Science.gov

Sample records for ac servo motors

  1. Fuzzy control of small servo motors

    NASA Technical Reports Server (NTRS)

    Maor, Ron; Jani, Yashvant

    1993-01-01

    To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.

  2. ac bidirectional motor controller

    NASA Technical Reports Server (NTRS)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  3. 12. Turbine Pit Servo Motors of Unit 1, view to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Turbine Pit Servo Motors of Unit 1, view to the southeast. The servo motors are set into wall recesses and operated by the governors. Note the wicket gate linkages visible in the lower center of the photograph, between the deck plates and the operating ring. Also note the wicket gate linkage grease lines along the wall just below the lights. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  4. Application of fuzzy logic in the speed control of AC servo system and an intelligent inverter

    SciTech Connect

    Fengfu Cheng; Shengnian Yeh . Dept. of Electrical Engineering)

    1993-06-01

    This paper presents a novel fuzzy logic controller for use in the fully digital speed control of ac servo systems. A new intelligent inverter is also proposed to reduce the switching loss and the current harmonics in induction motors. A 16-bit single-chip microprocessor is used to reduce the number of circuit components for cost reduction and reliability enhancement. In order to facilitate the instantaneous control of motor torque, indirect field orientation is adopted along with a current regulated pulse-width-modulation voltage-source inverter (CRPWM VSI). Computer simulation is first given to assess the feasibility of the system proposed. Circuit design and software development are then undertaken. Simulation results are verified experimentally.

  5. Modeling of R/C Servo Motor and Application to Underactuated Mechanical Systems

    NASA Astrophysics Data System (ADS)

    Ishikawa, Masato; Kitayoshi, Ryohei; Wada, Takashi; Maruta, Ichiro; Sugie, Toshiharu

    An R/C servo motor is a compact package of a DC geard-motor associated with a position servo controller. They are widely used in small-sized robotics and mechatronics by virtue of their compactness, easiness-to-use and high/weight ratio. However, it is crucial to clarify their internal model (including the embedded position servo) in order to improve control performance of mechatronic systems using R/C servo motors, such as biped robots or underactuted sysyems. In this paper, we propose a simple and realistic internal model of the R/C servo motors including the embedded servo controller, and estimate their physical parameters using continuous-time system identification method. We also provide a model of reference-to-torque transfer function so that we can estimate the internal torque acting on the load.

  6. Three phase AC motor controller

    DOEpatents

    Vuckovich, Michael; Wright, Maynard K.; Burkett, John P.

    1984-03-20

    A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.

  7. Permanent magnet synchronous motor servo system control based on μC/OS

    NASA Astrophysics Data System (ADS)

    Shi, Chongyang; Chen, Kele; Chen, Xinglong

    2015-10-01

    When Opto-Electronic Tracking system operates in complex environments, every subsystem must operate efficiently and stably. As a important part of Opto-Electronic Tracking system, the performance of PMSM(Permanent Magnet Synchronous Motor) servo system affects the Opto-Electronic Tracking system's accuracy and speed greatly[1][2]. This paper applied embedded real-time operating system μC/OS to the control of PMSM servo system, implemented SVPWM(Space Vector Pulse Width Modulation) algorithm in PMSM servo system, optimized the stability of PMSM servo system. Pointing on the characteristics of the Opto-Electronic Tracking system, this paper expanded μC/OS with software redundancy processes, remote debugging and upgrading. As a result, the Opto- Electronic Tracking system performs efficiently and stably.

  8. An adaptive fuzzy controller for permanent-magnet AC servo drives

    SciTech Connect

    Le-Huy, H.

    1995-12-31

    This paper presents a theoretical study on a model-reference adaptive fuzzy logic controller for vector-controlled permanent-magnet ac servo drives. In the proposed system, fuzzy logic is used to implement the direct controller as well as the adaptation mechanism. The operation of the direct fuzzy controller and the fuzzy logic based adaptation mechanism is studied. The control performance of the adaptive fuzzy controller is evaluated by simulation for various operating conditions. The results are compared with that provided by a non-adaptive fuzzy controller. The implementation of proposed adaptive fuzzy controller is discussed.

  9. Influence of magnetic reluctances of magnetic elements on servo valve torque motors

    NASA Astrophysics Data System (ADS)

    Liu, Changhai; Jiang, Hongzhou

    2016-01-01

    The current research of electro-hydraulic servo valves mainly focuses on the vibration, pressure oscillating and source of noise. Unfortunately, literatures relating to the study of the influence of the magnetic reluctances of the magnetic elements are rarely available. This paper aims to analyze the influence of the magnetic reluctances of the magnetic elements on torque motor. Considering these magnetic reluctances ignored in previous literatures, a new mathematical model of servo valve torque motor is developed and proposed based on the fundamental laws of electromagnetism. By using this new mathematical model and the previous models, electromagnetic torque constant and magnetic spring stiffness are evaluated for a given set of torque motor parameters. A computer simulation by using AMESim software is also performed for the same set of torque motor parameters to verify the proposed model. The theoretical results of electromagnetic torque constant and magnetic spring stiffness evaluated by the proposed model render closer agreement with the simulation results than those evaluated by the previous models. In addition, an experimental measurement of the magnetic flux densities in the air-gaps is carried out by using SFL218 servo valve torque motor. Compared with the theoretical results of the magnetic flux densities in the air-gaps evaluated by the previous models, the theoretical results evaluated by the proposed model also show better agreement with the experimental data. The proposed model shows the influence of the magnetic reluctances of the magnetic elements on the servo valve torque motor, and offers modified and analytical expressions to electromagnetic torque constant and magnetic spring stiffness. These modified and analytical expressions could provide guidance more accurately for a linear control design approach and sensitivity analysis on electro-hydraulic servo valves than the previous expressions.

  10. Damping properties for vibration suppression in electrohydraulic servo-valve torque motor using magnetic fluid

    NASA Astrophysics Data System (ADS)

    Peng, Jinghui; Li, Songjing; Han, Hasiaoqier

    2014-04-01

    Aiming to suppress high frequency vibrations of a torque motor in electrohydraulic servo-valves, damping properties of an ester-based Fe3O4 magnetic fluid operating in the squeeze mode are studied in this Letter. The expression of damping forces due to the magnetic fluid on the torque motor is derived and simplified based on the measured magneto-viscosity property. Dynamic characteristics of the torque motor with and without the magnetic fluid are simulated and tested. Damping properties of magnetic fluid for the vibration suppression of a torque motor are verified by the good agreement between the predicted and tested results.

  11. Power control for ac motor

    NASA Technical Reports Server (NTRS)

    Dabney, R. W. (Inventor)

    1984-01-01

    A motor controller employing a triac through which power is supplied to a motor is described. The open circuit voltage appearing across the triac controls the operation of a timing circuit. This timing circuit triggers on the triac at a time following turn off which varies inversely as a function of the amplitude of the open circuit voltage of the triac.

  12. Data-Driven Based Asynchronous Motor Control for Printing Servo Systems

    NASA Astrophysics Data System (ADS)

    Bian, Min; Guo, Qingyun

    Modern digital printing equipment aims to the environmental-friendly industry with high dynamic performances and control precision and low vibration and abrasion. High performance motion control system of printing servo systems was required. Control system of asynchronous motor based on data acquisition was proposed. Iterative learning control (ILC) algorithm was studied. PID control was widely used in the motion control. However, it was sensitive to the disturbances and model parameters variation. The ILC applied the history error data and present control signals to approximate the control signal directly in order to fully track the expect trajectory without the system models and structures. The motor control algorithm based on the ILC and PID was constructed and simulation results were given. The results show that data-driven control method is effective dealing with bounded disturbances for the motion control of printing servo systems.

  13. Power factor control system for ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1981-01-01

    A power control circuit for an induction motor is disclosed in which a servo loop is used to control power input by controlling the power factor of motor operation. The power factor is measured by summing the voltage and current derived square wave signals.

  14. Operation Method for AC Motor Control during Power Interruption in Direct AC/AC Converter System

    NASA Astrophysics Data System (ADS)

    Shizu, Keiichiro; Azuma, Satoshi

    Direct AC/AC converters have been studied due to their potential use in power converters with no DC-link capacitor, which can contribute to the miniaturization of power converters. However, the absence of a DC-link capacitor makes it difficult to control the AC motor during power interruption. First, this paper proposes a system that realizes AC motor control during power interruption by utilizing a clamp capacitor. In general, direct AC/AC converters have a clamp circuit consisting of a rectifier diode(s) and a clamp capacitor in order to avoid over-voltages. In the proposed system, there is an additional semiconductor switch reverse-parallel to the rectifier diode(s), and the clamp capacitor voltage can be utilized for AC motor control by turning on the additional switch. Second, this paper discusses an operation method for AC motor control and clamp capacitor voltage control during power interruption. In the proposed method “DC-link voltage control”, the kinetic energy in the AC motor is transformed into electrical energy and stored in the clamp capacitor; the clamp capacitor is therefore charged and the capacitor voltage is controlled to remain constant at an instruction value. Third, this paper discusses a switching operation during power interruption. A dead-time is introduced between the operation of turning off all switches on the rectifier side and the operation of turning on the additional switch, which prevents the occurrence of a short circuit between the interrupted power source and the clamp capacitor. Finally, experimental results are presented. During power interruptions, an output current was continuously obtained and the clamp capacitor voltage was maintained to be equal to the instruction value of the capacitor voltage. These results indicate that both AC motor control and capacitor voltage control were successfully achieved by using the proposed system.

  15. System and method for determining stator winding resistance in an AC motor using motor drives

    DOEpatents

    Lu, Bin; Habetler, Thomas G; Zhang, Pinjia

    2013-02-26

    A system and method for determining the stator winding resistance of AC motors is provided. The system includes an AC motor drive having an input connectable to an AC source and an output connectable to an input terminal of an AC motor, a pulse width modulation (PWM) converter having switches therein to control current flow and terminal voltages in the AC motor, and a control system connected to the PWM converter. The control system generates a command signal to cause the PWM converter to control an output of the AC motor drive corresponding to an input to the AC motor, selectively generates a modified command signal to cause the PWM converter to inject a DC signal into the output of the AC motor drive, and determines a stator winding resistance of the AC motor based on the DC signal of at least one of the voltage and current.

  16. Fuzzy efficiency optimization of AC induction motors

    NASA Technical Reports Server (NTRS)

    Jani, Yashvant; Sousa, Gilberto; Turner, Wayne; Spiegel, Ron; Chappell, Jeff

    1993-01-01

    This paper describes the early states of work to implement a fuzzy logic controller to optimize the efficiency of AC induction motor/adjustable speed drive (ASD) systems running at less than optimal speed and torque conditions. In this paper, the process by which the membership functions of the controller were tuned is discussed and a controller which operates on frequency as well as voltage is proposed. The membership functions for this dual-variable controller are sketched. Additional topics include an approach for fuzzy logic to motor current control which can be used with vector-controlled drives. Incorporation of a fuzzy controller as an application-specific integrated circuit (ASIC) microchip is planned.

  17. Power factor control system for AC induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1977-01-01

    A power factor control system for use with ac induction motors was designed which samples lines voltage and current through the motor and decreases power input to the motor proportional to the detected phase displacement between current and voltage. This system provides, less power to the motor, as it is less loaded.

