Science.gov

Sample records for ac power circuit

  1. Motor power control circuit for ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A motor power control of the type which functions by controlling the power factor wherein one of the parameters of power factor current on time is determined by the on time of a triac through which current is supplied to the motor. By means of a positive feedback circuit, a wider range of control is effected.

  2. AC power systems handbook

    SciTech Connect

    Whitaker, J.

    1991-01-01

    Transient disturbances are what headaches are made of. Whatever you call them-spikes, surges, are power bumps-they can take your equipment down and leave you with a complicated and expensive repair job. Protection against transient disturbances is a science that demands attention to detail. This book explains how the power distribution system works, what can go wrong with it, and how to protect a facility against abnormalities. system grounding and shielding are covered in detail. Each major method of transient protection is analyzed and its relative merits discussed. The book provides a complete look at the critical elements of the ac power system. Provides a complete look at the ac power system from generation to consumption. Discusses the mechanisms that produce transient disturbances and how to protect against them. Presents diagrams to facilitate system design. Covers new areas, such as the extent of the transient disturbance problem, transient protection options, and stand-by power systems.

  3. Operation Method for AC Motor Control during Power Interruption in Direct AC/AC Converter System

    NASA Astrophysics Data System (ADS)

    Shizu, Keiichiro; Azuma, Satoshi

    Direct AC/AC converters have been studied due to their potential use in power converters with no DC-link capacitor, which can contribute to the miniaturization of power converters. However, the absence of a DC-link capacitor makes it difficult to control the AC motor during power interruption. First, this paper proposes a system that realizes AC motor control during power interruption by utilizing a clamp capacitor. In general, direct AC/AC converters have a clamp circuit consisting of a rectifier diode(s) and a clamp capacitor in order to avoid over-voltages. In the proposed system, there is an additional semiconductor switch reverse-parallel to the rectifier diode(s), and the clamp capacitor voltage can be utilized for AC motor control by turning on the additional switch. Second, this paper discusses an operation method for AC motor control and clamp capacitor voltage control during power interruption. In the proposed method “DC-link voltage control”, the kinetic energy in the AC motor is transformed into electrical energy and stored in the clamp capacitor; the clamp capacitor is therefore charged and the capacitor voltage is controlled to remain constant at an instruction value. Third, this paper discusses a switching operation during power interruption. A dead-time is introduced between the operation of turning off all switches on the rectifier side and the operation of turning on the additional switch, which prevents the occurrence of a short circuit between the interrupted power source and the clamp capacitor. Finally, experimental results are presented. During power interruptions, an output current was continuously obtained and the clamp capacitor voltage was maintained to be equal to the instruction value of the capacitor voltage. These results indicate that both AC motor control and capacitor voltage control were successfully achieved by using the proposed system.

  4. Equivalent circuit models for ac impedance data analysis

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1990-01-01

    A least-squares fitting routine has been developed for the analysis of ac impedance data. It has been determined that the checking of the derived equations for a particular circuit with a commercially available electronics circuit program is essential. As a result of the investigation described, three equivalent circuit models were selected for use in the analysis of ac impedance data.

  5. Power supply conditioning circuit

    NASA Technical Reports Server (NTRS)

    Primas, L. E.; Loveland, R.

    1987-01-01

    A power supply conditioning circuit that can reduce Periodic and Random Deviations (PARD) on the output voltages of dc power supplies to -150 dBV from dc to several KHz with no measurable periodic deviations is described. The PARD for a typical commercial low noise power supply is -74 dBV for frequencies above 20 Hz and is often much worse at frequencies below 20 Hz. The power supply conditioning circuit described here relies on the large differences in the dynamic impedances of a constant current diode and a zener diode to establish a dc voltage with low PARD. Power supplies with low PARD are especially important in circuitry involving ultrastable frequencies for the Deep Space Network.

  6. Power control for ac motor

    NASA Technical Reports Server (NTRS)

    Dabney, R. W. (Inventor)

    1984-01-01

    A motor controller employing a triac through which power is supplied to a motor is described. The open circuit voltage appearing across the triac controls the operation of a timing circuit. This timing circuit triggers on the triac at a time following turn off which varies inversely as a function of the amplitude of the open circuit voltage of the triac.

  7. Thermionic triode generates ac power

    NASA Technical Reports Server (NTRS)

    Kniazzeh, A. G. F.; Scharz, F. C.

    1970-01-01

    Electrostatic grid controls conduction cycle of thermionic diode to convert low dc output voltages to high ac power without undesirable power loss. An ac voltage applied to the grid of this new thermionic triode enables it to convert heat directly into high voltage electrical power.

  8. Power-Supply-Conditioning Circuit

    NASA Technical Reports Server (NTRS)

    Primas, L. E.; Loveland, R. C.

    1989-01-01

    Fluctuations of voltage suppressed in power supplies for precise radio-frequency circuits. Circuit suppresses both periodic and random deviations of dc supply voltage from desired steady level. Highly-stable feedback voltage regulator, conditioner intended in conjunction with conventional power-supply circuit to provide constant voltage to atomic frequency standard or other precise oscillator. Without conditioners, outputs of most commercial power supplies contain fluctuations causing unacceptably-large phase and amplitude modulation of precise oscillators.

  9. Equivalent Electrical Circuit Representations of AC Quantized Hall Resistance Standards

    PubMed Central

    Cage, M. E.; Jeffery, A.; Matthews, J.

    1999-01-01

    We use equivalent electrical circuits to analyze the effects of large parasitic impedances existing in all sample probes on four-terminal-pair measurements of the ac quantized Hall resistance RH. The circuit components include the externally measurable parasitic capacitances, inductances, lead resistances, and leakage resistances of ac quantized Hall resistance standards, as well as components that represent the electrical characteristics of the quantum Hall effect device (QHE). Two kinds of electrical circuit connections to the QHE are described and considered: single-series “offset” and quadruple-series. (We eliminated other connections in earlier analyses because they did not provide the desired accuracy with all sample probe leads attached at the device.) Exact, but complicated, algebraic equations are derived for the currents and measured quantized Hall voltages for these two circuits. Only the quadruple-series connection circuit meets our desired goal of measuring RH for both ac and dc currents with a one-standard-deviation uncertainty of 10−8 RH or less during the same cool-down with all leads attached at the device. The single-series “offset” connection circuit meets our other desired goal of also measuring the longitudinal resistance Rx for both ac and dc currents during that same cool-down. We will use these predictions to apply small measurable corrections, and uncertainties of the corrections, to ac measurements of RH in order to realize an intrinsic ac quantized Hall resistance standard of 10−8 RH uncertainty or less.

  10. Power system with an integrated lubrication circuit

    SciTech Connect

    Hoff, Brian D.; Akasam, Sivaprasad; Algrain, Marcelo C.; Johnson, Kris W.; Lane, William H.

    2009-11-10

    A power system includes an engine having a first lubrication circuit and at least one auxiliary power unit having a second lubrication circuit. The first lubrication circuit is in fluid communication with the second lubrication circuit.

  11. Power supply conditioning circuit

    NASA Technical Reports Server (NTRS)

    Primas, Lori E. (Inventor); Loveland, Rohan C. (Inventor)

    1988-01-01

    A conditioning circuit is provided with a constant current diode in series with a zener diode, the former having a high dynamic impedance and the latter a low dynamic impedance. The constant current diode can receive an input voltage with PARD. In conjunction with the zener diode fixed to a ground, a voltage divider is provided which can give an output voltage whose PARD was significantly reduced. The conditioning circuit is effective down to dc.

  12. AC power system breadboard

    NASA Technical Reports Server (NTRS)

    Wappes, Loran J.; Sundberg, R.; Mildice, J.; Peterson, D.; Hushing, S.

    1987-01-01

    The object of this program was to design, build, test, and deliver a high-frequency (20-kHz) Power System Breadboard which would electrically approximate a pair of dual redundant power channels of an IOC Space Station. This report describes that program, including the technical background, and discusses the results, showing that the major assumptions about the characteristics of this class of hardware (size, mass, efficiency, control, etc.) were substantially correct. This testbed equipment has been completed and delivered to LeRC, where it is operating as a part of the Space Station Power System Test Facility.

  13. Semiconductor ac static power switch

    NASA Technical Reports Server (NTRS)

    Vrancik, J.

    1968-01-01

    Semiconductor ac static power switch has long life and high reliability, contains no moving parts, and operates satisfactorily in severe environments, including high vibration and shock conditions. Due to their resistance to shock and vibration, static switches are used where accidental switching caused by mechanical vibration or shock cannot be tolerated.

  14. Introducing AC inductive reactance with a power tool

    NASA Astrophysics Data System (ADS)

    Bryant, Wesley; Baker, Blane

    2016-09-01

    The concept of reactance in AC electrical circuits is often non-intuitive and difficult for students to grasp. In order to address this lack of conceptual understanding, classroom exercises compare the predicted resistance of a power tool, based on electrical specifications, to measured resistance. Once students discover that measured resistance is smaller than expected, they are asked to explain these observations using previously studied principles of magnetic induction. Exercises also introduce the notion of inductive reactance and impedance in AC circuits and, ultimately, determine self-inductance of the motor windings within the power tool.

  15. Simultaneous distribution of AC and DC power

    DOEpatents

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  16. Submicrosecond Power-Switching Test Circuit

    NASA Technical Reports Server (NTRS)

    Folk, Eric N.

    2006-01-01

    A circuit that changes an electrical load in a switching time shorter than 0.3 microsecond has been devised. This circuit can be used in testing the regulation characteristics of power-supply circuits . especially switching power-converter circuits that are supposed to be able to provide acceptably high degrees of regulation in response to rapid load transients. The combination of this power-switching circuit and a known passive constant load could be an attractive alternative to a typical commercially available load-bank circuit that can be made to operate in nominal constant-voltage, constant-current, and constant-resistance modes. The switching provided by a typical commercial load-bank circuit in the constant-resistance mode is not fast enough for testing of regulation in response to load transients. Moreover, some test engineers do not trust the test results obtained when using commercial load-bank circuits because the dynamic responses of those circuits are, variously, partly unknown and/or excessively complex. In contrast, the combination of this circuit and a passive constant load offers both rapid switching and known (or at least better known) load dynamics. The power-switching circuit (see figure) includes a signal-input section, a wide-hysteresis Schmitt trigger that prevents false triggering in the event of switch-contact bounce, a dual-bipolar-transistor power stage that drives the gate of a metal oxide semiconductor field-effect transistor (MOSFET), and the MOSFET, which is the output device that performs the switching of the load. The MOSFET in the specific version of the circuit shown in the figure is rated to stand off a potential of 100 V in the "off" state and to pass a current of 20 A in the "on" state. The switching time of this circuit (the characteristic time of rise or fall of the potential at the drain of the MOSFET) is .300 ns. The circuit can accept any of three control inputs . which one depending on the test that one seeks to perform: a

  17. The dc power circuits: A compilation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A compilation of reports concerning power circuits is presented for the dissemination of aerospace information to the general public as part of the NASA Technology Utilization Program. The descriptions for the electronic circuits are grouped as follows: dc power supplies, power converters, current-voltage power supply regulators, overload protection circuits, and dc constant current power supplies.

  18. Optimization of Resonant Power Supply Circuit

    SciTech Connect

    Karady, G.G.; Thiessen, H.A.

    1989-01-01

    A Resonant Power Supply has been proposed to power Rapid Cycling Accelerator magnets. The Resonant Power Supply circuits were studied extensively, but were not optimized. Most designs assume equal choke and magnet inductance, however, the variation of inductance affects both performance and cost of the system. This paper optimizes the Resonant Power Supply Circuit by selecting the most feasible choke inductance. For this optimization, a computer model and an approximate design method were developed. The effect of choke inductance on the components rating and cost was determined. It was found that the increase of choke inductance reduces the maximum and increases the minimum choke current, which leads to a significant increase of system losses. The maximum voltage is independent of the choke inductance. The described change of choke current reduces the current of the Bypass Thyristor Switch and the Capacitor Bank Switch, which results in cost reduction. The increase of choke inductance reduces the size of capacitor banks. The loss increase requires larger Make-up Power Supply and ac supply systems. It also increases the operation costs. The system cost function has a minimum, when the choke inductance is about 1.5--2 times larger than the magnet one. The application of the result will lead to a more economical and efficient Resonant Power Supply. 2 refs., 8 figs., 1 tab.

  19. Introducing AC Inductive Reactance with a Power Tool

    ERIC Educational Resources Information Center

    Bryant, Wesley; Baker, Blane

    2016-01-01

    The concept of reactance in AC electrical circuits is often non-intuitive and difficult for students to grasp. In order to address this lack of conceptual understanding, classroom exercises compare the predicted resistance of a power tool, based on electrical specifications, to measured resistance. Once students discover that measured resistance…

  20. Bypassing An Open-Circuit Power Cell

    NASA Technical Reports Server (NTRS)

    Wannemacher, Harry E.

    1994-01-01

    Collection of bypass circuits enables battery consisting series string of cells to continue to function when one of its cells fails in open-circuit (high-resistance) condition. Basic idea simply to shunt current around defective cell to prevent open circuit from turning off battery altogether. Bypass circuits dissipate little power and are nearly immune to false activation.

  1. QPSK modulation for AC-power-signal-biased visible light communication system

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Feng; Yeh, Chien-Hung; Chow, Chi-Wai; Liu, Yang

    2013-01-01

    With the integration of light emitting diode (LED), visible light communication (VLC) can provide wireless communication link using the lightning system. Due to the consideration of power efficiency, AC-LED has the design of reducing energy waste with alternating current from the power outlet. In this work, we propose an AC-power-signalbiased system that provides communication on both DC-LED and AC-LED. The bias circuit is designed to combine ACpower signal and the message signal with QPSK format. This driving scheme needs no AC-to-DC converters and it is suitable for driving AC LED. Synchronization is completed to avoid threshold effect of LED.

  2. Three-phase ac-to-ac series-resonant power converter with a reduced number of thyristors

    SciTech Connect

    Klaassens, J.B.; de Beer, F. )

    1991-07-01

    This paper reports that ac-ac series-resonant converters have been proven to be functional and useful. Power pulse modulation with internal frequencies of tens of kHz and suited for multikilowatt power levels is applied to a series-resonant converter system for generating synthesized multiphase bipolar waveforms with reversible power flow and flow distortion. The use of a series-resonant circuit for power transfer and control obtains natural current commutation of the thyristors and the prevention of excessive stresses on components. Switches are required which have bidirectional current conduction and voltage blocking ability. The conventional series-resonant ac-ac converter applies a total for 24 anti-parallel thyristors. An alternative circuit configuration for the series-resonant ac-ac converter with only 12 thyristors is also presented. The alternative power circuit has three neutrals, related to the polyphase source, the load and the converter, which may be interconnected. If they are connected, the high-frequency component of the source and load currents will flow through the connection between the neutrals. The test results of a converter system generating three-phase sinusoidal input and output waveforms have demonstrated the significant aspects of this type of power interfaces.

  3. Sequential power-up circuit

    DOEpatents

    Kronberg, James W.

    1992-01-01

    A sequential power-up circuit for starting several electrical load elements in series to avoid excessive current surge, comprising a voltage ramp generator and a set of voltage comparators, each comparator having a different reference voltage and interfacing with a switch that is capable of turning on one of the load elements. As the voltage rises, it passes the reference voltages one at a time and causes the switch corresponding to that voltage to turn on its load element. The ramp is turned on and off by a single switch or by a logic-level electrical signal. The ramp rate for turning on the load element is relatively slow and the rate for turning the elements off is relatively fast. Optionally, the duration of each interval of time between the turning on of the load elements is programmable.

  4. Sequential power-up circuit

    DOEpatents

    Kronberg, J.W.

    1992-06-02

    A sequential power-up circuit for starting several electrical load elements in series to avoid excessive current surge, comprising a voltage ramp generator and a set of voltage comparators, each comparator having a different reference voltage and interfacing with a switch that is capable of turning on one of the load elements. As the voltage rises, it passes the reference voltages one at a time and causes the switch corresponding to that voltage to turn on its load element. The ramp is turned on and off by a single switch or by a logic-level electrical signal. The ramp rate for turning on the load element is relatively slow and the rate for turning the elements off is relatively fast. Optionally, the duration of each interval of time between the turning on of the load elements is programmable. 2 figs.

  5. AC Circuit Measurements with a Differential Hall Element Magnetometer

    NASA Astrophysics Data System (ADS)

    Calkins, Matthew W.; Nicks, B. Scott; Quintero, Pedro A.; Meisel, Mark W.

    2013-03-01

    As the biomedical field grows, there is an increasing need to quickly and efficiently characterize more samples at room temperature. An automated magnetometer was commissioned to do these room temperature magnetic characterizations. This magnetometer, which is inspired by a Differential Hall Element Magnetometer,[2] uses two commercially available Hall elements wired in series. One Hall element measures the external magnetic field of a 9 T superconducting magnet and the other measures the same external field plus the field due to the magnetization of the sample that sits on top of the Hall element. The difference between these two Hall elements is taken while a linear stepper motor sweeps through the external magnetic field. The linear motor and data acquisition are controlled by a LabVIEW program. Recently, the system was outfitted for AC circuit measurements and these data will be compared to DC circuit data. In addition, the lowest signal to noise ratio will be found in order to deduce the smallest amount of sample needed to register an accurate coercive field. Supported by the NSF via NHMFL REU (DMR-0654118), a single investigator grant (DMR-1202033 to MWM) and by the UF Undergraduate Scholars Program.

  6. Module Twelve: Series AC Resistive-Reactive Circuits; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The module covers series circuits which contain both resistive and reactive components and methods of solving these circuits for current, voltage, impedance, and phase angle. The module is divided into six lessons: voltage and impedance in AC (alternating current) series circuits, vector computations, rectangular and polar notation, variational…

  7. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  8. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  9. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  10. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  11. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  12. A power semiconductor test circuit with reduced power requirements

    NASA Technical Reports Server (NTRS)

    Been, J. F.

    1970-01-01

    Switching circuit utilizing silicon controlled rectifier reduces input power requirements normally associated with testing power semiconductors in an operational type mode. Circuit alleviates problems of inaccessibility, lack of large amounts of power, physical size of power resistors, wiring, and heat generation.

  13. Save power in AC induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1977-01-01

    Relatively simple and inexpensive circuitry improves power factor and reduces power dissipation in induction motors operating below full load. Electronic control loop conserves energy by reducing voltage applied to lightly loaded motor. Circuit forces motor to run at constant predetermined optimum power factor, regardless of load or line voltage variations. Solid-state switch varies voltage.

  14. Low power SEU immune CMOS memory circuits

    NASA Technical Reports Server (NTRS)

    Liu, M. N.; Whitaker, Sterling

    1992-01-01

    The authors report a design improvement for CMOS static memory circuits hardened against single event upset (SEU) using a recently proposed logic/circuit design technique. This improvement drastically reduces static power consumption, reduces the number of transistors required in a D flip-flop design, and eliminates the possibility of capturing an upset state in the slave section during a clock transition.

  15. Circuit for Communication Over Power Lines

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael J.; Prokop, Normal F.; Greer, Lawrence C., III; Nappier, Jennifer

    2011-01-01

    Many distributed systems share common sensors and instruments along with a common power line supplying current to the system. A communication technique and circuit has been developed that allows for the simple inclusion of an instrument, sensor, or actuator node within any system containing a common power bus. Wherever power is available, a node can be added, which can then draw power for itself, its associated sensors, and actuators from the power bus all while communicating with other nodes on the power bus. The technique modulates a DC power bus through capacitive coupling using on-off keying (OOK), and receives and demodulates the signal from the DC power bus through the same capacitive coupling. The circuit acts as serial modem for the physical power line communication. The circuit and technique can be made of commercially available components or included in an application specific integrated circuit (ASIC) design, which allows for the circuit to be included in current designs with additional circuitry or embedded into new designs. This device and technique moves computational, sensing, and actuation abilities closer to the source, and allows for the networking of multiple similar nodes to each other and to a central processor. This technique also allows for reconfigurable systems by adding or removing nodes at any time. It can do so using nothing more than the in situ power wiring of the system.

  16. Rotary Power Transformer and Inverter Circuit

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W. T.; Bridgeforth, A. O.

    1985-01-01

    Noise lower than with sliprings. Rotary transformer transfers electric power across rotary joint. No wearing contacts, no contact noise, and no contamination from lubricants or wear debris. Because additional inductor not required, size and complexity of circuit reduced considerably.

  17. The ac power system testbed

    NASA Technical Reports Server (NTRS)

    Mildice, J.; Sundberg, R.

    1987-01-01

    The object of this program was to design, build, test, and deliver a high frequency (20 kHz) Power System Testbed which would electrically approximate a single, separable power channel of an IOC Space Station. That program is described, including the technical background, and the results are discussed showing that the major assumptions about the characteristics of this class of hardware (size, mass, efficiency, control, etc.) were substantially correct. This testbed equipment was completed and delivered and is being operated as part of the Space Station Power System Test Facility.

  18. Driver Circuit For High-Power MOSFET's

    NASA Technical Reports Server (NTRS)

    Letzer, Kevin A.

    1991-01-01

    Driver circuit generates rapid-voltage-transition pulses needed to switch high-power metal oxide/semiconductor field-effect transistor (MOSFET) modules rapidly between full "on" and full "off". Rapid switching reduces time of overlap between appreciable current through and appreciable voltage across such modules, thereby increasing power efficiency.

  19. 30 CFR 56.12017 - Work on power circuits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Work on power circuits. 56.12017 Section 56....12017 Work on power circuits. Power circuits shall be deenergized before work is done on such circuits... the work. Switches shall be locked out or other measures taken which shall prevent the power...

  20. A novel wireless power and data transmission AC to DC converter for an implantable device.

    PubMed

    Liu, Jhao-Yan; Tang, Kea-Tiong

    2013-01-01

    This article presents a novel AC to DC converter implemented by standard CMOS technology, applied for wireless power transmission. This circuit combines the functions of the rectifier and DC to DC converter, rather than using the rectifier to convert AC to DC and then supplying the required voltage with regulator as in the transitional method. This modification can reduce the power consumption and the area of the circuit. This circuit also transfers the loading condition back to the external circuit by the load shift keying(LSK), determining if the input power is not enough or excessive, which increases the efficiency of the total system. The AC to DC converter is fabricated with the TSMC 90nm CMOS process. The circuit area is 0.071mm(2). The circuit can produce a 1V DC voltage with maximum output current of 10mA from an AC input ranging from 1.5V to 2V, at 1MHz to 10MHz. PMID:24110077

  1. Reliability of emergency ac power systems at nuclear power plants

    SciTech Connect

    Battle, R E; Campbell, D J

    1983-07-01

    Reliability of emergency onsite ac power systems at nuclear power plants has been questioned within the Nuclear Regulatory Commission (NRC) because of the number of diesel generator failures reported by nuclear plant licensees and the reactor core damage that could result from diesel failure during an emergency. This report contains the results of a reliability analysis of the onsite ac power system, and it uses the results of a separate analysis of offsite power systems to calculate the expected frequency of station blackout. Included is a design and operating experience review. Eighteen plants representative of typical onsite ac power systems and ten generic designs were selected to be modeled by fault trees. Operating experience data were collected from the NRC files and from nuclear plant licensee responses to a questionnaire sent out for this project.

  2. AC power generation from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Lobo, Fernanda Leite; Wang, Heming; Forrestal, Casey; Ren, Zhiyong Jason

    2015-11-01

    Microbial fuel cells (MFCs) directly convert biodegradable substrates to electricity and carry good potential for energy-positive wastewater treatment. However, the low and direct current (DC) output from MFC is not usable for general electronics except small sensors, yet commercial DC-AC converters or inverters used in solar systems cannot be directly applied to MFCs. This study presents a new DC-AC converter system for MFCs that can generate alternating voltage in any desired frequency. Results show that AC power can be easily achieved in three different frequencies tested (1, 10, 60 Hz), and no energy storage layer such as capacitors was needed. The DC-AC converter efficiency was higher than 95% when powered by either individual MFCs or simple MFC stacks. Total harmonic distortion (THD) was used to investigate the quality of the energy, and it showed that the energy could be directly usable for linear electronic loads. This study shows that through electrical conversion MFCs can be potentially used in household electronics for decentralized off-grid communities.

  3. 21 CFR 886.1630 - AC-powered photostimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered photostimulator. 886.1630 Section 886.1630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...) Identification. An AC-powered photostimulator is an AC-powered device intended to provide light stimulus...

  4. 21 CFR 886.1630 - AC-powered photostimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false AC-powered photostimulator. 886.1630 Section 886.1630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...) Identification. An AC-powered photostimulator is an AC-powered device intended to provide light stimulus...

  5. 30 CFR 57.12053 - Circuits powered from trolley wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Circuits powered from trolley wires. 57.12053... Electricity Surface and Underground § 57.12053 Circuits powered from trolley wires. Ground wires for lighting circuits powered from trolley wires shall be connected securely to the ground return circuit. Surface Only...

  6. Plastic-Sealed Hybrid Power Circuit Package

    NASA Technical Reports Server (NTRS)

    Miller, W. N.; Gray, O. E.

    1983-01-01

    Proposed design for hybrid high-voltage power-circuit package uses molded plastic for hermetic sealing instead of glass-to-metal seal. New package used to house high-voltage regulators and solid-state switches for applications in aircraft, electric automobiles, industrial equipment, satellites, solarcell arrays, and other equipment in extreme environments.

  7. Arcjet power supply and start circuit

    NASA Technical Reports Server (NTRS)

    Gruber, Robert P. (Inventor)

    1988-01-01

    A dc power supply for spacecraft arcjet thrusters has an integral automatic starting circuit and an output averaging inductor. The output averaging inductor, in series with the load, provides instantaneous current control, and ignition pulse and an isolated signal proportional to the arc voltage. A pulse width modulated converter, close loop configured, is also incorporated to give fast response output current control.

  8. Improved AC pixel electrode circuit for active matrix of organic light-emitting display

    NASA Astrophysics Data System (ADS)

    Si, Yujuan; Lang, Liuqi; Chen, Wanzhong; Liu, Shiyong

    2004-05-01

    In this paper, a modified four-transistor pixel circuit for active-matrix organic light-emitting displays (AMOLED) was developed to improve the performance of OLED device. This modified pixel circuit can provide an AC driving mode to make the OLED working in a reversed-biased voltage during the certain cycle. The optimized values of the reversed-biased voltage and the characteristics of the pixel circuit were investigated using AIM-SPICE. The simulated results reveal that this circuit can provide a suitable output current and voltage characteristic, and little change was made in luminance current.

  9. Low Insertion HVDC Circuit Breaker: Magnetically Pulsed Hybrid Breaker for HVDC Power Distribution Protection

    SciTech Connect

    2012-01-09

    GENI Project: General Atomics is developing a direct current (DC) circuit breaker that could protect the grid from faults 100 times faster than its alternating current (AC) counterparts. Circuit breakers are critical elements in any electrical system. At the grid level, their main function is to isolate parts of the grid where a fault has occurred—such as a downed power line or a transformer explosion—from the rest of the system. DC circuit breakers must interrupt the system during a fault much faster than AC circuit breakers to prevent possible damage to cables, converters and other grid-level components. General Atomics’ high-voltage DC circuit breaker would react in less than 1/1,000th of a second to interrupt current during a fault, preventing potential hazards to people and equipment.

  10. Demodulation circuit for AC motor current spectral analysis

    DOEpatents

    Hendrix, Donald E.; Smith, Stephen F.

    1990-12-18

    A motor current analysis method for the remote, noninvasive inspection of electric motor-operated systems. Synchronous amplitude demodulation and phase demodulation circuits are used singly and in combination along with a frequency analyzer to produce improved spectral analysis of load-induced frequencies present in the electric current flowing in a motor-driven system.

  11. 30 CFR 57.12017 - Work on power circuits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Work on power circuits. 57.12017 Section 57... Surface and Underground § 57.12017 Work on power circuits. Power circuits shall be deenergized before work... the individuals who are to do the work. Switches shall be locked out or other measures taken...

  12. 30 CFR 57.12017 - Work on power circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Work on power circuits. 57.12017 Section 57... Surface and Underground § 57.12017 Work on power circuits. Power circuits shall be deenergized before work... the individuals who are to do the work. Switches shall be locked out or other measures taken...

  13. 30 CFR 57.12017 - Work on power circuits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Work on power circuits. 57.12017 Section 57... Surface and Underground § 57.12017 Work on power circuits. Power circuits shall be deenergized before work... the individuals who are to do the work. Switches shall be locked out or other measures taken...

  14. 30 CFR 57.12017 - Work on power circuits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Work on power circuits. 57.12017 Section 57... Surface and Underground § 57.12017 Work on power circuits. Power circuits shall be deenergized before work... the individuals who are to do the work. Switches shall be locked out or other measures taken...

  15. Wind-powered asynchronous AC/DC/AC converter system. [for electric power supply regulation

    NASA Technical Reports Server (NTRS)

    Reitan, D. K.

    1973-01-01

    Two asynchronous ac/dc/ac systems are modelled that utilize wind power to drive a variable or constant hertz alternator. The first system employs a high power 60-hertz inverter tie to the large backup supply of the power company to either supplement them from wind energy, storage, or from a combination of both at a preset desired current; rectifier and inverter are identical and operate in either mode depending on the silicon control rectifier firing angle. The second system employs the same rectification but from a 60-hertz alternator arrangement; it provides mainly dc output, some sinusoidal 60-hertz from the wind bus and some high harmonic content 60-hertz from an 800-watt inverter.

  16. Voltage controller/current limiter for ac

    NASA Technical Reports Server (NTRS)

    Wu, T. T.

    1980-01-01

    Circuit protects ac power systems for overload failures, limits power surge and short-circuit currents to 150 percent of steady state level, regulates ac output voltage, and soft starts loads. Limiter generates dc error signal in response to line fluctuations and dumps power when overload is reached. Device is inserted between ac source and load.

  17. A practical SCR model for computer aided analysis of AC resonant charging circuits

    NASA Astrophysics Data System (ADS)

    Avant, R. L.; Lee, F. C.; Chen, D. Y.

    A method for determining parameters for a two-transistor SCR model from SCR specification sheet data developed by Hu and Ki (1979) for use with the CAD program SPICE2 was examined. The model was found to need improvement in order to simulate the SCR turn-off transient in an inductive circuit. An improved model was then developed for SPICE2 which was demonstrated to perform satisfactorily through simulation of AC resonant charging circuits having one or two SCR's. The original and the modified Hu-Ki models are presented together with the simulation results.

  18. Switch contact device for interrupting high current, high voltage, AC and DC circuits

    DOEpatents

    Via, Lester C.; Witherspoon, F. Douglas; Ryan, John M.

    2005-01-04

    A high voltage switch contact structure capable of interrupting high voltage, high current AC and DC circuits. The contact structure confines the arc created when contacts open to the thin area between two insulating surfaces in intimate contact. This forces the arc into the shape of a thin sheet which loses heat energy far more rapidly than an arc column having a circular cross-section. These high heat losses require a dramatic increase in the voltage required to maintain the arc, thus extinguishing it when the required voltage exceeds the available voltage. The arc extinguishing process with this invention is not dependent on the occurrence of a current zero crossing and, consequently, is capable of rapidly interrupting both AC and DC circuits. The contact structure achieves its high performance without the use of sulfur hexafluoride.

  19. High-frequency ac power distribution in Space Station

    NASA Technical Reports Server (NTRS)

    Tsai, Fu-Sheng; Lee, Fred C. Y.

    1990-01-01

    A utility-type 20-kHz ac power distribution system for the Space Station, employing resonant power-conversion techniques, is presented. The system converts raw dc voltage from photovoltaic cells or three-phase LF ac voltage from a solar dynamic generator into a regulated 20-kHz ac voltage for distribution among various loads. The results of EASY5 computer simulations of the local and global performance show that the system has fast response and good transient behavior. The ac bus voltage is effectively regulated using the phase-control scheme, which is demonstrated with both line and load variations. The feasibility of paralleling the driver-module outputs is illustrated with the driver modules synchronized and sharing a common feedback loop. An HF sinusoidal ac voltage is generated in the three-phase ac input case, when the driver modules are phased 120 deg away from one another and their outputs are connected in series.

  20. Control circuit maintains unity power factor of reactive load

    NASA Technical Reports Server (NTRS)

    Kramer, M.; Martinage, L. H.

    1966-01-01

    Circuit including feedback control elements automatically corrects the power factor of a reactive load. It maintains power supply efficiency where negative load reactance changes and varies by providing corrective error signals to the control windings of a power supply transformer.

  1. Simulation analysis of three-phase current type AC-to-DC converter with high power factor

    SciTech Connect

    Okui, Yoshiaki; Yamada, Hajime

    1997-03-01

    A new three-phase current type AC-to-DC converter has been developed by the authors. This paper describes the principle of the circuit operation and the circuit configuration of the AC-to-DC converter controlled by PWM. Simulation analysis of each waveform, such as AC and DC voltages and currents, are calculated by Euler`s method. The simulated values of the total power factor agreed with the measured values within the difference of 5.8% on the condition of full load, 10kW. When the AC side voltage is unbalanced, it is found by simulation that the total harmonic distortion controlled by both feedforward control and AC side current feedback control (proportion gain, k{sub 4} = 1) is restrained at only 38% compared with only feedforward control (k{sub 4} = 0).

  2. Design and technological peculiarities of making vacuum integrated circuit of a thermocathode-based AC amplifier

    NASA Astrophysics Data System (ADS)

    Grigorishin, I. L.; Kotova, I. F.; Mukhurov, N. I.

    1997-02-01

    Despite promising prospects and comprehensive nature of contemporary studies aimed at developing autoemission cathodes, only thermoemitter-based vacuum integrated circuits (VIC) have been realized by now. Here, the results are presented of building and testing, in extreme environment, thermoemission VICs of a RF active oscillator and multivibrator. The microcircuits made have limited functional capabilities. To expand their capabilities the VIC of an AC amplifier was developed. This paper deals with circuit design aspects of making the AC amplifier based on the potentialities and specific features of the process of anodic oxidation of aluminium to form dielectric substrates of cathode-heating assemblies (CHA) and anode-grid assemblies (AGA). Design and technological methods are described that are used to make active (five vacuum microtriodes) and passive (resistors, capacitors, commutation) film elements. As compared to earlier devices, the AC amplifier VIC is more economical and has better characteristics in terms of miniaturization and integration. Its fundamental peculiarities are two-sided obtained through anodizing to form dielectric substrates with microrelief and superfine-structure grids of microtriodes. Some characteristics of the AC amplifier VIC are given and ways of improving them are discussed.

  3. Asymmetric Switching For A PWM H-Bridge Power Circuit

    NASA Technical Reports Server (NTRS)

    Wong, See-Pok

    1995-01-01

    Only two of four switches interrupt substantial current. An asymmetric timing scheme improves design and operation of pulse-width-modulation (PWM) H-bridge switch-and-transformer circuit. Circuit part of dc-to-dc converter or dc-to-ac inverter; in either case, output current or voltage regulated by adjusting times of opening and closing of semiconductor switches 1 through 4 to adjust durations of current pulses in primary winding of transformer.

  4. Radiation effects on power integrated circuits

    SciTech Connect

    Darwish, M.N.; Dolly, M.C.; Goodwin, C.A.; Titus, J.L

    1988-12-01

    A study was initiated to investigate the effects of gamma (total ionizing dose), prompt gamma (gamma dot), and neutron radiation on commercially available power integrated circuits (PIC's). A Dielectric Isolated (DI) Bipolar-CMOS-DMOS (BCDMOS) technology developed at AT and T Bell Laboratories was selected for this characterization. Total ionizing dose testing resulted in device failure at 30 krads (Si). Gamma dot testing (30 ns pulsewidth) resulted in device failure due to transient upset of the CMOS logic at 1.0 E+09 rads(Si)/s. Neutron testing resulted in severe degradation in performance, but devices remained functional after receiving a fluence of 2.0 E+14 n/cm/sup 2/. Also, an attempt was made to harden the BCDMOS technology to gamma radiation. Devices from eight processing splits were characterized to determine if specific process changes would improve their performance.

  5. Programmable AC power supply for simulating power transient expected in fusion reactor

    SciTech Connect

    Halimi, B.; Suh, K. Y.

    2012-07-01

    This paper focus on control engineering of the programmable AC power source which has capability to simulate power transient expected in fusion reactor. To generate the programmable power source, AC-AC power electronics converter is adopted to control the power of a set of heaters to represent the transient phenomena of heat exchangers or heat sources of a fusion reactor. The International Thermonuclear Experimental Reactor (ITER) plasma operation scenario is used as the basic reference for producing this transient power source. (authors)

  6. Arc-Jet Power Supply And Starting Circuit

    NASA Technical Reports Server (NTRS)

    Gruber, Robert P.

    1988-01-01

    Power efficiency high, current regulated, and starting automatic. New circuit for starting arc jets and controlling them in steady operation capable of high power efficiency and constructed in lightweight form. Feedback control system keeps arc-jet current nearly constant, once arc struck by starting pulse. Circuit made of commercially available components. Design capable of high power efficiency.

  7. Development of software to improve AC power quality on large spacecraft

    NASA Technical Reports Server (NTRS)

    Kraft, L. Alan

    1991-01-01

    To insure the reliability of a 20 kHz, alternating current (AC) power system on spacecraft, it is essential to analyze its behavior under many adverse operating conditions. Some of these conditions include overloads, short circuits, switching surges, and harmonic distortions. Harmonic distortions can become a serious problem. It can cause malfunctions in equipment that the power system is supplying, and, during distortions such as voltage resonance, it can cause equipment and insulation failures due to the extreme peak voltages. To address the harmonic distortion issue, work was begun under the 1990 NASA-ASEE Summer Faculty Fellowship Program. Software, originally developed by EPRI, called HARMFLO, a power flow program capable of analyzing harmonic conditions on three phase, balanced, 60 Hz AC power systems, was modified to analyze single phase, 20 kHz, AC power systems. Since almost all of the equipment used on spacecraft power systems is electrically different from equipment used on terrestrial power systems, it was also necessary to develop mathematical models for the equipment to be used on the spacecraft. The modelling was also started under the same fellowship work period. Details of the modifications and models completed during the 1990 NASA-ASEE Summer Faculty Fellowship Program can be found in a project report. As a continuation of the work to develop a complete package necessary for the full analysis of spacecraft AC power system behavior, deployment work has continued through NASA Grant NAG3-1254. This report details the work covered by the above mentioned grant.

  8. Improved Thermal Stability of RF Power BJT with Ballast Circuits

    NASA Astrophysics Data System (ADS)

    Guo, Benqing; Zhang, Qingzhong

    2013-12-01

    To improve thermal stability and relieve current convergence in rf power bjts, an embedded active CMOS ballast circuit is proposed. By detecting the inhomogeneous temperature through distributed temperature sensors, the adjacent ballast circuit is triggered to shunt the base convergence current of the power BJT cell, performing the ballast protection for the device. Simulations and measurements validate the effectiveness of the proposed ballast circuit. Compared to conventional ballast resistor methods, the improved device integrated with ballast circuits exhibits superior electrical performance. The single ballast circuit only consumes 6.5 mW with additional occupied area of 2530 um2.

  9. High-Frequency ac Power-Distribution System

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.; Mildice, James

    1987-01-01

    Loads managed automatically under cycle-by-cycle control. 440-V rms, 20-kHz ac power system developed. System flexible, versatile, and "transparent" to user equipment, while maintaining high efficiency and low weight. Electrical source, from dc to 2,200-Hz ac converted to 440-V rms, 20-kHz, single-phase ac. Power distributed through low-inductance cables. Output power either dc or variable ac. Energy transferred per cycle reduced by factor of 50. Number of parts reduced by factor of about 5 and power loss reduced by two-thirds. Factors result in increased reliability and reduced costs. Used in any power-distribution system requiring high efficiency, high reliability, low weight, and flexibility to handle variety of sources and loads.

  10. Power-speed trade-off in parallel prefix circuits

    NASA Astrophysics Data System (ADS)

    Vanichayobon, Sirirut; Dhall, Sudarshan K.; Lakshmivarahan, S.; Antonio, John K.

    2002-06-01

    Optimizing area and speed in parallel prefix circuit have been considered important for a long time. The issue of power consumption in these circuits, however, has not been addressed. The paper presents a comparative study of different parallel prefix circuits form the point of view of power-speed trade-off. The power consumption and the power-delay product of seven parallel prefix circuits were compared. A linear output capacitance assumption, combined with PSpice simulations, is used to investigate the power consumption in the parallel prefix circuits. The degrees of freedom studied include different parallel prefix algorithms and voltage scaling. The results show that the use of the linear output capacitance assumption provides results that are consistent with those obtained using PSpice simulations. The study can help identify parallel prefix algorithms with the desirable power consumption with a given throughput.

  11. High performance protection circuit for power electronics applications

    NASA Astrophysics Data System (ADS)

    Tudoran, Cristian D.; Dǎdârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan

    2015-12-01

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a "sensor" or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  12. High performance protection circuit for power electronics applications

    SciTech Connect

    Tudoran, Cristian D. Dădârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan

    2015-12-23

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a “sensor” or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  13. AC Read-Out Circuits for Single Pixel Characterization of TES Microcalorimeters and Bolometers

    NASA Technical Reports Server (NTRS)

    Gottardi, L.; van de Kuur, J.; Bandler, S.; Bruijn, M.; de Korte, P.; Gao, J. R.; den Hartog, R.; Hijmering, R. A.; Hoevers, H.; Koshropanah, P.; Kilbourne, C.; Lindemann, M. A.; Parra Borderias, M.; Ridder, M.

    2011-01-01

    SRON is developing Frequency Domain Multiplexing (FDM) for the read-out of transition edge sensor (TES) soft x-ray microcalorimeters for the XMS instrument of the International X-ray Observatory and far-infrared bolometers for the SAFARI instrument on the Japanese mission SPICA. In FDM the TESs are AC voltage biased at frequencies from 0.5 to 6 MHz in a superconducting LC resonant circuit and the signal is read-out by low noise and high dynamic range SQUIDs amplifiers. The TES works as an amplitude modulator. We report on several AC bias experiments performed on different detectors. In particular, we discuss the results on the characterization of Goddard Space Flight Center x-ray pixels and SRON bolometers. The paper focuses on the analysis of different read-out configurations developed to optimize the noise and the impedance matching between the detectors and the SQUID amplifier. A novel feedback network electronics has been developed to keep the SQUID in flux locked loop, when coupled to superconducting high Q circuits, and to optimally tune the resonant bias circuit. The achieved detector performances are discussed in view of the instrument requirement for the two space missions.

  14. 30 CFR 75.519 - Main power circuits; disconnecting switches.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Main power circuits; disconnecting switches. 75.519 Section 75.519 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.519 Main power circuits;...

  15. 30 CFR 75.519 - Main power circuits; disconnecting switches.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Main power circuits; disconnecting switches. 75.519 Section 75.519 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.519 Main power circuits;...

  16. 30 CFR 75.519 - Main power circuits; disconnecting switches.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Main power circuits; disconnecting switches. 75.519 Section 75.519 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.519 Main power circuits;...

  17. 30 CFR 75.519 - Main power circuits; disconnecting switches.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main power circuits; disconnecting switches. 75.519 Section 75.519 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.519 Main power circuits;...

  18. 30 CFR 75.519 - Main power circuits; disconnecting switches.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Main power circuits; disconnecting switches. 75.519 Section 75.519 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.519 Main power circuits;...

  19. The role of power integrated circuits in lightweight spacecraft

    NASA Technical Reports Server (NTRS)

    Klein, John W.; Theisinger, Peter C.

    1988-01-01

    This paper will present definitions for smart power and power integrated circuits and show how, for a typical planetary spacecraft power system, a 37 percent reduction in mass, 89 percent reduction in parts and a 50 percent reduction in volume can be attained. Also discussed are the technology needs for isolation, monolithic current sensing, and high efficiency switching necessary to enable monolithic power structures, as well as various applications of power integrated circuits. A specific example will verify the projected reductions expected when power integrated circuits are implemented in future spacecraft designs. In conclusion, power-integrated circuits can impact the overall design of the spacecraft in all subsystems, not just the power sybsystem.

  20. 13. POWER CIRCUIT BREAKER, RECESSED IN CABINET BEHIND HINGED METAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. POWER CIRCUIT BREAKER, RECESSED IN CABINET BEHIND HINGED METAL DOOR (SHOWN OPEN), WEST SIDE, MAIN FLOOR - Bonneville Power Administration South Bank Substation, I-84, South of Bonneville Dam Powerhouse, Bonneville, Multnomah County, OR

  1. Power factor control system for ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1981-01-01

    A power control circuit for an induction motor is disclosed in which a servo loop is used to control power input by controlling the power factor of motor operation. The power factor is measured by summing the voltage and current derived square wave signals.

  2. Power factor control system for AC induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1977-01-01

    A power factor control system for use with ac induction motors was designed which samples lines voltage and current through the motor and decreases power input to the motor proportional to the detected phase displacement between current and voltage. This system provides, less power to the motor, as it is less loaded.

