#### Sample records for ac power distribution

1. Simultaneous distribution of AC and DC power

DOEpatents

Polese, Luigi Gentile

2015-09-15

A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

2. AC/DC Smart Control And Power Sharing of DC Distribution Systems

DTIC Science & Technology

2012-02-10

Thesis submitted in partial requirement for the degree of MASTER OF SCIENCE in ELECTRICAL ENGINEERING by Mohamed Anwar Elshaer 2012...will play vital role in electric power systems. It allows residents and businesses the potential to generate electrical energy to sell surplus power...better method for electrical power delivery. This concept is inspired by the possibility of efficient integration of small distributed generation

3. AC Optimal Power Flow

SciTech Connect

2016-10-04

In this work, we have implemented and developed the simulation software to implement the mathematical model of an AC Optimal Power Flow (OPF) problem. The objective function is to minimize the total cost of generation subject to constraints of node power balance (both real and reactive) and line power flow limits (MW, MVAr, and MVA). We have currently implemented the polar coordinate version of the problem. In the present work, we have used the optimization solver, Knitro (proprietary and not included in this software) to solve the problem and we have kept option for both the native numerical derivative evaluation (working satisfactorily now) as well as for analytical formulas corresponding to the derivatives being provided to Knitro (currently, in the debugging stage). Since the AC OPF is a highly non-convex optimization problem, we have also kept the option for a multistart solution. All of these can be decided by the user during run-time in an interactive manner. The software has been developed in C++ programming language, running with GCC compiler on a Linux machine. We have tested for satisfactory results against Matpower for the IEEE 14 bus system.

4. Power conversion distribution system using a resonant high-frequency AC link

NASA Technical Reports Server (NTRS)

Sood, P. K.; Lipo, T. A.

1986-01-01

Static power conversion systems based on a resonant high frequency (HF) link offers a significant reduction in the size and weight of the equipment over that achieved with conventional approaches, especially when multiple sources and loads are to be integrated. A faster system response and absence of audible noise are the other principal characteristics of such systems. A conversion configuration based on a HF link which is suitable for applications requiring distributed power is proposed.

NASA Technical Reports Server (NTRS)

Wappes, Loran J.; Sundberg, R.; Mildice, J.; Peterson, D.; Hushing, S.

1987-01-01

The object of this program was to design, build, test, and deliver a high-frequency (20-kHz) Power System Breadboard which would electrically approximate a pair of dual redundant power channels of an IOC Space Station. This report describes that program, including the technical background, and discusses the results, showing that the major assumptions about the characteristics of this class of hardware (size, mass, efficiency, control, etc.) were substantially correct. This testbed equipment has been completed and delivered to LeRC, where it is operating as a part of the Space Station Power System Test Facility.

6. Modeling and Compensation Design for a Power Hardware-in-the-Loop Simulation of an AC Distribution System

SciTech Connect

Ainsworth, Nathan; Hariri, Ali; Prabakar, Kumaraguru; Pratt, Annabelle; Baggu, Murali

2016-11-21

Power hardware-in-the-loop (PHIL) simulation, where actual hardware under text is coupled with a real-time digital model in closed loop, is a powerful tool for analyzing new methods of control for emerging distributed power systems. However, without careful design and compensation of the interface between the simulated and actual systems, PHIL simulations may exhibit instability and modeling inaccuracies. This paper addresses issues that arise in the PHIL simulation of a hardware battery inverter interfaced with a simulated distribution feeder. Both the stability and accuracy issues are modeled and characterized, and a methodology for design of PHIL interface compensation to ensure stability and accuracy is presented. The stability and accuracy of the resulting compensated PHIL simulation is then shown by experiment.

7. Phase protection system for ac power lines

NASA Technical Reports Server (NTRS)

Wong, W. J. (Inventor)

1974-01-01

The system described provides protection for phase sensitive loads from being or remaining connected to ac power lines whenever a phase reversal occurs. It comprises a solid state phase detection circuit, a dc power relay circuit, an ac-to-dc converter for energizing the relay circuit, and a bistable four terminal transducer coupled between the phase detection circuit and the power relay circuit, for controlling both circuits.

8. 21 CFR 886.1630 - AC-powered photostimulator.

Code of Federal Regulations, 2010 CFR

2010-04-01

... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered photostimulator. 886.1630 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1630 AC-powered photostimulator. (a) Identification. An AC-powered photostimulator is an AC-powered device intended to provide light stimulus...

9. 21 CFR 886.1630 - AC-powered photostimulator.

Code of Federal Regulations, 2011 CFR

2011-04-01

... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered photostimulator. 886.1630 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1630 AC-powered photostimulator. (a) Identification. An AC-powered photostimulator is an AC-powered device intended to provide light stimulus...

10. 21 CFR 886.1850 - AC-powered slitlamp biomicroscope.

Code of Federal Regulations, 2010 CFR

2010-04-01

... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered slitlamp biomicroscope. 886.1850... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1850 AC-powered slitlamp biomicroscope. (a) Identification. An AC-powered slitlamp biomicroscope is an AC-powered device that is...

11. 21 CFR 886.1850 - AC-powered slitlamp biomicroscope.

Code of Federal Regulations, 2011 CFR

2011-04-01

... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered slitlamp biomicroscope. 886.1850... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1850 AC-powered slitlamp biomicroscope. (a) Identification. An AC-powered slitlamp biomicroscope is an AC-powered device that is...

12. 21 CFR 888.1240 - AC-powered dynamometer.

Code of Federal Regulations, 2011 CFR

2011-04-01

... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered dynamometer. 888.1240 Section 888.1240...) MEDICAL DEVICES ORTHOPEDIC DEVICES Diagnostic Devices § 888.1240 AC-powered dynamometer. (a) Identification. An AC-powered dynamometer is an AC-powered device intended for medical purposes to...

13. 21 CFR 886.4440 - AC-powered magnet.

Code of Federal Regulations, 2010 CFR

2010-04-01

... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

14. 21 CFR 886.4440 - AC-powered magnet.

Code of Federal Regulations, 2014 CFR

2014-04-01

... 21 Food and Drugs 8 2014-04-01 2014-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

15. 21 CFR 886.4440 - AC-powered magnet.

Code of Federal Regulations, 2013 CFR

2013-04-01

... 21 Food and Drugs 8 2013-04-01 2013-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

16. 21 CFR 886.4440 - AC-powered magnet.

Code of Federal Regulations, 2012 CFR

2012-04-01

... 21 Food and Drugs 8 2012-04-01 2012-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

17. 21 CFR 886.4440 - AC-powered magnet.

Code of Federal Regulations, 2011 CFR

2011-04-01

... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

18. 21 CFR 888.1240 - AC-powered dynamometer.

Code of Federal Regulations, 2010 CFR

2010-04-01

... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered dynamometer. 888.1240 Section 888.1240...) MEDICAL DEVICES ORTHOPEDIC DEVICES Diagnostic Devices § 888.1240 AC-powered dynamometer. (a) Identification. An AC-powered dynamometer is an AC-powered device intended for medical purposes to...

19. The ac power system testbed

NASA Technical Reports Server (NTRS)

Mildice, J.; Sundberg, R.

1987-01-01

The object of this program was to design, build, test, and deliver a high frequency (20 kHz) Power System Testbed which would electrically approximate a single, separable power channel of an IOC Space Station. That program is described, including the technical background, and the results are discussed showing that the major assumptions about the characteristics of this class of hardware (size, mass, efficiency, control, etc.) were substantially correct. This testbed equipment was completed and delivered and is being operated as part of the Space Station Power System Test Facility.

20. Power control for ac motor

NASA Technical Reports Server (NTRS)

Dabney, R. W. (Inventor)

1984-01-01

A motor controller employing a triac through which power is supplied to a motor is described. The open circuit voltage appearing across the triac controls the operation of a timing circuit. This timing circuit triggers on the triac at a time following turn off which varies inversely as a function of the amplitude of the open circuit voltage of the triac.

1. Reliability of emergency ac power systems at nuclear power plants

SciTech Connect

Battle, R E; Campbell, D J

1983-07-01

Reliability of emergency onsite ac power systems at nuclear power plants has been questioned within the Nuclear Regulatory Commission (NRC) because of the number of diesel generator failures reported by nuclear plant licensees and the reactor core damage that could result from diesel failure during an emergency. This report contains the results of a reliability analysis of the onsite ac power system, and it uses the results of a separate analysis of offsite power systems to calculate the expected frequency of station blackout. Included is a design and operating experience review. Eighteen plants representative of typical onsite ac power systems and ten generic designs were selected to be modeled by fault trees. Operating experience data were collected from the NRC files and from nuclear plant licensee responses to a questionnaire sent out for this project.

2. AC power generation from microbial fuel cells

Lobo, Fernanda Leite; Wang, Heming; Forrestal, Casey; Ren, Zhiyong Jason

2015-11-01

Microbial fuel cells (MFCs) directly convert biodegradable substrates to electricity and carry good potential for energy-positive wastewater treatment. However, the low and direct current (DC) output from MFC is not usable for general electronics except small sensors, yet commercial DC-AC converters or inverters used in solar systems cannot be directly applied to MFCs. This study presents a new DC-AC converter system for MFCs that can generate alternating voltage in any desired frequency. Results show that AC power can be easily achieved in three different frequencies tested (1, 10, 60 Hz), and no energy storage layer such as capacitors was needed. The DC-AC converter efficiency was higher than 95% when powered by either individual MFCs or simple MFC stacks. Total harmonic distortion (THD) was used to investigate the quality of the energy, and it showed that the energy could be directly usable for linear electronic loads. This study shows that through electrical conversion MFCs can be potentially used in household electronics for decentralized off-grid communities.

3. Photovoltaic Inverter Controllers Seeking AC Optimal Power Flow Solutions

SciTech Connect

Dall'Anese, Emiliano; Dhople, Sairaj V.; Giannakis, Georgios B.

2016-07-01

This paper considers future distribution networks featuring inverter-interfaced photovoltaic (PV) systems, and addresses the synthesis of feedback controllers that seek real- and reactive-power inverter setpoints corresponding to AC optimal power flow (OPF) solutions. The objective is to bridge the temporal gap between long-term system optimization and real-time inverter control, and enable seamless PV-owner participation without compromising system efficiency and stability. The design of the controllers is grounded on a dual ..epsilon..-subgradient method, while semidefinite programming relaxations are advocated to bypass the non-convexity of AC OPF formulations. Global convergence of inverter output powers is analytically established for diminishing stepsize rules for cases where: i) computational limits dictate asynchronous updates of the controller signals, and ii) inverter reference inputs may be updated at a faster rate than the power-output settling time.

4. 21 CFR 880.5500 - AC-powered patient lift.

Code of Federal Regulations, 2011 CFR

2011-04-01

... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered patient lift. 880.5500 Section 880.5500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Devices § 880.5500 AC-powered patient lift. (a) Identification. An AC-powered lift is an...

5. Combined Operation of AC and DC Distribution System with Distributed Generation Units

Noroozian, Reza; Abedi, Mehrdad; Gharehpetian, Gevorg

2010-07-01

This paper presents a DC distribution system which has been supplied by external AC systems as well as local DG units in order to demonstrate an overall solution to power quality issue. In this paper, the proposed operation method is demonstrated by simulation of power transfer between external AC systems, DG units, AC and DC loads. The power flow control in DC distribution system has been achieved by network converters and DG converters. Also, the mathematical model of the network, DG and load converters are obtained by using the average technique, which allows converter systems accurately simulated and control strategies for this converters is achieved. A suitable control strategy for network converters has been proposed that involves DC voltage droop regulator and novel instantaneous power regulation scheme. Also, a novel control technique has been proposed for DG converters. In this paper, a novel control system based on stationary and synchronously rotating reference frame has been proposed for load converters for supplying AC loads connected to the DC bus by balanced voltages. The several case studies have been studied based on proposed methods. The simulation results show that DC distribution systems including DG units can improve the power quality at the point of common coupling (PCC) in the power distribution system or industrial power system.

6. Wind-powered asynchronous AC/DC/AC converter system. [for electric power supply regulation

NASA Technical Reports Server (NTRS)

Reitan, D. K.

1973-01-01

Two asynchronous ac/dc/ac systems are modelled that utilize wind power to drive a variable or constant hertz alternator. The first system employs a high power 60-hertz inverter tie to the large backup supply of the power company to either supplement them from wind energy, storage, or from a combination of both at a preset desired current; rectifier and inverter are identical and operate in either mode depending on the silicon control rectifier firing angle. The second system employs the same rectification but from a 60-hertz alternator arrangement; it provides mainly dc output, some sinusoidal 60-hertz from the wind bus and some high harmonic content 60-hertz from an 800-watt inverter.

7. Design note about a 75 KVA quiet power distribution system

SciTech Connect

Visser, A.T.

1984-04-05

This note describes a 75KVA quiet power distribution system for X 653 in neutrino Lab D. It is fed from the regular AC distribution which exists in the building and it has no standby power. Its purpose is to remove electrical disturbances which are present on the regular AC distribution.

8. 21 CFR 880.5500 - AC-powered patient lift.

Code of Federal Regulations, 2010 CFR

2010-04-01

...) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Therapeutic Devices § 880.5500 AC-powered patient lift. (a) Identification. An AC-powered lift is an electrically powered device either fixed or mobile, used to lift and transport patients in the horizontal or...

9. Measurements of AC Losses and Current Distribution in Superconducting Cables

SciTech Connect

Nguyen, Doan A; Ashworth, Stephen P; Duckworth, Robert C; Carter, Bill; Fleshler, Steven

2011-01-01

This paper presents our new experimental facility and techniques to measure ac loss and current distribution between the layers for High Temperature Superconducting (HTS) cables. The facility is powered with a 45 kVA three-phase power supply which can provide three-phase currents up to 5 kA per phase via high current transformers. The system is suitable for measurements at any frequency between 20 and 500 Hz to better understand the ac loss mechanisms in HTS cables. In this paper, we will report techniques and results for ac loss measurements carried out on several HTS cables with and without an HTS shielding layer. For cables without a shielding layer, care must be taken to control the effect of the magnetic fields from return currents on loss measurements. The waveform of the axial magnetic field was also measured by a small pick-up coil placed inside a two-layer cable. The temporal current distribution between the layers can be calculated from the waveform of the axial field.

10. Resonant AC power system proof-of-concept test program

NASA Technical Reports Server (NTRS)

Wappes, Loran J.

1986-01-01

Proof-of-concept testing was performed on a 20-kHz, resonant power system breadboard from 1981 through 1985. The testing began with the evaluation of a single, 1.0-kW resonant inverter and progressed to the testing of breadboard systems with higher power levels and more capability. The final breadboard configuration tested was a 25.0-kW breadboard with six inverters providing power to three user-interface modules over a 50-meter, 20-kHz bus. The breadboard demonstrated the ability to synchronize multiple resonant inverters to power a common bus. Single-phase and three-phase 20-kHz power distribution was demonstrated. Simple conversion of 20-kHz to dc and variable-frequency ac was demonstrated as was bidirectional power flow between 20-kHz and dc. Steady state measurements of efficiency, power-factor tolerance, and conducted emissions and conducted susceptibility were made. In addition, transient responses were recorded for such conditions as start up, shut down, load changes. The results showed the 20-kHz resonant system to be a desirable technology for a spacecraft power management and distribution system with multiple users and a utility-type bus.

11. Distributed cooperative control of AC microgrids

Bidram, Ali

In this dissertation, the comprehensive secondary control of electric power microgrids is of concern. Microgrid technical challenges are mainly realized through the hierarchical control structure, including primary, secondary, and tertiary control levels. Primary control level is locally implemented at each distributed generator (DG), while the secondary and tertiary control levels are conventionally implemented through a centralized control structure. The centralized structure requires a central controller which increases the reliability concerns by posing the single point of failure. In this dissertation, the distributed control structure using the distributed cooperative control of multi-agent systems is exploited to increase the secondary control reliability. The secondary control objectives are microgrid voltage and frequency, and distributed generators (DGs) active and reactive powers. Fully distributed control protocols are implemented through distributed communication networks. In the distributed control structure, each DG only requires its own information and the information of its neighbors on the communication network. The distributed structure obviates the requirements for a central controller and complex communication network which, in turn, improves the system reliability. Since the DG dynamics are nonlinear and non-identical, input-output feedback linearization is used to transform the nonlinear dynamics of DGs to linear dynamics. Proposed control frameworks cover the control of microgrids containing inverter-based DGs. Typical microgrid test systems are used to verify the effectiveness of the proposed control protocols.

12. Electrical Model of Balanced AC HTS Power Cable

Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Willén, D.; Melnik, I.; Geschiere, A.

The future electricity grid will be more sustainable and it will have more power transmission and distribution capability with more electrical power added from decentralized sources on distribution level and from wind parks and other large sources on transmission level. More interconnections and more underground transmission and distribution will be put up. Use of high temperature superconducting (HTS) power cables provides solutions to many of the future grid problems caused by these trends. In this paper we present an electrical model of a balanced 6 km-long three phase triaxial HTS power cable for the Dutch project being developed by a consortium of Alliander, Ultera™ and TUD. The cable currents in all three phases are balanced by selecting proper twist pitches and insulation thickness. The paper focuses on determining inductances, capacitances and AC losses of the balanced cable. Using the developed model, we also determine the voltage drop as function of the cable length, the neutral current and the effect of the imbalanced capacitances on the current distribution of the Dutch distribution cable. The model is validated and it can be used for accurate simulation of the electrical behaviour of triaxial HTS cables in electrical grids.

13. A hybrid electromechanical solid state switch for ac power control

NASA Technical Reports Server (NTRS)

1972-01-01

Bidirectional thyristor coupled to a series of actuator driven electromechanical contacts generates hybrid electromechanical solid state switch for ac power control. Device is useful in power control applications where zero crossover switching is required.

14. Mobile Centers For Secondary Power Distribution

NASA Technical Reports Server (NTRS)

Mears, Robert L.

1990-01-01

Concept for distribution of 60-Hz ac power in large building devoted to assembly and testing of equipment improves safety, reduces number of outlets and lengthy cables, and readily accommodates frequent changes in operations and configuration. Power from floor recess fed via unobtrusive cable to portable power management center. A cart containing variety of outlets and circuit breakers, wheeled to convenient location near equipment to be assembled or tested. Power distribution system presents larger range of operational configurations than fixed location. Meets tighter standards to feed computers and delicate instruments. Industrial-grade power suitable for power tools and other hardware. Three-phase and single-phase outlets available from each.

15. Programmable AC power supply for simulating power transient expected in fusion reactor

SciTech Connect

Halimi, B.; Suh, K. Y.

2012-07-01

This paper focus on control engineering of the programmable AC power source which has capability to simulate power transient expected in fusion reactor. To generate the programmable power source, AC-AC power electronics converter is adopted to control the power of a set of heaters to represent the transient phenomena of heat exchangers or heat sources of a fusion reactor. The International Thermonuclear Experimental Reactor (ITER) plasma operation scenario is used as the basic reference for producing this transient power source. (authors)

16. A comparative study of electric power distribution systems for spacecraft

NASA Technical Reports Server (NTRS)

Stuart, Thomas A.; King, Roger J.

1990-01-01

The electric power distribution systems for spacecraft are compared concentrating on two interrelated issues: the choice between dc and high frequency ac, and the converter/inverter topology to be used at the power source. The relative merits of dc and ac distribution are discussed. Specific converter and inverter topologies are identified and analyzed in detail for the purpose of detailed comparison. Finally, specific topologies are recommended for use in dc and ac systems.

17. Distribution-Agnostic Stochastic Optimal Power Flow for Distribution Grids

SciTech Connect

Baker, Kyri; Dall'Anese, Emiliano; Summers, Tyler

2016-11-21

This paper outlines a data-driven, distributionally robust approach to solve chance-constrained AC optimal power flow problems in distribution networks. Uncertain forecasts for loads and power generated by photovoltaic (PV) systems are considered, with the goal of minimizing PV curtailment while meeting power flow and voltage regulation constraints. A data- driven approach is utilized to develop a distributionally robust conservative convex approximation of the chance-constraints; particularly, the mean and covariance matrix of the forecast errors are updated online, and leveraged to enforce voltage regulation with predetermined probability via Chebyshev-based bounds. By combining an accurate linear approximation of the AC power flow equations with the distributionally robust chance constraint reformulation, the resulting optimization problem becomes convex and computationally tractable.

18. Exponentiated power Lindley distribution.

PubMed

Ashour, Samir K; Eltehiwy, Mahmoud A

2015-11-01

A new generalization of the Lindley distribution is recently proposed by Ghitany et al. [1], called as the power Lindley distribution. Another generalization of the Lindley distribution was introduced by Nadarajah et al. [2], named as the generalized Lindley distribution. This paper proposes a more generalization of the Lindley distribution which generalizes the two. We refer to this new generalization as the exponentiated power Lindley distribution. The new distribution is important since it contains as special sub-models some widely well-known distributions in addition to the above two models, such as the Lindley distribution among many others. It also provides more flexibility to analyze complex real data sets. We study some statistical properties for the new distribution. We discuss maximum likelihood estimation of the distribution parameters. Least square estimation is used to evaluate the parameters. Three algorithms are proposed for generating random data from the proposed distribution. An application of the model to a real data set is analyzed using the new distribution, which shows that the exponentiated power Lindley distribution can be used quite effectively in analyzing real lifetime data.

19. Exponentiated power Lindley distribution

PubMed Central

Ashour, Samir K.; Eltehiwy, Mahmoud A.

2014-01-01

A new generalization of the Lindley distribution is recently proposed by Ghitany et al. [1], called as the power Lindley distribution. Another generalization of the Lindley distribution was introduced by Nadarajah et al. [2], named as the generalized Lindley distribution. This paper proposes a more generalization of the Lindley distribution which generalizes the two. We refer to this new generalization as the exponentiated power Lindley distribution. The new distribution is important since it contains as special sub-models some widely well-known distributions in addition to the above two models, such as the Lindley distribution among many others. It also provides more flexibility to analyze complex real data sets. We study some statistical properties for the new distribution. We discuss maximum likelihood estimation of the distribution parameters. Least square estimation is used to evaluate the parameters. Three algorithms are proposed for generating random data from the proposed distribution. An application of the model to a real data set is analyzed using the new distribution, which shows that the exponentiated power Lindley distribution can be used quite effectively in analyzing real lifetime data. PMID:26644927

20. ac Magnetization transport and power absorption in nonitinerant spin chains.

PubMed

Trauzettel, Björn; Simon, Pascal; Loss, Daniel

2008-07-04

We investigate the ac transport of magnetization in nonitinerant quantum systems such as spin chains described by the XXZ Hamiltonian. Using linear response theory, we calculate the ac magnetization current and the power absorption of such magnetic systems. Remarkably, the difference in the exchange interaction of the spin chain itself and the bulk magnets (i.e., the magnetization reservoirs), to which the spin chain is coupled, strongly influences the absorbed power of the system. This feature can be used in future spintronic devices to control power dissipation. Our analysis allows us to make quantitative predictions about the power absorption, and we show that magnetic systems are superior to their electronic counterparts.

1. Nonlinear modal interaction in HVDC/AC power systems with dc power modulation

SciTech Connect

Ni, Y.X.; Vittal, V.; Kliemann, W.; Fouad, A.A.

1996-11-01

In this paper investigation of nonlinear modal interaction using the normal form of vector fields technique is extended to HVDC/AC power systems with dc power modulation. The ac-dc interface equations are solved to form a state space model with second order approximation. Using the normal form technique, the system`s nonlinear dynamic characteristics are obtained. The proposed approach is applied to a 4-generator HVDC/AC test power system, and compare with the time domain solution.

2. 21 CFR 880.6320 - AC-powered medical examination light.

Code of Federal Regulations, 2010 CFR

2010-04-01

... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered medical examination light. 880.6320... Miscellaneous Devices § 880.6320 AC-powered medical examination light. (a) Identification. An AC-powered medical examination light is an AC-powered device intended for medical purposes that is used to illuminate...

3. 21 CFR 880.6320 - AC-powered medical examination light.

Code of Federal Regulations, 2011 CFR

2011-04-01

... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered medical examination light. 880.6320... Miscellaneous Devices § 880.6320 AC-powered medical examination light. (a) Identification. An AC-powered medical examination light is an AC-powered device intended for medical purposes that is used to illuminate...

4. Industrial power distribution

SciTech Connect

Sorrells, M.A.

1990-01-01

This paper is a broad overview of industrial power distribution. Primary focus will be on selection of the various low voltage components to achieve the end product. Emphasis will be on the use of national standards to ensure a safe and well designed installation.

5. Topologically protected loop flows in high voltage AC power grids

Coletta, T.; Delabays, R.; Adagideli, I.; Jacquod, Ph

2016-10-01

Geographical features such as mountain ranges or big lakes and inland seas often result in large closed loops in high voltage AC power grids. Sizable circulating power flows have been recorded around such loops, which take up transmission line capacity and dissipate but do not deliver electric power. Power flows in high voltage AC transmission grids are dominantly governed by voltage angle differences between connected buses, much in the same way as Josephson currents depend on phase differences between tunnel-coupled superconductors. From this previously overlooked similarity we argue here that circulating power flows in AC power grids are analogous to supercurrents flowing in superconducting rings and in rings of Josephson junctions. We investigate how circulating power flows can be created and how they behave in the presence of ohmic dissipation. We show how changing operating conditions may generate them, how significantly more power is ohmically dissipated in their presence and how they are topologically protected, even in the presence of dissipation, so that they persist when operating conditions are returned to their original values. We identify three mechanisms for creating circulating power flows, (i) by loss of stability of the equilibrium state carrying no circulating loop flow, (ii) by tripping of a line traversing a large loop in the network and (iii) by reclosing a loop that tripped or was open earlier. Because voltages are uniquely defined, circulating power flows can take on only discrete values, much in the same way as circulation around vortices is quantized in superfluids.

6. Introducing AC inductive reactance with a power tool

Bryant, Wesley; Baker, Blane

2016-09-01

The concept of reactance in AC electrical circuits is often non-intuitive and difficult for students to grasp. In order to address this lack of conceptual understanding, classroom exercises compare the predicted resistance of a power tool, based on electrical specifications, to measured resistance. Once students discover that measured resistance is smaller than expected, they are asked to explain these observations using previously studied principles of magnetic induction. Exercises also introduce the notion of inductive reactance and impedance in AC circuits and, ultimately, determine self-inductance of the motor windings within the power tool.

7. Resistojet control and power for high frequency ac buses

NASA Technical Reports Server (NTRS)

Gruber, Robert P.

1987-01-01

Resistojets are operational on many geosynchronous communication satellites which all use dc power buses. Multipropellant resistojets were selected for the Initial Operating Capability (IOC) Space Station which will supply 208 V, 20 kHz power. This paper discusses resistojet heater temperature controllers and passive power regulation methods for ac power systems. A simple passive power regulation method suitable for use with regulated sinusoidal or square wave power was designed and tested using the Space Station multipropellant resistojet. The breadboard delivered 20 kHz power to the resistojet heater. Cold start surge current limiting, a power efficiency of 95 percent, and power regulation of better than 2 percent were demonstrated with a two component, 500 W breadboard power controller having a mass of 0.6 kg.

8. Watts Up? Pro AC Power Meter for Automated Energy Recording

PubMed Central

Hirst, Jason M.; Miller, Jonathan R.; Kaplan, Brent A.; Reed, Derek D.

2013-01-01

The purpose of the present paper is to review the Watts up? Pro AC power meter. Evaluations of the meter's reliability for measuring energy consumption by consumer electronics yielded acceptable levels of reliability. Implications and limitations for the use of this product in behavior analytic research and practice are discussed.

9. Introducing AC Inductive Reactance with a Power Tool

ERIC Educational Resources Information Center

Bryant, Wesley; Baker, Blane

2016-01-01

The concept of reactance in AC electrical circuits is often non-intuitive and difficult for students to grasp. In order to address this lack of conceptual understanding, classroom exercises compare the predicted resistance of a power tool, based on electrical specifications, to measured resistance. Once students discover that measured resistance…

10. ac power control in the Core Flow Test Loop

SciTech Connect

McDonald, D.W.

1980-01-01

This work represents a status report on a development effort to design an ac power controller for the Core Flow Test Loop. The Core Flow Test Loop will be an engineering test facility which will simulate the thermal environment of a gas-cooled fast-breeder reactor. The problems and limitations of using sinusoidal ac power to simulate the power generated within a nuclear reactor are addressed. The transformer-thyristor configuration chosen for the Core Flow Test Loop power supply is presented. The initial considerations, design, and analysis of a closed-loop controller prototype are detailed. The design is then analyzed for improved performance possibilities and failure modes are investigated at length. A summary of the work completed to date and a proposed outline for continued development completes the report.

11. Inverter design for high frequency power distribution

NASA Technical Reports Server (NTRS)

King, R. J.

1985-01-01

A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapham inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapham inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading.

12. Introducing high performance distributed logging service for ACS

Avarias, Jorge A.; López, Joao S.; Maureira, Cristián; Sommer, Heiko; Chiozzi, Gianluca

2010-07-01

The ALMA Common Software (ACS) is a software framework that provides the infrastructure for the Atacama Large Millimeter Array and other projects. ACS, based on CORBA, offers basic services and common design patterns for distributed software. Every properly built system needs to be able to log status and error information. Logging in a single computer scenario can be as easy as using fprintf statements. However, in a distributed system, it must provide a way to centralize all logging data in a single place without overloading the network nor complicating the applications. ACS provides a complete logging service infrastructure in which every log has an associated priority and timestamp, allowing filtering at different levels of the system (application, service and clients). Currently the ACS logging service uses an implementation of the CORBA Telecom Log Service in a customized way, using only a minimal subset of the features provided by the standard. The most relevant feature used by ACS is the ability to treat the logs as event data that gets distributed over the network in a publisher-subscriber paradigm. For this purpose the CORBA Notification Service, which is resource intensive, is used. On the other hand, the Data Distribution Service (DDS) provides an alternative standard for publisher-subscriber communication for real-time systems, offering better performance and featuring decentralized message processing. The current document describes how the new high performance logging service of ACS has been modeled and developed using DDS, replacing the Telecom Log Service. Benefits and drawbacks are analyzed. A benchmark is presented comparing the differences between the implementations.

13. AC/DC Power Systems with Applications for future Lunar/Mars base and Crew Exploration Vehicle

NASA Technical Reports Server (NTRS)

2005-01-01

ABSTRACT The Power Systems branch at JSC faces a number of complex issues as it readies itself for the President's initiative on future space exploration beyond low earth orbit. Some of these preliminary issues - those dealing with electric power generation and distribution on board Mars-bound vehicle and that on Lunar and Martian surface may be summarized as follows: Type of prime mover - Because solar power may not be readily available on parts of the Lunar/Mars surface and also during the long duration flight to Mars, the primary source of power will most likely be nuclear power (Uranium fuel rods) with a secondary source of fuel cell (Hydrogen supply). The electric power generation source - With nuclear power being the main prime mover, the electric power generation source will most likely be an ac generator at a yet to be determined frequency. Thus, a critical issue is whether the generator should generate at constant or variable frequency. This will decide what type of generator to use - whether it is a synchronous machine, an asynchronous induction machine or a switched reluctance machine. The type of power distribution system - the distribution frequency, number of wires (3- wire, 4-wire or higher), and ac/dc hybridization. Building redundancy and fault tolerance in the generation and distribution sub-systems so that the system is safe; provides 100% availability to critical loads; continues to operate even with faulted sub-systems; and requires minimal maintenance. This report descril_es results of a summer faculty fellowship spent in the Power Systems Branch with the specific aim of investigating some of the lessons learned in electric power generation and usage from the terrestrial power systems industry, the aerospace industry as well as NASA's on-going missions so as to recommend novel surface and vehicle-based power systems architectures in support of future space exploration initiatives. A hybrid ac/dc architecture with source side and load side

14. Automated Power-Distribution System

NASA Technical Reports Server (NTRS)

Ashworth, Barry; Riedesel, Joel; Myers, Chris; Miller, William; Jones, Ellen F.; Freeman, Kenneth; Walsh, Richard; Walls, Bryan K.; Weeks, David J.; Bechtel, Robert T.

1992-01-01

Autonomous power-distribution system includes power-control equipment and automation equipment. System automatically schedules connection of power to loads and reconfigures itself when it detects fault. Potential terrestrial applications include optimization of consumption of power in homes, power supplies for autonomous land vehicles and vessels, and power supplies for automated industrial processes.

15. UPS with input commutation between ac and dc sources of power

SciTech Connect

Severinsky, A.J.

1993-08-31

An uninterruptible power supply is described, said power supply comprising: AC input terminal means for receiving a first AC voltage from an AC power source; DC input terminal means for receiving a first DC voltage from a DC power source; AC output terminal means for connecting to a load; converter means for converting said first AC voltage to a second DC voltage across electrical charge storage means coupled to said converter means, said second DC voltage being larger than the maximum peak voltage of said first AC voltage and said first DC voltage; switching means coupled to said AC power source and said DC power source for selectively connecting said AC power source or said DC power source to said converter means; inverter means coupled to said electrical charge storage means for receiving said second DC voltage and inverting said second DC voltage to a second AC voltage, said second AC voltage being coupled to said AC output terminal means; and control means coupled to said switching means for controlling the operation of said switching means, said control means operating said switching means to connect said AC power source to said converter means only when said first AC voltage is within a predetermined range and operating to connect said DC power source to said converter means when said first AC voltage is outside of said range.

16. Power Electronic Transformer based Three-Phase PWM AC Drives

Basu, Kaushik

A Transformer is used to provide galvanic isolation and to connect systems at different voltage levels. It is one of the largest and most expensive component in most of the high voltage and high power systems. Its size is inversely proportional to the operating frequency. The central idea behind a power electronic transformer (PET) also known as solid state transformer is to reduce the size of the transformer by increasing the frequency. Power electronic converters are used to change the frequency of operation. Steady reduction in the cost of the semiconductor switches and the advent of advanced magnetic materials with very low loss density and high saturation flux density implies economic viability and feasibility of a design with high power density. Application of PET is in generation of power from renewable energy sources, especially wind and solar. Other important application include grid tied inverters, UPS e.t.c. In this thesis non-resonant, single stage, bi-directional PET is considered. The main objective of this converter is to generate adjustable speed and magnitude pulse width modulated (PWM) ac waveforms from an ac or dc grid with a high frequency ac link. The windings of a high frequency transformer contains leakage inductance. Any switching transition of the power electronic converter connecting the inductive load and the transformer requires commutation of leakage energy. Commutation by passive means results in power loss, decrease in the frequency of operation, distortion in the output voltage waveform, reduction in reliability and power density. In this work a source based partially loss-less commutation of leakage energy has been proposed. This technique also results in partial soft-switching. A series of converters with novel PWM strategies have been proposed to minimize the frequency of leakage inductance commutation. These PETs achieve most of the important features of modern PWM ac drives including 1) Input power factor correction, 2) Common

17. SSP Power Management and Distribution

NASA Technical Reports Server (NTRS)

Lynch, Thomas H.; Roth, A. (Technical Monitor)

2000-01-01

Space Solar Power is a NASA program sponsored by Marshall Space Flight Center. The Paper presented here represents the architectural study of a large power management and distribution (PMAD) system. The PMAD supplies power to a microwave array for power beaming to an earth rectenna (Rectifier Antenna). The power is in the GW level.

18. Development of an analytical tool to study power quality of AC power systems for large spacecraft

NASA Technical Reports Server (NTRS)

Kraft, L. Alan; Kankam, M. David

1991-01-01

A harmonic power flow program applicable to space power systems with sources of harmonic distortion is described. The algorithm is a modification of the Electric Power Research Institute's HARMFLO program which assumes a three phase, balanced, AC system with loads of harmonic distortion. The modified power flow program can be used with single phase, AC systems. Early results indicate that the required modifications and the models developed are quite adequate for the analysis of a 20 kHz testbed built by General Dynamics Corporation. This is demonstrated by the acceptable correlation of present results with published data. Although the results are not exact, the discrepancies are relatively small.

19. Development of an analytical tool to study power quality of ac power systems for large spacecraft

NASA Technical Reports Server (NTRS)

Kraft, L. A.; Kankam, M. D.

1991-01-01

A harmonic power flow program applicable to space power systems with sources of harmonic distortion is described. The algorithm is a modification of Electric Power Research Institute's HARMFLO program which assumes a three-phase, balanced, ac system with loads of harmonic distortion. The modified power flow program can be used with single phase, ac systems. Early results indicate that the required modifications and the models developed are quite adequate for the analysis of a 20-kHz testbed built by General Dynamics Corporation. This is demonstrated by the acceptable correlation of the present results with published data. Although the results are not exact, the discrepancies are relatively small.

20. AC/DC Power Systems with Applications in Future Human Habitat on Lunar and Mars Bases

Chowdhury, Badrul H.; Hossain, Sabbir A.; Lawrence, James T.; Barave, Sushant

2006-01-01

As NASA readies itself for new space exploration initiatives starting with a human return to the Moon by the year 2020 eventually leading to human exploration of Mars, the requirements for a safe, efficient and comprehensive power system to support the exploration missions as well human habitat will become important issues to consider. Certain issues dealing with electric power generation and distribution on board Mars-bound vehicles and those on Lunar and Martian surfaces are described. The requirements for lightweight power generation dictates the use of a high frequency ac machine. Preliminary results of investigating the design of a permanent magnet synchronous machine is presented.

1. Numerical modeling of MgB2 conductors for high power AC transmission

Grilli, F.; Chervyakov, A.; Zermeno, V.; Marian, A.; Grasso, G.; Goldacker, W.; Rubbia, C.

2014-09-01

Cables made of MgB2 superconductors are currently explored as a viable solution for transporting high electrical power in the AC regime. In order to be competitive against the DC solution, the cables need to have an acceptable level of AC losses. In this contribution, we discuss the main aspects relevant for designing a cable with a sufficiently low AC loss level. To this end, we perform finite-element-method (FEM) simulations to determine the current and field distributions and calculate the AC losses of such cable configuration. For current capacities of 2-5 kA (peak), power cables are assembled from a relatively small number of MgB2 strands. The performance of such cables strongly depends on the current and field distributions, which are in turn influenced by the number and the arrangement of the superconducting components and also by the magnetic properties of supporting materials. Numerical simulations can help to test different cable configurations and provide important insights for optimizing the cable's design. The numerical model includes the field dependence of the superconductor's critical current density Jc(B) as well as the non-linear properties of magnetic materials.

2. Electric power processing, distribution and control for advanced aerospace vehicles.

NASA Technical Reports Server (NTRS)

Krausz, A.; Felch, J. L.

1972-01-01

The results of a current study program to develop a rational basis for selection of power processing, distribution, and control configurations for future aerospace vehicles including the Space Station, Space Shuttle, and high-performance aircraft are presented. Within the constraints imposed by the characteristics of power generation subsystems and the load utilization equipment requirements, the power processing, distribution and control subsystem can be optimized by selection of the proper distribution voltage, frequency, and overload/fault protection method. It is shown that, for large space vehicles which rely on static energy conversion to provide electric power, high-voltage dc distribution (above 100 V dc) is preferable to conventional 28 V dc and 115 V ac distribution per MIL-STD-704A. High-voltage dc also has advantages over conventional constant frequency ac systems in many aircraft applications due to the elimination of speed control, wave shaping, and synchronization equipment.

3. Distributed Space Solar Power

NASA Technical Reports Server (NTRS)

Fork, Richard L.

2001-01-01

The objective was to assess the feasibility of safely collecting solar power at geostationary orbit and delivering it to earth. A strategy which could harness a small fraction of the millions of gigawatts of sunlight passing near earth could adequately supply the power needs of earth and those of space exploration far into the future. Light collected and enhanced both spatially and temporally in space and beamed to earth provides probably the only practical means of safe and efficient delivery of this space solar power to earth. In particular, we analyzed the feasibility of delivering power to sites on earth at a comparable intensity, after conversion to a usable form, to existing power needs. Two major obstacles in the delivery of space solar power to earth are safety and the development of a source suitable for space. We focused our approach on: (1) identifying system requirements and designing a strategy satisfying current eye and skin safety requirements; and (2) identifying a concept for a potential space-based source for producing the enhanced light.

4. Power management and distribution technology

NASA Technical Reports Server (NTRS)

Dickman, John Ellis

1993-01-01

Power management and distribution (PMAD) technology is discussed in the context of developing working systems for a piloted Mars nuclear electric propulsion (NEP) vehicle. The discussion is presented in vugraph form. The following topics are covered: applications and systems definitions; high performance components; the Civilian Space Technology Initiative (CSTI) high capacity power program; fiber optic sensors for power diagnostics; high temperature power electronics; 200 C baseplate electronics; high temperature component characterization; a high temperature coaxial transformer; and a silicon carbide mosfet.

5. Distribution of Unlinked Receptor Sites for Transposed Ac Elements from the Bz-M2(ac) Allele in Maize

PubMed Central

Dooner, H. K.; Belachew, A.; Burgess, D.; Harding, S.; Ralston, M.; Ralston, E.

1994-01-01

We have shown before that the Ac element from the maize bz-m2(Ac) allele, located in the short arm of chromosome 9 (9S), transposes preferentially to sites that are linked to the bz donor locus. Yet, about half of the Ac transpositions recovered from bz-m2(Ac) are in receptor sites not linked to the donor locus. In this study, we have analyzed the distribution of those unlinked receptor sites. Thirty-seven transposed Ac (trAc) elements that recombined independently of the bz locus were mapped using a set of wx reciprocal translocations. We found that the distribution of unlinked receptor sites for trAs was not random. Ten trAcs mapped to 9L, i.e., Ac had transposed to sites physically, if not genetically, linked to the donor site. Among chromosomes other than 9, the Ac element of bz-m2(Ac) appeared to have transposed preferentially to certain chromosomes, such as 5 and 7, but infrequently to others, such as 1, the longest chromosome in the maize genome. The seven trAc elements in chromosome 5 were mapped relative to markers in 5S and 5L and localized to both arms of 5. We also investigated the transposition of Ac to the homolog of the donor chromosome. We found that Ac rarely transposes from bz-m2(Ac) to the homologous chromosome 9. The clustering of Ac receptor sites around the donor locus has been taken to mean that a physical association between the donor site and nearby receptor sites occurs during transposition. The preferential occurrence of 9L among chromosomes harboring unlinked receptor sites would be expected according to this model, since sites in 9L would tend to be physically closer to 9S than sites in other chromosomes. The nonrandom pattern seen among the remaining chromosomes could reflect an underlying nuclear architecture, i.e., an ordering of the chromosomes in the interphase nucleus, as suggested from previous cytological observations. PMID:8138163

6. 21 CFR 880.5510 - Non-AC-powered patient lift.

Code of Federal Regulations, 2010 CFR

2010-04-01

... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Non-AC-powered patient lift. 880.5510 Section 880... Devices § 880.5510 Non-AC-powered patient lift. (a) Identification. A non-AC-powered patient lift is a... patient in the horizontal or other required position from one place to another, as from a bed to a...

7. Preliminary study of AC power feeders for AGS booster

SciTech Connect

Meth, M.

1992-07-17

It has been proposed that the AGS Heavy Ion/Proton Booster be excited directly from the electric power distribution system without intervening an energy storage buffer such as an MG set or a magnetic energy buffer. The average power requirement of the AGS Booster is less than many single-loads presently housed on the lab site. However, the power swing will be the largest single pulsating load on the lab site. The large power swings will impact on the power grid producing utility-line disturbances such as voltage fluctuations and harmonic generation. Thus, it is necessary to carefully evaluate the quality of the electric power system resulting from the interconnection, such that the utility system is not degraded either on the lab site or at LILCO's substation.

8. Preliminary study of AC power feeders for AGS booster

SciTech Connect

Meth, M.

1992-07-17

It has been proposed that the AGS Heavy Ion/Proton Booster be excited directly from the electric power distribution system without intervening an energy storage buffer such as an MG set or a magnetic energy buffer. The average power requirement of the AGS Booster is less than many single-loads presently housed on the lab site. However, the power swing will be the largest single pulsating load on the lab site. The large power swings will impact on the power grid producing utility-line disturbances such as voltage fluctuations and harmonic generation. Thus, it is necessary to carefully evaluate the quality of the electric power system resulting from the interconnection, such that the utility system is not degraded either on the lab site or at LILCO`s substation.

9. Power-law resistivity, magnetic relaxation and ac susceptibility

SciTech Connect

Gilchrist, J.; van der Beek, C.J.

1994-07-01

The nonlinear diffusion of magnetic flux into a superconducting sample can be studied by measuring the relaxation of the magnetisation after application of a step field or by measuring the ac susceptibility, {chi}{sub 1} and its third harmonic, {chi}{sub 3}, or preferably both methods covering different time scales. Each has been analysed recently for a field-cooled sample of a material whose creep activation energy depends logarithmically on current density, J corresponding to a power-law relation between electric field, E and J. Here, results are compared, using a universal scaling depth. Maximum {chi}{sub 1}{double_prime} {vert_bar}{chi}{sub 3}{vert_bar} and values occur, and also the magnetisation has relaxed to half its initial value when the scaling depth is comparable to the sample half-thickness.

10. Passive Microwave Power Distribution Systems.

DTIC Science & Technology

wavelength by switching a reciprocal latching ferrite phase shifter in the stub, in response to termination of microwave power from one of the feed tubes....A standby microwave transmitter power amplifier tube is switched into a microwave power distribution system for a phased array in microseconds when...after the switching is completed, the switching being accomplished by changing electrical length of a quarter-wavelength waveguide stub to one-half

11. Distribution-Agnostic Stochastic Optimal Power Flow for Distribution Grids: Preprint

SciTech Connect

Baker, Kyri; Dall'Anese, Emiliano; Summers, Tyler

2016-09-01

This paper outlines a data-driven, distributionally robust approach to solve chance-constrained AC optimal power flow problems in distribution networks. Uncertain forecasts for loads and power generated by photovoltaic (PV) systems are considered, with the goal of minimizing PV curtailment while meeting power flow and voltage regulation constraints. A data- driven approach is utilized to develop a distributionally robust conservative convex approximation of the chance-constraints; particularly, the mean and covariance matrix of the forecast errors are updated online, and leveraged to enforce voltage regulation with predetermined probability via Chebyshev-based bounds. By combining an accurate linear approximation of the AC power flow equations with the distributionally robust chance constraint reformulation, the resulting optimization problem becomes convex and computationally tractable.

12. Power Law Distribution in Education

Gupta, Hari M.; Campanha, José R.; Prado, Fernando D.

We studied the statistical distribution of candidate's performance which is measured through their marks in university entrance examination (Vestibular) of UNESP (Universidade Estadual Paulista) for years 1998, 1999, and 2000. All students are divided in three groups: Physical, Biological and Humanities. We paid special attention to the examination of Portuguese language which is common for all and examinations for the particular area. We observed long ubiquitous power law tails in Physical and Biological sciences. This indicate the presence of strong positive feedback in sciences. We are able to explain completely these statistical distributions through Gradually Truncated Power law distributions which we developed recently to explain statistical behavior of financial market. The statistical distribution in case of Portuguese language and humanities is close to normal distribution. We discuss the possible reason for this peculiar behavior.

13. 21 CFR 880.5100 - AC-powered adjustable hospital bed.

Code of Federal Regulations, 2010 CFR

2010-04-01

... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered adjustable hospital bed. 880.5100 Section 880.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Therapeutic Devices § 880.5100 AC-powered adjustable hospital bed. (a) Identification. An...

14. 21 CFR 880.5100 - AC-powered adjustable hospital bed.

Code of Federal Regulations, 2011 CFR

2011-04-01

... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered adjustable hospital bed. 880.5100 Section 880.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Therapeutic Devices § 880.5100 AC-powered adjustable hospital bed. (a) Identification. An...

15. The thermoelectric power of Al-0.99 wt.% Fe alloys in the AC magnetic field

Lan, Qing; Zhang, Jianfeng; Liu, Xuan; Le, Qichi; Yin, Siqi; Liu, Yiting; Cui, Jianzhong

2017-04-01

The melt structure of Al-0.99 wt.% Fe alloys in the AC magnetic field have been studied with thermoelectric power by the four-point probe technique and microstructure with the liquid quenching method. The melt temperature is in the range of 913 K–1013 K. The thermoelectric power increases due to the AC magnetic field and decreases after the AC magnetic field stops, then keeps stable. Some characteristic parameters of thermoelectric power in the recovery process are used to represent the variation of melt structure. The α-Al phase refinement in the AC magnetic field is attributed to the persistent variation of melt structure. The persistent variation of thermoelectric power can be used to characterize the variation of the α-Al phase size. The hardness increases and the diffraction peaks of some planes reduce, which can reflect the uniform and disorder melt structure in the AC magnetic field.

16. Phosphor-in-glass for high-powered remote-type white AC-LED.

PubMed

Lin, Hang; Wang, Bo; Xu, Ju; Zhang, Rui; Chen, Hui; Yu, Yunlong; Wang, Yuansheng

2014-12-10

The high-powered alternating current (AC) light-emitting diode (LED) (AC-LED), featuring low cost, high energy utilization efficiency, and long service life, will become a new economic growth point in the field of semiconductor lighting. However, flicker of AC-LED in the AC cycles is not healthy for human eyes, and therefore need to be restrained. Herein we report an innovation of persistent "phosphor-in-glass" (PiG) for the remote-type AC-LED, whose afterglow can be efficiently activated by the blue light. It is experimentally demonstrated that the afterglow decay of PiG in the microsecond range can partly compensate the AC time gap. Moreover, the substitution of inorganic glass for organic resins or silicones as the encapsulants would bring out several technological benefits to AC-LED, such as good heat-dissipation, low glare, and excellent physical/chemical stability.

17. A self-powered AC magnetic sensor based on piezoelectric nanogenerator.

PubMed

Yu, Aifang; Song, Ming; Zhang, Yan; Kou, Jinzong; Zhai, Junyi; Lin Wang, Zhong

2014-11-14

An AC magnetic field, which is a carrier of information, is distributed everywhere and is continuous. How to use and detect this field has been an ongoing topic over the past few decades. Conventional magnetic sensors are usually based on the Hall Effect, the fluxgate, a superconductor quantum interface or magnetoelectric or magnetoresistive sensing. Here, a flexible, simple, low-cost and self-powered active piezoelectric nanogenerator (NG) is successfully demonstrated as an AC magnetic field sensor at room temperature. The amplitude and frequency of a magnetic field can both be accurately sensed by the NG. The output voltage of the NG has a good linearity with a measured magnetic field. The detected minute magnetic field is as low as 1.2 × 10(-7) tesla, which is 400 times greater than a commercial magnetic sensor that uses the Hall Effect. In comparison to the existing technologies, an NG is a room-temperature self-powered active sensor that is very simple and very cheap for practical applications.

