associated with the plasma that can form during strong gas discharges. This thesis presents detailed data from experiments that were designed to evaluate and test the effectiveness of this mechanism. Through these experiments, the theory that the addressing methodology is based upon is developed and evaluated. These experiments show that the address margin windows for this technology are very large, minimally two to three times larger than the address margins for the standard XY AC plasma addressing techniques. New capabilities are also described, such as global brightness control for the ISA technology and a technique for increasing the addressing rate. These advances were designed into working prototypes and transferred to industry where there are currently commercial products available based upon these advances. A technique for implementing gray scale using some of these advances is also proposed.

  3. Characterization of metal-supported axial injection plasma sprayed solid oxide fuel cells with aqueous suspension plasma sprayed electrolyte layers

    NASA Astrophysics Data System (ADS)

    Waldbillig, D.; Kesler, O.

    A method for manufacturing metal-supported SOFCs with atmospheric plasma spraying (APS) is presented, making use of aqueous suspension feedstock for the electrolyte layer and dry powder feedstock for the anode and cathode layers. The cathode layer was deposited first directly onto a metal support, in order to minimize contact resistance, and to allow the introduction of added porosity. The electrolyte layers produced by suspension plasma spraying (SPS) were characterized in terms of thickness, permeability, and microstructure, and the impact of substrate morphology on electrolyte properties was investigated. Fuel cells produced by APS were electrochemically tested at temperatures ranging from 650 to 750 °C. The substrate morphology had little effect on open circuit voltage, but substrates with finer porosity resulted in lower kinetic losses in the fuel cell polarization.

  4. Reactivity of nonaqueous organic electrolytes towards lithium

    NASA Technical Reports Server (NTRS)

    Shen, D. H.; Subbarao, S.; Deligiannis, F.; Huang, C.-K.; Halpert, G.

    1990-01-01

    The successful operation of an ambient temperature secondary lithium cell is primarily dependent on the stability of the electrolyte towards lithium. The lithium electrode on open circuit must be inert towards the electrolyte to achieve a long shelf life. The reactivity of tetrahydrofuran and 2-methyltetrahydrofuran based electrolytes with additives such as 2-methylfuran, ethylene carbonate, propylene carbonate, and 3-methylsulfolane was investigated by microcalorimetry and ac impedance spectroscopy techniques. Also the stability of electrolytes by open circuit stand tests was studied. Addition of ethylene carbonate and 2-methylfuran additives was found to improve the stability of tetrahydrofuran and 2-methyltetrahydrofuran based electrolytes. Long term microcalorimetry and ac impedance data clearly confirmed the higher stability of ethylene carbonate/2-methyltetrahydrofuran electrolyte compared to the 2-methyltetrahydrofuran and propylene carbonate/2-methyltetrahydrofuran electrolytes.

  5. Electrolyte changes in the blood plasma of broilers as influenced by cooling during summer

    NASA Astrophysics Data System (ADS)

    Sharma, M. L.; Gangwar, P. C.

    1987-09-01

    High temperature significantly (P < 0.01) decreased the Na+ and K+ concentrations in the blood plasma of both the sexes of broilers during 4 to 8 weeks of age. Relatively constant levels of these electrolytes were observed during this phase of growth and the sex of the bird had no significant effect on their levels. Greater broiler weights and higher levels of plasma electrolyte were achieved by the use of cooling systems (which were more effective in the hot dry part of the summer than in the hot humid part).

  6. Apatite grown in niobium by two-step plasma electrolytic oxidation.

    PubMed

    Pereira, Bruno Leandro; Lepienski, Carlos Maurício; Mazzaro, Irineu; Kuromoto, Neide Kazue

    2017-08-01

    Plasma electrolytic oxidation (PEO) of niobium plates were done electrochemically in two steps with electrolytes containing phosphorous and calcium being observed the formation of crystalline apatite. All samples were submitted to a first step of PEO using an electrolyte containing phosphate ions. The second oxidization step was made using three different electrolytes. Some samples were oxidized by PEO in electrolyte containing calcium, while in other samples it was used two mixtures of phosphoric acid and calcium acetate monohydrate solutions. Three different surface layers were obtained. The morphology and chemical composition of the films were analyzed by scanning electronic microscopy (SEM), and energy dispersive spectroscopy (EDS) respectively. It was observed that all samples submitted to two-step oxidation shown porous surface and a calcium and phosphorus rich layer. Average surface roughness (Ra) was measured by a profilometer remaining in the sub-micrometric range. The contact angle by sessile drop technique, using 1μL of distilled water was performed with an optical goniometer. It was verified a higher hydrophilicity in all surfaces compared to the polished niobium. Orthorhombic Nb 2 O 5 was identified by XRD in the oxide layer. Crystalline apatite was identified by XRD in surfaces after the second oxidation made with the Ca-rich electrolyte and a mixture of an electrolyte richer in Ca compared to P. These results indicate that a two-step oxidized niobium surface present great features for applications in the osseointegration processes: favorable chemical composition that increase the biocompatibility, the formation of crystalline niobium pentoxide (orthorhombic), high hydrophilicity and formation of crystalline calcium phosphate (apatite) under adequate electrolyte composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Atomic oxygen behavior at downstream of AC excited atmospheric pressure He plasma jet

    NASA Astrophysics Data System (ADS)

    Takeda, Keigo; Ishikawa, Kenji; Tanaka, Hiromasa; Sekine, Makoto; Hori, Masaru

    2016-09-01

    Applications of atmospheric pressure plasma jets (APPJ) have been investigated in the plasma medical fields such as cancer therapy, blood coagulation, etc. Reactive species generated by the plasma jet interacts with the biological surface. Therefore, the issue attracts much attentions to investigate the plasma effects on targets. In our group, a spot-size AC excited He APPJ have been used for the plasma medicine. From diagnostics of the APPJ using optical emission spectroscopy, the gas temperature and the electron density was estimated to be 299 K and 3.4 ×1015 cm-3. The AC excited He APPJ which affords high density plasma at room temperature is considered to be a powerful tool for the medical applications. In this study, by using vacuum ultraviolet absorption spectroscopy, the density of atomic oxygen on a floating copper as a target irradiated by the He APPJ was measured as a function of the distance between the plasma source and the copper wire. The measured density became a maximum value around 8 ×1013 cm-3 at 12 mm distance, and then decreased over the distance. It is considered that the behavior was due to the changes in the plasma density on the copper wire and influence of ambient air.

  8. AC Glow Discharge Plasma in N2O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yousif, F. B.; Martinez, H.; Robledo-Martinez, A.

    2006-12-04

    This paper considers the optical and electrical characterization of AC glow discharge plasma in the abnormal glow mode used for optical emission spectroscopy. The total discharge current and applied voltage are measured using conventional techniques. The electrical characteristics of the planer-cathode glow discharge confirmed that the plasma is operating at abnormal discharge mode characterized by the increases in the operating voltage as the current was raised under given pressure. Optical emission spectroscopy was used to determine the main emission lines of the glow discharge plasma of N2O at pressures between 0.5 and 4.0 Torr. It shows that the discharge emissionmore » range is mainly within 300-400 nm. The emission lines correspond to NO, O2, and O{sub 2}{sup +} are the dominant lines in the glow discharge plasma in the present study. Intensity of the emission lines show linear increase with the discharge current up to 0.4 A followed by saturation at higher currents. No emission lines were observed in this work corresponding to atomic oxygen or nitrogen.« less

  9. Stability of plasma electrolytes in Barricor and PST II tubes under different storage conditions.

    PubMed

    Balbás, Luis Alfredo Bautista; Amaro, Marta Segovia; Rioja, Rubén Gómez; Martín, María José Alcaide; Soto, Antonio Buńo

    2017-02-15

    Sample stability can be influenced by many different factors; evaporation and leakage from residual cells are the most relevant factors for electrolytes. During the analytical phase, samples are usually kept uncapped at room temperature. Once samples are processed, they are usually stored sealed and refrigerated. Long turnaround time and the possibility of "add-on test" need consideration for electrolyte stability. The aim of our study is to examine short-term electrolyte stability in this two-common laboratory working conditions in two different lithium heparin plasma tubes (Barricor and PST II, Becton Dickinson). In 39 plasma samples from voluntary subjects we measured sodium (Na + ), potassium (K + ) and chloride (Cl - ) at 6 time points since centrifugation (0h, 3h, 6h, 9h, 12h and 15h). Maximum allowable bias (clinically significant change) was based in SEQC (Sociedad Espańola de Química Clínica) recommendations; 1% for Cl - , 0.6% for Na + and 4% for K + . In open room temperature tubes, clinically significant changes appeared in Na + and Cl - after 3 hours and in K + after 9 hours in both types of tubes. In refrigerated sealed tubes, all the analytes were clinically stable up to 12 hours in both kinds of plasma tubes. We observed a statistically significant progressive increase in K + levels, which was less pronounced in Barricor tubes. Stability of electrolytes is compromised after 3 hours in open tubes and after 12 hours in sealed tubes.

  10. Non-electrolytic synthesis of copper oxide/carbon nanocomposite by surface plasma in super-dehydrated ethanol

    NASA Astrophysics Data System (ADS)

    Kozak, Dmytro S.; Sergiienko, Ruslan A.; Shibata, Etsuro; Iizuka, Atsushi; Nakamura, Takashi

    2016-02-01

    Electrolytic processes are widely used to synthesize different nanomaterials and it does not depend on what kind of the method has been applied (wet-chemistry, sonochemistry, plasma chemistry, electrolysis and so on). Generally, the reactions in the electrolyte are considered to be reduction/oxidation (REDOX) reactions between chemical reagents or the deposition of matter on the electrodes, in line with Faraday’s law. Due to the presence of electroconductive additives in any electrolyte, the polarization effect of polar molecules conducting an electrical current disappears, when external high-strength electric field is induced. Because initially of the charge transfer always belongs of electroconductive additive and it does not depend on applied voltage. The polarization of ethanol molecules has been applied to conduct an electric current by surface plasma interaction for the synthesis of a copper oxide/carbon nanocomposite material.

  11. Electrochemical study on the corrosion resistance of plasma nanocoated 316L stainless steel in albumin- and lysozyme-containing electrolytes

    PubMed Central

    Jones, John Eric; Chen, Meng; Chou, Ju; Yu, Qingsong

    2017-01-01

    The physiological corrosion resistance of plasma nanocoated 316L stainless steel was studied in protein-containing electrolytes using electrochemical methods. Plasma nanocoatings with thicknesses of 20–30 nm were deposited onto 316L stainless steel coupons in a glow discharge of trimethylsilane (TMS) or its mixture with oxygen gas under various gas ratios. The surface chemistries of the plasma nanocoatings were characterized using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Corrosion properties of the plasma nanocoated 316L stainless steel coupons were assessed using potentiodynamic polarization, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) in phosphate-buffered saline (PBS) electrolytes that contain bovine serum albumin (BSA) or lysozyme. It was found that BSA adsorption on the plasma nanocoated 316L coupons was heavily favored. BSA adsorption on the plasma nanocoating surfaces could block charge-transfer reactions between the electrolyte and 316L substrate, and thus stabilize the 316L substrates from further corrosion. In contrast, lysozyme adsorption on the plasma nanocoated specimens was not as pronounced and mildly influenced the corrosion properties of the plasma nanocoated 316L stainless steel. PMID:29422723

  12. Formation of a Spinel Coating on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation

    NASA Astrophysics Data System (ADS)

    Sieber, Maximilian; Simchen, Frank; Scharf, Ingolf; Lampke, Thomas

    2016-03-01

    Plasma electrolytic oxidation (PEO) is a common means for the surface modification of light metals. However, PEO of magnesium substrates in dilute electrolytes generally leads to the formation of coatings consisting of unfavorable MgO magnesium oxide. By incorporation of electrolyte components, the phase constitution of the oxide coatings can be modified. Coatings consisting exclusively of MgAl2O4 magnesium-aluminum spinel are produced by PEO in an electrolyte containing hydroxide, aluminate, and phosphate anions. The hardness of the coatings is 3.5 GPa on Martens scale on average. Compared to the bare substrate, the coatings reduce the corrosion current density in dilute sodium chloride solution by approx. one order of magnitude and slightly shift the corrosion potential toward more noble values.

  13. Stability of plasma electrolytes in Barricor and PST II tubes under different storage conditions

    PubMed Central

    Balbás, Luis Alfredo Bautista; Amaro, Marta Segovia; Rioja, Rubén Gómez; Martín, María José Alcaide; Soto, Antonio Buńo

    2017-01-01

    Introduction Sample stability can be influenced by many different factors; evaporation and leakage from residual cells are the most relevant factors for electrolytes. During the analytical phase, samples are usually kept uncapped at room temperature. Once samples are processed, they are usually stored sealed and refrigerated. Long turnaround time and the possibility of “add-on test” need consideration for electrolyte stability. The aim of our study is to examine short-term electrolyte stability in this two-common laboratory working conditions in two different lithium heparin plasma tubes (Barricor and PST II, Becton Dickinson). Materials and methods In 39 plasma samples from voluntary subjects we measured sodium (Na+), potassium (K+) and chloride (Cl–) at 6 time points since centrifugation (0h, 3h, 6h, 9h, 12h and 15h). Maximum allowable bias (clinically significant change) was based in SEQC (Sociedad Espańola de Química Clínica) recommendations; 1% for Cl–, 0.6% for Na+ and 4% for K+. Results In open room temperature tubes, clinically significant changes appeared in Na+ and Cl– after 3 hours and in K+ after 9 hours in both types of tubes. In refrigerated sealed tubes, all the analytes were clinically stable up to 12 hours in both kinds of plasma tubes. We observed a statistically significant progressive increase in K+ levels, which was less pronounced in Barricor tubes. Conclusion Stability of electrolytes is compromised after 3 hours in open tubes and after 12 hours in sealed tubes. PMID:28392743

  14. Diagnostics of AC excited Atmospheric Pressure Plasma Jet with He for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Hori, Masaru; Takeda, Keigo; Kumakura, Takumi; Ishikawa, Kenji; Tanaka, Hiromasa; Kondo, Hiroki; Sekine, Makoto; Nakai, Yoshihiro

    2014-10-01

    Atmospheric pressure plasma jets (APPJ) are frequently used for biomedical applications. Reactive species generated by the APPJ play important roles for treatments of biomedical samples. Therefore, high density APPJ sources are required to realize the high performance. Our group has developed AC excited Ar APPJ with electron density as high as 1015 cm-3, and realized the selective killing of cancer cells and the inactivate spores of Penicillium digitatum. Recently, a new spot-size AC excited APPJ with He gas have been developed. In this study, the He APPJ was characterized by using spectroscopy. The plasma was discharged at a He flow rate of 5 slm and a discharge voltage of AC 9 kV. Gas temperature and electron density of the APPJ were measured by optical emission spectroscopy. From theoretical fitting of 2nd positive system of N2 emission (380.4 nm) and Stark broadening of Balmer β line of H atom (486.1 nm), the gas temperature and the electron density was estimated to be 299 K and 3.4. × 1015 cm-3. The AC excited He APPJ has a potential to realize high density with room temperature and become a very powerful tool for biomedical applications.

  15. Raising the Corrosion Resistance of Low-Carbon Steels by Electrolytic-Plasma Saturation with Nitrogen and Carbon

    NASA Astrophysics Data System (ADS)

    Kusmanov, S. A.; Grishina, E. P.; Belkin, P. N.; Kusmanova, Yu. V.; Kudryakova, N. O.

    2017-05-01

    Structural features of the external oxide layer and internal nitrided, carbonitrided and carburized layers in steels 10, 20 and St3 produced by the method of electrolytic plasma treatment are studied. Specimens of the steels are tested for corrosion in a naturally aerated 1-N solution of sodium chloride. The condition of the metal/sodium chloride solution interface is studied by the method of electrochemical impedance spectroscopy. It is shown that the corrosion resistance of low-carbon steels can be raised by anode electrolytic-plasma saturation with nitrogen and carbon. Recommendations are given on the choice of carbonitriding modes for structural steels.

  16. OSMOTIC DIURESIS AND ITS EFFECT ON TOTAL ELECTROLYTE DISTRIBUTION IN PLASMA AND URINE OF THE AGLOMERULAR TELEOST, LOPHIUS AMERICANUS

    PubMed Central

    Forster, Roy P.; Berglund, Fredrik

    1956-01-01

    Quantitative evaluations have been made of the chief anions and cations in plasma, urine, and pericardial fluid taken both from freshly captured goosefish and from those undergoing "laboratory diuresis." Measurements included: Na, K, Ca, Mg, Cl, SO4, PO4, protein, HCO3, NH3, pH, titratable acidity, freezing point depression, creatine, trimethylamine oxide, and plasma volume. The total patterns of electrolyte distribution in these body fluids are presented. The morphologically undifferentiated aglomerular tubule acts as a barrier to the free diffusion of monovalent electrolytes, while transporting actively the divalent ions, especially Mg. Urine taken from freshly captured fish is hypotonic to plasma, low in electrolyte, and as much as 50 per cent of its total osmolarity is accounted for by nitrogenous components. Of these creatine is transported most actively by the renal tubule cells. With the onset of diuresis immediately after capture, plasma osmolarity slowly rises and urine suddenly becomes isotonic with plasma as chloride floods into the urine. The active movement of Mg continues during diuresis and urine/plasma concentration ratios of 100 or more are sustained for days while the animals are kept in the laboratory. Na follows chloride and never reaches 50 per cent of plasma values, and K never appears in urine in more than mere traces. Electrolytes in this system are viewed as not being in true equilibrium but rather as constituting a biological steady state with the distribution across renal cells being maintained against passive diffusion by the expenditure of cellular energy. PMID:13286453

  17. Permeability and Microstructure of Suspension Plasma-Sprayed YSZ Electrolytes for SOFCs on Various Substrates

    NASA Astrophysics Data System (ADS)

    Marr, Michael; Kesler, Olivera

    2012-12-01

    Yttria-stabilized zirconia electrolyte coatings for solid oxide fuel cells were deposited by suspension plasma spraying using a range of spray conditions and a variety of substrates, including finely structured porous stainless steel disks and cathode layers on stainless steel supports. Electrolyte permeability values and trends were found to be highly dependent on which substrate was used. The most gas-tight electrolyte coatings were those deposited directly on the porous metal disks. With this substrate, permeability was reduced by increasing the torch power and reducing the stand-off distance to produce dense coating microstructures. On the substrates with cathodes, electrolyte permeability was reduced by increasing the stand-off distance, which reduced the formation of segmentation cracks and regions of aligned and concentrated porosity. The formation mechanisms of the various permeability-related coating features are discussed and strategies for reducing permeability are presented. The dependences of electrolyte deposition efficiency and surface roughness on process conditions and substrate properties are also presented.

  18. Influence of exercise on plasma ammonia and urea after ingestion beverages of carbohydrate electrolyte

    NASA Astrophysics Data System (ADS)

    Rusip, Gusbakti; Mukti Suhartini, Sri; Boon Suen, Ang

    2018-03-01

    Ingestion of beverages with carbohydrate electrolyte during exercise can delay fatigue. Fatigue caused by the decreasing of glycogen deposit source and indefensible reproduced ATP result in the improvement of IMP and ammonia during fatigue. The aim of this research was to observe the alteration of plasma ammonia and urea before, during and after exercise, after ingestion beverages of carbohydrate - electrolyte. Ten male subjects (age 18-30 years) were subjected to there cycle ergometer at 60% of VO2max with a pedal speed of 60 rpm until there is fatigued. The subject was given a drink of carbohydrate-electrolyte at a concentration of 6%, 12% and a flavored water placebo (P) to consume the volume of 3 ml/kg BW every 20 minutes. Blood samples were taken at rest and every 20 minutes until fatigue for analyzing plasma ammonia and urea. Mean exercise until fatigue show that no difference for three beverages. However, plasma ammonia and urea were significantly increase compared before and after exercise (p<0.001). Results of plasma ammonia before exercise for beverages CHO 12% (HC) (31.86±1.93μml/l vs 86.50±5.13μml/l), for CHO 6% (MC) (33.08±1.43μml/l vs 90.68±3.41μml/l), for no carbohydrate (P) (33.64±1.93μml/l vs 93.12 ± 2.91μml/l). Whereas plasma urea before exercise for beverages CHO 12% (4.75±0.12mmol/l vs 5.44±0.10mmol/l), for CHO 6% (4.88±0.20mmol/l vs 5.22± 0.10mmol/l), for Placebo (4.88±0.20mmol/l vs 5.54±0.24mmol/l). Conclusions that increase of plasma ammonia of during fatigue, can become the criteria for determining intensity exercise until fatigue results are better than plasma lactate.

  19. Influences of urea and sodium nitrite on surface coating of plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Yeh, Shang-Chun; Tsai, Dah-Shyang; Guan, Sheng-Yong; Chou, Chen-Chia

    2015-11-01

    Urea and sodium nitrite are generally viewed as nitridation additives in the electrolyte for plasma electrolytic oxidation (PEO) of aluminum alloys. We study the influences of these two convenient chemicals in presence of sodium aluminate and find very different effects on film growth. Urea addition enhances the nitrogen content of PEO layer, diminishes the layer thickness, increases the porosity, interferes with the α-alumina formation, and promotes precipitation in the electrolyte. Hence, the electrolytic urea content ought to be maintained less than 45 g dm-3. On the other hand, sodium nitrite behaves like an oxidation additive, more than a nitridation additive. NaNO2 addition effectively introduces nitrogen in the PEO layer at low concentration, yet the nitrogen content of oxide layer decreases with increasing NaNO2 concentration. The effects of NaNO2, such as increasing layer thickness, reducing porosity, promoting α-alumina formation are attributed to oxidation enhancement, not because of nitridation.

  20. Influence of Silicate Concentration in Electrolyte on the Growth and Performance of Plasma Electrolytic Oxidation Coatings Prepared on Low Carbon Steel

    NASA Astrophysics Data System (ADS)

    Yang, Wenbin; Peng, Zhenjun; Liu, Baixing; Liu, Weimin; Liang, Jun

    2018-04-01

    Plasma electrolytic oxidation (PEO) coatings were prepared on low carbon steel from electrolytes with different silicate concentrations. The microstructure, elemental and phase compositions of the PEO coatings were analyzed by scanning electron microscope, energy-dispersive spectrometer, and x-ray diffraction, respectively. The adhesion of PEO coatings with low carbon steel substrate was qualitatively examined by thermal shock tests. The tribological properties were evaluated by a reciprocating tribometer sliding against a Si3N4 ceramic ball. The corrosion behaviors of PEO coatings were investigated in 3.5 wt.% NaCl solution by electrochemical impedance spectra and potentiodynamic polarization. Results indicated that all the PEO coatings were comprised of amorphous SiO2 and Fe-containing oxides; however, the silicate concentration in electrolyte showed significant influence on the growth and the performance of PEO coatings. The PEO coating prepared from the electrolyte with silicate concentration of 30 g/L had the highest Fe content because the substrate was more readily oxidized and showed a dense structure, resulting in the best comprehensive performance of adhesion, wear resistance, and corrosion resistance.

  1. Influence of Silicate Concentration in Electrolyte on the Growth and Performance of Plasma Electrolytic Oxidation Coatings Prepared on Low Carbon Steel

    NASA Astrophysics Data System (ADS)

    Yang, Wenbin; Peng, Zhenjun; Liu, Baixing; Liu, Weimin; Liang, Jun

    2018-05-01

    Plasma electrolytic oxidation (PEO) coatings were prepared on low carbon steel from electrolytes with different silicate concentrations. The microstructure, elemental and phase compositions of the PEO coatings were analyzed by scanning electron microscope, energy-dispersive spectrometer, and x-ray diffraction, respectively. The adhesion of PEO coatings with low carbon steel substrate was qualitatively examined by thermal shock tests. The tribological properties were evaluated by a reciprocating tribometer sliding against a Si3N4 ceramic ball. The corrosion behaviors of PEO coatings were investigated in 3.5 wt.% NaCl solution by electrochemical impedance spectra and potentiodynamic polarization. Results indicated that all the PEO coatings were comprised of amorphous SiO2 and Fe-containing oxides; however, the silicate concentration in electrolyte showed significant influence on the growth and the performance of PEO coatings. The PEO coating prepared from the electrolyte with silicate concentration of 30 g/L had the highest Fe content because the substrate was more readily oxidized and showed a dense structure, resulting in the best comprehensive performance of adhesion, wear resistance, and corrosion resistance.

  2. Effect of cycling on the lithium/electrolyte interface in organic electrolytes

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Shen, D. H.; Huang, C.-K.; Narayanan, S. R.; Attia, A.; Halpert, G.; Peled, E.

    1993-01-01

    Nondestructive methods such as ac impedance spectroscopy and microcalorimetry are used to study the effect of cell cycling on the lithium/electrolyte interface. The reactivity of both uncycled and cycled lithium towards various electrolytes is examined by measuring the heat evolved from the cells under open-circuit conditions at 25 C by microcalorimetry. Cycled cells at the end of charge/discharge exhibited considerably higher heat output compared with the uncycled cells. After 30 d of storage, the heat output of the cycled cells is similar to that of the uncycled cells. The cell internal resistance increases with cycling, and this is attributed to the degradation of the electrolyte with cycling.

  3. Plasma hormonal and electrolyte alterations in cycling buffaloes ( Bubalus bubalis) during hot summer months

    NASA Astrophysics Data System (ADS)

    Singh, Narinder; Chaudhary, K. C.

    1992-09-01

    Plasma levels of progesterone, prolactin, luteinizing hormone, and electrolytes were monitored by radioimmunoassay in ten cycling buffaloes maintained at Punjab Agricultural University, Ludhiana during the hot summer months of June July. The plasma progesterone concentration ranged from 0.28±0.04 to 3.09±0.03 ng/ml at various stages of the oestrous cycle. Prolactin values ranged from 319±23 to 371±25 ng/ml and LH levels from 0.95±0.05 to 1.35±0.08 ng/ml. Concentrations differed significantly ( P⩽0.05) at various stages of the cycle. Levels of electrolytes, viz. Ca+ +, Na+ and K+, were well within the normal range. The high levels of prolactin, progesterone and LH during the hot summer were assessed in relation to poor reproductive efficiency in buffaloes.

  4. Solid oxide fuel cell electrolytes produced via very low pressure suspension plasma spray and electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Fleetwood, James D.

    Solid oxide fuel cells (SOFCs) are a promising element of comprehensive energy policies due to their direct mechanism for converting the oxidization of fuel, such as hydrogen, into electrical energy. Both very low pressure plasma spray and electrophoretic deposition allow working with high melting temperature SOFC suspension based feedstock on complex surfaces, such as in non-planar SOFC designs. Dense, thin electrolytes of ideal composition for SOFCs can be fabricated with each of these processes, while compositional control is achieved with dissolved dopant compounds that are incorporated into the coating during deposition. In the work reported, sub-micron 8 mole % Y2O3-ZrO2 (YSZ) and gadolinia-doped ceria (GDC), powders, including those in suspension with scandium-nitrate dopants, were deposited on NiO-YSZ anodes, via very low pressure suspension plasma spray (VLPSPS) at Sandia National Laboratories' Thermal Spray Research Laboratory and electrophoretic deposition (EPD) at Purdue University. Plasma spray was carried out in a chamber held at 320 - 1300 Pa, with the plasma composed of argon, hydrogen, and helium. EPD was characterized utilizing constant current deposition at 10 mm electrode separation, with deposits sintered from 1300 -- 1500 °C for 2 hours. The role of suspension constituents in EPD was analyzed based on a parametric study of powder loading, powder specific surface area, polyvinyl butyral (PVB) content, polyethyleneimine (PEI) content, and acetic acid content. Increasing PVB content and reduction of particle specific surface area were found to eliminate the formation of cracks when drying. PEI and acetic acid content were used to control suspension stability and the adhesion of deposits. Additionally, EPD was used to fabricate YSZ/GDC bilayer electrolyte systems. The resultant YSZ electrolytes were 2-27 microns thick and up to 97% dense. Electrolyte performance as part of a SOFC system with screen printed LSCF cathodes was evaluated with peak

  5. Hydroxyl radical production in plasma electrolysis with KOH electrolyte solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saksono, Nelson; Febiyanti, Irine Ayu, E-mail: irine.ayu41@ui.ac.id; Utami, Nissa

    2015-12-29

    Plasma electrolysis is an effective technology for producing hydroxyl radical (•OH). This method can be used for waste degradation process. This study was conducted to obtain the influence of applied voltage, electrolyte concentration, and anode depth in the plasma electrolysis system for producing hydroxyl radical. The materials of anode and cathode, respectively, were made from tungsten and stainless steel. KOH solution was used as the solution. Determination of hydroxyl radical production was done by measuring H{sub 2}O{sub 2} amount formed in plasma system using an iodometric titration method, while the electrical energy consumed was obtained by measuring the electrical currentmore » throughout the process. The highest hydroxyl radical production was 3.51 mmol reached with 237 kJ energy consumption in the power supply voltage 600 V, 0.02 M KOH, and 0.5 cm depth of anode.« less

  6. Investigation of the AC Plasma Torch Working Conditions for the Plasma Chemical Applications

    NASA Astrophysics Data System (ADS)

    Safronov, A. A.; Vasilieva, O. B.; Dudnik, J. D.; E Kuznetsov, V.; Shiryaev, V. N.; Subbotin, D. I.; Pavlov, A. V.

    2017-04-01

    The presented design and parameters of a three-phase AC plasma torch with the power up to 500 kW, flow rate of air 30-50 g/s (temperature up to 5000 K) could be used in different plasma chemical processes. Range of measured plasma temperature is 3500-5000 K. The paper presents investigations of the plasma torch operation modes for its application in plasma chemical technologies. Plasma chemical technologies for various purposes (processing, destruction of various wastes, including technological and hazardous waste, conversion or production of chemicals to obtain nanoscale materials, etc.) are very promising in terms of the process efficiency. Their industrial use is difficult due to the lack of inexpensive and reliable plasma torches providing the desired level of temperature, enthalpy of the working gas and other necessary conditions for the process. This problem can be solved using a considered design of a three-phase alternating current plasma torch with power of 150-500 kW with working gas flow rate of 30-50 g/s with mass average temperature up to 5000K on the basis of which an industrial plasma chemical plant can be created. The basis of the plasma torch operation is a railgun effect that is the principle of arc movement in the field of its own current field. Thanks to single supply of power to the arc, arcs forming in the discharge chamber of the plasma torch move along the electrodes under the action of electrodynamic forces resulting from the interaction of the arc current with its own magnetic field. Under the condition of the three-phase supply voltage, arc transits from the electrode to the electrode with change in the anodic and cathodic phases with frequency of 300 Hz. A special feature of this design is the ability to organize the movement of the arc attachment along the electrode, thus ensuring an even distribution of the thermal load and thus achieve long time of continuous operation of the plasma torch. The parameters of the plasma jet of the

  7. HOT PLASMA FROM SOLAR ACTIVE REGION CORES: A TEST OF AC AND DC CORONAL HEATING MODELS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmelz, J. T.; Christian, G. M.; Dhaliwal, R. S.

    2015-06-20

    Direct current (DC) models of solar coronal heating invoke magnetic reconnection to convert magnetic free energy into heat, whereas alternating current (AC) models invoke wave dissipation. In both cases the energy is supplied by photospheric footpoint motions. For a given footpoint velocity amplitude, DC models predict lower average heating rates but greater temperature variability when compared to AC models. Therefore, evidence of hot plasma (T > 5 MK) in the cores of active regions could be one of the ways for current observations to distinguish between AC and DC models. We have analyzed data from the X-Ray Telescope (XRT) andmore » the Atmospheric Imaging Assembly for 12 quiescent active region cores, all of which were observed in the XRT Be-thick channel. We did Differential Emission Measure (DEM) analysis and achieved good fits for each data set. We then artificially truncated the hot plasma of the DEM model at 5 MK and examined the resulting fits to the data. For some regions in our sample, the XRT intensities continued to be well-matched by the DEM predictions, even without the hot plasma. This truncation, however, resulted in unacceptable fits for the other regions. This result indicates that the hot plasma is present in these regions, even if the precise DEM distribution cannot be determined with the data available. We conclude that reconnection may be heating the hot plasma component of these active regions.« less

  8. Electrolyte Engineering: Optimizing High-Rate Double-Layer Capacitances of Micropore- and Mesopore-Rich Activated Carbon.

    PubMed

    Chen, Ting-Hao; Yang, Cheng-Hsien; Su, Ching-Yuan; Lee, Tai-Chou; Dong, Quan-Feng; Chang, Jeng-Kuei

    2017-09-22

    Various types of electrolyte cations as well as binary cations are used to optimize the capacitive performance of activated carbon (AC) with different pore structures. The high-rate capability of micropore-rich AC, governed by the mobility of desolvated cations, can outperform that of mesopore-rich AC, which essentially depends on the electrolyte conductivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. New perspectives on the dynamics of AC and DC plasma arcs exposed to cross-fields

    NASA Astrophysics Data System (ADS)

    Abdo, Youssef; Rohani, Vandad; Cauneau, François; Fulcheri, Laurent

    2017-02-01

    Interactions between an arc and external fields are crucially important for the design and the optimization of modern plasma torches. Multiple studies have been conducted to help better understand the behavior of DC and AC current arcs exposed to external and ‘self-induced’ magnetic fields, but the theoretical foundations remain very poorly explored. An analytical investigation has therefore been carried out in order to study the general behavior of DC and AC arcs under the effect of random cross-fields. A simple differential equation describing the general behavior of a planar DC or AC arc has been obtained. Several dimensionless numbers that depend primarily on arc and field parameters and the main arc characteristics (temperature, electric field strength) have also been determined. Their magnitude indicates the general tendency pattern of the arc evolution. The analytical results for many case studies have been validated using an MHD numerical model. The main purpose of this investigation was deriving a practical analytical model for the electric arc, rendering possible its stabilization and control, and the enhancement of the plasma torch power.

  10. Effects of CH3OH Addition on Plasma Electrolytic Oxidation of AZ31 Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    He, Yongyi; Chen, Li; Yan, Zongcheng; Zhang, Yalei

    2015-09-01

    Plasma electrolytic oxidation (PEO) films on AZ31 magnesium alloys were prepared in alkaline silicate electrolytes (base electrolyte) with the addition of different volume concentrations of CH3OH, which was used to adjust the thickness of the vapor sheath. The compositions, morphologies, and thicknesses of ceramic layers formed with different CH3OH concentrations were determined via X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and scanning electron microscopy (SEM). Corrosion behavior of the oxide films was evaluated in 3.5 wt.% NaCl solution using potentiodynamic polarization tests. PEO coatings mainly comprised Mg, MgO, and Mg2SiO4. The addition of CH3OH in base electrolytes affected the thickness, pores diameter, and Mg2SiO4 content in the films. The films formed in the electrolyte containing 12% CH3OH exhibited the highest thickness. The coatings formed in the electrolyte containing different concentrations of CH3OH exhibited similar corrosion resistance. The energy consumption of PEO markedly decreased upon the addition of CH3OH to the electrolytes. The result is helpful for energy saving in the PEO process. supported by National Natural Science Foundation of China (No. 21376088), the Project of Production, Education and Research, Guangdong Province and Ministry of Education (Nos. 2012B09100063, 2012A090300015), and Guangzhou Science and Technology Plan Projects of China (No. 2014Y2-00042)

  11. Improved ionic conductivity of lithium-zinc-tellurite glass-ceramic electrolytes

    NASA Astrophysics Data System (ADS)

    Widanarto, W.; Ramdhan, A. M.; Ghoshal, S. K.; Effendi, M.; Cahyanto, W. T.; Warsito

    An enhancement in the secondary battery safety demands the optimum synthesis of glass-ceramics electrolytes with modified ionic conductivity. To achieve improved ionic conductivity and safer operation of the battery, we synthesized Li2O included zinc-tellurite glass-ceramics based electrolytes of chemical composition (85-x)TeO2·xLi2O·15ZnO, where x = 0, 5, 10, 15 mol%. Samples were prepared using the melt quenching method at 800 °C followed by thermal annealing at 320 °C for 3 h and characterized. The effects of varying temperature, alternating current (AC) frequency and Li2O concentration on the structure and ionic conductivity of such glass-ceramics were determined. The SEM images of the annealed glass-ceramic electrolytes displayed rough surface with a uniform distribution of nucleated crystal flakes with sizes less than 1 μm. X-ray diffraction analysis confirmed the well crystalline nature of achieved electrolytes. Incorporation of Li2O in the electrolytes was found to generate some new crystalline phases including hexagonal Li6(TeO6), monoclinic Zn2Te3O8 and monoclinic Li2Te2O5. The estimated crystallite size of the electrolyte was ranged from ≈40 to 80 nm. AC impedance measurement revealed that the variation in the temperatures, Li2O contents, and high AC frequencies have a significant influence on the ionic conductivity of the electrolytes. Furthermore, electrolyte doped with 15 mol% of Li2O exhibited the optimum performance with an ionic conductivity ≈2.4 × 10-7 S cm-1 at the frequency of 54 Hz and in the temperature range of 323-473 K. This enhancement in the conductivity was attributed to the sizable alteration in the ions vibration and ruptures of covalent bonds in the electrolytes network structures.

  12. Data on the surface morphology of additively manufactured Ti-6Al-4V implants during processing by plasma electrolytic oxidation.

    PubMed

    van Hengel, Ingmar A J; Riool, Martijn; Fratila-Apachitei, Lidy E; Witte-Bouma, Janneke; Farrell, Eric; Zadpoor, Amir A; Zaat, Sebastian A J; Apachitei, Iulian

    2017-08-01

    Additively manufactured Ti-6Al-4V implants were biofunctionalized using plasma electrolytic oxidation. At various time points during this process scanning electron microscopy imaging was performed to analyze the surface morphology (van Hengel et al., 2017) [1]. This data shows the changes in surface morphology during plasma electrolytic oxidation. Data presented in this article are related to the research article "Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus" (van Hengel et al., 2017) [1].

  13. Oxytocin treatment does not change cardiovascular parameters, hematology and plasma electrolytes in parturient horse mares.

    PubMed

    Nagel, Christina; Trenk, Lisa; Wulf, Manuela; Ille, Natascha; Aurich, Jörg; Aurich, Christine

    2017-03-15

    In mares, foaling is associated with changes in hematology, plasma electrolytes, blood pressure and heart rate and it has been hypothesized that these are induced by oxytocin. To test this hypothesis, mares (n = 8-14/group) were treated with oxytocin (OT; 20 I.U.) or saline (CON) at 1 h (test A) and 12 h after foaling (test B) and during first postpartum diestrus (test C). Heart rate, heart rate variability (HRV), atrioventricular blocks, salivary cortisol concentration, blood pressure, plasma electrolytes and blood count were determined. Heart rate decreased from test A to C (P < 0.001) but at no time differed between groups. The HRV, blood pressure and occurrence of atrioventricular blocks did not change in response to oxytocin. Cortisol concentration decreased from test A to C (P < 0.001). Oxytocin induced a cortisol release in test B (time x treatment P < 0.001, time x test P < 0.001). Plasma sodium and chloride concentrations decreased from test A to C (P < 0.001) but did not differ between groups. In test A, potassium concentration increased in CON but not OT mares (time P < 0.01, time x test P < 0.01, time x treatment P < 0.05). Polymorphnuclear cell (PMN) numbers in blood decreased from test A to C (P < 0.001) while lymphocytes increased (P < 0.05). At no time PMN and lymphocytes differed between groups. Oxytocin treatment had no effect on skin temperature. In conclusion, except for a limited effect on cortisol release, oxytocin was without effect and the hypothesis of oxytocin-induced alterations in cardiac parameters, plasma electrolytes and hematology of foaling mares was not verified. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Enhanced mechanical properties and increased corrosion resistance of a biodegradable magnesium alloy by plasma electrolytic oxidation (PEO).

    PubMed

    White, Leon; Koo, Youngmi; Neralla, Sudheer; Sankar, Jagannathan; Yun, Yeoheung

    2016-06-01

    We report the enhanced mechanical properties of AZ31 magnesium alloys by plasma electrolytic oxidation (PEO) coating in NaOH, Na 2 SiO 3 , KF and NaH 2 PO 4 ·2H 2 O containing electrolytes. Mechanical properties including wear resistance, surface hardness and elastic modulus were increased for PEO-coated AZ31 Mg alloys (PEO-AZ31). DC polarization in Hank's solution indicating that the corrosion resistance significantly increased for PEO-coating in KF-contained electrolyte. Based on these results, the PEO coating method shows promising potential for use in biodegradable implant applications where tunable corrosion and mechanical properties are needed.

  15. Plasma electrolytes, pH, and ECG during and after exhaustive exercise.

    NASA Technical Reports Server (NTRS)

    Coester, N.; Elliott, J. C.; Luft, U. C.

    1973-01-01

    Ten men worked on a bicycle ergometer at increasing work loads to exhaustion in 15 min. Each performed one test breathing air and another with added CO2 in random sequence. ECG was recorded during exercise and for 30 min of recovery. Arterial samples for blood gases, pH, and electrolytes were drawn at rest, in the last minute of exercise and at 1, 4, 10, 20, and 30 min thereafter. A striking increase in the amplitude of T and P waves was observed reaching a maximum in the first 2 min after exercise. All electrolytes measured were increased at the end of exercise, most markedly potassium (60%) and phosphorus (53%). Potassium dropped faster than all others to below resting values in 4 min coinciding with the lowest levels in plasma bicarbonate. ECG alterations were not closely related in time with any single factor such as potassium, but appeared to reflect an interaction of the transient mineral and acid-base imbalance during and immediately following exhaustive exercise.

  16. Impairment of liver synthetic function and the production of plasma proteins in primary breast cancer patients on doxorubicincyclophosphamide (AC) protocol.

    PubMed

    Saleem, Zikria; Ahmad, Mobasher; Hashmi, Furqan Khurshid; Saeed, Hamid; Aziz, Muhammad Tahir

    2016-09-01

    Doxorubicin and Cyclophosphamide (AC protocol) combination is usually considered as a first line therapy in newly diagnosed breast cancer patients. Thus, a retrospective observational study was conducted to monitor the effect of AC protocol on liver synthetic functions and production of plasma proteins in breast cancer patients, reporting to specialized cancer care hospital of Lahore, Pakistan. A total of 75 patients (n=75) on AC protocol with breast cancer were observed in this study. The patient data including age, gender, body surface area, dosage, disease status and laboratory biochemical values were recorded by reviewing historical treatment records. Pre-treatment values were taken as baseline values for albumin, globulin, blood urea nitrogen (BUN), albumin/globulin (A/G) ratio and total proteins. The baseline values were compared after each cycle of by applying ANOVA using statistical tool SPSS® version 21. The plasma levels of blood urea nitrogen (BUN), total protein and globulin dropped significantly (p<0.05) in patients of all age groups. However, the albumin levels were not significantly changed (p>0.05). The A/G ratio level increased (p<0.05) as a result of reduction in globulin levels. Significant changes in plasma protein levels were observed in the elderly patients (50 to 65 years) than patients between 20 to 50 years of age. AC protocol impairs liver synthetic functions as observed by decreased blood urea nitrogen (BUN) and plasma protein levels.

  17. Zirconia based ceramic coating on a metal with plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Akatsu, T.; Kato, T.; Shinoda, Y.; Wakai, F.

    2011-10-01

    We challenge to fabricate a thermal barrier coating (TBC) made of ZrO2 based ceramics on a Ni based single crystal superalloy with plasma electrolytic oxidation (PEO) by incorporating metal species from electrolyte into the coating. The PEO process is carried out on the superalloy galvanized with aluminium for 15min in Na4O7P4 solution for an oxygen barrier coating (OBC) and is followed by PEO in K2[Zr(CO3)2(OH)2] solution for TBC. We obtained the following results; (1) Monoclinic-, tetragonal-, cubic-ZrO2 crystals were detected in TBC. (2) High porosity with large pores was observed near the interface between OBC and TBC. The fine grain structure with a grain size of about 300nm was typically observed. (3) The adhesion strength between PEO coatings and substrate was evaluated to be 26.8±6.6MPa. At the adhesion strength test, PEO coatings fractured around the interface between OBC and TBC. The effect of coating structure on adhesion strength is explained through the change in spark discharge during PEO process.

  18. Effects of oral powder electrolyte administration on packed cell volume, plasma chemistry parameters, and incidence of colic in horses participating in a 6-day 162-km trail ride

    PubMed Central

    Walker, Wade T.; Callan, Robert J.; Hill, Ashley E.; Tisher, Kelly B.

    2014-01-01

    This study evaluated the effects of administering oral powder electrolytes on packed cell volume (PCV), plasma chemistry parameters, and incidence of colic in horses participating on a 6-day 162-km trail ride in which water was not offered ad libitum. Twenty-three horses received grain with powder electrolytes daily while 19 control horses received grain only. Horses were ridden approximately 32 km a day at a walk or trot. Packed cell volume and plasma chemistry parameters were analyzed daily. Episodes of colic were diagnosed and treated by a veterinarian unaware of treatment group allocation. Blood parameters and incidence of colic were compared between treatment groups. Electrolyte administration did not alter PCV or plasma chemistry parameters compared to controls. The incidence of colic was significantly higher in treated horses (P = 0.05). Oral powder electrolytes did not enhance hydration status or electrolyte homeostasis and may be associated with colic in horses participating on long distance trail rides similar to this model. PMID:25082992

  19. Effects of oral powder electrolyte administration on packed cell volume, plasma chemistry parameters, and incidence of colic in horses participating in a 6-day 162-km trail ride.

    PubMed

    Walker, Wade T; Callan, Robert J; Hill, Ashley E; Tisher, Kelly B

    2014-08-01

    This study evaluated the effects of administering oral powder electrolytes on packed cell volume (PCV), plasma chemistry parameters, and incidence of colic in horses participating on a 6-day 162-km trail ride in which water was not offered ad libitum. Twenty-three horses received grain with powder electrolytes daily while 19 control horses received grain only. Horses were ridden approximately 32 km a day at a walk or trot. Packed cell volume and plasma chemistry parameters were analyzed daily. Episodes of colic were diagnosed and treated by a veterinarian unaware of treatment group allocation. Blood parameters and incidence of colic were compared between treatment groups. Electrolyte administration did not alter PCV or plasma chemistry parameters compared to controls. The incidence of colic was significantly higher in treated horses (P = 0.05). Oral powder electrolytes did not enhance hydration status or electrolyte homeostasis and may be associated with colic in horses participating on long distance trail rides similar to this model.

  20. Increasing Wear Resistance of Titanium Alloys by Anode Plasma Electrolytic Saturation with Interstitial Elements

    NASA Astrophysics Data System (ADS)

    Belkin, P. N.; Kusmanov, S. A.; Dyakov, I. G.; Silkin, S. A.; Smirnov, A. A.

    2017-05-01

    In our previous studies, we have shown that anode plasma electrolytic saturation of titanium alloys with nitrogen and carbon can improve their tribological properties. Obtained structure containing oxide layer and solid solution of diffused element in titanium promotes the enhancement of running-in ability and the decrease in the wear rate in some special cases. In this paper, further investigations are reported regarding the tribological properties of alpha- and beta-titanium alloys in wear test against hardened steel (50 HRC) disk using pin-on-disk geometry and balls of Al2O3 (6.25 mm in diameter) or bearing steel (9.6 mm in diameter) with ball-on-plate one and normal load from 5 to 209 N. Reproducible results were obtained under testing samples treated by means of the plasma electrolytic nitriding (PEN) with the mechanical removal of the oxide layer. Friction coefficient of nitrided samples is 0.5-0.9 which is somewhat higher than that for untreated one (0.48-0.75) during dry sliding against Al2O3 ball. An increase in the sliding speed results in the polishing of nitrided samples and reduction of their wear rate by 60 times. This result is obtained for 5 min at 850 °C using PEN in electrolyte containing 5 wt.% ammonia and 10 wt.% ammonium chloride followed by quenching in solution. Optical microscope was employed to assist in the evaluation of the wear behavior. Sizes of wear tracks were measured by profilometer TR200.

  1. A general strategy toward the rational synthesis of metal tungstate nanostructures using plasma electrolytic oxidation method

    NASA Astrophysics Data System (ADS)

    Jiang, Yanan; Liu, Baodan; Zhai, Zhaofeng; Liu, Xiaoyuan; Yang, Bing; Liu, Lusheng; Jiang, Xin

    2015-11-01

    A new method based on conventional plasma electrolytic oxidation (PEO) technology has been developed for the rational synthesis of metal tungstate nanostructures. Using this method, ZnWO4 and NiWO4 nanostructures with controllable morphologies (nanorods, nanosheets and microsheets) and superior crystallinity have been synthesized. It has been found that the morphology diversity of ZnWO4 nanostructures can be selectively tailored through tuning the electrolyte concentration and annealing temperatures, showing obvious advantages in comparison to traditional hydrothermal and sol-gel methods. Precise microscopy analyses on the cross section of the PEO coating and ZnWO4 nanostructures confirmed that the precursors initially precipitated in the PEO coating and its surface during plasma discharge process are responsible for the nucleation and subsequent growth of metal tungstate nanostructures by thermal annealing. The method developed in this work represents a general strategy toward the rational synthesis of metal oxide nanostructures and the formation mechanism of metal tungstate nanostructures fabricated by the PEO method is finally discussed.

  2. Plasma electrolytic oxidation treatment mode influence on corrosion properties of coatings obtained on Zr-1Nb alloy in silicate-phosphate electrolyte

    NASA Astrophysics Data System (ADS)

    Farrakhov, R. G.; Mukaeva, V. R.; Fatkullin, A. R.; Gorbatkov, M. V.; Tarasov, P. V.; Lazarev, D. M.; Babu, N. Ramesh; Parfenov, E. V.

    2018-01-01

    This research is aimed at improvement of corrosion properties for Zr-1Nb alloy via plasma electrolytic oxidation (PEO). The coatings obtained in DC, pulsed unipolar and pulsed bipolar modes were assessed using SEM, XRD, PDP and EIS techniques. It was shown that pulsed unipolar mode provides the PEO coatings having promising combination of the coating thickness, surface roughness, porosity, corrosion potential and current density, and charge transfer resistance, all contributing to corrosion protection of the zirconium alloy for advanced fuel cladding applications.

  3. Properties of nanostructured undoped ZrO{sub 2} thin film electrolytes by plasma enhanced atomic layer deposition for thin film solid oxide fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Gu Young; Noh, Seungtak; Lee, Yoon Ho

    2016-01-15

    Nanostructured ZrO{sub 2} thin films were prepared by thermal atomic layer deposition (ALD) and by plasma-enhanced atomic layer deposition (PEALD). The effects of the deposition conditions of temperature, reactant, plasma power, and duration upon the physical and chemical properties of ZrO{sub 2} films were investigated. The ZrO{sub 2} films by PEALD were polycrystalline and had low contamination, rough surfaces, and relatively large grains. Increasing the plasma power and duration led to a clear polycrystalline structure with relatively large grains due to the additional energy imparted by the plasma. After characterization, the films were incorporated as electrolytes in thin film solidmore » oxide fuel cells, and the performance was measured at 500 °C. Despite similar structure and cathode morphology of the cells studied, the thin film solid oxide fuel cell with the ZrO{sub 2} thin film electrolyte by the thermal ALD at 250 °C exhibited the highest power density (38 mW/cm{sup 2}) because of the lowest average grain size at cathode/electrolyte interface.« less

  4. Reaction of Cl- ions in electrolyte solution induced electrical discharge plasma in the presence of argon fine bubbles

    NASA Astrophysics Data System (ADS)

    Hayashi, Yui; Takada, Noriharu; Wahyudiono, Kanda, Hideki; Goto, Motonobu

    2017-05-01

    Active chlorine species such as chlorine molecules and hypochlorous acid have been known as high performance sanitizers. They would act more reactive on chemical and biological substances when an electrical discharge was introduced in water containing an electrolyte substance. Here, the reaction of chloride (Cl-) ions were examined by introducing of a pulsed discharge plasma in sodium chloride (NaCl) solution as an electrolyte solution at room temperature. The results show that a large electrical current generated by the pulsed discharge plasma affected the reaction of Cl- ions to result available chlorine. The reaction pathway for available chlorine production was assumed similar with the reaction pathway as electrolysis. A pulsed discharge plasma in NaCl solution in the presence of argon (Ar) fine bubbles exhibited intense emissions and high electron density compared to when no Ar fine bubbles were introduced. At these conditions, the dissociation reaction rate of water increased drastically leads to the formation of 0 atoms. As a result, the reaction of Cl- ions and the available chlorine generation were also increased.

  5. Plasma membranes modified by plasma treatment or deposition as solid electrolytes for potential application in solid alkaline fuel cells.

    PubMed

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-07-30

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane.

  6. Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells

    PubMed Central

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-01-01

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295

  7. Sterilization of Long Tube Inner Surface Using Oxygen and Water Vapor Plasmas Produced by AC HV Discharge

    NASA Astrophysics Data System (ADS)

    Kitazaki, Satoshi; Hayashi, Nobuya

    2009-10-01

    Oxygen and water vapor plasmas inside a narrow long tube were produced using an AC HV glow discharge at low pressure in order to sterilize the inner surface of a tube. In order to produce plasma inside a narrow tube, an AC high voltage was adopted. The material of the tube used in this experiment was silicon rubber. The length and diameter of the tubes ranged from 300 to 1,000 mm and from 1 to 4 mm, respectively. The tube was placed in a stainless steel vacuum chamber and was evacuated to 10 Pa using a rotary pump. The material gas for plasma and radical productions was pure oxygen or water vapor, which was introduced to the chamber from a gas cylinder or water reservoir. Light emission spectral lines of oxygen and OH radicals were observed at 777 nm and 306 nm, respectively. The chemical indicator was inserted into the tube and turned to a yellowish color (from the original red) after a treatment, which indicates the generation of sufficient oxygen on OH radicals for sterilization. A tube with the length of 500 mm and diameter of 4 mm is sterilized using oxygen plasma by 10 minutes treatment. Also a tube with the length of 300 mm and diameter of 2 mm is sterilized using water vapor plasma by 5 minutes treatment.

  8. Precursor-route ZnO films from a mixed casting solvent for high performance aqueous electrolyte-gated transistors.

    PubMed

    Althagafi, Talal M; Algarni, Saud A; Al Naim, Abdullah; Mazher, Javed; Grell, Martin

    2015-12-14

    We significantly improved the performance of precursor-route semiconducting zinc oxide (ZnO) films in electrolyte-gated thin film transistors (TFTs). We find that the organic precursor to ZnO, zinc acetate (ZnAc), dissolves more readily in a 1 : 1 mixture of ethanol (EtOH) and acetone than in pure EtOH, pure acetone, or pure isopropanol. XPS and SEM characterisation show improved morphology of ZnO films converted from a mixed solvent cast ZnAc precursor compared to the EtOH cast precursor. When gated with a biocompatible electrolyte, phosphate buffered saline (PBS), ZnO thin film transistors (TFTs) derived from mixed solvent cast ZnAc give 4 times larger field effect current than similar films derived from ZnAc cast from pure EtOH. The sheet resistance at VG = VD = 1 V is 30 kΩ □(-1), lower than for any organic TFT, and lower than for any electrolyte-gated ZnO TFT reported to date.

  9. Needle-array to Plate DBD Plasma Using Sine AC and Nanosecond Pulse Excitations for Purpose of Improving Indoor Air Quality

    PubMed Central

    Zhang, Li; Yang, Dezheng; Wang, Wenchun; Wang, Sen; Yuan, Hao; Zhao, Zilu; Sang, Chaofeng; Jia, Li

    2016-01-01

    In this study, needle-array to plate electrode configuration was employed to generate an atmospheric air diffuse discharge using both nanosecond pulse and sine AC voltage as excitation voltage for the purpose of improving indoor air quality. Different types of voltage sources and electrode configurations are employed to optimize electrical field distribution and improve discharge stability. Discharge images, electrical characteristics, optical emission spectra, and plasma gas temperatures in both sine AC discharge and nanosecond pulse discharge were compared and the discharge stability during long operating time were discussed. Compared with the discharge excited by sine AC voltage, the nanosecond pulsed discharge is more homogenous and stable, besides, the plasma gas temperature of nanosecond pulse discharge is much lower. Using packed-bed structure, where γ- Al2O3 pellets are filled in the electrode gap, has obvious efficacy in the production of homogenous discharge. Furthermore, both sine AC discharge and nanosecond pulse discharge were used for removing formaldehyde from flowing air. It shows that nanosecond pulse discharge has a significant advantage in energy cost. And the main physiochemical processes for the generation of active species and the degradation of formaldehyde were discussed. PMID:27125663

  10. Corrosion evaluation of zirconium doped oxide coatings on aluminum formed by plasma electrolytic oxidation.

    PubMed

    Bajat, Jelena; Mišković-Stanković, Vesna; Vasilić, Rastko; Stojadinović, Stevan

    2014-01-01

    The plasma electrolytic oxidation (PEO) of aluminum in sodium tungstate (Na(2)WO(4) · (2)H(2)O) and Na(2)WO(4) · (2)H(2)O doped with Zr was analyzed in order to obtain oxide coatings with improved corrosion resistance. The influence of current density in PEO process and anodization time was investigated, as well as the influence of Zr, with the aim to find out how they affect the chemical content, morphology, surface roughness, and corrosion stability of oxide coatings. It was shown that the presence of Zr increases the corrosion stability of oxide coatings for all investigated PEO times. Evolution of EIS spectra during the exposure to 3% NaCl, as a strong corrosive agent, indicated the highest corrosion stability for PEO coating formed on aluminum at 70 mA/cm(2) for 2 min in a zirconium containing electrolyte.

  11. Sound Absorption Characteristics of Aluminum Foams Treated by Plasma Electrolytic Oxidation

    PubMed Central

    Jin, Wei; Liu, Jiaan; Wang, Zhili; Wang, Yonghua; Cao, Zheng; Liu, Yaohui; Zhu, Xianyong

    2015-01-01

    Open-celled aluminum foams with different pore sizes were fabricated. A plasma electrolytic oxidation (PEO) treatment was applied on the aluminum foams to create a layer of ceramic coating. The sound absorption coefficients of the foams were measured by an impedance tube and they were calculated by a transfer function method. The experimental results show that the sound absorption coefficient of the foam increases gradually with the decrease of pore size. Additionally, when the porosity of the foam increases, the sound absorption coefficient also increases. The PEO coating surface is rough and porous, which is beneficial for improvement in sound absorption. After PEO treatment, the maximum sound absorption of the foam is improved to some extent. PMID:28793653

  12. Tribological and Corrosion Properties of Coatings Produced by Plasma Electrolytic Oxidation on the ZA27 Alloy

    NASA Astrophysics Data System (ADS)

    Li, Guangyin; Mao, Yifan; Li, Zhijian; Wang, Linlin; DaCosta, Herbert

    2018-05-01

    In this paper, a continuous and dense coating was deposited on samples of the ZA27 alloy through the plasma electrolytic oxidation (PEO) process to improve its wear and corrosion performance. A nontoxic and environmentally friendly inorganic salt, Na2SiO3, is chosen as electrolytes with different concentrations. The effect of the concentration of Na2SiO3 aqueous solutions on the coating performances was investigated. The coatings with 3Al2O3·2SiO2 (mullite), Zn2SiO4 and Al2O3 (either crystal phase or with some amorphous SiO2 phases) were formed by the PEO processes. It was found that the coating thickness increased with the increase in electrolyte concentration. However, the wear and corrosion resistance performance of the coatings did not improve as the coating's thickness increased. This was due to the fact that the coating produced with electrolytes of 10 g/L has a porous structure with large pore size. Among all the samples, coating produced by 15 g/L Na2SiO3 has the best wear and corrosion resistance, which is attributed to its continuous and dense structure with thickness of about 47 μm.

  13. Tribological and Corrosion Properties of Coatings Produced by Plasma Electrolytic Oxidation on the ZA27 Alloy

    NASA Astrophysics Data System (ADS)

    Li, Guangyin; Mao, Yifan; Li, Zhijian; Wang, Linlin; DaCosta, Herbert

    2018-04-01

    In this paper, a continuous and dense coating was deposited on samples of the ZA27 alloy through the plasma electrolytic oxidation (PEO) process to improve its wear and corrosion performance. A nontoxic and environmentally friendly inorganic salt, Na2SiO3, is chosen as electrolytes with different concentrations. The effect of the concentration of Na2SiO3 aqueous solutions on the coating performances was investigated. The coatings with 3Al2O3·2SiO2 (mullite), Zn2SiO4 and Al2O3 (either crystal phase or with some amorphous SiO2 phases) were formed by the PEO processes. It was found that the coating thickness increased with the increase in electrolyte concentration. However, the wear and corrosion resistance performance of the coatings did not improve as the coating's thickness increased. This was due to the fact that the coating produced with electrolytes of 10 g/L has a porous structure with large pore size. Among all the samples, coating produced by 15 g/L Na2SiO3 has the best wear and corrosion resistance, which is attributed to its continuous and dense structure with thickness of about 47 μm.

  14. Plasma antennas driven by 5–20 kHz AC power supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jiansen, E-mail: 67093058@qq.com; Chen, Yuli; Sun, Yang

    2015-12-15

    The experiments described in this work were performed with the aim of introducing a new plasma antenna that was excited by a 5–20 kHz alternating current (AC) power supply, where the antenna was transformed into a U-shape. The results show that the impedance, voltage standing-wave ratio (VSWR), radiation pattern and gain characteristics of the antenna can be controlled rapidly by varying not only the discharge power, but also by varying the discharge frequency in the range from 5 to 20 kHz. When the discharge frequency is adjusted from 10 to 12 kHz, the gain is higher within a relatively broadmore » frequency band and the switch-on time is less than 1 ms when the discharge power is less than 5 W, meaning that the plasma antenna can be turned on and off rapidly.« less

  15. Plasma characteristics of argon glow discharge produced by AC power supply operating at low frequencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kongpiboolkid, Watcharapon; Mongkolnavin, Rattachat; Plasma Technology and Nuclear Fusion Research Unit, Chulalongkorn University, Bangkok

    2015-04-24

    Non-thermal properties of Argon glow discharge operating with various operating pressures were measured and presented in this work. The Argon plasma is produced by a parallel conducting electrodes coupling with a high voltage AC power supply. The power supply can generate high AC voltage at various frequencies. The frequencies for the operation are in the range of a few kHz. The system is capable of generating electric field between the two metal electrodes discharge system. The characteristics of plasma produced were measured by optical emission spectroscopy (OES) technique where electron temperature (T{sub e}) and electron number density (n{sub e}) canmore » be determined by line intensity ratio method. The value of electron number density was then determined from the Saha-Eggert equation. Our results show that the electron number density of the discharge obtained is of the order of 10{sup −17} − 10{sup −18} m{sup −3} where the electron temperature is between 1.00−2.00 eV for various operating frequencies used which are in good agreement with similar results published earlier.« less

  16. Influence of process parameters on plasma electrolytic surface treatment of tantalum for biomedical applications

    NASA Astrophysics Data System (ADS)

    Sowa, Maciej; Woszczak, Maja; Kazek-Kęsik, Alicja; Dercz, Grzegorz; Korotin, Danila M.; Zhidkov, Ivan S.; Kurmaev, Ernst Z.; Cholakh, Seif O.; Basiaga, Marcin; Simka, Wojciech

    2017-06-01

    This work aims to quantify the effect of anodization voltage and electrolyte composition used during DC plasma electrolytic oxidation (PEO), operated as a 2-step process, on the surface properties of the resulting oxide coatings on tantalum. The first step consisted of galvanostatic anodization (150 mA cm-2) of the tantalum workpiece up to several limiting voltages (200, 300, 400 and 500 V). After attaining the limiting voltage, the process was switched to voltage control, which resulted in a gradual decrease of the anodic current density. The anodic treatment was realized in a 0.5 M Ca(H2PO2)2 solution, which was then modified by the addition of 1.15 M Ca(HCOO)2 as well as 1.15 M and 1.5 M Mg(CH3COO)2. The increasing voltage of anodization led to the formation of thicker coatings, with larger pores and enriched with electrolytes species to a higher extent. The solutions containing HCOO- and CH3COO- ions caused the formation of coatings which were slightly hydrophobic (high contact angle). In the case of the samples anodized up to 500 V, scattered crystalline deposits were observed. Bioactive phases, such as hydroxyapatite, were detected in the treated oxide coatings by XRD and XPS.