  3. Development of a uninterrupted power system: ac and dc to dc converter

    NASA Technical Reports Server (NTRS)

    Cronin, D. L.; Schoenfeld, A. D.

    1973-01-01

    This program covered the design, fabrication and testing of an advanced development model uninterrupted power system. The input and output requirements imposed on the power processor were specified such that the unit is electrically interchangeable with existing power systems used by the Federal Aviation Administration in installations which have a history of failure due to electrical transient conditions. Input power is from either of two single-phase ac power sources or batteries with electronic selection and transfer between power sources. Battery reconditioning is automatic when either ac source is present. The output power is rated at 84OW; the nominal output is 24V at 35A. Within the 84OW limit, the regulated output voltage is adjustable from 22V to 30Vdc. Protection against continuous overloading or short circuit is provided. The unit is packaged in a standard 19-inch rack mount configuration with 7-inch panel height. Controls are on the front panel with power input and output through connectors on the rear surface. Cooling is by free convection from fin areas located on the side and rear panels. The packaged unit weighs 52.8 lbs., which can be reduced significantly if a three-phase ac power source is used.

  4. A study of some features of ac and dc electric power systems for a space station

    NASA Technical Reports Server (NTRS)

    Hanania, J. I.

    1983-01-01

    This study analyzes certain selected topics in rival dc and high frequency ac electric power systems for a Space Station. The interaction between the Space Station and the plasma environment is analyzed, leading to a limit on the voltage for the solar array and a potential problem with resonance coupling at high frequencies. Certain problems are pointed out in the concept of a rotary transformer, and further development work is indicated in connection with dc circuit switching, special design of a transmission conductor for the ac system, and electric motors. The question of electric shock hazards, particularly at high frequency, is also explored. and a problem with reduced skin resistance and therefore increased hazard with high frequency ac is pointed out. The study concludes with a comparison of the main advantages and disadvantages of the two rival systems, and it is suggested that the choice between the two should be made after further studies and development work are completed.

  5. Development of software to improve AC power quality on large spacecraft

    NASA Technical Reports Server (NTRS)

    Kraft, L. Alan

    1991-01-01

    To insure the reliability of a 20 kHz, AC power system on spacecraft, it is essential to analyze its behavior under many adverse operating conditions. Some of these conditions include overloads, short circuits, switching surges, and harmonic distortions. Harmonic distortions can cause malfunctions in equipment that the power system is supplying, and during extreme distortions such as voltage resonance, it can cause equipment and insulation failures due to the extreme peak voltages. HARMFLO, a power flow computer program, which was capable of analyzing harmonic conditions on three phase, balanced, 60 Hz, AC power systems, was modified to analyze single phase, 20 kHz, AC power systems. Since almost all of the equipment used on spacecraft power systems is electrically different from equipment used on terrestrial power systems, it was also necessary to develop mathematical models for the equipment to be used on the spacecraft. The results are that (1) the harmonic power now has a model of a single phase, voltage controlled, full wave rectifier; and (2) HARMFLO was ported to the SUN workstation platform.

  6. Low Power Photomultiplier Tube Circuit And Method Thereor

    DOEpatents

    Bochenski, Edwin B.; Skinner, Jack L.; Dentinger, Paul M.; Lindblom, Scott C.

    2006-04-18

    An electrical circuit for a photomultiplier tube (PMT) is disclosed that reduces power consumption to a point where the PMT may be powered for extended periods with a battery. More specifically, the invention concerns a PMT circuit comprising a low leakage switch and a high voltage capacitor positioned between a resistive divider and each of the PMT dynodes, and a low power control scheme for recharging the capacitors.

  7. High-power ac/dc variable load simulator

    NASA Technical Reports Server (NTRS)

    Joncas, K. P.; Birnbach, S.; Bruce, L. D.; Smith, L.

    1975-01-01

    Design of medium-power dynamic electrical load simulator has been extended to permit simulation of ac as well as dc loads and to provide for operation at higher power levels. Simulator is internally protected against reverse voltage, overvoltage, overcurrent, and overload conditions.

  8. High Resolution PV Power Modeling for Distribution Circuit Analysis

    SciTech Connect

    Norris, B. L.; Dise, J. H.

    2013-09-01

    NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.

  9. Mountain Plains Learning Experience Guide: Radio and T.V. Repair. Course: A.C. Circuits.

    ERIC Educational Resources Information Center

    Hoggatt, P.; And Others

    One of four individualized courses included in a radio and television repair curriculum, this course focuses on alternating current relationships and computations, transformers, power supplies, series and parallel resistive-reactive circuits, and series and parallel resonance. The course is comprised of eight units: (1) Introduction to Alternating…

  10. Comprehensive review of high power factor ac-dc boost converters for PFC applications

    NASA Astrophysics Data System (ADS)

    De Castro Pereira, Dênis; Da Silva, Márcio Renato; Mateus Silva, Elder; Lessa Tofoli, Fernando

    2015-08-01

    High power factor rectifiers have been consolidated as an effective solution to improve power quality indices in terms of input power factor correction, reduction in the total harmonic distortion of the input current and also regulated dc voltages. Within this context, this subject has motivated the introduction of numerous converter topologies based on classic dc-dc structures associated with novel control techniques, thus leading to the manufacturing of dedicated integrated circuits that allow high input power factor by adding a front-end stage to switch-mode converters. In particular, boost converters in continuous current mode (CCM) are widely employed since they allow obtaining minimised electromagnetic interference levels. This work is concerned with a literature review involving relevant ac-dc single-phase boost-based topologies with high input power factor. The evolution of aspects regarding the conventional boost converter is shown in terms of improved characteristics inherent to other ac-dc boost converters. Additionally, the work intends to be a fast and concise reference to single-phase ac-dc boost converters operating in CCM for engineers, researchers and experts in the field of power electronics by properly analysing and comparing the aforementioned rectifiers.

  11. Compact fluid cooled power converter supporting multiple circuit boards

    DOEpatents

    Radosevich, Lawrence D.; Meyer, Andreas A.; Beihoff, Bruce C.; Kannenberg, Daniel G.

    2005-03-08

    A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  12. Fast, Low-Power, Hysteretic Level-Detector Circuit

    NASA Technical Reports Server (NTRS)

    Arditti, Mordechai

    1993-01-01

    Circuit for detection of preset levels of voltage or current intended to replace standard fast voltage comparator. Hysteretic analog/digital level detector operates at unusually low power with little sacrifice of speed. Comprises low-power analog circuit and complementary metal oxide/semiconductor (CMOS) digital circuit connected in overall closed feedback loop to decrease rise and fall times, provide hysteresis, and trip-level control. Contains multiple subloops combining linear and digital feedback. Levels of sensed signals and hysteresis level easily adjusted by selection of components to suit specific application.

  13. Power supply circuit for an ion engine sequentially operated power inverters

    NASA Technical Reports Server (NTRS)

    Cardwell, Jr., Gilbert I. (Inventor)

    2000-01-01

    A power supply circuit for an ion engine suitable for a spacecraft has a voltage bus having input line and a return line. The power supply circuit includes a pulse width modulation circuit. A plurality of bridge inverter circuits is coupled to the bus and the pulse width modulation circuit. The pulse width modulation circuit generates operating signals having a variable duty cycle. Each bridge inverter has a primary winding and a secondary winding. Each secondary winding is coupled to a rectifier bridge. Each secondary winding is coupled in series with another of the plurality of rectifier bridges.

  14. Resistojet control and power for high frequency ac buses

    NASA Technical Reports Server (NTRS)

    Gruber, Robert P.

    1987-01-01

    Resistojets are operational on many geosynchronous communication satellites which all use dc power buses. Multipropellant resistojets were selected for the Initial Operating Capability (IOC) Space Station which will supply 208 V, 20 kHz power. This paper discusses resistojet heater temperature controllers and passive power regulation methods for ac power systems. A simple passive power regulation method suitable for use with regulated sinusoidal or square wave power was designed and tested using the Space Station multipropellant resistojet. The breadboard delivered 20 kHz power to the resistojet heater. Cold start surge current limiting, a power efficiency of 95 percent, and power regulation of better than 2 percent were demonstrated with a two component, 500 W breadboard power controller having a mass of 0.6 kg.

  15. Resistojet control and power for high frequency ac buses

    NASA Astrophysics Data System (ADS)

    Gruber, Robert P.

    Resistojets are operational on many geosynchronous communication satellites which all use dc power buses. Multipropellant resistojets were selected for the Initial Operating Capability (IOC) Space Station which will supply 208 V, 20 kHz power. This paper discusses resistojet heater temperature controllers and passive power regulation methods for ac power systems. A simple passive power regulation method suitable for use with regulated sinusoidal or square wave power was designed and tested using the Space Station multipropellant resistojet. The breadboard delivered 20 kHz power to the resistojet heater. Cold start surge current limiting, a power efficiency of 95 percent, and power regulation of better than 2 percent were demonstrated with a two component, 500 W breadboard power controller having a mass of 0.6 kg.

  16. Resistojet control and power for high frequency ac buses

    NASA Astrophysics Data System (ADS)

    Gruber, Robert P.

    1987-05-01

    Resistojets are operational on many geosynchronous communication satellites which all use dc power buses. Multipropellant resistojets were selected for the Initial Operating Capability (IOC) Space Station which will supply 208 V, 20 kHz power. This paper discusses resistojet heater temperature controllers and passive power regulation methods for ac power systems. A simple passive power regulation method suitable for use with regulated sinusoidal or square wave power was designed and tested using the Space Station multipropellant resistojet. The breadboard delivered 20 kHz power to the resistojet heater. Cold start surge current limiting, a power efficiency of 95 percent, and power regulation of better than 2 percent were demonstrated with a two component, 500 W breadboard power controller having a mass of 0.6 kg.

  17. Low-power circuits for brain-machine interfaces.

    PubMed

    Sarpeshkar, Rahul; Wattanapanitch, Woradorn; Arfin, Scott K; Rapoport, Benjamin I; Mandal, Soumyajit; Baker, Michael W; Fee, Michale S; Musallam, Sam; Andersen, Richard A

    2008-09-01

    This paper presents work on ultra-low-power circuits for brain-machine interfaces with applications for paralysis prosthetics, stroke, Parkinson's disease, epilepsy, prosthetics for the blind, and experimental neuroscience systems. The circuits include a micropower neural amplifier with adaptive power biasing for use in multi-electrode arrays; an analog linear decoding and learning architecture for data compression; low-power radio-frequency (RF) impedance-modulation circuits for data telemetry that minimize power consumption of implanted systems in the body; a wireless link for efficient power transfer; mixed-signal system integration for efficiency, robustness, and programmability; and circuits for wireless stimulation of neurons with power-conserving sleep modes and awake modes. Experimental results from chips that have stimulated and recorded from neurons in the zebra finch brain and results from RF power-link, RF data-link, electrode-recording and electrode-stimulating systems are presented. Simulations of analog learning circuits that have successfully decoded prerecorded neural signals from a monkey brain are also presented. PMID:23852967

  18. Development of power supply devices for limitations of short circuit on the ship's hull

    NASA Astrophysics Data System (ADS)

    Fediuk, R. S.; Cherneev, A. M.

    2016-04-01

    The authors of the paper have analysed the reasons and consequences of single-phase ground faults (hull faults). For all varieties of devices limiting the current single-phase ground faults, the most effective devices were found to be the arc-suppression coils with different switching circuits. In this case the measurement of circuit capacitance takes on a great importance. A number of variants of capacitance measurement is presented in the paper. The authors have had a detailed look at a device, limiting the single-phase short-circuit current. This device was developed on the basis of the Far Eastern Federal University under the direction of Dr. G.E. Kuvshinov. The device is provided with power supply that converts alternating current (AC) to direct current (DC), and is realised due to the use of semiconductor devices - transistors and diodes - in a bridge circuit. The technical outcome of this power supply application consists in the reduction of size and weight parameters (compared to the closest analogues) in order to connect the controlled voltage rectifier to the alternating voltage source, including mass and size of the capacitor bank of the current limiting circuit, and enhancing the dynamic parameters of the stage of uncontrolled charge of the output capacitor of the controlled voltage rectifier.

  19. Watts Up? Pro AC Power Meter for Automated Energy Recording

    PubMed Central

    Hirst, Jason M.; Miller, Jonathan R.; Kaplan, Brent A.; Reed, Derek D.

    2013-01-01

    The purpose of the present paper is to review the Watts up? Pro AC power meter. Evaluations of the meter's reliability for measuring energy consumption by consumer electronics yielded acceptable levels of reliability. Implications and limitations for the use of this product in behavior analytic research and practice are discussed.

  20. 21 CFR 886.1850 - AC-powered slitlamp biomicroscope.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false AC-powered slitlamp biomicroscope. 886.1850 Section 886.1850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... a thin, intense beam of light. (b) Classification. Class II....

  1. 21 CFR 886.1850 - AC-powered slitlamp biomicroscope.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered slitlamp biomicroscope. 886.1850 Section 886.1850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... microscope intended for use in eye examination that projects into a patient's eye through a control...

  2. ac power control in the Core Flow Test Loop

    SciTech Connect

    McDonald, D.W.

    1980-01-01

    This work represents a status report on a development effort to design an ac power controller for the Core Flow Test Loop. The Core Flow Test Loop will be an engineering test facility which will simulate the thermal environment of a gas-cooled fast-breeder reactor. The problems and limitations of using sinusoidal ac power to simulate the power generated within a nuclear reactor are addressed. The transformer-thyristor configuration chosen for the Core Flow Test Loop power supply is presented. The initial considerations, design, and analysis of a closed-loop controller prototype are detailed. The design is then analyzed for improved performance possibilities and failure modes are investigated at length. A summary of the work completed to date and a proposed outline for continued development completes the report.

  3. Base drive circuit for a four-terminal power Darlington

    DOEpatents

    Lee, Fred C.; Carter, Roy A.

    1983-01-01

    A high power switching circuit which utilizes a four-terminal Darlington transistor block to improve switching speed, particularly in rapid turn-off. Two independent reverse drive currents are utilized during turn off in order to expel the minority carriers of the Darlington pair at their own charge sweep-out rate. The reverse drive current may be provided by a current transformer, the secondary of which is tapped to the base terminal of the power stage of the Darlington block. In one application, the switching circuit is used in each power switching element in a chopper-inverter drive of an electric vehicle propulsion system.

  4. Control circuit ensures solar cell operation at maximum power

    NASA Technical Reports Server (NTRS)

    Paulkovich, J.

    1967-01-01

    Control circuit enables a solar cell power supply to deliver maximum electrical power to a load. It senses the magnitude of the slope of the voltage-current characteristic curve and compares it to a reference voltage which represents the slope corresponding to the desired operating limits.

  5. UPS with input commutation between ac and dc sources of power

    SciTech Connect

    Severinsky, A.J.

    1993-08-31

    An uninterruptible power supply is described, said power supply comprising: AC input terminal means for receiving a first AC voltage from an AC power source; DC input terminal means for receiving a first DC voltage from a DC power source; AC output terminal means for connecting to a load; converter means for converting said first AC voltage to a second DC voltage across electrical charge storage means coupled to said converter means, said second DC voltage being larger than the maximum peak voltage of said first AC voltage and said first DC voltage; switching means coupled to said AC power source and said DC power source for selectively connecting said AC power source or said DC power source to said converter means; inverter means coupled to said electrical charge storage means for receiving said second DC voltage and inverting said second DC voltage to a second AC voltage, said second AC voltage being coupled to said AC output terminal means; and control means coupled to said switching means for controlling the operation of said switching means, said control means operating said switching means to connect said AC power source to said converter means only when said first AC voltage is within a predetermined range and operating to connect said DC power source to said converter means when said first AC voltage is outside of said range.

  6. Very low noise AC/DC power supply systems for large detector arrays

    NASA Astrophysics Data System (ADS)

    Arnaboldi, C.; Baù, A.; Carniti, P.; Cassina, L.; Giachero, A.; Gotti, C.; Maino, M.; Passerini, A.; Pessina, G.

    2015-12-01

    In this work, we present the first part of the power supply system for the CUORE and LUCIFER arrays of bolometric detectors. For CUORE, it consists of AC/DC commercial power supplies (0-60 V output) followed by custom DC/DC modules (48 V input, ±5 V to ±13.5 V outputs). Each module has 3 floating and independently configurable output voltages. In LUCIFER, the AC/DC + DC/DC stages are combined into a commercial medium-power AC/DC source. At the outputs of both setups, we introduced filters with the aim of lowering the noise and to protect the following stages from high voltage spikes that can be generated by the energy stored in the cables after the release of accidental short circuits. Output noise is very low, as required: in the 100 MHz bandwidth the RMS level is about 37 μVRMS (CUORE setup) and 90 μVRMS (LUCIFER setup) at a load of 7 A, with a negligible dependence on the load current. Even more importantly, high frequency switching disturbances are almost completely suppressed. The efficiency of both systems is above 85%. Both systems are completely programmable and monitored via CAN bus (optically coupled).

  7. Very low noise AC/DC power supply systems for large detector arrays.

    PubMed

    Arnaboldi, C; Baù, A; Carniti, P; Cassina, L; Giachero, A; Gotti, C; Maino, M; Passerini, A; Pessina, G

    2015-12-01

    In this work, we present the first part of the power supply system for the CUORE and LUCIFER arrays of bolometric detectors. For CUORE, it consists of AC/DC commercial power supplies (0-60 V output) followed by custom DC/DC modules (48 V input, ±5 V to ±13.5 V outputs). Each module has 3 floating and independently configurable output voltages. In LUCIFER, the AC/DC + DC/DC stages are combined into a commercial medium-power AC/DC source. At the outputs of both setups, we introduced filters with the aim of lowering the noise and to protect the following stages from high voltage spikes that can be generated by the energy stored in the cables after the release of accidental short circuits. Output noise is very low, as required: in the 100 MHz bandwidth the RMS level is about 37 μV(RMS) (CUORE setup) and 90 μV(RMS) (LUCIFER setup) at a load of 7 A, with a negligible dependence on the load current. Even more importantly, high frequency switching disturbances are almost completely suppressed. The efficiency of both systems is above 85%. Both systems are completely programmable and monitored via CAN bus (optically coupled). PMID:26724052

  8. Nonlinear control of voltage source converters in AC-DC power system.

    PubMed

    Dash, P K; Nayak, N

    2014-07-01

    This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations. PMID:24906895

  9. 21 CFR 880.5100 - AC-powered adjustable hospital bed.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false AC-powered adjustable hospital bed. 880.5100... Therapeutic Devices § 880.5100 AC-powered adjustable hospital bed. (a) Identification. An AC-powered... electric motor and remote controls that can be operated by the patient to adjust the height and...

  10. 21 CFR 880.5100 - AC-powered adjustable hospital bed.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false AC-powered adjustable hospital bed. 880.5100... Therapeutic Devices § 880.5100 AC-powered adjustable hospital bed. (a) Identification. An AC-powered... electric motor and remote controls that can be operated by the patient to adjust the height and...

  11. 21 CFR 880.5100 - AC-powered adjustable hospital bed.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered adjustable hospital bed. 880.5100... Therapeutic Devices § 880.5100 AC-powered adjustable hospital bed. (a) Identification. An AC-powered... electric motor and remote controls that can be operated by the patient to adjust the height and...

  12. 21 CFR 880.5100 - AC-powered adjustable hospital bed.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false AC-powered adjustable hospital bed. 880.5100... Therapeutic Devices § 880.5100 AC-powered adjustable hospital bed. (a) Identification. An AC-powered... electric motor and remote controls that can be operated by the patient to adjust the height and...

  13. 21 CFR 880.6320 - AC-powered medical examination light.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false AC-powered medical examination light. 880.6320 Section 880.6320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Miscellaneous Devices § 880.6320 AC-powered medical examination light. (a) Identification. An AC-powered...

  14. 21 CFR 880.6320 - AC-powered medical examination light.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false AC-powered medical examination light. 880.6320 Section 880.6320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Miscellaneous Devices § 880.6320 AC-powered medical examination light. (a) Identification. An AC-powered...

  15. 21 CFR 880.6320 - AC-powered medical examination light.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false AC-powered medical examination light. 880.6320 Section 880.6320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Miscellaneous Devices § 880.6320 AC-powered medical examination light. (a) Identification. An AC-powered...

  16. 30 CFR 75.509 - Electric power circuit and electric equipment; deenergization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric power circuit and electric equipment...-General § 75.509 Electric power circuit and electric equipment; deenergization. All power circuits and electric equipment shall be deenergized before work is done on such circuits and equipment, except...

  17. 30 CFR 75.509 - Electric power circuit and electric equipment; deenergization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric power circuit and electric equipment...-General § 75.509 Electric power circuit and electric equipment; deenergization. All power circuits and electric equipment shall be deenergized before work is done on such circuits and equipment, except...

  18. 30 CFR 75.509 - Electric power circuit and electric equipment; deenergization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric power circuit and electric equipment...-General § 75.509 Electric power circuit and electric equipment; deenergization. All power circuits and electric equipment shall be deenergized before work is done on such circuits and equipment, except...

  19. 30 CFR 75.509 - Electric power circuit and electric equipment; deenergization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric power circuit and electric equipment...-General § 75.509 Electric power circuit and electric equipment; deenergization. All power circuits and electric equipment shall be deenergized before work is done on such circuits and equipment, except...

  20. 30 CFR 75.509 - Electric power circuit and electric equipment; deenergization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric power circuit and electric equipment...-General § 75.509 Electric power circuit and electric equipment; deenergization. All power circuits and electric equipment shall be deenergized before work is done on such circuits and equipment, except...

  1. Power Electronic Transformer based Three-Phase PWM AC Drives

    NASA Astrophysics Data System (ADS)

    Basu, Kaushik

    A Transformer is used to provide galvanic isolation and to connect systems at different voltage levels. It is one of the largest and most expensive component in most of the high voltage and high power systems. Its size is inversely proportional to the operating frequency. The central idea behind a power electronic transformer (PET) also known as solid state transformer is to reduce the size of the transformer by increasing the frequency. Power electronic converters are used to change the frequency of operation. Steady reduction in the cost of the semiconductor switches and the advent of advanced magnetic materials with very low loss density and high saturation flux density implies economic viability and feasibility of a design with high power density. Application of PET is in generation of power from renewable energy sources, especially wind and solar. Other important application include grid tied inverters, UPS e.t.c. In this thesis non-resonant, single stage, bi-directional PET is considered. The main objective of this converter is to generate adjustable speed and magnitude pulse width modulated (PWM) ac waveforms from an ac or dc grid with a high frequency ac link. The windings of a high frequency transformer contains leakage inductance. Any switching transition of the power electronic converter connecting the inductive load and the transformer requires commutation of leakage energy. Commutation by passive means results in power loss, decrease in the frequency of operation, distortion in the output voltage waveform, reduction in reliability and power density. In this work a source based partially loss-less commutation of leakage energy has been proposed. This technique also results in partial soft-switching. A series of converters with novel PWM strategies have been proposed to minimize the frequency of leakage inductance commutation. These PETs achieve most of the important features of modern PWM ac drives including 1) Input power factor correction, 2) Common

  2. A Cost-Effective Energy-Recovering Sustain Driving Circuit for ac Plasma Display Panels

    NASA Astrophysics Data System (ADS)

    Lim, Jae Kwang; Tae, Heung-Sik; Choi, Byungcho; Kim, Seok Gi

    A new sustain driving circuit, featuring an energy-recovering function with simple structure and minimal component count, is proposed as a cost-effective solution for driving plasma display panels during the sustaining period. Compared with existing solutions, the proposed circuit reduces the number of semiconductor switches and reactive circuit components without compromising the circuit performance and gas-discharging characteristics. In addition, the proposed circuit utilizes the harness wire as an inductive circuit component, thereby further simplifying the circuit structure. The performance of the proposed circuit is confirmed with a 42-inch plasma display panel.

  3. Controlling High Power Devices with Computers or TTL Logic Circuits

    ERIC Educational Resources Information Center

    Carlton, Kevin

    2002-01-01

    Computers are routinely used to control experiments in modern science laboratories. This should be reflected in laboratories in an educational setting. There is a mismatch between the power that can be delivered by a computer interfacing card or a TTL logic circuit and that required by many practical pieces of laboratory equipment. One common way…

  4. 30 CFR 56.12053 - Circuits powered from trolley wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Circuits powered from trolley wires. 56.12053 Section 56.12053 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES...

  5. 30 CFR 56.12017 - Work on power circuits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Work on power circuits. 56.12017 Section 56.12017 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity §...

  6. 30 CFR 56.12017 - Work on power circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Work on power circuits. 56.12017 Section 56.12017 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity §...

  7. 30 CFR 56.12053 - Circuits powered from trolley wires.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Circuits powered from trolley wires. 56.12053 Section 56.12053 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES...

  8. 30 CFR 56.12053 - Circuits powered from trolley wires.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Circuits powered from trolley wires. 56.12053 Section 56.12053 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES...

  9. 30 CFR 56.12017 - Work on power circuits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Work on power circuits. 56.12017 Section 56.12017 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity §...

  10. 30 CFR 56.12017 - Work on power circuits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Work on power circuits. 56.12017 Section 56.12017 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity §...

  11. 30 CFR 56.12053 - Circuits powered from trolley wires.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Circuits powered from trolley wires. 56.12053 Section 56.12053 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES...

  12. 30 CFR 56.12053 - Circuits powered from trolley wires.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Circuits powered from trolley wires. 56.12053 Section 56.12053 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES...

  13. Alpha Power Increase After Transcranial Alternating Current Stimulation at Alpha Frequency (α-tACS) Reflects Plastic Changes Rather Than Entrainment

    PubMed Central

    Vossen, Alexandra; Gross, Joachim; Thut, Gregor

    2015-01-01

    Background Periodic stimulation of occipital areas using transcranial alternating current stimulation (tACS) at alpha (α) frequency (8–12 Hz) enhances electroencephalographic (EEG) α-oscillation long after tACS-offset. Two mechanisms have been suggested to underlie these changes in oscillatory EEG activity: tACS-induced entrainment of brain oscillations and/or tACS-induced changes in oscillatory circuits by spike-timing dependent plasticity. Objective We tested to what extent plasticity can account for tACS-aftereffects when controlling for entrainment “echoes.” To this end, we used a novel, intermittent tACS protocol and investigated the strength of the aftereffect as a function of phase continuity between successive tACS episodes, as well as the match between stimulation frequency and endogenous α-frequency. Methods 12 healthy participants were stimulated at around individual α-frequency for 11–15 min in four sessions using intermittent tACS or sham. Successive tACS events were either phase-continuous or phase-discontinuous, and either 3 or 8 s long. EEG α-phase and power changes were compared after and between episodes of α-tACS across conditions and against sham. Results α-aftereffects were successfully replicated after intermittent stimulation using 8-s but not 3-s trains. These aftereffects did not reveal any of the characteristics of entrainment echoes in that they were independent of tACS phase-continuity and showed neither prolonged phase alignment nor frequency synchronization to the exact stimulation frequency. Conclusion Our results indicate that plasticity mechanisms are sufficient to explain α-aftereffects in response to α-tACS, and inform models of tACS-induced plasticity in oscillatory circuits. Modifying brain oscillations with tACS holds promise for clinical applications in disorders involving abnormal neural synchrony. PMID:25648377

  14. Analytical Analysis and Case Study of Transient Behavior of Inrush Current in Power Transformer for Designing of Efficient Circuit Breakers

    NASA Astrophysics Data System (ADS)

    Harmanpreet, Singh, Sukhwinder; Kumar, Ashok; Kaur, Parneet

    2010-11-01

    Stability & security are main aspects in electrical power systems. Transformer protection is major issue of concern to system operation. There are many mall-trip cases of transformer protection are caused by inrush current problems. The phenomenon of transformer inrush current has been discussed in many papers since 1958. In this paper analytical analysis of inrush current in a transformer switched on dc and ac supply has been done. This analysis will help in design aspects of circuit breakers for better performance.

  15. Resonant AC power system proof-of-concept test program

    NASA Technical Reports Server (NTRS)

    Wappes, Loran J.

    1986-01-01

    Proof-of-concept testing was performed on a 20-kHz, resonant power system breadboard from 1981 through 1985. The testing began with the evaluation of a single, 1.0-kW resonant inverter and progressed to the testing of breadboard systems with higher power levels and more capability. The final breadboard configuration tested was a 25.0-kW breadboard with six inverters providing power to three user-interface modules over a 50-meter, 20-kHz bus. The breadboard demonstrated the ability to synchronize multiple resonant inverters to power a common bus. Single-phase and three-phase 20-kHz power distribution was demonstrated. Simple conversion of 20-kHz to dc and variable-frequency ac was demonstrated as was bidirectional power flow between 20-kHz and dc. Steady state measurements of efficiency, power-factor tolerance, and conducted emissions and conducted susceptibility were made. In addition, transient responses were recorded for such conditions as start up, shut down, load changes. The results showed the 20-kHz resonant system to be a desirable technology for a spacecraft power management and distribution system with multiple users and a utility-type bus.

  16. Multiple output power supply circuit for an ion engine with shared upper inverter

    NASA Technical Reports Server (NTRS)

    Cardwell, Jr., Gilbert I. (Inventor); Phelps, Thomas K. (Inventor)

    2001-01-01

    A power supply circuit for an ion engine suitable for a spacecraft is coupled to a bus having a bus input and a bus return. The power supply circuit has a first primary winding of a first transformer. An upper inverter circuit is coupled to the bus input and the first primary winding. The power supply circuit further includes a first lower inverter circuit coupled to the bus return and the first primary winding. The second primary winding of a second transformer is coupled to the upper inverter circuit. A second lower inverter circuit is coupled to the bus return and the second primary winding.

  17. Module Fourteen: Parallel AC Resistive-Reactive Circuits; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    In this module the student will learn about parallel RL (resistive-inductance), RC (resistive-capacitive), and RCL (resistive-capacitive-inductance) circuits and the conditions that exist at resonance. The module is divided into six lessons: solving for quantities in RL parallel circuits; variational analysis of RL parallel circuits; parallel RC…

  18. Power-Conserving Stepping-Motor Drive Circuits

    NASA Technical Reports Server (NTRS)

    Nola, Frank J.; Howard, David E.

    1994-01-01

    Two improved drive circuits for sinusoidally commutated stepping motor include feedback loops reducing unnecessary consumption of power by reducing drive-current amplitude, I, when motor operates under light load. Basic design strategy attempts to supply only little more current than minimum needed to overcome friction in lightly loaded condition. In this sinusoidally commutated two-phase stepping motor, magnetic field generated by drive currents in phase-A and phase-B stator windings urges rotor toward commanded angle x.

  19. Wirelessly powered microfluidic dielectrophoresis devices using printable RF circuits.

    PubMed

    Qiao, Wen; Cho, Gyoujin; Lo, Yu-Hwa

    2011-03-21

    We report the first microfluidic device integrated with a printed RF circuit so the device can be wirelessly powered by a commercially available RFID reader. For conventional dielectrophoresis devices, electrical wires are needed to connect the electric components on the microchip to external equipment such as power supplies, amplifiers, function generators, etc. Such a procedure is unfamiliar to most clinicians and pathologists who are used to working with a microscope for examination of samples on microscope slides. The wirelessly powered device reported here eliminates the entire need for wire attachments and external instruments so the operators can use the device in essentially the same manner as they do with microscope slides. The integrated circuit can be fabricated on a flexible plastic substrate at very low cost using a roll-to-roll printing method. Electrical power at 13.56 MHz transmitted by a radio-frequency identification (RFID) reader is inductively coupled to the printed RFIC and converted into 10 V DC (direct current) output, which provides sufficient power to drive a microfluidic device to manipulate biological particles such as beads and proteins via the DC dielectrophoresis (DC-DEP) effect. To our best knowledge, this is the first wirelessly powered microfluidic dielectrophoresis device. Although the work is preliminary, the device concept, the architecture, and the core technology are expected to stimulate many efforts in the future and transform the technology to a wide range of clinical and point-of-care applications. PMID:21293829

  20. An Advanced Time Averaging Modelling Technique for Power Electronic Circuits

    NASA Astrophysics Data System (ADS)

    Jankuloski, Goce

    For stable and efficient performance of power converters, a good mathematical model is needed. This thesis presents a new modelling technique for DC/DC and DC/AC Pulse Width Modulated (PWM) converters. The new model is more accurate than the existing modelling techniques such as State Space Averaging (SSA) and Discrete Time Modelling. Unlike the SSA model, the new modelling technique, the Advanced Time Averaging Model (ATAM) includes the averaging dynamics of the converter's output. In addition to offering enhanced model accuracy, application of linearization techniques to the ATAM enables the use of conventional linear control design tools. A controller design application demonstrates that a controller designed based on the ATAM outperforms one designed using the ubiquitous SSA model. Unlike the SSA model, ATAM for DC/AC augments the system's dynamics with the dynamics needed for subcycle fundamental contribution (SFC) calculation. This allows for controller design that is based on an exact model.

  1. Lowest of AC-DC power output for electrostrictive polymers energy harvesting systems

    NASA Astrophysics Data System (ADS)

    Meddad, Mounir; Eddiai, Adil; Hajjaji, Abdelowahed; Guyomar, Daniel; Belkhiat, Saad; Boughaleb, Yahia; Chérif, Aida

    2013-11-01

    Advances in technology led to the development of electronic circuits and sensors with extremely low electricity consumption. At the same time, structural health monitoring, technology and intelligent integrated systems created a need for wireless sensors in hard to reach places in aerospace vehicles and large civil engineering structures. Powering sensors with energy harvesters eliminates the need to replace batteries on a regular basis. Scientists have been forced to search for new power source that are able to harvested energy from their surrounding environment (sunlight, temperature gradients etc.). Electrostrictive polymer belonging to the family of electro-active polymers, offer unique properties for the electromechanical transducer technology has been of particular interest over the last few years in order to replace conventional techniques such as those based on piezoelectric or electromagnetic, these materials are highly attractive for their low-density, with large strain capability that can be as high as two orders of magnitude greater than the striction-limited, rigid and fragile electroactive ceramics. Electrostrictive polymers sensors respond to vibration with an ac output signal, one of the most important objectives of the electronic interface is to realize the required AC-DC conversion. The goal of this paper is to design an active, high efficiency power doubler converter for electrostrictive polymers exclusively uses a fraction of the harvested energy to supply its active devices. The simulation results show that it is possible to obtain a maximum efficiency of the AC-DC converter equal to 80%. Premiliminary experimental measurements were performed and the results obtained are in good agreement with simulations.

  2. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout

    NASA Astrophysics Data System (ADS)

    England, Troy; Lilly, Michael; Curry, Matthew; Carr, Stephen; Carroll, Malcolm

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will introduce two new amplifier topologies that provide excellent gain versus power tradeoffs using silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). The AC HBT allows in-situ adjustment of power dissipation during an experiment and can provide gain in the millikelvin temperature regime while dissipating less than 500 nW. The AC Current Amplifier maximizes gain at nearly 800 A/A. We will also show results of using these amplifiers with SETs at 4 K. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout.

  3. Integral Battery Power Limiting Circuit for Intrinsically Safe Applications

    NASA Technical Reports Server (NTRS)

    Burns, Bradley M.; Blalock, Norman N.

    2010-01-01

    A circuit topology has been designed to guarantee the output of intrinsically safe power for the operation of electrical devices in a hazardous environment. This design uses a MOSFET (metal oxide semiconductor field-effect transistor) as a switch to connect and disconnect power to a load. A test current is provided through a separate path to the load for monitoring by a comparator against a preset threshold level. The circuit is configured so that the test current will detect a fault in the load and open the switch before the main current can respond. The main current passes through the switch and then an inductor. When a fault occurs in the load, the current through the inductor cannot change immediately, but the voltage drops immediately to safe levels. The comparator detects this drop and opens the switch before the current in the inductor has a chance to respond. This circuit protects both the current and voltage from exceeding safe levels. Typically, this type of protection is accomplished by a fuse or a circuit breaker, but in order for a fuse or a circuit breaker to blow or trip, the current must exceed the safe levels momentarily, which may be just enough time to ignite anything in a hazardous environment. To prevent this from happening, a fuse is typically current-limited by the addition of the resistor to keep the current within safe levels while the fuse reacts. The use of a resistor is acceptable for non-battery applications where the wasted energy and voltage drop across the resistor can be tolerated. The use of the switch and inductor minimizes the wasted energy. For example, a circuit runs from a 3.6-V battery that must be current-limited to 200 mA. If the circuit normally draws 10 mA, then an 18-ohm resistor would drop 180 mV during normal operation, while a typical switch (0.02 ohm) and inductor (0.97 ohm) would only drop 9.9 mV. From a power standpoint, the current-limiting resistor protection circuit wastes about 18 times more power than the

  4. 46 CFR 169.672 - Wiring for power and lighting circuits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Wiring for power and lighting circuits. 169.672 Section... Volts on Vessels of Less Than 100 Gross Tons § 169.672 Wiring for power and lighting circuits. (a) Wiring for power and lighting circuits must have copper conductors, of 14 AWG or larger, and— (1)...

  5. 46 CFR 169.679 - Wiring for power and lighting circuits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Wiring for power and lighting circuits. 169.679 Section... More on Vessels of Less Than 100 Gross Tons § 169.679 Wiring for power and lighting circuits. Wiring for each power and lighting circuit must meet subpart 111.60 of this chapter....

  6. 46 CFR 169.679 - Wiring for power and lighting circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Wiring for power and lighting circuits. 169.679 Section... More on Vessels of Less Than 100 Gross Tons § 169.679 Wiring for power and lighting circuits. Wiring for each power and lighting circuit must meet subpart 111.60 of this chapter....

  7. 46 CFR 169.672 - Wiring for power and lighting circuits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Wiring for power and lighting circuits. 169.672 Section... Volts on Vessels of Less Than 100 Gross Tons § 169.672 Wiring for power and lighting circuits. (a) Wiring for power and lighting circuits must have copper conductors, of 14 AWG or larger, and— (1)...

  8. 46 CFR 169.672 - Wiring for power and lighting circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Wiring for power and lighting circuits. 169.672 Section... Volts on Vessels of Less Than 100 Gross Tons § 169.672 Wiring for power and lighting circuits. (a) Wiring for power and lighting circuits must have copper conductors, of 14 AWG or larger, and— (1)...

  9. 46 CFR 169.679 - Wiring for power and lighting circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Wiring for power and lighting circuits. 169.679 Section... More on Vessels of Less Than 100 Gross Tons § 169.679 Wiring for power and lighting circuits. Wiring for each power and lighting circuit must meet subpart 111.60 of this chapter....

  10. 46 CFR 169.672 - Wiring for power and lighting circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Wiring for power and lighting circuits. 169.672 Section... Volts on Vessels of Less Than 100 Gross Tons § 169.672 Wiring for power and lighting circuits. (a) Wiring for power and lighting circuits must have copper conductors, of 14 AWG or larger, and— (1)...

  11. 46 CFR 169.679 - Wiring for power and lighting circuits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Wiring for power and lighting circuits. 169.679 Section... More on Vessels of Less Than 100 Gross Tons § 169.679 Wiring for power and lighting circuits. Wiring for each power and lighting circuit must meet subpart 111.60 of this chapter....

  12. 46 CFR 169.679 - Wiring for power and lighting circuits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Wiring for power and lighting circuits. 169.679 Section... More on Vessels of Less Than 100 Gross Tons § 169.679 Wiring for power and lighting circuits. Wiring for each power and lighting circuit must meet subpart 111.60 of this chapter....

  13. 46 CFR 169.672 - Wiring for power and lighting circuits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Wiring for power and lighting circuits. 169.672 Section... Volts on Vessels of Less Than 100 Gross Tons § 169.672 Wiring for power and lighting circuits. (a) Wiring for power and lighting circuits must have copper conductors, of 14 AWG or larger, and— (1)...

  14. 30 CFR 77.500 - Electric power circuits and electric equipment; deenergization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric power circuits and electric equipment... OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.500 Electric power circuits and electric equipment; deenergization. Power circuits and electric equipment shall be deenergized before work is done...

  15. 30 CFR 77.500 - Electric power circuits and electric equipment; deenergization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric power circuits and electric equipment... OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.500 Electric power circuits and electric equipment; deenergization. Power circuits and electric equipment shall be deenergized before work is done...

  16. 30 CFR 77.500 - Electric power circuits and electric equipment; deenergization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric power circuits and electric equipment... OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.500 Electric power circuits and electric equipment; deenergization. Power circuits and electric equipment shall be deenergized before work is done...

  17. 30 CFR 77.500 - Electric power circuits and electric equipment; deenergization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric power circuits and electric equipment... OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.500 Electric power circuits and electric equipment; deenergization. Power circuits and electric equipment shall be deenergized before work is done...

  18. 30 CFR 77.500 - Electric power circuits and electric equipment; deenergization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric power circuits and electric equipment... OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.500 Electric power circuits and electric equipment; deenergization. Power circuits and electric equipment shall be deenergized before work is done...

  19. 30 CFR 57.6404 - Separation of blasting circuits from power source.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Separation of blasting circuits from power source. 57.6404 Section 57.6404 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... circuits from power source. (a) Switches used to connect the power source to a blasting circuit shall...

  20. 30 CFR 57.6404 - Separation of blasting circuits from power source.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Separation of blasting circuits from power source. 57.6404 Section 57.6404 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... circuits from power source. (a) Switches used to connect the power source to a blasting circuit shall...

  1. 30 CFR 57.6404 - Separation of blasting circuits from power source.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Separation of blasting circuits from power source. 57.6404 Section 57.6404 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... circuits from power source. (a) Switches used to connect the power source to a blasting circuit shall...

  2. 30 CFR 57.6404 - Separation of blasting circuits from power source.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Separation of blasting circuits from power source. 57.6404 Section 57.6404 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... circuits from power source. (a) Switches used to connect the power source to a blasting circuit shall...

  3. Power Processing, Part 2. Modeling Power Processing Devices and Circuits.

    ERIC Educational Resources Information Center

    Acker, Frank E.

    This publication was developed as a portion of a two-semester sequence commencing at either the sixth or the seventh term of the undergraduate program in electrical engineering at the University of Pittsburgh. The materials of the two courses, produced by a National Science Foundation grant, are concerned with power conversion systems comprising…

  4. Energy and data conversion circuits for low power sensory systems

    NASA Astrophysics Data System (ADS)

    Ghosh, Suvradip

    This dissertation focuses on the problem of increasing the lifetime of wireless sensors. This problem is addressed from two different angles: energy harvesting and data compression. Energy harvesting enables a sensor to extract energy from its environment and use it to power itself or recharge its batteries. Data compression, on the other hand, allows a sensor to save energy by reducing the radio transmission bandwidth. This dissertation proposes a fractal-based photodiode fabricated on standard CMOS process as an energy harvesting device with increased efficiency. Experiments show that, the fractal based photodiodes are 6% more efficient compared to the conventional square shaped photodiode. The fractal shape photodiode has more perimeter-to-area ratio which increases the lateral response, improving its efficiency. With increased efficiency, more current is generated but the open-circuit voltage still remains low (0.3V--0.45V depending on illumination condition). These voltages have to be boosted up to higher values if they are going to be used to power up any sensory circuit or recharge a battery. We propose a switched-inductor DC-DC converter to boost the low voltage of the photodiodes to higher voltages. The proposed circuit uses two on-chip switches and two off-chip Components: an inductor and a capacitor. Experiments show a voltage up to 2.81V can be generated from a single photodiode of 1mm2 area. The voltage booster circuit achieved a conversion efficiency of 59%. Data compression was also explored in an effort to reduce energy consumption during radio transmission. An analog-to-digital converter (ADC), which can jointly perform the tasks of digital conversion and entropy encoding, has also been proposed in this dissertation. The joint data conversion/compression help savings in area and power resources, making it suitable for on-sensor compression. The proposed converter combines a cyclic converter architecture and Golomb-Rice entropy encoder. The

  5. Reliability centered maintenance of power transformers and circuit breakers

    SciTech Connect

    Purucker, S.L.; Goeltz, R.T.; Hemmelman, K.; Price, R.

    1992-08-01

    At the Bonneville Power Administration (BPA), we have historically maintained high voltage equipment. Including transformers and power circuit breakers, on a time driven basis. While this has served our needs in the past, newer methods are needed to effectively maintain the power system in future years. Today aging equipment, maintenance backlogs, and budget constraints are a reality. BPA has initiated a research and development project to examine reliability centered maintenance (RCM) as an alternative to time based maintenance on high voltage equipment. Under RCM, the performance of each place of equipment is to be monitored by observing many operating parameters. For example, with circuit breakers we will observe (measure) the trip time, accumulated contact wear using I{sup 2}T, timing of the mechanism, plus several other parameters. Equipment performing below a predetermined level, or equipment having accumulated a large amount of ``usage`` will receive maintenance. The maintenance will restore full performance and preserve an acceptable service life for that piece of equipment. To develop and evaluate RCM concepts, BPA is installing a prototype system at our Alvey Substation on 4 transformers and 25 breakers.