18. Nearly Unity Power-Factor of the Modular Three-Phase AC to DC Converter with Minimized DC Bus Capacitor

Chunkag, Viboon; Kamnarn, Uthen

The analysis and design of nearly unity power-factor and fast dynamic response of the modular three-phase ac to dc converter using three single-phase isolated SEPIC rectifier modules with minimized dc bus capacitor is discussed, based on power balance control technique. The averaged small-signal technique is used to obtain the inductor current compensator, thus resulting in the output impedance and audio susceptibility become zero, that is, the output voltage of the converter presented in this paper is independent of the variations of the dc load current and the utility voltage. The proposed system significantly improves the dynamic response of the converter to load steps with minimized dc bus capacitor for Distributed Power System (DPS). A 600W prototype modular three-phase ac to dc converter comprising three 200W single-phase SEPIC rectifier modules with the proposed control scheme has been designed and implemented. The proposed system is confirmed by experimental implementation.

19. Mathematical model for the power supply system of an autonomous object with an AC power transmission over a cable rope

Rulevskiy, V. M.; Bukreev, V. G.; Shandarova, E. B.; Kuleshova, E. O.; Shandarov, S. M.; Vasilyeva, Yu Z.

2017-02-01

A modeling problem of the power system, which provides an AC power transmission to a submersible device over the conducting rope, was considered. The power supply system units and their parameters are described. The system multi-dimensional mathematical model in the variables state space with regard to the nonlinear characteristic of system elements is proposed.

20. Space station automation of common module power management and distribution

NASA Technical Reports Server (NTRS)

Miller, W.; Jones, E.; Ashworth, B.; Riedesel, J.; Myers, C.; Freeman, K.; Steele, D.; Palmer, R.; Walsh, R.; Gohring, J.

1989-01-01

The purpose is to automate a breadboard level Power Management and Distribution (PMAD) system which possesses many functional characteristics of a specified Space Station power system. The automation system was built upon 20 kHz ac source with redundancy of the power buses. There are two power distribution control units which furnish power to six load centers which in turn enable load circuits based upon a system generated schedule. The progress in building this specified autonomous system is described. Automation of Space Station Module PMAD was accomplished by segmenting the complete task in the following four independent tasks: (1) develop a detailed approach for PMAD automation; (2) define the software and hardware elements of automation; (3) develop the automation system for the PMAD breadboard; and (4) select an appropriate host processing environment.

1. Description of a 20 Kilohertz power distribution system

NASA Technical Reports Server (NTRS)

Hansen, I. G.

1986-01-01

A single phase, 440 VRMS, 20 kHz power distribution system with a regulated sinusoidal wave form is discussed. A single phase power system minimizes the wiring, sensing, and control complexities required in a multi-sourced redundantly distributed power system. The single phase addresses only the distribution link; mulitphase lower frequency inputs and outputs accommodation techniques are described. While the 440 V operating potential was initially selected for aircraft operating below 50,000 ft, this potential also appears suitable for space power systems. This voltage choice recognizes a reasonable upper limit for semiconductor ratings, yet will direct synthesis of 220 V, 3 power. A 20 kHz operating frequency was selected to be above the range of audibility, minimize the weight of reactive components, yet allow the construction of single power stages of 25 to 30 kW. The regulated sinusoidal distribution system has several advantages. With a regulated voltage, most ac/dc conversions involve rather simple transformer rectifier applications. A sinusoidal distribution system, when used in conjunction with zero crossing switching, represents a minimal source of EMI. The present state of 20 kHz power technology includes computer controls of voltage and/or frequency, low inductance cable, current limiting circuit protection, bi-directional power flow, and motor/generator operating using standard induction machines. A status update and description of each of these items and their significance is presented.

2. Power factor control system for ac induction motors

NASA Technical Reports Server (NTRS)

Nola, F. J. (Inventor)

1981-01-01

A power control circuit for an induction motor is disclosed in which a servo loop is used to control power input by controlling the power factor of motor operation. The power factor is measured by summing the voltage and current derived square wave signals.

3. Effects of airflow on the distribution of filaments in atmospheric AC dielectric barrier discharge

Fan, Zhihui; Qi, Haicheng; Liu, Yidi; Yan, Huijie; Ren, Chunsheng

2016-12-01

Atmospheric-pressure dielectric barrier discharge (DBD) accompanied by airflow has attracted a significant attention for its extensive applications. In this paper, the effects of airflow on the characteristics of the atmospheric air DBD plasma are experimentally investigated using the DBD reactor excited by a 15 kHz AC power source. In order to study the discharge filaments distribution at different flow rates, transparent conductive indium tin oxide film is used as the upper electrode, and quartz glasses are used as insulated dielectrics. Experiment results prove that the breakdown voltage is decreased and more current pulses with declined amplitudes are produced when the airflow is introduced into the discharge gap. It is confirmed that although the discharge seems to be diffuse in the presence of airflow to the naked eyes, the discharge mode remains filamentary in the intensified charge-coupled device images within a single AC cycle. By acquiring the images with a different exposure time, it can be recognized that the discharge filaments move along the flow field direction with a velocity less than the corresponding flow rate. The movement of discharge filaments is attributed to the motion of the charge induced by the airflow.

4. Motor power control circuit for ac induction motors

NASA Technical Reports Server (NTRS)

Nola, F. J. (Inventor)

1983-01-01

A motor power control of the type which functions by controlling the power factor wherein one of the parameters of power factor current on time is determined by the on time of a triac through which current is supplied to the motor. By means of a positive feedback circuit, a wider range of control is effected.

5. Development of software to improve AC power quality on large spacecraft

NASA Technical Reports Server (NTRS)

Kraft, L. Alan

1991-01-01

To insure the reliability of a 20 kHz, alternating current (AC) power system on spacecraft, it is essential to analyze its behavior under many adverse operating conditions. Some of these conditions include overloads, short circuits, switching surges, and harmonic distortions. Harmonic distortions can become a serious problem. It can cause malfunctions in equipment that the power system is supplying, and, during distortions such as voltage resonance, it can cause equipment and insulation failures due to the extreme peak voltages. To address the harmonic distortion issue, work was begun under the 1990 NASA-ASEE Summer Faculty Fellowship Program. Software, originally developed by EPRI, called HARMFLO, a power flow program capable of analyzing harmonic conditions on three phase, balanced, 60 Hz AC power systems, was modified to analyze single phase, 20 kHz, AC power systems. Since almost all of the equipment used on spacecraft power systems is electrically different from equipment used on terrestrial power systems, it was also necessary to develop mathematical models for the equipment to be used on the spacecraft. The modelling was also started under the same fellowship work period. Details of the modifications and models completed during the 1990 NASA-ASEE Summer Faculty Fellowship Program can be found in a project report. As a continuation of the work to develop a complete package necessary for the full analysis of spacecraft AC power system behavior, deployment work has continued through NASA Grant NAG3-1254. This report details the work covered by the above mentioned grant.

6. Thrust distribution for attitude control in a variable thrust propulsion system with four ACS nozzles

Lim, Yeerang; Lee, Wonsuk; Bang, Hyochoong; Lee, Hosung

2017-04-01

A thrust distribution approach is proposed in this paper for a variable thrust solid propulsion system with an attitude control system (ACS) that uses a reduced number of nozzles for a three-axis attitude maneuver. Although a conventional variable thrust solid propulsion system needs six ACS nozzles, this paper proposes a thrust system with four ACS nozzles to reduce the complexity and mass of the system. The performance of the new system was analyzed with numerical simulations, and the results show that the performance of the system with four ACS nozzles was similar to the original system while the mass of the whole system was simultaneously reduced. Moreover, a feasibility analysis was performed to determine whether a thrust system with three ACS nozzles is possible.

7. Improved transistorized AC motor controller for battery powered urban electric passenger vehicles

NASA Technical Reports Server (NTRS)

Peak, S. C.

1982-01-01

An ac motor controller for an induction motor electric vehicle drive system was designed, fabricated, tested, evaluated, and cost analyzed. A vehicle performance analysis was done to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of ac motor and ac controller requirements. The power inverter is a three-phase bridge using power Darlington transistors. The induction motor was optimized for use with an inverter power source. The drive system has a constant torque output to base motor speed and a constant horsepower output to maximum speed. A gear shifting transmission is not required. The ac controller was scaled from the base 20 hp (41 hp peak) at 108 volts dec to an expanded horsepower and battery voltage range. Motor reversal was accomplished by electronic reversal of the inverter phase sequence. The ac controller can also be used as a boost chopper battery charger. The drive system was tested on a dynamometer and results are presented. The current-controlled pulse width modulation control scheme yielded improved motor current waveforms. The ac controller favors a higher system voltage.

8. Location Dependence of a MEMS Electromagnetic Transducer with respect to an AC Power Source

Houlihan, Ruth; Olszewski, Oskar; Waldron, Finbarr; O'Neill, Mike; Mathewson, Alan; Jackson, Nathan

2016-10-01

A MEMS, silicon based device with a piezoelectric layer and an integrated magnet is presented for magnetic to electrical transduction. The cantilever structure can be configured either as an energy harvester to harvest power from an AC power line or as an AC current sensor. The positioning of the transducer with respect to the AC conductor is critical in both scenarios. For the energy scavenger, correct positioning is required to optimize the harvested power. For the current sensor, it is necessary to optimise the sensitivity of the sensor. This paper considers the effect of the relative position of the transducer with respect to the wire on the resulting electromagnetic forces and torques driving the device. It is shown here that the magnetic torque acting on a cantilever beam with an integrated magnet and in the vicinity of an alternating electromagnetic field is a very significant driver of the cantilever oscillations.

9. A system for tranmitting low frequency analog signals over ac power lines

DOEpatents

Baker, S.P.; Durall, R.L.; Haynes, H.D.

1987-07-30

A system for transmitting low frequency analog signals over ac power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an ac power line. The modulation signal frequency range is selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the ac power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal. 4 figs.

10. System for transmitting low frequency analog signals over AC power lines

DOEpatents

Baker, Steven P.; Durall, Robert L.; Haynes, Howard D.

1989-01-01

A system for transmitting low frequency analog signals over AC power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an AC power line. The modulation signal frequency range in selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the AC power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal.

11. System for transmitting low frequency analog signals over AC power lines

DOEpatents

Baker, Steven P.; Durall, Robert L.; Haynes, Howard D.

1989-09-05

A system for transmitting low frequency analog signals over AC power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an AC power line. The modulation signal frequency range in selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the AC power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal.

12. Computer modeling and simulation of a 20kHz ac distribution system for Space Station

NASA Technical Reports Server (NTRS)

Tsai, Fu-Sheng; Lee, Fred C.

1987-01-01

A computer model of a 20 kHz, ac distribution testbed for Space Station is presented. The system consists of six resonant inverters, a one-hundred-meter transmission line, and three load receivers: a dc receiver, a bidirectional receiver, and an ac receiver. A model library is generated characterizing all system components. The system's local and global behaviors are investigated using the EASY5 dynamic analysis program.

13. The power supply system model of the process submersible device with AC power transmission over the cable-rope

Rulevskiy, V. M.; Bukreev, V. G.; Kuleshova, E. O.; Shandarova, E. B.; Shandarov, S. M.; Vasilyeva, Yu Z.

2017-02-01

A practical problem of power supply system modeling for the process submersible device with AC power transmission over the cable-rope was considered. The problem is highly relevant in developing and operation of submersible centrifugal pumps and submersibles. The results of modeling a symmetrical three-phase power supply system and their compliance with the real data are given at the paper. The obtained results in the mathematical and simulation models were similar.

14. Efficient two-level cryogenic power distribution system

Mueller, O. M.; Mueller, E. K.

2002-05-01

The availability of new technologies such as high-temperature superconducting (HTS) cables, high-voltage, high-speed semiconductor switches, and cryogenic power conversion suggests that one considers how these technologies can be combined and applied effectively to provide a more efficient energy distribution system. The present-day 60 Hz concept is, after all, a century old. Advantages can be obtained by combining DC and high-frequency AC technologies. DC transmission solves the problem of AC losses in HTS cables and high-frequency switching techniques reduce size, weight and cost. This paper proposes and discusses a distribution system based on two DC voltage levels (˜4 kVDC/650 VDC) interconnected with DC/DC converters using high-voltage insulated-gate bipolar transistors (HV-IGBT's), integrated gate-commutated thyristors (IGCT's), or MOS-controlled turn-off thyristors (MTO's) operated at cryogenic temperatures. Cryo-MOSFET DC/AC inverters provide the 60 Hz, 240/120 VAC user voltages. HTS cables supply power as well as the cooling fluid liquid nitrogen (LN2). The load shedding properties of such a system based on the use of LN2 are evaluated. The proposed concept is suitable for city blocks with many high-rise buildings. It provides an increase in efficiency and therefore contributes to the reduction of global warming.

15. AC Power Consumption of Single-Walled Carbon Nanotube Interconnects: Non-Equilibrium Green's Function Simulation

Yamamoto, Takahiro; Sasaoka, Kenji; Watanabe, Satoshi

2012-04-01

We theoretically investigate the emittance and dynamic dissipation of a nanoscale interconnect consisting of a metallic single-walled carbon nanotube using the non-equilibrium Green's function technique for AC electronic transport. We show that the emittance and dynamic dissipation depend strongly on the contact conditions of the interconnect and that the power consumption can be reduced by adjusting the contact conditions. We propose an appropriate condition of contact that yields a high power factor and low apparent power.

16. The ac power line protection for an IEEE 587 Class B environment

NASA Technical Reports Server (NTRS)

Roehr, W. D.; Clark, O. M.

1984-01-01

The 587B series of protectors are unique, low clamping voltage transient suppressors to protect ac-powered equipment from the 6000V peak open-circuit voltage and 3000A short circuit current as defined in IEEE standard 587 for Category B transients. The devices, which incorporate multiple-stage solid-state protector components, were specifically designed to operate under multiple exposures to maximum threat levels in this severe environment. The output voltage peaks are limited to 350V under maximum threat conditions for a 120V ac power line, thus providing adequate protection to vulnerable electronic equipment. The principle of operation and test performance data is discussed.

17. Strengthening the SDP Relaxation of AC Power Flows with Convex Envelopes, Bound Tightening, and Valid Inequalities

SciTech Connect

Coffrin, Carleton James; Hijazi, Hassan L; Van Hentenryck, Pascal R

2016-12-01

Here this work revisits the Semidefine Programming (SDP) relaxation of the AC power flow equations in light of recent results illustrating the benefits of bounds propagation, valid inequalities, and the Convex Quadratic (QC) relaxation. By integrating all of these results into the SDP model a new hybrid relaxation is proposed, which combines the benefits from all of these recent works. This strengthened SDP formulation is evaluated on 71 AC Optimal Power Flow test cases from the NESTA archive and is shown to have an optimality gap of less than 1% on 63 cases. This new hybrid relaxation closes 50% of the open cases considered, leaving only 8 for future investigation.

18. Non-oxidized porous silicon-based power AC switch peripheries

Menard, Samuel; Fèvre, Angélique; Valente, Damien; Billoué, Jérôme; Gautier, Gaël

2012-10-01

We present in this paper a novel application of porous silicon (PS) for low-power alternating current (AC) switches such as triode alternating current devices (TRIACs) frequently used to control small appliances (fridge, vacuum cleaner, washing machine, coffee makers, etc.). More precisely, it seems possible to benefit from the PS electrical insulation properties to ensure the OFF state of the device. Based on the technological aspects of the most commonly used AC switch peripheries physically responsible of the TRIAC blocking performances (leakage current and breakdown voltage), we suggest to isolate upper and lower junctions through the addition of a PS layer anodically etched from existing AC switch diffusion profiles. Then, we comment the voltage capability of practical samples emanating from the proposed architecture. Thanks to the characterization results of simple Al-PS-Si(P) structures, the experimental observations are interpreted, thus opening new outlooks in the field of AC switch peripheries.

19. Development of a uninterrupted power system: ac and dc to dc converter

NASA Technical Reports Server (NTRS)

Cronin, D. L.; Schoenfeld, A. D.

1973-01-01

This program covered the design, fabrication and testing of an advanced development model uninterrupted power system. The input and output requirements imposed on the power processor were specified such that the unit is electrically interchangeable with existing power systems used by the Federal Aviation Administration in installations which have a history of failure due to electrical transient conditions. Input power is from either of two single-phase ac power sources or batteries with electronic selection and transfer between power sources. Battery reconditioning is automatic when either ac source is present. The output power is rated at 84OW; the nominal output is 24V at 35A. Within the 84OW limit, the regulated output voltage is adjustable from 22V to 30Vdc. Protection against continuous overloading or short circuit is provided. The unit is packaged in a standard 19-inch rack mount configuration with 7-inch panel height. Controls are on the front panel with power input and output through connectors on the rear surface. Cooling is by free convection from fin areas located on the side and rear panels. The packaged unit weighs 52.8 lbs., which can be reduced significantly if a three-phase ac power source is used.

20. Development of software to improve AC power quality on large spacecraft

NASA Technical Reports Server (NTRS)

Kraft, L. Alan

1991-01-01

To insure the reliability of a 20 kHz, AC power system on spacecraft, it is essential to analyze its behavior under many adverse operating conditions. Some of these conditions include overloads, short circuits, switching surges, and harmonic distortions. Harmonic distortions can cause malfunctions in equipment that the power system is supplying, and during extreme distortions such as voltage resonance, it can cause equipment and insulation failures due to the extreme peak voltages. HARMFLO, a power flow computer program, which was capable of analyzing harmonic conditions on three phase, balanced, 60 Hz, AC power systems, was modified to analyze single phase, 20 kHz, AC power systems. Since almost all of the equipment used on spacecraft power systems is electrically different from equipment used on terrestrial power systems, it was also necessary to develop mathematical models for the equipment to be used on the spacecraft. The results are that (1) the harmonic power now has a model of a single phase, voltage controlled, full wave rectifier; and (2) HARMFLO was ported to the SUN workstation platform.

1. AC losses in superconductors with a power-law constitutive relation

Agassi, Y. D.

2015-10-01

The observed constitutive relation between the electrical field and current density in cuprates high temperature superconductors is a power-law of the current. This functional dependence is presumably related to the giant flux-creep domain. It is shown that this constitutive relation reflects the statistical spread of the pinning potential associated with creep motion of vortex bundles. The AC losses emanating from a power-law constitutive relation are calculated in an approach focused on the superconductor's electric field. For a slab geometry in the presence of a parallel AC magnetic field or transport current, the calculated AC-loss scaling laws are consistent with BSCCO data and the critical state model. Extensions of the approach are briefly discussed.

2. Hybrid power system intelligent operation and protection involving distributed architectures and pulsed loads

Mohamed, Ahmed

Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available

3. 33. A.C. PANEL FOR MENTONE POWER HOUSE, P.L. & P. ...

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

33. A.C. PANEL FOR MENTONE POWER HOUSE, P.L. & P. CO., LOS ANGELES. RETRACED FROM MASSON'S DRAWING NO. C-275. JAN. 20, 1909. SCE drawing no. 52880. - Santa Ana River Hydroelectric System, SAR-3 Powerhouse, San Bernardino National Forest, Redlands, San Bernardino County, CA

4. Optimal Power Flow for Distribution Systems under Uncertain Forecasts

SciTech Connect

Dall'Anese, Emiliano; Baker, Kyri; Summers, Tyler

2016-12-29

The paper focuses on distribution systems featuring renewable energy sources and energy storage devices, and develops an optimal power flow (OPF) approach to optimize the system operation in spite of forecasting errors. The proposed method builds on a chance-constrained multi-period AC OPF formulation, where probabilistic constraints are utilized to enforce voltage regulation with a prescribed probability. To enable a computationally affordable solution approach, a convex reformulation of the OPF task is obtained by resorting to i) pertinent linear approximations of the power flow equations, and ii) convex approximations of the chance constraints. Particularly, the approximate chance constraints provide conservative bounds that hold for arbitrary distributions of the forecasting errors. An adaptive optimization strategy is then obtained by embedding the proposed OPF task into a model predictive control framework.

5. Optimal Power Flow for Distribution Systems under Uncertain Forecasts: Preprint

SciTech Connect

Dall'Anese, Emiliano; Baker, Kyri; Summers, Tyler

2016-12-01

The paper focuses on distribution systems featuring renewable energy sources and energy storage devices, and develops an optimal power flow (OPF) approach to optimize the system operation in spite of forecasting errors. The proposed method builds on a chance-constrained multi-period AC OPF formulation, where probabilistic constraints are utilized to enforce voltage regulation with a prescribed probability. To enable a computationally affordable solution approach, a convex reformulation of the OPF task is obtained by resorting to i) pertinent linear approximations of the power flow equations, and ii) convex approximations of the chance constraints. Particularly, the approximate chance constraints provide conservative bounds that hold for arbitrary distributions of the forecasting errors. An adaptive optimization strategy is then obtained by embedding the proposed OPF task into a model predictive control framework.

6. Solar power generation and distribution

NASA Technical Reports Server (NTRS)

1973-01-01

The production of electricity from solar energy is discussed. The economics of the proposed generation and distribution systems are analyzed. The use of photovoltaics for converting solar energy to home heating is proposed. The problems of energy distribution are analyzed from the standpoint of equipment costs and complexity.

7. Comprehensive review of high power factor ac-dc boost converters for PFC applications

De Castro Pereira, Dênis; Da Silva, Márcio Renato; Mateus Silva, Elder; Lessa Tofoli, Fernando

2015-08-01

High power factor rectifiers have been consolidated as an effective solution to improve power quality indices in terms of input power factor correction, reduction in the total harmonic distortion of the input current and also regulated dc voltages. Within this context, this subject has motivated the introduction of numerous converter topologies based on classic dc-dc structures associated with novel control techniques, thus leading to the manufacturing of dedicated integrated circuits that allow high input power factor by adding a front-end stage to switch-mode converters. In particular, boost converters in continuous current mode (CCM) are widely employed since they allow obtaining minimised electromagnetic interference levels. This work is concerned with a literature review involving relevant ac-dc single-phase boost-based topologies with high input power factor. The evolution of aspects regarding the conventional boost converter is shown in terms of improved characteristics inherent to other ac-dc boost converters. Additionally, the work intends to be a fast and concise reference to single-phase ac-dc boost converters operating in CCM for engineers, researchers and experts in the field of power electronics by properly analysing and comparing the aforementioned rectifiers.

8. Instantaneous characteristics simulation and analysis on three-level brushless AC synchronous generators of aeronautic constant speed and frequency AC power system

Ma, Xiaohe; Shen, Songhua

2006-11-01

This paper mainly introduces theoretical analysis and experimental results of instantaneous characteristics on a certain three level brushless three-phase AC synchronous generators. The analysis, modeling and simulations with Simplorer software of Ansoft Company are carried out. It establishes three level generator models, gives theoretical relation matrix equation, and simulates some instantaneous characteristics. Design of the system requires reliable simulation tools with comprehensive component libraries capable of dealing with complex system behavior. The simulation results verify that the proposed system model can efficiently simulate the instantaneous characteristics of the real AC generator system. It gives better design experiences and digital methods for aeronautic constant speed and frequency AC power system.

9. A novel wireless power and data transmission AC to DC converter for an implantable device.

PubMed

Liu, Jhao-Yan; Tang, Kea-Tiong

2013-01-01

This article presents a novel AC to DC converter implemented by standard CMOS technology, applied for wireless power transmission. This circuit combines the functions of the rectifier and DC to DC converter, rather than using the rectifier to convert AC to DC and then supplying the required voltage with regulator as in the transitional method. This modification can reduce the power consumption and the area of the circuit. This circuit also transfers the loading condition back to the external circuit by the load shift keying(LSK), determining if the input power is not enough or excessive, which increases the efficiency of the total system. The AC to DC converter is fabricated with the TSMC 90nm CMOS process. The circuit area is 0.071mm(2). The circuit can produce a 1V DC voltage with maximum output current of 10mA from an AC input ranging from 1.5V to 2V, at 1MHz to 10MHz.

10. Development of a 10 kW High Temperature High Power Density Three-Phase AC-DC-AC SiC Converter

SciTech Connect

Ning, Puqi

2012-01-01

This paper presents the development and experimental performance of a 10 kW, all SiC, 250 C junction temperature high-power-density three-phase ac-dc-ac converter. The electromagnetic interference filter, thermal system, high temperature package, and gate drive design are discussed in detail. Finally, tests confirming the feasibility and validating the theoretical basis of the prototype converter system are described.

11. Electromechanical systems with transient high power response operating from a resonant ac link

NASA Technical Reports Server (NTRS)

Burrows, Linda M.; Hansen, Irving G.

1992-01-01

The combination of an inherently robust asynchronous (induction) electrical machine with the rapid control of energy provided by a high frequency resonant ac link enables the efficient management of higher power levels with greater versatility. This could have a variety of applications from launch vehicles to all-electric automobiles. These types of systems utilize a machine which is operated by independent control of both the voltage and frequency. This is made possible by using an indirect field-oriented control method which allows instantaneous torque control all four operating quadrants. Incorporating the ac link allows the converter in these systems to switch at the zero crossing of every half cycle of the ac waveform. This zero loss switching of the link allows rapid energy variations to be achieved without the usual frequency proportional switching loss. Several field-oriented control systems were developed under contract to NASA.

12. A study of some features of ac and dc electric power systems for a space station

NASA Technical Reports Server (NTRS)

Hanania, J. I.

1983-01-01

This study analyzes certain selected topics in rival dc and high frequency ac electric power systems for a Space Station. The interaction between the Space Station and the plasma environment is analyzed, leading to a limit on the voltage for the solar array and a potential problem with resonance coupling at high frequencies. Certain problems are pointed out in the concept of a rotary transformer, and further development work is indicated in connection with dc circuit switching, special design of a transmission conductor for the ac system, and electric motors. The question of electric shock hazards, particularly at high frequency, is also explored. and a problem with reduced skin resistance and therefore increased hazard with high frequency ac is pointed out. The study concludes with a comparison of the main advantages and disadvantages of the two rival systems, and it is suggested that the choice between the two should be made after further studies and development work are completed.

13. High frequency power distribution system

NASA Technical Reports Server (NTRS)

Patel, Mikund R.

1986-01-01

The objective of this project was to provide the technology of high frequency, high power transmission lines to the 100 kW power range at 20 kHz frequency. In addition to the necessary design studies, a 150 m long, 600 V, 60 A transmission line was built, tested and delivered for full vacuum tests. The configuration analysis on five alternative configurations resulted in the final selection of the three parallel Litz straps configuration, which gave a virtually concentric design in the electromagnetic sense. Low inductance, low EMI and flexibility in handling are the key features of this configuration. The final design was made after a parametric study to minimize the losses, weight and inductance. The construction of the cable was completed with no major difficulties. The R,L,C parameters measured on the cable agreed well with the calculated values. The corona tests on insulation samples showed a safety factor of 3.

14. Improved SCR ac Motor Controller for Battery Powered Urban Electric Vehicles

NASA Technical Reports Server (NTRS)

Latos, T. S.

1982-01-01

An improved ac motor controller, which when coupled to a standard ac induction motor and a dc propulsion battery would provide a complete electric vehicle power train with the exception of the mechanical transmission and drive wheels was designed. In such a system, the motor controller converts the dc electrical power available at the battery terminals to ac electrical power for the induction motor in response to the drivers commands. The performance requirements of a hypothetical electric vehicle with an upper weight bound of 1590 kg (3500 lb) were used to determine the power rating of the controller. Vehicle acceleration capability, top speed, and gradeability requisites were contained in the Society of Automotive Engineers (SAE) Schedule 227a(d) driving cycle. The important capabilities contained in this driving cycle are a vehicle acceleration requirement of 0 to 72.4 kmph (0 to 45 mph) in 28 seconds a top speed of 88.5 kmph (55 mph), and the ability to negotiate a 10% grade at 48 kmph (30 mph). A 10% grade is defined as one foot of vertical rise per 10 feet of horizontal distance.

15. Computer Power: Part 1: Distribution of Power (and Communications).

ERIC Educational Resources Information Center

Price, Bennett J.

1988-01-01

Discussion of the distribution of power to personal computers and computer terminals addresses options such as extension cords, perimeter raceways, and interior raceways. Sidebars explain: (1) the National Electrical Code; (2) volts, amps, and watts; (3) transformers, circuit breakers, and circuits; and (4) power vs. data wiring. (MES)

16. Bulk data transfer distributer: a high performance multicast model in ALMA ACS

Cirami, R.; Di Marcantonio, P.; Chiozzi, G.; Jeram, B.

2006-06-01

A high performance multicast model for the bulk data transfer mechanism in the ALMA (Atacama Large Millimeter Array) Common Software (ACS) is presented. The ALMA astronomical interferometer will consist of at least 50 12-m antennas operating at millimeter wavelength. The whole software infrastructure for ALMA is based on ACS, which is a set of application frameworks built on top of CORBA. To cope with the very strong requirements for the amount of data that needs to be transported by the software communication channels of the ALMA subsystems (a typical output data rate expected from the Correlator is of the order of 64 MB per second) and with the potential CORBA bottleneck due to parameter marshalling/de-marshalling, usage of IIOP protocol, etc., a transfer mechanism based on the ACE/TAO CORBA Audio/Video (A/V) Streaming Service has been developed. The ACS Bulk Data Transfer architecture bypasses the CORBA protocol with an out-of-bound connection for the data streams (transmitting data directly in TCP or UDP format), using at the same time CORBA for handshaking and leveraging the benefits of ACS middleware. Such a mechanism has proven to be capable of high performances, of the order of 800 Mbits per second on a 1Gbit Ethernet network. Besides a point-to-point communication model, the ACS Bulk Data Transfer provides a multicast model. Since the TCP protocol does not support multicasting and all the data must be correctly delivered to all ALMA subsystems, a distributer mechanism has been developed. This paper focuses on the ACS Bulk Data Distributer, which mimics a multicast behaviour managing data dispatching to all receivers willing to get data from the same sender.

17. Correction of the power law of ac conductivity in ion-conducting materials due to the electrode polarization effect.

PubMed

Khamzin, A A; Popov, I I; Nigmatullin, R R

2014-03-01

Based on the supposition related to fractal nature of transport processes in ion-conducting materials, an expression for the low-frequency ac conductivity dependence was derived. This expression for the ac conductivity generalizes the power-law dependence and gives a possibility to take into account the influence of the electrode polarization effect. The ac conductivity expression obtained is in excellent agreement with experimental data for a wide frequency range.

18. AC hot carrier effect of the thin-film silicon-on-insulator power n-MOSFET

Takenaka, Daiki; Matsumoto, Satoshi

2017-04-01

In this paper, we describe the hot carrier (HC) effect of the thin-film silicon-on-insulator (SOI) power n-MOSFET under DC and AC stress. We clarify that the HC effect is enhanced by AC stress because of both drain avalanche hot carriers (DAHC) and channel hot carriers (CHC). In addition, the parasitic bipolar effect which is enhanced by minority carrier accumulation under AC stress, causes device degradation at low frequencies.

19. First experimental results from DC/DC and AC/DC plasma-based power transformers

McEvoy, Aaron; Gibson, William; Nebel, Richard

2016-10-01

A plasma-based power transformer has been built and operated in both DC/DC and AC/DC mode. The proprietary Tibbar Plasma Technologies, Inc. transformer design consists of two cylindrically symmetric helical primary electrodes surrounding a low temperature plasma within which a secondary axial current is generated. Initial experimental results have compared well with simulations and moderate conversion efficiencies have been observed. A new proprietary device is currently being constructed that will utilize 3-phase 480 VAC input to achieve higher conversion efficiency and output power. A description of the apparatus and several potential applications will be presented along with preliminary experimental data demonstrating the DC/DC and AC/DC conversion processes. Work performed under ARPA-E contract DE-AR0000677.

20. Strengthening the SDP Relaxation of AC Power Flows with Convex Envelopes, Bound Tightening, and Valid Inequalities

DOE PAGES

Coffrin, Carleton James; Hijazi, Hassan L; Van Hentenryck, Pascal R

2016-12-01

Here this work revisits the Semidefine Programming (SDP) relaxation of the AC power flow equations in light of recent results illustrating the benefits of bounds propagation, valid inequalities, and the Convex Quadratic (QC) relaxation. By integrating all of these results into the SDP model a new hybrid relaxation is proposed, which combines the benefits from all of these recent works. This strengthened SDP formulation is evaluated on 71 AC Optimal Power Flow test cases from the NESTA archive and is shown to have an optimality gap of less than 1% on 63 cases. This new hybrid relaxation closes 50% ofmore » the open cases considered, leaving only 8 for future investigation.« less

1. Very low noise AC/DC power supply systems for large detector arrays.

PubMed

Arnaboldi, C; Baù, A; Carniti, P; Cassina, L; Giachero, A; Gotti, C; Maino, M; Passerini, A; Pessina, G

2015-12-01

In this work, we present the first part of the power supply system for the CUORE and LUCIFER arrays of bolometric detectors. For CUORE, it consists of AC/DC commercial power supplies (0-60 V output) followed by custom DC/DC modules (48 V input, ±5 V to ±13.5 V outputs). Each module has 3 floating and independently configurable output voltages. In LUCIFER, the AC/DC + DC/DC stages are combined into a commercial medium-power AC/DC source. At the outputs of both setups, we introduced filters with the aim of lowering the noise and to protect the following stages from high voltage spikes that can be generated by the energy stored in the cables after the release of accidental short circuits. Output noise is very low, as required: in the 100 MHz bandwidth the RMS level is about 37 μV(RMS) (CUORE setup) and 90 μV(RMS) (LUCIFER setup) at a load of 7 A, with a negligible dependence on the load current. Even more importantly, high frequency switching disturbances are almost completely suppressed. The efficiency of both systems is above 85%. Both systems are completely programmable and monitored via CAN bus (optically coupled).

2. Nonlinear control of voltage source converters in AC-DC power system.

PubMed

Dash, P K; Nayak, N

2014-07-01

This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations.

3. Space Solar Power Management and Distribution (PMAD)

NASA Technical Reports Server (NTRS)

Lynch, Thomas H.

2000-01-01

This paper presents, in viewgraph form, SSP PMAD (Space Solar Power Management and Distribution). The topics include: 1) Architecture; 2) Backside Thermal View; 3) Solar Array Interface; 4) Transformer design and risks; 5) Twelve phase rectifier; 6) Antenna (80V) Converters; 7) Distribution Cables; 8) Weight Analysis; and 9) PMAD Summary.

4. Cathode power distribution system and method of using the same for power distribution

DOEpatents

Williamson, Mark A; Wiedmeyer, Stanley G; Koehl, Eugene R; Bailey, James L; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

2014-11-11

Embodiments include a cathode power distribution system and/or method of using the same for power distribution. The cathode power distribution system includes a plurality of cathode assemblies. Each cathode assembly of the plurality of cathode assemblies includes a plurality of cathode rods. The system also includes a plurality of bus bars configured to distribute current to each of the plurality of cathode assemblies. The plurality of bus bars include a first bus bar configured to distribute the current to first ends of the plurality of cathode assemblies and a second bus bar configured to distribute the current to second ends of the plurality of cathode assemblies.

5. Intelligent Systems for Power Management and Distribution

NASA Technical Reports Server (NTRS)

Button, Robert M.

2002-01-01

The motivation behind an advanced technology program to develop intelligent power management and distribution (PMAD) systems is described. The program concentrates on developing digital control and distributed processing algorithms for PMAD components and systems to improve their size, weight, efficiency, and reliability. Specific areas of research in developing intelligent DC-DC converters and distributed switchgear are described. Results from recent development efforts are presented along with expected future benefits to the overall PMAD system performance.

6. Electromechanical systems with transient high power response operating from a resonant AC link

NASA Technical Reports Server (NTRS)

Burrows, Linda M.; Hansen, Irving G.

1992-01-01

The combination of an inherently robust asynchronous (induction) electrical machine with the rapid control of energy provided by a high frequency resonant AC link enables the efficient management of higher power levels with greater versatility. This could have a variety of applications from launch vehicles to all-electric automobiles. These types of systems utilize a machine which is operated by independent control of both the voltage and frequency. This is made possible by using an indirect field-oriented control method which allows instantaneous torque control in all four operating quadrants. Incorporating the AC link allows the converter in these systems to switch at the zero crossing of every half cycle of the AC waveform. This zero loss switching of the link allows rapid energy variations to be achieved without the usual frequency proportional switching loss. Several field-oriented control systems were developed by LeRC and General Dynamics Space Systems Division under contract to NASA. A description of a single motor, electromechanical actuation system is presented. Then, focus is on a conceptual design for an AC electric vehicle. This design incorporates an induction motor/generator together with a flywheel for peak energy storage. System operation and implications along with the associated circuitry are addressed. Such a system would greatly improve all-electric vehicle ranges over the Federal Urban Driving Cycle (FUD).

7. Hierarchical distributed stabilization of power networks

Ishizaki, Takayuki; Sadamoto, Tomonori; Imura, Jun-ichi

2014-10-01

Large fluctuation of electric power due to high penetration of renewable energy sources such as photovoltaic and wind power generation increases the risk to make the whole power network system unstable. The conventional frequency control called load frequency control is based on PID (proportional-integral-derivative) control or more advanced centralized and decentralized/distributed control. If we could more effectively use information on the state of the other neighbor generators, we can expect to make the whole system more robust against the large frequency fluctuation. This paper proposes a fundamental framework towards the design of hierarchical distributed stabilizing controllers for a network of power generators and loads. This novel type of distributed controller, composed of a global controller and a set of local controllers, takes into account the effect of the interaction among the generators and loads to improve robustness for the variation of locally stabilizing controllers.

8. Grid-connected distributed solar power systems

Moyle, R.; Chernoff, H.; Schweizer, T.

This paper discusses some important, though often ignored, technical and economic issues of distributed solar power systems: protection of the utility system and nonsolar customers requires suitable interfaced equipment. Purchase criteria must mirror reality; most analyses use life-cycle costing with low discount rates - most buyers use short payback periods. Distributing, installing, and marketing small, distributed solar systems is more costly than most analyses estimate. Results show that certain local conditions and uncommon purchase considerations can combine to make small, distributed solar power attractive, but lower interconnect costs (per kW), lower marketing and product distribution costs, and more favorable purchase criteria make large, centralized solar energy more attractive. Specifically, the value of dispersed solar systems to investors and utilities can be higher than \$2000/kw. However, typical residential owners place a value of well under \$1000 on the installed system.

9. Vibration Monitoring of Power Distribution Poles

SciTech Connect

Clark Scott; Gail Heath; John Svoboda

2006-04-01

Some of the most visible and least monitored elements of our national security infrastructure are the poles and towers used for the distribution of our nation’s electrical power. Issues surrounding these elements within the United States include safety such as unauthorized climbing and access, vandalism such as nut/bolt removal or destructive small arms fire, and major vandalism such as the downing of power poles and towers by the cutting of the poles with a chainsaw or torches. The Idaho National Laboratory (INL) has an ongoing research program working to develop inexpensive and sensitive sensor platforms for the monitoring and characterization of damage to the power distribution infrastructure. This presentation covers the results from the instrumentation of a variety of power poles and wires with geophone assemblies and the recording of vibration data when power poles were subjected to a variety of stimuli. Initial results indicate that, for the majority of attacks against power poles, the resulting signal can be seen not only on the targeted pole but on sensors several poles away in the distribution network and a distributed sensor system can be used to monitor remote and critical structures.

10. Isolated and Passive Power Factor Correction AC/DC Converter for Radioisotope Stirling Generators

Garrigos, A.; Blanes, J. M.; Gutierrez, R.; Lizan, J. L.; Carrasco, J. A.; Maset, E.; Montalban, G.; Sanchis-Kilders, E.; Ejea, J. B.; Ferreres, A.

2014-08-01

A power processing system is described for low voltage, large inductance, single-phase alternator. This kind of electrical machine appears in Radioisotope Stirling Generators (RSG) as the electrical part attached to the thermodynamic system. The proposed power conditioning system splits into two independent stages; the front-end rectifier performs power factor control by adding a series capacitor in the AC side that forms a resonant filter with the alternator parasitic inductance. Further, the rectifier, thanks to the alternator inductance, behaves as a constant current source that supplies a current-fed, zero-voltage, zero-current push-pull stage. This approach takes advantage of all parasitic elements. Finally, some discussion about linear shunt and reconfigurable power factor filter is provided.

11. ACS imaging of star clusters in M 51. I. Identification and radius distribution

Scheepmaker, R. A.; Haas, M. R.; Gieles, M.; Bastian, N.; Larsen, S. S.; Lamers, H. J. G. L. M.

2007-07-01

12. Low-energy hydraulic fracturing wastewater treatment via AC powered electrocoagulation with biochar.

PubMed

Lobo, Fernanda Leite; Wang, Heming; Huggins, Tyler; Rosenblum, James; Linden, Karl G; Ren, Zhiyong Jason

2016-05-15

Produced and flowback waters are the largest byproducts associated with unconventional oil and gas exploration and production. Sustainable and low cost technologies are needed to treat and reuse this wastewater to avoid the environmental problems associated with current management practices (i.e., deep well injection). This study presents a new process to integrate AC-powered electrocoagulation (EC) with granular biochar to dramatically reduce energy use and electrode passivation while achieving high treatment efficiency. Results show achieving a 99% turbidity and TSS removal for the AC-EC-biochar system only used 0.079 kWh/m(3) or 0.15 kWh/kg TSS, which is 70% lower than traditional DC-EC systems and orders of magnitude lower than previous studies. The amount of biochar added positively correlates with energy saving, and further studies are needed to improve organic carbon and salt removal through system integration.

13. An Overview of Power Electronics Applications in Fuel Cell Systems: DC and AC Converters

PubMed Central

Ali, M. S.; Kamarudin, S. K.; Masdar, M. S.; Mohamed, A.

2014-01-01

Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter. PMID:25478581

14. An overview of power electronics applications in fuel cell systems: DC and AC converters.

PubMed

Ali, M S; Kamarudin, S K; Masdar, M S; Mohamed, A

2014-01-01

Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter.

15. Galileo spacecraft power management and distribution system

NASA Technical Reports Server (NTRS)

Detwiler, R. C.; Smith, R. L.

1990-01-01

The Galileo PMAD (power management and distribution system) is described, and the design drivers that established the final as-built hardware are discussed. The spacecraft is powered by two general-purpose heat-source-radioisotope thermoelectric generators. Power bus regulation is provided by a shunt regulator. Galileo PMAD distributes a 570-W beginning of mission (BOM) power source to a user complement of some 137 load elements. Extensive use of pyrotechnics requires two pyro switching subassemblies. They initiate 148 squibs which operate the 47 pyro devices on the spacecraft. Detection and correction of faults in the Galileo PMAD is an autonomous feature dictated by requirements for long life and reliability in the absence of ground-based support. Volatile computer memories in the spacecraft command and data system and attitude control system require a continuous source of backup power during all anticipated power bus fault scenarios. Power for the Jupiter Probe is conditioned, isolated, and controlled by a Probe interface subassembly. Flight performance of the spacecraft and the PMAD has been successful to date, with no major anomalies.

16. Plasma antennas driven by 5–20 kHz AC power supply

SciTech Connect

Zhao, Jiansen Chen, Yuli; Sun, Yang; Wu, Huafeng; Liu, Yue; Yuan, Qiumeng

2015-12-15

The experiments described in this work were performed with the aim of introducing a new plasma antenna that was excited by a 5–20 kHz alternating current (AC) power supply, where the antenna was transformed into a U-shape. The results show that the impedance, voltage standing-wave ratio (VSWR), radiation pattern and gain characteristics of the antenna can be controlled rapidly by varying not only the discharge power, but also by varying the discharge frequency in the range from 5 to 20 kHz. When the discharge frequency is adjusted from 10 to 12 kHz, the gain is higher within a relatively broad frequency band and the switch-on time is less than 1 ms when the discharge power is less than 5 W, meaning that the plasma antenna can be turned on and off rapidly.

17. Plasma antennas driven by 5-20 kHz AC power supply

Zhao, Jiansen; Chen, Yuli; Sun, Yang; Wu, Huafeng; Liu, Yue; Yuan, Qiumeng

2015-12-01

The experiments described in this work were performed with the aim of introducing a new plasma antenna that was excited by a 5-20 kHz alternating current (AC) power supply, where the antenna was transformed into a U-shape. The results show that the impedance, voltage standing-wave ratio (VSWR), radiation pattern and gain characteristics of the antenna can be controlled rapidly by varying not only the discharge power, but also by varying the discharge frequency in the range from 5 to 20 kHz. When the discharge frequency is adjusted from 10 to 12 kHz, the gain is higher within a relatively broad frequency band and the switch-on time is less than 1 ms when the discharge power is less than 5 W, meaning that the plasma antenna can be turned on and off rapidly.

18. Lowest of AC-DC power output for electrostrictive polymers energy harvesting systems

2013-11-01

Advances in technology led to the development of electronic circuits and sensors with extremely low electricity consumption. At the same time, structural health monitoring, technology and intelligent integrated systems created a need for wireless sensors in hard to reach places in aerospace vehicles and large civil engineering structures. Powering sensors with energy harvesters eliminates the need to replace batteries on a regular basis. Scientists have been forced to search for new power source that are able to harvested energy from their surrounding environment (sunlight, temperature gradients etc.). Electrostrictive polymer belonging to the family of electro-active polymers, offer unique properties for the electromechanical transducer technology has been of particular interest over the last few years in order to replace conventional techniques such as those based on piezoelectric or electromagnetic, these materials are highly attractive for their low-density, with large strain capability that can be as high as two orders of magnitude greater than the striction-limited, rigid and fragile electroactive ceramics. Electrostrictive polymers sensors respond to vibration with an ac output signal, one of the most important objectives of the electronic interface is to realize the required AC-DC conversion. The goal of this paper is to design an active, high efficiency power doubler converter for electrostrictive polymers exclusively uses a fraction of the harvested energy to supply its active devices. The simulation results show that it is possible to obtain a maximum efficiency of the AC-DC converter equal to 80%. Premiliminary experimental measurements were performed and the results obtained are in good agreement with simulations.

19. Development of an AC power source for CSEM method using full-bridge switching configuration

Indrasari, Widyaningrum; Srigutomo, Wahyu; Djamal, Mitra; S, Rahmondia N.

2015-04-01

The electromagnetic (EM) method has been widely used in geophysical surveys. It is a non-destructive method that utilizes electromagnetic waves in characterizing subsurface profiles. Generally, EM method can be divided into passive EM and active EM. The passive EM uses the natural electromagnetic field sources, while the active EM or Controlled Source EM (CSEM) uses artificial source to generate electromagnetic wave. In this paper, we present the development of AC power source for CSEM transmitter. As the power source we used AC source with sine wave signal. To satisfy a high power and high voltage in the equipment, we used the full-bridge configuration switching. It works on 990 Hz maximum frequency, and can deliver maximum current of 1.9 A at 620 V. The switching is controlled by microcontroller using Pulse Width Modulation (PWM) and the driver of inverter is built using IGBT. The output frequency can be varied from 1 Hz to 990 Hz. For varied frequencies the harmonic distortion is different due to switching speed. As frequency increase the harmonic distortion also increase. We found that the total harmonic distortion can be reduced to 1 % at the output with 330 Hz.

20. An AC motor drive with power factor control for low cost applications

Bellar, Maria Dias

2000-10-01

The front-end rectifier followed by a pulse-width modulated voltage source inverter (PWM-VSI) has been a well-established power converter configuration for many industrial drives. The increasing costs on the utility usage, due to power quality regulations, and the need to improve the VA capacity of systems, e.g. off-shore drilling rigs, have increased the interest in the development of power electronic equipment with power factor control capability. Electrical motors consume a large amount of the available electrical energy, and this energy tends to increase due to the massive emerging applications of electrical motor drives in appliances and in industrial processes. Therefore, the improvement of the power factor of these low power drive systems, usually in the range from fractional horse-power (hp) to 1 hp, is of particular interest. For these power ratings, the system configuration usually comprises a single-phase to three-phase type of converter with additional circuitry for power factor control (PFC). However, this approach has an impact on the system cost and packaging. In this work, a new concept of integrating motor and power factor controls by using a single-phase to three-phase DSP based six-switch converter topology is presented. Unlike other configurations using extra switch(es) and/or extra boost inductor, in this circuit the boost action, for input current shaping, is done by the motor leakage inductances. The power factor control and inverter operation are performed by applying two modulating signals to the SPWM control logic of the converter. In this dissertation, the converter operation and a proposed control strategy will be explained. Simulation and experimental results for a DSP based induction motor drive will be provided as proof of concept. The feasibility and potential of this configuration for ac motor drive applications will be established. The impact of this scheme on the machine operation will also be discussed.

1. Power Management and Distribution System Developed for Thermionic Power Converters

NASA Technical Reports Server (NTRS)

Baez, Anastacio N.

1998-01-01

A spacecraft solar, bimodal system combines propulsion and power generation into a single integrated system. An Integrated Solar Upper Stage (ISUS) provides orbital transfer capabilities, power generation for payloads, and onboard propulsion to the spacecraft. A key benefit of a bimodal system is a greater payload-to-spacecraft mass ratio resulting in lower launch vehicle requirements. Scaling down to smaller launch vehicles increases space access by reducing overall mission cost. NASA has joined efforts with the Air Force Phillips Laboratory to develop enabling technologies for such a system. The NASA/Air Force bimodal concept uses solar concentrators to focus energy into an integrated power plant. This power plant consists of a graphite core that stores thermal energy within a cavity. An array of thermionic converters encircles the graphite cavity and provides electrical energy conversion functions. During the power generation phase of the bimodal system, the thermionic converters are exposed to the heated cavity and convert the thermal energy to electricity. Near-term efforts of the ISUS bimodal program are focused on a ground demonstration of key technologies in order to proceed to a full space flight test. Thermionic power generation is one key technology of the bimodal concept. Thermionic power converters impose unique operating requirements upon a power management and distribution (PMAD) system design. Single thermionic converters supply large currents at very low voltages. Operating voltages can vary over a range of up to 3 to 1 as a function of operating temperature. Most spacecraft loads require regulated 28-volts direct-current (Vdc) power. A combination of series-connected converters and powerprocessing boosters is required to deliver power to the spacecraft's payloads at this level.