  18. Sequential control by speed drive for ac motor

    NASA Astrophysics Data System (ADS)

    Barsoum, Nader

    2012-11-01

    The speed drive for ac motor is widely used in the industrial field to allow direct control for the speed and torque without any feedback from the motor shaft. By using the ABB ACS800 speed drive unit, the speed and torque can be controlled using sequential control method. Sequential control is one of the application control method provided in the ABB ACS800 Drive, where a set of events or action performed in a particular order one after the other to control the speed and torque of the ac motor. It was claimed that sequential control method is using the preset seven constant speeds being provided in ABB ACS800 drive to control the speed and torque in a continuous and sequential manner. The characteristics and features of controlling the speed and torque using sequential control method can be investigated by observing the graphs and curves plotted which are obtained from the practical result. Sequential control can run either in the Direct Torque Control (DTC) or Scalar motor control mode. By using sequential control method, the ABB ACS800 drive can be programmed to run the motor automatically according to the time setting of the seven preset constant speeds. Besides, the intention of this project is to generate a new form of the experimental set up.

  19. Motor power control circuit for ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A motor power control of the type which functions by controlling the power factor wherein one of the parameters of power factor current on time is determined by the on time of a triac through which current is supplied to the motor. By means of a positive feedback circuit, a wider range of control is effected.

  20. Dynamic Analysis and Vibration Control of a Flexible SLIDER-CRANK Mechanism Using PM Synchronous Servo Motor Drive

    NASA Astrophysics Data System (ADS)

    Fung, R.-F.; Chen, K.-W.

    1998-07-01

    Dynamic analysis and vibration control of a flexible slider-crank mechanism driven by a permanent magnet (PM) synchronous servo motor are studied in this paper. Geometric constraint at the end of a flexible connecting rod is derived and introduced into Hamilton's principle to formulate the governing equations of the connecting rod which is modelled by Timoshenko beam theory. The coupling equations describe the rigid-body motion, flexible vibrations and motor system. In order to control crank speed and reduce flexible vibrations simultaneously, speed and tracking controllers are designed through a reaching law variable structure control (VSC) method. By choosing proper parameters in control law, dynamic responses of the flexible system in reaching mode can be controlled. Numerical results show that the proposed controllers not only eliminate the dynamic deflections of the flexible connecting rod, but also keep good tracking performances. Moreover, the robustness against external disturbances can also be improved by employing the proposed control scheme.

  1. Design of decoupled dual servo stage with voice coil motor and linear motor for XY long stroke ultra-precision scanning system

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Hyun; Choi, Young-Man; Gweon, Dae-Gab; Hong, Dong-Pyo; Kim, Koung-Suk; Lee, Suk-Won; Lee, Moon-Gu

    2005-12-01

    A decoupled dual servo (DDS) stage for ultra-precision scanning system is introduced in this paper. The proposed DDS consists of a 3 axis fine stage for handling and carrying workpieces and a XY coarse stage. Especially, the DDS uses three voice coil motors (VCM) as a planar actuation system of the fine stage to reduce the disturbances due to any mechanical connections with its coarse stage. VCMs are governed by Lorentz law. According to the law and its structure, there are no mechanical connections between coils and magnetic circuits. Moreover, the VCM doesn't have force ripples due to imperfections of commutation components of linear motor systems - currents and flux densities. However, due to the VCM's mechanical constraints the working range of the fine is about 5mm2. To break that hurdle, the coarse stage with linear motors is used for the fine stage to move about 200mm2. Because of the above reasons, the proposed DDS can achieve higher precision scanning than other stages with only one servo. Using MATLAB's Sequential Quadratic Programming (SQP), the VCMs are optimally designed for the highest force under conditions and constraints such as thermal dissipations due to its coil, its size, and so on. For linear motors, Halbach magnet linear motor is proposed and optimally designed in this paper. In addition, for their smooth movements without any frictions, guide systems of the DDS are composed of air bearings. And then, precisely to get their positions, linear scales with 0.1um resolution are used for the coarse's XY motions and plane mirror laser interferometers with 20nm for the fine's XYθz. On scanning, the two stages have same trajectories and are controlled. The control algorithm is Parallel method. The embodied ultra-precision scanning system has about 100nm tracking error and in-positioning stability.

  2. Variable-frequency inverter controls torque, speed, and braking in ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1974-01-01

    Dc to ac inverter provides optimum frequency and voltage to ac induction motor, in response to different motor-load and speed requirements. Inverter varies slip frequency of motor in proportion to required torque. Inverter protects motor from high current surges, controls negative slip to apply braking, and returns energy stored in momentum of load to dc power source.

  3. Offline detection of broken rotor bars in AC induction motors

    NASA Astrophysics Data System (ADS)

    Powers, Craig Stephen

    ABSTRACT. OFFLINE DETECTION OF BROKEN ROTOR BARS IN AC INDUCTION MOTORS. The detection of the broken rotor bar defect in medium- and large-sized AC induction machines is currently one of the most difficult tasks for the motor condition and monitoring industry. If a broken rotor bar defect goes undetected, it can cause a catastrophic failure of an expensive machine. If a broken rotor bar defect is falsely determined, it wastes time and money to physically tear down and inspect the machine only to find an incorrect diagnosis. Previous work in 2009 at Baker/SKF-USA in collaboration with the Korea University has developed a prototype instrument that has been highly successful in correctly detecting the broken rotor bar defect in ACIMs where other methods have failed. Dr. Sang Bin and his students at the Korea University have been using this prototype instrument to help the industry save money in the successful detection of the BRB defect. A review of the current state of motor conditioning and monitoring technology for detecting the broken rotor bar defect in ACIMs shows improved detection of this fault is still relevant. An analysis of previous work in the creation of this prototype instrument leads into the refactoring of the software and hardware into something more deployable, cost effective and commercially viable.

  4. Fast recovery, high voltage silicon diodes for AC motor controllers

    NASA Technical Reports Server (NTRS)

    Balodis, V.; Berman, A. H.; Gaugh, C.

    1982-01-01

    The fabrication and characterization of a high voltage, high current, fast recovery silicon diode for use in AC motor controllers, originally developed for NASA for use in avionics power supplies, is presented. The diode utilizes a positive bevel PIN mesa structure with glass passivation and has the following characteristics: peak inverse voltage - 1200 volts, forward voltage at 50 amperes - 1.5 volts, reverse recovery time of 200 nanoseconds. Characterization data for the diode, included in a table, show agreement with design concepts developed for power diodes. Circuit diagrams of the diode are also given.

  5. System and method for determining stator winding resistance in an AC motor

    DOEpatents

    Lu, Bin; Habetler, Thomas G.; Zhang, Pinjia; Theisen, Peter J.

    2011-05-31

    A system and method for determining stator winding resistance in an AC motor is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of an AC motor. The circuit includes at least one contactor and at least one switch to control current flow and terminal voltages in the AC motor. The system also includes a controller connected to the circuit and configured to modify a switching time of the at least one switch to create a DC component in an output of the system corresponding to an input to the AC motor and determine a stator winding resistance of the AC motor based on the injected DC component of the voltage and current.

  6. Variable frequency inverter for ac induction motors with torque, speed and braking control

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1975-01-01

    A variable frequency inverter was designed for driving an ac induction motor which varies the frequency and voltage to the motor windings in response to varying torque requirements for the motor so that the applied voltage amplitude and frequency are of optimal value for any motor load and speed requirement. The slip frequency of the motor is caused to vary proportionally to the torque and feedback is provided so that the most efficient operating voltage is applied to the motor. Winding current surge is limited and a controlled negative slip causes motor braking and return of load energy to a dc power source.

  7. Improved transistorized AC motor controller for battery powered urban electric passenger vehicles

    NASA Technical Reports Server (NTRS)

    Peak, S. C.

    1982-01-01

    An ac motor controller for an induction motor electric vehicle drive system was designed, fabricated, tested, evaluated, and cost analyzed. A vehicle performance analysis was done to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of ac motor and ac controller requirements. The power inverter is a three-phase bridge using power Darlington transistors. The induction motor was optimized for use with an inverter power source. The drive system has a constant torque output to base motor speed and a constant horsepower output to maximum speed. A gear shifting transmission is not required. The ac controller was scaled from the base 20 hp (41 hp peak) at 108 volts dec to an expanded horsepower and battery voltage range. Motor reversal was accomplished by electronic reversal of the inverter phase sequence. The ac controller can also be used as a boost chopper battery charger. The drive system was tested on a dynamometer and results are presented. The current-controlled pulse width modulation control scheme yielded improved motor current waveforms. The ac controller favors a higher system voltage.

  8. Demodulation circuit for AC motor current spectral analysis

    DOEpatents

    Hendrix, Donald E.; Smith, Stephen F.

    1990-12-18

    A motor current analysis method for the remote, noninvasive inspection of electric motor-operated systems. Synchronous amplitude demodulation and phase demodulation circuits are used singly and in combination along with a frequency analyzer to produce improved spectral analysis of load-induced frequencies present in the electric current flowing in a motor-driven system.

  9. Advanced AC permanent magnet axial flux disc motor for electric passenger vehicle

    NASA Technical Reports Server (NTRS)

    Kliman, G. B.

    1982-01-01

    An ac permanent magnet axial flux disc motor was developed to operate with a thyristor load commutated inverter as part of an electric vehicle drive system. The motor was required to deliver 29.8 kW (40 hp) peak and 10.4 kW (14 hp) average with a maximum speed of 11,000 rpm. It was also required to run at leading power factor to commutate the inverter. Three motors were built.

  10. System and method for monitoring and controlling stator winding temperature in a de-energized AC motor

    DOEpatents

    Lu, Bin; Luebke, Charles John; Habetler, Thomas G.; Zhang, Pinjia; Becker, Scott K.

    2011-12-27

    A system and method for measuring and controlling stator winding temperature in an AC motor while idling is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of a multi-phase AC motor. The circuit further includes a plurality of switching devices to control current flow and terminal voltages in the multi-phase AC motor and a controller connected to the circuit. The controller is configured to activate the plurality of switching devices to create a DC signal in an output of the motor control device corresponding to an input to the multi-phase AC motor, determine or estimate a stator winding resistance of the multi-phase AC motor based on the DC signal, and estimate a stator temperature from the stator winding resistance. Temperature can then be controlled and regulated by DC injection into the stator windings.

  11. HYDRAULIC SERVO

    DOEpatents

    Wiegand, D.E.

    1962-05-01

    A hydraulic servo is designed in which a small pressure difference produced at two orifices by an electrically operated flapper arm in a constantly flowing hydraulic loop is hydraulically amplified by two constant flow pumps, two additional orifices, and three unconnected ball pistons. Two of the pistons are of one size and operate against the additional orifices, and the third piston is of a different size and operates between and against the first two pistons. (AEC)

  12. EFFICIENCY OPTIMIZATIN CONTROL OF AC INDUCTION MOTORS: INITIAL LABORATORY RESULTS

    EPA Science Inventory

    The report discusses the development of a fuzzy logic, energy-optimizing controller to improve the efficiency of motor/drive combinations that operate at varying loads and speeds. This energy optimizer is complemented by a sensorless speed controller that maintains motor shaft re...