  6. Disrupted bandcount doubling in an AC-DC boost PFC circuit modeled by a time varying map

    NASA Astrophysics Data System (ADS)

    Avrutin, Viktor; Zhusubaliyev, Zhanybai T.; El Aroudi, Abdelali; Fournier-Prunaret, Danièle; Garcia, Germain; Mosekilde, Erik

    2016-02-01

    Power factor correction converters are used in many applications as AC-DC power supplies aiming at maintaining a near unity power factor. Systems of this type are known to exhibit nonlinear phenomena such as sub-harmonic oscillations and chaotic regimes that cannot be described by traditional averaged models. In this paper, we derive a time varying discretetime map modeling the behavior of a power factor correction AC-DC boost converter. This map is derived in closed-form and is able to faithfully reproduce the system behavior under realistic conditions. In the chaotic regime the map exhibits a sequence of bifurcation similar to a bandcount doubling cascade on the low frequency. However, the observed scenario appears in some sense incomplete, with some gaps in the bifurcation diagram, whose appearance to our knowledge has never been reported before. We show that these gaps are caused by high frequency oscillations.

  7. Energy saving in ac generators

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1980-01-01

    Circuit cuts no-load losses, without sacrificing full-load power. Phase-contro circuit includes gate-controlled semiconductor switch that cuts off applied voltage for most of ac cycle if generator idling. Switch "on" time increases when generator is in operation.

  8. A New Vector Frequency Modulation Method for Power Conversion Circuits

    NASA Astrophysics Data System (ADS)

    Takano, Akio

    This paper presents an excellent PWM method for power conversion circuits. The proposed method is called a Vector Frequency Modulation (VFM) in this paper. VFM does not belong to any conventional PWM methods. Although an idea of space voltage vector is employed in VFM, any traditional equations to calculate the periods of the voltage vectors are not used. The voltage vectors are classified into two groups, zero vectors and non-zero ones. Instead of the complicated equations, a very simple algorithm is employed in VFM. One vector period is fixed and the zero vectors are distributed among the non-zero vectors in the ratio determined by the command voltage or frequency. The behavior of VFM is performed in software and any modulation-wave oscillators, comparators and up-down counters are not needed. At first, a reversible chopper is modulated by VFM and a 2kW DC motor is driven by the chopper. The motor speed is regulated by modern control theory. Next, a three-phase inverter is modulated by VFM and a 2.2kW induction motor is driven by the inverter. Experimental results are shown to prove that VFM is actually useful for power conversion circuits.

  9. Analysis of High Power IGBT Short Circuit Failures

    SciTech Connect

    Pappas, G.

    2005-02-11

    The Next Linear Collider (NLC) accelerator proposal at SLAC requires a highly efficient and reliable, low cost, pulsed-power modulator to drive the klystrons. A solid-state induction modulator has been developed at SLAC to power the klystrons; this modulator uses commercial high voltage and high current Insulated Gate Bipolar Transistor (IGBT) modules. Testing of these IGBT modules under pulsed conditions was very successful; however, the IGBTs failed when tests were performed into a low inductance short circuit. The internal electrical connections of a commercial IGBT module have been analyzed to extract self and mutual partial inductances for the main current paths as well as for the gate structure. The IGBT module, together with the partial inductances, has been modeled using PSpice. Predictions for electrical paths that carry the highest current correlate with the sites of failed die under short circuit tests. A similar analysis has been carried out for a SLAC proposal for an IGBT module layout. This paper discusses the mathematical model of the IGBT module geometry and presents simulation results.

  10. Wireless Neural Recording With Single Low-Power Integrated Circuit

    PubMed Central

    Harrison, Reid R.; Kier, Ryan J.; Chestek, Cynthia A.; Gilja, Vikash; Nuyujukian, Paul; Ryu, Stephen; Greger, Bradley; Solzbacher, Florian; Shenoy, Krishna V.

    2010-01-01

    We present benchtop and in vivo experimental results from an integrated circuit designed for wireless implantable neural recording applications. The chip, which was fabricated in a commercially available 0.6-μm 2P3M BiCMOS process, contains 100 amplifiers, a 10-bit analog-to-digital converter (ADC), 100 threshold-based spike detectors, and a 902–928 MHz frequency-shift-keying (FSK) transmitter. Neural signals from a selected amplifier are sampled by the ADC at 15.7 kSps and telemetered over the FSK wireless data link. Power, clock, and command signals are sent to the chip wirelessly over a 2.765-MHz inductive (coil-to-coil) link. The chip is capable of operating with only two off-chip components: a power/command receiving coil and a 100-nF capacitor. PMID:19497825

  11. Low-power LVDS for digital readout circuits

    NASA Astrophysics Data System (ADS)

    Yazici, Melik; Kayahan, Huseyin; Ceylan, Omer; Shafique, Atia; Gurbuz, Yasar

    2015-06-01

    This paper presents a mixed-signal LVDS driver in 90 nm CMOS technology. The designed LVDS core is to be used as a data link between Infrared Focal Plane Array (IRFPA) detector end and microprocessor input. Parallel data from 220 pixels of IRFPA is serialized by LVDS driver and read out to microprocessor. It also offers a reduced power consumption rate, high data transmission speed and utilizes dense placement of devices for area efficiency. The entire output driver circuit including input buffer draws 5mA while the output swing is 500mV at power supply of 1.2V for data rate of 6.4Gbps.Total LVDS chip area is 0.79 mm2. Due to these features, the designed LVDS driver is suitable for purposes such as portable, high-speed imaging.

  12. Circuits and Systems for Low-Power Miniaturized Wireless Sensors

    NASA Astrophysics Data System (ADS)

    Nagaraju, Manohar

    The field of electronic sensors has witnessed a tremendous growth over the last decade particularly with the proliferation of mobile devices. New applications in Internet of Things (IoT), wearable technology, are further expected to fuel the demand for sensors from current numbers in the range of billions to trillions in the next decade. The main challenges for a trillion sensors are continued miniaturization, low-cost and large-scale manufacturing process, and low power consumption. Traditional integration and circuit design techniques in sensor systems are not suitable for applications in smart dust, IoT etc. The first part of this thesis demonstrates an example sensor system for biosignal recording and illustrates the tradeoffs in the design of low-power miniaturized sensors. The different components of the sensor system are integrated at the board level. The second part of the thesis demonstrates fully integrated sensors that enable extreme miniaturization of a sensing system with the sensor element, processing circuitry, a frequency reference for communication and the communication circuitry in a single hermetically sealed die. Design techniques to reduce the power consumption of the sensor interface circuitry at the architecture and circuit level are demonstrated. The principles are used to design sensors for two of the most common physical variables, mass and pressure. A low-power wireless mass and pressure sensor suitable for a wide variety of biological/chemical sensing applications and Tire Pressure Monitoring Systems (TPMS) respectively are demonstrated. Further, the idea of using high-Q resonators for a Voltage Controlled Oscillator (VCO) is proposed and a low-noise, wide bandwidth FBAR-based VCO is presented.

  13. Equivalent circuit modeling of the ac response of Pd-ZrO2 granular metal thin films using impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Bakkali, Hicham; Dominguez, Manuel; Batlle, Xavier; Labarta, Amílcar

    2015-08-01

    The ac response in the dielectric regime of thin films consisting of Pd nanoparticles embedded in a ZrO2 insulating matrix, fabricated by co-sputtering, was obtained from impedance spectroscopy measurements (11 Hz-2 MHz) in the temperature range 30-290 K. The response was fitted to an equivalent circuit model whose parameters were evaluated assuming that, as a consequence of the bimodal size distribution of the Pd particles, two mechanisms appear. At low frequencies, a first element similar to a parallel RC circuit dominates the response, due to two competing paths. One of them is associated with thermally-activated tunneling conductance among most of the smallest Pd particles (size ~ 2 nm), which make up the dc tunneling backbone of the sample. The other one is related to the conductance associated with the capacitive paths among larger Pd particles (size  >  5 nm). At low temperature and intermediate frequencies (~1 kHz), a shortcut process between the larger particles connects regions initially isolated from the backbone at low frequencies. These regions, populated by some additional smaller particles located around two bigger particles, were isolated because the bigger particles separation is too large for the tunneling current. Once connected to the backbone, current may also flow through them by means of the so-called thermally-activated assisted tunneling resistive paths, yielding the second element of the equivalent circuit (a parallel RLC element). At high temperature, the thermal energy shifts the onset of the shortcut process high frequencies and, thus, only the first element is observed. Considering these results, controlling the particle size distribution could be helpful to tune up the frequency at which tunneling conductance dominates the ac response of these granular metals.

  14. Solar Power Conditioners Using Bidirectional Chopper Circuits Connected in Series

    NASA Astrophysics Data System (ADS)

    Fujita, Hideaki; Mabuchi, Masao; Tsubota, Yasuhiro; Mizogami, Takao

    This paper proposes a new high-efficiency grid-connection inverter suitable for the interface with thin-film solar cells, which is composed of two bidirectional buck converters and an H-bridge PWM converter connected in series. The switching frequencies of the first bidirectional buck converters are equal to the grid frequency, while the second one is operated at the twice of the grid frequency. The combination of these two converter synthesizes an ac rectangular voltage pulse train from the dc input power. The H-bridge PWM converter is operated at 20kHz with a low dc capacitor voltage to compensate for the harmonic voltage included in the rectangular voltage pulse train. As a result, the proposed grid-connection inverter makes it possible to reduce both switching loss and common mode voltage. Experimental results obtained by a 1-kW single-phase inverter demonstrate a high efficiency of 98% without any common mode voltage.

  15. Compact Circuit Preprocesses Accelerometer Output

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1993-01-01

    Compact electronic circuit transfers dc power to, and preprocesses ac output of, accelerometer and associated preamplifier. Incorporated into accelerometer case during initial fabrication or retrofit onto commercial accelerometer. Made of commercial integrated circuits and other conventional components; made smaller by use of micrologic and surface-mount technology.

  16. 30 CFR 75.706 - Deenergized underground power circuits; idle days-idle shifts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Deenergized underground power circuits; idle days-idle shifts. 75.706 Section 75.706 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... § 75.706 Deenergized underground power circuits; idle days—idle shifts. When not in use, power...

  17. 30 CFR 75.706 - Deenergized underground power circuits; idle days-idle shifts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Deenergized underground power circuits; idle days-idle shifts. 75.706 Section 75.706 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... § 75.706 Deenergized underground power circuits; idle days—idle shifts. When not in use, power...

  18. 30 CFR 75.706 - Deenergized underground power circuits; idle days-idle shifts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Deenergized underground power circuits; idle days-idle shifts. 75.706 Section 75.706 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... § 75.706 Deenergized underground power circuits; idle days—idle shifts. When not in use, power...

  19. Low power smartdust receiver with novel applications and improvements of an RF power harvesting circuit

    NASA Astrophysics Data System (ADS)

    Salter, Thomas Steven, Jr.

    Smartdust is the evolution of wireless sensor networks to cubic centimeter dimensions or less. Smartdust systems have advantages in cost, flexibility, and rapid deployment that make them ideal for many military, medical, and industrial applications. This work addresses the limitations of prior works of research to provide sufficient lifetime and performance for Smartdust sensor networks through the design, fabrication and testing of a novel low power receiver for use in a Smartdust transceiver. Through the novel optimization of a multi-stage LNA design and novel application of a power matched Villard voltage doubler circuit, a 1.0 V, 1.6 mW low power On-Off Key (OOK) receiver operating at 2.2 GHz is fabricated using 0.13 um CMOS technology. To facilitate data transfer in adverse RF propagation environments (1/r3 loss), the chip receives a 1 Mbps data signal with a sensitivity of -90 dBm while consuming just 1.6 nJ/bit. The receiver operates without the addition of any external passives facilitating its application in Smartdust scale (cm 3) wireless sensor networks. This represents an order of magnitude decrease in power consumption over receiver designs of comparable sensitivity. In an effort to further extend the lifetime of the Smartdust transceiver, RF power harvesting is explored as a power source. The small scale of Smartdust sensor networks poses unique challenges in the design of RF power scavenging systems. To meet these challenges, novel design improvements to an RF power scavenging circuit integrated directly onto CMOS are presented. These improvements include a reduction in the threshold voltage of diode connected MOSFET and sources of circuit parasitics that are unique to integrated circuits. Utilizing these improvements, the voltage necessary to drive Smartdust circuitry (1 V) with a greater than 20% RF to DC conversion efficiency was generated from RF energy levels measured in the environment (66 uW). This represents better than double the RF to DC

  20. Microwatt power consumption maximum power point tracking circuit using an analogue differentiator for piezoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Chew, Z. J.; Zhu, M.

    2015-12-01

    A maximum power point tracking (MPPT) scheme by tracking the open-circuit voltage from a piezoelectric energy harvester using a differentiator is presented in this paper. The MPPT controller is implemented by using a low-power analogue differentiator and comparators without the need of a sensing circuitry and a power hungry controller. This proposed MPPT circuit is used to control a buck converter which serves as a power management module in conjunction with a full-wave bridge diode rectifier. Performance of this MPPT control scheme is verified by using the prototyped circuit to track the maximum power point of a macro-fiber composite (MFC) as the piezoelectric energy harvester. The MFC was bonded on a composite material and the whole specimen was subjected to various strain levels at frequency from 10 to 100 Hz. Experimental results showed that the implemented full analogue MPPT controller has a tracking efficiency between 81% and 98.66% independent of the load, and consumes an average power of 3.187 μW at 3 V during operation.

  1. Design and Control Implementation of AC Electric Power Steering System Test Bench*

    NASA Astrophysics Data System (ADS)

    Zhang, Weidong; Ai, Yibo

    Using AC motor is an important development trend of electric power steering system, and in this paper, we proposed a design of AC electric power steering system test bench. The paper introduced the bench structure, working principle and main components selection first, and then given the implementation scheme of test bench's three functions: simulation of the road resistance, power assistant control and data acquisition. The test results showed the feasibility of the test bench.

  2. A Digital Coreless Maximum Power Point Tracking Circuit for Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Kim, Shiho; Cho, Sungkyu; Kim, Namjae; Baatar, Nyambayar; Kwon, Jangwoo

    2011-05-01

    This paper describes a maximum power point tracking (MPPT) circuit for thermoelectric generators (TEG) without a digital controller unit. The proposed method uses an analog tracking circuit that samples the half point of the open-circuit voltage without a digital signal processor (DSP) or microcontroller unit for calculating the peak power point using iterative methods. The simulation results revealed that the MPPT circuit, which employs a boost-cascaded-with-buck converter, handled rapid variation of temperature and abrupt changes of load current; this method enables stable operation with high power transfer efficiency. The proposed MPPT technique is a useful analog MPPT solution for thermoelectric generators.

  3. 46 CFR 111.91-1 - Power, control, and interlock circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Elevators and Dumbwaiters § 111.91-1 Power, control, and interlock circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME A17.1 (incorporated by reference; see 46 CFR 110.10-1)....

  4. 46 CFR 111.91-1 - Power, control, and interlock circuits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Elevators and Dumbwaiters § 111.91-1 Power, control, and interlock circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME A17.1 (incorporated by reference; see 46 CFR 110.10-1)....

  5. 46 CFR 111.91-1 - Power, control, and interlock circuits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Elevators and Dumbwaiters § 111.91-1 Power, control, and interlock circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME A17.1 (incorporated by reference; see 46 CFR 110.10-1)....

  6. 46 CFR 111.91-1 - Power, control, and interlock circuits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Elevators and Dumbwaiters § 111.91-1 Power, control, and interlock circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME A17.1 (incorporated by reference; see 46 CFR 110.10-1)....

  7. 46 CFR 111.91-1 - Power, control, and interlock circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Elevators and Dumbwaiters § 111.91-1 Power, control, and interlock circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME A17.1 (incorporated by reference; see 46 CFR 110.10-1)....

  8. 46 CFR 169.673 - Installation of wiring for power and lighting circuits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Installation of wiring for power and lighting circuits. 169.673 Section 169.673 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL... power and lighting circuits. (a) Wiring must be run as high as practicable above the bilges. (b)...

  9. 46 CFR 169.673 - Installation of wiring for power and lighting circuits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Installation of wiring for power and lighting circuits. 169.673 Section 169.673 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL... power and lighting circuits. (a) Wiring must be run as high as practicable above the bilges. (b)...

  10. 46 CFR 169.673 - Installation of wiring for power and lighting circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Installation of wiring for power and lighting circuits. 169.673 Section 169.673 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL... power and lighting circuits. (a) Wiring must be run as high as practicable above the bilges. (b)...

  11. 46 CFR 169.673 - Installation of wiring for power and lighting circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Installation of wiring for power and lighting circuits. 169.673 Section 169.673 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL... power and lighting circuits. (a) Wiring must be run as high as practicable above the bilges. (b)...

  12. 46 CFR 169.673 - Installation of wiring for power and lighting circuits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Installation of wiring for power and lighting circuits. 169.673 Section 169.673 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL... power and lighting circuits. (a) Wiring must be run as high as practicable above the bilges. (b)...

  13. 30 CFR 56.6404 - Separation of blasting circuits from power source.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... source. 56.6404 Section 56.6404 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... MINES Explosives Electric Blasting § 56.6404 Separation of blasting circuits from power source. (a) Switches used to connect the power source to a blasting circuit shall be locked in the open position...

  14. 30 CFR 56.6404 - Separation of blasting circuits from power source.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... source. 56.6404 Section 56.6404 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... MINES Explosives Electric Blasting § 56.6404 Separation of blasting circuits from power source. (a) Switches used to connect the power source to a blasting circuit shall be locked in the open position...

  15. 30 CFR 56.6404 - Separation of blasting circuits from power source.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... source. 56.6404 Section 56.6404 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... MINES Explosives Electric Blasting § 56.6404 Separation of blasting circuits from power source. (a) Switches used to connect the power source to a blasting circuit shall be locked in the open position...

  16. 30 CFR 56.6404 - Separation of blasting circuits from power source.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... source. 56.6404 Section 56.6404 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... MINES Explosives Electric Blasting § 56.6404 Separation of blasting circuits from power source. (a) Switches used to connect the power source to a blasting circuit shall be locked in the open position...

  17. Circuit and Method for Communication Over DC Power Line

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael J.; Prokop, Norman F.

    2007-01-01

    A circuit and method for transmitting and receiving on-off-keyed (OOK) signals with fractional signal-to-noise ratios uses available high-temperature silicon- on-insulator (SOI) components to move computational, sensing, and actuation abilities closer to high-temperature or high-ionizing radiation environments such as vehicle engine compartments, deep-hole drilling environments, industrial control and monitoring of processes like smelting, and operations near nuclear reactors and in space. This device allows for the networking of multiple, like nodes to each other and to a central processor. It can do this with nothing more than the already in-situ power wiring of the system. The device s microprocessor allows it to make intelligent decisions within the vehicle operational loop and to effect control outputs to its associated actuators. The figure illustrates how each node converts digital serial data to OOK 18-kHz in transmit mode and vice-versa in receive mode; though operations at lower frequencies or up to a megahertz are within reason using this method and these parts. This innovation s technique modulates a DC power bus with millivolt-level signals through a MOSFET (metal oxide semiconductor field effect transistor) and resistor by OOK. It receives and demodulates this signal from the DC power bus through capacitive coupling at high temperature and in high ionizing radiation environments. The demodulation of the OOK signal is accomplished by using an asynchronous quadrature detection technique realized by a quasi-discrete Fourier transform through use of the quadrature components (0 and 90 phases) of the carrier frequency as generated by the microcontroller and as a function of the selected crystal frequency driving its oscillator. The detected signal is rectified using an absolute-value circuit containing no diodes (diodes being non-operational at high temperatures), and only operational amplifiers. The absolute values of the two phases of the received signal

  18. Short-Circuit Modeling of a Wind Power Plant: Preprint

    SciTech Connect

    Muljadi, E.; Gevorgian, V.

    2011-03-01

    This paper investigates the short-circuit behavior of a WPP for different types of wind turbines. The short-circuit behavior will be presented. Both the simplified models and detailed models are used in the simulations and both symmetrical faults and unsymmetrical faults are discussed.

  19. Short Circuit Analysis of Induction Machines Wind Power Application

    SciTech Connect

    Starke, Michael R; Smith, Travis M; Howard, Dustin; Harley, Ronald

    2012-01-01

    he short circuit behavior of Type I (fixed speed) wind turbine-generators is analyzed in this paper to aid in the protection coordination of wind plants of this type. A simple network consisting of one wind turbine-generator is analyzed for two network faults: a three phase short circuit and a phase A to ground fault. Electromagnetic transient simulations and sequence network calculations are compared for the two fault scenarios. It is found that traditional sequence network calculations give accurate results for the short circuit currents in the balanced fault case, but are inaccurate for the un-faulted phases in the unbalanced fault case. The time-current behavior of the fundamental frequency component of the short circuit currents for both fault cases are described, and found to differ significantly in the unbalanced and balanced fault cases

  20. Design and Modeling of Pulsed Power Accelerators Via Circuit Analysis

    1996-12-05

    SCREAMER simulates electrical circuits which may contain elements of variable resistance, capacitance and inductance. The user may add variable circuit elements in a simulation by choosing from a library of models or by writing a subroutine describing the element. Transmission lines, magnetically insulated transmission lines (MITLs) and arbitrary voltage and current sources may also be included. Transmission lines are modeled using pi-sections connected in series. Many models of switches and loads are included.

  1. Design of Low-power Wake-up Circuits in Underwater Acoustic Communication

    NASA Astrophysics Data System (ADS)

    Cuixia, Zhang; Jiaxin, Wu; Yuanxuan, Li

    In underwater acoustic communication, the power consumption of the underwater communication equipments at harsh conditions of marine environment is an important problem. Under that scenario, we propose a design of low-power wake-up circuits based on SCM C8051F020 system. Compare to traditional wake-up circuits which directly judge the energy of received signals, our approach can greatly reduce the misjudgment caused by the environmental disturbance, and the performance of energy conservation is effective. The low-power wake-up circuits possess a promising application prospect in the long-distance wireless underwater communication.

  2. Measurement of klystron phase modulation due to ac-powered filaments

    NASA Technical Reports Server (NTRS)

    Finnegan, E. J.

    1977-01-01

    A technique for determining the intermodulation components in the RF spectrum of the S-band radar transmitter generated by having the klystron filaments heated by 400-Hz ac power is described. When the klystron is being operated with 400-Hz (ac) on the filament, the IPM is buried in the 400-Hz equipment interference noise. The modulation sidebands were separated and identified and found to be-67 db below the main carrier. This is well below the transmitter specifications, and operating the filaments on ac would not degrade the spectrum to where it would be detrimental to the radiated RF.

  3. Aluminum heat sink enables power transistors to be mounted integrally with printed circuit board

    NASA Technical Reports Server (NTRS)

    Seaward, R. C.

    1967-01-01

    Power transistor is provided with an integral flat plate aluminum heat sink which mounts directly on a printed circuit board containing associated circuitry. Standoff spacers are used to attach the heat sink to the printed circuit board containing the remainder of the circuitry.

  4. 46 CFR 169.680 - Installation of wiring for power and lighting circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Installation of wiring for power and lighting circuits... and lighting circuits. (a) Wiring must be run as high as practicable above the bilges. (b) Each cable... box for use in a damp or wet location must be of watertight construction. (n) Each lighting...

  5. 46 CFR 169.680 - Installation of wiring for power and lighting circuits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Installation of wiring for power and lighting circuits... and lighting circuits. (a) Wiring must be run as high as practicable above the bilges. (b) Each cable... box for use in a damp or wet location must be of watertight construction. (n) Each lighting...

  6. 46 CFR 169.680 - Installation of wiring for power and lighting circuits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Installation of wiring for power and lighting circuits... and lighting circuits. (a) Wiring must be run as high as practicable above the bilges. (b) Each cable... box for use in a damp or wet location must be of watertight construction. (n) Each lighting...

  7. 46 CFR 169.680 - Installation of wiring for power and lighting circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Installation of wiring for power and lighting circuits... and lighting circuits. (a) Wiring must be run as high as practicable above the bilges. (b) Each cable... box for use in a damp or wet location must be of watertight construction. (n) Each lighting...

  8. 46 CFR 169.680 - Installation of wiring for power and lighting circuits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Installation of wiring for power and lighting circuits... and lighting circuits. (a) Wiring must be run as high as practicable above the bilges. (b) Each cable... box for use in a damp or wet location must be of watertight construction. (n) Each lighting...

  9. Low-power integrated-circuit driver for ferrite-memory word lines

    NASA Technical Reports Server (NTRS)

    Katz, S.

    1970-01-01

    Composite circuit uses both n-p-n bipolar and p-channel MOS transistors /BIMOS/. The BIMOS driver provides 1/ ease of integrated circuit construction, 2/ low standby power consumption, 3/ bidirectional current pulses, and 4/ current-pulse amplitudes and rise times independent of active device parameters.

  10. Fluid Power Multi-actuator Circuit Board with Microcomputer Control Option.

    ERIC Educational Resources Information Center

    McKechnie, R. E.; Vickers, G. W.

    1981-01-01

    Describes a portable fluid power engineering laboratory and class demonstration apparatus designed to enable students to design, build, and test multi-actuator circuits. Features a variety of standard pneumatic values and actuators fitted with quick disconnect couplings. Discusses sequencing circuit boards, microcomputer control, cost, and…

  11. Improved transistorized AC motor controller for battery powered urban electric passenger vehicles

    NASA Technical Reports Server (NTRS)

    Peak, S. C.

    1982-01-01

    An ac motor controller for an induction motor electric vehicle drive system was designed, fabricated, tested, evaluated, and cost analyzed. A vehicle performance analysis was done to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of ac motor and ac controller requirements. The power inverter is a three-phase bridge using power Darlington transistors. The induction motor was optimized for use with an inverter power source. The drive system has a constant torque output to base motor speed and a constant horsepower output to maximum speed. A gear shifting transmission is not required. The ac controller was scaled from the base 20 hp (41 hp peak) at 108 volts dec to an expanded horsepower and battery voltage range. Motor reversal was accomplished by electronic reversal of the inverter phase sequence. The ac controller can also be used as a boost chopper battery charger. The drive system was tested on a dynamometer and results are presented. The current-controlled pulse width modulation control scheme yielded improved motor current waveforms. The ac controller favors a higher system voltage.

  12. PMGA and its application in area and power optimization for ternary FPRM circuit

    NASA Astrophysics Data System (ADS)

    Pengjun, Wang; Kangping, Li; Huihong, Zhang

    2016-01-01

    Based on the research of population migration algorithms (PMAs), a population migration genetic algorithm (PMGA) is proposed, combining a PMA with a genetic algorithm. A scheme of area and power optimization for a ternary FPRM circuit is proposed by using the PMGA. Firstly, according to the ternary FPRM logic function expression, area and power estimation models are established. Secondly, the PMGA is used to search for the best area and power polarity. Finally, 10 MCNC Benchmark circuits are used to verify the effectiveness of the proposed method. The results show that the ternary FPRM circuits optimized by the PMGA saved 13.33% area and 20.00% power on average than the corresponding FPRM circuits optimized by a whole annealing genetic algorithm. Project supported by the Natural Science Foundation of Zhejiang Province (No. LY13F040003), the National Natural Science Foundation of China (Nos. 61234002, 61306041), and the K. C. Wong Magna Fund in Ningbo University.

  13. Automatic recloser circuit breaker integrated with GSM technology for power system notification

    NASA Astrophysics Data System (ADS)

    Lada, M. Y.; Khiar, M. S. A.; Ghani, S. A.; Nawawi, M. R. M.; Rahim, N. H.; Sinar, L. O. M.

    2015-05-01

    Lightning is one type of transient faults that usually cause the circuit breaker in the distribution board trip due to overload current detection. The instant tripping condition in the circuit breakers clears the fault in the system. Unfortunately most circuit breakers system is manually operated. The power line will be effectively re-energized after the clearing fault process is finished. Auto-reclose circuit is used on the transmission line to carry out the duty of supplying quality electrical power to customers. In this project, an automatic reclose circuit breaker for low voltage usage is designed. The product description is the Auto Reclose Circuit Breaker (ARCB) will trip if the current sensor detects high current which exceeds the rated current for the miniature circuit breaker (MCB) used. Then the fault condition will be cleared automatically and return the power line to normal condition. The Global System for Mobile Communication (GSM) system will send SMS to the person in charge if the tripping occurs. If the over current occurs in three times, the system will fully trip (open circuit) and at the same time will send an SMS to the person in charge. In this project a 1 A is set as the rated current and any current exceeding a 1 A will cause the system to trip or interrupted. This system also provides an additional notification for user such as the emergency light and warning system.

  14. Investigation Converter Circuit «Voltage-Current» for Power Calibrator

    NASA Astrophysics Data System (ADS)

    Fomichev, Yu M.; Silushkin, S. V.; Larioshina, I. A.

    2016-01-01

    The paper presents alternative circuits for voltage-current converters to be used in the calibrator of fictitious power. The experimental studies have revealed a number of problems related to the stability of the system in deep feedback and zero level stabilization of the amplifier. The circuit solutions given in the article allow elimination of these problems and improve the accuracy of calibrator current calibration. For example, correction/corrective circuits are used to ensure the stability of the converter at deep depths of the feedback, and operational amplifier based circuit solution and compensation condition are proposed to reduce the additional phase shift. To improve the accuracy of the calibration current values specified by the calibrator we propose to connect the feedback circuit to the measuring current transformer. However, further improvement of the accuracy class of the power calibrator is impossible without modern electronic components.

  15. System for transmitting low frequency analog signals over AC power lines

    DOEpatents

    Baker, Steven P.; Durall, Robert L.; Haynes, Howard D.

    1989-09-05

    A system for transmitting low frequency analog signals over AC power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an AC power line. The modulation signal frequency range in selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the AC power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal.

  16. A system for tranmitting low frequency analog signals over ac power lines

    DOEpatents

    Baker, S.P.; Durall, R.L.; Haynes, H.D.

    1987-07-30

    A system for transmitting low frequency analog signals over ac power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an ac power line. The modulation signal frequency range is selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the ac power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal. 4 figs.

  17. System for transmitting low frequency analog signals over AC power lines

    DOEpatents

    Baker, Steven P.; Durall, Robert L.; Haynes, Howard D.

    1989-01-01

    A system for transmitting low frequency analog signals over AC power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an AC power line. The modulation signal frequency range in selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the AC power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal.

  18. Efficiency and power loss in d. c. chopper circuits. [Theoretical calculation

    SciTech Connect

    Beck, M.O.

    1981-01-01

    The object of this paper was to investigate the efficiency and source of power losses of various classes of dc chopper circuits. The study involved a theoretical calculation of the power losses, supported by a considerable amount of practical work on full power-rated traction motor test bed. 3 refs.

  19. An Educational Laboratory for Digital Control and Rapid Prototyping of Power Electronic Circuits

    ERIC Educational Resources Information Center

    Choi, Sanghun; Saeedifard, M.

    2012-01-01

    This paper describes a new educational power electronics laboratory that was developed primarily to reinforce experimentally the fundamental concepts presented in a power electronics course. The developed laboratory combines theoretical design, simulation studies, digital control, fabrication, and verification of power-electronic circuits based on…

  20. Preliminary study of AC power feeders for AGS booster

    SciTech Connect

    Meth, M.

    1992-07-17

    It has been proposed that the AGS Heavy Ion/Proton Booster be excited directly from the electric power distribution system without intervening an energy storage buffer such as an MG set or a magnetic energy buffer. The average power requirement of the AGS Booster is less than many single-loads presently housed on the lab site. However, the power swing will be the largest single pulsating load on the lab site. The large power swings will impact on the power grid producing utility-line disturbances such as voltage fluctuations and harmonic generation. Thus, it is necessary to carefully evaluate the quality of the electric power system resulting from the interconnection, such that the utility system is not degraded either on the lab site or at LILCO`s substation.

  1. Preliminary study of AC power feeders for AGS booster

    SciTech Connect

    Meth, M.

    1992-07-17

    It has been proposed that the AGS Heavy Ion/Proton Booster be excited directly from the electric power distribution system without intervening an energy storage buffer such as an MG set or a magnetic energy buffer. The average power requirement of the AGS Booster is less than many single-loads presently housed on the lab site. However, the power swing will be the largest single pulsating load on the lab site. The large power swings will impact on the power grid producing utility-line disturbances such as voltage fluctuations and harmonic generation. Thus, it is necessary to carefully evaluate the quality of the electric power system resulting from the interconnection, such that the utility system is not degraded either on the lab site or at LILCO's substation.

  2. Non-oxidized porous silicon-based power AC switch peripheries

    NASA Astrophysics Data System (ADS)

    Menard, Samuel; Fèvre, Angélique; Valente, Damien; Billoué, Jérôme; Gautier, Gaël

    2012-10-01

    We present in this paper a novel application of porous silicon (PS) for low-power alternating current (AC) switches such as triode alternating current devices (TRIACs) frequently used to control small appliances (fridge, vacuum cleaner, washing machine, coffee makers, etc.). More precisely, it seems possible to benefit from the PS electrical insulation properties to ensure the OFF state of the device. Based on the technological aspects of the most commonly used AC switch peripheries physically responsible of the TRIAC blocking performances (leakage current and breakdown voltage), we suggest to isolate upper and lower junctions through the addition of a PS layer anodically etched from existing AC switch diffusion profiles. Then, we comment the voltage capability of practical samples emanating from the proposed architecture. Thanks to the characterization results of simple Al-PS-Si(P) structures, the experimental observations are interpreted, thus opening new outlooks in the field of AC switch peripheries.

  3. Non-oxidized porous silicon-based power AC switch peripheries.

    PubMed

    Menard, Samuel; Fèvre, Angélique; Valente, Damien; Billoué, Jérôme; Gautier, Gaël

    2012-01-01

    We present in this paper a novel application of porous silicon (PS) for low-power alternating current (AC) switches such as triode alternating current devices (TRIACs) frequently used to control small appliances (fridge, vacuum cleaner, washing machine, coffee makers, etc.). More precisely, it seems possible to benefit from the PS electrical insulation properties to ensure the OFF state of the device. Based on the technological aspects of the most commonly used AC switch peripheries physically responsible of the TRIAC blocking performances (leakage current and breakdown voltage), we suggest to isolate upper and lower junctions through the addition of a PS layer anodically etched from existing AC switch diffusion profiles. Then, we comment the voltage capability of practical samples emanating from the proposed architecture. Thanks to the characterization results of simple Al-PS-Si(P) structures, the experimental observations are interpreted, thus opening new outlooks in the field of AC switch peripheries. PMID:23057856

  4. Non-oxidized porous silicon-based power AC switch peripheries

    PubMed Central

    2012-01-01

    We present in this paper a novel application of porous silicon (PS) for low-power alternating current (AC) switches such as triode alternating current devices (TRIACs) frequently used to control small appliances (fridge, vacuum cleaner, washing machine, coffee makers, etc.). More precisely, it seems possible to benefit from the PS electrical insulation properties to ensure the OFF state of the device. Based on the technological aspects of the most commonly used AC switch peripheries physically responsible of the TRIAC blocking performances (leakage current and breakdown voltage), we suggest to isolate upper and lower junctions through the addition of a PS layer anodically etched from existing AC switch diffusion profiles. Then, we comment the voltage capability of practical samples emanating from the proposed architecture. Thanks to the characterization results of simple Al-PS-Si(P) structures, the experimental observations are interpreted, thus opening new outlooks in the field of AC switch peripheries. PMID:23057856

  5. Coupling an induction motor type generator to ac power lines. [making windmill generators compatible with public power lines

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1984-01-01

    A system for coupling an induction motor type generator to an A.C. power line includes an electronic switch means that is controlled by a control system and is regulated to turn on at a relatively late point in each half cycle of its operation. The energizing power supplied by the line to the induction motor type generator is decreased and the net power delivered to the line is increased.

  6. Comparison of bidirectional power electronics with unidirectional topologies using active discharging circuits for feeding DEAP transducer

    NASA Astrophysics Data System (ADS)

    Hoffstadt, Thorben; Maas, Jürgen

    2015-04-01

    To enable a continuous operation of a DEAP transducer, the feeding power electronics must provide the capability to charge and discharge the transducer to enable a continuous voltage adjustment. While in case of energy harvesting applications a bidirectional power electronics is mandatory, for actuator applications also unidirectional power electronics with active discharging circuits can be used. Thus, in this contribution a bidirectional flyback-converter is compared to a unidirectional with different discharging circuits. For this purpose, the design of a resistive and an inductive-resistive discharging circuit is proposed, that are connected in parallel to the DEAP and activated when required. Modulation schemes for both discharging circuits are derived that enable a continuous voltage control. Based on realized prototypes of the investigated topologies the different converters are finally compared to each other.

  7. Improved transistorized ac motor controller for battery powered urban electric passenger vehicles

    SciTech Connect

    Peak, S.C.

    1982-09-01

    The objectives of this program for an improved ac motor controller for battery powered urban electric passenger vehicles were: the design, fabrication, test, evaluation and cost analysis of an engineering model controller for an ac induction motor drive system, the investigation of a power level expansion to a family of horsepower and battery system voltages, and the investigation of the applicability of the ac controller for use as an on-board battery charger and for providing the function of motor reversal. Additional vehicle specifications, e.g., acceleration and pulling out of potholes, were added to the NASA vehicle specifications. Then, a vehicle performance analysis was done to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of ac motor and ac controller requirements. The General Electric ac induction motor used in the drive is optimized to operate as a vehicle traction motor with a pulse width modulated (PWM) inverter as a power source. The motor is nominally rated 20 hp and 41 hp peak. The power inverter design is a three-phase transistorized bridge configuration with feedback diodes. The transistors are a special design General Electric high-power Darlington transistor rated 450 volts and 200 amps. The battery system voltage chosen was 108 volts. The control strategy is a constant torque profile by PWM operation to base speed and a constant horsepower profile by square-wave operation to maximum speed. A gear shifting transmission is not required. An advanced current-controlled PWM technique is used to control the motor voltage. The primary feedback control is a motor angle control, with voltage and torque outer loop controls.

  8. Power spectrum analysis for defect screening in integrated circuit devices

    DOEpatents

    Tangyunyong, Paiboon; Cole Jr., Edward I.; Stein, David J.

    2011-12-01

    A device sample is screened for defects using its power spectrum in response to a dynamic stimulus. The device sample receives a time-varying electrical signal. The power spectrum of the device sample is measured at one of the pins of the device sample. A defect in the device sample can be identified based on results of comparing the power spectrum with one or more power spectra of the device that have a known defect status.

  9. 20 GHz high power onboard beam switching circuit for multi-beam satellite systems

    NASA Astrophysics Data System (ADS)

    Araki, K.; Tanaka, T.

    A newly developed K-band beam switching circuit is presented. The K-band beam switching circuit for multibeam satellite system is effective to improve the transponder utilization efficiency. The beam switching circuit divides the output of a transponder among several different light traffic beams in a time division manner. The single pole double throw (SPDT) beam switching circuit consists of one circulator, one 90 degree hybrid coupler, and two 0/pi reflection type PIN diode phase shifters. A trially manufactured SPDT switching circuit has high power handling capability of more than 10 watts, low insertion loss of less than 1.2 dB, high isolation of more than 23 dB, and high speed switching time of faster than 100 nanoseconds in the frequency band between 18.85 GHz and 19.15 GHz.

  10. Effect of Sensors on the Reliability and Control Performance of Power Circuits in the Web of Things (WoT).

    PubMed

    Bae, Sungwoo; Kim, Myungchin

    2016-01-01

    In order to realize a true WoT environment, a reliable power circuit is required to ensure interconnections among a range of WoT devices. This paper presents research on sensors and their effects on the reliability and response characteristics of power circuits in WoT devices. The presented research can be used in various power circuit applications, such as energy harvesting interfaces, photovoltaic systems, and battery management systems for the WoT devices. As power circuits rely on the feedback from voltage/current sensors, the system performance is likely to be affected by the sensor failure rates, sensor dynamic characteristics, and their interface circuits. This study investigated how the operational availability of the power circuits is affected by the sensor failure rates by performing a quantitative reliability analysis. In the analysis process, this paper also includes the effects of various reconstruction and estimation techniques used in power processing circuits (e.g., energy harvesting circuits and photovoltaic systems). This paper also reports how the transient control performance of power circuits is affected by sensor interface circuits. With the frequency domain stability analysis and circuit simulation, it was verified that the interface circuit dynamics may affect the transient response characteristics of power circuits. The verification results in this paper showed that the reliability and control performance of the power circuits can be affected by the sensor types, fault tolerant approaches against sensor failures, and the response characteristics of the sensor interfaces. The analysis results were also verified by experiments using a power circuit prototype. PMID:27608020

  11. Design and Implementation of a RF Powering Circuit for RFID Tags or Other Batteryless Embedded Devices

    PubMed Central

    Liu, Dongsheng; Wang, Rencai; Yao, Ke; Zou, Xuecheng; Guo, Liang

    2014-01-01

    A RF powering circuit used in radio-frequency identification (RFID) tags and other batteryless embedded devices is presented in this paper. The RF powering circuit harvests energy from electromagnetic waves and converts the RF energy to a stable voltage source. Analysis of a NMOS gate-cross connected bridge rectifier is conducted to demonstrate relationship between device sizes and power conversion efficiency (PCE) of the rectifier. A rectifier with 38.54% PCE under normal working conditions is designed. Moreover, a stable voltage regulator with a temperature and voltage optimizing strategy including adoption of a combination resistor is developed, which is able to accommodate a large input range of 4 V to 12 V and be immune to temperature variations. Latch-up prevention and noise isolation methods in layout design are also presented. Designed with the HJTC 0.25 μm process, this regulator achieves 0.04 mV/°C temperature rejection ratio (TRR) and 2.5 mV/V voltage rejection ratio (VRR). The RF powering circuit is also fabricated in the HJTC 0.25 μm process. The area of the RF powering circuit is 0.23 × 0.24 mm2. The RF powering circuit is successfully integrated with ISO/IEC 15693-compatible and ISO/IEC 14443-compatible RFID tag chips. PMID:25123466

  12. Design and implementation of a RF powering circuit for RFID tags or other batteryless embedded devices.

    PubMed

    Liu, Dongsheng; Wang, Rencai; Yao, Ke; Zou, Xuecheng; Guo, Liang

    2014-01-01

    A RF powering circuit used in radio-frequency identification (RFID) tags and other batteryless embedded devices is presented in this paper. The RF powering circuit harvests energy from electromagnetic waves and converts the RF energy to a stable voltage source. Analysis of a NMOS gate-cross connected bridge rectifier is conducted to demonstrate relationship between device sizes and power conversion efficiency (PCE) of the rectifier. A rectifier with 38.54% PCE under normal working conditions is designed. Moreover, a stable voltage regulator with a temperature and voltage optimizing strategy including adoption of a combination resistor is developed, which is able to accommodate a large input range of 4 V to 12 V and be immune to temperature variations. Latch-up prevention and noise isolation methods in layout design are also presented. Designed with the HJTC 0.25 μm process, this regulator achieves 0.04 mV/°C temperature rejection ratio (TRR) and 2.5 mV/V voltage rejection ratio (VRR). The RF powering circuit is also fabricated in the HJTC 0.25 μm process. The area of the RF powering circuit is 0.23 × 0.24 mm². The RF powering circuit is successfully integrated with ISO/IEC 15693-compatible and ISO/IEC 14443-compatible RFID tag chips. PMID:25123466

  13. 21 CFR 880.5100 - AC-powered adjustable hospital bed.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered adjustable hospital bed. 880.5100 Section 880.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Therapeutic Devices § 880.5100...

  14. 33. A.C. PANEL FOR MENTONE POWER HOUSE, P.L. & P. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. A.C. PANEL FOR MENTONE POWER HOUSE, P.L. & P. CO., LOS ANGELES. RETRACED FROM MASSON'S DRAWING NO. C-275. JAN. 20, 1909. SCE drawing no. 52880. - Santa Ana River Hydroelectric System, SAR-3 Powerhouse, San Bernardino National Forest, Redlands, San Bernardino County, CA

  15. 21 CFR 880.6320 - AC-powered medical examination light.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered medical examination light. 880.6320 Section 880.6320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Miscellaneous Devices § 880.6320...

  16. 21 CFR 880.6320 - AC-powered medical examination light.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered medical examination light. 880.6320 Section 880.6320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal...

  17. 21 CFR 880.5500 - AC-powered patient lift.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... powered device either fixed or mobile, used to lift and transport patients in the horizontal or other required position from one place to another, as from a bed to a bath. The device includes straps and slings to support the patient. (b) Classification. Class II (special controls). The device is exempt...

  18. Nano watt power rail-to-rail CMOS amplifier with adaptive biasing circuits for ultralow-power analog LSIs

    NASA Astrophysics Data System (ADS)

    Ozaki, Toshihiro; Hirose, Tetsuya; Tsubaki, Keishi; Kuroki, Nobutaka; Numa, Masahiro

    2015-04-01

    In this paper, we present a rail-to-rail folded-cascode amplifier (AMP) with adaptive biasing circuits (ABCs). The circuit uses a nano ampere current reference circuit to achieve ultralow-power and ABCs to achieve high-speed operation. The ABCs are based on conventional circuits and modified to be suitable for rail-to-rail operation. The measurement results demonstrated that the AMP with the proposed ABCs can operate with an ultralow-power of 384 nA when the input voltage was 0.9 V and achieve high speeds of 0.162 V/µs at the rise time and 0.233 V/µs at the fall time when the input pulse frequency and the amplitude were 10 kHz and 1.5 Vpp, respectively.