2. Bearingless AC Homopolar Machine Design and Control for Distributed Flywheel Energy Storage

Severson, Eric Loren

The increasing ownership of electric vehicles, in-home solar and wind generation, and wider penetration of renewable energies onto the power grid has created a need for grid-based energy storage to provide energy-neutral services. These services include frequency regulation, which requires short response-times, high power ramping capabilities, and several charge cycles over the course of one day; and diurnal load-/generation-following services to offset the inherent mismatch between renewable generation and the power grid's load profile, which requires low self-discharge so that a reasonable efficiency is obtained over a 24 hour storage interval. To realize the maximum benefits of energy storage, the technology should be modular and have minimum geographic constraints, so that it is easily scalable according to local demands. Furthermore, the technology must be economically viable to participate in the energy markets. There is currently no storage technology that is able to simultaneously meet all of these needs. This dissertation focuses on developing a new energy storage device based on flywheel technology to meet these needs. It is shown that the bearingless ac homopolar machine can be used to overcome key obstacles in flywheel technology, namely: unacceptable self-discharge and overall system cost and complexity. Bearingless machines combine the functionality of a magnetic bearing and a motor/generator into a single electromechanical device. Design of these machines is particularly challenging due to cross-coupling effects and trade-offs between motor and magnetic bearing capabilities. The bearingless ac homopolar machine adds to these design challenges due to its 3D flux paths requiring computationally expensive 3D finite element analysis. At the time this dissertation was started, bearingless ac homopolar machines were a highly immature technology. This dissertation advances the state-of-the-art of these machines through research contributions in the areas of

3. AC Resonant charger with charge rate unrelated to primary power frequency

DOEpatents

Watson, Harold

1982-01-01

An AC resonant charger for a capacitive load, such as a PFN, is provided with a variable repetition rate unrelated to the frequency of a multi-phase AC power source by using a control unit to select and couple the phase of the power source to the resonant charger in order to charge the capacitive load with a phase that is the next to begin a half cycle. For optimum range in repetition rate and increased charging voltage, the resonant charger includes a step-up transformer and full-wave rectifier. The next phase selected may then be of either polarity, but is always selected to be of a polarity opposite the polarity of the last phase selected so that the transformer core does not saturate. Thyristors are used to select and couple the correct phase just after its zero crossover in response to a sharp pulse generated by a zero-crossover detector. The thyristor that is turned on then automatically turns off after a full half cycle of its associated phase input. A full-wave rectifier couples the secondary winding of the transformer to the load so that the load capacitance is always charged with the same polarity.

4. Ac resonant charger with charge rate unrelated to preimary power requency

DOEpatents

Not Available

1979-12-07

An ac resonant charger for a capacitive load, such as a pulse forming network (PFN), is provided with a variable repetition rate unrelated to the frequency of a multi-phase ac power source by using a control unit to select and couple the phase of the power source to the resonant charger in order to charge the capacitive load with a phase that is the next to begin a half cycle. For optimum range in repetition rate and increased charging voltage, the resonant charger includes a step-up transformer and full-wave rectifier. The next phase selected may then be of either polarity, but is always selected to be of a polarity opposite the polarity of the last phase selected so that the transformer core does not saturate. Thyristors are used to select and couple the correct phase just after its zero crossover in response to a sharp pulse generated by a zero-crossover detector. The thyristor that is turned on then automatically turns off after a full half cycle of its associated phase input. A full-wave rectifier couples the secondary winding of the transformer to the load so that the load capacitance is always charged with the same polarity.

5. Plasma characteristics of argon glow discharge produced by AC power supply operating at low frequencies

Kongpiboolkid, Watcharapon; Mongkolnavin, Rattachat

2015-04-01

Non-thermal properties of Argon glow discharge operating with various operating pressures were measured and presented in this work. The Argon plasma is produced by a parallel conducting electrodes coupling with a high voltage AC power supply. The power supply can generate high AC voltage at various frequencies. The frequencies for the operation are in the range of a few kHz. The system is capable of generating electric field between the two metal electrodes discharge system. The characteristics of plasma produced were measured by optical emission spectroscopy (OES) technique where electron temperature (Te) and electron number density (ne) can be determined by line intensity ratio method. The value of electron number density was then determined from the Saha-Eggert equation. Our results show that the electron number density of the discharge obtained is of the order of 10-17 - 10-18 m-3 where the electron temperature is between 1.00-2.00 eV for various operating frequencies used which are in good agreement with similar results published earlier.

6. Plasma characteristics of argon glow discharge produced by AC power supply operating at low frequencies

SciTech Connect

Kongpiboolkid, Watcharapon; Mongkolnavin, Rattachat

2015-04-24

Non-thermal properties of Argon glow discharge operating with various operating pressures were measured and presented in this work. The Argon plasma is produced by a parallel conducting electrodes coupling with a high voltage AC power supply. The power supply can generate high AC voltage at various frequencies. The frequencies for the operation are in the range of a few kHz. The system is capable of generating electric field between the two metal electrodes discharge system. The characteristics of plasma produced were measured by optical emission spectroscopy (OES) technique where electron temperature (T{sub e}) and electron number density (n{sub e}) can be determined by line intensity ratio method. The value of electron number density was then determined from the Saha-Eggert equation. Our results show that the electron number density of the discharge obtained is of the order of 10{sup −17} − 10{sup −18} m{sup −3} where the electron temperature is between 1.00−2.00 eV for various operating frequencies used which are in good agreement with similar results published earlier.

7. Effect of AC target power on AlN film quality

SciTech Connect

Knisely, Katherine Grosh, Karl

2014-09-01

The influence of alternating current (AC) target power on film stress, roughness, and x-ray diffraction rocking curve full width half maximum (FWHM) was examined for AlN films deposited using S-gun magnetron sputtering on insulative substrates consisting of Si wafers with 575 nm thermal oxide. As the AC target power was increased from 5 to 8 kW, the deposition rate increased from 9.3 to 15.9 A/s, film stress decreased from 81 to −170 MPa, and the rocking curve FWHM increased from 0.98 to 1.03°. AlN film behavior is observed to change with target life; films deposited at 200 kWh target life were approximately 40 MPa more compressive and had 0.02° degree higher rocking curve FWHM values than films deposited at 130 kWh. AlN films deposited in two depositions were compared with films deposited in a single deposition, in order to better characterize the growth behavior and properties of AlN films deposited on an existing AlN film, which is not well understood. Two deposition films, when compared with single deposition films, showed no variation in residual stress trends or grain size behavior, but the average film roughness increased from 0.7 to 1.4 nm and rocking curve FWHM values increased by more than 0.25°.

8. Uncertainty evaluation in BEACON power distribution monitoring

SciTech Connect

Morita, T.; Goldstein, N.P. )

1989-11-01

BEACON is an advanced operational core support package that has a three-dimensional nodal code as its cornerstone. The three-dimensional calculation includes all necessary pressurized water reactor feedback effects. The generation of the measured power distribution from the core instrumentation is one of the primary functions of the core-monitoring software. The purpose of this paper is to discuss evaluation of the uncertainty in the measured assembly power from the BEACON system. The study covers not only the normal operating conditions, but off-normal situations to demonstrate BEACON's applicability for that condition.

9. Fundamental Understanding of the Impact High Pulsed Power Loading has on a MicroGrid’s DC or AC Bus

DTIC Science & Technology

2013-06-12

Seamless integration of distributed/renewable energy into a smart MicroGrid architecture is a hot topic of research for both public and defense...applications. It is the DoD’s intention to develop a more cost efficient and reliable power architecture on the battlefield. A smart MicroGrid ...dedicated power supplies. The impact this type of loading has on the central DC or AC bus of a MicroGrid must be studied and it was the intent of

10. Power Quality Improvement in Bridgeless Ac-Dc Converter Based Multi-output Switched Mode Power Supply

Singh, Shihka; Singh, Bhim; Bhuvaneswari, G.; Bist, Vashist

2014-12-01

Computer power supplies are required to have multiple isolated regulated dc voltages with low ripple content and high input power factor at the utility interface. A dc-dc converter is used for obtaining these isolated multi-output dc voltages with excellent regulation. In this paper, a non-isolated ac-dc converter is proposed as the first stage converter to obtain a regulated dc output rather than using a simple uncontrolled diode bridge rectifier at the front end. A dc-dc converter is used at the second stage that has a high frequency transformer with multiple secondary windings to obtain different dc voltage levels at the output. The proposed bridgeless converter based power supply is designed using fundamental design equations, and different component values are calculated. Extensive simulations are carried out to demonstrate the improved performance of the proposed bridgeless converter based multi-output computer power supply at varying source voltages and load conditions. Experimental validation of the power supply is carried on a developed hardware prototype, and the test results are compared with the simulated performance for design verification.

11. Distributed Wireless Power Transfer With Energy Feedback

Lee, Seunghyun; Zhang, Rui

2017-04-01

Energy beamforming (EB) is a key technique for achieving efficient radio-frequency (RF) transmission enabled wireless energy transfer (WET). By optimally designing the waveforms from multiple energy transmitters (ETs) over the wireless channels, they can be constructively combined at the energy receiver (ER) to achieve an EB gain that scales with the number of ETs. However, the optimal design of EB waveforms requires accurate channel state information (CSI) at the ETs, which is challenging to obtain practically, especially in a distributed system with ETs at separate locations. In this paper, we study practical and efficient channel training methods to achieve optimal EB in a distributed WET system. We propose two protocols with and without centralized coordination, respectively, where distributed ETs either sequentially or in parallel adapt their transmit phases based on a low-complexity energy feedback from the ER. The energy feedback only depends on the received power level at the ER, where each feedback indicates one particular transmit phase that results in the maximum harvested power over a set of previously used phases. Simulation results show that the two proposed training protocols converge very fast in practical WET systems even with a large number of distributed ETs, while the protocol with sequential ET phase adaptation is also analytically shown to converge to the optimal EB design with perfect CSI by increasing the training time. Numerical results are also provided to evaluate the performance of the proposed distributed EB and training designs as compared to other benchmark schemes.

12. Relativity, nonextensivity, and extended power law distributions.

PubMed

Silva, R; Lima, J A S

2005-11-01

A proof of the relativistic theorem by including nonextensive effects is given. As it happens in the nonrelativistic limit, the molecular chaos hypothesis advanced by Boltzmann does not remain valid, and the second law of thermodynamics combined with a duality transformation implies that the parameter lies on the interval [0,2]. It is also proven that the collisional equilibrium states (null entropy source term) are described by the relativistic power law extension of the exponential Juttner distribution which reduces, in the nonrelativistic domain, to the Tsallis power law function. As a simple illustration of the basic approach, we derive the relativistic nonextensive equilibrium distribution for a dilute charged gas under the action of an electromagnetic field . Such results reduce to the standard ones in the extensive limit, thereby showing that the nonextensive entropic framework can be harmonized with the space-time ideas contained in the special relativity theory.

13. Design of Distributed Controllers Seeking Optimal Power Flow Solutions Under Communication Constraints

SciTech Connect

Dall'Anese, Emiliano; Simonetto, Andrea; Dhople, Sairaj

2016-12-29

This paper focuses on power distribution networks featuring inverter-interfaced distributed energy resources (DERs), and develops feedback controllers that drive the DER output powers to solutions of time-varying AC optimal power flow (OPF) problems. Control synthesis is grounded on primal-dual-type methods for regularized Lagrangian functions, as well as linear approximations of the AC power-flow equations. Convergence and OPF-solution-tracking capabilities are established while acknowledging: i) communication-packet losses, and ii) partial updates of control signals. The latter case is particularly relevant since it enables asynchronous operation of the controllers where DER setpoints are updated at a fast time scale based on local voltage measurements, and information on the network state is utilized if and when available, based on communication constraints. As an application, the paper considers distribution systems with high photovoltaic integration, and demonstrates that the proposed framework provides fast voltage-regulation capabilities, while enabling the near real-time pursuit of solutions of AC OPF problems.

14. Design of Distributed Controllers Seeking Optimal Power Flow Solutions under Communication Constraints: Preprint

SciTech Connect

Dall'Anese, Emiliano; Simonetto, Andrea; Dhople, Sairaj

2016-12-01

This paper focuses on power distribution networks featuring inverter-interfaced distributed energy resources (DERs), and develops feedback controllers that drive the DER output powers to solutions of time-varying AC optimal power flow (OPF) problems. Control synthesis is grounded on primal-dual-type methods for regularized Lagrangian functions, as well as linear approximations of the AC power-flow equations. Convergence and OPF-solution-tracking capabilities are established while acknowledging: i) communication-packet losses, and ii) partial updates of control signals. The latter case is particularly relevant since it enables asynchronous operation of the controllers where DER setpoints are updated at a fast time scale based on local voltage measurements, and information on the network state is utilized if and when available, based on communication constraints. As an application, the paper considers distribution systems with high photovoltaic integration, and demonstrates that the proposed framework provides fast voltage-regulation capabilities, while enabling the near real-time pursuit of solutions of AC OPF problems.

15. Photovoltaic Power System and Power Distribution Demonstration for the Desert RATS Program

NASA Technical Reports Server (NTRS)

Colozza, Anthony; Jakupca, Ian; Mintz, Toby; Herlacher, Mike; Hussey, Sam

2012-01-01

A stand alone, mobile photovoltaic power system along with a cable deployment system was designed and constructed to take part in the Desert Research And Technology Studies (RATS) lunar surface human interaction evaluation program at Cinder Lake, Arizona. The power system consisted of a photovoltaic array/battery system. It is capable of providing 1 kW of electrical power. The system outputs were 48 V DC, 110 V AC, and 220 V AC. A cable reel with 200 m of power cable was used to provide power from the trailer to a remote location. The cable reel was installed on a small trailer. The reel was powered to provide low to no tension deployment of the cable. The cable was connected to the 220 V AC output of the power system trailer. The power was then converted back to 110 V AC on the cable deployment trailer for use at the remote site. The Scout lunar rover demonstration vehicle was used to tow the cable trailer and deploy the power cable. This deployment was performed under a number of operational scenarios, manned operation, remote operation and tele-robotically. Once deployed, the cable was used to provide power, from the power system trailer, to run various operational tasks at the remote location.

16. A distributed control approach for power and energy management in a notional shipboard power system

Shen, Qunying

The main goal of this thesis is to present a power control module (PCON) based approach for power and energy management and to examine its control capability in shipboard power system (SPS). The proposed control scheme is implemented in a notional medium voltage direct current (MVDC) integrated power system (IPS) for electric ship. To realize the control functions such as ship mode selection, generator launch schedule, blackout monitoring, and fault ride-through, a PCON based distributed power and energy management system (PEMS) is developed. The control scheme is proposed as two-layer hierarchical architecture with system level on the top as the supervisory control and zonal level on the bottom as the decentralized control, which is based on the zonal distribution characteristic of the notional MVDC IPS that was proposed as one of the approaches for Next Generation Integrated Power System (NGIPS) by Norbert Doerry. Several types of modules with different functionalities are used to derive the control scheme in detail for the notional MVDC IPS. Those modules include the power generation module (PGM) that controls the function of generators, the power conversion module (PCM) that controls the functions of DC/DC or DC/AC converters, etc. Among them, the power control module (PCON) plays a critical role in the PEMS. It is the core of the control process. PCONs in the PEMS interact with all the other modules, such as power propulsion module (PPM), energy storage module (ESM), load shedding module (LSHED), and human machine interface (HMI) to realize the control algorithm in PEMS. The proposed control scheme is implemented in real time using the real time digital simulator (RTDS) to verify its validity. To achieve this, a system level energy storage module (SESM) and a zonal level energy storage module (ZESM) are developed in RTDS to cooperate with PCONs to realize the control functionalities. In addition, a load shedding module which takes into account the reliability

17. Electrical power systems for distributed generation

SciTech Connect

Robertson, T.A.; Huval, S.J.

1996-12-31

{open_quotes}Distributed Generation{close_quotes} has become the {open_quotes}buzz{close_quotes} word of an electric utility industry facing deregulation. Many industrial facilities utilize equipment in distributed installations to serve the needs of a thermal host through the capture of exhaust energy in a heat recovery steam generator. The electrical power generated is then sold as a {open_quotes}side benefit{close_quotes} to the cost-effective supply of high quality thermal energy. Distributed generation is desirable for many different reasons, each with unique characteristics of the product. Many years of experience in the distributed generation market has helped Stewart & Stevenson to define a range of product features that are crucial to most any application. The following paper will highlight a few of these applications. The paper will also examine the range of products currently available and in development. Finally, we will survey the additional services offered by Stewart & Stevenson to meet the needs of a rapidly changing power generation industry.

18. Single stage AC-DC converter for Galfenol-based micro-power energy harvesters

Cavaroc, Peyton; Curtis, Chandra; Naik, Suketu; Cooper, James

2014-06-01

Military based sensor systems are often hindered in operational deployment and/or other capabilities due to limitations in their energy storage elements. Typically operating from lithium based batteries, there is a finite amount of stored energy which the sensor can use to collect and transmit data. As a result, the sensors have reduced sensing and transmission rates. However, coupled with the latest advancements in energy harvesting, these sensors could potentially operate at standard sensing and transition rates as well as dramatically extend lifetimes. Working with the magnetostrictive material Galfenol, we demonstrate the production of enough energy to supplement and recharge a solid state battery thereby overcoming the deficiencies faced by unattended sensors. As with any vibration-based energy harvester, this solution produces an alternating current which needs to be rectified and boosted to a level conducive to recharge the storage element. This paper presents a power converter capable of efficiently converting an ultra-low AC voltage to a solid state charging voltage of 4.1VDC. While we are working with Galfenol transducers as our energy source, this converter may also be applied with any AC producing energy harvester, particularly at operating levels less than 2mW and 200mVAC.

19. Air ion mobility spectra and concentrations upwind and downwind of overhead AC high voltage power lines

Wright, Matthew D.; Buckley, Alison J.; Matthews, James C.; Shallcross, Dudley E.; Henshaw, Denis L.

2014-10-01

Corona ions produced by high-voltage power lines (HVPLs) can alter the nearby electrical environment, potentially increasing aerosol charge levels downwind. However, there is a lack of knowledge concerning the concentration and mobility of ions from AC HVPLs and their dispersion away from the line. We present ion concentration and mobility measurements made near AC HVPLs in South-West England. Examples of typical mobility spectra are shown highlighting features commonly observed. Corona was observed during 33 of 46 measurements, at 9 of 11 sites, with positive or ‘bipolar' (both polarities) ion production commonly seen. Ion production usually increases atmospheric concentrations by only a modest amount, but extreme cases can enhance concentration by an order of magnitude or more. A polarity imbalance is required to increase aerosol charge via ion attachment; this was observed on 15 of 24 days when positive corona was observed, but was not seen for negative ions. Ion mobility was higher downwind compared with upwind for both ion polarities, but the increase was not statistically significant. Future work should focus on identifying and characterising ‘heavy-producing' HVPLs, and obtaining results in conditions which may favour negative ion production e.g. high humidity, inclement weather or during nighttime.

20. Microwave Driven Actuators Power Allocation and Distribution

NASA Technical Reports Server (NTRS)

Forbes, Timothy; Song, Kyo D.

2000-01-01

Design, fabrication and test of a power allocation and distribution (PAD) network for microwave driven actuators is presented in this paper. Development of a circuit that would collect power from a rectenna array amplify and distribute the power to actuators was designed and fabricated for space application in an actuator array driven by a microwave. A P-SPICE model was constructed initially for data reduction purposes, and was followed by a working real-world model. A voltage up - converter (VUC) is used to amplify the voltage from the individual rectenna. The testing yielded a 26:1 voltage amplification ratio with input voltage at 9 volts and a measured output voltage 230VDC. Future work includes the miniaturization of the circuitry, the use of microwave remote control, and voltage amplification technology for each voltage source. The objective of this work is to develop a model system that will collect DC voltage from an array of rectenna and propagate the voltage to an array of actuators.

1. Development of a single-phase harmonic power flow program to study the 20 kHz AC power system for large spacecraft

NASA Technical Reports Server (NTRS)

Kraft, L. Alan; Kankam, M. David

1991-01-01

The development of software is described to aid in design and analysis of AC power systems for large spacecraft. The algorithm is an important version of harmonic power flow program, HARMFLO, used for the study of AC power quality. The new program is applicable to three-phase systems typified by terrestrial power systems, and single-phase systems characteristic of space power systems. The modified HARMFLO accommodates system operating frequencies ranging from terrestrial 60 Hz to and beyond aerospace 20 kHz, and can handle both source and load-end harmonic distortions. Comparison of simulation and test results of a representative spacecraft power system shows a satisfactory correlation. Recommendations are made for the direction of future improvements to the software, to enhance its usefulness to power system designer and analysts.

2. Voltage source ac-to-dc converters for high-power transmitters

NASA Technical Reports Server (NTRS)

Cormier, R.

1990-01-01

This work was done to optimize the design of the components used for the beam power supply, which is a component of the transmitters in the Deep Space Network (DSN). The major findings are: (1) the difference in regulation between a six-pulse and a twelve-pulse converter is at most 7 percent worse for the twelve-pulse converter; (2) the commutation overlap angle of a current source converter equals that of a voltage source converter with continuous line currents; (3) the sources of uncharacteristic harmonics are identified with SPICE simulation; (4) the use of an imperfect phase-shifting transformer for the twelve-pulse converter generates a harmonic at six times the line frequency; and (5) the assumptions usually made in analyzing converters can be relaxed with SPICE simulation. The results demonstrate the suitability of using SPICE simulation to obtain detailed performance predictions of ac-to-dc converters.

3. Resonant AC power system proof-of-concept test program, volume 2, appendix 1

NASA Technical Reports Server (NTRS)

1986-01-01

This report contains two volumes. The main text (Volume 1) summarizes the tests results and gives a detailed discussion of the response of three early, first generation configurations of ac power system IRAD breadboards to the contracted tests imposed on them. It explains photographs, measurements, and data calculations, as well as any observed anomalies or lessons learned. This volume (No 2, Appendix 1, Test Results and Data), published under separate cover, includes all of the data taken on the 1.0 kW single-phase; 5.0 kW three-phase; and 25.0-kW three-phase system breadboards. The format of this data is raw, i.e., it is a direct copy of the data sheets for the test data notebook.

4. Spectral response of atmospheric electric field measurements near AC high voltage power lines

Silva, H. G.; Matthews, J. C.; Wright, M. D.; Shallcross, D. E.

2015-10-01

To understand the influence of corona ion emission on the atmospheric electrical field, measurements were made near to two AC high voltage power lines. A JCI 131 field-mill recorded the atmospheric electric field over one year. Meteorological measurements were also taken. The data series is divided in four zones (dependent on wind direction): whole zones, Z0; zone 1, Z1; zone 2, Z2; zone 3, Z3. Z3 is the least affected by corona ion emission and for that reason it is used as a reference against Z1 and Z2, which are strongly influenced by this phenomena. Analysis was undertaken for all weather days and dry days only. The Lomb-Scargle strategy developed for unevenly spaced time-series is used to calculate the spectral response of the aforementioned zones. Only frequencies above 1 minute are considered.

5. Novel multijunction thermal converter in planar technique for AC current, voltage, power and optical radiation measurement

Klonz, M.; Weimann, T.

1990-05-01

A new planar thin film design of multijunction thermocouples on a silicon chip containing a window with a SiO2-membrane for low heat conductance underneath of the thermocouples is described. It is used as the sensor for the temperature difference in a multijunction thermal converter for ac-dc transfer of electrical quantities like voltage, current and power via Joule heat in a thin film resistor. By coating the heater with an optically absorbing layer it is used as a highly sensitive radiometer transferring absorbed energy to Joule heat in the resistor. The design can easily be optimized for all different frequency applications. It offers the possibility of the mass production of transfer standards at highest level of accuracy.

6. Independent Orbiter Assessment (IOA): Analysis of the Electrical Power Distribution and Control Subsystem, Volume 2

NASA Technical Reports Server (NTRS)

Schmeckpeper, K. R.

1987-01-01

The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Electrical Power Distribution and Control (EPD and C) hardware. The EPD and C hardware performs the functions of distributing, sensing, and controlling 28 volt DC power and of inverting, distributing, sensing, and controlling 117 volt 400 Hz AC power to all Orbiter subsystems from the three fuel cells in the Electrical Power Generation (EPG) subsystem. Volume 2 continues the presentation of IOA analysis worksheets and contains the potential critical items list.

7. Power system operations: State estimation distributed processing

We present an application of a robust and fast parallel algorithm to power system state estimation with minimal amount of modifications to existing state estimators presently in place using the Auxiliary Problem Principle. We demonstrate its effectiveness on IEEE test systems, the Electric Reliability Counsel of Texas (ERCOT), and the Southwest Power Pool (SPP) systems. Since state estimation formulation may lead to an ill-conditioned system, we provide analytical explanations of the effects of mixtures of measurements on the condition of the state estimation information matrix. We demonstrate the closeness of the analytical equations to condition of several test case systems including IEEE RTS-96 and IEEE 118 bus systems. The research on the condition of the state estimation problem covers the centralized as well as distributed state estimation.

8. Noise analysis in power distribution systems

Danisor, Alin

2016-12-01

This paper proposes an analysis, especially in time domain, of the electrical noise existent on the power distribution lines. This study is important for the use of powerlines as a channel of information transmissions. This information may refer to analog signals and as well to digital signals. The main problem addressed in this paper consists in the characterization of the background noise and to establish his statistical proprieties. It is very important to know if the noise induced in the transmission channel is a stationary one, or even an ergodic one. The main parameters like the mean value, the mean square value were determined in this paper. The approximation of the probability density function of each statistical parameter was studied. The pulses induced in the transmission channel by the transient phenomena of the power electrical systems were considered deterministic signals and their contributions were not included in this study.

9. Distributed Power Electronics for PV Systems (Presentation)

SciTech Connect

Deline, C.

2011-12-01

An overview of the benefits and applications of microinverters and DC power optimizers in residential systems. Some conclusions from this report are: (1) The impact of shade is greater than just the area of shade; (2) Additional mismatch losses include panel orientation, panel distribution, inverter voltage window, soiling; (3) Per-module devices can help increase performance, 4-12% or more depending on the system; (4) Value-added benefits (safety, monitoring, reduced design constraints) are helping their adoption; and (5) The residential market is growing rapidly. Efficiency increases, cost reductions are improving market acceptance. Panel integration will further reduce price and installation cost. Reliability remains an unknown.

10. Interaction of lightning with power distribution lines

Mata, Carlos Tomas

Triggered-lightning experiments were conducted in 1996, 1999, and 2000 to study the responses of overhead power distribution lines to lightning at the International Center for Lightning Research and Testing (ICLRT) at Camp Blanding, Florida. The lightning was artificially initiated (triggered) from natural thunderclouds using the rocket-and-wire technique, and its current was directed to a phase conductor at midspan or at a pole near the center of the line. Experimental results and associated EMTP modeling are presented in this dissertation for the following line configurations: (1)a two-conductor, 740-m overhead distribution line with 2 arrester stations in 1996; (2)a four- conductor, 245-m overhead distribution line with 2 arrester stations in 1999; and (3)a four-conductor, 829-m overhead distribution line with 6 arrester stations in 2000. The three-phase lines tested in 1999 and 2000 were standard designs of a major Florida power company. Lightning peak currents injected into the lines ranged from 7 to 57 kA. Voltages and currents were measured at various locations along the line. Video and photographic cameras were used to image lightning channels and detect line flashovers. The significant results of the research are (1)flashovers between conductors were observed, both accompanied and not accompanied by arrester failures, (2)an arrester failed on seven of eight direct lightning strikes to the line in 2000, (3)arcing between conductors may prevent failures of arresters connected to the struck phase, (4)the bulk of the lightning current flows from the struck phase to neutral through the arresters closest to the strike point, (5)the withstand energy of the arresters can be exceeded due to the contribution from multiple strokes and/or relatively low-level, long-lasting current components, (6)the distribution of charge transferred to ground among multiple neutral grounds, which is determined by low-frequency, low-current grounding resistances is different from the

11. Structure Learning in Power Distribution Networks

SciTech Connect

Deka, Deepjyoti; Chertkov, Michael; Backhaus, Scott N.

2015-01-13

Traditionally power distribution networks are either not observable or only partially observable. This complicates development and implementation of new smart grid technologies, such as these related to demand response, outage detection and management, and improved load-monitoring. Here, inspired by proliferation of the metering technology, we discuss statistical estimation problems in structurally loopy but operationally radial distribution grids consisting in learning operational layout of the network from measurements, e.g. voltage data, which are either already available or can be made available with a relatively minor investment. Our newly suggested algorithms apply to a wide range of realistic scenarios. The algorithms are also computationally efficient – polynomial in time – which is proven theoretically and illustrated computationally on a number of test cases. The technique developed can be applied to detect line failures in real time as well as to understand the scope of possible adversarial attacks on the grid.

12. Robust distribution and use of electric power

Catalan Izquierdo, Saturnino

2001-07-01

One of the major problems related to the simultaneous operation of electrical converters in a wide open power system is the concordance between the characteristics of the feeder itself and the load. Nowadays we usually call Electric Power Quality or Electromagnetic Compatibility to this Concordance Degree. Currently, the most important non concordance are voltage sag (voltage dip) and short time interruptions, that is: decreasings in voltage RMS value lasting from some tenths of a second to several seconds. Current analysis usually study this problem from the feeder side, by means of morphological or stadistical approaches, or from the load side in order to evaluate immunity, emission or specific solutions. This line of research, undoubtly needed provided we need to know the current state of the power system and to increase the concordance degree, is not enough because of the huge variability between power lines and from one instant to another. Moreover, the legal boundaries that can support business decisions are not developed yet. The proposed new theory is widely contrasted by field and laboratory measurement. Detailed analysis include instant voltage, instant current, power system and load effects from many places inside the power system of Spain. This theory is a novel approach to the determination of Concordance Degree (CG) of a whole system (be it a distribution line or a single machine) and to the corrective steps needed to increase it. In addition, the proposed model allow a quantitative evaluation of corrective actions like the increase of energy system storage (in a mechanical to electrical convertible form) or/and the increase of the supplied reactive power. Profitability of corrective actions is mainly a function of the number of voltage dips (sags) and short time interruptions that happen in a given period of time. To reduce this number we have studied and developed new fault characterization and location algorithms designed specifically for medium

13. Test report light duty utility arm power distribution system (PDS)

SciTech Connect

Clark, D.A.

1996-03-04

The Light Duty Utility Arm (LDUA) Power Distribution System has completed vendor and post-delivery acceptance testing. The Power Distribution System has been found to be acceptable and is now ready for integration with the overall LDUA system.

14. Electric power processing, distribution, management and energy storage

NASA Technical Reports Server (NTRS)

Giudici, R. J.

1980-01-01

Power distribution subsystems are required for three elements of the SPS program: (1) orbiting satellite, (2) ground rectenna, and (3) Electric Orbiting Transfer Vehicle (EOTV). Power distribution subsystems receive electrical power from the energy conversion subsystem and provide the power busses rotary power transfer devices, switchgear, power processing, energy storage, and power management required to deliver control, high voltage plasma interactions, electric thruster interactions, and spacecraft charging of the SPS and the EOTV are also included as part of the power distribution subsystem design.

15. Reliable, Efficient and Cost-Effective Electric Power Converter for Small Wind Turbines Based on AC-link Technology

SciTech Connect

Darren Hammell; Mark Holveck; DOE Project Officer - Keith Bennett

2006-08-01

Grid-tied inverter power electronics have been an Achilles heel of the small wind industry, providing opportunity for new technologies to provide lower costs, greater efficiency, and improved reliability. The small wind turbine market is also moving towards the 50-100kW size range. The unique AC-link power conversion technology provides efficiency, reliability, and power quality advantages over existing technologies, and Princeton Power will adapt prototype designs used for industrial asynchronous motor control to a 50kW small wind turbine design.

16. Satellite control of electric power distribution

NASA Technical Reports Server (NTRS)

Bergen, L.

1981-01-01

17. Device for the distribution of motive power

SciTech Connect

Teroka, M.

1986-12-30

A device is described for the distribution of motive power comprising: a hollow shaft receiving input power from the drive device; a pinion shaft provided on the output side of the hollow shaft; a pinion gear rotatably supported on the pinion shaft; a pair of side gears meshed with the pinion gear; a front wheel drive shaft integrally coupled to one of the side gears and passing through the center of the hollow shaft; a differential case having an outer shell, a front and a rear end and being integrally formed with the outer side gear and enclosing the pinion shaft, pinion gear and side gears. A rear wheel drive shaft is coupled to the differential case through a drive gear formed on the outer shell of the differential case and an input gear is integrally connected to an end of the rear wheel drive shaft so as to mesh with the drive gear, the rear drive wheel drive shaft being located above the front wheel drive shaft.

18. Power System Concepts for the Lunar Outpost: A Review of the Power Generation, Energy Storage, Power Management and Distribution (PMAD) System Requirements and Potential Technologies for Development of the Lunar Outpost

NASA Technical Reports Server (NTRS)

Khan, Z.; Vranis, A.; Zavoico, A.; Freid, S.; Manners, B.

2006-01-01

This paper will review potential power system concepts for the development of the lunar outpost including power generation, energy storage, and power management and distribution (PMAD). In particular, the requirements of the initial robotic missions will be discussed and the technologies considered will include cryogenics and regenerative fuel cells (RFC), AC and DC transmission line technology, high voltage and low voltage power transmission, conductor materials of construction and power beaming concepts for transmitting power to difficult to access locations such as at the bottom of craters. Operating conditions, component characteristics, reliability, maintainability, constructability, system safety, technology gaps/risk and adaptability for future lunar missions will be discussed for the technologies considered.

19. An improved AVC strategy applied in distributed wind power system

Zhao, Y. N.; Liu, Q. H.; Song, S. Y.; Mao, W.

2016-08-01

Traditional AVC strategy is mainly used in wind farm and only concerns about grid connection point, which is not suitable for distributed wind power system. Therefore, this paper comes up with an improved AVC strategy applied in distributed wind power system. The strategy takes all nodes of distribution network into consideration and chooses the node having the most serious voltage deviation as control point to calculate the reactive power reference. In addition, distribution principles can be divided into two conditions: when wind generators access to network on single node, the reactive power reference is distributed according to reactive power capacity; when wind generators access to network on multi-node, the reference is distributed according to sensitivity. Simulation results show the correctness and reliability of the strategy. Compared with traditional control strategy, the strategy described in this paper can make full use of generators reactive power output ability according to the distribution network voltage condition and improve the distribution network voltage level effectively.

20. Patch Network for Power Allocation and Distribution in Smart Materials

NASA Technical Reports Server (NTRS)

Golembiewski, Walter T.

2000-01-01

The power allocation and distribution (PAD) circuitry is capable of allocating and distributing a single or multiple sources of power over multi-elements of a power user grid system. The purpose of this invention is to allocate and distribute power that is collected by individual patch rectennas to a region of specific power-user devices, such as actuators. The patch rectenna converts microwave power into DC power. Then this DC power is used to drive actuator devices. However, the power from patch rectennas is not sufficient to drive actuators unless all the collected power is effectively used to drive another group by allocation and distribution. The power allocation and distribution (PAD) circuitry solves the shortfall of power for devices in a large array. The PAD concept is based on the networked power control in which power collected over the whole array of rectennas is allocated to a sub domain where a group of devices is required to be activated for operation. Then the allocated power is distributed to individual element of power-devices in the sub domain according to a selected run-mode.

1. AC electrokinetic drug delivery in dentistry using an interdigitated electrode assembly powered by inductive coupling.

PubMed

Ivanoff, Chris S; Wu, Jie Jayne; Mirzajani, Hadi; Cheng, Cheng; Yuan, Quan; Kevorkyan, Stepan; Gaydarova, Radostina; Tomlekova, Desislava

2016-10-01

AC electrokinetics (ACEK) has been shown to deliver certain drugs into human teeth more effectively than diffusion. However, using electrical wires to power intraoral ACEK devices poses risks to patients. The study demonstrates a novel interdigitated electrode arrays (IDE) assembly powered by inductive coupling to induce ACEK effects at appropriate frequencies to motivate drugs wirelessly. A signal generator produces the modulating signal, which multiplies with the carrier signal to produce the amplitude modulated (AM) signal. The AM signal goes through the inductive link to appear on the secondary coil, then rectified and filtered to dispose of its carrier signal, and the positive half of the modulating signal appears on the load. After characterizing the device, the device is validated under light microscopy by motivating carboxylate-modified microspheres, tetracycline, acetaminophen, benzocaine, lidocaine and carbamide peroxide particles with induced ACEK effects. The assembly is finally tested in a common dental bleaching application. After applying 35 % carbamide peroxide to human teeth topically or with the IDE at 1200 Hz, 5 Vpp for 20 min, spectrophotometric analysis showed that compared to diffusion, the IDE enhanced whitening in specular optic and specular optic excluded modes by 215 % and 194 % respectively. Carbamide peroxide absorbance by the ACEK group was two times greater than diffusion as measured by colorimetric oxidation-reduction and UV-Vis spectroscopy at 550 nm. The device motivates drugs of variable molecular weight and structure wirelessly. Wireless transport of drugs to intraoral targets under ACEK effects may potentially improve the efficacy and safety of drug delivery in dentistry.

2. Megawatt Space Power Conditioning, Distribution, and Control Study

DTIC Science & Technology

1988-03-01

2.4.1 Reactor Transmision Interface 16 2.4.2 Transmission Converter Interface 16 2.4.3 Klystrode Accelerator Interface 16 2.5 Summary and Development...iii CONTENTS (Continued) Page 3.2 Power Sources 43 3.2.1 Prime Power 43 3.2.2 Rotating Machines 47 3.2.2.1 Alternators 47 3.2.3 Static Power...they can be categorized as follows: 2.2.1 Alternating Current (ac) Devices. These are all turbine- generator machines , which can be driven by any

3. Locational Marginal Pricing in the Campus Power System at the Power Distribution Level

SciTech Connect

Hao, Jun; Gu, Yi; Zhang, Yingchen; Zhang, Jun Jason; Gao, David Wenzhong

2016-11-14

In the development of smart grid at distribution level, the realization of real-time nodal pricing is one of the key challenges. The research work in this paper implements and studies the methodology of locational marginal pricing at distribution level based on a real-world distribution power system. The pricing mechanism utilizes optimal power flow to calculate the corresponding distributional nodal prices. Both Direct Current Optimal Power Flow and Alternate Current Optimal Power Flow are utilized to calculate and analyze the nodal prices. The University of Denver campus power grid is used as the power distribution system test bed to demonstrate the pricing methodology.

4. Developments in space power components for power management and distribution

NASA Technical Reports Server (NTRS)

Renz, D. D.

1984-01-01

Advanced power electronic components development for space applications is discussed. The components described include transformers, inductors, semiconductor devices such as transistors and diodes, remote power controllers, and transmission lines.

5. Pulse doubling in zigzag-connected autotransformer-based 12-pulse ac-dc converter for power quality improvement

Abdollahi, Rohollah

2012-12-01

This paper presents a pulse doubling technique in a 12-pulse ac-dc converter which supplies direct torque controlled motor drives (DTCIMDs) in order to have better power quality conditions at the point of common coupling. The proposed technique increases the number of rectification pulses without significant changes in the installations and yields in harmonic reduction in both ac and dc sides. The 12-pulse rectified output voltage is accomplished via two paralleled six-pulse acdc converters each of them consisting of three-phase diode bridge rectifiers. An autotransformer is designed to supply the rectifiers. The design procedure of magnetics is in a way such that makes it suitable for retrofit applications where a six-pulse diode bridge rectifier is being utilized. Independent operation of paralleled diode-bridge rectifiers, i.e. dc-ripple re-injection methodology, requires a Zero Sequence Blocking Transformer (ZSBT). Finally, a tapped interphase reactor is connected at the output of ZSBT to double the pulse numbers of output voltage up to 24 pulses. The aforementioned structure improves power quality criteria at ac mains and makes them consistent with the IEEE-519 standard requirements for varying loads. Furthermore, near unity power factor is obtained for a wide range of DTCIMD operation. A comparison is made between 6-pulse, 12-pulse, and proposed converters from view point of power quality indices. Results show that input current total harmonic distortion (THD) is less than 5% for the proposed topology at various loads.

6. Oblique electromagnetic electron cyclotron waves for Kappa distribution with AC field in planetary magnetospheres

Pandey, R. S.; Kaur, Rajbir

2015-08-01

The dispersion relation for obliquely propagating relativistic electromagnetic electron cyclotron (EMEC) waves in collision-less magnetoplasma is obtained. Investigations for EMEC waves in magnetosphere of Jupiter, Saturn and Uranus have been done, in presence of perpendicular AC electric field for Kappa distribution function. The relativistic temporal growth rate is calculated using method of characteristic solution. Using the data provided by spacecrafts like Cassini, Voyager 1 and 2, while exploring the magnetosphere of Jupiter, Saturn and Uranus, is used to plot graphs showing growth rate being effected by various parameters. Comprehensive parametric analysis have been done at different radial distances of the planets. It is concluded that beside huge difference in magnetospheric configuration, temperature anisotropy remains the main source of energy in case of Jupiter and Uranus. While studying EMEC waves in magnetosphere of Saturn, it is inferred that growth rate attains maximum magnitude when angle of propagation increases. Also, the results and its interpretations explain how the growth of EMEC wave modifies in different magnetospheric conditions.

7. The invariances of power law size distributions.

PubMed

Frank, Steven A

2016-01-01

Size varies. Small things are typically more frequent than large things. The logarithm of frequency often declines linearly with the logarithm of size. That power law relation forms one of the common patterns of nature. Why does the complexity of nature reduce to such a simple pattern? Why do things as different as tree size and enzyme rate follow similarly simple patterns? Here I analyze such patterns by their invariant properties. For example, a common pattern should not change when adding a constant value to all observations. That shift is essentially the renumbering of the points on a ruler without changing the metric information provided by the ruler. A ruler is shift invariant only when its scale is properly calibrated to the pattern being measured. Stretch invariance corresponds to the conservation of the total amount of something, such as the total biomass and consequently the average size. Rotational invariance corresponds to pattern that does not depend on the order in which underlying processes occur, for example, a scale that additively combines the component processes leading to observed values. I use tree size as an example to illustrate how the key invariances shape pattern. A simple interpretation of common pattern follows. That simple interpretation connects the normal distribution to a wide variety of other common patterns through the transformations of scale set by the fundamental invariances.

8. The invariances of power law size distributions

PubMed Central

Frank, Steven A.

2016-01-01

Size varies. Small things are typically more frequent than large things. The logarithm of frequency often declines linearly with the logarithm of size. That power law relation forms one of the common patterns of nature. Why does the complexity of nature reduce to such a simple pattern? Why do things as different as tree size and enzyme rate follow similarly simple patterns? Here I analyze such patterns by their invariant properties. For example, a common pattern should not change when adding a constant value to all observations. That shift is essentially the renumbering of the points on a ruler without changing the metric information provided by the ruler. A ruler is shift invariant only when its scale is properly calibrated to the pattern being measured. Stretch invariance corresponds to the conservation of the total amount of something, such as the total biomass and consequently the average size. Rotational invariance corresponds to pattern that does not depend on the order in which underlying processes occur, for example, a scale that additively combines the component processes leading to observed values. I use tree size as an example to illustrate how the key invariances shape pattern. A simple interpretation of common pattern follows. That simple interpretation connects the normal distribution to a wide variety of other common patterns through the transformations of scale set by the fundamental invariances. PMID:27928497

9. Power-Law Distributions Based on Exponential Distributions: Latent Scaling, Spurious Zipf's Law, and Fractal Rabbits

Chen, Yanguang

2015-03-01

The difference between the inverse power function and the negative exponential function is significant. The former suggests a complex distribution, while the latter indicates a simple distribution. However, the association of the power-law distribution with the exponential distribution has been seldom researched. This paper is devoted to exploring the relationships between exponential laws and power laws from the angle of view of urban geography. Using mathematical derivation and numerical experiments, I reveal that a power-law distribution can be created through a semi-moving average process of an exponential distribution. For the distributions defined in a one-dimension space (e.g. Zipf's law), the power exponent is 1; while for those defined in a two-dimension space (e.g. Clark's law), the power exponent is 2. The findings of this study are as follows. First, the exponential distributions suggest a hidden scaling, but the scaling exponents suggest a Euclidean dimension. Second, special power-law distributions can be derived from exponential distributions, but they differ from the typical power-law distributions. Third, it is the real power-law distributions that can be related with fractal dimension. This study discloses an inherent link between simplicity and complexity. In practice, maybe the result presented in this paper can be employed to distinguish the real power laws from spurious power laws (e.g. the fake Zipf distribution).

10. Fuel Cycle Comparison for Distributed Power Technologies

SciTech Connect

Elgowainy, A.; Wang, M. Q.

2008-11-15

This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines.

11. Sub-micrometer particles produced by a low-powered AC electric arc in liquids.

PubMed

Jaworski, Jacek A; Fleury, Eric

2012-01-01

The article presents the report of the production of composites of sub-micrometer metal particles in matrix consisted of the metal compounds by means of an AC electric arc in water and paraffin solutions using electrodes carbon-metal and metal-metal (metal: Ni, Fe, Co, Cu). The advantage of this method is the low electric power (from 5 to 10 W) needed in comparison to standard DC arc-discharge methods (0.8 to 3 kW). This method enables the production of particles from conductive material also in wide range of temperature and in solvent which could be either transparent to light or opaque. Moreover the solvent can be electrolyte or insulating liquid. The microstructure of the composite layer was investigated by scanning electron microscopy (SEM), Electron Probe Microanalysis (EPMA) and X-ray. During particles production in water metal oxides were created. Additionally using cobalt-copper, nickel-copper as couple electrodes, insoluble in water copper (II) hydroxide crystal grains were created additionally which crystals shape was depended on transition metal. For iron-copper couple electrodes system the copper (II) hydroxide was not formed. Experiments with sequence production of Ni and Fe particles with C electrode assisting in molten paraffin let to obtain both Ni and Fe particles surrounded by paraffin. After solidification the material was insulator but if locally magnetic field influenced on the liquid solution in that place after solidification a new composite was created which was electric current conductor with resistivity around 0.1 omega x m, was attracted by magnetic field and presented magneto resistance around 0.4% in changing magnetic field in a range 150 mT. After mixing the concentrated paraffin with normal paraffin resistivity of the mixture increased and it became photosensitive and created small voltage under light influence.

12. System and Battery Charge Control for PV-Powered AC Lighting Systems

SciTech Connect

Kern, G.

1999-04-01

This report reviews a number of issues specific to stand-alone AC lighting systems. A review of AC lighting technology is presented, which discusses the advantages and disadvantages of various lamps. The best lamps for small lighting systems are compact fluorescent. The best lamps for intermediate-size systems are high- or low-pressure sodium. Specifications for battery charging and load control are provided with the goal of achieving lamp lifetimes on the order of 16,000 to 24,000 hours and battery lifetimes of 4 to 5 years. A rough estimate of the potential domestic and global markets for stand-alone AC lighting systems is presented. DC current injection tests were performed on high-pressure sodium lamps and the test results are presented. Finally, a prototype system was designed and a prototype system controller (with battery charger and DC/AC inverter) was developed and built.

13. Distributed energy store powered railguns for hypervelocity launch

Maas, Brian L.; Bauer, David P.; Marshall, Richard A.

1993-01-01

Highly distributed power supplies are proposed as a basis for current difficulties with hypervelocity railgun power-supply compactness. This distributed power supply configuration reduces rail-to-rail voltage behind the main armature, thereby reducing the tendency for secondary armature current formation; secondary current elimination is essential for achieving the efficiencies associated with muzzle velocity above 6 km/sec. Attention is given to analytical and experimental results for two distributed energy storage schemes.

14. Automation in the Space Station module power management and distribution Breadboard

NASA Technical Reports Server (NTRS)

Walls, Bryan; Lollar, Louis F.

1990-01-01

The Space Station Module Power Management and Distribution (SSM/PMAD) Breadboard, located at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, models the power distribution within a Space Station Freedom Habitation or Laboratory module. Originally designed for 20 kHz ac power, the system is now being converted to high voltage dc power with power levels on a par with those expected for a space station module. In addition to the power distribution hardware, the system includes computer control through a hierarchy of processes. The lowest level process consists of fast, simple (from a computing standpoint) switchgear, capable of quickly safing the system. The next level consists of local load center processors called Lowest Level Processors (LLP's). These LLP's execute load scheduling, perform redundant switching, and shed loads which use more than scheduled power. The level above the LLP's contains a Communication and Algorithmic Controller (CAC) which coordinates communications with the highest level. Finally, at this highest level, three cooperating Artificial Intelligence (AI) systems manage load prioritization, load scheduling, load shedding, and fault recovery and management. The system provides an excellent venue for developing and examining advanced automation techniques. The current system and the plans for its future are examined.

15. AC/DC converter

Jain, Praveen K.

1992-08-01

In a system such as a 20 kHz space station primary electrical power distribution system, power conversion from AC to DC is required. Some of the basic requirements for this conversion are high efficiency, light weight and small volume, regulated output voltage, close to unity input power factor, distortionless input current, soft-starting, low electromagnetic interference, and high reliability. An AC-to-DC converter is disclosed which satisfies the main design objectives of such converters for use in space. The converter of the invention comprises an input transformer, a resonant network, a current controller, a diode rectifier, and an output filter. The input transformer is for connection to a single phase, high frequency, sinusoidal waveform AC voltage source and provides a matching voltage isolating from the AC source. The resonant network converts this voltage to a sinusoidal, high frequency bidirectional current output, which is received by the current controller to provide the desired output current. The diode rectifier is connected in parallel with the current controller to convert the bidirectional current into a unidirectional current output. The output filter is connected to the rectifier to provide an essentially ripple-free, substantially constant voltage DC output.