  13. Construction of AC Motor Controllers for NOvA Experiment Upgrades

    SciTech Connect

    Cooley, Patrick; /Fermilab

    2011-08-04

    I have been constructing Alternating Current (AC) motor controllers for manipulation of particle beam detectors. The capability and reliability of these motor controllers are essential to the Laboratory's mission of accurate analysis of the particle beam's position. The device is moved in and out of the beam's path by the motor controller followed by the Neutrinos at the Main Injector Off-Axis {nu}{sub e} Appearance (NOvA) Experiment further down the beam pipe. In total, I built and tested ten ac motor controllers for new beam operations in the NOvA experiment. These units will prove to be durable and provide extremely accurate beam placement for NOvA Experiment far into the future.

  14. Rotor position sensing in brushless ac motors with self-shielding magnets using linear Hall sensors

    NASA Astrophysics Data System (ADS)

    Zhu, Z. Q.; Shi, Y. F.; Howe, D.

    2006-04-01

    This paper investigates the use of low cost linear Hall sensors for rotor position sensing in brushless ac motors equipped with self-shielding magnets, addresses practical issues, such as the influence of magnetic and mechanical tolerances, temperature variations, and the armature reaction field, and describes the performance which is achieved.

  15. Advanced servo manipulator

    DOEpatents

    Holt, William E.; Kuban, Daniel P.; Martin, H. Lee

    1988-01-01

    An advanced servo manipulator has modular parts. Modular motor members drive individual input gears to control shoulder roll, shoulder pitch, elbow pitch, wrist yaw, wrist pitch, wrist roll, and tong spacing. The modules include a support member, a shoulder module for controlling shoulder roll, and a sleeve module attached to the shoulder module in fixed relation thereto. The shoulder roll sleeve module has an inner cylindrical member rotatable relative to the outer cylindrical member, and upon which a gear pod assembly is mounted. A plurality of shafts are driven by the gears, which are in turn driven by individual motor modules to transmit rotary power to control elbow pitch as well as to provide four different rotary shafts across the bendable elbow joint to supply rotary motive power to a wrist member and tong member.

  16. Advanced servo manipulator

    DOEpatents

    Holt, W.E.; Kuban, D.P.; Martin, H.L.

    1988-10-25

    An advanced servo manipulator has modular parts. Modular motor members drive individual input gears to control shoulder roll, shoulder pitch, elbow pitch, wrist yaw, wrist pitch, wrist roll, and tong spacing. The modules include a support member, a shoulder module for controlling shoulder roll, and a sleeve module attached to the shoulder module in fixed relation thereto. The shoulder roll sleeve module has an inner cylindrical member rotatable relative to the outer cylindrical member, and upon which a gear pod assembly is mounted. A plurality of shafts are driven by the gears, which are in turn driven by individual motor modules to transmit rotary power to control elbow pitch as well as to provide four different rotary shafts across the bendable elbow joint to supply rotary motive power to a wrist member and tong member. 41 figs.

  17. Superconducting AC motor for centrifugal liquid helium pump

    SciTech Connect

    Rivetti, A.; Goria, R.; Martini, G.

    1982-01-01

    The behavior of flowmeters in liquid and supercritical helium is studied. A description is given of the motor and experimental apparatus. The initial results (torque vs. efficiency and power vs. slip) are chartered. The results obtained with an external rotating shield (torque vs. efficiency and power vs. slip) are also charted. One rotor provided a higher power particularly at the highest frequencies, provided that the critical point is not exceeded. Another rotor gives a better efficiency, particularly at the lowest frequencies. Recommendations for adopting a rotor design are given.

  18. Quick-scanning x-ray absorption spectroscopy system with a servo-motor-driven channel-cut monochromator with a temporal resolution of 10 ms

    SciTech Connect

    Nonaka, T.; Dohmae, K.; Araki, T.; Hayashi, Y.; Hirose, Y.; Uruga, T.; Yamazaki, H.; Tanida, H.; Goto, S.

    2012-08-15

    We have developed a quick-scanning x-ray absorption fine structure (QXAFS) system and installed it at the recently constructed synchrotron radiation beamline BL33XU at the SPring-8. Rapid acquisition of high-quality QXAFS data was realized by combining a servo-motor-driven Si channel-cut monochromator with a tapered undulator. Two tandemly aligned monochromators with channel-cut Si(111) and Si(220) crystals covered energy ranges of 4.0-28.2 keV and 6.6-46.0 keV, respectively. The system allows the users to adjust instantly the energy ranges of scans, the starting angles of oscillations, and the frequencies. The channel-cut crystals are cooled with liquid nitrogen to enable them to withstand the high heat load from the undulator radiation. Deformation of the reflecting planes is reduced by clamping each crystal with two cooling blocks. Performance tests at the Cu K-edge demonstrated sufficiently high data quality for x-ray absorption near-edge structure and extended x-ray absorption fine-structure analyses with temporal resolutions of up to 10 and 25 ms, respectively.

  19. AC motor and generator requirements for isolated WECS

    NASA Technical Reports Server (NTRS)

    Park, G. L.; Mccleer, P. J.; Hanson, B.; Weinberg, B.; Krauss, O.

    1985-01-01

    After surveying electrically driven loads used on productive farms, the investigators chose three pumps for testing at voltages and frequencies far outside the normal operating range. These loads extract and circulate water and move heat via air, and all are critical to farm productivity. The object was to determine the envelope of supply voltage and frequency over which these loads would operate stably for time intervals under 1 hour. This information is among that needed to determine the feasibility of supplying critical loads, in case of a utility outage, from a wind driven alternator whose output voltage and frequency will vary dramatically in most continental wind regimes. Other related work is surveyed. The salient features and limitations of the test configurations used and the data reduction are described. The development of simulation models suitable for a small computer are outlined. The results are primarily displayed on the voltage frequency plane with the general conclusion that the particular pump models considered will operate over the range of 50 to 90 Hz and a voltage band which starts below rated, decreases as frequency decreases, and is limited on the high side by excessive motor heating. For example, centrifugal pump operating voltage ranges as extensive .4 to 1.4 appear possible. Particular problems with starting, stalling due to lack of motor torque, high speed cavitation, and likely overheating are addressed in a listing of required properties for wind driven alternators and their controllers needed for use in the isolated or stand alone configuration considered.

  20. Improved SCR ac Motor Controller for Battery Powered Urban Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Latos, T. S.

    1982-01-01

    An improved ac motor controller, which when coupled to a standard ac induction motor and a dc propulsion battery would provide a complete electric vehicle power train with the exception of the mechanical transmission and drive wheels was designed. In such a system, the motor controller converts the dc electrical power available at the battery terminals to ac electrical power for the induction motor in response to the drivers commands. The performance requirements of a hypothetical electric vehicle with an upper weight bound of 1590 kg (3500 lb) were used to determine the power rating of the controller. Vehicle acceleration capability, top speed, and gradeability requisites were contained in the Society of Automotive Engineers (SAE) Schedule 227a(d) driving cycle. The important capabilities contained in this driving cycle are a vehicle acceleration requirement of 0 to 72.4 kmph (0 to 45 mph) in 28 seconds a top speed of 88.5 kmph (55 mph), and the ability to negotiate a 10% grade at 48 kmph (30 mph). A 10% grade is defined as one foot of vertical rise per 10 feet of horizontal distance.

  1. Method and apparatus for pulse width modulation control of an AC induction motor

    DOEpatents

    Geppert, Steven; Slicker, James M.

    1984-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  2. Method and apparatus for pulse width modulation control of an AC induction motor

    NASA Technical Reports Server (NTRS)

    Geppert, Steven (Inventor); Slicker, James M. (Inventor)

    1984-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.

  3. Dynamic model tracking design for low inertia, high speed permanent magnet ac motors.

    PubMed

    Stewart, P; Kadirkamanathan, V

    2004-01-01

    Permanent magnet ac (PMAC) motors have existed in various configurations for many years. The advent of rare-earth magnets and their associated highly elevated levels of magnetic flux makes the permanent magnet motor attractive for many high performance applications from computer disk drives to all electric racing cars. The use of batteries as a prime storage element carries a cost penalty in terms of the unladen weight of the vehicle. Minimizing this cost function requires the minimum electric motor size and weight to be specified, while still retaining acceptable levels of output torque. This tradeoff can be achieved by applying a technique known as flux weakening which will be investigated in this paper. The technique allows the speed range of a PMAC motor to be greatly increased, giving a constant power range of more than 4:1. A dynamic model reference controller is presented which has advantages in ease of implementation, and is particularly suited to dynamic low inertia applications such as clutchless gear changing in high performance electric vehicles. The benefits of this approach are to maximize the torque speed envelope of the motor, particularly advantageous when considering low inertia operation. The controller is examined experimentally, confirming the predicted performance.

  4. Implementation of damped-oscillation crane control for existing ac induction motor-driven cranes

    SciTech Connect

    Noakes, M.W.; Kress, R.L.; Appleton, G.T.

    1993-04-01

    The Oak Ridge National Laboratory (ORNL) has implemented damped-oscillation crane control on one of its existing ac induction motor-driven facility overhead cranes. The purpose of this engineering grade test has been to determine feasibility, determine control and interfacing specifications, and establish the capability of newly available ac motor-control hardware. A flux vector inverter drive is used in the initial demonstration to investigate acceptability for swing-free crane control. Motor performance and restrictions are also examined. Control hardware design is based upon the Environmental Restoration and Waste Management (ER&WM) Robotics Technology Development Program (RTDP) standards. This includes the use of the VME bus and Motorola 680X0-based CPU boards for the hardware and UNIX and VxWorks for the software. However, smaller, cheaper, and more simple embedded controller design constraints are also considered in order to make the technology more attractive for general industrial use. Theoretical background, specific implementation, and recommendations are presented in this paper.

  5. Implementation of damped-oscillation crane control for existing ac induction motor-driven cranes

    SciTech Connect

    Noakes, M.W.; Kress, R.L. ); Appleton, G.T. . School of Electrical Engineering)

    1993-01-01

    The Oak Ridge National Laboratory (ORNL) has implemented damped-oscillation crane control on one of its existing ac induction motor-driven facility overhead cranes. The purpose of this engineering grade test has been to determine feasibility, determine control and interfacing specifications, and establish the capability of newly available ac motor-control hardware. A flux vector inverter drive is used in the initial demonstration to investigate acceptability for swing-free crane control. Motor performance and restrictions are also examined. Control hardware design is based upon the Environmental Restoration and Waste Management (ER WM) Robotics Technology Development Program (RTDP) standards. This includes the use of the VME bus and Motorola 680X0-based CPU boards for the hardware and UNIX and VxWorks for the software. However, smaller, cheaper, and more simple embedded controller design constraints are also considered in order to make the technology more attractive for general industrial use. Theoretical background, specific implementation, and recommendations are presented in this paper.

  6. Application of digital servo control on high-performance VCM in HDD

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Gang; Lin, Ming-Jer

    1992-10-01

    An application of digital servo control on a high-performance voice coil motor positioning system in hard disk drive is discussed. Modern digital control theory is used in servo algorithm design, and the servo algorithm is implemented by a high-speed microprocessor, OES 22040 model. The experimental results show the excellent properties in time domain and frequency domain.