  17. Real-time imaging, spectroscopy, and structural investigation of cathodic plasma electrolytic oxidation of molybdenum

    NASA Astrophysics Data System (ADS)

    Stojadinović, Stevan; Tadić, Nenad; Šišović, Nikola M.; Vasilić, Rastko

    2015-06-01

    In this paper, the results of the investigation of cathodic plasma electrolytic oxidation (CPEO) of molybdenum at 160 V in a mixed solution of borax, water, and ethylene glycol are presented. Real-time imaging and optical emission spectroscopy were used for the characterization of the CPEO. During the process, vapor envelope is formed around the cathode and strong electric field within the envelope caused the generation of plasma discharges. The spectral line shape analysis of hydrogen Balmer line Hβ (486.13 nm) shows that plasma discharges are characterized by the electron number density of about 1.4 × 1021 m-3. The electron temperature of 15 000 K was estimated by measuring molybdenum atomic lines intensity. Surface morphology, chemical, and phase composition of coatings formed by CPEO were characterized by scanning electron microscopy with energy dispersive x-ray spectroscopy and x-ray diffraction. The elemental components of CPEO coatings are Mo and O and the predominant crystalline form is MoO3.

  18. Transmission electron microscopy of coatings formed by plasma electrolytic oxidation of titanium.

    PubMed

    Matykina, E; Arrabal, R; Skeldon, P; Thompson, G E

    2009-05-01

    Transmission electron microscopy and supporting film analyses are used to investigate the changes in composition, morphology and structure of coatings formed on titanium during DC plasma electrolytic oxidation in a calcium- and phosphorus-containing electrolyte. The coatings are of potential interest as bioactive surfaces. The initial barrier film, of mixed amorphous and nanocrystalline structure, formed below the sparking voltage of 180 V, incorporates small amounts of phosphorus and calcium species, with phosphorus confined to the outer approximately 63% of the coating thickness. On commencement of sparking, calcium- and phosphorus-rich amorphous material forms at the coating surface, with local heating promoting crystallization in underlying and adjacent anodic titania. The amorphous material thickens with increased treatment time, comprising almost the whole of the approximately 5.7-microm-thick coating formed at 340 V. At this stage, the coating is approximately 4.4 times thicker than the oxidized titanium, with a near-surface composition of about 12 at.% Ti, 58 at.% O, 19 at.% P and 11 at.% Ca. Further, the amount of titanium consumed in forming the coating is similar to that calculated from the anodizing charge, although there may be non-Faradaic contributions to the coating growth.

  19. Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Jianlong; Li, Pengwei; Sang, Shengbo, E-mail: sbsang@tyut.edu.cn

    2014-03-15

    Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and UV–vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA) models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electricmore » field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO) flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS) activity, using 4-mercaptopyridine (4-MP) as model molecules.« less

  20. Effect of an ac Perturbation on the Electroosmotic Behavior of a Cation-Exchange Membrane. Influence of the Cation Nature.

    PubMed

    Barragán, V. M.; Bauzá, C. Ruíz

    2001-08-01

    The effect of an ac sinusoidal perturbation of known amplitude and frequency superimposed on the usual dc applied electric voltage difference on the electroosmotic flow through a typical cation-exchange membrane has been studied using different monovalent electrolytes. As a general trend, the presence of the ac perturbation increases the value of the electroosmotic flow with respect to the value in the absence of ac perturbation. A dispersion of the electroosmotic permeability on the frequency of the applied ac signal has been found for the three studied electrolytes, observing that the electroosmotic permeability reaches maximum values for some characteristic values of the frequency. This behavior may be related to the different relaxation processes in heterogeneous mediums. Copyright 2001 Academic Press.

  1. Magnesium Oxide (MgO) pH-sensitive Sensing Membrane in Electrolyte-Insulator-Semiconductor Structures with CF4 Plasma Treatment.

    PubMed

    Kao, Chyuan-Haur; Chang, Chia Lung; Su, Wei Ming; Chen, Yu Tzu; Lu, Chien Cheng; Lee, Yu Shan; Hong, Chen Hao; Lin, Chan-Yu; Chen, Hsiang

    2017-08-03

    Magnesium oxide (MgO) sensing membranes in pH-sensitive electrolyte-insulator-semiconductor structures were fabricated on silicon substrate. To optimize the sensing capability of the membrane, CF 4 plasma was incorporated to improve the material quality of MgO films. Multiple material analyses including FESEM, XRD, AFM, and SIMS indicate that plasma treatment might enhance the crystallization and increase the grain size. Therefore, the sensing behaviors in terms of sensitivity, linearity, hysteresis effects, and drift rates might be improved. MgO-based EIS membranes with CF 4 plasma treatment show promise for future industrial biosensing applications.

  2. Formation of ZrO{sub 2} in coating on Mg–3 wt.%Al–1 wt.%Zn alloy via plasma electrolytic oxidation: Phase and structure of zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kang Min; Kim, Yeon Sung; Yang, Hae Woong

    2015-01-15

    An investigation of the coating structure formed on Mg–3 wt.%Al–1 wt.%Zn alloy sample subjected to plasma electrolytic oxidation was examined by field-emission transmission electron microscopy. The plasma electrolytic oxidation process was conducted in a phosphoric acid electrolyte containing K{sub 2}ZrF{sub 6} for 600 s. Microstructural observations showed that the coating consisting of MgO, MgF{sub 2}, and ZrO{sub 2} phases was divided into three distinctive parts, the barrier, intermediate, and outer layers. Nanocrystalline MgO and MgF{sub 2} compounds were observed mainly in the barrier layer of ~ 1 μm thick near to the substrate. From the intermediate to outer layers, variousmore » ZrO{sub 2} polymorphs appeared due to the effects of the plasma arcing temperature on the phase transition of ZrO{sub 2} compounds during the plasma electrolytic oxidation process. In the outer layer, MgO compound grew in the form of a dendrite-like structure surrounded by cubic ZrO{sub 2}. - Highlights: • The barrier layer containing MgO and MgF{sub 2} was observed near to the Mg substrate. • In the intermediate layer, m-, t-, and o-ZrO{sub 2} compounds were additionally detected. • The outer layer contained MgO with the dendrite-like structure surrounded by c-ZrO{sub 2}. • The grain sizes of compounds in oxide layer increased from barrier to outer layer.« less

  3. Comparing Ns-DBD vs Ac-DBD plasma actuation mechanisms on a NACA 0012 airfoil

    NASA Astrophysics Data System (ADS)

    Singh, Ashish; Durasiewicz, Claudia; Little, Jesse

    2017-11-01

    A NACA 0012 airfoil is used to study ns-DBD and ac-DBD plasma actuators at a Reynolds number of 740,000 (U∞=40 m/s). Ns-DBD plasma actuators are hypothesized to work on the principle of joule heating whereas ac-DBD actuators add momentum to the flow. Short duration forcing at a time scale much smaller than the convective time based on model chord is employed to study the control mechanism and flow field response. 2-D PIV carried out over a convective time range of 0-10 is used to study the flow structure. The results show the breakup of shear layer vorticity at the point of actuation followed by reattachment to the suction side of the airfoil and finally stall again. These events are very similar between the two actuators and indicate a similar flow response to different perturbation types. The pulse energies are varied and the response shows little change. The results are compared to other transitory separation control studies using more conventional actuators. The detailed study of these two control mechanisms with the separated flow over an airfoil helps to shed light on the evolution of the flow control process. Additional results on a simplified model problem (low speed mixing layer) are included to provide context. Supported by U.S. Army Research Office (W911NF-14-1-0662).

  4. Effect of hypovolemia, infusion, and oral rehydration on plasma electrolytes, ADH, renin activity, and +G/z/ tolerance

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Brock, P. J.; Haines, R. F.; Rositano, S. A.; Montgomery, L. D.; Keil, L. C.

    1977-01-01

    Effects on plasma volume, electrolyte shifts, and +G(z) tolerance induced by: (1) blood withdrawal; (2) blood infusion; and (3) oral fluid intake, were determined at 0.5 G/min in centrifugation tests of six ambulatory male patients, aged 21 to 27 yrs. Hypovolemia induced by withdrawal of 400 ml blood, blood infusion followed by repeated centrifugation, effects of consuming an isotonic drink (0.9% NaCl) to achieve oral rehydration, and donning of red adaptation goggles were studied for effects on acceleration tolerance, pre-acceleration and post-acceleration plasma renin activity (PRA) and plasma vasopressin levels. No significant changes in post-acceleration PRA compared to pre-acceleration PRA were found, and administration of oral rehydration is found as effective as blood replacement in counteracting hypovolemic effects.

  5. Solid Electrolytes and Photoelectrolysis

    DTIC Science & Technology

    1974-12-31

    some DC and low-frequency AC measurements are made with molten NaNO, on both sides of the specimen. These molten - salt measurements have been in...transport properties. 1. Im3 phase. A metastable cubic phase of NaSbO, was obtained from high-pressure KSbO, by ion exchange in molten NaNO...sieves. As these latter structures are stabilized by water, they are unsuitable for solid electrolytes that are to be in contact with molten

  6. Preparation of ceramic coating on Ti substrate by Plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance

    NASA Astrophysics Data System (ADS)

    Shokouhfar, M.; Dehghanian, C.; Baradaran, A.

    2011-01-01

    Ceramic oxide coatings (titania) were produced on Ti by micro-arc oxidation in different aluminate and carbonate based electrolytes. This process was conducted under constant pulsed DC voltage condition. The effect of KOH and NaF in aluminate based solution was also studied. The surface morphology, growth and phase composition of coatings were investigated using scanning electron microscope and X-ray diffraction. Corrosion behavior of the coatings was also examined by potentiodynamic polarization and electrochemical impedance spectroscopy. It was found that the sparking initiation voltage (spark voltage) had a significant effect on the form and properties of coatings. Coatings obtained from potassium aluminate based solution had a lower spark voltage, higher surface homogeneity and a better corrosion resistance than the carbonate based solution. Addition of NaF instead of KOH had improper effects on the homogeneity and adhesion of coatings which in turn caused a poor corrosion protection behavior of the oxide layer. AC impedance curves showed two time constants which is an indication of the coatings with an outer porous layer and an inner compact layer.

  7. Electric-Field-Directed Parallel Alignment Architecting 3D Lithium-Ion Pathways within Solid Composite Electrolyte.

    PubMed

    Liu, Xueqing; Peng, Sha; Gao, Shuyu; Cao, Yuancheng; You, Qingliang; Zhou, Liyong; Jin, Yongcheng; Liu, Zhihong; Liu, Jiyan

    2018-05-09

    It is of great significance to seek high-performance solid electrolytes via a facile chemistry and simple process for meeting the requirements of solid batteries. Previous reports revealed that ion conducting pathways within ceramic-polymer composite electrolytes mainly occur at ceramic particles and the ceramic-polymer interface. Herein, one facile strategy toward ceramic particles' alignment and assembly induced by an external alternating-current (AC) electric field is presented. It was manifested by an in situ optical microscope that Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 particles and poly(ethylene glycol) diacrylate in poly(dimethylsiloxane) (LATP@PEGDA@PDMS) assembled into three-dimensional connected networks on applying an external AC electric field. Scanning electron microscopy revealed that the ceramic LATP particles aligned into a necklacelike assembly. Electrochemical impedance spectroscopy confirmed that the ionic conductivity of this necklacelike alignment was significantly enhanced compared to that of the random one. It was demonstrated that this facile strategy of applying an AC electric field can be a very effective approach for architecting three-dimensional lithium-ion conductive networks within solid composite electrolyte.

  8. Study of metal corrosion using ac impedance techniques in the STS launch environment

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.

    1989-01-01

    AC impedance measurements were performed to investigate the corrosion resistance of 19 alloys under conditions similar to the STS launch environment. The alloys were: Zirconium 702, Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, Inconel 600, 7Mo + N, Ferralium 255, Inco Alloy G-3, 20Cb-3, SS 904L, Inconel 825, SS 304LN, SS 316L, SS 317L, ES 2205, SS 304L, Hastelloy B-2, and Monel 400. AC impedance data were gathered for each alloy after one hour immersion time in each of the following three electrolyte solutions: 3.55 percent NaCl, 3.55 percent NaCl-0.1N HCl, and 3.55 percent NaCl-1.0N HCl. The data were analyzed qualitatively using the Nyquist plot and quantitatively using the Bode plot. Polarization resistance, Rp, values were obtained using the Bode plot. Zirconium 702 was the most corrosion resistant alloy in the three electrolytes. The ordering of the other alloys according the their resistance to corrosion varied as the concentration of hydrochloric acid in the electrolyte increased. The corrosion resistance of Zirconium 702 and Ferralium 255 increased as the concentration of hydrochloric acid in the electrolyte increased. The corrosion resistance of the other 17 alloys decreased as the concentration of the hyrdochloric acid in the electrolyte increased.

  9. Real-time imaging, spectroscopy, and structural investigation of cathodic plasma electrolytic oxidation of molybdenum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stojadinović, Stevan, E-mail: sstevan@ff.bg.ac.rs; Tadić, Nenad; Šišović, Nikola M.

    2015-06-21

    In this paper, the results of the investigation of cathodic plasma electrolytic oxidation (CPEO) of molybdenum at 160 V in a mixed solution of borax, water, and ethylene glycol are presented. Real-time imaging and optical emission spectroscopy were used for the characterization of the CPEO. During the process, vapor envelope is formed around the cathode and strong electric field within the envelope caused the generation of plasma discharges. The spectral line shape analysis of hydrogen Balmer line H{sub β} (486.13 nm) shows that plasma discharges are characterized by the electron number density of about 1.4 × 10{sup 21 }m{sup −3}. The electron temperaturemore » of 15 000 K was estimated by measuring molybdenum atomic lines intensity. Surface morphology, chemical, and phase composition of coatings formed by CPEO were characterized by scanning electron microscopy with energy dispersive x-ray spectroscopy and x-ray diffraction. The elemental components of CPEO coatings are Mo and O and the predominant crystalline form is MoO{sub 3}.« less

  10. Investigation of the transition of multicycle AC operation in ISTTOK under edge electrode biasing

    NASA Astrophysics Data System (ADS)

    Malaquias, A.; Henriques, R. B.; Silva, C.; Figueiredo, H.; Nedzelskiy, I. S.; Fernandes, H.; Sharma, R.; Plyusnin, V. V.

    2017-11-01

    In this paper we present recent results obtained on plasma edge electrode biasing during AC discharges. The goal is to obtain experimental evidence on a number of plasma parameters that can play a role during the AC transition on the repeatability and reproducibility of AC operation. The control of the plasma density in the quiescent phase is made just before the AC transition by means of positive edge biasing leading to a transitory improved of density (30%-40%). Gas puff experiments show that the increase of background gas pressure during discharge led to a better success of the AC transition. The experimental results indicate that the increase of density during the AC transition induced by edge biasing is followed by an electron temperature drop. The drop in electron temperature leads in most cases the formation of runaway electrons. It has been observed that the runaway population during discharge flattop depends on the interplay between gas content and plasma density and temperature. The results also confirm that the correct balance of external magnetic fields is crucial during the AC transition phase where drift electron currents are formed. The results from the heavy ion beam diagnostic show that the formation of plasma current during consecutive AC transitions is asymmetric. Numerical simulations indicate that for some particular conditions this result could be reproduced from assuming the presence of two counter-currents during AC transition.

  11. Electrical and dielectric properties of PVdF-HFP - PMMA - (PC + DEC)- LiClO4 based gel polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Gohel, Khushbu; Kanchan, D. K.; Maheshwaran, C.

    2018-04-01

    In the present paper, AC impedance studies have been measured to evaluate ion conduction behavior of (PVdF-HFP - PMMA) + (PC-DEC) + LiClO4 gel polymer electrolyte system prepared by solution casting method. Structural characterization and morphology has been carried out using XRD and SEM respectively. The AC conductivity and dielectric permittivity, electric modulus and relaxation mechanism have been studied. The variation of ac conductivity with frequency obeys Jonscher power law. Maximum value of dielectric constant ɛ' in the lower frequency region has been observed for the gel polymer electrolyte containing 7.5 wt% LiClO4. The highest conducting sample shows the shortest relaxation time.

  12. AC impedance investigations of proton conduction in Nafion(sup TM)

    NASA Astrophysics Data System (ADS)

    Cahan, B. D.; Wainright, J. S.

    1993-12-01

    AC impedance spectroscopy has been employed to study the conduction of protons in Nafion 117 polymer electrolyte membrane. Both two- and four-electrode geometries have been used to uniquely distinguish between the membrane impedance and the interfacial impedances. The results show that the impedance of Nafion for frequencies up to 100 kHz is characterized by a pure resistance, similar to conventional liquid electrolytes. The frequency dependent features observed using a two-electrode geometry are shown to be consistent will well-characterized interfacial impedances and do not arise from ionic conduction in the membrane. These results show that previous two-electrode studies reported in the literature have misinterpreted the impedance of the electrode interfaces as belonging to the conduction process in the electrolyte.

  13. Effects of Current Density on Microstructure and Corrosion Property of Coating on AZ31 Mg Alloy Processed via Plasma Electrolytic Oxidation

    NASA Astrophysics Data System (ADS)

    Lee, Kang Min; Einkhah, Feryar; Sani, Mohammad Ali Faghihi; Ko, Young Gun; Shin, Dong Hyuk

    The effects of the current density on the micro structure and the corrosion property of the coating on AZ31 Mg alloy processed by the plasma electrolytic oxidation (PEO) were investigated. The present coatings were produced in an acid electrolyte containing K2ZrF6 with three different current densities, i.e., 100, 150, and 200 mA/cm2. From the microstructural observations, as the applied current density was increased, the diameter of micro-pores formed by the plasma discharges with high temperature increased. The coatings on AZ31 Mg alloy were mainly composed of MgO, ZrO2, MgF2, and Mg2Zr5O12 phases. The results of potentiodynamic polarization clearly showed that the PEO-treated AZ31 Mg alloy applied at 100 mA/cm2 of current density exhibited better corrosion properties than the others.

  14. DC response of dust to low frequency AC signals

    NASA Astrophysics Data System (ADS)

    McKinlay, Michael; Konopka, Uwe; Thomas, Edward

    2017-10-01

    Macroscopic changes in the shape and equilibrium position of clouds of charged microparticles suspended in a plasma have been observed in response to low frequency AC signals. In these experiments, dusty plasmas consisting of 2-micron diameter silica microspheres suspended between an anode and cathode in an argon, DC glow discharge plasma are produced in a grounded, 6-way cross vacuum chamber. An AC signal, produced by a function generator and amplified by a bipolar op-amp, is superimposed onto the potential from the cathode. The frequencies of the applied AC signals, ranging from tens to hundreds of kHz, are comparable to the ion-neutral collision frequency; well below the ion/electron plasma frequencies, but also considerably higher than the dust plasma frequency. This presentation will detail the experimental setup, present documentation and categorization of observations of the dust response, and present an initial model of the response. This work is supported by funding from the US Dept. of Energy, Grant Number DE-SC0016330, and by the National Science Foundation, Grant Number PHY-1613087.

  15. Experimental investigation of SDBD plasma actuator driven by AC high voltage with a superimposed positive pulse bias voltage

    NASA Astrophysics Data System (ADS)

    Qi, Xiao-Hua; Yan, Hui-Jie; Yang, Liang; Hua, Yue; Ren, Chun-Sheng

    2017-08-01

    In this work, a driven voltage consisting of AC high voltage with a superimposed positive pulse bias voltage ("AC+ Positive pulse bias" voltage) is adopted to study the performance of a surface dielectric barrier discharge plasma actuator under atmospheric conditions. To compare the performance of the actuator driven by single-AC voltage and "AC+ Positive pulse bias" voltage, the actuator-induced thrust force and power consumption are measured as a function of the applied AC voltage, and the measured results indicate that the thrust force can be promoted significantly after superimposing the positive pulse bias voltage. The physical mechanism behind the thrust force changes is analyzed by measuring the optical properties, electrical characteristics, and surface potential distribution. Experimental results indicate that the glow-like discharge in the AC voltage half-cycle, next to the cycle where a bias voltage pulse has been applied, is enhanced after applying the positive pulse bias voltage, and this perhaps is the main reason for the thrust force increase. Moreover, surface potential measurement results reveal that the spatial electric field formed by the surface charge accumulation after positive pulse discharge can significantly affect the applied external electric field, and this perhaps can be responsible for the experimental phenomenon that the decrease of thrust force is delayed by pulse bias voltage action after the filament discharge occurs in the glow-like discharge region. The schlieren images further verify that the actuator-induced airflow velocity increases with the positive pulse voltage.

  16. Driving Force of Plasma Bullet in Atmospheric-Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Yambe, Kiyoyuki; Masuda, Seiya; Kondo, Shoma

    2018-06-01

    When plasma is generated by applying high-voltage alternating current (AC), the driving force of the temporally and spatially varying electric field is applied to the plasma. The strength of the driving force of the plasma at each spatial position is different because the electrons constituting the atmospheric-pressure nonequilibrium (cold) plasma move at a high speed in space. If the force applied to the plasma is accelerated only by the driving force, the plasma will be accelerated infinitely. The equilibrium between the driving force and the restricting force due to the collision between the plasma and neutral particles determines the inertial force and the drift velocity of the plasma. Consequently, the drift velocity depends on the strength of the time-averaged AC electric field. The pressure applied by the AC electric field equilibrates with the plasma pressure. From the law of conservation of energy, the pressure equilibrium is maintained by varying the drift velocity of the plasma.

  17. The black and white coatings on Ti-6Al-4V alloy or pure titanium by plasma electrolytic oxidation in concentrated silicate electrolyte

    NASA Astrophysics Data System (ADS)

    Han, Jun-xiang; Cheng, Yu-lin; Tu, Wen-bin; Zhan, Ting-Yan; Cheng, Ying-liang

    2018-01-01

    Black TiO2 has triggered scientific interest due to its unique properties such as enhanced solar-driven photocatalytic activity. In this paper, plasma electrolytic oxidation (PEO) treatment of Ti-6Al-4V alloy has been carried out in concentrated sodium silicate electrolyte. Silica-based black and white TiO2 coatings respectively have been obtained by controlling the oxidation time. The black coating, which was formed with a short treatment time, shows good corrosion resistance and the black appearance can be attributed to the presence of Ti2+ and Ti3+ in the coating. The lower valence titanium ions are absent in the white coatings and they also contain relatively higher Na content compared to the black coatings. The white coatings have great surface roughnesses and super hydrophilicity. The bonding strengths of the black and white coatings on the Ti-6Al-4V alloy are ∼14.4 and 4.3 MPa, respectively. The vanadium contributes little to the black appearance of the coating on Ti6Al4V alloy, since the same phenomena occur for the PEO of a pure titanium substrate.

  18. Gastric emptying, intestinal absorption of electrolytes and exercise performance in electrolyte-supplemented horses.

    PubMed

    Lindinger, Michael I; Ecker, Gayle L

    2013-01-01

    Horses lose considerably more electrolytes through sweating during prolonged exercise than can be readily replaced through feeds. The present study tested an oral electrolyte supplement (ES) designed to replace sweat electrolyte losses. We measured gastric emptying of 3 litres of ES (using gamma imaging of (99)Tc-sulfide colloid), the absorption of Na(+) and K(+) from the gastrointestinal tract using (24)Na(+) and (42)K(+), and the distribution of these ions in the body by measuring radioactivity within plasma and sweat during exercise. Three litres of ES emptied from the stomach as fast as water, with a half-time of 47 min, and appeared in plasma by 10 min after administration (n = 4 horses). Peak values of plasma (24)Na(+) and (42)K(+) radioactivity occurred at 20-40 min, and a more rapid disappearance of K(+) radioactivity from plasma was indicative of movement of K(+) into cells (n = 3 horses). In a randomized crossover experiment (n = 4 horses), 1 h after administration of placebo (water), 1 or 3 litres of ES containing (24)Na(+), horses exercised on a treadmill at 30% of peak oxygen uptake until voluntary fatigue. The (24)Na(+) appeared in sweat at 10 min of exercise, and when horses received 3 litres of ES the duration to voluntary fatigue was increased in all horses by 33 ± 10%. It is concluded that an oral ES designed to replace sweat ion losses was rapidly emptied from the gastrointestinal tract, rapidly absorbed in the upper intestinal tract and rapidly distributed within the body. The ES clearly served as a reservoir to replace sweat ion losses during exercise, and administration of ES prior to exercise resulted in increased duration of submaximal exercise.

  19. A novel process of electroless Ni-P plating with plasma electrolytic oxidation pretreatment

    NASA Astrophysics Data System (ADS)

    Liu, Zhenmin; Gao, Wei

    2006-12-01

    A novel Ni based coating - plasma electrolytic oxidation (PEO) pre-treatment followed by electroless nickel (EN) plating - has been developed to produce pore free Ni coatings on AZ91 magnesium alloy. The application of the PEO film between the nickel coating and the substrate acts as an effective barrier and catalytic layer for the subsequent nickel plating. The potentiodynamic tests indicated that the corrosion current density of the PEO + EN plating on AZ91 decreased by almost two orders of magnitudes compared to the traditional EN coating. Salt fog spray testing further proved this improvement. More importantly, the new technique does not use Cr +6 and HF in its pretreatment, therefore is a much environmentally friendlier process.

  20. Formation of TiO2 nanostructure by plasma electrolytic oxidation for Cr(VI) reduction

    NASA Astrophysics Data System (ADS)

    Torres, D. A.; Gordillo-Delgado, F.; Plazas-Saldaña, J.

    2017-01-01

    Plasma electrolytic oxidation (PEO) is an environmentally friendly technique that allows the growth of ceramic coatings without organic solvents and non-toxic residues. This method was applied to ASME SB-265 titanium (Ti) plates (2×2×0.1cm) using voltage pulses from a switching power supply (340V) for 10 minutes at frequency of 1000Hz changing duty cycle at 10, 60 and 90% and the electrolytes were Na3PO4 and NaOH. The treated sheets surfaces were analysed by X-ray diffraction and scanning electron microscopy. According to the diffractograms, the duty cycle increase produces amorphous TiO2 coating on Ti sheets and the thickness increases. After sintering at 900°C during 1 hour, the 10% duty cycle generated a combination of anatase and rutile phases at the sample surface with weight percentages of 13.3 and 86.6% and particle sizes of 32.461±0.009nm and 141.14±0.03 nm, respectively. With this sample, the total reduction of hexavalent chromium was reached at 50 minutes for 1ppm solution. This photocatalytic activity was measured following the colorimetric method ASTM-3500-Cr B.

  1. Electrolyte Structure near Electrode Interfaces in Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Lordi, Vincenzo; Ong, Mitchell; Verners, Osvalds; van Duin, Adri; Draeger, Erik; Pask, John

    2014-03-01

    The performance of lithium-ion secondary batteries (LIBs) is strongly tied to electrochemistry and ionic transport near the electrode-electrolyte interface. Changes in ion solvation near the interface affect ion conductivity and also are associated with the formation and evolution of solid-electrolyte interphase (SEI) layers, which impede transport but also passivate the interface. Thus, understanding these effects is critical to optimizing battery performance. Here we present molecular dynamics (MD) simulations of typical organic liquid LIB electrolytes in contact with graphite electrodes to understand differences in molecular structure and solvation near the interface compared to the bulk electrolyte. Results for different graphite terminations are presented. We compare the results of density-functional based MD to the empirical reactive forcefield ReaxFF and the non-reactive, non-polarizable COMPASS forcefield. Notable differences in the predictive power of each of these techniques are discussed. Prepared by LLNL under Contract DE-AC52-07NA27344.

  2. Hybrid flow control of a transport truck side-mirror using AC-DBD plasma actuated guide vane

    NASA Astrophysics Data System (ADS)

    Michelis, Theodoros; Kotsonis, Marios

    2014-11-01

    A wind-tunnel study is conducted towards hybrid flow control of a full-scale transport truck side-mirror (Re = 4 ×105) . The mirror is mounted on a structure that models the truck cabin. PIV measurements are performed at a range of velocities from 15 to 25 m/s and from leeward to windward angles of -5° to +5° . A slim guide vane of 6cm chord is employed along the span of the hub of the mirror for redirecting high momentum flow towards the wake region. Separation from the leading edge of the guide vane is reduced or eliminated by means of AC-DBD plasma actuator, operating at voltage of 35 kV peak-to-peak and frequency of 200 Hz. Time-averaged velocity fields are obtained at the centre of the mirror for three scenarios: a) reference case lacking any control elements; b) guide vane only and c) combination of the guide vane and the AC-DBD. The comparison of cases demonstrates that at 25 m/s windward conditions (-5°) the guide vane is capable of increasing momentum (+20%) in the wake of the mirror with additional improvement when plasma actuation is applied (+21%). In contrast, at leeward conditions (+5°) , the guide vane reduces momentum (-20%), though with actuation an increase is observed (+5%). Total recovered momentum is 25%.

  3. Lithium dendrite growth through solid polymer electrolyte membranes

    NASA Astrophysics Data System (ADS)

    Harry, Katherine; Schauser, Nicole; Balsara, Nitash

    2015-03-01

    Replacing the graphite-based anode in current batteries with a lithium foil will result in a qualitative increase in the energy density of lithium batteries. The primary reason for not adopting lithium-foil anodes is the formation of dendrites during cell charging. In this study, stop-motion X-ray microtomography experiments were used to directly monitor the growth of lithium dendrites during electrochemical cycling of symmetric lithium-lithium cells with a block copolymer electrolyte. In an attempt to understand the relationship between viscoelastic properties of the electrolyte on dendrite formation, a series of complementary experiments including cell cycling, tomography, ac impedance, and rheology, were conducted above and below the glass transition temperature of the non-conducting poly(styrene) block; the conducting phase is a mixture of rubbery poly(ethylene oxide) and a lithium salt. The tomography experiments enable quantification of the evolution of strain in the block copolymer electrolyte. Our work provides fundamental insight into the dynamics of electrochemical deposition of metallic films in contact with high modulus polymer electrolytes. Rational approaches for slowing down and, perhaps, eliminating dendrite growth are proposed.

  4. Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation.

    PubMed

    Goularte, Marcelo Augusto Pinto Cardoso; Barbosa, Gustavo Frainer; da Cruz, Nilson Cristino; Hirakata, Luciana Mayumi

    2016-12-01

    Search for materials that may either replace titanium dental implants or constitute an alternative as a new dental implant material has been widely studied. As well, the search for optimum biocompatible metal surfaces remains crucial. So, the aim of this work is to develop an oxidized surface layer on tantalum using plasma electrolytic oxidation (PEO) similar to those existing on oral implants been marketed today. Cleaned tantalum samples were divided into group 1 (control) and groups 2, 3, and 4 (treated by PEO for 1, 3, and 5 min, respectively). An electrolytic solution diluted in 1-L deionized water was used for the anodizing process. Then, samples were washed with anhydrous ethyl alcohol and dried in the open air. For complete anodic treatment disposal, the samples were immersed in acetone altogether, taken to the ultrasonic tank for 10 min, washed again in distilled water, and finally air-dried. For the scanning electron microscopy (SEM) analysis, all samples were previously coated with gold; the salt deposition analysis was conducted with an energy-dispersive X-ray spectroscopy (EDS) system integrated with the SEM unit. SEM images confirmed the changes on tantalum strips surface according to different exposure times while EDS analysis confirmed increased salt deposition as exposure time to the anodizing process also increased. PEO was able to produce both surface alteration and salt deposition on tantalum strips similar to those existing on oral implants been marketed today.

  5. Dual Electrolytic Plasma Processing for Steel Surface Cleaning and Passivation

    NASA Astrophysics Data System (ADS)

    Yang, L.; Zhang, P.; Shi, J.; Liang, J.; Tian, W. B.; Zhang, Y. M.; Sun, Z. M.

    2017-10-01

    To remove the rust on rebars and passivate the fresh surfaces, electrodes reversing electrolytic plasma processing (EPP) was proposed and conducted in a 10 wt.% Na2CO3 aqueous solution. The morphology and the composition of the surface were investigated by SEM and XPS. Experimental results show that the rust on the surface was removed effectively by cathode EPP, and a passive film containing Cr2O3 was achieved by the succeeding anode EPP treatment, by a simple operation of reversing the bias. The corrosion resistance was evaluated in a 3.5 wt.% NaCl aqueous solution using an electrochemical workstation. In comparison, the corrosion resistance was improved by the succeeding anode EPP treatment, which is evidenced by a positive shift of the open-circuit potential, an increase in the electrochemical impedance representing the inner layer by 76.8% and the decrease in the corrosion current density by 49.6%. This is an effective and environment-friendly technique to clean and passivate rebars and similar steel materials.

  6. Hybrid capacitor with activated carbon electrode, Ni(OH) 2 electrode and polymer hydrogel electrolyte

    NASA Astrophysics Data System (ADS)

    Nohara, Shinji; Asahina, Toshihide; Wada, Hajime; Furukawa, Naoji; Inoue, Hiroshi; Sugoh, Nozomu; Iwasaki, Hideharu; Iwakura, Chiaki

    A new hybrid capacitor (HC) cell was assembled using an activated carbon (AC) negative electrode, an Ni(OH) 2 positive electrode and a polymer hydrogel electrolyte prepared from crosslinked potassium poly(acrylate) (PAAK) and KOH aqueous solution. The HC cell was characterized compared with an electric double layer capacitor (EDLC) using two AC electrodes and the polymer hydrogel electrolyte. It was found that the HC cell successfully worked in the larger voltage range and exhibited ca. 2.4 times higher capacitance than the EDLC cell. High-rate dischargeability of the HC cell was also superior to that of the EDLC cell. These improved characteristics strongly suggest that the HC cell can be a promising system of capacitors with high energy and power densities.

  7. Vane Separation Control in a Linear Cascade with Area Expansion using AC DBD Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Kleven, Christopher; Corke, Thomas

    2013-11-01

    Experiments are presented on the use of AC dielectric barrier discharge (DBD) plasma actuators to prevent flow separation on vanes in a linear cascade with area expansion. The inlet Mach number to the cascade ranged from 0.3 to 0.5, and the vane chord Reynolds numbers ranged from 0 . 9 ×106 to 1 . 5 ×106 . Three cascade designs with different amounts of area expansion, providing different degrees of adverse pressure gradients, were examined. Surface flow visualization revealed a 3-D separation bubble with strong recirculation that formed on the suction side of the vanes. The pattern agreed well with CFD simulations. Plasma actuators were placed on the suction sides of the vanes, just upstream of the flow separation location. Quantitative measurements were performed in the wakes of the vanes using a 5-hole Pitot probe. The measurements were used to determine the effect of the plasma actuator separation control on the pressure loss coefficient, and flow turning angle through the cascades. Overall, the plasma actuators separation control increased the velocity magnitude and dynamic pressure in the passage between the vanes, resulted in a more spanwise-uniform flow turning angle in the vane passage, and significantly lowered the loss coefficient compared to the baseline.

  8. Electrolyte and composition effects on the performances of asymmetric supercapacitors constructed with Mn3O4 nanoparticles-graphene nanocomposites

    NASA Astrophysics Data System (ADS)

    Xiao, Yuanhua; Cao, Yongbo; Gong, Yuyin; Zhang, Aiqin; Zhao, Jihong; Fang, Shaoming; Jia, Dianzeng; Li, Feng

    2014-01-01

    Nanocomposites of Mn3O4 nanoparticles and graphene (GR) nanosheets - Mn3O4@GR can be made by growing Mn3O4 nanoparticles directly on the surfaces of GR in solvothermal reactions. The asymmetric supercapacitors constructed with Mn3O4@GR as positive and activated carbon (AC) as negative electrodes, respectively, show highly enhanced performances in energy storage. It was found that the electrolytes employed in constructing electrodes of the devices can influence the performances of Mn3O4@GR supercapacitors dramatically. Compared to their energy density in KOH electrolyte, the devices exhibit improved charge storage performances in Na2SO4 electrolyte. Furthermore, the charge storage abilities of the devices are closely related to the amount of Mn3O4 nanoparticles loaded onto the surface of GR nanosheets. The performances of Mn3O4@GR//AC asymmetric supercapacitors can be optimized by carefully tailoring the composition of electrode materials and adjusting the electrolytes for making the devices.

  9. Plasma Electrolytic Oxidation Coatings on Pure Ti Substrate: Effects of Na3PO4 Concentration on Morphology and Corrosion Behavior of Coatings in Ringer's Physiological Solution

    NASA Astrophysics Data System (ADS)

    Roknian, Masoud; Fattah-alhosseini, Arash; Gashti, Seyed Omid

    2018-03-01

    Plasma electrolytic oxidation has been used as a relatively new method for applying ceramic coatings having different features. In the present study, commercially pure titanium is used as substrate, and effects of trisodium phosphate electrolyte concentration on the microstructure, as well as corrosion behavior of the coating in Ringer's physiological solution are investigated. The morphology and phase compositions of coatings were analyzed by using scanning electron microscopy (SEM) and x-ray diffraction patterns. The study on the corrosion behavior of samples in a Ringer's physiological solution was carried out using open-circuit potential potentiodynamic polarization and electrochemical impedance spectroscopy. The results of electrochemical analysis proved that higher concentration of phosphate electrolyte leads to increase in the corrosion resistance of applied coatings. Accordingly, obtained results revealed that the optimum electrolyte concentration for the best corrosion behavior was 20 g L-1. Furthermore, SEM images and reduction in the dielectric breakdown potential indicated that increase in the electrolyte concentration leads to morphological improvement and smoothening of the surface.

  10. Hydroxyapatite coatings containing Zn and Si on Ti-6Al-4Valloy by plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Hwang, In-Jo; Choe, Han-Cheol

    2018-02-01

    In this study, hydroxyapatite coatings containing Zn and Si on Ti-6Al-4Valloy by plasma electrolytic oxidation were researched using various experimental instruments. The pore size is depended on the electrolyte concentration and the particle size and number of pore increase on surface part and pore part. In the case of Zn/Si sample, pore size was larger than that of Zn samples. The maximum size of pores decreased and minimum size of pores increased up to 10Zn/Si and Zn and Si affect the formation of pore shapes. As Zn ion concentration increases, the size of the particle tends to increase, the number of particles on the surface part is reduced, whereas the size of the particles and the number of particles on pore part increased. Zn is mainly detected at pore part, and Si is mainly detected at surface part. The crystallite size of anatase increased as the Zn ion concentration, whereas, in the case of Si ion added, crystallite size of anatase decreased.

  11. The investigation of an electric arc in the long cylindrical channel of the powerful high-voltage AC plasma torch

    NASA Astrophysics Data System (ADS)

    Rutberg, Ph G.; Popov, S. D.; Surov, A. V.; Serba, E. O.; Nakonechny, Gh V.; Spodobin, V. A.; Pavlov, A. V.; Surov, A. V.

    2012-12-01

    The comparison of conductivity obtained in experiments with calculated values is made in this paper. Powerful stationary plasma torches with prolonged period of continuous work are popular for modern plasmachemical applications. The maximum electrode lifetime with the minimum erosion can be reached while working on rather low currents. Meanwhile it is required to provide voltage arc drop for the high power achievement. Electric field strength in the arc column of the high-voltage plasma torch, using air as a plasma-forming gas, does not exceed 15 V/cm. It is possible to obtain the high voltage drop in the long arc stabilized in the channel by the intensive gas flow under given conditions. Models of high voltage plasma torches with rod electrodes with power up to 50 kW have been developed and investigated. The plasma torch arcs are burning in cylindrical channels. Present investigations are directed at studying the possibility of developing long arc plasma torches with higher power. The advantage of AC power supplies usage is the possibility of the loss minimization due to the reactive power compensation. The theoretical maximum of voltage arc drop for power supplies with inductive current limitations is about 50 % of the no-load voltage for a single-phase circuit and about 30 % for the three-phase circuit. Burning of intensively blown arcs in the long cylindrical channel using the AC power supply with 10 kV no-load voltage is experimentally investigated in the work. Voltage drops close to the maximum possible had been reached in the examined arcs in single-phase and three-phase modes. Operating parameters for single-phase mode were: current -30 A, voltage drop -5 kV, air flow rate 35 g/s; for three-phase mode: current (40-85) A, voltage drop (2.5-3.2) kV, air flow rate (60-100) g/s. Arc length in the installations exceeded 2 m.

  12. Application of atmospheric-pressure plasma jet processed carbon nanotubes to liquid and quasi-solid-state gel electrolyte supercapacitors

    NASA Astrophysics Data System (ADS)

    Kuok, Fei-Hong; Kan, Ken-Yuan; Yu, Ing-Song; Chen, Chieh-Wen; Hsu, Cheng-Che; Cheng, I.-Chun; Chen, Jian-Zhang

    2017-12-01

    We use a dc-pulse nitrogen atmospheric-pressure plasma jet (APPJ) to calcine carbon nanotubes (CNTs) pastes that are screen-printed on carbon cloth. 30-s APPJ treatment can efficiently oxidize and vaporize the organic binders, thereby forming porous structures. As indicated by X-ray photoelectron spectroscopy (XPS) and electron probe microanalysis (EPMA), the oxygen content decreases after APPJ treatment owing to the oxidation and vaporization of ethyl cellulose, terpineol, and ethanol. Nitrogen doping was introduced to the materials by the nitrogen APPJ. APPJ-calcination improves the wettability of the CNTs printed on carbon cloth, as evidenced by water contact angle measurement. Raman spectroscopy indicates that reactive species of nitrogen APPJ react violently with CNTs in only 30-s APPJ processing time and introduce defects and/or surface functional groups on CNTs. Carbon cloths with calcined CNT layers are used as electrodes for liquid and quasi-solid-state electrolyte supercapacitors. Under a cyclic voltammetry test with a 2 mV/s potential scan rate, the specific capacitance is 73.84 F/g (areal capacitance = 5.89 mF/cm2) with a 2 M KCl electrolyte and 66.47 F/g (areal capacitance = 6.10 mF/cm2) with a H2SO4/polyvinyl alcohol (PVA) gel electrolyte.

  13. Comparative studies in electrochemical degradation of sulfamethoxazole and diclofenac in water by using various electrodes and phosphate and sulfate supporting electrolytes.

    PubMed

    Sifuna, Fred W; Orata, Francis; Okello, Veronica; Jemutai-Kimosop, Selly

    2016-09-18

    In this study, the electro-oxidation capacities of Na2SO4 and potassium phosphate buffer supporting electrolytes were tested and compared for destruction of the sulfamethoxazole (SMX) and diclofenac (DCF) on platinum (Pt) electrode and graphite carbon electrode in aqueous medium. The suitability of pharmaceutical active compounds (PhACs) for electrochemical oxidation was tested by cyclic voltammetry (CV) technique performed in the potential range -1.5 to +1.5 V versus Ag/AgCl, which confirmed the electro-activity of the selected PhACs. The degradation and mineralization were monitored by ultraviolet (UV)-Vis spectrophotometry and HPLC. 0.1 M Na2SO4 supporting electrolyte was found to be more effective for mineralization of SMX and DCF, with efficiency of 15-30% more than the 0.1 M phosphate buffer supporting electrolyte on the platinum (Pt) and carbon electrodes. The Pt electrode showed better performance in the degradation of the two PhACs while under the same conditions than the carbon electrode for both 0.1 M Na2SO4 and 0.1 M potassium phosphate buffer supporting electrolytes. The SMX and DCF degradation kinetics best fitted the second-order reaction, with rate constants ranging between 0.000389 and 0.006 mol(2) L(-2) min(-1) and correlation coefficient (R(2)) above 0.987. The second-order degradation kinetics indicated that the rate-determining step in the degradation could be a chemical process, thus suggesting the active involvement of electrolyte radical species in the degradation of SMX and DCF. Results obtained from a real field sample showed a more than 98% removal of the PhACs from the wastewater by electrochemical degradation.

  14. Characterization of coatings formed on AZX magnesium alloys by plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Anawati, Anawati; Gumelar, Muhammad Dikdik

    2018-05-01

    Plasma Electrolytic Oxidation (PEO) is an electrochemical anodization process which involves the application of a high voltage to create intense plasma on a metal surface to form a ceramic type of oxide. The resulted coating exhibits high wear resistance and good corrosion barrier which are suitable to enhance the performance of biodegradable Mg alloys. In this work, the role of alloying element Ca in modifying the characteristics of PEO layer formed on AZ61 series magnesium alloys was investigated. PEO treatment was conducted on AZ61, AZX611, and AZX612 alloys in 0.5 M Na3PO4 solution at a constant current of 200 A/m2 at 25°C for 8 min. The resulted coatings were characterized by field emission-scanning electron microscope (FESEM), X-ray diffraction spectroscopy (XRD), and X-ray fluorescence spectroscopy (XRF), as well as hardness test. The presence of alloying element Ca in the AZ61 alloys accelerated the PEO coatings formation without altering the coating properties significantly. The coating formed on AZX specimen was slightly thicker ( 14-17 µm) than that of formed onthe AZ specimens ( 13 µm). Longer exposure time to plasma discharge was the reason for faster thickening of the coating layer on AZX specimen. XRD detected a similar crystalline oxide phase of Mg3(PO4)2 in the oxide formed on all of the specimens. Zn was highly incorporated in the coatings with a concentration in the range 24-30 wt%, as analyzed by XRF. Zn compound might exist in amorphous phases. The microhardness test on the coatings revealed similar average hardness 124 HVon all of the specimens.

  15. ac electroosmotic pumping induced by noncontact external electrodes

    PubMed Central

    Wang, Shau-Chun; Chen, Hsiao-Ping; Chang, Hsueh-Chia

    2007-01-01

    Electroosmotic (EO) pumps based on dc electroosmosis is plagued by bubble generation and other electrochemical reactions at the electrodes at voltages beyond 1 V for electrolytes. These disadvantages limit their throughput and offset their portability advantage over mechanical syringe or pneumatic pumps. ac electroosmotic pumps at high frequency (>100 kHz) circumvent the bubble problem by inducing polarization and slip velocity on embedded electrodes,1 but they require complex electrode designs to produce a net flow. We report a new high-throughput ac EO pump design based on induced-polarization on the entire channel surface instead of just on the electrodes. Like dc EO pumps, our pump electrodes are outside of the load section and form a cm-long pump unit consisting of three circular reservoirs (3 mm in diameter) connected by a 1×1 mm channel. The field-induced polarization can produce an effective Zeta potential exceeding 1 V and an ac slip velocity estimated as 1 mm∕sec or higher, both one order of magnitude higher than earlier dc and ac pumps, giving rise to a maximum throughput of 1 μl∕sec. Polarization over the entire channel surface, quadratic scaling with respect to the field and high voltage at high frequency without electrode bubble generation are the reasons why the current pump is superior to earlier dc and ac EO pumps. PMID:19693362

  16. ac electroosmotic pumping induced by noncontact external electrodes.

    PubMed

    Wang, Shau-Chun; Chen, Hsiao-Ping; Chang, Hsueh-Chia

    2007-09-21

    Electroosmotic (EO) pumps based on dc electroosmosis is plagued by bubble generation and other electrochemical reactions at the electrodes at voltages beyond 1 V for electrolytes. These disadvantages limit their throughput and offset their portability advantage over mechanical syringe or pneumatic pumps. ac electroosmotic pumps at high frequency (>100 kHz) circumvent the bubble problem by inducing polarization and slip velocity on embedded electrodes,1 but they require complex electrode designs to produce a net flow. We report a new high-throughput ac EO pump design based on induced-polarization on the entire channel surface instead of just on the electrodes. Like dc EO pumps, our pump electrodes are outside of the load section and form a cm-long pump unit consisting of three circular reservoirs (3 mm in diameter) connected by a 1x1 mm channel. The field-induced polarization can produce an effective Zeta potential exceeding 1 V and an ac slip velocity estimated as 1 mmsec or higher, both one order of magnitude higher than earlier dc and ac pumps, giving rise to a maximum throughput of 1 mulsec. Polarization over the entire channel surface, quadratic scaling with respect to the field and high voltage at high frequency without electrode bubble generation are the reasons why the current pump is superior to earlier dc and ac EO pumps.

  17. Preparation and Characterization of Plasma Electrolytic Oxidation Coating on 5005 Aluminum Alloy with Red Mud as an Electrolyte Additive

    NASA Astrophysics Data System (ADS)

    Liu, Shifeng; Zeng, Jianmin; Wang, Youbin

    2017-10-01

    A coating with red mud as an electrolyte additive was applied to 5005 aluminum alloy using plasma electrolytic oxidation (PEO). The phase composition of the coating was investigated using X-ray diffraction. Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) was used to determine the microstructure and composition profiles of the coating. The coating/substrate adhesion was determined by scratch testing. The corrosion behaviors of the substrate and coating were evaluated using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). The results indicated that the PEO coating with red mud consisted mainly of α-Al2O3 and γ-Al2O3, with small amounts of Fe2O3, CaCO3, and CaTiO3. The surface of the coating was the color of the red mud. The coating had a uniform thickness of about 80 μm and consisted of two main layers: a 6- μm porous outer layer and a 74- μm dense inner layer, which showed typical metallurgical adhesion (coating/substrate adhesion strength of 59 N). The coating hardness was about 1142 HV, much higher than that of the substrate (60 HV). The corrosion potential E corr and corrosion current density i corr of the coating were estimated to be -0.743 V and 3.85 × 10-6 A cm-2 from the PDP curve in 3.5 wt pct NaCl solution, and the maximum impedance and phase angle of the coating were 11 000 Ω and -67 deg, respectively, based on EIS. PEO coating with red mud improved the surface properties and corrosion resistance of 5005 aluminum alloy. This study also shows a potential method for reusing red mud.

  18. Plasma sprayed ceria-containing interlayer

    DOEpatents

    Schmidt, Douglas S.; Folser, George R.

    2006-01-10

    A plasma sprayed ceria-containing interlayer is provided. The interlayer has particular application in connection with a solid oxide fuel cell used within a power generation system. The fuel cell advantageously comprises an air electrode, a plasma sprayed interlayer disposed on at least a portion of the air electrode, a plasma sprayed electrolyte disposed on at least a portion of the interlayer, and a fuel electrode applied on at least a portion of the electrolyte.

  19. Changes of hormones regulating electrolyte metabolism after space flight and hypokinesia

    NASA Astrophysics Data System (ADS)

    Macho, L.; Fickova, M.; Lichardus, B.; Kvetnansky, R.; Carrey, R. M.; Grigoriev, A.; Popova, I. A.; Tigranian, R. A.; Noskov, V. B.

    The changes of hormones in plasma involved in the body fluid regulation were studied in human subjects during and after space flights in relation to redistribution of body fluids in the state of weightlessness. Since hypokinesia was used as a model for simulation of some effects of the stay in microgravity the plasma hormone levels in rats exposed to hypokinesia were also investigated. Plasma aldosterone values showed great individual variations during the first inflight days, the increased levels were observed with prolongation of space flights. The important elevation was found in the recovery period, however it was interesting to note, that in some cosmonauts with repeated exposure to space flight, the postflight plasma aldosterone levels were not elevated. The urine excretion of aldosterone was increased inflight, however in postflight period the decrease or increase were found in the first 1-5 days. The increase of plasma renin activity was observed in flight and postflight period. The rats were exposed to hypokinesia (forced restriction of motor activity) for 1, 7 and 60 days and urine was collected during last 24 hours. The animals were sacrificed and the concentration of electrolytes and of levels of corticosterone aldosteron (A), ANF and plasma-renin activity (PRA) were determined in plasma. In urine excretion of sodium and potassium were estimated. An important increase of plasma renin activity and aldosterone concentration was found after short-term hypokinesia (1 day). These hormonal values appear to decrease with time (7 days) and are not significantly different from controls after long-term hypokinesia (60 days). A decrease of values ANF in plasma was observed after 1 and 7 days hypokinesia. After prolonged hypokinesia a decrease of sodium plasma concentration was observed. The excretion of sodium in urine was higher in long-term hypokinetic animals. There were no significant changes of plasma potassium levels in rats exposed to hypokinesia, however

  20. Nanographene synthesized in triple-phase plasmas as a highly durable support of catalysts for polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Amano, Tomoki; Kondo, Hiroki; Takeda, Keigo; Ishikawa, Kenji; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru

    2018-04-01

    Nanographene was synthesized in triple-phase plasmas comprising a gaseous phase, a gas-liquid boundary layer, and an in-liquid phase using a setup in which one electrode was placed in the gaseous phase while the other was immersed in the liquid phase. The triple-phase plasmas were generated using a pure alcohol, such as ethanol, 1-propanol, or 1-butanol, by applying a high voltage to a pair of electrodes made of copper or graphite. The nanographene synthesized using ethanol had high durability and thus could serve as a catalyst support in polymer electrolyte fuel cells (PEFCs). The PEFCs exhibited low degradation rates in the high-potential cycle test of a half-cell, as a result of which, a loss of only 10% was observed in the effective electrochemical surface area of Pt, even after 10,000 cycles.

  1. Measurement of activated species generated by AC power excited non-equilibrium atmospheric pressure Ar plasma jet with air engulfment

    NASA Astrophysics Data System (ADS)

    Takeda, Keigo; Ishikawa, Kenji; Tanaka, Hiromasa; Kano, Hiroyuki; Sekine, Makoto; Hori, Masaru

    2013-09-01

    Non-equilibrium atmospheric pressure plasma jet (NEAPPJ) is very attractive tool for bio and medical applications. In the plasma treatments, samples are typically located at a far region from main discharge, and treated in open air without purge gases. Influence of air engulfment on generation of activated species in the NEAPPJ in open air is a large issue for the application. In this study, the AC excited argon NEAPPJ with the gas flow rate of 2 slm was generated under the open air condition. The densities of the grand state nitrogen monoxide (NO) and the ground state O atom generated by the NEAPPJ were measured by laser induced fluorescence spectroscopy and vacuum ultraviolet absorption spectroscopy. The length of the plasma jet was around 10 mm. Up to 10 mm, the NO density increased with increasing the distance from plasma head, and then saturated in remote region of plasma. On the other hand, the O atom density decreased from 1014 to 1013 cm-3 with increasing the distance. Especially, the amount of decrease in O atom density became the largest at the plasma edge. We will discuss the generation and loss processes of activated species generated in the NEAPPJ with the measurement results using spectroscopic methods.

  2. Plasma and urine levels of electrolytes, urea and steroid hormones involved in osmoregulation of cetaceans.

    PubMed

    Birukawa, Naoko; Ando, Hironori; Goto, Mutsuo; Kanda, Naohisa; Pastene, Luis A; Nakatsuji, Hiroki; Hata, Hiroshi; Urano, Akihisa

    2005-11-01

    Cetaceans are well adapted to their hyperosmotic environment by properly developed osmoregulatory ability. A question here is how they regulate water and mineral balances in marine habitats. In the present study, we determined blood and urine levels of various chemicals involved in osmoregulation, compared them with those in artiodactyls, and characterized the values in the whales. Blood and urine samples obtained from baleen whales of common minke (Balaenoptera acutorostrata), sei (B. borealis), and Bryde's whales (B. brydei), and toothed whales of sperm whales (Physeter macrocephalus) were analyzed for osmolality, major electrolytes, urea, steroid hormones and glucose. The urine osmolality and Na(+) concentrations in the cetaceans were much higher than those in the cattle. Furthermore, the cetaceans had 5 to 11-fold urea in plasma than the cattle, and 2 to 4-fold urea in urine. There were no significant difference in the plasma concentrations of corticosteroids between the cetaceans and the cattle. The present results indicate that the osmoregulatory parameters seem to be not affected by the reproductive stage and sex steroid hormones. The concentrations of urea in plasma and urine of the baleen whales were higher than those of the sperm whales, indicating a possibility that their osmoregulatory mechanisms may be correlated to their feeding habits. The present results suggest that cetaceans have unique osmoregulatory mechanisms by which they excrete strongly hypertonic urine to maintain fluid homeostasis in marine habitats.

  3. Isotonicity of liver and of kidney tissue in solutions of electrolytes.

    PubMed

    OPIE, E L

    1959-07-01

    Solutions of a wide variety of electrolytes, isotonic with liver or with kidney tissue, have approximately the same osmotic pressure as solutions of sodium chloride isotonic with tissues of the two organs respectively; that is, with solutions approximately twice as concentrated as the sodium chloride of mammalian blood plasma. The molar concentration of various electrolytes isotonic with liver or with kidney tissue immediately after its removal from the body is determined by the molecular weight, valency, and ion-dissociation of these electrolytes in accordance with the well known conditions of osmosis. The plasma membranes of liver and of kidney cells are imperfectly semipermeable to electrolytes, and those that enter the cell, though retarded in so doing, bring about injury which increases permeability to water. The osmotic activity of cells of mammalian liver and kidney immediately after their removal from the body resembles that of plant cells, egg cells of marine invertebrates, and mammalian red blood corpuscles and presumably represents a basic property of living cells by which osmotic pressure may be adjusted to functional need.

  4. ISOTONICITY OF LIVER AND OF KIDNEY TISSUE IN SOLUTIONS OF ELECTROLYTES

    PubMed Central

    Opie, Eugene L.

    1959-01-01

    Solutions of a wide variety of electrolytes, isotonic with liver or with kidney tissue, have approximately the same osmotic pressure as solutions of sodium chloride isotonic with tissues of the two organs respectively; that is, with solutions approximately twice as concentrated as the sodium chloride of mammalian blood plasma. The molar concentration of various electrolytes isotonic with liver or with kidney tissue immediately after its removal from the body is determined by the molecular weight, valency, and ion-dissociation of these electrolytes in accordance with the well known conditions of osmosis. The plasma membranes of liver and of kidney cells are imperfectly semipermeable to electrolytes, and those that enter the cell, though retarded in so doing, bring about injury which increases permeability to water. The osmotic activity of cells of mammalian liver and kidney immediately after their removal from the body resembles that of plant cells, egg cells of marine invertebrates, and mammalian red blood corpuscles and presumably represents a basic property of living cells by which osmotic pressure may be adjusted to functional need. PMID:13664872

  5. Sodium Aluminate Concentration Effects on Microstructure and Corrosion Behavior of the Plasma Electrolytic Oxidation Coatings on Pure Titanium

    NASA Astrophysics Data System (ADS)

    Molaei, Maryam; Fattah-Alhosseini, Arash; Gashti, Seyed Omid

    2018-01-01

    Sodium aluminate (NaAlO2) concentration was varied in order to understand the influence of the chemical composition of electrolyte on the spark characteristics, microstructure, and corrosion behavior of plasma electrolytic oxidation (PEO) coatings. For this purpose, PEO coatings were formed on the pure titanium substrate surface using solutions of four diverse sodium aluminate concentrations (6, 8, 10, and 12 g/L). The PEO process was carried out at constant time and voltage (180 seconds and 420 V). Studying the microstructures of samples by scanning electron microscope (SEM) and their corrosion behavior in 3.5 wt pct NaCl solutions indicated that the increase in NaAlO2 concentration (up to 10 g/L) led to an increase in uniformity and compactness, thus decreasing the size of micro-pores and increment of corrosion resistance. However, at a certain level of NaAlO2 concentration (12 g/L), large and severe sparks were created on the surface of the sample during the process, worsening the corrosion resistance and microstructure of coating.

  6. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-08-01

    The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  7. Surface modification by electrolytic plasma processing for high Nb-TiAl alloys

    NASA Astrophysics Data System (ADS)

    Gui, Wanyuan; Hao, Guojian; Liang, Yongfeng; Li, Feng; Liu, Xiao; Lin, Junpin

    2016-12-01

    Metal surface modification by electrolytic plasma processing (EPP) is an innovative treatment widely commonly applied to material processing and pretreatment process of coating and galvanization. EPP involves complex processes and a great deal of parameters, such as preset voltage, current, solution temperature and processing time. Several characterization methods are presented in this paper for evaluating the micro-structure surfaces of Ti45Al8Nb alloys: SEM, EDS, XRD and 3D topography. The results showed that the oxide scale and other contaminants on the surface of Ti45Al8Nb alloys can be effectively removed via EPP. The typical micro-crater structure of the surface of Ti45Al8Nb alloys were observed by 3D topography after EPP to find that the mean diameter of the surface structure and roughness value can be effectively controlled by altering the processing parameters. The mechanical properties of the surface according to nanomechanical probe testing exhibited slight decrease in microhardness and elastic modulus after EPP, but a dramatic increase in surface roughness, which is beneficial for further processing or coating.

  8. Detonation nanodiamond introduced into samarium doped ceria electrolyte improving performance of solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Pei, Kai; Li, Hongdong; Zou, Guangtian; Yu, Richeng; Zhao, Haofei; Shen, Xi; Wang, Liying; Song, Yanpeng; Qiu, Dongchao

    2017-02-01

    A novel electrolyte materials of introducing detonation nanodiamond (DNDs) into samarium doped ceria (SDC) is reported here. 1%wt. DNDs doping SDC (named SDC/ND) can enlarge the electrotyle grain size and change the valence of partial ceria. DNDs provide the widen channel to accelerate the mobility of oxygen ions in electrolyte. Larger grain size means that oxygen ions move easier in electrolyte, it can also reduce the alternating current (AC) impedance spectra of internal grains. The lower valence of partial Ce provides more oxygen vacancies to enhance mobility rate of oxygen ions. Hence all of them enhance the transportation of oxygen ions in SDC/ND electrolyte and the OCV. Ultimately the power density of SOFC can reach 762 mw cm-2 at 800 °C (twice higher than pure SDC, which is 319 mw cm-2 at 800 °C), and it remains high power density in the intermediate temperature (600-800 °C). It is relatively high for the electrolyte supported (300 μm) cells.