16. Price Based Local Power Distribution Management System (Local Power Distribution Manager) v1.0

SciTech Connect

BROWN, RICHARD E.; CZARNECKI, STEPHEN; SPEARS, MICHAEL; NORDMAN, BRUCE; BROUGHTON, ALEX; VON HIPPEL, MICHAEL; LIAO, ANNA

2016-11-28

A trans-active energy micro-grid controller is implemented in the VOLTTRON distributed control platform. The system uses the price of electricity as the mechanism for conducting transactions that are used to manage energy use and to balance supply and demand. In order to allow testing and analysis of the control system, the implementation is designed to run completely as a software simulation, while allowing the inclusion of selected hardware that physically manages power. Equipment to be integrated with the micro-grid controller must have an IP (Internet Protocol)-based network connection and a software "driver" must exist to translate data communications between the device and the controller.

17. Power Management and Distribution Trades Studies for a Deep-Space Mission Scientific Spacecraft

NASA Technical Reports Server (NTRS)

Kimnach, Greg L.; Soltis, James V.

2004-01-01

As part of NASA's Project Prometheus, the Nuclear Systems Program, NASA GRC performed trade studies on the various Power Management and Distribution (PMAD) options for a deep-space scientific spacecraft which would have a nominal electrical power requirement of 100 kWe. These options included AC (1000Hz and 1500Hz and DC primary distribution at various voltages. The distribution system efficiency, reliability, mass, thermal, corona, space radiation levels and technology readiness of devices and components were considered. The final proposed system consisted of two independent power distribution channels, sourced by two 3-phase, 110 kVA alternators nominally operating at half-rated power. Each alternator nominally supplies 50kWe to one half of the ion thrusters and science modules but is capable of supplying the total power re3quirements in the event of loss of one alternator. This paper is an introduction to the methodology for the trades done to arrive at the proposed PMAD architecture. Any opinions expressed are those of the author(s) and do not necessarily reflect the views of Project Prometheus.

18. Power Management and Distribution Trades Studies for a Deep-space Mission Scientific Spacecraft

Kimnach, Greg L.; Soltis, James V.

2004-02-01

As part of NASA's Project Prometheus, the Nuclear Systems Program, NASA GRC performed trade studies on the various Power Management and Distribution (PMAD) options for a deep-space scientific spacecraft, which would have a nominal electrical power requirement of 100 kWe. These options included AC (1000Hz and 1500Hz) and DC primary distribution at various voltages. The distribution system efficiency, reliability, mass, thermal, corona, space radiation levels, and technology readiness of devices and components were considered. The final proposed system consisted of two independent power distribution channels, sourced by two 3-phase, 110 kVA alternators nominally operating at half-rated power. Each alternator nominally supplies 50 kWe to one-half of the ion thrusters and science modules, but is capable of supplying the total power requirements in the event of loss of one alternator. This paper is an introduction to the methodology for the trades done to arrive at the proposed PMAD architecture. Any opinions expressed are those of the author(s) and do not necessarily reflect the views of Project Prometheus.

19. 14 CFR 23.1310 - Power source capacity and distribution.

Code of Federal Regulations, 2014 CFR

2014-01-01

... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Power source capacity and distribution. 23.1310 Section 23.1310 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Equipment General § 23.1310 Power source capacity and distribution. (a) Each installation whose...

20. 14 CFR 23.1310 - Power source capacity and distribution.

Code of Federal Regulations, 2012 CFR

2012-01-01

... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Power source capacity and distribution. 23.1310 Section 23.1310 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Equipment General § 23.1310 Power source capacity and distribution. (a) Each installation whose...

1. 14 CFR 23.1310 - Power source capacity and distribution.

Code of Federal Regulations, 2013 CFR

2013-01-01

... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Power source capacity and distribution. 23.1310 Section 23.1310 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Equipment General § 23.1310 Power source capacity and distribution. (a) Each installation whose...

2. Inverter power module with distributed support for direct substrate cooling

DOEpatents

Miller, David Harold [San Pedro, CA; Korich, Mark D [Chino Hills, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA

2012-08-21

Systems and/or methods are provided for an inverter power module with distributed support for direct substrate cooling. An inverter module comprises a power electronic substrate. A first support frame is adapted to house the power electronic substrate and has a first region adapted to allow direct cooling of the power electronic substrate. A gasket is interposed between the power electronic substrate and the first support frame. The gasket is configured to provide a seal between the first region and the power electronic substrate. A second support frame is adapted to house the power electronic substrate and joined to the first support frame to form the seal.

3. A Testbed for Deploying Distributed State Estimation in Power Grid

SciTech Connect

Jin, Shuangshuang; Chen, Yousu; Rice, Mark J.; Liu, Yan; Gorton, Ian

2012-07-22

Abstract—With the increasing demand, scale and data information of power systems, fast distributed applications are becoming more important in power system operation and control. This paper proposes a testbed for evaluating power system distributed applications, considering data exchange among distributed areas. A high-performance computing (HPC) version of distributed state estimation is implemented and used as a distributed application example. The IEEE 118-bus system is used to deploy the parallel distributed state estimation, and the MeDICi middleware is used for data communication. The performance of the testbed demonstrates its capability to evaluate parallel distributed state estimation by leveraging the HPC paradigm. This testbed can also be applied to evaluate other distributed applications.

4. Local control of reactive power by distributed photovoltaic generators

SciTech Connect

Chertkov, Michael; Turitsyn, Konstantin; Sulc, Petr; Backhaus, Scott

2010-01-01

High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

5. Brief communication: coaxial lines for multiphase power distribution.

PubMed

Barnes, F S; Harwick, P; Banerjee, A

1996-01-01

A coaxial cable can be used to reduce the magnetic and electric fields that extend into environments in the vicinity of transmission lines and distribution lines and in-house or building wiring for power distribution systems. The use of the coaxial geometry may prove useful in cases where there are environmental concerns with respect to health effects and in cases where there is a need to run high-speed data communications in close proximity to power distribution systems.

6. Technology spin-off from space power automation to terrestrial electrical power distribution control and operation

Callis, C. T.; Broadwater, R. P.; Chandrasekaran, A.

Areas which hold potential for technology spin-off from space power automation into terrestrial electrical power distribution control and automation are investigated. Areas touched upon include load management, loss reduction, trend analysis, energy storage, and fault diagnosis and analysis with expert systems. A brief overview of terrestrial electric power technology and automation in terrestrial distribution is provided. Power handling capabilities, hardware, loads, and goals of terrestrial and space systems are compared.

7. Thresholded Power law Size Distributions of Instabilities in Astrophysics

Aschwanden, Markus J.

2015-11-01

Power-law-like size distributions are ubiquitous in astrophysical instabilities. There are at least four natural effects that cause deviations from ideal power law size distributions, which we model here in a generalized way: (1) a physical threshold of an instability; (2) incomplete sampling of the smallest events below a threshold x0; (3) contamination by an event-unrelated background xb; and (4) truncation effects at the largest events due to a finite system size. These effects can be modeled in the simplest terms with a “thresholded power law” distribution function (also called generalized Pareto [type II] or Lomax distribution), N(x){dx}\\propto {(x+{x}0)}-a{dx}, where x0 > 0 is positive for a threshold effect, while x0 < 0 is negative for background contamination. We analytically derive the functional shape of this thresholded power law distribution function from an exponential growth evolution model, which produces avalanches only when a disturbance exceeds a critical threshold x0. We apply the thresholded power law distribution function to terrestrial, solar (HXRBS, BATSE, RHESSI), and stellar flare (Kepler) data sets. We find that the thresholded power law model provides an adequate fit to most of the observed data. Major advantages of this model are the automated choice of the power law fitting range, diagnostics of background contamination, physical instability thresholds, instrumental detection thresholds, and finite system size limits. When testing self-organized criticality models that predict ideal power laws, we suggest including these natural truncation effects.

8. Statistical analyses support power law distributions found in neuronal avalanches.

PubMed

Klaus, Andreas; Yu, Shan; Plenz, Dietmar

2011-01-01

The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to -1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed the following steps: (i) analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii) model parameter estimation to determine the specific exponent of the power law, and (iii) comparison of the power law to alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling behavior in which the maximum avalanche size was limited only by the spatial extent of sampling ("finite size" effect). This scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-Smirnov statistic and a maximum likelihood approach, we found the slope to be close to -1.5, which is in line with previous reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial layers of cortex.

9. A study of power conditioning and power distribution and components

NASA Technical Reports Server (NTRS)

Horton, H. M.; Honnell, M. A.

1973-01-01

A comprehensive simulation and analysis performed on the operation of the regulator part of the Charger/Battery/Regulator Module (CBRM) are detailed. The CBRM is utilized as an integral component of the Skylab/Apollo Telescope Mount (ATM) electrical power system and contains a switching mode electronic regulator. Implementing circuit analysis techniques, pertinent voltages and currents are calculated; these, in turn, are incorporated into the regulator system study. Investigation of the turn-on and turn-off times associated with the switching circuitry is performed and an examination is made on these calculations. A simulation model computer program is utilized to generate graphs that relate various CBRM parameters to one another.

10. NEW APPROACHES: Investigating power, work and effective values in an AC resistive circuit through a microcomputer-based laboratory

Trumper, Ricardo; Gelbman, Moshe

1997-11-01

Microcomputer-based laboratory (MBL) tools have been developed which interface with a great variety of computers. Students use these tools to collect physical data in real time which can later be manipulated and analysed. This new investigative method together with a high standard of precision enables students to investigate many principles of physics that have not previously been feasible. In this article we describe some examples of experiments designed for high-school students with the help of the MBL Explorer. We mainly analyse power, work and effective (RMS) values in an AC resistive circuit.

11. Linear Averaged and Sampled Data Models for Large Signal Control of High Power Factor AC-DC Converters

DTIC Science & Technology

1990-06-01

design a digital controller for the outer trol schemes for high power factor ac to dc converters, loop, including PI control , and presents simulation re...design of an analog control (e.g. PI control ) for by the current loop. If kin] is too large, then the inductor tam el (3) Isnoar ts ee lin at tne. Fcorl...with PI Control 6 mm am I m mmmmimmm~mmml r .14 _ _ _ _ _ _ _ _ _ _ O .12 SM .16 .p N 17 .6 Is , TV 240 6 F tic .04 113 .02 a I I ’ 190 0 0.973 I • 0

12. Utility-Scale Power Router: Dynamic Control of Grid Assets Using Direct AC Converter Cells

SciTech Connect

2010-09-01

ADEPT Project: Georgia Tech is developing a cost-effective, utility-scale power router that uses an enhanced transformer to more efficiently direct power on the grid. Existing power routing technologies are too expensive for widespread use, but the ability to route grid power to match real-time demand and power outages would significantly reduce energy costs for utilities, municipalities, and consumers. Georgia Tech is adding a power converter to an existing grid transformer to better control power flows at about 1/10th the cost of existing power routing solutions. Transformers convert the high-voltage electricity that is transmitted through the grid into the low-voltage electricity that is used by homes and businesses. The added converter uses fewer steps to convert some types of power and eliminates unnecessary power storage, among other improvements. The enhanced transformer is more efficient, and it would still work even if the converter fails, ensuring grid reliability.

13. A sensitivity approach to the sizing of insulated power cables in low and medium voltage electrical power distribution systems

SciTech Connect

Hiranandani, A.K.

1989-07-01

The sizing of insulated power cables for use in electrical power distribution systems is based on definite engineering criteria. Cable or conductor size for a given current loading (ampacity) is the cross-sectional area or size of the current carrying portion of the cable, namely the conductor expressed in AWG (American Wire Gauge) or KCM (Kilocircular mils). The most commonly used voltage classes for electrical power distribution in raceways and cable trays are: (a) Low Voltage-600 volts and below. (b) Medium-Voltage-over 600 volts. The paper develops cable sizing criteria using sensitivity techniques. High sensitivity parameters that influence cable size can be determined in each voltage class and design criteria formulated; to apply to both a.c. and d.c. systems. Copper and aluminum conductors with thermosetting (EPR or XLPE) or thermoplastic insulations are compared for use in the above systems with regard to their electrical characteristics only. It must be realized that cost might also play an important role in the selection of conductor material. It is assumed that the cables under consideration meet the mechanical requirements for installation.

14. Calculated CIM Power Distributions for Coil Design

SciTech Connect

Hardy, B.J.

1999-02-17

Excessive bed expansion and material expulsion have occurred during experiments with the 3-inch diameter Cylindrical Induction Melter (CIM). Both events were attributed in part to the high power density in the bottom of the melter and the correspondingly high temperatures there. It is believed that the high temperatures resulted in the generation of gasses at the bottom of the bed which could not escape. The gasses released during heating and the response of the bed to gas evolution depend upon the composition of the bed.

15. Space Station Freedom power management and distribution system design

NASA Technical Reports Server (NTRS)

Teren, Fred

1989-01-01

The design is described of the Space Station Freedom Power Management and Distribution (PMAD) System. In addition, the significant trade studies which were conducted are described, which led to the current PMAD system configuration.

16. Power distribution in two-dimensional optical network channels

1996-04-01

The power distribution in two-dimensional optical network channels is analyzed. The maximum number of allowable channels as determined by the characteristics of optical detector is identified, in particular, for neural-network and wavelet-transform applications.

17. Energy loss analysis of an integrated space power distribution system

NASA Technical Reports Server (NTRS)

Kankam, M. D.; Ribeiro, P. F.

1992-01-01

The results of studies related to conceptual topologies of an integrated utility-like space power system are described. The system topologies are comparatively analyzed by considering their transmission energy losses as functions of mainly distribution voltage level and load composition. The analysis is expedited by use of a Distribution System Analysis and Simulation (DSAS) software. This recently developed computer program by the Electric Power Research Institute (EPRI) uses improved load models to solve the power flow within the system. However, present shortcomings of the software with regard to space applications, and incompletely defined characteristics of a space power system make the results applicable to only the fundamental trends of energy losses of the topologies studied. Accountability, such as included, for the effects of the various parameters on the system performance can constitute part of a planning tool for a space power distribution system.

18. Power laws in citation distributions: evidence from Scopus.

PubMed

Brzezinski, Michal

Modeling distributions of citations to scientific papers is crucial for understanding how science develops. However, there is a considerable empirical controversy on which statistical model fits the citation distributions best. This paper is concerned with rigorous empirical detection of power-law behaviour in the distribution of citations received by the most highly cited scientific papers. We have used a large, novel data set on citations to scientific papers published between 1998 and 2002 drawn from Scopus. The power-law model is compared with a number of alternative models using a likelihood ratio test. We have found that the power-law hypothesis is rejected for around half of the Scopus fields of science. For these fields of science, the Yule, power-law with exponential cut-off and log-normal distributions seem to fit the data better than the pure power-law model. On the other hand, when the power-law hypothesis is not rejected, it is usually empirically indistinguishable from most of the alternative models. The pure power-law model seems to be the best model only for the most highly cited papers in "Physics and Astronomy". Overall, our results seem to support theories implying that the most highly cited scientific papers follow the Yule, power-law with exponential cut-off or log-normal distribution. Our findings suggest also that power laws in citation distributions, when present, account only for a very small fraction of the published papers (less than 1 % for most of science fields) and that the power-law scaling parameter (exponent) is substantially higher (from around 3.2 to around 4.7) than found in the older literature.

19. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

DOEpatents

Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

2006-12-12

Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

20. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

DOEpatents

Chassin, David P [Pasco, WA; Donnelly, Matthew K [Kennewick, WA; Dagle, Jeffery E [Richland, WA

2011-12-06

Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

1. A novel ZePoC encoder for sinusoidal signals with a predictable accuracy for an AC power standard

Vennemann, T.; Frye, T.; Liu, Z.; Kahmann, M.; Mathis, W.

2015-11-01

In this paper we present an analytical formulation of a Zero Position Coding (ZePoC) encoder for an AC power standard based on class-D topologies. For controlling a class-D power stage a binary signal with special spectral characteristics will be generated by this ZePoC encoder for sinusoidal signals. These spectral characteristics have a predictable accuracy within a separated baseband to keep the noise floor below a specified level. Simulation results will validate the accuracy of this novel ZePoC encoder. For a real-time implementation of the encoder on a DSP/FPGA hardware architecture a trade-off between accuracy and speed of the ZePoC algorithm has to be made. Therefore the numerical effects of different floating point formats will be analyzed.

2. 62. View of amplifiermodulator control system with power distribution panel ...

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

62. View of amplifier-modulator control system with power distribution panel on left, control power supply in middle, and amplifier modulator on right, second floor in transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

3. Advanced Electric Distribution, Switching, and Conversion Technology for Power Control

NASA Technical Reports Server (NTRS)

Soltis, James V.

1998-01-01

The Electrical Power Control Unit currently under development by Sundstrand Aerospace for use on the Fluids Combustion Facility of the International Space Station is the precursor of modular power distribution and conversion concepts for future spacecraft and aircraft applications. This unit combines modular current-limiting flexible remote power controllers and paralleled power converters into one package. Each unit includes three 1-kW, current-limiting power converter modules designed for a variable-ratio load sharing capability. The flexible remote power controllers can be used in parallel to match load requirements and can be programmed for an initial ON or OFF state on powerup. The unit contains an integral cold plate. The modularity and hybridization of the Electrical Power Control Unit sets the course for future spacecraft electrical power systems, both large and small. In such systems, the basic hybridized converter and flexible remote power controller building blocks could be configured to match power distribution and conversion capabilities to load requirements. In addition, the flexible remote power controllers could be configured in assemblies to feed multiple individual loads and could be used in parallel to meet the specific current requirements of each of those loads. Ultimately, the Electrical Power Control Unit design concept could evolve to a common switch module hybrid, or family of hybrids, for both converter and switchgear applications. By assembling hybrids of a common current rating and voltage class in parallel, researchers could readily adapt these units for multiple applications. The Electrical Power Control Unit concept has the potential to be scaled to larger and smaller ratings for both small and large spacecraft and for aircraft where high-power density, remote power controllers or power converters are required and a common replacement part is desired for multiples of a base current rating.

4. A generalization of the power law distribution with nonlinear exponent

Prieto, Faustino; Sarabia, José María

2017-01-01

The power law distribution is usually used to fit data in the upper tail of the distribution. However, commonly it is not valid to model data in all the range. In this paper, we present a new family of distributions, the so-called Generalized Power Law (GPL), which can be useful for modeling data in all the range and possess power law tails. To do that, we model the exponent of the power law using a non-linear function which depends on data and two parameters. Then, we provide some basic properties and some specific models of that new family of distributions. After that, we study a relevant model of the family, with special emphasis on the quantile and hazard functions, and the corresponding estimation and testing methods. Finally, as an empirical evidence, we study how the debt is distributed across municipalities in Spain. We check that power law model is only valid in the upper tail; we show analytically and graphically the competence of the new model with municipal debt data in the whole range; and we compare the new distribution with other well-known distributions including the Lognormal, the Generalized Pareto, the Fisk, the Burr type XII and the Dagum models.

5. Independent Orbiter Assessment (IOA): Analysis of the electrical power distribution and control subsystem, volume 1

NASA Technical Reports Server (NTRS)

Schmeckpeper, K. R.

1987-01-01

The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Electrical Power Distribution and Control (EPD and C) hardware. The EPD and C hardware performs the functions of distributing, sensing, and controlling 28 volt DC power and of inverting, distributing, sensing, and controlling 117 volt 400 Hz AC power to all Orbiter subsystems from the three fuel cells in the Electrical Power Generation (EPG) subsystem. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 1671 failure modes analyzed, 9 single failures were determined to result in loss of crew or vehicle. Three single failures unique to intact abort were determined to result in possible loss of the crew or vehicle. A possible loss of mission could result if any of 136 single failures occurred. Six of the criticality 1/1 failures are in two rotary and two pushbutton switches that control External Tank and Solid Rocket Booster separation. The other 6 criticality 1/1 failures are fuses, one each per Aft Power Control Assembly (APCA) 4, 5, and 6 and one each per Forward Power Control Assembly (FPCA) 1, 2, and 3, that supply power to certain Main Propulsion System (MPS) valves and Forward Reaction Control System (RCS) circuits.

6. Space Station Freedom power management and distribution design status

NASA Technical Reports Server (NTRS)

Javidi, S.; Gholdston, E.; Stroh, P.

1989-01-01

The design status of the power management and distribution electric power system for the Space Station Freedom is presented. The current design is a star architecture, which has been found to be the best approach for meeting the requirement to deliver 120 V dc to the user interface. The architecture minimizes mass and power losses while improving element-to-element isolation and system flexibility. The design is partitioned into three elements: energy collection, storage and conversion, system protection and distribution, and management and control.

7. Analytical Limit Distributions from Random Power-Law Interactions

Zaid, Irwin; Mizuno, Daisuke

2016-07-01

Nature is full of power-law interactions, e.g., gravity, electrostatics, and hydrodynamics. When sources of such fields are randomly distributed in space, the superposed interaction, which is what we observe, is naively expected to follow a Gauss or Lévy distribution. Here, we present an analytic expression for the actual distributions that converge to novel limits that are in between these already-known limit distributions, depending on physical parameters, such as the concentration of field sources and the size of the probe used to measure the interactions. By comparing with numerical simulations, the origin of non-Gauss and non-Lévy distributions are theoretically articulated.

8. Main Power Distribution Unit for the Jupiter Icy Moons Orbiter (JIMO)

NASA Technical Reports Server (NTRS)

Papa, Melissa R.

2004-01-01

Around the year 2011, the Jupiter Icy Moons Orbiter (JIMO) will be launched and on its way to orbit three of Jupiter s planet-sized moons. The mission goals for the JIMO project revolve heavily around gathering scientific data concerning ingredients we, as humans, consider essential: water, energy and necessary chemical elements. The JIM0 is an ambitious mission which will implore propulsion from an ION thruster powered by a nuclear fission reactor. Glenn Research Center is responsible for the development of the dynamic power conversion, power management and distribution, heat rejection and ION thrusters. The first test phase for the JIM0 program concerns the High Power AC Power Management and Distribution (PMAD) Test Bed. The goal of this testing is to support electrical performance verification of the power systems. The test bed will incorporate a 2kW Brayton Rotating Unit (BRU) to simulate the nuclear reactor as well as two ION thrusters. The first module of the PMAD Test Bed to be designed is the Main Power Distribution Unit (MPDU) which relays the power input to the various propulsion systems and scientific instruments. The MPDU involves circuitry design as well as mechanical design to determine the placement of the components. The MPDU consists of fourteen relays of four different variations used to convert the input power into the appropriate power output. The three phase system uses 400 Vo1ts(sub L-L) rms at 1000 Hertz. The power is relayed through the circuit and distributed to the scientific instruments, the ION thrusters and other controlled systems. The mechanical design requires the components to be positioned for easy electrical wiring as well as allowing adequate room for the main buss bars, individual circuit boards connected to each component and power supplies. To accomplish creating a suitable design, AutoCAD was used as a drafting tool. By showing a visual layout of the components, it is easy to see where there is extra room or where the

9. Probabilistic Vulnerability Assessment Based on Power Flow and Voltage Distribution

SciTech Connect

Ma, Jian; Huang, Zhenyu; Wong, Pak C.; Ferryman, Thomas A.

2010-04-30

Risk assessment of large scale power systems has been an important problem in power system reliability study. Probabilistic technique provides a powerful tool to solve the task. In this paper, we present the results of a study on probabilistic vulnerability assessment on WECC system. Cumulant based expansion method is applied to obtain the probabilistic distribution function (PDF) and cumulative distribution function (CDF) of power flows on transmission lines and voltage. Overall risk index based on the system vulnerability analysis is calculated using the WECC system. The simulation results based on WECC system is used to demonstrate the effectiveness of the method. The methodology can be applied to the risk analysis on large scale power systems.

10. Optimal load distribution between units in a power plant.

PubMed

Bortoni, Edson C; Bastos, Guilherme S; Souza, Luiz E

2007-10-01

This paper presents a strategy for load distribution between the generating units in hydro power plants. The objective is to reach the maximum energy conversion efficiency for a given dispatched power. The developed tool employs a heuristic-based combinatorial optimization technique in conjunction with a set of system variables measurement allowing real-time load sharing. The developed equipment is used to give online energy conversion efficiency from each unit of the power plant. No specific previous information about the efficiency of system components is required. Simulation results of the proposed optimization technique when applied to typical hydro power plant data are presented.

11. Optimal Operation of Energy Storage in Power Transmission and Distribution

Akhavan Hejazi, Seyed Hossein

In this thesis, we investigate optimal operation of energy storage units in power transmission and distribution grids. At transmission level, we investigate the problem where an investor-owned independently-operated energy storage system seeks to offer energy and ancillary services in the day-ahead and real-time markets. We specifically consider the case where a significant portion of the power generated in the grid is from renewable energy resources and there exists significant uncertainty in system operation. In this regard, we formulate a stochastic programming framework to choose optimal energy and reserve bids for the storage units that takes into account the fluctuating nature of the market prices due to the randomness in the renewable power generation availability. At distribution level, we develop a comprehensive data set to model various stochastic factors on power distribution networks, with focus on networks that have high penetration of electric vehicle charging load and distributed renewable generation. Furthermore, we develop a data-driven stochastic model for energy storage operation at distribution level, where the distribution of nodal voltage and line power flow are modelled as stochastic functions of the energy storage unit's charge and discharge schedules. In particular, we develop new closed-form stochastic models for such key operational parameters in the system. Our approach is analytical and allows formulating tractable optimization problems. Yet, it does not involve any restricting assumption on the distribution of random parameters, hence, it results in accurate modeling of uncertainties. By considering the specific characteristics of random variables, such as their statistical dependencies and often irregularly-shaped probability distributions, we propose a non-parametric chance-constrained optimization approach to operate and plan energy storage units in power distribution girds. In the proposed stochastic optimization, we consider

12. The Effects of Transients on Photospheric and Chromospheric Power Distributions

Samanta, T.; Henriques, V. M. J.; Banerjee, D.; Krishna Prasad, S.; Mathioudakis, M.; Jess, D.; Pant, V.

2016-09-01

We have observed a quiet-Sun region with the Swedish 1 m Solar Telescope equipped with the CRISP Imaging SpectroPolarimeter. High-resolution, high-cadence, Hα line scanning images were taken to observe different layers of the solar atmosphere from the photosphere to upper chromosphere. We study the distribution of power in different period bands at different heights. Power maps of the upper photosphere and the lower chromosphere show suppressed power surrounding the magnetic-network elements, known as “magnetic shadows.” These also show enhanced power close to the photosphere, traditionally referred to as “power halos.” The interaction between acoustic waves and inclined magnetic fields is generally believed to be responsible for these two effects. In this study we explore whether small-scale transients can influence the distribution of power at different heights. We show that the presence of transients, like mottles, Rapid Blueshifted Excursions (RBEs), and Rapid Redshifted Excursions (RREs), can strongly influence the power maps. The short and finite lifetime of these events strongly affects all power maps, potentially influencing the observed power distribution. We show that Doppler-shifted transients like RBEs and RREs that occur ubiquitously can have a dominant effect on the formation of the power halos in the quiet Sun. For magnetic shadows, transients like mottles do not seem to have a significant effect on the power suppression around 3 minutes, and wave interaction may play a key role here. Our high-cadence observations reveal that flows, waves, and shocks manifest in the presence of magnetic fields to form a nonlinear magnetohydrodynamic system.

13. Hysteresis, phase transitions, and dangerous transients in electrical power distribution systems.

PubMed

Duclut, Charlie; Backhaus, Scott; Chertkov, Michael

2013-06-01

The majority of dynamical studies in power systems focus on the high-voltage transmission grids where models consider large generators interacting with crude aggregations of individual small loads. However, new phenomena have been observed indicating that the spatial distribution of collective, nonlinear contribution of these small loads in the low-voltage distribution grid is crucial to the outcome of these dynamical transients. To elucidate the phenomenon, we study the dynamics of voltage and power flows in a spatially extended distribution feeder (circuit) connecting many asynchronous induction motors and discover that this relatively simple 1+1 (space+time) dimensional system exhibits a plethora of nontrivial spatiotemporal effects, some of which may be dangerous for power system stability. Long-range motor-motor interactions mediated by circuit voltage and electrical power flows result in coexistence and segregation of spatially extended phases defined by individual motor states, a "normal" state where the motors' mechanical (rotation) frequency is slightly smaller than the nominal frequency of the basic ac flows and a "stalled" state where the mechanical frequency is small. Transitions between the two states can be initiated by a perturbation of the voltage or base frequency at the head of the distribution feeder. Such behavior is typical of first-order phase transitions in physics, and this 1+1 dimensional model shows many other properties of a first-order phase transition with the spatial distribution of the motors' mechanical frequency playing the role of the order parameter. In particular, we observe (a) propagation of the phase-transition front with the constant speed (in very long feeders) and (b) hysteresis in transitions between the normal and stalled (or partially stalled) phases.

14. Comparison of Wind Power and Load Forecasting Error Distributions: Preprint

SciTech Connect

Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.

2012-07-01

The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.

15. Forty-seventh annual power distribution conference, 1994

SciTech Connect

Not Available

1994-01-01

This is a collection of papers presented at the forty-seventh annual Power Distribution Conference in 1994. The topics of the papers include recent developments in distribution grounding, partial discharge analysis of electrical machinery, insulating fluids analysis as a basis for a complete transformer monitoring program, environmental and regulatory issues regarding the use of silicone transformer fluids, locating and identifying harmonic sources, optimizing distribution operations resources, surface launch directional boring units, electrical supply to Dallas/Fort Worth international airport, a microprocessor-based digital feeder monitor with high-impedance fault detection, a modern review of distribution system protective coordination, and Ski Apache electric service improvements.

16. Power laws, discontinuities and regional city size distributions

USGS Publications Warehouse

Garmestani, A.S.; Allen, C.R.; Gallagher, C.M.

2008-01-01

Urban systems are manifestations of human adaptation to the natural environment. City size distributions are the expression of hierarchical processes acting upon urban systems. In this paper, we test the entire city size distributions for the southeastern and southwestern United States (1990), as well as the size classes in these regions for power law behavior. We interpret the differences in the size of the regional city size distributions as the manifestation of variable growth dynamics dependent upon city size. Size classes in the city size distributions are snapshots of stable states within urban systems in flux. ?? 2008.

17. Development of a Portable AC/DC Welding Power Supply Module

DTIC Science & Technology

1975-03-01

proper time sequence to the SCR contactor ( SCR1 to SCR3, Drawing NO . 1001, Figure IV-A). The zero crossover detector consists of a power supply (JR5...as far as circuit operation is concerned. The voltage on the anode of SCR1 then rises to a positive value as the line voltage crosses zero. When the...pulse to the gate of SCR1 C34 then rapidly d i s c h a r g e s . The power supply is a critical part of the circuit operation. The input power comes

18. High-frequency AC/DC converter with unity power factor and minimum harmonic distortion

SciTech Connect

Wernekinch, E.R.

1987-01-01

The power factor is controlled by adjusting the relative position of the fundamental component of an optimized PWM-type voltage with respect to the supply voltage. Current harmonic distortion is minimized by the use of optimized firing angles for the converter at a frequency where GTO's can be used. This feature makes this approach very attractive at power levels of 100 to 600 kW. To obtain the optimized PWM pattern, a steepest descent digital computer algorithm is used. Digital-computer simulations are performed and a low-power model is constructed and tested to verify the concepts and the behavior of the model. Experimental results show that unity power factor is achieved and that the distortion in the phase currents is 10.4% at 90% of full load. This is less than achievable with sinusoidal PWM, harmonic elimination, hysteresis control, and deadbeat control for the same switching frequency.

19. 21 CFR 880.5510 - Non-AC-powered patient lift.

Code of Federal Regulations, 2014 CFR

2014-04-01

...) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Therapeutic... hydraulic, battery, or mechanically powered device, either fixed or mobile, used to lift and transport...

20. 21 CFR 880.5510 - Non-AC-powered patient lift.

Code of Federal Regulations, 2011 CFR

2011-04-01

...) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Therapeutic... hydraulic, battery, or mechanically powered device, either fixed or mobile, used to lift and transport...

1. Distributed photovoltaic generation in residential distribution systems: Impacts on power quality and anti-islanding

Mitra, Parag

The past few decades have seen a consistent growth of distributed PV sources. Distributed PV, like other DG sources, can be located at or near load centers and provide benefits which traditional generation may lack. However, distribution systems were not designed to accommodate such power generation sources as these sources might lead to operational as well as power quality issues. A high penetration of distributed PV resources may lead to bi-directional power flow resulting in voltage swells, increased losses and overloading of conductors. Voltage unbalance is a concern in distribution systems and the effect of single-phase residential PV systems on voltage unbalance needs to be explored. Furthermore, the islanding of DGs presents a technical hurdle towards the seamless integration of DG sources with the electricity grid. The work done in this thesis explores two important aspects of grid inte-gration of distributed PV generation, namely, the impact on power quality and anti-islanding. A test distribution system, representing a realistic distribution feeder in Arizona is modeled to study both the aforementioned aspects. The im-pact of distributed PV on voltage profile, voltage unbalance and distribution sys-tem primary losses are studied using CYMDIST. Furthermore, a PSCAD model of the inverter with anti-island controls is developed and the efficacy of the anti-islanding techniques is studied. Based on the simulations, generalized conclusions are drawn and the problems/benefits are elucidated.

2. Edge effect on the power law distribution of granular avalanches.

PubMed

Lorincz, Kinga A; Wijngaarden, Rinke J

2007-10-01

Many punctuated phenomena in nature are claimed [e.g., by the theory of self-organized criticality (SOC)] to be power-law distributed. In our experiments on a three-dimensional pile of long-grained rice, we find that by only changing the boundary condition of the system, we switch from such power-law-distributed avalanche sizes to quasiperiodic system-spanning avalanches. Conversely, by removing ledges the incidence of system-spanning avalanches is significantly reduced. This may offer a perspective on new avalanche prevention schemes. In addition, our findings may help to explain why the archetype of SOC, the sandpile, was found to have power-law-distributed avalanches in some experiments, while in other experiments quasiperiodic system-spanning avalanches were found.

3. Benefits of Power Electronic Interfaces for Distributed Energy Systems

SciTech Connect

Kroposki, B.; Pink, C.; DeBlasio, R.; Thomas, H.; Simoes, M.; Sen, P. K.

2006-01-01

Optimization of overall electrical system performance is important for the long-term economic viability of distributed energy (DE) systems. With the increasing use of DE systems in industry and its technological advancement, it is becoming more important to understand the integration of these systems with the electric power systems. New markets and benefits for distributed energy applications include the ability to provide ancillary services, improve energy efficiency, enhance power system reliability, and allow customer choice. Advanced power electronic (PE) interfaces will allow DE systems to provide increased functionality through improved power quality and voltage/VAR support, increase electrical system compatibility by reducing the fault contributions, and flexibility in operations with various other DE sources, while reducing overall interconnection costs. This paper examines the system integration and optimization issues associated with DE systems and show the benefits of using PE interfaces for such applications.

4. Power optimization of random distributed feedback fiber lasers.

PubMed

Vatnik, Ilya D; Churkin, Dmitry V; Babin, Sergey A

2012-12-17

We present a comprehensive study of power output characteristics of random distributed feedback Raman fiber lasers. The calculated optimal slope efficiency of the backward wave generation in the one-arm configuration is shown to be as high as ~90% for 1 W threshold. Nevertheless, in real applications a presence of a small reflection at fiber ends can appreciably deteriorate the power performance. The developed numerical model well describes the experimental data.

5. Electrical Power Distribution and Control Modeling and Analysis

NASA Technical Reports Server (NTRS)

Fu, Johnny S.; Liffring, Mark; Mehdi, Ishaque S.

2001-01-01

This slide presentation reviews the use of Electrical Power Distribution and Control (EPD&C) Modeling and how modeling can support analysis. The presentation discusses using the EASY5 model to simulate and analyze the Space Shuttle Electric Auxiliary Power Unit. Diagrams of the model schematics are included, as well as graphs of the battery cell impedance, hydraulic load dynamics, and EPD&C response to hydraulic load variations.

6. System-wide power management control via clock distribution network

DOEpatents

Coteus, Paul W.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Reed, Don D.

2015-05-19

An apparatus, method and computer program product for automatically controlling power dissipation of a parallel computing system that includes a plurality of processors. A computing device issues a command to the parallel computing system. A clock pulse-width modulator encodes the command in a system clock signal to be distributed to the plurality of processors. The plurality of processors in the parallel computing system receive the system clock signal including the encoded command, and adjusts power dissipation according to the encoded command.

7. Evaluation of power control concepts using the PMAD systems test bed. [Power Management and Distribution

NASA Technical Reports Server (NTRS)

Beach, R. F.; Kimnach, G. L.; Jett, T. A.; Trash, L. M.

1989-01-01

The Lewis Research Center's Power Management and Distribution (PMAD) System testbed and its use in the evaluation of control concepts applicable to the NASA Space Station Freedom electric power system (EPS) are described. The facility was constructed to allow testing of control hardware and software in an environment functionally similar to the space station electric power system. Control hardware and software have been developed to allow operation of the testbed power system in a manner similar to a supervisory control and data acquisition (SCADA) system employed by utility power systems for control. The system hardware and software are described.

8. DETERMINATION OF INVENTORIES AND POWER DISTRIBUTIONS FOR THE NSBR.

SciTech Connect

HANSON, A.L.; DIAMOND, D.J.

2005-09-12

This memo presents the details of the methodology for developing fuel inventories for the NBSR along with power distributions predicted with this set of inventories. Several improvements have been made to the MCNP model of the NBSR since a set of calculations was performed in 2002 in support of the NBSR relicensing and SAR update. One of the most significant changes in the model was to divide the fuel elements into upper and lower halves so the effects of uneven burn between the two halves (due to the shim arms) can be determined. The present set of power distributions are provided for comparison with the previous safety analyses.

9. Power law distribution of dividends in horse races

Park, K.; Domany, E.

2001-02-01

We discovered that the distribution of dividends in Korean horse races follows a power law. A simple model of betting is proposed, which reproduces the observed distribution. The model provides a mechanism to arrive at the true underlying winning probabilities, which are initially unknown, in a self-organized collective fashion, through the dynamic process of betting. Numerical simulations yield excellent agreement with the empirical data.

10. Electric power scheduling - A distributed problem-solving approach

NASA Technical Reports Server (NTRS)

Mellor, Pamela A.; Dolce, James L.; Krupp, Joseph C.

1990-01-01

Space Station Freedom's power system, along with the spacecraft's other subsystems, needs to carefully conserve its resources and yet strive to maximize overall Station productivity. Due to Freedom's distributed design, each subsystem must work cooperatively within the Station community. There is a need for a scheduling tool which will preserve this distributed structure, allow each subsystem the latitude to satisfy its own constraints, and preserve individual value systems while maintaining Station-wide integrity.

11. Wind Power Forecasting Error Distributions: An International Comparison; Preprint

SciTech Connect

Hodge, B. M.; Lew, D.; Milligan, M.; Holttinen, H.; Sillanpaa, S.; Gomez-Lazaro, E.; Scharff, R.; Soder, L.; Larsen, X. G.; Giebel, G.; Flynn, D.; Dobschinski, J.

2012-09-01

Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.

12. A Distributed Cooperative Power Allocation Method for Campus Buildings

SciTech Connect

Hao, He; Sun, Yannan; Carroll, Thomas E.; Somani, Abhishek

2015-09-01

We propose a coordination algorithm for cooperative power allocation among a collection of commercial buildings within a campus. We introduced thermal and power models of a typical commercial building Heating, Ventilation, and Air Conditioning (HVAC) system, and utilize model predictive control to characterize their power flexibility. The power allocation problem is formulated as a cooperative game using the Nash Bargaining Solution (NBS) concept, in which buildings collectively maximize the product of their utilities subject to their local flexibility constraints and a total power limit set by the campus coordinator. To solve the optimal allocation problem, a distributed protocol is designed using dual decomposition of the Nash bargaining problem. Numerical simulations are performed to demonstrate the efficacy of our proposed allocation method

13. Assessment of distributed wind-power systems. Final report

SciTech Connect

Kaupang, B.M.

1983-02-01

A utility-oriented methodology for the purpose of evaluating distributed wind-power systems was developed and tested, utilizing data from three actual utility systems. Conventional utility planning techniques were used, including loss-of-load probability and production-cost-simulation methods in the generation planning area, transmission and distribution (T and D) system expansion models, and loss calculations. Evaluations were based on comparison of total utility-system cost with an without wind-power plants, and wre expressed in terms of wind-power-plant value and cost. Value is measured by the worth of displaced energy and capacity of conventional power plants, of T and D equipmen deferrals, and of T and D loss savings. Cost consists of he capital, and operating and maintenace costs of the wind-power plants. The value of distributed wind-power generation was found to be dominated by the generation energy and capacity value, as opposed to T and D system impacts. The energy value alone did, in two of the three utilities studied, result in a favorable value/cost relationship for the cost assumptions that were used. The problem of voltage fluctuation on distribution feeders from wind turbines due to wind gusts was studied for several sites. In most relaistic applications, the voltage fluctuations would not be a limiting criterion for practical wind-turbine penetration levels. If the wind turbine is connected to the distributionfeeder through a rectifier-inverter, voltage fluctuations become a negligible factor. However, reactive-power compensation of the inverter would most likely be required for this application.

14. Power-law time distribution of large earthquakes.

PubMed

Mega, Mirko S; Allegrini, Paolo; Grigolini, Paolo; Latora, Vito; Palatella, Luigi; Rapisarda, Andrea; Vinciguerra, Sergio

2003-05-09

We study the statistical properties of time distribution of seismicity in California by means of a new method of analysis, the diffusion entropy. We find that the distribution of time intervals between a large earthquake (the main shock of a given seismic sequence) and the next one does not obey Poisson statistics, as assumed by the current models. We prove that this distribution is an inverse power law with an exponent mu=2.06+/-0.01. We propose the long-range model, reproducing the main properties of the diffusion entropy and describing the seismic triggering mechanisms induced by large earthquakes.

15. High Resolution PV Power Modeling for Distribution Circuit Analysis

SciTech Connect

Norris, B. L.; Dise, J. H.

2013-09-01

NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.

16. A new on-chip all-digital three-phase full-bridge dc/ac power inverter with feedforward and frequency control techniques.

PubMed

Chen, Jiann-Jong; Kung, Che-Min

2010-09-01

The communication speed between components is far from satisfactory. To achieve high speed, simple control system configuration, and low cost, a new on-chip all-digital three-phase dc/ac power inverter using feedforward and frequency control techniques is proposed. The controller of the proposed power inverter, called the shift register, consists of six-stage D-latch flip-flops with a goal of achieving low-power consumption and area efficiency. Variable frequency is achieved by controlling the clocks of the shift register. One advantage regarding the data signal (D) and the common clock (CK) is that, regardless of the phase difference between the two, all of the D-latch flip-flops are capable of delaying data by one CK period. To ensure stability, the frequency of CK must be six times higher than that of D. The operation frequency of the proposed power inverter ranges from 10 Hz to 2 MHz, and the maximum output loading current is 0.8 A. The prototype of the proposed circuit has been fabricated with TSMC 0.35 μm 2P4M CMOS processes. The total chip area is 2.333 x 1.698 mm2. The three-phase dc/ac power inverter is applicable in uninterrupted power supplies, cold cathode fluorescent lamps, and motors, because of its ability to convert the dc supply voltage into the three-phase ac power sources.

17. Exploring empowerment in settings: mapping distributions of network power.

PubMed

Neal, Jennifer Watling

2014-06-01

This paper brings together two trends in the empowerment literature-understanding empowerment in settings and understanding empowerment as relational-by examining what makes settings empowering from a social network perspective. Specifically, extending Neal and Neal's (Am J Community Psychol 48(3/4):157-167, 2011) conception of network power, an empowering setting is defined as one in which (1) actors have existing relationships that allow for the exchange of resources and (2) the distribution of network power among actors in the setting is roughly equal. The paper includes a description of how researchers can examine distributions of network power in settings. Next, this process is illustrated in both an abstract example and using empirical data on early adolescents' peer relationships in urban classrooms. Finally, implications for theory, methods, and intervention related to understanding empowering settings are explored.

18. Electron beam machining using rotating and shaped beam power distribution

DOEpatents

Elmer, John W.; O'Brien, Dennis W.

1996-01-01

An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

19. Electron beam machining using rotating and shaped beam power distribution

DOEpatents

Elmer, J.W.; O`Brien, D.W.

1996-07-09

An apparatus and method are disclosed for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: (1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and (2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1,000 {micro}m (1 mm or larger), compared to the 250 {micro}m diameter of laser drilling. 5 figs.

20. Distributed Power Flow Control: Distributed Power Flow Control using Smart Wires for Energy Routing

SciTech Connect

2012-04-24

GENI Project: Smart Wire Grid is developing a solution for controlling power flow within the electric grid to better manage unused and overall transmission capacity. The 300,000 miles of high-voltage transmission line in the U.S. today are congested and inefficient, with only around 50% of all transmission capacity utilized at any given time. Increased consumer demand should be met in part with more efficient and an economical power flow. Smart Wire Grid’s devices clamp onto existing transmission lines and control the flow of power within—much like how internet routers help allocate bandwidth throughout the web. Smart wires could support greater use of renewable energy by providing more consistent control over how that energy is routed within the grid on a real-time basis. This would lessen the concerns surrounding the grid’s inability to effectively store intermittent energy from renewables for later use.

1. HEMP interaction with an electric power distribution circuit. Final report

SciTech Connect

Zaininger, H.W.; Jaszewski, G.M.

1985-08-01

A high altitude nuclear burst, detonated at a height of 50 km or more, causes two types of electromagnetic pulses, high altitude EMP (HEMP) and magnetohydrodynamic EMP, which will interact with electric power systems. Previous work indicated that millions of miles of electric distribution systems in the United States may be especially vulnerable to HEMP incident simultaneously throughout large portions of the United States. Purpose of this work was to perform an initial assessment of HEMP induced surges on a simplified electric distribution system. This report presents the assumptions, methodology, and resulting induced transient voltages and currents at various points in the distribution circuit in the microsecond timeframe, considering the impacts of HEMP incident simultaneously throughout the distribution system for a range of parametric conditions. Results of this work suggest that EMP could induce voltage transients that far exceed the basic insulation level (BIL) of distribution systems and that a more detailed analysis is warranted.

2. Learning geotemporal nonstationary failure and recovery of power distribution.

PubMed

Wei, Yun; Ji, Chuanyi; Galvan, Floyd; Couvillon, Stephen; Orellana, George; Momoh, James

2014-01-01

Smart energy grid is an emerging area for new applications of machine learning in a nonstationary environment. Such a nonstationary environment emerges when large-scale failures occur at power networks because of external disruptions such as hurricanes and severe storms. Power distribution networks lie at the edge of the grid, and are especially vulnerable to external disruptions. Quantifiable approaches are lacking and needed to learn nonstationary behaviors of large-scale failure and recovery of power distribution. This paper studies such nonstationary behaviors in three aspects. First, a novel formulation is derived for an entire life cycle of large-scale failure and recovery of power distribution. Second, spatial-temporal models of failure and recovery of power distribution are developed as geolocation-based multivariate nonstationary GI(t)/G(t)/∞ queues. Third, the nonstationary spatial-temporal models identify a small number of parameters to be learned. Learning is applied to two real-life examples of large-scale disruptions. One is from Hurricane Ike, where data from an operational network is exact on failures and recoveries. The other is from Hurricane Sandy, where aggregated data is used for inferring failure and recovery processes at one of the impacted areas. Model parameters are learned using real data. Two findings emerge as results of learning: 1) failure rates behave similarly at the two different provider networks for two different hurricanes but differently at the geographical regions and 2) both the rapid and slow-recovery are present for Hurricane Ike but only slow recovery is shown for a regional distribution network from Hurricane Sandy.

3. Multi-kw dc power distribution system study program

NASA Technical Reports Server (NTRS)

Berkery, E. A.; Krausz, A.

1974-01-01

The first phase of the Multi-kw dc Power Distribution Technology Program is reported and involves the test and evaluation of a technology breadboard in a specifically designed test facility according to design concepts developed in a previous study on space vehicle electrical power processing, distribution, and control. The static and dynamic performance, fault isolation, reliability, electromagnetic interference characterisitics, and operability factors of high distribution systems were studied in order to gain a technology base for the use of high voltage dc systems in future aerospace vehicles. Detailed technical descriptions are presented and include data for the following: (1) dynamic interactions due to operation of solid state and electromechanical switchgear; (2) multiplexed and computer controlled supervision and checkout methods; (3) pulse width modulator design; and (4) cable design factors.

4. Modeling and Verification of Distributed Generation and Voltage Regulation Equipment for Unbalanced Distribution Power Systems; Annual Subcontract Report, June 2007

SciTech Connect

Davis, M. W.; Broadwater, R.; Hambrick, J.

2007-07-01

This report summarizes the development of models for distributed generation and distribution circuit voltage regulation equipment for unbalanced power systems and their verification through actual field measurements.

5. Improving Advanced Inverter Control Convergence in Distribution Power Flow

SciTech Connect

Nagarajan, Adarsh; Palmintier, Bryan; Ding, Fei; Mather, Barry; Baggu, Murali

2016-11-21

Simulation of modern distribution system powerflow increasingly requires capturing the impact of advanced PV inverter voltage regulation on powerflow. With Volt/var control, the inverter adjusts its reactive power flow as a function of the point of common coupling (PCC) voltage. Similarly, Volt/watt control curtails active power production as a function of PCC voltage. However, with larger systems and higher penetrations of PV, this active/reactive power flow itself can cause significant changes to the PCC voltage potentially introducing oscillations that slow the convergence of system simulations. Improper treatment of these advanced inverter functions could potentially lead to incorrect results. This paper explores a simple approach to speed such convergence by blending in the previous iteration's reactive power estimate to dampen these oscillations. Results with a single large (5MW) PV system and with multiple 500kW advanced inverters show dramatic improvements using this approach.

6. High power ac/dc variable R dynamic electrical load simulator

NASA Technical Reports Server (NTRS)

Joncas, K. P.