  7. An AC motor drive with power factor control for low cost applications

    NASA Astrophysics Data System (ADS)

    Bellar, Maria Dias

    2000-10-01

    The front-end rectifier followed by a pulse-width modulated voltage source inverter (PWM-VSI) has been a well-established power converter configuration for many industrial drives. The increasing costs on the utility usage, due to power quality regulations, and the need to improve the VA capacity of systems, e.g. off-shore drilling rigs, have increased the interest in the development of power electronic equipment with power factor control capability. Electrical motors consume a large amount of the available electrical energy, and this energy tends to increase due to the massive emerging applications of electrical motor drives in appliances and in industrial processes. Therefore, the improvement of the power factor of these low power drive systems, usually in the range from fractional horse-power (hp) to 1 hp, is of particular interest. For these power ratings, the system configuration usually comprises a single-phase to three-phase type of converter with additional circuitry for power factor control (PFC). However, this approach has an impact on the system cost and packaging. In this work, a new concept of integrating motor and power factor controls by using a single-phase to three-phase DSP based six-switch converter topology is presented. Unlike other configurations using extra switch(es) and/or extra boost inductor, in this circuit the boost action, for input current shaping, is done by the motor leakage inductances. The power factor control and inverter operation are performed by applying two modulating signals to the SPWM control logic of the converter. In this dissertation, the converter operation and a proposed control strategy will be explained. Simulation and experimental results for a DSP based induction motor drive will be provided as proof of concept. The feasibility and potential of this configuration for ac motor drive applications will be established. The impact of this scheme on the machine operation will also be discussed.

  8. Phase Dependency of the Human Primary Motor Cortex and Cholinergic Inhibition Cancelation During Beta tACS

    PubMed Central

    Guerra, Andrea; Pogosyan, Alek; Nowak, Magdalena; Tan, Huiling; Ferreri, Florinda; Di Lazzaro, Vincenzo; Brown, Peter

    2016-01-01

    The human motor cortex has a tendency to resonant activity at about 20 Hz so stimulation should more readily entrain neuronal populations at this frequency. We investigated whether and how different interneuronal circuits contribute to such resonance by using transcranial magnetic stimulation (TMS) during transcranial alternating current stimulation (tACS) at motor (20 Hz) and a nonmotor resonance frequency (7 Hz). We tested different TMS interneuronal protocols and triggered TMS pulses at different tACS phases. The effect of cholinergic short-latency afferent inhibition (SAI) was abolished by 20 Hz tACS, linking cortical beta activity to sensorimotor integration. However, this effect occurred regardless of the tACS phase. In contrast, 20 Hz tACS selectively modulated MEP size according to the phase of tACS during single pulse, GABAAergic short-interval intracortical inhibition (SICI) and glutamatergic intracortical facilitation (ICF). For SICI this phase effect was more marked during 20 Hz stimulation. Phase modulation of SICI also depended on whether or not spontaneous beta activity occurred at ~20 Hz, supporting an interaction effect between tACS and underlying circuit resonances. The present study provides in vivo evidence linking cortical beta activity to sensorimotor integration, and for beta oscillations in motor cortex being promoted by resonance in GABAAergic interneuronal circuits. PMID:27522077

  9. Sensorless speed estimation of an AC induction motor by using an artificial neural network approach

    NASA Astrophysics Data System (ADS)

    Alkhoraif, Abdulelah Ali

    Sensorless speed detection of an induction motor is an attractive area for researchers to enhance the reliability of the system and to reduce the cost of the components. This paper presents a simple method of estimating a rotational speed by utilizing an artificial neural network (ANN) that would be fed by a set of stator current frequencies that contain some saliency harmonics. This approach allows operators to detect the speed in induction motors such an approach also provides reliability, low cost, and simplicity. First, the proposed method is based on converting the stator current signals to the frequency domain and then applying a tracking algorithm to the stator current spectrum in order to detect frequency peaks. Secondly, the ANN has to be trained by the detected peaks; the training data must be from very precise data to provide an accurate rotor speed. Moreover, the desired output of the training is the speed, which is measured by a tachometer simultaneously with the stator current signal. The databases were collected at many different speeds from two different types of AC induction motors, wound rotor and squirrel cage. They were trained and tested, so when the difference between the desired speed value and the ANN output value reached the wanted accuracy, the system does not need to use the tachometer anymore. Eventually, the experimental results show that in an optimal ANN design, the speed of the wound rotor induction motor was estimated accurately, where the testing average error was 1 RPM. The proposed method has not succeeded to predict the rotor speed of the squirrel cage induction motor precisely, where the smallest testing­average error that was achieved was 5 RPM.

  10. Coupling an induction motor type generator to ac power lines. [making windmill generators compatible with public power lines

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1984-01-01

    A system for coupling an induction motor type generator to an A.C. power line includes an electronic switch means that is controlled by a control system and is regulated to turn on at a relatively late point in each half cycle of its operation. The energizing power supplied by the line to the induction motor type generator is decreased and the net power delivered to the line is increased.

  11. HYDRAULIC SERVO CONTROL MECHANISM

    DOEpatents

    Hussey, R.B.; Gottsche, M.J. Jr.

    1963-09-17

    A hydraulic servo control mechanism of compact construction and low fluid requirements is described. The mechanism consists of a main hydraulic piston, comprising the drive output, which is connected mechanically for feedback purposes to a servo control piston. A control sleeve having control slots for the system encloses the servo piston, which acts to cover or uncover the slots as a means of controlling the operation of the system. This operation permits only a small amount of fluid to regulate the operation of the mechanism, which, as a result, is compact and relatively light. This mechanism is particuiarly adaptable to the drive and control of control rods in nuclear reactors. (auth)

  12. The GTC main axes servos and control system

    NASA Astrophysics Data System (ADS)

    Suárez, M.; Rosich, J.; Ortega, J.; Pazos, A.

    2008-07-01

    The GTC azimuth and elevation axes control systems employ large custom direct-drive motors operated by means of embedded fully-digital current loops. A high-performance position loop has been developed based on sinusoidal encoder feedback with interpolation error compensation. Real-time servo feedback and trajectory tracking is implemented by object-oriented software components at CPU-level which trigger encoder sampling, interpolate the remote CORBA demands and perform high-frequency setpoint streaming for the servo controller.

  13. Road load simulator tests of the Gould Phase I functional model silicon controlled rectifier ac motor controller for electric vehicles

    SciTech Connect

    Gourash, F.

    1984-02-01

    This report presents the test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.

  14. Road load simulator tests of the Gould phase 1 functional model silicon controlled rectifier ac motor controller for electric vehicles

    NASA Technical Reports Server (NTRS)

    Gourash, F.

    1984-01-01

    The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.

  15. Direct drive digital servo press with high parallel control

    NASA Astrophysics Data System (ADS)

    Murata, Chikara; Yabe, Jun; Endou, Junichi; Hasegawa, Kiyoshi

    2013-12-01

    Direct drive digital servo press has been developed as the university-industry joint research and development since 1998. On the basis of this result, 4-axes direct drive digital servo press has been developed and in the market on April of 2002. This servo press is composed of 1 slide supported by 4 ball screws and each axis has linearscale measuring the position of each axis with high accuracy less than μm order level. Each axis is controlled independently by servo motor and feedback system. This system can keep high level parallelism and high accuracy even with high eccentric load. Furthermore the 'full stroke full power' is obtained by using ball screws. Using these features, new various types of press forming and stamping have been obtained by development and production. The new stamping and forming methods are introduced and 'manufacturing' need strategy of press forming with high added value and also the future direction of press forming are also introduced.

  16. Beta Band Transcranial Alternating (tACS) and Direct Current Stimulation (tDCS) Applied After Initial Learning Facilitate Retrieval of a Motor Sequence

    PubMed Central

    Krause, Vanessa; Meier, Anna; Dinkelbach, Lars; Pollok, Bettina

    2016-01-01

    The primary motor cortex (M1) contributes to the acquisition and early consolidation of a motor sequence. Although the relevance of M1 excitability for motor learning has been supported, the significance of M1 oscillations remains an open issue. This study aims at investigating to what extent retrieval of a newly learned motor sequence can be differentially affected by motor-cortical transcranial alternating (tACS) and direct current stimulation (tDCS). Alpha (10 Hz), beta (20 Hz) or sham tACS was applied in 36 right-handers. Anodal or cathodal tDCS was applied in 30 right-handers. Participants learned an eight-digit serial reaction time task (SRTT; sequential vs. random) with the right hand. Stimulation was applied to the left M1 after SRTT acquisition at rest for 10 min. Reaction times were analyzed at baseline, end of acquisition, retrieval immediately after stimulation and reacquisition after eight further sequence repetitions. Reaction times during retrieval were significantly faster following 20 Hz tACS as compared to 10 Hz and sham tACS indicating a facilitation of early consolidation. tDCS yielded faster reaction times, too, independent of polarity. No significant differences between 20 Hz tACS and tDCS effects on retrieval were found suggesting that 20 Hz effects might be associated with altered motor-cortical excitability. Based on the behavioral modulation yielded by tACS and tDCS one might speculate that altered motor-cortical beta oscillations support early motor consolidation possibly associated with neuroplastic reorganization. PMID:26834593

  17. Fast-Acting Electrohydraulic Servo

    NASA Technical Reports Server (NTRS)

    Webb, J. A. J.; Mehmed, O.; Lorenzo, C. F.

    1982-01-01

    Electrohydraulic servo controls moving elements of airflow valve. Position of moving element and attached piston is monitored by linear variable-differential transformer (LVDT). Single-stage servo valve lets fluid into and out of piston volume in response to feedback signals from the LVDT.

  18. Cortico-muscular coupling and motor performance are modulated by 20 Hz transcranial alternating current stimulation (tACS) in Parkinson’s disease

    PubMed Central

    Krause, Vanessa; Wach, Claudia; Südmeyer, Martin; Ferrea, Stefano; Schnitzler, Alfons; Pollok, Bettina

    2014-01-01

    Parkinson’s disease (PD) is associated with pathologically altered oscillatory activity. While synchronized oscillations between 13 and 30 Hz are increased within a cortico-subcortical network, cortico-muscular coupling (CMC) is decreased. The present study aims at investigating the effect of non-invasive transcranial alternating current stimulation (tACS) of the primary motor cortex (M1) on motor symptoms and motor-cortical oscillations in PD. In 10 PD patients and 10 healthy control subjects, static isometric contraction, dynamic fast finger tapping, and diadochokinesia of the more severely affected hand were investigated prior to and shortly after tACS of the contralateral M1 at 10 Hz vs. 20 Hz vs. sham. During isometric contraction, neuromagnetic activity was recorded using magnetoencephalography. 20 Hz tACS attenuated beta band CMC during isometric contraction and amplitude variability during finger tapping in PD patients but not in healthy control subjects. 10 Hz tACS yielded no significant after-effects. The present data suggest that PD is associated with pathophysiological alterations which abet a higher responsiveness toward frequency-specific tACS – possibly due to pathologically altered motor-cortical oscillatory synchronization at frequencies between 13 and 30 Hz. PMID:24474912

  19. Superconductor-Mediated Modification of Gravity? AC Motor Experiments with Bulk YBCO Disks in Rotating Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Koczor, Ronald J.; Roberson, Rick

    1998-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of large bulk-processed high-temperature superconductors. Podkietnov, et al (Podkietnov, E. and Nieminen, R. (1992) A Possibility of Gravitational Force Shielding by Bulk YBa2 Cu3 O7-x Superconductor, Physica C, C203:441-444.) have indicated that rotating AC fields play an essential role in their observed distortion of combined gravity and barometric pressure readings. We report experiments on large (15 cm diameter) bulk YBCO ceramic superconductors placed in the core of a three-phase, AC motor stator. The applied rotating field produces up to a 12,000 revolutions per minute magnetic field. The field intensity decays rapidly from the maximum at the outer diameter of the superconducting disk (less than 60 Gauss) to the center (less than 10 Gauss). This configuration was applied with and without a permanent DC magnetic field levitating the superconducting disk, with corresponding gravity readings indicating an apparent increase in observed gravity of less than 1 x 10(exp -6)/sq cm, measured above the superconductor. No effect of the rotating magnetic field or thermal environment on the gravimeter readings or on rotating the superconducting disk was noted within the high precision of the observation. Implications for propulsion initiatives and power storage flywheel technologies for high temperature superconductors will be discussed for various spacecraft and satellite applications.