  9. Gas Evolution in Activated-Carbon-Based Supercapacitors with Protic Deep Eutectic Solvent as Electrolyte.

    PubMed

    Phadke, Satyajit; Amara, Samia; Anouti, Mérièm

    2017-09-06

    One of the primary causes of aging in supercapacitors are the irreversible faradaic reactions occurring near the operating-voltage limit that lead to the production of gases resulting in device swelling, increased resistance, and lowering of the capacitance. In this study, a protic deep eutectic solvent (DES) consisting of mixture of lithium bis(fluorosulfonyl)imide (LiFSI) with formamide (FMD) as H-bond donor (x LiFSI =0.25; C=2.5 m LiFSI) is investigated as electrolyte for activated carbon (AC)-based electrical double layer capacitors (EDLCs). Characterization of the viscosity, conductivity, and the ionicity of the electrolyte in a wide range of temperatures indicates >88 % salt dissociation. In situ pressure measurements are performed to understand the effect of cycling conditions on the rate of gas generation, quantified by the in operando pressure variation dP/dt. These measurements demonstrate that about 25 % of the faradaic reactions leading to gas generation are electrochemically reversible. Cell aging studies demonstrate promising potential of the LiFSI/FMD as a protic electrolyte for AC-based EDLCs and high energy density close to 30 Wh kg -1 at 2.4 V. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Novel polymer electrolytes based on cationic polyurethane with different alkyl chain length

    NASA Astrophysics Data System (ADS)

    Liu, Libin; Wu, Xiwen; Li, Tianduo

    2014-03-01

    A series of comb-like cationic polyurethanes (PUs) were synthesized by quaternizing different bromoalkane (C2H5Br, C8H17Br, and C14H29Br) with polyurethane. Solid polymer electrolytes were prepared by complexes cationic PUs with different content of LiClO4. All the solid polymer electrolytes had sufficient thermal stability as confirmed by TGA and exhibited a single-phase behavior evidenced by DSC results. For these electrolytes, FT-IR spectra indicated the formation of polymer-ion complexes. The ac impedance spectra show that the conductivity of the electrolytes follow the Arrhenius behavior, and ionic conductivity is associated with both the charge migration of ions between coordination sites and transmission between aggregates, as confirmed by FT-IR and SEM. Alkyl quaternary ammonium salts in the polymer backbone are recognized as inherent plasticizers, which make the electrolytes exhibit liquid-like behavior. The plasticizing effect of PU-C8 and PU-C14 electrolytes are more effective than that of PU-C2 electrolyte. Maximum ionic conductivity at room temperature for PU-C8 electrolytes containing 50 wt% LiClO4 reached 1.1 × 10-4 S cm-1. This work provides a new research clue that alkyl quaternary ammonium salts could be used as inherent plasticizers and hence make the system behave like a liquid with high ionic conductivity, while preserving the dimensional stability of the solids.

  11. Impedance studies of a green blend polymer electrolyte based on PVA and Aloe-vera

    NASA Astrophysics Data System (ADS)

    Selvalakshmi, S.; Mathavan, T.; Vijaya, N.; Selvasekarapandian, Premalatha, M.; Monisha, S.

    2016-05-01

    The development of polymer electrolyte materials for energy generating and energy storage devices is a challenge today. A new type of blended green electrolyte based on Poly-vinyl alcohol (PVA) and Aloe-vera has been prepared by solution casting technique. The blending of polymers may lead to the increase in stability due to one polymer portraying itself as a mechanical stiffener and the other as a gelled matrix supported by the other. The prepared blend electrolytes were subjected to Ac impedance studies. It has been found out that the polymer film in which 1 gm of PVA was dissolved in 40 ml of Aloe-vera extract exhibits highest conductivity and its value is 3.08 × 10-4 S cm-1.

  12. Dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate

    NASA Astrophysics Data System (ADS)

    Pal, P.; Ghosh, A.

    2016-07-01

    In this paper, we have studied the dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate. Structural and thermal properties have been examined using X-ray diffraction and differential scanning calorimetry, respectively. We have analyzed the complex conductivity spectra by using power law model coupled with the contribution of electrode polarization at low frequencies and high temperatures. The temperature dependence of the ionic conductivity and crossover frequency exhibits Vogel-Tammann-Fulcher type behavior indicating a strong coupling between the ionic and the polymer chain segmental motions. The scaling of the ac conductivity indicates that relaxation dynamics of charge carriers follows a common mechanism for all temperatures and ethylene carbonate concentrations. The analysis of the ac conductivity also shows the existence of a nearly constant loss in these polymer electrolytes at low temperatures and high frequencies. The fraction of free anions and ion pairs in polymer electrolyte have been obtained from the analysis of Fourier transform infrared spectra. It is observed that these quantities influence the behavior of the composition dependence of the ionic conductivity.

  13. The electrical conductivities of polyimide and polyimide/Li triflate composites: An a.c. impedance study

    NASA Astrophysics Data System (ADS)

    Aziz, Nor Diyana Abdul; Kamarulzaman, Norlida; Subban, Ri Hanum Yahaya; Hamzah, Ahmad Sazali; Ahmed, Azni Zain; Osman, Zurina; Rusdi, Roshidah; Kamarudin, Norashikin; Mohalid, Norhanim; Romli, Ahmad Zafir; Shaameri, Zurina

    2017-09-01

    Polymer electrolytes have been an essential area of research for many decades. One of the reasons was the need to find new electrolyte materials suitable for device applications like solid-state batteries, supercapacitors, fuel cells, etc. with enhanced characteristics. For more than 40 years, polyimide has been known as a super-engineering plastic due to its excellent thermal stability (Tg > 250 °C) and mechanical properties. Therefore, in an effort to develop new polymer electrolytes, polyimide as a polymer matrix was chosen. Composite films of the polymer doped with lithium salt, LiCF3SO3 was prepared. These PI based polymer electrolyte films were investigated by the alternating current (a.c.) impedance spectroscopy method in the temperature range from 300 K to 373 K. It was observed that conductivity increased with the increase of temperature and amount of doping salt. Alternatively, the activation energy (Ea) of the composite films decreased with the increase of the doping salt, LiCF3SO3.

  14. Plasma sprayed metal supported YSZ/Ni-LSGM-LSCF ITSOFC with nanostructured anode

    NASA Astrophysics Data System (ADS)

    Hwang, Changsing; Tsai, Chun-Huang; Lo, Chih-Hung; Sun, Cha-Hong

    Intermediate temperature solid oxide fuel cells (ITSOFCs) supported by a porous Ni-substrate and based on Sr and Mg doped lanthanum gallate (LSGM) electrolyte, lanthanum strontium cobalt ferrite (LSCF) cathode and nanostructured yttria stabilized zirconia-nickel (YSZ/Ni) cermet anode have been fabricated successfully by atmospheric plasma spraying (APS). From ac impedance analysis, the sprayed YSZ/Ni cermet anode with a novel nanostructure and advantageous triple phase boundaries after hydrogen reduction has a low resistance. It shows a good electrocatalytic activity for hydrogen oxidation reactions. The sprayed LSGM electrolyte with ∼60 μm in thickness and ∼0.054 S cm -1 conductivity at 800 °C shows a good gas tightness and gives an open circuit voltage (OCV) larger than 1 V. The sprayed LSCF cathode with ∼30 μm in thickness and ∼30% porosity has a minimum resistance after being heated at 1000 °C for 2 h. This cathode keeps right phase structure and good porous network microstructure for conducting electrons and negative oxygen ions. The APS sprayed cell after being heated at 1000 °C for 2 h has a minimum inherent resistance and achieves output power densities of ∼440 mW cm -2 at 800 °C, ∼275 mW cm -2 at 750 °C and ∼170 mW cm -2 at 700 °C. Results from SEM, XRD, ac impedance analysis and I- V- P measurements are presented here.

  15. Nanoscale CuO solid-electrolyte-based conductive-bridging, random-access memory cell with a TiN liner

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Sun; Kim, Dong-Won; Kim, Hea-Jee; Jin, Soo-Min; Song, Myung-Jin; Kwon, Ki-Hyun; Park, Jea-Gun; Jalalah, Mohammed; Al-Hajry, Ali

    2018-01-01

    The Conductive-bridge random-access memory (CBRAM) cell is a promising candidate for a terabit-level non-volatile memory due to its remarkable advantages. We present for the first time TiN as a diffusion barrier in CBRAM cells for enhancing their reliability. CuO solid-electrolyte-based CBRAM cells implemented with a 0.1-nm TiN liner demonstrated better non-volatile memory characteristics such as 106 AC write/erase endurance cycles with 100-μs AC pulse width and a long retention time of 7.4-years at 85 °C. In addition, the analysis of Ag diffusion in the CBRAM cell suggests that the morphology of the Ag filaments in the electrolyte can be effectively controlled by tuning the thickness of the TiN liner. These promising results pave the way for faster commercialization of terabit-level non-volatile memories.

  16. Sieving of electrolytes at capillary wall of cat skeletal muscle by osmotic water flow.

    PubMed

    Watson, P D

    1993-12-01

    To test the hypothesis that a significant proportion of transcapillary water flow occurs through solute-restricting channels, we investigated the effects of transcapillary water movement on plasma electrolytes in isolated perfused cat skeletal muscle. The lower hindlimbs of anesthetized cats were perfused with a plasma-albumin solution and were weighed to determine transcapillary water movement. Osmolality was increased 60-70 mosmol/kgH2O with sucrose, creating water fluxes of 8-10 ml.min-1.100 g-1, and the changes in the venous concentrations of sodium, potassium, and chloride were determined. The ion concentrations were all reduced by 6-7% with no significant difference between them. The amount of reduction was quantitatively explained by the flow of ion-free water from the interstitial space into plasma and the diffusion of electrolyte in the same direction. These findings support the hypothesis that important water-only transcapillary channels exist in mammalian skeletal muscle. The observations may also explain some of the electrolyte changes seen in intense exercise.

  17. Studies on the effect of dispersoid(ZrO2) in PVdF-co-HFP based gel polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Sivakumar, M.; Subadevi, R.; Muthupradeepa, R.

    2013-06-01

    Gel polymer electrolytes containing poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) / Lithium bis(trifluoromethane sulfon)imide (LiTFSI) / mixture of ethylene carbonate and propylene carbonate (EC+PC) with different concendration of ZrO2 has been prepared using the solution casting technique. The conductivity of the prepared electrolyte sample has been determined by AC impedance technique in the range 303-353K. The temperature dependent ionic conductivity plot seems to obey VTF relation. The maximum ionic conductivity value of 4.46 × 10-3S/cm has been obtained for PVdF-co-HFP(32%) - LiTFSI(8%) - EC+PC (60%) + ZrO2(6wt%) based polymer electrolyte. The surface morphology of the prepared electrolyte sample has been studied using SEM.

  18. Formation of Ca/P ceramic coatings by Plasma Electrolytic Oxidation (PEO) on Ti6Al4V ELI alloy

    NASA Astrophysics Data System (ADS)

    Rodriguez-Jaimes, Y.; Naranjo, D. I.; Blanco, S.; García-Vergara, S. J.

    2017-12-01

    The formation of PEO ceramic coatings on Ti6Al4V ELI alloy was investigated using a phosphate/calcium containing electrolyte at 300 and 400V at 310K for different times. The Plasma Electrolytic Oxidation (PEO) coated specimens were then heat treated at 873 and 1073K for 2 hours. Scanning electron microscopy, Energy Dispersive X-Ray Spectroscopy (EDS) and X-ray diffraction analysis were used to study the composition and the morphology of the ceramic coatings. The corrosion behaviour of the coatings was studied by Electrochemical Impedance Spectroscopy (EIS) in Simulated Body Fluid (SBF). The PEO-treated specimens primarily revealed a porous structure with thickness between 4 and 12μm, according to the voltage and process time used. The coatings are mainly composed of hydroxyapatite; however, as the voltage and anodizing time increase, the Ca/P ratio decreases. Generally, the corrosion resistance of the alloy was improved by the PEO-treated coatings, although the specimens treated at 1073K showed the presence of cracks that reduced the protective effect of the coatings.

  19. Enhanced ionic conductivity in planar sodium-β"-alumina electrolyte for electrochemical energy storage applications.

    PubMed

    La Rosa, Daniela; Monforte, Giuseppe; D'Urso, Claudia; Baglio, Vincenzo; Antonucci, Vincenzo; Aricò, Antonino S

    2010-12-17

    Solid Na-β"-Al₂O₃ electrolyte is prepared by a simple chemical route involving a pseudo-boehmite precursor and thermal treatment. Boehmite powder is used for manufacturing the planar electrolyte with appropriate bulk density after firing at 1500 °C. The structure, morphology, and surface properties of precursor powders and sintered electrolytes are investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). As shown by XRD and TEM analyses, nanometer-sized particles are obtained for the boehmite precursor and a pure crystallographic phase is achieved for the sintered electrolyte. SEM analysis of the cross-section indicates good sintering characteristics. XPS shows a higher Na/Al atomic ratio on the surface for the planar electrolyte compared to a commercial tubular electrolyte (0.57 vs. 0.46). Energy-dispersive X-ray microanalysis (EDX) shows an Na/Al ratio in the bulk of 0.16, similar in the two samples. The ionic conductivity of the planar electrolyte is larger than that measured on a commercial tube of sodium-β"-alumina in a wide temperature range. At 350 °C, conductivity values of 0.5 S cm⁻¹ and 0.26 S cm⁻¹ are obtained for the planar electrolyte and the commercial tube, respectively. AC-impedance spectra show smaller grain boundary effects in the planar electrolyte than in the tubular electrolyte. These favorable properties may increase the perspectives for applying planar Na-β"-Al₂O₃ electrolytes in high-temperature batteries.

  20. Solid lithium electrolyte via addition of lithium salts to metal-organic frameworks

    DOEpatents

    Wiers, Brian M.; Balsara, Nitash P.; Long, Jeffrey R.

    2016-03-29

    Various embodiments of the invention disclose that the uptake of LiO.sup.iPr in Mg.sub.2(dobdc) (dobdc.sup.4-=1,4-dioxido-2,5-benzenedicarboxylate) followed by soaking in a typical electrolyte solution leads to a new solid lithium electrolyte Mg.sub.2(dobdc).0.35LiO.sup.iPr.0.25LiBF.sub.4.EC.DEC. Two-point ac impedance data show a pressed pellet of this material to have a conductivity of 3.1.times.10.sup.-4 S/cm at 300 K. In addition, the results from variable-temperature measurements reveal an activation energy of approximately 0.15 eV, while single-particle data suggest that intraparticle transport dominates conduction.

  1. Solid lithium electrolyte via addition of lithium salts to metal-organic frameworks

    DOEpatents

    Wiers, Brian M.; Balsara, Nitash P.; Long, Jeffrey R.

    2016-12-20

    Various embodiments of the invention disclose that the uptake of LiO.sup.iPr in Mg.sub.2(dobdc) (dobdc.sup.4-=1,4-dioxido-2,5-benzenedicarboxylate) followed by soaking in a typical electrolyte solution leads to a new solid lithium electrolyte Mg.sub.2(dobdc).0.35LiO.sup.iPr.0.25LiBF.sub.4.EC.DEC. Two-point ac impedance data show a pressed pellet of this material to have a conductivity of 3.1.times.10.sup.-4 S/cm at 300 K. In addition, the results from variable-temperature measurements reveal an activation energy of approximately 0.15 eV, while single-particle data suggest that intraparticle transport dominates conduction.

  2. Dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, P.; Ghosh, A., E-mail: sspag@iacs.res.in

    2016-07-28

    In this paper, we have studied the dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate. Structural and thermal properties have been examined using X-ray diffraction and differential scanning calorimetry, respectively. We have analyzed the complex conductivity spectra by using power law model coupled with the contribution of electrode polarization at low frequencies and high temperatures. The temperature dependence of the ionic conductivity and crossover frequency exhibits Vogel-Tammann-Fulcher type behavior indicating a strong coupling between the ionic and the polymer chain segmental motions. The scaling of the ac conductivity indicates that relaxation dynamicsmore » of charge carriers follows a common mechanism for all temperatures and ethylene carbonate concentrations. The analysis of the ac conductivity also shows the existence of a nearly constant loss in these polymer electrolytes at low temperatures and high frequencies. The fraction of free anions and ion pairs in polymer electrolyte have been obtained from the analysis of Fourier transform infrared spectra. It is observed that these quantities influence the behavior of the composition dependence of the ionic conductivity.« less

  3. Electrolytic cell stack with molten electrolyte migration control

    DOEpatents

    Kunz, H. Russell; Guthrie, Robin J.; Katz, Murray

    1988-08-02

    An electrolytic cell stack includes inactive electrolyte reservoirs at the upper and lower end portions thereof. The reservoirs are separated from the stack of the complete cells by impermeable, electrically conductive separators. Reservoirs at the negative end are initially low in electrolyte and the reservoirs at the positive end are high in electrolyte fill. During stack operation electrolyte migration from the positive to the negative end will be offset by the inactive reservoir capacity. In combination with the inactive reservoirs, a sealing member of high porosity and low electrolyte retention is employed to limit the electrolyte migration rate.

  4. Electrolytic cell stack with molten electrolyte migration control

    DOEpatents

    Kunz, H.R.; Guthrie, R.J.; Katz, M.

    1987-03-17

    An electrolytic cell stack includes inactive electrolyte reservoirs at the upper and lower end portions thereof. The reservoirs are separated from the stack of the complete cells by impermeable, electrically conductive separators. Reservoirs at the negative end are initially low in electrolyte and the reservoirs at the positive end are high in electrolyte fill. During stack operation electrolyte migration from the positive to the negative end will be offset by the inactive reservoir capacity. In combination with the inactive reservoirs, a sealing member of high porosity and low electrolyte retention is employed to limit the electrolyte migration rate. 5 figs.

  5. Ion transport properties of magnesium bromide/dimethyl sulfoxide non-aqueous liquid electrolyte

    PubMed Central

    Sheha, E.

    2015-01-01

    Nonaqueous liquid electrolyte system based dimethyl sulfoxide DMSO and magnesium bromide (MgBr2) is synthesized via ‘Solvent-in-Salt’ method for the application in magnesium battery. Optimized composition of MgBr2/DMSO electrolyte exhibits high ionic conductivity of 10−2 S/cm at ambient temperature. This study discusses different concentrations from 0 to 5.4 M of magnesium salt, representing low, intermediate and high concentrations of magnesium salt which are examined in frequency dependence conductivity studies. The temperature dependent conductivity measurements have also been carried out to compute activation energy (Ea) by least square linear fitting of Arrhenius plot: ‘log σ − 1/T. The transport number of Mg2+ ion determined by means of a combination of d.c. and a.c. techniques is ∼0.7. A prototype cell was constructed using nonaqueous liquid electrolyte with Mg anode and graphite cathode. The Mg/graphite cell shows promising cycling. PMID:26843967

  6. The Effect of Structural Modifications on Ionic Conductivity in Newly-Designed Polyester Electrolytes

    NASA Astrophysics Data System (ADS)

    Pesko, Danielle; Jung, Yuki; Coates, Geoff; Balsara, Nitash

    2015-03-01

    Gaining a fundamental understanding of the relationship between molecular structure and ionic conductivity of polymer electrolytes is an essential step toward designing next generation materials for battery applications. In this study, we use a systematic set of newly-designed polyesters with varying side-chain lengths and oxygen functional groups to elucidate the effects of structural modifications on the conductive properties of the corresponding electrolytes. Mixtures of polyesters and lithium bis(trifluromethanesulfonyl)imide (LiTFSI) were characterized using ac impedance spectroscopy to measure the ionic conductivity at various temperatures and salt concentrations. The relative conductivities of these electrolytes in the dilute limit are directly comparable to results of molecular dynamics simulations performed using the same polymers. The simulations correspond well with the experimental results, and provide molecular level insight about the solvation environment of the lithium ions and how the ions transport through these polyesters.

  7. Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells

    PubMed Central

    Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari

    2015-01-01

    Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC). PMID:26218470

  8. Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells.

    PubMed

    Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari

    2015-07-28

    Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC).

  9. Rapid characterization of lithium ion battery electrolytes and thermal aging products by low-temperature plasma ambient ionization high-resolution mass spectrometry.

    PubMed

    Vortmann, Britta; Nowak, Sascha; Engelhard, Carsten

    2013-03-19

    Lithium ion batteries (LIBs) are key components for portable electronic devices that are used around the world. However, thermal decomposition products in the battery reduce its lifetime, and decomposition processes are still not understood. In this study, a rapid method for in situ analysis and reaction monitoring in LIB electrolytes is presented based on high-resolution mass spectrometry (HR-MS) with low-temperature plasma probe (LTP) ambient desorption/ionization for the first time. This proof-of-principle study demonstrates the capabilities of ambient mass spectrometry in battery research. LTP-HR-MS is ideally suited for qualitative analysis in the ambient environment because it allows direct sample analysis independent of the sample size, geometry, and structure. Further, it is environmental friendly because it eliminates the need of organic solvents that are typically used in separation techniques coupled to mass spectrometry. Accurate mass measurements were used to identify the time-/condition-dependent formation of electrolyte decomposition compounds. A LIB model electrolyte containing ethylene carbonate and dimethyl carbonate was analyzed before and after controlled thermal stress and over the course of several weeks. Major decomposition products identified include difluorophosphoric acid, monofluorophosphoric acid methyl ester, monofluorophosphoric acid dimethyl ester, and hexafluorophosphate. Solvents (i.e., dimethyl carbonate) were partly consumed via an esterification pathway. LTP-HR-MS is considered to be an attractive method for fundamental LIB studies.

  10. Methanolic extract of Cola nitida elicits dose-dependent diuretic, natriuretic and kaliuretic activities without causing electrolyte impairment, hepatotoxicity and nephrotoxicity in rats

    PubMed Central

    Adeosun, Olukayode Isaac; Olaniyi, Kehinde S; Amusa, Oluwatobi A; Jimoh, Gbemisola Z; Oniyide, Adesola A

    2017-01-01

    Cola nitida (Kolanut) is conventionally used in tropical Africa for the treatment of all kinds of ailments such as migraine, morning sickness, metabolic disorders etc. However, this study was designed to investigate the diuretic, natriuretic and kaliuretic activities of methanolic extract of Cola nitida (MECN) in male Wistar rats. Adult male Wistar rats were randomly allotted into control (25 ml/kg b.w.), furosemide (20 mg/kg b.w; standard), MECN1 (100 mg/kg), MECN2 (200 mg/kg), MECN3 (300 mg/kg), MECN4 (400 mg/kg), MECN5 (500 mg/kg), MECN6 (600 mg/kg) groups with n=6. The extract was prepared as previously described and the treatment lasted for 14 days. Urine volume and diuretic indices were estimated. Urine electrolytes, plasma electrolytes, plasma/renal AST/ALT, plasma creatinine and urea were assayed using flame photometry and standard colorimetric method respectively.Administration of different doses of C. nitida significantly altered body weight gain and water intake but not food intake compared with control group. There were significant increases in urine volume and urine electrolytes (Na+, K+ and Cl-), a decrease in plasma/renal ALT and AST activities, a decrease in plasma creatinine and urea concentration and no alteration in plasma electrolytes when compared with control and furosemide-treated groups. Our study suggests that MECN elicits diuretic, natriuretic, and kaliuretic activities without causing electrolyte impairment, hepatotoxicity and nephrotoxicity. These effects are dose-dependent. PMID:29348800

  11. Methanolic extract of Cola nitida elicits dose-dependent diuretic, natriuretic and kaliuretic activities without causing electrolyte impairment, hepatotoxicity and nephrotoxicity in rats.

    PubMed

    Adeosun, Olukayode Isaac; Olaniyi, Kehinde S; Amusa, Oluwatobi A; Jimoh, Gbemisola Z; Oniyide, Adesola A

    2017-01-01

    Cola nitida (Kolanut) is conventionally used in tropical Africa for the treatment of all kinds of ailments such as migraine, morning sickness, metabolic disorders etc. However, this study was designed to investigate the diuretic, natriuretic and kaliuretic activities of methanolic extract of Cola nitida (MECN) in male Wistar rats. Adult male Wistar rats were randomly allotted into control (25 ml/kg b.w .), furosemide (20 mg/kg b.w ; standard), MECN 1 (100 mg/kg), MECN 2 (200 mg/kg), MECN 3 (300 mg/kg), MECN 4 (400 mg/kg), MECN 5 (500 mg/kg), MECN 6 (600 mg/kg) groups with n=6. The extract was prepared as previously described and the treatment lasted for 14 days. Urine volume and diuretic indices were estimated. Urine electrolytes, plasma electrolytes, plasma/renal AST/ALT, plasma creatinine and urea were assayed using flame photometry and standard colorimetric method respectively.Administration of different doses of C. nitida significantly altered body weight gain and water intake but not food intake compared with control group. There were significant increases in urine volume and urine electrolytes (Na + , K + and Cl - ), a decrease in plasma/renal ALT and AST activities, a decrease in plasma creatinine and urea concentration and no alteration in plasma electrolytes when compared with control and furosemide-treated groups. Our study suggests that MECN elicits diuretic, natriuretic, and kaliuretic activities without causing electrolyte impairment, hepatotoxicity and nephrotoxicity. These effects are dose-dependent.

  12. Characteristics and in vitro response of thin hydroxyapatite–titania films produced by plasma electrolytic oxidation of Ti alloys in electrolytes with particle additions

    PubMed Central

    Yeung, W. K.; Sukhorukova, I. V.; Shtansky, D. V.; Levashov, E. A.; Zhitnyak, I. Y.; Gloushankova, N. A.; Kiryukhantsev-Korneev, P. V.; Petrzhik, M. I.; Matthews, A.

    2016-01-01

    The enhancement of the biological properties of Ti by surface doping with hydroxyapatite (HA) is of great significance, especially for orthodontic applications. This study addressed the effects of HA particle size in the electrolyte suspension on the characteristics and biological properties of thin titania-based coatings produced on Ti–6Al–4V alloy by plasma electrolytic oxidation (PEO). Detailed morphological investigation of the coatings formed by a single-stage PEO process with two-step control of the electrical parameters was performed using the Minkowski functionals approach. The surface chemistry was studied by glow discharge optical emission spectroscopy and Fourier transform infrared spectroscopy, whereas mechanical properties were evaluated using scratch tests. The biological assessment included in vitro evaluation of the coating bioactivity in simulated body fluid (SBF) as well as studies of spreading, proliferation and osteoblastic differentiation of MC3T3-E1 cells. The results demonstrated that both HA micro- and nanoparticles were successfully incorporated in the coatings but had different effects on their surface morphology and elemental distributions. The micro-particles formed an irregular surface morphology featuring interpenetrated networks of fine pores and coating material, whereas the nanoparticles penetrated deeper into the coating matrix which retained major morphological features of the porous TiO2 coating. All coatings suffered cohesive failure in scratch tests, but no adhesive failure was observed; moreover doping with HA increased the coating scratch resistance. In vitro tests in SBF revealed enhanced bioactivity of both HA-doped PEO coatings; furthermore, the cell proliferation/morphometric tests showed their good biocompatibility. Fluorescence microscopy revealed a well-organised actin cytoskeleton and focal adhesions in MC3T3-E1 cells cultivated on these substrates. The cell alkaline phosphatase activity in the presence of

  13. Evolution processes of the corrosion behavior and structural characteristics of plasma electrolytic oxidation coatings on AZ31 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Wang, Ruiqiang; Huang, Zhiquan; Wu, Yekang; Zhang, Yi; Wu, Guorui; Li, Dalong; Guo, Changhong; Jiang, Guirong; Yu, Shengxue; Shen, Dejiu; Nash, Philip

    2018-03-01

    Evolution processes of the corrosion behavior and structural characteristics of the plasma electrolytic oxidation (PEO) coated AZ31 magnesium alloy were investigated by using scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), potentio-dynamic polarization curves and electrochemical impedance spectroscopy (EIS) measurements. Detached coating samples were fabricated by an electrochemical method and more details of the internal micro-structure of coatings were clearly observed on the fractured cross-section morphologies of the samples compared to general polished cross-section morphologies. Evolution mechanisms of the coating corrosion behavior in relation to the evolution of micro-structural characteristics were discussed in detail.

  14. Plasma Electrolytic Oxidation (PEO) Coatings on an A356 Alloy for Improved Corrosion and Wear Resistance

    NASA Astrophysics Data System (ADS)

    Peng, Zhijing

    Plasma electrolytic oxidizing (PEO) is an advanced technique that has been used to deposit thick and hard ceramic coatings on aluminium (Al) alloys. This work was however to use the PEO process to produce thin ceramic oxide coatings on an A356 Al alloy for improving corrosion and wear resistance of the alloy. Effects of current density and treatment time on surface morphologies and thickness of the PEO coatings were investigated. The improvement of galvanic corrosion properties of the coated A356 alloy vs. steel and carbon fibre were evaluated in E85 fuel or NaCl environments. Tribological properties of the coatings were studied with comparison to the uncoated A356 substrate and other commercially-used engine bore materials. The research results indicated that the PEO coatings could have excellent tribological and corrosion properties for aluminium engine applications.

  15. Polyvinylpyrrolidone/polyvinyl butyral composite as a stable binder for castable supercapacitor electrodes in aqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Aslan, M.; Weingarth, D.; Herbeck-Engel, P.; Grobelsek, I.; Presser, V.

    2015-04-01

    Mixtures of polyvinylpyrrolidone/polyvinyl butyral (PVP/PVB) are attractive binders for the preparation of carbon electrodes for aqueous electrolyte supercapacitors. The use of PVP/PVB offers several key advantages: They are soluble in ethanol and can be used to spray coat or drain cast activated carbon (AC) electrodes directly on a current collector. Infrared spectroscopy and contact angle measurements show that the PVP-to-PVB ratio determines the degree of binder hydrophilicity. Within our study, the most favorable performance was obtained for AC electrodes with a composition of AC + 1.5 mass% PVP + 6.0 mass% PVB; such electrodes were mechanically stabile and water resistant with a PVP release of less than 5% of total PVP while PVB itself is water insoluble. Compared to when using PVDF, the specific surface area (SSA) of the assembled electrodes was 10% higher, indicating a reduced pore blocking tendency. A good electrochemical performance was observed in different aqueous electrolytes for composite electrodes with the optimized binder composition: 160 F g-1 at 1 A g-1 for 1 M H2SO4 and 6 M KOH and 120 F g-1 for 1 M NaCl. The capacitance was slightly reduced by 2.5% after cycling to 1.2 V with 1.28 A g-1 in 1 M NaCl for 10,000 times.

  16. Supercapacitive properties of hybrid films of manganese dioxide and polyaniline based on active carbon in organic electrolyte

    NASA Astrophysics Data System (ADS)

    Zou, Wu-yuan; Wang, Wei; He, Ben-lin; Sun, Ming-liang; Yin, Yan-sheng

    This is the first report about supercapacitive performance of hybrid film of manganese dioxide (MnO 2) and polyaniline (PANI) in an organic electrolyte (1.0 M LiClO 4 in acetonitrile). In this work, a high surface area and conductivity of active carbon (AC) electrode is used as a substrate for PANI/MnO 2 film electro-codeposition. The redox properties of the coated PANI/MnO 2 thin film exhibit ideal capacitive behaviour in 1 M LiClO 4/AN. The specific capacitance (SC) of PANI/MnO 2 hybrid film is as high as 1292 F g -1 and maintains about 82% of the initial capacitance after 1500 cycles at a current density of 4.0 mA cm -2, and the coulombic efficiency (η) is higher than 95%. An asymmetric capacitor has been developed with the PANI/MnO 2/AC positive and pure AC negative electrodes, which is able to deliver a specific energy as high as 61 Wh kg -1 at a specific power of 172 W kg -1 in the range of 0-2.0 V. These results indicate that the organic electrolyte is a promising candidate for PANI/MnO 2 material application in supercapacitors.

  17. Fluid and Electrolyte Balance model (FEB)

    NASA Technical Reports Server (NTRS)

    Fitzjerrell, D. G.

    1973-01-01

    The effects of various oral input water loads on solute and water distribution throughout the body are presented in the form of a model. The model was a three compartment model; the three compartments being plasma, interstitial fluid and cellular fluid. Sodium, potassium, chloride and urea were the only major solutes considered explicitly. The control of body water and electrolyte distribution was affected via drinking and hormone levels.

  18. Stability of the electroosmotic flow of a two-layer electrolyte-dielectric system with external pressure gradient⋆.

    PubMed

    Gorbacheva, E V; Ganchenko, G S; Demekhin, E A

    2018-03-27

    The stability of the electroosmotic flow of electrolyte-dielectric viscous liquids under the influence of the DC and AC electric fields along with the external pressure gradient is studied theoretically. Liquids are bounded by two infinite parallel plates. The lower wall bordering the electrolyte is assumed to be a charged surface, and the upper wall is electrically isolated. The charge at the lower boundary is assumed to be immobile, while the surface charge at the free surface is assumed to be mobile. In this paper, we study the micro- and nanosized liquid layers. The mathematical model is described by a nonlinear system of the Nernst-Planck-Poisson-Stokes partial differential equations with the appropriate boundary conditions on the solid surface, the electrolyte/dielectric interface, and on the upper wall. The pressure gradient is highly important for the stability of the flow. For the DC case, the external pressure could either stabilize and destabilize the flow depending on the relative directions of the electroosmotic flow and the pressure-driven flow. For the AC case, the dependence on the value of the external pressure is not monotonous for different wave numbers of perturbations, but, as a rule, the external pressure destabilizes the flow. As the frequency of the electric field increases, the one-dimensional solution of the problem becomes stable.

  19. Electrolyte for batteries with regenerative solid electrolyte interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Jie; Lu, Dongping; Shao, Yuyan

    2017-08-01

    An energy storage device comprising: an anode; and a solute-containing electrolyte composition wherein the solute concentration in the electrolyte composition is sufficiently high to form a regenerative solid electrolyte interface layer on a surface of the anode only during charging of the energy storage device, wherein the regenerative layer comprises at least one solute or solvated solute from the electrolyte composition.

  20. Systematic Experimental and Computational Investigation of Ion Transport in Novel Polyether Electrolytes

    NASA Astrophysics Data System (ADS)

    Pesko, Danielle; Webb, Michael; Jung, Yukyung; Zheng, Qi; Miller, Thomas, III; Coates, Geoffrey; Balsara, Nitash

    Polyethers, such as poly(ethylene oxide) (PEO), are considered to be the most promising polymer electrolyte materials due to their high ionic conductivity and electrochemical stability, both essential for battery applications. To gain a fundamental understanding of the transport properties of polyether systems, we design a systematic set of linear PEO-like polymers to explore the effect of adding carbon spacers to the backbone of the chain. Ac impedance spectroscopy is employed to measure the ionic conductivity of polyether/lithium salt electrolytes; the results elucidate tradeoffs between lowering the glass transition temperature and diluting the polar groups on the polymer chain. Molecular-level insight is provided by molecular dynamics simulations of the polyether electrolytes. We define the useful and intuitive metric of ``connectivity'', a parameter calculated from simulations which describes the physical arrangements of solvation sites in a polymer melt. Direct comparison of experiment and theory allows us to determine the relationship between connectivity and conductivity. The comparison provides insight regarding the factors that control conductivity, and highlights considerations that must be taken when designing new ion-conducting polymers.

  1. Development of Carbon-14 Waste Destruction and Recovery System Using AC Plasma Torch Technology Final Report CRADA No. TC02108.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Althouse, P.; McKannay, R. H.

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and ISOFLEX USA (ISOFLEX), to 1) develop and test a prototype waste destruction system ("System") using AC plasma torch technology to break down and drastically reduce the volume of Carbon-14 (C-14) contaminated medical laboratory wastes while satisfying all environmental regulations, and 2) develop and demonstrate methods for recovering 99%+ of the carbon including the C-14 allowing for possible re-use as a tagging and labeling tool in the biomedical industry.

  2. Effect of DC Plasma Electrolytic Oxidation on Surface Characteristics and Corrosion Resistance of Zirconium

    PubMed Central

    Sowa, Maciej

    2018-01-01

    Zr is a valve metal, the biocompatibility of which is at least on par with Ti. Recently, numerous attempts of the formation of bioactive coatings on Zr by plasma electrolytic oxidation (PEO) in solutions that were based on calcium acetate and calcium β-glycerophosphate were made. In this study, the direct current (DC) PEO of commercially pure zirconium in the solutions that contained Ca(H2PO2)2, Ca(HCOO)2, and Mg(CH3COO)2 was investigated. The treatment was conducted at 75 mA/cm2 up to 200, 300, or 400 V. Five process stages were discerned. The treatment at higher voltages resulted in the formation of oxide layers that had Ca/P or (Mg+Ca)/P ratios that were close to that of hydroxyapatite (Ca/P = 1.67), determined by SEM/EDX. The corrosion resistance studies were performed using electrochemical impedance spectroscopy (EIS) and DC polarization methods. R(Q[R(QR)]) circuit model was used to fit the EIS data. In general, the coatings that were obtained at 200 V were the most corrosion resistant, however, they lacked the porous structure, which is typical for PEO coatings, and is sought after in the biomedical applications. The treatment at 400 V resulted in the formation of the coatings that were more corrosion resistant than those that were obtained at 300 V. This was determined mainly by the prevailing plasma regime at the given process voltage. The pitting resistance of Zr was also improved by the treatment, regardless of the applied process conditions. PMID:29751530

  3. Effect of Microwave Non thermal Plasma Irradiation on the Adsorptive Properties of Active Carbon Preliminarily Impregnated with Poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Ueshima, Masato; Toda, Eriko; Nakajima, Yuki; Sugiyama, Kazuo

    2010-08-01

    Microwave non thermal plasma irradiation was conducted on active carbon (AC) preliminarily impregnated with poly(vinyl alcohol) (PVA) in order to modify the adsorption properties of active carbon, particularly to increase hydrophobicity. The plasma was produced by applying microwave power on the PVA-impregnated active carbon (PVA/AC) placed in a low vacuum chamber (<10 Torr). The surface of the plasma-treated PVA/AC was imaged using scanning electron microscopy and atomic force microscopy (SEM and AFM, respectively), and analyzed using X-ray photoelectron spectroscopy (XPS). Hydrophobicity of the plasma-treated PVA/AC was compared to that of untreated PVA/AC and AC by a sinking test in water/methanol mixed solutions. The hydrophobicity drastically increased for PVA/AC treatment with 1-min plasma irradiation. The AFM results indicated that the surface roughness of the PVA/AC was dependent upon the hydrophobicity, rather than reduction of free energy due to reduction of polarized functional groups. NaOH and HCl adsorption onto the plasma-treated PVA/AC was also measured. Adsorption capacity of plasma-treated PVA/AC increased for NaOH, whereas it decreased for HCl. The plasma treatment not only increased the hydrophobicity of PVA/AC, but also changed its acid-base adsorption properties. We have developed a new material based on active carbon, which is light, hydrophobic and electrically conductive by using a combination of PVA sintering and plasma irradiation.

  4. Calculation of Transport Coefficients in Dense Plasma Mixtures

    NASA Astrophysics Data System (ADS)

    Haxhimali, T.; Cabot, W. H.; Caspersen, K. J.; Greenough, J.; Miller, P. L.; Rudd, R. E.; Schwegler, E. R.

    2011-10-01

    We use classical molecular dynamics (MD) to estimate species diffusivity and viscosity in mixed dense plasmas. The Yukawa potential is used to describe the screened Coulomb interaction between the ions. This potential has been used widely, providing the basis for models of dense stellar materials, inertial confined plasmas, and colloidal particles in electrolytes. We calculate transport coefficients in equilibrium simulations using the Green- Kubo relation over a range of thermodynamic conditions including the viscosity and the self - diffusivity for each component of the mixture. The interdiffusivity (or mutual diffusivity) can then be related to the self-diffusivities by using a generalization of the Darken equation. We have also employed non-equilibrium MD to estimate interdiffusivity during the broadening of the interface between two regions each with a high concentration of either species. Here we present results for an asymmetric mixture between Ar and H. These can easily be extended to other plasma mixtures. A main motivation for this study is to develop accurate transport models that can be incorporated into the hydrodynamic codes to study hydrodynamic instabilities. We use classical molecular dynamics (MD) to estimate species diffusivity and viscosity in mixed dense plasmas. The Yukawa potential is used to describe the screened Coulomb interaction between the ions. This potential has been used widely, providing the basis for models of dense stellar materials, inertial confined plasmas, and colloidal particles in electrolytes. We calculate transport coefficients in equilibrium simulations using the Green- Kubo relation over a range of thermodynamic conditions including the viscosity and the self - diffusivity for each component of the mixture. The interdiffusivity (or mutual diffusivity) can then be related to the self-diffusivities by using a generalization of the Darken equation. We have also employed non-equilibrium MD to estimate interdiffusivity during

  5. Effect of the voltage pulse frequency on the structure of TiO2 coatings grown by plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Torres-Cerón, D. A.; Gordillo-Delgado, F.; Moya-Betancourt, S. N.

    2017-12-01

    Plasma Electrolytic Oxidation (PEO) is used to synthetize titanium dioxide (TiO2) ceramic coatings with the appropriate selection of an electrolyte. The dimension of the micro-cavities and the particle size at the surface can be controlled through the pulse frequency of the voltage that is applied between the electrodes. The change of surface morphology can increase the surface area-to-volume ratio. In this work, PEO of an ASME SB-265 titanium substrate (20×20×1mm) was made in a water solution containing 8g/L Na3PO4 and 0.4g/L NaOH. Hence, the coatings were fabricated using voltage pulses of 340V for 10 minutes with a 10% duty cycle and frequencies of 1000, 1500 and 2000Hz. According to the X-ray diffractograms of the obtained samples, the sintering process at 500°C during 1 hour generated Anatase titanium dioxide porous coatings. The grain size decreased approximately from 29nm for 1000 and 1500Hz pulse frequencies until 21nm for 2000Hz. On the other hand, from the micrographs of scanning electron microscopy was possible to see the uniform formation of the micro-cavities with the largest diameter, 900nm, for the lowest frequency value used in PEO.

  6. Characterization of un-plasticized and propylene carbonate plasticized carboxymethyl cellulose doped ammonium chloride solid biopolymer electrolytes.

    PubMed

    Ahmad, N H; Isa, M I N

    2016-02-10

    Two solid biopolymer electrolytes (SBEs) systems of carboxymethyl cellulose doped ammonium chloride (CMC-AC) and propylene carbonate plasticized (CMC-AC-PC) were prepared via solution casting technique. The ionic conductivity of SBEs were analyzed using electrical impedance spectroscopy (EIS) in the frequency range of 50 Hz-1 MHz at ambient temperature (303K). The highest ionic conductivity of CMC-AC SBE is 1.43 × 10(-3)S/cm for 16 wt.% of AC while the highest conductivity of plasticized SBE system is 1.01 × 10(-2)S/cm when added with 8 wt.% of PC. TGA/DSC showed that the addition of PC had increased the decomposition temperature compared of CMC-AC SBE. Fourier transform infrared (FTIR) spectra showed the occurrence of complexation between the SBE components and it is proved successfully executed by Gaussian software. X-ray diffraction (XRD) indicated that amorphous nature of SBEs. It is believed that the PC is one of the most promising plasticizer to enhance the ionic conductivity and performance for SBE system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Fluid-electrolyte shifts and thermoregulation - Rest and work in heat with head cooling

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Van Beaumont, W.; Brock, P. J.; Montgomery, L. D.; Morse, J. T.; Shvartz, E.; Kravik, S.

    1980-01-01

    The effects of head cooling on thermoregulation and associated plasma fluid and electrolyte shifts during rest and submaximal exercise in the heat are investigated. Thermoregulatory responses and plasma volume were measured in four male subjects fitted with liquid-cooled neoprene headgear during 60 min of rest, 60 min of ergometer exercise at 45% maximal oxygen uptake and 30 min of recovery in the supine position at 40.1 C and 40% relative humidity. It is found that, compared to control responses, head cooling decreased thigh sweating and increased mean skin temperature at rest and attenuated increases in thigh sweating, heart rate, rectal temperature and ventilation during exercise. During recovery, cooling is observed to facilitate decreases in sweat rate, heart rate, rectal temperature and forearm blood flow and enhance the increase in average temperature. Cooling had no effect on plasma protein, osmotic or electrolyte shifts, and decreased plasma volume losses. The findings indicate the effectiveness of moderate head cooling for the improvement of human performance during exercise in heat.

  8. Heat Acclimation and Water-Immersion Deconditioning: Fluid Electrolyte Shifts with Tilting

    NASA Technical Reports Server (NTRS)

    Conertino, V. A.; Shvartz, E.; Haines, R. F.; Bhattacharya, A.; Superinde, S. J.; Keil, L. C.; Greenlean, J. E.

    1977-01-01

    One of the major problems encountered by astronauts exposed to space flight is a reduction of orthostatic tolerance on return to earth. Many studies have been performed in an attempt to define the physiologic mechanism of orthostatic intolerance and to develop some remedial treatment. Exercise training does not appear to enhance orthostatic tolerance . In contrast, heat acclimation (i.e., exercise training in the heat) has been reported to enhance orthostatic tolerance. Since plasma volume increases with both exercise training and heat acclimation, it is not clear what role fluid and electrolytes play in determining tolerance to hydrostatic pressure. The purpose of this study was to compare the effects of exercise training in a cool environment and heat acclimation on resting plasma volume (PV) and the ensuing fluid and electrolyte shifts which occur during head-up tilting before and after water immersion deconditioning.

  9. Studies on structural, thermal and AC conductivity scaling of PEO-LiPF6 polymer electrolyte with added ionic liquid [BMIMPF6

    NASA Astrophysics Data System (ADS)

    Chaurasia, S. K.; Saroj, A. L.; Shalu, Singh, V. K.; Tripathi, A. K.; Gupta, A. K.; Verma, Y. L.; Singh, R. K.

    2015-07-01

    Preparation and characterization of polymer electrolyte films of PEO+10wt.% LiPF6 + xwt.% BMIMPF6 (1-butyl-3-methylimidazolium hexafluorophosphate) containing dopant salt lithium hexafluorophosphate (LiPF6) and ionic liquid (BMIMPF6) having common anion PF6 - are reported. The ionic conductivity of the polymer electrolyte films has been found to increase with increasing concentration of BMIMPF6 in PEO+10 wt.% LiPF6 due to the plasticization effect of ionic liquid. DSC and XRD results show that the crystallinity of polymer electrolyte decreases with BMIMPF6 concentration which, in turn, is responsible for the increase in ionic conductivity. FTIR spectroscopic study shows the complexation of salt and/or ionic liquid cations with the polymer backbone. Ion dynamics behavior of PEO+LiPF6 as well as PEO+LiPF6 + BMIMPF6 polymer electrolytes was studied by frequency dependent conductivity, σ(f) measurements. The values σ(f) at various temperatures have been analyzed in terms of Jonscher power law (JPL) and scaled with respect to frequency which shows universal power law characteristics at all temperatures.

  10. Research and Development of Large Area Color AC Plasma Displays

    NASA Astrophysics Data System (ADS)

    Shinoda, Tsutae

    1998-10-01

    Plasma display is essentially a gas discharge device using discharges in small cavities about 0. 1 m. The color plasma displays utilize the visible light from phosphors excited by the ultra-violet by discharge in contrast to monochrome plasma displays utilizing visible light directly from gas discharges. At the early stage of the color plasma display development, the degradation of the phosphors and unstable operating voltage prevented to realize a practical color plasma display. The introduction of the three-electrode surface-discharge technology opened the way to solve the problems. Two key technologies of a simple panel structure with a stripe rib and phosphor alignment and a full color image driving method with an address-and-display-period-separated sub-field method have realized practically available full color plasma displays. A full color plasma display has been firstly developed in 1992 with a 21-in.-diagonal PDP and then a 42-in.-diagonal PDP in 1995 Currently a 50-in.-diagonal color plasma display has been developed. The large area color plasma displays have already been put into the market and are creating new markets, such as a wall hanging TV and multimedia displays for advertisement, information, etc. This paper will show the history of the surface-discharge color plasma display technologies and current status of the color plasma display.

  11. Enhanced sub-micron colloidal particle separation with interdigitated microelectrode arrays using mixed AC/DC dielectrophoretic scheme.

    PubMed

    Swaminathan, Vikhram V; Shannon, Mark A; Bashir, Rashid

    2015-04-01

    Dielectrophoretic separation of particles finds a variety of applications in the capture of species such as cells, viruses, proteins, DNA from biological systems, as well as other organic and inorganic contaminants from water. The ability to capture particles is constrained by poor volumetric scaling of separation force with respect to particle diameter, as well as the weak penetration of electric fields in the media. In order to improve the separation of sub-micron colloids, we present a scheme based on multiple interdigitated electrode arrays under mixed AC/DC bias. The use of high frequency longitudinal AC bias breaks the shielding effects through electroosmotic micromixing to enhance electric fields through the electrolyte, while a transverse DC bias between the electrode arrays enables penetration of the separation force to capture particles from the bulk of the microchannel. We determine the favorable biasing conditions for field enhancement with the help of analytical models, and experimentally demonstrate the improved capture from sub-micron colloidal suspensions with the mixed AC/DC electrostatic excitation scheme over conventional AC-DEP methods.

  12. Electrolyte creepage barrier for liquid electrolyte fuel cells

    DOEpatents

    Li, Jian [Alberta, CA; Farooque, Mohammad [Danbury, CT; Yuh, Chao-Yi [New Milford, CT

    2008-01-22

    A dielectric assembly for electrically insulating a manifold or other component from a liquid electrolyte fuel cell stack wherein the dielectric assembly includes a substantially impermeable dielectric member over which electrolyte is able to flow and a barrier adjacent the dielectric member and having a porosity of less than 50% and greater than 10% so that the barrier is able to measurably absorb and chemically react with the liquid electrolyte flowing on the dielectric member to form solid products which are stable in the liquid electrolyte. In this way, the barrier inhibits flow or creepage of electrolyte from the dielectric member to the manifold or component to be electrically insulated from the fuel cell stack by the dielectric assembly.

  13. Fabrication of copper-based anodes via atmosphoric plasma spraying techniques

    DOEpatents

    Lu, Chun [Monroeville, PA

    2012-04-24

    A fuel electrode anode (18) for a solid oxide fuel cell is made by presenting a solid oxide fuel cell having an electrolyte surface (15), mixing copper powder with solid oxide electrolyte in a mixing step (24, 44) to provide a spray feedstock (30,50) which is fed into a plasma jet (32, 52) of a plasma torch to melt the spray feed stock and propel it onto an electrolyte surface (34, 54) where the spray feed stock flattens into lamellae layer upon solidification, where the layer (38, 59) is an anode coating with greater than 35 vol. % based on solids volume.

  14. Reliable Diagnosis of Carnitine Palmitoyltransferase Type IA Deficiency by Analysis of Plasma Acylcarnitine Profiles.

    PubMed

    Heiner-Fokkema, M Rebecca; Vaz, Frédéric M; Maatman, Ronald; Kluijtmans, Leo A J; van Spronsen, Francjan J; Reijngoud, Dirk-Jan

    2017-01-01

    Carnitine palmitoyltransferase IA (CPT-IA) deficiency is an inherited disorder of the carnitine cycle (MIM #255120). Patients affected by this deficiency might be missed easily because of lack of specific and sensitive biochemical markers. In this study, sensitivity and specificity of plasma free carnitine (C0) and long-chain acylcarnitines (lc-ac: C16:0-, C16:1-, C18:0-, C18:1- and C18:2-ac) was evaluated, including the sum of lc-ac (∑lc-ac) and the molar ratios C0/(C16:0-ac+C18:0-ac) and C0/∑lc-ac. Nine plasma acylcarnitine profiles of 4 CPT-IA deficient patients were compared with profiles of 2,190 subjects suspected of or diagnosed with an inherited disorder of metabolism. Age-dependent reference values were calculated based on the patient population without a definite diagnosis of an inborn error of metabolism (n = 1,600). Sensitivity, specificity, and Receiver Operating Characteristic (ROC) curves were calculated based on samples of the whole patient population. Concentrations of C0 in plasma were normal in all CPT-IA deficient patient samples. ROC analyses showed highest diagnostic values for C18:0-ac, C18:1-ac, and ∑lc-ac (AUC 1.000) and lowest for C0 (AUC 0.738). Combining two markers, i.e., a plasma C18:1-ac concentration <0.05 μmol/L and a molar ratio of C0/(C16:0-ac+C18:0-ac) >587, specificity to diagnose CPT-IA deficiency increased to 99.3% compared with either C18:1-ac (97.4%) or C0/(C16:0-ac+C18:0-ac) (96.9%) alone, all at a sensitivity of 100%. Combination of a low concentration of C18:1-ac with a high molar ratio of C0/(C16:0-ac+C18:0-ac) ratio in plasma has high diagnostic value for CPT-IA deficiency. Patients with a clinical suspicion of CPT-IA deficiency can be diagnosed with this test combination.

  15. Electron density dependence of impedance probe plasma potential measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, D. N.; Blackwell, D. D.; Amatucci, W. E.

    2015-08-15

    In earlier works, we used spheres of various sizes as impedance probes in demonstrating a method of determining plasma potential, φ{sub p}, when the probe radius is much larger than the Debye length, λ{sub D}. The basis of the method in those works [Walker et al., Phys. Plasmas 13, 032108 (2006); ibid. 15, 123506 (2008); ibid. 17, 113503 (2010)] relies on applying a small amplitude signal of fixed frequency to a probe in a plasma and, through network analyzer-based measurements, determining the complex reflection coefficient, Γ, for varying probe bias, V{sub b}. The frequency range of the applied signal ismore » restricted to avoid sheath resonant effects and ion contributions such that ω{sub pi} ≪ ω ≪ ω{sub pe}, where ω{sub pi} is the ion plasma frequency and ω{sub pe} is the electron plasma frequency. For a given frequency and applied bias, both Re(Z{sub ac}) and Im(Z{sub ac}) are available from Γ. When Re(Z{sub ac}) is plotted versus V{sub b}, a minimum predicted by theory occurs at φ{sub p} [Walker et al., Phys. Plasmas 17, 113503 (2010)]. In addition, Im(Z{sub ac}) appears at, or very near, a maximum at φ{sub p}. As n{sub e} decreases and the sheath expands, the minimum becomes harder to discern. The purpose of this work is to demonstrate that when using network analyzer-based measurements, Γ itself and Im(Z{sub ac}) and their derivatives are useful as accompanying indicators to Re(Z{sub ac}) in these difficult cases. We note the difficulties encountered by the most commonly used plasma diagnostic, the Langmuir probe. Spherical probe data is mainly used in this work, although we present limited data for a cylinder and a disk. To demonstrate the effect of lowered density as a function of probe geometry, we compare the cylinder and disk using only the indicator Re(Z{sub ac})« less

  16. The plasma electrolytic oxidation micro-discharge channel model and its microstructure characteristic based on Ti tracer

    NASA Astrophysics Data System (ADS)

    Gao, Fangyuan; Hao, Li; Li, Guang; Xia, Yuan

    2018-02-01

    This study focuses on the individual discharge channel of ceramic coating prepared by plasma electrolytic oxidation (PEO), and attempts to reveal the mechanism of breakdown discharge at low voltage. Titanium (Ti) was employed as a substrate with the layer of aluminum deposited on it (aluminized Ti). The shape and microstructure of the discharge channels in PEO coatings were investigated using transmission electron microscope (TEM) and scanning electron microscopy (SEM). A schematic model of the individual discharge channel was proposed based on Ti tracer method. The shape of the discharge channel was mainly cylinder-shaped in the compact coating, with a groove-like oxidation region existed at the coating/substrate interface. In the groove-like oxidation region, the phase composition mainly composed of amorphous and mixed polycrystalline (aluminum titanate and mullite). β-Al2O3 was found in the ceramic coating. TEM morphology showed that nanometer sized micro channels existed in the ceramic coatings.

  17. Characterization of ceria electrolyte in solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Milliken, Christopher Edward

    The goal of this research effort is to characterize cation doped cerium dioxide for use as an electrolyte material in solid oxide fuel cell applications. A variety of analytical techniques including thermogravimetric analysis, controlled atmosphere dilatometry, and AC/DC electronic measurements on single cells and stacks have been coupled with thermodynamic calculations to evaluate the suitability of several doping schemes. The results of this analysis indicate that doping CeOsb2 with 20% SmOsb{1.5} or codoping with 19% GdOsb{1.5} + 1% PrOsb{1.83} provides the best combination of stability and performance. Under dual atmosphere fuel cell conditions, these dopants do not provide sufficient stabilization energy to prevent the reduction of ceria. A significant oxygen leakage current can be expected, particularly near open circuit conditions. Incorporation of 10% SrO provides similar short-term advantages to the lanthanide doped system but this electrolyte material undergoes an irreversible degradation mechanism that results in cell failure within 1500 hours of test. Under fuel cell conditions, the maximum efficiency of such systems in stacks will be below 40% at 200 mW/cmsp2 when operated on humidified hydrogen fuels. This compares to an expected efficiency of 45-50% at a similar power density for nonmixed conducting electrolyte (e.g., YSZ).

  18. High-compactness coating grown by plasma electrolytic oxidation on AZ31 magnesium alloy in the solution of silicate-borax

    NASA Astrophysics Data System (ADS)

    Shen, M. J.; Wang, X. J.; Zhang, M. F.

    2012-10-01

    A ceramic coating was formed on the surface of AZ31 magnesium alloy by plasma electrolytic oxidation (PEO) in the silicate solution with and without borax doped. The composition, morphology, elements and roughness as well as mechanical property of the coating were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and reciprocal-sliding tribometer. The results show that the PEO coating is mainly composed of magnesia. When using borax dope, boron element is permeating into the coating and the boron containing phase exist in the form of amorphous. In addition, the microhardness and compactness of the PEO coating are improved significantly due to doped borax.

  19. High Current Plasma Electrolytic Oxidation Coating Processes for Wear and Corrosion Prevention of Al 2024

    NASA Astrophysics Data System (ADS)

    Wang, Rui

    Plasma electrolytic oxidation (PEO) treatments have been used in the aerospace and automotive industries because the coating formed on light metals or alloys has great hardness, high wear, corrosion, and oxidation resistance, and a low friction coefficient that improves lifetime length and provide a higher surface quality. However, the PEO treatments that are presently used for industrial applications require a long period of time to confirm the quality of the coating. For this reason, the present study seeks to increase the current density of PEO treatments to improve their efficiency and explore the performance of the obtained coatings. It was found that for high current density (0.18A/cm2) PEO treatments, smaller ratio, such as 50% and 70%, is beneficial to obtaining a better performance coating. When compared with the coating of a "normal" (current density: 0.09A/cm2) PEO treatment, it had better wear resistance; however, for corrosion resistance, it had a lower performance than the coatings obtained by the "normal" current density PEO treatment which was attributed to the negative influence of porosity increase.

  20. Pharmacokinetics of tilmicosin (Provitil powder and Pulmotil liquid AC) oral formulations in chickens.

    PubMed

    Abu-Basha, E A; Idkaidek, N M; Al-Shunnaq, A F

    2007-05-01

    A bioavailability and pharmacokinetics study of powder and liquid tilmicosin formulations was carried out in 18 healthy chickens according to a single-dose, two-period, two-sequence, crossover randomized design. The two formulations were Provitil and Pulmotil AC. Both drugs were administered to each chicken after an overnight fast on two treatment days separated by a 2-week washout period. A modified rapid and sensitive HPLC method was used for determination of tilmicosin concentrations in chicken plasma. Various pharmacokinetic parameters including area under plasma concentration-time curve (AUC(0-72)), maximum plasma concentration (C(max)), time to peak concentration (t(max)), elimination half-life (t(1/2beta)), elimination rate (k(el)), clearance (Cl(B)), mean residence time (MRT) and volume of distribution (V(d,area)) were determined for both formulations. The average means of AUC(0-72) for Provitil and Pulmotil AC were very close (24.24 +/- 3.86, 21.82 +/- 3.14 (microg x h)/ml, respectively), with no significant differences based on ANOVA. The relative bioavailability of Provitil as compared to Pulmotil AC was 111%. In addition, there were no significant differences in the C(max) (2.09 +/- 0.37, 2.12 +/- 0.40 microg/ml), tmax (3.99 +/- 0.84, 5.82 +/- 1.04 h), t(1/2beta) (47.4 +/- 9.32, 45.0 +/- 5.73 h), k(el) (0.021 +/- 0.0037, 0.022 +/- 0.0038 h(-1)), Cl(B) (19.73 +/- 3.73, 21.37 +/- 4.54ml/(min/kg)), MRT (71.20 +/- 12.87, 67.15 +/- 9.01 h) and V(d,area) (1024.8 +/- 87.5, 1009.8 +/- 79.5 ml/kg) between Pulmotil AC and Provitil, respectively. In conclusion, tilmicosin was rapidly absorbed and slowly eliminated after oral administration of single dose of tilmicosin aqueous and powder formulations. Provitil and Pulmotil AC can be used as interchangeable therapeutic agents.

  1. In-situ grown MgO-ZnO ceramic coating with high thermal emittance on Mg alloy by plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Li, Hang; Lu, Songtao; Qin, Wei; Wu, Xiaohong

    2017-07-01

    Intense solar radiation and internal heat generation determine the equilibrium temperature of an in-orbit spacecraft. Thermal control coatings with low solar absorptance and high thermal emittance effectively maintain the thermal equilibrium within safe operating limits for exposed, miniaturized and highly integrated components. A novel ceramic coating with high thermal emittance and good adhesion was directly prepared on the Mg substrate using an economical process of controlled plasma electrolytic oxidation (PEO) in the electrolyte containing ZnSO4. XRD and XPS results showed that this coating was mainly composed of the MgO phase as well as an unusual ZnO crystalline phase. The adhesive strength between the coating and substrate determined by a pull-off test revealed an excellent adhesion. Thermal and optical properties test revealed that the coating exhibited a high infrared emittance of 0.88 (2-16 μm) and low solar absorptance of 0.35 (200-2500 nm). The result indicated that the formation of ZnO during the PEO process played an important role in the improvement of the coating emittance. The process developed provides a simple surface method for improving the thermal emittance of Mg alloy, which presents a promising application prospect in the thermal management of the spacecraft.

  2. Effect of KOH to Na2SiO3 Ratio on Microstructure and Hardness of Plasma Electrolytic Oxidation Coatings on AA 6061 Alloy

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Jang, Yong-Joo; Jung, Jae Pil

    2017-10-01

    In this study, plasma electrolytic oxidation (PEO) process has been employed to fabricate alumina coatings on AA 6061 aluminum alloy from an electrolyte containing water glass (Na2SiO3) and alkali (KOH). The effect of deposition time and the alkali to water glass (KOH: Na2SiO3) composition ratio on the coating morphology and properties are studied. The different phases of the oxide layer and microstructure are investigated by x-ray diffraction, scanning electron microscopy, and atomic force microscopy. The results indicate that initially γ-Al2O3 forms in the coating, and as the processing time is increased from 5 to 60 minutes, α-Al2O3 phase becomes prominent. Further, higher the content of Na2SiO3, higher is the hardness and coating growth rate due to the formation of stable α-Al2O3 and Al-Si-O phase. It has been reported that the optimum properties of the PEO coatings can be obtained at a ratio of KOH: Na2SiO3 ≈ 15:10 followed by 10:10.

  3. Effects of Beer, Non-Alcoholic Beer and Water Consumption before Exercise on Fluid and Electrolyte Homeostasis in Athletes.

    PubMed

    Castro-Sepulveda, Mauricio; Johannsen, Neil; Astudillo, Sebastián; Jorquera, Carlos; Álvarez, Cristian; Zbinden-Foncea, Hermann; Ramírez-Campillo, Rodrigo

    2016-06-07

    Fluid and electrolyte status have a significant impact on physical performance and health. Pre-exercise recommendations cite the possibility of consuming beverages with high amounts of sodium. In this sense, non-alcoholic beer can be considered an effective pre-exercise hydration beverage. This double-blind, randomized study aimed to compare the effect of beer, non-alcoholic beer and water consumption before exercise on fluid and electrolyte homeostasis. Seven male soccer players performed 45 min of treadmill running at 65% of the maximal heart rate, 45 min after ingesting 0.7 L of water (W), beer (AB) or non-alcoholic beer (NAB). Body mass, plasma Na⁺ and K⁺ concentrations and urine specific gravity (USG) were assessed before fluid consumption and after exercise. After exercise, body mass decreased (p < 0.05) in W (-1.1%), AB (-1.0%) and NAB (-1.0%). In the last minutes of exercise, plasma Na⁺ was reduced (p < 0.05) in W (-3.9%) and AB (-3.7%), plasma K⁺ was increased (p < 0.05) in AB (8.5%), and USG was reduced in W (-0.9%) and NAB (-1.0%). Collectively, these results suggest that non-alcoholic beer before exercise could help maintain electrolyte homeostasis during exercise. Alcoholic beer intake reduced plasma Na⁺ and increased plasma K⁺ during exercise, which may negatively affect health and physical performance, and finally, the consumption of water before exercise could induce decreases of Na⁺ in plasma during exercise.