  19. Converter Circuit «Voltage-Voltage» Investigation for Power Calibrator

    NASA Astrophysics Data System (ADS)

    Fomichev, Yu M.; Silushkin, S. V.; Mylnikova, T. S.

    2016-01-01

    The paper presents possible circuits to construct a voltage-voltage converter for the calibrator of fictitious power. The problems of circuit solutions were experimentally identified, and the ways of their elimination were found. One of the main problems of convectors is to provide small harmonic distortions and additional phase shift. The use of deep negative instantaneous value feedback helps to provide the desired level of nonlinear distortions and to reduce the phase shift. Corrective circuits are used to ensure the stability of the transducer at greater depths of the feedback; the half-period average value or rms value feedback is used to ensure the stability and accuracy of conversion. However, the accuracy of the power calibrator can be upgraded and its work for various types of loads can be ensured by means of application follower circuit with modern electronic components which are also discussed in the paper.

  20. Push-pull converter with energy saving circuit for protecting switching transistors from peak power stress

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T. (Inventor)

    1981-01-01

    In a push-pull converter, switching transistors are protected from peak power stresses by a separate snubber circuit in parallel with each comprising a capacitor and an inductor in series, and a diode in parallel with the inductor. The diode is connected to conduct current of the same polarity as the base-emitter juction of the transistor so that energy stored in the capacitor while the transistor is switched off, to protect it against peak power stress, discharges through the inductor when the transistor is turned on, and after the capacitor is discharges through the diode. To return this energy to the power supply, or to utilize this energy in some external circuit, the inductor may be replaced by a transformer having its secondary winding connected to the power supply or to the external circuit.

  1. Module failure isolation circuit for paralleled inverters. [preventing system failure during power conditioning for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Nagano, S. (Inventor)

    1979-01-01

    A module failure isolation circuit is described which senses and averages the collector current of each paralled inverter power transistor and compares the collector current of each power transistor the average collector current of all power transistors to determine when the sensed collector current of a power transistor in any one inverter falls below a predetermined ratio of the average collector current. The module associated with any transistor that fails to maintain a current level above the predetermined radio of the average collector current is then shut off. A separate circuit detects when there is no load, or a light load, to inhibit operation of the isolation circuit during no load or light load conditions.

  2. Development of a 10 kW High Temperature High Power Density Three-Phase AC-DC-AC SiC Converter

    SciTech Connect

    Ning, Puqi

    2012-01-01

    This paper presents the development and experimental performance of a 10 kW, all SiC, 250 C junction temperature high-power-density three-phase ac-dc-ac converter. The electromagnetic interference filter, thermal system, high temperature package, and gate drive design are discussed in detail. Finally, tests confirming the feasibility and validating the theoretical basis of the prototype converter system are described.

  3. Static state estimation of multiterminal DC/AC power system in rectangular co-ordinates

    SciTech Connect

    Roy, L.; Sinha, A.K. ); Srivastava, H.N.P. )

    1991-01-01

    This paper describes a simple, efficient and reliable method for estimating the state of an integrated multiterminal HVDC/AC power system in the rectangular coordinate form. A six variable model is used to represent the converter system. The proposed algorithm performs successfully in obtaining the state of an AC system with a DC link or a multiterminal DC network. It is possible to implement it for an on-line state estimation. Simulation results of a 30-busbar system are presented for illustration.

  4. Electromechanical systems with transient high power response operating from a resonant ac link

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Hansen, Irving G.

    1992-01-01

    The combination of an inherently robust asynchronous (induction) electrical machine with the rapid control of energy provided by a high frequency resonant ac link enables the efficient management of higher power levels with greater versatility. This could have a variety of applications from launch vehicles to all-electric automobiles. These types of systems utilize a machine which is operated by independent control of both the voltage and frequency. This is made possible by using an indirect field-oriented control method which allows instantaneous torque control all four operating quadrants. Incorporating the ac link allows the converter in these systems to switch at the zero crossing of every half cycle of the ac waveform. This zero loss switching of the link allows rapid energy variations to be achieved without the usual frequency proportional switching loss. Several field-oriented control systems were developed under contract to NASA.

  5. AC loss in high-temperature superconducting conductors, cables and windings for power devices

    NASA Astrophysics Data System (ADS)

    Oomen, M. P.; Rieger, J.; Hussennether, V.; Leghissa, M.

    2004-05-01

    High-temperature superconducting (HTS) transformers and reactor coils promise decreased weight and volume and higher efficiency. A critical design parameter for such devices is the AC loss in the conductor. The state of the art for AC-loss reduction in HTS power devices is described, starting from the loss in the single HTS tape. Improved tape manufacturing techniques have led to a significant decrease in the magnetization loss. Transport-current loss is decreased by choosing the right operating current and temperature. The role of tape dimensions, filament twist and resistive matrix is discussed and a comparison is made between state-of-the-art BSCCO and YBCO tapes. In transformer and reactor coils the AC loss in the tape is influenced by adjacent tapes in the coil, fields from other coils, overcurrents and higher harmonics. These factors are accounted for by a new AC-loss prediction model. Field components perpendicular to the tape are minimized by optimizing the coil design and by flux guidance pieces. High-current windings are made of Roebel conductors with transposed tapes. The model iteratively finds the temperature distribution in the winding and predicts the onset of thermal instability. We have fabricated and tested several AC windings and used them to validate the model. Now we can confidently use the model as an engineering tool for designing HTS windings and for determining the necessary tape properties.

  6. Distributed control of reactive power flow in a radial distribution circuit with high photovoltaic penetration

    SciTech Connect

    Chertkov, Michael; Turitsyn, Konstantin; Backhaus, Scott; Sule, Petr

    2009-01-01

    We show how distributed control of reactive power can serve to regulate voltage and minimize resistive losses in a distribution circuit that includes a significant level of photovoltaic (PV) generation. To demonstrate the technique, we consider a radial distribution circuit with a single branch consisting of sequentially-arranged residential-scale loads that consume both real and reactive power. In parallel, some loads also have PV generation capability. We postulate that the inverters associated with each PV system are also capable of limited reactive power generation or consumption, and we seek to find the optimal dispatch of each inverter's reactive power to both maintain the voltage within an acceptable range and minimize the resistive losses over the entire circuit. We assume the complex impedance of the distribution circuit links and the instantaneous load and PV generation at each load are known. We compare the results of the optimal dispatch with a suboptimal local scheme that does not require any communication. On our model distribution circuit, we illustrate the feasibility of high levels of PV penetration and a significant (20% or higher) reduction in losses.

  7. Powerful Amplification Cascades of FRET-Based Two-Layer Nonenzymatic Nucleic Acid Circuits.

    PubMed

    Quan, Ke; Huang, Jin; Yang, Xiaohai; Yang, Yanjing; Ying, Le; Wang, He; Xie, Nuli; Ou, Min; Wang, Kemin

    2016-06-01

    Nucleic acid circuits have played important roles in biological engineering and have increasingly attracted researchers' attention. They are primarily based on nucleic acid hybridizations and strand displacement reactions between nucleic acid probes of different lengths. Signal amplification schemes that do not rely on protein enzyme show great potential in analytical applications. While the single amplification circuit often achieves linear amplification that may not meet the need for detection of target in a very small amount, it is very necessary to construct cascade circuits that allow for larger amplification of inputs. Herein, we have successfully engineered powerful amplification cascades of FRET-based two-layer nonenzymatic nucleic acid circuits, in which the outputs of catalyzed hairpin assembly (CHA) activate hybridization chain reactions (HCR) circuits to induce repeated hybridization, allowing real-time monitoring of self-assembly process by FRET signal. The cascades can yield 50000-fold signal amplification with the help of the well-designed and high-quality nucleic acid circuit amplifiers. Subsequently, with coupling of structure-switching aptamer, as low as 200 pM adenosine is detected in buffer, as well as in human serum. To our knowledge, we have for the first time realized real-time monitoring adaptation of HCR to CHA circuits and achieved amplified detection of nucleic acids and small molecules with relatively high sensitivity. PMID:27142084

  8. Capabilities and Testing of the Fission Surface Power Primary Test Circuit (FSP-PTC)

    NASA Technical Reports Server (NTRS)

    Garber, Anne E.

    2007-01-01

    An actively pumped alkali metal flow circuit, designed and fabricated at the NASA Marshall Space Flight Center, is currently undergoing testing in the Early Flight Fission Test Facility (EFF-TF). Sodium potassium (NaK), which was used in the SNAP-10A fission reactor, was selected as the primary coolant. Basic circuit components include: simulated reactor core, NaK to gas heat exchanger, electromagnetic (EM) liquid metal pump, liquid metal flowmeter, load/drain reservoir, expansion reservoir, test section, and instrumentation. Operation of the circuit is based around a 37-pin partial-array core (pin and flow path dimensions are the same as those in a full core), designed to operate at 33 kWt. NaK flow rates of greater than 1 kg/sec may be achieved, depending upon the power applied to the EM pump. The heat exchanger provides for the removal of thermal energy from the circuit, simulating the presence of an energy conversion system. The presence of the test section increases the versatility of the circuit. A second liquid metal pump, an energy conversion system, and highly instrumented thermal simulators are all being considered for inclusion within the test section. This paper summarizes the capabilities and ongoing testing of the Fission Surface Power Primary Test Circuit (FSP-PTC).

  9. Preparation of Power Distribution System for High Penetration of Renewable Energy Part I. Dynamic Voltage Restorer for Voltage Regulation Pat II. Distribution Circuit Modeling and Validation

    NASA Astrophysics Data System (ADS)

    Khoshkbar Sadigh, Arash

    Part I: Dynamic Voltage Restorer In the present power grids, voltage sags are recognized as a serious threat and a frequently occurring power-quality problem and have costly consequence such as sensitive loads tripping and production loss. Consequently, the demand for high power quality and voltage stability becomes a pressing issue. Dynamic voltage restorer (DVR), as a custom power device, is more effective and direct solutions for "restoring" the quality of voltage at its load-side terminals when the quality of voltage at its source-side terminals is disturbed. In the first part of this thesis, a DVR configuration with no need of bulky dc link capacitor or energy storage is proposed. This fact causes to reduce the size of the DVR and increase the reliability of the circuit. In addition, the proposed DVR topology is based on high-frequency isolation transformer resulting in the size reduction of transformer. The proposed DVR circuit, which is suitable for both low- and medium-voltage applications, is based on dc-ac converters connected in series to split the main dc link between the inputs of dc-ac converters. This feature makes it possible to use modular dc-ac converters and utilize low-voltage components in these converters whenever it is required to use DVR in medium-voltage application. The proposed configuration is tested under different conditions of load power factor and grid voltage harmonic. It has been shown that proposed DVR can compensate the voltage sag effectively and protect the sensitive loads. Following the proposition of the DVR topology, a fundamental voltage amplitude detection method which is applicable in both single/three-phase systems for DVR applications is proposed. The advantages of proposed method include application in distorted power grid with no need of any low-pass filter, precise and reliable detection, simple computation and implementation without using a phased locked loop and lookup table. The proposed method has been verified

  10. Fiber optic sensors for monitoring sodium circuits and power grid cables

    SciTech Connect

    Kasinathan, M.; Sosamma, S.; Pandian, C.; Vijayakumar, V.; Chandramouli, S.; Nashine, B. K.; Rao, C. B.; Murali, N.; Rajan, K. K.; Jayakumar, T.

    2011-07-01

    At Kalpakkam, India, a programme on development of Raman Distributed Temperature sensor (RDTS) for Fast Breeder Reactors (FBR) application is undertaken. Leak detection in sodium circuits of FBR is critical for the safety and performance of the reactors. It is demonstrated that RDTS can be usefully employed in monitoring sodium circuits and in tracking the percolating sodium in case of any leak. Aluminum Conductor Steel Reinforced (ACSR) cable is commonly used as overhead power transmission cable in power grid. A second application demonstrates the suitability of using RDTS to monitor this transmission cable for any defect. (authors)

  11. Circuit for Communication over DC Power Line Using High Temperature Electronics

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael J. (Inventor); Prokop, Norman F. (Inventor)

    2014-01-01

    A high temperature communications circuit includes a power conductor for concurrently conducting electrical energy for powering circuit components and transmitting a modulated data signal, and a demodulator for demodulating the data signal and generating a serial bit stream based on the data signal. The demodulator includes an absolute value amplifier for conditionally inverting or conditionally passing a signal applied to the absolute value amplifier. The absolute value amplifier utilizes no diodes to control the conditional inversion or passing of the signal applied to the absolute value amplifier.

  12. TV Trouble-Shooting Manual. Volumes 15-16. Part 7: Power-Supply Circuit. Student and Instructor's Manuals.

    ERIC Educational Resources Information Center

    Mukai, Masaaki; Kobayashi, Ryozo

    These volumes are, respectively, the self-instructional student manual and the teacher manual that cover the seventh set of training topics in this course for television repair technicians. Both contain identical information on the television power supply circuit, including sections on the rectifier circuit and the voltage regulator circuit.…

  13. A UVLO Circuit in SiC Compatible with Power MOSFET Integration

    SciTech Connect

    Glover, Michael; Shepherd, Paul; Francis, Matt; Mudholkar, Dr. Mihir; Mantooth, Alan; Ericson, Milton Nance; Frank, Steven; Britton Jr, Charles L; Marlino, Laura D; Mcnutt, Tyler; Barkley, Dr. Adam; Whitaker, Mr. Bret; Lostetter, Dr. Alex

    2014-01-01

    The design and test of the first undervoltage lock-out circuit implemented in a low voltage 4H silicon carbide process capable of single-chip integration with power MOSFETs is presented. The lock-out circuit, a block of the protection circuitry of a single-chip gate driver topology designed for use in a plug-in hybrid vehicle charger, was demonstrated to have rise/fall times compatible with a MOSFET switching speed of 250 kHz while operating over the targeted operating temperature range between 0 C and 200 C. Captured data shows the circuit to be functional over a temperature range from -55 C to 300 C. The design of the circuit and test results is presented.

  14. Improved SCR ac Motor Controller for Battery Powered Urban Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Latos, T. S.

    1982-01-01

    An improved ac motor controller, which when coupled to a standard ac induction motor and a dc propulsion battery would provide a complete electric vehicle power train with the exception of the mechanical transmission and drive wheels was designed. In such a system, the motor controller converts the dc electrical power available at the battery terminals to ac electrical power for the induction motor in response to the drivers commands. The performance requirements of a hypothetical electric vehicle with an upper weight bound of 1590 kg (3500 lb) were used to determine the power rating of the controller. Vehicle acceleration capability, top speed, and gradeability requisites were contained in the Society of Automotive Engineers (SAE) Schedule 227a(d) driving cycle. The important capabilities contained in this driving cycle are a vehicle acceleration requirement of 0 to 72.4 kmph (0 to 45 mph) in 28 seconds a top speed of 88.5 kmph (55 mph), and the ability to negotiate a 10% grade at 48 kmph (30 mph). A 10% grade is defined as one foot of vertical rise per 10 feet of horizontal distance.

  15. Theoretical analysis of short-circuit capability of SiC power MOSFETs

    NASA Astrophysics Data System (ADS)

    Shoji, Tomoyuki; Soeno, Akitaka; Toguchi, Hiroaki; Aoi, Sachiko; Watanabe, Yukihiko; Tadano, Hiroshi

    2015-04-01

    The short-circuit capability of Si power devices, defined in terms of critical energy density, is the product of the heat capacity in the heat generation region and the increase in temperature. However, for SiC power devices, the heat generation region is significantly smaller than that for Si power devices, because the drift-region thickness is about 10 times less in SiC power devices. Therefore, the formulae used for Si devices are not directly applicable to SiC devices. In this study, analytical formulae are derived for the short-circuit capability of a SiC power device and its dependence on the ambient temperature and the thickness of the n- drift region, on the basis of the thermal diffusion equation. The calculated results are found to be in good agreement with those of direct measurements.

  16. A low power readout circuit approach for uncooled resistive microbolometer FPAs

    NASA Astrophysics Data System (ADS)

    Tepegoz, Murat; Toprak, Alperen; Akin, Tayfun

    2008-04-01

    This paper presents a new, low power readout circuit approach for uncooled resistive microbolometer FPAs. The readout circuits of the microbolometer detectors contain parallel readout channels whose outputs are driven and multiplexed on large bus capacitances in order to form the output of the readout circuit. High number of opamps used in the readout channel array and large output capacitances that these opamps should drive necessitates the use of high output current capacity structures, which results in large power dissipation. This paper proposes two new methods in order to decrease the power dissipation of the readout circuits for uncooled thermal FPAs. The first method is called the readout channel group concept, where the readout channel array is separated into groups in order to decrease the load capacitance seen by the readout channel output. The second method utilizes a special opamp architecture where the output current driving capacity can be digitally controlled. This method enables efficient use of power by activating the high output current driving capacity only during the output multiplexing. The simulations show that using these methods results in a power dissipation reduction of 80% and 91% for the readout channels optimized for a single output 384x288 FPA operating at 25 fps and for a two-output 640x480 FPA operating at 30 fps, respectively.

  17. Network model and short circuit program for the Kennedy Space Center electric power distribution system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Assumptions made and techniques used in modeling the power network to the 480 volt level are discussed. Basic computational techniques used in the short circuit program are described along with a flow diagram of the program and operational procedures. Procedures for incorporating network changes are included in this user's manual.

  18. 30 CFR 75.706 - Deenergized underground power circuits; idle days-idle shifts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Deenergized underground power circuits; idle days-idle shifts. 75.706 Section 75.706 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...

  19. 30 CFR 75.706 - Deenergized underground power circuits; idle days-idle shifts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Deenergized underground power circuits; idle days-idle shifts. 75.706 Section 75.706 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...

  20. 30 CFR 56.6404 - Separation of blasting circuits from power source.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Separation of blasting circuits from power source. 56.6404 Section 56.6404 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Electric Blasting §...

  1. 30 CFR 57.6404 - Separation of blasting circuits from power source.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Separation of blasting circuits from power source. 57.6404 Section 57.6404 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Electric...

  2. Electromechanical systems with transient high power response operating from a resonant AC link

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Hansen, Irving G.

    1992-01-01

    The combination of an inherently robust asynchronous (induction) electrical machine with the rapid control of energy provided by a high frequency resonant AC link enables the efficient management of higher power levels with greater versatility. This could have a variety of applications from launch vehicles to all-electric automobiles. These types of systems utilize a machine which is operated by independent control of both the voltage and frequency. This is made possible by using an indirect field-oriented control method which allows instantaneous torque control in all four operating quadrants. Incorporating the AC link allows the converter in these systems to switch at the zero crossing of every half cycle of the AC waveform. This zero loss switching of the link allows rapid energy variations to be achieved without the usual frequency proportional switching loss. Several field-oriented control systems were developed by LeRC and General Dynamics Space Systems Division under contract to NASA. A description of a single motor, electromechanical actuation system is presented. Then, focus is on a conceptual design for an AC electric vehicle. This design incorporates an induction motor/generator together with a flywheel for peak energy storage. System operation and implications along with the associated circuitry are addressed. Such a system would greatly improve all-electric vehicle ranges over the Federal Urban Driving Cycle (FUD).

  3. SPOCK: A SPICE based circuit code for modeling pulsed power machines

    SciTech Connect

    Ingermanson, R.; Parks, D.

    1996-12-31

    SPICE is an industry standard electrical circuit simulation code developed by the University of California at Berkeley over the last twenty years. The authors have developed a number of new SPICE devices of interest to the pulsed power community: plasma opening switches, plasma radiation sources, bremsstrahlung diodes, magnetically insulated transmission lines, explosively driven flux compressors. These new devices are integrated into SPICE using S-Cubed`s MIRIAD technology to create a user-friendly circuit code that runs on Unix workstations or under Windows NT or Windows 95. The new circuit code is called SPOCK--``S-Cubed Power Optimizing Circuit Kit.`` SPOCK allows the user to easily run optimization studies by setting up runs in which any circuit parameters can be systematically varied. Results can be plotted as 1-D line plots, 2-D contour plots, or 3-D ``bedsheet`` plots. The authors demonstrate SPOCK`s capabilities on a color laptop computer, performing realtime analysis of typical configurations of such machines as HAWK and ACE4.

  4. Specifying and calibrating instrumentations for wideband electronic power measurements. [in switching circuits

    NASA Technical Reports Server (NTRS)

    Lesco, D. J.; Weikle, D. H.

    1980-01-01

    The wideband electric power measurement related topics of electronic wattmeter calibration and specification are discussed. Tested calibration techniques are described in detail. Analytical methods used to determine the bandwidth requirements of instrumentation for switching circuit waveforms are presented and illustrated with examples from electric vehicle type applications. Analog multiplier wattmeters, digital wattmeters and calculating digital oscilloscopes are compared. The instrumentation characteristics which are critical to accurate wideband power measurement are described.

  5. Preparation of Power Distribution System for High Penetration of Renewable Energy Part I. Dynamic Voltage Restorer for Voltage Regulation Pat II. Distribution Circuit Modeling and Validation

    NASA Astrophysics Data System (ADS)

    Khoshkbar Sadigh, Arash

    Part I: Dynamic Voltage Restorer In the present power grids, voltage sags are recognized as a serious threat and a frequently occurring power-quality problem and have costly consequence such as sensitive loads tripping and production loss. Consequently, the demand for high power quality and voltage stability becomes a pressing issue. Dynamic voltage restorer (DVR), as a custom power device, is more effective and direct solutions for "restoring" the quality of voltage at its load-side terminals when the quality of voltage at its source-side terminals is disturbed. In the first part of this thesis, a DVR configuration with no need of bulky dc link capacitor or energy storage is proposed. This fact causes to reduce the size of the DVR and increase the reliability of the circuit. In addition, the proposed DVR topology is based on high-frequency isolation transformer resulting in the size reduction of transformer. The proposed DVR circuit, which is suitable for both low- and medium-voltage applications, is based on dc-ac converters connected in series to split the main dc link between the inputs of dc-ac converters. This feature makes it possible to use modular dc-ac converters and utilize low-voltage components in these converters whenever it is required to use DVR in medium-voltage application. The proposed configuration is tested under different conditions of load power factor and grid voltage harmonic. It has been shown that proposed DVR can compensate the voltage sag effectively and protect the sensitive loads. Following the proposition of the DVR topology, a fundamental voltage amplitude detection method which is applicable in both single/three-phase systems for DVR applications is proposed. The advantages of proposed method include application in distorted power grid with no need of any low-pass filter, precise and reliable detection, simple computation and implementation without using a phased locked loop and lookup table. The proposed method has been verified

  6. Fuzzy based power factor improvement strategy for a multiple connected AC-DC converter fed drive

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, N.; Muthiah, Ramaswamy

    2012-01-01

    The main focus of this paper is to design a Fuzzy based control algorithm to realize an improvement in the input power factor of a multiple connected AC-DC converter fed drive system. It incorporates the role of fuzzy inference principles to generate appropriate PWM pulses for the power switches at the second stage of the power module. The philosophy is developed, with a view to reshape the input current phasor and enables it to align with the supply voltage wave in the perspective of improving the input power factor. The closed loop scheme evaluated using MATLAB based simulation exhibits an enhancement in supply power factor over a range of operating loads in addition to illustrating the speed regulating capability of the drive.

  7. Failure Detector for Power-Factor Controller

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1982-01-01

    New protective circuits have been developed for power-factor ac motor controllers. Circuits prevent direct current and consequent motor heating that would normally result from failure of solid-state switch in controller. Single-phase power-factor controller with short detector compensates for short-circuit failure in either direction by applying full power to motor. Controller with open detector compensates for open-circuit failure in either direction by turning off power to motor.

  8. ESBWR response to an extended station blackout/loss of all AC power

    SciTech Connect

    Barrett, A. J.; Marquino, W.

    2012-07-01

    U.S. federal regulations require light water cooled nuclear power plants to cope with Station Blackouts for a predetermined amount of time based on design factors for the plant. U.S. regulations define Station Blackout (SBO) as a loss of the offsite electric power system concurrent with turbine trip and unavailability of the onsite emergency AC power system. According to U.S. regulations, typically the coping period for an SBO is 4 hours and can be as long as 16 hours for currently operating BWR plants. Being able to cope with an SBO and loss of all AC power is required by international regulators as well. The U.S. licensing basis for the ESBWR is a coping period of 72 hours for an SBO based on U.S. NRC requirements for passive safety plants. In the event of an extended SBO (viz., greater than 72 hours), the ESBWR response shows that the design is able to cope with the event for at least 7 days without AC electrical power or operator action. ESBWR is a Generation III+ reactor design with an array of passive safety systems. The ESBWR primary success path for mitigation of an SBO event is the Isolation Condenser System (ICS). The ICS is a passive, closed loop, safety system that initiates automatically on a loss of power. Upon Station Blackout or loss of all AC power, the ICS begins removing decay heat from the Reactor Pressure Vessel (RPV) by (i) condensing the steam into water in heat exchangers located in pools of water above the containment, and (ii) transferring the decay heat to the atmosphere. The condensed water is then returned by gravity to cool the reactor again. The ICS alone is capable of maintaining the ESBWR in a safe shutdown condition after an SBO for an extended period. The fuel remains covered throughout the SBO event. The ICS is able to remove decay heat from the RPV for at least 7 days and maintains the reactor in a safe shutdown condition. The water level in the RPV remains well above the top of active fuel for the duration of the SBO event

  9. High power switch mode linear amplifiers for flexible ac transmission system

    SciTech Connect

    Mwinyiwiwa, B.; Wolanski, Z.; Ooi, B.T.

    1996-10-01

    The Pulse Width Modulation (PWM) technique has been proposed for the force-commutated Shunt and Series VAR Controllers and Unified Power Flow Controllers in Flexible AC Transmission Systems. The PWM converters can be operated as linear amplifiers of constant gain so that treasure trove of linear control system theory can be brought to bear more easily when applying feedback controls. For example, pole-placement and active filtering have been successfully applied in laboratory models. This paper is written as a tutorial describing the stages of signal processing: modulation, amplification and demodulation, without reference to power electronics since the solid-state switches are modelled as ON-OFF switches.

  10. Low-power circuits for the bidirectional wireless monitoring system of the orthopedic implants.

    PubMed

    Hong Chen; Ming Liu; Wenhan Hao; Yi Chen; Chen Jia; Chun Zhang; Zihua Wang

    2009-12-01

    This paper proposes an architecture of the wireless monitoring system for the real-time monitoring of the orthopedic implants, which monitors the implant duty cycle, detects abnormal asymmetry, high amounts of force, and other conditions of the orthopedic implants. Data for diagnosis are communicated wirelessly by the radio-frequency (RF) signal between the embedded chip and the remote circuit. In different working modes, the system can be powered by the RF signal or stiff lead zirconate-titanate (PZT) ceramics which are able to convert mechanical energy inside the orthopedic implant into electrical energy. The power circuits with a variable ratio switched-capacitor (SC) dc-dc converter have been taped out with 0.35-mum complementary metal-oxide semiconductor (CMOS) technology. The test results show that the SC converter can transfer the input voltage that ranges from 5 V to 14 V from the PZT ceramics into the voltage ranging from 2 V to 2.5 V which will be dealt with by a low drop-out circuit in the future work. The total efficiency of the SC converter is from 28% to 42% at full-time working mode. The analog-to-digital converter (ADC) circuits have been fabricated in a 0.18-mum 1P6M CMOS process. The test results show that the ADC chip consumes only 12.5 muW in working mode and 150 nW in the sleep mode. The circuits, including RF circuits, ADC, and the microcontrol unit, have been implemented in a 0.18-mu m CMOS process. Future work includes some clinical experiments test in the application where PZT elements are used for power generation in total knee-replacement implants. PMID:23853291

  11. The application of standardized control and interface circuits to three dc to dc power converters.

    NASA Technical Reports Server (NTRS)

    Yu, Y.; Biess, J. J.; Schoenfeld, A. D.; Lalli, V. R.

    1973-01-01

    Standardized control and interface circuits were applied to the three most commonly used dc to dc converters: the buck-boost converter, the series-switching buck regulator, and the pulse-modulated parallel inverter. The two-loop ASDTIC regulation control concept was implemented by using a common analog control signal processor and a novel digital control signal processor. This resulted in control circuit standardization and superior static and dynamic performance of the three dc-to-dc converters. Power components stress control, through active peak current limiting and recovery of switching losses, was applied to enhance reliability and converter efficiency.

  12. Two-dimensional thermal modeling of power monolithic microwave integrated circuits (MMIC's)

    NASA Technical Reports Server (NTRS)

    Fan, Mark S.; Christou, Aris; Pecht, Michael G.

    1992-01-01

    Numerical simulations of the two-dimensional temperature distributions for a typical GaAs MMIC circuit are conducted, aiming at understanding the heat conduction process of the circuit chip and providing temperature information for device reliability analysis. The method used is to solve the two-dimensional heat conduction equation with a control-volume-based finite difference scheme. In particular, the effects of the power dissipation and the ambient temperature are examined, and the criterion for the worst operating environment is discussed in terms of the allowed highest device junction temperature.

  13. Improving the turbine district heating installations of single-circuit nuclear power plants

    NASA Astrophysics Data System (ADS)

    Kondurov, E. P.; Kruglikov, P. A.; Smolkin, Yu. V.

    2015-10-01

    Ways for improving the turbine district heating installations of single-circuit nuclear power plants are considered as a possible approach to improving the nuclear power plant energy efficiency. The results of thermal tests carried out at one of single-circuit NPPs in Russia with a view to reveal the possibilities of improving the existing heat-transfer equipment of the turbine district heating installation without making significant investments in it were taken as a basis for the analysis. The tests have shown that there is certain energy saving potential in some individual units and elements in the turbine district heating installation's process circuit. A significant amount of thermal energy can be obtained only by decreasing the intermediate circuit temperature at the inlet to the heater of the first district-heating extraction. The taking of this measure will also lead to an additional amount of generated electricity because during operation with the partially loaded first heater, the necessary amount of heat has to be obtained from the peaking heater by reducing live steam. An additional amount of thermal energy can also be obtained by eliminating leaks through the bypass control valves. The possibility of achieving smaller consumption of electric energy for power plant auxiliaries by taking measures on reducing the available head in the intermediate circuit installation's pump unit is demonstrated. Partial cutting of pump impellers and dismantling of control valves are regarded to be the most efficient methods. The latter is attributed to qualitative control of the turbine district heating installation's thermal load. Adjustment of the noncondensable gas removal system will make it possible to improve the performance of the turbine district heating installation's heat-transfer equipment owing to bringing the heat-transfer coefficients in the heaters to the design level. The obtained results can be used for estimating the energy saving potential at other

  14. The electrocardiogram as an electronic filter and why ac circuits are important for pre-health physics students

    NASA Astrophysics Data System (ADS)

    Dunlap, Justin C.; Kutschera, Ellynne; Van Ness, Grace R.; Widenhorn, Ralf

    2015-01-01

    We present a general physics laboratory exercise that centres around the use of the electrocardiogram sensor as an application of circuits and electronic signal filtering. Although these topics are commonly taught in the general physics classroom, many students consider topics such as alternating current as unrelated to their future professions. This exercise provides the motivation for life science and pre-health majors to learn concepts such as voltage, resistance, alternating and direct current, RLC circuits, as well as signal and noise, in an introductory undergraduate physics lab.

  15. Design and implementation of a high power rf oscillator on a printed circuit board for multipole ion guides

    NASA Astrophysics Data System (ADS)

    Mathur, Raman; O'Connor, Peter B.

    2006-11-01

    Radio frequency (rf) oscillators are commonly used to drive electrodes of ion guides. In this article a rf oscillator circuit design and its implementation is presented. The printed circuit board for the rf oscillator is designed and fabricated. The performance of the circuit was tested to transfer ions through a hexapole in a matrix-assisted laser desorption/ionization Fourier transform mass spectrometer. A comprehensive discussion of several aspects of printed circuit board design for high power and high frequency circuits is presented.

  16. Low-energy hydraulic fracturing wastewater treatment via AC powered electrocoagulation with biochar.

    PubMed

    Lobo, Fernanda Leite; Wang, Heming; Huggins, Tyler; Rosenblum, James; Linden, Karl G; Ren, Zhiyong Jason

    2016-05-15

    Produced and flowback waters are the largest byproducts associated with unconventional oil and gas exploration and production. Sustainable and low cost technologies are needed to treat and reuse this wastewater to avoid the environmental problems associated with current management practices (i.e., deep well injection). This study presents a new process to integrate AC-powered electrocoagulation (EC) with granular biochar to dramatically reduce energy use and electrode passivation while achieving high treatment efficiency. Results show achieving a 99% turbidity and TSS removal for the AC-EC-biochar system only used 0.079 kWh/m(3) or 0.15 kWh/kg TSS, which is 70% lower than traditional DC-EC systems and orders of magnitude lower than previous studies. The amount of biochar added positively correlates with energy saving, and further studies are needed to improve organic carbon and salt removal through system integration. PMID:26894291

  17. SOI-Based High-Voltage, High-Temperature Integrated Circuit Gate Driver for SiC-Based Power FETs

    SciTech Connect

    Huque, Mohammad A; Tolbert, Leon M; Blalock, Benjamin; Islam, Syed K

    2010-01-01

    Silicon carbide (SiC)-based field effect transistors (FETs) are gaining popularity as switching elements in power electronic circuits designed for high-temperature environments like hybrid electric vehicle, aircraft, well logging, geothermal power generation etc. Like any other power switches, SiC-based power devices also need gate driver circuits to interface them with the logic units. The placement of the gate driver circuit next to the power switch is optimal for minimizing system complexity. Successful operation of the gate driver circuit in a harsh environment, especially with minimal or no heat sink and without liquid cooling, can increase the power-to-volume ratio as well as the power-to-weight ratio for power conversion modules such as a DC-DC converter, inverter etc. A silicon-on-insulator (SOI)-based high-voltage, high-temperature integrated circuit (IC) gate driver for SiC power FETs has been designed and fabricated using a commercially available 0.8-m, 2-poly and 3-metal bipolar-complementary metal oxide semiconductor (CMOS)-double diffused metal oxide semiconductor (DMOS) process. The prototype circuit-s maximum gate drive supply can be 40-V with peak 2.3-A sourcing/sinking current driving capability. Owing to the wide driving range, this gate driver IC can be used to drive a wide variety of SiC FET switches (both normally OFF metal oxide semiconductor field effect transistor (MOSFET) and normally ON junction field effect transistor (JFET)). The switching frequency is 20-kHz and the duty cycle can be varied from 0 to 100-. The circuit has been successfully tested with SiC power MOSFETs and JFETs without any heat sink and cooling mechanism. During these tests, SiC switches were kept at room temperature and ambient temperature of the driver circuit was increased to 200-C. The circuit underwent numerous temperature cycles with negligible performance degradation.

  18. Modeling of corrosion product migration in the secondary circuit of nuclear power plants with WWER-1200

    NASA Astrophysics Data System (ADS)

    Kritskii, V. G.; Berezina, I. G.; Gavrilov, A. V.; Motkova, E. A.; Zelenina, E. V.; Prokhorov, N. A.; Gorbatenko, S. P.; Tsitser, A. A.

    2016-04-01

    Models of corrosion and mass transfer of corrosion products in the pipes of the condensate-feeding and steam paths of the secondary circuit of NPPs with WWER-1200 are presented. The mass transfer and distribution of corrosion products over the currents of the working medium of the secondary circuit were calculated using the physicochemical model of mass transfer of corrosion products in which the secondary circuit is regarded as a cyclic system consisting of a number of interrelated elements. The circuit was divided into calculated regions in which the change in the parameters (flow rate, temperature, and pressure) was traced and the rates of corrosion and corrosion products entrainment, high-temperature pH, and iron concentration were calculated. The models were verified according to the results of chemical analyses at Kalinin NPP and iron corrosion product concentrations in the feed water at different NPPs depending on pH at 25°C (pH25) for service times τ ≥ 5000 h. The calculated pH values at a coolant temperature t (pH t ) in the secondary circuit of NPPs with WWER-1200 were presented. The calculation of the distribution of pH t and ethanolamine and ammonia concentrations over the condensate feed (CFC) and steam circuits is given. The models are designed for developing the calculation codes. The project solutions of ATOMPROEKT satisfy the safety and reliability requirements for power plants with WWER-1200. The calculated corrosion and corrosion product mass transfer parameters showed that the model allows the designer to choose between the increase of the correcting reagent concentration, the use of steel with higher chromium contents, and intermittent washing of the steam generator from sediments as the best solution for definite regions of the circuit.

  19. AC/DC Power Systems with Applications for future Lunar/Mars base and Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Chowdhury, Badrul H.

    2005-01-01

    ABSTRACT The Power Systems branch at JSC faces a number of complex issues as it readies itself for the President's initiative on future space exploration beyond low earth orbit. Some of these preliminary issues - those dealing with electric power generation and distribution on board Mars-bound vehicle and that on Lunar and Martian surface may be summarized as follows: Type of prime mover - Because solar power may not be readily available on parts of the Lunar/Mars surface and also during the long duration flight to Mars, the primary source of power will most likely be nuclear power (Uranium fuel rods) with a secondary source of fuel cell (Hydrogen supply). The electric power generation source - With nuclear power being the main prime mover, the electric power generation source will most likely be an ac generator at a yet to be determined frequency. Thus, a critical issue is whether the generator should generate at constant or variable frequency. This will decide what type of generator to use - whether it is a synchronous machine, an asynchronous induction machine or a switched reluctance machine. The type of power distribution system - the distribution frequency, number of wires (3- wire, 4-wire or higher), and ac/dc hybridization. Building redundancy and fault tolerance in the generation and distribution sub-systems so that the system is safe; provides 100% availability to critical loads; continues to operate even with faulted sub-systems; and requires minimal maintenance. This report descril_es results of a summer faculty fellowship spent in the Power Systems Branch with the specific aim of investigating some of the lessons learned in electric power generation and usage from the terrestrial power systems industry, the aerospace industry as well as NASA's on-going missions so as to recommend novel surface and vehicle-based power systems architectures in support of future space exploration initiatives. A hybrid ac/dc architecture with source side and load side

  20. The Electrocardiogram as an Electronic Filter and Why AC Circuits Are Important for Pre-Health Physics Students

    ERIC Educational Resources Information Center

    Dunlap, Justin C.; Kutschera, Ellynne; Van Ness, Grace R.; Widenhorn, Ralf

    2015-01-01

    We present a general physics laboratory exercise that centres around the use of the electrocardiogram sensor as an application of circuits and electronic signal filtering. Although these topics are commonly taught in the general physics classroom, many students consider topics such as alternating current as unrelated to their future professions.…

  1. An Overview of Power Electronics Applications in Fuel Cell Systems: DC and AC Converters

    PubMed Central

    Ali, M. S.; Kamarudin, S. K.; Masdar, M. S.; Mohamed, A.

    2014-01-01

    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter. PMID:25478581

  2. An overview of power electronics applications in fuel cell systems: DC and AC converters.

    PubMed

    Ali, M S; Kamarudin, S K; Masdar, M S; Mohamed, A

    2014-01-01

    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter. PMID:25478581

  3. Fast-responding short circuit protection system with self-reset for use in circuit supplied by DC power

    NASA Technical Reports Server (NTRS)

    Burns, Bradley M. (Inventor); Blalock, Norman N. (Inventor)

    2011-01-01

    A short circuit protection system includes an inductor, a switch, a voltage sensing circuit, and a controller. The switch and inductor are electrically coupled to be in series with one another. A voltage sensing circuit is coupled across the switch and the inductor. A controller, coupled to the voltage sensing circuit and the switch, opens the switch when a voltage at the output terminal of the inductor transitions from above a threshold voltage to below the threshold voltage. The controller closes the switch when the voltage at the output terminal of the inductor transitions from below the threshold voltage to above the threshold voltage.

  4. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    DOEpatents

    King, Robert Dean; DeDoncker, Rik Wivina Anna Adelson

    1998-01-01

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power.

  5. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    DOEpatents

    King, R.D.; DeDoncker, R.W.A.A.

    1998-01-20

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power. 8 figs.

  6. The influence of bending strains on AC power losses in multifilamentary BSCCO-2223/Ag tapes

    NASA Astrophysics Data System (ADS)

    Tsukamoto, O.; Ciszek, M.; Suzuki, H.; Ogawa, J.

    2006-08-01

    Recent advances in the manufacturing of multifilamentary high temperature superconducting composite wires allow for wider practical applications of the conductors, e.g. in power transmission cables, transformers and motors. The wires, based mainly on BSCCO-2223 and YBCO-123 cuprates, are used in the forms of variously shaped coils; therefore they are subjected to different kinds of mechanical stresses and strains. These, in turn, lead to some changes in the physical parameters of the superconducting material, mainly in the critical current density, and thus in the dissipated electromagnetic energy, when subjected to changing magnetic fields and transport currents. In this work we report some experimental results related to the AC loss characteristics of Bi-2223/Ag multifilamentary tapes and their dependences on bending strains. These losses are compared to the losses of virgin, straight tapes. The total AC losses, i.e. transport current and magnetization losses, in the Bi-2223/Ag tapes, were measured by means of the electrical and calorimetric methods. The experimental data obtained are compared with the critical state model predictions for AC loss behaviour in the experimental conditions presented here.

  7. Single and three-phase AC losses in HTS superconducting power transmission line prototype cables

    SciTech Connect

    Daney, D.E.; Boenig, H.J.; Maley, M.P.; Coulter, J.Y.; Fleshler, S.

    1997-11-01

    AC losses in two, one-meter-long lengths of HTS prototype multi-strand conductors (PMC`s) are measured with a temperature-difference calorimeter. Both single-phase and three-phase losses are examined with ac currents up to 1,000 A rms. The calorimeter, designed specifically for these measurements, has a precision of 1 mW. PMC {number_sign}1 has two helically-wound, non-insulated layers of HTS tape (19 tapes per layer), each layer wrapped with opposite pitch. PMC {number_sign}2 is identical except for insulation between the layers. The measured ac losses show no significant effect of interlayer insulation and depend on about the third power of the current--a result in agreement with the Bean-Norris model adapted to the double-helix configuration. The three-phase losses are a factor of two higher than those exhibited by a single isolated conductor, indicating a significant interaction between phases.

  8. Plasma antennas driven by 5–20 kHz AC power supply

    SciTech Connect

    Zhao, Jiansen Chen, Yuli; Sun, Yang; Wu, Huafeng; Liu, Yue; Yuan, Qiumeng

    2015-12-15

    The experiments described in this work were performed with the aim of introducing a new plasma antenna that was excited by a 5–20 kHz alternating current (AC) power supply, where the antenna was transformed into a U-shape. The results show that the impedance, voltage standing-wave ratio (VSWR), radiation pattern and gain characteristics of the antenna can be controlled rapidly by varying not only the discharge power, but also by varying the discharge frequency in the range from 5 to 20 kHz. When the discharge frequency is adjusted from 10 to 12 kHz, the gain is higher within a relatively broad frequency band and the switch-on time is less than 1 ms when the discharge power is less than 5 W, meaning that the plasma antenna can be turned on and off rapidly.

  9. Development of an AC power source for CSEM method using full-bridge switching configuration

    NASA Astrophysics Data System (ADS)

    Indrasari, Widyaningrum; Srigutomo, Wahyu; Djamal, Mitra; S, Rahmondia N.

    2015-04-01

    The electromagnetic (EM) method has been widely used in geophysical surveys. It is a non-destructive method that utilizes electromagnetic waves in characterizing subsurface profiles. Generally, EM method can be divided into passive EM and active EM. The passive EM uses the natural electromagnetic field sources, while the active EM or Controlled Source EM (CSEM) uses artificial source to generate electromagnetic wave. In this paper, we present the development of AC power source for CSEM transmitter. As the power source we used AC source with sine wave signal. To satisfy a high power and high voltage in the equipment, we used the full-bridge configuration switching. It works on 990 Hz maximum frequency, and can deliver maximum current of 1.9 A at 620 V. The switching is controlled by microcontroller using Pulse Width Modulation (PWM) and the driver of inverter is built using IGBT. The output frequency can be varied from 1 Hz to 990 Hz. For varied frequencies the harmonic distortion is different due to switching speed. As frequency increase the harmonic distortion also increase. We found that the total harmonic distortion can be reduced to 1 % at the output with 330 Hz.

  10. Design of an input filter for power factor correction (PFC) AC to DC converters employing an active ripple cancellation

    SciTech Connect

    Lee, D.Y.; Cho, B.H.

    1996-12-31

    An active input filter for power factor correction (PFC) circuit employing ripple current cancellation is proposed to reduce the filter`s size and cost.Switching ripple current can be filtered by an active circuit from the line current. A single stage passive filter with the active filter compensation circuit, a high filter can be synthesized to meet the electromagnetic interference (EMI) and power factor requirements. Analysis of the active filter and design procedure are detailed. Simulation result is presented to verify the high order filter characteristics of proposed scheme.