  20. Long-stroke fast tool servo and a tool setting method for freeform optics fabrication

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Zhou, Xiaoqin; Liu, Zhiwei; Lin, Chao; Ma, Long

    2014-09-01

    Diamond turning assisted by fast tool servo is of high efficiency for the fabrication of freeform optics. This paper describes a long-stroke fast tool servo to obtain a large-amplitude tool motion. It has the advantage of low cost and higher stiffness and natural frequency than other flexure-based long-stroke fast tool servo systems. The fast tool servo is actuated by a voice coil motor and guided by a flexure-hinge structure. Open-loop and close-loop control tests are conducted on the testing platform. While fast tool servo system is an additional motion axis for a diamond turning machine, a tool center adjustment method is described to confirm tool center position in the machine tool coordinate system when the fast tool servo system is fixed on the diamond turning machine. Last, a sinusoidal surface is machined and the results demonstrate that the tool adjustment method is efficient and precise for a flexure-based fast tool servo system, and the fast tool servo system works well on the fabrication of freeform optics.

  1. Advanced single permanent magnet axipolar ironless stator ac motor for electric passenger vehicles

    NASA Technical Reports Server (NTRS)

    Beauchamp, E. D.; Hadfield, J. R.; Wuertz, K. L.

    1983-01-01

    A program was conducted to design and develop an advanced-concept motor specifically created for propulsion of electric vehicles with increased range, reduced energy consumption, and reduced life-cycle costs in comparison with conventional systems. The motor developed is a brushless, dc, rare-earth cobalt, permanent magnet, axial air gap inductor machine that uses an ironless stator. Air cooling is inherent provided by the centrifugal-fan action of the rotor poles. An extensive design phase was conducted, which included analysis of the system performance versus the SAE J227a(D) driving cycle. A proof-of-principle model was developed and tested, and a functional model was developed and tested. Full generator-level testing was conducted on the functional model, recording electromagnetic, thermal, aerodynamic, and acoustic noise data. The machine demonstrated 20.3 kW output at 1466 rad/s and 160 dc. The novel ironless stator demonstated the capability to continuously operate at peak current. The projected system performance based on the use of a transistor inverter is 23.6 kW output power at 1466 rad/s and 83.3 percent efficiency. Design areas of concern regarding electric vehicle applications include the inherently high windage loss and rotor inertia.

  2. Brake power servo booster

    SciTech Connect

    Kobayashi, M.; Shimamura, M.

    1988-04-19

    A brake power servo booster is described comprising: a power piston; a power piston return spring; at least two shells enclosing at least a portion of the power piston and defining a constant pressure chamber and a variable pressure chamber; a master cylinder for controlling the application of hydraulic pressure to a brake mechanism; an input shaft; a hollow cylindrical member integrally connected to the input shaft, a stopper member for limiting movement of the hollow cylindrical member in the second direction, a hollow output shaft integrally connected at one end thereof to the power piston; a connecting member integrally connected to the other end of the output shaft and slidably disposed inside the hollow cylindrical member, a valve member, a valve return spring for urging and valve member towards the first and second valve seats; and a key member provided between the connecting member and the hollow cylindrical member for allowing relative displacement between the connecting member and the hollow cylindrical member in the first and second directions within a predetermined range.

  3. A Hydraulic Blowdown Servo System For Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Chen, Anping; Deng, Tao

    2016-07-01

    This paper introduced a hydraulic blowdown servo system developed for a solid launch vehicle of the family of Chinese Long March Vehicles. It's the thrust vector control (TVC) system for the first stage. This system is a cold gas blowdown hydraulic servo system and consist of gas vessel, hydraulic reservoir, servo actuator, digital control unit (DCU), electric explosion valve, and pressure regulator etc. A brief description of the main assemblies and characteristics follows. a) Gas vessel is a resin/carbon fiber composite over wrapped pressure vessel with a titanium liner, The volume of the vessel is about 30 liters. b) Hydraulic reservoir is a titanium alloy piston type reservoir with a magnetostrictive sensor as the fluid level indicator. The volume of the reservoir is about 30 liters. c) Servo actuator is a equal area linear piston actuator with a 2-stage low null leakage servo valve and a linear variable differential transducer (LVDT) feedback the piston position, Its stall force is about 120kN. d) Digital control unit (DCU) is a compact digital controller based on digital signal processor (DSP), and deployed dual redundant 1553B digital busses to communicate with the on board computer. e) Electric explosion valve is a normally closed valve to confine the high pressure helium gas. f) Pressure regulator is a spring-loaded poppet pressure valve, and regulates the gas pressure from about 60MPa to about 24MPa. g) The whole system is mounted in the aft skirt of the vehicle. h) This system delivers approximately 40kW hydraulic power, by contrast, the total mass is less than 190kg. the power mass ratio is about 0.21. Have finished the development and the system test. Bench and motor static firing tests verified that all of the performances have met the design requirements. This servo system is complaint to use of the solid launch vehicle.

  4. Experimental implementation of a robust damped-oscillation control algorithm on a full-sized, two-degree-of-freedom, AC induction motor-driven crane

    SciTech Connect

    Kress, R.L.; Jansen, J.F.; Noakes, M.W.

    1994-05-01

    When suspended payloads are moved with an overhead crane, pendulum like oscillations are naturally introduced. This presents a problem any time a crane is used, especially when expensive and/or delicate objects are moved, when moving in a cluttered an or hazardous environment, and when objects are to be placed in tight locations. Damped-oscillation control algorithms have been demonstrated over the past several years for laboratory-scale robotic systems on dc motor-driven overhead cranes. Most overhead cranes presently in use in industry are driven by ac induction motors; consequently, Oak Ridge National Laboratory has implemented damped-oscillation crane control on one of its existing facility ac induction motor-driven overhead cranes. The purpose of this test was to determine feasibility, to work out control and interfacing specifications, and to establish the capability of newly available ac motor control hardware with respect to use in damped-oscillation-controlled systems. Flux vector inverter drives are used to investigate their acceptability for damped-oscillation crane control. The purpose of this paper is to describe the experimental implementation of a control algorithm on a full-sized, two-degree-of-freedom, industrial crane; describe the experimental evaluation of the controller including robustness to payload length changes; explain the results of experiments designed to determine the hardware required for implementation of the control algorithms; and to provide a theoretical description of the controller.

  5. Road load simulator tests of the Gould phase 1 functional model silicon controlled rectifier ac motor controller for electric vehicles. Final Report

    SciTech Connect

    Gourash, F.

    1984-02-01

    The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.

  6. Hydraulic servo control spool valve

    DOEpatents

    Miller, Donald M.

    1983-01-01

    A servo operated spool valve having a fixed sleeve and axially movable spool. The sleeve is machined in two halves to form a long, narrow tapered orifice slot across which a transverse wall of the spool is positioned. The axial position of the spool wall along the slot regulates the open orifice area with extreme precision.

  7. Detecting servo failures with software

    NASA Technical Reports Server (NTRS)

    Lew, D.; Quam, R.

    1979-01-01

    Program detects hardware failure in servosystems by comparing actual servo valve position with predictions of software model. In addition, system will also pick up most computer input/output failures. Process presents faster and more reliable results than previous failure detection methods.

  8. Photoelectric radar servo control system based on ARM+FPGA

    NASA Astrophysics Data System (ADS)

    Wu, Kaixuan; Zhang, Yue; Li, Yeqiu; Dai, Qin; Yao, Jun

    2016-01-01

    In order to get smaller, faster, and more responsive requirements of the photoelectric radar servo control system. We propose a set of core ARM + FPGA architecture servo controller. Parallel processing capability of FPGA to be used for the encoder feedback data, PWM carrier modulation, A, B code decoding processing and so on; Utilizing the advantage of imaging design in ARM Embedded systems achieves high-speed implementation of the PID algorithm. After the actual experiment, the closed-loop speed of response of the system cycles up to 2000 times/s, in the case of excellent precision turntable shaft, using a PID algorithm to achieve the servo position control with the accuracy of + -1 encoder input code. Firstly, This article carry on in-depth study of the embedded servo control system hardware to determine the ARM and FPGA chip as the main chip with systems based on a pre-measured target required to achieve performance requirements, this article based on ARM chip used Samsung S3C2440 chip of ARM7 architecture , the FPGA chip is chosen xilinx's XC3S400 . ARM and FPGA communicate by using SPI bus, the advantage of using SPI bus is saving a lot of pins for easy system upgrades required thereafter. The system gets the speed datas through the photoelectric-encoder that transports the datas to the FPGA, Then the system transmits the datas through the FPGA to ARM, transforms speed datas into the corresponding position and velocity data in a timely manner, prepares the corresponding PWM wave to control motor rotation by making comparison between the position data and the velocity data setted in advance . According to the system requirements to draw the schematics of the photoelectric radar servo control system and PCB board to produce specially. Secondly, using PID algorithm to control the servo system, the datas of speed obtained from photoelectric-encoder is calculated position data and speed data via high-speed digital PID algorithm and coordinate models. Finally, a

  9. Small Autonomous Aircraft Servo Health Monitoring

    NASA Technical Reports Server (NTRS)

    Quintero, Steven

    2008-01-01

    Small air vehicles offer challenging power, weight, and volume constraints when considering implementation of system health monitoring technologies. In order to develop a testbed for monitoring the health and integrity of control surface servos and linkages, the Autonomous Aircraft Servo Health Monitoring system has been designed for small Uninhabited Aerial Vehicle (UAV) platforms to detect problematic behavior from servos and the air craft structures they control, This system will serve to verify the structural integrity of an aircraft's servos and linkages and thereby, through early detection of a problematic situation, minimize the chances of an aircraft accident. Embry-Riddle Aeronautical University's rotary-winged UAV has an Airborne Power management unit that is responsible for regulating, distributing, and monitoring the power supplied to the UAV's avionics. The current sensing technology utilized by the Airborne Power Management system is also the basis for the Servo Health system. The Servo Health system measures the current draw of the servos while the servos are in Motion in order to quantify the servo health. During a preflight check, deviations from a known baseline behavior can be logged and their causes found upon closer inspection of the aircraft. The erratic behavior nay include binding as a result of dirt buildup or backlash caused by looseness in the mechanical linkages. Moreover, the Servo Health system will allow elusive problems to be identified and preventative measures taken to avoid unnecessary hazardous conditions in small autonomous aircraft.