  4. Electrical and electrochemical studies on sodium ion-based gel polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Isa, K. B. Md; Othman, L.; Hambali, D.; Osman, Z.

    2017-09-01

    Gel polymer electrolytes (GPEs) have captured great attention because of their unique properties such as good mechanical stability, high flexibility and high conductivity approachable to that of the liquid electrolytes. In this work, we have prepared sodium ion conducting gel polymer electrolyte (GPE) films consisting of polyvinylidenefluoride-co-hexafluoropropylene (PVdF-HFP) as a polymer host using the solution casting technique. Sodium trifluoromethane- sulfonate (NaCF3SO3) was used as an ionic salt and the mixture of ethylene carbonate (EC) and propylene carbonate (PC) as a plasticizing solvent. Impedance spectroscopy measurements were carried out to determine the ionic conductivity of the GPE films. The sample containing 20 wt.% of NaCF3SO3 salt exhibits the highest room temperature ionic conductivity of 2.50 × 10-3 S cm-1. The conductivity of the GPE films was found to depend on the salt concentration that added to the films. The ionic and cationic transference numbers of GPE films were estimated by DC polarization and the combination of AC and DC polarization method, respectively. The results had shown that both ionic and cationic transference numbers are consistent with the conductivity studies. The electrochemical stability of the GPE films was tested using linear sweep voltammetry (LSV) and the value of working voltage range appears to be high enough to be used as an electrolyte in sodium batteries. The cyclic voltammetry (CV) studies confirmed the sodium ion conduction in the GPE films.

  5. Soft plasma electrolysis with complex ions for optimizing electrochemical performance

    PubMed Central

    Kamil, Muhammad Prisla; Kaseem, Mosab; Ko, Young Gun

    2017-01-01

    Plasma electrolytic oxidation (PEO) was a promising surface treatment for light metals to tailor an oxide layer with excellent properties. However, porous coating structure was generally exhibited due to excessive plasma discharges, restraining its performance. The present work utilized ethylenediaminetetraacetic acid (EDTA) and Cu-EDTA complexing agents as electrolyte additives that alter the plasma discharges to improve the electrochemical properties of Al-1.1Mg alloy coated by PEO. To achieve this purpose, PEO coatings were fabricated under an alternating current in silicate electrolytes containing EDTA and Cu-EDTA. EDTA complexes were found to modify the plasma discharging behaviour during PEO that led to a lower porosity than that without additives. This was attributed to a more homogeneous electrical field throughout the PEO process while the coating growth would be maintained by an excess of dissolved Al due to the EDTA complexes. When Cu-EDTA was used, the number of discharge channels in the coating layer was lower than that with EDTA due to the incorporation of Cu2O and CuO altering the dielectric behaviour. Accordingly, the sample in the electrolyte containing Cu-EDTA constituted superior corrosion resistance to that with EDTA. The electrochemical mechanism for excellent corrosion protection was elucidated in the context of equivalent circuit model. PMID:28281672

  6. Soft plasma electrolysis with complex ions for optimizing electrochemical performance

    NASA Astrophysics Data System (ADS)

    Kamil, Muhammad Prisla; Kaseem, Mosab; Ko, Young Gun

    2017-03-01

    Plasma electrolytic oxidation (PEO) was a promising surface treatment for light metals to tailor an oxide layer with excellent properties. However, porous coating structure was generally exhibited due to excessive plasma discharges, restraining its performance. The present work utilized ethylenediaminetetraacetic acid (EDTA) and Cu-EDTA complexing agents as electrolyte additives that alter the plasma discharges to improve the electrochemical properties of Al-1.1Mg alloy coated by PEO. To achieve this purpose, PEO coatings were fabricated under an alternating current in silicate electrolytes containing EDTA and Cu-EDTA. EDTA complexes were found to modify the plasma discharging behaviour during PEO that led to a lower porosity than that without additives. This was attributed to a more homogeneous electrical field throughout the PEO process while the coating growth would be maintained by an excess of dissolved Al due to the EDTA complexes. When Cu-EDTA was used, the number of discharge channels in the coating layer was lower than that with EDTA due to the incorporation of Cu2O and CuO altering the dielectric behaviour. Accordingly, the sample in the electrolyte containing Cu-EDTA constituted superior corrosion resistance to that with EDTA. The electrochemical mechanism for excellent corrosion protection was elucidated in the context of equivalent circuit model.

  7. Lithium-sulfur batteries based on nitrogen-doped carbon and an ionic-liquid electrolyte.

    PubMed

    Sun, Xiao-Guang; Wang, Xiqing; Mayes, Richard T; Dai, Sheng

    2012-10-01

    Nitrogen-doped mesoporous carbon (NC) and sulfur were used to prepare an NC/S composite cathode, which was evaluated in an ionic-liquid electrolyte of 0.5 M lithium bis(trifluoromethane sulfonyl)imide (LiTFSI) in methylpropylpyrrolidinium bis(trifluoromethane sulfonyl)imide ([MPPY][TFSI]) by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and cycle testing. To facilitate the comparison, a C/S composite based on activated carbon (AC) without nitrogen doping was also fabricated under the same conditions. Compared with the AC/S composite, the NC/S composite showed enhanced activity toward sulfur reduction, as evidenced by the lower onset sulfur reduction potential, higher redox current density in the CV test, and faster charge-transfer kinetics, as indicated by EIS measurements. At room temperature under a current density of 84 mA g(-1) (C/20), the battery based on the NC/S composite exhibited a higher discharge potential and an initial capacity of 1420 mAh g(-1), whereas the battery based on the AC/S composite showed a lower discharge potential and an initial capacity of 1120 mAh g(-1). Both batteries showed similar capacity fading with cycling due to the intrinsic polysulfide solubility and the polysulfide shuttle mechanism; capacity fading can be improved by further cathode modification. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A Study of Carbon Nanofibers and Active Carbon as Symmetric Supercapacitor in Aqueous Electrolyte: A Comparative Study

    NASA Astrophysics Data System (ADS)

    Daraghmeh, Allan; Hussain, Shahzad; Saadeddin, Iyad; Servera, Llorenç; Xuriguera, Elena; Cornet, Albert; Cirera, Albert

    2017-12-01

    Symmetric supercapacitors are fabricated by carbon nanofibers (CNF) and activated carbon (AC) using similar proportions of 7 wt% polyvinylidene fluoride (PVDF) polymer binder in an aqueous electrolyte. In this study, a comparison of porous texture and electrochemical performances between CNFs and AC based supercapacitors was carried out. Electrodes were assembled in the cell without a current collector. The prepared electrodes of CNFs and AC present Brunauer-Emmett-Teller (BET) surface area of 83 and 1042 m2/g, respectively. The dominant pore structure for CNFs is mesoporous while for AC is micropore. The results showed that AC provided higher specific capacitance retention up to very fast scan rate of 500 mV/s. AC carbon had a specific capacitance of 334 F/g, and CNFs had 52 F/g at scan rate 5 mV/s in aqueous solution. Also, the results indicate the superior conductivity of CNFs in contrast to AC counterparts. The measured equivalent series resistance (ESR) showed a very small value for CNFs (0.28 Ω) in comparison to AC that has an ESR resistance of (3.72 Ω). Moreover, CNF delivered higher specific power (1860 W/kg) than that for AC (450 W/kg). On the other hand, AC gave higher specific energy (18.1 Wh/kg) than that for CNFs (2 Wh/kg).This indicates that the AC is good for energy applications. Whereas, CNF is good for power application. Indeed, the higher surface area will lead to higher specific capacitance and hence higher energy density for AC. For CNF, lower ESR is responsible for having higher power density. Both CNF and AC supercapacitor exhibit an excellent charge-discharge stability up to 2500 cycles.

  9. Using Electrolyte Free Water Balance to Rationalize and Treat Dysnatremias.

    PubMed

    Shah, Sanjeev R; Bhave, Gautam

    2018-01-01

    Dysnatremias or abnormalities in plasma [Na + ] are often termed disorders of water balance, an unclear physiologic concept often confused with changes in total fluid balance. However, most clinicians clearly recognize that hypertonic or hypotonic gains or losses alter plasma [Na + ], while isotonic changes do not modify plasma [Na + ]. This concept can be conceptualized as the electrolyte free water balance (EFWB), which defines the non-isotonic components of inputs and outputs to determine their effect on plasma [Na + ]. EFWB is mathematically proportional to the rate of change in plasma [Na + ] (dP Na /dt) and, therefore, is actively regulated to zero so that plasma [Na + ] remains stable at its homeostatic set point. Dysnatremias are, therefore, disorders of EFWB and the relationship between EFWB and dP Na /dt provides a rationale for therapeutic strategies incorporating mass and volume balance. Herein, we leverage dP Na /dt as a desired rate of correction of plasma [Na + ] to define a stepwise approach for the treatment of dysnatremias.

  10. Using Electrolyte Free Water Balance to Rationalize and Treat Dysnatremias

    PubMed Central

    Shah, Sanjeev R.; Bhave, Gautam

    2018-01-01

    Dysnatremias or abnormalities in plasma [Na+] are often termed disorders of water balance, an unclear physiologic concept often confused with changes in total fluid balance. However, most clinicians clearly recognize that hypertonic or hypotonic gains or losses alter plasma [Na+], while isotonic changes do not modify plasma [Na+]. This concept can be conceptualized as the electrolyte free water balance (EFWB), which defines the non-isotonic components of inputs and outputs to determine their effect on plasma [Na+]. EFWB is mathematically proportional to the rate of change in plasma [Na+] (dPNa/dt) and, therefore, is actively regulated to zero so that plasma [Na+] remains stable at its homeostatic set point. Dysnatremias are, therefore, disorders of EFWB and the relationship between EFWB and dPNa/dt provides a rationale for therapeutic strategies incorporating mass and volume balance. Herein, we leverage dPNa/dt as a desired rate of correction of plasma [Na+] to define a stepwise approach for the treatment of dysnatremias. PMID:29740578

  11. Influence of albumin and inorganic ions on electrochemical corrosion behavior of plasma electrolytic oxidation coated magnesium for surgical implants

    NASA Astrophysics Data System (ADS)

    Wan, Peng; Lin, Xiao; Tan, LiLi; Li, Lugee; Li, WeiRong; Yang, Ke

    2013-10-01

    Magnesium and its alloys are of great interest for biodegradable metallic devices. However, the degradation behavior and mechanisms of magnesium treated with coating in physiological environment in the presence of organic compound such as albumin have not been elucidated. In this study, the plasma electrolytic oxidation coated magnesium immersed in four different simulated body fluids: NaCl, PBS and with the addition of albumin to investigate the influence of protein and inorganic ions on degradation behavior by electrochemical methods. The results of electrochemical tests showed that aggressive corrosion took place in 0.9 wt.% NaCl solution; whereas albumin can act as an inhibitor, its adsorption impeded further dissolution of the coating. The mechanism was attributed to the synergistic effect of protein adsorption and precipitation of insoluble salts.

  12. Plasma firocoxib concentrations after intra-articular injection of autologous conditioned serum prepared from firocoxib positive horses.

    PubMed

    Ortved, K F; Goodale, M B; Ober, C; Maylin, G A; Fortier, L A

    2017-12-01

    Orthobiologics such as autologous conditioned serum (ACS) are often used to treat joint disease in horses. Because ACS is generated from the horse's own blood, any medication administered at the time of preparation would likely be present in stored ACS, which could lead to an inadvertent positive drug test following intra-articular (IA) injection. The main objective of this study was to determine if ACS prepared from firocoxib positive horses could result in detectable plasma concentrations of the drug following IA injection. Firocoxib was administered to six horses at 0.1mg/kg PO twice at a 24h interval. Blood was obtained at 4h following the second dose and transferred to a separate syringe (Arthrex IRAP II) for ACS preparation. Plasma and ACS concentrations of firocoxib were analysed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). When horses were confirmed firocoxib negative, 7.5mL of ACS was injected into both tarsocrural joints. Blood samples were collected at 0, 4, 8, 12, 24, and 48h, and firocoxib concentration was measured. Mean (±standard error of the mean, SEM) plasma concentration of firocoxib 4h following the second dose was 33.3±4.72ng/mL. Mean (±SEM) firocoxib concentration in ACS was 35.4±4.47ng/mL. Fourteen days following the second and last dose of firocoxib, mean plasma concentration was below the lower limit of detection (LOD=1ng/mL) in all horses. Following IA injection of ACS, plasma concentrations of firocoxib remained below LOD at all times in all horses. ACS generated from horses with therapeutic plasma concentrations of firocoxib did not contain sufficient firocoxib to lead to a positive plasma drug test following IA administration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Fluid and electrolyte disturbances in critically ill patients.

    PubMed

    Lee, Jay Wook

    2010-12-01

    Disturbances in fluid and electrolytes are among the most common clinical problems encountered in the intensive care unit (ICU). Recent studies have reported that fluid and electrolyte imbalances are associated with increased morbidity and mortality among critically ill patients. To provide optimal care, health care providers should be familiar with the principles and practice of fluid and electrolyte physiology and pathophysiology. Fluid resuscitation should be aimed at restoration of normal hemodynamics and tissue perfusion. Early goal-directed therapy has been shown to be effective in patients with severe sepsis or septic shock. On the other hand, liberal fluid administration is associated with adverse outcomes such as prolonged stay in the ICU, higher cost of care, and increased mortality. Development of hyponatremia in critically ill patients is associated with disturbances in the renal mechanism of urinary dilution. Removal of nonosmotic stimuli for vasopressin secretion, judicious use of hypertonic saline, and close monitoring of plasma and urine electrolytes are essential components of therapy. Hypernatremia is associated with cellular dehydration and central nervous system damage. Water deficit should be corrected with hypotonic fluid, and ongoing water loss should be taken into account. Cardiac manifestations should be identified and treated before initiating stepwise diagnostic evaluation of dyskalemias. Divalent ion deficiencies such as hypocalcemia, hypomagnesemia and hypophosphatemia should be identified and corrected, since they are associated with increased adverse events among critically ill patients.

  14. Preparation and Characterization of PVA Alkaline Solid Polymer Electrolyte with Addition of Bamboo Charcoal.

    PubMed

    Fan, Lidan; Wang, Mengyue; Zhang, Zhen; Qin, Gang; Hu, Xiaoyi; Chen, Qiang

    2018-04-26

    Natural bamboo charcoal (BC) powder has been developed as a novel filler in order to further improve performances of the polyvinyl alcohol (PVA)-based alkaline solid polymer electrolyte (ASPE) by solution casting method. X-ray diffraction patterns of composite polymer electrolyte with BC revealed the decrease in the degree of crystallinity with increasing content of BC. Scanning electron microscopy images showed pores on a micrometer scale (average diameter about 2 μm) distributed inside and on the surface of the membranes, indicating a three-dimension network formed in the polymer framework. The ionic conductivity was measured by the alternating-current (AC) impedance method, and the highest conductivity value of 6.63 × 10 −2 S·cm −1 was obtained with 16 wt % of BC content and m KOH : m PVA = 2:1.5 at 30 °C. The contents of BC and KOH could significantly influence the conductivity. The temperature dependence of the bulk electrical conductivity displayed a combination of Arrhenius nature, and the activation energy for the ion in polymer electrolyte has been calculated. The electrochemical stability window of the electrolyte membrane was over 1.6 V. The thermogravimetric analysis curves showed that the degradation temperatures of PVA-BC-KOH ASPE membranes shifted toward higher with adding BC. A simple nickel-hydrogen battery containing PVA-BC-KOH electrolyte membrane was assembled with a maximum discharge capacity of 193 mAh·g −1 .

  15. Pulsed-DC DBD Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Duong, Alan; Corke, Thomas; Thomas, Flint

    2017-11-01

    A power system for dielectric barrier discharge (DBD) plasma actuators that utilizes a pulsed-DC waveform is presented. The plasma actuator arrangement is identical to most typical AC-DBD designs with staggered electrodes that are separated by a dielectric insulator. A key difference is that the pulsed-DC actuator utilizes a DC voltage source to drive the actuator instead of an AC voltage input. The DC source is supplied to both electrodes. The exposed electrode remains constant in time while the encapsulated electrode is periodically grounded for short instances then is allowed to rise to the source DC level. Further investigation of the pulsed-DC plasma actuator was conducted. Time-resolved velocity measurements were done to characterize the induced velocity field generated by the pulsed-DC plasma actuator. A model of the pulsed-DC plasma actuator is developed in LTspice for further study. The work presented are intended in developing a model to be used in CFD flow control simulations. NASA SBIR NNX14CC12C.

  16. Solid electrolytes for fluoride ion batteries: ionic conductivity in polycrystalline tysonite-type fluorides.

    PubMed

    Rongeat, Carine; Reddy, M Anji; Witter, Raiker; Fichtner, Maximilian

    2014-02-12

    Batteries based on a fluoride shuttle (fluoride ion battery, FIB) can theoretically provide high energy densities and can thus be considered as an interesting alternative to Li-ion batteries. Large improvements are still needed regarding their actual performance, in particular for the ionic conductivity of the solid electrolyte. At the current state of the art, two types of fluoride families can be considered for electrolyte applications: alkaline-earth fluorides having a fluorite-type structure and rare-earth fluorides having a tysonite-type structure. As regard to the latter, high ionic conductivities have been reported for doped LaF3 single crystals. However, polycrystalline materials would be easier to implement in a FIB due to practical reasons in the cell manufacturing. Hence, we have analyzed in detail the ionic conductivity of La(1-y)Ba(y)F(3-y) (0 ≤ y ≤ 0.15) solid solutions prepared by ball milling. The combination of DC and AC conductivity analyses provides a better understanding of the conduction mechanism in tysonite-type fluorides with a blocking effect of the grain boundaries. Heat treatment of the electrolyte material was performed and leads to an improvement of the ionic conductivity. This confirms the detrimental effect of grain boundaries and opens new route for the development of solid electrolytes for FIB with high ionic conductivities.

  17. Effect of Discharge Time on Plasma Electrolytic Borocarbonitriding of Pure Iron

    NASA Astrophysics Data System (ADS)

    Jin, Xiaoyue; Wu, Jie; Wang, Bin; Yang, Xuan; Chen, Lin; Qu, Yao; Xue, Wenbin

    The plasma electrolytic borocarbonitriding (PEB/C/N) process on pure iron was carried out in 25% borax solution with glycerine and carbamide additives under different discharge time at 360V. The morphology and structure of PEB/C/N hardened layers were analyzed by SEM and XRD. The hardness profiles of hardened layers were measured by microhardness test. Corrosion behavior of PEB/C/N layers was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Their wear performance was carried out using a pin-disc friction and wear tester under dry sliding test. The PEB/C/N samples mainly consisted of α-Fe, Fe2B, Fe3C, FeN, FeB, Fe2O3 and Fe4N phases, and the Fe2B phase was the dominant phase in the boride layer. It was found that the thickness of boride layer increased with the discharge time and reached 14μm after 60min treatment. The microhardness of the boride layer was up to 2100HV, which was much higher than that of the bare pure iron (about 150HV). After PEB/C/N treatment, the corrosion resistance of pure iron was slightly improved. The friction coefficient of PEB/C/N treated pure iron decreased to 0.129 from 0.556 of pure iron substrate. The wear rate of the PEB/C/N layer after 60min under dry sliding against ZrO2 ball was only 1/10 of that of the bare pure iron. The PEB/C/N treatment is an effective way to improve the wear behavior of pure iron.

  18. Osseointegration improvement by plasma electrolytic oxidation of modified titanium alloys surfaces.

    PubMed

    Echeverry-Rendón, Mónica; Galvis, Oscar; Quintero Giraldo, David; Pavón, Juan; López-Lacomba, José Luis; Jiménez-Piqué, Emilio; Anglada, Marc; Robledo, Sara M; Castaño, Juan G; Echeverría, Félix

    2015-02-01

    Titanium (Ti) is a material frequently used in orthopedic applications, due to its good mechanical properties and high corrosion resistance. However, formation of a non-adherent fibrous tissue between material and bone drastically could affect the osseointegration process and, therefore, the mechanical stability of the implant. Modifications of topography and configuration of the tissue/material interface is one of the mechanisms to improve that process by manipulating parameters such as morphology and roughness. There are different techniques that can be used to modify the titanium surface; plasma electrolytic oxidation (PEO) is one of those alternatives, which consists of obtaining porous anodic coatings by controlling parameters such as voltage, current, anodizing solution and time of the reaction. From all of the above factors, and based on previous studies that demonstrated that bone cells sense substrates features to grow new tissue, in this work commercially pure Ti (c.p Ti) and Ti6Al4V alloy samples were modified at their surface by PEO in different anodizing solutions composed of H2SO4 and H3PO4 mixtures. Treated surfaces were characterized and used as platforms to grow osteoblasts; subsequently, cell behavior parameters like adhesion, proliferation and differentiation were also studied. Although the results showed no significant differences in proliferation, differentiation and cell biological activity, overall results showed an important influence of topography of the modified surfaces compared with polished untreated surfaces. Finally, this study offers an alternative protocol to modify surfaces of Ti and their alloys in a controlled and reproducible way in which biocompatibility of the material is not compromised and osseointegration would be improved.

  19. Regulation of body fluid volume and electrolyte concentrations in spaceflight.

    PubMed

    Smith, S M; Krauhs, J M; Leach, C S

    1997-01-01

    Despite a number of difficulties in performing experiments during weightlessness, a great deal of information has been obtained concerning the effects of spaceflight on the regulation of body fluid and electrolytes. Many paradoxes and questions remain, however. Although body mass, extracellular fluid volume, and plasma volume are reduced during spaceflight and remain so at landing, the changes in total body water are comparatively small. Serum or plasma sodium and osmolality have generally been unchanged or reduced during the spaceflight, and fluid intake is substantially reduced, especially during the first of flight. The diuresis that was predicted to be caused by weightlessness, has only rarely been observed as an increased urine volume. What has been well established by now, is the occurrence of a relative diuresis, where fluid intake decreases more than urine volume does. Urinary excretion of electrolytes has been variable during spaceflight, but retention of fluid and electrolytes at landing has been consistently observed. The glomerular filtration rate was significantly elevated during the SLS missions, and water and electrolyte loading tests have indicated that renal function is altered during readaptation to Earth's gravity. Endocrine control of fluid volumes and electrolyte concentrations may be altered during weightlessness, but levels of hormones in body fluids do not conform to predictions based on early hypotheses. Antidiuretic hormone is not suppressed, though its level is highly variable and its secretion may be affected by space motion sickness and environmental factors. Plasma renin activity and aldosterone are generally elevated at landing, consistent with sodium retention, but inflight levels have been variable. Salt intake may be an important factor influencing the levels of these hormones. The circadian rhythm of cortisol has undoubtedly contributed to its variability, and little is known yet about the influence of spaceflight on circadian

  20. Regulation of body fluid volume and electrolyte concentrations in spaceflight

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Krauhs, J. M.; Leach, C. S.

    1997-01-01

    Despite a number of difficulties in performing experiments during weightlessness, a great deal of information has been obtained concerning the effects of spaceflight on the regulation of body fluid and electrolytes. Many paradoxes and questions remain, however. Although body mass, extracellular fluid volume, and plasma volume are reduced during spaceflight and remain so at landing, the changes in total body water are comparatively small. Serum or plasma sodium and osmolality have generally been unchanged or reduced during the spaceflight, and fluid intake is substantially reduced, especially during the first of flight. The diuresis that was predicted to be caused by weightlessness, has only rarely been observed as an increased urine volume. What has been well established by now, is the occurrence of a relative diuresis, where fluid intake decreases more than urine volume does. Urinary excretion of electrolytes has been variable during spaceflight, but retention of fluid and electrolytes at landing has been consistently observed. The glomerular filtration rate was significantly elevated during the SLS missions, and water and electrolyte loading tests have indicated that renal function is altered during readaptation to Earth's gravity. Endocrine control of fluid volumes and electrolyte concentrations may be altered during weightlessness, but levels of hormones in body fluids do not conform to predictions based on early hypotheses. Antidiuretic hormone is not suppressed, though its level is highly variable and its secretion may be affected by space motion sickness and environmental factors. Plasma renin activity and aldosterone are generally elevated at landing, consistent with sodium retention, but inflight levels have been variable. Salt intake may be an important factor influencing the levels of these hormones. The circadian rhythm of cortisol has undoubtedly contributed to its variability, and little is known yet about the influence of spaceflight on circadian

  1. Nanoporous polymer electrolyte

    DOEpatents

    Elliott, Brian [Wheat Ridge, CO; Nguyen, Vinh [Wheat Ridge, CO

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  2. Electrolyte vapor condenser

    DOEpatents

    Sederquist, Richard A.; Szydlowski, Donald F.; Sawyer, Richard D.

    1983-01-01

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.

  3. Electrolyte vapor condenser

    DOEpatents

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  4. Adjustment of the ratio of Ca/P in the ceramic coating on Mg alloy by plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Yao, Zhongping; Li, Liangliang; Jiang, Zhaohua

    2009-04-01

    The ceramic coatings containing Ca and P were prepared on AZ91D Mg alloy by plasma electrolytic oxidation technique in NaOH system and Na 2SiO 3 system, respectively. The phase composition, morphology and the element distribution of the coatings was studied by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. The corrosion resistance of the coatings was examined by polarizing curve methods in a 0.9% NaCl solution. In NaOH system, there were a large number of micro-holes distributing evenly on the surface of the coating, and the coating was mainly composed of Mg, Al, P and Ca. In Na 2SiO 3 system, the micro-holes in the coatings were reduced greatly in number and the distribution of the micro-holes was uneven, and the coating was mainly composed of Mg, Al, Si, P and Ca. The ratio of Ca/P in the coating can be controlled by the adjustment of the technique parameters to a certain extent. The adjustment of the concentration of Ca 2+ in the electrolyte was an effective method to change the ratio of Ca/P in the coating in both systems; the reaction time and the working voltage for the adjustment of the ratio of Ca/P in the coating was more suitable for the NaSi 2O 3 system than the NaOH system. The polarizing curve tests showed the coatings improved the corrosion resistance of the AZ91D Mg alloy in 0.9% NaCl solution by nearly two orders of magnitude.

  5. Microstructures and Properties of Plasma Electrolytic Oxidized Ti Alloy (Ti-6Al-4V) for Bio-implant Application

    NASA Astrophysics Data System (ADS)

    Kumari, Renu; Blawert, Carsten; Majumdar, J. Dutta

    2016-02-01

    In the present study, plasma electrolytic oxidation (PEO) of Ti6Al4V has been performed in an electrolyte containing 20 g/L of Na2SiO3, 10 g/L of Na3PO4, 2 g/L of KOH, and 5 g/L of hydroxyapatite at an optimum constant potential of 430 V for 10 minutes. Followed by PEO treatment, surface roughness was measured using non-contact optical profilometer. A detailed characterization of microstructure, composition and phase analysis was carried out using scanning electron microscopy, energy-dispersive X-ray spectroscopic analysis, Fourier-transform infrared, and X-ray diffraction study. The mechanical properties of the surface have been evaluated by measuring nano-hardness and wear resistance. The effect of surface modification on corrosion resistance property has also been evaluated in Hank's solution. Finally, wettability and bioactivity test have been also performed. PEO developed a thick (150 μm) porous (35 pct) oxide film on the surface of Ti-6Al-4V consisting of anatase, rutile, and SiO2. The nano-hardness of the PEO-treated surface is increased to 8 ± 0.5 GPa as compared to 2 ± 0.4 GPa of the as-received Ti-6Al-4V. Wear and corrosion resistance were improved following oxidation. There is an improvement in wettability in terms of decrease in contact angle from 60 ± 1.5 to 45 ± 1 deg. Total surface energy and its polar component were also increased significantly on PEO-treated surface as compared to the as-received Ti6Al4V.

  6. Development of High Conductivity Lithium-Ion Electrolytes for Low Temperature Cell Applications

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Surampudi, S.

    1998-01-01

    NASA has continued interest in developing power sources which are capable of operating at low temperatures (-20 C and below) to enable future missions, such as the Mars Rover and Lander. Thus, under a program sponsored by the Mars Exploration Program, we have been involved in developing Li-ion batteries with improved low temperature performance. To accomplish this task, the focus of the research has been upon the development of advanced electrolyte systems with improved low temperature properties. This had led to the identification of a carbonate-based electrolyte, consisting of 1.0 M LiPF6 in EC + DEC + DMC (33:33:34), which has been shown to have excellent performance at -20 C in Li-ion AA-size prototype cells. Other groups are also actively engaged in developing electrolytes which can result in improved low temperature performance of Li-ion cells, including Polystor, Yardney, and Covalent. In addition to developing cells capable of operation at -20 C, there is continued interest in systems which can successfully operate at even lower temperatures (less than -30 C) and at high discharge rates (greater than C/2). Thus, we are currently focusing upon developing advanced electrolytes which are highly conductive at low temperatures and will result in cells capable of operation at -40 C. One approach to improve the low temperature conductivity of ethylene carbonate-based electrolytes involves adding co-solvents which will decrease the viscosity and extend the liquid range. Candidate solvent additives include formates, acetates, cyclic and aliphatic ethers, lactones, as well as other carbonates. Using this approach, we have prepared a number of electrolytes which contain methyl formate (MF), methyl acetate (MA), ethyl acetate (EA), ethyl proprionate (EP), and 1,2-dimethoxyethane (DME), some of which have been characterized and reported. Other groups have also reported electrolytes based on mixtures of carbonates and acetates. In the present study, electrolytes which

  7. Effects in vivo of iohexol and diatrizoate on human plasma acetyl- and butyryl-cholinesterase activity.

    PubMed

    Mironidou, M; Katsimba, D; Kokkas, B; Kaitartzis, C; Karamanos, G; Christopoulos, S

    2001-03-01

    The aim of this study was to evaluate the effects of two iodinate contrast agents (CA), iohexol and diatrizoate, on human plasma acetyl-(AC) and butyrylcholinesterase(BC) activity. Forty-eight patients (24 males and 24 females) scheduled for intravenous pyelography were randomly divided into four groups of 6 males and 6 females each, receiving as CA, respectively: iohexol (Omnipaque, Schering) 0.6 ml/kg body weight (G1); iohexol 1.2 mg/kg (G2); sodium and meglumine diatrizoate 58% (Urografin, Schering) 0.6 ml/kg (G3); sodium and meglumine diatrizoate 58% 1.2 ml/kg (G4). Blood samples were taken before and 5, 10, and 20 min after the injection. Enzymatic activity of AC and BC were measured by spectrophotometry. Plasma concentration of K, Na, Ca, and Mg was measured in all blood samples; blood pressure and plasma pH were measured after each sample collection. Statistical analysis was performed by Student's test. In G1 a reversible decrease of AC (12.9%) and BC (8.2%) plasma activity was observed at 10 min. In G2 a progressive decrease of AC (13.9%) and BC (18.4%) plasma activity was observed with a maximum at 20 min. In G3 a modest reversible decrease of BC plasma activity (5.4%) was observed. In G4 a modest progressive decrease of AC (7.3%) and BC (6.5%) plasma activities was observed. In all cases, AC and BC plasma activities remained within the normal range of values. Plasma concentration of K, Na, Ca, and Mg, as well as pH and systolic and diastolic pressure, did not show any change. No adverse effects was observed in our patients. Iohexol and diatrizoate induce in vivo a significant decrease of AC and BC plasma activities. The decrease is more pronounced for iohexol, a non ionic CA, which has a lower pharmacotoxicity than diatrizoate and adverse effects rate. No inference can be drawn about the relationship between plasma cholinesterase activity and adverse effects.

  8. Electrolytic dissolver

    DOEpatents

    Wheelwright, E.J.; Fox, R.D.

    1975-08-26

    This patent related to an electrolytic dissolver wherein dissolution occurs by solution contact including a vessel of electrically insulative material, a fixed first electrode, a movable second electrode, means for insulating the electrodes from the material to be dissolved while permitting a free flow of electrolyte therebetween, means for passing a direct current between the electrodes and means for circulating electrolyte through the dissolver. (auth)

  9. AC Initiation System.

    DTIC Science & Technology

    An ac initiation system is described which uses three ac transmission signals interlocked for safety by frequency, phase, and power discrimination...The ac initiation system is pre-armed by the application of two ac signals have the proper phases, and activates a load when an ac power signal of the proper frequency and power level is applied. (Author)

  10. Composite polymer electrolyte based on PEO/Pvdf-HFP with MWCNT for lithium battery applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradeepa, P.; Edwinraj, S.; Sowmya, G.

    In the present study PEO and PVdF-HFP blend based composite polymer electrolytes (CPEs) has been prepared by using Multi Walled Carbon Nanotube (MWCNT), in order to examine the filler addition effect on the electrochemical properties. The complexed nanocomposite polymer electrolytes were obtained in the form of dimensionally stable and free standing films by using solution casting technique. The electrochemical properties of CPEs were measured by the AC impedance method. From the ionic conductivity results, the CPE containing MWCNT 2wt% showed the highest ionic conductivity with an excellent thermal stability at room temperature. The dielectric loss curve s for the samplemore » 6.25wt% PEO: 18.75 wt% PVdF-HFP: 2wt% MWCNT reveal the low frequency β relaxation peak pronounced at high temperature, and it may caused by side group dipoles.« less

  11. The formation of tungsten doped Al2O3/ZnO coatings on aluminum by plasma electrolytic oxidation and their application in photocatalysis

    NASA Astrophysics Data System (ADS)

    Stojadinović, Stevan; Vasilić, Rastko; Radić, Nenad; Tadić, Nenad; Stefanov, Plamen; Grbić, Boško

    2016-07-01

    Tungsten doped Al2O3/ZnO coatings are formed by plasma electrolytic oxidation of aluminum substrate in supporting electrolyte (0.1 M boric acid + 0.05 M borax + 2 g/L ZnO) with addition of different concentrations of Na2WO4·2H2O. The morphology, crystal structure, chemical composition, and light absorption characteristics of formed surface coatings are investigated. The X-ray diffraction and X-ray photoelectron spectroscopy results indicate that formed surface coatings consist of alpha and gamma phase of Al2O3, ZnO, metallic tungsten and WO3. Obtained results showed that incorporated tungsten does not have any influence on the absorption spectra of Al2O3/ZnO coatings, which showed invariable band edge at about 385 nm. The photocatalytic activity of undoped and tungsten doped Al2O3/ZnO coatings is estimated by the photodegradation of methyl orange. The photocatalytic activity of tungsten doped Al2O3/ZnO coatings is higher thanof undoped Al2O3/ZnO coatings; the best photocatalytic activity is ascribed to coatings formed in supporting electrolyte with addition of 0.3 g/L Na2WO4·2H2O. Tungsten in Al2O3/ZnO coatings acts as a charge trap, thus reducing the recombination rate of photogenerated electron-hole pairs. The results of PL measurements are in agreement with photocatalytic activity. Declining PL intensity corresponds to increasing photocatalytic activity of the coatings, indicating slower recombination of electron-hole pairs.

  12. Plasma Treated Active Carbon for Capacitive Deionization of Saline Water

    DOE PAGES

    Zeng, Aiping; Shrestha, Maheshwar; Wang, Keliang; ...

    2017-01-01

    The plasma treatment on commercial active carbon (AC) was carried out in a capacitively coupled plasma system using Ar + 10% O 2at pressure of 4.0 Torr. The RF plasma power ranged from 50 W to 100 W and the processing time was 10 min. The carbon film electrode was fabricated by electrophoretic deposition. Micro-Raman spectroscopy revealed the highly increased disorder of sp 2C lattice for the AC treated at 75 W. An electrosorption capacity of 6.15 mg/g was recorded for the carbon treated at 75 W in a 0.1 mM NaCl solution when 1.5 V was applied for 5more » hours, while the capacity of the untreated AC was 1.0 mg/g. The plasma treatment led to 5.09 times increase in the absorption capacity. The jump of electrosorption capacity by plasma treatment was consistent with the Raman spectra and electrochemical double layer capacitance. This work demonstrated that plasma treatment was a potentially efficient approach to activating biochar to serve as electrode material for capacitive deionization (CDI).« less

  13. Control of lithium metal anode cycleability by electrolyte temperature

    NASA Astrophysics Data System (ADS)

    Ishikawa, Masashi; Kanemoto, Manabu; Morita, Masayuki

    Precycling of lithium (Li) metal on a nickel substrate at low temperatures (0 and -20°C) in propylene carbonate (PC) mixed with dimethyl carbonate (DMC) and Li hexafluorophosphate (LiPF 6) (LiPF 6-PC/DMC) was found to enhance Li cycleability in the subsequent cycles at a room temperature (25°C). In contrast when the precycling at the low temperatures was performed in PC mixed with 2-methyltetrahydrofuran (2MeTHF) and LiPF 6 (LiPF 6-PC/2MeTHF), no improvement in the Li cycling efficiency was observed in the subsequent cycles at 25°C. These results suggest that the low-temperature precycling effect on the Li cycleability depends on a co-solvent used in the PC-based electrolytes. Ac impedance analysis revealed that the precycling in the low-temperature LiPF 6-PC/DMC electrolyte provided a compact Li interface with a low resistance. In marked constant to this, a Li anode interface formed by the precycling in the LiPF 6-PC/2MeTHF system was irregular and resistive to Li-ion diffusion. The origins of the low-temperature precycling effect dependent on the co-solvents were discussed.

  14. Effect of long-term hypokinesia on the electrolytic composition of the blood in patients with osteoarticular tuberculosis

    NASA Technical Reports Server (NTRS)

    Zakutaeva, V. P.

    1980-01-01

    Seventy-six patients with osteoarticular tuberculosis were divided into two groups, one of which was required to maintain strict bed rest and the other of which was allowed unrestricted motor activity. A study of blood electrolyte composition in the two groups revealed that bed rest for these patients results in decreased plasma potassium calcium, and magnesium content, but that these indices improved after the patients were allowed to move freely. The study suggests that patients with osteoarticular tuberculosis who are on bed rest be carefully observed for alterations in blood electrolytes and that proper electrolyte balance be maintained.

  15. Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering.

    PubMed

    Sheng, Kaixuan; Sun, Yiqing; Li, Chun; Yuan, Wenjing; Shi, Gaoquan

    2012-01-01

    The recent boom in multifunction portable electronic equipments requires the development of compact and miniaturized electronic circuits with high efficiencies, low costs and long lasting time. For the operation of most line-powered electronics, alternating current (ac) line-filters are used to attenuate the leftover ac ripples on direct current (dc) voltage busses. Today, aluminum electrolytic capacitors (AECs) are widely applied for this purpose. However, they are usually the largest components in electronic circuits. Replacing AECs by more compact capacitors will have an immense impact on future electronic devices. Here, we report a double-layer capacitor based on three-dimensional (3D) interpenetrating graphene electrodes fabricated by electrochemical reduction of graphene oxide (ErGO-DLC). At 120-hertz, the ErGO-DLC exhibited a phase angle of -84 degrees, a specific capacitance of 283 microfaradays per centimeter square and a resistor-capacitor (RC) time constant of 1.35 milliseconds, making it capable of replacing AECs for the application of 120-hertz filtering.

  16. Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering

    NASA Astrophysics Data System (ADS)

    Sheng, Kaixuan; Sun, Yiqing; Li, Chun; Yuan, Wenjing; Shi, Gaoquan

    2012-02-01

    The recent boom in multifunction portable electronic equipments requires the development of compact and miniaturized electronic circuits with high efficiencies, low costs and long lasting time. For the operation of most line-powered electronics, alternating current (ac) line-filters are used to attenuate the leftover ac ripples on direct current (dc) voltage busses. Today, aluminum electrolytic capacitors (AECs) are widely applied for this purpose. However, they are usually the largest components in electronic circuits. Replacing AECs by more compact capacitors will have an immense impact on future electronic devices. Here, we report a double-layer capacitor based on three-dimensional (3D) interpenetrating graphene electrodes fabricated by electrochemical reduction of graphene oxide (ErGO-DLC). At 120-hertz, the ErGO-DLC exhibited a phase angle of -84 degrees, a specific capacitance of 283 microfaradays per centimeter square and a resistor-capacitor (RC) time constant of 1.35 milliseconds, making it capable of replacing AECs for the application of 120-hertz filtering.

  17. Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering

    PubMed Central

    Sheng, Kaixuan; Sun, Yiqing; Li, Chun; Yuan, Wenjing; Shi, Gaoquan

    2012-01-01

    The recent boom in multifunction portable electronic equipments requires the development of compact and miniaturized electronic circuits with high efficiencies, low costs and long lasting time. For the operation of most line-powered electronics, alternating current (ac) line-filters are used to attenuate the leftover ac ripples on direct current (dc) voltage busses. Today, aluminum electrolytic capacitors (AECs) are widely applied for this purpose. However, they are usually the largest components in electronic circuits. Replacing AECs by more compact capacitors will have an immense impact on future electronic devices. Here, we report a double-layer capacitor based on three-dimensional (3D) interpenetrating graphene electrodes fabricated by electrochemical reduction of graphene oxide (ErGO-DLC). At 120-hertz, the ErGO-DLC exhibited a phase angle of −84 degrees, a specific capacitance of 283 microfaradays per centimeter square and a resistor-capacitor (RC) time constant of 1.35 milliseconds, making it capable of replacing AECs for the application of 120-hertz filtering. PMID:22355759

  18. Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wu, Feng-Chin; Tseng, Ru-Ling; Hu, Chi-Chang; Wang, Chen-Ching

    Four kinds of activated carbons (denoted as ACs) with specific surface area of ca. 1050 m 2 g -1 were fabricated from fir wood and pistachio shell by means of steam activation or chemical activation with KOH. Pore structures of ACs were characterized by a t-plot method based on N 2 adsorption isotherms. The amount of mesopores within KOH-activated carbons ranged from 9.2 to 15.3% while 33.3-49.5% of mesopores were obtained for the steam-activated carbons. The pore structure, surface functional groups, and raw materials of ACs, as well as pH and the supporting electrolyte were also found to be significant factors determining the capacitive characteristics of ACs. The excellent capacitive characteristics in both acidic and neutral media and the weak dependence of the specific capacitance on the scan rate of cyclic voltammetry (CV) for the ACs derived from the pistachio shell with steam activation (denoted as P-H 2O-AC) revealed their promising potential in the application of supercapacitors. The ACs derived from fir wood with KOH activation (denoted as F-KOH-AC), on the other hand, showed the best capacitive performance in H 2SO 4 due to excellent reversibility and high specific capacitance (180 F g -1 measured at 10 mV s -1), which is obviously larger than 100 F g -1 (a typical value of activated carbons with specific surface areas equal to/above 1000 m 2 g -1).

  19. Moderately nonlinear diffuse-charge dynamics under an ac voltage.

    PubMed

    Stout, Robert F; Khair, Aditya S

    2015-09-01

    The response of a symmetric binary electrolyte between two parallel, blocking electrodes to a moderate amplitude ac voltage is quantified. The diffuse charge dynamics are modeled via the Poisson-Nernst-Planck equations for a dilute solution of point-like ions. The solution to these equations is expressed as a Fourier series with a voltage perturbation expansion for arbitrary Debye layer thickness and ac frequency. Here, the perturbation expansion in voltage proceeds in powers of V_{o}/(k_{B}T/e), where V_{o} is the amplitude of the driving voltage and k_{B}T/e is the thermal voltage with k_{B} as Boltzmann's constant, T as the temperature, and e as the fundamental charge. We show that the response of the electrolyte remains essentially linear in voltage amplitude at frequencies greater than the RC frequency of Debye layer charging, D/λ_{D}L, where D is the ion diffusivity, λ_{D} is the Debye layer thickness, and L is half the cell width. In contrast, nonlinear response is predicted at frequencies below the RC frequency. We find that the ion densities exhibit symmetric deviations from the (uniform) equilibrium density at even orders of the voltage amplitude. This leads to the voltage dependence of the current in the external circuit arising from the odd orders of voltage. For instance, the first nonlinear contribution to the current is O(V_{o}^{3}) which contains the expected third harmonic but also a component oscillating at the applied frequency. We use this to compute a generalized impedance for moderate voltages, the first nonlinear contribution to which is quadratic in V_{o}. This contribution predicts a decrease in the imaginary part of the impedance at low frequency, which is due to the increase in Debye layer capacitance with increasing V_{o}. In contrast, the real part of the impedance increases at low frequency, due to adsorption of neutral salt from the bulk to the Debye layer.

  20. A study of electrochemical devices based on Agar-Agar-NH4I biopolymer electrolytes

    NASA Astrophysics Data System (ADS)

    Selvalakshmi, S.; Mathavan, T.; Selvasekarapandian, S.; Premalatha, M.

    2018-04-01

    A polymer electrolyte system has been developed using a biopolymer namely, Agar-Agar in combination with ammonium iodide in different weight percentages by solution casting technique. The films were characterized electrically by AC Impedance Spectroscopy for its conductivity. The highest conductivity achieved at room temperature was for 50 wt. % agar-agar: 50 wt. % NH4I with a conductivity value of 1.20 × 10-4 Scm-1. An electrochemical cell was fabricated in the configuration of: Zn + ZnSO4.7H2O + graphite (anode) | 50 wt. % (Agar-agar): 50 wt. % NH4I (electrolyte) | PbO2 + V2O5 + graphite (cathode) and it produced a maximum open circuit voltage of 1.73 V. A single PEM fuel cell was constructed with the highest conducting sample (50 wt. % (Agar-agar): 50 wt. % NH4I) and it exhibited an output voltage of 408mV.

  1. Photoluminescence properties of Eu3+ doped HfO2 coatings formed by plasma electrolytic oxidation of hafnium

    NASA Astrophysics Data System (ADS)

    Stojadinović, Stevan; Tadić, Nenad; Ćirić, Aleksandar; Vasilić, Rastko

    2018-03-01

    Plasma electrolytic oxidation was used for synthesis of Eu3+ doped monoclinic HfO2 coatings on hafnium substrate. Results of photoluminescence (PL) measurements show the existence of two distinct regions: one that is related to the blue emission originating from oxygen vacancy defects in HfO2 and the other one characterized with a series of sharp orange-red emission peaks related to f-f transitions of Eu3+ from excited level 5D0 to lower levels 7FJ (J = 0, 1, 2, 3, and 4). PL peaks appearing in excitation spectra of obtained coatings are attributed either to charge transfer state of Eu3+ or to direct excitation of the Eu3+ ground state 7F0 into higher levels of the 4f-manifold. PL of formed coatings increases with PEO time due to an increase of oxygen vacancy defects and the content of Eu3+. Acquired experimental data suggest that hypersensitive electrical dipole transition is much more intense than the magnetic dipole transition, indicating that Eu3+ ions occupy a non-inversion symmetry sites.

  2. Plasma Electrolytic Oxidation of Titanium Implant Surfaces: Microgroove-Structures Improve Cellular Adhesion and Viability.

    PubMed

    Hartjen, Philip; Hoffmann, Alexia; Henningsen, Anders; Barbeck, Mike; Kopp, Alexander; Kluwe, Lan; Precht, Clarissa; Quatela, Olivia; Gaudin, Robert; Heiland, Max; Friedrich, Reinhard E; Knipfer, Christian; Grubeanu, Daniel; Smeets, Ralf; Jung, Ole

    2018-01-01

    Plasma electrolytic oxidation (PEO) is an established electrochemical treatment technique that can be used for surface modifications of metal implants. In this study we to treated titanium implants with PEO, to examine the resulting microstructure and to characterize adhesion and viability of cells on the treated surfaces. Our aim was to identify an optimal surface-modification for titanium implants in order to improve soft-tissue integration. Three surface-variants were generated on titanium alloy Ti6Al4V by PEO-treatment. The elemental composition and the microstructures of the surfaces were characterized using energy dispersive X-ray spectroscopy, scanning electron microscopy and profilometry. In vitro cytocompatibility of the surfaces was assessed by seeding L929 fibroblasts onto them and measuring the adhesion, viability and cytotoxicity of cells by means of live/dead staining, XTT assay and LDH assay. Electron microscopy and profilometry revealed that the PEO-surface variants differed largely in microstructure/topography, porosity and roughness from the untreated control material as well as from one another. Roughness was generally increased after PEO-treatment. In vitro, PEO-treatment led to improved cellular adhesion and viability of cells accompanied by decreased cytotoxicity. PEO-treatment provides a promising strategy to improve the integration of titanium implants with surrounding tissues. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  3. Fuel cell having electrolyte

    DOEpatents

    Wright, Maynard K.

    1989-01-01

    A fuel cell having an electrolyte control volume includes a pair of porous opposed electrodes. A maxtrix is positioned between the pair of electrodes for containing an electrolyte. A first layer of backing paper is positioned adjacent to one of the electrodes. A portion of the paper is substantially previous to the acceptance of the electrolyte so as to absorb electrolyte when there is an excess in the matrix and to desorb electrolyte when there is a shortage in the matrix. A second layer of backing paper is positioned adjacent to the first layer of paper and is substantially impervious to the acceptance of electrolyte.

  4. Surface characterization and corrosion behavior of calcium phosphate-base composite layer on titanium and its alloys via plasma electrolytic oxidation: A review paper.

    PubMed

    Rafieerad, A R; Ashra, M R; Mahmoodian, R; Bushroa, A R

    2015-12-01

    In recent years, calcium phosphate-base composites, such as hydroxyapatite (HA) and carbonate apatite (CA) have been considered desirable and biocompatible coating layers in clinical and biomedical applications such as implants because of the high resistance of the composites. This review focuses on the effects of voltage, time and electrolytes on a calcium phosphate-base composite layer in case of pure titanium and other biomedical grade titanium alloys via the plasma electrolytic oxidation (PEO) method. Remarkably, these parameters changed the structure, morphology, pH, thickness and crystallinity of the obtained coating for various engineering and biomedical applications. Hence, the structured layer caused improvement of the biocompatibility, corrosion resistance and assignment of extra benefits for Osseo integration. The fabricated layer with a thickness range of 10 to 20 μm was evaluated for physical, chemical, mechanical and tribological characteristics via XRD, FESEM, EDS, EIS and corrosion analysis respectively, to determine the effects of the applied parameters and various electrolytes on morphology and phase transition. Moreover, it was observed that during PEO, the concentration of calcium, phosphor and titanium shifts upward, which leads to an enhanced bioactivity by altering the thickness. The results confirm that the crystallinity, thickness and contents of composite layer can be changed by applying thermal treatments. The corrosion behavior was investigated via the potentiodynamic polarization test in a body-simulated environment. Here, the optimum corrosion resistance was obtained for the coating process condition at 500 V for 15 min in Ringer solution. This review has been summarized, aiming at the further development of PEO by producing more adequate titanium-base implants along with desired mechanical and biomedical features. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Simulation of the AC corona phenomenon with experimental validation

    NASA Astrophysics Data System (ADS)

    Villa, Andrea; Barbieri, Luca; Marco, Gondola; Malgesini, Roberto; Leon-Garzon, Andres R.

    2017-11-01

    The corona effect, and in particular the Trichel phenomenon, is an important aspect of plasma physics with many technical applications, such as pollution reduction, surface and medical treatments. This phenomenon is also associated with components used in the power industry where it is, in many cases, the source of electro-magnetic disturbance, noise and production of undesired chemically active species. Despite the power industry to date using mainly alternating current (AC) transmission, most of the studies related to the corona effect have been carried out with direct current (DC) sources. Therefore, there is technical interest in validating numerical codes capable of simulating the AC phenomenon. In this work we describe a set of partial differential equations that are comprehensive enough to reproduce the distinctive features of the corona in an AC regime. The model embeds some selectable chemical databases, comprising tens of chemical species and hundreds of reactions, the thermal dynamics of neutral species and photoionization. A large set of parameters—deduced from experiments and numerical estimations—are compared, to assess the effectiveness of the proposed approach.

  6. Electrochemical and biological characterization of coatings formed on Ti-15Mo alloy by plasma electrolytic oxidation.

    PubMed

    Kazek-Kęsik, Alicja; Krok-Borkowicz, Małgorzata; Pamuła, Elżbieta; Simka, Wojciech

    2014-10-01

    β-Type titanium alloys are considered the future materials for bone implants. To improve the bioactivity of Ti-15Mo, the surface was modified using the plasma electrolytic oxidation (PEO) process. Tricalcium phosphate (TCP, Ca3PO4), wollastonite (CaSiO3) and silica (SiO2) were selected as additives in the anodizing bath to enhance the bioactivity of the coatings formed during the PEO process. Electrochemical analysis of the samples was performed in Ringer's solution at 37°C. The open-circuit potential (EOCP) as a function of time, corrosion potential (ECORR), corrosion current density (jCORR) and polarization resistance (Rp) of the samples were determined. Surface modification improved the corrosion resistance of Ti-15Mo in Ringer's solution. In vitro studies with MG-63 osteoblast-like cells were performed for 1, 3 and 7 days. After 24h, the cells were well adhered on the entire surfaces, and their number increased with increasing culture time. The coatings formed in basic solution with wollastonite exhibited better biological performance compared with the as-ground sample. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Performance of intermediate temperature (600-800 °C) solid oxide fuel cell based on Sr and Mg doped lanthanum-gallate electrolyte

    NASA Astrophysics Data System (ADS)

    Gong, Wenquan; Gopalan, Srikanth; Pal, Uday B.

    The solid electrolyte chosen for this investigation was La 0.9Sr 0.1Ga 0.8Mg 0.2O 3 (LSGM). To select appropriate electrode materials from a group of possible candidate materials, AC complex impedance spectroscopy studies were conducted between 600 and 800 °C on symmetrical cells that employed the LSGM electrolyte. Based on the results of the investigation, LSGM electrolyte supported solid oxide fuel cells (SOFCs) were fabricated with La 0.6Sr 0.4Co 0.8Fe 0.2O 3-La 0.9Sr 0.1Ga 0.8Mg 0.2O 3 (LSCF-LSGM) composite cathode and nickel-Ce 0.6La 0.4O 2 (Ni-LDC) composite anode having a barrier layer of Ce 0.6La 0.4O 2 (LDC) between the LSGM electrolyte and the Ni-LDC anode. Electrical performances of these cells were determined and the electrode polarization behavior as a function of cell current was modeled between 600 and 800 °C.

  8. Plasma injector for a three-phase plasma torch with rail electrodes and some results of its investigation

    NASA Astrophysics Data System (ADS)

    Dudnik, Yu D.; Borovskoy, A. M.; Shiryaev, V. N.; Safronov, A. A.; Kuznetsov, V. E.; Vasilieva, O. B.; Pavlov, A. V.; Ivanov, D. V.

    2018-01-01

    Plasma injector made on the basis of the alternating-current plasma torch designed for the three-phase ac plasma torch with 100-500 kWrail electrodes is studied. The construction of the plasma injector is examined. Different materials for manufacture of injector electrodes are investigated. Current-voltage characteristics of the injector are obtained. Investigations of the plasma jet are carried out, and the jet temperature dependence versus the gas flow rate and electric power of the injector is measured.

  9. Electrolyte formulations

    DOEpatents

    Zhu, Ye; Strand, Deidre; Cheng, Gang

    2018-05-29

    An electrochemical cell including a silicon-based anode and an electrolyte, where the electrolyte is formulated to contain solvents having cyclic sulfone or cyclic sulfite chemical structure. Specific additional solvent and salt combinations yield superior performance in these electrochemical cells.

  10. Isotherm-Based Thermodynamic Model for Solute Activities of Asymmetric Electrolyte Aqueous Solutions.

    PubMed

    Nandy, Lucy; Dutcher, Cari S

    2017-09-21

    Adsorption isotherm-based statistical thermodynamic models can be used to determine solute concentration and solute and solvent activities in aqueous solutions. Recently, the number of adjustable parameters in the isotherm model of Dutcher et al. J. Phys. Chem. A/C 2011, 2012, 2013 were reduced for neutral solutes as well as symmetric 1:1 electrolytes by using a Coulombic model to describe the solute-solvent energy interactions (Ohm et al. J. Phys. Chem. A 2015, Nandy et al. J. Phys. Chem. A 2016). Here, the Coulombic treatment for symmetric electrolytes is extended to establish improved isotherm model equations for asymmetric 1-2 and 1-3 electrolyte systems. The Coulombic model developed here results in prediction of activities and other thermodynamic properties in multicomponent systems containing ions of arbitrary charge. The model is found to accurately calculate the osmotic coefficient over the entire solute concentration range with two model parameters, related to intermolecular solute-solute and solute-solvent spacing. The inorganic salts and acids treated here are generally considered to be fully dissociated. However, there are certain weak acids that do not dissociate completely, such as the bisulfate ion. In this work, partial dissociation of the bisulfate ion from sulfuric acid is treated as a mixture, with an additional model parameter that accounts for the dissociation ratio of the dissociated ions to nondissociated ions.

  11. Impact resistant electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veith, Gabriel M.; Armstrong, Beth L.; Tenhaeff, Wyatt E.

    A passively impact resistant composite electrolyte composition includes an electrolyte solvent, up to 2M of an electrolyte salt, and shear thickening ceramic particles having a polydispersity index of no greater than 0.1, an average particle size of in a range of 50 nm to 1 .mu.m, and an absolute zeta potential of greater than .+-.40 mV.

  12. Plasma apolipoprotein O level increased in the patients with acute coronary syndrome

    PubMed Central

    Yu, Bi-lian; Wu, Chen-lu; Zhao, Shui-ping

    2012-01-01

    Apolipoprotein (apo) O is a novel apolipoprotein that is present predominantly in high density lipoprotein (HDL). However, overexpression of apoO does not impact on plasma HDL levels or functionality in human apoA-I transgenic mice. Thus, the physiological function of apoO is not yet known. In the present study, we investigated relationships between plasma apoO levels and high-sensitive C-reactive protein (hs-CRP) levels, as well as other lipid parameters in healthy subjects (n = 111) and patients with established acute coronary syndrome (ACS) (n = 50). ApoO was measured by the sandwich dot-blot technique with recombinant apoO as a protein standard. Mean apoO level in healthy subjects was 2.21 ± 0.83 µg/ml whereas it was 4.94 ± 1.59 µg/ml in ACS patients. There were significant differences in plasma level of apoO between two groups (P < 0.001). In univariate analysis, apoO correlated significantly with lg(hsCRP) (r = 0.48, P < 0.001) in ACS patients. Notably, no significant correlation between apoO and other lipid parameters was observed. Logistic regression analysis showed that plasma apoO level was an independent predictor of ACS (OR = 5.61, 95% CI 2.16–14.60, P < 0.001). In conclusion, apoO increased in ACS patients, and may be regarded as an independent inflammatory predictor of ACS patients. PMID:22693255

  13. Translation, modification and cellular distribution of two AC4 variants of African cassava mosaic virus in yeast and their pathogenic potential in plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hipp, Katharina, E-mail: katharina.hipp@bio.uni-st

    Plant infecting geminiviruses encode a small (A)C4 protein within the open reading frame of the replication-initiator protein. In African cassava mosaic virus, two in-frame start codons may be used for the translation of a longer and a shorter AC4 variant. Both were fused to green fluorescent protein or glutathione-S-transferase genes and expressed in fission yeast. The longer variant accumulated in discrete spots in the cytoplasm, whereas the shorter variant localized to the plasma membrane. A similar expression pattern was found in plants. A myristoylation motif may promote a targeting of the shorter variant to the plasma membrane. Mass spectrometry analysismore » of the yeast-expressed shorter variant detected the corresponding myristoylation. The biological relevance of the second start codon was confirmed using mutated infectious clones. Whereas mutating the first start codon had no effect on the infectivity in Nicotiana benthamiana plants, the second start codon proved to be essential. -- Highlights: •The ACMV AC4 may be translated from one or the other in-frame start codon. •Both AC4 variants are translated in fission yeast. •The long AC4 protein localizes to the cytoplasm, the short to the plasma membrane. •The short variant is myristoylated in yeast and may promote membrane localization. •Only the shorter AC4 variant has an impact on viral infections in plants.« less

  14. Large Volume Non-Equilibrium Air Plasma at Atmospheric Pressure: A Novel Method with Low Power Requirements

    DTIC Science & Technology

    2007-02-28

    of magnitude in size. Also unlike corona -like devices such as the plasma needle , which generates 2-3 mm long plasma at the tip of a sharp wire...Distribution Unlimited Table of Contents Abstract AC System with Water Electrode Current voltage characteristics Plasma diagnostics results Experimental setup...Laroussi, PI. 4 AC SYSTEM WITH WATER ELECTRODE Recently, non-equilibrium atmospheric pressure plasmas have been used in a variety of material processing

  15. Charge dependence of the plasma travel length in atmospheric-pressure plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yambe, Kiyoyuki; Konda, Kohmei; Masuda, Seiya

    Plasma plume is generated using a quartz tube, helium gas, and foil electrode by applying AC high voltage under the atmosphere. The plasma plume is released into the atmosphere from inside of the quartz tube and is seen as the continuous movement of the plasma bullet. The travel length of plasma bullet is defined from plasma energy and force due to electric field. The drift velocity of plasma bullet has the upper limit under atmospheric-pressure because the drift velocity is determined from the balance between electric field and resistive force due to collisions between plasma and air. The plasma plumemore » charge depends on the drift velocity. Consequently, in the laminar flow of helium gas flow state, the travel length of the plasma plume logarithmically depends on the plasma plume charge which changes with both the electric field and the resistive force.« less

  16. Resolving the grain boundary and lattice impedance of hot-pressed Li 7La 3Zr 2O 12 garnet electrolytes

    DOE PAGES

    Tenhaeff, Wyatt E.; Wang, Yangyang; Sokolov, Alexei P.; ...

    2013-07-24

    Here, the cubic-stabilized garnet solid electrolyte with a nominal composition of Li 6.28Al 0.24La 3Zr 2O 12 is thoroughly characterized by impedance spectroscopy. By varying the frequency of the applied AC signal over 11 orders of magnitude for characterizations from –100 to +60 °C, the relative contributions of grain and grain boundary conduction are unambiguously resolved.

  17. Lithium Polymer Electrolytes Based On PMMA / PEG And Penetrant Diffusion In Kraton Penta-Block Ionomer

    NASA Astrophysics Data System (ADS)

    Meng, Yan

    The study of diffusion in polymeric material is critical to many research fields and applications, such as polymer morphology, protective coatings (paints and varnishes), separation membranes, transport phenomena, polymer electrolytes, polymer melt, and controlled release of drugs from polymer carriers [1-9]. However, it is still a challenge to understand, predict and control the diffusion of molecules and ions of different sizes in polymers [2]. This work studied the medium to long range diffusion of species (i.e., ions and molecules) in solid polymer electrolytes based on poly(ethylene glycol)/poly(methyl methacrylate) (PEG/PMMA) for Li-based batteries, and polymeric permselective membranes via pulsed-field gradient NMR and a.c. impedance. Over the past decades polymer electrolytes have attracted much attention because of their promising technological application as an ion-conducting medium in solid-state batteries, fuel cells, electrochromic displays, and chemical sensors [10, 11]. However, despite numerous studies related to ionic transport in these electrolytes the understanding of the migration mechanism is still far from being complete, and progress in the field remains largely empirical [10, 12-15]. Among various candidates for solid polymer electrolyte (SPE) material, the miscible polymer pair, poly(ethylene oxide)/poly(methyl methacrylate) (PEO/PMMA), is an attractive one, because there is a huge difference in mobility between PEO and PMMA in their blends, and PEO chains remain exceptionally mobile in the blend even at temperature below the glass transition temperature of the blend [ 16]. Thus the mechanical strength and dimensional stability is maintained by PMMA component, while the chain motions or rearrangements of the PEO component virtually contribute to the ion transport [17]. The current work prepared two types of SPE based on poly(ethylene glycol) (PEG) /PMMA (40/60 by weight) for Li-based batteries: lithium bis(trifluoromethylsulfonylimide) (Li

  18. Effect of blending and nanoparticles on the ionic conductivity of solid polymer electrolyte systems

    NASA Astrophysics Data System (ADS)

    Manjunatha, H.; Damle, R.; Kumaraswamy, G. N.