1974-01-01

A study program was undertaken to investigate various concepts and techniques for identifying and simulating both the steady-state and dynamic characteristics of electrical loads for use during integrated system test and evaluation. The development of hardware capable of providing the simulation capability is discussed. A general purpose simulator was developed with the capability of realizing a variety of models where element values were discretely variable. The different models, each corresponding to real spacecraft equipment, are set up manually for each case by suitable switching and patching. The models are capable of duplicating the dynamic and steady-state response of real loads at full power.

7. Chattanooga Electric Power Board Case Study Distribution Automation

SciTech Connect

Glass, Jim; Melin, Alexander M.; Starke, Michael R.

2016-10-01

In 2009, the U.S. Department of Energy under the American Recovery and Reinvestment Act (ARRA) awarded a grant to the Chattanooga, Tennessee, Electric Power Board (EPB) as part of the Smart Grid Investment Grant Program. The grant had the objective “to accelerate the transformation of the nation’s electric grid by deploying smart grid technologies.” This funding award enabled EPB to expedite the original smart grid implementation schedule from an estimated 10-12 years to 2.5 years. With this funding, EPB invested heavily in distribution automation technologies including installing over 1,200 automated circuit switches and sensors on 171 circuits. For utilities considering a commitment to distribution automation, there are underlying questions such as the following: “What is the value?” and “What are the costs?” This case study attempts to answer these questions. The primary benefit of distribution automation is increased reliability or reduced power outage duration and frequency. Power outages directly impact customer economics by interfering with business functions. In the past, this economic driver has been difficult to effectively evaluate. However, as this case study demonstrates, tools and analysis techniques are now available. In this case study, the impact on customer costs associated with power outages before and after the implementation of distribution automation are compared. Two example evaluations are performed to demonstrate the benefits: 1) a savings baseline for customers under normal operations1 and 2) customer savings for a single severe weather event. Cost calculations for customer power outages are performed using the US Department of Energy (DOE) Interruption Cost Estimate (ICE) calculator2. This tool uses standard metrics associated with outages and the customers to calculate cost impact. The analysis shows that EPB customers have seen significant reliability improvements from the implementation of distribution automation. Under

8. Distributed renewable power from biomass and other waste fuels

Lyons, Chris

2012-03-01

The world population is continually growing and putting a burden on our fossil fuels. These fossil fuels such as coal, oil and natural gas are used for a variety of critical needs such as power production and transportation. While significant environmental improvements have been made, the uses of these fuels are still causing significant ecological impacts. Coal power production efficiency has not improved over the past thirty years and with relatively cheap petroleum cost, transportation mileage has not improved significantly either. With the demand for these fossil fuels increasing, ultimately price will also have to increase. This presentation will evaluate alternative power production methods using localized distributed generation from biomass, municipal solid waste and other waste sources of organic materials. The presentation will review various gasification processes that produce a synthetic gas that can be utilized as a fuel source in combustion turbines for clean and efficient combined heat and power. This fuel source can produce base load renewable power. In addition tail gases from the production of bio-diesel and methanol fuels can be used to produce renewable power. Being localized can reduce the need for long and costly transmission lines making the production of fuels and power from waste a viable alternative energy source for the future.

9. Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers

Tao, Rumao; Ma, Pengfei; Wang, Xiaolin; Zhou, Pu; Liu, Zejin

2017-02-01

Influence of pump power distribution on modal instabilities (MI) is studied numerically, which reveals that the MI threshold is dependent on the pump power distribution in fiber amplifiers and can be increased by optimizing the pump power distribution without any adjustment of other amplifier parameters. It shows that amplifiers with backward or bi-direction pump schemes have a higher threshold than those employing forward pump schemes. For backward pumped amplifiers employing fiber with core/clad diameter being 20/400 µm, the MI threshold yields a 42% increase compared to the forward pumped ones. For bi-direction pumped amplifiers, there exists an optimal power ratio between forward and backward pump power, which results in the highest threshold power. When amplifiers with core/clad diameter being 20/400 µm employ a bi-direction pump scheme at the optimal backward pump power fraction, the threshold can be increased by a factor of approximately 60% with respect to the forward pump configuration. The threshold increment factor reduces as the gain saturation effect weakens. It also shows that the MI threshold can be increased by employing multi-point side pump schemes.

10. Development of a bionanobattery for distributed power storage systems

King, Glen C.; Choi, Sang H.; Chu, Sang-Hyon; Kim, Jae-Woo; Park, Yeonjoon; Lillehei, Peter T.; Watt, Gerald D.; Davis, Robert C.; Harb, John N.

2004-07-01

Currently available power storage systems, such as those used to supply power to microelectronic devices, typically consist of a single centralized canister and a series of wires to supply electrical power to where it is needed in a circuit. As the size of electrical circuits and components become smaller, there exists a need for a distributed power system to reduce Joule heating, wiring, and to allow autonomous operation of the various functions performed by the circuit. Our research is being conducted to develop a bio-nanobattery using ferritins reconstituted with both an iron core (Fe-ferritin) and a cobalt core (Co-ferritin). Both Co-ferritin and Fe-ferritin were synthesized and characterized as candidates for the bio-nanobattery. The reducing capability was determined as well as the half-cell electrical potentials, indicating an electrical output of nearly 0.5 V for the battery cell. Ferritins having other metallic cores are also being investigated, in order to increase the overall electrical output. Two dimensional ferritin arrays were also produced on various substrates, demonstrating the necessary building blocks for the bio-nanobattery. The bio-nanobattery will play a key role in moving to a distributed power storage system for electronic applications.

11. Deviation from power law of the global seismic moment distribution

Serra, Isabel; Corral, Álvaro

2017-01-01

The distribution of seismic moment is of capital interest to evaluate earthquake hazard, in particular regarding the most extreme events. We make use of likelihood-ratio tests to compare the simple Gutenberg-Richter power-law (PL) distribution with two statistical models that incorporate an exponential tail, the so-called tapered Gutenberg-Richter (Tap) and the truncated gamma, when fitted to the global CMT earthquake catalog. Although the Tap distribution does not introduce any significant improvement of fit respect the PL, the truncated gamma does. Simulated samples of this distribution, with parameters β = 0.68 and mc = 9.15 and reshuffled in order to mimic the time occurrence of the order statistics of the empirical data, are able to explain the temporal heterogeneity of global seismicity both before and after the great Sumatra-Andaman earthquake of 2004.

12. Deviation from power law of the global seismic moment distribution

PubMed Central

Serra, Isabel; Corral, Álvaro

2017-01-01

The distribution of seismic moment is of capital interest to evaluate earthquake hazard, in particular regarding the most extreme events. We make use of likelihood-ratio tests to compare the simple Gutenberg-Richter power-law (PL) distribution with two statistical models that incorporate an exponential tail, the so-called tapered Gutenberg-Richter (Tap) and the truncated gamma, when fitted to the global CMT earthquake catalog. Although the Tap distribution does not introduce any significant improvement of fit respect the PL, the truncated gamma does. Simulated samples of this distribution, with parameters β = 0.68 and mc = 9.15 and reshuffled in order to mimic the time occurrence of the order statistics of the empirical data, are able to explain the temporal heterogeneity of global seismicity both before and after the great Sumatra-Andaman earthquake of 2004. PMID:28053311

13. Power management and distribution considerations for a lunar base

NASA Technical Reports Server (NTRS)

Kenny, Barbara H.; Coleman, Anthony S.

1991-01-01

Design philosophies and technology needs for the power management and distribution (PMAD) portion of a lunar base power system are discussed. A process is described whereby mission planners may proceed from a knowledge of the PMAD functions and mission performance requirements to a definition of design options and technology needs. Current research efforts at the NASA LRC to meet the PMAD system needs for a Lunar base are described. Based on the requirements, the lunar base PMAD is seen as best being accomplished by a utility like system, although with some additional demands including autonomous operation and scheduling and accurate, predictive modeling during the design process.

14. Power distribution for an Am/Cm bushing melter

SciTech Connect

Gong, C.; Hardy, B.J.

1996-12-31

Decades of nuclear material production at the Savannah River Site (SRS) has resulted in the generation of large quantities of the isotopes Am{sup 243} and Cm{sup 244}. Currently, the Am and Cm isotopes are stored as a nitric acid solution in a tank. The Am and Cm isotopes have great commercial value but must be transferred to ORNL for processing. The nitric acid solution contains other isotopes and is intensely radioactive, which makes storage a problem and precludes shipment in the liquid form. In order to stabilize the material for onsite storage and to permit transport the material from SRS to ORNL, it has been proposed that the Am and Cm be separated from other isotopes in the solution and vitrified. Vitrification will be effected by depositing a liquid feed stream containing the isotopes in solution, together with a stream of glass frit, onto the top of a molten glass pool in a melter. The glass is non-conducting and the melter is a Platinum/Rhodium alloy vessel which is heated by passing an electric current through it. Because most of the power is required to evaporate the liquid feed at the top of the glass pool, power demands differ for the upper and lower parts of the melter. In addition, the melter is batch fed so that the local power requirements vary with time. In order to design a unique split power supply, which ensures adequate local power delivery, an analysis of the melter power distribution was performed with the ABAQUS finite element code. ABAQUS was used to calculate the electric potential and current density distributions in the melter for a variety of current and potential boundary conditions. The results of the calculation were compared with test data and will be used to compute power densities for input to a computational fluid dynamics model for the melter.

15. Development of a hardware-based AC microgrid for AC stability assessment

Swanson, Robert R.

As more power electronic-based devices enable the development of high-bandwidth AC microgrids, the topic of microgrid power distribution stability has become of increased interest. Recently, researchers have proposed a relatively straightforward method to assess the stability of AC systems based upon the time-constants of sources, the net bus capacitance, and the rate limits of sources. In this research, a focus has been to develop a hardware test system to evaluate AC system stability. As a first step, a time domain model of a two converter microgrid was established in which a three phase inverter acts as a power source and an active rectifier serves as an adjustable constant power AC load. The constant power load can be utilized to create rapid power flow transients to the generating system. As a second step, the inverter and active rectifier were designed using a Smart Power Module IGBT for switching and an embedded microcontroller as a processor for algorithm implementation. The inverter and active rectifier were designed to operate simultaneously using a synchronization signal to ensure each respective local controller operates in a common reference frame. Finally, the physical system was created and initial testing performed to validate the hardware functionality as a variable amplitude and variable frequency AC system.

16. Advanced power supply and distribution systems for Columbus

Eggers, Gert

1988-01-01

The paper describes power supply and distribution systems to be used on unmanned/man-tended Columbus elements, capable of supplying 10 kW to 30 kW to a variety of users in low earth orbits (LEO's). For the definition of the Electrical Power System (EPS) challenging requirements as the provision of high power levels under hard LEO conditions, maintainability, commonality etc. are to be taken into account. These requirements are to be seen in conjunction with the Columbus IOC (initial operational capability) scenario stipulating that EPS hardware shall be used on the Polar Platform, the Pressurized Module attached to the U.S. Space Station and the Man-Tended Free Flier. According to the availability of European technologies, the baseline in the power generation area is a photovoltaic system which provides three regulated main buses (150 V d.c.) to the users. In order to maintain power supply during eclipse phases, nickel hydrogen batteries will be used for energy storage purposes with nickel cadmium as back-up solution. The power distribution system needs special attention. Due to the elevated voltage levels mechanical switch gear cannot be used any longer. It is to be replaced by solid state power controllers (SSPC). Because these devices show a totally different behaviour with regard to conventional relay contacts, new approaches in the area of switching and protection are necessary. In view of the crucial role of this new technology for the realization of medium voltage d.c. systems, it is of great importance for Columbus and, hence will receive adequate consideration in the paper. In order to cater for effective management and control of the power supply and distribution hardware, a so called power system internal data processing assembly (PINDAP) has been introduced in the EPS. PINDAP is the key to reduced dependence on ground stations (alleviated ground support requirements); it keeps crew involvement in the EPS control process to as minimum and provides

17. Power system distributed oscilation detection based on Synchrophasor data

Ning, Jiawei

Along with increasing demand for electricity, integration of renewable energy and deregulation of power market, power industry is facing unprecedented challenges nowadays. Within the last couple of decades, several serious blackouts have been taking place in United States. As an effective approach to prevent that, power system small signal stability monitoring has been drawing more interests and attentions from researchers. With wide-spread implementation of Synchrophasors around the world in the last decade, power systems real-time online monitoring becomes much more feasible. Comparing with planning study analysis, real-time online monitoring would benefit control room operators immediately and directly. Among all online monitoring methods, Oscillation Modal Analysis (OMA), a modal identification method based on routine measurement data where the input is unmeasured ambient excitation, is a great tool to evaluate and monitor power system small signal stability. Indeed, high sampling Synchrophasor data around power system is fitted perfectly as inputs to OMA. Existing methods in OMA for power systems are all based on centralized algorithms applying at control centers only; however, with rapid growing number of online Synchrophasors the computation burden at control centers is and will be continually exponentially expanded. The increasing computation time at control center compromises the real-time feature of online monitoring. The communication efforts between substation and control center will also be out of reach. Meanwhile, it is difficult or even impossible for centralized algorithms to detect some poorly damped local modes. In order to avert previous shortcomings of centralized OMA methods and embrace the new changes in the power systems, two new distributed oscillation detection methods with two new decentralized structures are presented in this dissertation. Since the new schemes brought substations into the big oscillation detection picture, the proposed

18. Distributed Optimal Generation Control of Shipboard Power Systems

DTIC Science & Technology

2012-05-01

address the needs of SPSs, a fully-distributed, multi - agent system (MAS)-based solution is proposed to optimize the control references of distributed...Transactions on Power Systems, Vol.27, No.1, pp.233-242, Feb. 2012. [4] J. M. Solanki and N. N. Schulz, “Using intelligent multi - agent systems for shipboard...D 2005/2006, pp. 562-567, May 21-24, 2006. [11] J. A. Momoh, K. Alfred and Y. Xia, “Framework for Multi - Agent System (MAS) Detection and Control

19. Distributed Optimal Generation Control of Shipboard Power Systems

DTIC Science & Technology

2012-05-01

address the needs of SPSs, a fully-distributed, multi - agent system (MAS)-based solution is proposed to optimize the control references of distributed...Systems, Vol.27, No.1, pp.233-242, Feb. 2012. [4] J. M. Solanki and N. N. Schulz, “Using intelligent multi - agent systems for shipboard power...pp. 562-567, May 21-24, 2006. [11] J. A. Momoh, K. Alfred and Y. Xia, “Framework for Multi - Agent System (MAS) Detection and Control of Arcing of

20. Electric power scheduling: A distributed problem-solving approach

NASA Technical Reports Server (NTRS)

Mellor, Pamela A.; Dolce, James L.; Krupp, Joseph C.

1990-01-01

Space Station Freedom's power system, along with the spacecraft's other subsystems, needs to carefully conserve its resources and yet strive to maximize overall Station productivity. Due to Freedom's distributed design, each subsystem must work cooperatively within the Station community. There is a need for a scheduling tool which will preserve this distributed structure, allow each subsystem the latitude to satisfy its own constraints, and preserve individual value systems while maintaining Station-wide integrity. The value-driven free-market economic model is such a tool.

1. ACS: ALMA Common Software

Chiozzi, Gianluca; Šekoranja, Matej

2013-02-01

ALMA Common Software (ACS) provides a software infrastructure common to all ALMA partners and consists of a documented collection of common patterns and components which implement those patterns. The heart of ACS is based on a distributed Component-Container model, with ACS Components implemented as CORBA objects in any of the supported programming languages. ACS provides common CORBA-based services such as logging, error and alarm management, configuration database and lifecycle management. Although designed for ALMA, ACS can and is being used in other control systems and distributed software projects, since it implements proven design patterns using state of the art, reliable technology. It also allows, through the use of well-known standard constructs and components, that other team members whom are not authors of ACS easily understand the architecture of software modules, making maintenance affordable even on a very large project.

2. Power-law distribution in Japanese racetrack betting

Ichinomiya, Takashi

2006-08-01

Gambling is one of the basic economic activities that humans indulge in. An investigation of gambling activities provides deep insights into the economic actions of people and sheds lights on the study of econophysics. In this paper we present an analysis of the distribution of the final odds of the races organized by the Japan Racing Association. The distribution of the final odds Po(x) indicates a clear power-law Po(x)∝1/x, where x represents the final odds. This power-law can be explained on the basis of the assumption that every bettor bets his money on the horse that appears to be the strongest in a race.

3. Distributed Electrical Power Generation: Summary of Alternative Available Technologies

DTIC Science & Technology

2003-09-01

Technical Report (TR)-01-18, ADA388687. Borbely, Ann-Marie and Jan F. Kreider. 2001. Dis ributed Genera on: The Power Paradigm for the New...Construction Engineering Research Laboratory PO Box 9005 Champaign, IL 61826-9005 Final Report Approved for public release; distribution is...are provided. DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade

4. Distributed Solar Photovoltaic Power Production - Technology and Benefits

SciTech Connect

Matos, Al; Stuby, Rick

2011-11-02

As part of its nationally recognized Solar 4 All program, PSE&G has partnered with Petra Solar to deploy the world’s first and largest pole attached solar project. The project, based on Petra Solar’s distributed Smart Solar solution, will create a 40 megawatt solar “virtual power plant.” In deployment as 200,000 individual grid-connected solar power producers on utility poles in PSE&G territory, Petra Solar SunWave® solutions leverage Smart Grid communications and high-tech panel-level inverters to implement a robust system with many technical benefits over traditional solar photovoltaic solutions. The program overview, deployment model, smart grid communications and enabling inverter technology and safety features will be presented, as well the future challenges of, and solutions for, solar power intermittency as photovoltaic penetration on the electric grid increases.

5. Assessment of distributed solar power systems: Issues and impacts

Moyle, R. A.; Chernoff, H.; Schweizer, T. C.; Patton, J. B.

1982-11-01

The installation of distributed solar-power systems presents electric utilities with a host of questions. Some of the technical and economic impacts of these systems are discussed. Among the technical interconnect issues are isolated operation, power quality, line safety, and metering options. Economic issues include user purchase criteria, structures and installation costs, marketing and product distribution costs, and interconnect costs. An interactive computer program that allows easy calculation of allowable system prices and allowable generation-equipment prices was developed as part of this project. It is concluded that the technical problems raised by distributed solar systems are surmountable, but their resolution may be costly. The stringent purchase criteria likely to be imposed by many potential system users and the economies of large-scale systems make small systems (less than 10 to 20 kW) less attractive than larger systems. Utilities that consider life-cycle costs in making investment decisions and third-party investors who have tax and financial advantages are likely to place the highest value on solar-power systems.

6. Power Management and Distribution (PMAD) Model Development: Final Report

NASA Technical Reports Server (NTRS)

Metcalf, Kenneth J.

2011-01-01

Power management and distribution (PMAD) models were developed in the early 1990's to model candidate architectures for various Space Exploration Initiative (SEI) missions. They were used to generate "ballpark" component mass estimates to support conceptual PMAD system design studies. The initial set of models was provided to NASA Lewis Research Center (since renamed Glenn Research Center) in 1992. They were developed to estimate the characteristics of power conditioning components predicted to be available in the 2005 timeframe. Early 90's component and device designs and material technologies were projected forward to the 2005 timeframe, and algorithms reflecting those design and material improvements were incorporated into the models to generate mass, volume, and efficiency estimates for circa 2005 components. The models are about ten years old now and NASA GRC requested a review of them to determine if they should be updated to bring them into agreement with current performance projections or to incorporate unforeseen design or technology advances. This report documents the results of this review and the updated power conditioning models and new transmission line models generated to estimate post 2005 PMAD system masses and sizes. This effort continues the expansion and enhancement of a library of PMAD models developed to allow system designers to assess future power system architectures and distribution techniques quickly and consistently.

7. Klystron Cluster Scheme for ILC High Power RF Distribution

SciTech Connect

2009-07-06

We present a concept for powering the main linacs of the International Linear Collider (ILC) by delivering high power RF from the surface via overmoded, low-loss waveguides at widely spaced intervals. The baseline design employs a two-tunnel layout, with klystrons and modulators evenly distributed along a service tunnel running parallel to the accelerator tunnel. This new idea eliminates the need for the service tunnel. It also brings most of the warm heat load to the surface, dramatically reducing the tunnel water cooling and HVAC requirements. In the envisioned configuration, groups of 70 klystrons and modulators are clustered in surface buildings every 2.5 km. Their outputs are combined into two half-meter diameter circular TE{sub 01} mode evacuated waveguides. These are directed via special bends through a deep shaft and along the tunnel, one upstream and one downstream. Each feeds approximately 1.25 km of linac with power tapped off in 10 MW portions at 38 m intervals. The power is extracted through a novel coaxial tap-off (CTO), after which the local distribution is as it would be from a klystron. The tap-off design is also employed in reverse for the initial combining.

8. Design of Instantaneous High Power Supply System with power distribution management for portable military devices

Kwak, Kiho; Kwak, Dongmin; Yoon, Joohong

2015-08-01

A design of an Instantaneous High Power Supply System (IHPSS) with a power distribution management (PDM) for portable military devices is newly addressed. The system includes a power board and a hybrid battery that can not only supply instantaneous high power but also maintain stable operation at critical low temperature (-30 °C). The power leakage and battery overcharge are effectively prevented by the optimal PDM. The performance of the proposed system under the required pulse loads and the operating conditions of a Korean Advanced Combat Rifle employed in the battlefield is modeled with simulations and verified experimentally. The system with the IHPSS charged the fuse setter with 1.7 times higher voltage (8.6 V) than the one without (5.4 V) under the pulse discharging rate (1 A at 0.5 duty, 1 ms) for 500 ms.

9. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

SciTech Connect

David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

2004-09-30

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under \$400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

10. Enhanced power quality based single phase photovoltaic distributed generation system

Panda, Aurobinda; Pathak, M. K.; Srivastava, S. P.

2016-08-01

This article presents a novel control strategy for a 1-ϕ 2-level grid-tie photovoltaic (PV) inverter to enhance the power quality (PQ) of a PV distributed generation (PVDG) system. The objective is to obtain the maximum benefits from the grid-tie PV inverter by introducing current harmonics as well as reactive power compensation schemes in its control strategy, thereby controlling the PV inverter to achieve multiple functions in the PVDG system such as: (1) active power flow control between the PV inverter and the grid, (2) reactive power compensation, and (3) grid current harmonics compensation. A PQ enhancement controller (PQEC) has been designed to achieve the aforementioned objectives. The issue of underutilisation of the PV inverter in nighttime has also been addressed in this article and for the optimal use of the system; the PV inverter is used as a shunt active power filter in nighttime. A prototype model of the proposed system is developed in the laboratory, to validate the effectiveness of the control scheme, and is tested with the help of the dSPACE DS1104 platform.

11. Life cycle assessment of overhead and underground primary power distribution.

PubMed

Bumby, Sarah; Druzhinina, Ekaterina; Feraldi, Rebe; Werthmann, Danae; Geyer, Roland; Sahl, Jack

2010-07-15

Electrical power can be distributed in overhead or underground systems, both of which generate a variety of environmental impacts at all stages of their life cycles. While there is considerable literature discussing the trade-offs between both systems in terms of aesthetics, safety, cost, and reliability, environmental assessments are relatively rare and limited to power cable production and end-of-life management. This paper assesses environmental impacts from overhead and underground medium voltage power distribution systems as they are currently built and managed by Southern California Edison (SCE). It uses process-based life cycle assessment (LCA) according to ISO 14044 (2006) and SCE-specific primary data to the extent possible. Potential environmental impacts have been calculated using a wide range of midpoint indicators, and robustness of the results has been investigated through sensitivity analysis of the most uncertain and potentially significant parameters. The studied underground system has higher environmental impacts in all indicators and for all parameter values, mostly due to its higher material intensity. For both systems and all indicators the majority of impact occurs during cable production. Promising strategies for impact reduction are thus cable failure rate reduction for overhead and cable lifetime extension for underground systems.

12. Time series power flow analysis for distribution connected PV generation.

SciTech Connect

Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J.; Smith, Jeff; Dugan, Roger

2013-01-01

Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating

13. A Multi-Agent Design for Power Distribution Systems Automation

A new Multi Agent System (MAS) design for fault location, isolation and restoration in power distribution systems is presented. In proposed approach, when there is a fault in the Power Distribution System (PDS), MAS quickly isolates the fault and restores the service to fault-free zones. Hierarchical coordination strategy is introduced to manage the agents which integrate the advantages of both centralized and decentralized coordination strategies. In this framework, Zone Agent (ZA) locate and isolate the fault based on the locally available information and assist the Feeder Agent (FA) for reconfiguration and restoration. FA can solve the restoration problem using the existing algorithms for the 0-1 Knapsack problem. A novel Q-learning mechanism is also introduced to support the FAs in decision making for restoration. Also a distributed MAS-Based Load Shedding (LS) technique has been used to supply as many of higher priority customers as possible, in case there is more demand than generation. The design is illustrated by the use of simulation case studies for fault location, isolation and restoration on West Virginia Super Circuit (WVSC) and hardware implementation for fault location and isolation in a laboratory platform. The results from the case studies indicate the performance of proposed MAS designs.

14. Power-law distributions from additive preferential redistributions

Ree, Suhan

2006-02-01

We introduce a nongrowth model that generates the power-law distribution with the Zipf exponent. There are N elements, each of which is characterized by a quantity, and at each time step these quantities are redistributed through binary random interactions with a simple additive preferential rule, while the sum of quantities is conserved. The situation described by this model is similar to those of closed N -particle systems when conservative two-body collisions are only allowed. We obtain stationary distributions of these quantities both analytically and numerically while varying parameters of the model, and find that the model exhibits the scaling behavior for some parameter ranges. Unlike well-known growth models, this alternative mechanism generates the power-law distribution when the growth is not expected and the dynamics of the system is based on interactions between elements. This model can be applied to some examples such as personal wealths, city sizes, and the generation of scale-free networks when only rewiring is allowed.

15. Thermal Diagnosis of Rural Power Grid Distribution Substation Electrical Joints

Ge, Le-Yi; Wang, Yue-Xin; Qiao, Yu-Jing

2016-05-01

Rural Power Grid Distribution Substation (RPGDS) in long-term operation process, often due to thermal power of the high voltage unit is very big, which leads to serious local heat. In order to ensure the stability, security and reliability, it is necessary to measure and detect for some specific electrical joints of RPGDS. This paper presents a novel diagnosis method based on infrared thermal imaging technology for the specific electrical joints, the method obtains the original infrared thermal image firstly, then carries out following steps as: preprocessing, noise filtering, image enhancement, and extract image edge line, finally, analyzes the results of infrared thermal image data processing. This novel method not only overcomes the shortcomings of traditional contact measurement methods, but can realize fault diagnose more accurately for the electrical joints.

16. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

SciTech Connect

Nguyen Minh

2004-07-04

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the January to June 2004 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

17. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

SciTech Connect

Faress Rahman; Nguyen Minh

2004-01-04

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

18. Tomographic determination of the power distribution in electron beams

DOEpatents

Teruya, Alan T.; Elmer, John W.

1996-01-01

A tomographic technique for determining the power distribution of an electron beam using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. A refractory metal disk with a number of radially extending slits is placed above a Faraday cup. The beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. Also, a single computer is used to generate the signals actuating the sweep, to acquire that data, and to do the reconstruction, thus reducing the time and equipment necessary to complete the process.

19. Operational maintenance data for power generation distribution and HVAC components

SciTech Connect

Hollis, H.D.; Hale, P.S. Jr.; Arno, R.G.; Briggs, S.J.

1995-12-31

This paper describes the culmination of a 24,000 man hour effort to collect operational and maintenance data on 239 power generation, power distribution and HVAC items, including gas turbine generators, diesel engine generators, switch gear assemblies, cables, boilers, piping, valves and chillers. This program was designed to determine the effects of new technology equipment, i.e., equipment installed after 1971, on availability. The central hypothesis was that this new equipment would exhibit a significant increase in availability, with corresponding decreases in required maintenance and the occurrence of failures. Information was obtained on a variety of commercial and industrial facility types (including office buildings, hospitals, water treatment facilities, prisons, utilities, manufacturing facilities, school universities and bank computer centers), with varying degrees of maintenance quality.

20. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

SciTech Connect

Nguyen Minh; Faress Rahman

2002-12-31

This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the October 2002 to December 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The following activities have been carried out during this reporting period: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} Part-load performance analysis was conducted {lg_bullet} Primary system concept was down-selected {lg_bullet} Dynamic control model has been developed {lg_bullet} Preliminary heat exchanger designs were prepared {lg_bullet} Pressurized SOFC endurance testing was performed

1. Probability distributions and confidence intervals for simulated power law noise.

PubMed

Ashby, Neil

2015-01-01

A method for simulating power law noise in clocks and oscillators is presented based on modification of the spectrum of white phase noise, then Fourier transforming to the time domain. Symmetric real matrices are introduced whose traces-the sums of their eigenvalues-are equal to the Allan variances, in overlapping or non-overlapping forms, as well as for the corresponding forms of the modified Allan variance. We show that the standard expressions for spectral densities, and their relations to Allan variance, are obtained with this method. The matrix eigenvalues determine probability distributions for observing a variance at an arbitrary value of the sampling interval τ, and hence for estimating confidence in the measurements. Examples are presented for the common power-law noises. Extension to other variances such as the Hadamard variance, and variances with dead time, are discussed.

2. Tomographic determination of the power distribution in electron beams

DOEpatents

Teruya, A.T.; Elmer, J.W.

1996-12-10

A tomographic technique for determining the power distribution of an electron beam using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams is disclosed. A refractory metal disk with a number of radially extending slits is placed above a Faraday cup. The beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. Also, a single computer is used to generate the signals actuating the sweep, to acquire that data, and to do the reconstruction, thus reducing the time and equipment necessary to complete the process. 4 figs.

3. A majorization-minimization approach to design of power distribution networks

SciTech Connect

Johnson, Jason K; Chertkov, Michael

2010-01-01

We consider optimization approaches to design cost-effective electrical networks for power distribution. This involves a trade-off between minimizing the power loss due to resistive heating of the lines and minimizing the construction cost (modeled by a linear cost in the number of lines plus a linear cost on the conductance of each line). We begin with a convex optimization method based on the paper 'Minimizing Effective Resistance of a Graph' [Ghosh, Boyd & Saberi]. However, this does not address the Alternating Current (AC) realm and the combinatorial aspect of adding/removing lines of the network. Hence, we consider a non-convex continuation method that imposes a concave cost of the conductance of each line thereby favoring sparser solutions. By varying a parameter of this penalty we extrapolate from the convex problem (with non-sparse solutions) to the combinatorial problem (with sparse solutions). This is used as a heuristic to find good solutions (local minima) of the non-convex problem. To perform the necessary non-convex optimization steps, we use the majorization-minimization algorithm that performs a sequence of convex optimizations obtained by iteratively linearizing the concave part of the objective. A number of examples are presented which suggest that the overall method is a good heuristic for network design. We also consider how to obtain sparse networks that are still robust against failures of lines and/or generators.

4. EMC and power quality standards for 20-kHz power distribution

NASA Technical Reports Server (NTRS)

Hansen, Irving G.

1987-01-01

The Space Station Power Distribution System has been baselined as a sinusoidal single phase, 440 VRMS system. This system has certain unique characteristics directly affecting its application. In particular, existing systematic description and control documents were modified to reflect the high operating frequency. This paper will discuss amendments made on Mil STD 704 (Electrical Power Characteristics), and Mil STD 461-B (Electromagnetic Emission and Susceptibility Requirements for the Control of Electromagnetic Interference). In some cases these amendments reflect changes of several orders of magnitude. Implications and impacts of these changes are discussed.

5. Single-phase power distribution system power flow and fault analysis

NASA Technical Reports Server (NTRS)

Halpin, S. M.; Grigsby, L. L.

1992-01-01

Alternative methods for power flow and fault analysis of single-phase distribution systems are presented. The algorithms for both power flow and fault analysis utilize a generalized approach to network modeling. The generalized admittance matrix, formed using elements of linear graph theory, is an accurate network model for all possible single-phase network configurations. Unlike the standard nodal admittance matrix formulation algorithms, the generalized approach uses generalized component models for the transmission line and transformer. The standard assumption of a common node voltage reference point is not required to construct the generalized admittance matrix. Therefore, truly accurate simulation results can be obtained for networks that cannot be modeled using traditional techniques.

6. Automated fault location and diagnosis on electric power distribution feeders

SciTech Connect

Zhu, J.; Lubkeman, D.L.; Girgis, A.A.

1997-04-01

This paper presents new techniques for locating and diagnosing faults on electric power distribution feeders. The proposed fault location and diagnosis scheme is capable of accurately identifying the location of a fault upon its occurrence, based on the integration of information available from disturbance recording devices with knowledge contained in a distribution feeder database. The developed fault location and diagnosis system can also be applied to the investigation of temporary faults that may not result in a blown fuse. The proposed fault location algorithm is based on the steady-state analysis of the faulted distribution network. To deal with the uncertainties inherent in the system modeling and the phasor estimation, the fault location algorithm has been adapted to estimate fault regions based on probabilistic modeling and analysis. Since the distribution feeder is a radial network, multiple possibilities of fault locations could be computed with measurements available only at the substation. To identify the actual fault location, a fault diagnosis algorithm has been developed to prune down and rank the possible fault locations by integrating the available pieces of evidence. Testing of the developed fault location and diagnosis system using field data has demonstrated its potential for practical use.

7. Measurement of the temperature distribution inside the power cable using distributed temperature system

Jaros, Jakub; Liner, Andrej; Papes, Martin; Vasinek, Vladimir; Mach, Veleslav; Hruby, David; Kajnar, Tomas; Perecar, Frantisek

2015-01-01

Nowadays, the power cables are manufactured to fulfill the following condition - the highest allowable temperature of the cable during normal operation and the maximum allowable temperature at short circuit conditions cannot exceed the condition of the maximum allowable internal temperature. The distribution of the electric current through the conductor leads to the increase of the amplitude of electrons in the crystal lattice of the cables material. The consequence of this phenomenon is the increase of friction and the increase of collisions between particles inside the material, which causes the temperature increase of the carrying elements. The temperature increase is unwanted phenomena, because it is causing losses. In extreme cases, the long-term overload leads to the cable damaging or fire. This paper deals with the temperature distribution measurement inside the power cables using distributed temperature system. With cooperation with Kabex company, the tube containing optical fibers was installed into the center of power cables. These fibers, except telecommunications purposes, can be also used as sensors in measurements carrying out with distributed temperature system. These systems use the optical fiber as a sensor and allow the continual measurement of the temperature along the whole cable in real time with spatial resolution 1 m. DTS systems are successfully deployed in temperature measurement applications in industry areas yet. These areas include construction, drainage, hot water etc. Their advantages are low cost, resistance to electromagnetic radiation and the possibility of real time monitoring at the distance of 8 km. The location of the optical fiber in the center of the power cable allows the measurement of internal distribution of the temperature during overloading the cable. This measurement method can be also used for prediction of short-circuit and its exact location.

8. Distributed optimal power and rate control in wireless sensor networks.

PubMed

Tang, Meiqin; Bai, Jianyong; Li, Jing; Xin, Yalin

2014-01-01

With the rapid development of wireless sensor networks, reducing energy consumption is becoming one of the important factors to extend node lifetime, and it is necessary to adjust the launching power of each node because of the limited energy available to the sensor nodes in the networks. This paper proposes a power and rate control model based on the network utility maximization (NUM) framework, where a weighting factor is used to reflect the influence degree of the sending power and transmission rate to the utility function. In real networks, nodes interfere with each other in the procedure of transmitting signal, which may lead to signal transmission failure and may negatively have impacts on networks throughput. Using dual decomposition techniques, the NUM problem is decomposed into two distributed subproblems, and then the conjugate gradient method is applied to solve the optimization problem with the calculation of the Hessian matrix and its inverse in order to guarantee fast convergence of the algorithm. The convergence proof is also provided in this paper. Numerical examples show that the proposed solution achieves significant throughput compared with exiting approaches.

9. Distributed Optimal Power and Rate Control in Wireless Sensor Networks

PubMed Central

Tang, Meiqin; Bai, Jianyong; Li, Jing; Xin, Yalin

2014-01-01

With the rapid development of wireless sensor networks, reducing energy consumption is becoming one of the important factors to extend node lifetime, and it is necessary to adjust the launching power of each node because of the limited energy available to the sensor nodes in the networks. This paper proposes a power and rate control model based on the network utility maximization (NUM) framework, where a weighting factor is used to reflect the influence degree of the sending power and transmission rate to the utility function. In real networks, nodes interfere with each other in the procedure of transmitting signal, which may lead to signal transmission failure and may negatively have impacts on networks throughput. Using dual decomposition techniques, the NUM problem is decomposed into two distributed subproblems, and then the conjugate gradient method is applied to solve the optimization problem with the calculation of the Hessian matrix and its inverse in order to guarantee fast convergence of the algorithm. The convergence proof is also provided in this paper. Numerical examples show that the proposed solution achieves significant throughput compared with exiting approaches. PMID:24895654

10. Fuel cycle comparison of distributed power generation technologies.

SciTech Connect

Elgowainy, A.; Wang, M. Q.; Energy Systems

2008-12-08

The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

11. ac conduction in disordered solids: Comparison of effective-medium and distributed-transition-rate-response models

MacDonald, J. Ross

1994-04-01

Dyre has proposed that in the low-temperature limit an effective medium approximation, termed the Bryksin equation here (the BEM), predicts a universal frequency dependence for the normalized small-signal ac frequency relaxation response of nonmetallic disordered solids. This response has been claimed to be practically identical to that found for an exponential distribution of transition rates (EDTR) in the particular limiting uniform-energy-barrier-distribution case, but comparison of the two responses has been inadequate so far. Although it is shown here that they can be well differentiated, the question of which or either is universal still requires further comparisons with experiment for its answer. A generalization of the limiting low-temperature BEM equation applicable for nonzero temperatures, the GBEM, is developed and used to evaluate the temperature and frequency ranges for which the BEM is still adequate. It is found that GBEM response can be well approximated by the important EDTR solution and leads to a frequency exponent with the same temperature dependence as the latter. An expression derived herein for the dc conductivity predicted by the GBEM involves 1/3 of the maximum thermal activation energy (i.e., the effective percolation energy), however, rather than the energy itself. Further, unlike the BEM, the GBEM predicts the presence of an intrinsic temperature-independent high-frequency-limiting conductivity whose magnitude is evaluated. The combination of conductive- and dielectric-system response, always experimentally present for a conductive system, is evaluated for the GBEM, and in the frequency range where the GBEM and BEM are indistinguishable it leads to frequency and temperature response remarkably similar to that observed for most disordered materials. Finally, it is suggested that Dyre's macroscopic simulations of the relaxation problem do not seem fully relevant to physical situations of interest and thus should not be taken to confirm

12. Prediction of reserves using multivariate power-normal mixture distribution

Ling, Ang Siew; Hin, Pooi Ah

2016-10-01

Recently, in the area on stochastic loss reserving, there are a number of papers which analyze the individual claims data using the Position Dependent Marked Poisson Process. The present paper instead uses a different type of individual data. For the i-th (1≤i≤n) customer, these individual data include the sum insured si together with the amount paid yi j and the amount ai j reported but not yet paid in the j-th (1 ≤ j ≤ 6) development year. A technique based on multivariate power-normal mixture distribution is already available for predicting the future value (yi j + 1, ai j + 1) using the present year value (yi j, ai j) and the sum insured si. Presently the above technique is improved by the transformation of distribution which is defined on the whole real line to one which is non-negative and having approximately the same first four moments as the original distribution. It is found that, for the dataset considered in this paper, the improved method gives a better estimate for the reserve when compared with the chain ladder reserve estimate. Furthermore, the method is expected to provide a fairly reliable value for the Provision of Risk Margin for Adverse Deviation (PRAD).

13. Power law distributions and dynamic behaviour of stock markets

Richmond, P.

2001-04-01

A simple agent model is introduced by analogy with the mean field approach to the Ising model for a magnetic system. Our model is characterised by a generalised Langevin equation = F ϕ + G ϕ t where t is the usual Gaussian white noise, i.e.: t t' = 2Dδ t-t' and t = 0. Both the associated Fokker Planck equation and the long time probability distribution function can be obtained analytically. A steady state solution may be expressed as P ϕ = exp{ - Ψ ϕ - ln G(ϕ)} where Ψ ϕ = - F/ G dϕ and Z is a normalization factor. This is explored for the simple case where F ϕ = Jϕ + bϕ2 - cϕ3 and fluctuations characterised by the amplitude G ϕ = ϕ + ɛ when it readily yields for ϕ>>ɛ, a distribution function with power law tails, viz: P ϕ = exp{ 2bϕ-cϕ2 /D}. The parameter c ensures convergence of the distribution function for large values of ϕ. It might be loosely associated with the activity of so-called value traders. The parameter J may be associated with the activity of noise traders. Output for the associated time series show all the characteristics of familiar financial time series providing J < 0 and D | J|.

14. Power superconducting power transmission cable

DOEpatents

Ashworth, Stephen P.

2003-06-10

The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

15. Power superconducting power transmission cable

DOEpatents

Ashworth, Stephen P.

2003-01-01

The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

16. Study of the longitudinal distribution of power generated in a random distributed feedback Raman fibre laser with unidirectional pumping

SciTech Connect

Churkin, D V; El-Taher, A E; Vatnik, I D; Babin, Sergei A

2012-09-30

The longitudinal distribution of the Stokes-component power in a Raman fibre laser with a random distributed feedback and unidirectional pumping is measured. The fibre parameters (linear loss and Rayleigh backscattering coefficient) are calculated based on the distributions obtained. A numerical model is developed to describe the lasing power distribution. The simulation results are in good agreement with the experimental data. (optical fibres, lasers and amplifiers. properties and applications)

17. Design of a power management and distribution system for a thermionic-diode powered spacecraft

NASA Technical Reports Server (NTRS)

Kimnach, Greg L.

1996-01-01

The Electrical Systems Development Branch of the Power Technology Division at the NASA Lewis Research Center in Cleveland, Ohio is designing a Power Management and Distribution (PMAD) System for the Air Force's Integrated Solar Upper Stage (ISUS) Engine Ground Test Demonstration (EGD). The ISUS program uses solar-thermal propulsion to perform orbit transfers from Low Earth Orbit (LEO) to Geosynchronous Orbit (GEO) and from LEO to Molnya. The ISUS uses the same energy conversion receiver to perform the LEO to High Earth Orbit (HEO) transfer and to generate on-orbit electric power for the payloads. On-orbit power generation is accomplished via two solar concentrators heating a dual-cavity graphite-core which has Thermionic Diodes (TMD's) encircling each cavity. The graphite core and concentrators together are called the Receiver and Concentrator (RAC). The TDM-emitters reach peak temperatures of approximately 2200K, and the TID-collectors are run at approximately 1000K. Because of the high Specific Impulse (I(sup sp)) of solar thermal propulsion relative to chemical propulsion, and because a common bus is used for communications, GN&C, power, etc., a substantial increase in payload weight is possible. This potentially allows for a stepdown in the required launch vehicle size or class for similar payload weight using conventional chemical propulsion and a separate spacecraft bus. The ISUS power system is to provide 1000W(sub e) at 28+/-6V(sub dc) to the payload/spacecraft from a maximum TID generation capability of 1070W(sub e) at 2200K. Producing power with this quality, protecting the spacecraft from electrical faults and accommodating operational constraints of the TID's are the responsibilities of the PMAD system. The design strategy and system options examined along with the proposed designs for the Flight and EGD configurations are discussed herein.

18. Impact of Increasing Distributed Wind Power and Wind Turbine Siting on Rural Distribution Feeder Voltage Profiles: Preprint

SciTech Connect

Allen, A.; Zhang, Y. C.; Hodge, B. M.

2013-09-01

Many favorable wind energy resources in North America are located in remote locations without direct access to the transmission grid. Building transmission lines to connect remotely-located wind power plants to large load centers has become a barrier to increasing wind power penetration in North America. By connecting utility-sized megawatt-scale wind turbines to the distribution system, wind power supplied to consumers could be increased greatly. However, the impact of including megawatt-scale wind turbines on distribution feeders needs to be studied. The work presented here examined the impact that siting and power output of megawatt-scale wind turbines have on distribution feeder voltage. This is the start of work to present a general guide to megawatt-scale wind turbine impact on the distribution feeder and finding the amount of wind power that can be added without adversely impacting the distribution feeder operation, reliability, and power quality.

19. Leadership in Mammalian Societies: Emergence, Distribution, Power, and Payoff.

PubMed

Smith, Jennifer E; Gavrilets, Sergey; Mulder, Monique Borgerhoff; Hooper, Paul L; El Mouden, Claire; Nettle, Daniel; Hauert, Christoph; Hill, Kim; Perry, Susan; Pusey, Anne E; van Vugt, Mark; Smith, Eric Alden

2016-01-01

Leadership is an active area of research in both the biological and social sciences. This review provides a transdisciplinary synthesis of biological and social-science views of leadership from an evolutionary perspective, and examines patterns of leadership in a set of small-scale human and non-human mammalian societies. We review empirical and theoretical work on leadership in four domains: movement, food acquisition, within-group conflict mediation, and between-group interactions. We categorize patterns of variation in leadership in five dimensions: distribution (across individuals), emergence (achieved versus inherited), power, relative payoff to leadership, and generality (across domains). We find that human leadership exhibits commonalities with and differences from the broader mammalian pattern, raising interesting theoretical and empirical issues.

20. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

SciTech Connect

Kurt Montgomery; Nguyen Minh

2003-08-01

This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

1. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

SciTech Connect

Nguyen Minh

2002-03-31

This report summarizes the work performed by Honeywell during the January 2002 to March 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. For this reporting period the following activities have been carried out: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} System-level performance model was created {lg_bullet} Dynamic control models are being developed {lg_bullet} Mechanical properties of candidate heat exchanger materials were investigated {lg_bullet} SOFC performance mapping as a function of flow rate and pressure was completed

2. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

SciTech Connect

Unknown

2002-03-01

This report summarizes the work performed by Honeywell during the July 2001 to September 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. An internal program kickoff was held at Honeywell in Torrance, CA. The program structure was outlined and the overall technical approach for the program was presented to the team members. Detail program schedules were developed and detailed objectives were defined. Initial work has begun on the system design and pressurized SOFC operation.

3. C -parameter distribution at N3LL' including power corrections

Hoang, André H.; Kolodrubetz, Daniel W.; Mateu, Vicent; Stewart, Iain W.

2015-05-01

We compute the e+e- C -parameter distribution using the soft-collinear effective theory with a resummation to next-to-next-to-next-to-leading-log prime accuracy of the most singular partonic terms. This includes the known fixed-order QCD results up to O (αs3), a numerical determination of the two-loop nonlogarithmic term of the soft function, and all logarithmic terms in the jet and soft functions up to three loops. Our result holds for C in the peak, tail, and far tail regions. Additionally, we treat hadronization effects using a field theoretic nonperturbative soft function, with moments Ωn. To eliminate an O (ΛQCD) renormalon ambiguity in the soft function, we switch from the MS ¯ to a short distance "Rgap" scheme to define the leading power correction parameter Ω1. We show how to simultaneously account for running effects in Ω1 due to renormalon subtractions and hadron-mass effects, enabling power correction universality between C -parameter and thrust to be tested in our setup. We discuss in detail the impact of resummation and renormalon subtractions on the convergence. In the relevant fit region for αs(mZ) and Ω1, the perturbative uncertainty in our cross section is ≃ 2.5 % at Q =mZ.

4. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

SciTech Connect

Faress Rahman; Nguyen Minh

2003-07-01

This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the January 2003 to June 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. This report summarizes the results obtained to date on: System performance analysis and model optimization; Reliability and cost model development; System control including dynamic model development; Heat exchanger material tests and life analysis; Pressurized SOFC evaluation; and Pre-baseline system definition for coal gasification fuel cell system concept.

5. C -parameter distribution at N 3 LL ' including power corrections

DOE PAGES

Hoang, André H.; Kolodrubetz, Daniel W.; Mateu, Vicent; ...

2015-05-15

We compute the e⁺e⁻ C-parameter distribution using the soft-collinear effective theory with a resummation to next-to-next-to-next-to-leading-log prime accuracy of the most singular partonic terms. This includes the known fixed-order QCD results up to O(α3s), a numerical determination of the two-loop nonlogarithmic term of the soft function, and all logarithmic terms in the jet and soft functions up to three loops. Our result holds for C in the peak, tail, and far tail regions. Additionally, we treat hadronization effects using a field theoretic nonperturbative soft function, with moments Ωn. To eliminate an O(ΛQCD) renormalon ambiguity in the soft function, we switchmore » from the MS¯ to a short distance “Rgap” scheme to define the leading power correction parameter Ω1. We show how to simultaneously account for running effects in Ω1 due to renormalon subtractions and hadron-mass effects, enabling power correction universality between C-parameter and thrust to be tested in our setup. We discuss in detail the impact of resummation and renormalon subtractions on the convergence. In the relevant fit region for αs(mZ) and Ω1, the perturbative uncertainty in our cross section is ≅ 2.5% at Q=mZ.« less

6. A new numerical approach to find current distribution and AC losses in coaxial assembly of twisted HTS tapes in single layer arrangement

Siahrang, Majid; Sirois, Frédéric; Grilli, Francesco; Babic, Slobodan; Brault, Simon

2010-06-01

This paper presents a novel technique for evaluating AC losses and current distribution in single layer assemblies of coaxially wound thin conductors, such as YBCO coated conductors. The proposed approach takes into account the twisted geometry of the individual superconducting tapes by considering the integral relation between the magnetic vector potential and the current density in the tapes (Biot-Savart formula). The integrals are solved numerically and semi-analytically, and the results are used to generate a discretized system of equations based on the magnetic flux diffusion equation (eddy current problem). The latter is solved using an efficient time transient solver (DASPK). It is assumed that, due to the helical symmetry of the problem, it is sufficient to solve for the current distribution in half of a single tape cross-section, even if many tapes are present, which allows a drastic reduction of the 3-D problem to a simple 1-D domain. The method was used to evaluate the AC losses of a HTS cable made of coated conductors, and it was observed that for a given radius of the former and number of tapes, twisted tapes with smaller pitch have lower AC losses.

7. A reformer to generate hydrogen for distributed power applications

SciTech Connect

Cole, J.A.; Kumar, R.V.; West, J.; Lyon, R.K.