  10. Starting Phenomena and Temperature-rise under vvvf Supply of Three-Phase Squirrel-Cage ac Traction Motor of Electric Locomotive

    NASA Astrophysics Data System (ADS)

    Paul, R. N.; Arya, L. D.; Verma, H. K.

    2012-09-01

    In three-phase squirrel-cage ac traction motor, temperature-rise calculation during variable-voltage and variable-frequency starting is of vital importance and has to be predicted and critically examined. Under voltage source inverter supply with PWM, the generation of harmonics by inverter supply reduces the output during starting due to higher harmonic losses, thereby reducing the starting tractive effort in kN on locomotive wheel. Stator and rotor temperature-rises during starting have been determined for average acceleration torque in segmental zone (calculated from variable acceleration) which have been presented in the paper with both copper and aluminium alloy rotor bars.

  11. Adjustable Speed Drive Project for Teaching a Servo Systems Course Laboratory

    ERIC Educational Resources Information Center

    Rodriguez-Resendiz, J.; Herrera-Ruiz, G.; Rivas-Araiza, E. A.

    2011-01-01

    This paper describes an adjustable speed drive for a three-phase motor, which has been implemented as a design for a servo system laboratory course in an engineering curriculum. The platform is controlled and analyzed in a LabVIEW environment and run on a PC. Theory is introduced in order to show the sensorless algorithms. These are computed by…

  12. Visual-servoing optical microscopy

    DOEpatents

    Callahan, Daniel E.; Parvin, Bahram

    2009-06-09

    The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time: quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

  13. Visual-servoing optical microscopy

    DOEpatents

    Callahan, Daniel E.; Parvin, Bahram

    2011-05-24

    The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

  14. Visual-servoing optical microscopy

    DOEpatents

    Callahan, Daniel E; Parvin, Bahram

    2013-10-01

    The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

  15. Robust and cooperative image-based visual servoing system using a redundant architecture.

    PubMed

    Garcia-Aracil, Nicolas; Perez-Vidal, Carlos; Sabater, Jose Maria; Morales, Ricardo; Badesa, Francisco J

    2011-01-01

    The reliability and robustness of image-based visual servoing systems is still unsolved by the moment. In order to address this issue, a redundant and cooperative 2D visual servoing system based on the information provided by two cameras in eye-in-hand/eye-to-hand configurations is proposed. Its control law has been defined to assure that the whole system is stable if each subsystem is stable and to allow avoiding typical problems of image-based visual servoing systems like task singularities, features extraction errors, disappearance of image features, local minima, etc. Experimental results with an industrial robot manipulator based on Schunk modular motors to demonstrate the stability, performance and robustness of the proposed system are presented.

  16. Robust and cooperative image-based visual servoing system using a redundant architecture.

    PubMed

    Garcia-Aracil, Nicolas; Perez-Vidal, Carlos; Sabater, Jose Maria; Morales, Ricardo; Badesa, Francisco J

    2011-01-01

    The reliability and robustness of image-based visual servoing systems is still unsolved by the moment. In order to address this issue, a redundant and cooperative 2D visual servoing system based on the information provided by two cameras in eye-in-hand/eye-to-hand configurations is proposed. Its control law has been defined to assure that the whole system is stable if each subsystem is stable and to allow avoiding typical problems of image-based visual servoing systems like task singularities, features extraction errors, disappearance of image features, local minima, etc. Experimental results with an industrial robot manipulator based on Schunk modular motors to demonstrate the stability, performance and robustness of the proposed system are presented. PMID:22247698

  17. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. A-C CONVENTIONAL MAGNETIC MOTOR CONTROL, PART II, UNIT 6, ASSIGNMENTS.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS STUDY GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING ALTERNATING CURRENT CONVENTIONAL MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 10 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, STUDY REFERENCES,…

  18. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. A-C CONVENTIONAL MAGNETIC MOTOR CONTROL, PART II, UNIT 6, INSTRUCTOR'S GUIDE.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR TEACHER USE IN DIRECTING INDIVIDUAL STUDY OF ALTERNATING CURRENT CONVENTIONAL MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 10 INSTRUCTOR'S SHEETS GIVES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, REFERENCES, SUPPLEMENTARY…

  19. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. A-C CONVENTIONAL MAGNETIC MOTOR CONTROL, PART I, UNIT 5, INSTRUCTOR'S GUIDE.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR TEACHER USE IN DIRECTING INDIVIDUAL STUDY OF ALTERNATING CURRENT CONVENTIONAL MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 10 INSTRUCTOR'S SHEETS GIVES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, REFERENCES, AND…

  20. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. A-C CONVENTIONAL MAGNETIC MOTOR CONTROL, PART I, UNIT 5, ASSIGNMENTS.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING ALTERNATING CURRENT CONVENTIONAL MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 10 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, STUDY REFERENCES, SUPPLEMENTARY…

  1. Diving into the Sardinia Radio Telescope minor servo system

    NASA Astrophysics Data System (ADS)

    Buttu, M.; Orlati, A.; Zacchiroli, G.; Morsiani, M.; Fiocchi, F.; Buffa, F.; Maccaferri, G.; Vargiu, G. P.; Migoni, C.; Poppi, S.; Righini, S.; Melis, A.

    2012-09-01

    The Sardinia Radio Telescope (SRT) is a new 64-metre, Gregorian-shaped antenna built in Sardinia (Italy). It is designed to carry out observations up to 100 GHz. The telescope is provided with six focal positions: primary, Gregorian and four beam-waveguide foci. This paper describes the project of the servo system which allows the focus and receiver selection during the instrument setup. This system also operates, at the observation stage, the compensation of some of the stucture deformations due to gravity, temperature variations and other environmental effects. We illustrate the system features following a bottom-up approach, analysing all the project layers ranging from low-level systems, as the hardware controls, to the design and implementation of high-level software, which is based on the distributed objects ACS (ALMA Common Software) framework. Particular focus will be put on the links among the hierarchical levels of the system, and on the solutions adopted in order to guarantee that the control of the servo system is abstracted from the underlying hardware.

  2. A high switching frequency IGBT PWM rectifier/inverter system for ac motor drives operating from single phase supply

    NASA Astrophysics Data System (ADS)

    Thiyagarajah, K.; Ranganathan, V. T.; Ramakrishna Iyengar, B. S.

    1991-10-01

    A pulse-width-modulated (PWM) rectifier/inverter system using insulated-gate-bipolar-transistors (IGBTs), capable of switching at 20 kHz is reported. The base drive circuit for the IGBT, incorporating short-circuit protection, is presented. The inverter uses an Undeland snubber together with a simple energy recovery circuit, which ensures reliable and efficient operation even for 20 kHz switching. The front end for the system is a regenerative single phase full-bridge IGBT inverter along with an ac reactor. Steady-state design considerations are explained, and control techniques for unity power factor operation and fast current control of the front end converter, in a rotating as well as a stationary reference frame, are discussed and compared. Results from computer simulations and experimental results for a 1.5-kW prototype system are presented.

  3. Design and control of dual servo actuator for near field optical recording system

    NASA Astrophysics Data System (ADS)

    Jeong, Jaehwa; Choi, Young-Man; Lee, Jun-Hee; Yoon, Hyoung-Kil; Gweon, Dae-Gab

    2005-12-01

    Near field recording (NFR) has been introduced as a new optical data storage method to realize higher data density beyond the diffraction limit. As the data density increases, the track pitch is remarkably reduced to about 400nm. Thus, more precise actuator is required and we propose a dual servo actuator to improve the accuracy of actuator. The proposed dual servo actuator consists of a coarse actuator and a fine actuator, multisegmented magnet array (MSMA) voice coil motor (VCM) and PMN-PT actuator. In design of VCM actuator, a novel magnetic circuit of VCM with MSMA is proposed. It can generate higher air gap flux density than the magnetic circuit of VCM with the conventional magnet array. In design of fine actuator, the fine actuator including PMN-PT single crystal instead of the conventional PZT is proposed. The displacement gain of PMN-PT fine actuator is 26 nm/V and that of PZT fine actuator is 17 nm/V. The displacement gain is increased by 53 %. To evaluate tracking performance of the manufactured dual servo actuator and to assign the proper role to each actuator, the PQ method is selected. From experiment results, the total bandwidth of the dual servo actuator is increased to 2.5kHz and the resolution is 25 nm. Comparing with the resolution of one servo actuator, 70 nm, we can find that the accuracy of actuator is remarkably improved. And the proposed dual servo actuator shows satisfactory performances to be applied to NFR and it can be applied to other future disk drives.

  4. Quick-response servo amplifies small hydraulic pressure differences

    NASA Technical Reports Server (NTRS)

    Wiegard, D. E.

    1966-01-01

    Hydraulic servo, which quickly diverts fluid to either of two actuators, controls the flow rates and pressures within a hydraulic system so that the output force of the servo system is independent of the velocity of the mechanism which the system actuates. This servo is a dynamic feedback control device.

  5. Compact, Lightweight Servo-Controllable Brakes

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher S.; Townsend, William; Guertin, Jeffrey; Matsuoka, Yoky

    2010-01-01

    Compact, lightweight servo-controllable brakes capable of high torques are being developed for incorporation into robot joints. A brake of this type is based partly on the capstan effect of tension elements. In a brake of the type under development, a controllable intermediate state of torque is reached through on/off switching at a high frequency.

  6. Real time visual servoing using controlled illumination

    NASA Astrophysics Data System (ADS)

    Urban, J. P.; Motyl, G.; Gallice, J.

    1994-02-01

    A real-time visual servoing approach is applied to robotics tasks consisting of the positioning of the end effector with respect to a priori known polyhedral objects. The vision apparatus is consituted by a compact CCD camera rigidly coupled with two laser stripes mounted on the wrist of a robot manipulator. The objective is to servo the robot and effector at a constant position and orientation with respect to a known object in three- dimensional space in the field of view of the sensory system. The approach is expressed in terms of sensor-based control applied to visual servoing. In the case of camera-light stripe coupling, the elementary visual signals used for visual servoing are the points of discontinuity in the light stripes. The feasibility of the approach is demonstrated in a factory automation task consisting of the positioning of the end-effector tool over a vehicle battery. Both simulation and experimentation results are presented, proving the robustness and stability of the algorithm.

  7. Rotary fast tool servo system and methods

    DOEpatents

    Montesanti, Richard C.; Trumper, David L.

    2007-10-02

    A high bandwidth rotary fast tool servo provides tool motion in a direction nominally parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. Three or more flexure blades having all ends fixed are used to form an axis of rotation for a swing arm that carries a cutting tool at a set radius from the axis of rotation. An actuator rotates a swing arm assembly such that a cutting tool is moved in and away from the lathe-mounted, rotating workpiece in a rapid and controlled manner in order to machine the workpiece. A pair of position sensors provides rotation and position information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in-feed slide of a precision lathe.

  8. Visual servoing using statistical pressure snakes.

    SciTech Connect

    Schaub, Hanspeter

    2004-05-01

    A nonlinear visual servoing steering law is presented which is used to align a camera view with a visual target. A full color version of statistical pressure snakes is used to identify and track the target with a series of video frames. The nonlinear steering law provides camera-frame centric speed commands to a velocity based servo sub-system. To avoid saturating the subsystem, the commanded speeds are smoothly limited to remain within a finite range. Analytical error analysis is also provided illustrating how the two control gains contribute to the stiffness of the control. The algorithm is demonstrated on a pan and tilt camera system. The control law is able to smoothly realign the camera to point at the target.