    2018-05-01

    In the present work, a polymer electrolyte blend containing polymers Poly ethylene oxide (PEO) and Poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) was prepared. The polymer blend was complexed with potassium trifluoromethanesulfonate (KCF3SO3), and titanium oxide nanoparticles (TiO2) (10nm size) were dispersed in to the complex at different weight percentages. The conductivity due to ions in the blend is determined by Ac impedance measurements in the frequency range of 10Hz-1MHz. The nano composite polymer blend containing 5wt% of TiO2 shows a conductivity of 7.95×10-5Scm-1, which is almost 1.5 orders more than polymer electrolyte with PEO as a polymer. XRD studies show a decrease in the coherence length of XRD peaks on addition of nanoparticles, which is due to increase the amorphous phase in the systems. Temperature dependence conductivity studies of the systems shows that, activation energy decreases with increase in the percentage of nanoparticles in the blend.

  19. Therapeutic plasma exchange: a paired comparison of Fresenius AS104 vs. COBE Spectra.

    PubMed

    Burgstaler, E A; Pineda, A A

    2001-01-01

    For therapeutic plasma exchange (TPE), continuous flow separators are known to be efficient as exemplified by Fresenius AS104 and COBE Spectra. The AS104 uses an interface monitoring system in the centrifuge during TPE, whereas Spectra uses computer algorithms to establish the plasma-cell interface. To determine the plasma collection efficiency (PLCE), anticoagulant (AC) volumes used, and platelets (PLT) lost of the AS104 and the Spectra, we performed a prospective paired comparison of 20 TPE (each machine). The study included 17 patients, 1.3 plasma volume exchanges (without AC), equal inlet rates, and AC ratio of 13:1. Processing times did not include reinfuse mode. Platelet loss was determined by sampling the collection bags. Inlet rates were between 60-110 ml/min. Diagnosis included peripheral neuropathies, TTP and cryoglobulinemia. The AS104 had significantly (P<0.0001) lower average whole blood processed (F:6,601 vs. S:8,584 ml), AC volume (F:532 vs. S:719 ml), and processing time (F:80 vs. S:102 minutes) than Spectra. The AS104 had significantly (P<0.0001) higher average plasma flow rates (F:53 vs. S:44 ml/minute), plasma collection efficiency (F:90 vs. S:69%), and platelet loss (F:2.0 vs. S:0.14 x 10(11) plt) than Spectra. Platelet loss correlated with inlet flow rate with the AS104 but not with the Spectra. The AS104 has a significantly higher collection efficiency than Spectra allowing it to remove the same amount of plasma in significantly less time, by processing significantly less blood, using significantly less AC, but removing significantly more platelets than Spectra. Copyright 2001 Wiley-Liss, Inc.

  20. Effects of weightlessness on human fluid and electrolyte physiology

    NASA Technical Reports Server (NTRS)

    Leach, Carolyn S.; Johnson, Philip C., Jr.

    1991-01-01

    Skylab and Spacelab data on changes occurring in human fluid and electrolyte physiology during the acute and adaptive phases of adaptation to spaceflight are summarized. The combined results for all three Spacelab studies show that hyponatremia developed within 20 h after the onset of weightlessness and continued throughout the flights, and hypokalemia developed by 40 h. Antidiuretic hormone was increased in plasma throughout the flights. Aldosterone decreased by 40 h, but after 7 days it had reached preflight levels.

  1. Effect of nanochitosan and succinonitrile on the AC ionic conductivity of plasticized nanocomposite solid polymer electrolytes (PNCSPE)

    NASA Astrophysics Data System (ADS)

    Karuppasamy, K.; Vani, C. Vijil; Nichelson, A.; Balakumar, S.; Shajan, X. Sahaya

    2013-06-01

    In the present study, the filler chitosan was converted into nanochitosan by ionotropic gelation method. Plasticized nanocomposite solid polymer electrolytes (PNCSPE) composed of poly ethylene oxide as host polymer, LiBOB (lithium bis(oxalatoborate)) as salt, SN as plasticizer and nanochitosan as filler were prepared by membrane hot-press technique. Succinonitrile and nanochitosan incorporation in PEO-LiBOB matrix enhanced the room temperature ionic conductivity. The highest ionic conductivities were found to be in the order of 10-3.2 S/cm.

  2. Scaling laws for AC gas breakdown and implications for universality

    NASA Astrophysics Data System (ADS)

    Loveless, Amanda M.; Garner, Allen L.

    2017-10-01

    The reduced dependence on secondary electron emission and electrode surface properties makes radiofrequency (RF) and microwave (MW) plasmas advantageous over direct current (DC) plasmas for various applications, such as microthrusters. Theoretical models relating molecular constants to alternating current (AC) breakdown often fail due to incomplete understanding of both the constants and the mechanisms involved. This work derives simple analytic expressions for RF and MW breakdown, demonstrating the transition between these regimes at their high and low frequency limits, respectively. We further show that the limiting expressions for DC, RF, and MW breakdown voltage all have the same universal scaling dependence on pressure and gap distance at high pressure, agreeing with experiment.

  3. Positive association between KCNJ5 rs2604204 (A/C) polymorphism and plasma aldosterone levels, but also plasma renin and angiotensin I and II levels, in newly diagnosed hypertensive Chinese: a case-control study.

    PubMed

    Wang, H; Weng, C; Chen, H

    2017-07-01

    Variants in G protein-coupled inward rectifier K + channels 4 (GIRK4 also known as KCNJ5) gene are associated with primary aldosteronism, which is the most common cause of secondary hypertension. The KCNJ5 rs2604204 variant was shown to be common (minor allele frequency=32.5%) in Chinese patients with essential hypertension (EH). The relationship between KCNJ5 variant and plasma aldosterone (ALD) levels in EH patients has not been reported. We collected 229 patients with newly diagnosed EH without any antihypertensive agents. According to the median standing plasma ALD, high-ALD and control groups were divided. Clinical data and blood samples were collected. KCNJ5 rs2604204 genotype was determined by PCR. The results showed that the levels of triglyceride, uric acid, insulin, insulin resistance (IR) index, renin, angiotensin I (Ang I), angiotensin II (Ang II), cortisol, 24 h mean systolic blood pressure (SBP) and daytime mean SBP were significantly increased in the high-ALD group than those in the control group, as well as 24 h s.d. of SBP and diastolic BP (DBP), and 24 h coefficient of variance of SBP and DBP. Notably, the distribution frequency of AC and CC genotypes, and the C allele of KCNJ5 were also significantly higher in the high-ALD group. Logistic regression analysis showed that the C allele of KCNJ5 rs2604204 was one risk factor for increased plasma ALD in Chinese EH patients (P=0.008, odds ratio=2.2 (95% confidence interval 1.2-4.1)). Our findings indicated that the variation of plasma ALD might be associated with increased IR and BP variability. Moreover, KCNJ5 rs2604204 polymorphism was related to increased plasma ALD level, but also plasma renin, Ang I and II levels in newly diagnosed, never-treated EH patients.

  4. Selected clinical, biochemical, and electrolyte alterations in anesthetized captive tigers (Panthera tigris) and lions (Panthera leo).

    PubMed

    Reilly, Sabrina; Seddighi, M Reza; Steeil, James C; Sura, Patricia; Whittemore, Jacqueline C; Gompf, Rebecca E; Elliott, Sarah B; Ramsay, Edward C

    2014-06-01

    A prospective study to assess changes in selected plasma biochemistry and electrolyte values, plasma insulin and aldosterone concentrations, and electrocardiography (ECG) was performed on eight female captive tigers (Panthera tigris) and three lions (Panthera leo) undergoing general anesthesia for elective laparoscopic ovariectomy. Each animal was sedated with medetomidine (18-25 microg/kg) and midazolam (0.06-0.1 mg/kg) intramuscularly, and anesthesia was induced with ketamine (1.9-3.5 mg/kg) intramuscularly and maintained with isoflurane. Venous blood samples were collected and analyzed for plasma biochemistry parameters and insulin and aldosterone concentrations. An ECG was recorded at the time of each blood sample collection. Mean plasma potassium, glucose, phosphorus, and aldosterone concentrations increased during anesthesia (P < or = 0.05). One tiger developed hyperkalemia (6.5 mmol/L) 2.5 hr after anesthetic induction. Plasma insulin concentrations were initially below the low end of the domestic cat reference interval (72-583 pmol/L), but mean insulin concentration increased (P < or = 0.05) over time compared with the baseline values. Three tigers and two lions had ECG changes that were representative of myocardial hypoxemia. Based on these results, continuous monitoring of clinical and biochemical alterations during general anesthesia in large nondomestic felids is warranted, and consideration should be given to reversal of medetomidine in these animals should significant changes in electrolytes or ECG occur.

  5. AC-130 Employment

    DTIC Science & Technology

    2006-01-01

    1 AC -130 Employment Subject Area Aviation EWS 2006 Author Captain Robert Hornick, USMC Report Documentation Page Form ApprovedOMB No. 0704...00-2006 4. TITLE AND SUBTITLE AC -130 Employment 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER... AC -130 gunship is an aircraft that can provide all of these needs. Regrettably, there are too few AC -130’s in the inventory to cover all the needs

  6. Fabrication and Characterization of Plasma Electrolytic Borocarburized Layers on Q235 Low-Carbon Steel at Different Discharge Voltages

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Wu, Jie; Jin, Xiaoyue; Wu, Xiaoling; Wu, Zhenglong; Xue, Wenbin

    The influence of applied voltage on the plasma electrolytic borocarburizing (PEB/C) layer of Q235 low-carbon steel in high-concentration borax solution was investigated. XRD and XPS spectra of PEB/C layer confirmed that the modified boride layer mainly consisted of Fe2B phase, and the FeB phase only exists in the loose top layer. The applied voltage on Q235 steel played a key role in determining the properties of hardened layers. The thickness and microhardness of boride layers increased with the increase of the applied voltage, which led to superior corrosion and wear resistances of Q235 low-carbon steel. The diffusion coefficient (D) of boride layer at 280, 300 and 330V increased with borocarburizing temperature and ranged from 0.062×10-12m2/s to 0.462×10-12m2/s. The activation energy (Q) of boride layer growth during PEB/C treatment was only 52.83kJṡmol-1, which was much lower than that of the conventional boriding process.

  7. Neurologic complications of electrolyte disturbances and acid-base balance.

    PubMed

    Espay, Alberto J

    2014-01-01

    Electrolyte and acid-base disturbances are common occurrences in daily clinical practice. Although these abnormalities can be readily ascertained from routine laboratory findings, only specific clinical correlates may attest as to their significance. Among a wide phenotypic spectrum, acute electrolyte and acid-base disturbances may affect the peripheral nervous system as arreflexic weakness (hypermagnesemia, hyperkalemia, and hypophosphatemia), the central nervous system as epileptic encephalopathies (hypomagnesemia, dysnatremias, and hypocalcemia), or both as a mixture of encephalopathy and weakness or paresthesias (hypocalcemia, alkalosis). Disabling complications may develop not only when these derangements are overlooked and left untreated (e.g., visual loss from intracranial hypertension in respiratory or metabolic acidosis; quadriplegia with respiratory insufficiency in hypermagnesemia) but also when they are inappropriately managed (e.g., central pontine myelinolisis when rapidly correcting hyponatremia; cardiac arrhythmias when aggressively correcting hypo- or hyperkalemia). Therefore prompt identification of the specific neurometabolic syndromes is critical to correct the causative electrolyte or acid-base disturbances and prevent permanent central or peripheral nervous system injury. This chapter reviews the pathophysiology, clinical investigations, clinical phenotypes, and current management strategies in disorders resulting from alterations in the plasma concentration of sodium, potassium, calcium, magnesium, and phosphorus as well as from acidemia and alkalemia. © 2014 Elsevier B.V. All rights reserved.

  8. Non-flammable polyphosphonate electrolytes

    NASA Astrophysics Data System (ADS)

    Dixon, Brian G.; Morris, R. Scott; Dallek, Steven

    This research is directed towards the development of safe, and thermally stable polymeric electrolytes. Advanced electrolytes are described, including thermal test data, which are ionically highly conductive, and non-flammable. These novel multi-heteropolymer electrolytes represent a significant advance in the design of high-performance rechargeable lithium systems that possess superior safety and handling characteristics. Representative results are shown by the figures contained in this text. These DSC/TGA results compare a typical liquid carbonate-based electrolyte system, ethylene carbonate and ethyl methyl carbonate, with novel polyphosphonates as synthesized in this program. These tests were performed with the electrolytes in combination with lithium metal, and the impressive relative thermal stability of the phosphonates is apparent.

  9. Electrolyte salts for nonaqueous electrolytes

    DOEpatents

    Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

    2012-10-09

    Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

  10. Lithium ion conducting electrolytes

    DOEpatents

    Angell, Charles Austen; Liu, Changle; Xu, Kang; Skotheim, Terje A.

    1999-01-01

    The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

  11. Solid polymer electrolyte compositions

    DOEpatents

    Garbe, James E.; Atanasoski, Radoslav; Hamrock, Steven J.; Le, Dinh Ba

    2001-01-01

    An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.

  12. Electrolytic purification of metals

    DOEpatents

    Bowman, Kenneth A.

    1980-01-01

    A method of electrolytically separating metal from impurities comprises providing the metal and impurities in a molten state in a container having a porous membrane therein, the membrane having a thickness in the range of about 0.01 to 0.1 inch, being capable of containing the molten metal in the container, and being permeable by a molten electrolyte. The metal is electrolytically transferred through the membrane to a cathode in the presence of the electrolyte for purposes of separating or removing impurities from the metal.

  13. Current concepts of space flight induced changes in hormonal control of fluid and electrolyte metabolism

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Johnson, P. C.; Suki, W. N.

    1983-01-01

    A systematic analysis of body fluid and renal dynamics during simulated space flight (head-down bedrest) was undertaken to increase understanding of the physiologic effects of acute cephalad fluid shifts. The earliest effects were increases in central venous pressure and decreases in plasma aldosterone, epinephrine and norepinephrine and glomerular filtration rate, 2 h after the beginning of bedrest. Decreases in plasma angiotensin I at 6 h may have resulted from the increased effective pressure and decreased sympathetic activity seen earlier in bedrest. The early decrease in aldosterone and ADH is thought to contribute to an increase, by 6 h, in urinary excretion of salt and water. Fluid and electrolyte losses occur during space flight, and analysis of body fluids from Space Shuttle crewmembers has indicated that conservation of these substances is begun almost immediately upon cessation of weightlessness. Operational medicine measures to counteract dehydration and electrolyte loss resulted in a less extreme physiologic response to the flight.

  14. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.

    PubMed

    Yu, Xingwen; Manthiram, Arumugam

    2017-11-21

    Electrode-electrolyte interfacial properties play a vital role in the cycling performance of lithium-sulfur (Li-S) batteries. The issues at an electrode-electrolyte interface include electrochemical and chemical reactions occurring at the interface, formation mechanism of interfacial layers, compositional/structural characteristics of the interfacial layers, ionic transport across the interface, and thermodynamic and kinetic behaviors at the interface. Understanding the above critical issues is paramount for the development of strategies to enhance the overall performance of Li-S batteries. Liquid electrolytes commonly used in Li-S batteries bear resemblance to those employed in traditional lithium-ion batteries, which are generally composed of a lithium salt dissolved in a solvent matrix. However, due to a series of unique features associated with sulfur or polysulfides, ether-based solvents are generally employed in Li-S batteries rather than simply adopting the carbonate-type solvents that are generally used in the traditional Li + -ion batteries. In addition, the electrolytes of Li-S batteries usually comprise an important additive, LiNO 3 . The unique electrolyte components of Li-S batteries do not allow us to directly take the interfacial theories of the traditional Li + -ion batteries and apply them to Li-S batteries. On the other hand, during charging/discharging a Li-S battery, the dissolved polysulfide species migrate through the battery separator and react with the Li anode, which magnifies the complexity of the interfacial problems of Li-S batteries. However, current Li-S battery development paths have primarily been energized by advances in sulfur cathodes. Insight into the electrode-electrolyte interfacial behaviors has relatively been overshadowed. In this Account, we first examine the state-of-the-art contributions in understanding the solid-electrolyte interphase (SEI) formed on the Li-metal anode and sulfur cathode in conventional liquid-electrolyte

  15. Activity of a new hydrogen sulfide-releasing aspirin (ACS14) on pathological cardiovascular alterations induced by glutathione depletion in rats.

    PubMed

    Rossoni, Giuseppe; Manfredi, Barbara; Tazzari, Valerio; Sparatore, Anna; Trivulzio, Silvio; Del Soldato, Piero; Berti, Ferruccio

    2010-12-01

    We investigated the effects of the hydrogen sulfide (H₂S)-releasing derivatives of aspirin (ACS14) and salicylic acid (ACS21) in a rat model of metabolic syndrome induced by glutathione (GSH) depletion, causing hypertension and other pathological cardiovascular alterations. GSH depletion was induced in normal rats by the GSH-synthase inhibitor buthionine sulfoximine (BSO, 30 mmol/L day for seven days in the drinking water). Systolic blood pressure and heart rate were measured daily by the tail-cuff method, and plasma thromboxane B₂, 6-keto-prostaglandin F(2α), 8-isoprostane, GSH, insulin and glucose were determined at the end of the seven-day BSO schedule. In addition, ischemia/reperfusion-induced myocardial dysfunction and endothelial dysfunction were assayed on isolated heart and aortic rings, respectively. Unlike aspirin and salicylic acid, ACS14 and ACS21 reduced BSO-induced hypertension, also lowering plasma levels of thromboxane B₂, 8-isoprostane and insulin, while GSH remained in the control range. Neither ACS14 nor ACS21 caused gastric lesions. Both restored the endothelial dysfunction observed in aortic rings from BSO-treated rats, and in ischemia/reperfusion experiments they lowered left ventricular end-diastolic pressure, consequently improving the developed pressure and the maximum rise and fall of left ventricular pressure. Together with this improvement of heart mechanics there were reductions in the activity of creatine kinase and lactate dehydrogenase in the cardiac perfusate. This implies that H₂S released by both ACS14 and ACS21 was involved in protecting the heart from ischemia/reperfusion, and significantly limited vascular endothelial dysfunction in aortic tissue and the related hypertension. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Electrochemically stable electrolytes

    DOEpatents

    Angell, Charles Austen; Zhang, Sheng-Shui; Xu, Kang

    1999-01-01

    This invention relates generally to inorganic ionic liquids which function as electrolytes and do not crystallize at ambient temperature. More specifically, this invention is directed to quasi-salt inorganic ionic liquids which comprise the reaction product of a strong Lewis acid with an inorganic halide-donating molecule. This invention is further directed to quasi-salt inorganic ionic liquid mixtures which comprise combinations of electrolyte additives and quasi-salt inorganic ionic liquids. These quasi-salt inorganic ionic liquid mixtures are useful electrolytes.

  17. Electrochemically stable electrolytes

    DOEpatents

    Angell, C.A.; Zhang, S.S.; Xu, K.

    1999-01-05

    This invention relates generally to inorganic ionic liquids which function as electrolytes and do not crystallize at ambient temperature. More specifically, this invention is directed to quasi-salt inorganic ionic liquids which comprise the reaction product of a strong Lewis acid with an inorganic halide-donating molecule. This invention is further directed to quasi-salt inorganic ionic liquid mixtures which comprise combinations of electrolyte additives and quasi-salt inorganic ionic liquids. These quasi-salt inorganic ionic liquid mixtures are useful electrolytes. 16 figs.

  18. Operating mechanisms of electrolytes in magnesium ion batteries: chemical equilibrium, magnesium deposition, and electrolyte oxidation.

    PubMed

    Kim, Dong Young; Lim, Younhee; Roy, Basab; Ryu, Young-Gyoon; Lee, Seok-Soo

    2014-12-21

    Since the early nineties there have been a number of reports on the experimental development of Mg electrolytes based on organo/amide-magnesium chlorides and their transmetalations. However, there are no theoretical papers describing the underlying operating mechanisms of Mg electrolytes, and there is no clear understanding of these mechanisms. We have therefore attempted to clarify the operating mechanisms of Mg electrolytes by studying the characteristics of Mg complexes, solvation, chemical equilibrium, Mg-deposition processes, electrolyte-oxidation processes, and oxidative degradation mechanism of RMgCl-based electrolytes, using ab initio calculations. The formation and solvation energies of Mg complexes highly depend on the characteristics of R groups. Thus, changes in R groups of RMgCl lead to changes in the equilibrium position and the electrochemical reduction and oxidation pathways and energies. We first provide a methodological scheme for calculating Mg reduction potential values in non-aqueous electrolytes and electrochemical windows. We also describe a strategy for designing Mg electrolytes to maximize the electrochemical windows and oxidative stabilities. These results will be useful not only for designing improved Mg electrolytes, but also for developing new electrolytes in the future.

  19. Composite Solid Electrolyte For Lithium Cells

    NASA Technical Reports Server (NTRS)

    Peled, Emmanuel; Nagasubramanian, Ganesan; Halpert, Gerald; Attia, Alan I.

    1994-01-01

    Composite solid electrolyte material consists of very small particles, each coated with thin layer of Lil, bonded together with polymer electrolyte or other organic binder. Material offers significant advantages over other solid electrolytes in lithium cells and batteries. Features include high ionic conductivity and strength. Composite solid electrolyte expected to exhibit flexibility of polymeric electrolytes. Polymer in composite solid electrolyte serves two purposes: used as binder alone, conduction taking place only in AI2O3 particles coated with solid Lil; or used as both binder and polymeric electrolyte, providing ionic conductivity between solid particles that it binds together.

  20. A simple model of fluid flow and electrolyte balance in the body

    NASA Technical Reports Server (NTRS)

    White, R. J.; Neal, L.

    1973-01-01

    The model is basically a three-compartment model, the three compartments being the plasma, interstitial fluid and cellular fluid. Sodium, potassium, chloride and urea are the only major solutes considered explicitly. The control of body water and electrolyte distribution is affected via drinking and hormone levels. Basically, the model follows the effect of various oral input water loads on solute and water distribution throughout the body.

  1. MicroPPT-Based Secondary/Backup ACS for a 160-m, 450-kg Solar Sail Spacecraft

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Murphy, David

    2005-01-01

    Solar sail tip-mounted, lightweight pulsed plasma thrusters (PPTs) are proposed for a secondary (or backup) attitude control system (ACS) of a 160-m, 450-kg solar sail spacecraft of the Solar Polar Imager (SPI) mission. A propellantless primary ACS of the SPI sailcraft employs trim control masses running along mast lanyards for pitch/yaw control together with roll stabilizer bars at the mast tips for quadrant tilt (roll) control. The robustness of such a propellantless primary ACS would be further enhanced by a secondary ACS utilizing tip-mounted, lightweight PPTs. The microPPT-based ACS is intended mainly for attitude recovery maneuvers from various off-nominal conditions that cannot be reliably handled by the propellantless primary ACS. However, it can also be employed for: i) the checkout or standby mode prior to and during sail deployment, ii) the post-deployment transition mode (prior to the propellantless primary ACS mode operation), iii) the solar sailing cruise mode of a trimmed sailcraft, and iv) the spin-stabilized, sun-pointing, safe mode. Although a conventional bus ACS is required for the SPI mission as the sail is jettisoned at the start of its science mission phase, the microPPT-based ACS option promises greater redundancy and robustness for the SPI mission. For other sailing missions, where the sail is never jettisoned, this secondary ACS provides a lower-cost, lower-mass propulsion for deployment control and greater redundancy than any traditional reaction-jet control system. This paper presents an overview nf the state--of-the--art microPPT technology, the design requirements of microPPTs for solar sail attitude control, and the preliminary ACS design and simulation results.

  2. The Study on the Overall Plasma Electrolytic Oxidation for 6061–7075 Dissimilar Aluminum Alloy Welded Parts Based on the Dielectric Breakdown Theory

    PubMed Central

    Song, Xiaocun; Zhou, Jixue; Liu, Hongtao; Yang, Yuansheng

    2018-01-01

    Electrical connection of dissimilar metals will lead to galvanic corrosion. Therefore, overall surface treatment is necessary for the protection of dissimilar metal welded parts. However, serious unbalanced reactions may occur during overall surface treatment, which makes it difficult to prepare integral coating. In this paper, an overall ceramic coating was fabricated by plasma electrolytic oxidation to wrap the 6061–7075 welded part integrally. Moreover, the growth mechanism of the coating on different areas of the welded part was studied based on the dielectric breakdown theory. The reaction sequence of each area during the treatment was verified through specially designed dielectric breakdown tests. The results showed that the high impedance overall of ceramic coating can inhibit the galvanic corrosion of the 6061–7075 welded part effectively. PMID:29301306

  3. Dielectric relaxation dynamics and AC conductivity scaling of metal-organic framework (MOF-5) based polymer electrolyte nanocomposites incorporated with ionic liquid

    NASA Astrophysics Data System (ADS)

    Dutta, Rituraj; Kumar, A.

    2017-10-01

    Dielectric relaxation dynamics and AC conductivity scaling of a metal-organic framework (MOF-5) based poly (vinylidene fluoride-co-hexafluoropropylene) (PVdf-HFP) incorporated with 1-Butyl-3-methylimidazolium hexafluorophosphate have been studied over a frequency range of 40 Hz-5 MHz and in the temperature range of 300 K-380 K. High values of dielectric permittivity (~{{\\varepsilon }\\prime} ) having strong dispersion are obtained at low frequency because of interfacial polarization. The real part of the dielectric modulus spectra (M‧) shows no prominent peak, whereas the imaginary part (M″) shows certain peaks, with a reduction in relaxation time (τ) that can be attributed to a non-Debye relaxation mechanism. The spectra also depict both concentration- and temperature-independent scaling behavior. The power law dependent variation of AC conductivity follows the jump relaxation model and reveals activated ion hopping over diffusion barriers. The value of the frequency exponent is observed to decrease with increasing concentration of ionic liquid, indicating the forward hopping of ions in the relaxation process. The AC conductivity scaling curves at different temperatures also depict the temperature-independent relaxation dynamics.

  4. Fluid and electrolyte shifts in women during +Gz acceleration after 15 days' bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Stinnett, H. O.; Davis, G. L.; Kollias, J.; Bernauer, E. M.

    1977-01-01

    Experiments were conducted on twelve women aged 23-34 yr - a bed rest (BR) group of eight subjects and an ambulatory (AMB) group of four subjects - to determine the effect of bed rest on shifts in plasma volume, electrolytes, and erythrocyte volume during +Gz acceleration on a centrifuge. The BR group underwent the +Gz acceleration during a two-week ambulatory control period, after 15 days of a 17-day BR period, and on the third day of ambulatory recovery. The AMB group underwent the same experimental procedures, but continued their normal daily routine during the BR period without additional prescribed physical exercise. Major conclusions are that (1) the higher the mean control tolerance, the greater the tolerance decline after BR; (2) relative confinement and reduced activity contribute as much to reduction in tolerance as does the horizontal body position during BR; (3) BR deconditioning has no effect on the erythrocyte volume during +3.0 Gz; and (4) about one-half the loss in tolerance after BR can be attributed to plasma volume and electrolyte shifts.

  5. Modeling Laser-Plasma Interactions in a Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Los, Eva; Strozzi, D. J.; Chapman, T.; Farmer, W. A.; Cohen, B. I.

    2017-10-01

    We consider how laser-plasma interactions, namely stimulated Raman and Brillouin scattering, develop in the presence of a background magnetic field. Externally-launched waves in magnetized plasma have been studied in magnetic fusion devices for several decades, with relatively little work on their parametric decay. The topic has received scant attention in the laser-plasma and high-energy-density fields, but is becoming timely. The MagLIF pulsed-power scheme relies on an imposed axial field and laser-preheat [S. Slutz et al., Phys. Rev. Lett. 2012]. Imposing a field on a hohlraum to reduce hotspot losses has also been proposed [L. J. Perkins et al., Phys. Plasmas 2013]. We consider how the field affects the linear light waves in a plasma, e.g. by decoupling the left- and right- circular polarizations (Faraday rotation). Parametric instability growth rates are presented, as functions of plasma conditions, field strength, and geometry. The scattered-light spectrum, which is routinely measured, is also found. Work performed under auspices of US DoE by LLNL under Contract DE-AC52-07NA27344.

  6. The effect of step height on the performance of three-dimensional ac electro-osmotic microfluidic pumps.

    PubMed

    Urbanski, John Paul; Levitan, Jeremy A; Burch, Damian N; Thorsen, Todd; Bazant, Martin Z

    2007-05-15

    Recent numerical and experimental studies have investigated the increase in efficiency of microfluidic ac electro-osmotic pumps by introducing nonplanar geometries with raised steps on the electrodes. In this study, we analyze the effect of the step height on ac electro-osmotic pump performance. AC electro-osmotic pumps with three-dimensional electroplated steps are fabricated on glass substrates and pumping velocities of low ionic strength electrolyte solutions are measured systematically using a custom microfluidic device. Numerical simulations predict an improvement in pump performance with increasing step height, at a given frequency and voltage, up to an optimal step height, which qualitatively matches the trend observed in experiment. For a broad range of step heights near the optimum, the observed flow is much faster than with existing planar pumps (at the same voltage and minimum feature size) and in the theoretically predicted direction of the "fluid conveyor belt" mechanism. For small step heights, the experiments also exhibit significant flow reversal at the optimal frequency, which cannot be explained by the theory, although the simulations predict weak flow reversal at higher frequencies due to incomplete charging. These results provide insight to an important parameter for the design of nonplanar electro-osmotic pumps and clues to improve the fundamental theory of ACEO.

  7. Large-current-controllable carbon nanotube field-effect transistor in electrolyte solution

    NASA Astrophysics Data System (ADS)

    Myodo, Miho; Inaba, Masafumi; Ohara, Kazuyoshi; Kato, Ryogo; Kobayashi, Mikinori; Hirano, Yu; Suzuki, Kazuma; Kawarada, Hiroshi

    2015-05-01

    Large-current-controllable carbon nanotube field-effect transistors (CNT-FETs) were fabricated with mm-long CNT sheets. The sheets, synthesized by remote-plasma-enhanced CVD, contained both single- and double-walled CNTs. Titanium was deposited on the sheet as source and drain electrodes, and an electrolyte solution was used as a gate electrode (solution gate) to apply a gate voltage to the CNTs through electric double layers formed around the CNTs. The drain current came to be well modulated as electrolyte solution penetrated into the sheets, and one of the solution gate CNT-FETs was able to control a large current of over 2.5 A. In addition, we determined the transconductance parameter per tube and compared it with values for other CNT-FETs. The potential of CNT sheets for applications requiring the control of large current is exhibited in this study.

  8. Electrolyte-carbohydrate beverage prevents water loss in the early stage of high altitude training.

    PubMed

    Yanagisawa, Kae; Ito, Osamu; Nagai, Satsuki; Onishi, Shohei

    2012-01-01

    To prevent water loss in the early stage of high altitude training, we focused on the effect of electrolyte-carbohydrate beverage (EC). Subjects were 16 male university students who belonged to a ski club. They had ski training at an altitude of 1,800 m. The water (WT) group drank only water, and the EC group drank only an electrolyte-carbohydrate beverage. They arrived at the training site in the late afternoon. The study started at 7 pm on the day of arrival and continued until noon of the 4(th) day. In the first 12 hours, 1 L of beverages were given. On the second and third days, 2.5 L of beverages were given. All subjects ate the same meals. Each morning while in fasting condition, subjects were weighed and blood was withdrawn for various parameters (hemoglobin, hematocrit, sodium, potassium and aldosterone). Urine was collected at 12 hour intervals for a total 60 hours (5 times). The urine volume, gravity, sodium and potassium concentrations were measured. Peripheral oxygen saturation and heart rate were measured during sleep with a pulse oximeter. Liquid intakes in both groups were similar, hence the electrolytes intake was higher in the EC group than in the WT group. The total urine volume was lower in the EC group than in the WT group, respectively (p<0.05). Plasma volume decreased in the WT group and increased in the EC group but a significant difference was not observed in the final value. Aldosterone concentration tended to be less in the EC group than in the WT group. Electrolyte-carbohydrate beverage in the early stage of high altitude training may be effective in decreasing urinary output and preventing loss of blood plasma volume.

  9. Electrolytic cell with reference electrode

    DOEpatents

    Kessie, Robert W.

    1989-01-01

    A reference electrode device is provided for a high temperature electrolytic cell used to electrolytically recover uranium from spent reactor fuel dissolved in an anode pool, the device having a glass tube to enclose the electrode and electrolyte and serve as a conductive membrane with the cell electrolyte, and an outer metal tube about the glass tube to serve as a shield and basket for any glass sections broken by handling of the tube to prevent their contact with the anode pool, the metal tube having perforations to provide access between the bulk of the cell electrolyte and glass membrane.

  10. Reference electrode for electrolytic cell

    DOEpatents

    Kessie, R.W.

    1988-07-28

    A reference electrode device is provided for a high temperature electrolytic cell used to electrolytically recover uranium from spent reactor fuel dissolved in an anode pool, the device having a glass tube to enclose the electrode and electrolyte and serve as a conductive membrane with the cell electrolyte, and an outer metal tube about the glass tube to serve as a shield and basket for any glass sections broken by handling of the tube to prevent their contact with the anode pool, the metal tube having perforations to provide access between the bulk of the cell electrolyte and glass membrane. 4 figs.

  11. Charge carrier dynamics and relaxation in (polyethylene oxide-lithium-salt)-based polymer electrolyte containing 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide as ionic liquid

    NASA Astrophysics Data System (ADS)

    Karmakar, A.; Ghosh, A.

    2011-11-01

    In this paper we report the dynamics of charge carriers and relaxation in polymer electrolytes based on polyethylene oxide (PEO), lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMPTFSI) ionic liquid prepared by solution cast technique. It has been observed that the incorporation of BMPTFSI into PEO-LiTFSI electrolyte is an effective way for increasing the amorphous phase to a large extent. It has also been observed that both the glass transition and melting temperatures decrease with the increase of BMPTFSI concentration. The ionic conductivity of these polymer electrolytes increases with the increase of BMPTFSI concentration. The highest ionic conductivity obtained at 25 °C is ˜3×10-4 S cm-1 for the electrolyte containing 60 wt % BMPTFSI and ethylene oxide (EO)/Li ratio of 20. The temperature dependence of the dc conductivity and the hopping frequency show Vogel-Tamman-Fulcher type behavior indicating a strong coupling between the ionic and the polymer chain segmental motions. The frequency dependence of the ac conductivity exhibits a power law with an exponent n which decreases with the increase of temperature. The scaling of the ac conductivity indicates that relaxation dynamics of charge carriers follows a common mechanism for all temperatures and BMPTFSI concentrations. We have also presented the electric modulus data which have been analyzed in the framework of a Havriliak-Negami equation and the shape parameters obtained by the analysis show slight temperature dependence, but change sharply with BMPTFSI concentration. The stretched exponent β obtained from Kohlrausch-Williams-Watts fit to the modulus data is much lower than unity signifying that the relaxation is highly nonexponential. The decay function obtained from analysis of experimental modulus data is highly asymmetric with time.

  12. AC electric field induced dielectrophoretic assembly behavior of gold nanoparticles in a wide frequency range

    NASA Astrophysics Data System (ADS)

    Liu, Weiyu; Wang, Chunhui; Ding, Haitao; Shao, Jinyou; Ding, Yucheng

    2016-05-01

    In this work, we focus on frequency-dependence of pearl chain formations (PCF) of gold nanoparticles driven by AC dielectrophoresis (DEP), especially in a low field-frequency range, where induced double-layer charging effect at ideally polarizable surfaces on particle DEP behavior and surrounding liquid motion need not be negligible. As field frequency varies, grown features of DEP assembly structures ranging from low-frequency non-bridged gap to high-frequency single gold nanoparticle-made nanowires bridging the electrodes are demonstrated experimentally. Specifically, at 10 kHz, a kind of novel channel-like structure with parallel opposing banks is formed at the center of interelectrode gap. In stark contrast, at 1 MHz, thin PCF with diameter of 100 nm is created along the shortest distance of the isolation spacing. Moreover, a particular conductive path of nanoparticle chains is produced at 1 MHz in a DEP device embedded with multiple floating electrodes. A theoretical framework taking into account field-induced double-layer polarization at both the particle/electrolyte and electrode/electrolyte interface is developed to correlate these experimental observations with induced-charge electrokinetic (ICEK) phenomenon. And a RC circuit model is helpful in accounting for the formation of this particular non-bridged channel-like structure induced by a low-frequency AC voltage. As compared to thin PCF formed at high field frequency that effectively short circuits the electrode pair, though it is difficult for complete PCF bridging to occur at low frequency, the non-bridged conducting microstructure has potential to further miniaturize the size of electrode gap fabricated by standard micromachining process and may find useful application in biochemical sensing.

  13. Drude-jellium model for the microwave conductivity of electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Nhan, Tran Thi; Theu, Luong Thi; Tuan, Le; Viet, Nguyen Ai

    2018-05-01

    The microwave conductivity characteristics of electrolyte solutions have attracted much interest of researchers because a good understanding of their properties plays a key role to study fundamental processes in biology and chemistry. In this work, we consider the solution of sodium chloride as a plasma consisting of ions with water background. Its plasmon frequency is calculated by the jellium theory. The linear dependence of the microwave conductivity on the ion concentration of the electrolyte solutions is explained by a microscopic approach and described by a combination of this plasmon relationship and the simplified Drude formula for dielectric constant. Furthermore, the dependence of the microwave conductivity on the frequency of the salt solution is also examined. We suggest that it obeys the logistic distribution. We found a good agreement between theoretical calculations and experimental data. The values of the damping coefficient γ for the conductive solutions at low frequencies and the cutting frequency are estimated. The linear dependence of the diffusion coefficient on the temperature of the salt solution is also shown, in similarity with the result in the other model. The application of the Drude-jellium model could be done for the other electrolyte solutions in order to study theirs electro-dynamic properties.

  14. Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors

    NASA Astrophysics Data System (ADS)

    Yan, Ying; Cai, Kaiyong; Yang, Weihu; Liu, Peng

    2013-07-01

    To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osseointegration and reduce Ni ion release in vitro.

  15. Nonfaradaic nanoporous electrochemistry for conductometry at high electrolyte concentration.

    PubMed

    Bae, Je Hyun; Kang, Chung Mu; Choi, Hyoungseon; Kim, Beom Jin; Jang, Woohyuk; Lim, Sung Yul; Kim, Hee Chan; Chung, Taek Dong

    2015-02-17

    Nanoporous electrified surfaces create a unique nonfaradaic electrochemical behavior that is sensitively influenced by pore size, morphology, ionic strength, and electric field modulation. Here, we report the contributions of ion concentration and applied ac frequency to the electrode impedance through an electrical double layer overlap and ion transport along the nanopores. Nanoporous Pt with uniform pore size and geometry (L2-ePt) responded more sensitively to conductivity changes in aqueous solutions than Pt black with poor uniformity despite similar real surface areas and enabled the previously difficult quantitative conductometry measurements at high electrolyte concentrations. The nanopores of L2-ePt were more effective in reducing the electrode impedance and exhibited superior linear responses to not only flat Pt but also Pt black, leading to successful conductometric detection in ion chromatography without ion suppressors and at high ionic strengths.

  16. Treatment of neonatal calf diarrhea with an oral electrolyte solution supplemented with psyllium mucilloid.

    PubMed

    Cebra, M L; Garry, F B; Cebra, C K; Adams, R; McCann, J P; Fettman, M J

    1998-01-01

    Dairy calves under 14 days of age with naturally occurring, uncomplicated diarrhea were treated for 3 days with a hypertonic oral electrolyte solution with (n = 15) or without (n = 12) psyllium. Clinical response and clinical pathology data were compared between the 2 groups. Glucose absorption was evaluated on days 1 and 3 by measurement of plasma glucose and lactate and serum insulin concentrations for 4 hours after formula administration. On day 1, glucose, lactate, and insulin concentrations were lower in psyllium-fed calves than in control calves, with significant differences noted in glucose and lactate concentrations at several time points (P < 0.05). Plasma lactate concentrations were higher at several times in both treatment groups on day 3 than on day 1 (P < 0.05). Fecal consistency was markedly different in psyllium-fed calves as compared with control calves within 24 hours of psyllium supplementation. Fecal percent dry matter content was lower in psyllium-fed calves than in control calves at least once a day during supplementation and on day 3 compared with day 0 in the psyllium-fed calves (P < 0.05). There were no significant differences in clinical performance scores, hydration status, arterial blood gas, serum anion gap, electrolyte, or total CO2 concentrations. Addition of psyllium to an oral electrolyte solution resulted in immediate alterations in glucose absorption without impairing rehydration in diarrheic calves, but differences were transient and did not affect clinical outcome.

  17. Electrolytic Reduction of Titania Slag in Molten Calcium Chloride Bath

    NASA Astrophysics Data System (ADS)

    Mohanty, Jayashree

    2012-05-01

    Ferro-titanium is prepared by direct electrolytic reduction of titania-rich slag obtained from plasma smelting of ilmenite in molten CaCl2. The product after electro-reduction is characterized by x-ray diffraction, scanning electron microscopy, and electron probe microanalysis. The electrolysis is carried out at a cell voltage of 3.0 V, taking graphite as the electrolysis cell as well as the anode, and a titania-rich slag piece wrapped by a nichrome wire is used as the cathode.

  18. Ceramic electrolyte coating methods

    DOEpatents

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2004-10-12

    Processes for preparing aqueous suspensions of a nanoscale ceramic electrolyte material such as yttrium-stabilized zirconia. The invention also includes a process for preparing an aqueous coating slurry of a nanoscale ceramic electrolyte material. The invention further includes a process for depositing an aqueous spray coating slurry including a ceramic electrolyte material on pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  19. The role of cathodic current in PEO of aluminum: Influence of cationic electrolyte composition on the transient current-voltage curves and the discharges optical emission spectra

    NASA Astrophysics Data System (ADS)

    Rogov, A. B.; Shayapov, V. R.

    2017-02-01

    In this paper, the influence of cationic electrolytes composition on electrical and optical responses of plasma electrolytic oxidation process of A1050 aluminum alloy under alternating polarization is considered. The electrolytes consist of 0.1 M boric acid with addition of one of the following hydroxides: LiOH, NaOH, KOH, tetraethylammonium hydroxide, Ca(OH)2 up to pH value 9.2. Coatings microstructure, elemental and phase compositions were studied by SEM, EDS and XRD. It was shown that the hysteresis of anodic current-voltage curve (specific feature of "Soft sparking" PEO) was clear observed in the presence of sodium and potassium cations. It was found that composition of microdischarges plasma is also affected by the nature of the cations. It was shown that there are a number of reciprocal processes, which take place under anodic and cathodic polarization.

  20. Gel polymer electrolytes for batteries

    DOEpatents

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  1. Electrolyte treatment for aluminum reduction

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-01-01

    A method of treating an electrolyte for use in the electrolytic reduction of alumina to aluminum employing an anode and a cathode, the alumina dissolved in the electrolyte, the treating improving wetting of the cathode with molten aluminum during electrolysis. The method comprises the steps of providing a molten electrolyte comprised of ALF.sub.3 and at least one salt selected from the group consisting of NaF, KF and LiF, and treating the electrolyte by providing therein 0.004 to 0.2 wt. % of a transition metal or transition metal compound for improved wettability of the cathode with molten aluminum during subsequent electrolysis to reduce alumina to aluminum.

  2. Neurologic manifestations of electrolyte disturbances.

    PubMed

    Riggs, Jack E

    2002-02-01

    Electrolyte disturbances occur commonly and are associated with a variety of characteristic neurologic manifestations involving both the central and peripheral nervous systems. Electrolyte disturbances are essentially always secondary processes. Effective management requires identification and treatment of the underlying primary disorder. Since neurological symptoms of electrolyte disorders are generally functional rather than structural, the neurologic manifestations of electrolyte disturbances are typically reversible. The neurologic manifestations of serum sodium, potassium, calcium, and magnesium disturbances are reviewed.

  3. Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Williamson, James M.; Trump, Darryl D.; Bletzinger, Peter; Ganguly, Biswa N.

    2006-10-01

    A surface dielectric barrier discharge (DBD) in atmospheric pressure air was excited either by low frequency (0.3-2 kHz) high-voltage ac or by short, high-voltage pulses at repetition rates from 50 to 600 pulses s-1. The short-pulse excited discharge was more diffuse and did not have the pronounced bright multiple cathode spots observed in the ac excited discharge. The discharge voltage, current and average power deposited into the discharge were calculated for both types of excitation. As a measure of plasma-chemical efficiency, the ozone number density was measured by UV absorption as a function of average deposited power. The density of ozone produced by ac excitation did not increase so rapidly as that produced by short-pulse excitation as a function of average power, with a maximum measured density of ~3 × 1015 cm-3 at 25 W. The maximum ozone production achieved by short-pulse excitation was ~8.5 × 1015 cm-3 at 20 W, which was four times greater than that achieved by ac excitation at the same power level.

  4. Association of Methylenetetrahydrofolate Reductase (MTHFR 677C>T and 1298A>C) Polymorphisms and Haplotypes with Silent Brain Infarction and Homocysteine Levels in a Korean Population

    PubMed Central

    Han, In Bo; Kim, Ok Joon; Ahn, Jung Yong; Oh, Doyeun; Hong, Sun Pyo; Huh, Ryoong; Chung, Sang Sup

    2010-01-01

    Purpose Methylenetetrahydrofolate reductase (MTHFR) is the main regulatory enzyme for homocysteine metabolism. In the present study, we evaluated whether the MTHFR 677C>T and 1298A>C gene polymorphisms are associated with SBI and plasma homocysteine concentration in a Korean population. Materials and Methods We enrolled 264 patients with SBI and 234 healthy controls in South Korea. Fasting plasma total homocysteine (tHcy) concentrations were measured, and genotype analysis of the MTHFR gene was carried out. Results The plasma tHcy levels were significantly higher in patients with SBI than in healthy controls. Despite a significant association between the MTHFR 677TT genotype and hyperhomocysteinemia, the MTHFR 677C>T genotypes did not appear to influence susceptibility to SBI. However, odds ratios of the 1298AC and 1298AC + CC genotypes for the 1298AA genotype were significantly different between SBI patients and normal controls. The frequencies of 677C-1298A and 677C-1298C haplotypes were significantly higher in the SBI group than in the control group. Conclusion This study demonstrates that the MTHFR 1298A>C polymorphism is a risk factor for SBI in a Korean population. The genotypes of 677C>T and 1298A>C polymorphisms interact additively, and increase the risk of SBI in Korean subjects. PMID:20191019

  5. Porous TiO₂ surface formed on nickel-titanium alloy by plasma electrolytic oxidation: a prospective polymer-free reservoir for drug eluting stent applications.

    PubMed

    Huan, Zhiguang; Fratila-Apachitei, Lidy E; Apachitei, Iulian; Duszczyk, Jurek

    2013-07-01

    In this study, a porous oxide layer was formed on the surface of nickel-titanium alloy (NiTi) by plasma electrolytic oxidation (PEO) with the aim to produce a polymer-free drug carrier for drug eluting stent (DES) applications. The oxidation was performed galvanostatically in concentrated phosphoric acid electrolyte at low temperature. It was found that the response of NiTi substrate during the PEO process was different from that of bulk Ti, since the presence of large amount of Ni delayed the initial formation of a compact oxide layer that is essential for the PEO to take place. Under optimized PEO conditions, the resultant surface showed porosity, pore density and oxide layer thickness of 14.11%, 2.40 × 10⁵ pores/mm² and 0.8 μm, respectively. It was additionally noted that surface roughness after PEO did not significantly increase as compared with that of original NiTi substrate and the EDS analyses revealed a decrease in Ni/Ti ratio on the surface after PEO. The cross-section morphology showed no discontinuity between the PEO layer and the NiTi substrate. Furthermore, wettability and surface free energy of the NiTi substrate increased significantly after PEO treatment. The PEO process could be successfully translated to NiTi stent configuration proving for the first time its feasibility for such a medical device and offering potential for development of alternative, polymer-free drug carriers for NiTi DES. Copyright © 2013 Wiley Periodicals, Inc.

  6. Electrolyte paste for molten carbonate fuel cells

    DOEpatents

    Bregoli, Lawrance J.; Pearson, Mark L.

    1995-01-01

    The electrolyte matrix and electrolyte reservoir plates in a molten carbonate fuel cell power plant stack are filled with electrolyte by applying a paste of dry electrolyte powder entrained in a dissipatable carrier to the reactant flow channels in the current collector plate. The stack plates are preformed and solidified to final operating condition so that they are self sustaining and can be disposed one atop the other to form the power plant stack. Packing the reactant flow channels with the electrolyte paste allows the use of thinner electrode plates, particularly on the anode side of the cells. The use of the packed electrolyte paste provides sufficient electrolyte to fill the matrix and to entrain excess electrolyte in the electrode plates, which also serve as excess electrolyte reservoirs. When the stack is heated up to operating temperatures, the electrolyte in the paste melts, the carrier vaporizes, or chemically decomposes, and the melted electrolyte is absorbed into the matrix and electrode plates.

  7. Synthesis and characterization of PVA blended LiClO4 as electrolyte material for battery Li-ion

    NASA Astrophysics Data System (ADS)

    Gunawan, I.; Deswita; Sugeng, B.; Sudaryanto

    2017-07-01

    It have been synthesized the materials for Li ion battery electrolytes, namely PVA with the addition of LiClO4 salt were varied 0, 5, 10, 15 and 20% by weight respectively. The objective of this study is to control the ionic conductivity in traditional polymer electrolytes, to improve ionic conductivity with the addition of lithium perchlorat (LiClO4). These electrolyte materials prepared by PVA powder was dissolved into distilled water and added LiClO4 salt were varied. After drying the solution, PVA sheet blended LiClO4 salt as electrolyte material for Li ion battery obtained. PVA blended LiClO4 salt crystallite form was confirmed using X-Ray Difraction (XRD) equipment. Observation of the morphology done by using Scanning Electron Microscope (SEM). While the electrical conductivity of the material is measured using LCR meter. The results of XRD pattern of LiClO4 shows intense peaks at angles 2θ = 23.2, 32.99, and 36.58°, which represent the crystalline nature of the salt. Particles morphology of the sample revealed by scanning electron microscopy are irregular in shape and agglomerated, with mean size 200-300 nm. It can be concluded that polycrystalline particles are composed of large number of crystallites. The study of conductivity by using LCR meter shows that all the graphs represent the DC and AC conductivity phenomena.

  8. Batteries using molten salt electrolyte

    DOEpatents

    Guidotti, Ronald A.

    2003-04-08

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  9. Enhancing Capacity Performance by Utilizing the Redox Chemistry of the Electrolyte in a Dual-Electrolyte Sodium-Ion Battery.

    PubMed

    Senthilkumar, Sirugaloor Thangavel; Bae, Hyuntae; Han, Jinhyup; Kim, Youngsik

    2018-05-04

    A strategy is described to increase charge storage in a dual electrolyte Na-ion battery (DESIB) by combining the redox chemistry of the electrolyte with a Na + ion de-insertion/insertion cathode. Conventional electrolytes do not contribute to charge storage in battery systems, but redox-active electrolytes augment this property via charge transfer reactions at the electrode-electrolyte interface. The capacity of the cathode combined with that provided by the electrolyte redox reaction thus increases overall charge storage. An aqueous sodium hexacyanoferrate (Na 4 Fe(CN) 6 ) solution is employed as the redox-active electrolyte (Na-FC) and sodium nickel Prussian blue (Na x -NiBP) as the Na + ion insertion/de-insertion cathode. The capacity of DESIB with Na-FC electrolyte is twice that of a battery using a conventional (Na 2 SO 4 ) electrolyte. The use of redox-active electrolytes in batteries of any kind is an efficient and scalable approach to develop advanced high-energy-density storage systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Conductivity measurements on CdCl2 doped PVA solid polymeric electrolyte for battery application

    NASA Astrophysics Data System (ADS)

    Baraker, Basavarajeshwari M.; Lobo, Blaise

    2018-04-01

    Ionic conductivity of pure polyvinyl alcohol (PVA) and 6.3 wt% of CdCl2 doped PVA solid polymeric electrolyte have been studied using DC and AC electrical measurements. From DC electrical results, the determination transference number confirmed that ions are the dominant charge carriers in CdCl2 doped PVA. Interestingly, the ion transference number (ti) for 6.3 wt% CdCl2 doped sample is significantly more (0.993), when compared to that of pure PVA (for which, ti is 0.988). Temperature dependent dielectric studies showed interesting results at different frequencies: 120 Hz, 500 Hz, 1 kHz, 5 kHz, 10 kHz and 100 kHz.

  11. Low Offset AC Correlator.

    DTIC Science & Technology

    This patent describes a low offset AC correlator avoids DC offset and low frequency noise by frequency operating the correlation signal so that low...noise, low level AC amplification can be substituted for DC amplification. Subsequently, the high level AC signal is demodulated to a DC level. (Author)

  12. Plasma /Na+/, /Ca++/, and volume shifts and thermoregulation during exercise in man

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Convertino, V. A.; Stremel, R. W.; Bernauer, E. M.; Adams, W. C.; Vignau, S. R.; Brock, P. J.

    1977-01-01

    Graded-exercise experiments are conducted on six trained male runners (19-23 yr) subjected to ergometer exercise in a program consisting of 30-min resting control period, 60 min of rest or exercise at work loads that resulted in a maximal oxygen uptake equivalent to 6% (resting), 23%, 43%, and 62% of maximal oxygen uptake, followed by 30 min of recovery. The parameters measured and discussed are rectal temperature (T-re), skin temperatures at different spots, maximal oxygen uptake, plasma volume (PV), and various plasma electrolyte and protein concentrations. The objectives are to determine whether the increased T-re during progressively greater work loads are related to plasma sodium ion and calcium ion concentrations, as well as to evaluate the influence of PV shifts on the electrolyte and osmotic concentrations. The results suggest that the shift (loss) in PV accounts for the increases in the plasma constituent concentrations that result in significant correlations with T-re.

  13. Bioactivity and biocompatibility of hydroxyapatite-based bioceramic coatings on zirconium by plasma electrolytic oxidation.

    PubMed

    Aktuğ, Salim Levent; Durdu, Salih; Yalçın, Emine; Çavuşoğlu, Kültigin; Usta, Metin

    2017-02-01

    In the present work, hydroxyapatite (HAP)-based plasma electrolytic oxide (PEO) coatings were produced on zirconium at different current densities in a solution containing calcium acetate and β-calcium glycerophosphate by a single step. The phase structure, surface morphology, functional groups, thickness and roughness of the coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), eddy current method and surface profilometer, respectively. The phases of cubic-zirconia, calcium zirconate and HAP were detected by XRD. The amount of HAP and calcium zirconate increased with increasing current density. The surface of the coatings was very porous and rough. Moreover, bioactivity and biocompatibility of the coatings were analyzed in vitro immersion simulated body fluid (SBF) and MTT (3-(4,5-dimethyl thiazol-2yl)-2,5-diphenyl tetrazolium bromide) assay, hemolysis assay and bacterial formation. The apatite-forming ability of the coatings was evaluated after immersion in SBF up to 28days. After immersion, the bioactivity of HAP-based coatings on zirconium was greater than the ones of uncoated zirconium and zirconium oxide-based surface. The bioactivity of PEO surface on zirconium was significantly improved under SBF conditions. The bacterial adhesion of the coatings decreased with increasing current density. The bacterial adhesion of the coating produced at 0.370A/cm 2 was minimum compared to uncoated zirconium coated at 0.260 and 0.292A/cm 2 . The hemocompatibility of HAP-based surfaces was improved by PEO. The cell attachment and proliferation of the PEO coatings were better than the one of uncoated zirconium according to MTT assay results. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Electrochemical Characterization of Vanadium Pentoxide (V 2O5) And Activated Carbon (AC) Electrodes in Multivalent Aluminum Nitrate (Al(NO3)3) Electrolyte for Battery-Type Hybrid Supercapacitor Applications

    NASA Astrophysics Data System (ADS)

    Solanki, Ketan Subhash

    Hybrid supercapacitors (HSC) have been extensively investigated for enhanced charge storage capacity (Yoo, et al. 2014). Although Li-ion batteries are known for high energy density, but their limited power density has driven the research toward developing hybrid supercapacitors (Jayalakshmi and Balasubramanian 2008). They combine non-faradic properties of electric double layer capacitors (EDLC) and faradic properties of pseudocapacitors to provide high energy density without compromising high Power density (Yoo, et al. 2014) (Lukatskaya, Dunn and Gogotsi 2016). In HSC, one electrode will store energy by double layer mechanism whereas the other stores through redox intercalation or surface redox reactions (Lukatskaya, Dunn and Gogotsi 2016) (Karthikeyan, et al. 2010). In this study, we have examined the electrochemical characteristics of vanadium pentoxide (V2O5) and activated carbon (AC) in an aqueous multivalent aluminum nitrate (nonhydrate, Al(NO3)3) electrolyte for viable electrode applications in battery-type hybrid supercapacitors, also known as supercapattery. A Specific capacitance of 340 Fg -1 was obtained at a scanning rate of 10 mV/s. Although this configuration showed promising storage and cyclability capability but the voltage for intercalation of Al3+ ions occurred below zero voltage. Hence, right selection of electrodes for such configurations may help in obtaining intercalation and de-intercalation voltages above zero volt and thereby result in a viable practical application with better performance.

  15. Non-aqueous electrolytes for electrochemical cells

    DOEpatents

    Zhang, Zhengcheng; Dong, Jian; Amine, Khalil

    2016-06-14

    An electrolyte electrochemical device includes an anodic material and an electrolyte, the electrolyte including an organosilicon solvent, a salt, and a hybrid additiving having a first and a second compound, the hybrid additive configured to form a solid electrolyte interphase film on the anodic material upon application of a potential to the electrochemical device.

  16. Double-membrane triple-electrolyte redox flow battery design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yushan, Yan; Gu, Shuang; Gong, Ke

    A redox flow battery is provided having a double-membrane (one cation exchange membrane and one anion exchange membrane), triple-electrolyte (one electrolyte in contact with the negative electrode, one electrolyte in contact with the positive electrode, and one electrolyte positioned between and in contact with the two membranes). The cation exchange membrane is used to separate the negative or positive electrolyte and the middle electrolyte, and the anion exchange membrane is used to separate the middle electrolyte and the positive or negative electrolyte. This design physically isolates, but ionically connects, the negative electrolyte and positive electrolyte. The physical isolation offers greatmore » freedom in choosing redox pairs in the negative electrolyte and positive electrolyte, making high voltage of redox flow batteries possible. The ionic conduction drastically reduces the overall ionic crossover between negative electrolyte and positive one, leading to high columbic efficiency.« less

  17. Fluorinated Electrolytes for Li-S Battery: Suppressing the Self-Discharge with an Electrolyte Containing Fluoroether Solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azimi, N.; Xue, Z.; Rago, N. D.

    The fluorinated electrolyte containing a fluoroether 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE) was investigated as a new electrolyte for lithium-sulfur (Li-S) batteries. The low solubility of lithium polysulfides (LiPS) in the fluorinated electrolyte reduced the parasitic reactions with Li anode and mitigated the self-discharge by limiting their diffusion from the cathode to the anode. The use of fluorinated ether as a co-solvent and LiNO3 as an additive in the electrolyte shows synergetic effect in suppressing the self-discharge of Li-S battery due to the formation of the solid electrolyte interphase (SEI) on both sulfur cathode and the lithium anode. The Li-S cell with themore » fluorinated electrolyte showed prolonged shelf life at fully charged state.« less

  18. Alternating current (AC) iontophoretic transport across human epidermal membrane: effects of AC frequency and amplitude.

    PubMed

    Yan, Guang; Xu, Qingfang; Anissimov, Yuri G; Hao, Jinsong; Higuchi, William I; Li, S Kevin

    2008-03-01

    As a continuing effort to understand the mechanisms of alternating current (AC) transdermal iontophoresis and the iontophoretic transport pathways in the stratum corneum (SC), the objectives of the present study were to determine the interplay of AC frequency, AC voltage, and iontophoretic transport of ionic and neutral permeants across human epidermal membrane (HEM) and use AC as a means to characterize the transport pathways. Constant AC voltage iontophoresis experiments were conducted with HEM in 0.10 M tetraethyl ammonium pivalate (TEAP). AC frequencies ranging from 0.0001 to 25 Hz and AC applied voltages of 0.5 and 2.5 V were investigated. Tetraethyl ammonium (TEA) and arabinose (ARA) were the ionic and neutral model permeants, respectively. In data analysis, the logarithm of the permeability coefficients of HEM for the model permeants was plotted against the logarithm of the HEM electrical resistance for each AC condition. As expected, linear correlations between the logarithms of permeability coefficients and the logarithms of resistances of HEM were observed, and the permeability data were first normalized and then compared at the same HEM electrical resistance using these correlations. Transport enhancement of the ionic permeant was significantly larger than that of the neutral permeant during AC iontophoresis. The fluxes of the ionic permeant during AC iontophoresis of 2.5 V in the frequency range from 5 to 1,000 Hz were relatively constant and were approximately 4 times over those of passive transport. When the AC frequency decreased from 5 to 0.001 Hz at 2.5 V, flux enhancement increased to around 50 times over passive transport. While the AC frequency for achieving the full effect of iontophoretic enhancement at low AC frequency was lower than anticipated, the frequency for approaching passive diffusion transport at high frequency was higher than expected from the HEM morphology. These observations are consistent with a transport model of multiple

  19. Comparison of hormone and electrolyte circadian rhythms in male and female humans

    NASA Technical Reports Server (NTRS)

    Vernikos-Danellis, J.; Winget, C. M.; Goodwin, A. E.; Reilly, T.

    1977-01-01

    Circadian rhythm characteristics in healthy male and female humans were studied at 4-hour intervals for urine volume, cortisol, 5-hydroxyindoleacetic acid (5-HIAA), Na, K, Na/K ratios in the urine, as well as plasma cortisol. While plasma and urinary cortisol rhythms were very similar in both sexes, the described rhythms in urine volume, electrolyte, and 5-HIAA excretion differ for the two sexes. The results suggest that sex differences exist in the circadian patterns of important hormone and metabolic functions and that the internal synchrony of circadian rhythms differs for the two sexes. The results seem to indicate that the rhythmical secretion of cortisol does not account for the pattern of Na and K excretion.