  11. Numerical study on AC loss characteristics of superconducting power transmission cables comprising coated conductors with magnetic substrates

    NASA Astrophysics Data System (ADS)

    Amemiya, N.; Nakahata, M.

    2007-10-01

    Electromagnetic field analyses were made for mono-layer conductors comprising coated conductors for superconducting power transmission cables in order to evaluate their AC loss characteristics. We focused on the magnetic properties of the substrates of coated conductors. The current distribution in each coated conductor and the magnetic flux profile around each coated conductor were visualized. The influence of relative permeability and the space between coated conductors on the AC loss characteristics of mono-layer conductors were studied based on the visualized current and magnetic flux distributions. The influence of a saturated magnetic property on a calculated AC loss was also discussed.

  12. Unity power factor converter

    NASA Technical Reports Server (NTRS)

    Wester, Gene W. (Inventor)

    1980-01-01

    A unity power factor converter capable of effecting either inversion (dc-to-dc) or rectification (ac-to-dc), and capable of providing bilateral power control from a DC source (or load) through an AC transmission line to a DC load (or source) for power flow in either direction, is comprised of comparators for comparing the AC current i with an AC signal i.sub.ref (or its phase inversion) derived from the AC ports to generate control signals to operate a switch control circuit for high speed switching to shape the AC current waveform to a sine waveform, and synchronize it in phase and frequency with the AC voltage at the AC ports, by selectively switching the connections to a series inductor as required to increase or decrease the current i.

  13. A self-powered AC magnetic sensor based on piezoelectric nanogenerator

    NASA Astrophysics Data System (ADS)

    Yu, Aifang; Song, Ming; Zhang, Yan; Kou, Jinzong; Zhai, Junyi; Wang, Zhong Lin

    2014-11-01

    An AC magnetic field, which is a carrier of information, is distributed everywhere and is continuous. How to use and detect this field has been an ongoing topic over the past few decades. Conventional magnetic sensors are usually based on the Hall Effect, the fluxgate, a superconductor quantum interface or magnetoelectric or magnetoresistive sensing. Here, a flexible, simple, low-cost and self-powered active piezoelectric nanogenerator (NG) is successfully demonstrated as an AC magnetic field sensor at room temperature. The amplitude and frequency of a magnetic field can both be accurately sensed by the NG. The output voltage of the NG has a good linearity with a measured magnetic field. The detected minute magnetic field is as low as 1.2 × 10-7 tesla, which is 400 times greater than a commercial magnetic sensor that uses the Hall Effect. In comparison to the existing technologies, an NG is a room-temperature self-powered active sensor that is very simple and very cheap for practical applications.

  14. A self-powered AC magnetic sensor based on piezoelectric nanogenerator.

    PubMed

    Yu, Aifang; Song, Ming; Zhang, Yan; Kou, Jinzong; Zhai, Junyi; Lin Wang, Zhong

    2014-11-14

    An AC magnetic field, which is a carrier of information, is distributed everywhere and is continuous. How to use and detect this field has been an ongoing topic over the past few decades. Conventional magnetic sensors are usually based on the Hall Effect, the fluxgate, a superconductor quantum interface or magnetoelectric or magnetoresistive sensing. Here, a flexible, simple, low-cost and self-powered active piezoelectric nanogenerator (NG) is successfully demonstrated as an AC magnetic field sensor at room temperature. The amplitude and frequency of a magnetic field can both be accurately sensed by the NG. The output voltage of the NG has a good linearity with a measured magnetic field. The detected minute magnetic field is as low as 1.2 × 10(-7) tesla, which is 400 times greater than a commercial magnetic sensor that uses the Hall Effect. In comparison to the existing technologies, an NG is a room-temperature self-powered active sensor that is very simple and very cheap for practical applications. PMID:25333328

  15. Effect of AC target power on AlN film quality

    SciTech Connect

    Knisely, Katherine Grosh, Karl

    2014-09-01

    The influence of alternating current (AC) target power on film stress, roughness, and x-ray diffraction rocking curve full width half maximum (FWHM) was examined for AlN films deposited using S-gun magnetron sputtering on insulative substrates consisting of Si wafers with 575 nm thermal oxide. As the AC target power was increased from 5 to 8 kW, the deposition rate increased from 9.3 to 15.9 A/s, film stress decreased from 81 to −170 MPa, and the rocking curve FWHM increased from 0.98 to 1.03°. AlN film behavior is observed to change with target life; films deposited at 200 kWh target life were approximately 40 MPa more compressive and had 0.02° degree higher rocking curve FWHM values than films deposited at 130 kWh. AlN films deposited in two depositions were compared with films deposited in a single deposition, in order to better characterize the growth behavior and properties of AlN films deposited on an existing AlN film, which is not well understood. Two deposition films, when compared with single deposition films, showed no variation in residual stress trends or grain size behavior, but the average film roughness increased from 0.7 to 1.4 nm and rocking curve FWHM values increased by more than 0.25°.

  16. Plasma characteristics of argon glow discharge produced by AC power supply operating at low frequencies

    SciTech Connect

    Kongpiboolkid, Watcharapon; Mongkolnavin, Rattachat

    2015-04-24

    Non-thermal properties of Argon glow discharge operating with various operating pressures were measured and presented in this work. The Argon plasma is produced by a parallel conducting electrodes coupling with a high voltage AC power supply. The power supply can generate high AC voltage at various frequencies. The frequencies for the operation are in the range of a few kHz. The system is capable of generating electric field between the two metal electrodes discharge system. The characteristics of plasma produced were measured by optical emission spectroscopy (OES) technique where electron temperature (T{sub e}) and electron number density (n{sub e}) can be determined by line intensity ratio method. The value of electron number density was then determined from the Saha-Eggert equation. Our results show that the electron number density of the discharge obtained is of the order of 10{sup −17} − 10{sup −18} m{sup −3} where the electron temperature is between 1.00−2.00 eV for various operating frequencies used which are in good agreement with similar results published earlier.

  17. Ac resonant charger with charge rate unrelated to preimary power requency

    DOEpatents

    Not Available

    1979-12-07

    An ac resonant charger for a capacitive load, such as a pulse forming network (PFN), is provided with a variable repetition rate unrelated to the frequency of a multi-phase ac power source by using a control unit to select and couple the phase of the power source to the resonant charger in order to charge the capacitive load with a phase that is the next to begin a half cycle. For optimum range in repetition rate and increased charging voltage, the resonant charger includes a step-up transformer and full-wave rectifier. The next phase selected may then be of either polarity, but is always selected to be of a polarity opposite the polarity of the last phase selected so that the transformer core does not saturate. Thyristors are used to select and couple the correct phase just after its zero crossover in response to a sharp pulse generated by a zero-crossover detector. The thyristor that is turned on then automatically turns off after a full half cycle of its associated phase input. A full-wave rectifier couples the secondary winding of the transformer to the load so that the load capacitance is always charged with the same polarity.

  18. AC Resonant charger with charge rate unrelated to primary power frequency

    DOEpatents

    Watson, Harold

    1982-01-01

    An AC resonant charger for a capacitive load, such as a PFN, is provided with a variable repetition rate unrelated to the frequency of a multi-phase AC power source by using a control unit to select and couple the phase of the power source to the resonant charger in order to charge the capacitive load with a phase that is the next to begin a half cycle. For optimum range in repetition rate and increased charging voltage, the resonant charger includes a step-up transformer and full-wave rectifier. The next phase selected may then be of either polarity, but is always selected to be of a polarity opposite the polarity of the last phase selected so that the transformer core does not saturate. Thyristors are used to select and couple the correct phase just after its zero crossover in response to a sharp pulse generated by a zero-crossover detector. The thyristor that is turned on then automatically turns off after a full half cycle of its associated phase input. A full-wave rectifier couples the secondary winding of the transformer to the load so that the load capacitance is always charged with the same polarity.

  19. Design of RF energy harvesting platforms for power management unit with start-up circuits

    NASA Astrophysics Data System (ADS)

    Costanzo, Alessandra; Masotti, Diego

    2013-12-01

    In this contribution we discuss an unconventional rectifier design dedicated to RF energy harvesting from ultra-low sources, such as ambient RF sources which are typically of the order of few to few tens of μW. In such conditions unsuccessful results may occur if the rectenna is directly connected to its actual load since either the minimum power or the minimum activation voltage may not be simultaneously available. For this reason a double-branch rectifier topology is considered for the power management unit (PMU), instead of traditional single-branch one. The new PMU, interposed between the rectenna and application circuits, allows the system to operate with significantly lower input power with respect to the traditional solution, while preserving efficiency during steady-state power conversion.

  20. Tunable power law in the desynchronization events of coupled chaotic electronic circuits

    SciTech Connect

    Oliveira, Gilson F. de Lorenzo, Orlando di; Chevrollier, Martine; Passerat de Silans, Thierry; Oriá, Marcos; Souza Cavalcante, Hugo L. D. de

    2014-03-15

    We study the statistics of the amplitude of the synchronization error in chaotic electronic circuits coupled through linear feedback. Depending on the coupling strength, our system exhibits three qualitatively different regimes of synchronization: weak coupling yields independent oscillations; moderate to strong coupling produces a regime of intermittent synchronization known as attractor bubbling; and stronger coupling produces complete synchronization. In the regime of moderate coupling, the probability distribution for the sizes of desynchronization events follows a power law, with an exponent that can be adjusted by changing the coupling strength. Such power-law distributions are interesting, as they appear in many complex systems. However, most of the systems with such a behavior have a fixed value for the exponent of the power law, while here we present an example of a system where the exponent of the power law is easily tuned in real time.

  1. Self-powered monitoring of repeated head impacts using time-dilation energy measurement circuit.

    PubMed

    Feng, Tao; Aono, Kenji; Covassin, Tracey; Chakrabartty, Shantanu

    2015-04-01

    Due to the current epidemic levels of sport-related concussions (SRC) in the U.S., there is a pressing need for technologies that can facilitate long-term and continuous monitoring of head impacts. Existing helmet-sensor technology is inconsistent, inaccurate, and is not economically or logistically practical for large-scale human studies. In this paper, we present the design of a miniature, battery-less, self-powered sensor that can be embedded inside sport helmets and can continuously monitor and store different spatial and temporal statistics of the helmet impacts. At the core of the proposed sensor is a novel time-dilation circuit that allows measurement of a wide-range of impact energies. In this paper an array of linear piezo-floating-gate (PFG) injectors has been used for self-powered sensing and storage of linear and rotational head-impact statistics. The stored statistics are then retrieved using a plug-and-play reader and has been used for offline data analysis. We report simulation and measurement results validating the functionality of the time-dilation circuit for different levels of impact energies. Also, using prototypes of linear PFG integrated circuits fabricated in a 0.5 μm CMOS process, we demonstrate the functionality of the proposed helmet-sensors using controlled drop tests. PMID:25838527

  2. Design of New Power Management Circuit for Light Energy Harvesting System

    PubMed Central

    Jafer, Issa; Stack, Paul; MacNamee, Kevin

    2016-01-01

    Nowadays, it can be observed that Wireless Sensors Networks (WSN) are taking increasingly vital roles in many applications, such as building energy monitoring and control, which is the focus of the work in this paper. However, the main challenging issue with adopting WSN technology is the use of power sources such as batteries, which have a limited lifetime. A smart solution that could tackle this problem is using Energy Harvesting technology. The work in this paper will be focused on proposing a new power management design through harvesting indoor light intensity. The new approach is inspired by the use of the Fractional Open Circuit Voltage based Maximum Power Point tracking (MPPT) concept for sub mw Photo Voltaic (PV) cells. The new design adopts two main features: First, it minimizes the power consumed by the power management section; and second, it maximizes the MPPT-converted output voltage and consequently improves the efficiency of the power conversion in the sub mw power level. The new experimentally-tested design showed an improvement of 81% in the efficiency of MPPT conversion using 0.5 mW input power in comparison with the other presented solutions that showed less efficiency with higher input power. PMID:26907300

  3. Design of New Power Management Circuit for Light Energy Harvesting System.

    PubMed

    Jafer, Issa; Stack, Paul; MacNamee, Kevin

    2016-01-01

    Nowadays, it can be observed that Wireless Sensors Networks (WSN) are taking increasingly vital roles in many applications, such as building energy monitoring and control, which is the focus of the work in this paper. However, the main challenging issue with adopting WSN technology is the use of power sources such as batteries, which have a limited lifetime. A smart solution that could tackle this problem is using Energy Harvesting technology. The work in this paper will be focused on proposing a new power management design through harvesting indoor light intensity. The new approach is inspired by the use of the Fractional Open Circuit Voltage based Maximum Power Point tracking (MPPT) concept for sub mw Photo Voltaic (PV) cells. The new design adopts two main features: First, it minimizes the power consumed by the power management section; and second, it maximizes the MPPT-converted output voltage and consequently improves the efficiency of the power conversion in the sub mw power level. The new experimentally-tested design showed an improvement of 81% in the efficiency of MPPT conversion using 0.5 mW input power in comparison with the other presented solutions that showed less efficiency with higher input power. PMID:26907300

  4. Feedback circuit design of an auto-gating power supply for low-light-level image intensifier

    NASA Astrophysics Data System (ADS)

    Yang, Ye; Yan, Bo; Zhi, Qiang; Ni, Xiao-bing; Li, Jun-guo; Wang, Yu; Yao, Ze

    2015-11-01

    This paper introduces the basic principle of auto-gating power supply which using a hybrid automatic brightness control scheme. By the analysis of current as image intensifier to special requirements of auto-gating power supply, a feedback circuit of the auto-gating power supply is analyzed. Find out the reason of the screen flash after the auto-gating power supply assembled image intensifier. This paper designed a feedback circuit which can shorten the response time of auto-gating power supply and improve screen slight flicker phenomenon which the human eye can distinguish under the high intensity of illumination.

  5. An equivalent circuit model and power calculations for the APS SPX crab cavities.

    SciTech Connect

    Berenc, T. )

    2012-03-21

    An equivalent parallel resistor-inductor-capacitor (RLC) circuit with beam loading for a polarized TM110 dipole-mode cavity is developed and minimum radio-frequency (rf) generator requirements are calculated for the Advanced Photon Source (APS) short-pulse x-ray (SPX) superconducting rf (SRF) crab cavities. A beam-loaded circuit model for polarized TM110 mode crab cavities was derived. The single-cavity minimum steady-state required generator power has been determined for the APS SPX crab cavities for a storage ring current of 200mA DC current as a function of external Q for various vertical offsets including beam tilt and uncontrollable detuning. Calculations to aid machine protection considerations were given.

  6. Reducing the Risk of Damage to Power Transformers of 110 kV and Above Accompanying Internal Short Circuits

    SciTech Connect

    L’vova, M. M.; L’vov, S. Yu.; Komarov, V. B.; Lyut’ko, E. O.; Vdoviko, V. P.; Demchenko, V. V.; Belyaev, S. G.; Savel’ev, V. A.; L’vov, M. Yu. L’vov, Yu. N.

    2015-03-15

    Methods of increasing the operating reliability of power transformers, autotransformers and shunting reactors in order to reduce the risk of damage, which accompany internal short circuits and equipment fires and explosions, are considered.

  7. Increased deposition of polychlorinated biphenyls (PCBs) under an AC high-voltage power line

    NASA Astrophysics Data System (ADS)

    Öberg, Tomas; Peltola, Pasi

    2009-12-01

    There is considerable public concern regarding the potential risks to health of electromagnetic fields in general and high-voltage power lines in particular. As epidemiological findings are not supported by a clearly defined mechanism of direct magnetic field interactions with the human body, potential indirect effects are of interest. It has been suggested that an increased exposure to chemical pollutants could occur near high-voltage power lines due to formation and deposition of charged aerosols. The current study reports empirical evidence that seems to support this hypothesis. The deposition of 18 congeners of polychlorinated biphenyls (PCBs) was studied by collecting samples of pine needles under a 400 kV AC power line and at reference sites in the vicinity. Compared to the reference sites, the average deposition of PCB congeners under the power line was almost double. This difference between the two groups of samples was statistically significant. While it is premature to draw any conclusions regarding the human exposure near high-voltage power lines, the issue deserves attention and further investigations.

  8. High-power dual-fed traveling wave photodetector circuits in silicon photonics.

    PubMed

    Chang, Chia-Ming; Sinsky, Jeffrey H; Dong, Po; de Valicourt, Guilhem; Chen, Young-Kai

    2015-08-24

    We introduce the concept of dual-illuminated photodetectors for high-power applications. Illuminating the photodetector on both sides doubles the number of optical channels, boosting DC and RF power handling capability. This concept is demonstrated utilizing multiple-stage dual-illuminated traveling wave photodetector circuits in silicon photonics, showing a maximum DC photocurrent of 112 mA and a 3-dB bandwidth of 40 GHz at 0.3 mA. Peak continuous-wave RF power is generated up to 12.3 dBm at 2 GHz and 5.3 dBm at 40 GHz, at a DC photocurrent of 55 mA. High speed broadband data signals are detected with eye amplitudes of 2.2 V and 1.3 V at 10 Gb/s and 40 Gb/s, respectively. A theoretical analysis is presented illustrating design tradeoffs for the multiple-stage photodetector circuits based on the bandwidth and power requirements. PMID:26368253

  9. Power Quality Improvement in Bridgeless Ac-Dc Converter Based Multi-output Switched Mode Power Supply

    NASA Astrophysics Data System (ADS)

    Singh, Shihka; Singh, Bhim; Bhuvaneswari, G.; Bist, Vashist

    2014-12-01

    Computer power supplies are required to have multiple isolated regulated dc voltages with low ripple content and high input power factor at the utility interface. A dc-dc converter is used for obtaining these isolated multi-output dc voltages with excellent regulation. In this paper, a non-isolated ac-dc converter is proposed as the first stage converter to obtain a regulated dc output rather than using a simple uncontrolled diode bridge rectifier at the front end. A dc-dc converter is used at the second stage that has a high frequency transformer with multiple secondary windings to obtain different dc voltage levels at the output. The proposed bridgeless converter based power supply is designed using fundamental design equations, and different component values are calculated. Extensive simulations are carried out to demonstrate the improved performance of the proposed bridgeless converter based multi-output computer power supply at varying source voltages and load conditions. Experimental validation of the power supply is carried on a developed hardware prototype, and the test results are compared with the simulated performance for design verification.

  10. A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit.

    PubMed

    Yu, Hua; Zhou, Jielin; Deng, Licheng; Wen, Zhiyu

    2014-01-01

    This paper presents a micro-electro-mechanical system (MEMS) piezoelectric power generator array for vibration energy harvesting. A complete design flow of the vibration-based energy harvester using the finite element method (FEM) is proposed. The modal analysis is selected to calculate the resonant frequency of the harvester, and harmonic analysis is performed to investigate the influence of the geometric parameters on the output voltage. Based on simulation results, a MEMS Pb(Zr,Ti)O3 (PZT) cantilever array with an integrated large Si proof mass is designed and fabricated to improve output voltage and power. Test results show that the fabricated generator, with five cantilever beams (with unit dimensions of about 3 × 2.4 × 0.05 mm3) and an individual integrated Si mass dimension of about 8 × 12.4 × 0.5 mm3, produces a output power of 66.75 μW, or a power density of 5.19 μW∙mm-3∙g-2 with an optimal resistive load of 220 kΩ from 5 m/s2 vibration acceleration at its resonant frequency of 234.5 Hz. In view of high internal impedance characteristic of the PZT generator, an efficient autonomous power conditioning circuit, with the function of impedance matching, energy storage and voltage regulation, is then presented, finding that the efficiency of the energy storage is greatly improved and up to 64.95%. The proposed self-supplied energy generator with power conditioning circuit could provide a very promising complete power supply solution for wireless sensor node loads. PMID:24556670

  11. A Vibration-Based MEMS Piezoelectric Energy Harvester and Power Conditioning Circuit

    PubMed Central

    Yu, Hua; Zhou, Jielin; Deng, Licheng; Wen, Zhiyu

    2014-01-01

    This paper presents a micro-electro-mechanical system (MEMS) piezoelectric power generator array for vibration energy harvesting. A complete design flow of the vibration-based energy harvester using the finite element method (FEM) is proposed. The modal analysis is selected to calculate the resonant frequency of the harvester, and harmonic analysis is performed to investigate the influence of the geometric parameters on the output voltage. Based on simulation results, a MEMS Pb(Zr,Ti)O3 (PZT) cantilever array with an integrated large Si proof mass is designed and fabricated to improve output voltage and power. Test results show that the fabricated generator, with five cantilever beams (with unit dimensions of about 3 × 2.4 × 0.05 mm3) and an individual integrated Si mass dimension of about 8 × 12.4 × 0.5 mm3, produces a output power of 66.75 μW, or a power density of 5.19 μW·mm−3·g−2 with an optimal resistive load of 220 kΩ from 5 m/s2 vibration acceleration at its resonant frequency of 234.5 Hz. In view of high internal impedance characteristic of the PZT generator, an efficient autonomous power conditioning circuit, with the function of impedance matching, energy storage and voltage regulation, is then presented, finding that the efficiency of the energy storage is greatly improved and up to 64.95%. The proposed self-supplied energy generator with power conditioning circuit could provide a very promising complete power supply solution for wireless sensor node loads. PMID:24556670

  12. Low-power analog integrated circuits for wireless ECG acquisition systems.

    PubMed

    Tsai, Tsung-Heng; Hong, Jia-Hua; Wang, Liang-Hung; Lee, Shuenn-Yuh

    2012-09-01

    This paper presents low-power analog ICs for wireless ECG acquisition systems. Considering the power-efficient communication in the body sensor network, the required low-power analog ICs are developed for a healthcare system through miniaturization and system integration. To acquire the ECG signal, a low-power analog front-end system, including an ECG signal acquisition board, an on-chip low-pass filter, and an on-chip successive-approximation analog-to-digital converter for portable ECG detection devices is presented. A quadrature CMOS voltage-controlled oscillator and a 2.4 GHz direct-conversion transmitter with a power amplifier and upconversion mixer are also developed to transmit the ECG signal through wireless communication. In the receiver, a 2.4 GHz fully integrated CMOS RF front end with a low-noise amplifier, differential power splitter, and quadrature mixer based on current-reused folded architecture is proposed. The circuits have been implemented to meet the specifications of the IEEE 802.15.4 2.4 GHz standard. The low-power ICs of the wireless ECG acquisition systems have been fabricated using a 0.18 μm Taiwan Semiconductor Manufacturing Company (TSMC) CMOS standard process. The measured results on the human body reveal that ECG signals can be acquired effectively by the proposed low-power analog front-end ICs. PMID:22374371

  13. ASDTIC control and standardized interface circuits applied to buck, parallel and buck-boost dc to dc power converters

    NASA Technical Reports Server (NTRS)

    Schoenfeld, A. D.; Yu, Y.

    1973-01-01

    Versatile standardized pulse modulation nondissipatively regulated control signal processing circuits were applied to three most commonly used dc to dc power converter configurations: (1) the series switching buck-regulator, (2) the pulse modulated parallel inverter, and (3) the buck-boost converter. The unique control concept and the commonality of control functions for all switching regulators have resulted in improved static and dynamic performance and control circuit standardization. New power-circuit technology was also applied to enhance reliability and to achieve optimum weight and efficiency.

  14. Single stage AC-DC converter for Galfenol-based micro-power energy harvesters

    NASA Astrophysics Data System (ADS)

    Cavaroc, Peyton; Curtis, Chandra; Naik, Suketu; Cooper, James

    2014-06-01

    Military based sensor systems are often hindered in operational deployment and/or other capabilities due to limitations in their energy storage elements. Typically operating from lithium based batteries, there is a finite amount of stored energy which the sensor can use to collect and transmit data. As a result, the sensors have reduced sensing and transmission rates. However, coupled with the latest advancements in energy harvesting, these sensors could potentially operate at standard sensing and transition rates as well as dramatically extend lifetimes. Working with the magnetostrictive material Galfenol, we demonstrate the production of enough energy to supplement and recharge a solid state battery thereby overcoming the deficiencies faced by unattended sensors. As with any vibration-based energy harvester, this solution produces an alternating current which needs to be rectified and boosted to a level conducive to recharge the storage element. This paper presents a power converter capable of efficiently converting an ultra-low AC voltage to a solid state charging voltage of 4.1VDC. While we are working with Galfenol transducers as our energy source, this converter may also be applied with any AC producing energy harvester, particularly at operating levels less than 2mW and 200mVAC.

  15. Analysis of mid-range electric power transfer based on an equivalent circuit model

    NASA Astrophysics Data System (ADS)

    Sasada, Ichiro

    2012-04-01

    This study analyzes the steady state behavior of wireless power transfer through the magnetic coupling between two LC-resonators that consist of a loop coil (diameter = 0.2 m) and a terminating capacitor based on an equivalent circuit model. Parameters considered include the quality factor Q of resonators and the distances between coils, which govern the strength of the magnetic coupling and the frequency of the sinusoidal power source (24 ˜ 28 kHz range). The efficiency and amount of power transferred are calculated under the optimum load for the distance of transfer. The analysis proves that with a moderately high Q of 227, the efficiency can reach above 85% at the distance equal to the radius of the resonant coil, when the load is optimized. An important finding from the analysis is that there is a value for the frequency where the optimum load is almost unchanged, even when the distance between two resonators changes.

  16. Digital ac monitor

    DOEpatents

    Hart, George W.; Kern, Jr., Edward C.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer.

  17. Superconducting shielded core reactor with reduced AC losses

    DOEpatents

    Cha, Yung S.; Hull, John R.

    2006-04-04

    A superconducting shielded core reactor (SSCR) operates as a passive device for limiting excessive AC current in a circuit operating at a high power level under a fault condition such as shorting. The SSCR includes a ferromagnetic core which may be either closed or open (with an air gap) and extends into and through a superconducting tube or superconducting rings arranged in a stacked array. First and second series connected copper coils each disposed about a portion of the iron core are connected to the circuit to be protected and are respectively wound inside and outside of the superconducting tube or rings. A large impedance is inserted into the circuit by the core when the shielding capability of the superconducting arrangement is exceeded by the applied magnetic field generated by the two coils under a fault condition to limit the AC current in the circuit. The proposed SSCR also affords reduced AC loss compared to conventional SSCRs under continuous normal operation.

  18. Different Factors Affecting Short Circuit Behavior of a Wind Power Plant

    SciTech Connect

    Muljadi, E.; Samaan, Nader A.; Gevorgian, Vahan; Li, Jun; Pasupulati, Subbaiah

    2013-01-31

    A wind power plant consists of a large number of turbines interconnected by underground cable. A pad-mount transformer at each turbine steps up the voltage from generating voltage (690 V) to a medium voltage (34.5 kV). All turbines in the plant are connected to the substation transformer where the voltage is stepped up to the transmission level. An important aspect of wind power plant (WPP) impact studies is to evaluate the short-circuit (SC) current contribution of the plant into the transmission network under different fault conditions. This task can be challenging to protection engineers due to the topology differences between different types of wind turbine generators (WTGs) and the conventional generating units. This paper investigates the short circuit behavior of a wind power plant for different types of faults. The impact of wind turbine types, the transformer configuration, and the reactive compensation capacitor will be investigated. The voltage response at different buses will be observed. Finally, the SC line currents will be presented along with its symmetrical components.

  19. Different Factors Affecting Short Circuit Behavior of a Wind Power Plant

    SciTech Connect

    Muljadi, E.; Samaan, Nader A.; Gevorgian, Vahan; Li, Jun; Pasupulati, Subbaiah

    2010-12-21

    A wind power plant consists of a large number of turbines interconnected by underground cable. A pad-mount transformer at each turbine steps up the voltage from generating voltage (690 V) to a medium voltage (34.5 kV). All turbines in the plant are connected to the substation transformer where the voltage is stepped up to the transmission level. An important aspect of wind power plant (WPP) impact studies is to evaluate the short-circuit (SC) current contribution of the plant into the transmission network under different fault conditions. This task can be challenging to protection engineers due to the topology differences between different types of wind turbine generators (WTGs) and the conventional generating units. This paper investigates the short circuit behavior of a wind power plant for different types of faults. The impact of wind turbine types, the transformer configuration, and the reactive compensation capacitor will be investigated. The voltage response at different buses will be observed. Finally, the SC line currents will be presented along with its symmetrical components.

  20. The Circuit Theory Behind Coupled-Mode Magnetic Resonance-Based Wireless Power Transmission.

    PubMed

    Kiani, Mehdi; Ghovanloo, Maysam

    2012-09-01

    Inductive coupling is a viable scheme to wirelessly energize devices with a wide range of power requirements from nanowatts in radio frequency identification tags to milliwatts in implantable microelectronic devices, watts in mobile electronics, and kilowatts in electric cars. Several analytical methods for estimating the power transfer efficiency (PTE) across inductive power transmission links have been devised based on circuit and electromagnetic theories by electrical engineers and physicists, respectively. However, a direct side-by-side comparison between these two approaches is lacking. Here, we have analyzed the PTE of a pair of capacitively loaded inductors via reflected load theory (RLT) and compared it with a method known as coupled-mode theory (CMT). We have also derived PTE equations for multiple capacitively loaded inductors based on both RLT and CMT. We have proven that both methods basically result in the same set of equations in steady state and either method can be applied for short- or midrange coupling conditions. We have verified the accuracy of both methods through measurements, and also analyzed the transient response of a pair of capacitively loaded inductors. Our analysis shows that the CMT is only applicable to coils with high quality factor (Q) and large coupling distance. It simplifies the analysis by reducing the order of the differential equations by half compared to the circuit theory. PMID:24683368

  1. The Circuit Theory Behind Coupled-Mode Magnetic Resonance-Based Wireless Power Transmission

    PubMed Central

    Kiani, Mehdi; Ghovanloo, Maysam

    2014-01-01

    Inductive coupling is a viable scheme to wirelessly energize devices with a wide range of power requirements from nanowatts in radio frequency identification tags to milliwatts in implantable microelectronic devices, watts in mobile electronics, and kilowatts in electric cars. Several analytical methods for estimating the power transfer efficiency (PTE) across inductive power transmission links have been devised based on circuit and electromagnetic theories by electrical engineers and physicists, respectively. However, a direct side-by-side comparison between these two approaches is lacking. Here, we have analyzed the PTE of a pair of capacitively loaded inductors via reflected load theory (RLT) and compared it with a method known as coupled-mode theory (CMT). We have also derived PTE equations for multiple capacitively loaded inductors based on both RLT and CMT. We have proven that both methods basically result in the same set of equations in steady state and either method can be applied for short- or midrange coupling conditions. We have verified the accuracy of both methods through measurements, and also analyzed the transient response of a pair of capacitively loaded inductors. Our analysis shows that the CMT is only applicable to coils with high quality factor (Q) and large coupling distance. It simplifies the analysis by reducing the order of the differential equations by half compared to the circuit theory. PMID:24683368

  2. AC Loss Calculation of REBCO Cables by the Combination of Electric Circuit Model and 2D Finite Element Method

    NASA Astrophysics Data System (ADS)

    Noji, H.

    This study investigates the losses in a two conducting-layer REBCO cable fabricated by researchers at Furukawa Electric Co. Ltd. The losses were calculated using a combination of my electric circuit (EC) model with a two-dimensional finite element method (2D FEM). The helical pitches of the tapes in each layer, P1 and P2, were adjusted to equalize the current in both cable layers, although the loss calculation assumed infinite helical pitches and the same current in each layer at first. The results showed that the losses depended on the relative tape-position angle between the layers (θ/θ'), because the vertical field between adjacent tapes in the same layer varied with θ/θ'. When simulating the real cable, the helical pitches were adjusted and the layer currents were calculated by the EC model. These currents were input to the 2D FEM to compute the losses. The losses changed along the cable length because the difference between P1 and P2 altered the θ/θ' along this direction. The average angle-dependent and position-dependent losses were equal and closely approximated the measured losses. As an example to reduce the loss in this cable, the angle and the helical pitches were fixed at θ/θ' = 0.5 and P1 = P2 = 100 mm (S-direction). The calculation with these conditions indicated that the loss is about one order of magnitude lower than the measurement.

  3. Process-circuit and layout solutions for steam-turbine units and performance efficiency of thermal power plants

    NASA Astrophysics Data System (ADS)

    Gol'dberg, A. A.; Shibaev, T. L.

    2014-12-01

    Criteria for evaluating process-circuit and layout solutions adopted in designing steam-turbine units are presented together with their values for a number of steam-turbine units produced by the Ural Turbine Works. The presented values of the criteria are recommended for being used as tentative ones in designing new thermal power plants or in upgrading them with the use of steam turbine units operating both as basic power installations and as part of combined-cycle power plants. The influence of process-circuit and layout solutions adopted for steam-turbine units on the effectiveness of thermal power plant construction and plant performance efficiency is shown.

  4. A PWM quadrature-booster phase shifter for ac power transmission

    SciTech Connect

    Lopes, L.A.C.; Joos, G.; Ooi, B.T.

    1997-01-01

    The conventional structures used for phase shifters employ quadrature voltage injection controlled by means of on-load tap changers that require considerable maintenance. Line-commutated thyristor structures have been proposed to replace tap changers, but problems related to filter requirements or the number of switches have limited their utilization. This paper proposes a pulse width modulation (PWM) quadrature-booster phase shifter based on a force-commutated ac controller. It offers features such as fast dynamic response, continuous variation of the phase angle with low harmonic injection, and it requires a simple power structure and can be controlled by adjusting the duty cycle of the switches. The operating principles of the proposed phase shifter are analyzed and their feasibility is demonstrated through digital simulation and experimental implementation.

  5. Theory of ac loss in power transmission cables with second generation high temperature superconductor wires

    SciTech Connect

    Clem, J. R.; Malozemoff, A. P.

    2010-02-22

    While a considerable amount of work has been done in an effort to understand ac losses in power transmission cables made of first generation high temperature superconductor (HTS) wires, use of second generation (2G) HTS wires brings in some new considerations. The high critical current density of the HTS layer in 2G wires reduces the surface superconductor hysteretic losses, for which a new formula is derived. Instead, gap and polygonal losses, flux transfer losses in imbalanced two-layer cables and ferromagnetic losses for wires with NiW substrates constitute the principal contributions. A formula for the flux transfer losses is also derived with a paramagnetic approximation for the substrate. Current imbalance and losses associated with the magnetic substrate can be minimized by orienting the substrates of the inner winding inward and the outer winding outward.

  6. Resonant AC power system proof-of-concept test program, volume 2, appendix 1

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This report contains two volumes. The main text (Volume 1) summarizes the tests results and gives a detailed discussion of the response of three early, first generation configurations of ac power system IRAD breadboards to the contracted tests imposed on them. It explains photographs, measurements, and data calculations, as well as any observed anomalies or lessons learned. This volume (No 2, Appendix 1, Test Results and Data), published under separate cover, includes all of the data taken on the 1.0 kW single-phase; 5.0 kW three-phase; and 25.0-kW three-phase system breadboards. The format of this data is raw, i.e., it is a direct copy of the data sheets for the test data notebook.

  7. Transport ac loss of elliptical thin strips with a power-law E(J) relation

    NASA Astrophysics Data System (ADS)

    Jia, Chen-Xi; Chen, Du-Xing; Li, Shuo; Fang, Jin

    2015-10-01

    The transport ac loss Q of an elliptical thin strip of critical current I c with a power-law relation E\\propto {J}n is accurately computed as a function of current amplitude I m and frequency f. The resulting Q({I}m) is normalized to q({i}m) following the Norris critical-state formula, and converted to {q}*({i}m*) at a critical frequency f c based on a transport scaling law. Having a set of {q}*({i}m*) at several values of n as a base, a general expression of {q}*({i}m*,n) is obtained, which can be used to easily calculate q({i}m) for any practical purposes.

  8. Voltage source ac-to-dc converters for high-power transmitters

    NASA Technical Reports Server (NTRS)

    Cormier, R.

    1990-01-01

    This work was done to optimize the design of the components used for the beam power supply, which is a component of the transmitters in the Deep Space Network (DSN). The major findings are: (1) the difference in regulation between a six-pulse and a twelve-pulse converter is at most 7 percent worse for the twelve-pulse converter; (2) the commutation overlap angle of a current source converter equals that of a voltage source converter with continuous line currents; (3) the sources of uncharacteristic harmonics are identified with SPICE simulation; (4) the use of an imperfect phase-shifting transformer for the twelve-pulse converter generates a harmonic at six times the line frequency; and (5) the assumptions usually made in analyzing converters can be relaxed with SPICE simulation. The results demonstrate the suitability of using SPICE simulation to obtain detailed performance predictions of ac-to-dc converters.

  9. High power dc/dc and dc/ac electrical power conversion techniques developed

    NASA Technical Reports Server (NTRS)

    Berryman, G.; White, W. T.

    1967-01-01

    Small magnetic amplifiers pass square waves through transformers and provide regulation by varying the pulse width on the secondary of the output power transformers. This pulse duration modulation is provided by a control rectifier technique or a phase-shift technique.

  10. Development of a single-phase harmonic power flow program to study the 20 kHz AC power system for large spacecraft

    NASA Technical Reports Server (NTRS)

    Kraft, L. Alan; Kankam, M. David

    1991-01-01

    The development of software is described to aid in design and analysis of AC power systems for large spacecraft. The algorithm is an important version of harmonic power flow program, HARMFLO, used for the study of AC power quality. The new program is applicable to three-phase systems typified by terrestrial power systems, and single-phase systems characteristic of space power systems. The modified HARMFLO accommodates system operating frequencies ranging from terrestrial 60 Hz to and beyond aerospace 20 kHz, and can handle both source and load-end harmonic distortions. Comparison of simulation and test results of a representative spacecraft power system shows a satisfactory correlation. Recommendations are made for the direction of future improvements to the software, to enhance its usefulness to power system designer and analysts.

  11. Dynamic SVL and body bias for low leakage power and high performance in CMOS digital circuits

    NASA Astrophysics Data System (ADS)

    Deshmukh, Jyoti; Khare, Kavita

    2012-12-01

    In this article, a new complementary metal oxide semiconductor design scheme called dynamic self-controllable voltage level (DSVL) is proposed. In the proposed scheme, leakage power is controlled by dynamically disconnecting supply to inactive blocks and adjusting body bias to further limit leakage and to maintain performance. Leakage power measurements at 1.8 V, 75°C demonstrate power reduction by 59.4% in case of 1 bit full adder and by 43.0% in case of a chain of four inverters using SVL circuit as a power switch. Furthermore, we achieve leakage power reduction by 94.7% in case of 1 bit full adder and by 91.8% in case of a chain of four inverters using dynamic body bias. The forward body bias of 0.45 V applied in active mode improves the maximum operating frequency by 16% in case of 1 bit full adder and 5.55% in case of a chain of inverters. Analysis shows that additional benefits of using the DSVL and body bias include high performance, low leakage power consumption in sleep mode, single threshold implementation and state retention even in standby mode.

  12. Smart Detector Cell: A Scalable All-Spin Circuit for Low Power Non-Boolean Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Aghasi, Hamidreza; Iraei, Rouhollah Mousavi; Naeemi, Azad; Afshari, Ehsan

    2016-05-01

    We present a new circuit for non-Boolean recognition of binary images. Employing all-spin logic (ASL) devices, we design logic comparators and non-Boolean decision blocks for compact and efficient computation. By manipulation of fan-in number in different stages of the circuit, the structure can be extended for larger training sets or larger images. Operating based on the mainly similarity idea, the system is capable of constructing a mean image and compare it with a separate input image within a short decision time. Taking advantage of the non-volatility of ASL devices, the proposed circuit is capable of hybrid memory/logic operation. Compared with existing CMOS pattern recognition circuits, this work achieves a smaller footprint, lower power consumption, faster decision time and a lower operational voltage. To the best of our knowledge, this is the first fully spin-based complete pattern recognition circuit demonstrated using spintronic devices.

  13. Development and Analysis of Cold Trap for Use in Fission Surface Power-Primary Test Circuit

    NASA Technical Reports Server (NTRS)

    Wolfe, T. M.; Dervan, C. A.; Pearson, J. B.; Godfroy, T. J.

    2012-01-01

    The design and analysis of a cold trap proposed for use in the purification of circulated eutectic sodium potassium (NaK-78) loops is presented. The cold trap is designed to be incorporated into the Fission Surface Power-Primary Test Circuit (FSP-PTC), which incorporates a pumped NaK loop to simulate in-space nuclear reactor-based technology using non-nuclear test methodology as developed by the Early Flight Fission-Test Facility. The FSP-PTC provides a test circuit for the development of fission surface power technology. This system operates at temperatures that would be similar to those found in a reactor (500-800 K). By dropping the operating temperature of a specified percentage of NaK flow through a bypass containing a forced circulation cold trap, the NaK purity level can be increased by precipitating oxides from the NaK and capturing them within the cold trap. This would prevent recirculation of these oxides back through the system, which may help prevent corrosion.

  14. Battery powered neuromuscular stimulator circuit for use during simultaneous recording of myoelectric signals.

    PubMed

    Thorsen, Rune; Ferrarin, Maurizio

    2009-10-01

    Surface Functional Electrical Stimulation (FES) requires high stimulation voltages. A step-up transformer in the output stage of the stimulation circuit is often used. In the present technical paper a voltage controlled current source (VCCS) is presented as an alternative to the transformer coupling. Two (master-slave) coupled transconductance amplifiers (TAs)--in series with pre-charged capacitors--are used to drive the output current. After each stimulation pulse the capacitors are recharged to a high voltage by a switch mode power supply (SMPS). A multiplexer in the output stage is used to provide biphasic output. Output rise-time (10-90%) was less than 2 micros at 100 mA output. Biphasic charge balanced stimulation current can be produced with a net current to ground of less than 20 nA, thus virtually separated from ground. The circuit permits recording of the volitional myoelectric signal from the stimulated muscle. It is part of a portable myoelectrically controlled FES system powered by 2 AA batteries and currently used in clinical trials. PMID:19620017

  15. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice.

    PubMed

    Montgomery, Kate L; Yeh, Alexander J; Ho, John S; Tsao, Vivien; Mohan Iyer, Shrivats; Grosenick, Logan; Ferenczi, Emily A; Tanabe, Yuji; Deisseroth, Karl; Delp, Scott L; Poon, Ada S Y

    2015-10-01

    To enable sophisticated optogenetic manipulation of neural circuits throughout the nervous system with limited disruption of animal behavior, light-delivery systems beyond fiber optic tethering and large, head-mounted wireless receivers are desirable. We report the development of an easy-to-construct, implantable wireless optogenetic device. Our smallest version (20 mg, 10 mm(3)) is two orders of magnitude smaller than previously reported wireless optogenetic systems, allowing the entire device to be implanted subcutaneously. With a radio-frequency (RF) power source and controller, this implant produces sufficient light power for optogenetic stimulation with minimal tissue heating (<1 °C). We show how three adaptations of the implant allow for untethered optogenetic control throughout the nervous system (brain, spinal cord and peripheral nerve endings) of behaving mice. This technology opens the door for optogenetic experiments in which animals are able to behave naturally with optogenetic manipulation of both central and peripheral targets. PMID:26280330

  16. Research Group Introduction : Power Electronics Laboratory, Dept. of Electrical, Electronics and Information Engineering, Nagaoka University of Technology

    NASA Astrophysics Data System (ADS)

    伊東, 淳一

    Our research focuses on power conversion and its control especially matrix converter, multi-level converter, DC-DC converter. Furthermore AC motor drives, wireless power transfer system, high frequency power circuit and new device technology.

  17. Relationships among classes of self-oscillating transistor parallel inverters. [dc to square wave converter circuits for power conditioning

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.; Lee, F. C. Y.; Burns, W. W., III; Owen, H. A., Jr.

    1974-01-01

    A procedure is developed for classifying dc-to-square-wave two-transistor parallel inverters used in power conditioning applications. The inverters are reduced to equivalent RLC networks and are then grouped with other inverters with the same basic equivalent circuit. Distinction between inverter classes is based on the topology characteristics of the equivalent circuits. Information about one class can then be extended to another class using the basic oscillation theory and the concept of duality. Oscillograms from test circuits confirm the validity of the procedure adopted.

  18. The thermal circuit of a nuclear power station's unit built around a supercritical-pressure water-cooled reactor

    NASA Astrophysics Data System (ADS)

    Silin, V. A.; Zorin, V. M.; Tagirov, A. M.; Tregubova, O. I.; Belov, I. V.; Povarov, P. V.

    2010-12-01

    Main results obtained from calculations of the steam generator and thermal circuit of the steam turbine unit for a nuclear power unit with supercritical-pressure water coolant and integral layout are presented. The obtained characteristics point to the advisability of carrying out further developments of this promising nuclear power technology.