  9. Concept for sleeve induction motor with 1-msec mechanical time constant

    NASA Technical Reports Server (NTRS)

    Wiegand, D. E.

    1968-01-01

    Conductive sleeve induction motor having a 1-msec mechanical time constant is used with solid-state devices to control all-electric servo power systems. The servomotor rotor inertia is small compared to the maximum force rating of the servo motion, permitting high no-load acceleration.

  10. Dual arm master controller for a bilateral servo-manipulator

    DOEpatents

    Kuban, Daniel P.; Perkins, Gerald S.

    1989-01-01

    A master controller for a mechanically dissimilar bilateral slave servo-manipulator is disclosed. The master controller includes a plurality of drive trains comprising a plurality of sheave arrangements and cables for controlling upper and lower degrees of master movement. The cables and sheaves of the master controller are arranged to effect kinematic duplication of the slave servo-manipulator, despite mechanical differences therebetween. A method for kinematically matching a master controller to a slave servo-manipulator is also disclosed.

  11. Motor Controllers

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Kollmorgen Corporation's Mermaid II two person submersible is propeller-driven by a system of five DC brushless motors with new electronic controllers that originated in work performed in a NASA/DOE project managed by Lewis Research Center. A key feature of the system is electric commutation rather than mechanical commutation for converting AC current to DC.

  12. Development of an EtherCAT enabled digital servo controller for the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Whiteis, Peter G.; Mello, Melinda J.

    2012-09-01

    EtherCAT (Ethernet for Control Automation Technology) is gaining wide spread popularity in the automation industry as a real time field bus based on low cost, Ethernet hardware. EtherCAT maximizes use of 100Mbps Ethernet hardware by using a collision free ring topology, efficient Ethernet frame utilization (> 95%), and data exchange "on the fly". These characteristics enable EtherCAT to achieve Master to Slave node data exchange rates of > 1000 Hz. The Green Bank Telescope, commissioned in 2000, utilizes an analog control system for motion control of 8 elevation and 16 azimuth motors. This architecture, while sufficient for observations at frequencies up to 50GHz, has significant limitations for the current scientific goals of observing at 115GHz. Accordingly, the Green Bank staff has embarked on a servo upgrade project to develop a digital servo system which accommodates development and implementation of advanced control algorithms. This paper describes how the new control system requirements, use of existing infrastructure and budget constraints led us to define a distributed motion control architecture where EtherCAT real-time Ethernet was selected as the communication bus. Finally, design details are provided that describe how NRAO developed a custom EtherCAT-enabled motor controller interface for the GBT's legacy motor drives in order to provide technical benefits and flexibility not available in commercial products.

  13. Powered orthosis and attachable power-assist device with Hydraulic Bilateral Servo System.

    PubMed

    Ohnishi, Kengo; Saito, Yukio; Oshima, Toru; Higashihara, Takanori

    2013-01-01

    This paper discusses the developments and control strategies of exoskeleton-type robot systems for the application of an upper limb powered orthosis and an attachable power-assist device for care-givers. Hydraulic Bilateral Servo System, which consist of a computer controlled motor, parallel connected hydraulic actuators, position sensors, and pressure sensors, are installed in the system to derive the joint motion of the exoskeleton arm. The types of hydraulic component structure and the control strategy are discussed in relation to the design philosophy and target joints motions. PMID:24110321

  14. Motor technology for mining applications advances

    SciTech Connect

    Fiscor, S.

    2009-08-15

    AC motors are steadily replacing DC motors in mining and mineral processing equipment, requiring less maintenance. The permanent magnet rotor, or the synchronous motor, has enabled Blador to introduce a line of cooling tower motors. Synchronous motors are soon likely to take over from the induction motor. 1 photo.

  15. Dynamic modeling and experiment of a new type of parallel servo press considering gravity counterbalance

    NASA Astrophysics Data System (ADS)

    He, Jun; Gao, Feng; Bai, Yongjun; Wu, Shengfu

    2013-11-01

    The large capacity servo press is traditionally realized by means of redundant actuation, however there exist the over-constraint problem and interference among actuators, which increases the control difficulty and the product cost. A new type of press mechanism with parallel topology is presented to develop the mechanical servo press with high stamping capacity. The dynamic model considering gravity counterbalance is proposed based on the virtual work principle, and then the effect of counterbalance cylinder on the dynamic performance of the servo press is studied. It is found that the motor torque required to operate the press is a lot less than the others when the ratio of the counterbalance force to the gravity of ram is in the vicinity of 1.0. The stamping force of the real press prototype can reach up to 25 MN on the position of 13 mm away from the bottom dead center. The typical deep-drawing process with 1 200 mm stroke at 8 strokes per minute is proposed by means of five order polynomial. On this process condition, the driving torques are calculated based on the above dynamic model and the torque measuring test is also carried out on the prototype. It is shown that the curve trend of calculation torque is consistent to the measured result and that the average error is less than 15%. The parallel mechanism is introduced into the development of large capacity servo press to avoid the over-constraint and interference of traditional redundant actuation, and its dynamic characteristics with gravity counterbalance are presented.

  16. Electric motor model repair specifications

    SciTech Connect

    1995-08-01

    These model repair specifications list the minimum requirements for repair and overhaul of polyphase AC squireel cage induction motors. All power ranges, voltages, and speeds of squirrel cage motors are covered.

  17. Phase plane displays detect incipient failure in servo system testing

    NASA Technical Reports Server (NTRS)

    Affenito, F. J.; Wohl, J. G.

    1967-01-01

    Computer based data conditioning and display technique detects incipient failure in servo system testing, for use in prelaunch checkout of complex nonlinear servomechanisms. These phase plane displays enable identification of, on line, unusual or abnormal servo responses which can be displayed compactly in the time domain on a cathode ray tube.

  18. Hydraulic servo mechanism of automatic transmission for vehicle

    SciTech Connect

    Sumiya, K.; Sakaguchi, Y.; Taga, Y.; Kubo, S.; Moroto, S.

    1988-06-07

    In a vehicle having an automatic transmission, a hydraulic servo control mechanism is described comprising: a hydraulic pressure source, a hydraulic servo; an accumulator; a drain oil line; interconnecting passage means providing a fluid path from the hydraulic pressure source to the hydraulic servo and from the hydraulic servo to the drain oil line; a selector valve, connected in the interconnecting passage means, for alternately connecting the hydraulic servo to the hydraulic pressure source and to the drain oil line; branch passage means connecting the accumulator to a portion of the interconnecting passage extending from the selector valve to the servo, the branch passage means meeting the portion of the interconnecting passage at a junction; first throttle means (R/sub 10/) in the branch passage means to connect the accumulator to the hydraulic servo; check valve means (q/sub 1/) in the branch passage means, and in parallel with the first throttle means, to connect the hydraulic servo to the accumulator; second throttle means (R/sub 20/), in the interconnecting passage means between the junction and the oil drain line; and relief valve means (V/sub r/), in the interconnecting passage means between the junction and the oil drain line, for adjusting the working oil discharge rate.

  19. Controller parameter tuning of delta robot based on servo identification

    NASA Astrophysics Data System (ADS)

    Zhao, Qing; Wang, Panfeng; Mei, Jiangping

    2015-03-01

    High-speed pick-and-place parallel robot is a system where the inertia imposed on the motor shafts is real-time changing with the system configurations. High quality of computer control with proper controller parameters is conducive to overcoming this problem and has a significant effect on reducing the robot's tracking error. By taking Delta robot as an example, a method for parameter tuning of the fixed gain motion controller is presented. Having identifying the parameters of the servo system in the frequency domain by the sinusoidal excitation, the PD+feedforward control strategy is proposed to adapt to the varying inertia loads, allowing the controller parameters to be tuned by minimizing the mean square tracking error along a typical trajectory. A set of optimum parameters is obtained through computer simulations and the effectiveness of the proposed approach is validated by experiments on a real prototype machine. Let the traveling plate undergoes a specific trajectory and the results show that the tracking error can be reduced by at least 50% in comparison with the conventional auto-tuning and Z-N methods. The proposed approach is a whole workspace optimization and can be applied to the parameter tuning of fixed gain motion controllers.

  20. Theoretical and experimental analysis of an optical driven servo system

    NASA Astrophysics Data System (ADS)

    Lu, F.; Wang, X. J.; Huang, J. H.; Liu, Y. F.

    2016-09-01

    An optical driven servo system model based on single-type PLZT ceramic is proposed in this paper. The control equation of the proposed servo system is derived based on the mathematical model of PLZT with coupled multi-physics fields. The parameters of photodeformation of the PLZT actuator during both the illumination phase and light off phase are identified through the static experiment. Then displacement response of optical driven servo system is numerically simulated based on the control equation presented in this paper. After that, the closed-loop control experiment of optical driven servo system based on PLZT single-type ceramic with a simple on-off method is carried out. The experimental results show that the optical driven servo system with simple on-off method can achieve the target displacement by applying UV light to the PLZT actuator. Furthermore, an improved on-off control strategy is proposed to decrease the undesirable fluctuation around the target displacement.

  1. Theoretical and experimental analysis of an optical driven servo system

    NASA Astrophysics Data System (ADS)

    Lu, F.; Wang, X. J.; Huang, J. H.; Liu, Y. F.

    2016-09-01

    An optical driven servo system model based on single-type PLZT ceramic is proposed in this paper. The control equation of the proposed servo system is derived based on the mathematical model of PLZT with coupled multi-physics fields. The parameters of photodeformation of the PLZT actuator during both the illumination phase and light off phase are identified through the static experiment. Then displacement response of optical driven servo system is numerically simulated based on the control equation presented in this paper. After that, the closed-loop control experiment of optical driven servo system based on PLZT single-type ceramic with a simple on–off method is carried out. The experimental results show that the optical driven servo system with simple on–off method can achieve the target displacement by applying UV light to the PLZT actuator. Furthermore, an improved on–off control strategy is proposed to decrease the undesirable fluctuation around the target displacement.

  2. Highly accurate servo control of reference beam angle in holographic memory with polarized servo beam

    NASA Astrophysics Data System (ADS)

    Hosaka, Makoto; Ogata, Takeshi; Yamada, Kenichiro; Yamazaki, Kazuyoshi; Shimada, Kenichi

    2016-09-01

    We propose a new servo technique for controlling the reference beam angle in angular multiplexing holographic memory to attain higher capacity and higher speed data archiving. An orthogonally polarized beam with an incident angle slightly different from that of the reference beam is newly applied to the optics. The control signal for the servo is generated as the difference between the diffracted light intensities of these two beams from a hologram. The incident angle difference between the beams to the medium was optimized as sufficient properties of the control signal were obtained. The high accuracy of the control signal with an angle error lower than 1.5 mdeg was successfully confirmed in the simulations and experiments.

  3. Dual arm master controller for a bilateral servo-manipulator

    SciTech Connect

    Kuban, D.P.; Perkins, G.S.

    1989-11-28

    A master controller for a mechanically dissimilar bilateral slave servo-manipulator is disclosed. The master controller includes a plurality of drive trains comprising a plurality of sheave arrangements and cables for controlling upper and lower degrees of master movement. The cables and sheaves of the master controller are arranged to effect kinematic duplication of the slave servo-manipulator, despite mechanical differences there between. A method for kinematically matching a master controller to a slave servo-manipulator is also disclosed. 13 figs.