  20. Electron Temperature and Plasma Flow Measurements of NIF Hohlraum Plasmas

    NASA Astrophysics Data System (ADS)

    Barrios, M. A.; Liedahl, D. A.; Schneider, M. B.; Jones, O.; Brow, G. V.; Regan, S. P.; Fournier, K. B.; Moore, A. S.; Ross, J. S.; Eder, D.; Landen, O.; Kauffman, R. L.; Nikroo, A.; Kroll, J.; Jaquez, J.; Huang, H.; Hansen, S. B.; Callahan, D. A.; Hinkel, D. E.; Bradley, D.; Moody, J. D.; LLNL Collaboration; LLE Collaboration; GA Collaboration; SNL Collaboration

    2016-10-01

    Characterizing the plasma conditions inside NIF hohlraums, in particular mapping the plasma Te, is critical to gaining insight into mechanisms that affect energy coupling and transport in the hohlraum. The dot spectroscopy platform provides a temporal history of the localized Te and plasma flow inside a NIF hohlraum, by introducing a Mn-Co tracer dot, at strategic locations inside the hohlraum, that comes to equilibrium with the local plasma. K-shell X-ray spectroscopy of the tracer dot is recorded onto an absolutely calibrated X-ray streak spectrometer. Isoelectronic and interstage line ratios are used to infer localized Te through comparison with atomic physics calculations using SCRAM. Time resolved X-ray images are simultaneously taken of the expanding dot, providing plasma (ion) flow information. We present recent results provided by this platform and compare with simulations using HYDRA. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  1. Ceramic electrolyte coating and methods

    DOEpatents

    Seabaugh, Matthew M [Columbus, OH; Swartz, Scott L [Columbus, OH; Dawson, William J [Dublin, OH; McCormick, Buddy E [Dublin, OH

    2007-08-28

    Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  2. One-step preparation of nanostructured martite catalyst and graphite electrode by glow discharge plasma for heterogeneous electro-Fenton like process.

    PubMed

    Khataee, Alireza; Sajjadi, Saeed; Hasanzadeh, Aliyeh; Vahid, Behrouz; Joo, Sang Woo

    2017-09-01

    Natural Martite ore particles and graphite were modified by alternating current (AC) glow discharge plasma to form nanostructured catalyst and cathode electrode for using in the heterogeneous-electro Fenton-like (Het-EF-like) process. The performance of the plasma-treated martite (PTM) and graphite electrode (PTGE) was studied for the treatment of paraquat herbicide in a batch system. 85.78% degradation efficiency for 20 mg L -1 paraquat was achieved in the modified process under desired operational conditions (i.e. current intensity of 300 mA, catalyst amount of 1 g L -1 , pH = 6, and background electrolyte (Na 2 SO 4 ) concentration of 0.05 mol L -1 ) which was higher than the 41.03% for the unmodified one after 150 min of treatment. The ecofriendly modification of the martite particles and the graphite electrode, no chemical needed, low leached iron and milder operational pH were the main privileges of plasma utilization. Moreover, the degradation efficiency through the process was not declined after five repeated cycles at the optimized conditions, which proved the stability of the nanostructured PTM and PTGE in the long-term usage. The archived results exhibit this method is the first example of high efficient, cost-effective, and environment-friendly method for generation of nanostructured samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. An 11 cm long atmospheric pressure cold plasma plume for applications of plasma medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Xinpei; Jiang Zhonghe; Xiong Qing

    2008-02-25

    In this letter, a room temperature atmospheric pressure plasma jet device is reported. The high voltage electrode of the device is covered by a quartz tube with one end closed. The device, which is driven by a kilohertz ac power supply, is capable of generating a plasma plume up to 11 cm long in the surrounding room air. The rotational and vibrational temperatures of the plasma plume are 300 and 2300 K, respectively. A simple electrical model shows that, when the plasma plume is contacted with a human, the voltage drop on the human is less than 66 V formore » applied voltage of 5 kV (rms)« less

  4. Bed-rest studies - Fluid and electrolyte responses

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1983-01-01

    Confinement in the horizontal position for 2 to 3 weeks results in a chronic decrease in plasma volume, increased interstitial fluid volume, and unchanged or slightly increased extracellular fluid volume. Concentrations of blood electrolytes, glucose, and nitrogenous constituents remain within normal limits of variability when maintenance levels of isometric or isotonic exercise are performed for 1 hr/day. Hematocrit and plasma osmolality can be elevated significantly throughout bed rest (BR). Significant diuresis occurs on the first day, and increases in urine Na and Ca continue throughout BR, although voluntary fluid intake is unchanged. Urine Na and K are evaluated during the second week of BR in spite of stabilization of PV and extracellular volume. The initial diuresis probably arises from extracellular fluid while subsequent urine loss above control levels must come from the intracellular fluid. Preservation of the extracellular volume takes precedance over maintenance of the intracellular fluid volume. The functioning of a natriuretic factor (hormone) to account for the continued increased loss of Na in the urine is suggested. Previously announced in STAR as N83-24160

  5. Bed-rest studies: Fluid and electrolyte responses

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1983-01-01

    Confinement in the horizontal position for 2 to 3 weeks results in a chronic decrease in plasma volume, increased interstitial fluid volume, and unchanged or slightly increased extracellular fluid volume. Concentrations of blood electrolytes, glucose, and nitrogenous constituents remain within normal limits of variability when maintenance levels of isometric or isotonic exercise are performed for 1 hr/day. Hematocrit and plasma osmolality can be elevated significantly throughout bed rest (BR). Significant diuresis occurs on the first day, and increases in urine Na and Ca continue throughout BR, although voluntary fluid intake is unchanged. Urine Na and K are evaluated during the second week of BR in spite of stabilization of PV and extracellular volume. The initial diuresis probably arises from the extracellular fluid while subsequent urine loss above control levels must come from the intracellular fluid. Preservation of the extracellular volume takes precedance over maintenance of the intracellular fluid volume. The functioning of a natriuretic factor (hormone) to account for the continued increased loss of Na in the urine is suggested.

  6. Polymorphisms, de novo lipogenesis, and plasma triglyceride response following fish oil supplementation

    PubMed Central

    Bouchard-Mercier, Annie; Rudkowska, Iwona; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2013-01-01

    Interindividual variability in the response of plasma triglyceride concentrations (TG) following fish oil consumption has been observed. Our objective was to examine the associations between single-nucleotide polymorphisms (SNPs) within genes encoding proteins involved in de novo lipogenesis and the relative change in plasma TG levels following a fish oil supplementation. Two hundred and eight participants were recruited in the greater Quebec City area. The participants completed a six-week fish oil supplementation (5 g fish oil/day: 1.9–2.2 g eicosapentaenoic acid and 1.1 g docosahexaenoic acid. SNPs within SREBF1, ACLY, and ACACA genes were genotyped using TAQMAN methodology. After correction for multiple comparison, only two SNPs, rs8071753 (ACLY) and rs1714987 (ACACA), were associated with the relative change in plasma TG concentrations (P = 0.004 and P = 0.005, respectively). These two SNPs explained 7.73% of the variance in plasma TG relative change following fish oil consumption. Genotype frequencies of rs8071753 according to the TG response groups (responders versus nonresponders) were different (P = 0.02). We conclude that the presence of certain SNPs within genes, such as ACLY and ACACA, encoding proteins involved in de novo lipogenesis seem to influence the plasma TG response following fish oil consumption. PMID:23886516

  7. Polymorphisms, de novo lipogenesis, and plasma triglyceride response following fish oil supplementation.

    PubMed

    Bouchard-Mercier, Annie; Rudkowska, Iwona; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2013-10-01

    Interindividual variability in the response of plasma triglyceride concentrations (TG) following fish oil consumption has been observed. Our objective was to examine the associations between single-nucleotide polymorphisms (SNPs) within genes encoding proteins involved in de novo lipogenesis and the relative change in plasma TG levels following a fish oil supplementation. Two hundred and eight participants were recruited in the greater Quebec City area. The participants completed a six-week fish oil supplementation (5 g fish oil/day: 1.9-2.2 g eicosapentaenoic acid and 1.1 g docosahexaenoic acid. SNPs within SREBF1, ACLY, and ACACA genes were genotyped using TAQMAN methodology. After correction for multiple comparison, only two SNPs, rs8071753 (ACLY) and rs1714987 (ACACA), were associated with the relative change in plasma TG concentrations (P = 0.004 and P = 0.005, respectively). These two SNPs explained 7.73% of the variance in plasma TG relative change following fish oil consumption. Genotype frequencies of rs8071753 according to the TG response groups (responders versus nonresponders) were different (P = 0.02). We conclude that the presence of certain SNPs within genes, such as ACLY and ACACA, encoding proteins involved in de novo lipogenesis seem to influence the plasma TG response following fish oil consumption.

  8. ELECTROLYTE DISTURBANCE AND KIDNEY DYSFUNCTION IN DENGUE VIRAL INFECTION.

    PubMed

    Vachvanichsanong, Prayong; McNeil, Edward

    2015-01-01

    Dengue virus infection (DVI) is endemic in tropical countries in both children and adults. The classical presentation includes fever, hepatomegaly, thrombocytopenia-related bleeding disorders, and plasma leakage. Multi-organ involvement, including kidneys is found in complex cases. Asymptomatic electrolyte disturbances, abnormal urinalysis, and more severe manifestation such as acute kidney injury (AKI) usually indicate kidney involvement. Such manifestations are not rare in DVI, but are often not recognized and can cause the physician to misread the real situation of the patient. The prevalence of electrolyte disturbances or kidney involvement reported in studies varies widely by country and mainly depends on the severity of DVI and age of the patients. The prevalence of DVI-induced AKI ranges from 0.2%-10.0% in children and 2.2%-35.7% in adults. The prevalence among all age groups appears to be increasing in the last decade. Dengue shock syndrome (DSS) has been reported to be an independent risk factor for AKI development. The mechanism of DVI-induced AKI is complex and the details are to date undetermined. Urinalysis, serum electrolytes and creatinine measurements should be performed to document renal involvement in DVI patients for early detection and initiation of appropriate fluid therapy with close monitoring. Renal replacement therapy may be required in some cases. The presence of AKI dramatically increases the mortality rate among both childhood and adulthood DVI from 12%-44% to more than 60%.

  9. Electrolytic decontamination of conductive materials

    NASA Astrophysics Data System (ADS)

    Campbell, George M.; Nelson, Timothy O.; Parker, John L.; Getty, Richard H.; Hergert, Tom R.; Lindahl, Kirk A.; Peppers, Larry G.

    1994-10-01

    Using the electrolytic method, we have demonstrated removal of Pu and Am from contaminated conductive material. At EG and G /Rocky Flats, we electrolytically decontaminated stainless steel. Results from this work show removal of fixed contamination, including the following geometries: planar, large radius, bolt holes, glove ports, and protruding studs. More specifically, fixed contamination was reduced from levels ranging from greater than 1 000 000 counts per minute (cpm) down to levels ranging from 1500 to 250 cpm using the electrolytic method. More recently, the electrolytic work has continued at Los Alamos National Laboratory as a joint project with EG and G/Rocky Flats. Impressively, electrolytic decontamination of Pu /Am from U surfaces (10 sq cm per side) shows decreases in swipable contamination from 500 000-1 500 000 disintegrations per minute (dpm) down to 0-2 dpm. Moreover, the solid waste product of the electrolytic method is reduced in volume by more than 50 times compared with the liquid waste produced by the previous U decontamination method -- a hot concentrated acid spray leach process.

  10. HPLC analysis of para-aminosalicylic acid and its metabolite in plasma, cerebrospinal fluid and brain tissues

    PubMed Central

    Hong, Lan; Jiang, Wendy; Zheng, Wei; Zeng, Su

    2011-01-01

    Para-aminosalicylic acid (PAS), an approved drug for treatment of tuberculosis, is a promising therapeutic agent for treatment of manganese (Mn)-induced parkinsonian syndromes. Lack of a quantifying method, however, has hindered the clinical evaluation of its efficacy and thereupon new drug development. This study was aimed at developing a simple and effective method to quantify PAS and its major metabolite, N-acetyl-para-aminosalicylic acid (AcPAS), in plasma, cerebrospinal fluid (CSF) and tissues. Biological samples underwent one-step protein precipitation. The supernatant was fractionated on a reversed-phase C18 column with a gradient mobile system, followed by on-line fluorescence detection. The lower limits of quantification for both PAS and AcPAS were 50 ng/ml of plasma and 17 ng/g of tissues. The intra-day and inter-day precision values did not exceed 5% and 8%, respectively, in all three matrices. The method was used to quantify PAS and AcPAS in rat plasma and brain following a single iv injection of PAS. Data showed a greater amount of PAS than AcPAS in plasma, while a greater amount of AcPAS than PAS was found in brain tissues. The method has been proven to be sensitive, reproducible, and practically useful for laboratory and clinical investigations of PAS in treatment of Mn Parkinsonism. PMID:21159459

  11. Electrochemical Impedance and Polarization Corrosion Studies of Tantalum Surface Modified by DC Plasma Electrolytic Oxidation

    PubMed Central

    Sowa, Maciej

    2018-01-01

    Tantalum has recently become an actively researched biomaterial for the bone reconstruction applications because of its excellent corrosion resistance and successful clinical records. However, a bare Ta surface is not capable of directly bonding to the bone upon implantation and requires some method of bioactivation. In this study, this was realized by direct current (DC) plasma electrolytic oxidation (PEO). Susceptibility to corrosion is a major factor determining the service-life of an implant. Therefore, herein, the corrosion resistance of the PEO coatings on Ta was investigated in Ringer’s solution. The coatings were formed by galvanostatic anodization up to 200, 300 and 400 V, after which the treatment was conducted potentiostatically until the total process time amounted to 5 min. Three solutions containing Ca(H2PO2)2, Ca(HCOO)2 and Mg(CH3COO)2 were used in the treatment. For the corrosion characterization, electrochemical impedance spectroscopy and potentiodynamic polarization techniques were chosen. The coatings showed the best corrosion resistance at voltages low enough so that the intensive sparking was absent, which resulted in the formation of thin films. The impedance data were fitted to the equivalent electrical circuits with two time constants, namely R(Q[R(QR)]) and R(Q[R(Q[RW])]). The inclusion of W in the circuit helped to fit the low-frequency part of the samples PEO-ed at 400 V, hinting at the important role of diffusion in the corrosion resistance of the PEO coatings described in the research. PMID:29614014

  12. Power density measurements to optimize AC plasma jet operation in blood coagulation.

    PubMed

    Ahmed, Kamal M; Eldeighdye, Shaimaa M; Allam, Tarek M; Hassanin, Walaa F

    2018-06-14

    In this paper, the plasma power density and corresponding plasma dose of a low-cost air non-thermal plasma jet (ANPJ) device are estimated at different axial distances from the nozzle. This estimation is achieved by measuring the voltage and current at the substrate using diagnostic techniques that can be easily made in laboratory; thin wire and dielectric probe, respectively. This device uses a compressed air as input gas instead of the relatively-expensive, large-sized and heavy weighed tanks of Ar or He gases. The calculated plasma dose is found to be very low and allows the presented device to be used in biomedical applications (especially blood coagulation). While plasma active species and charged-particles are found to be the most effective on blood coagulation formation, both air flow and UV, individually, do not have any effect. Moreover, optimal conditions for accelerating blood coagulation are studied. Results showed that, the power density at the substrate is shown to be decreased with increasing the distance from the nozzle. In addition, both distances from nozzle and air flow rate play an important role in accelerating blood coagulation process. Finally, this device is efficient, small-sized, safe enough, of low cost and, hence, has its chances to be wide spread as a first aid and in ambulance.

  13. Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Dongping; Tao, Jinhui; Yan, Pengfei

    2017-02-10

    Interfacial phenomena have always been key determinants for the performance of energy storage technologies. The solid electrolyte interfacial (SEI) layer, pervasive on the surfaces of battery electrodes for numerous chemical couples, directly affects the ion transport, charge transfer and lifespan of the entire energy system. Almost all SEI layers, however, are unstable resulting in the continuous consumption of the electrolyte. Typically, this leads to the accumulation of degradation products on/restructuring of the electrode surface and thus increased cell impedance, which largely limits the long-term operation of the electrochemical reactions. Herein, a completely new SEI formation mechanism has been discovered, inmore » which the electrolyte components reversibly self-assemble into a protective surface coating on a graphite electrode upon changing the potential. In contrast to the established wisdom regarding the necessity of employing the solvent ethylene carbonate (EC) to form a protective SEI layer on graphite, a wide range of EC-free electrolytes are demonstrated for the reversible intercalation/deintercalation of Li+ cations within a graphite lattice, thereby providing tremendous flexibility in electrolyte tailoring for battery couples. This novel finding is broadly applicable and provides guidance for how to control interfacial reactions through the relationship between ion aggregation and solvent decomposition at polarized interfaces.« less

  14. Maintaining molten salt electrolyte concentration in aluminum-producing electrolytic cell

    DOEpatents

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2005-01-04

    A method of maintaining molten salt concentration in a low temperature electrolytic cell used for production of aluminum from alumina dissolved in a molten salt electrolyte contained in a cell free of frozen crust wherein volatile material is vented from the cell and contacted and captured on alumina being added to the cell. The captured volatile material is returned with alumina to cell to maintain the concentration of the molten salt.

  15. Electrolyte volume effects on electrochemical performance and solid electrolyte interphase in Si-graphite/NMC lithium-ion pouch cells

    DOE PAGES

    An, Seong Jin; Li, Jianlin; Daniel, Claus; ...

    2017-05-15

    This study aims to explore the correlations between electrolyte volume, electrochemical performance, and properties of the solid electrolyte interphase in pouch cells with Si-graphite composite anodes. The electrolyte is 1.2 M LiPF 6 in ethylene carbonate:ethylmethyl carbonate with 10 wt.% fluoroethylene carbonate. Single layer pouch cells (100 mAh) were constructed with 15 wt.% Si-graphite/LiNi 0.5Mn 0.3CO 0.2O 2 electrodes. It is found that a minimum electrolyte volume factor of 3.1 times the total pore volume of cell components (cathode, anode, and separator) is needed for better cycling stability. Less electrolyte causes increases in ohmic and charge transfer resistances. Lithium dendritesmore » are observed when the electrolyte volume factor is low. The resistances from the anodes become significant as the cells are discharged. As a result, solid electrolyte interphase thickness grows as the electrolyte volume factor increases and is non-uniform after cycling.« less

  16. Electrolyte measurement device and measurement procedure

    DOEpatents

    Cooper, Kevin R.; Scribner, Louie L.

    2010-01-26

    A method and apparatus for measuring the through-thickness resistance or conductance of a thin electrolyte is provided. The method and apparatus includes positioning a first source electrode on a first side of an electrolyte to be tested, positioning a second source electrode on a second side of the electrolyte, positioning a first sense electrode on the second side of the electrolyte, and positioning a second sense electrode on the first side of the electrolyte. current is then passed between the first and second source electrodes and the voltage between the first and second sense electrodes is measured.

  17. Corrosion behavior and cytocompatibility of fluoride-incorporated plasma electrolytic oxidation coating on biodegradable AZ31 alloy

    PubMed Central

    Tian, Peng; Peng, Feng; Wang, Donghui; Liu, Xuanyong

    2017-01-01

    Fluoride-incorporated plasma electrolytic oxidation (PEO) coating was fabricated on biodegradable AZ31 alloy. The surface morphologies and phases were investigated by scanning electron microscopy and X-ray diffraction. The effect of fluoride incorporation in coatings on corrosion behaviour was investigated in simulated body fluid and in vitro cytocompatibility of the coatings was also studied by evaluating cytotoxicity, adhesion, proliferation and live–dead stain of osteoblast cells (MC3T3-E1). Furthermore, the corrosion morphologies in vivo were examined. The results showed that the fluoride could be incorporated into the coating to form MgF2 phase. In vitro and in vivo degradation tests revealed that the corrosion resistance of the coating could be improved by the incorporation of fluoride, which may attribute to the chemical stability of MgF2 phase. Moreover, good cytocompatibility of fluoride-incorporated coating was confirmed with no obvious cytotoxicity, enhanced cell adhesion and proliferation. However, when the fluoride content was high, a slight inhibition of cell growth was observed. The results indicate that although fluoride incorporation can enhance the corrosion resistance of the coatings, thus resulting a more suitable environment for cells, the high content of fluoride in the coating also kill cells ascribed to the high released of fluorine. If the content of fluoride is well controlled, the PEO coating with MgF2 phase is a promising surface modification of Mg alloys. PMID:28149524

  18. Corrosion behavior and cytocompatibility of fluoride-incorporated plasma electrolytic oxidation coating on biodegradable AZ31 alloy.

    PubMed

    Tian, Peng; Peng, Feng; Wang, Donghui; Liu, Xuanyong

    2017-02-01

    Fluoride-incorporated plasma electrolytic oxidation (PEO) coating was fabricated on biodegradable AZ31 alloy. The surface morphologies and phases were investigated by scanning electron microscopy and X-ray diffraction. The effect of fluoride incorporation in coatings on corrosion behaviour was investigated in simulated body fluid and in vitro cytocompatibility of the coatings was also studied by evaluating cytotoxicity, adhesion, proliferation and live-dead stain of osteoblast cells (MC3T3-E1). Furthermore, the corrosion morphologies in vivo were examined. The results showed that the fluoride could be incorporated into the coating to form MgF 2 phase. In vitro and in vivo degradation tests revealed that the corrosion resistance of the coating could be improved by the incorporation of fluoride, which may attribute to the chemical stability of MgF 2 phase. Moreover, good cytocompatibility of fluoride-incorporated coating was confirmed with no obvious cytotoxicity, enhanced cell adhesion and proliferation. However, when the fluoride content was high, a slight inhibition of cell growth was observed. The results indicate that although fluoride incorporation can enhance the corrosion resistance of the coatings, thus resulting a more suitable environment for cells, the high content of fluoride in the coating also kill cells ascribed to the high released of fluorine. If the content of fluoride is well controlled, the PEO coating with MgF 2 phase is a promising surface modification of Mg alloys.

  19. Contribution of mesopores in MgO-templated mesoporous carbons to capacitance in non-aqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Kado, Yuya; Soneda, Yasushi; Yoshizawa, Noriko

    2015-02-01

    MgO-templated mesoporous carbons were fabricated by annealing trimagnesium dicitrate nonahydrate at various temperatures from 700 to 1000 °C with subsequent acid leaching of MgO. The obtained carbons contained a large amount of mesopores. Performances of electric double-layer capacitors using these carbons were examined for propylene carbonate electrolyte containing 1 M tetraethylammonium tetrafluoroborate. The mesoporous carbons synthesized at higher temperatures showed better rate capabilities. AC impedance measurements indicated that high-temperature annealing of the carbon precursors and the presence of mesopores were important for high rate performance. In addition, the contribution of mesopores to capacitance was more significant at higher current densities of 30 A g-1.

  20. FLUIDIC AC AMPLIFIERS.

    DTIC Science & Technology

    Several fluidic tuned AC Amplifiers were designed and tested. Interstage tuning and feedback designs are considered. Good results were obtained...corresponding Q’s as high as 12. Element designs and test results of one, two, and three stage amplifiers are presented. AC Modulated Carrier Systems

  1. Molten salt electrolyte separator

    DOEpatents

    Kaun, Thomas D.

    1996-01-01

    A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.

  2. Plasma Modified Polypropylene Membranes as the Lithium-Ion Battery Separators

    NASA Astrophysics Data System (ADS)

    Wang, Zhengduo; Zhu, Huiqin; Yang, Lizhen; Wang, Xinwei; Liu, Zhongwei; Chen, Qiang

    2016-04-01

    To reduce the thermal shrinkage of the polymeric separators and improve the safety of the Li-ion batteries, plasma treatment and plasma enhanced vapor chemical deposition (PECVD) of SiOx-like are carried out on polypropylene (PP) separators, respectively. Critical parameters for separator properties, such as the thermal shrinkage rate, porosity, wettability, and mechanical strength, are evaluated on the plasma treated PP membranes. O2 plasma treatment is found to remarkably improve the wettability, porosity and electrolyte uptake. PECVD SiOx-like coatings are found to be able to effectively reduce the thermal shrinkage rate of the membranes and increase the ionic conductivity. The electrolyte-philicity of the SiOx-like coating surface can be tuned by the varying O2 content in the gas mixture during the deposition. Though still acceptable, the mechanical strength is reduced after PECVD, which is due to the plasma etching. supported by National Natural Science Foundation of China (Nos. 11175024, 11375031), the Beijing Institute of Graphic and Communication Key Project of China (No. 23190113051), the Shenzhen Science and Technology Innovation Committee of China (No. JCYJ20130329181509637), BJNSFC (No. KZ201510015014), and the State Key Laboratory of Electrical Insulation and Power Equipment of China (No. EIPE15208)

  3. Polymer Electrolytes for Lithium/Sulfur Batteries

    PubMed Central

    Zhao, Yan; Zhang, Yongguang; Gosselink, Denise; Doan, The Nam Long; Sadhu, Mikhail; Cheang, Ho-Jae; Chen, Pu

    2012-01-01

    This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S) batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes. PMID:24958296

  4. Investigation on discharge characteristics of a coaxial dielectric barrier discharge reactor driven by AC and ns power sources

    NASA Astrophysics Data System (ADS)

    Qian, WANG; Feng, LIU; Chuanrun, MIAO; Bing, YAN; Zhi, FANG

    2018-03-01

    A coaxial dielectric barrier discharge (DBD) reactor with double layer dielectric barriers has been developed for exhaust gas treatment and excited either by AC power or nanosecond (ns) pulse to generate atmospheric pressure plasma. The comparative study on the discharge characteristics of the discharge uniformity, power deposition, energy efficiency, and operation temperature between AC and ns pulsed coaxial DBD is carried out in terms of optical and electrical characteristics and operation temperature for optimizing the coaxial DBD reactor performance. The voltages across the air gap and dielectric layer and the conduction and displacement currents are extracted from the applied voltages and measured currents of AC and ns pulsed coaxial DBDs for the calculation of the power depositions and energy efficiencies through an equivalent electrical model. The discharge uniformity and operating temperature of the coaxial DBD reactor are monitored and analyzed by optical images and infrared camera. A heat conduction model is used to calculate the temperature of the internal quartz tube. It is found that the ns pulsed coaxial DBD has a much higher instantaneous power deposition in plasma, a lower total power consumption, and a higher energy efficiency compared with that excited by AC power and is more homogeneous and stable. The temperature of the outside wall of the AC and ns pulse excited coaxial DBD reaches 158 °C and 64.3 °C after 900 s operation, respectively. The experimental results on the comparison of the discharge characteristics of coaxial DBDs excited by different powers are significant for understanding of the mechanism of DBDs, reducing energy loss, and optimizing the performance of coaxial DBD in industrial applications.

  5. Measurement of low temperature plasma properties using non-invasive impedance measurements

    NASA Astrophysics Data System (ADS)

    Gillman, Eric; Amatucci, Bill; Tejero, Erik; Blackwell, David

    2017-10-01

    A plasma discharge can be modeled electrically as a combination of capacitors, resistors, and inductors. The plasma, much like an RLC circuit, will have resonances at particular frequencies. The location in frequency space of these resonances provides information about the plasma parameters. These resonances can be detected using impedance measurements, where the AC impedance of the plasma is measured by sweeping the frequency of an AC voltage applied to a sensor and determining the magnitude and phase of the measured current. In this work, an electrode used to sustain a glow discharge is also used as an impedance probe. The novelty of this method is that insertion of a physical probe, which can introduce perturbation and/or contamination, is not necessary. This non-invasive impedance probe method is used to measure the plasma discharge density in various regimes of plasma operation. Experimental results are compared to the basic circuit model results. The potential applications of this diagnostic method and regimes over which this measurement method is valid will be discussed.

  6. Multiple-membrane multiple-electrolyte redox flow battery design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Yushan; Gu, Shuang; Gong, Ke

    A redox flow battery is provided. The redox flow battery involves multiple-membrane (at least one cation exchange membrane and at least one anion exchange membrane), multiple-electrolyte (one electrolyte in contact with the negative electrode, one electrolyte in contact with the positive electrode, and at least one electrolyte disposed between the two membranes) as the basic characteristic, such as a double-membrane, triple electrolyte (DMTE) configuration or a triple-membrane, quadruple electrolyte (TMQE) configuration. The cation exchange membrane is used to separate the negative or positive electrolyte and the middle electrolyte, and the anion exchange membrane is used to separate the middle electrolytemore » and the positive or negative electrolyte.« less

  7. Development of a hardware-based AC microgrid for AC stability assessment

    NASA Astrophysics Data System (ADS)

    Swanson, Robert R.

    As more power electronic-based devices enable the development of high-bandwidth AC microgrids, the topic of microgrid power distribution stability has become of increased interest. Recently, researchers have proposed a relatively straightforward method to assess the stability of AC systems based upon the time-constants of sources, the net bus capacitance, and the rate limits of sources. In this research, a focus has been to develop a hardware test system to evaluate AC system stability. As a first step, a time domain model of a two converter microgrid was established in which a three phase inverter acts as a power source and an active rectifier serves as an adjustable constant power AC load. The constant power load can be utilized to create rapid power flow transients to the generating system. As a second step, the inverter and active rectifier were designed using a Smart Power Module IGBT for switching and an embedded microcontroller as a processor for algorithm implementation. The inverter and active rectifier were designed to operate simultaneously using a synchronization signal to ensure each respective local controller operates in a common reference frame. Finally, the physical system was created and initial testing performed to validate the hardware functionality as a variable amplitude and variable frequency AC system.

  8. Self-doped microphase separated block copolymer electrolyte

    DOEpatents

    Mayes, Anne M.; Sadoway, Donald R.; Banerjee, Pallab; Soo, Philip; Huang, Biying

    2002-01-01

    A polymer electrolyte includes a self-doped microphase separated block copolymer including at least one ionically conductive block and at least one second block that is immiscible in the ionically conductive block, an anion immobilized on the polymer electrolyte and a cationic species. The ionically conductive block provides a continuous ionically conductive pathway through the electrolyte. The electrolyte may be used as an electrolyte in an electrochemical cell.

  9. Nonflammable Perfluoropolyether Electrolytes for Safer Lithiumbased Batteries

    NASA Astrophysics Data System (ADS)

    Olson, Kevin Raymond

    The importance of batteries to sustainable energy is widely recognized. Lithium-ion batteries (LIBs) not only power handheld electronics but also are increasingly being implemented in electric vehicles and "smart-grid" applications to store energy from intermittent solar and wind sources, making sustainable energy a reality. Unfortunately, LIBs contain a highly flammable solvent and can exhibit catastrophic failure, as was brought to the public's attention by the Boeing 787, Samsung Galaxy Note 7, hoverboard, and Tesla battery fires. Thus, realizing the full potential of LIBs in large-scale systems requires the development of nonflammable electrolytes. Perfluoropolyether (PFPE)-based electrolytes address many of the shortcomings of conventional carbonate-based electrolytes or polymer electrolytes such as poly(ethylene oxide). PFPE-based electrolytes transport lithium more efficiently than conventional electrolytes, which has important implications on long-term battery performance. PFPEs make interesting electrolyte solvents because they are nonflammable, nonvolatile, liquid across a broad temperature range, chemically stable, and interact favorably with the anion of fluorinated salts. In this work, the molecular underpinnings for ion transport in PFPE electrolytes will be established by systematically probing how PFPE structure affects electrolyte performance including ionic conductivity, diffusivity, and transference number. End group polarity, end group concentration, and PFPE molecular weight all have important implications on electrolyte performance.

  10. Development of certified reference materials for electrolytes in human serum (GBW09124-09126).

    PubMed

    Feng, Liuxing; Wang, Jun; Cui, Yanjie; Shi, Naijie; Li, Haifeng; Li, Hongmei

    2017-05-01

    Three reference materials, at relatively low, middle, and high concentrations, were developed for analysis of the mass fractions of electrolytes (K, Ca, Na, Mg, Cl, and Li) in human serum. The reference materials were prepared by adding high purity chloride salts to normal human serum. The concentration range of the three levels is within ±20% of normal human serum. It was shown that 14 units with duplicate analysis is enough to demonstrate the homogeneity of these candidate reference materials. The statistical results also showed no significant trends in both short-term stability test for 1 week at 40 °C and long-term stability test for 14 months. The certification methods of the six elements include isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS), inductively coupled plasma optical emission spectroscopy (ICP-OES), atomic absorption spectroscopy (AAS), ion chromatography (IC), and ion-selective electrode (ISE). The certification methods were validated by international comparisons among a number of national metrology institutes (NMIs). The combined relative standard uncertainties of the property values were estimated by considering the uncertainties of the analytical methods, homogeneity, and stability. The range of the expanded uncertainties of all the elements is from 2.2% to 3.9%. The certified reference materials (CRMs) are primarily intended for use in the calibration and validation of procedures in clinical analysis for the determination of electrolytes in human serum or plasma. Graphical Abstract Certified reference materials for K, Ca, Mg, Na, Cl and Li in human serum (GBW09124-09126).

  11. A facile synthesis of high quality nanostructured CeO2 and Gd2O3-doped CeO2 solid electrolytes for improved electrochemical performance.

    PubMed

    Kuo, Yu-Lin; Su, Yu-Ming; Chou, Hung-Lung

    2015-06-07

    This study describes the use of a composite nitrate salt solution as a precursor to synthesize CeO2 and Gd2O3-doped CeO2 (GDC) nanoparticles (NPs) using an atmospheric pressure plasma jet (APPJ). The microstructures of CeO2 and GDC NPs were found to be cubical and spherical shaped nanocrystallites with average particle sizes of 10.5 and 6.7 nm, respectively. Reactive oxygen species, detected by optical emission spectroscopy (OES), are believed to be the major oxidative agents for the formation of oxide materials in the APPJ process. Based on the material characterization and OES observations, the study effectively demonstrated the feasibility of preparing well-crystallized GDC NPs by the APPJ system as well as the gas-to-particle mechanism. Notably, the Bader charge of CeO2 and Ce0.9Gd0.1O2 characterized by density function theory (DFT) simulation and AC impedance measurements shows that Gd helps in increasing the charge on Ce0.9Gd0.1O2 NPs, thus improving their conductivity and making them candidate materials for electrolytes in solid oxide fuel cells.

  12. An experimental study of icing control using DBD plasma actuator

    NASA Astrophysics Data System (ADS)

    Cai, Jinsheng; Tian, Yongqiang; Meng, Xuanshi; Han, Xuzhao; Zhang, Duo; Hu, Haiyang

    2017-08-01

    Ice accretion on aircraft or wind turbine has been widely recognized as a big safety threat in the past decades. This study aims to develop a new approach for icing control using an AC-DBD plasma actuator. The experiments of icing control (i.e., anti-/de-icing) on a cylinder model were conducted in an icing wind tunnel with controlled wind speed (i.e., 15 m/s) and temperature (i.e., -10°C). A digital camera was used to record the dynamic processes of plasma anti-icing and de-icing whilst an infrared imaging system was utilized to map the surface temperature variations during the anti-/de-icing processes. It was found that the AC-DBD plasma actuator is very effective in both anti-icing and de-icing operations. While no ice formation was observed when the plasma actuator served as an anti-icing device, a complete removal of the ice layer with a thickness of 5 mm was achieved by activating the plasma actuator for ˜150 s. Such information demonstrated the feasibility of plasma anti-/de-icing, which could potentially provide more effective and safer icing mitigation strategies.

  13. Molten salt electrolyte separator

    DOEpatents

    Kaun, T.D.

    1996-07-09

    The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

  14. Mechanistic Study of Electrolyte Additives to Stabilize High-Voltage Cathode-Electrolyte Interface in Lithium-Ion Batteries.

    PubMed

    Gao, Han; Maglia, Filippo; Lamp, Peter; Amine, Khalil; Chen, Zonghai

    2017-12-27

    Current developments of electrolyte additives to stabilize electrode-electrolyte interface in lithium-ion batteries highly rely on a trial-and-error search, which involves repetitive testing and intensive amount of resources. The lack of understandings on the fundamental protection mechanisms of the additives significantly increases the difficulty for the transformational development of new additives. In this study, we investigated two types of individual protection routes to build a robust cathode-electrolyte interphase at high potentials: (i) a direct reduction in the catalytic decomposition of the electrolyte solvent; and (ii) formation of a "corrosion inhibitor film" that prevents severely attack and passivation from protons that generated from the solvent oxidation, even the decomposition of solvent cannot be mitigated. Effect of two exemplary electrolyte additives, lithium difluoro(oxalato)borate (LiDFOB) and 3-hexylthiophene (3HT), on LiNi 0.6 Mn 0.2 Co 0.2 O 2 (NMC 622) cathode were investigated to validate our hypothesis. It is demonstrated that understandings of both electrolyte additives and solvent are essential and careful balance between the cathode protection mechanism of additives and their side effects is critical to obtain optimum results. More importantly, this study opens up new directions of rational design of functional electrolyte additives for the next-generation high-energy-density lithium-ion chemistries.

  15. The Effects of Angiotensin Converting Enzyme Inhibitors (ACE-I) on Human N-Acetyl-Seryl-Aspartyl-Lysyl-Proline (Ac-SDKP) Levels: A Systematic Review and Meta-Analysis.

    PubMed

    Mnguni, Ayanda Trevor; Engel, Mark E; Borkum, Megan S; Mayosi, Bongani M

    2015-01-01

    Tuberculous pericardial effusion is a pro-fibrotic condition that is complicated by constrictive pericarditis in 4% to 8% of cases. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a ubiquitous tetrapeptide with anti-fibrotic properties that is low in tuberculous pericardial effusion, thus providing a potential mechanism for the heightened fibrotic state. Angiotensin-converting enzyme inhibitors (ACE-I), which increase Ac-SDKP levels with anti-fibrotic effects in animal models, are candidate drugs for preventing constrictive pericarditis if they can be shown to have similar effects on Ac-SDKP and fibrosis in human tissues. To systematically review the effects of ACE-Is on Ac-SDKP levels in human tissues. We searched five electronic databases (1996 to 2014) and conference abstracts with no language restrictions. Two reviewers independently selected studies, extracted data and assessed methodological quality. The protocol was registered in PROSPERO. Four studies with a total of 206 participants met the inclusion criteria. Three studies (106 participants) assessed the change in plasma levels of Ac-SDKP following ACE-I administration in healthy humans. The administration of an ACE-I was associated with an increase in Ac-SDKP levels (mean difference (MD) 5.07 pmol/ml (95% confidence intervals (CI) 0.64 pmol/ml to 9.51 pmol/ml)). Two studies with 100 participants further assessed the change in Ac-SDKP level in humans with renal failure using ACE-I. The administration of an ACE-I was associated with a significant increase in Ac-SDKP levels (MD 8.94 pmol/ml; 95% CI 2.55 to 15.33; I2 = 44%). ACE-I increased Ac-SDKP levels in human plasma. These findings provide the rationale for testing the impact of ACE-I on Ac-SDKP levels and fibrosis in tuberculous pericarditis.

  16. Fuel cell with electrolyte feed system

    DOEpatents

    Feigenbaum, Haim

    1984-01-01

    A fuel cell having a pair of electrodes at the sites of electrochemical reactions of hydrogen and oxygen and a phosphoric acid electrolyte provided with an electrolyte supporting structure in the form of a laminated matrix assembly disposed between the electrodes. The matrix assembly is formed of a central layer disposed between two outer layers, each being permeable to the flow of the electrolyte. The central layer is provided with relatively large pores while the outer layers are provided with relatively small pores. An external reservoir supplies electrolyte via a feed means to the central layer to compensate for changes in electrolyte volume in the matrix assembly during the operation of fuel cell.

  17. Performance trends of rehabilitated AC pavements

    DOT National Transportation Integrated Search

    2000-10-01

    The General Pavement Study (GPS) 6 experiment, "AC Overlay of AC Pavements," involves pavement test sections where an asphalt concrete (AC) overlay was placed on an existing AC pavement. This TechBrief summarizes the results of a study of the GPS-6 e...

  18. Preliminary Evaluations of Polymer-based Lithium Battery Electrolytes Under Development for the Polymer Electrolyte Rechargeable Systems Program

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Bennett, William R.

    2003-01-01

    A component screening facility has been established at The NASA Glenn Research Center (GRC) to evaluate candidate materials for next generation, lithium-based, polymer electrolyte batteries for aerospace applications. Procedures have been implemented to provide standardized measurements of critical electrolyte properties. These include ionic conductivity, electronic resistivity, electrochemical stability window, cation transference number, salt diffusion coefficient and lithium plating efficiency. Preliminary results for poly(ethy1ene oxide)-based polymer electrolyte and commercial liquid electrolyte are presented.

  19. Electrolytic oxidation of anthracite

    USGS Publications Warehouse

    Senftle, F.E.; Patton, K.M.; Heard, I.

    1981-01-01

    An anthracite slurry can be oxidized only with difficulty by electrolytic methods in which aqueous electrolytes are used if the slurry is confined to the region of the anode by a porous pot or diaphragm. However, it can be easily oxidized if the anthracite itself is used as the anode. No porous pot or diaphragm is needed. Oxidative consumption of the coal to alkali-soluble compounds is found to proceed preferentially at the edges of the aromatic planes. An oxidation model is proposed in which the chief oxidants are molecular and radical species formed by the electrolytic decomposition of water at the coal surface-electrolyte interface. The oxidation reactions proposed account for the opening of the aromatic rings and the subsequent formation of carboxylic acids. The model also explains the observed anisotropic oxidation and the need for the porous pot or diaphragm used in previous studies of the oxidation of coal slurries. ?? 1981.

  20. Dependence of SOL widths on plasma parameters in NSTX

    NASA Astrophysics Data System (ADS)

    Ahn, Joon-Wook; Maingi, Rajesh; Boedo, Jose; Soukhanovskii, Vlad; Leblanc, Ben; Kaita, Robert

    2008-11-01

    The dependence of various upstream Scrape-Off Layer (SOL) widths on the line-averaged density (n e), plasma current (Ip), and power into the SOL (PSOL) for H-mode plasmas was investigated, using the mid-plane fast reciprocating probe and Thomson scattering diagnostics, in the National Spherical Torus Experiment (NSTX). The heat flux width (λq) at the divertor plate, measured by the IR camera, was also measured and compared with the upstream SOL widths. The edge density profile remains fixed during the H-mode, such that the separatrix density is constant even though n e is ramping. Thus λq, λTe, and λne are insensitive to n e. λTe and λjsat have strong negative dependence on Ip, whereas there was only a very weak change in λne when Ip was varied. These empirical results have been compared with scaling laws in the literature. The λTe dependence on Ip is consistent with an H-mode λTe scaling law, while the insensitivity of λne to n e is not consistent with the λne scaling law. Dependence of decay lengths on plasma parameters in a wide range of plasma conditions will be presented. This work was supported by the US Department of Energy, contract numbers DE-FG02-03ER54731, DE-AC02-76CH03073, DE-AC05-00OR22725, and DE-AC52-07NA27344.

  1. Integration issues of a plasma contactor Power Electronics Unit

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; York, Kenneth W.; Bowers, Glen E.

    1995-01-01

    A hollow cathode-based plasma contactor is baselined on International Space Station Alpha (ISSA) for spacecraft charge control. The plasma contactor system consists of a hollow cathode assembly (HCA), a power electronics unit (PEU), and an expellant management unit (EMU). The plasma contactor has recently been required to operate in a cyclic mode to conserve xenon expellant and extend system life. Originally, a DC cathode heater converter was baselined for a continuous operation mode because only a few ignitions of the hollow cathode were expected. However, for cyclic operation, a DC heater supply can potentially result in hollow cathode heater component failure due to the DC electrostatic field. This can prevent the heater from attaining the proper cathode tip temperature for reliable ignition of the hollow cathode. To mitigate this problem, an AC cathode heater supply was therefore designed, fabricated, and installed into a modified PEU. The PEU was tested using resistive loads and then integrated with an engineering model hollow cathode to demonstrate stable steady-state operation. Integration issues such as the effect of line and load impedance on the output of the AC cathode heater supply and the characterization of the temperature profile of the heater under AC excitation were investigated.

  2. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    DOEpatents

    Joshi, Ashok V [Salt Lake City, UT; Balagopal, Shekar [Sandy, UT; Pendelton, Justin [Salt Lake City, UT

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  3. Active Colloids in Isotropic and Anisotropic Electrolytes

    NASA Astrophysics Data System (ADS)

    Peng, Chenhui

    Electrically driven flows of fluids with respect to solid surfaces (electro-osmosis) and transport of particles in fluids (electrophoresis), collectively called electrokinetics, is a technologically important area of modern science. In this thesis, we study the electrokinetic phenomena in both isotropic and anisotropic fluids. A necessary condition of electrokinetics is separation of electric charges in space. In classic linear electrokinetics, with an isotropic electrolyte such as water, the charges are separated through dissociation of ionic groups at the solid-fluid interface; presence of the electric field is not required. In the nonlinear electrokinetics, the charges are separated with the assistance of the electric field. In the so-called induced-charge electro-osmosis (ICEO) the electric field separates charges near strongly polarizable surfaces such as metals. We establish the patterns of electro-osmotic velocities caused by nonlinear ICEO around an immobilized metallic and Janus (metallic-dielectric) spheres placed in water. In the case of the Janus particles, the flows are asymmetric, which results in pumping of water around the particle if it is immobilized, or in electrophoresis is the particle is free. When the isotropic electrolyte such as water is replaced with a LC electrolyte, the mechanism of the field-assisted charge separation becomes very different. Namely, the charges are separated at the director gradients, thanks to the anisotropy of electric conductivity and dielectric permittivity of the LC. These distortions can be created by the colloidal particles placed in the LC. We demonstrate the occurrence of nonlinear LC-enabled electro-osmosis (LCEO) by studying the flow patterns around colloidal spheres with different surface anchoring. LCEO velocities grow with the square of the electric field, which allows one to use an AC field to drive steady flows and to avoid electrode damage. Director distortions needed to trigger the LCEO can also be

  4. Nonaqueous electrolyte for electrical storage devices

    DOEpatents

    McEwen, Alan B.; Yair, Ein-Eli

    1999-01-01

    Improved nonaqueous electrolytes for application in electrical storage devices such as electrochemical capacitors or batteries are disclosed. The electrolytes of the invention contain salts consisting of alkyl substituted, cyclic delocalized aromatic cations, and their perfluoro derivatives, and certain polyatomic anions having a van der Waals volume less than or equal to 100 .ANG..sup.3, preferably inorganic perfluoride anions and most preferably PF.sub.6.sup.-, the salts being dissolved in organic liquids, and preferably alkyl carbonate solvents, or liquid sulfur dioxide or combinations thereof, at a concentration of greater than 0.5M and preferably greater than 1.0M. Exemplary electrolytes comprise 1-ethyl-3-methylimidazolium hexafluorophosphate dissolved in a cyclic or acylic alkyl carbonate, or methyl formate, or a combination therof. These improved electrolytes have useful characteristics such as higher conductivity, higher concentration, higher energy storage capabilities, and higher power characteristics compared to prior art electrolytes. Stacked capacitor cells using electrolytes of the invention permit high energy, high voltage storage.

  5. Electrolytic recovery of reactor metal fuel

    DOEpatents

    Miller, W.E.; Tomczuk, Z.

    1994-09-20

    A new electrolytic process and apparatus are provided using sodium, cerium or a similar metal in alloy or within a sodium beta or beta[double prime]-alumina sodium ion conductor to electrolytically displace each of the spent fuel metals except for cesium and strontium on a selective basis from the electrolyte to an inert metal cathode. Each of the metals can be deposited separately. An electrolytic transfer of spent fuel into the electrolyte includes a sodium or cerium salt in the electrolyte with sodium or cerium alloy being deposited on the cathode during the transfer of the metals from the spent fuel. The cathode with the deposit of sodium or cerium alloy is then shunted to an anode and the reverse transfer is carried out on a selective basis with each metal being deposited separately at the cathode. The result is that the sodium or cerium needed for the process is regenerated in the first step and no additional source of these reactants is required. 2 figs.

  6. Electrolytic recovery of reactor metal fuel

    DOEpatents

    Miller, W.E.; Tomczuk, Z.

    1993-02-03

    This invention is comprised of a new electrolytic process and apparatus using sodium, cerium or a similar metal in an alloy or within a sodium beta or beta-alumina sodium ion conductor to electrolytically displace each of the spent fuel metals except for Cesium and strontium on a selective basis from the electrolyte to an inert metal cathode. Each of the metals can be deposited separately. An electrolytic transfer of spent fuel into the electrolyte includes a sodium or cerium salt in the electrolyte with sodium or cerium alloy being deposited on the cathode during the transfer of the metals from the spent fuel. The cathode with the deposit of sodium or cerium alloy is then changed to an anode and the reverse transfer is carried out on a selective basis with each metal being deposited separately at the cathode. The result is that the sodium or cerium needed for the process is regenerated in the first step and no additional source of these reactants is required.

  7. Electrolytic recovery of reactor metal fuel

    DOEpatents

    Miller, William E.; Tomczuk, Zygmunt

    1994-01-01

    A new electrolytic process and apparatus are provided using sodium, cerium or a similar metal in alloy or within a sodium beta or beta"-alumina sodium ion conductor to electrolytically displace each of the spent fuel metals except for cesium and strontium on a selective basis from the electrolyte to an inert metal cathode. Each of the metals can be deposited separately. An electrolytic transfer of spent fuel into the electrolyte includes a sodium or cerium salt in the electrolyte with sodium or cerium alloy being deposited on the cathode during the transfer of the metals from the spent fuel. The cathode with the deposit of sodium or cerium alloy is then chanted to an anode and the reverse transfer is carried out on a selective basis with each metal being deposited separately at the cathode. The result is that the sodium or cerium needed for the process is regenerated in the first step and no additional source of these reactants is required.

  8. Micellar Electrolytes in Organic Electrochemical Transistors

    NASA Astrophysics Data System (ADS)

    Cicoira, Fabio; Giuseppe, Tarabella; Nanda, Gaurav; Iannotta, Salvatore; Santato, Clara

    2012-02-01

    Organic electrochemical transistors (OECTs) are promising for applications in sensing and bioelectronics. OECTs consist of a conducting polymer film (transistor channel) in contact with an electrolyte. A gate electrode immersed in the electrolyte controls the doping/dedoping level of the conducting polymer. OECTs can be operated in aqueous electrolytes, making possible the implementation of organic electronic materials at the interface with biology. The inherent signal amplification of OECTs has the potential to yield sensors with low detection limits and high sensitivity. In this talk we will present recent studies on OECTs using ionic surfactants (such as hexadecyl-trimethyl-ammonium bromide) as electrolytes. As the conducting polymer we used PEDOT:PSS, i.e. (Poly,3-4 ethylenedioxythiopene) doped with Poly(styrene sulphonate). Interestingly, ionic surfactant electrolytes result in large transistor current modulation, especially beyond the critical micellar concentration (CMC). Since micelles play a primary role in biological processes and drug-delivery systems, the use for micellar electrolytes opens new exciting opportunities for the use of OECTs in bioelectronics.

  9. Effect of dietary electrolytes and histidine on histidine metabolism and acid-base balance in rainbow trout (Salmo gairdneri)

    USGS Publications Warehouse

    Chiu, Y.N.; Austic, R.E.; Rumsey, G.L.

    1984-01-01

    1. Rainbow trout fingerlings were fed diets containing 1.2, 1.8 and 2.6% histidine and two mixtures of Na, K and Cl (Na + K - Cl = 0 or -200 meq/kgdiet) in a factorial design.2. Growth and efficiency of feed conversion were not affected by histidine in the diet when it contained the −200 meq/kg electrolyte mixture, but with the 0 meq/kg level, 2.6% histidine depressed both measures of response.3. Histidine increased plasma and muscle histidine levels, increased hepatic histidase activity, but did not affect hepatic histidine-pyruvate aminotransferase activity.4. Muscle-free histidine concentrations were markedly higher and lysine concentrations were lower in trout receiving 0 meq/kg than those receiving the −200 meq/kg electrolyte mixture.5. The electrolyte balance of the diet has a marked effect on the metabolism of histidine in trout.

  10. Effects of plasma electrolytic oxidation process on the mechanical properties of additively manufactured porous biomaterials.

    PubMed

    Gorgin Karaji, Zahra; Hedayati, Reza; Pouran, Behdad; Apachitei, Iulian; Zadpoor, Amir A

    2017-07-01

    Metallic porous biomaterials are recently attracting more attention thanks to the additive manufacturing techniques which help produce more complex structures as compared to conventional techniques. On the other hand, bio-functional surfaces on metallic biomaterials such as titanium and its alloys are necessary to enhance the biological interactions with the host tissue. This study discusses the effect of plasma electrolytic oxidation (PEO), as a surface modification technique to produce bio-functional layers, on the mechanical properties of additively manufactured Ti6Al4V scaffolds based on the cubic unit cell. For this purpose, the PEO process with two different oxidation times was applied on scaffolds with four different values of relative density. The effects of the PEO process were studied by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), optical microscopy as well as static and dynamic (fatigue) mechanical testing under compression. SEM results indicated pore formation on the surface of the scaffolds after oxidation with a thickness of 4.85±0.36μm of the oxide layer after 2min and 9.04±2.27μm after 5min oxidation (based on optical images). The static test results showed the high effect of relative density of porous structure on its mechanical properties. However, oxidation did not influence most of the mechanical properties such as maximum stress, yield stress, plateau stress, and energy absorption, although its effect on the elastic modulus was considerable. Under fatigue loading, none of the scaffolds failed even after 10 6 loading cycles at 70% of their yield stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Estimating BrAC from transdermal alcohol concentration data using the BrAC estimator software program.

    PubMed

    Luczak, Susan E; Rosen, I Gary

    2014-08-01

    Transdermal alcohol sensor (TAS) devices have the potential to allow researchers and clinicians to unobtrusively collect naturalistic drinking data for weeks at a time, but the transdermal alcohol concentration (TAC) data these devices produce do not consistently correspond with breath alcohol concentration (BrAC) data. We present and test the BrAC Estimator software, a program designed to produce individualized estimates of BrAC from TAC data by fitting mathematical models to a specific person wearing a specific TAS device. Two TAS devices were worn simultaneously by 1 participant for 18 days. The trial began with a laboratory alcohol session to calibrate the model and was followed by a field trial with 10 drinking episodes. Model parameter estimates and fit indices were compared across drinking episodes to examine the calibration phase of the software. Software-generated estimates of peak BrAC, time of peak BrAC, and area under the BrAC curve were compared with breath analyzer data to examine the estimation phase of the software. In this single-subject design with breath analyzer peak BrAC scores ranging from 0.013 to 0.057, the software created consistent models for the 2 TAS devices, despite differences in raw TAC data, and was able to compensate for the attenuation of peak BrAC and latency of the time of peak BrAC that are typically observed in TAC data. This software program represents an important initial step for making it possible for non mathematician researchers and clinicians to obtain estimates of BrAC from TAC data in naturalistic drinking environments. Future research with more participants and greater variation in alcohol consumption levels and patterns, as well as examination of gain scheduling calibration procedures and nonlinear models of diffusion, will help to determine how precise these software models can become. Copyright © 2014 by the Research Society on Alcoholism.

  12. Electrolytes

    MedlinePlus

    ... Chloride Magnesium Phosphorus Potassium Sodium Electrolytes can be acids, bases, or salts. They can be measured by different ... Saunders; 2013:464-467. DuBose TD. Disorders of acid-base balance. In: Skorecki K, Chertow GM, Marsden PA, ...

  13. Ionic Liquid Hybrid Electrolytes for Lithium-Ion Batteries: A Key Role of the Separator-Electrolyte Interface in Battery Electrochemistry.

    PubMed

    Huie, Matthew M; DiLeo, Roberta A; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2015-06-10

    Batteries are multicomponent systems where the theoretical voltage and stoichiometric electron transfer are defined by the electrochemically active anode and cathode materials. While the electrolyte may not be considered in stoichiometric electron-transfer calculations, it can be a critical factor determining the deliverable energy content of a battery, depending also on the use conditions. The development of ionic liquid (IL)-based electrolytes has been a research area of recent reports by other researchers, due, in part, to opportunities for an expanded high-voltage operating window and improved safety through the reduction of flammable solvent content. The study reported here encompasses a systematic investigation of the physical properties of IL-based hybrid electrolytes including quantitative characterization of the electrolyte-separator interface via contact-angle measurements. An inverse trend in the conductivity and wetting properties was observed for a series of IL-based electrolyte candidates. Test-cell measurements were undertaken to evaluate the electrolyte performance in the presence of functioning anode and cathode materials, where several promising IL-based hybrid electrolytes with performance comparable to that of conventional carbonate electrolytes were identified. The study revealed that the contact angle influenced the performance more significantly than the conductivity because the cells containing IL-tetrafluoroborate-based electrolytes with higher conductivity but poorer wetting showed significantly decreased performance relative to the cells containing IL-bis(trifluoromethanesulfonyl)imide electrolytes with lower conductivity but improved wetting properties. This work contributes to the development of new IL battery-based electrolyte systems with the potential to improve the deliverable energy content as well as safety of lithium-ion battery systems.

  14. Enhancing Electrochemical Performance of Graphene Fiber-Based Supercapacitors by Plasma Treatment.

    PubMed

    Meng, Jie; Nie, Wenqi; Zhang, Kun; Xu, Fujun; Ding, Xin; Wang, Shiren; Qiu, Yiping

    2018-04-25

    Graphene fiber-based supercapacitors (GFSCs) hold high power density, fast charge-discharge rate, ultralong cycling life, exceptional mechanical/electrical properties, and safe operation conditions, making them very promising to power small wearable electronics. However, the electrochemical performance is still limited by the severe stacking of graphene sheets, hydrophobicity of graphene fibers, and complex preparation process. In this work, we develop a facile but robust strategy to easily enhance electrochemical properties of all-solid-state GFSCs by simple plasma treatment. We find that 1 min plasma treatment under an ambient condition results in 33.1% enhancement of areal specific capacitance (36.25 mF/cm 2 ) in comparison to the as-prepared GFSC. The energy density reaches 0.80 μW h/cm 2 in polyvinyl alcohol/H 2 SO 4 gel electrolyte and 18.12 μW h/cm 2 in poly(vinylidene difluoride)/ethyl-3-methylimidazolium tetrafluoroborate electrolyte, which are 22 times of that of as-prepared ones. The plasma-treated GFSCs also exhibit ultrahigh rate capability (69.13% for 40 s plasma-treated ones) and superior cycle stability (96.14% capacitance retention after 20 000 cycles for 1 min plasma-treated ones). This plasma strategy can be extended to mass-manufacture high-performance carbonaceous fiber-based supercapacitors, such as graphene and carbon nanotube-based ones.

  15. Blood electrolytes and exercise in relation to temperature regulation in man

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1973-01-01

    Current knowledge and theories about the relation of blood electrolytes and exercise to thermoregulation in man are reviewed. It is shown that the elevation of body temperature during physical exercise is a regulated process and is not due to a failure of the heat dissipating mechanisms. Core and skin temperatures do not provide sufficient information to account for the control of sweating during exercise. Evidence is presented that suggests an association between equilibrium levels of rectal temperature and the osmotic concentration of the blood with essentially no influence of variations in plasma volume.

  16. AC/RC Force Integration

    DTIC Science & Technology

    1991-05-01

    ib qeocie. Thki document may not be rdeaed for open publicado. untit hu been deared by die appropriate military seavice or a veunent agency. AC /RC...A N/A N/A 11. TITLE (Include Security Classification) AC /RC Force Structure Integraticn 12. PERSONAL AUTHOR(S) Russell A. Eggers 13a. TYPE OF REPORT... AC ) and Reserve Components (RC) Force Integration is critical in today’s Total Army. The Army of soldiers, Active and Reserve, exists to play a key

  17. Mechanistic Study of Electrolyte Additives to Stabilize High-Voltage Cathode–Electrolyte Interface in Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Han; Maglia, Filippo; Lamp, Peter

    Current developments of electrolyte additives to stabilize electrode-electrolyte interface in Li-ion batteries highly rely on a trial-and-error search, which involves repetitive testing and intensive amount of resources. The lack of understandings on the fundamental protection mechanisms of the additives significantly increases the difficulty for the transformational development of new additives. In this study, we investigated two types of individual protection routes to build a robust cathode-electrolyte interphase at high potentials: (i) a direct reduction in the catalytic decomposition of the electrolyte solvent; and (ii) formation of a “corrosion inhibitor film” that prevents severely attack and passivation from protons that generatedmore » from the solvent oxidation, even the decomposition of solvent cannot not mitigated. Effect of three exemplary electrolyte additives: (i) lithium difluoro(oxalato)borate (LiDFOB); (ii) 3-hexylthiophene (3HT); and (iii) tris(hexafluoro-iso-propyl)phosphate (HFiP), on LiNi0.6Mn0.2Co0.2O2 (NMC 622) cathode were investigated to validate our hypothesis. It is demonstrated that understandings of both electrolyte additives and solvent are essential and careful balance between the cathode protection mechanism of additives and their side effects is critical to obtain optimum results. More importantly, this study opens up new directions of rational design of functional electrolyte additives for the next generation high-energy density lithium-ion chemistries.« less

  18. On behavior peculiarity of electron plasma

    NASA Astrophysics Data System (ADS)

    Gordeeva, N. M.; Yushkanov, A. A.

    2018-03-01

    The analysis of the analytical solution of the problem of the behavior of electron plasma in the AC electric field is fulfilled. Debye mode describes shielding of the external electric field in the plasma. The analysis of the region of existence of Debye mode, depending on the plasma parameters has been realized. A non-trivial dependence of the region of existence of Debye mode on the degree of degeneracy of the electron gas are revealed. For the case of nearly degenerate electron gas Debye mode has several areas of existence, depending on the frequency of the electric field.

  19. Supercapacitive behaviors and their temperature dependence of sol-gel synthesized nanostructured manganese dioxide in lithium hydroxide electrolyte

    NASA Astrophysics Data System (ADS)

    Wang, Xiuling; Yuan, Anbao; Wang, Yuqin

    In the present work, a nanostructured manganese dioxide material was synthesized by a sol-gel method starting with manganese acetate (MnAc 2·4H 2O) and citric acid (C 6H 8O 7·H 2O) raw materials, and characterized by X-ray diffraction, infrared spectroscopic and transmission electron microscope techniques. The electrochemical properties and the influence of temperature on supercapacitive behaviors of the nano-MnO 2 electrode in 1 M LiOH electrolyte were investigated using electrochemical methods. Experimental results show that the MnO 2 electrode can exhibit an excellent pseudocapacitive behavior in 1 M LiOH electrolyte, and a high specific capacitance of 317 F g -1 can be obtained at a charge/discharge current rate of 100 mA g -1 and at the temperature of 25 °C. We found that temperature has a crucial influence on the discharge specific capacitance of the electrode. The specific capacitance at 25 °C is higher than that at 15 or 35 °C.

  20. Fluid and Electrolyte Balance

    MedlinePlus

    ... work the way they should Sodium, calcium, potassium, chlorine, phosphate, and magnesium are all electrolytes. You get them from the foods you eat and the fluids you drink. The levels of electrolytes in your body can become too low or too high. This can happen when the amount of water ...

  1. Characterizing fiber-reinforced composite structures using AC-impedance spectroscopy (AC-IS)

    NASA Astrophysics Data System (ADS)

    Woo, Leta Y.