  19. Optimal testing input sets for reduced diagnosis time of nuclear power plant digital electronic circuits

    SciTech Connect

    Kim, D.S.; Seong, P.H. . Dept. of Nuclear Engineering)

    1994-02-01

    This paper describes the optimal testing input sets required for the fault diagnosis of the nuclear power plant digital electronic circuits. With the complicated systems such as very large scale integration (VLSI), nuclear power plant (NPP), and aircraft, testing is the major factor of the maintenance of the system. Particularly, diagnosis time grows quickly with the complexity of the component. In this research, for reduce diagnosis time the authors derived the optimal testing sets that are the minimal testing sets required for detecting the failure and for locating of the failed component. For reduced diagnosis time, the technique presented by Hayes fits best for the approach to testing sets generation among many conventional methods. However, this method has the following disadvantages: (a) it considers only the simple network (b) it concerns only whether the system is in failed state or not and does not provide the way to locate the failed component. Therefore the authors have derived the optimal testing input sets that resolve these problems by Hayes while preserving its advantages. When they applied the optimal testing sets to the automatic fault diagnosis system (AFDS) which incorporates the advanced fault diagnosis method of artificial intelligence technique, they found that the fault diagnosis using the optimal testing sets makes testing the digital electronic circuits much faster than that using exhaustive testing input sets; when they applied them to test the Universal (UV) Card which is a nuclear power plant digital input/output solid state protection system card, they reduced the testing time up to about 100 times.

  20. Reliable, Efficient and Cost-Effective Electric Power Converter for Small Wind Turbines Based on AC-link Technology

    SciTech Connect

    Darren Hammell; Mark Holveck; DOE Project Officer - Keith Bennett

    2006-08-01

    Grid-tied inverter power electronics have been an Achilles heel of the small wind industry, providing opportunity for new technologies to provide lower costs, greater efficiency, and improved reliability. The small wind turbine market is also moving towards the 50-100kW size range. The unique AC-link power conversion technology provides efficiency, reliability, and power quality advantages over existing technologies, and Princeton Power will adapt prototype designs used for industrial asynchronous motor control to a 50kW small wind turbine design.

  1. Performance analysis of electrical circuits /PANE/

    NASA Technical Reports Server (NTRS)

    Johnson, K. L.; Steinberg, L. L.

    1968-01-01

    Automated statistical and worst case computer program has been designed to perform dc and ac steady circuit analyses. The program determines the worst case circuit performance by solving circuit equations.

  2. Nearly Unity Power-Factor of the Modular Three-Phase AC to DC Converter with Minimized DC Bus Capacitor

    NASA Astrophysics Data System (ADS)

    Chunkag, Viboon; Kamnarn, Uthen

    The analysis and design of nearly unity power-factor and fast dynamic response of the modular three-phase ac to dc converter using three single-phase isolated SEPIC rectifier modules with minimized dc bus capacitor is discussed, based on power balance control technique. The averaged small-signal technique is used to obtain the inductor current compensator, thus resulting in the output impedance and audio susceptibility become zero, that is, the output voltage of the converter presented in this paper is independent of the variations of the dc load current and the utility voltage. The proposed system significantly improves the dynamic response of the converter to load steps with minimized dc bus capacitor for Distributed Power System (DPS). A 600W prototype modular three-phase ac to dc converter comprising three 200W single-phase SEPIC rectifier modules with the proposed control scheme has been designed and implemented. The proposed system is confirmed by experimental implementation.

  3. An embedded nonvolatile memory cell with spacer floating gate for power management integrated circuit applications

    NASA Astrophysics Data System (ADS)

    Na, Kee-Yeol; Baek, Ki-Ju; Lee, Gun-Woong; Kim, Yeong-Seuk

    2013-08-01

    This paper describes a simple nonvolatile memory cell with a poly-Si spacer floating gate for power management integrated circuit applications. The proposed memory cell is fabricated using a 0.35 μm double-poly high-voltage CMOS process which includes PIP capacitor, LV (5 V), and HV (20 V) CMOS devices. The floating gates of the proposed cell are buried under a LDD spacer oxide; thus the unit cell can be scaled easily in the channel length direction. In addition, any extra photo masking step is not required for the proposed cell in the applied fabrication process. The proposed cell shows an acceptable threshold voltage window of up to 104 cycles and less than 2% threshold voltage shifts in an 85 °C retention test.

  4. Graph states of prime-power dimension from generalized CNOT quantum circuit

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Zhou, D. L.

    2016-06-01

    We construct multipartite graph states whose dimension is the power of a prime number. This is realized by the finite field, as well as the generalized controlled-NOT quantum circuit acting on two qudits. We propose the standard form of graph states up to local unitary transformations and particle permutations. The form greatly simplifies the classification of graph states as we illustrate up to five qudits. We also show that some graph states are multipartite maximally entangled states in the sense that any bipartition of the system produces a bipartite maximally entangled state. We further prove that 4-partite maximally entangled states exist when the dimension is an odd number at least three or a multiple of four.

  5. Graph states of prime-power dimension from generalized CNOT quantum circuit.

    PubMed

    Chen, Lin; Zhou, D L

    2016-01-01

    We construct multipartite graph states whose dimension is the power of a prime number. This is realized by the finite field, as well as the generalized controlled-NOT quantum circuit acting on two qudits. We propose the standard form of graph states up to local unitary transformations and particle permutations. The form greatly simplifies the classification of graph states as we illustrate up to five qudits. We also show that some graph states are multipartite maximally entangled states in the sense that any bipartition of the system produces a bipartite maximally entangled state. We further prove that 4-partite maximally entangled states exist when the dimension is an odd number at least three or a multiple of four. PMID:27272401

  6. Graph states of prime-power dimension from generalized CNOT quantum circuit

    PubMed Central

    Chen, Lin; Zhou, D. L.

    2016-01-01

    We construct multipartite graph states whose dimension is the power of a prime number. This is realized by the finite field, as well as the generalized controlled-NOT quantum circuit acting on two qudits. We propose the standard form of graph states up to local unitary transformations and particle permutations. The form greatly simplifies the classification of graph states as we illustrate up to five qudits. We also show that some graph states are multipartite maximally entangled states in the sense that any bipartition of the system produces a bipartite maximally entangled state. We further prove that 4-partite maximally entangled states exist when the dimension is an odd number at least three or a multiple of four. PMID:27272401

  7. Low-Power Photoplethysmogram Acquisition Integrated Circuit with Robust Light Interference Compensation

    PubMed Central

    Kim, Jongpal; Kim, Jihoon; Ko, Hyoungho

    2015-01-01

    To overcome light interference, including a large DC offset and ambient light variation, a robust photoplethysmogram (PPG) readout chip is fabricated using a 0.13-μm complementary metal–oxide–semiconductor (CMOS) process. Against the large DC offset, a saturation detection and current feedback circuit is proposed to compensate for an offset current of up to 30 μA. For robustness against optical path variation, an automatic emitted light compensation method is adopted. To prevent ambient light interference, an alternating sampling and charge redistribution technique is also proposed. In the proposed technique, no additional power is consumed, and only three differential switches and one capacitor are required. The PPG readout channel consumes 26.4 μW and has an input referred current noise of 260 pArms. PMID:26729122

  8. Low-Power Photoplethysmogram Acquisition Integrated Circuit with Robust Light Interference Compensation.

    PubMed

    Kim, Jongpal; Kim, Jihoon; Ko, Hyoungho

    2015-01-01

    To overcome light interference, including a large DC offset and ambient light variation, a robust photoplethysmogram (PPG) readout chip is fabricated using a 0.13-μm complementary metal-oxide-semiconductor (CMOS) process. Against the large DC offset, a saturation detection and current feedback circuit is proposed to compensate for an offset current of up to 30 μA. For robustness against optical path variation, an automatic emitted light compensation method is adopted. To prevent ambient light interference, an alternating sampling and charge redistribution technique is also proposed. In the proposed technique, no additional power is consumed, and only three differential switches and one capacitor are required. The PPG readout channel consumes 26.4 μW and has an input referred current noise of 260 pArms. PMID:26729122

  9. Bus-controlled power driver circuits for high voltages, using linear compatible I2L logic

    NASA Astrophysics Data System (ADS)

    Clauss, H.; Kuebler, M.

    1986-04-01

    A technology for monolithic integration of bipolar transistors, having breakdown voltages greater than or = to 60 V, and I2L-logic was developed. Bipolar transistors with high breakdown voltages must have thick, low doped epitaxial layers and low dc current gain, but I2L-logic with high packing density and short gate delay demands thin epitaxial layers and high dc current gain. A process with two epitaxial layers with buried layer and different intrinsic base doping for the two types of npn-transistor was developed. Bus-controlled power driver circuits for inductive loads in industrial systems were realized. Devices have 60 V maximum supply voltage and, electronically limited, 260 mA max output current.

  10. Liquid crystal waveguide technologies for a new generation of low-power photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    d'Alessandro, Antonio; Martini, Luca; Civita, Luca; Beccherelli, Romeo; Asquini, Rita

    2015-03-01

    In this paper we show two approaches to fabricate photonic channels on different substrate technology platforms, in particular silicon and polydimethylsiloxane (PDMS), for flexible photonic integrated circuits. The electro-optic effect and nonlinear optical properties of liquid crystals (LC) allow the realization of low cost and low energy consumption optoelectronic devices operating at both visible and near-infrared wavelengths. High extinction ratio and large tuning range guided wave devices will be presented to be used for both optofluidic and datacom applications, in which both low realization costs and low power consumption are key features. In particular we will show our recent results on polarization independent light propagation in waveguides whose core consists of LC infiltrated in PDMS channels (LC:PDMS waveguides) fully compatible with optofluidic and lab-on-chip microsystems.

  11. Radiation-hardened CMOS integrated circuit development for space nuclear power applications

    NASA Astrophysics Data System (ADS)

    Gover, J. E.; Gregory, B. L.

    Examination of the types of systems required for space nuclear power applications suggests a need for microelectronics technology that can function during and after exposure to radiation levels exceeding 1 x 10 to the 16th neutrons/sq cm and gamma ray doses in excess of 1 x 10 to the 7th rad(Si). Radiation-hardened Complimentary Metal Oxide Silicon and Silicon Nitride Oxide Silicon (SNOS) ICs presently in development at Sandia National Laboratories' Center for Radiation-Hardened Microelectronics satisfy these radiation requirements. Future integrated circuit development will further advance the radiation hardness capabilities while extending the IC technology to 32-bit enhanced microprocessors and 1-Mbyte SNOS EEPROM memories.

  12. Power-gated 32 bit microprocessor with a power controller circuit activated by deep-sleep-mode instruction achieving ultra-low power operation

    NASA Astrophysics Data System (ADS)

    Koike, Hiroki; Ohsawa, Takashi; Miura, Sadahiko; Honjo, Hiroaki; Ikeda, Shoji; Hanyu, Takahiro; Ohno, Hideo; Endoh, Tetsuo

    2015-04-01

    A spintronic-based power-gated micro-processing unit (MPU) is proposed. It includes a power control circuit activated by the newly supported power-off instruction for the deep-sleep mode. These means enable the power-off procedure for the MPU to be executed appropriately. A test chip was designed and fabricated using 90 nm CMOS and an additional 100 nm MTJ process; it was successfully operated. The guideline of the energy reduction effects for this MPU was presented, using the estimation based on the measurement results of the test chip. The result shows that a large operation energy reduction of 1/28 can be achieved when the operation duty is 10%, under the condition of a sufficient number of idle clock cycles.

  13. AC electrokinetic drug delivery in dentistry using an interdigitated electrode assembly powered by inductive coupling.

    PubMed

    Ivanoff, Chris S; Wu, Jie Jayne; Mirzajani, Hadi; Cheng, Cheng; Yuan, Quan; Kevorkyan, Stepan; Gaydarova, Radostina; Tomlekova, Desislava

    2016-10-01

    AC electrokinetics (ACEK) has been shown to deliver certain drugs into human teeth more effectively than diffusion. However, using electrical wires to power intraoral ACEK devices poses risks to patients. The study demonstrates a novel interdigitated electrode arrays (IDE) assembly powered by inductive coupling to induce ACEK effects at appropriate frequencies to motivate drugs wirelessly. A signal generator produces the modulating signal, which multiplies with the carrier signal to produce the amplitude modulated (AM) signal. The AM signal goes through the inductive link to appear on the secondary coil, then rectified and filtered to dispose of its carrier signal, and the positive half of the modulating signal appears on the load. After characterizing the device, the device is validated under light microscopy by motivating carboxylate-modified microspheres, tetracycline, acetaminophen, benzocaine, lidocaine and carbamide peroxide particles with induced ACEK effects. The assembly is finally tested in a common dental bleaching application. After applying 35 % carbamide peroxide to human teeth topically or with the IDE at 1200 Hz, 5 Vpp for 20 min, spectrophotometric analysis showed that compared to diffusion, the IDE enhanced whitening in specular optic and specular optic excluded modes by 215 % and 194 % respectively. Carbamide peroxide absorbance by the ACEK group was two times greater than diffusion as measured by colorimetric oxidation-reduction and UV-Vis spectroscopy at 550 nm. The device motivates drugs of variable molecular weight and structure wirelessly. Wireless transport of drugs to intraoral targets under ACEK effects may potentially improve the efficacy and safety of drug delivery in dentistry. PMID:27565821

  14. Pulse doubling in zigzag-connected autotransformer-based 12-pulse ac-dc converter for power quality improvement

    NASA Astrophysics Data System (ADS)

    Abdollahi, Rohollah

    2012-12-01

    This paper presents a pulse doubling technique in a 12-pulse ac-dc converter which supplies direct torque controlled motor drives (DTCIMDs) in order to have better power quality conditions at the point of common coupling. The proposed technique increases the number of rectification pulses without significant changes in the installations and yields in harmonic reduction in both ac and dc sides. The 12-pulse rectified output voltage is accomplished via two paralleled six-pulse acdc converters each of them consisting of three-phase diode bridge rectifiers. An autotransformer is designed to supply the rectifiers. The design procedure of magnetics is in a way such that makes it suitable for retrofit applications where a six-pulse diode bridge rectifier is being utilized. Independent operation of paralleled diode-bridge rectifiers, i.e. dc-ripple re-injection methodology, requires a Zero Sequence Blocking Transformer (ZSBT). Finally, a tapped interphase reactor is connected at the output of ZSBT to double the pulse numbers of output voltage up to 24 pulses. The aforementioned structure improves power quality criteria at ac mains and makes them consistent with the IEEE-519 standard requirements for varying loads. Furthermore, near unity power factor is obtained for a wide range of DTCIMD operation. A comparison is made between 6-pulse, 12-pulse, and proposed converters from view point of power quality indices. Results show that input current total harmonic distortion (THD) is less than 5% for the proposed topology at various loads.

  15. A power management system for energy harvesting and wireless sensor networks application based on a novel charge pump circuit

    NASA Astrophysics Data System (ADS)

    Aloulou, R.; De Peslouan, P.-O. Lucas; Mnif, H.; Alicalapa, F.; Luk, J. D. Lan Sun; Loulou, M.

    2016-05-01

    Energy Harvesting circuits are developed as an alternative solution to supply energy to autonomous sensor nodes in Wireless Sensor Networks. In this context, this paper presents a micro-power management system for multi energy sources based on a novel design of charge pump circuit to allow the total autonomy of self-powered sensors. This work proposes a low-voltage and high performance charge pump (CP) suitable for implementation in standard complementary metal oxide semiconductor (CMOS) technologies. The CP design was implemented using Cadence Virtuoso with AMS 0.35μm CMOS technology parameters. Its active area is 0.112 mm2. Consistent results were obtained between the measured findings of the chip testing and the simulation results. The circuit can operate with an 800 mV supply and generate a boosted output voltage of 2.835 V with 1 MHz as frequency.

  16. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  17. Systematic Computation of Nonlinear Cellular and Molecular Dynamics with Low-Power CytoMimetic Circuits: A Simulation Study

    PubMed Central

    Papadimitriou, Konstantinos I.; Stan, Guy-Bart V.; Drakakis, Emmanuel M.

    2013-01-01

    This paper presents a novel method for the systematic implementation of low-power microelectronic circuits aimed at computing nonlinear cellular and molecular dynamics. The method proposed is based on the Nonlinear Bernoulli Cell Formalism (NBCF), an advanced mathematical framework stemming from the Bernoulli Cell Formalism (BCF) originally exploited for the modular synthesis and analysis of linear, time-invariant, high dynamic range, logarithmic filters. Our approach identifies and exploits the striking similarities existing between the NBCF and coupled nonlinear ordinary differential equations (ODEs) typically appearing in models of naturally encountered biochemical systems. The resulting continuous-time, continuous-value, low-power CytoMimetic electronic circuits succeed in simulating fast and with good accuracy cellular and molecular dynamics. The application of the method is illustrated by synthesising for the first time microelectronic CytoMimetic topologies which simulate successfully: 1) a nonlinear intracellular calcium oscillations model for several Hill coefficient values and 2) a gene-protein regulatory system model. The dynamic behaviours generated by the proposed CytoMimetic circuits are compared and found to be in very good agreement with their biological counterparts. The circuits exploit the exponential law codifying the low-power subthreshold operation regime and have been simulated with realistic parameters from a commercially available CMOS process. They occupy an area of a fraction of a square-millimetre, while consuming between 1 and 12 microwatts of power. Simulations of fabrication-related variability results are also presented. PMID:23393550

  18. System and Battery Charge Control for PV-Powered AC Lighting Systems

    SciTech Connect

    Kern, G.

    1999-04-01

    This report reviews a number of issues specific to stand-alone AC lighting systems. A review of AC lighting technology is presented, which discusses the advantages and disadvantages of various lamps. The best lamps for small lighting systems are compact fluorescent. The best lamps for intermediate-size systems are high- or low-pressure sodium. Specifications for battery charging and load control are provided with the goal of achieving lamp lifetimes on the order of 16,000 to 24,000 hours and battery lifetimes of 4 to 5 years. A rough estimate of the potential domestic and global markets for stand-alone AC lighting systems is presented. DC current injection tests were performed on high-pressure sodium lamps and the test results are presented. Finally, a prototype system was designed and a prototype system controller (with battery charger and DC/AC inverter) was developed and built.

  19. Low-noise low-power readout electronics circuit development in standard CMOS technology for 4 K applications

    NASA Astrophysics Data System (ADS)

    Merken, Patrick; Souverijns, Tim; Putzeys, Jan; Creten, Ybe; Van Hoof, Chris

    2006-06-01

    In the framework of the Photodetector Array Camera and Spectrometer (PACS) project IMEC designed the Cold Readout Electronics (CRE) for the Ge:Ga far-infrared detector array. Key specifications for this circuit were high linearity, low power consumption and low noise at an operating temperature of 4.2K. We have implemented this circuit in a standard CMOS technology which guarantees high yield and uniformity, and design portability. A drawback of this approach is the anomalous behavior of CMOS transistors at temperatures below 30-40K. These cryogenic phenomena disturb the normal functionality of commonly used circuits. We were able to overcome these problems and developed a library of digital and analog building blocks based on the modeling of cryogenic behavior, and on adapted design and layout techniques. We will present the design of the 18 channel CRE circuit, its interface with the Ge:Ga sensor, and its electrical performance. We will show how the library that was developed for PACS served as a baseline for the designs used in the Darwin-far-infrared detector array, where a cryogenic 180 channel, 30μm pitch, Readout Integrated Circuit (ROIC) for flip-chip integration was developed. Other designs and topologies for low noise and low power applications will be equally presented.

  20. Sub-micrometer particles produced by a low-powered AC electric arc in liquids.

    PubMed

    Jaworski, Jacek A; Fleury, Eric

    2012-01-01

    The article presents the report of the production of composites of sub-micrometer metal particles in matrix consisted of the metal compounds by means of an AC electric arc in water and paraffin solutions using electrodes carbon-metal and metal-metal (metal: Ni, Fe, Co, Cu). The advantage of this method is the low electric power (from 5 to 10 W) needed in comparison to standard DC arc-discharge methods (0.8 to 3 kW). This method enables the production of particles from conductive material also in wide range of temperature and in solvent which could be either transparent to light or opaque. Moreover the solvent can be electrolyte or insulating liquid. The microstructure of the composite layer was investigated by scanning electron microscopy (SEM), Electron Probe Microanalysis (EPMA) and X-ray. During particles production in water metal oxides were created. Additionally using cobalt-copper, nickel-copper as couple electrodes, insoluble in water copper (II) hydroxide crystal grains were created additionally which crystals shape was depended on transition metal. For iron-copper couple electrodes system the copper (II) hydroxide was not formed. Experiments with sequence production of Ni and Fe particles with C electrode assisting in molten paraffin let to obtain both Ni and Fe particles surrounded by paraffin. After solidification the material was insulator but if locally magnetic field influenced on the liquid solution in that place after solidification a new composite was created which was electric current conductor with resistivity around 0.1 omega x m, was attracted by magnetic field and presented magneto resistance around 0.4% in changing magnetic field in a range 150 mT. After mixing the concentrated paraffin with normal paraffin resistivity of the mixture increased and it became photosensitive and created small voltage under light influence. PMID:22524027

  1. A driving scheme to reduce AC LED flicker

    NASA Astrophysics Data System (ADS)

    Tan, Jianchuan; Narendran, Nadarajah

    2013-09-01

    Light flicker is a common but unwelcome phenomenon in conventional lighting applications. In solid-state lighting, driving or dimming methods also give rise to light flicker. AC LED products in today's marketplace suffer from flicker, which stems from the arrangement of the micro-LEDs and the driving method. Research has shown that light flicker can be a health hazard to humans. Several solutions have been proposed to reduce light flicker in solid-state lighting applications; however, most have drawbacks in terms of power and other performance. This paper proposes a circuit design to reduce light flicker from AC LEDs while maintaining a normal power factor and high power efficiency. The circuit is composed of one resistive branch and one capacitive branch, and each branch drives a load which is made up of high-voltage LEDs. Percent flicker, power factor, and power efficiency were selected as three metrics, and their benchmarks were set to evaluate the performance of this circuit. Phase shift between the two branches was selected as a factor that could determine the circuit performance. The variations of percent flicker, power factor, and power efficiency as a function of phase shift were identified by theoretical analysis and were verified by experiments. The experimental results show that an optimal solution can be achieved for this circuit design at proper phase shift, where the benchmarks of the three metrics are reached.

  2. A study on the maximum power transfer condition in an inductively coupled plasma using transformer circuit model

    SciTech Connect

    Kim, Young-Do; Lee, Hyo-Chang; Chung, Chin-Wook

    2013-09-15

    Correlations between the external discharge parameters (the driving frequency ω and the chamber dimension R) and plasma characteristics (the skin depth δ and the electron-neutral collision frequency ν{sub m}) are studied using the transformer circuit model [R. B. Piejak et al., Plasma Sources Sci. Technol. 1, 179 (1992)] when the absorbed power is maximized in an inductively coupled plasma. From the analysis of the transformer circuit model, the maximum power transfer conditions, which depend on the external discharge parameters and the internal plasma characteristics, were obtained. It was found that a maximum power transfer occurs when δ≈0.38R for the discharge condition at which ν{sub m}/ω≪1, while it occurs when δ≈√(2)√(ω/ν{sub m})R for the discharge condition at which ν{sub m}/ω≫1. The results of this circuit analysis are consistent with the stable last inductive mode region of an inductive-to-capacitive mode transition [Lee and Chung, Phys. Plasmas 13, 063510 (2006)], which was theoretically derived from Maxwell's equations. Our results were also in agreement with the experimental results. From this work, we demonstrate that a simple circuit analysis can be applied to explain complex physical phenomena to a certain extent.

  3. A Power-Efficient Capacitive Read-Out Circuit With Parasitic-Cancellation for MEMS Cochlea Sensors.

    PubMed

    Wang, Shiwei; Koickal, Thomas Jacob; Hamilton, Alister; Mastropaolo, Enrico; Cheung, Rebecca; Abel, Andrew; Smith, Leslie S; Wang, Lei

    2016-02-01

    This paper proposes a solution for signal read-out in the MEMS cochlea sensors that have very small sensing capacitance and do not have differential sensing structures. The key challenge in such sensors is the significant signal degradation caused by the parasitic capacitance at the MEMS-CMOS interface. Therefore, a novel capacitive read-out circuit with parasitic-cancellation mechanism is developed; the equivalent input capacitance of the circuit is negative and can be adjusted to cancel the parasitic capacitance. Chip results prove that the use of parasitic-cancellation is able to increase the sensor sensitivity by 35 dB without consuming any extra power. In general, the circuit follows a low-degradation low-amplification approach which is more power-efficient than the traditional high-degradation high-amplification approach; it employs parasitic-cancellation to reduce the signal degradation and therefore a lower gain is required in the amplification stage. Besides, the chopper-stabilization technique is employed to effectively reduce the low-frequency circuit noise and DC offsets. As a result of these design considerations, the prototype chip demonstrates the capability of converting a 7.5 fF capacitance change of a 1-Volt-biased 0.5 pF capacitive sensor pair into a 0.745 V signal-conditioned output at the cost of only 165.2 μW power consumption. PMID:25826808

  4. Delta connected resonant snubber circuit

    DOEpatents

    Lai, J.S.; Peng, F.Z.; Young, R.W. Sr.; Ott, G.W. Jr.

    1998-01-20

    A delta connected, resonant snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the dc supply voltage through the main inverter switches and the auxiliary switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter. 36 figs.

  5. Delta connected resonant snubber circuit

    DOEpatents

    Lai, Jih-Sheng; Peng, Fang Zheng; Young, Sr., Robert W.; Ott, Jr., George W.

    1998-01-01

    A delta connected, resonant snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the dc supply voltage through the main inverter switches and the auxiliary switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.

  6. Kinetic and Statistical Analysis of Primary Circuit Water Chemistry Data in a VVER Power Plant

    SciTech Connect

    Nagy, Gabor; Tilky, Peter; Horvath, Akos; Pinter, Tamas; Schiller, Robert

    2001-12-15

    The results of chemical and radiochemical analyses of the primary circuit coolant liquid, obtained between 1995 and 1999 at the four VVER-type blocks of the Paks (Hungary) nuclear power station, are assessed. A model has been developed regarding the pressure vessel with its auxiliary parts plus the fuel elements as the zone, with the six steam generators as one single unit. The stream from the steam generator is split, with its larger part returning to the zone through the main circulating pump and the smaller one passing through the purifier column. Based on this flowchart, the formation kinetics of corrosion products and of radioactive substances are evaluated. Correlation analysis is applied to reveal any eventual interdependence of the processes, whereas the range-per-scatter (R/S) method is used to characterize the random or deterministic nature of a process. The evaluation of the t {yields} {infinity} limits of the kinetic equations enables one to conclude that (a) the total amount of corrosion products per element during one cycle is almost always <15 kg and (b) the zone acts as a highly efficient filter with an efficiency of {approx}1. The R/S results show that the fluctuations in the concentrations of the corrosion products are persistent; this finding indicates that random effects play here little if any role and that the processes in the coolant are under control. Correlation analyses show that the variations of the concentrations are practically uncorrelated and that the processes are independent of each other.

  7. MCTs and IGBTs - A comparison of performance in power electronic circuits

    NASA Technical Reports Server (NTRS)

    Sul, S. K.; Profumo, F.; Cho, G. H.; Lipo, T. A.

    1989-01-01

    There is a continuous demand for improvements in the quality of switching power devices, such as higher switching frequency, higher withstand voltage capability, larger current-handling capability, and lower conduction losses. However, for single-conduction-mechanism devices (SCRs, GTOs, BJTs, FETs), possessing all these features is probably unrealizable for physical reasons. An attractive solution appears to be double-mechanism devices, in which the features of both a minority carrier device (BJT or SCR) and a majority carrier device (MOSFET) are embedded. Both IGBTs (insulated-gate bipolar transistors) and MCTs (MOS-controlled thyristors) belong to this family of double-mechanism devices and promise to have a major impact on converter circuit signs. The authors deal with the major features of these two devices, pointing out those that are most critical to the design of converter topologies. In particular, the two devices have been tested both in a chopper and in two resonant link converter topologies, and the experimental results are reported.

  8. Characterization of combined power plasma jet using AC high voltage and nanosecond pulse for reactive species composition control

    NASA Astrophysics Data System (ADS)

    Takashima, Keisuke; Konishi, Hideaki; Kato, Toshiaki; Kaneko, Toshiro

    2014-10-01

    In the application studies for both bio-medical and agricultural applications, the roles of the reactive oxide and/or nitride species generated in the plasma has been reported as a key to control the effects and ill-effects on the living organism. The correlation between total OH radical exposure from an air atmospheric pressure plasma jet and the sterilization threshold on Botrytis cinerea is presented. With the increase of the OH radical exposure to the Botrytis cinerea, the probability of sterilization is increased. In this study, to resolve the roles of reactive species including OH radicals, a combined power plasma jet using nanosecond pulses and low-frequency sinusoidal AC high voltage (a few kHz) is studied for controlling the composition of the reactive species. The nanosecond pulses are superimposed on the AC voltage which is in synchronization with the AC phase. The undergoing work to characterize the combined power discharge with electric charge and voltage cycle on the plasma jet will also be presented to discuss the discharge characteristics to control the composition of the reactive species.

  9. Silicon-on-insulator-based high-voltage, high-temperature integrated circuit gate driver for silicon carbide-based power field effect transistors

    SciTech Connect

    Tolbert, Leon M; Huque, Mohammad A; Blalock, Benjamin J; Islam, Syed K

    2010-01-01

    Silicon carbide (SiC)-based field effect transistors (FETs) are gaining popularity as switching elements in power electronic circuits designed for high-temperature environments like hybrid electric vehicle, aircraft, well logging, geothermal power generation etc. Like any other power switches, SiC-based power devices also need gate driver circuits to interface them with the logic units. The placement of the gate driver circuit next to the power switch is optimal for minimising system complexity. Successful operation of the gate driver circuit in a harsh environment, especially with minimal or no heat sink and without liquid cooling, can increase the power-to-volume ratio as well as the power-to-weight ratio for power conversion modules such as a DC-DC converter, inverter etc. A silicon-on-insulator (SOI)-based high-voltage, high-temperature integrated circuit (IC) gate driver for SiC power FETs has been designed and fabricated using a commercially available 0.8--m, 2-poly and 3-metal bipolar-complementary metal oxide semiconductor (CMOS)-double diffused metal oxide semiconductor (DMOS) process. The prototype circuit-s maximum gate drive supply can be 40-V with peak 2.3-A sourcing/sinking current driving capability. Owing to the wide driving range, this gate driver IC can be used to drive a wide variety of SiC FET switches (both normally OFF metal oxide semiconductor field effect transistor (MOSFET) and normally ON junction field effect transistor (JFET)). The switching frequency is 20-kHz and the duty cycle can be varied from 0 to 100-. The circuit has been successfully tested with SiC power MOSFETs and JFETs without any heat sink and cooling mechanism. During these tests, SiC switches were kept at room temperature and ambient temperature of the driver circuit was increased to 200-C. The circuit underwent numerous temperature cycles with negligible performance degradation.

  10. Analog design optimization methodology for ultralow-power circuits using intuitive inversion-level and saturation-level parameters

    NASA Astrophysics Data System (ADS)

    Eimori, Takahisa; Anami, Kenji; Yoshimatsu, Norifumi; Hasebe, Tetsuya; Murakami, Kazuaki

    2014-01-01

    A comprehensive design optimization methodology using intuitive nondimensional parameters of inversion-level and saturation-level is proposed, especially for ultralow-power, low-voltage, and high-performance analog circuits with mixed strong, moderate, and weak inversion metal-oxide-semiconductor transistor (MOST) operations. This methodology is based on the synthesized charge-based MOST model composed of Enz-Krummenacher-Vittoz (EKV) basic concepts and advanced-compact-model (ACM) physics-based equations. The key concept of this methodology is that all circuit and system characteristics are described as some multivariate functions of inversion-level parameters, where the inversion level is used as an independent variable representative of each MOST. The analog circuit design starts from the first step of inversion-level design using universal characteristics expressed by circuit currents and inversion-level parameters without process-dependent parameters, followed by the second step of foundry-process-dependent design and the last step of verification using saturation-level criteria. This methodology also paves the way to an intuitive and comprehensive design approach for many kinds of analog circuit specifications by optimization using inversion-level log-scale diagrams and saturation-level criteria. In this paper, we introduce an example of our design methodology for a two-stage Miller amplifier.

  11. TRIPPING CIRCUIT

    DOEpatents

    Lees, G.W.; McCormick, E.D.

    1962-05-22

    A tripping circuit employing a magnetic amplifier for tripping a reactor in response to power level, period, or instrument failure is described. A reference winding and signal winding are wound in opposite directions on the core. Current from an ion chamber passes through both windings. If the current increases at too fast a rate, a shunt circuit bypasses one or the windings and the amplifier output reverses polarity. (AEC)

  12. Three phase AC motor controller

    DOEpatents

    Vuckovich, Michael; Wright, Maynard K.; Burkett, John P.

    1984-03-20

    A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.

  13. Achieving Maximum Power from Thermoelectric Generators with Maximum-Power-Point-Tracking Circuits Composed of a Boost-Cascaded-with-Buck Converter

    NASA Astrophysics Data System (ADS)

    Park, Hyunbin; Sim, Minseob; Kim, Shiho

    2015-06-01

    We propose a way of achieving maximum power and power-transfer efficiency from thermoelectric generators by optimized selection of maximum-power-point-tracking (MPPT) circuits composed of a boost-cascaded-with-buck converter. We investigated the effect of switch resistance on the MPPT performance of thermoelectric generators. The on-resistances of the switches affect the decrease in the conversion gain and reduce the maximum output power obtainable. Although the incremental values of the switch resistances are small, the resulting difference in the maximum duty ratio between the input and output powers is significant. For an MPPT controller composed of a boost converter with a practical nonideal switch, we need to monitor the output power instead of the input power to track the maximum power point of the thermoelectric generator. We provide a design strategy for MPPT controllers by considering the compromise in which a decrease in switch resistance causes an increase in the parasitic capacitance of the switch.

  14. SCREAMER2.0. Design and Modeling of Pulsed Power Accelerators Via Circuit Analysis

    SciTech Connect

    Kiefer, M.L.; Widner, M.W.; Hsing, W.W.; Fugelso, K.L.; Struve, K.W.

    1995-08-25

    SCREAMER simulates electrical circuits which may contain elements of variable resistance, capacitance and inductance. The user may add variable circuit elements in a simulation by choosing from a library of models or by writing a subroutine describing the element. Transmission lines, magnetically insulated transmission lines (MITLs) and arbitrary voltage and current sources may also be included. Transmission lines are modeled using pi-sections connected in series. Many models of switches and loads are included.

  15. Design of an Area-Efficient and Low-Power Hierarchical NoC Architecture Based on Circuit Switching

    NASA Astrophysics Data System (ADS)

    Kim, Woo Joo; Lee, Sung Hee; Hwang, Sun Young

    This paper presents a hierarchical NoC architecture to support GT (Guaranteed Throughput) signals to process multimedia data in embedded systems. The architecture provides a communication environment that meets the diverse conditions of communication constraints among IPs in power and area. With a system based on packet switching, which requires storage/control circuits to support GT signals, it is hard to satisfy design constraints in area, scalability and power consumption. This paper proposes a hierarchical 4 × 4 × 4 mesh-type NoC architecture based on circuit switching, which is capable of processing GT signals requiring high throughput. The proposed NoC architecture shows reduction in area by 50.2% and in power consumption by 57.4% compared with the conventional NoC architecture based on circuit switching. These figures amount to by 72.4% and by 86.1%, when compared with an NoC architecture based on packet switching. The proposed NoC architecture operates in the maximum throughput of 19.2Gb/s.

  16. A low power cryogenic 512 × 512-pixel infrared readout integrated circuit with modified MOS device model

    NASA Astrophysics Data System (ADS)

    Zhao, Hongliang; Liu, Xinghui; Xu, Chao

    2013-11-01

    A low power cryogenic readout integrated circuit (ROIC) for 512 × 512-pixel infrared focal plane array (IRFPA) image system, is presented. In order to improve the precision of the circuit simulation at cryogenic temperatures, a modified MOS device model is proposed. The model is based on BSIM3 model, and uses correction parameters to describe carrier freeze-out effect at low temperatures to improve the fitting accuracy for low temperature MOS device simulation. A capacitive trans-impedance amplifier (CTIA) with inherent correlated double sampling (CDS) configuration is employed to realize a high performance readout interfacing circuit in a pixel area of 30 × 30 μm2. Optimized column readout timing and structure are applied to reduce the power consumption. The experimental chip fabricated by a standard 0.35 μm 2P4M CMOS process shows more than 10 MHz readout rate with less than 70 mW power consumption under 3.3 V supply voltage at 77-150 K operated temperatures. And it occupies an area of 18 × 17 mm2.

  17. An Analog Circuit Approximation of the Discrete Wavelet Transform for Ultra Low Power Signal Processing in Wearable Sensor Nodes.

    PubMed

    Casson, Alexander J

    2015-01-01

    Ultra low power signal processing is an essential part of all sensor nodes, and particularly so in emerging wearable sensors for biomedical applications. Analog signal processing has an important role in these low power, low voltage, low frequency applications, and there is a key drive to decrease the power consumption of existing analog domain signal processing and to map more signal processing approaches into the analog domain. This paper presents an analog domain signal processing circuit which approximates the output of the Discrete Wavelet Transform (DWT) for use in ultra low power wearable sensors. Analog filters are used for the DWT filters and it is demonstrated how these generate analog domain DWT-like information that embeds information from Butterworth and Daubechies maximally flat mother wavelet responses. The Analog DWT is realised in hardware via g(m)C circuits, designed to operate from a 1.3 V coin cell battery, and provide DWT-like signal processing using under 115 nW of power when implemented in a 0.18 μm CMOS process. Practical examples demonstrate the effective use of the new Analog DWT on ECG (electrocardiogram) and EEG (electroencephalogram) signals recorded from humans. PMID:26694414

  18. An Analog Circuit Approximation of the Discrete Wavelet Transform for Ultra Low Power Signal Processing in Wearable Sensor Nodes

    PubMed Central

    Casson, Alexander J.

    2015-01-01

    Ultra low power signal processing is an essential part of all sensor nodes, and particularly so in emerging wearable sensors for biomedical applications. Analog signal processing has an important role in these low power, low voltage, low frequency applications, and there is a key drive to decrease the power consumption of existing analog domain signal processing and to map more signal processing approaches into the analog domain. This paper presents an analog domain signal processing circuit which approximates the output of the Discrete Wavelet Transform (DWT) for use in ultra low power wearable sensors. Analog filters are used for the DWT filters and it is demonstrated how these generate analog domain DWT-like information that embeds information from Butterworth and Daubechies maximally flat mother wavelet responses. The Analog DWT is realised in hardware via gmC circuits, designed to operate from a 1.3 V coin cell battery, and provide DWT-like signal processing using under 115 nW of power when implemented in a 0.18 μm CMOS process. Practical examples demonstrate the effective use of the new Analog DWT on ECG (electrocardiogram) and EEG (electroencephalogram) signals recorded from humans. PMID:26694414

  19. AC magnetohydrodynamic microfluidic switch

    SciTech Connect

    Lemoff, A V; Lee, A P

    2000-03-02

    A microfluidic switch has been demonstrated using an AC Magnetohydrodynamic (MHD) pumping mechanism in which the Lorentz force is used to pump an electrolytic solution. By integrating two AC MHD pumps into different arms of a Y-shaped fluidic circuit, flow can be switched between the two arms. This type of switch can be used to produce complex fluidic routing, which may have multiple applications in {micro}TAS.

  20. Temperature-Dependent Short-Circuit Capability of Silicon Carbide Power MOSFETs

    DOE PAGESBeta

    Wang, Zhiqiang; Shi, Xiaojie; Tolbert, Leon M.; Wang, Fred; Liang, Zhenxian; Costinett, Daniel; Blalock, Benjamin J.

    2016-02-01

    Our paper presents a comprehensive short-circuit ruggedness evaluation and numerical investigation of up-to-date commercial silicon carbide (SiC) MOSFETs. The short-circuit capability of three types of commercial 1200-V SiC MOSFETs is tested under various conditions, with case temperatures from 25 to 200 degrees C and dc bus voltages from 400 to 750 V. It is found that the commercial SiC MOSFETs can withstand short-circuit current for only several microseconds with a dc bus voltage of 750 V and case temperature of 200 degrees C. Moreover, the experimental short-circuit behaviors are compared, and analyzed through numerical thermal dynamic simulation. Specifically, an electrothermalmore » model is built to estimate the device internal temperature distribution, considering the temperature-dependent thermal properties of SiC material. Based on the temperature information, a leakage current model is derived to calculate the main leakage current components (i.e., thermal, diffusion, and avalanche generation currents). Finally, numerical results show that the short-circuit failure mechanisms of SiC MOSFETs can be thermal generation current induced thermal runaway or high-temperature-related gate oxide damage.« less

  1. A comprehensive equivalent circuit model of all-vanadium redox flow battery for power system analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhao, Jiyun; Wang, Peng; Skyllas-Kazacos, Maria; Xiong, Binyu; Badrinarayanan, Rajagopalan

    2015-09-01

    Electrical equivalent circuit models demonstrate excellent adaptability and simplicity in predicting the electrical dynamic response of the all-vanadium redox flow battery (VRB) system. However, only a few publications that focus on this topic are available. The paper presents a comprehensive equivalent circuit model of VRB for system level analysis. The least square method is used to identify both steady-state and dynamic characteristics of VRB. The inherent features of the flow battery such as shunt current, ion diffusion and pumping energy consumption are also considered. The proposed model consists of an open-circuit voltage source, two parasitic shunt bypass circuits, a 1st order resistor-capacitor network and a hydraulic circuit model. Validated with experimental data, the proposed model demonstrates excellent accuracy. The mean-error of terminal voltage and pump consumption are 0.09 V and 0.49 W respectively. Based on the proposed model, self-discharge and system efficiency are studied. An optimal flow rate which maximizes the system efficiency is identified. Finally, the dynamic responses of the proposed VRB model under step current profiles are presented. Variables such as SOC and stack terminal voltage can be provided.

  2. Solid state power controllers

    NASA Technical Reports Server (NTRS)

    Gibbs, R. S.

    1973-01-01

    The rationale, analysis, design, breadboarding and testing of the incremental functional requirements are reported that led to the development of prototype 1 and 5 Amp dc and 1 Amp ac solid state power controllers (SSPC's). The SSPC's are to be considered for use as a replacement of electro-mechanical relays and circuit breakers in future spacecraft and aircraft. They satisfy the combined function of both the relay and circuit breaker and can be remotely controlled by small signals, typically 10 mA, 5 to 28 Vdc. They have the advantage over conventional relay/circuit breaker systems in that they can be located near utilization equipment and the primary ac or dc bus. The low level control, trip indication and status signals can be circuited by small guage wire for control, computer interface, logic, electrical multiplexing, unboard testing, and power management and distribution purposes. This results in increased system versatility at appreciable weight saving and increased reliability.

  3. Utility-Scale Power Router: Dynamic Control of Grid Assets Using Direct AC Converter Cells

    SciTech Connect

    2010-09-01

    ADEPT Project: Georgia Tech is developing a cost-effective, utility-scale power router that uses an enhanced transformer to more efficiently direct power on the grid. Existing power routing technologies are too expensive for widespread use, but the ability to route grid power to match real-time demand and power outages would significantly reduce energy costs for utilities, municipalities, and consumers. Georgia Tech is adding a power converter to an existing grid transformer to better control power flows at about 1/10th the cost of existing power routing solutions. Transformers convert the high-voltage electricity that is transmitted through the grid into the low-voltage electricity that is used by homes and businesses. The added converter uses fewer steps to convert some types of power and eliminates unnecessary power storage, among other improvements. The enhanced transformer is more efficient, and it would still work even if the converter fails, ensuring grid reliability.

  4. Study on AC-DC Electrical Conductivities in Warm Dense Matter Generated by Pulsed-power Discharge with Isochoric Vessel

    NASA Astrophysics Data System (ADS)

    Sasaki, Toru; Ohuchi, Takumi; Takahashi, Takuya; Kawaguchi, Yoshinari; Saito, Hirotaka; Miki, Yasutoshi; Takahashi, Kazumasa; Kikuchi, Takashi; Aso, Tsukasa; Harada, Nob.

    2016-03-01

    To observe AC and DC electrical conductivity in warm dense matter (WDM), we have demonstrated to apply the spectroscopic ellipsometry for a pulsed-power discharge with isochoric vessel. At 10 μs from the beginning of discharge, the generated parameters by using pulsed-power discharge with isochoric vessel are 0.1 ρ s (ρ s: solid density) of density and 4000 K of temperature, respectively. The DC electrical conductivity for above parameters is estimated to be 104 S/m. In order to measure the AC electrical conductivity, we have developed a four-detector spectroscopic ellipsometer with a multichannel spectrometer. The multichannel spectrometer, in which consists of a 16-channel photodiode array, a two-stages voltage adder, and a flat diffraction grating, has 10 MHz of the frequency response with covered visible spectrum. For applying the four-detector spectroscopic ellipsometer, we observe the each observation signal evolves the polarized behavior compared to the ratio as I 1/I 2.

  5. Modifications to the Fission Surface Power Primary Test Circuit (FSP-PTC)

    NASA Technical Reports Server (NTRS)

    Garber, Anne E.