1998-07-01

The generation of power using fuel cells is a promising technology for distributed electric power generation applications. Steam reforming of fossil fuels remains the most thermodynamically efficient means for production of hydrogen. Unfortunately, current steam reforming technology achieves high efficiencies only at very large scales, and remains impractical at the small production rates needed for small- to medium-size distributed power applications. A novel reformer process, called unmixed reforming, or UMR, has been developed for the conversion of hydrocarbon fuels (natural gas, diesel, gasoline) to hydrogen. The reformer promises high thermodynamic efficiency as heat is generated right on the catalytic bed unlike conventional reforming. The controlled combustion on the reforming catalyst using a patented technology called unmixed combustion provides the heat for the endothermic reforming reaction. The reformer generates a high-purity hydrogen product stream, which can then be used by fuel cells with minimal processing. The unmixed reformer is a packed-bed consisting of finely divided nickel supported on a ceramic matrix mixed with a calcium oxide bearing matrix such as dolomite. UMR consists of three process steps. During the first step air is passed over the packed-bed reactor to oxidize the nickel. The heat released during the oxidation reaction raises the temperature of the bed and decomposes the dolomite releasing carbon dioxide into a vent gas stream. In the subsequent step fuel passed over the packed-bed reduces the NiO back to Ni and further increases the temperature. In the final step, fuel and steam react to produce hydrogen through conventional steam reforming chemistry. The calcium oxide captures some of the carbon dioxide formed during the reforming reaction and thus shifts the reforming reactions to higher conversions, hence improving the purity of the hydrogen product stream. Although product hydrogen concentrations may be 75--85%, the CO content

8. Power law olivine crystal size distributions in lithospheric mantle xenoliths

Armienti, P.; Tarquini, S.

2002-12-01

Olivine crystal size distributions (CSDs) have been measured in three suites of spinel- and garnet-bearing harzburgites and lherzolites found as xenoliths in alkaline basalts from Canary Islands, Africa; Victoria Land, Antarctica; and Pali Aike, South America. The xenoliths derive from lithospheric mantle, from depths ranging from 80 to 20 km. Their textures vary from coarse to porphyroclastic and mosaic-porphyroclastic up to cataclastic. Data have been collected by processing digital images acquired optically from standard petrographic thin sections. The acquisition method is based on a high-resolution colour scanner that allows image capturing of a whole thin section. Image processing was performed using the VISILOG 5.2 package, resolving crystals larger than about 150 μm and applying stereological corrections based on the Schwartz-Saltykov algorithm. Taking account of truncation effects due to resolution limits and thin section size, all samples show scale invariance of crystal size distributions over almost three orders of magnitude (0.2-25 mm). Power law relations show fractal dimensions varying between 2.4 and 3.8, a range of values observed for distributions of fragment sizes in a variety of other geological contexts. A fragmentation model can reproduce the fractal dimensions around 2.6, which correspond to well-equilibrated granoblastic textures. Fractal dimensions >3 are typical of porphyroclastic and cataclastic samples. Slight bends in some linear arrays suggest selective tectonic crushing of crystals with size larger than 1 mm. The scale invariance shown by lithospheric mantle xenoliths in a variety of tectonic settings forms distant geographic regions, which indicate that this is a common characteristic of the upper mantle and should be taken into account in rheological models and evaluation of metasomatic models.

9. Exponential and power-law mass distributions in brittle fragmentation

Åström, J. A.; Linna, R. P.; Timonen, J.; Møller, Peder Friis; Oddershede, Lene

2004-08-01

Generic arguments, a minimal numerical model, and fragmentation experiments with gypsum disk are used to investigate the fragment-size distribution that results from dynamic brittle fragmentation. Fragmentation is initiated by random nucleation of cracks due to material inhomogeneities, and its dynamics are pictured as a process of propagating cracks that are unstable against side-branch formation. The initial cracks and side branches both merge mutually to form fragments. The side branches have a finite penetration depth as a result of inherent damping. Generic arguments imply that close to the minimum strain (or impact energy) required for fragmentation, the number of fragments of size s scales as s-(2D-1)/Df1(-(2/λ)Ds)+f2(-s0-1(λ+s1/D)D) , where D is the Euclidean dimension of the space, λ is the penetration depth, and f1 and f2 can be approximated by exponential functions. Simulation results and experiments can both be described by this theoretical fragment-size distribution. The typical largest fragment size s0 was found to diverge at the minimum strain required for fragmentation as it is inversely related to the density of initially formed cracks. Our results also indicate that scaling of s0 close to this divergence depends on, e.g., loading conditions, and thus is not universal. At the same time, the density of fragment surface vanishes as L-1 , L being the linear dimension of the brittle solid. The results obtained provide an explanation as to why the fragment-size distributions found in nature can have two components, an exponential as well as a power-law component, with varying relative weights.

10. Aging Management Guideline for commercial nuclear power plants: Power and distribution transformers

SciTech Connect

Toman, G.; Gazdzinski, R.

1994-05-01

This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in power and distribution transformers important to license renewal in commercial nuclear power plants. The intent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

11. Validating MCNP for LEU Fuel Design via Power Distribution Comparisons

SciTech Connect

Primm, Trent; Maldonado, G Ivan; Chandler, David

2008-11-01

The mission of the Reduced Enrichment for Research and Test Reactors (RERTR) Program is to minimize and, to the extent possible, eliminate the use of highly enriched uranium (HEU) in civilian nuclear applications by working to convert research and test reactors, as well as radioisotope production processes, to low enriched uranium (LEU) fuel and targets. Oak Ridge National Lab (ORNL) is reviewing the design bases and key operating criteria including fuel operating parameters, enrichment-related safety analyses, fuel performance, and fuel fabrication in regard to converting the fuel of the High Flux Isotope Reactor (HFIR) from HEU to LEU. The purpose of this study is to validate Monte Carlo methods currently in use for conversion analyses. The methods have been validated for the prediction of flux values in the reactor target, reflector, and beam tubes, but this study focuses on the prediction of the power density profile in the core. A current 3-D Monte Carlo N-Particle (MCNP) model was modified to replicate the HFIR Critical Experiment 3 (HFIRCE-3) core of 1965. In this experiment, the power profile was determined by counting the gamma activity at selected locations in the core. Foils (chunks of fuel meat and clad) were punched out of the fuel elements in HFIRCE-3 following irradiation and experimental relative power densities were obtained by measuring the activity of these foils and comparing each foil s activity to the activity of a normalizing foil. The current work consisted of calculating corresponding activities by inserting volume tallies into the modified MCNP model to represent the punchings. The average fission density was calculated for each foil location and then normalized to the normalizing foil. Power distributions were obtained for the clean core (no poison in moderator and symmetrical rod position at 17.5 inches) and fully poisoned-moderator (1.35 g B/liter in moderator and rods fully withdrawn) conditions. The observed deviations between the

12. Observer-based higher order sliding mode control of power factor in three-phase AC/DC converter for hybrid electric vehicle applications

Liu, Jianxing; Laghrouche, Salah; Wack, Maxime

2014-06-01

In this paper, a full-bridge boost power converter topology is studied for power factor control, using output higher order sliding mode control. The AC/DC converters are used for charging the battery and super-capacitor in hybrid electric vehicles from the utility. The proposed control forces the input currents to track the desired values, which can control the output voltage while keeping the power factor close to one. Super-twisting sliding mode observer is employed to estimate the input currents and load resistance only from the measurement of output voltage. Lyapunov analysis shows the asymptotic convergence of the closed-loop system to zero. Multi-rate simulation illustrates the effectiveness and robustness of the proposed controller in the presence of measurement noise.

13. Preparation of Power Distribution System for High Penetration of Renewable Energy Part I. Dynamic Voltage Restorer for Voltage Regulation Pat II. Distribution Circuit Modeling and Validation

Part I: Dynamic Voltage Restorer In the present power grids, voltage sags are recognized as a serious threat and a frequently occurring power-quality problem and have costly consequence such as sensitive loads tripping and production loss. Consequently, the demand for high power quality and voltage stability becomes a pressing issue. Dynamic voltage restorer (DVR), as a custom power device, is more effective and direct solutions for "restoring" the quality of voltage at its load-side terminals when the quality of voltage at its source-side terminals is disturbed. In the first part of this thesis, a DVR configuration with no need of bulky dc link capacitor or energy storage is proposed. This fact causes to reduce the size of the DVR and increase the reliability of the circuit. In addition, the proposed DVR topology is based on high-frequency isolation transformer resulting in the size reduction of transformer. The proposed DVR circuit, which is suitable for both low- and medium-voltage applications, is based on dc-ac converters connected in series to split the main dc link between the inputs of dc-ac converters. This feature makes it possible to use modular dc-ac converters and utilize low-voltage components in these converters whenever it is required to use DVR in medium-voltage application. The proposed configuration is tested under different conditions of load power factor and grid voltage harmonic. It has been shown that proposed DVR can compensate the voltage sag effectively and protect the sensitive loads. Following the proposition of the DVR topology, a fundamental voltage amplitude detection method which is applicable in both single/three-phase systems for DVR applications is proposed. The advantages of proposed method include application in distorted power grid with no need of any low-pass filter, precise and reliable detection, simple computation and implementation without using a phased locked loop and lookup table. The proposed method has been verified

14. The place of solar power: an economic analysis of concentrated and distributed solar power

PubMed Central

2012-01-01

Background This paper examines the cost and benefits, both financial and environmental, of two leading forms of solar power generation, grid-tied photovoltaic cells and Dish Stirling Systems, using conventional carbon-based fuel as a benchmark. Methods First we define how these solar technologies will be implemented and why. Then we delineate a model city and its characteristics, which will be used to test the two methods of solar-powered electric distribution. Then we set the constraining assumptions for each technology, which serve as parameters for our calculations. Finally, we calculate the present value of the total cost of conventional energy needed to power our model city and use this as a benchmark when analyzing both solar models’ benefits and costs. Results The preeminent form of distributed electricity generation, grid-tied photovoltaic cells under net-metering, allow individual homeowners a degree of electric self-sufficiency while often turning a profit. However, substantial subsidies are required to make the investment sensible. Meanwhile, large dish Stirling engine installations have a significantly higher potential rate of return, but face a number of pragmatic limitations. Conclusions This paper concludes that both technologies are a sensible investment for consumers, but given that the dish Stirling consumer receives 6.37 dollars per watt while the home photovoltaic system consumer receives between 0.9 and 1.70 dollars per watt, the former appears to be a superior option. Despite the large investment, this paper deduces that it is far more feasible to get few strong investors to develop a solar farm of this magnitude, than to get 150,000 households to install photovoltaic arrays in their roofs. Potential implications of the solar farm construction include an environmental impact given the size of land require for this endeavour. However, the positive aspects, which include a large CO2 emission reduction aggregated over the lifespan of the farm

15. Space vehicle electrical power processing distribution and control study. Volume 1: Summary

NASA Technical Reports Server (NTRS)

Krausz, A.

1972-01-01

A concept for the processing, distribution, and control of electric power for manned space vehicles and future aircraft is presented. Emphasis is placed on the requirements of the space station and space shuttle configurations. The systems involved are referred to as the processing distribution and control system (PDCS), electrical power system (EPS), and electric power generation system (EPGS).

16. Wind Power Forecasting Error Distributions over Multiple Timescales: Preprint

SciTech Connect

Hodge, B. M.; Milligan, M.

2011-03-01

In this paper, we examine the shape of the persistence model error distribution for ten different wind plants in the ERCOT system over multiple timescales. Comparisons are made between the experimental distribution shape and that of the normal distribution.

17. Tevatron AC dipole system

SciTech Connect

Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

2007-06-01

The AC dipole is an oscillating dipole magnet which can induce large amplitude oscillations without the emittance growth and decoherence. These properties make it a good tool to measure optics of a hadron synchrotron. The vertical AC dipole for the Tevatron is powered by an inexpensive high power audio amplifier since its operating frequency is approximately 20 kHz. The magnet is incorporated into a parallel resonant system to maximize the current. The use of a vertical pinger magnet which has been installed in the Tevatron made the cost relatively inexpensive. Recently, the initial system was upgraded with a more powerful amplifier and oscillation amplitudes up to 2-3{sigma} were achieved with the 980 GeV proton beam. This paper discusses details of the Tevatron AC dipole system and also shows its test results.

18. The distribution of absorptive power dissipation in irradiated nanoparticulate system

Li, Jiayu; Yang, Jian; Gu, Xiaobing

2016-10-01

The knowledge of local radiant absorption is important to the nanostructure optimization, it is beneficial to the applications in energy harvesting, optical heating, photocatalysis, etc. In this paper, FDTD model is constructed for the distribution of absorptive power dissipation in irradiated nanoparticulate system. The theoretical model extended from Mie theory is used to examine the FDTD model, the parameters and conditions set for FDTD simulation are confirmed based on the comparison. Then, the influence of Ag nanoparticle on the absorptive properties of nearby TiO2 nanoparticle is investigated by FDTD simulation at the wavelength of 0.25 μm. It is indicated that suitable distance between TiO2 and Ag particles is beneficial to the spectral radiant absorption of TiO2 particle. Considering the agglomeration of nanoparticles and the oxidation at the TiO2-Ag interface, the Ag core coated with Al2O3 shell is suggested, and the simulated results indicated that the shell thickness and the Ag core size need to be optimized for enhancing the radiant absorption of TiO2 particle.

19. Distributed solid state programmable thermostat/power controller

NASA Technical Reports Server (NTRS)

Alexander, Jane C. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

2008-01-01

A self-contained power controller having a power driver switch, programmable controller, communication port, and environmental parameter measuring device coupled to a controllable device. The self-contained power controller needs only a single voltage source to power discrete devices, analog devices, and the controlled device. The programmable controller has a run mode which, when selected, upon the occurrence of a trigger event changes the state of a power driver switch and wherein the power driver switch is maintained by the programmable controller at the same state until the occurrence of a second event.

20. Current distribution mapping in insulated (Gd,Y)BCO based stabilizer-free coated conductor after AC over-current test for R-SFCL application

Kar, Soumen; Li, Xiao-Fen; Selvamanickam, Venkat; Rao, V. V.

2017-02-01

Uniformity of critical current (Ic ) over long lengths of (GdY)-Ba-Cu-O ((Gd,Y)BCO)-based high temperature superconducting (HTS) tapes after long periods of AC current excitation is an important criterion in their selection for resistive type superconducting fault current limiter (R-SFCL). The present work describes such critical current (Ic ) uniformity measurements performed over 1m long, stabilizer-free (SF), 12 mm wide, 2nd generation (2G) (Gd,Y)BCO based HTS tape. A non-destructive method using a static hall probe (Tapestar®) with moving HTS tape configuration was employed for estimation of Ic uniformity. Scanning Hall probe microscopy (SHPM) was then used to examine the weak superconducting regions (i.e. less Ic ) with a static HTS tape. Remanent field distribution on the HTS tape was measured to yield the critical current density distribution. Except for small degradation of Ic at some locations, these studies confirmed near-uniform critical current distribution over meter-long (Gd,Y)BCO tapes, both in virgin state and after exposure to AC over current.

1. Distribution of acI-Actinorhodopsin genes in Baltic Sea salinity gradients indicates adaptation of facultative freshwater photoheterotrophs to brackish waters.

PubMed

Salka, Ivette; Wurzbacher, Christian; Garcia, Sarahi L; Labrenz, Matthias; Jürgens, Klaus; Grossart, Hans-Peter

2014-02-01

Knowledge on Actinobacteria rhodopsin gene (actR) diversity and spatial distribution is scarce. The Baltic Sea is characterized by strong salinity gradients leading to the coexistence of marine and freshwater bacteria and hence is an ideal study area to elucidate the dispersion and phylogenetic affiliation of actR in dependence on salinity. ActR DGGE fingerprints in summer 2008 revealed between 3 and 19 distinct bands within a salinity range of 2.4-27 PSU. Environmental actR clone sequences were obtained from stations distributed along the whole salinity gradient. Overall, 20 different actR sequence groups (operational taxonomic units) were found, with up to 11 different ones per station. Phylogenetically, the actR sequences were predominantly (80%) affiliated with freshwater acI-Actinobacteria whose 16S rRNA gene accounted for 2-33% of total 16S rRNA genes in both the Bothnian Sea and central Baltic Sea. However, at salinities above 14 PSU, acI-16S rRNA gene accounted for less than 1%. In contrast, the diversity of actR remained high. Changes in actR gene diversity were significantly correlated with salinity, oxygen, silica or abundance of Synechococcus sp. Our results demonstrate a wide distribution of freshwater actR along the Baltic Sea salinity gradient indicating that some freshwater Actinobacteria might have adapted to higher salinities.

2. Experimental study of loss mechanisms of AgAu/PbBi-2223 tapes with twisted filaments under perpendicular AC magnetic fields at power frequencies

Martínez, E.; Yang, Y.; Beduz, C.; Huang, Y. B.

2000-05-01

AC losses under perpendicular AC fields have been measured at 77 K and power frequencies for multifilamentary AgAu (10 wt.%)/Bi-2223 tapes with filaments twisted at different pitches. Using simultaneous measurements of the first and higher harmonics of the voltage induced in the pick-up coil, the main loss contributions (superconductor and coupling current losses) have been obtained separately. At power frequencies, twisting produces the desired uncoupling of the filaments at fields lower than the coupling field, which has also been determined experimentally. In the uncoupled-filament regime, the superconductor losses are reduced strongly with respect to the untwisted tapes. The reduction of the total loss with twisting is also observed. However, due to the important contribution of the coupling current losses for this field orientation, a very small pitch (<5 mm) is necessary for a considerably lower loss than that of untwisted tapes. The dependence of the coupling field and coupling current losses on the twist pitch has been analysed and compared with the theoretical predictions.

3. The Role of Distributed Generation and Combined Heat and Power (CHP) Systems in Data Centers

EPA Pesticide Factsheets

This report reviews how distributed generation (DG) resources such as fuel cells, reciprocating engines, and gas turbines can offer powerful energy efficiency savings in data centers, particularly when configured in combined heat and power (CHP) mode.

4. Power distribution in complex environmental negotiations: Does balance matter?

USGS Publications Warehouse

Burkardt, N.; Lamb, B.L.; Taylor, J.G.

1997-01-01

We studied six interagency negotiations covering Federal Energy Regulatory Commission (FERC) hydroelectric power licenses. Negotiations occurred between state and federal resource agencies and developers over project operations and natural resource mitigation. We postulated that a balance of power among parties was necessary for successful negotiations. We found a complex relationship between balanced power and success and conclude that a balance of power was associated with success in these negotiations. Power played a dynamic role in the bargaining and illuminates important considerations for regulatory design.

5. Status of 20 kHz space station power distribution technology

NASA Technical Reports Server (NTRS)

Hansen, Irving G.

1988-01-01

Power Distribution on the NASA Space Station will be accomplished by a 20 kHz sinusoidal, 440 VRMS, single phase system. In order to minimize both system complexity and the total power coversion steps required, high frequency power will be distributed end-to-end in the system. To support the final design of flight power system hardware, advanced development and demonstrations have been made on key system technologies and components. The current status of this program is discussed.

6. Advanced Power Electronics Interfaces for Distributed Energy Workshop Summary: August 24, 2006, Sacramento, California

SciTech Connect

Treanton, B.; Palomo, J.; Kroposki, B.; Thomas, H.

2006-10-01

The Advanced Power Electronics Interfaces for Distributed Energy Workshop, sponsored by the California Energy Commission Public Interest Energy Research program and organized by the National Renewable Energy Laboratory, was held Aug. 24, 2006, in Sacramento, Calif. The workshop provided a forum for industry stakeholders to share their knowledge and experience about technologies, manufacturing approaches, markets, and issues in power electronics for a range of distributed energy resources. It focused on the development of advanced power electronic interfaces for distributed energy applications and included discussions of modular power electronics, component manufacturing, and power electronic applications.

7. Proposal for Wireless Power Distribution System with Capacitive Coupling Using One-Pulse Switching Active Capacitor

Funato, Hirohito; Chiku, Yuki; Harakawa, Ken-Ichi

Wireless electric power distribution is an attractive means of supplying power to mobile equipment such as mobile phones and electric vehicles. Magnetic field coupling is the most popular method for wireless power distribution. However, this method has certain disadvantages such as power decrease in the case of inexact placement of couplings. Wireless power distribution with capacitive coupling has been proposed to overcome the disadvantages of wireless power distribution with magnetic field coupling. It is, however, difficult to transfer high power owing to the small capacitance of capacitive coupling. The authors propose a new power converter suitable for wireless power distribution with capacitive coupling using a novel one-pulse switching active capacitor (OPSAC) to enhance power transfer. The proposed system improves the power transfer efficiency without LC resonance and is hence robust to parameter change. In this paper, a wireless power distribution system with improved OPSAC (I-OPSAC) is proposed. In the I-OPSAC, the dc voltage source for the inverter is replaced by a capacitor because the OPSAC behaves like a reactive element. The I-OPSAC shows stable operation without any feedback loop including dc capacitor voltage control. In this paper, a control scheme and the detailed operational characteristics are reported, in addition to the simulations and experimental results.

8. Chromosomal distribution patterns of the (AC)10 microsatellite and other repetitive sequences, and their use in chromosome rearrangement analysis of species of the genus Avena.

PubMed

Fominaya, Araceli; Loarce, Yolanda; Montes, Alexander; Ferrer, Esther

2017-03-01

Fluorescence in situ hybridization (FISH) was used to determine the physical location of the (AC)10 microsatellite in metaphase chromosomes of six diploid species (AA or CC genomes), two tetraploid species (AACC genome), and five cultivars of two hexaploid species (AACCDD genome) of the genus Avena, a genus in which genomic relationships remain obscure. A preferential distribution of the (AC)10 microsatellite in the pericentromeric and interstitial regions was seen in both the A- and D-genome chromosomes, while in C-genome chromosomes the majority of signals were located in the pericentromeric heterochromatic regions. New large chromosome rearrangements were detected in two polyploid species: an intergenomic translocation involving chromosomes 17AL and 21DS in Avena sativa 'Araceli' and another involving chromosomes 4CL and 21DS in the analyzed cultivars of Avena byzantina. The latter 4CL-21DS intergenomic translocation differentiates clearly between A. sativa and A. byzantina. Searches for common hybridization patterns on the chromosomes of different species revealed chromosome 10A of Avena magna and 21D of hexaploid oats to be very similar in terms of the distribution of 45S and Am1 sequences. This suggests a common origin for these chromosomes and supports a CCDD rather than an AACC genomic designation for this species.

9. New approaches to provide ride-through for critical loads in electric power distribution systems

Montero-Hernandez, Oscar C.

2001-07-01

10. High voltage-high power components for large space power distribution systems

NASA Technical Reports Server (NTRS)

Renz, D. D.

1984-01-01

Space power components including a family of bipolar power switching transistors, fast switching power diodes, heat pipe cooled high frequency transformers and inductors, high frequency conduction cooled transformers, high power-high frequency capacitors, remote power controllers and rotary power transfer devices were developed. Many of these components such as the power switching transistors, power diodes and the high frequency capacitor are commercially available. All the other components were developed to the prototype level. The dc/dc series resonant converters were built to the 25 kW level.

11. Composite rod insulators for ac power lines; Electrical performance of various designs at a coastal testing station

SciTech Connect

Houlgate, R.G.; Swift, D.A. )

1990-10-01

The electrical performance of thirty-six composite insulators - of four commercial types for each AC system level of 34.5 kV, 230 kV and 500 kV - has been determined at the CEGB insulator testing station, Brighton, England. The weathershed materials were epoxy-resin, ethylene propylene rubber and silicone rubber; half of the 230 kV insulators had no stress rings. Surface leakage current was recorded for surge levels of 25 mA, 150 mA and 500 mA; a special technique was developed to obtain the flashover statistics of the 500 kV insulators, thereby enabling performance of the composite insulator to be quantified relative to that of a string of cap and pin porcelain insulators of anti-fog design, the deterioration of the insulators was observed by making regular visual inspections. The practical consequences of the findings and the causes of the degradation are discussed.

12. Power tails of index distributions in chinese stock market

Zhang, J. W.; Zhang, Y.; Kleinert, H.

2007-04-01

The power α of the Lévy tails of stock market fluctuations discovered in recent years are generally believed to be universal. We show that for the Chinese stock market this is not true, the powers depending strongly on anomalous daily index changes short before market closure, and weakly on the opening data.

13. Distributed Energy Resources, Power Quality and Reliability - Background

SciTech Connect

Schienbein, Lawrence A.; DeSteese, John G.

2002-01-31

Power quality [PQ] and power reliability [PR] gained importance in the industrialized world as the pace of installation of sensitive appliances and other electrical loads by utility customers accelerated, beginning in the mid 1980s. Utility-grid-connected customers rapidly discovered that this equipment was increasingly sensitive to various abnormalities in the electricity supply.

14. Improving Power Quality in Low-Voltage Networks Containing Distributed Energy Resources

Mazumder, Sumit; Ghosh, Arindam; Zare, Firuz

2013-05-01

Severe power quality problems can arise when a large number of single-phase distributed energy resources (DERs) are connected to a low-voltage power distribution system. Due to the random location and size of DERs, it may so happen that a particular phase generates excess power than its load demand. In such an event, the excess power will be fed back to the distribution substation and will eventually find its way to the transmission network, causing undesirable voltage-current unbalance. As a solution to this problem, the article proposes the use of a distribution static compensator (DSTATCOM), which regulates voltage at the point of common coupling (PCC), thereby ensuring balanced current flow from and to the distribution substation. Additionally, this device can also support the distribution network in the absence of the utility connection, making the distribution system work as a microgrid. The proposals are validated through extensive digital computer simulation studies using PSCADTM.

15. Systems analysis of the space shuttle. [communication systems, computer systems, and power distribution

NASA Technical Reports Server (NTRS)

Schilling, D. L.; Oh, S. J.; Thau, F.

1975-01-01

Developments in communications systems, computer systems, and power distribution systems for the space shuttle are described. The use of high speed delta modulation for bit rate compression in the transmission of television signals is discussed. Simultaneous Multiprocessor Organization, an approach to computer organization, is presented. Methods of computer simulation and automatic malfunction detection for the shuttle power distribution system are also described.

16. Low Insertion HVDC Circuit Breaker: Magnetically Pulsed Hybrid Breaker for HVDC Power Distribution Protection

SciTech Connect

2012-01-09

GENI Project: General Atomics is developing a direct current (DC) circuit breaker that could protect the grid from faults 100 times faster than its alternating current (AC) counterparts. Circuit breakers are critical elements in any electrical system. At the grid level, their main function is to isolate parts of the grid where a fault has occurred—such as a downed power line or a transformer explosion—from the rest of the system. DC circuit breakers must interrupt the system during a fault much faster than AC circuit breakers to prevent possible damage to cables, converters and other grid-level components. General Atomics’ high-voltage DC circuit breaker would react in less than 1/1,000th of a second to interrupt current during a fault, preventing potential hazards to people and equipment.

17. Development of An On-Line, Core Power Distribution Monitoring System

SciTech Connect

Tunc ALdemir; Don Miller; Peng Wang

2007-10-02

The objective of the proposed work was to develop a software package that can construct in three-dimensional core power distributions using the signals from constant temperature power sensors distributed in the reactor core. The software developed uses a mode-based state/parameter estmation technique that is particularly attractive when there are model uncertainties and/or large signal noise. The software yields the expected value of local power at the detector locations and points in between, as well as the probability distribution of the local power density

18. Advanced distribution, switching, and conversion technology for fluids/combustion facility electric power control

Poljak, Mark D.; Soltis, James V.; Fox, David A.

1997-01-01

The Electrical Power Control Unit (EPCU) under development for use in the Fluids/Combustion Facility (FCF) on International Space Station (ISS) is the precursor of modular power distribution and conversion concepts for future high power and small spacecraft applications. The EPCU is built from modular, current limiting Flexible Remote Power Controllers (FRPCs) and paralleled power converters packaged into a common orbital replacement unit. Multiple EPCUs are combined at the next higher level of integration to form the three-rack FCF Electrical Power System (EPS). This modular building block approach allows for the quick development of expandable power systems tailored to customer needs.

19. Self-Powered WSN for Distributed Data Center Monitoring.

PubMed

Brunelli, Davide; Passerone, Roberto; Rizzon, Luca; Rossi, Maurizio; Sartori, Davide

2016-01-02

Monitoring environmental parameters in data centers is gathering nowadays increasing attention from industry, due to the need of high energy efficiency of cloud services. We present the design and the characterization of an energy neutral embedded wireless system, prototyped to monitor perpetually environmental parameters in servers and racks. It is powered by an energy harvesting module based on Thermoelectric Generators, which converts the heat dissipation from the servers. Starting from the empirical characterization of the energy harvester, we present a power conditioning circuit optimized for the specific application. The whole system has been enhanced with several sensors. An ultra-low-power micro-controller stacked over the energy harvesting provides an efficient power management. Performance have been assessed and compared with the analytical model for validation.

20. Electric Power Generation, Transmission and Distribution (NAICS 2211)

EPA Pesticide Factsheets

Find EPA regulatory information for electrical utilities, including coal-fired power plants. Includes links to NESHAPs for RICE, stationary combustion engines, fossil fuel waste, cooling water, effluent guidelines. Find information on the MATS rule.

1. Space power distribution system technology. Volume 3: Test facility design

NASA Technical Reports Server (NTRS)

Decker, D. K.; Cannady, M. D.; Cassinelli, J. E.; Farber, B. F.; Lurie, C.; Fleck, G. W.; Lepisto, J. W.; Messner, A.; Ritterman, P. F.

1983-01-01

The AMPS test facility is a major tool in the attainment of more economical space power. The ultimate goals of the test facility, its primary functional requirements and conceptual design, and the major equipment it contains are discussed.

2. Self-Powered WSN for Distributed Data Center Monitoring

PubMed Central

Brunelli, Davide; Passerone, Roberto; Rizzon, Luca; Rossi, Maurizio; Sartori, Davide

2016-01-01

Monitoring environmental parameters in data centers is gathering nowadays increasing attention from industry, due to the need of high energy efficiency of cloud services. We present the design and the characterization of an energy neutral embedded wireless system, prototyped to monitor perpetually environmental parameters in servers and racks. It is powered by an energy harvesting module based on Thermoelectric Generators, which converts the heat dissipation from the servers. Starting from the empirical characterization of the energy harvester, we present a power conditioning circuit optimized for the specific application. The whole system has been enhanced with several sensors. An ultra-low-power micro-controller stacked over the energy harvesting provides an efficient power management. Performance have been assessed and compared with the analytical model for validation. PMID:26729135

3. A High Power Density DC-DC Converter for Distributed PV Architectures

SciTech Connect

Agamy, Mohammed S; Chi, Song; Elasser, Ahmed; Harfman-Todorovic, Maja; Jiang, Yan; Mueller, Frank; Tao, Fengfeng

2012-06-01

In order to maximize solar energy harvesting capabilities, power converters have to be designed for high efficiency and good MPPT and voltage/current performance. When many converters are used in distributed systems, power density also becomes an important factor as it allows for simpler system integration. In this paper a high power density string dc-dc converter suitable for distributed medium to large scale PV installation is presented. A simple partial power processing topology, implemented with all silicon carbide devices provides high efficiency as well as high power density. A 3.5kW, 100kHz converter is designed and tested to verify the proposed methods.

4. A MILP-Based Distribution Optimal Power Flow Model for Microgrid Operation

SciTech Connect

Liu, Guodong; Starke, Michael R; Zhang, Xiaohu; Tomsovic, Kevin

2016-01-01

This paper proposes a distribution optimal power flow (D-OPF) model for the operation of microgrids. The proposed model minimizes not only the operating cost, including fuel cost, purchasing cost and demand charge, but also several performance indices, including voltage deviation, network power loss and power factor. It co-optimizes the real and reactive power form distributed generators (DGs) and batteries considering their capacity and power factor limits. The D-OPF is formulated as a mixed-integer linear programming (MILP). Numerical simulation results show the effectiveness of the proposed model.

5. Objective assessment of the effect of pupil size upon the power distribution of multifocal contact lenses

PubMed Central

2017-01-01

AIM To analytically assess the effect of pupil size upon the refractive power distributions of different designs of multifocal contact lenses. METHODS Two multifocal contact lenses of center-near design and one multifocal contact lens of center-distance design were used in this study. Their power profiles were measured using the NIMO TR1504 device (LAMBDA-X, Belgium). Based on their power profiles, the power distribution was assessed as a function of pupil size. For the high addition lenses, the resulting refractive power as a function of viewing distance (far, intermediate, and near) and pupil size was also analyzed. RESULTS The power distribution of the lenses was affected by pupil size differently. One of the lenses showed a significant spread in refractive power distribution, from about −3 D to 0 D. Generally, the power distribution of the lenses expanded as the pupil diameter became greater. The surface of the lens dedicated for each distance varied substantially with the design of the lens. CONCLUSION In an experimental basis, our results show how the lenses power distribution is affected by the pupil size and underlined the necessity of careful evaluation of the patient's visual needs and the optical properties of a multifocal contact lens for achieving the optimal visual outcome. PMID:28149785

6. ac bidirectional motor controller

NASA Technical Reports Server (NTRS)

Schreiner, K.

1988-01-01

Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

7. Simulation of a Lunar Surface Base Power Distribution Network for the Constellation Lunar Surface Systems

NASA Technical Reports Server (NTRS)

Mintz, Toby; Maslowski, Edward A.; Colozza, Anthony; McFarland, Willard; Prokopius, Kevin P.; George, Patrick J.; Hussey, Sam W.

2010-01-01

The Lunar Surface Power Distribution Network Study team worked to define, breadboard, build and test an electrical power distribution system consistent with NASA's goal of providing electrical power to sustain life and power equipment used to explore the lunar surface. A testbed was set up to simulate the connection of different power sources and loads together to form a mini-grid and gain an understanding of how the power systems would interact. Within the power distribution scheme, each power source contributes to the grid in an independent manner without communication among the power sources and without a master-slave scenario. The grid consisted of four separate power sources and the accompanying power conditioning equipment. Overall system design and testing was performed. The tests were performed to observe the output and interaction of the different power sources as some sources are added and others are removed from the grid connection. The loads on the system were also varied from no load to maximum load to observe the power source interactions.

8. Comment on "probability distribution of power fluctuations in turbulence".

PubMed

2014-06-01

Bandi et al. [Phys. Rev. E 79, 016309 (2009)] reported a closed form expression for the probability density function of the product of two correlated normal random variables and proposed an approximation for the distribution of its mean. Here, we question the closed form expression and derive exact expressions for the distribution of the mean. The proposed approximation is shown to be poor.

9. A resettable in-line particle concentrator using AC electrokinetics for distributed monitoring of microalgae in source waters

DOE PAGES

Yuan, Quan; Purdue Univ., West Lafayette, IN; Wu, Jayne; ...

2016-12-29

Green algae have been studied as an important and effective biomarker to indicate water quality due to their sensitivity to toxic agents in freshwater sources. But, conventional methods to monitor algal physiology use a chlorophyll fluorometer whose use is hampered by high-cost, large footprint, and limited sensitivity for practical samples containing low algal concentration. In order to overcome these constraints, we developed a multi-level electrode platform for resettable trapping of algae via AC electro-osmosis (ACEO) and negative dielectrophoresis. Preliminary experiments were performed in freshwater with conductivity of 0.02 S/m. Algal trapping was demonstrated at a low voltage of 2 V.more » The concentration effect was experimentally verified by measuring the fluorescence intensity of algae and using hemocytometer counting chambers at the inlet and outlet of the multilevel microchannel lab-on-a-chip. An optimal frequency was found for trapping, which agrees with the frequency dependence of ACEO flow velocity. Through-flow rate and electrode dimensions were optimized as well. Trapping efficiencies within the range of 26% - 65% have been obtained. A maximum trapping rate of 182 cells/s was obtained with a flow rate of 20 l/min. Our lab-on-a-chip shows high potential for improving the limit of detection in algal monitoring and enabling the development of a portable, integrated and automated system for monitoring the quality of source drinking waters.« less

10. A resettable in-line particle concentrator using AC electrokinetics for distributed monitoring of microalgae in source waters

SciTech Connect

Yuan, Quan; Wu, Jayne; Greenbaum, Elias; Evans, Barbara R.

2016-12-29

Green algae have been studied as an important and effective biomarker to indicate water quality due to their sensitivity to toxic agents in freshwater sources. But, conventional methods to monitor algal physiology use a chlorophyll fluorometer whose use is hampered by high-cost, large footprint, and limited sensitivity for practical samples containing low algal concentration. In order to overcome these constraints, we developed a multi-level electrode platform for resettable trapping of algae via AC electro-osmosis (ACEO) and negative dielectrophoresis. Preliminary experiments were performed in freshwater with conductivity of 0.02 S/m. Algal trapping was demonstrated at a low voltage of 2 V. The concentration effect was experimentally verified by measuring the fluorescence intensity of algae and using hemocytometer counting chambers at the inlet and outlet of the multilevel microchannel lab-on-a-chip. An optimal frequency was found for trapping, which agrees with the frequency dependence of ACEO flow velocity. Through-flow rate and electrode dimensions were optimized as well. Trapping efficiencies within the range of 26% - 65% have been obtained. A maximum trapping rate of 182 cells/s was obtained with a flow rate of 20 l/min. Our lab-on-a-chip shows high potential for improving the limit of detection in algal monitoring and enabling the development of a portable, integrated and automated system for monitoring the quality of source drinking waters.

11. Dependence of Ozone Generation on Gas Temperature Distribution in AC Atmospheric Pressure Dielectric Barrier Discharge in Oxygen

Takahashi, Go; Akashi, Haruaki

AC atmospheric pressure multi-filament dielectric barrier discharge in oxygen has been simulated using two dimensional fluid model. In the discharge, three kinds of streamers have been obtained. They are primary streamers, small scale streamers and secondary streamers. The primary streamers are main streamers in the discharge and the small scale streamers are formed after the ceasing of the primary streamers. And the secondary streamers are formed on the trace of the primary streamers. In these streamers, the primary and the small scale streamers are very effective to generate O(3P) oxygen atoms which are precursor of ozone. And the ozone is generated mainly in the vicinity of the dielectrics. In high gas temperature region, ozone generation decreases in general. However, increase of the O(3P) oxygen atom density in high gas temperature region compensates decrease of ozone generation rate coefficient. As a result, amount of ozone generation has not changed. But if the effect of gas temperature was neglected, amount of ozone generation increases 10%.

12. Microgrids, virtual power plants and our distributed energy future

SciTech Connect

Asmus, Peter

2010-12-15

Opportunities for VPPs and microgrids will only increase dramatically with time, as the traditional system of building larger and larger centralized and polluting power plants by utilities charging a regulated rate of return fades. The key questions are: how soon will these new business models thrive - and who will be in the driver's seat? (author)

13. Prestorm estimation of hurricane damage to electric power distribution systems.

PubMed

Guikema, Seth D; Quiring, Steven M; Han, Seung-Ryong

2010-12-01

Hurricanes frequently cause damage to electric power systems in the United States, leading to widespread and prolonged loss of electric service. Restoring service quickly requires the use of repair crews and materials that must be requested, at considerable cost, prior to the storm. U.S. utilities have struggled to strike a good balance between over- and underpreparation largely because of a lack of methods for rigorously estimating the impacts of an approaching hurricane on their systems. Previous work developed methods for estimating the risk of power outages and customer loss of power, with an outage defined as nontransitory activation of a protective device. In this article, we move beyond these previous approaches to directly estimate damage to the electric power system. Our approach is based on damage data from past storms together with regression and data mining techniques to estimate the number of utility poles that will need to be replaced. Because restoration times and resource needs are more closely tied to the number of poles and transformers that need to be replaced than to the number of outages, this pole-based assessment provides a much stronger basis for prestorm planning by utilities. Our results show that damage to poles during hurricanes can be assessed accurately, provided that adequate past damage data are available. However, the availability of data can, and currently often is, the limiting factor in developing these types of models in practice. Opportunities for further enhancing the damage data recorded during hurricanes are also discussed.

14. Protecting Intelligent Distributed Power Grids against Cyber Attacks

SciTech Connect

Dong Wei; Yan Lu; Mohsen Jafari; Paul Skare; Kenneth Rohde

2010-12-31

Like other industrial sectors, the electrical power industry is facing challenges involved with the increasing demand for interconnected operations and control. The electrical industry has largely been restructured due to deregulation of the electrical market and the trend of the Smart Grid. This moves new automation systems from being proprietary and closed to the current state of Information Technology (IT) being highly interconnected and open. However, while gaining all of the scale and performance benefits of IT, existing IT security challenges are acquired as well. The power grid automation network has inherent security risks due to the fact that the systems and applications for the power grid were not originally designed for the general IT environment. In this paper, we propose a conceptual layered framework for protecting power grid automation systems against cyber attacks. The following factors are taken into account: (1) integration with existing, legacy systems in a non-intrusive fashion; (2) desirable performance in terms of modularity, scalability, extendibility, and manageability; (3) alignment to the 'Roadmap to Secure Control Systems in the Energy Sector' and the future smart grid. The on-site system test of the developed prototype security system is briefly presented as well.

15. 14 CFR 25.1310 - Power source capacity and distribution.

Code of Federal Regulations, 2012 CFR

2012-01-01

... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1310 Power... storage device. (3) Essential loads after failure of— (i) Any one engine on two-engine airplanes; and (ii) Any two engines on airplanes with three or more engines. (4) Essential loads for which an...

16. 14 CFR 25.1310 - Power source capacity and distribution.

Code of Federal Regulations, 2011 CFR

2011-01-01

... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1310 Power... storage device. (3) Essential loads after failure of— (i) Any one engine on two-engine airplanes; and (ii) Any two engines on airplanes with three or more engines. (4) Essential loads for which an...

17. 14 CFR 25.1310 - Power source capacity and distribution.

Code of Federal Regulations, 2010 CFR

2010-01-01

... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1310 Power... storage device. (3) Essential loads after failure of— (i) Any one engine on two-engine airplanes; and (ii) Any two engines on airplanes with three or more engines. (4) Essential loads for which an...

18. 14 CFR 25.1310 - Power source capacity and distribution.

Code of Federal Regulations, 2014 CFR

2014-01-01

... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1310 Power... storage device. (3) Essential loads after failure of— (i) Any one engine on two-engine airplanes; and (ii) Any two engines on airplanes with three or more engines. (4) Essential loads for which an...

19. 14 CFR 25.1310 - Power source capacity and distribution.

Code of Federal Regulations, 2013 CFR

2013-01-01

... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1310 Power... storage device. (3) Essential loads after failure of— (i) Any one engine on two-engine airplanes; and (ii) Any two engines on airplanes with three or more engines. (4) Essential loads for which an...

20. Modeling, control, and dispatch of photovoltaic-based power distribution systems

Carrasco, Miguel

Small-scale generators, also called distributed generators (DGs), are primed to play a central role in future distribution systems. If properly integrated, DGs present two main advantages: (i) they help decongest existing transmission grids; and (ii) CO2 emissions are reduced since most DGs are based on renewables like wind and solar. Their integration into distribution systems is one of the main challenges the power industry will be facing in the coming years. Photovoltaic (PV) power generation represents a key technology for realizing the DG concept. In this dissertation, technical solutions are developed that enable an increased penetration of PV systems, while improving the efficiency, reliability, and power quality of power distribution grids. The presented research spans from PV array modeling, parameter identification and estimation methods, through advanced control strategies for the power electronic interfaces, to system--level optimal dispatch strategies. Simulation-based and experimental validation results show the performance of the proposed techniques.

1. Nonactive-Power-Related Ancillary Services provided by Distribute Energy Resources

SciTech Connect

Xu, Yan; Tolbert, Leon M; Rizy, D Tom; Kueck, John D

2006-01-01

The nonactive-power-related ancillary services provided by distributed energy (DE) resources are categorized by voltage regulation, reactive power compensation, power factor correction, voltage and/or current unbalance compensation, and harmonics compensation. An instantaneous nonactive power theory is adopted to control the DE system to provide these ancillary services. Three control schemes, including nonactive current compensation, power factor correction, and voltage regulation, are developed which can perform one or more of the ancillary services. The control schemes are implemented in a DE system in simulation and experiments. The simulation and the experimental results show that DE is feasible for providing nonactive-power-related ancillary services.

2. Distributed Leadership: The Uses and Abuses of Power

ERIC Educational Resources Information Center

Lumby, Jacky

2013-01-01

In about a decade the theory of distributed leadership has moved from a tool to better understand the ecology of leadership to a widely prescribed practice. This article considers how to account for its spread and dominance and what purpose it serves. The concept offers an enticing suggestion of including more in leadership, and even sometimes…

3. Space power distribution system technology. Volume 1: Reference EPS design

NASA Technical Reports Server (NTRS)

Decker, D. K.; Cannady, M. D.; Cassinelli, J. E.; Farber, B. F.; Lurie, C.; Fleck, G. W.; Lepisto, J. W.; Massner, A.; Ritterman, P. F.

1983-01-01

The multihundred kilowatt electrical power aspects of a mannable space platform in low Earth orbit is analyzed from a cost and technology viewpoint. At the projected orbital altitudes, Shuttle launch and servicing are technically and economically viable. Power generation is specified as photovoltaic consistent with projected planning. The cost models and trades are based upon a zero interest rate (the government taxes concurrently as required), constant dollars (1980), and costs derived in the first half of 1980. Space platform utilization of up to 30 years is evaluated to fully understand the impact of resupply and replacement as satellite missions are extended. Such lifetimes are potentially realizable with Shuttle servicing capability and are economically desirable.

4. Large space systems technology electronics: Data and power distribution

Dunbar, W. G.

1980-02-01

The development of hardware technology and manufacturing techniques required to meet space platform and antenna system needs in the 1980s is discussed. Preliminary designs for manned and automatically assembled space power system cables, connectors, and grounding and bonding materials and techniques are reviewed. Connector concepts, grounding design requirements, and bonding requirements are discussed. The problem of particulate debris contamination for large structure spacecraft is addressed.

5. Large space systems technology electronics: Data and power distribution

NASA Technical Reports Server (NTRS)

Dunbar, W. G.

1980-01-01

The development of hardware technology and manufacturing techniques required to meet space platform and antenna system needs in the 1980s is discussed. Preliminary designs for manned and automatically assembled space power system cables, connectors, and grounding and bonding materials and techniques are reviewed. Connector concepts, grounding design requirements, and bonding requirements are discussed. The problem of particulate debris contamination for large structure spacecraft is addressed.

6. Cascading Failures in Coupled Distributed Power Grids and Communication Networks

DTIC Science & Technology

2013-08-01

system structure design We considered the control and communication system of the power grid as a hierarchical system . Control and communication...would perform the local control actions as well as implementing necessary remote control signals. We decomposed the transmission grid into sub- systems ...based on the control regions defined over it. We assumed that in each sub- system , the control regions utilized controlling and monitoring agents

7. Load flow and state estimation algorithms for three-phase unbalanced power distribution systems

Distribution load flow and state estimation are two important functions in distribution energy management systems (DEMS) and advanced distribution automation (ADA) systems. Distribution load flow analysis is a tool which helps to analyze the status of a power distribution system under steady-state operating conditions. In this research, an effective and comprehensive load flow algorithm is developed to extensively incorporate the distribution system components. Distribution system state estimation is a mathematical procedure which aims to estimate the operating states of a power distribution system by utilizing the information collected from available measurement devices in real-time. An efficient and computationally effective state estimation algorithm adapting the weighted-least-squares (WLS) method has been developed in this research. Both the developed algorithms are tested on different IEEE test-feeders and the results obtained are justified.

8. Fast switching, modular high-voltage DC/AC-power supplies for RF-Amplifiers and other applications

SciTech Connect

Alex, J.; Schminke, W.

1995-12-31

A new kind of high voltage high-power Pulse-Step Modulator (PSM) for broadcast transmitters, accelerator sources, for NBI (Neutral Beam Injection for Plasma Heating), gyrotrons and klystrons has been developed. Since its first introduction in 1984 for broadcast transmitters, more than 100 high-power sound broadcast transmitters had been equipped with the first generation of the PSM modulators, using Gate Turn-Off Thyristors (GTOs) as switching elements. Recently, due to faster switching elements and making use of the latest DSP technologies (Digital Signal Processing), the performance data and areas of application could be extended further. In 1994, a precision high voltage source for MW gyrotrons was installed at CRPP in Lausanne. Supplementary very low cost solutions for lower powers but high voltages had been developed. Hence, today, a large area of applications can be satisfied with the family of solutions. The paper describes the principle of operation, the related control systems and refers to some particular applications of the PSM amplifiers, especially the newest developments and corresponding field results.

9. Anode-cathode power distribution systems and methods of using the same for electrochemical reduction

DOEpatents

Koehl, Eugene R; Barnes, Laurel A; Wiedmeyer, Stanley G; Williamson, Mark A; Willit, James L

2014-01-28

Power distribution systems are useable in electrolytic reduction systems and include several cathode and anode assembly electrical contacts that permit flexible modular assembly numbers and placement in standardized connection configurations. Electrical contacts may be arranged at any position where assembly contact is desired. Electrical power may be provided via power cables attached to seating assemblies of the electrical contacts. Cathode and anode assembly electrical contacts may provide electrical power at any desired levels. Pairs of anode and cathode assembly electrical contacts may provide equal and opposite electrical power; different cathode assembly electrical contacts may provide different levels of electrical power to a same or different modular cathode assembly. Electrical systems may be used with an electrolyte container into which the modular cathode and anode assemblies extend and are supported above, with the modular cathode and anode assemblies mechanically and electrically connecting to the respective contacts in power distribution systems.