    Property enhancement in composites depends largely on the reinforcement. For fiber-reinforced composites, the distribution of fibers is crucial in determining the electrical and mechanical performance. Image analysis methods for characterization can be time-consuming and/or destructive. This work explores the capability of AC-impedance spectroscopy (AC-IS), an electrical measurement technique, to serve as a rapid, non-destructive tool for characterizing composite microstructure. The composite requirements include a filler that is electrically conducting or semi-conducting with higher conductivity than the matrix, and a high-impedance interface or coating between the filler and the matrix. To establish an AC-IS characterization method, cement-matrix composites with steel reinforcement were employed as both a technologically important and a model system to investigate how fibers affect the electrical response. Beginning with spherical particulates and then fibers, composites were examined using composite theory and an "intrinsic conductivity" approach. The intrinsic conductivity approach applies to composites with low volume fractions of fibers (i.e., in the dilute regime) and relates how the composite conductivity varies relative to the matrix as a function of volume fraction. A universal equivalent circuit model was created to understand the AC-IS response of composites based on the geometry and volume fraction of the filler. Deviation from predicted behavior was assessed using a developed f-function, which quantifies how fibers contribute to the overall electrical response of the composite. Using the f-function, an AC-IS method for investigating fiber dispersion was established to characterize alignment, settling/segregation, and aggregation. Alignment was investigated using measurements made in three directions. A point-probe technique characterized settling and/or large-scale inhomogeneous mixing in samples. Aggregation was quantified using a "dispersion factor

  2. Non-aqueous electrolytes for lithium ion batteries

    DOEpatents

    Chen, Zonghai; Amine, Khalil

    2015-11-12

    The present invention is generally related to electrolytes containing anion receptor additives to enhance the power capability of lithium-ion batteries. The anion receptor of the present invention is a Lewis acid that can help to dissolve LiF in the passivation films of lithium-ion batteries. Accordingly, one aspect the invention provides electrolytes comprising a lithium salt; a polar aprotic solvent; and an anion receptor additive; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  3. Electrolyte chemistry control in electrodialysis processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, Thomas D.; Severin, Blaine F.

    Methods for controlling electrolyte chemistry in electrodialysis units having an anode and a cathode each in an electrolyte of a selected concentration and a membrane stack disposed therebetween. The membrane stack includes pairs of cationic selective and anionic membranes to segregate increasingly dilute salts streams from concentrated salts stream. Electrolyte chemistry control is via use of at least one of following techniques: a single calcium exclusionary cationic selective membrane at a cathode cell boundary, an exclusionary membrane configured as a hydraulically isolated scavenger cell, a multivalent scavenger co-electrolyte and combinations thereof.

  4. Conductivity studies of PEG based polymer electrolyte for applications as electrolyte in ion batteries

    NASA Astrophysics Data System (ADS)

    Patil, Ravikumar V.; Praveen, D.; Damle, R.

    2018-05-01

    Development of lithium ion batteries employing solid polymer electrolytes as electrolyte material has led to efficient energy storage and usage in many portable devices. However, due to a few drawbacks like lower ionic conductivity of solid polymer electrolytes (SPEs), studies on SPEs for improvement in conductivity still have a good scope. In the present paper, we report the conductivity studies of a new SPE with low molecular weight poly ethylene glycol (PEG) as host polymer in which a salt with larger anion Lithium trifluro methane sulphonate (LTMS). XRD studies have revealed that the salt completely dissociates in the polymer giving a good stable electrolyte at lower salt concentration. Conductivity of the SPEs has been studied as a function of temperature and we reiterate that the conductivity is a thermally activated process and follows Arrhenius type behavior.

  5. Hybrid electrolytes for lithium metal batteries

    NASA Astrophysics Data System (ADS)

    Keller, Marlou; Varzi, Alberto; Passerini, Stefano

    2018-07-01

    This perspective article discusses the most recent developments in the field of hybrid electrolytes, here referred to electrolytes composed of two, well-defined ion-conducting phases, for high energy density lithium metal batteries. The two phases can be both solid, as e.g., two inorganic conductors or one inorganic and one polymer conductor, or, differently, one liquid and one inorganic conductor. In this latter case, they are referred as quasi-solid hybrid electrolytes. Techniques for the appropriate characterization of hybrid electrolytes are discussed emphasizing the importance of ionic conduction and interfacial properties. On this view, multilayer systems are also discussed in more detail. Investigations on Lewis acid-base interactions, activation energies for lithium-ion transfer between the phases, and the formation of an interphase between the components are reviewed and analyzed. The application of different hybrid electrolytes in lithium metal cells with various cathode compositions is also discussed. Fabrication methods for the feasibility of large-scale applications are briefly analyzed and different cell designs and configurations, which are most suitable for the integration of hybrid electrolytes, are determined. Finally, the specific energy of cells containing different hybrid electrolytes is estimated to predict possible enhancement in energy with respect to the current lithium-ion battery technology.

  6. Rechargeable solid polymer electrolyte battery cell

    DOEpatents

    Skotheim, Terji

    1985-01-01

    A rechargeable battery cell comprising first and second electrodes sandwiching a solid polymer electrolyte comprising a layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte adjacent said polymer blend and a layer of dry solid polymer electrolyte adjacent said layer of polymer blend and said second electrode.

  7. N-Doped Dual Carbon-Confined 3D Architecture rGO/Fe3O4/AC Nanocomposite for High-Performance Lithium-Ion Batteries.

    PubMed

    Ding, Ranran; Zhang, Jie; Qi, Jie; Li, Zhenhua; Wang, Chengyang; Chen, Mingming

    2018-04-25

    To address the issues of low electrical conductivity, sluggish lithiation kinetics and dramatic volume variation in Fe 3 O 4 anodes of lithium ion battery, herein, a double carbon-confined three-dimensional (3D) nanocomposite architecture was synthesized by an electrostatically assisted self-assembly strategy. In the constructed architecture, the ultrafine Fe 3 O 4 subunits (∼10 nm) self-organize to form nanospheres (NSs) that are fully coated by amorphous carbon (AC), formatting core-shell structural Fe 3 O 4 /AC NSs. By further encapsulation by reduced graphene oxide (rGO) layers, a constructed 3D architecture was built as dual carbon-confined rGO/Fe 3 O 4 /AC. Such structure restrains the adverse reaction of the electrolyte, improves the electronic conductivity and buffers the mechanical stress of the entire electrode, thus performing excellent long-term cycling stability (99.4% capacity retention after 465 cycles relevant to the second cycle at 5 A g -1 ). Kinetic analysis reveals that a dual lithium storage mechanism including a diffusion reaction mechanism and a surface capacitive behavior mechanism coexists in the composites. Consequently, the resulting rGO/Fe 3 O 4 /AC nanocomposite delivers a high reversible capacity (835.8 mA h g -1 for 300 cycles at 1 A g -1 ), as well as remarkable rate capability (436.7 mA h g -1 at 10 A g -1 ).

  8. Absorption and Attenuation Coefficients Using the WET Labs ac-s in the Mid-Atlantic Bight: Field Measurements and Data Analysis

    NASA Technical Reports Server (NTRS)

    Ohi, Nobuaki; Makinen, Carla P.; Mitchell, Richard; Moisan, Tiffany A.

    2008-01-01

    Ocean color algorithms are based on the parameterization of apparent optical properties as a function of inherent optical properties. WET Labs underwater absorption and attenuation meters (ac-9 and ac-s) measure both the spectral beam attenuation [c (lambda)] and absorption coefficient [a (lambda)]. The ac-s reports in a continuous range of 390-750 nm with a band pass of 4 nm, totaling approximately 83 distinct wavelengths, while the ac-9 reports at 9 wavelengths. We performed the ac-s field measurements at nine stations in the Mid-Atlantic Bight from water calibrations to data analysis. Onboard the ship, the ac-s was calibrated daily using Milli Q-water. Corrections for the in situ temperature and salinity effects on optical properties of water were applied. Corrections for incomplete recovery of the scattered light in the ac-s absorption tube were performed. The fine scale of spectral and vertical distributions of c (lambda) and a (lambda) were described from the ac-s. The significant relationships between a (674) and that of spectrophotometric analysis and chlorophyll a concentration of discrete water samples were observed.

  9. On the Oxidation State of Manganese Ions in Li-Ion Battery Electrolyte Solutions.

    PubMed

    Banerjee, Anjan; Shilina, Yuliya; Ziv, Baruch; Ziegelbauer, Joseph M; Luski, Shalom; Aurbach, Doron; Halalay, Ion C

    2017-02-08

    We demonstrate herein that Mn 3+ and not Mn 2+ , as commonly accepted, is the dominant dissolved manganese cation in LiPF 6 -based electrolyte solutions of Li-ion batteries with lithium manganate spinel positive and graphite negative electrodes chemistry. The Mn 3+ fractions in solution, derived from a combined analysis of electron paramagnetic resonance and inductively coupled plasma spectroscopy data, are ∼80% for either fully discharged (3.0 V hold) or fully charged (4.2 V hold) cells, and ∼60% for galvanostatically cycled cells. These findings agree with the average oxidation state of dissolved Mn ions determined from X-ray absorption near-edge spectroscopy data, as verified through a speciation diagram analysis. We also show that the fractions of Mn 3+ in the aprotic nonaqueous electrolyte solution are constant over the duration of our experiments and that disproportionation of Mn 3+ occurs at a very slow rate.

  10. Oxygen solubility and transport in Li–air battery electrolytes: Establishing criteria and strategies for electrolyte design

    DOE PAGES

    Gittleson, Forrest S.; Jones, Reese E.; Ward, Donald K.; ...

    2017-02-15

    Li–air or Li–oxygen batteries promise significantly higher energies than existing commercial battery technologies, yet their development has been hindered by a lack of suitable electrolytes. In this article, we evaluate the physical properties of varied electrolyte compositions to form generalized criteria for electrolyte design. We show that oxygen transport through non-aqueous electrolytes has a critical impact on the discharge rate and capacity of Li–air batteries. Through experiments and molecular dynamics simulations, we highlight that the choice of salt species and concentration have an outsized influence on oxygen solubility, while solvent choice is the major influence on oxygen diffusivity. The stabilitymore » of superoxide reaction intermediates, key to the oxygen reduction mechanism, is also affected by variations in salt concentration and the choice of solvent. The importance of reactant transport is confirmed through Li–air cell discharge, which demonstrates good agreement between the observed and calculated mass transport-limited currents. Furthermore, these results showcase the impact of electrolyte composition on transport in metal–air batteries and provide guiding principles and simulation-based tools for future electrolyte design.« less

  11. Solid electrolytes

    DOEpatents

    Abraham, Kuzhikalail M.; Alamgir, Mohamed

    1993-06-15

    This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).

  12. Charge regulation at semiconductor-electrolyte interfaces.

    PubMed

    Fleharty, Mark E; van Swol, Frank; Petsev, Dimiter N

    2015-07-01

    The interface between a semiconductor material and an electrolyte solution has interesting and complex electrostatic properties. Its behavior will depend on the density of mobile charge carriers that are present in both phases as well as on the surface chemistry at the interface through local charge regulation. The latter is driven by chemical equilibria involving the immobile surface groups and the potential determining ions in the electrolyte solution. All these lead to an electrostatic potential distribution that propagate such that the electrolyte and the semiconductor are dependent on each other. Hence, any variation in the charge density in one phase will lead to a response in the other. This has significant implications on the physical properties of single semiconductor-electrolyte interfaces and on the electrostatic interactions between semiconductor particles suspended in electrolyte solutions. The present paper expands on our previous publication (Fleharty et al., 2014) and offers new results on the electrostatics of single semiconductor interfaces as well as on the interaction of charged semiconductor colloids suspended in electrolyte solution. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Safer Electrolytes for Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Kejha, Joe; Smith, Novis; McCloseky, Joel

    2004-01-01

    A number of nonvolatile, low-flammability liquid oligomers and polymers based on aliphatic organic carbonate molecular structures have been found to be suitable to be blended with ethylene carbonate to make electrolytes for lithium-ion electrochemical cells. Heretofore, such electrolytes have often been made by blending ethylene carbonate with volatile, flammable organic carbonates. The present nonvolatile electrolytes have been found to have adequate conductivity (about 2 mS/cm) for lithium ions and to remain liquid at temperatures down to -5 C. At normal charge and discharge rates, lithiumion cells containing these nonvolatile electrolytes but otherwise of standard design have been found to operate at current and energy densities comparable to those of cells now in common use. They do not perform well at high charge and discharge rates -- an effect probably attributable to electrolyte viscosity. Cells containing the nonvolatile electrolytes have also been found to be, variously, nonflammable or at least self-extinguishing. Hence, there appears to be a basis for the development of safer high-performance lithium-ion cells.

  14. Hazardous and Medical Waste Destruction Using the AC Plasmatron Final Report CRADA No. TC-1560-98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caplan, M.; Bucher, K.; Tulupov, A.

    The goal of this project was to develop a prototype medical waste destruction facility based on the AC plasma torch capable of processing 150 kg of waste per hour while satisfying US EPA emission standards. The project was to provide the first opportunity for a joint U.S.-Russian project using an AC Plasma Torch in a hazardous waste destruction system to be assembled and operated in the U.S. thus promoting the commercialization in the U.S. of this joint U.S.-Russian developed technology. This project was a collaboration between the Russian Institute Soliton- NTT, the U.S industrial partner Scientific Utilization Inc. (SUI) andmore » Lawrence Livermore National Laboratory ( LLNL). The project was funded by DOE for a total of $1.2 million with $600K for allocated for Phase I and $600K for Phase II. The Russian team received about $800K over the two (2) year period while LLNL received $400K. SUI was to provide in kind matching funds totaling $1.2 million.« less

  15. Electrolyte composition for electrochemical cell

    DOEpatents

    Vissers, Donald R.; Tomczuk, Zygmunt; Anderson, Karl E.; Roche, Michael F.

    1979-01-01

    A high-temperature, secondary electrochemical cell that employs FeS as the positive electrode reactant and lithium or lithium alloy as the negative electrode reactant includes an improved electrolyte composition. The electrolyte comprises about 60-70 mole percent LiCl and 30-40 percent mole percent KCl which includes LiCl in excess of the eutectic composition. The use of this electrolyte suppresses formation of the J phase and thereby improves the utilization of positive electrode active material during cell cycling.

  16. An Alternative to Annealing TiO2 Nanotubes for Morphology Preservation: Atmospheric Pressure Plasma Jet Treatment.

    PubMed

    Seo, Sang-Hee; Uhm, Soo-Hyuk; Kwon, Jae-Sung; Choi, Eun Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2015-03-01

    Titanium oxide nanotube layer formed by plasma electrolytic oxidation (PEO) is known to be excellent in biomaterial applications. However, the annealing process which is commonly performed on the TiO2 nanotubes cause defects in the nanotubular structure. The purpose of this work was to apply a non-thermal atmospheric pressure plasma jet on diameter-controlled TiO2 nanotubes to mimic the effects of annealing while maintaining the tubular structure for use as biomaterial. Diameter-controlled nanotube samples fabricated by plasma electrolytic oxidation were dried and prepared under three different conditions: untreated, annealed at 450 °C for 1 h in air with a heating rate of 10 °C/min, and treated with an air-based non-thermal atmospheric pressure plasma jet for 5 minutes. The contact angle measurement was investigated to confirm the enhanced hydrophilicity of the TiO2 nanotubes. The chemical composition of the surface was studied using X-ray photoelectron spectroscopy, and the morphology of TiO2 nanotubes was examined by field emission scanning electron microscopy. For the viability of the cell, the attachment of the osteoblastic cell line MC3T3-E1 was determined using the water-soluble tetrazolium salt assay. We found that there are no morphological changes in the TiO2 nanotubular structure after the plasma treatment. Also, we investigated a change in the chemical composition and enhanced hydrophilicity which result in improved cell behavior. The results of this study indicated that the non-thermal atmospheric pressure plasma jet results in osteoblast functionality that is comparable to annealed samples while maintaining the tubular structure of the TiO2 nanotubes. Therefore, this study concluded that the use of a non-thermal atmospheric pressure plasma jet on nanotube surfaces may replace the annealing process following plasma electrolytic oxidation.

  17. Multi-layered proton-conducting electrolyte

    DOEpatents

    Lee, Tae H.; Dorris, Stephen E.; Balachandran, Uthamalingam

    2017-06-27

    The present invention provides a multilayer anode/electrolyte assembly comprising a porous anode substrate and a layered solid electrolyte in contact therewith. The layered solid electrolyte includes a first dense layer of yttrium-doped barium zirconate (BZY), optionally including another metal besides Y, Ba, and Zr (e.g., a lanthanide metal such as Pr) on one surface thereof, a second dense layer of yttrium-doped barium cerate (BCY), and an interfacial layer between and contacting the BZY and BCY layers. The interfacial layer comprises a solid solution of the BZY and BCY electrolytes. The porous anode substrate comprises at least one porous ceramic material that is stable to carbon dioxide and water (e.g., porous BZY), as well as an electrically conductive metal and/or metal oxide (e.g., Ni, NiO, and the like).

  18. Underscreening in concentrated electrolytes.

    PubMed

    Lee, Alpha A; Perez-Martinez, Carla S; Smith, Alexander M; Perkin, Susan

    2017-07-01

    Screening of a surface charge by an electrolyte and the resulting interaction energy between charged objects is of fundamental importance in scenarios from bio-molecular interactions to energy storage. The conventional wisdom is that the interaction energy decays exponentially with object separation and the decay length is a decreasing function of ion concentration; the interaction is thus negligible in a concentrated electrolyte. Contrary to this conventional wisdom, we have shown by surface force measurements that the decay length is an increasing function of ion concentration and Bjerrum length for concentrated electrolytes. In this paper we report surface force measurements to test directly the scaling of the screening length with Bjerrum length. Furthermore, we identify a relationship between the concentration dependence of this screening length and empirical measurements of activity coefficient and differential capacitance. The dependence of the screening length on the ion concentration and the Bjerrum length can be explained by a simple scaling conjecture based on the physical intuition that solvent molecules, rather than ions, are charge carriers in a concentrated electrolyte.

  19. Electrolytic process for preparing uranium metal

    DOEpatents

    Haas, Paul A.

    1990-01-01

    An electrolytic process for making uranium from uranium oxide using Cl.sub.2 anode product from an electrolytic cell to react with UO.sub.2 to form uranium chlorides. The chlorides are used in low concentrations in a melt comprising fluorides and chlorides of potassium, sodium and barium in the electrolytic cell. The electrolysis produces Cl.sub.2 at the anode that reacts with UO.sub.2 in the feed reactor to form soluble UCl.sub.4, available for a continuous process in the electrolytic cell, rather than having insoluble UO.sub.2 fouling the cell.

  20. The ACS statistical analyzer

    DOT National Transportation Integrated Search

    2010-03-01

    This document provides guidance for using the ACS Statistical Analyzer. It is an Excel-based template for users of estimates from the American Community Survey (ACS) to assess the precision of individual estimates and to compare pairs of estimates fo...

  1. Electrolytic preconcentration in instrumental analysis.

    PubMed

    Sioda, R E; Batley, G E; Lund, W; Wang, J; Leach, S C

    1986-05-01

    The use of electrolytic deposition as a separation and preconcentration step in trace metal analysis is reviewed. Both the principles and applications of the technique are dealt with in some detail. Electrolytic preconcentration can be combined with a variety of instrumental techniques. Special attention is given to stripping voltammetry, potentiometric stripping analysis, different combinations with atomic-absorption spectrometry, and the use of flow-through porous electrodes. It is pointed out that the electrolytic preconcentration technique deserves more extensive use as well as fundamental investigation.

  2. High capacity of lithium-sulfur batteries at low electrolyte/sulfur ratio enabled by an organosulfide containing electrolyte

    DOE PAGES

    Chen, Shuru; Gao, Yue; Yu, Zhaoxin; ...

    2016-11-30

    We present that lithium-sulfur (Li-S) battery is a promising energy storage technology to replace lithium ion batteries for higher energy density and lower cost. Dissolution of lithium polysulfide intermediates in conventional Li-S electrolytes is known as one of the key technical barriers to the development of Li-S, because it promotes redistribution and irreversible deposition of Li 2S, and also forces large amounts of electrolyte to be used, shortening cycling life and driving down cell energy density. Recently, dimethyl disulfide as a functional co-solvent has been demonstrated to show an alternate electrochemical reaction pathway for sulfur cathodes by the formation ofmore » dimethyl polysulfides and lithium organosulfides as intermediates and reduction products. In this work, comprehensive studies show that this new pathway not only provides high capacity but also enables excellent capacity retention through a built-in automatic discharge shutoff mechanism by tuning carbon/sulfur ratio in sulfur cathodes to reduce unfavorable Li 2S formation. Furthermore, this new electrolyte system is also found to enable high capacity of high-sulfur-loading cathodes with low electrolyte/sulfur (E/S) ratios, such as a stable specific capacity of around 1000 mAh g -1 using a low electrolyte amount (i.e, E/S ratio of 5 mL g -1) and highsulfur-loading (4 mg cm -2) cathodes. This electrolyte system almost doubles the capacity obtained with conventional electrolytes under the same harsh conditions. In conclusion, these results highlight the practical potential of this electrolyte system to enable high-energy-density Li-S batteries.« less

  3. High capacity of lithium-sulfur batteries at low electrolyte/sulfur ratio enabled by an organosulfide containing electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shuru; Gao, Yue; Yu, Zhaoxin

    We present that lithium-sulfur (Li-S) battery is a promising energy storage technology to replace lithium ion batteries for higher energy density and lower cost. Dissolution of lithium polysulfide intermediates in conventional Li-S electrolytes is known as one of the key technical barriers to the development of Li-S, because it promotes redistribution and irreversible deposition of Li 2S, and also forces large amounts of electrolyte to be used, shortening cycling life and driving down cell energy density. Recently, dimethyl disulfide as a functional co-solvent has been demonstrated to show an alternate electrochemical reaction pathway for sulfur cathodes by the formation ofmore » dimethyl polysulfides and lithium organosulfides as intermediates and reduction products. In this work, comprehensive studies show that this new pathway not only provides high capacity but also enables excellent capacity retention through a built-in automatic discharge shutoff mechanism by tuning carbon/sulfur ratio in sulfur cathodes to reduce unfavorable Li 2S formation. Furthermore, this new electrolyte system is also found to enable high capacity of high-sulfur-loading cathodes with low electrolyte/sulfur (E/S) ratios, such as a stable specific capacity of around 1000 mAh g -1 using a low electrolyte amount (i.e, E/S ratio of 5 mL g -1) and highsulfur-loading (4 mg cm -2) cathodes. This electrolyte system almost doubles the capacity obtained with conventional electrolytes under the same harsh conditions. In conclusion, these results highlight the practical potential of this electrolyte system to enable high-energy-density Li-S batteries.« less

  4. Controlling Arc Length in Plasma Welding

    NASA Technical Reports Server (NTRS)

    Iceland, W. F.

    1986-01-01

    Circuit maintains arc length on irregularly shaped workpieces. Length of plasma arc continuously adjusted by control circuit to maintain commanded value. After pilot arc is established, contactor closed and transfers arc to workpiece. Control circuit then half-wave rectifies ac arc voltage to produce dc control signal proportional to arc length. Circuit added to plasma arc welding machines with few wiring changes. Welds made with circuit cleaner and require less rework than welds made without it. Beads smooth and free of inclusions.

  5. Nonflammable perfluoropolyether-based electrolytes for lithium batteries.

    PubMed

    Wong, Dominica H C; Thelen, Jacob L; Fu, Yanbao; Devaux, Didier; Pandya, Ashish A; Battaglia, Vincent S; Balsara, Nitash P; DeSimone, Joseph M

    2014-03-04

    The flammability of conventional alkyl carbonate electrolytes hinders the integration of large-scale lithium-ion batteries in transportation and grid storage applications. In this study, we have prepared a unique nonflammable electrolyte composed of low molecular weight perfluoropolyethers and bis(trifluoromethane)sulfonimide lithium salt. These electrolytes exhibit thermal stability beyond 200 °C and a remarkably high transference number of at least 0.91 (more than double that of conventional electrolytes). Li/LiNi1/3Co1/3Mn1/3O2 cells made with this electrolyte show good performance in galvanostatic cycling, confirming their potential as rechargeable lithium batteries with enhanced safety and longevity.

  6. Nonflammable perfluoropolyether-based electrolytes for lithium batteries

    PubMed Central

    Wong, Dominica H. C.; Thelen, Jacob L.; Fu, Yanbao; Devaux, Didier; Pandya, Ashish A.; Battaglia, Vincent S.; Balsara, Nitash P.; DeSimone, Joseph M.

    2014-01-01

    The flammability of conventional alkyl carbonate electrolytes hinders the integration of large-scale lithium-ion batteries in transportation and grid storage applications. In this study, we have prepared a unique nonflammable electrolyte composed of low molecular weight perfluoropolyethers and bis(trifluoromethane)sulfonimide lithium salt. These electrolytes exhibit thermal stability beyond 200 °C and a remarkably high transference number of at least 0.91 (more than double that of conventional electrolytes). Li/LiNi1/3Co1/3Mn1/3O2 cells made with this electrolyte show good performance in galvanostatic cycling, confirming their potential as rechargeable lithium batteries with enhanced safety and longevity. PMID:24516123

  7. The AC photovoltaic module is here!

    NASA Astrophysics Data System (ADS)

    Strong, Steven J.; Wohlgemuth, John H.; Wills, Robert H.

    1997-02-01

    This paper describes the design, development, and performance results of a large-area photovoltaic module whose electrical output is ac power suitable for direct connection to the utility grid. The large-area ac PV module features a dedicated, integrally mounted, high-efficiency dc-to-ac power inverter with a nominal output of 250 watts (STC) at 120 Vac, 60 H, that is fully compatible with utility power. The module's output is connected directly to the building's conventional ac distribution system without need for any dc wiring, string combiners, dc ground-fault protection or additional power-conditioning equipment. With its advantages, the ac photovoltaic module promises to become a universal building block for use in all utility-interactive PV systems. This paper discusses AC Module design aspects and utility interface issues (including islanding).

  8. A study of some features of ac and dc electric power systems for a space station

    NASA Technical Reports Server (NTRS)

    Hanania, J. I.

    1983-01-01

    This study analyzes certain selected topics in rival dc and high frequency ac electric power systems for a Space Station. The interaction between the Space Station and the plasma environment is analyzed, leading to a limit on the voltage for the solar array and a potential problem with resonance coupling at high frequencies. Certain problems are pointed out in the concept of a rotary transformer, and further development work is indicated in connection with dc circuit switching, special design of a transmission conductor for the ac system, and electric motors. The question of electric shock hazards, particularly at high frequency, is also explored. and a problem with reduced skin resistance and therefore increased hazard with high frequency ac is pointed out. The study concludes with a comparison of the main advantages and disadvantages of the two rival systems, and it is suggested that the choice between the two should be made after further studies and development work are completed.

  9. Intermediate temperature solid oxide fuel cell based on lanthanum gallate electrolyte

    NASA Astrophysics Data System (ADS)

    Inagaki, Toru; Nishiwaki, Futoshi; Yamasaki, Satoru; Akbay, Taner; Hosoi, Kei

    The Kansai Electric Power Co. Inc. (KEPCO) and Mitsubishi Materials Corporation (MMC) have been developing intermediate temperature solid oxide fuel cells (IT-SOFCs) which are operable at a temperature range between 600 and 800 °C. There are some significant features in IT-SOFC of KEPCO-MMC: (1) highly conductive lanthanum gallate-based oxide is adopted as an electrolyte to realize high-performance disk-type electrolyte-supported cells; (2) the cell-stacks with seal-less structure using metallic separators allow residual fuel to burn around the stack and the combustion heat is utilized for thermally self-sustainable operation; (3) the separators have flexible arms by which separate compressive forces can be applied for manifold parts and interconnection parts. We are currently participating in the project by New Energy and Industrial Technology Development Organization (NEDO) to develop 10 kW-class combined heat and power (CHP) systems. In FY2006, a 10 kW-class module was developed, with which the electrical efficiency of 50%HHV was obtained based on DC 12.6 kW. In the first quarter of FY2007, the 10 kW-class CHP system using the module gave the electrical efficiency of 41%HHV on AC 10 kW and the overall efficiency of 82%HHV when exhaust heat was recovered as 60 °C hot water. Currently, the operation has been accumulated for about 2500 h to evaluate the long-term stability of the system.

  10. Design of bipolar, flowing-electrolyte zinc-bromine electric-vehicle battery systems

    NASA Astrophysics Data System (ADS)

    Malachesky, P. A.; Bellows, R. J.; Einstein, H. E.; Grimes, P. G.; Newby, K.; Young, A.

    1983-01-01

    The integration of bipolar, flowing electrolyte zinc-bromine technology into a viable electric vehicle battery system requires careful analysis of the requirements placed on the battery system by the EV power train. In addition to the basic requirement of an appropriate battery voltage and power density, overall battery system energy efficiency must also be considered and parasitic losses from auxiliaries such as pumps and shunt current protection minimized. An analysis of the influence of these various factors on zinc-bromine EV battery system design has been carried out for two types of EV propulsion systems. The first of these is a nominal 100V dc system, while the second is a high voltage (200V dc) system as might be used with an advanced design ac propulsion system. Battery performance was calculated using an experimentally determined relationship which expresses battery voltage as a function of current density and state-of-charge.

  11. Filters for cathodic arc plasmas

    DOEpatents

    Anders, Andre; MacGill, Robert A.; Bilek, Marcela M. M.; Brown, Ian G.

    2002-01-01

    Cathodic arc plasmas are contaminated with macroparticles. A variety of magnetic plasma filters has been used with various success in removing the macroparticles from the plasma. An open-architecture, bent solenoid filter, with additional field coils at the filter entrance and exit, improves macroparticle filtering. In particular, a double-bent filter that is twisted out of plane forms a very compact and efficient filter. The coil turns further have a flat cross-section to promote macroparticle reflection out of the filter volume. An output conditioning system formed of an expander coil, a straightener coil, and a homogenizer, may be used with the magnetic filter for expanding the filtered plasma beam to cover a larger area of the target. A cathodic arc plasma deposition system using this filter can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  12. Solid electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Isaacs, H. S.

    Progress in the development of functioning solid electrolyte fuel cells is summarized. The solid electrolyte cells perform at 1000 C, a temperature elevated enough to indicate high efficiencies are available, especially if the cell is combined with a steam generator/turbine system. The system is noted to be sulfur tolerant, so coal containing significant amounts of sulfur is expected to yield satisfactory performances with low parasitic losses for gasification and purification. Solid oxide systems are electrically reversible, and are usable in both fuel cell and electrolysis modes. Employing zirconium and yttrium in the electrolyte provides component stability with time, a feature not present with other fuel cells. The chemical reactions producing the cell current are reviewed, along with materials choices for the cathodes, anodes, and interconnections.

  13. Extensive ionic partitioning in interfaces that membranous and biomimetic surfaces form with electrolytes: Antitheses of the gold-electrolyte interface

    NASA Astrophysics Data System (ADS)

    Chilcott, Terry; Guo, Chuan; Coster, Hans

    2013-04-01

    Maxwell-Wagner modeling of electrical impedance measurements of tetradecane-electrolyte systems yielded three interfacial layers between the tetradecane layer and the bulk electrolytes of concentration ranging from 1-300 mM KCl whereas the gold-electrolyte system yielded only one layer. The conductivity and thickness for the surface layer were orders of magnitude different from that expected for the Gouy-Chapman layer and did not reflect dependencies of the Debye length on concentration. Conductivity values for the three layers were less than those of the bulk electrolyte but exhibited a dependency on concentration similar to that expected for the bulk. Thickness values for the layers indicate an interface extending ~106 Å into the bulk electrolyte, which contrasts with the gold-electrolyte interface that extended only 20-30 Å into the bulk. Maxwell-Wagner characterizations of both interfaces were consistent with spatial distributions of ionic partitioning arising from the Born energy as determined by the dielectric properties of the substrates and electrolyte. The distributions for the membranous and silicon interfaces were similar but the antitheses of that for the gold interface.

  14. Polymeric electrolytes based on hydrosilyation reactions

    DOEpatents

    Kerr, John Borland [Oakland, CA; Wang, Shanger [Fairfield, CA; Hou, Jun [Painted Post, NY; Sloop, Steven Edward [Berkeley, CA; Han, Yong Bong [Berkeley, CA; Liu, Gao [Oakland, CA

    2006-09-05

    New polymer electrolytes were prepared by in situ cross-linking of allyl functional polymers based on hydrosilation reaction using a multifunctional silane cross-linker and an organoplatinum catalyst. The new cross-linked electrolytes are insoluble in organic solvent and show much better mechanical strength. In addition, the processability of the polymer electrolyte is maintained since the casting is finished well before the gel formation.

  15. Self-Passivating Lithium/Solid Electrolyte/Iodine Cells

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar; Whitcare, Jay; Narayanan, Sekharipuram; West, William

    2006-01-01

    Robust lithium/solid electrolyte/iodine electrochemical cells that offer significant advantages over commercial lithium/ iodine cells have been developed. At room temperature, these cells can be discharged at current densities 10 to 30 times those of commercial lithium/iodine cells. Moreover, from room temperature up to 80 C, the maximum discharge-current densities of these cells exceed those of all other solid-electrolyte-based cells. A cell of this type includes a metallic lithium anode in contact with a commercial flexible solid electrolyte film that, in turn, is in contact with an iodine/ graphite cathode. The solid electrolyte (the chemical composition of which has not been reported) offers the high ionic conductivity needed for high cell performance. However, the solid electrolyte exhibits an undesirable chemical reactivity to lithium that, if not mitigated, would render the solid electrolyte unsuitable for use in a lithium cell. In this cell, such mitigation is affected by the formation of a thin passivating layer of lithium iodide at the anode/electrolyte interface. Test cells of this type were fabricated from iodine/graphite cathode pellets, free-standing solid-electrolyte films, and lithium-foil anodes. The cathode mixtures were made by grinding together blends of nominally 10 weight percent graphite and 90 weight percent iodine. The cathode mixtures were then pressed into pellets at 36 kpsi (248 MPa) and inserted into coin-shaped stainless-steel cell cases that were coated with graphite paste to minimize corrosion. The solid-electrolyte film material was stamped to form circular pieces to fit in the coin cell cases, inserted in the cases, and pressed against the cathode pellets with polyethylene gaskets. Lithium-foil anodes were placed directly onto the electrolyte films. The layers described thus far were pressed and held together by stainless- steel shims, wave springs, and coin cell caps. The assembled cells were then crimped to form hermetic seals

  16. Slow-onset and fast-onset symptom presentations in acute coronary syndrome (ACS): new perspectives on prehospital delay in patients with ACS.

    PubMed

    O'Donnell, Sharon; McKee, Gabrielle; Mooney, Mary; O'Brien, Frances; Moser, Debra K

    2014-04-01

    Patient decision delay is the main reason why many patients fail to receive timely medical intervention for symptoms of acute coronary syndrome (ACS). This study examines the validity of slow-onset and fast-onset ACS presentations and their influence on ACS prehospital delay times. A fast-onset ACS presentation is characterized by sudden, continuous, and severe chest pain, and slow-onset ACS pertains to all other ACS presentations. Baseline data pertaining to medical profiles, prehospital delay times, and ACS symptoms were recorded for all ACS patients who participated in a large multisite randomized control trial (RCT) in Dublin, Ireland. Patients were interviewed 2-4 days after their ACS event, and data were gathered using the ACS Response to Symptom Index. Only baseline data from the RCT, N = 893 patients, were analyzed. A total of 65% (n = 577) of patients experienced slow-onset ACS presentation, whereas 35% (n = 316) experienced fast-onset ACS. Patients who experienced slow-onset ACS were significantly more likely to have longer prehospital delays than patients with fast-onset ACS (3.5 h vs. 2.0 h, respectively, t = -5.63, df 890, p < 0.001). A multivariate analysis of delay revealed that, in the presence of other known delay factors, the only independent predictors of delay were slow-onset and fast-onset ACS (β = -.096, p < 0.002) and other factors associated with patient behavior. Slow-onset ACS and fast-onset ACS presentations are associated with distinct behavioral patterns that significantly influence prehospital time frames. As such, slow-onset ACS and fast-onset ACS are legitimate ACS presentation phenomena that should be seriously considered when examining the factors associated with prehospital delay. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. A comparative study of quasi-solid nanoclay gel electrolyte and liquid electrolyte dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Main, Laura

    Dye sensitized solar cells (DSSCs) are currently being explored as a cheaper alternative to the more common silicon (Si) solar cell technology. In addition to the cost advantages, DSSCs show good performance in low light conditions and are not sensitive to varying angles of incident light like traditional Si cells. One of the major challenges facing DSSCs is loss of the liquid electrolyte, through evaporation or leakage, which lowers stability and leads to increased degradation. Current research with solid-state and quasi-solid DSSCs has shown success regarding a reduction of electrolyte loss, but at a cost of lower conversion efficiency output. The research work presented in this paper focuses on the effects of using nanoclay material as a gelator in the electrolyte of the DSSC. The data showed that the quasi-solid cells are more stable than their liquid electrolyte counterparts, and achieved equal or better I-V characteristics. The quasi-solid cells were fabricated with a gel electrolyte that was prepared by adding 7 wt% of Nanoclay, Nanomer® (1.31PS, montmorillonite clay surface modified with 15-35% octadecylamine and 0.5-5 wt% aminopropyltriethoxysilane, Aldrich) to the iodide/triiodide liquid electrolyte, (Iodolyte AN-50, Solaronix). Various gel concentrations were tested in order to find the optimal ratio of nanoclay to liquid. The gel electrolyte made with 7 wt% nanoclay was more viscous, but still thin enough to allow injection with a standard syringe. Batches of cells were fabricated with both liquid and gel electrolyte and were evaluated at STC conditions (25°C, 100 mW/cm2) over time. The gel cells achieved efficiencies as high as 9.18% compared to the 9.65% achieved by the liquid cells. After 10 days, the liquid cell decreased to 1.75%, less than 20% of its maximum efficiency. By contrast, the gel cell's efficiency increased for two weeks, and did not decrease to 20% of maximum efficiency until 45 days. After several measurements, the liquid cells

  18. Structure-Specific Effects of Short-Chain Fatty Acids on Plasma Cholesterol Concentration in Male Syrian Hamsters.

    PubMed

    Zhao, Yimin; Liu, Jianhui; Hao, Wangjun; Zhu, Hanyue; Liang, Ning; He, Zouyan; Ma, Ka Ying; Chen, Zhen-Yu

    2017-12-20

    Previous studies have shown that short-chain fatty acids (SCFAs) are capable of decreasing plasma cholesterol. However, the relative plasma-cholesterol-lowering activity of individual SCFAs and the underlying mechanisms by which SCFAs decrease plasma cholesterol remain largely unknown. The present study was done to compare the plasma-cholesterol-lowering potencies of four common SCFAs with 2-5 carbons and to investigate their interactions with gene expressions of key regulatory factors involved in cholesterol metabolism. For 6 weeks, five groups of male Golden hamsters were fed either a control high-cholesterol diet (HCD) or one of the four experimental HCDs containing 0.5 mol of acetate (Ac), propionate (Pr), butyrate (Bu), or valerate (Va) per kilogram of the diet. The results showed that Ac, Pr, and Bu significantly reduced plasma total cholesterol (TC) by 24, 18, and 17% (P < 0.05), respectively. All four SCFAs could decrease non-HDL cholesterol (non-HDL-C) and the non-HDL-C/HDL-C ratio. The addition of Ac, Pr, or Bu into the diet significantly promoted fecal excretion of bile acids by 121, 113, or 120% (P < 0.05), respectively, and upregulated the gene expressions of sterol-regulatory-element-binding protein 2 (SREBP2), low-density-lipoprotein receptor (LDLR), and cholesterol 7α-hydroxylase (CYP7A1) in the liver. It was concluded that SCFAs with 2-4 carbons (Ac, Pr, and Bu) are more hypocholesterolemic than Va, which has 5 carbons, via enhancing fecal excretion of bile acids and promoting the hepatic uptake of cholesterol from the blood.

  19. Transient AC voltage related phenomena for HVDC schemes connected to weak AC systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilotto, L.A.S.; Szechtman, M.; Hammad, A.E.

    1992-07-01

    In this paper a didactic explanation of voltage stability associated phenomena at HVDC terminals is presented. Conditions leading to ac voltage collapse problems are identified. A mechanism that excites control-induced voltage oscillations is shown. The voltage stability factor is used for obtaining the maximum power limits of ac/dc systems operating with different control strategies. Correlation to Pd {times} Id curves is given. Solutions for eliminating the risks of voltage collapse and for avoiding control-induced oscillations are discussed. The results are supported by detailed digital simulations of a weak ac/dc system using EMTP.

  20. Fuel cell and system for supplying electrolyte thereto

    DOEpatents

    Adlhart, Otto J.; Feigenbaum, Haim

    1984-01-01

    An electrolyte distribution and supply system for use with a fuel cell having means for drawing electrolyte therein is formed by a set of containers of electrolyte joined to respective fuel cells in a stack of such cells. The electrolyte is separately stored so as to provide for electrical isolation between electrolytes of the individual cells of the stack. Individual storage compartments are coupled by capillary tubes to the respective fuel cells. Hydrostatic pressure is maintained individually for each of the fuel cells by separately elevating each compartment of the storing means to a specific height above the corresponding fuel cell which is to be fed from that compartment of the storing means. The individual compartments are filled with electrolyte by allowing the compartments to overflow thereby maintaining the requisite depth of electrolyte in each of the storage compartments.

  1. Combination for electrolytic reduction of alumina

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-04-30

    An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises molten electrolyte having the following ingredients: AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound is, a fluoride; oxide, or carbonate. The metal is nickel, iron, copper, cobalt, or molybdenum. The bath is employed in a combination including a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the instant bath during electrolytic reduction of alumina to aluminum improves the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode.

  2. Electrodeless RF Plasma Thruster Using m = 0 Coil

    NASA Astrophysics Data System (ADS)

    Nishimura, Shuichi; Arai, Daisuke; Kuwahara, Daisuke; Shinohara, Shunjiro

    2016-10-01

    In order to realize a deep space exploration in the future, we have been developing a next generation electrodeless electric propulsion system by electromagnetic acceleration of high-density helicon plasma. A new proposed method by m = 0 coil plasma acceleration (m is an azimuthal mode number) is based on the Lorentz force: a product of the induced azimuthal current by supplying an AC current to the m = 0 coil and the radial component of the externally applied magnetic field (divergent field configuration). Here, we have investigated the dependences of an ion velocity and an electron density on the external parameters, leading to optimized conditions, using the SHD device. By increasing AC current on the order of 100 A, we could see the increase of ion velocity and electron density by a factor of 2.5 and 3, respectively.

  3. Development of Novel Garnet-Type Solid Electrolytes for Potential Application in Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Narayanan, Sumaletha

    The development of promising solid electrolytes having a garnet-like structure has been successfully achieved through solid state (ceramic) method. Various approaches to improve the Li ion conductivity were employed. The first approach involved creating oxide ion vacancies into the crystal structure of parent garnet-like oxide, Li5La3Nb2O 12 to create a novel family of compounds with nominal composition, Li 5La3Nb2-xYxO12-δ (0 ≤ x ≤ 1). The second approach was Li stuffing into the garnet-like oxides to develop a series of Li stuffed novel Li5+2xLa3Nb 2-xYxO12 (0.05 ≤ x ≤ 0.75) and Li6.5 La2.5Ba0.5ZrTaO12. Powder X-ray diffraction (PXRD), thermo gravimetric analysis (TGA), scanning electron microscopy (SEM), electron probe microanalysis (EPMA) coupled with a wavelength-dispersive spectrometer (WDS), 7Li nuclear magnetic resonance (Li-NMR), and AC impedance spectroscopy were employed to characterize the structure, morphology, elemental composition, Li ion sites, and Li ion conductivity. Studies have shown that Li5+2xLa 3Nb2-xYxO12 have turned out to be promising solid electrolytes with high Li ion conductivity (10-4 Scm -1 at ambient temperatures). In addition, all families of garnets are found to be chemically stable with Li cathode materials (Li2MMn 3O8, where M = Fe, Co) up to 400 °C in air. The developed electrolyte materials have the potential to be used in all-solid-state Li ion batteries.

  4. Hardware/Software Data Acquisition System for Real Time Cell Temperature Monitoring in Air-Cooled Polymer Electrolyte Fuel Cells

    PubMed Central

    Bartolucci, Veronica

    2017-01-01

    This work presents a hardware/software data acquisition system developed for monitoring the temperature in real time of the cells in Air-Cooled Polymer Electrolyte Fuel Cells (AC-PEFC). These fuel cells are of great interest because they can carry out, in a single operation, the processes of oxidation and refrigeration. This allows reduction of weight, volume, cost and complexity of the control system in the AC-PEFC. In this type of PEFC (and in general in any PEFC), the reliable monitoring of temperature along the entire surface of the stack is fundamental, since a suitable temperature and a regular distribution thereof, are key for a better performance of the stack and a longer lifetime under the best operating conditions. The developed data acquisition (DAQ) system can perform non-intrusive temperature measurements of each individual cell of an AC-PEFC stack of any power (from watts to kilowatts). The stack power is related to the temperature gradient; i.e., a higher power corresponds to a higher stack surface, and consequently higher temperature difference between the coldest and the hottest point. The developed DAQ system has been implemented with the low-cost open-source platform Arduino, and it is completed with a modular virtual instrument that has been developed using NI LabVIEW. Temperature vs time evolution of all the cells of an AC-PEFC both together and individually can be registered and supervised. The paper explains comprehensively the developed DAQ system together with experimental results that demonstrate the suitability of the system. PMID:28698497

  5. Hardware/Software Data Acquisition System for Real Time Cell Temperature Monitoring in Air-Cooled Polymer Electrolyte Fuel Cells.

    PubMed

    Segura, Francisca; Bartolucci, Veronica; Andújar, José Manuel

    2017-07-09

    This work presents a hardware/software data acquisition system developed for monitoring the temperature in real time of the cells in Air-Cooled Polymer Electrolyte Fuel Cells (AC-PEFC). These fuel cells are of great interest because they can carry out, in a single operation, the processes of oxidation and refrigeration. This allows reduction of weight, volume, cost and complexity of the control system in the AC-PEFC. In this type of PEFC (and in general in any PEFC), the reliable monitoring of temperature along the entire surface of the stack is fundamental, since a suitable temperature and a regular distribution thereof, are key for a better performance of the stack and a longer lifetime under the best operating conditions. The developed data acquisition (DAQ) system can perform non-intrusive temperature measurements of each individual cell of an AC-PEFC stack of any power (from watts to kilowatts). The stack power is related to the temperature gradient; i.e., a higher power corresponds to a higher stack surface, and consequently higher temperature difference between the coldest and the hottest point. The developed DAQ system has been implemented with the low-cost open-source platform Arduino, and it is completed with a modular virtual instrument that has been developed using NI LabVIEW. Temperature vs time evolution of all the cells of an AC-PEFC both together and individually can be registered and supervised. The paper explains comprehensively the developed DAQ system together with experimental results that demonstrate the suitability of the system.

  6. Lithium ion conducting ionic electrolytes

    DOEpatents

    Angell, C.A.; Xu, K.; Liu, C.

    1996-01-16

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.

  7. Lithium ion conducting ionic electrolytes

    DOEpatents

    Angell, C. Austen; Xu, Kang; Liu, Changle

    1996-01-01

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

  8. Sulfone-based electrolytes for aluminium rechargeable batteries.

    PubMed

    Nakayama, Yuri; Senda, Yui; Kawasaki, Hideki; Koshitani, Naoki; Hosoi, Shizuka; Kudo, Yoshihiro; Morioka, Hiroyuki; Nagamine, Masayuki

    2015-02-28

    Electrolyte is a key material for success in the research and development of next-generation rechargeable batteries. Aluminium rechargeable batteries that use aluminium (Al) metals as anode materials are attractive candidates for next-generation batteries, though they have not been developed yet due to the lack of practically useful electrolytes. Here we present, for the first time, non-corrosive reversible Al electrolytes working at room temperature. The electrolytes are composed of aluminium chlorides, dialkylsulfones, and dilutants, which are realized by the identification of electrochemically active Al species, the study of sulfone dependences, the effects of aluminium chloride concentrations, dilutions and their optimizations. The characteristic feature of these materials is the lower chloride concentrations in the solutions than those in the conventional Al electrolytes, which allows us to use the Al metal anodes without corrosions. We anticipate that the sulfone-based electrolytes will open the doors for the research and development of Al rechargeable batteries.

  9. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  10. The Contrasting Relationships between Betaine and Homocysteine in Two Clinical Cohorts are Associated with Plasma Lipids and Drug Treatments

    PubMed Central

    Lever, Michael; George, Peter M.; Atkinson, Wendy; Elmslie, Jane L.; Slow, Sandy; Molyneux, Sarah L.; Troughton, Richard W.; Richards, A. Mark; Frampton, Christopher M.; Chambers, Stephen T.

    2012-01-01

    Background Urinary betaine excretion positively correlated with plasma homocysteine in outpatients attending a lipid disorders clinic (lipid clinic study). We aimed to confirm this in subjects with established vascular disease. Methods The correlation between betaine excretion and homocysteine was compared in samples collected from subjects 4 months after hospitalization for an acute coronary episode (ACS study, 415 urine samples) and from 158 sequential patients visiting a lipid disorders clinic. Principal findings In contrast to the lipid clinic study, betaine excretion and plasma homocysteine did not correlate in the total ACS cohort. Differences between the patient groups included age, non-HDL cholesterol and medication. In ACS subjects with below median betaine excretion, excretion correlated (using log transformed data) negatively with plasma homocysteine (r = −0.17, p = 0.019, n = 199), with no correlation in the corresponding subset of the lipid clinic subjects. In ACS subjects with above median betaine excretion a positive trend (r = +0.10) between betaine excretion and homocysteine was not significant; the corresponding correlation in lipid clinic subjects was r = +0.42 (p = 0.0001). In ACS subjects, correlations were stronger when plasma non-HDL cholesterol and betaine excretion were above the median, r = +0.20 (p = 0.045); in subjects above median non-HDL cholesterol and below median betaine excretion, r = −0.26 (p = 0.012). ACS subjects taking diuretics or proton pump inhibitors had stronger correlations, negative with lower betaine excretion and positive with higher betaine excretion. Conclusions Betaine excretion correlates with homocysteine in subjects with elevated blood lipids. PMID:22396767

  11. 3D-Printing Electrolytes for Solid-State Batteries.

    PubMed

    McOwen, Dennis W; Xu, Shaomao; Gong, Yunhui; Wen, Yang; Godbey, Griffin L; Gritton, Jack E; Hamann, Tanner R; Dai, Jiaqi; Hitz, Gregory T; Hu, Liangbing; Wachsman, Eric D

    2018-05-01

    Solid-state batteries have many enticing advantages in terms of safety and stability, but the solid electrolytes upon which these batteries are based typically lead to high cell resistance. Both components of the resistance (interfacial, due to poor contact with electrolytes, and bulk, due to a thick electrolyte) are a result of the rudimentary manufacturing capabilities that exist for solid-state electrolytes. In general, solid electrolytes are studied as flat pellets with planar interfaces, which minimizes interfacial contact area. Here, multiple ink formulations are developed that enable 3D printing of unique solid electrolyte microstructures with varying properties. These inks are used to 3D-print a variety of patterns, which are then sintered to reveal thin, nonplanar, intricate architectures composed only of Li 7 La 3 Zr 2 O 12 solid electrolyte. Using these 3D-printing ink formulations to further study and optimize electrolyte structure could lead to solid-state batteries with dramatically lower full cell resistance and higher energy and power density. In addition, the reported ink compositions could be used as a model recipe for other solid electrolyte or ceramic inks, perhaps enabling 3D printing in related fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Composite gel polymer electrolyte for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Naderi, Roya

    Composite gel polymer electrolyte (CGPE) films, consisting of poly (vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) as the membrane, DMF and PC as solvent and plasticizing agent, mixture of charge modified TiO2 and SiO 2 nano particles as ionic conductors, and LiClO4+LiPF 6 as lithium salts were fabricated. Following the work done by Li et al., CGPE was coated on an O2-plasma treated trilayer polypropylene-polyethylene-polypropylene membrane separator using solution casting technique in order to improve the adhesive properties of gel polymer electrolyte to the separator membrane and its respective ionic conductivity due to decreasing the bulk resistance. In acidic CGPE with, the mixture of acid treated TiO2 and neutral SiO2 nano particles played the role of the charge modified nano fillers with enhanced hydroxyl groups. Likely, the mixture of neutral TiO 2 nano particles with basic SiO2 prepared through the hydrolization of tetraethyl orthosilicate (TEOS) provided a more basic environment due to the residues of NH4OH (Ammonium hydroxide) catalyst. The O2 plasma treated separator was coated with the solution of PVDF-HFP: modified nano fillers: Organic solvents with the mixture ratio of 0.1:0.01:1. After the evaporation of the organic solvents, the dried coated separator was soaked in PC-LiClO4+LiPF6 in EC: DMC:DEC (4:2:4 in volume) solution (300% wt. of PVDF-HFP) to form the final CGPE. Lim et al. has reported the enhanced ionic conductivity of 9.78*10-5 Scm-1 in an acidic composite polystyrene-Al2O3 solid electrolyte system with compared to that of basic and neutral in which the ionic conductivity undergoes an ion hopping process in solid interface rather than a segmental movement of ions through the plasticized polymer chain . Half-cells with graphite anode and Li metal as reference electrode were then assembled and the electrochemical measurements and morphology examinations were successfully carried out. Half cells demonstrated a considerable change in their

  13. Submerged Glow-Discharge Plasma: An Economical Approach to Convert Construction Scrap Metal into Nanomaterials

    NASA Astrophysics Data System (ADS)

    Yek, Peter Nai Yuh; Rafiq Mirza Julaihi, Muhammad; Shahril Osman, Mohammad; Tiong, Tung Chuan; Lee, Wak Ha; Leing Lee, Chern

    2018-03-01

    Submerged glow-discharge plasma (SGDP) is relatively new among the various methods available for nanomaterials synthesis (NMs) techniques. This method allows great control over the production cost of nanomaterials synthesis. A lab-scale batch type SDGP technology has been constructed to produce nanomaterials and investigate the inter-relationship between plasma excitation voltages, electrodes submerged areas and electrolyte concentration. Metal oxide nanospheres has been synthesised from different electrolyte concentrations (1M-0.001M) and characterized by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). As the major results showed that the nanospheres are uniformly spherical with diameter size distribution are between 100 nm - 2μm. EDS analysis shown the nano-Iron Oxide have been formed. Scrap metal initially showed around 6.45% and 93.55% of Carbon and Iron composition respectively. After SGDP process to the scrap metal, Carbon content has increased to 34-35% and Iron content has reduced to around 15-40%. EDS results also shown the higher percentage of Iron amount has remained with lower electrolyte concentration and Current is proportionally related to submersion area of cathode.

  14. Mixed organic compound-ionic liquid electrolytes for lithium battery electrolyte systems

    NASA Astrophysics Data System (ADS)

    Montanino, M.; Moreno, M.; Carewska, M.; Maresca, G.; Simonetti, E.; Lo Presti, R.; Alessandrini, F.; Appetecchi, G. B.

    2014-12-01

    The thermal, transport, rheological and flammability properties of electrolyte mixtures, proposed for safer lithium-ion battery systems, were investigated as a function of the mole composition. The blends were composed of a lithium salt (LiTFSI), organic solvents (namely EC, DEC) and an ionic liquid (PYR13TFSI). The main goal is to combine the fast ion transport properties of the organic compounds with the safe issues of the non-flammable and non-volatile ionic liquids. Preliminary tests in batteries have evidenced cycling performance approaching that observed in commercial organic electrolytes.

  15. Plasma acylcarnitines during insulin stimulation in humans are reflective of age-related metabolic dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Consitt, Leslie A., E-mail: consitt@ohio.edu; Diabetes Institute, Ohio University, Athens, OH, 45701; Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, 45701

    The purpose of this study was to determine if plasma acylcarnitine (AC) profiling is altered under hyperinsulinemic conditions as part of the aging process. Fifteen young, lean (19–29 years) and fifteen middle-to older-aged (57–82 years) individuals underwent a 2-hr euglycemic-hyperinsulinemic clamp. Plasma samples were obtained at baseline, 20 min, 50 min, and 120 min for analysis of AC species and amino acids. Skeletal muscle biopsies were performed after 60 min of insulin-stimulation for analysis of acetyl-CoA carboxylase (ACC) phosphorylation. Insulin infusion decreased the majority of plasma short-, medium-, and long-chain (SC, MC, and LC, respectively) AC. However, during the initial 50 min, a number ofmore » MC and LC AC species (C10, C10:1, C12:1, C14, C16, C16:1, C18) remained elevated in aged individuals compared to their younger counterparts indicating a lag in responsiveness. Additionally, the insulin-induced decline in skeletal muscle ACC phosphorylation was blunted in the aged compared to young individuals (−24% vs. −56%, P < 0.05). These data suggest that a desensitization to insulin during aging, possibly at the level of skeletal muscle ACC phosphorylation, results in a diminished ability to transition to glucose oxidation indicative of metabolic inflexibility. - Highlights: • Plasma acylcarnitine profiling reveals metabolic inflexibility in aged individuals. • Time course acylcarnitine profiling is critical to identify metabolic dysfunction. • Acetyl-CoA carboxylase phosphorylation status is related to metabolic dysfunction.« less

  16. Salinity effects on plasma ion levels, cortisol, and osmolality in Chinook salmon following lethal sampling

    USGS Publications Warehouse

    Stewart, Heather; Noakes, David L. G.; Cogliati, Karen M.; Peterson, James T.; Iversen, Martin H.; Schreck, Carl B.

    2016-01-01

    Studies on hydromineral balance in fishes frequently employ measurements of electrolytes following euthanasia. We tested the effects of fresh- or salt-water euthanasia baths of tricaine mesylate (MS-222) on plasma magnesium (Mg2+) and sodium (Na+) ions, cortisoland osmolality in fish exposed to saltwater challenges, and the ion and steroid hormone fluctuations over time following euthanasia in juvenile spring Chinook salmon (Oncorhynchus tshawytscha). Salinity of the euthanasia bath affected plasma Mg2+ and Na+concentrations as well as osmolality, with higher concentrations in fish euthanized in saltwater. Time spent in the bath positively affected plasma Mg2+ and osmolality, negatively affected cortisol, and had no effect on Na+ concentrations. The difference of temporal trends in plasma Mg2+ and Na+ suggests that Mg2+ may be more sensitive to physiological changes and responds more rapidly than Na+. When electrolytes and cortisol are measured as endpoints after euthanasia, care needs to be taken relative to time after death and the salinity of the euthanasia bath.

  17. Salinity effects on plasma ion levels, cortisol, and osmolality in Chinook salmon following lethal sampling.

    PubMed

    Stewart, Heather A; Noakes, David L G; Cogliati, Karen M; Peterson, James T; Iversen, Martin H; Schreck, Carl B

    2016-02-01

    Studies on hydromineral balance in fishes frequently employ measurements of electrolytes following euthanasia. We tested the effects of fresh- or salt-water euthanasia baths of tricaine mesylate (MS-222) on plasma magnesium (Mg(2+)) and sodium (Na(+)) ions, cortisol and osmolality in fish exposed to saltwater challenges, and the ion and steroid hormone fluctuations over time following euthanasia in juvenile spring Chinook salmon (Oncorhynchus tshawytscha). Salinity of the euthanasia bath affected plasma Mg(2+) and Na(+) concentrations as well as osmolality, with higher concentrations in fish euthanized in saltwater. Time spent in the bath positively affected plasma Mg(2+) and osmolality, negatively affected cortisol, and had no effect on Na(+) concentrations. The difference of temporal trends in plasma Mg(2+) and Na(+) suggests that Mg(2+) may be more sensitive to physiological changes and responds more rapidly than Na(+). When electrolytes and cortisol are measured as endpoints after euthanasia, care needs to be taken relative to time after death and the salinity of the euthanasia bath. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Thin film polymeric gel electrolytes

    DOEpatents

    Derzon, Dora K.; Arnold, Jr., Charles; Delnick, Frank M.

    1996-01-01

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  19. Rebalancing electrolytes in redox flow battery systems

    DOEpatents

    Chang, On Kok; Pham, Ai Quoc

    2014-12-23

    Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.

  20. Electric current-producing device having sulfone-based electrolyte

    DOEpatents

    Angell, Charles Austen; Sun, Xiao-Guang

    2010-11-16

    Electrolytic solvents and applications of such solvents including electric current-producing devices. For example, a solvent can include a sulfone compound of R1--SO2--R2, with R1 being an alkyl group and R2 a partially oxygenated alkyl group, to exhibit high chemical and thermal stability and high oxidation resistance. For another example, a battery can include, between an anode and a cathode, an electrolyte which includes ionic electrolyte salts and a non-aqueous electrolyte solvent which includes a non-symmetrical, non-cyclic sulfone. The sulfone has a formula of R1--SO2--R2, wherein R1 is a linear or branched alkyl or partially or fully fluorinated linear or branched alkyl group having 1 to 7 carbon atoms, and R2 is a linear or branched or partially or fully fluorinated linear or branched oxygen containing alkyl group having 1 to 7 carbon atoms. The electrolyte can include an electrolyte co-solvent and an electrolyte additive for protective layer formation.

  1. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and remove...

  2. Fuel cell assembly with electrolyte transport

    DOEpatents

    Chi, Chang V.

    1983-01-01

    A fuel cell assembly wherein electrolyte for filling the fuel cell matrix is carried via a transport system comprising a first passage means for conveying electrolyte through a first plate and communicating with a groove in a second plate at a first point, the first and second plates together sandwiching the matrix, and second passage means acting to carry electrolyte exclusively through the second plate and communicating with the groove at a second point exclusive of the first point.

  3. One-Step Fast-Synthesized Foamlike Amorphous Co(OH)2 Flexible Film on Ti Foil by Plasma-Assisted Electrolytic Deposition as a Binder-Free Anode of a High-Capacity Lithium-Ion Battery.

    PubMed

    Li, Tao; Nie, Xueyuan

    2018-05-23

    This research prepared an amorphous Co(OH) 2 flexible film on Ti foil using plasma-assisted electrolytic deposition within 3.5 min. Amorphous Co(OH) 2 structure was determined by X-ray diffraction and X-ray photoelectron spectroscopy. Its areal capacity testing as the binder and adhesive-free anode of a lithium-ion battery shows that the cycling capacity can reach 2000 μAh/cm 2 and remain at 930 μAh/cm 2 after 50 charge-discharge cycles, which benefits from the emerging Co(OH) 2 active material and amorphous foamlike structure. The research introduced a new method to synthesize amorphous Co(OH) 2 as the anode in a fast-manufactured low-cost lithium-ion battery.

  4. Hormonal and electrolyte responses to acute isohemic volume expansion in unanesthetized rats

    NASA Technical Reports Server (NTRS)

    Chenault, V. M.; Morris, M.; Lynch, C. D.; Maultsby, S. J.; Hutchins, P. M.