    2008-01-01

    An actively pumped alkali metal flow circuit, designed and fabricated at the NASA Marshall Space Flight Center, underwent a range of tests at MSFC in early 2007. During this period, system transient responses and the performance of the liquid metal pump were evaluated. In May of 2007, the circuit was drained and cleaned to prepare for multiple modifications: the addition of larger upper and lower reservoirs, the installation of an annular linear induction pump (ALIP), and the inclusion of a closeable orifice in the test section. Modifications are now complete and testing has resumed. Performance of the ALIp, provided by Idaho National Laboratory (INL), is the subject of the first round ofexperimentation. This paper provides a summary of the tests conducted on the original circuit, details the physical changes that have since been made to it, and describes the current test program.

  6. Evaluation and optimization of short channel ferroelectric MOSFET for low power circuit application with BSIM4 and Landau theory

    NASA Astrophysics Data System (ADS)

    Li, Yang; Lian, Yong; Yao, Kui; Samudra, Ganesh S.

    2015-12-01

    Based on BSIM4 parameters of 45 nm metal gate/high-k CMOS process and Landau theory, gate and output characteristics of short channel ferroelectric MOSFET (FeFET) are evaluated to explore its optimal structure for low power circuit application. Unlike previously reported simulation results of long channel FeFET, our work reveals that its current-voltage performance is quite susceptible to the parasitic capacitance between the gate and drain. As a consequence, there is a large threshold voltage increase with drain voltage and output characteristics hardly get saturated, indicating that short channel FeFET is not suitable for analog circuit applications. One effective way to address the issues is to minimize the gate-to-drain parasitic overlap and fringing field capacitances. With the tool Purdue Emerging Technology Evaluator, the inverter performance consisting of modified FeFETs is also simulated. Compared with intrinsic inverter, its energy consumption per cycle is much lower at any supply voltage VDD and the propagation delay is also smaller at very low VDD. Our work shows that the optimized FeFET structure, designed by mitigating gate-to-drain parasitic, is suitable for both analog and digital low power circuit designs.

  7. Implementation of nanoscale circuits using dual metal gate engineered nanowire MOSFET with high-k dielectrics for low power applications

    NASA Astrophysics Data System (ADS)

    Charles Pravin, J.; Nirmal, D.; Prajoon, P.; Ajayan, J.

    2016-09-01

    This work covers the impact of dual metal gate engineered Junctionless MOSFET with various high-k dielectric in Nanoscale circuits for low power applications. Due to gate engineering in junctionless MOSFET, graded potential is obtained and results in higher electron velocity of about 31% for HfO2 than SiO2 in the channel region, which in turn improves the carrier transport efficiency. The simulation is done using sentaurus TCAD, ON current, OFF current, ION/IOFF ratio, DIBL, gain, transconductance and transconductance generation factor parameters are analysed. When using HfO2, DIBL shows a reduction of 61.5% over SiO2. The transconductance and transconductance generation factor shows an improvement of 44% and 35% respectively. The gain and output resistance also shows considerable improvement with high-k dielectrics. Using this device, inverter circuit is implemented with different high-k dielectric material and delay have been decreased by 4% with HfO2 when compared to SiO2. In addition, a significant reduction in power dissipation of the inverter circuit is obtained with high-k dielectric Dual Metal Surround Gate Junctionless Transistor than SiO2 based device. From the analysis, it is found that HfO2 will be a better alternative for the future nanoscale device.

  8. A novel ZePoC encoder for sinusoidal signals with a predictable accuracy for an AC power standard

    NASA Astrophysics Data System (ADS)

    Vennemann, T.; Frye, T.; Liu, Z.; Kahmann, M.; Mathis, W.

    2015-11-01

    In this paper we present an analytical formulation of a Zero Position Coding (ZePoC) encoder for an AC power standard based on class-D topologies. For controlling a class-D power stage a binary signal with special spectral characteristics will be generated by this ZePoC encoder for sinusoidal signals. These spectral characteristics have a predictable accuracy within a separated baseband to keep the noise floor below a specified level. Simulation results will validate the accuracy of this novel ZePoC encoder. For a real-time implementation of the encoder on a DSP/FPGA hardware architecture a trade-off between accuracy and speed of the ZePoC algorithm has to be made. Therefore the numerical effects of different floating point formats will be analyzed.

  9. Measurements of complex impedance in microwave high power systems with a new bluetooth integrated circuit.

    PubMed

    Roussy, Georges; Dichtel, Bernard; Chaabane, Haykel

    2003-01-01

    By using a new integrated circuit, which is marketed for bluetooth applications, it is possible to simplify the method of measuring the complex impedance, complex reflection coefficient and complex transmission coefficient in an industrial microwave setup. The Analog Devices circuit AD 8302, which measures gain and phase up to 2.7 GHz, operates with variable level input signals and is less sensitive to both amplitude and frequency fluctuations of the industrial magnetrons than are mixers and AM crystal detectors. Therefore, accurate gain and phase measurements can be performed with low stability generators. A mechanical setup with an AD 8302 is described; the calibration procedure and its performance are presented. PMID:15078067

  10. Driver circuit for solid state light sources

    DOEpatents

    Palmer, Fred; Denvir, Kerry; Allen, Steven

    2016-02-16

    A driver circuit for a light source including one or more solid state light sources, a luminaire including the same, and a method of so driving the solid state light sources are provided. The driver circuit includes a rectifier circuit that receives an alternating current (AC) input voltage and provides a rectified AC voltage. The driver circuit also includes a switching converter circuit coupled to the light source. The switching converter circuit provides a direct current (DC) output to the light source in response to the rectified AC voltage. The driver circuit also includes a mixing circuit, coupled to the light source, to switch current through at least one solid state light source of the light source in response to each of a plurality of consecutive half-waves of the rectified AC voltage.

  11. A new rectenna circuit using a bow-tie antenna for the conversion of microwave power to dc power

    NASA Technical Reports Server (NTRS)

    Tran, Michael; Nguyen, Cam

    1993-01-01

    The novel rectenna circuit presented, which integrated a bowtie antenna with a diode, is capable of broadband, high-efficiency operation, and is insensitive to incident field angle. The device is noted, moreover, to behave as a lowpass filter for dc output. For 2.45 GHz operation, a 79-percent conversion efficiency has been demonstrated.

  12. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    NASA Astrophysics Data System (ADS)

    Sulaeman, M. Y.; Widita, R.

    2014-09-01

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20-100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of -1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.

  13. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    SciTech Connect

    Sulaeman, M. Y.; Widita, R.

    2014-09-30

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20–100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of −1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.

  14. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Twelve: Series AC Resistive-Reactive Circuits. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on series alternating current resistive-reactive circuits is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting.…

  15. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Fourteen: Parallel AC Resistive-Reactive Circuits. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on parallel alternating current resistive-reaction circuits is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian…

  16. Transport ac loss in a rectangular thin strip with power-law E (J) relation

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Chen, Du-Xing; Fan, Yu; Fang, Jin

    2015-01-01

    Transport ac losses of a rectangular thin strip obeying relation E /Ec =(J /Jc) n with a fixed critical current Ic and n = 5, 10, 20, 30 , and 40 are accurately computed at a fixed frequency f as functions of the current amplitude Im . The results may be interpolated and scaled to those at any values of Ic, f , and 5 ⩽ n ⩽ 40 . Normalized in the same way as that in Norris' analytical formula derived from the critical-state model and converting f to a critical frequency fc , the modeling results may be better compared with the Norris formula and experimental data. A complete set of calculated modeling data are given with necessary formulas to be easily used by experimentalists in any particular case.

  17. Cryogenic direct current superconducting quantum interference device readout circuit

    NASA Astrophysics Data System (ADS)

    Mück, Michael; Korn, Matthias; Mugford, C. G. A.; Kycia, J. B.

    2005-07-01

    We have designed and tested a superconducting quantum interference device (SQUID) readout circuit, which can be operated at liquid helium temperatures. Although room-temperature SQUID electronics perform well, it is sometimes desirable to keep the wires between SQUID, readout electronics, and feedback coil as short as possible to minimize phase shifts and time delays. Cooling the readout circuit to low temperatures can also decrease its thermal noise. Our readout circuit uses conventional ac-flux modulation, which significantly reduces low frequency excess noise and drift in the preamplifier. In this case, simple complementary metal-oxide-semiconductor circuits with low power dissipation can be used as amplifier, phase-sensitive detector and integrator. The power dissipation of the complete readout is less than 15mW at 5V supply voltage.

  18. Powering an Implantable Minipump with a Multi-layered Printed Circuit Coil for Drug Infusion Applications in Rodents

    PubMed Central

    Givrad, Tina K.; Maarek, Jean-Michel I.; Moore, William H.; Holschneider, Daniel P.

    2014-01-01

    We report the use of a multi-layer printed coil circuit for powering (36–94 mW) an implantable microbolus infusion pump (MIP) that can be activated remotely for use in drug infusion in nontethered, freely moving small animals. This implantable device provides a unique experimental tool with applications in the fields of animal behavior, pharmacology, physiology, and functional brain imaging. Two different designs are described: a battery-less pump usable when the animal is inside a home-cage surrounded by a primary inductive coil and a pump powered by a rechargeable battery that can be used for studies outside the homecage. The use of printed coils for powering of small devices by inductive power transfer presents significant advantages over similar approaches using hand-wound coils in terms of ease of manufacturing and uniformity of design. The high efficiency of a class-E oscillator allowed powering of the minipumps without the need for close physical contact of the primary and secondary coils, as is currently the case for most devices powered by inductive power transfer. PMID:20033778

  19. Low-power low-noise analog circuits for on-focal-plane signal processing of infrared sensors

    NASA Astrophysics Data System (ADS)

    Pain, Bedabrata; Mendis, Sunetra K.; Schober, Robert C.; Nixon, Robert H.; Fossum, Eric R.

    1993-10-01

    On-focal-plane signal processing circuits for enhancement of IR imager performance are presented. To enable the detection of high background IR images, an in-pixel current-mode background suppression scheme is presented. The background suppression circuit consists of a current memory placed in the feedback loop of a CTIA and is designed for a thousand-fold suppression of the background flux, thereby easing circuit design constraints, and assuring BLIP operation even with detectors having large response non-uniformities. For improving the performance of low-background IR imagers, an on-chip column-parallel analog-to-digital converter (ADC) is presented. The design of a 10-bit ADC with 50 micrometers pitch and based on sigma-delta ((Sigma) -(Delta) ) modulation is presented. A novel IR imager readout technique featuring photoelectron counting in the unit cell is presented for ultra-low background applications. The output of the unit cell is a digital word corresponding to the incident flux density and the readout is noise free. The design of low-power (< 5 (mu) W), sub-electron input-referred noise, high-gain (> 100,000), small real estate (60 micrometers pitch) self-biased CMOS amplifiers required for photon counting are presented.

  20. Modifications and Modeling of the Fission Surface Power Primary Test Circuit (FSP-PTC)

    NASA Technical Reports Server (NTRS)

    Garber, Anne E.

    2008-01-01

    An actively pumped alkali metal flow circuit, designed and fabricated at the NASA Marshall Space Flight Center, underwent a range of tests at MSFC in early 2007. During this period, system transient responses and the performance of the liquid metal pump were evaluated. In May of2007, the circuit was drained and cleaned to prepare for multiple modifications: the addition of larger upper and lower reservoirs, the installation of an annular linear induction pump (ALIP), and the inclusion of a closeable orifice in the test section. Performance of the ALIP, provided by Idaho National Laboratory (INL), will be evaluated when testing resumes. Data from the first round of testing has been used to refine the working system model, developed using the Generalized Fluid System Simulation Program (GFSSP). This paper covers the modifications of the FSP-PTC and the updated GFSSP system model.

  1. Recent Updates to the Fission Surface Power Primary Test Circuit (FSP-PTC)

    NASA Technical Reports Server (NTRS)

    Garber, Anne E.

    2008-01-01

    An actively pumped alkali metal flow circuit, designed and fabricated at the NASA Marshall Space Flight Center, underwent a range of tests at MSFC in early 2007. During this period, system transient responses and the performance of the liquid metal pump were evaluated. In May of 2007, the circuit was drained and cleaned to prepare for multiple modifications: the addition of larger upper and lower reservoirs, the installation of an annular linear induction pump (ALIP), and the inclusion of a closeable orifice in the test section. Modifications are now complete and testing has resumed. Performance of the ALIP, provided by Idaho National Laboratory (1NL), is the subject of the first round of experimentation. This presentation details the physical changes made to the FSP-PTC and the current test program.

  2. DC CIRCUIT POWERED BY ORBITAL MOTION: MAGNETIC INTERACTIONS IN COMPACT OBJECT BINARIES AND EXOPLANETARY SYSTEMS

    SciTech Connect

    Lai Dong

    2012-09-20

    The unipolar induction DC circuit model, originally developed by Goldreich and Lynden-Bell for the Jupiter-Io system, has been applied to different types of binary systems in recent years. We show that there exists an upper limit to the magnetic interaction torque and energy dissipation rate in such a model. This arises because when the resistance of the circuit is too small, the large current flow severely twists the magnetic flux tube connecting the two binary components, leading to the breakdown of the circuit. Applying this limit, we find that in coalescing neutron star binaries, magnetic interactions produce negligible correction to the phase evolution of the gravitational waveform, even for magnetar-like field strengths. However, energy dissipation in the binary magnetosphere may still give rise to electromagnetic radiation prior to the final merger. For ultracompact white dwarf binaries, we find that unipolar induction does not provide adequate energy dissipation to explain the observed X-ray luminosities of several sources. For exoplanetary systems containing close-in Jupiters or super-Earths, the magnetic torque and energy dissipation induced by the orbital motion are negligible, except possibly during the early T Tauri phase, when the stellar magnetic field is stronger than 10{sup 3} G.

  3. Historical Trends and Interactive Relationship in Establishment of the Method of Symmetrical Coordinates and AC Network Analyzer

    NASA Astrophysics Data System (ADS)

    Goto, Masuo

    This paper reviews historical trends of electric power system simulation technology focusing on the method of symmetrical coordinates and ac network analyzer. The method of symmetrical coordinates was proposed by C. L. Fortescue in 1918. The method of symmetrical coordinates was refined from the original usage and became very easy application form for ac network analyses by S. Bekku in Japan. The origin of ac network analyzer was invented in 1925. Ac network analyzer was improved greatly in its operation by applying the method of symmetrical coordinates particularly in analyses of power networks under unsymmetrical conditions. On the other hand, the method of symmetrical coordinates was improved by the idea of equivalent circuit which was born from application of the method to ac network analyzer. This paper describes historical interactive relationship in establishment of the method of symmetrical coordinates and ac network analyzer.

  4. Principles of solid-state power conversion

    NASA Astrophysics Data System (ADS)

    Tarter, R. E.

    1985-12-01

    The purpose of this book is to assemble, in one place, the comprehensive tools necessary to meet the growing demands placed upon solid-state power conversion equipment. Aspects of transient analysis, circuit analysis, and waveforms are discussed, taking into account waveform relations, magnetic fields, dielectric fields, the RL circuit, the RC circuit, the RLC circuit, the RLCR circuit with a DC input, AC circuit analysis, and components scaling. Semiconductors and resistors are considered along with capacitors, transformers, inductors, conductors, rectifiers and filters, phase-control circuits, transistor inverters, thyristor inverters, switching regulators, DC-DC converters, protection and safety, electromagnetic compatibility and grounding, semiconductor and equipment cooling, reliability and quality, regulated power supplies, and uninterruptible power systems. Attention is given to magnetic materials, toroid tape core transformers, permalloy powder cores, a six-phase dual bridge, thermal conduction and resistance, heat pipes, and thermoelectric coolers.

  5. Micropower circuits for bidirectional wireless telemetry in neural recording applications.

    PubMed

    Neihart, Nathan M; Harrison, Reid R

    2005-11-01

    State-of-the art neural recording systems require electronics allowing for transcutaneous, bidirectional data transfer. As these circuits will be implanted near the brain, they must be small and low power. We have developed micropower integrated circuits for recovering clock and data signals over a transcutaneous power link. The data recovery circuit produces a digital data signal from an ac power waveform that has been amplitude modulated. We have also developed an FM transmitter with the lowest power dissipation reported for biosignal telemetry. The FM transmitter consists of a low-noise biopotential amplifier and a voltage controlled oscillator used to transmit amplified neural signals at a frequency near 433 MHz. All circuits were fabricated in a standard 0.5-microm CMOS VLSI process. The resulting chip is powered through a wireless inductive link. The power consumption of the clock and data recovery circuits is measured to be 129 microW; the power consumption of the transmitter is measured to be 465 microW when using an external surface mount inductor. Using a parasitic antenna less than 2 mm long, a received power level was measured to be -59.73 dBm at a distance of one meter. PMID:16285399

  6. Piezoelectric drive circuit

    DOEpatents

    Treu, C.A. Jr.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

  7. Piezoelectric drive circuit

    DOEpatents

    Treu, Jr., Charles A.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

  8. Power conversion distribution system using a resonant high-frequency AC link

    NASA Technical Reports Server (NTRS)

    Sood, P. K.; Lipo, T. A.

    1986-01-01

    Static power conversion systems based on a resonant high frequency (HF) link offers a significant reduction in the size and weight of the equipment over that achieved with conventional approaches, especially when multiple sources and loads are to be integrated. A faster system response and absence of audible noise are the other principal characteristics of such systems. A conversion configuration based on a HF link which is suitable for applications requiring distributed power is proposed.

  9. Self-stabilization techniques for intermediate power level in stacked-Vdd integrated circuits using DC-balanced coding methods

    NASA Astrophysics Data System (ADS)

    Kohara, Yusuke; Kubo, Naoya; Nishiyama, Tomofumi; Koizuka, Taiki; Alimudin, Mohammad; Rahmat, Amirul; Okamura, Hitoshi; Yamanokuchi, Tomoyuki; Nakamura, Kazuyuki

    2016-04-01

    Two new parallel bus coding methods for generating a DC-balanced code with additional bits are proposed to achieve the self-stabilization of the intermediate power level in Stacked-Vdd integrated circuits. They contribute to producing a uniform switching current in parallel inputs and outputs (I/Os). Type I coding minimizes the difference in the number of switchings between the upper and lower CMOS I/Os by 8B/10B coding followed by toggle conversion. Type II coding, in which the multi-value running disparity control feature is integrated into the bus-invert coding, requires only one redundant bit for any wider bus. Their DC-balanced feature and the stability effect of the intermediate power level in the Stacked-Vdd structure were experimentally confirmed from the measurement results obtained from the developed test chips.

  10. Linear integrated circuits

    NASA Astrophysics Data System (ADS)

    Young, T.

    This book is intended to be used as a textbook in a one-semester course at a variety of levels. Because of self-study features incorporated, it may also be used by practicing electronic engineers as a formal and thorough introduction to the subject. The distinction between linear and digital integrated circuits is discussed, taking into account digital and linear signal characteristics, linear and digital integrated circuit characteristics, the definitions for linear and digital circuits, applications of digital and linear integrated circuits, aspects of fabrication, packaging, and classification and numbering. Operational amplifiers are considered along with linear integrated circuit (LIC) power requirements and power supplies, voltage and current regulators, linear amplifiers, linear integrated circuit oscillators, wave-shaping circuits, active filters, DA and AD converters, demodulators, comparators, instrument amplifiers, current difference amplifiers, analog circuits and devices, and aspects of troubleshooting.

  11. Modifications and Modelling of the Fission Surface Power Primary Test Circuit (FSP-PTC)

    NASA Technical Reports Server (NTRS)

    Garber, Ann E.

    2008-01-01

    An actively pumped alkali metal flow circuit, designed and fabricated at the NASA Marshall Space Flight Center, underwent a range of tests at MSFC in early 2007. During this period, system transient responses and the performance of the liquid metal pump were evaluated. In May of 2007, the circuit was drained and cleaned to prepare for multiple modifications: the addition of larger upper and lower reservoirs, the installation of an annular linear induction pump (ALIP), and the inclusion of the Single Flow Cell Test Apparatus (SFCTA) in the test section. Performance of the ALIP, provided by Idaho National Laboratory (INL), will be evaluated when testing resumes. The SFCTA, which will be tested simultaneously, will provide data on alkali metal flow behavior through the simulated core channels and assist in the development of a second generation thermal simulator. Additionally, data from the first round of testing has been used to refine the working system model, developed using the Generalized Fluid System Simulation Program (GFSSP). This paper covers the modifications of the FSP-PTC and the updated GFSSP system model.

  12. Sense circuit arrangement

    NASA Technical Reports Server (NTRS)

    Bohning, Oliver D. (Inventor)

    1976-01-01

    A unique, two-node sense circuit is disclosed. The circuit includes a bridge comprised of resistance elements and a differential amplifier. The two-node circuit is suitably adapted to be arranged in an array comprised of a plurality of discrete bridge-amplifiers which can be selectively energized. The circuit is arranged so as to form a configuration with minimum power utilization and a reduced number of components and interconnections therebetween.

  13. 21 CFR 880.5510 - Non-AC-powered patient lift.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... hydraulic, battery, or mechanically powered device, either fixed or mobile, used to lift and transport a.... The device includes straps and a sling to support the patient. (b) Classification. Class I (general controls). The device is exempt from the premarket notification procedures in subpart E of part 807 of...

  14. Characterization and snubbing of a bidirectional MCT in a resonant ac link converter

    NASA Technical Reports Server (NTRS)

    Lee, Tony; Elbuluk, Malik E.; Zinger, Donald S.

    1993-01-01

    The MOS-Controlled Thyristor (MCT) is emerging as a powerful switch that combines the better characteristics of existing power devices. A study of switching stresses on an MCT switch under zero voltage resonant switching is presented. The MCT is used as a bidirectional switch in an ac/ac pulse density modulated inverter for induction motor drive. Current and voltage spikes are observed and analyzed with variations in the timing of the switching. Different snubber circuit configurations are under investigation to minimize the effect of these transients. The results will be extended to study and test the MCT switching in a medium power (5 hp) induction motor drive.

  15. Infrared Thermography as Applied to Thermal Testing of Power Systems Circuit Boards.

    NASA Astrophysics Data System (ADS)

    Miles, Jonathan James

    All operational electronic equipment dissipates some amount of energy in the form of infrared radiation. Faulty electronic components on a printed circuit board can be categorized as hard (functional) or soft (latent functional). Hard faults are those which are detected during a conventional manufacturing electronic test process. Soft failures, in contrast, are those which are undetectable through conventional testing, but which manifest themselves after a product has been placed into service. Such field defective modules ultimately result in operational failure and subsequently enter a manufacturer's costly repair process. While thermal imaging systems are being used increasingly in the electronic equipment industry as a product-testing tool, applications have primarily been limited to product design or repair processes, with minimal use in a volume manufacturing environment. Use of thermal imaging systems in such an environment has mostly been limited to low-volume products or random screening of high-volume products. Thermal measurements taken in a manufacturing environment are often taken manually, thus defeating their capability of rapid data acquisition and constraining their full potential in a high-volume manufacturing process. Integration of a thermal measurement system with automated testing equipment is essential for optimal use of expensive infrared measurement tools in a high-volume manufacturing environment. However, such a marriage presents problems with respect to both existing manufacturing test processes and infrared measurement techniques. Methods are presented in this dissertation to test automatically for latent faults, those which elude detection during conventional electronic testing, on printed circuit boards. These methods are intended for implementation in a volume manufacturing environment and involve the application of infrared imaging tools. Successful incorporation of infrared testing into existing test processes requires that: PASS

  16. TRIAC/SCR proportional control circuit

    DOEpatents

    Hughes, Wallace J.

    1999-01-01

    A power controller device which uses a voltage-to-frequency converter in conjunction with a zero crossing detector to linearly and proportionally control AC power being supplied to a load. The output of the voltage-to frequency converter controls the "reset" input of a R-S flip flop, while an "0" crossing detector controls the "set" input. The output of the flip flop triggers a monostable multivibrator controlling the SCR or TRIAC firing circuit connected to the load. Logic gates prevent the direct triggering of the multivibrator in the rare instance where the "reset" and "set" inputs of the flip flop are in coincidence. The control circuit can be supplemented with a control loop, providing compensation for line voltage variations.

  17. TRIAC/SCR proportional control circuit

    DOEpatents

    Hughes, W.J.

    1999-04-06

    A power controller device is disclosed which uses a voltage-to-frequency converter in conjunction with a zero crossing detector to linearly and proportionally control AC power being supplied to a load. The output of the voltage-to frequency converter controls the ``reset`` input of a R-S flip flop, while an ``0`` crossing detector controls the ``set`` input. The output of the flip flop triggers a monostable multivibrator controlling the SCR or TRIAC firing circuit connected to the load. Logic gates prevent the direct triggering of the multivibrator in the rare instance where the ``reset`` and ``set`` inputs of the flip flop are in coincidence. The control circuit can be supplemented with a control loop, providing compensation for line voltage variations. 9 figs.

  18. Tool for a configurable integrated circuit that uses determination of dynamic power consumption

    NASA Technical Reports Server (NTRS)

    French, Matthew C. (Inventor); Wang, Li (Inventor); Agarwal, Deepak (Inventor); Davoodi, Azadeh (Inventor)

    2011-01-01

    A configurable logic tool that allows minimization of dynamic power within an FPGA design without changing user-entered specifications. The minimization of power may use minimized clock nets as a first order operation, and a second order operation that minimizes other factors, such as area of placement, area of clocks and/or slack.

  19. Mechanically flexible nanoscale silicon integrated circuits powered by photovoltaic energy harvesters

    NASA Astrophysics Data System (ADS)

    Shahrjerdi, D.; Bedell, S. W.; Khakifirooz, A.; Cheng, K.

    2016-03-01

    In this work, we demonstrate mechanically flexible extremely thin silicon on insulator (ETSOI) ring oscillators with a stage delay of ∼16 ps at a power supply voltage of 0.9 V. Extensive electrical analyses of the flexible ETSOI devices reveal the unchanged properties of the devices during the layer transfer process. Furthermore, we discuss the use of flexible silicon and gallium arsenide photovoltaic energy harvesters for powering flexible ETSOI ring oscillators under different illumination conditions. Our results illustrate innovative pathways for the implementation of optically powered flexible ETSOI technology in future flexible hybrid electronics.

  20. Power Oscillator Circuit Modeling And Redesign For The Particle Beam Fusion Accelerator II (PBFA-II) Switch Trigger Laser

    NASA Astrophysics Data System (ADS)

    Smith, David L.; Hamil, Roy A.; Prestwich, Kenneth R.; Rohwein, Gerald J.; Donovan, Guy L.; Schaub, Charles M.

    1987-05-01

    The energy output and reliability of the multi-joule, injection-locked KrF laser used to trigger the PBFA II accelerator gas switches were improved through modifications identified in modeling the Blumlein driver circuit for the power oscillator. A combination of the SCEPTRE1 network solver code and JASON2 electrostatic field code were used to model the laser pulse-forming circuit in its single-channel rail gap configuration and modified versions with three or five discrete switches across the 1.45-m-wide, water-insulated transmission line. Three regularly spaced trigatron spark gaps resulted in a more uniformly driven laser volume with lower variations in voltages (10%) and rise times (9%) along its length. With the new configuration, over 3000 shots have been recorded without a single misfire compared to an average of ---25 shots before a prefire with the original design. The gas mix and pressure had to be optimized to match a given driver pulse voltage and rise time to achieve maximum performance from the laser. We summarize the model results which led to our decision to change the Blumlein switch configuration.

  1. Generation of sonic power during welding

    NASA Technical Reports Server (NTRS)

    Mc Campbell, W. M.

    1969-01-01

    Generation of intense sonic and ultrasonic power in the weld zone, close to the puddle, reduces the porosity and refinement of the grain. The ac induction brazing power supply is modified with long cables for deliberate addition of resistance to that circuit. The concept is extensible to the molding of metals and plastics.

  2. Power Minimization for Dual- and Triple-Supply Digital Circuits via Integer Linear Programming

    NASA Astrophysics Data System (ADS)

    Ahn, Ki-Yong; Kyung, Chong-Min

    This paper proposes an Integer Linear Programming (ILP)-based power minimization method by partitioning into regions, first, with three different VDD's(PM3V), and, secondly, with two different VDD's(PM2V). To reduce the solving time of triple-VDD case (PM3V), we also proposed a partitioned ILP method(p-PM3V). The proposed method provides 29% power saving on the average in the case of triple-VDD compared to the case of single VDD. Power reduction of PM3V compared to Clustered Voltage Scaling (CVS) was about 18%. Compared to the unpartitioned ILP formulation(PM3V), the partitioned ILP method(p-PM3V) reduced the total solution time by 46% at the cost of additional power consumption within 1.3%.

  3. A self-powered switching circuit for piezoelectric energy harvesting with velocity control

    NASA Astrophysics Data System (ADS)

    Chen, Y.-Y.; Vasic, D.; Costa, F.; Wu, W.-J.; Lee, C.-K.

    2012-02-01

    The rapid development of low-power consumption electronics and the possibility of harvesting energy from environmental sources can make totally autonomous wireless devices. Using piezoelectric materials to convert the mechanical energy into electrical energy for batteries of wireless devices in order to extend the lifetime is the focus in many researches in the recent years. It is important and efficient to improve the energy harvesting by designing an optimal interface between piezoelectric device and the load. In this paper, a self-powered piezoelectric energy harvesting device is proposed based on the velocity control synchronized switching harvesting on inductor technique (V-SSHI). Comparing to the standard full bridge rectifier technique, the synchronized switching harvesting on inductor (SSHI) technique can highly improve harvesting efficiency. However, in real applications when the energy harvesting device is associated with wireless sensor network (WSN), the SSHI technique needs to be implemented and requires being self-powered. The conventional technique to implement self-powered SSHI is to use bipolar transistors as voltage peak detector. In this paper, a new self-powered device is proposed, using velocity control to switch the MOSFET more accurately than in the conventional technique. The concept of design and the theoretical analysis are presented in detail. Experimental results are examined.

  4. SEMICONDUCTOR INTEGRATED CIRCUITS: A high-performance low-power CMOS AGC for GPS application

    NASA Astrophysics Data System (ADS)

    Qianqian, Lei; Qiming, Xu; Zhiming, Chen; Yin, Shi; Min, Lin; Hailong, Jia

    2010-02-01

    A wide tuning range, low power CMOS automatic gain control (AGC) with a simple architecture is proposed. The proposed AGC is composed of a variable gain amplifier (VGA), a comparator and a charge pump, and the dB-linear gain is controlled by the charge pump. The AGC was implemented in a 0.18 μm CMOS technology. The dynamic range of the VGA is more than 55 dB, the bandwidth is 30 MHz, and the gain error is lower than ±1.5 dB over the full temperature and gain ranges. It is designed for GPS application and is fed from a single 1.8 V power supply. The AGC power consumption is less than 5 mW, and the area of the AGC is 700 × 450 μm2.

  5. Wireless pad-free integrated circuit debugging by powering modulation and lock-in infrared sensing

    NASA Astrophysics Data System (ADS)

    León, J.; Perpiñà, X.; Vellvehi, M.; Baldi, A.; Sacristán, J.; Jordà, X.

    2013-02-01

    In this work, non-functional radio frequency identification pad-free chips are analyzed by modulating its powering scheme and noninvasively sensing their surface infrared (IR) emission with an IR camera following lock-in strategies. This approach is justified by the chip wireless powering strategy and its pad-free design. As a result, latch-up triggering has been identified as the failure mechanism, also showing that electrical figures of merit can be extracted non-invasively (i.e., coils coupling frequency and its bandwidth).

  6. Superconducting flux flow digital circuits

    DOEpatents

    Hietala, V.M.; Martens, J.S.; Zipperian, T.E.

    1995-02-14

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.

  7. Superconducting flux flow digital circuits

    DOEpatents

    Hietala, Vincent M.; Martens, Jon S.; Zipperian, Thomas E.

    1995-01-01

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs). Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics.

  8. Evolution of Automotive Chopper Circuits Towards Ultra High Efficiency and Power Density

    NASA Astrophysics Data System (ADS)

    Pavlovsky, Martin; Tsuruta, Yukinori; Kawamura, Atsuo

    Automotive industry is considered to be one of the main contributors to environmental pollution and global warming. Therefore, many car manufacturers are in near future planning to introduce hybrid electric vehicles (HEV), fuel cell electric vehicles (FCEV) and pure electric vehicles (EV) to make our cars more environmentally friendly. These new vehicles require highly efficient and small power converters. In recent years, considerable improvements were made in designing such converters. In this paper, an approach based on so called Snubber Assisted Zero Voltage and Zero Current Switching topology otherwise also known as SAZZ is presented. This topology has evolved to be one of the leaders in the field of highly efficient converters with high power densities. Evolution and main features of this topology are briefly discussed. Capabilities of the topology are demonstrated on two case study prototypes based on different design approaches. The prototypes are designed to be fully bi-directional for peak power output of 30kW. Both designs reached efficiencies close to 99% in wide load range. Power densities over 40kW/litre are attainable in the same time. Combination of MOSFET technology and SAZZ topology is shown to be very beneficial to converters designed for EV applications.

  9. SEMICONDUCTOR INTEGRATED CIRCUITS: A low power automatic gain control loop for a receiver

    NASA Astrophysics Data System (ADS)

    Guofeng, Li; Zhiqing, Geng; Nanjian, Wu

    2010-09-01

    This paper proposes a new structure to lower the power consumption of a variable gain amplifier (VGA) and keep the linearity of the VGA unchanged. The structure is used in a high rate amplitude-shift keying (ASK) based IF-stage. It includes an automatic gain control (AGC) loop and ASK demodulator. The AGC mainly consists of six-stage VGAs. The IF-stage is realized in 0.18 μm CMOS technology. The measurement results show that the power consumption of the whole system is very low. The system consumes 730 μA while operating at 1.8 V. The minimum ASK signal the system could detect is 0.7 mV (peak to peak amplitude).

  10. One-phase dual converter for two quadrant power control of superconducting magnets

    SciTech Connect

    Ehsani, M.; Kustom, R.I.; Boom, R.W.

    1985-01-01

    This paper presents the results of theoretical and experimental development of a new dc-ac-dc converter for superconducting magnet power supplies. The basic operating principles of the circuit are described followed by a theoretical treatment of the dynamics and control of the system. The successful results of the first experimental operation and control of such a circuit are presented and discussed.

  11. Development of a stereo-symmetrical nanosecond pulsed power generator composed of modularized avalanche transistor Marx circuits

    NASA Astrophysics Data System (ADS)

    Li, Jiang-Tao; Zhong, Xu; Cao, Hui; Zhao, Zheng; Xue, Jing; Li, Tao; Li, Zheng; Wang, Ya-Nan

    2015-09-01

    Avalanche transistors have been widely studied and used in nanosecond high voltage pulse generations. However, output power improvement is always limited by the low thermal capacities of avalanche transistors, especially under high repetitive working frequency. Parallel stacked transistors can effectively improve the output current but the controlling of trigger and output synchronism has always been a hard and complex work. In this paper, a novel stereo-symmetrical nanosecond pulsed power generator with high reliability was developed. By analyzing and testing the special performances of the combined Marx circuits, numbers of meaningful conclusions on the pulse amplitude, pulse back edge, and output impedance were drawn. The combining synchronism of the generator was confirmed excellent and lower conducting current through the transistors was realized. Experimental results showed that, on a 50 Ω resistive load, pulses with 1.5-5.2 kV amplitude and 5.3-14.0 ns width could be flexibly generated by adjusting the number of combined modules, the supply voltage, and the module type.

  12. Development of a stereo-symmetrical nanosecond pulsed power generator composed of modularized avalanche transistor Marx circuits.

    PubMed

    Li, Jiang-Tao; Zhong, Xu; Cao, Hui; Zhao, Zheng; Xue, Jing; Li, Tao; Li, Zheng; Wang, Ya-Nan

    2015-09-01

    Avalanche transistors have been widely studied and used in nanosecond high voltage pulse generations. However, output power improvement is always limited by the low thermal capacities of avalanche transistors, especially under high repetitive working frequency. Parallel stacked transistors can effectively improve the output current but the controlling of trigger and output synchronism has always been a hard and complex work. In this paper, a novel stereo-symmetrical nanosecond pulsed power generator with high reliability was developed. By analyzing and testing the special performances of the combined Marx circuits, numbers of meaningful conclusions on the pulse amplitude, pulse back edge, and output impedance were drawn. The combining synchronism of the generator was confirmed excellent and lower conducting current through the transistors was realized. Experimental results showed that, on a 50 Ω resistive load, pulses with 1.5-5.2 kV amplitude and 5.3-14.0 ns width could be flexibly generated by adjusting the number of combined modules, the supply voltage, and the module type. PMID:26429438

  13. A Power Hardware-in-the-Loop Platform with Remote Distribution Circuit Cosimulation

    SciTech Connect

    Palmintier, Bryan; Lundstrom, Blake; Chakraborty, Sudipta; Williams, Tess L.; Schneider, Kevin P.; Chassin, David P.

    2015-04-01

    This paper demonstrates the use of a novel cosimulation architecture that integrates hardware testing using Power Hardware-in-the-Loop (PHIL) with larger-scale electric grid models using off-the-shelf, non-PHIL software tools. This architecture enables utilities to study the impacts of emerging energy technologies on their system and manufacturers to explore the interactions of new devices with existing and emerging devices on the power system, both without the need to convert existing grid models to a new platform or to conduct in-field trials. The paper describes an implementation of this architecture for testing two residential-scale advanced solar inverters at separate points of common coupling. The same hardware setup is tested with two different distribution feeders (IEEE 123 and 8500 node test systems) modeled using GridLAB-D. In addition to simplifying testing with multiple feeders, the architecture demonstrates additional flexibility with hardware testing in one location linked via the Internet to software modeling in a remote location. In testing, inverter current, real and reactive power, and PCC voltage are well captured by the co-simulation platform. Testing of the inverter advanced control features is currently somewhat limited by the software model time step (1 sec) and tested communication latency (24 msec). Overshoot induced oscillations are observed with volt/VAR control delays of 0 and 1.5 sec, while 3.4 sec and 5.5 sec delays produced little or no oscillation. These limitations could be overcome using faster modeling and communication within the same co-simulation architecture.

  14. A coherent RC circuit

    NASA Astrophysics Data System (ADS)

    Gabelli, J.; Fève, G.; Berroir, J.-M.; Plaçais, B.

    2012-12-01

    We review the first experiment on dynamic transport in a phase-coherent quantum conductor. In our discussion, we highlight the use of time-dependent transport as a means of gaining insight into charge relaxation on a mesoscopic scale. For this purpose, we studied the ac conductance of a model quantum conductor, i.e. the quantum RC circuit. Prior to our experimental work, Büttiker et al (1993 Phys. Lett. A 180 364-9) first worked on dynamic mesoscopic transport in the 1990s. They predicted that the mesoscopic RC circuit can be described by a quantum capacitance related to the density of states in the capacitor and a constant charge-relaxation resistance equal to half of the resistance quantum h/2e2, when a single mode is transmitted between the capacitance and a reservoir. By applying a microwave excitation to a gate located on top of a coherent submicronic quantum dot that is coupled to a reservoir, we validate this theoretical prediction on the ac conductance of the quantum RC circuit. Our study demonstrates that the ac conductance is directly related to the dwell time of electrons in the capacitor. Thereby, we observed a counterintuitive behavior of a quantum origin: as the transmission of the single conducting mode decreases, the resistance of the quantum RC circuit remains constant while the capacitance oscillates.

  15. An RF energy harvesting power management circuit for appropriate duty-cycled operation

    NASA Astrophysics Data System (ADS)

    Shirane, Atsushi; Ito, Hiroyuki; Ishihara, Noboru; Masu, Kazuya

    2015-04-01

    In this study, we present an RF energy harvesting power management unit (PMU) for battery-less wireless sensor devices (WSDs). The proposed PMU realizes a duty-cycled operation that is divided into the energy charging time and discharging time. The proposed PMU detects two types of timing, thus, the appropriate timing for the activation can be recognized. The activation of WSDs at the proper timing leads to energy efficient operation and stable wireless communication. The proposed PMU includes a hysteresis comparator (H-CMP) and an RF signal detector (RF-SD) to detect the timings. The proposed RF-SD can operate without the degradation of charge efficiency by reusing the RF energy harvester (RF-EH) and H-CMP. The PMU fabricated in a 180 nm Si CMOS demonstrated the charge operation using the RF signal at 915 MHz and the two types of timing detection with less than 124 nW in the charge phase. Furthermore, in the active phase, the PMU generates a 0.5 V regulated power supply from the charged energy.

  16. Multiple piezo-patch energy harvesters integrated to a thin plate with AC-DC conversion: analytical modeling and numerical validation

    NASA Astrophysics Data System (ADS)

    Aghakhani, Amirreza; Basdogan, Ipek; Erturk, Alper

    2016-04-01

    Plate-like components are widely used in numerous automotive, marine, and aerospace applications where they can be employed as host structures for vibration based energy harvesting. Piezoelectric patch harvesters can be easily attached to these structures to convert the vibrational energy to the electrical energy. Power output investigations of these harvesters require accurate models for energy harvesting performance evaluation and optimization. Equivalent circuit modeling of the cantilever-based vibration energy harvesters for estimation of electrical response has been proposed in recent years. However, equivalent circuit formulation and analytical modeling of multiple piezo-patch energy harvesters integrated to thin plates including nonlinear circuits has not been studied. In this study, equivalent circuit model of multiple parallel piezoelectric patch harvesters together with a resistive load is built in electronic circuit simulation software SPICE and voltage frequency response functions (FRFs) are validated using the analytical distributedparameter model. Analytical formulation of the piezoelectric patches in parallel configuration for the DC voltage output is derived while the patches are connected to a standard AC-DC circuit. The analytic model is based on the equivalent load impedance approach for piezoelectric capacitance and AC-DC circuit elements. The analytic results are validated numerically via SPICE simulations. Finally, DC power outputs of the harvesters are computed and compared with the peak power amplitudes in the AC output case.

  17. InGaAs/InP heterojunction bipolar transistors for ultra-low power circuit applications

    SciTech Connect

    Chang, P.C.; Baca, A.G.; Hafich, M.J.; Ashby, C.I.

    1998-08-01

    For many modern day portable electronic applications, low power high speed devices have become very desirable. Very high values of f{sub T} and f{sub MAX} have been reported with InGaAs/InP heterojunction bipolar transistors (HBTs), but only under high bias and high current level operating conditions. An InGaAs/InP ultra-lowpower HBT with f{sub MAX} greater than 10 GHz operating at less than 20 {micro}A has been reported for the first time in this work. The results are obtained on a 2.5 x 5 {micro}m{sup 2} device, corresponding to less than 150 A/cm{sup 2} of current density. These are the lowest current levels at which f{sub MAX} {ge} 10 GHz has been reported.

  18. Generation of a Periodic Series of High-Power Ultra-Short Pulses in a Gyro-TWT with a Bleachable Cyclotron Absorber in the Feedback Circuit

    NASA Astrophysics Data System (ADS)

    Vilkov, M. N.; Ginzburg, N. S.; Denisov, G. G.; Zotova, I. V.; Sergeev, A. S.

    2016-01-01

    We demonstrate the possibility of forming a periodic series of ultra-short pulses, which has a peak power exceeding significantly the radiation power in stationary regimes, in a gyroresonance traveling-wave tube (gyro-TWT) with a bleachable cyclotron absorber in the feedback circuit. The mechanism of pulsed generation is similar to the method of passive mode locking, which is used widely in laser physics.

  19. 20 kHz main inverter unit. [for space station power supplies

    NASA Technical Reports Server (NTRS)

    Hussey, S.

    1989-01-01

    A proof-of-concept main inverter unit has demonstrated the operation of a pulse-width-modulated parallel resonant power stage topology as a 20-kHz ac power source driver, showing simple output regulation, parallel operation, power sharing and short-circuit operation. The use of a two-stage dc input filter controls the electromagnetic compatibility (EMC) characteristics of the dc power bus, and the use of an ac harmonic trap controls the EMC characteristics of the 20-kHz ac power bus.

  20. Measuring circuit

    DOEpatents

    Sun, Shan C.; Chaprnka, Anthony G.

    1977-01-11

    An automatic gain control circuit functions to adjust the magnitude of an input signal supplied to a measuring circuit to a level within the dynamic range of the measuring circuit while a log-ratio circuit adjusts the magnitude of the output signal from the measuring circuit to the level of the input signal and optimizes the signal-to-noise ratio performance of the measuring circuit.