10. The Power of Heterogeneity: Parameter Relationships from Distributions

PubMed Central

Röding, Magnus; Bradley, Siobhan J.; Williamson, Nathan H.; Dewi, Melissa R.; Nann, Thomas; Nydén, Magnus

2016-01-01

Complex scientific data is becoming the norm, many disciplines are growing immensely data-rich, and higher-dimensional measurements are performed to resolve complex relationships between parameters. Inherently multi-dimensional measurements can directly provide information on both the distributions of individual parameters and the relationships between them, such as in nuclear magnetic resonance and optical spectroscopy. However, when data originates from different measurements and comes in different forms, resolving parameter relationships is a matter of data analysis rather than experiment. We present a method for resolving relationships between parameters that are distributed individually and also correlated. In two case studies, we model the relationships between diameter and luminescence properties of quantum dots and the relationship between molecular weight and diffusion coefficient for polymers. Although it is expected that resolving complicated correlated relationships require inherently multi-dimensional measurements, our method constitutes a useful contribution to the modelling of quantitative relationships between correlated parameters and measurements. We emphasise the general applicability of the method in fields where heterogeneity and complex distributions of parameters are obstacles to scientific insight. PMID:27182701

11. Analysis of Power Quality Based on Real Data and Quality Improvement at Campus Distribution System

Kawasaki, Shoji; Matsuki, Junya; Hayashi, Yasuhiro; Ito, Akitoshi

In recent years, a lot of equipments have been made using the inverter technology from home electric appliances to office automation apparatuses and industrial equipments with the development of power electronics technology. The voltage distortion of a distribution system has increased due to the harmonic currents generated from these apparatuses, and the increase in harmonics continues to be expected. In addition, the distribution system forms the circuit of harmonic distortion expansion by the prevalence of static capacitor without L for power factor improvement. Moreover, the voltage imbalance occurs by diversification of loads or imbalanced connection of single-phase loads. The deterioration of power quality in the distribution system causes various problems such as the overheating of equipments and malfunction of rotating machines. Since the power quality changes according to air temperature and date, it is desirable to measure the voltages and currents continuously for a long time. In this study, the authors focus attention on the distribution system in the University of Fukui campus, and the authors have measured the voltages and currents in the distribution system for a long period with WAMS (Wide Area Measurement System) using NCT (Network Computing Terminal). Based on the obtained data, the authors analyzed the power quality of the campus distribution system from viewpoints of voltage imbalance, current imbalance, voltage THD (Total Harmonic Distortion), and current THD. Furthermore, the improvement effect of power quality of the campus distribution system by exchange of single-phase load connection is described.

12. Distributed Processing System for Restoration of Electric Power Distribution Network Using Two-Layered Contract Net Protocol

Kodama, Yu; Hamagami, Tomoki

Distributed processing system for restoration of electric power distribution network using two-layered CNP is proposed. The goal of this study is to develop the restoration system which adjusts to the future power network with distributed generators. The state of the art of this study is that the two-layered CNP is applied for the distributed computing environment in practical use. The two-layered CNP has two classes of agents, named field agent and operating agent in the network. In order to avoid conflicts of tasks, operating agent controls privilege for managers to send the task announcement messages in CNP. This technique realizes the coordination between agents which work asynchronously in parallel with others. Moreover, this study implements the distributed processing system using a de-fact standard multi-agent framework, JADE(Java Agent DEvelopment framework). This study conducts the simulation experiments of power distribution network restoration and compares the proposed system with the previous system. We confirmed the results show effectiveness of the proposed system.

13. Optimal reactive power planning for distribution systems considering intermittent wind power using Markov model and genetic algorithm

Li, Cheng

Wind farms, photovoltaic arrays, fuel cells, and micro-turbines are all considered to be Distributed Generation (DG). DG is defined as the generation of power which is dispersed throughout a utility's service territory and either connected to the utility's distribution system or isolated in a small grid. This thesis addresses modeling and economic issues pertaining to the optimal reactive power planning for distribution system with wind power generation (WPG) units. Wind farms are inclined to cause reverse power flows and voltage variations due to the random-like outputs of wind turbines. To deal with this kind of problem caused by wide spread usage of wind power generation, this thesis investigates voltage and reactive power controls in such a distribution system. Consequently static capacitors (SC) and transformer taps are introduced into the system and treated as controllers. For the purpose of getting optimum voltage and realizing reactive power control, the research proposes a proper coordination among the controllers like on-load tap changer (OLTC), feeder-switched capacitors. What's more, in order to simulate its uncertainty, the wind power generation is modeled by the Markov model. In that way, calculating the probabilities for all the scenarios is possible. Some outputs with consecutive and discrete values have been used for transition between successive time states and within state wind speeds. The thesis will describe the method to generate the wind speed time series from the transition probability matrix. After that, utilizing genetic algorithm, the optimal locations of SCs, the sizes of SCs and transformer taps are determined so as to minimize the cost or minimize the power loss, and more importantly improve voltage profiles. The applicability of the proposed method is verified through simulation on a 9-bus system and a 30-bus system respectively. At last, the simulation results indicate that as long as the available capacitors are able to sufficiently

14. GENERIC VERIFICATION PROTOCOL: DISTRIBUTED GENERATION AND COMBINED HEAT AND POWER FIELD TESTING PROTOCOL

EPA Science Inventory

This report is a generic verification protocol by which EPA’s Environmental Technology Verification program tests newly developed equipment for distributed generation of electric power, usually micro-turbine generators and internal combustion engine generators. The protocol will ...

15. A multi-agent approach for a self-reconfigurable electric power distribution system

Gómez–Gualdrón, Janeth G.; Vélez-Reyes, Miguel

2006-05-01

Electric power distribution systems can be found almost everywhere, from ship power systems to data centers. In many critical applications, there is needed to maintain minimal operating capability under fault conditions. To carry out this goal it is necessary to develop energy distribution control techniques, which let implement a self-reconfigurable energy distribution system. This research project is looking at the implementation of multi-agent systems to develop a self-reconfigurable electric power distribution system. A prototype of a Multi-Agent system is proposed to reconfigure the system in order to maximize the number of served loads with highest priority. The shipboard power system is simulated in Matlab TM Simulink TM and the Multi-Agent System is implemented using Java programming language and JADE platform.

16. Do wealth distributions follow power laws? Evidence from ‘rich lists’

Brzezinski, Michal

2014-07-01

We use data on the wealth of the richest persons taken from the 'rich lists' provided by business magazines like Forbes to verify if the upper tails of wealth distributions follow, as often claimed, a power-law behaviour. The data sets used cover the world's richest persons over 1996-2012, the richest Americans over 1988-2012, the richest Chinese over 2006-2012, and the richest Russians over 2004-2011. Using a recently introduced comprehensive empirical methodology for detecting power laws, which allows for testing the goodness of fit as well as for comparing the power-law model with rival distributions, we find that a power-law model is consistent with data only in 35% of the analysed data sets. Moreover, even if wealth data are consistent with the power-law model, they are usually also consistent with some rivals like the log-normal or stretched exponential distributions.

17. Influence of laser power on atom probe tomographic analysis of boron distribution in silicon.

PubMed

Tu, Y; Takamizawa, H; Han, B; Shimizu, Y; Inoue, K; Toyama, T; Yano, F; Nishida, A; Nagai, Y

2017-02-01

The relationship between the laser power and the three-dimensional distribution of boron (B) in silicon (Si) measured by laser-assisted atom probe tomography (APT) is investigated. The ultraviolet laser employed in this study has a fixed wavelength of 355nm. The measured distributions are almost uniform and homogeneous when using low laser power, while clear B accumulation at the low-index pole of single-crystalline Si and segregation along the grain boundaries in polycrystalline Si are observed when using high laser power (100pJ). These effects are thought to be caused by the surface migration of atoms, which is promoted by high laser power. Therefore, for ensuring a high-fidelity APT measurement of the B distribution in Si, high laser power is not recommended.

18. Independent Orbiter Assessment (IOA): Analysis of the electrical power distribution and control/electrical power generation subsystem

NASA Technical Reports Server (NTRS)

Patton, Jeff A.

1986-01-01

The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Electrical Power Distribution and Control (EPD and C)/Electrical Power Generation (EPG) hardware. The EPD and C/EPG hardware is required for performing critical functions of cryogenic reactant storage, electrical power generation and product water distribution in the Orbiter. Specifically, the EPD and C/EPG hardware consists of the following components: Power Section Assembly (PSA); Reactant Control Subsystem (RCS); Thermal Control Subsystem (TCS); Water Removal Subsystem (WRS); and Power Reactant Storage and Distribution System (PRSDS). The IOA analysis process utilized available EPD and C/EPG hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.

19. Stationarity of the inter-event power-law distributions

PubMed Central

2017-01-01

A number of human activities exhibit a bursty pattern, namely periods of very high activity that are followed by rest periods. Records of these processes generate time series of events whose inter-event times follow a probability distribution that displays a fat tail. The grounds for such phenomenon are not yet clearly understood. In the present work we use the freely available Wikipedia’s editing records to unravel some features of this phenomenon. We show that even though the probability to start editing is conditioned by the circadian 24 hour cycle, the conditional probability for the time interval between successive edits at a given time of the day is independent from the latter. We confirm our findings with the activity of posting on the social network Twitter. Our results suggest that there is an intrinsic humankind scheduling pattern: after overcoming the encumbrance of starting an activity, there is a robust distribution of new related actions, which does not depend on the time of day at which the activity started. PMID:28346480

20. Application of the mobility power flow approach to structural response from distributed loading

NASA Technical Reports Server (NTRS)

Cuschieri, J. M.

1988-01-01

The problem of the vibration power flow through coupled substructures when one of the substructures is subjected to a distributed load is addressed. In all the work performed thus far, point force excitation was considered. However, in the case of the excitation of an aircraft fuselage, distributed loading on the whole surface of a panel can be as important as the excitation from directly applied forces at defined locations on the structures. Thus using a mobility power flow approach, expressions are developed for the transmission of vibrational power between two coupled plate substructures in an L configuration, with one of the surfaces of one of the plate substructures being subjected to a distributed load. The types of distributed loads that are considered are a force load with an arbitrary function in space and a distributed load similar to that from acoustic excitation.

1. Power-law and exponential rank distributions: A panoramic Gibbsian perspective

SciTech Connect

Eliazar, Iddo

2015-04-15

Rank distributions are collections of positive sizes ordered either increasingly or decreasingly. Many decreasing rank distributions, formed by the collective collaboration of human actions, follow an inverse power-law relation between ranks and sizes. This remarkable empirical fact is termed Zipf’s law, and one of its quintessential manifestations is the demography of human settlements — which exhibits a harmonic relation between ranks and sizes. In this paper we present a comprehensive statistical-physics analysis of rank distributions, establish that power-law and exponential rank distributions stand out as optimal in various entropy-based senses, and unveil the special role of the harmonic relation between ranks and sizes. Our results extend the contemporary entropy-maximization view of Zipf’s law to a broader, panoramic, Gibbsian perspective of increasing and decreasing power-law and exponential rank distributions — of which Zipf’s law is one out of four pillars.

2. Influence of Mobile Users' Density Distribution on the CDMA Base Station Power

Lebl, Aleksandar; Mitić, Dragan; Popović, Miroslav; Markov, Žarko; Mileusnić, Mladen; Matić, Vladimir

2016-12-01

In this paper we analyze the influence of users' density distribution in one cell of CDMA mobile network (ie adjusted power control on the forward link) on base station emission power. This influence is analyzed for different circles radii around base station within which same emission power is generated for all mobile users, and for different values of propagation loss coefficient. It is proved that emission power in this cell must be increased comparing to the similar cell, which uses complete power control. The power increase is greater when greater number of users are situated near base station, and for greater values of propagation loss coefficient. The results are presented, illustrated by numerical examples and verified by simulation for three users' density distributions: uniform, decreasing and increasing density from the base station to the cell rim. The simulation process, which is based on random traffic process, is presented briefly.

3. Switching coordination of distributed dc-dc converters for highly efficient photovoltaic power plants

SciTech Connect

Agamy, Mohammed; Elasser, Ahmed; Sabate, Juan Antonio; Galbraith, Anthony William; Harfman Todorovic, Maja

2014-09-09

A distributed photovoltaic (PV) power plant includes a plurality of distributed dc-dc converters. The dc-dc converters are configured to switch in coordination with one another such that at least one dc-dc converter transfers power to a common dc-bus based upon the total system power available from one or more corresponding strings of PV modules. Due to the coordinated switching of the dc-dc converters, each dc-dc converter transferring power to the common dc-bus continues to operate within its optimal efficiency range as well as to optimize the maximum power point tracking in order to increase the energy yield of the PV power plant.

4. High-efficiency grid-connected photovoltaic module integrated converter system with high-speed communication interfaces for small-scale distribution power generation

SciTech Connect

Choi, Woo-Young; Lai, Jih-Sheng

2010-04-15

This paper presents a high-efficiency grid-connected photovoltaic (PV) module integrated converter (MIC) system with reduced PV current variation. The proposed PV MIC system consists of a high-efficiency step-up DC-DC converter and a single-phase full-bridge DC-AC inverter. An active-clamping flyback converter with a voltage-doubler rectifier is proposed for the step-up DC-DC converter. The proposed step-up DC-DC converter reduces the switching losses by eliminating the reverse-recovery current of the output rectifying diodes. To reduce the PV current variation introduced by the grid-connected inverter, a PV current variation reduction method is also suggested. The suggested PV current variation reduction method reduces the PV current variation without any additional components. Moreover, for centralized power control of distributed PV MIC systems, a PV power control scheme with both a central control level and a local control level is presented. The central PV power control level controls the whole power production by sending out reference power signals to each individual PV MIC system. The proposed step-up DC-DC converter achieves a high-efficiency of 97.5% at 260 W output power to generate the DC-link voltage of 350 V from the PV voltage of 36.1 V. The PV MIC system including the DC-DC converter and the DC-AC inverter achieves a high-efficiency of 95% with the PV current ripple less than 3% variation of the rated PV current. (author)

5. High power singlemode GaInAs lasers with distributed Bragg reflectors

NASA Technical Reports Server (NTRS)

O'Brien, S.; Parke, R.; Welch, D. F.; Mehuys, D.; Scifres, D.

1992-01-01

High power singlemode strained GaInAs lasers have been fabricated which use buried second order gratings as distributed Bragg reflectors. The lasers operate in an edge emitting fashion with CW powers in excess of 110 mW with single longitudinal and transverse mode operation at 971.9 nm up to 42 mW.

6. Power of the Independent Samples t Test under a Prevalent Psychometric Measure Distribution.

ERIC Educational Resources Information Center

Sawilowsky, Shlomo S.; Hillman, Stephen B.

1992-01-01

Notes that studies in psychology often have low power because of inadequate sample size and that prevalent psychometric distributions are sometimes radically nonnormal. Demonstrates robustness of independent samples t-test with respect to Type I error. Shows that researchers may use power tables based on population normality without modification…

7. Electrical Power Transmission and Distribution Safety. Module SH-40. Safety and Health.

ERIC Educational Resources Information Center

Center for Occupational Research and Development, Inc., Waco, TX.

This student module on electrical power transmission and distribution safety is one of 50 modules concerned with job safety and health. This module focuses on some of the general safety rules, techniques, and procedures that are essential in establishing a safe environment for the electrical power transmission worker. Following the introduction,…

8. Power Distribution and Adoption of Agricultural Innovations: A Structural Analysis of Villages in Pakistan.

ERIC Educational Resources Information Center

Freeman, David M.; And Others

1982-01-01

Data collected from a sample of farmers representing 15 Pakistani villages show that greater equality in village power distribution is positively related to greater adoption of agricultural technology as analyzed at the village level. When effects of water control are parceled out, the power-adoption relationship is strengthened. (LC)

9. Calculated power distribution of a thermionic, beryllium oxide reflected, fast-spectrum reactor

NASA Technical Reports Server (NTRS)

Mayo, W.; Lantz, E.

1973-01-01

A procedure is developed and used to calculate the detailed power distribution in the fuel elements next to a beryllium oxide reflector of a fast-spectrum, thermionic reactor. The results of the calculations show that, although the average power density in these outer fuel elements is not far from the core average, the power density at the very edge of the fuel closest to the beryllium oxide is about 1.8 times the core avearge.

10. Technology survey of electrical power generation and distribution for MIUS application

NASA Technical Reports Server (NTRS)

Gill, W. L.; Redding, T. E.

1975-01-01

Candidate electrical generation power systems for the modular integrated utility systems (MIUS) program are described. Literature surveys were conducted to cover both conventional and exotic generators. Heat-recovery equipment associated with conventional power systems and supporting equipment are also discussed. Typical ranges of operating conditions and generating efficiencies are described. Power distribution is discussed briefly. Those systems that appear to be applicable to MIUS have been indicated, and the criteria for equipment selection are discussed.

11. Impact of Distributed Wind on Bulk Power System Operations in ISO-NE (Presentation)

SciTech Connect

Brancucci Martinez-Anido, C.; Hodge, B. M.; Palchak, D.; Miettinen, J.

2014-11-01

The work presented in the paper corresponding to this presentation aims to study the impact of a range of penetration levels of distributed wind on the operation of the electric power system at the transmission level. This presentation is an overview of a case study on the power system in Independent System Operator New England. It is analyzed using PLEXOS, a commercial power system simulation tool

12. Research recommendations for ac interfacing between electric utility transmission and distribution systems and wind, photovoltaics, and OTEC energy systems

Longrigg, P.; Buell, E. H.

1985-03-01

Work that deals semiquantitatively with many integration problems that may have to be solved as wind, photovoltaic, and ocean energy systems are tied into electrical transmission utility grids is documented. The problems that will arise as these distributed storage and generation (DSG) energy systems are integrated into the electric utility grids are not yet fully known, and their extent may depend on the level of penetration of the DSGs into the grid network. Aspects of DSG integration covered are fuse and relay coordination, harmonics, communications, control protocols, safety, and artificial intelligence (computer driven controls). An appendix on the effects of electromagnetic pulse is also included.

13. Industry sector analysis, Indonesia: Electric power distribution equipment. Export trade information

SciTech Connect

Sihombing, P.

1991-08-20

The market survey covers the electric power distribution equipment market in Indonesia. The analysis contains statistical and narrative information on projected market demand, end-users; receptivity of Indonesian consumers to U.S. products; the competitive situation, and market access (tariffs, non-tariff barriers, standards, taxes, distribution channels). It also contains key contact information.

14. Exponential and power-law contact distributions represent different atmospheric conditions.

PubMed

Reynolds, A M

2011-12-01

It is well known that the dynamics of plant disease epidemics are very sensitive to the functional form of the contact distribution?the probability distribution function for the distance of viable fungal spore movement until deposition. Epidemics can take the form of a constant-velocity travelling wave when the contact distribution is exponentially bounded. Fat-tailed contact distributions, on the other hand, lead to epidemic spreads that accelerate over time. Some empirical data for contact distributions can be well represented by negative exponentials while other data are better represented by fat-tailed inverse power laws. Here we present data from numerical simulations that suggest that negative exponentials and inverse power laws are not competing candidate forms of the contact distribution but are instead representative of different atmospheric conditions. Contact distributions for atmospheric boundary-layers with stabilities ranging from strongly convective (a hot windless day time scenario) to stable stratification (a cold windy night time scenario) but without precipitation events are calculated using well-established state-of-the-art Lagrangian stochastic (particle tracking) dispersal models. Contact distributions are found to be well represented by exponentials for strongly convective conditions; a -3/2 inverse power law for convective boundary-layers with wind shear; and by a -2/3 inverse power law for stably stratified conditions.

15. Electric Power quality Analysis in research reactor: Impacts on nuclear safety assessment and electrical distribution reliability

SciTech Connect

Touati, Said; Chennai, Salim; Souli, Aissa

2015-07-01

The increased requirements on supervision, control, and performance in modern power systems make power quality monitoring a common practise for utilities. Large databases are created and automatic processing of the data is required for fast and effective use of the available information. Aim of the work presented in this paper is the development of tools for analysis of monitoring power quality data and in particular measurements of voltage and currents in various level of electrical power distribution. The study is extended to evaluate the reliability of the electrical system in nuclear plant. Power Quality is a measure of how well a system supports reliable operation of its loads. A power disturbance or event can involve voltage, current, or frequency. Power disturbances can originate in consumer power systems, consumer loads, or the utility. The effect of power quality problems is the loss power supply leading to severe damage to equipments. So, we try to track and improve system reliability. The assessment can be focused on the study of impact of short circuits on the system, harmonics distortion, power factor improvement and effects of transient disturbances on the Electrical System during motor starting and power system fault conditions. We focus also on the review of the Electrical System design against the Nuclear Directorate Safety Assessment principles, including those extended during the last Fukushima nuclear accident. The simplified configuration of the required system can be extended from this simple scheme. To achieve these studies, we have used a demo ETAP power station software for several simulations. (authors)

16. Design and implementation of co-operative control strategy for hybrid AC/DC microgrids

Mahmud, Rasel

This thesis is mainly divided in two major sections: 1) Modeling and control of AC microgrid, DC microgrid, Hybrid AC/DC microgrid using distributed co-operative control, and 2) Development of a four bus laboratory prototype of an AC microgrid system. At first, a distributed cooperative control (DCC) for a DC microgrid considering the state-of-charge (SoC) of the batteries in a typical plug-in-electric-vehicle (PEV) is developed. In DC microgrids, this methodology is developed to assist the load sharing amongst the distributed generation units (DGs), according to their ratings with improved voltage regulation. Subsequently, a DCC based control algorithm for AC microgrid is also investigated to improve the performance of AC microgrid in terms of power sharing among the DGs, voltage regulation and frequency deviation. The results validate the advantages of the proposed methodology as compared to traditional droop control of AC microgrid. The DCC-based control methodology for AC microgrid and DC microgrid are further expanded to develop a DCC-based power management algorithm for hybrid AC/DC microgrid. The developed algorithm for hybrid microgrid controls the power flow through the interfacing converter (IC) between the AC and DC microgrids. This will facilitate the power sharing between the DGs according to their power ratings. Moreover, it enables the fixed scheduled power delivery at different operating conditions, while maintaining good voltage regulation and improved frequency profile. The second section provides a detailed explanation and step-by-step design and development of an AC/DC microgrid testbed. Controllers for the three-phase inverters are designed and tested on different generation units along with their corresponding inductor-capacitor-inductor (LCL) filters to eliminate the switching frequency harmonics. Electric power distribution line models are developed to form the microgrid network topology. Voltage and current sensors are placed in the proper

17. Progress in L-Band Power Distribution System R&D at SLAC

SciTech Connect

Nantista, Christopher; Adolphsen, Chris; Wang, Faya; /SLAC

2008-10-20

We report on the L-band RF power distribution system (PDS) developed at SLAC for Fermilab's NML superconducting test accelerator facility. The makeup of the system, which allows tailoring of the power distribution to cavities by pairs, is briefly described. Cold test measurements of the system and the results of high power processing are presented. We also investigate the feasibility of eliminating the expensive, lossy circulators from the PDS by pair-feeding cavities through custom 3-dB hybrids. A computational model is used to simulate the impact on cavity field stability due to the reduced cavity-to-cavity isolation.

18. Transport coefficients in Lorentz plasmas with the power-law kappa-distribution

SciTech Connect

Jiulin, Du

2013-09-15

Transport coefficients in Lorentz plasma with the power-law κ-distribution are studied by means of using the transport equation and macroscopic laws of Lorentz plasma without magnetic field. Expressions of electric conductivity, thermoelectric coefficient, and thermal conductivity for the power-law κ-distribution are accurately derived. It is shown that these transport coefficients are significantly modified by the κ-parameter, and in the limit of the parameter κ→∞ they are reduced to the standard forms for a Maxwellian distribution.

19. Time-dependent Kramers escape rate in overdamped system with power-law distribution

Zhou, Yanjun; Yin, Cangtao

2016-05-01

The probability distribution of Brownian particles moving in an overdamped complex system follows the generalized Smoluchowski equation, which can be rigorously proven that the exact time-dependent solution for this equation follows Tsallis form. Time-dependent escape rate in overdamped system with power-law distributions is then established based on the flux over population theory. The stationary state escape rate in overdamped system with power-law distribution which has been obtained before based on mean first passage time theory is recovered from time-dependent escape rate as time toward infinity.

20. Vertical motion of a charged colloidal particle near an AC polarized electrode with a nonuniform potential distribution: theory and experimental evidence.

PubMed

Fagan, Jeffrey A; Sides, Paul J; Prieve, Dennis C

2004-06-08

Electroosmotic flow in the vicinity of a colloidal particle suspended over an electrode accounts for observed changes in the average height of the particle when the electrode passes alternating current at 100 Hz. The main findings are (1) electroosmotic flow provides sufficient force to move the particle and (2) a phase shift between the purely electrical force on the particle and the particle's motion provides evidence of an E2 force acting on the particle. The electroosmotic force in this case arises from the boundary condition applied when faradaic reactions occur on the electrode. The presence of a potential-dependent electrode reaction moves the likely distribution of electrical current at the electrode surface toward uniform current density around the particle. In the presence of a particle the uniform current density is associated with a nonuniform potential; thus, the electric field around the particle has a nonzero radial component along the electrode surface, which interacts with unbalanced charge in the diffuse double layer on the electrode to create a flow pattern and impose an electroosmotic-flow-based force on the particle. Numerical solutions are presented for these additional height-dependent forces on the particle as a function of the current distribution on the electrode and for the time-dependent probability density of a charged colloidal particle near a planar electrode with a nonuniform electrical potential boundary condition. The electrical potential distribution on the electrode, combined with a phase difference between the electric field in solution and the electrode potential, can account for the experimentally observed motion of particles in ac electric fields in the frequency range from approximately 10 to 200 Hz.

1. The integration of renewable energy sources into electric power distribution systems. Volume 1: National assessment

SciTech Connect

Barnes, P.R.; Van Dyke, J.W.; Tesche, F.M.; Zaininger, H.W.

1994-06-01

Renewable energy technologies such as photovoltaic, solar thermal electricity, and wind turbine power are environmentally beneficial sources of electric power generation. The integration of renewable energy sources into electric power distribution systems can provide additional economic benefits because of a reduction in the losses associated with transmission and distribution lines. Benefits associated with the deferment of transmission and distribution investment may also be possible for cases where there is a high correlation between peak circuit load and renewable energy electric generation, such as photovoltaic systems in the Southwest. Case studies were conducted with actual power distribution system data for seven electric utilities with the participation of those utilities. Integrating renewable energy systems into electric power distribution systems increased the value of the benefits by about 20 to 55% above central station benefits in the national regional assessment. In the case studies presented in Vol. II, the range was larger: from a few percent to near 80% for a case where costly investments were deferred. In general, additional savings of at least 10 to 20% can be expected by integrating at the distribution level. Wind energy systems were found to be economical in good wind resource regions, whereas photovoltaic systems costs are presently a factor of 2.5 too expensive under the most favorable conditions.

2. Universal inverse power-law distribution for temperature and rainfall in the UK region

Selvam, A. M.

2014-06-01

Meteorological parameters, such as temperature, rainfall, pressure, etc., exhibit selfsimilar space-time fractal fluctuations generic to dynamical systems in nature such as fluid flows, spread of forest fires, earthquakes, etc. The power spectra of fractal fluctuations display inverse power-law form signifying long-range correlations. A general systems theory model predicts universal inverse power-law form incorporating the golden mean for the fractal fluctuations. The model predicted distribution was compared with observed distribution of fractal fluctuations of all size scales (small, large and extreme values) in the historic month-wise temperature (maximum and minimum) and total rainfall for the four stations Oxford, Armagh, Durham and Stornoway in the UK region, for data periods ranging from 92 years to 160 years. For each parameter, the two cumulative probability distributions, namely cmax and cmin starting from respectively maximum and minimum data value were used. The results of the study show that (i) temperature distributions (maximum and minimum) follow model predicted distribution except for Stornowy, minimum temperature cmin. (ii) Rainfall distribution for cmin follow model predicted distribution for all the four stations. (iii) Rainfall distribution for cmax follows model predicted distribution for the two stations Armagh and Stornoway. The present study suggests that fractal fluctuations result from the superimposition of eddy continuum fluctuations.

3. Power law distribution in high frequency financial data? An econometric analysis

Todorova, Lora; Vogt, Bodo

2011-11-01

Power law distributions are very common in natural sciences. We analyze high frequency financial data from XETRA and the NYSE using maximum likelihood estimation and the Kolmogorov-Smirnov statistic to test whether the power law hypothesis holds also for these data. We find that the universality and scale invariance properties of the power law are violated. Furthermore, the returns of Daimler Chrysler and SAP traded simultaneously on both exchanges follow a power law at one exchange, but not at the other. These results raise some questions about the no-arbitrage condition. Finally, we find that an exponential function provides a better fit for the tails of the sample distributions than a power law function.

4. Impact of Distributed Wind on Bulk Power System Operations in ISO-NE: Preprint

SciTech Connect

Brancucci Martinez-Anido, C.; Hodge, B. M.; Palchak, D.; Miettinen, J.

2014-09-01

The work presented in this paper aims to study the impact of a range of penetration levels of distributed wind on the operation of the electric power system at the transmission level. This paper presents a case study on the power system in Independent System Operator New England. It is analyzed using PLEXOS, a commercial power system simulation tool. The results show that increasing the integration of distributed wind reduces total variable electricity generation costs, coal- and gas-fired electricity generation, electricity imports, and CO2 emissions, and increases wind curtailment. The variability and uncertainty of wind power also increases the start-up and shutdown costs and ramping of most conventional power plants.

5. Impact of Distributed Wind on Bulk Power System Operations in ISO-NE

SciTech Connect

Brancucci Martinez-Anido, Carlo; Hodge, Bri-Mathias; Palchak, David; Miettinen, Jari

2014-11-13

The work presented in this paper aims to study the impact of a range of penetration levels of distributed wind on the operation of the electric power system at the transmission level. This paper presents a case study on the power system in Independent System Operator New England. It is analyzed using PLEXOS, a commercial power system simulation tool. The results show that increasing the integration of distributed wind reduces total variable electricity generation costs, coal- and gas-fired electricity generation, electricity imports, and CO2 emissions, and increases wind curtailment. The variability and uncertainty of wind power also increases the start-up and shutdown costs and ramping of most conventional power plants.

6. Space-based solar power generation using a distributed network of satellites and methods for efficient space power transmission

McLinko, Ryan M.; Sagar, Basant V.

2009-12-01

Space-based solar power (SSP) generation is being touted as a solution to our ever-increasing energy consumption and dependence on fossil fuels. Satellites in Earth's orbit can capture solar energy through photovoltaic cells and transmit that power to ground based stations. Solar cells in orbit are not hindered by weather, clouds, or night. The energy generated by this process is clean and pollution-free. Although the concept of space-based solar power was initially proposed nearly 40 years ago, the level of technology in photovoltaics, power transmission, materials, and efficient satellite design has finally reached a level of maturity that makes solar power from space a feasible prospect. Furthermore, new strategies in methods for solar energy acquisition and transmission can lead to simplifications in design, reductions in cost and reduced risk. This paper proposes using a distributed array of small satellites to collect power from the Sun, as compared to the more traditional SSP design that consists of one monolithic satellite. This concept mitigates some of SSP's most troublesome historic constraints, such as the requirement for heavy lift launch vehicles and the need for significant assembly in space. Instead, a larger number of smaller satellites designed to collect solar energy are launched independently. A high frequency beam will be used to aggregate collected power into a series of transmission antennas, which beam the energy to Earth's surface at a lower frequency. Due to the smaller power expectations of each satellite and the relatively short distance of travel from low earth orbit, such satellites can be designed with smaller arrays. The inter-satellite rectenna devices can also be smaller and lighter in weight. Our paper suggests how SSP satellites can be designed small enough to fit within ESPA standards and therefore use rideshare to achieve orbit. Alternatively, larger versions could be launched on Falcon 9s or on Falcon 1s with booster stages

7. Power Distribution at the Bottom of the Pyramid: Illumination through Affordable and Sustainable Solution of Gram Power

Pandey, Nisha; Sarswat, Prashant

2016-03-01

Energy plays a vital role in the socio -economic development, mainly due to the dependency of indispensable amenities on electricity. However, a matter of concern is developing country domestic power needs and inadequate supply. One of the cases is Indian subcontinent, where more than 50,000 villages still not have access to uninterrupted electric power. `Power theft' is a major challenge due to the lack of adequate energy supply and the financial constraints. Long distances, inaccurate and inflated electricity bills are the other issues lead to default on payments. Gram Power, a social enterprise, is providing a smart metering and affordable solution in areas where the extension of existing grid supply is economically not viable. India's first solar powered micro-grid (centralized array of solar panels) in Rajasthan was established by this initiative. The core innovation is a smart distribution technology that consists of smart meters with recharging facility and grid monitoring, to provide on-demand, theft-proof power through centralized servers with a pay-as-you-use schedule. The details of the changes, socio-economic transformation, and operational sustainability of such a community engagement model will be discussed in this study.

8. Comprehensive evaluation of power grid projects' investment benefits under the reform of transmission and distribution price

Wang, Yongli; Wang, Gang; Zuo, Yi; Fan, Lisha; Ling, Yunpeng

2017-03-01

On March 15, 2015, the Central Office issued the "Opinions on Further Deepening the Reform of Electric Power System" (Zhong Fa No. 9). This policy marks the central government officially opened a new round of electricity reform. As a programmatic document under the new situation to comprehensively promote the reform of the power system, No. 9 document will be approved as a separate transmission and distribution of electricity prices, which is the first task of promoting the reform of the power system. Grid tariff reform is not only the transmission and distribution price of a separate approval, more of the grid company input-output relationship and many other aspects of deep-level adjustments. Under the background of the reform of the transmission and distribution price, the main factors affecting the input-output relationship, such as the main business, electricity pricing, and investment approval, financial accounting and so on, have changed significantly. The paper designed the comprehensive evaluation index system of power grid projects' investment benefits under the reform of transmission and distribution price to improve the investment efficiency of power grid projects after the power reform in China.

9. AC photovoltaic module magnetic fields

SciTech Connect

Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

1997-12-31

Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

10. Space station electrical power distribution analysis using a load flow approach

NASA Technical Reports Server (NTRS)

Emanuel, Ervin M.

1987-01-01

The space station's electrical power system will evolve and grow in a manner much similar to the present terrestrial electrical power system utilities. The initial baseline reference configuration will contain more than 50 nodes or busses, inverters, transformers, overcurrent protection devices, distribution lines, solar arrays, and/or solar dynamic power generating sources. The system is designed to manage and distribute 75 KW of power single phase or three phase at 20 KHz, and grow to a level of 300 KW steady state, and must be capable of operating at a peak of 450 KW for 5 to 10 min. In order to plan far into the future and keep pace with load growth, a load flow power system analysis approach must be developed and utilized. This method is a well known energy assessment and management tool that is widely used throughout the Electrical Power Utility Industry. The results of a comprehensive evaluation and assessment of an Electrical Distribution System Analysis Program (EDSA) is discussed. Its potential use as an analysis and design tool for the 20 KHz space station electrical power system is addressed.

11. Integrated Computing, Communication, and Distributed Control of Deregulated Electric Power Systems

SciTech Connect

Bajura, Richard; Feliachi, Ali

2008-09-24

Restructuring of the electricity market has affected all aspects of the power industry from generation to transmission, distribution, and consumption. Transmission circuits, in particular, are stressed often exceeding their stability limits because of the difficulty in building new transmission lines due to environmental concerns and financial risk. Deregulation has resulted in the need for tighter control strategies to maintain reliability even in the event of considerable structural changes, such as loss of a large generating unit or a transmission line, and changes in loading conditions due to the continuously varying power consumption. Our research efforts under the DOE EPSCoR Grant focused on Integrated Computing, Communication and Distributed Control of Deregulated Electric Power Systems. This research is applicable to operating and controlling modern electric energy systems. The controls developed by APERC provide for a more efficient, economical, reliable, and secure operation of these systems. Under this program, we developed distributed control algorithms suitable for large-scale geographically dispersed power systems and also economic tools to evaluate their effectiveness and impact on power markets. Progress was made in the development of distributed intelligent control agents for reliable and automated operation of integrated electric power systems. The methodologies employed combine information technology, control and communication, agent technology, and power systems engineering in the development of intelligent control agents for reliable and automated operation of integrated electric power systems. In the event of scheduled load changes or unforeseen disturbances, the power system is expected to minimize the effects and costs of disturbances and to maintain critical infrastructure operational.

12. Intelligent Monitoring System With High Temperature Distributed Fiberoptic Sensor For Power Plant Combustion Processes

SciTech Connect

Kwang Y. Lee; Stuart S. Yin; Andre Boheman

2005-12-26

The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, we set up a dedicated high power, ultrafast laser system for fabricating in-fiber gratings in harsh environment optical fibers, successfully fabricated gratings in single crystal sapphire fibers by the high power laser system, and developed highly sensitive long period gratings (lpg) by electric arc. Under Task 2, relevant mathematical modeling studies of NOx formation in practical combustors. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we investigate a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. The 3D temperature data is furnished by the Penn State Energy Institute using FLUENT. Given a set of empirical data with no analytic expression, we first develop an analytic description and then extend that model along a single axis. Extrapolation

13. Performance testing of a high frequency link converter for Space Station power distribution system

NASA Technical Reports Server (NTRS)

Sul, S. K.; Alan, I.; Lipo, T. A.

1989-01-01

The testing of a brassboard version of a 20-kHz high-frequency ac voltage link prototype converter dynamics for Space Station application is presented. The converter is based on a three-phase six-pulse bridge concept. The testing includes details of the operation of the converter when it is driving an induction machine source/load. By adapting a field orientation controller (FOC) to the converter, four-quadrant operation of the induction machine from the converter has been achieved. Circuit modifications carried out to improve the performance of the converter are described. The performance of two 400-Hz induction machines powered by the converter with simple V/f regulation mode is reported. The testing and performance results for the converter utilizing the FOC, which provides the capability for rapid torque changes, speed reversal, and four-quadrant operation, are reported.

14. Ion Distribution And Electronic Stopping Power For Au ions In Silicon Carbide

SciTech Connect

Jin, Ke; Zhang, Yanwen; Xue, Haizhou; Zhu, Zihua; Weber, William J.

2013-07-15

Accurate knowledge of ion distribution and electronic stopping power for heavy ions in light targets is highly desired due to the large errors in prediction by the widely used Stopping and Range of Ions in Matter (SRIM) code. In this study, Rutherford backscattering spectrometry (RBS)and secondary ion mass spectrometry (SIMS) are used as complementary techniques to determine the distribution of Au ions in SiC with energie sfrom 700 keV to 15 MeV. In addition, asingle ion technique with an improved data analysis procedure is applied to measure the electronic stopping power for Au ions in SiC with energies up to ~70 keV/nucleon. Large overestimation of the electronic stopping power is found by SRIM prediction in the low energy regime up to ~50 keV/nucleon. The stopping power data and the ion ranges are crosschecked with each other and a good agreement is achieved.

15. Intensity and absorbed-power distribution in a cylindrical solar-pumped dye laser

NASA Technical Reports Server (NTRS)

Williams, M. D.

1984-01-01

The internal intensity and absorbed-power distribution of a simplified hypothetical dye laser of cylindrical geometry is calculated. Total absorbed power is also calculated and compared with laboratory measurements of lasing-threshold energy deposition in a dye cell to determine the suitability of solar radiation as a pump source or, alternatively, what modifications, if any, are necessary to the hypothetical system for solar pumping.

16. Enhanced Recovery Utilizing Variable Frequency Drives and a Distributed Power System

SciTech Connect

Randy Peden; Sanjiv Shah

2005-07-26

This report describes complete results of the project entitled ''Enhanced Recovery Utilizing Variable Frequency Drives and a Distributed Power System''. This demonstration project was initiated in July 2003 and completed in March 2005. The objective of the project was to develop an integrated power production/variable frequency drive system that could easily be deployed in the oil field that would increase production and decrease operating costs. This report describes all the activities occurred and documents results of the demonstration.

17. Advanced electrical power, distribution and control for the Space Transportation System

NASA Technical Reports Server (NTRS)

Hansen, Irving G.; Brandhorst, Henry W., Jr.

1990-01-01

High frequency power distribution and management is a technology ready state of development. As such, a system employs the fewest power conversion steps, and employs zero current switching for those steps. It results in the most efficiency, and lowest total parts system count when equivalent systems are compared. The operating voltage and frequency are application specific trade off parameters. However, a 20 kHz Hertz system is suitable for wide range systems.

18. Power distributions in fresh and depleted LEU and HEU cores of the MITR reactor.

SciTech Connect

Wilson, E.H.; Horelik, N.E.; Dunn, F.E.; Newton, T.H., Jr.; Hu, L.; Stevens, J.G.

2012-04-04

The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. It delivers a neutron flux comparable to current LWR power reactors in a compact 6 MW core using Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context, most research and test reactors both domestic and international have started a program of conversion to the use of Low Enriched Uranium (LEU) fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (UMo) is expected to allow the conversion of U.S. domestic high performance reactors like the MITR-II reactor. Toward this goal, core geometry and power distributions are presented. Distributions of power are calculated for LEU cores depleted with MCODE using an MCNP5 Monte Carlo model. The MCNP5 HEU and LEU MITR models were previously compared to experimental benchmark data for the MITR-II. This same model was used with a finer spatial depletion in order to generate power distributions for the LEU cores. The objective of this work is to generate and characterize a series of fresh and depleted core peak power distributions, and provide a thermal hydraulic evaluation of the geometry which should be considered for subsequent thermal hydraulic safety analyses.

19. On the application of a machine learning technique to fault diagnosis of power distribution lines

SciTech Connect

Togami, Masato; Abe, Norihiro; Kitahashi, T.; Ogawa, Harunao

1995-10-01

This paper presents one method for fault diagnosis of power distribution lines by using a decision tree. The conventional method, using a decision tree, applies only to discrete attribute values. To apply it to fault diagnosis of power distribution lines, in practice it must be revised in order to treat attributes whose values range over certain widths. This is because the sensor value or attribute value varies owing to the resistance of the fault point or is influenced by noise. The proposed method is useful when the attribute value has such a property, and it takes into consideration the cost of acquiring the information and the probability of the occurrence of a fault.

20. The harmonic impact of electric vehicle battery chargers on residential power distribution

SciTech Connect

Wang, Y.; O`Connell, R.M.; Brownfield, G.

1999-11-01

Electric vehicles (EV), which are powered by battery-driven electric motors, are becoming an ecologically attractive alternative to gasoline driven vehicles. One drawback to them is that the associated battery chargers are power electronic circuits which, because of their non-linear nature, can produce deleterious harmonic effects on the electric utility distribution system. To investigate the harmonic effects of widespread use of EV battery chargers, three different commercially available EV battery chargers are modeled using the injection current method to represent their current waveforms for simulation in a SPICE model of a particular distribution system.

1. Apollo experience report: Command and service module electrical power distribution on subsystem

NASA Technical Reports Server (NTRS)

Munford, R. E.; Hendrix, B.

1974-01-01

A review of the design philosophy and development of the Apollo command and service modules electrical power distribution subsystem, a brief history of the evolution of the total system, and some of the more significant components within the system are discussed. The electrical power distribution primarily consisted of individual control units, interconnecting units, and associated protective devices. Because each unit within the system operated more or less independently of other units, the discussion of the subsystem proceeds generally in descending order of complexity; the discussion begins with the total system, progresses to the individual units of the system, and concludes with the components within the units.

2. Three-Phase Time-Multiplexed Planar Power Transmission to Distributed Implants.

PubMed

Lee, Byunghun; Ahn, Dukju; Ghovanloo, Maysam

2016-03-01

A platform has been presented for wireless powering of receivers (Rx's) that are arbitrarily distributed over a large area. A potential application could be powering of small Rx implants, distributed over large areas of the brain. The transmitter (Tx) consists of three overlapping layers of hexagonal planar spiral coils (hex-PSC) that are horizontally shifted to provide the strongest and most homogeneous electromagnetic flux coverage. The three-layer hex-PSC array is driven by a three-phase time-division-multiplexed power Tx that takes the advantage of the carrier phase shift, coil geometries, and Rx time constant to homogeneously power the arbitrarily distributed Rx's regardless of their misalignments. The functionality of the proposed three-phase power transmission concept has been verified in a detailed scaled-up high-frequency structure simulator Advanced Design System simulation model and measurement setup, and compared with a conventional Tx. The new Tx delivers 5.4 mW to each Rx and achieves, on average, 5.8% power transfer efficiency to the Rx at the worst case 90° angular misalignment, compared with 1.4% by the conventional Tx.

3. Distributed joint power and access control algorithm for secondary spectrum sharing

Li, Hongyan; Chen, Enqing; Fu, Hongliang

2010-08-01

Based on interference temperature model, the problem of efficient secondary spectrum sharing is formulated as a power optimization problem with some constraints at physical layer. These constraints and optimization objective limit a feasible power vector set which leads to the need of access control besides power control. In this paper, we consider the decentralized cognitive radio network scenario where short-term data service is required, and the problem of distributed joint power and access control is studied to maximize the total secondary system throughput, subject to Quality of Service (QoS) constraints from individual secondary users and interference temperature limit (ITL) from primary system. Firstly, a pricing-based game model was used to solve distributed power allocation optimization problem in both high and low signal to interference noise ratio (SINR) scenarios. Secondly, when not all the secondary links can be supported with their QoS requirement and ITL, a distributed joint power and access control algorithm was introduced to find the allowable links which results in maximum network throughput with all the constraints satisfied, and the convergence performance is tested by simulations.

4. Three-Phase Time-Multiplexed Planar Power Transmission to Distributed Implants

PubMed Central

Lee, Byunghun; Ahn, Dukju; Ghovanloo, Maysam

2015-01-01

A platform has been presented for wireless powering of receivers (Rx's) that are arbitrarily distributed over a large area. A potential application could be powering of small Rx implants, distributed over large areas of the brain. The transmitter (Tx) consists of three overlapping layers of hexagonal planar spiral coils (hex-PSC) that are horizontally shifted to provide the strongest and most homogeneous electromagnetic flux coverage. The three-layer hex-PSC array is driven by a three-phase time-division-multiplexed power Tx that takes the advantage of the carrier phase shift, coil geometries, and Rx time constant to homogeneously power the arbitrarily distributed Rx's regardless of their misalignments. The functionality of the proposed three-phase power transmission concept has been verified in a detailed scaled-up high-frequency structure simulator Advanced Design System simulation model and measurement setup, and compared with a conventional Tx. The new Tx delivers 5.4 mW to each Rx and achieves, on average, 5.8% power transfer efficiency to the Rx at the worst case 90° angular misalignment, compared with 1.4% by the conventional Tx. PMID:27034913

5. Anisotropic Azimuthal Power and Temperature distribution on FuelRod. Impact on Hydride Distribution

SciTech Connect

Motta, Arthur; Ivanov, Kostadin; Arramova, Maria; Hales, Jason

2015-04-29

The degradation of the zirconium cladding may limit nuclear fuel performance. In the high temperature environment of a reactor, the zirconium in the cladding corrodes, releasing hydrogen in the process. Some of this hydrogen is absorbed by the cladding in a highly inhomogeneous manner. The distribution of the absorbed hydrogen is extremely sensitive to temperature and stress concentration gradients. The absorbed hydrogen tends to concentrate near lower temperatures. This hydrogen absorption and hydride formation can cause cladding failure. This project set out to improve the hydrogen distribution prediction capabilities of the BISON fuel performance code. The project was split into two primary sections, first was the use of a high fidelity multi-physics coupling to accurately predict temperature gradients as a function of r, θ , and z, and the second was to use experimental data to create an analytical hydrogen precipitation model. The Penn State version of thermal hydraulics code COBRA-TF (CTF) was successfully coupled to the DeCART neutronics code. This coupled system was verified by testing and validated by comparison to FRAPCON data. The hydrogen diffusion and precipitation experiments successfully calculated the heat of transport and precipitation rate constant values to be used within the hydrogen model in BISON. These values can only be determined experimentally. These values were successfully implemented in precipitation, diffusion and dissolution kernels that were implemented in the BISON code. The coupled output was fed into BISON models and the hydrogen and hydride distributions behaved as expected. Simulations were conducted in the radial, axial and azimuthal directions to showcase the full capabilities of the hydrogen model.

6. An automated system for studying the power distribution of electron beams

SciTech Connect

Filarowski, C.A.

1994-12-01

Precise welds with an electron beam welder are difficult to reproduce because the factors effecting the electron beam current density distribution are not easily controlled. One method for measuring the power density distribution in EB welds uses computer tomography to reconstruct an image of the current density distribution. This technique uses many separate pieces of hardware and software packages to obtain the data and then reconstruct it consequently, transferring this technology between different machines and operators is difficult. Consolidating all of the hardware and software into one machine to execute the same tasks will allow for real-time measurement of the EB power density distribution and will provide a facilitated means for transferring various welding procedure between different machines and operators, thereby enhancing reproducibility of electron beam welds.

7. Distributing Power Grid State Estimation on HPC Clusters A System Architecture Prototype

SciTech Connect

Liu, Yan; Jiang, Wei; Jin, Shuangshuang; Rice, Mark J.; Chen, Yousu

2012-08-20

The future power grid is expected to further expand with highly distributed energy sources and smart loads. The increased size and complexity lead to increased burden on existing computational resources in energy control centers. Thus the need to perform real-time assessment on such systems entails efficient means to distribute centralized functions such as state estimation in the power system. In this paper, we present our early prototype of a system architecture that connects distributed state estimators individually running parallel programs to solve non-linear estimation procedure. The prototype consists of a middleware and data processing toolkits that allows data exchange in the distributed state estimation. We build a test case based on the IEEE 118 bus system and partition the state estimation of the whole system model to available HPC clusters. The measurement from the testbed demonstrates the low overhead of our solution.

8. The Integrated Solar Upper Stage engine ground demonstration power management and distribution subsystem design

Baez, Anastacio N.; Kimnach, Greg L.

1997-01-01

The National Aeronautics and Space Administration (NASA), the Air Force Phillips Laboratory (PL), and the Defense Special Weapons Agency (DSWA) in a joint effort are developing technologies for a solar bimodal system. A solar bimodal system combines thermal propulsion and electric power generation in a single integrated system. A spacecraft Integrated Solar Upper Stage (ISUS) bimodal system combines orbital transfer propulsion, electric power generation, and on-board propulsion into one overall system. A key benefit of such integrated system is the augmentation of payload to spacecraft mass ratio thus resulting in lower launch vehicle requirements. Scaling down to smaller launch vehicles increases space access by reducing overall mission cost. The NASA/PL/DSWA ISUS program is concentrating efforts on a near-term ground test demonstration of the bimodal concept. A successful ground demonstration of the ISUS various technologies will enable a full system flight demonstration of the bimodal concept. NASA Lewis Research Center in Cleveland Ohio will be the site for the engine ground demonstrator (EGD). The ISUS bimodal system uses solar concentrators to focus solar energy into an integrated receiver, absorber, and converter (RAC) power plant. The power plant main body is a graphite blackbody that stores thermal energy within a cavity in its main core. During the propulsion phase of the bimodal system a propellant flows into the graphite main core and is distributed uniformly through axial flow channels in the heated cavity. The blackbody core heats the propellant that is then discharged into an output tube thus creating thrust. An array of thermionic generators encircles the graphite core cavity and provides electrical energy conversion functions during the power generation phase. The power management and distribution subsystem's main functions are to condition raw electrical power generated by the RAC power plant and deliver it to the spacecraft payloads. This paper

9. The HEMP (high altitude electromagnetic pulse) response of an overhead power distribution line

SciTech Connect

Tesche, F.M.; Barnes, P.R.