    1993-01-01

    This study was undertaken to explore the time course of the metabolic response to isohemic blood volume expansion (30%) in normotensive, unanesthetized Sprague-Dawley rats. Whole blood, drawn from a femoral artery catheter of conscious donor rats, was infused into the jugular vein of recipient rats. Blood samples were drawn from a carotid artery of recipient rats at time points beginning immediately post-volume expansion (IPVE) up through 5 days post-volume expansion (PVE). To characterize the attendant compensatory mechanisms, the plasma concentrations of electrolytes and fluid regulatory hormones were determined. Hematocrit began to raise IPVE and was significantly elevated above control IPVE 20, 30, 40, 60, and 90 min, and 2, 4, 6, 8, 12, and 24 hr PVE. Consistent with our current understanding of the hormonal response to excess volume, atrial natriuretic factor was significantly increased above the prevolume expansion (control) values 0-30 min PVE. Surprisingly, plasma aldosterone levels were significantly increased above control at 20 and 30 min and 6 hr PVE, whereas plasma renin activity was significantly decreased 30-40 min PVE. Plasma sodium was not changed from control values except for a significant increase at 6 hr post-volume expansion. Plasma potassium, osmolality, and arginine vasopressin levels were not altered by the volume expansion. These studies delineate the physiologic time scheme operative in the regulation of fluid volume during acute ischemic volume expansion.

  5. The effect of parenteral nitrogen and energy intake on electrolyte balance in the preterm infant.

    PubMed

    Bonsante, F; Iacobelli, S; Chantegret, C; Martin, D; Gouyon, J-B

    2011-10-01

    Recent guidelines for preterm parenteral nutrition (PN) recommend an earlier and higher intake of amino acids (AA) and energy to avoid postnatal catabolism and approximate normal fetal growth. Few investigations explored how early PN may affect electrolyte and water homeostasis. We performed a prospective observational trial to assess the effect of nutrient intake on electrolyte homeostasis and balance. During 16 months, all infants ≤32 weeks were eligible. In the first week of life, we recorded the following daily: electrolytes (plasma and 8-h urine collection), nutritional intake, urine output, body weight, and we calculated sodium (Na) and potassium (K) balance. Infants were divided, for analysis, into three groups of AA intake: low <1.5 g/kg/day (LAA), medium 1.5-2 g/kg/day (MAA) and high >2 g/kg/day (HAA). A total of 154 infants were included. HAA group presented lower weight loss. Na balance was influenced by urine output and postnatal age, with little contribution of nutrition. Kalemia and K balance were mainly influenced by AA intake. K balance differed among groups: LAA, -2.3 mmol/kg/week; MAA, 1.1 mmol/kg/week; and HAA 2.6 mmol/kg/week (P<0.0001). In the HAA group, plasma and urine K were significantly lower and non-oliguric hyperkalemia was reduced. Na homeostasis was very slightly modified by early nutrition, suggesting that a negative Na balance is obligatory after birth. We showed that AA intake strongly affects K balance, minimize hyperkalemia and reduces weight loss. As K balance is strictly linked to cellular metabolism, we speculate that early nutrition may inhibit cellular catabolism and reduce the contraction of intracellular water compartment.

  6. Choice of the replacement fluid during large volume plasma-exchange.

    PubMed

    Nydegger, U E

    1983-01-01

    The replacement fluid used during therapeutic large volume plasma-exchange can be seen as an important factor influencing the result of such treatment. The choice includes fluids such as electrolyte solutions, gelatin, hydroxyethyl-starch, albumin and fresh frozen plasma. By evaluating the pathophysiology of the underlying disease, it is possible to choose between merely replacing the removed volume by non-protein fluids or rather to introduce plasma protein components into the patient's circulation by substituting with purified or enriched proteins such as albumin, clotting factors, antithrombin III or fresh frozen plasma. This paper analyzes the rationale for the choice of the appropriate replacement fluid taking into account pathophysiologic, pharmacologic and logistic criteria.

  7. Plasma acylcarnitines during insulin stimulation in humans are reflective of age-related metabolic dysfunction.

    PubMed

    Consitt, Leslie A; Koves, Timothy R; Muoio, Deborah M; Nakazawa, Masato; Newton, Christopher A; Houmard, Joseph A

    2016-10-28

    The purpose of this study was to determine if plasma acylcarnitine (AC) profiling is altered under hyperinsulinemic conditions as part of the aging process. Fifteen young, lean (19-29 years) and fifteen middle-to older-aged (57-82 years) individuals underwent a 2-hr euglycemic-hyperinsulinemic clamp. Plasma samples were obtained at baseline, 20 min, 50 min, and 120 min for analysis of AC species and amino acids. Skeletal muscle biopsies were performed after 60 min of insulin-stimulation for analysis of acetyl-CoA carboxylase (ACC) phosphorylation. Insulin infusion decreased the majority of plasma short-, medium-, and long-chain (SC, MC, and LC, respectively) AC. However, during the initial 50 min, a number of MC and LC AC species (C10, C10:1, C12:1, C14, C16, C16:1, C18) remained elevated in aged individuals compared to their younger counterparts indicating a lag in responsiveness. Additionally, the insulin-induced decline in skeletal muscle ACC phosphorylation was blunted in the aged compared to young individuals (-24% vs. -56%, P < 0.05). These data suggest that a desensitization to insulin during aging, possibly at the level of skeletal muscle ACC phosphorylation, results in a diminished ability to transition to glucose oxidation indicative of metabolic inflexibility. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Plasma acylcarnitines during insulin stimulation in humans are reflective of age-related metabolic dysfunction

    PubMed Central

    Consitt, Leslie A.; Koves, Timothy R.; Muoio, Deborah M.; Nakazawa, Masato; Newton, Christopher A.; Houmard, Joseph A.

    2016-01-01

    The purpose of this study was to determine if plasma acylcarnitine (AC) profiling is altered under hyperinsulinemic conditions as part of the aging process. Fifteen young, lean (19–29 years) and fifteen middle- to older-aged (57–82 years) individuals underwent a 2-hr euglycemic-hyperinsulinemic clamp. Plasma samples were obtained at baseline, 20 min, 50 min, and 120 min for analysis of AC species and amino acids. Skeletal muscle biopsies were performed after 60 min of insulin-stimulation for analysis of acetyl-CoA carboxylase (ACC) phosphorylation. Insulin infusion decreased the majority of plasma short-, medium-, and long-chain (SC, MC, and LC, respectively) AC. However, during the initial 50 min, a number of MC and LC AC species (C10, C10:1, C12:1, C14, C16, C16:1, C18) remained elevated in aged individuals compared to their younger counterparts indicating a lag in responsiveness. Additionally, the insulin-induced decline in skeletal muscle ACC phosphorylation was blunted in the aged compared to young individuals (−24% vs. −56%, P<0.05). These data suggest that a desensitization to insulin during aging, possibly at the level of skeletal muscle ACC phosphorylation, results in a diminished ability to transition to glucose oxidation indicative of metabolic inflexibility. PMID:27693789

  9. Practical stability limits of magnesium electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipson, Albert L.; Han, Sang -Don; Pan, Baofei

    2016-08-13

    The development of a Mg ion based energy storage system could provide several benefits relative to today's Li-ion batteries, such as improved energy density. The electrolytes for Mg batteries, which are typically designed to efficiently plate and strip Mg, have not yet been proven to work with high voltage cathode materials that are needed to achieve high energy density. One possibility is that these electrolytes are inherently unstable on porous electrodes. To determine if this is indeed the case, the electrochemical properties of a variety of electrolytes were tested using a porous carbon coating on graphite foil and stainless steelmore » electrodes. It was determined that the oxidative stability limit on these porous electrodes is considerably reduced as compared to those found using polished platinum electrodes. Furthermore, the voltage stability was found to be about 3 V vs. Mg metal for the best performing electrolytes. In conclusion, these results imply the need for further research to improve the stability of Mg electrolytes to enable high voltage Mg batteries.« less

  10. Chemical Passivation of Li(exp +)-Conducting Solid Electrolytes

    NASA Technical Reports Server (NTRS)

    West, William; Whitacre, Jay; Lim, James

    2008-01-01

    Plates of a solid electrolyte that exhibits high conductivity for positive lithium ions can now be passivated to prevent them from reacting with metallic lithium. Such passivation could enable the construction and operation of high-performance, long-life lithium-based rechargeable electrochemical cells containing metallic lithium anodes. The advantage of this approach, in comparison with a possible alternative approach utilizing lithium-ion graphitic anodes, is that metallic lithium anodes could afford significantly greater energy-storage densities. A major impediment to the development of such cells has been the fact that the available solid electrolytes having the requisite high Li(exp +)-ion conductivity are too highly chemically reactive with metallic lithium to be useful, while those solid electrolytes that do not react excessively with metallic lithium have conductivities too low to be useful. The present passivation method exploits the best features of both extremes of the solid-electrolyte spectrum. The basic idea is to coat a higher-conductivity, higher-reactivity solid electrolyte with a lower-conductivity, lower-reactivity solid electrolyte. One can then safely deposit metallic lithium in contact with the lower-reactivity solid electrolyte without incurring the undesired chemical reactions. The thickness of the lower-reactivity electrolyte must be great enough to afford the desired passivation but not so great as to contribute excessively to the electrical resistance of the cell. The feasibility of this method was demonstrated in experiments on plates of a commercial high-performance solid Li(exp +)- conducting electrolyte. Lithium phosphorous oxynitride (LiPON) was the solid electrolyte used for passivation. LiPON-coated solid-electrolyte plates were found to support electrochemical plating and stripping of Li metal. The electrical resistance contributed by the LiPON layers were found to be small relative to overall cell impedances.

  11. Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer [Computational exploration of the Li-electrode|electrolyte interface complicated by a nanometer thin solid-electrolyte interphase (SEI) layer

    DOE PAGES

    Li, Yunsong; Leung, Kevin; Qi, Yue

    2016-09-30

    A nanometer thick passivation layer will spontaneously form on Li-metal in battery applications due to electrolyte reduction reactions. This passivation layer in rechargeable batteries must have “selective” transport properties: blocking electrons from attacking the electrolytes, while allowing Li + ion to pass through so the electrochemical reactions can continue. The classical description of the electrochemical reaction, Li + + e → Li 0, occurring at the Li-metal|electrolyte interface is now complicated by the passivation layer and will reply on the coupling of electronic and ionic degrees of freedom in the layer. We consider the passivation layer, called “solid electrolyte interphasemore » (SEI)”, as “the most important but the least understood in rechargeable Li-ion batteries,” partly due to the lack of understanding of its structure–property relationship. In predictive modeling, starting from the ab initio level, we find that it is an important tool to understand the nanoscale processes and materials properties governing the interfacial charge transfer reaction at the Li-metal|SEI|electrolyte interface. Here, we demonstrate pristine Li-metal surfaces indeed dissolve in organic carbonate electrolytes without the SEI layer. Based on joint modeling and experimental results, we point out that the well-known two-layer structure of SEI also exhibits two different Li + ion transport mechanisms. The SEI has a porous (organic) outer layer permeable to both Li + and anions (dissolved in electrolyte), and a dense (inorganic) inner layer facilitate only Li + transport. This two-layer/two-mechanism diffusion model suggests only the dense inorganic layer is effective at protecting Li-metal in electrolytes. This model suggests a strategy to deconvolute the structure–property relationships of the SEI by analyzing an idealized SEI composed of major components, such as Li 2CO 3, LiF, Li 2O, and their mixtures. After sorting out the Li+ ion diffusion carriers

  12. Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer [Computational exploration of the Li-electrode|electrolyte interface complicated by a nanometer thin solid-electrolyte interphase (SEI) layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yunsong; Leung, Kevin; Qi, Yue

    A nanometer thick passivation layer will spontaneously form on Li-metal in battery applications due to electrolyte reduction reactions. This passivation layer in rechargeable batteries must have “selective” transport properties: blocking electrons from attacking the electrolytes, while allowing Li + ion to pass through so the electrochemical reactions can continue. The classical description of the electrochemical reaction, Li + + e → Li 0, occurring at the Li-metal|electrolyte interface is now complicated by the passivation layer and will reply on the coupling of electronic and ionic degrees of freedom in the layer. We consider the passivation layer, called “solid electrolyte interphasemore » (SEI)”, as “the most important but the least understood in rechargeable Li-ion batteries,” partly due to the lack of understanding of its structure–property relationship. In predictive modeling, starting from the ab initio level, we find that it is an important tool to understand the nanoscale processes and materials properties governing the interfacial charge transfer reaction at the Li-metal|SEI|electrolyte interface. Here, we demonstrate pristine Li-metal surfaces indeed dissolve in organic carbonate electrolytes without the SEI layer. Based on joint modeling and experimental results, we point out that the well-known two-layer structure of SEI also exhibits two different Li + ion transport mechanisms. The SEI has a porous (organic) outer layer permeable to both Li + and anions (dissolved in electrolyte), and a dense (inorganic) inner layer facilitate only Li + transport. This two-layer/two-mechanism diffusion model suggests only the dense inorganic layer is effective at protecting Li-metal in electrolytes. This model suggests a strategy to deconvolute the structure–property relationships of the SEI by analyzing an idealized SEI composed of major components, such as Li 2CO 3, LiF, Li 2O, and their mixtures. After sorting out the Li+ ion diffusion carriers

  13. Stabilizing electrochemical interfaces in viscoelastic liquid electrolytes

    PubMed Central

    2018-01-01

    Electrodeposition is a widely practiced method for creating metal, colloidal, and polymer coatings on conductive substrates. In the Newtonian liquid electrolytes typically used, the process is fundamentally unstable. The underlying instabilities have been linked to failure of microcircuits, dendrite formation on battery electrodes, and overlimiting conductance in ion-selective membranes. We report that viscoelastic electrolytes composed of semidilute solutions of very high–molecular weight neutral polymers suppress these instabilities by multiple mechanisms. The voltage window ΔV in which a liquid electrolyte can operate free of electroconvective instabilities is shown to be markedly extended in viscoelastic electrolytes and is a power-law function, ΔV : η1/4, of electrolyte viscosity, η. This power-law relation is replicated in the resistance to ion transport at liquid/solid interfaces. We discuss consequences of our observations and show that viscoelastic electrolytes enable stable electrodeposition of many metals, with the most profound effects observed for reactive metals, such as sodium and lithium. This finding is of contemporary interest for high-energy electrochemical energy storage. PMID:29582017

  14. Fire-extinguishing organic electrolytes for safe batteries

    NASA Astrophysics Data System (ADS)

    Wang, Jianhui; Yamada, Yuki; Sodeyama, Keitaro; Watanabe, Eriko; Takada, Koji; Tateyama, Yoshitaka; Yamada, Atsuo

    2018-01-01

    Severe safety concerns are impeding the large-scale employment of lithium/sodium batteries. Conventional electrolytes are highly flammable and volatile, which may cause catastrophic fires or explosions. Efforts to introduce flame-retardant solvents into the electrolytes have generally resulted in compromised battery performance because those solvents do not suitably passivate carbonaceous anodes. Here we report a salt-concentrated electrolyte design to resolve this dilemma via the spontaneous formation of a robust inorganic passivation film on the anode. We demonstrate that a concentrated electrolyte using a salt and a popular flame-retardant solvent (trimethyl phosphate), without any additives or soft binders, allows stable charge-discharge cycling of both hard-carbon and graphite anodes for more than 1,000 cycles (over one year) with negligible degradation; this performance is comparable or superior to that of conventional flammable carbonate electrolytes. The unusual passivation character of the concentrated electrolyte coupled with its fire-extinguishing property contributes to developing safe and long-lasting batteries, unlocking the limit toward development of much higher energy-density batteries.

  15. Effect of dietary sodium on fluid/electrolyte regulation during bed rest

    NASA Technical Reports Server (NTRS)

    Williams, W. Jon; Schneider, Suzanne M.; Gretebeck, Randall J.; Lane, Helen W.; Stuart, Charles A.; Whitson, Peggy A.

    2003-01-01

    BACKGROUND: A negative fluid balance during bed rest (BR) is accompanied by decreased plasma volume (PV) which contributes to cardiovascular deconditioning. HYPOTHESIS: We hypothesized that increasing dietary sodium while controlling fluid intake would increase plasma osmolality (POSM), stimulate fluid conserving hormones, and reduce fluid/electrolyte (F/E) losses during BR; conversely, decreasing dietary sodium would decrease POSM, suppress fluid conserving hormones, and increase F/E losses. METHODS: We controlled fluid intake (30 ml x kg(-1) x d(-1)) in 17 men who consumed either a 4.0 +/- 0.06 g x d(-1) (174 mmol x d(-1)) (CONT; n = 6), 1.0 +/- 0.02 g x d(-1) (43 mmol x d(-1)) (LS; n = 6), or 10.0 +/- 0.04 g x d(-1) (430 mmol x d(-1)) (HS; n = 5) sodium diet before, during, and after 21 d of 6 degrees head-down BR. PV, total body water, urine volume and osmolality, POSM, and F/E controlling hormone concentrations were measured. RESULTS: In HS subjects, plasma renin activity (-92%), plasma/urinary aldosterone (-59%; -64%), and PV (-15.0%; 6.0 ml x kg(-1); p < 0.05) decreased while plasma atrial natriuretic peptide (+34%) and urine antidiuretic hormone (+24%) increased during BR (p < 0.05) compared with CONT. In LS, plasma renin activity (+166%), plasma aldosterone (+167%), plasma antidiuretic hormone (+19%), and urinary aldosterone (+335%) increased with no change in PV compared with CONT (p < 0.05). Total body water did not change in any of the subjects. CONCLUSIONS: Contrary to our hypothesis, increasing dietary sodium while controlling fluid intake during BR resulted in a greater loss of PV compared with the CONT subjects. Reducing dietary sodium while controlling fluid intake did not alter the PV response during BR compared with CONT subjects.

  16. Fluid/electrolyte and endocrine changes in space flight

    NASA Technical Reports Server (NTRS)

    Huntoon, Carolyn Leach

    1989-01-01

    The primary effects of space flight that influence the endocrine system and fluid and electrolyte regulation are the reduction of hydrostatic gradients, reduction in use and gravitational loading of bone and muscle, and stress. Each of these sets into motion a series of responses that culminates in alteration of some homeostatic set points for the environment of space. Set point alterations are believed to include decreases in venous pressure; red blood cell mass; total body water; plasma volume; and serum sodium, chloride, potassium, and osmolality. Serum calcium and phosphate increase. Hormones such as erythropoietin, atrial natriuretic peptide, aldosterone, cortisol, antidiuretic hormone, and growth hormone are involved in the dynamic processes that bring about the new set points. The inappropriateness of microgravity set points for 1-G conditions contributes to astronaut postflight responses.

  17. Comparison of Omadacycline and Tigecycline Pharmacokinetics in the Plasma, Epithelial Lining Fluid, and Alveolar Cells of Healthy Adult Subjects.

    PubMed

    Gotfried, Mark H; Horn, Karolyn; Garrity-Ryan, Lynne; Villano, Stephen; Tzanis, Evan; Chitra, Surya; Manley, Amy; Tanaka, S Ken; Rodvold, Keith A

    2017-09-01

    The steady-state concentrations of omadacycline and tigecycline in the plasma, epithelial lining fluid (ELF), and alveolar cells (AC) of 58 healthy adult subjects were obtained. Subjects were administered either omadacycline at 100 mg intravenously (i.v.) every 12 h for two doses followed by 100 mg i.v. every 24 h for three doses or tigecycline at an initial dose of 100 mg i.v. followed by 50 mg i.v. every 12 h for six doses. A bronchoscopy and bronchoalveolar lavage were performed once in each subject following the start of the fifth dose of omadacycline at 0.5, 1, 2, 4, 8, 12, or 24 h and after the start of the seventh dose of tigecycline at 2, 4, 6, or 12 h. The value of the area under the concentration-time curve (AUC) from time zero to 24 h postdosing (AUC 0-24 ) (based on mean concentrations) in ELF and the ratio of the ELF to total plasma omadacycline concentration based on AUC 0-24 values were 17.23 mg · h/liter and 1.47, respectively. The AUC 0-24 value in AC was 302.46 mg · h/liter, and the ratio of the AC to total plasma omadacycline concentration was 25.8. In comparison, the values of the AUC from time zero to 12 h postdosing (AUC 0-12 ) based on the mean concentrations of tigecycline in ELF and AC were 3.16 and 38.50 mg · h/liter, respectively. The ratio of the ELF and AC to total plasma concentrations of tigecycline based on AUC 0-12 values were 1.71 and 20.8, respectively. The pharmacokinetic advantages of higher and sustained concentrations of omadacycline compared to those of tigecycline in plasma, ELF, and AC suggest that omadacycline is a promising antibacterial agent for the treatment of lower respiratory tract bacterial infections caused by susceptible pathogens. Copyright © 2017 Gotfried et al.

  18. Effects of Silica Nanostructures in Poly(ethylene oxide)-Based Composite Polymer Electrolytes.

    PubMed

    Mohanta, Jagdeep; Anwar, Shahid; Si, Satyabrata

    2016-06-01

    The present work describes the synthesis of some poly(ethylene oxide)-based nanocomposite polymer electrolyte films using various silica nanostructures as the inorganic filler by simple solution mixing technique, in which the nature of the silica nanostructures play a vital role in modulating their electrochemical performances at room temperature. The silica nanostructures are prepared by ammonical hydrolysis of tetraethyl orthosilicate following the modified St6ber method. The resulting films are characterized by X-ray diffraction and differential scanning calorimeter to study their crystallinity. Room temperature AC impedance spectroscopy is utilized to determine the Li+ ion conductivity of the resulting films. The observed conductivity values of various NCPE films depend on the nature of silica filling as well as on their surface characteristics and also on the varying PEO-Li+ ratio, which is observed to be in the order of 10(-7)-10(-6) S cm(-1).

  19. Development of 2.8 V Ketjen black supercapacitors with high rate capabilities for AC line filtering

    NASA Astrophysics Data System (ADS)

    Yoo, Yongju; Park, Jinwoo; Kim, Min-Seop; Kim, Woong

    2017-08-01

    Supercapacitors are generally more compact than conventional bulky aluminum electrolytic capacitors (AECs). Replacement of AECs with supercapacitors can lead to miniaturization of electronic devices. However, even state-of-the-art supercapacitors developed in laboratories are superior to or competitive with AECs only in low voltage applications (<∼40 V). In order to improve the voltage limits of current supercapacitors, we have incorporated Ketjen black (KB) as an electrode material. Utilizing the open pore structure and the graphitic nature of KB, we demonstrate that the voltage limit can be extended to 53 V. The KB supercapacitor exhibits excellent areal capacitance, cell voltage, and phase angle values of ∼574 μF cm-2, 2.8 V, and ∼-80°, respectively. In addition, we demonstrate that an AC line filtering circuit with three supercapacitors connected in series can extend the application voltage without significant sacrifice in rate capability (ϕ ∼ -77° at 120 Hz). On the other hand, KBs are much less expensive than carbon materials previously demonstrated for AC line filtering and hence are very attractive for practical applications. We believe that this demonstration of high-performance supercapacitors made from low-cost carbon materials is both scientifically interesting and important for practical applications.

  20. Effects of atmospheric nonthermal plasma on invasion of colorectal cancer cells

    NASA Astrophysics Data System (ADS)

    Kim, Chul-Ho; Kwon, Seyeoul; Bahn, Jae Hoon; Lee, Keunho; Jun, Seung Ik; Rack, Philip D.; Baek, Seung Joon

    2010-06-01

    The effect that the gas content and plasma power of atmospheric, nonthermal plasma has on the invasion activity in colorectal cancer cells has been studied. Helium and helium plus oxygen plasmas were induced through a nozzle and operated with an ac power of less than 10 kV which exhibited a length of 2.5 cm and a diameter of 3-4 mm in ambient air. Treatment of cancer cells with the plasma jet resulted in a decrease in cell migration/invasion with higher plasma intensity and the addition of oxygen to the He flow gas.

  1. The KAC family of kinesin-like proteins is essential for the association of chloroplasts with the plasma membrane in land plants.

    PubMed

    Suetsugu, Noriyuki; Sato, Yoshikatsu; Tsuboi, Hidenori; Kasahara, Masahiro; Imaizumi, Takato; Kagawa, Takatoshi; Hiwatashi, Yuji; Hasebe, Mitsuyasu; Wada, Masamitsu

    2012-11-01

    Chloroplasts require association with the plasma membrane for movement in response to light and for appropriate positioning within the cell to capture photosynthetic light efficiently. In Arabidopsis, CHLOROPLAST UNUSUAL POSITIONING 1 (CHUP1), KINESIN-LIKE PROTEIN FOR ACTIN-BASED CHLOROPLAST MOVEMENT 1 (KAC1) and KAC2 are required for both the proper movement of chloroplasts and the association of chloroplasts with the plasma membrane, through the reorganization of short actin filaments located on the periphery of the chloroplasts. Here, we show that KAC and CHUP1 orthologs (AcKAC1, AcCHUP1A and AcCHUP1B, and PpKAC1 and PpKAC2) play important roles in chloroplast positioning in the fern Adiantum capillus-veneris and the moss Physcomitrella patens. The knockdown of AcKAC1 and two AcCHUP1 genes induced the aggregation of chloroplasts around the nucleus. Analyses of A. capillus-veneris mutants containing perinuclear-aggregated chloroplasts confirmed that AcKAC1 is required for chloroplast-plasma membrane association. In addition, P. patens lines in which two KAC genes had been knocked out showed an aggregated chloroplast phenotype similar to that of the fern kac1 mutants. These results indicate that chloroplast positioning and movement are mediated through the activities of KAC and CHUP1 proteins, which are conserved in land plants.

  2. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1991-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  3. Electrolytic Cell For Production Of Aluminum Employing Planar Anodes.

    DOEpatents

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2004-10-05

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising providing a molten salt electrolyte having alumina dissolved therein in an electrolytic cell. A plurality of anodes and cathodes having planar surfaces are disposed in a generally vertical orientation in the electrolyte, the anodes and cathodes arranged in alternating or interleaving relationship to provide anode planar surfaces disposed opposite cathode planar surfaces, the anode comprised of carbon. Electric current is passed through anodes and through the electrolyte to the cathodes depositing aluminum at the cathodes and forming carbon containing gas at the anodes.

  4. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1988-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  5. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1989-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  6. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1991-06-18

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figures.

  7. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1989-11-07

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

  8. Spectral and Power Stability Tests of Deep UV LEDs for AC Charge Management

    NASA Astrophysics Data System (ADS)

    Sun, Ke-Xun; Higuchi, Sei; Goh, Allex; Allard, Brett; Gill, Dale; Buchman, Saps; Byer, Robert

    2006-11-01

    Deep ultraviolet (UV) LEDs have recently been used in AC charge management experiments to support gravitational reference sensors for future space missions. The UV LED based charge management system offers compact size, light weight, and low power consumption compared to plasma sources. The AC charge management technique, which is enabled by easy modulation of UV LED output, achieves higher dynamic range for charge control. Further, the high modulation frequency, which is out of the gravitational wave detection band, reduces disturbances to the proof mass. However, there is a need to test and possibly improve the lifetime of UV LEDs, which were developed only a year ago. We have initiated a series of spectral and power stability tests for UV LEDs and designed experiments according to the requirements of AC charge management. We operate UV LEDs with a modulated current drive and maintain the operating temperature at 22 °C,28 similar to the LISA spacecraft working condition. The testing procedures involve measuring the baseline spectral shape and output power level prior to the beginning of the tests and then re-measuring the same quantities periodically. As of the date of submission (August 28th, 2006), we have operated a UV LED for more than 2,700 hours.

  9. Thin film polymeric gel electrolytes

    DOEpatents

    Derzon, D.K.; Arnold, C. Jr.; Delnick, F.M.

    1996-12-31

    Novel hybrid thin film electrolytes, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1} cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  10. The AC 2000.2 Catalogue

    NASA Astrophysics Data System (ADS)

    Urban, S. E.; Corbin, T. E.; Wycoff, G. L.; Makarov, V. V.; Høg, E.; Fabricius, C.

    2001-12-01

    For over 100 years, the international project known as the Astrographic Catalogue -- which involved 20 observatories tasked to photograph the sky -- has held an unfulfilled promised of yielding a wealth of astrometric information. This promise was not realized due to the inadequate reductions of the project's plates. However, in 1997 the U.S. Naval Observatory (USNO) completed the reductions of the 22,660 plates. That catalogue, named the AC 2000, contained positions and magnitudes for 4.6 million stars down to about v magnitude 12.5. Due to the early epochs of the data -- averaging 1907 -- and the positional accuracies -- between 150 and 400 milliarcseconds -- the data are extremely valuable in computing proper motions. In 1997, these positions were used to form the proper motions of the ACT Reference Catalogue. In 1999, USNO and Copenhagen University Observatory (CUO) partnered to create the Tycho-2 Catalogue. The CUO group re-analyzed the data from the Tycho experiment on the Hipparcos satellite. The USNO group re-analyzed over 140 positional catalogs which were combined with the expanded Tycho positions from the CUO group to compute the Tycho-2 proper motions. The largest contributor to these proper motions was the re-analyzed Astrographic Catalogue; the latest version being known as the AC 2000.2 Catalogue. There are two major differences between the AC 2000 and the AC 2000.2. First, the reference catalog used in AC 2000.2 was an expanded version of the Astrographic Catalogue Reference Stars that was rigorously derived on the Hipparcos Celestial Reference Frame. The second is that AC 2000.2 contains photometry from Tycho-2, where available. A description of the AC 2000.2 Catalogue, the reduction techniques used, how it compares with the 1997 version, and information on obtaining the data will be presented.

  11. Synthesis, Multinuclear NMR Characterization and Dynamic Property of Organic–Inorganic Hybrid Electrolyte Membrane Based on Alkoxysilane and Poly(oxyalkylene) Diamine

    PubMed Central

    Saikia, Diganta; Pan, Yu-Chi; Kao, Hsien-Ming

    2012-01-01

    Organic–inorganic hybrid electrolyte membranes based on poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether) complexed with LiClO4 via the co-condensation of tetraethoxysilane (TEOS) and 3-(triethoxysilyl)propyl isocyanate have been prepared and characterized. A variety of techniques such as differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, alternating current (AC) impedance and solid-state nuclear magnetic resonance (NMR) spectroscopy are performed to elucidate the relationship between the structural and dynamic properties of the hybrid electrolyte and the ion mobility. A VTF (Vogel-Tamman-Fulcher)-like temperature dependence of ionic conductivity is observed for all the compositions studied, implying that the diffusion of charge carriers is assisted by the segmental motions of the polymer chains. A maximum ionic conductivity value of 5.3 × 10−5 Scm−1 is obtained at 30 °C. Solid-state NMR results provide a microscopic view of the effects of salt concentrations on the dynamic behavior of the polymer chains. PMID:24958176

  12. High-Energy-Density Electrolytic Capacitors

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S.; Lewis, Carol R.

    1993-01-01

    Reductions in weight and volume make new application possible. Supercapacitors and improved ultracapacitors advanced electrolytic capacitors developed for use as electric-load-leveling devices in such applications as electric vehicle propulsion systems, portable power tools, and low-voltage pulsed power supplies. One primary advantage: offer power densities much higher than storage batteries. Capacitors used in pulse mode, with short charge and discharge times. Derived from commercially available ultracapacitors. Made of lightweight materials; incorporate electrode/electrolyte material systems capable of operation at voltages higher than previous electrode/electrolyte systems. By use of innovative designs and manufacturing processes, made in wide range of rated capacitances and in rated operating potentials ranging from few to several hundred volts.

  13. Numerical Simulations of Plasma Based Flow Control Applications

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.; Jacob, J. D.; Ashpis, D. E.

    2005-01-01

    A mathematical model was developed to simulate flow control applications using plasma actuators. The effects of the plasma actuators on the external flow are incorporated into Navier Stokes computations as a body force vector. In order to compute this body force vector, the model solves two additional equations: one for the electric field due to the applied AC voltage at the electrodes and the other for the charge density representing the ionized air. The model is calibrated against an experiment having plasma-driven flow in a quiescent environment and is then applied to simulate a low pressure turbine flow with large flow separation. The effects of the plasma actuator on control of flow separation are demonstrated numerically.

  14. Initial NIST AC QHR Measurements

    PubMed Central

    Cage, M. E.; Shields, S. H.; Jeffery, A.

    2004-01-01

    We demonstrate that dc quantized Hall resistance (dc QHR) guideline properties and dc and ac QHR values can be measured without changing sample probe lead connections at the QHR device, and report ac QHR values that converge to the dc QHR value when using four-terminal-pair ac QHR measurements. This was accomplished during one cooldown using single-series and quadruple-series connections outside the sample probe. The QHR was measured from 0 Hz to 5500 Hz in 1:1 ratio at 20 µA to ±1 part in 107 uncertainties with a poor-quality QHR device. A good device would allow an order of magnitude smaller uncertainties over this frequency range. We exchanged positions of the QHR device and reference resistor in the bridge and remeasured the resistance ratios to remove dominant ac bridge effects. PMID:27366620

  15. Simultaneous distribution of AC and DC power

    DOEpatents

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  16. Negative Transference Numbers in Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Pesko, Danielle; Timachova, Ksenia; Balsara, Nitash

    Energy density and safety of conventional lithium-ion batteries is limited by the use of flammable organic liquids as a solvent for lithium salts. Polymer electrolytes have the potential to address both limitations. The poor performance of batteries with polymer electrolytes is generally attributed to low ionic conductivity. The purpose of our work is to show that another transport property, the cation transference number, t +, of polymer electrolytes is fundamentally different from that of conventional electrolytes. Our experimental approach, based on concentrated solution theory, indicates that t + of mixtures of poly(ethylene oxide) and LiTFSI salt are negative over most of the accessible concentration window. In contrast, approaches based on dilute solution theory suggest that t + in the same system is positive. In addition to presenting a new approach for determining t +, we also present data obtained from the steady-state current method, pulsed-field-gradient NMR, and the current-interrupt method. Discrepancies between different approaches are resolved. Our work implies that in the absence of concentration gradients, the net fluxes of both cations and anions are directed toward the positive electrode. Conventional liquid electrolytes do not suffer from this constraint.

  17. Oblique propagating electromagnetic ion - Cyclotron instability with A.C. field in outer magnetosphere

    NASA Astrophysics Data System (ADS)

    Pandey, R. S.; Singh, Vikrant; Rani, Anju; Varughese, George; Singh, K. M.

    2018-05-01

    In the present paper Oblique propagating electromagnetic ion-cyclotron wave has been analyzed for anisotropic multi ion plasma (H+, He+, O+ ions) in earth magnetosphere for the Dione shell of L=7 i.e., the outer radiation belt of the magnetosphere for Loss-cone distribution function with a spectral index j in the presence of A.C. electric field. Detail for particle trajectories and dispersion relation has been derived by using the method of characteristic solution on the basis of wave particle interaction and transformation of energy. Results for the growth rate have been calculated numerically for various parameters and have been compared for different ions present in magnetosphere. It has been found that for studying the wave over wider spectrum, anisotropy for different values of j should be taken. The effect of frequency of A.C. electric field and angle which propagation vector make with magnetic field, on growth rate has been explained.

  18. Electrochemical cell with high conductivity glass electrolyte

    DOEpatents

    Nelson, P.A.; Bloom, I.D.; Roche, M.F.

    1986-04-17

    A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with an ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material.

  19. Electrochemical cell with high conductivity glass electrolyte

    DOEpatents

    Nelson, P.A.; Bloom, I.D.; Roche, M.F.

    1987-04-21

    A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with a ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material. 6 figs.

  20. Electrochemical cell with high conductivity glass electrolyte

    DOEpatents

    Nelson, Paul A.; Bloom, Ira D.; Roche, Michael F.

    1987-01-01

    A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with a ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material.

  1. Distribution of electrolytes in a flow battery

    DOEpatents

    Darling, Robert Mason; Smeltz, Andrew; Junker, Sven Tobias; Perry, Michael L.

    2017-12-26

    A method of determining a distribution of electrolytes in a flow battery includes providing a flow battery with a fixed amount of fluid electrolyte having a common electrochemically active specie, a portion of the fluid electrolyte serving as an anolyte and a remainder of the fluid electrolyte serving as a catholyte. An average oxidation state of the common electrochemically active specie is determined in the anolyte and the catholyte and, responsive to the determined average oxidation state, a molar ratio of the common electrochemically active specie between the anolyte and the catholyte is adjusted to increase an energy discharge capacity of the flow battery for the determined average oxidation state.

  2. Electrolytic orthoborate salts for lithium batteries

    DOEpatents

    Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

    2008-01-01

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  3. Electrolytic orthoborate salts for lithium batteries

    DOEpatents

    Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

    2009-05-05

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  4. PC based electrolytes with LiDFOB as an alternative salt for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Knight, Brandon M.

    the electrolyte solution and uncharged cathode particles were analyzed. The solid cathode particles were analyzed via scanning electron microscopy (SEM) whereas the electrolyte solution was analyzed using inductively coupled plasma mass spectroscopy (ICP-MS). The SEM analysis assists with elucidation of changes to the surfaces of the cathode particles. The ICP-MS of the electrolyte allows the determination of the extent of Mn and Ni dissolution. Samples of LiNi0.5Mn1.5O4 with different crystal surface facets were prepared to investigate the role of particle morphology in Mn and Ni dissolution. The factors affecting Mn and Ni dissolution and methods to inhibit dissolution will be discussed.

  5. Physiological stress responses in big gamefish after capture: observations on plasma chemistry and blood factors.

    PubMed

    Wells, R M; McIntyre, R H; Morgan, A K; Davie, P S

    1986-01-01

    The plasma electrolytes, Na+, K+, Ca2+, Cl- and osmolarities had high values in capture-stressed big gamefish. Blood metabolites measured after stress showed glucose and lactate elevations. The activity of the plasma enzymes alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, creatine kinase and lactate dehydrogenase suggested tissue disruptions following severe capture stress. Haematocrit values and methaemoglobin were high in capture-stressed gamefish. The plasma chemistry of resting and capture-stressed snapper (Chrysophrys auratus) was studied for comparison. Specific differences in plasma biochemistry appeared to be the result of different strategies of fish behaviour during capture.

  6. Optimizing Ionic Electrolytes for Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Fan, Xiaojuan; Hall, Sarah

    2009-03-01

    Dye-sensitized solar cells DSSCs provide next generation, low cost, and easy fabrication photovoltaic devices based on organic sensitizing molecules, polymer gel electrolyte, and metal oxide semiconductors. One of the key components is the solvent-free ionic liquid electrolyte that has low volatility and high stability. We report a rapid and low cost method to fabricate ionic polymer electrolyte used in DSSCs. Poly(ethylene oxide) (PEO) is blended with imidazolinium salt without any chemical solvent to form a gel electrolyte. Uniform and crack-free porous TiO2 thin films are sensitized by porphrine dye covered by the synthesized gel electrolyte. The fabricated DSSCs are more stable and potentially increase the photo-electricity conversion efficiency.

  7. An Electrolyte-Free Conducting Polymer Actuator that Displays Electrothermal Bending and Flapping Wing Motions under a Magnetic Field.

    PubMed

    Uh, Kyungchan; Yoon, Bora; Lee, Chan Woo; Kim, Jong-Man

    2016-01-20

    Electroactive materials that change shape in response to electrical stimulation can serve as actuators. Electroactive actuators of this type have great utility in a variety of technologies, including biomimetic artificial muscles, robotics, and sensors. Electroactive actuators developed to date often suffer from problems associated with the need to use electrolytes, slow response times, high driving voltages, and short cycle lifetimes. Herein, we report an electrolyte-free, single component, polymer electroactive actuator, which has a fast response time, high durability, and requires a low driving voltage (<5 V). The process employed for production of this material involves wet-spinning of a preorganized camphorsulfonic acid (CSA)-doped polyaniline (PANI) gel, which generates long, flexible, and conductive (∼270 S/cm) microfibers. Reversible bending motions take place upon application of an alternating current (AC) to the PANI polymer. This motion, promoted by a significantly low driving voltage (<0.5 V) in the presence of an external magnetic field, has a very large swinging speed (9000 swings/min) that lies in the range of those of flies and bees (1000-15000 swings/min) and is fatigue-resistant (>1000000 cycles).

  8. Gel electrolytes and electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleischmann, Sven; Bunte, Christine; Mikhaylik, Yuriy V.

    Gel electrolytes, especially gel electrolytes for electrochemical cells, are generally described. In some embodiments, the gel electrolyte layers comprise components a) to c). Component a) may be at least one layer of at least one polymer comprising polymerized units of: a1) at least one monomer containing an ethylenically unsaturated unit and an amido group and a2) at least one crosslinker. Component b) may be at least one conducting salt and component c) may be at least one solvent. Electrodes may comprise the components a), d) and e), wherein component a) may be at least one layer of at least onemore » polymer as described herein. Component d) may be at least one electroactive layer and component e) may be at least one ceramic layer. Furthermore, electrochemical cells comprising component a) which may be at least one layer of at least one polymer as described herein, are also provided.« less

  9. Method of making a layered composite electrode/electrolyte

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2005-01-25

    An electrode/electrolyte structure is prepared by a plurality of methods. An unsintered (possibly bisque fired) moderately catalytic electronically-conductive or homogeneous mixed ionic electronic conductive electrode material is deposited on a layer composed of a sintered or unsintered ionically-conductive electrolyte material prior to being sintered. A layer of particulate electrode material is deposited on an unsintered ("green") layer of electrolyte material and the electrode and electrolyte layers are sintered simultaneously, sometimes referred to as "co-firing," under conditions suitable to fully densify the electrolyte while the electrode retains porosity. Or, the layer of particulate electrode material is deposited on a previously sintered layer of electrolyte, and then sintered. Subsequently, a catalytic material is added to the electrode structure by infiltration of an electrolcatalyst precursor (e.g., a metal salt such as a transition metal nitrate). This may be followed by low temperature firing to convert the precursor to catalyst. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in an ionic (electrochemical) device such as fuel cells and electrolytic gas separation systems.

  10. Solid polymer electrolyte lithium batteries

    DOEpatents

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  11. Application of Organic Solid Electrolytes

    NASA Technical Reports Server (NTRS)

    Sekido, S.

    1982-01-01

    If ions are considered to be solid material which transport electric charges, polymer materials can then be considered as organic solid electrolytes. The role of these electrolytes is discussed for (1) ion concentration sensors; (2) batteries using lithium as the cathode and a charge complex of organic material and iodine in the anode; and (3) elements applying electrical double layer capability.

  12. Electrolytes for lithium ion batteries

    DOEpatents

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  13. High elastic modulus polymer electrolytes

    DOEpatents

    Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2013-10-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics.

  14. Semiconductor electrolyte photovoltaic energy converter

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Anderson, L. B.

    1975-01-01

    Feasibility and practicality of a solar cell consisting of a semiconductor surface in contact with an electrolyte are evaluated. Basic components and processes are detailed for photovoltaic energy conversion at the surface of an n-type semiconductor in contact with an electrolyte which is oxidizing to conduction band electrons. Characteristics of single crystal CdS, GaAs, CdSe, CdTe and thin film CdS in contact with aqueous and methanol based electrolytes are studied and open circuit voltages are measured from Mott-Schottky plots and open circuit photo voltages. Quantum efficiencies for short circuit photo currents of a CdS crystal and a 20 micrometer film are shown together with electrical and photovoltaic properties. Highest photon irradiances are observed with the GaAs cell.

  15. Dynamics of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources

    NASA Astrophysics Data System (ADS)

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C.; Ji, Qing; Persaud, Arun; Seidl, Peter A.; Schenkel, Thomas

    2016-10-01

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams. Here we present experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a FEPS plasma. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable. The transverse electrostatic potential of the ion beam is reduced from 15 V before neutralization to 0.3 V, implying that the energy of the neutralizing electrons is below 0.3 eV. Near-complete charge neutralization is established 5 μs after the driving pulse is applied to the FEPS, and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub- μs surface discharge. Measurements of current flow in the driving circuit of the FEPS suggest that plasma can be generated for tens of μs after the high voltage pulse is applied. This is confirmed by fast photography of the plasma in the 1-meter long FEPS on NDCX-II, where effective charge neutralization of the beam was achieved with the optimized FEPS timing. This work was supported by the Office of Science of the US Department of Energy under contracts DE-AC0209CH11466 (PPPL) and DE-AC0205CH11231 (LBNL).

  16. Halogen-free boron based electrolyte solution for rechargeable magnesium batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Jinjie; Guo, Yongsheng; Yang, Jun; Nuli, Yanna; Zhang, Fan; Wang, Jiulin; Hirano, Shin-ichi

    2014-02-01

    All halogen containing electrolytes for Mg battery are apt to corrode conventional metal current collectors. In this paper, a new type of halogen-free boron based electrolyte (Mg[Mes3BPh]2/THF) is designed and prepared. Electrochemical tests show that this electrolyte system possesses high ion conductivity (1.5 × 10-3 S cm-1) and good Mg deposition-dissolution reversibility. More importantly, the same electrochemical window (2.6 V vs. Mg RE) of the electrolyte on Pt and stainless steel electrodes indicates that halogen-free electrolyte indeed lessens the corrosion to conventional metal current collectors. The surface morphologies of stainless steel, aluminum and copper are further observed after their anodic potentiostatic polarization in 0.25 mol L-1 Mg[Mes3BPh]2/THF electrolyte solution for 2 days. A comparison with halogen containing electrolytes proves that the presence of halogen in electrolyte is the reason for corrosion. This work provides a stepping stone for developing new halogen-free electrolyte systems for rechargeable Mg batteries.

  17. Pulsed Plasma Thrusters for Small Spacecraft Attitude Control

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Myers, Roger M.

    1996-01-01

    Pulsed plasma thrusters (PPT's) are a new option for attitude control of a small spacecraft and may result in reduced attitude control system (ACS) mass and cost. The primary purpose of an ACS is to orient the spacecraft configuration to the desired accuracy in inertial space. The ACS functions for which the PPT system will be analyzed include disturbance torque compensation and slewing maneuvers such as sun acquisition for which the small impulse bit and high specific impulse of the PPT offers unique advantages. The NASA Lewis Reserach Center (LeRC) currently has a contracted flight PPT system development program in place with Olin Aerospace and a delivery date of October 1997. The PPT system in this study are based upon the work being done under the NASA LeRC program. Analysis of the use of PPT's for ACS showed that the replacement of the standard momentum wheels and torque rods systems with a PTT system to perform the altitude control maneuvers on a small low Earth orbiting spacecraft reduced the ACS mass by 50 to 75 percent with no increase in required power level over comparable wheel-based systems.

  18. Pulsed plasma thrusters for small spacecraft attitude control

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Myers, Roger M.

    1996-01-01

    Pulsed Plasma Thrusters (PPTS) are a new option for attitude control of a small spacecraft and may result in reduced attitude control system (ACS) mass and cost. The primary purpose of an ACS is to orient the spacecraft to the desired accuracy in inertial space. The ACS functions for which the PPT system will be analyzed include disturbance torque compensation, and slewing maneuvers such as sun acquisition for which the small impulse bit and high specific impulse of the PPT offers unique advantages. The NASA Lewis Research Center (LERC) currently has a contracted flight PPT system development program in place with Olin Aerospace with a delivery date of October 1997. The PPT systems in this study are based upon the work being done under the NASA LERC program. Analysis of the use of PPTs for ACS showed that the replacement of the standard momentum wheels and torque rods with a PPT system to perform the attitude control maneuvers on a small low Earth orbiting spacecraft reduced the ACS mass by 50 to 75% with no increase in required power level over comparable wheel-based systems, though rapid slewing power requirements may present an issue.

  19. Computer model for characterizing, screening, and optimizing electrolyte systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gering, Kevin L.

    2015-06-15

    Electrolyte systems in contemporary batteries are tasked with operating under increasing performance requirements. All battery operation is in some way tied to the electrolyte and how it interacts with various regions within the cell environment. Seeing the electrolyte plays a crucial role in battery performance and longevity, it is imperative that accurate, physics-based models be developed that will characterize key electrolyte properties while keeping pace with the increasing complexity of these liquid systems. Advanced models are needed since laboratory measurements require significant resources to carry out for even a modest experimental matrix. The Advanced Electrolyte Model (AEM) developed at themore » INL is a proven capability designed to explore molecular-to-macroscale level aspects of electrolyte behavior, and can be used to drastically reduce the time required to characterize and optimize electrolytes. Although it is applied most frequently to lithium-ion battery systems, it is general in its theory and can be used toward numerous other targets and intended applications. This capability is unique, powerful, relevant to present and future electrolyte development, and without peer. It redefines electrolyte modeling for highly-complex contemporary systems, wherein significant steps have been taken to capture the reality of electrolyte behavior in the electrochemical cell environment. This capability can have a very positive impact on accelerating domestic battery development to support aggressive vehicle and energy goals in the 21st century.« less

  20. New Composites LnBDC@AC and CB[6]@AC: From Design toward Selective Adsorption of Methylene Blue or Methyl Orange

    PubMed Central

    Santos, Guilherme de C.; Barros, Amanda L.; de Oliveira, Carlos A. F.; da Luz, Leonis L.; da Silva, Fausthon F.; Demets, Grégoire J.-F.; Alves Júnior, Severino

    2017-01-01

    New porous composites LnBDC@AC (AC = Activated carbon, Ln = Eu and Gd and BDC = 1,4-benzenedicaboxylate) and CB[6]@AC (CB[6] = Cucurbit[6]uril) were obtained using hydrothermal route. The LnBDC and CB[B] are located inside the pore of the carbon materials as was observed in SEM-EDS, XRPD and FT-IR analysis. Porosimetry analysis showed values typically between AC and LnBDC material, with pore size and surface area, respectively, 29,56 Å and 353.98 m2g-1 for LnBDC@AC and 35,53 Å and 353.98 m2g-1 for CB[6]@AC. Both materials showed good absorptive capacity of metil orange (MO) and methylene blue (MB) with selectivity as a function of pH. For acid pH, both materials present selectivity by MB and alkaline pH for MO, with notable performance for CB[6]@AC. Additionally, europium luminescence was used as structural probe to investigate the coordination environment of Eu3+ ions in the EuBDC@AC composite after adsorption experiment. PMID:28107440

  1. Self-doped molecular composite battery electrolytes

    DOEpatents

    Harrup, Mason K.; Wertsching, Alan K.; Stewart, Frederick F.

    2003-04-08

    This invention is in solid polymer-based electrolytes for battery applications. It uses molecular composite technology, coupled with unique preparation techniques to render a self-doped, stabilized electrolyte material suitable for inclusion in both primary and secondary batteries. In particular, a salt is incorporated in a nano-composite material formed by the in situ catalyzed condensation of a ceramic precursor in the presence of a solvated polymer material, utilizing a condensation agent comprised of at least one cation amenable to SPE applications. As such, the counterion in the condensation agent used in the formation of the molecular composite is already present as the electrolyte matrix develops. This procedure effectively decouples the cation loading levels required for maximum ionic conductivity from electrolyte physical properties associated with condensation agent loading levels by utilizing the inverse relationship discovered between condensation agent loading and the time domain of the aging step.

  2. Electrolyte materials containing highly dissociated metal ion salts

    DOEpatents

    Lee, H.S.; Geng, L.; Skotheim, T.A.

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity. 2 figs.

  3. New Solid Polymer Electrolytes for Improved Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Hehemann, David G.

    2002-01-01

    The objective of this work was to identify, synthesize and incorporate into a working prototype, next-generation solid polymer electrolytes, that allow our pre-existing solid-state lithium battery to function better under extreme conditions. We have synthesized polymer electrolytes in which emphasis was placed on the temperature-dependent performance of these candidate electrolytes. This project was designed to produce and integrate novel polymer electrolytes into a lightweight thin-film battery that could easily be scaled up for mass production and adapted to different applications.

  4. Recent results on aqueous electrolyte cells

    NASA Astrophysics Data System (ADS)

    Wessells, Colin; Huggins, Robert A.; Cui, Yi

    2011-03-01

    The improved safety of aqueous electrolytes makes aqueous lithium-ion batteries an attractive alternative to commercial cells utilizing flammable and expensive organic electrolytes. Two important issues relating to their use have been addressed in this work. One is the extension of the usable voltage range by the incorporation of lithium salts, and the other is the investigation of a useful negative electrode reactant, LiTi2(PO4)3. The electrochemical stability of aqueous lithium salt solutions containing two lithium salts, LiNO3 and Li2SO4, has been characterized using a constant current technique. In both cases, concentrated solutions had effective electrolyte stability windows substantially greater than that of pure water under standard conditions. At an electrolyte leakage current of 10 μA cm-2 between two platinum electrodes in 5 M LiNO3 the cell voltage can reach 2.0 V, whereas with a leakage current of 50 μA cm-2 it can reach 2.3 V. LiTi2(PO4)3 was synthesized using a Pechini method and cycled in pH-neutral Li2SO4. At a reaction potential near the lower limit of electrolyte stability, an initial discharge capacity of 118 mAh g-1 was measured at a C/5 rate, while about 90% of this discharge capacity was retained after 100 cycles. This work demonstrates that it is possible to have useful aqueous electrolyte lithium-ion batteries using the LiTi2(PO4)3 anode with cell voltages of 2 V and above.

  5. 21 CFR 886.1850 - AC-powered slitlamp biomicroscope.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered slitlamp biomicroscope. 886.1850... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1850 AC-powered slitlamp biomicroscope. (a) Identification. An AC-powered slitlamp biomicroscope is an AC-powered device that is a...

  6. Fluid-electrolyte shifts and maximal oxygen uptake in man at simulated altitude /2,287 m/

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bernauer, E. M.; Adams, W. C.; Juhos, L.

    1978-01-01

    Experiments were conducted on six trained distance runners (21-23 yr) subjected to an eight-day dietary control at sea level, followed by an eight-day stay in an altitude chamber (2287-m altitude) and a four-day recovery at sea level. Fluid and electrolyte shifts during exercise at altitude were evaluated to gain insight into the mechanism of reduction in working capacity. The results are discussed in terms of resting fluid volumes and blood constituents, maximal exercise variables, and maximal exercise fluid-electrolyte shifts. Since there are no significant changes in fluid balance or resting plasma volume (PV) at altitude, it is concluded that neither these nor the excessive PV shifts with exercise contribute to the reduction in maximal oxygen uptake at altitude. During altitude exposure the percent loss in PV is found to follow the percent reduction in maximal oxygen uptake; however, on the first day of recovery the percent change in PV remains depressed while maximal oxygen uptake returns to control levels.

  7. A Cost-Effective Energy-Recovering Sustain Driving Circuit for ac Plasma Display Panels

    NASA Astrophysics Data System (ADS)

    Lim, Jae Kwang; Tae, Heung-Sik; Choi, Byungcho; Kim, Seok Gi

    A new sustain driving circuit, featuring an energy-recovering function with simple structure and minimal component count, is proposed as a cost-effective solution for driving plasma display panels during the sustaining period. Compared with existing solutions, the proposed circuit reduces the number of semiconductor switches and reactive circuit components without compromising the circuit performance and gas-discharging characteristics. In addition, the proposed circuit utilizes the harness wire as an inductive circuit component, thereby further simplifying the circuit structure. The performance of the proposed circuit is confirmed with a 42-inch plasma display panel.

  8. Chemical modification of electrolytes for lithium batteries

    NASA Astrophysics Data System (ADS)

    Afanas'ev, Vladimir N.; Grechin, Aleksandr G.

    2002-09-01

    Modern approaches to modifying chemically electrolytes for lithium batteries are analysed with the aim of optimising the charge-transfer processes in liquid-phase and solid (polymeric) media. The main regularities of transport properties of lithium electrolyte solutions containing complex (encapsulated) ions in aprotic solvents and polymers are discussed. The prospects for the development of electrolytic solvosystems with the chain (ionotropic) mechanism of conduction with respect to lithium ions are outlined. The bibliography includes 126 references.

  9. Electrolytic cell. [For separating anolyte and catholyte

    DOEpatents

    Bullock, J.S.; Hale, B.D.

    1984-09-14

    An apparatus is described for the separation of the anolyte and the catholyte during electrolysis. The electrolyte flows through an electrolytic cell between the oppositely charged electrodes. The cell is equipped with a wedge-shaped device, the tapered end being located between the electrodes on the effluent side of the cell. The wedge diverts the flow of the electrolyte to either side of the wedge, substantially separating the anolyte and the catholyte.

  10. Cosolvent electrolytes for electrochemical devices

    DOEpatents

    Wessells, Colin Deane; Firouzi, Ali; Motallebi, Shahrokh; Strohband, Sven

    2018-01-23

    A method for stabilizing electrodes against dissolution and/or hydrolysis including use of cosolvents in liquid electrolyte batteries for three purposes: the extension of the calendar and cycle life time of electrodes that are partially soluble in liquid electrolytes, the purpose of limiting the rate of electrolysis of water into hydrogen and oxygen as a side reaction during battery operation, and for the purpose of cost reduction.

  11. Solid polymer electrolyte lithium batteries

    DOEpatents

    Alamgir, M.; Abraham, K.M.

    1993-10-12

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  12. Short protection device for stack of electrolytic cells

    DOEpatents

    Katz, M.; Schroll, C.R.

    1984-11-29

    The present invention relates to a device for preventing the electrical shorting of a stack of electrolytic cells during an extended period of operation. The device has application to fuel cell and other electrolytic cell stacks operating in low or high temperature corrosive environments. It is of particular importance for use in a stack of fuel cells operating with molten metal carbonate electrolyte for the production of electric power. Also, the device may have application in similar technology involving stacks of electrolytic cells for electrolysis to decompose chemical compounds.

  13. Metal-air flow batteries using oxygen enriched electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jian-ping; Andrei, Petru; Shellikeri, Annadanesh

    A metal air flow battery includes an electrochemical reaction unit and an oxygen exchange unit. The electrochemical reaction unit includes an anode electrode, a cathode electrode, and an ionic conductive membrane between the anode and the cathode, an anode electrolyte, and a cathode electrolyte. The oxygen exchange unit contacts the cathode electrolyte with oxygen separate from the electrochemical reaction unit. At least one pump is provided for pumping cathode electrolyte between the electrochemical reaction unit and the oxygen exchange unit. A method for producing an electrical current is also disclosed.

  14. Zinc halogen battery electrolyte composition with lead additive

    DOEpatents

    Henriksen, Gary L.

    1981-01-01

    This disclosure relates to a zinc halogen battery electrolyte composition containing an additive providing improved zinc-on-zinc recyclability. The improved electrolyte composition involves the use of a lead additive to inhibit undesirable irregular plating and reduce nodular or dendritic growth on the electrode surface. The lead-containing electrolyte composition of the present invention appears to influence not only the morphology of the base plate zinc, but also the morphology of the zinc-on-zinc replate. In addition, such lead-containing electrolyte compositions appear to reduce hydrogen formation.

  15. Metal-air flow batteries using oxygen enriched electrolyte

    DOEpatents

    Zheng, Jian-ping; Andrei, Petru; Shellikeri, Annadanesh; Chen, Xujie

    2017-08-01

    A metal air flow battery includes an electrochemical reaction unit and an oxygen exchange unit. The electrochemical reaction unit includes an anode electrode, a cathode electrode, and an ionic conductive membrane between the anode and the cathode, an anode electrolyte, and a cathode electrolyte. The oxygen exchange unit contacts the cathode electrolyte with oxygen separate from the electrochemical reaction unit. At least one pump is provided for pumping cathode electrolyte between the electrochemical reaction unit and the oxygen exchange unit. A method for producing an electrical current is also disclosed.

  16. Investigations of oxygen reduction reactions in non-aqueous electrolytes and the lithium-air battery

    NASA Astrophysics Data System (ADS)

    O'Laoire, Cormac Micheal

    of the cell, and the factors limiting the cycle life of the cell were studied using AC impedance spectra of the cells as a function of cycle number. In conclusion, the work carried out in this research has shown that the O2 electrochemistry in organic electrolytes is substantially different from that in aqueous electrolytes. Our work has uncovered the key roles the ion conducting salts and the organic solvents play in determining the nature of the reduction products and their reversibility. The results presented here for the first time provide a rational approach to the design and selection of organic electrolyte solutions for use in the rechargeable Li-air battery. (Abstract shortened by UMI.)

  17. Experimental investigations on characteristics of boundary layer and control of transition on an airfoil by AC-DBD

    NASA Astrophysics Data System (ADS)

    Geng, Xi; Shi, Zhiwei; Cheng, Keming; Dong, Hao; Zhao, Qun; Chen, Sinuo

    2018-03-01

    Plasma-based flow control is one of the most promising techniques for aerodynamic problems, such as delaying the boundary layer transition. The boundary layer’s characteristics induced by AC-DBD plasma actuators and applied by the actuators to delay the boundary layer transition on airfoil at Ma = 0.3 were experimentally investigated. The PIV measurement was used to study the boundary layer’s characteristics induced by the plasma actuators. The measurement plane, which was parallel to the surface of the actuators and 1 mm above the surface, was involved in the test, including the perpendicular plane. The instantaneous results showed that the induced flow field consisted of many small size unsteady vortices which were eliminated by the time average. The subsequent oil-film interferometry skin friction measurement was conducted on a NASA SC(2)-0712 airfoil at Ma = 0.3. The coefficient of skin friction demonstrates that the plasma actuators successfully delay the boundary layer transition and the efficiency is better at higher driven voltage.

  18. Organosilicon-Based Electrolytes for Long-Life Lithium Primary Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenton, Kyle R.; Nagasubramanian, Ganesan; Staiger, Chad L.

    2015-09-01

    This report describes advances in electrolytes for lithium primary battery systems. Electrolytes were synthesized that utilize organosilane materials that include anion binding agent functionality. Numerous materials were synthesized and tested in lithium carbon monofluoride battery systems for conductivity, impedance, and capacity. Resulting electrolytes were shown to be completely non-flammable and showed promise as co-solvents for electrolyte systems, due to low dielectric strength.

  19. Studies on the effect of acid treated TiO{sub 2} on the electrical and tensile properties of hexanoyl chitosan-polystyrene-LiCF{sub 3}SO{sub 3} composite polymer electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanif, Nur Shazlinda Muhammad; Shahril, Nur Syuhada Mohd; Azmar, Amisha

    2015-08-28

    Composite polymer electrolytes (CPEs) comprised of hexanoyl chitosan:polystyrene (90:10) blend, lithium triflouromethanesulfonate (LiCF{sub 3}SO{sub 3}) salt and titanium oxide (TiO{sub 2}) filler were prepared by solution casting technique. The TiO{sub 2} fillers were treated with 2% sulphuric acid (H{sub 2}SO{sub 4}) aqueous solution. The effect of acid treated TiO{sub 2} on the electrical and tensile properties of the electrolytes were investigated. Acid treated TiO{sub 2} decreased the electrolyte conductivity. Both the dielectric constant and dielectric loss decrease with increasing frequency and increases with increasing temperature. Relaxation times for ionic carriers were extracted from the loss tangent maximum peak at variousmore » temperatures. A distribution of relaxation time implied the non-Debye response. At all frequencies, ac conductivity increases with increasing temperature. An enhancement in the Young’s modulus was observed with the addition of TiO{sub 2}. The Young’s modulus increases with increasing TiO{sub 2} content. This is discussed using the percolation concept.« less

  20. Plasma synthesis of lithium based intercalation powders for solid polymer electrolyte batteries

    DOEpatents

    Kong, Peter C [Idaho Falls, ID; Pink, Robert J [Pocatello, ID; Nelson, Lee O [Idaho Falls, ID

    2005-01-04

    The invention relates to a process for preparing lithium intercalation compounds by plasma reaction comprising the steps of: forming a feed solution by mixing lithium nitrate or lithium hydroxide or lithium oxide and the required metal nitrate or metal hydroxide or metal oxide and between 10-50% alcohol by weight; mixing the feed solution with O.sub.2 gas wherein the O.sub.2 gas atomizes the feed solution into fine reactant droplets, inserting the atomized feed solution into a plasma reactor to form an intercalation powder; and if desired, heating the resulting powder to from a very pure single phase product.