  1. Ultralow power complementary inverter circuits using axially doped p- and n-channel Si nanowire field effect transistors

    NASA Astrophysics Data System (ADS)

    van, Ngoc Huynh; Lee, Jae-Hyun; Whang, Dongmok; Kang, Dae Joon

    2016-06-01

    We have successfully synthesized axially doped p- and n-type regions on a single Si nanowire (NW). Diodes and complementary metal-oxide-semiconductor (CMOS) inverter devices using single axial p- and n-channel Si NW field-effect transistors (FETs) were fabricated. We show that the threshold voltages of both p- and n-channel Si NW FETs can be lowered to nearly zero by effectively controlling the doping concentration. Because of the high performance of the p- and n-type Si NW channel FETs, especially with regard to the low threshold voltage, the fabricated NW CMOS inverters have a low operating voltage (<3 V) while maintaining a high voltage gain (~6) and ultralow static power dissipation (<=0.3 pW) at an input voltage of +/-3 V. This result offers a viable way for the fabrication of a high-performance high-density logic circuit using a low-temperature fabrication process, which makes it suitable for flexible electronics.We have successfully synthesized axially doped p- and n-type regions on a single Si nanowire (NW). Diodes and complementary metal-oxide-semiconductor (CMOS) inverter devices using single axial p- and n-channel Si NW field-effect transistors (FETs) were fabricated. We show that the threshold voltages of both p- and n-channel Si NW FETs can be lowered to nearly zero by effectively controlling the doping concentration. Because of the high performance of the p- and n-type Si NW channel FETs, especially with regard to the low threshold voltage, the fabricated NW CMOS inverters have a low operating voltage (<3 V) while maintaining a high voltage gain (~6) and ultralow static power dissipation (<=0.3 pW) at an input voltage of +/-3 V. This result offers a viable way for the fabrication of a high-performance high-density logic circuit using a low-temperature fabrication process, which makes it suitable for flexible electronics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01040g

  2. Remote reset circuit

    DOEpatents

    Gritzo, R.E.

    1985-09-12

    A remote reset circuit acts as a stand-along monitor and controller by clocking in each character sent by a terminal to a computer and comparing it to a given reference character. When a match occurs, the remote reset circuit activates the system's hardware reset line. The remote reset circuit is hardware based centered around monostable multivibrators and is unaffected by system crashes, partial serial transmissions, or power supply transients. 4 figs.

  3. Remote reset circuit

    DOEpatents

    Gritzo, Russell E.

    1987-01-01

    A remote reset circuit acts as a stand-alone monitor and controller by clocking in each character sent by a terminal to a computer and comparing it to a given reference character. When a match occurs, the remote reset circuit activates the system's hardware reset line. The remote reset circuit is hardware based centered around monostable multivibrators and is unaffected by system crashes, partial serial transmissions, or power supply transients.

  4. Exploring the roles of standard rectifying circuits on the performance of a nonlinear piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Tang, Lihua; Han, Yue; Hand, James; Harne, Ryan L.

    2016-04-01

    To enhance the energy conversion performance of piezoelectric vibration energy harvesters, such structures have been recently designed to leverage bandwidth-enhancing nonlinear dynamics. While key findings have been made, the majority of researchers have evaluated the opportunities when the harvesters are connected to pure resistive loads (AC interface). The alternating voltage generated by such energy harvesting systems cannot be directly utilized to power conventional electronics. Rectifying circuits are required to interface the device and electronic load but few efforts have considered how a standard rectifying DC interface circuit (DC interface) connected to a nonlinear piezoelectric energy harvester influences the system performance. The aim of this research is to begin exploring this critical feature of the nonlinear energy harvesting system. A nonlinear, monostable piezoelectric energy harvester (MPEH) is fabricated and evaluated to determine the generated power and useful operating bandwidth when connected to a DC interface. The nonlinearity is introduced into the harvester design by tuneable magnetic force. An equivalent circuit model of the MPEH is implemented with a user-defined nonlinear behavioral voltage source representative of the magnetic interaction. The model is validated comparing the open circuit voltage from circuit simulation and experiment. The practical energy harvesting capability of the MPEH connected to the AC and DC interface circuits are then investigated and compared, focusing on the influence of the varying load on the nonlinear dynamics and subsequent bandwidth and harvested power.

  5. Fast recovery, high voltage silicon diodes for AC motor controllers

    NASA Technical Reports Server (NTRS)

    Balodis, V.; Berman, A. H.; Gaugh, C.

    1982-01-01

    The fabrication and characterization of a high voltage, high current, fast recovery silicon diode for use in AC motor controllers, originally developed for NASA for use in avionics power supplies, is presented. The diode utilizes a positive bevel PIN mesa structure with glass passivation and has the following characteristics: peak inverse voltage - 1200 volts, forward voltage at 50 amperes - 1.5 volts, reverse recovery time of 200 nanoseconds. Characterization data for the diode, included in a table, show agreement with design concepts developed for power diodes. Circuit diagrams of the diode are also given.

  6. A PWM transistor inverter for an ac electric vehicle drive

    NASA Technical Reports Server (NTRS)

    Slicker, J. M.

    1981-01-01

    A prototype system consisting of closely integrated motor, inverter, and transaxle has been built in order to demonstrate the feasibility of a three-phase ac transistorized inverter for electric vehicle applications. The microprocessor-controlled inverter employs monolithic power transistors to drive an oil-cooled, three-phase induction traction motor at a peak output power of 30 kW from a 144 V battery pack. Transistor safe switching requirements are discussed, and a circuit is presented for recovering trapped snubber inductor energy at transistor turn-off.

  7. Ultralow power complementary inverter circuits using axially doped p- and n-channel Si nanowire field effect transistors.

    PubMed

    Van, Ngoc Huynh; Lee, Jae-Hyun; Whang, Dongmok; Kang, Dae Joon

    2016-06-01

    We have successfully synthesized axially doped p- and n-type regions on a single Si nanowire (NW). Diodes and complementary metal-oxide-semiconductor (CMOS) inverter devices using single axial p- and n-channel Si NW field-effect transistors (FETs) were fabricated. We show that the threshold voltages of both p- and n-channel Si NW FETs can be lowered to nearly zero by effectively controlling the doping concentration. Because of the high performance of the p- and n-type Si NW channel FETs, especially with regard to the low threshold voltage, the fabricated NW CMOS inverters have a low operating voltage (<3 V) while maintaining a high voltage gain (∼6) and ultralow static power dissipation (≤0.3 pW) at an input voltage of ±3 V. This result offers a viable way for the fabrication of a high-performance high-density logic circuit using a low-temperature fabrication process, which makes it suitable for flexible electronics. PMID:27240692

  8. Understanding Simple Circuits

    ERIC Educational Resources Information Center

    Mant, Jenny; Wilson, Helen

    2007-01-01

    Many envisage electricity as the "power" to "do things." They know that electricity needs "circuits" and that something is "flowing" in the circuits, but they are not sure what or why. Words such as "current" and "voltage" are part of electricity but their meaning, and the difference between them, is not always clear. In this article, the authors…

  9. Circuit for Driving Piezoelectric Transducers

    NASA Technical Reports Server (NTRS)

    Randall, David P.; Chapsky, Jacob

    2009-01-01

    The figure schematically depicts an oscillator circuit for driving a piezoelectric transducer to excite vibrations in a mechanical structure. The circuit was designed and built to satisfy application-specific requirements to drive a selected one of 16 such transducers at a regulated amplitude and frequency chosen to optimize the amount of work performed by the transducer and to compensate for both (1) temporal variations of the resonance frequency and damping time of each transducer and (2) initially unknown differences among the resonance frequencies and damping times of different transducers. In other words, the circuit is designed to adjust itself to optimize the performance of whichever transducer is selected at any given time. The basic design concept may be adaptable to other applications that involve the use of piezoelectric transducers in ultrasonic cleaners and other apparatuses in which high-frequency mechanical drives are utilized. This circuit includes three resistor-capacitor networks that, together with the selected piezoelectric transducer, constitute a band-pass filter having a peak response at a frequency of about 2 kHz, which is approximately the resonance frequency of the piezoelectric transducers. Gain for generating oscillations is provided by a power hybrid operational amplifier (U1). A junction field-effect transistor (Q1) in combination with a resistor (R4) is used as a voltage-variable resistor to control the magnitude of the oscillation. The voltage-variable resistor is part of a feedback control loop: Part of the output of the oscillator is rectified and filtered for use as a slow negative feedback to the gate of Q1 to keep the output amplitude constant. The response of this control loop is much slower than 2 kHz and, therefore, does not introduce significant distortion of the oscillator output, which is a fairly clean sine wave. The positive AC feedback needed to sustain oscillations is derived from sampling the current through the

  10. Power converter having improved terminal structure

    DOEpatents

    Radosevich, Lawrence D.; Kannenberg, Daniel G.; Phillips, Mark G.; Kaishian, Steven C.

    2007-03-06

    A terminal structure for power electronics circuits reduces the need for a DC bus and thereby the incidence of parasitic inductance. The structure is secured to a support that may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as by direct contact between the terminal assembly and AC and DC circuit components. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  11. Highly flexible self-powered sensors based on printed circuit board technology for human motion detection and gesture recognition.

    PubMed

    Fuh, Yiin-Kuen; Ho, Hsi-Chun

    2016-03-01

    In this paper, we demonstrate a new integration of printed circuit board (PCB) technology-based self-powered sensors (PSSs) and direct-write, near-field electrospinning (NFES) with polyvinylidene fluoride (PVDF) micro/nano fibers (MNFs) as source materials. Integration with PCB technology is highly desirable for affordable mass production. In addition, we systematically investigate the effects of electrodes with intervals in the range of 0.15 mm to 0.40 mm on the resultant PSS output voltage and current. The results show that at a strain of 0.5% and 5 Hz, a PSS with a gap interval 0.15 mm produces a maximum output voltage of 3 V and a maximum output current of 220 nA. Under the same dimensional constraints, the MNFs are massively connected in series (via accumulation of continuous MNFs across the gaps ) and in parallel (via accumulation of parallel MNFs on the same gap) simultaneously. Finally, encapsulation in a flexible polymer with different interval electrodes demonstrated that electrical superposition can be realized by connecting MNFs collectively and effectively in serial/parallel patterns to achieve a high current and high voltage output, respectively. Further improvement in PSSs based on the effect of cooperativity was experimentally realized by rolling-up the device into a cylindrical shape, resulting in a 130% increase in power output due to the cooperative effect. We assembled the piezoelectric MNF sensors on gloves, bandages and stockings to fabricate devices that can detect different types of human motion, including finger motion and various flexing and extensions of an ankle. The firmly glued PSSs were tested on the glove and ankle respectively to detect and harvest the various movements and the output voltage was recorded as ∼1.5 V under jumping movement (one PSS) and ∼4.5 V for the clenched fist with five fingers bent concurrently (five PSSs). This research shows that piezoelectric MNFs not only have a huge impact on harvesting various external

  12. Highly flexible self-powered sensors based on printed circuit board technology for human motion detection and gesture recognition

    NASA Astrophysics Data System (ADS)

    Fuh, Yiin-Kuen; Ho, Hsi-Chun

    2016-03-01

    In this paper, we demonstrate a new integration of printed circuit board (PCB) technology-based self-powered sensors (PSSs) and direct-write, near-field electrospinning (NFES) with polyvinylidene fluoride (PVDF) micro/nano fibers (MNFs) as source materials. Integration with PCB technology is highly desirable for affordable mass production. In addition, we systematically investigate the effects of electrodes with intervals in the range of 0.15 mm to 0.40 mm on the resultant PSS output voltage and current. The results show that at a strain of 0.5% and 5 Hz, a PSS with a gap interval 0.15 mm produces a maximum output voltage of 3 V and a maximum output current of 220 nA. Under the same dimensional constraints, the MNFs are massively connected in series (via accumulation of continuous MNFs across the gaps ) and in parallel (via accumulation of parallel MNFs on the same gap) simultaneously. Finally, encapsulation in a flexible polymer with different interval electrodes demonstrated that electrical superposition can be realized by connecting MNFs collectively and effectively in serial/parallel patterns to achieve a high current and high voltage output, respectively. Further improvement in PSSs based on the effect of cooperativity was experimentally realized by rolling-up the device into a cylindrical shape, resulting in a 130% increase in power output due to the cooperative effect. We assembled the piezoelectric MNF sensors on gloves, bandages and stockings to fabricate devices that can detect different types of human motion, including finger motion and various flexing and extensions of an ankle. The firmly glued PSSs were tested on the glove and ankle respectively to detect and harvest the various movements and the output voltage was recorded as ∼1.5 V under jumping movement (one PSS) and ∼4.5 V for the clenched fist with five fingers bent concurrently (five PSSs). This research shows that piezoelectric MNFs not only have a huge impact on harvesting various external

  13. Tevatron AC dipole system

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is an oscillating dipole magnet which can induce large amplitude oscillations without the emittance growth and decoherence. These properties make it a good tool to measure optics of a hadron synchrotron. The vertical AC dipole for the Tevatron is powered by an inexpensive high power audio amplifier since its operating frequency is approximately 20 kHz. The magnet is incorporated into a parallel resonant system to maximize the current. The use of a vertical pinger magnet which has been installed in the Tevatron made the cost relatively inexpensive. Recently, the initial system was upgraded with a more powerful amplifier and oscillation amplitudes up to 2-3{sigma} were achieved with the 980 GeV proton beam. This paper discusses details of the Tevatron AC dipole system and also shows its test results.

  14. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  15. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  16. Observer-based higher order sliding mode control of power factor in three-phase AC/DC converter for hybrid electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Liu, Jianxing; Laghrouche, Salah; Wack, Maxime

    2014-06-01

    In this paper, a full-bridge boost power converter topology is studied for power factor control, using output higher order sliding mode control. The AC/DC converters are used for charging the battery and super-capacitor in hybrid electric vehicles from the utility. The proposed control forces the input currents to track the desired values, which can control the output voltage while keeping the power factor close to one. Super-twisting sliding mode observer is employed to estimate the input currents and load resistance only from the measurement of output voltage. Lyapunov analysis shows the asymptotic convergence of the closed-loop system to zero. Multi-rate simulation illustrates the effectiveness and robustness of the proposed controller in the presence of measurement noise.

  17. A small-area low-power current readout circuit using two-stage conversion method for 64-channel CNT sensor arrays.

    PubMed

    Shin, Young-San; Lee, Seongsoo; Wee, Jae-Kyung; Song, Inchae

    2013-06-01

    In this paper, a small-area and low-power current readout circuit with a novel two-stage conversion method is presented for 64-channel CNT (carbon nanotube) sensor arrays. In the first stage, current of each CNT sensor is amplified by 64 active input current mirrors (AICMs). In the second stage, the amplified current is converted to a voltage level through the shared variable gain amplifier (S-VGA). Then the S-VGA output is digitalized by successive approximation register analog-to-digital converter (SAR-ADC). The proposed readout circuit significantly reduces chip area and power consumption, since VGA is shared over 64 channels and passive elements are used only in S-VGA. Fabricated chip area is 0.173 mm(2) in 0.13 μm CMOS technology. Measured power consumption and linearity error are 73.06 μW and 5.3%, respectively, at the input current range of 10 nA-10 μA and conversion rate of 640 samples/s. A prototype real-time CNT sensor system was implemented using the fabricated readout circuit, and successfully detected alcohol reaction. PMID:23853327

  18. ac-resistance-measuring instrument

    SciTech Connect

    Hof, P.J.

    1981-04-22

    An auto-ranging ac resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an ac excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance.

  19. Inrush Current Control Circuit

    NASA Technical Reports Server (NTRS)

    Cole, Steven W. (Inventor)

    2002-01-01

    An inrush current control circuit having an input terminal connected to a DC power supply and an output terminal connected to a load capacitor limits the inrush current that charges up the load capacitor during power up of a system. When the DC power supply applies a DC voltage to the input terminal, the inrush current control circuit produces a voltage ramp at the load capacitor instead of an abrupt DC voltage. The voltage ramp results in a constant low level current to charge up the load capacitor, greatly reducing the current drain on the DC power supply.

  20. Measurement and mitigation of corrosion on self-contained fluid filled (SCFF) submarine circuits for New York Power Authority: Volume 1 -- Engineering evaluation for potential corrosion. Final report

    SciTech Connect

    1998-10-01

    In 1987, the New York Power Authority (NYPA) installed a 345-kV submarine cable circuit across Long Island Sound between substations at Davenport Neck and Hempstead Harbor. During design and installation of the cable circuit, utility and cable manufacturers engineers identified corrosion as a possible problem for the cable system. They considered such effects in the cable design and discussed preliminary requirements for a cathodic protection system on Long Island Sound circuit. EPRI cosponsored this review of the corrosion effects with NYPA and Empire State Electric Energy Research Corp. (ESEERCO). Volume 1 of this report discusses the results from an in-depth evaluation of the self-contained fluid-filled (SCFF) cable construction materials and their susceptibility to corrosion. Volume 2 provides extended stray current field measurements and a preliminary design for a cathodic protection system to ensure cable service reliability. This study provides a blueprint for East or West Coast utilities evaluating site-specific corrosion processes and cable circuit protection methods suitable for underwater environments.

  1. The thermal process diagram and equipment of the secondary coolant circuit of a nuclear power station unit based on the BREST-OD-300 reactor installation for subcritical steam conditions

    NASA Astrophysics Data System (ADS)

    Nesterov, Yu. V.; Lisyanskii, A. S.; Makarova, E. I.; Bal'Va, L. Ya.; Prikhod'Ko, P. Yu.

    2011-06-01

    The 300-MWe power unit based on an experimental-demonstration two-circuit 700-MWt reactor installation with lead coolant is briefly described. The thermal process diagram of the secondary coolant circuit for the subcritical steam conditions 17 MPa and 505°C at the outlet from steam generators is presented.

  2. 30 CFR 77.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage circuits; circuit breakers. 77.800... COAL MINES Surface High-Voltage Distribution § 77.800 High-voltage circuits; circuit breakers. High-voltage circuits supplying power to portable or mobile equipment shall be protected by suitable...

  3. Development and application of an information-analytic system on the problem of flow accelerated corrosion of pipeline elements in the secondary coolant circuit of VVER-440-based power units at the Novovoronezh nuclear power plant

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Povarov, V. P.; Shipkov, A. A.; Gromov, A. F.; Kiselev, A. N.; Shepelev, S. V.; Galanin, A. V.

    2015-02-01

    Specific features relating to development of the information-analytical system on the problem of flow-accelerated corrosion of pipeline elements in the secondary coolant circuit of the VVER-440-based power units at the Novovoronezh nuclear power plant are considered. The results from a statistical analysis of data on the quantity, location, and operating conditions of the elements and preinserted segments of pipelines used in the condensate-feedwater and wet steam paths are presented. The principles of preparing and using the information-analytical system for determining the lifetime to reaching inadmissible wall thinning in elements of pipelines used in the secondary coolant circuit of the VVER-440-based power units at the Novovoronezh NPP are considered.

  4. ADDER CIRCUIT

    DOEpatents

    Jacobsohn, D.H.; Merrill, L.C.

    1959-01-20

    An improved parallel addition unit is described which is especially adapted for use in electronic digital computers and characterized by propagation of the carry signal through each of a plurality of denominationally ordered stages within a minimum time interval. In its broadest aspects, the invention incorporates a fast multistage parallel digital adder including a plurality of adder circuits, carry-propagation circuit means in all but the most significant digit stage, means for conditioning each carry-propagation circuit during the time period in which information is placed into the adder circuits, and means coupling carry-generation portions of thc adder circuit to the carry propagating means.

  5. AC-DC converter with an improved input current waveform

    SciTech Connect

    Yuvarajan, S.; Weng, D.F.; Chen, M.S.

    1995-12-31

    The paper proposes a new control scheme for an ac-dc converter that will reduce the total harmonic distortion in the input current while operating at an improved power factor. The circuit uses a diode rectifier whose output is varied by a boost regulator with a second-harmonic injected PWM. An approximate analysis shows that the addition of a second harmonic component in the PWM helps to reduce the third harmonic in the input current. The design parameters are obtained using digital simulation. The results obtained on an experimental converter are compared with the ones obtained from a conventional scheme.

  6. On lossless switched-capacitor power converters

    SciTech Connect

    Tse, C.K.; Wong, S.C.; Chow, M.H.L.

    1995-05-01

    This paper addresses the design of efficient switched-capacitor power converters. The discussion starts with a review of the fundamental limitation of switched-capacitor circuits which shows that the topology of such circuits and the ``forced`` step changes of capacitor voltages are the inherent attributes of power loss. Although the argument follows from a rather trivial result from basic circuit theory, it addresses an important issue on the maximum efficiency achievable in a switched-capacitor converter circuit. Based on the observed topological constraint of switched-capacitor converter circuits, the simplest lossless topology for AC/DC conversion is deduced. Also discussed is a simple version of lossless topology that achieves isolation between the source and the load. Finally, an experimental AC/DC switched-capacitor converter, based on the proposed idea, is presented which demonstrates an improved efficiency over other existing switched-capacitor converters. The proposed AC/DC converter contains no inductors and thus is suitable for custom IC implementation for very low power applications.

  7. Evaluation of semiconductor devices for Electric and Hybrid Vehicle (EHV) ac-drive applications, volume 1

    NASA Technical Reports Server (NTRS)

    Lee, F. C.; Chen, D. Y.; Jovanovic, M.; Hopkins, D. C.

    1985-01-01

    The results of evaluation of power semiconductor devices for electric hybrid vehicle ac drive applications are summarized. Three types of power devices are evaluated in the effort: high power bipolar or Darlington transistors, power MOSFETs, and asymmetric silicon control rectifiers (ASCR). The Bipolar transistors, including discrete device and Darlington devices, range from 100 A to 400 A and from 400 V to 900 V. These devices are currently used as key switching elements inverters for ac motor drive applications. Power MOSFETs, on the other hand, are much smaller in current rating. For the 400 V device, the current rating is limited to 25 A. For the main drive of an electric vehicle, device paralleling is normally needed to achieve practical power level. For other electric vehicle (EV) related applications such as battery charger circuit, however, MOSFET is advantageous to other devices because of drive circuit simplicity and high frequency capability. Asymmetrical SCR is basically a SCR device and needs commutation circuit for turn off. However, the device poses several advantages, i.e., low conduction drop and low cost.

  8. Power electronics for low power arcjets

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Hill, Gerald M.

    1991-01-01

    In anticipation of the needs of future light-weight, low-power spacecraft, arcjet power electronics in the 100 to 400 W operating range were developed. Limited spacecraft power and thermal control capacity of these small spacecraft emphasized the need for high efficiency. Power topologies similar to those in the higher 2 kW and 5 to 30 kW power range were implemented, including a four transistor bridge switching circuit, current mode pulse-width modulated control, and an output current averaging inductor with an integral pulse generation winding. Reduction of switching transients was accomplished using a low inductance power distribution network, and no passive snubber circuits were necessary for power switch protection. Phase shift control of the power bridge was accomplished using an improved pulse width modulation to phase shift converter circuit. These features, along with conservative magnetics designs allowed power conversion efficiencies of greater than 92.5 percent to be achieved into resistive loads over the entire operating range of the converter. Electromagnetic compatibility requirements were not considered in this work, and control power for the converter was derived from AC mains. Addition of input filters and control power converters would result in an efficiency of on the order of 90 percent for a flight unit. Due to the developmental nature of arcjet systems at this power level, the exact nature of the thruster/power processor interface was not quantified. Output regulation and current ripple requirements of 1 and 20 percent respectively, as well as starting techniques, were derived from the characteristics of the 2 kW system but an open circuit voltage in excess of 175 V was specified. Arcjet integration tests were performed, resulting in successful starts and stable arcjet operation at power levels as low as 240 W with simulated hydrazine propellants.

  9. A Study of University Students' Understanding of Simple Electric Circuits. Part 2: Batteries, Ohm's Law, Power Dissipated, Resistors in Parallel.

    ERIC Educational Resources Information Center

    Picciarelli, V.; And Others

    1991-01-01

    Results of a systematic investigation into university students' (n=236) misunderstandings of d.c. simple circuit operations are reported. These results provide evidence of various misconceptions present before and after teaching the following topics: a battery as a source of constant current; the functional relation expressed by Ohm's law; power…

  10. Sensor readout detector circuit

    DOEpatents

    Chu, D.D.; Thelen, D.C. Jr.

    1998-08-11

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.

  11. Sensor readout detector circuit

    DOEpatents

    Chu, Dahlon D.; Thelen, Jr., Donald C.

    1998-01-01

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems.

  12. Gallium Arsenide Domino Circuit

    NASA Technical Reports Server (NTRS)

    Yang, Long; Long, Stephen I.

    1990-01-01

    Advantages include reduced power and high speed. Experimental gallium arsenide field-effect-transistor (FET) domino circuit replicated in large numbers for use in dynamic-logic systems. Name of circuit denotes mode of operation, which logic signals propagate from each stage to next when successive stages operated at slightly staggered clock cycles, in manner reminiscent of dominoes falling in a row. Building block of domino circuit includes input, inverter, and level-shifting substages. Combinational logic executed in input substage. During low half of clock cycle, result of logic operation transmitted to following stage.

  13. "Printed-circuit" rectenna

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1977-01-01

    Rectifying antenna is less bulky structure for absorbing transmitted microwave power and converting it into electrical current. Printed-circuit approach, using microstrip technology and circularly polarized antenna, makes polarization orientation unimportant and allows much smaller arrays for given performance. Innovation is particularly useful with proposed electric vehicles powered by beam microwaves.

  14. 46 CFR 28.365 - Overcurrent protection and switched circuits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... a steering circuit, each circuit must be protected against both overload and short circuit. Each overcurrent device in a steering system power and control circuit must provide short circuit protection only... 46 Shipping 1 2012-10-01 2012-10-01 false Overcurrent protection and switched circuits....

  15. 46 CFR 28.365 - Overcurrent protection and switched circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... a steering circuit, each circuit must be protected against both overload and short circuit. Each overcurrent device in a steering system power and control circuit must provide short circuit protection only... 46 Shipping 1 2010-10-01 2010-10-01 false Overcurrent protection and switched circuits....

  16. 46 CFR 28.365 - Overcurrent protection and switched circuits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... a steering circuit, each circuit must be protected against both overload and short circuit. Each overcurrent device in a steering system power and control circuit must provide short circuit protection only... 46 Shipping 1 2013-10-01 2013-10-01 false Overcurrent protection and switched circuits....

  17. 46 CFR 28.365 - Overcurrent protection and switched circuits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... a steering circuit, each circuit must be protected against both overload and short circuit. Each overcurrent device in a steering system power and control circuit must provide short circuit protection only... 46 Shipping 1 2014-10-01 2014-10-01 false Overcurrent protection and switched circuits....

  18. 46 CFR 28.365 - Overcurrent protection and switched circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... a steering circuit, each circuit must be protected against both overload and short circuit. Each overcurrent device in a steering system power and control circuit must provide short circuit protection only... carrying capacity by a circuit breaker or fuse at the connection to the switchboard or distribution...

  19. Sequential Polarity-Reversing Circuit

    NASA Technical Reports Server (NTRS)

    Labaw, Clayton C.

    1994-01-01

    Proposed circuit reverses polarity of electric power supplied to bidirectional dc motor, reversible electro-mechanical actuator, or other device operating in direction depending on polarity. Circuit reverses polarity each time power turned on, without need for additional polarity-reversing or direction signals and circuitry to process them.

  20. ac bidirectional motor controller

    NASA Technical Reports Server (NTRS)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  1. System and component design and test of a 10 hp, 18,000 rpm AC dynamometer utilizing a high frequency AC voltage link, part 1

    NASA Astrophysics Data System (ADS)

    Lipo, Thomas A.; Alan, Irfan

    1991-06-01

    Hard and soft switching test results conducted with one of the samples of first generation MOS-controlled thyristor (MCTs) and similar test results with several different samples of second generation MCT's are reported. A simple chopper circuit is used to investigate the basic switching characteristics of MCT under hard switching and various types of resonant circuits are used to determine soft switching characteristics of MCT under both zero voltage and zero current switching. Next, operation principles of a pulse density modulated converter (PDMC) for three phase (3F) to 3F two-step power conversion via parallel resonant high frequency (HF) AC link are reviewed. The details for the selection of power switches and other power components required for the construction of the power circuit for the second generation 3F to 3F converter system are discussed. The problems encountered in the first generation system are considered. Design and performance of the first generation 3F to 3F power converter system and field oriented induction moter drive based upon a 3 kVA, 20 kHz parallel resonant HF AC link are described. Low harmonic current at the input and output, unity power factor operation of input, and bidirectional flow capability of the system are shown via both computer and experimental results. The work completed on the construction and testing of the second generation converter and field oriented induction motor drive based upon specifications for a 10 hp squirrel cage dynamometer and a 20 kHz parallel resonant HF AC link is discussed. The induction machine is designed to deliver 10 hp or 7.46 kW when operated as an AC-dynamo with power fed back to the source through the converter. Results presented reveal that the proposed power level requires additional energy storage elements to overcome difficulties with a peak link voltage variation problem that limits reaching to the desired power level. The power level test of the second generation converter after the

  2. System and component design and test of a 10 hp, 18,000 rpm AC dynamometer utilizing a high frequency AC voltage link, part 1

    NASA Technical Reports Server (NTRS)

    Lipo, Thomas A.; Alan, Irfan

    1991-01-01

    Hard and soft switching test results conducted with one of the samples of first generation MOS-controlled thyristor (MCTs) and similar test results with several different samples of second generation MCT's are reported. A simple chopper circuit is used to investigate the basic switching characteristics of MCT under hard switching and various types of resonant circuits are used to determine soft switching characteristics of MCT under both zero voltage and zero current switching. Next, operation principles of a pulse density modulated converter (PDMC) for three phase (3F) to 3F two-step power conversion via parallel resonant high frequency (HF) AC link are reviewed. The details for the selection of power switches and other power components required for the construction of the power circuit for the second generation 3F to 3F converter system are discussed. The problems encountered in the first generation system are considered. Design and performance of the first generation 3F to 3F power converter system and field oriented induction moter drive based upon a 3 kVA, 20 kHz parallel resonant HF AC link are described. Low harmonic current at the input and output, unity power factor operation of input, and bidirectional flow capability of the system are shown via both computer and experimental results. The work completed on the construction and testing of the second generation converter and field oriented induction motor drive based upon specifications for a 10 hp squirrel cage dynamometer and a 20 kHz parallel resonant HF AC link is discussed. The induction machine is designed to deliver 10 hp or 7.46 kW when operated as an AC-dynamo with power fed back to the source through the converter. Results presented reveal that the proposed power level requires additional energy storage elements to overcome difficulties with a peak link voltage variation problem that limits reaching to the desired power level. The power level test of the second generation converter after the

  3. GaAs-based JFET and PHEMT technologies for ultra-low-power microwave circuits operating at frequencies up to 2.4 GHz

    SciTech Connect

    Baca, A.G.; Hietala, V.M.; Greenway, D.; Shul, R.J.; Hafich, M.J.; Zolper, J.C.; Sherwin, M.E.

    1998-05-01

    In this work the authors report results of narrowband amplifiers designed for milliwatt and submilliwatt power consumption using JFET and pseudomorphic high electron mobility transistors (PHEMT) GaAs-based technologies. Enhancement-mode JFETs were used to design both a hybrid amplifier with off-chip matching as well as a monolithic microwave integrated circuit (MMIC) with on-chip matching. The hybrid amplifier achieved 8--10 dB of gain at 2.4 GHz and 1 mW. The MMIC achieved 10 dB of gain at 2.4 GHz and 2 mW. Submilliwatt circuits were also explored by using 0.25 {micro}m PHEMTs. 25 {micro}W power levels were achieved with 5 dB of gain for a 215 MHz hybrid amplifier. These results significantly reduce power consumption levels achievable with the JFETs or prior MESFET, heterostructure field effect transistor (HFET), or Si bipolar results from other laboratories.

  4. A Study of Power Systems Stability Enhancement Effects by Excitation Control of Superconducting Generator with High Response Excitation based on Detailed Excitation Circuit Model

    NASA Astrophysics Data System (ADS)

    Wu, Guohong; Shirato, Hideyuki

    SCG (Superconducting Generator) has a superconducting field winding, which leads to many advantages such as small size, high generation efficiency, low impedance, and so on, and be considered as one of the candidates to meet the needs of high stability and high efficiency in the future power system networks. SCG with high response excitation is especially expected to be able to enhance the transient stability of power system by its SMES (Superconducting Magnetic Energy System) effect. The SMES effect of SCG is recognized that its behaviors are dominated by the structures and controls of its excitation system. For this reason, in order to verify exactly how the SMES effect of SCG influences on the power system stability, the electrical circuits of SCG high response excitation are modeled in detail for conducting digital simulation, and its influence on excitation voltage and active power output of SCG are discussed as well. The simulation results with a typical one machine - infinite bus power system model shows that the SMES effect can be certainly obtained when its exciting power is supplied from SCG terminal bus and may considerably lead to an improvement of power system transient stability.

  5. A low-noise low-power readout electronics circuit at 4 K in standard CMOS technology for PACS/Herschel

    NASA Astrophysics Data System (ADS)

    Merken, Patrick; Creten, Ybe; Putzeys, Jan; Souverijns, Tim; Van Hoof, Chris

    2004-10-01

    IMEC has designed, in the framework of the PACS project (for the European Herschel Space Observatory) the Cold Readout Electronics (CRE) for the Ge:Ga far-infrared detector array. Key specifications for the CRE were high linearity (3 %), low power consumption (80 μW for an 18 channel array), and very low noise (200 e-) at an operating temperature of 4.2 K (LHT - Liquid Helium Temperature). IMEC has implemented this circuit in a standard CMOS technology (AMIS 0.7 μm), which guarantees high production yield and uniformity, relatively easy availability of the technology and portability of the design. However, the drawback of this approach is the anomalous behavior of CMOS transistors at temperatures below 30-40K, known as kink and hysteresis effects and under certain conditions the presence of excess noise. These cryogenic phenomena disturb the normal functionality of commonly used circuits or building blocks like buffer amplifiers and opamps. We were able to overcome these problems and developed a library of digital and analog building blocks based on the modeling of cryogenic behavior, and on adapted design and layout techniques. These techniques have been validated in an automated cryogenic test set-ups developed at IMEC. We will present here in detail the full design of the 18 channel CRE circuit, its interface with the Ge:Ga sensor, and its electrical performance and demonstrate that all major specifications at 4.2 K were met. Future designs and implementations will be equally presented.

  6. Composite rod insulators for ac power lines; Electrical performance of various designs at a coastal testing station

    SciTech Connect

    Houlgate, R.G.; Swift, D.A. )

    1990-10-01

    The electrical performance of thirty-six composite insulators - of four commercial types for each AC system level of 34.5 kV, 230 kV and 500 kV - has been determined at the CEGB insulator testing station, Brighton, England. The weathershed materials were epoxy-resin, ethylene propylene rubber and silicone rubber; half of the 230 kV insulators had no stress rings. Surface leakage current was recorded for surge levels of 25 mA, 150 mA and 500 mA; a special technique was developed to obtain the flashover statistics of the 500 kV insulators, thereby enabling performance of the composite insulator to be quantified relative to that of a string of cap and pin porcelain insulators of anti-fog design, the deterioration of the insulators was observed by making regular visual inspections. The practical consequences of the findings and the causes of the degradation are discussed.

  7. Double gate (DG)-SOI ratioed logic with symmetric DG load??a novel approach for sub 50 nm low-voltage/low-power circuit design

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Salman, A.; Ioannou, D. P.; Tretz, C.; Ioannou, D. E.

    2004-11-01

    In this paper we introduce a novel logic gate family based on Double Gate (DG) SOI MOSFETs for low voltage/low power circuits. The logic gates are based on ratioed logic with depletion-mode (i.e., intrinsically on) Symmetric DG (SDG) load transistors and inversion-mode Asymmetric DG (ADG) driver transistors. Using this technique a basic inverter was designed, with better performance compared to "classical" CMOS DG design. This technique was extended to create a complete set of basic logic gates including NOR2, NAND2 and XOR2 gates.

  8. Wireless transmission of power and information through one high-frequency resonant AC link inverter for robot manipulator applications

    SciTech Connect

    Kawamura, Atsuo; Ishioka, K.; Hirai, J.

    1996-05-01

    A contactless decentralized power supply is proposed with communication capability through only one transformer. A prototype of wireless transmission system of power and information (WTPI system) was built, and the two-axis position controls of servo motors were achieved by transferring the power and signal through one rotatable high-frequency transformer. The proposed concept can be applied for robotics and numerical control (NC) machines.

  9. State-dependent and cell type-specific temporal processing in auditory thalamocortical circuit

    PubMed Central

    Sakata, Shuzo

    2016-01-01

    Ongoing spontaneous activity in cortical circuits defines cortical states, but it still remains unclear how cortical states shape sensory processing across cortical laminae and what type of response properties emerge in the cortex. Recording neural activity from the auditory cortex (AC) and medial geniculate body (MGB) simultaneously with electrical stimulations of the basal forebrain (BF) in urethane-anesthetized rats, we investigated state-dependent spontaneous and auditory-evoked activities in the auditory thalamocortical circuit. BF stimulation induced a short-lasting desynchronized state, with sparser firing and increased power at gamma frequency in superficial layers. In this desynchronized state, the reduction in onset response variability in both AC and MGB was accompanied by cell type-specific firing, with decreased responses of cortical broad spiking cells, but increased responses of cortical narrow spiking cells. This onset response was followed by distinct temporal evolution in AC, with quicker rebound firing in infragranular layers. This temporal profile was associated with improved processing of temporally structured stimuli across AC layers to varying degrees, but not in MGB. Thus, the reduction in response variability during the desynchronized state can be seen subcortically whereas the improvement of temporal tuning emerges across AC layers, emphasizing the importance of state-dependent intracortical processing in hearing. PMID:26728584

  10. Scaling law and general expression for transport ac loss of a rectangular thin strip with power-law E(J) relation

    NASA Astrophysics Data System (ADS)

    Chen, Du-Xing; Li, Shuo; Fang, Jin

    2015-12-01

    Transport ac loss Q of a superconducting rectangular thin strip obeying a power-law relation E∝Jn as a function of current amplitude Im may be, following Norris, expressed by normalized quantities as q(im). A scaling law is deduced that if Icf, Ic and f being the critical current and frequency, is multiplied by a positive constant C, then im and qm are multiplied by C 1 /(n - 1)and C 2 /(n - 1) , respectively. Based on this scaling law and the well-known Norris formula, the general function of q(im, n, f) is obtained graphically or analytically for any practical purpose, after accurate numerical computations on a set of q(im) at several values of n and a fixed value of f.

  11. Nonlinear analysis of a family of LC tuned inverters. [dc to square wave circuits for power conditioning

    NASA Technical Reports Server (NTRS)

    Lee, F. C. Y.; Wilson, T. G.

    1974-01-01

    A family of four dc-to-square-wave LC tuned inverters are analyzed using singular point. Limit cycles and waveshape characteristics are given for three modes of oscillation: quasi-harmonic, relaxation, and discontinuous. An inverter in which the avalanche breakdown of the transistor emitter-to-base junction occurs is discussed and the starting characteristics of this family of inverters are presented. The LC tuned inverters are shown to belong to a family of inverters with a common equivalent circuit consisting of only three 'series' elements: a five-segment piecewise-linear current-controlled resistor, linear inductor, and linear capacitor.

  12. Linear Equivalent Circuit and Current Sources Model Including Separation Resistances in the Ground Connection for Multiple Power-Supply Pin LSI

    NASA Astrophysics Data System (ADS)

    Saito, Yoshiyuki; Yasuhara, Masakatsu; Mabuchi, Yuichi; Matsushima, Tohlu; Hisakado, Takashi; Wada, Osami

    An EMC macro-model for LSIs, named the LECCS-core model, is under development for simulating high frequency noise in power supply currents. In this paper, the conventional LECCS-core model is extended by adding resistances in the ground connection of an LSI, in order to separate the core block and the analog block. The model parameters are identified using symbolic analysis and least-square optimization. Using this new model, the transfer impedances between different power supply pins can be simulated accurately. Additionally we derived the equivalent internal current sources by using that model. As a result, we confirmed that the internal current sources were improved. In conclusion, we confirmed that the configuration of the linear equivalent circuit and our modeling method can be applied widely to microcontrollers of the same block configuration.

  13. The problem of optimizing the water chemistry used in the primary coolant circuit of a nuclear power station equipped with VVER reactors under the conditions of longer fuel cycle campaigns and increased capacity of power units

    NASA Astrophysics Data System (ADS)

    Sharafutdinov, R. B.; Kharitonova, N. L.

    2011-05-01

    It is shown that the optimal water chemistry of the primary coolant circuit must be substantiated while introducing measures aimed at increasing the power output in operating power units and for the project called AES-2006/AES TOI (a typical optimized project of a nuclear power station with enhanced information support). The experience gained from operation of PWR reactors with an elongated fuel cycle at an increased level of power is analyzed. Conditions under which boron compounds are locally concentrated on the fuel rod surfaces (the hideout phenomenon) and axial offset anomaly occurs are enlisted, and the influence of lithium on the hideout in the pores of deposits on the surfaces of fuel assemblies is shown.

  14. MULTIPLIER CIRCUIT

    DOEpatents

    Thomas, R.E.

    1959-01-20

    An electronic circuit is presented for automatically computing the product of two selected variables by multiplying the voltage pulses proportional to the variables. The multiplier circuit has a plurality of parallel resistors of predetermined values connected through separate gate circults between a first input and the output terminal. One voltage pulse is applied to thc flrst input while the second voltage pulse is applied to control circuitry for the respective gate circuits. Thc magnitude of the second voltage pulse selects the resistors upon which the first voltage pulse is imprcssed, whereby the resultant output voltage is proportional to the product of the input voltage pulses

  15. GATING CIRCUITS

    DOEpatents

    Merrill, L.C.

    1958-10-14

    Control circuits for vacuum tubes are described, and a binary counter having an improved trigger circuit is reported. The salient feature of the binary counter is the application of the input signal to the cathode of each of two vacuum tubes through separate capacitors and the connection of each cathode to ground through separate diodes. The control of the binary counter is achieved in this manner without special pulse shaping of the input signal. A further advantage of the circuit is the simplicity and minimum nuruber of components required, making its use particularly desirable in computer machines.

  16. The AC photovoltaic module is here!

    NASA Astrophysics Data System (ADS)

    Strong, Steven J.; Wohlgemuth, John H.; Wills, Robert H.

    1997-02-01

    This paper describes the design, development, and performance results of a large-area photovoltaic module whose electrical output is ac power suitable for direct connection to the utility grid. The large-area ac PV module features a dedicated, integrally mounted, high-efficiency dc-to-ac power inverter with a nominal output of 250 watts (STC) at 120 Vac, 60 H, that is fully compatible with utility power. The module's output is connected directly to the building's conventional ac distribution system without need for any dc wiring, string combiners, dc ground-fault protection or additional power-conditioning equipment. With its advantages, the ac photovoltaic module promises to become a universal building block for use in all utility-interactive PV systems. This paper discusses AC Module design aspects and utility interface issues (including islanding).

  17. Study of high power white AC-LED based on the structure of composite bridge with SMD packaging

    NASA Astrophysics Data System (ADS)

    Wang, Zhibin; Gu, Yue; Xie, Shasha

    2010-10-01

    In this paper, a method of composite bridge structure packing with self-rectifier in the LED chips is introduced, based on the characteristics of PN junction of the high power LED. About dozens of low-power LED chips are pasted on the PCB boards which having good thermal conductivity in the form of bridge structure, regulating input voltage and current strength to make the LED chips at different bridge arms worked alternately by using of LED PN junction's own characteristics to achieve self-rectification. The copper cooling plates are sandwiched in the PCB boards to achieve for saving resource and improving brightness. During the work time, the LED flashes lights. Because of its feature of continuing light after power properties, the human eyes can not perceive the LED's flashing, their understanding on the light emitting is continuous.

  18. Ac traction gets on track

    SciTech Connect

    O`Connor, L.

    1995-09-01

    This article describes inverter-based ac traction systems which give freight locomotives greater adhesion, pulling power, and braking capacity. In the 1940s, dc traction replaced the steam engine as a source of train propulsion, and it has ruled the freight transportation industry ever since. But now, high-performance ac-traction systems, with their unprecedented levels of pulling power and adhesion, are becoming increasingly common on America`s freight railroads. In thousands of miles of demonstration tests, today`s ac-traction systems have outperformed traditional dc-motor driven systems. Major railroad companies are convinced enough of the benefits of ac traction to have integrated it into their freight locomotives.

  19. Energy management circuit

    SciTech Connect

    Corless, R. W.

    1985-10-15

    An energy management circuit for use in a telephone or other device which includes an electronic memory is disclosed. The invention provides a capacitive keep alive power supply to maintain said memory in an active condition during extended periods when the device is disconnected from a line power source, as in a telephone on-hook condition. A large capacitor charge is maintained within a predetermined voltage range during such disconnect conditions by a resistively coupled trickle charge power source. A comparator is operated to monitor capacitor charge and to produce a control signal when the voltage at the capacitor falls below a selected memory keep alive level. The control signal operates a switch to bypass the trickle charge circuit. The switch couples line power directly to the capacitor to charge the capacitor to a voltage sufficient to maintain memory contents intact. A switch inhibit circuit is provided to prevent trickle charge bypass during an inadequate or excessive line voltage condition. A sleep timer circuit is also provided to conserve energy required to operate the present invention by allowing the invention to operate periodically and only for short intervals.

  20. Wein bridge oscillator circuit

    NASA Technical Reports Server (NTRS)

    Lipoma, P. C.

    1971-01-01

    Circuit with minimum number of components provides stable outputs of 2 to 8 volts at frequencies of .001 to 100 kHz. Oscillator exhibits low power consumption, portability, simplicity, and drive capability, it has application as loudspeaker tester and audible alarm, as well as in laboratory and test generators.