1988-01-01

A study of the HEMP response of a realistic power distribution system was undertaken, and its results are described in this paper. This study involved the following elements: (1) the use of the new HEMP environment, (2) the use of a multiconductor coupling model, and (3) the measurement of the pulse response of an actual distribution transformer to permit the use of this data in the analysis.

10. Intelligent Monitoring System with High Temperature Distributed Fiberoptic Sensor for Power Plant Combustion Processes

SciTech Connect

Kwang Y. Lee; Stuart S. Yin; Andre Boehman

2006-09-26

The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, we have set up a dedicated high power, ultrafast laser system for fabricating in-fiber gratings in harsh environment optical fibers, successfully fabricated gratings in single crystal sapphire fibers by the high power laser system, and developed highly sensitive long period gratings (lpg) by electric arc. Under Task 2, relevant mathematical modeling studies of NOx formation in practical combustors have been completed. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we have investigated a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. Given a set of empirical data with no analytic expression, we first developed an analytic description and then extended that model along a single axis.

11. Thermal power systems, point-focusing distributed receiver technology project. Volume 2: Detailed report

NASA Technical Reports Server (NTRS)

Lucas, J.

1979-01-01

Thermal or electrical power from the sun's radiated energy through Point-Focusing Distributed Receiver technology is the goal of this Project. The energy thus produced must be economically competitive with other sources. The Project supports the industrial development of technology and hardware for extracting energy from solar power to achieve the stated goal. Present studies are working to concentrate the solar energy through mirrors or lenses, to a working fluid or gas, and through a power converter change to an energy source useful to man. Rankine-cycle and Brayton-cycle engines are currently being developed as the most promising energy converters for our near future needs.

12. Nonlinear recurrent neural network predictive control for energy distribution of a fuel cell powered robot.

PubMed

Chen, Qihong; Long, Rong; Quan, Shuhai; Zhang, Liyan

2014-01-01

This paper presents a neural network predictive control strategy to optimize power distribution for a fuel cell/ultracapacitor hybrid power system of a robot. We model the nonlinear power system by employing time variant auto-regressive moving average with exogenous (ARMAX), and using recurrent neural network to represent the complicated coefficients of the ARMAX model. Because the dynamic of the system is viewed as operating- state- dependent time varying local linear behavior in this frame, a linear constrained model predictive control algorithm is developed to optimize the power splitting between the fuel cell and ultracapacitor. The proposed algorithm significantly simplifies implementation of the controller and can handle multiple constraints, such as limiting substantial fluctuation of fuel cell current. Experiment and simulation results demonstrate that the control strategy can optimally split power between the fuel cell and ultracapacitor, limit the change rate of the fuel cell current, and so as to extend the lifetime of the fuel cell.

13. Nonlinear Recurrent Neural Network Predictive Control for Energy Distribution of a Fuel Cell Powered Robot

PubMed Central

Chen, Qihong; Long, Rong; Quan, Shuhai

2014-01-01

This paper presents a neural network predictive control strategy to optimize power distribution for a fuel cell/ultracapacitor hybrid power system of a robot. We model the nonlinear power system by employing time variant auto-regressive moving average with exogenous (ARMAX), and using recurrent neural network to represent the complicated coefficients of the ARMAX model. Because the dynamic of the system is viewed as operating- state- dependent time varying local linear behavior in this frame, a linear constrained model predictive control algorithm is developed to optimize the power splitting between the fuel cell and ultracapacitor. The proposed algorithm significantly simplifies implementation of the controller and can handle multiple constraints, such as limiting substantial fluctuation of fuel cell current. Experiment and simulation results demonstrate that the control strategy can optimally split power between the fuel cell and ultracapacitor, limit the change rate of the fuel cell current, and so as to extend the lifetime of the fuel cell. PMID:24707206

14. Directions in US Air Force space power energy generation and distribution technology

Reinhardt, Kitt; Keener, Dave; Schuller, Mike

1997-01-01

Recent trends in the development of high efficiency, light-weight, reliable and cost-effective space power technologies needed to support the development of near-term, next-generation government and commercial satellites will be discussed. Significant advancements in light-weight and reduced volume electrical power system (EPS) components are required to enable the design of future smallsats with power requirements of less than 1000 W to monster-sats having projected power demands ranging from 10-50 kW for civilian and military communications and space based radar needs. For these missions increased emphasis is placed on reducing total satellite mass to enable use of smaller, less costly, and easier to deploy launch vehicles. In support of these requirements a complement of power generation, power management and distribution, and energy storage technologies are under development at the Air Force Phillips Laboratory Space and Missiles Technology Directorate. Specific technologies presented in this paper include high efficiency multijunction solar cells, low-cost thin-film solar cells, ultra light-weight flexible solar arrays, solar electric thermal converters, and high-voltage (70-130 V) and high-efficiency power management and distribution (PMAD) electronics. The projected impact of EPS subsystem performance on existing, near-term, and next-generation 10-50 kW military satellites will be discussed, along with technical issues and status of EPS component development.

15. Space Station Power System issues

NASA Technical Reports Server (NTRS)

Forestieri, A. F.

1985-01-01

A number of attractive options are available for the Space Station Power System. These include a photovoltaic system or solar dynamic system for power generation, batteries or fuel cells for energy storage and ac or dc for power management and distribution. These options are being explored during the present preliminary design and definition phase of the Space Station Program. Final selections are presently targeted for January 1986.

16. System-level power optimization for real-time distributed embedded systems

Luo, Jiong

17. Power-law Distributions of Offspring and Generation Numbers in Branching Models of Earthquake Triggering

Saichev, A.; Helmstetter, A.; Sornette, D.

2005-06-01

We consider a general stochastic branching process,which is relevant to earthquakes as well as to many other systems, and we study the distributions of the total number of offsprings (direct and indirect aftershocks in seismicity) and of the total number of generations before extinction. We apply our results to a branching model of triggered seismicity, the ETAS (epidemic-type aftershock sequence) model. The ETAS model assumes that each earthquake can trigger other earthquakes (“aftershocks”). An aftershock sequence results in this model from the cascade of aftershocks of each past earthquake. Due to the large fluctuations of the number of aftershocks triggered directly by any earthquake (“fertility”), there is a large variability of the total number of aftershocks from one sequence to another, for the same mainshock magnitude. We study the regime in which the distribution of fertilities μ is characterized by a power law ~1/μ1+γ. For earthquakes we expect such a power-distribution of fertilities with γ=b/α based on the Gutenberg-Richter magnitude distribution ~ 10-bm and on the increase ~ 10-αm of the number of aftershocks with the mainshock magnitude m. We derive the asymptotic distributions pr(r) and pg(g) of the total number r of offsprings and of the total number g of generations until extinction following a mainshock. In the regime γ < 2 for which the distribution of fertilities has an infinite variance, we find This should be compared with the distributions obtained for standard branching processes with finite variance. These predictions are checked by numerical simulations. Our results apply directly to the ETAS model whose preferred values α=0.8 1 and b=1 puts it in the regime where the distribution of fertilities has an infinite variance. More generally, our results apply to any stochastic branching process with a power-law distribution of offsprings per mother

18. Power Hardware-in-the-Loop (PHIL) Testing Facility for Distributed Energy Storage (Poster)

SciTech Connect

Neubauer.J.; Lundstrom, B.; Simpson, M.; Pratt, A.

2014-06-01

The growing deployment of distributed, variable generation and evolving end-user load profiles presents a unique set of challenges to grid operators responsible for providing reliable and high quality electrical service. Mass deployment of distributed energy storage systems (DESS) has the potential to solve many of the associated integration issues while offering reliability and energy security benefits other solutions cannot. However, tools to develop, optimize, and validate DESS control strategies and hardware are in short supply. To fill this gap, NREL has constructed a power hardware-in-the-loop (PHIL) test facility that connects DESS, grid simulator, and load bank hardware to a distribution feeder simulation.

19. Mathematical model for the dc-ac inverter for the Space Shuttle

NASA Technical Reports Server (NTRS)

Berry, Frederick C.

1987-01-01

The reader is informed of what was done for the mathematical modeling of the dc-ac inverter for the Space Shuttle. The mathematical modeling of the dc-ac inverter is an essential element in the modeling of the electrical power distribution system of the Space Shuttle. The electrical power distribution system which is present on the Space Shuttle is made up to 3 strings each having a fuel cell which provides dc to those systems which require dc, and the inverters which convert the dc to ac for those elements which require ac. The inverters are units which are 2 wire structures for the main dc inputs and 2 wire structures for the ac output. When 3 are connected together a 4 wire wye connection results on the ac side. The method of modeling is performed by using a Least Squares curve fitting method. A computer program is presented for implementation of the model along with graphs and tables to demonstrate the accuracy of the model.

20. Statistical Evaluation of Voltage Variation of Power Distribution System with Clustered Home-Cogeneration Systems

Kato, Takeyoshi; Minagata, Atsushi; Suzuoki, Yasuo

This paper discusses the influence of mass installation of a home co-generation system (H-CGS) using a polymer electrolyte fuel cell (PEFC) on the voltage profile of power distribution system in residential area. The influence of H-CGS is compared with that of photovoltaic power generation systems (PV systems). The operation pattern of H-CGS is assumed based on the electricity and hot-water demand observed in 10 households for a year. The main results are as follows. With the clustered H-CGS, the voltage of each bus is higher by about 1-3% compared with the conventional system without any distributed generators. Because H-CGS tends to increase the output during the early evening, H-CGS contributes to recover the voltage drop during the early evening, resulting in smaller voltage variation of distribution system throughout a day. Because of small rated power output about 1kW, the influence on voltage profile by the clustered H-CGS is smaller than that by the clustered PV systems. The highest voltage during the day time is not so high as compared with the distribution system with the clustered PV systems, even if the reverse power flow from H-CGS is allowed.

1. An Estimation Method for Distribution System Load with Photovoltaic Power Generation based on ICA

Yamada, Takayoshi; Ishigame, Atsushi; Genji, Takamu

A large number of Dispersed Generations (DGs) are expected to be installed in distribution systems. Therefore the state estimation is important problem for stable and reliable system operation. However, it is difficult to estimate the total power of DGs connected to a load-side system from a metering spot on the distribution line because at the metering spot only a sum of the active-power from various loads and DGs can be measured. In this paper, we propose an estimation method for unknown DG-outputs connected to a distribution system. This method enables to estimate DG-outputs by analyzing a power flow data measured at one spot using independent component analysis (ICA). The estimation by ICA needs the same number of observations as estimations. However the observation spot is extremely limited in existing distribution system. So we propose an estimation method which enables to estimate DG-outputs and load-changes from only an observation by using known information of load power and a priori knowledge of insolation.

2. Model-Based Diagnosis in a Power Distribution Test-Bed

NASA Technical Reports Server (NTRS)

Scarl, E.; McCall, K.

1998-01-01

The Rodon model-based diagnosis shell was applied to a breadboard test-bed, modeling an automated power distribution system. The constraint-based modeling paradigm and diagnostic algorithm were found to adequately represent the selected set of test scenarios.

3. Comprehensive evaluation of power grid enterprises' credit rating under the reform of transmission and distribution price

Wang, Yongli; Wang, Gang; Zuo, Yi; Fan, Lisha; Wei, Jiaxiang

2017-03-01

On March 15, 2015, the central office issued the "Opinions on Further Deepening the Reform of Electric Power System" (in the 2015 No. 9). This policy marks the central government officially opened a new round of electricity reform. As a programmatic document under the new situation to comprehensively promote the reform of the power system, No. 9 document will be approved as a separate transmission and distribution of electricity prices, which is the first task of promoting the reform of the power system. Grid tariff reform is not only the transmission and distribution price of a separate approval, more of the grid company input-output relationship and many other aspects of deep-level adjustments. Under the background of the reform of the transmission and distribution price, the main factors affecting the input-output relationship, such as the main business, electricity pricing, and investment approval, financial accounting and so on, have changed significantly. The paper designed the comprehensive evaluation index system of power grid enterprises' credit rating under the reform of transmission and distribution price to reduce the impact of the reform on the company's international rating results and the ability to raise funds.

4. Power Relations in Creating and Distributing Official Knowledge in Children's Literature: "Historical Picture of Taiwan"

ERIC Educational Resources Information Center

Lu, Lin-Miao

2014-01-01

With a specific focus on power relations in creating and distributing knowledge in society, this study examines the government-published children's series "Historical Picture of Taiwan" produced in Taiwan in the Martial Law era (1949-1987) to uncover ideological assumptions and persuasions permeating both linguistic and visual…

5. Do Hegemons Distribute Private Goods?: A Test of Power-Transition Theory

ERIC Educational Resources Information Center

Bussmann, Margit; Oneal, John R.

2007-01-01

According to power-transition theory, war is most likely when the leading state is challenged by a rapidly growing, dissatisfied rival. Challengers are said to be dissatisfied because the hegemon manages the status quo for its own benefit, rewarding its allies and penalizing rivals. We assess the leading state's ability to distribute the private…

6. Angular distribution of undulator power for an arbitrary deflection parameter K

SciTech Connect

Kim, K.J.

1985-08-01

A calculation of the angular distribution of power generated from an undulator, integrated over all frequencies, is presented. The result, valid for any arbitrary value of the deflection parameter K, reduces to the known expressions in the cases K ..-->.. infinity and K ..-->.. 0.

7. Low-Power RF SOI-CMOS Technology for Distributed Sensor Networks

NASA Technical Reports Server (NTRS)

Dogan, Numan S.

2003-01-01

The objective of this work is to design and develop Low-Power RF SOI-CMOS Technology for Distributed Sensor Networks. We briefly report on the accomplishments in this work. We also list the impact of this work on graduate student research training/involvement.

8. Power system voltage stability and agent based distribution automation in smart grid

Nguyen, Cuong Phuc

2011-12-01

Our interconnected electric power system is presently facing many challenges that it was not originally designed and engineered to handle. The increased inter-area power transfers, aging infrastructure, and old technologies, have caused many problems including voltage instability, widespread blackouts, slow control response, among others. These problems have created an urgent need to transform the present electric power system to a highly stable, reliable, efficient, and self-healing electric power system of the future, which has been termed "smart grid". This dissertation begins with an investigation of voltage stability in bulk transmission networks. A new continuation power flow tool for studying the impacts of generator merit order based dispatch on inter-area transfer capability and static voltage stability is presented. The load demands are represented by lumped load models on the transmission system. While this representation is acceptable in traditional power system analysis, it may not be valid in the future smart grid where the distribution system will be integrated with intelligent and quick control capabilities to mitigate voltage problems before they propagate into the entire system. Therefore, before analyzing the operation of the whole smart grid, it is important to understand the distribution system first. The second part of this dissertation presents a new platform for studying and testing emerging technologies in advanced Distribution Automation (DA) within smart grids. Due to the key benefits over the traditional centralized approach, namely flexible deployment, scalability, and avoidance of single-point-of-failure, a new distributed approach is employed to design and develop all elements of the platform. A multi-agent system (MAS), which has the three key characteristics of autonomy, local view, and decentralization, is selected to implement the advanced DA functions. The intelligent agents utilize a communication network for cooperation and

9. A Wolf Pack Algorithm for Active and Reactive Power Coordinated Optimization in Active Distribution Network

Zhuang, H. M.; Jiang, X. J.

2016-08-01

This paper presents an active and reactive power dynamic optimization model for active distribution network (ADN), whose control variables include the output of distributed generations (DGs), charge or discharge power of energy storage system (ESS) and reactive power from capacitor banks. To solve the high-dimension nonlinear optimization model, a new heuristic swarm intelligent method, namely wolf pack algorithm (WPA) with better global convergence and computational robustness, is adapted so that the network loss minimization can be achieved. In this paper, the IEEE33-bus system is used to show the effectiveness of WPA technique compared with other techniques. Numerical tests on the modified IEEE 33-bus system show that WPA for active and reactive multi-period optimization of ADN is exact and effective.

10. Mitigation of Power Quality Problems in Grid-Interactive Distributed Generation System

Bhende, C. N.; Kalam, A.; Malla, S. G.

2016-04-01

Having an inter-tie between low/medium voltage grid and distributed generation (DG), both exposes to power quality (PQ) problems created by each other. This paper addresses various PQ problems arise due to integration of DG with grid. The major PQ problems are due to unbalanced and non-linear load connected at DG, unbalanced voltage variations on transmission line and unbalanced grid voltages which severely affect the performance of the system. To mitigate the above mentioned PQ problems, a novel integrated control of distribution static shunt compensator (DSTATCOM) is presented in this paper. DSTATCOM control helps in reducing the unbalance factor of PCC voltage. It also eliminates harmonics from line currents and makes them balanced. Moreover, DSTATCOM supplies the reactive power required by the load locally and hence, grid need not to supply the reactive power. To show the efficacy of the proposed controller, several operating conditions are considered and verified through simulation using MATLAB/SIMULINK.

11. Output power distributions of terminals in a 3G mobile communication network.

PubMed

2012-05-01

The objective of this study was to examine the distribution of the output power of mobile phones and other terminals connected to a 3G network in Sweden. It is well known that 3G terminals can operate with very low output power, particularly for voice calls. Measurements of terminal output power were conducted in the Swedish TeliaSonera 3G network in November 2008 by recording network statistics. In the analysis, discrimination was made between rural, suburban, urban, and dedicated indoor networks. In addition, information about terminal output power was possible to collect separately for voice and data traffic. Information from six different Radio Network Controllers (RNCs) was collected during at least 1 week. In total, more than 800000 h of voice calls were collected and in addition to that a substantial amount of data traffic. The average terminal output power for 3G voice calls was below 1 mW for any environment including rural, urban, and dedicated indoor networks. This is <1% of the maximum available output power. For data applications the average output power was about 6-8 dB higher than for voice calls. For rural areas the output power was about 2 dB higher, on average, than in urban areas.

12. Explaining the power-law distribution of human mobility through transportation modality decomposition.

PubMed

Zhao, Kai; Musolesi, Mirco; Hui, Pan; Rao, Weixiong; Tarkoma, Sasu

2015-03-16

Human mobility has been empirically observed to exhibit Lévy flight characteristics and behaviour with power-law distributed jump size. The fundamental mechanisms behind this behaviour has not yet been fully explained. In this paper, we propose to explain the Lévy walk behaviour observed in human mobility patterns by decomposing them into different classes according to the different transportation modes, such as Walk/Run, Bike, Train/Subway or Car/Taxi/Bus. Our analysis is based on two real-life GPS datasets containing approximately 10 and 20 million GPS samples with transportation mode information. We show that human mobility can be modelled as a mixture of different transportation modes, and that these single movement patterns can be approximated by a lognormal distribution rather than a power-law distribution. Then, we demonstrate that the mixture of the decomposed lognormal flight distributions associated with each modality is a power-law distribution, providing an explanation to the emergence of Lévy Walk patterns that characterize human mobility patterns.

13. Explaining the power-law distribution of human mobility through transportation modality decomposition

PubMed Central

Zhao, Kai; Musolesi, Mirco; Hui, Pan; Rao, Weixiong; Tarkoma, Sasu

2015-01-01

Human mobility has been empirically observed to exhibit Lévy flight characteristics and behaviour with power-law distributed jump size. The fundamental mechanisms behind this behaviour has not yet been fully explained. In this paper, we propose to explain the Lévy walk behaviour observed in human mobility patterns by decomposing them into different classes according to the different transportation modes, such as Walk/Run, Bike, Train/Subway or Car/Taxi/Bus. Our analysis is based on two real-life GPS datasets containing approximately 10 and 20 million GPS samples with transportation mode information. We show that human mobility can be modelled as a mixture of different transportation modes, and that these single movement patterns can be approximated by a lognormal distribution rather than a power-law distribution. Then, we demonstrate that the mixture of the decomposed lognormal flight distributions associated with each modality is a power-law distribution, providing an explanation to the emergence of Lévy Walk patterns that characterize human mobility patterns. PMID:25779306

14. Power law behavior of the isotope yield distributions in the multifragmentation regime of heavy ion reactions

Huang, M.; Wada, R.; Chen, Z.; Keutgen, T.; Kowalski, S.; Hagel, K.; Barbui, M.; Bonasera, A.; Bottosso, C.; Materna, T.; Natowitz, J. B.; Qin, L.; Rodrigues, M. R. D.; Sahu, P. K.; Schmidt, K. J.; Wang, J.

2010-11-01

Isotope yield distributions in the multifragmentation regime were studied with high-quality isotope identification, focusing on the intermediate mass fragments (IMFs) produced in semiviolent collisions. The yields were analyzed within the framework of a modified Fisher model. Using the ratio of the mass-dependent symmetry energy coefficient relative to the temperature, asym/T, extracted in previous work and that of the pairing term, ap/T, extracted from this work, and assuming that both reflect secondary decay processes, the experimentally observed isotope yields were corrected for these effects. For a given I=N-Z value, the corrected yields of isotopes relative to the yield of C12 show a power law distribution Y(N,Z)/Y(12C)~A-τ in the mass range 1⩽A⩽30, and the distributions are almost identical for the different reactions studied. The observed power law distributions change systematically when I of the isotopes changes and the extracted τ value decreases from 3.9 to 1.0 as I increases from -1 to 3. These observations are well reproduced by a simple deexcitation model, with which the power law distribution of the primary isotopes is determined to be τprim=2.4±0.2, suggesting that the disassembling system at the time of the fragment formation is indeed at, or very near, the critical point.

15. Explaining the power-law distribution of human mobility through transportation modality decomposition

Zhao, Kai; Musolesi, Mirco; Hui, Pan; Rao, Weixiong; Tarkoma, Sasu

2015-03-01

Human mobility has been empirically observed to exhibit Lévy flight characteristics and behaviour with power-law distributed jump size. The fundamental mechanisms behind this behaviour has not yet been fully explained. In this paper, we propose to explain the Lévy walk behaviour observed in human mobility patterns by decomposing them into different classes according to the different transportation modes, such as Walk/Run, Bike, Train/Subway or Car/Taxi/Bus. Our analysis is based on two real-life GPS datasets containing approximately 10 and 20 million GPS samples with transportation mode information. We show that human mobility can be modelled as a mixture of different transportation modes, and that these single movement patterns can be approximated by a lognormal distribution rather than a power-law distribution. Then, we demonstrate that the mixture of the decomposed lognormal flight distributions associated with each modality is a power-law distribution, providing an explanation to the emergence of Lévy Walk patterns that characterize human mobility patterns.

16. A rigorous analysis of the power distribution in plastic clad annular core optical fibers

Choudhury, P. K.; Yoshino, Toshihiko

Using Maxwell's field equations, an analytical investigation is presented of the relative power distributions in the different sections of a step-index plastic clad annular core optical fiber (ACF) operating in the infrared region of the electromagnetic (EM) spectrum. It is assumed that the fiber cross-section is made of two concentric circles, and the EM waves propagate through the annular region. The chosen fiber materials are widely used in low cost optical links. The wave equations are solved in the different sections of the fiber, and the general expressions for power in the core and the cladding regions are finally deduced. Plots are shown of the variation of fractional power (or the power confinement factor) in all the fiber sections against the propagation constants of sustained modes. The cases of three lowest azimuthal modal indices (i.e. meridional as well as skew modes) are described. It is observed that the confinement of power in the core section is increased for ACFs of larger cross-sectional dimensions. Also, a fairly uniform distribution of power over the sustained modes remains for large sized fibers, and this uniformity is greatly affected in ACFs of smaller dimensions. It is suggested that, because of strong evanescent fields, ACFs can be of potential use in chemical sensing. Apart from this, it is also presumed that these may be useful in the areas of communications. The improved mechanical strength adds the potentiality of ACFs.

17. A Cost to Benefit Analysis of a Next Generation Electric Power Distribution System

Raman, Apurva

This thesis provides a cost to benefit analysis of the proposed next generation of distribution systems- the Future Renewable Electric Energy Distribution Management (FREEDM) system. With the increasing penetration of renewable energy sources onto the grid, it becomes necessary to have an infrastructure that allows for easy integration of these resources coupled with features like enhanced reliability of the system and fast protection from faults. The Solid State Transformer (SST) and the Fault Isolation Device (FID) make for the core of the FREEDM system and have huge investment costs. Some key features of the FREEDM system include improved power flow control, compact design and unity power factor operation. Customers may observe a reduction in the electricity bill by a certain fraction for using renewable sources of generation. There is also a possibility of huge subsidies given to encourage use of renewable energy. This thesis is an attempt to quantify the benefits offered by the FREEDM system in monetary terms and to calculate the time in years required to gain a return on investments made. The elevated cost of FIDs needs to be justified by the advantages they offer. The result of different rates of interest and how they influence the payback period is also studied. The payback periods calculated are observed for viability. A comparison is made between the active power losses on a certain distribution feeder that makes use of distribution level magnetic transformers versus one that makes use of SSTs. The reduction in the annual active power losses in the case of the feeder using SSTs is translated onto annual savings in terms of cost when compared to the conventional case with magnetic transformers. Since the FREEDM system encourages operation at unity power factor, the need for installing capacitor banks for improving the power factor is eliminated and this reflects in savings in terms of cost. The FREEDM system offers enhanced reliability when compared to a

18. A Latency-Tolerant Partitioner for Distributed Computing on the Information Power Grid

NASA Technical Reports Server (NTRS)

Das, Sajal K.; Harvey, Daniel J.; Biwas, Rupak; Kwak, Dochan (Technical Monitor)

2001-01-01

NASA's Information Power Grid (IPG) is an infrastructure designed to harness the power of graphically distributed computers, databases, and human expertise, in order to solve large-scale realistic computational problems. This type of a meta-computing environment is necessary to present a unified virtual machine to application developers that hides the intricacies of a highly heterogeneous environment and yet maintains adequate security. In this paper, we present a novel partitioning scheme. called MinEX, that dynamically balances processor workloads while minimizing data movement and runtime communication, for applications that are executed in a parallel distributed fashion on the IPG. We also analyze the conditions that are required for the IPG to be an effective tool for such distributed computations. Our results show that MinEX is a viable load balancer provided the nodes of the IPG are connected by a high-speed asynchronous interconnection network.

19. Experimental determination of the MHD-EMP effects on power distribution transformers

SciTech Connect

McConnell, B.W.; Barnes, P.R. ); Tesche, F.M. , Dallas, TX )

1991-01-01

It is a well-established fact that geomagnetic storms influence electrical power transmission and distribution systems. Previous cases of such storms in the northern latitudes have resulted in occasional power disruptions, and in some cases, damage to transformers. These effects are caused by a time variation of the earth's magnetic field creating an induced electric field along the surface of the earth. This E-field acts as a voltage source along long power transmission or distribution lines, and if the line is connected to the earth at both ends, a quasi-dc current can flow. This current can cause unwanted saturation in the magnetic cores of transformers in the power system, and this, in turn produces harmonic distortion and transformer heating. This can lead to system upset (shutdown) and possibly transformer burn-out. The detonation of a high altitude nuclear explosion is also known to affect the magnetosphere, producing late-time variations of the earth's magnetic field for several hundreds of seconds. Known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), or E{sub 3}, this environment is of particular concern to electrical power systems in the event of a nuclear attack. Although the MHD-EMP induced currents can be significantly larger in magnitude, they last for a shorter period of time than do those from a geomagnetic storm. The effect of this environment compounds the adverse effects of the early-time high altitude EMP (HEMP) environment, posing a potentially serious threat to the electrical system. The present paper documents an experimental program designed to better understand the behavior of distribution-class transformers subjected to quasi-dc current excitation. Given the knowledge of the MHD-EMP-induced current flowing in a long power line, and the transformer response characteristics obtained in this program, it will be possible to make more accurate assessments of the behavior of the overall power system to EMP. 7 refs., 5 figs.

20. Catchment power and the joint distribution of elevation and travel distance to the outlet

Sklar, Leonard S.; Riebe, Clifford S.; Lukens, Claire E.; Bellugi, Dino

2016-10-01

The delivery of water, sediment, and solutes by catchments is influenced by the distribution of source elevations and their travel distances to the outlet. For example, elevation affects the magnitude and phase of precipitation, as well as the climatic factors that govern rock weathering, which influence the production rate and initial particle size of sediments. Travel distance, in turn, affects the timing of flood peaks at the outlet and the degree of sediment size reduction by wear, which affects particle size distributions at the outlet. The distributions of elevation and travel distance have been studied extensively but separately, as the hypsometric curve and width function. Yet a catchment can be considered as a collection of points, each with paired values of elevation and travel distance. For every point, the ratio of elevation to travel distance defines the mean slope for transport of mass to the outlet. Recognizing that mean slope is proportional to the average rate of loss of potential energy by water and sediment during transport to the outlet, we use the joint distribution of elevation and travel distance to define two new metrics for catchment geometry: "source-area power", and the corresponding catchment-wide integral "catchment power". We explore patterns in source-area and catchment power across three study catchments spanning a range of relief and drainage area. We then develop an empirical algorithm for generating synthetic source-area power distributions, which can be parameterized with data from natural catchments. This new way of quantifying the three-dimensional geometry of catchments can be used to explore the effects of topography on the distribution on fluxes of water, sediment, isotopes, and other landscape products passing through catchment outlets, and may provide a fresh perspective on problems of both practical and theoretical interest.

1. Mapping Power Law Distributions in Digital Health Social Networks: Methods, Interpretations, and Practical Implications

PubMed Central

2015-01-01

Background Social networks are common in digital health. A new stream of research is beginning to investigate the mechanisms of digital health social networks (DHSNs), how they are structured, how they function, and how their growth can be nurtured and managed. DHSNs increase in value when additional content is added, and the structure of networks may resemble the characteristics of power laws. Power laws are contrary to traditional Gaussian averages in that they demonstrate correlated phenomena. Objectives The objective of this study is to investigate whether the distribution frequency in four DHSNs can be characterized as following a power law. A second objective is to describe the method used to determine the comparison. Methods Data from four DHSNs—Alcohol Help Center (AHC), Depression Center (DC), Panic Center (PC), and Stop Smoking Center (SSC)—were compared to power law distributions. To assist future researchers and managers, the 5-step methodology used to analyze and compare datasets is described. Results All four DHSNs were found to have right-skewed distributions, indicating the data were not normally distributed. When power trend lines were added to each frequency distribution, R 2 values indicated that, to a very high degree, the variance in post frequencies can be explained by actor rank (AHC .962, DC .975, PC .969, SSC .95). Spearman correlations provided further indication of the strength and statistical significance of the relationship (AHC .987. DC .967, PC .983, SSC .993, P<.001). Conclusions This is the first study to investigate power distributions across multiple DHSNs, each addressing a unique condition. Results indicate that despite vast differences in theme, content, and length of existence, DHSNs follow properties of power laws. The structure of DHSNs is important as it gives insight to researchers and managers into the nature and mechanisms of network functionality. The 5-step process undertaken to compare actor contribution patterns

2. Performance of marine power plant given generator, main and distribution switchboard failures

Kumar, Amit; Ram, Mangey

2015-12-01

Power generation is one of the most essential functions of any plant for continuous functioning without any interruption. A marine power plant (MPP) is in the same situation. In the present paper, the authors have tried to find the various reliability characteristics of a MPP. Using a marine power plant composed of two generators in which one of them is located at the stern and another at the bow, both associated to the main switch board (MSB). The distributive switch boards (DSB) receive power from the MSB through cables and their respective junctions. Given that arrangement, a working based transition state diagram has been generated. With the help of the Markov process, a number of intro-differential equations are formed and solved by Laplace transform. Various reliability characteristics are calculated and discussed with the help of graphs.

3. Independent Orbiter Assessment (IOA): Analysis of the electrical power generation/power reactant storage and distribution subsystem

NASA Technical Reports Server (NTRS)

Gotch, S. M.

1986-01-01

The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NAA FMEA/CIL documentation. The independent analysis results corresponding to the Orbiter Electrical Power Generation (EPG)/Power Reactants Storage and Distribution (PRSD) System Hardware is documented. The EPG/PRSD hardware is required for performing critical functions of cryogenic hydrogen and oxygen storage and distribution to the Fuel Cell Powerplants (FCP) and Atmospheric Revitalization Pressure Control Subsystem (ARPCS). Specifically, the EPG/PRSD hardware consists of the following: Hydryogen (H2) tanks; Oxygen (O2) tanks; H2 Relief Valve/Filter Packages (HRVFP); O2 Relief Valve/Filter Packages (ORVFP); H2 Valve Modules (HVM); O2 Valve Modules (OVM); and O2 and H2 lines, components, and fittings.

4. Linearized image reconstruction method for ultrasound modulated electrical impedance tomography based on power density distribution

Song, Xizi; Xu, Yanbin; Dong, Feng

2017-04-01

Electrical resistance tomography (ERT) is a promising measurement technique with important industrial and clinical applications. However, with limited effective measurements, it suffers from poor spatial resolution due to the ill-posedness of the inverse problem. Recently, there has been an increasing research interest in hybrid imaging techniques, utilizing couplings of physical modalities, because these techniques obtain much more effective measurement information and promise high resolution. Ultrasound modulated electrical impedance tomography (UMEIT) is one of the newly developed hybrid imaging techniques, which combines electric and acoustic modalities. A linearized image reconstruction method based on power density is proposed for UMEIT. The interior data, power density distribution, is adopted to reconstruct the conductivity distribution with the proposed image reconstruction method. At the same time, relating the power density change to the change in conductivity, the Jacobian matrix is employed to make the nonlinear problem into a linear one. The analytic formulation of this Jacobian matrix is derived and its effectiveness is also verified. In addition, different excitation patterns are tested and analyzed, and opposite excitation provides the best performance with the proposed method. Also, multiple power density distributions are combined to implement image reconstruction. Finally, image reconstruction is implemented with the linear back-projection (LBP) algorithm. Compared with ERT, with the proposed image reconstruction method, UMEIT can produce reconstructed images with higher quality and better quantitative evaluation results.

5. Distributed Multi-Agent-Based Protection Scheme for Transient Stability Enhancement in Power Systems

Rahman, M. S.; Mahmud, M. A.; Pota, H. R.; Hossain, M. J.; Orchi, T. F.

2015-04-01

This paper presents a new distributed agent-based scheme to enhance the transient stability of power systems by maintaining phase angle cohesiveness of interconnected generators through proper relay coordination with critical clearing time (CCT) information. In this distributed multi-agent infrastructure, intelligent agents represent various physical device models to provide dynamic information and energy flow among different physical processes of power systems. The agents can communicate with each other in a distributed manner with a final aim to control circuit breakers (CBs) with CCT information as this is the key issue for maintaining and enhancing the transient stability of power systems. The performance of the proposed scheme is evaluated on a standard IEEE 39-bus New England benchmark system under different large disturbances such as three-phase short-circuit faults and changes in loads within the systems. From the simulation results, it is found that the proposed scheme significantly enhances the transient stability of power systems as compared to a conventional scheme of static CB operation.

6. Distributed multiple-anodes benthic microbial fuel cell as reliable power source for subsea sensors

Liu, Bingchuan; Weinstein, Alyssa; Kolln, Michael; Garrett, Caleb; Wang, Lei; Bagtzoglou, Amvrossios; Karra, Udayarka; Li, Yan; Li, Baikun

2015-07-01

A new type distributed benthic microbial fuel cell (MFC) (DBMFC) consisting of 18 MFC arrays was developed to enhance the robustness and stability of the power source for subsea sensor networks. A power management system (PMS) was integrated into the DBMFC system to boost the power output for two temperature sensors. The PMS was specifically designed with 18 charge pumps capable of simultaneously harvesting energy from 6 MFC units (18 anodes total) in the DBMFC system. The pilot scale DBMFC (total sediment volume: 1 m3) with continuous ocean water supply showed that the power outputs of individual MFC units were affected by the organic carbon and nitrogen contents in the sediment pore water. The MFC units with higher power output resulted in faster charging/discharging rate of the PMS supercapacitor. Manual disconnection of anodes from the PMS was conducted to simulate the anode malfunction caused by bioturbation. Fewer functional anodes (e.g. 12 out of 18 anodes were disconnected) slowed the charging/discharging rate of the PMS supercapacitor but still supported the PMS to regularly power two sensors. This scale-up DBMFC/PMS/sensor study demonstrated that multiple MFC units with multiple PMS substantially enhanced the stability and robustness of power supply to subsea sensors.

7. High voltage systems (tube-type microwave)/low voltage system (solid-state microwave) power distribution

NASA Technical Reports Server (NTRS)

Nussberger, A. A.; Woodcock, G. R.

1980-01-01

SPS satellite power distribution systems are described. The reference Satellite Power System (SPS) concept utilizes high-voltage klystrons to convert the onboard satellite power from dc to RF for transmission to the ground receiving station. The solar array generates this required high voltage and the power is delivered to the klystrons through a power distribution subsystem. An array switching of solar cell submodules is used to maintain bus voltage regulation. Individual klystron dc voltage conversion is performed by centralized converters. The on-board data processing system performs the necessary switching of submodules to maintain voltage regulation. Electrical power output from the solar panels is fed via switch gears into feeder buses and then into main distribution buses to the antenna. Power also is distributed to batteries so that critical functions can be provided through solar eclipses.

8. Economic optimization of the energy transport component of a large distributed solar power plant

NASA Technical Reports Server (NTRS)

Turner, R. H.

1976-01-01

A solar thermal power plant with a field of collectors, each locally heating some transport fluid, requires a pipe network system for eventual delivery of energy power generation equipment. For a given collector distribution and pipe network geometry, a technique is herein developed which manipulates basic cost information and physical data in order to design an energy transport system consistent with minimized cost constrained by a calculated technical performance. For a given transport fluid and collector conditions, the method determines the network pipe diameter and pipe thickness distribution and also insulation thickness distribution associated with minimum system cost; these relative distributions are unique. Transport losses, including pump work and heat leak, are calculated operating expenses and impact the total system cost. The minimum cost system is readily selected. The technique is demonstrated on six candidate transport fluids to emphasize which parameters dominate the system cost and to provide basic decision data. Three different power plant output sizes are evaluated in each case to determine severity of diseconomy of scale.

9. Empirical analysis on the connection between power-law distributions and allometries for urban indicators

Alves, L. G. A.; Ribeiro, H. V.; Lenzi, E. K.; Mendes, R. S.

2014-09-01

We report on the existing connection between power-law distributions and allometries. As it was first reported in Gomez-Lievano et al. (2012) for the relationship between homicides and population, when these urban indicators present asymptotic power-law distributions, they can also display specific allometries among themselves. Here, we present an extensive characterization of this connection when considering all possible pairs of relationships from twelve urban indicators of Brazilian cities (such as child labor, illiteracy, income, sanitation and unemployment). Our analysis reveals that all our urban indicators are asymptotically distributed as power laws and that the proposed connection also holds for our data when the allometric relationship displays enough correlations. We have also found that not all allometric relationships are independent and that they can be understood as a consequence of the allometric relationship between the urban indicator and the population size. We further show that the residuals fluctuations surrounding the allometries are characterized by an almost constant variance and log-normal distributions.

10. Design method for a laser line beam shaper of a general 1D angular power distribution

Oved, E.; Oved, A.

2016-05-01

Laser line is a beam of laser, spanned in one direction using a beam shaper to form a fan of light. This illumination tool is important in laser aided machine vision, 3D scanners, and remote sensing. For some applications the laser line should have a specific angular power distribution. If the distribution is nonsymmetrical, the beam shaper is required to be nonsymmetrical freeform, and its design process using optical design software is time consuming due to the long optimization process which usually converges to some local minimum. In this paper we introduce a new design method of a single element refractive beam shaper of any predefined general 1D angular power distribution. The method makes use of a notion of "prism space", a geometrical representation of all double refraction prisms, and any 1D beam shaper can be described by a continuous curve in this space. It is shown that infinitely many different designs are possible for any given power distribution, and it is explained how an optimal design is selected among them, based on criteria such as high transmission, low surface slopes, robustness to manufacturing errors etc. The method is non-parametric and hence does not require initial guess of a functional form, and the resultant optical surfaces are described by a sequence of points, rather than by an analytic function.

11. Development of a Bio-nanobattery for Distributed Power Storage Systems

NASA Technical Reports Server (NTRS)

King, Glen C.; Choi, Sang H.; Chu, Sang-Hyon; Kim, Jae-Woo; Park, Yeonjoon; Lillehei, Peter; Watt, Gerald D.; Davis, Robert; Harb, John N.

2004-01-01

Currently available power storage systems, such as those used to supply power to microelectronic devices, typically consist of a single centralized canister and a series of wires to supply electrical power to where it is needed in a circuit. As the size of electrical circuits and components become smaller, there exists a need for a distributed power system to reduce Joule heating, wiring, and to allow autonomous operation of the various functions performed by the circuit. Our research is being conducted to develop a bio-nanobattery using ferritins reconstituted with both an iron core (Fe-ferritin) and a cobalt core (Co-ferritin). Both Co-ferritin and Fe-ferritin were synthesized and characterized as candidates for the bio-nanobattery. The reducing capability was determined as well as the half-cell electrical potentials, indicating an electrical output of nearly 0.5 V for the battery cell. Ferritins having other metallic cores are also being investigated, in order to increase the overall electrical output. Two dimensional ferritin arrays were also produced on various substrates, demonstrating the necessary building blocks for the bio-nanobattery. The bio-nanobattery will play a key role in moving to a distributed power storage system for electronic applications.

12. Origins of power-law degree distribution in the heterogeneity of human activity in social networks

PubMed Central

Muchnik, Lev; Pei, Sen; Parra, Lucas C.; Reis, Saulo D. S.; Andrade Jr, José S.; Havlin, Shlomo; Makse, Hernán A.

2013-01-01

The probability distribution of number of ties of an individual in a social network follows a scale-free power-law. However, how this distribution arises has not been conclusively demonstrated in direct analyses of people's actions in social networks. Here, we perform a causal inference analysis and find an underlying cause for this phenomenon. Our analysis indicates that heavy-tailed degree distribution is causally determined by similarly skewed distribution of human activity. Specifically, the degree of an individual is entirely random - following a “maximum entropy attachment” model - except for its mean value which depends deterministically on the volume of the users' activity. This relation cannot be explained by interactive models, like preferential attachment, since the observed actions are not likely to be caused by interactions with other people. PMID:23648793

13. Origins of power-law degree distribution in the heterogeneity of human activity in social networks.

PubMed

Muchnik, Lev; Pei, Sen; Parra, Lucas C; Reis, Saulo D S; Andrade, José S; Havlin, Shlomo; Makse, Hernán A

2013-01-01

The probability distribution of number of ties of an individual in a social network follows a scale-free power-law. However, how this distribution arises has not been conclusively demonstrated in direct analyses of people's actions in social networks. Here, we perform a causal inference analysis and find an underlying cause for this phenomenon. Our analysis indicates that heavy-tailed degree distribution is causally determined by similarly skewed distribution of human activity. Specifically, the degree of an individual is entirely random - following a "maximum entropy attachment" model - except for its mean value which depends deterministically on the volume of the users' activity. This relation cannot be explained by interactive models, like preferential attachment, since the observed actions are not likely to be caused by interactions with other people.

14. Inter-Vehicle Communication System Utilizing Autonomous Distributed Transmit Power Control

Hamada, Yuji; Sawa, Yoshitsugu; Goto, Yukio; Kumazawa, Hiroyuki

In ad-hoc network such as inter-vehicle communication (IVC) system, safety applications that vehicles broadcast the information such as car velocity, position and so on periodically are considered. In these applications, if there are many vehicles broadcast data in a communication area, congestion incurs a problem decreasing communication reliability. We propose autonomous distributed transmit power control method to keep high communication reliability. In this method, each vehicle controls its transmit power using feed back control. Furthermore, we design a communication protocol to realize the proposed method, and we evaluate the effectiveness of proposed method using computer simulation.

15. Voltage profile program for the Kennedy Space Center electric power distribution system

NASA Technical Reports Server (NTRS)

1976-01-01

The Kennedy Space Center voltage profile program computes voltages at all busses greater than 1 Kv in the network under various conditions of load. The computation is based upon power flow principles and utilizes a Newton-Raphson iterative load flow algorithm. Power flow conditions throughout the network are also provided. The computer program is designed for both steady state and transient operation. In the steady state mode, automatic tap changing of primary distribution transformers is incorporated. Under transient conditions, such as motor starts etc., it is assumed that tap changing is not accomplished so that transformer secondary voltage is allowed to sag.

16. A Galvanically Isolated Power Converter Module for DC Zonal Electric Distribution Systems

DTIC Science & Technology

2006-03-01

in either the form of Diesel Engines on surface ships, and a diesel generator and batteries on submarines. Additional backup is provided to...Taking the Laplace transform of equation 3.29 yields: c 2 v E ˆ 1 1d LCa CR LC s s = ⎛ ⎞+ +⎜ ⎟ ⎝ ⎠ (3.30) Equation 3.30 is the open loop transfer...placement of alternate power sources such as batteries , fuel cells, micro-turbines or diesel engines. Backup or distributed power sources would be

17. INTELLIGENT MONITORING SYSTEM WITH HIGH TEMPERATURE DISTRIBUTED FIBEROPTIC SENSOR FOR POWER PLANT COMBUSTION PROCESSES

SciTech Connect

Kwang Y. Lee; Stuart S. Yin; Andre Boheman

2004-12-26

The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, improvement was made on the performance of in-fiber grating fabricated in single crystal sapphire fibers, test was performed on the grating performance of single crystal sapphire fiber with new fabrication methods, and the fabricated grating was applied to high temperature sensor. Under Task 2, models obtained from 3-D modeling of the Demonstration Boiler were used to study relationships between temperature and NOx, as the multi-dimensionality of such systems are most comparable with real-life boiler systems. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we investigate a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. The 3D temperature data is furnished by the Penn State Energy Institute using FLUENT. Given a set of empirical data with no analytic

18. Advanced Power Electronic Interfaces for Distributed Energy Systems, Part 2: Modeling, Development, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter

SciTech Connect

Chakraborty, S.; Kroposki, B.; Kramer, W.

2008-11-01

Integrating renewable energy and distributed generations into the Smart Grid architecture requires power electronic (PE) for energy conversion. The key to reaching successful Smart Grid implementation is to develop interoperable, intelligent, and advanced PE technology that improves and accelerates the use of distributed energy resource systems. This report describes the simulation, design, and testing of a single-phase DC-to-AC inverter developed to operate in both islanded and utility-connected mode. It provides results on both the simulations and the experiments conducted, demonstrating the ability of the inverter to provide advanced control functions such as power flow and VAR/voltage regulation. This report also analyzes two different techniques used for digital signal processor (DSP) code generation. Initially, the DSP code was written in C programming language using Texas Instrument's Code Composer Studio. In a later stage of the research, the Simulink DSP toolbox was used to self-generate code for the DSP. The successful tests using Simulink self-generated DSP codes show promise for fast prototyping of PE controls.

19. Magnetohydrodynamic electromagnetic pulse (MHD-EMP) interaction with power transmission and distribution systems

SciTech Connect

Tesche, F.M. , Dallas, TX ); Barnes, P.R. ); Meliopoulos, A.P.S. . Dept. of Electrical Engineering)

1992-02-01

This report discusses the effects of the late-time high-altitude electromagnetic pulse (HEMP) on electrical transmission and distribution (T D) systems. This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), is a very slowly varying electric field induced in the earth's surface, similar to the field induced by a geomagnetic storm. It can result in the flow of a quasi-dc current in grounded power lines and in the subsequent magnetic saturation of transformers. This saturation, in turn, causes 6-Hz harmonic distortion and an increase in the reactive power required by generation facilities. This report analyzes and discusses these phenomena. The MHD-EMP environment is briefly discussed, and a simplified form of the earth-induced electric field is developed for use in a parametric study of transmission line responses. Various field coupling models are described, and calculated results for the responses of both transmission- and distribution-class power lines are presented. These calculated responses are compared with measurements of transformer operation under dc excitation to infer the MHD-EMP response of these power system components. It is found that the MHD-EMP environment would have a marked effect on a power system by inducing up to several hundreds of amperes of quasi-dc current on power lines. These currents will cause transformers to saturate which could result in excessive harmonic generation, voltage swings, and voltage suppression. The design of critical facilities which are required to operate during and after MHD-EMP events will have to be modified in order to mitigate the effects of these abnormal power system conditions.

20. Magnetohydrodynamic electromagnetic pulse (MHD-EMP) interaction with power transmission and distribution systems

SciTech Connect

Tesche, F.M.; Barnes, P.R.; Meliopoulos, A.P.S.

1992-02-01

This report discusses the effects of the late-time high-altitude electromagnetic pulse (HEMP) on electrical transmission and distribution (T&D) systems. This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), is a very slowly varying electric field induced in the earth`s surface, similar to the field induced by a geomagnetic storm. It can result in the flow of a quasi-dc current in grounded power lines and in the subsequent magnetic saturation of transformers. This saturation, in turn, causes 6-Hz harmonic distortion and an increase in the reactive power required by generation facilities. This report analyzes and discusses these phenomena. The MHD-EMP environment is briefly discussed, and a simplified form of the earth-induced electric field is developed for use in a parametric study of transmission line responses. Various field coupling models are described, and calculated results for the responses of both transmission- and distribution-class power lines are presented. These calculated responses are compared with measurements of transformer operation under dc excitation to infer the MHD-EMP response of these power system components. It is found that the MHD-EMP environment would have a marked effect on a power system by inducing up to several hundreds of amperes of quasi-dc current on power lines. These currents will cause transformers to saturate which could result in excessive harmonic generation, voltage swings, and voltage suppression. The design of critical facilities which are required to operate during and after MHD-EMP events will have to be modified in order to mitigate the effects of these abnormal power system conditions.