  4. Servo-controlled intravital microscope system

    NASA Technical Reports Server (NTRS)

    Mansour, M. N.; Wayland, H. J.; Chapman, C. P. (Inventor)

    1975-01-01

    A microscope system is described for viewing an area of a living body tissue that is rapidly moving, by maintaining the same area in the field-of-view and in focus. A focus sensing portion of the system includes two video cameras at which the viewed image is projected, one camera being slightly in front of the image plane and the other slightly behind it. A focus sensing circuit for each camera differentiates certain high frequency components of the video signal and then detects them and passes them through a low pass filter, to provide dc focus signal whose magnitudes represent the degree of focus. An error signal equal to the difference between the focus signals, drives a servo that moves the microscope objective so that an in-focus view is delivered to an image viewing/recording camera.

  5. Hydraulic servo system increases accuracy in fatigue testing

    NASA Technical Reports Server (NTRS)

    Dixon, G. V.; Kibler, K. S.

    1967-01-01

    Hydraulic servo system increases accuracy in applying fatigue loading to a specimen under test. An error sensing electronic control loop, coupled to the hydraulic proportional closed loop cyclic force generator, provides an accurately controlled peak force to the specimen.

  6. Fuzzy control of hydraulic servo system based on DSP

    NASA Astrophysics Data System (ADS)

    He, Juan; Yuan, Song-Yue

    2011-10-01

    On the basis of high-speed switching valve of hydraulic servo system, the complex mathematical model of nonlinear hydraulic servo system was analyzed and constructed. A intelligent Fuzzy control method using TMS320LF2407A DSP chip as primary processor was put forward. The simulation results show that the control strategy has a better effect than the conventional PID control has. And the non-differential control of the system has been basically achieved.

  7. Multiprocessor position/velocity servo control for multiaxis digital robot control system

    SciTech Connect

    Lancraft, R.E.; Daggett, K.E.; Omaga, E.M.; Casler, R.J. Jr.; Booth, B.L.; Bergman, N.J.; Nuncy, M.D.

    1989-09-19

    This paper describes a digitally controlled robot. It comprises: an arm having a plurality of joints; each of the joints being axis driven by an electric motor drive; a power amplifier operable to supply drive current to each joint drive motor; respective feedback control loop means for respectively controlling the power amplifier for each of the joint drive motors; servo control means for performing control support tasks and calculation tasks; control means including a first microprocessor having a relatively high computing performance capability and a relatively low data processing interface capability; control means further including a second microprocessor having a relatively high data processing performance capability; means for interfacing the first and second microprocessors; means for generating position commands for implementation by the second microprocessor; means for detecting motor position and velocity for each drive axis and for generating corresponding digital feedback signals; means for operating the second microprocessor to control the interfacing means so as to send position commands to the first microprocessor and receive calculated torque commands from the first microprocessor; and means for operating the second microprocessor to apply the torque commands to the torque control circuitry for execution and for synchronously receiving from the motor detecting means the digital feedback position and velocity signals.

  8. Sub-millimeter servo system for sample positioning based on thresholding of defocused laser spot

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Cao, Liangcai; Zhang, Enyao; Jin, Guofan

    2013-12-01

    Accurate sample positioning and automatic sample operation can improve the performance of measuring instruments. A Sub-millimeter servo system for sample positioning based on thresholding of defocused laser spot is proposed. The effective laser spot image is extracted by thresholding of the light cone section on the sample surface. By estimating the section area and centroid of the spot, the defocus status and position of the measured sample can be acquired. A focused light cone at visible wavelength is cast onto the surface of sample, forming a marked laser spot as the indicator of the measurement point. A CCD camera is used for visual imaging, and a high-precision three-dimensional motorized translation stage is used for the accurate servo control. The marked spot is real-time monitored and processed in the platform of LabVIEW. The Autonomous Thresholding Image-Processing Algorithm (ATIPA) is proposed to detect and analyze the defocused marked spot, through which system creates a servo whereby accurate position control of the sample can be achieved. The measurement point on the sample can be accurately located by computing the center coordinates of the marked spot. And a focus function is implemented by measuring the size of defocused spot. This focus function is then used within an improved climbing search algorithm to obtain the focused sample position via moving the sample stage. Experimental results show that the system could measure the laser spot and control the sample in a robust, repeatable way within reasonable errors. The accuracy of the sample autofocus reaches 0.1 mm.

  9. Speed control for synchronous motors

    NASA Technical Reports Server (NTRS)

    Packard, H.; Schott, J.

    1981-01-01

    Feedback circuit controls fluctuations in speed of synchronous ac motor. Voltage proportional to phase angle is developed by phase detector, rectified, amplified, compared to threshold, and reapplied positively or negatively to motor excitation circuit. Speed control reduces wow and flutter of audio turntables and tape recorders, and enhances hunting in gyroscope motors.

  10. A Quasiphysics Intelligent Model for a Long Range Fast Tool Servo

    PubMed Central

    Liu, Qiang; Zhou, Xiaoqin; Lin, Jieqiong; Xu, Pengzi; Zhu, Zhiwei

    2013-01-01

    Accurately modeling the dynamic behaviors of fast tool servo (FTS) is one of the key issues in the ultraprecision positioning of the cutting tool. Herein, a quasiphysics intelligent model (QPIM) integrating a linear physics model (LPM) and a radial basis function (RBF) based neural model (NM) is developed to accurately describe the dynamic behaviors of a voice coil motor (VCM) actuated long range fast tool servo (LFTS). To identify the parameters of the LPM, a novel Opposition-based Self-adaptive Replacement Differential Evolution (OSaRDE) algorithm is proposed which has been proved to have a faster convergence mechanism without compromising with the quality of solution and outperform than similar evolution algorithms taken for consideration. The modeling errors of the LPM and the QPIM are investigated by experiments. The modeling error of the LPM presents an obvious trend component which is about ±1.15% of the full span range verifying the efficiency of the proposed OSaRDE algorithm for system identification. As for the QPIM, the trend component in the residual error of LPM can be well suppressed, and the error of the QPIM maintains noise level. All the results verify the efficiency and superiority of the proposed modeling and identification approaches. PMID:24163627

  11. Helicopter force-feel and stability augmentation system with parallel servo-actuator

    NASA Technical Reports Server (NTRS)

    Hoh, Roger H. (Inventor)

    2006-01-01

    A force-feel system is implemented by mechanically coupling a servo-actuator to and in parallel with a flight control system. The servo-actuator consists of an electric motor, a gearing device, and a clutch. A commanded cockpit-flight-controller position is achieved by pilot actuation of a trim-switch. The position of the cockpit-flight-controller is compared with the commanded position to form a first error which is processed by a shaping function to correlate the first error with a commanded force at the cockpit-flight-controller. The commanded force on the cockpit-flight-controller provides centering forces and improved control feel for the pilot. In an embodiment, the force-feel system is used as the basic element of stability augmentation system (SAS). The SAS provides a stabilization signal that is compared with the commanded position to form a second error signal. The first error is summed with the second error for processing by the shaping function.

  12. The Classification of a Simulation Data of a Servo System via Evolutionary Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Alkaya, Asil; Bayhan, G. Miraç

    Evolutionary neural networks (EANNs) are the combination of artificial neural networks and evolutionary algorithms. This merge enabled these two methods to complement the disadvantages of the other methods. Traditional artificial neural networks based on backpropagation algorithms have some limitations. Contribution by artificial neural networks was the flexibility of nonlinear function approximation, which cannot be easily implemented with prototype evolutionary algorithm. On the other hand, evolutionary algorithm has freed artificial neural networks from simple gradient descent approaches of optimization. Classification is an important task in many domains and though there are several methods that can be used to find the relationship between the input and output space , among the different works, EAs and NNs stands out as one of the most promising methods. In this study, the data gathered from a simulation of a servo system involving a servo amplifier, a motor, a lead screw/nut, and a sliding carriage of some sort is classified by the application coded in Qt programming environment to predict the rise time of a servomechanism in terms of two (continuous) gain settings and two (discrete) choices of mechanical linkages.

  13. Electric vehicle motors and controllers

    NASA Astrophysics Data System (ADS)

    Secunde, R. R.

    Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  14. Electric vehicle motors and controllers

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1981-01-01

    Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  15. Cogging effect minimization in PMSM position servo system using dual high-order periodic adaptive learning compensation.

    PubMed

    Luo, Ying; Chen, Yangquan; Pi, Youguo

    2010-10-01

    Cogging effect which can be treated as a type of position-dependent periodic disturbance, is a serious disadvantage of the permanent magnetic synchronous motor (PMSM). In this paper, based on a simulation system model of PMSM position servo control, the cogging force, viscous friction, and applied load in the real PMSM control system are considered and presented. A dual high-order periodic adaptive learning compensation (DHO-PALC) method is proposed to minimize the cogging effect on the PMSM position and velocity servo system. In this DHO-PALC scheme, more than one previous periods stored information of both the composite tracking error and the estimate of the cogging force is used for the control law updating. Asymptotical stability proof with the proposed DHO-PALC scheme is presented. Simulation is implemented on the PMSM servo system model to illustrate the proposed method. When the constant speed reference is applied, the DHO-PALC can achieve a faster learning convergence speed than the first-order periodic adaptive learning compensation (FO-PALC). Moreover, when the designed reference signal changes periodically, the proposed DHO-PALC can obtain not only faster convergence speed, but also much smaller final error bound than the FO-PALC.

  16. Servo-controlled biaxial test system

    SciTech Connect

    Thayer, W.L.

    1983-02-11

    A large test program requiring axial torsion tests was submitted to the Materials Test and Evaluation Section of the Engineering Sciences Division by the Chemistry Department. The objective of these tests was to provide insight with regard to the fundamental aspects of plastic deformation and hardening of nickel. Thes tests will also provide the constants necessary for a constitutive equation for use in weld modeling. The weld models will attempt to predict residual stresses in nickel welds. The test program consisted of approximately 70 specimens of high purity nickel to be tested in torsion over a large temperature range (RT - 900/sup 0/C) at a strain rate of about 1 x 10/sup -4/ in./in./sec to steady state at each temperature. After having attained steady state, the strain-rate-reversal (Bauschinger test) and incremental-changes-in-strain-rate tests (10/sup -4/ to 2 x 10/sup -3/ in./in./sec) at constant structure will be conducted. Additional tests such as transient backstress and yield surface distortion (using multi-axial stress states) will be carried out. This particular request required a biaxial test machine capable of more than 360/sup 0/ rotation in torsion. Temperature capabilities, atmosphere control, and a control system were also needed whereby the machine could be operated in torsion using strain control. Such a machine did not commercially exist so it was necessary to build one. The basic unit chosen was a 20K Servo-Electric Hydraulic Test Machine to which we added a simple anti-rotation fixture for the ram. This constituted the axial portion of the system.

  17. Optical servoing for industrial surface machining

    NASA Astrophysics Data System (ADS)

    Koller, Norbert; Ofner, Ronald; O'Leary, Paul; Fauster, Ewald

    2006-02-01

    The surface machining of cracks is a key issue to ensure the quality of steel rods and billets. The aim is to grind these defects out of the material. This paper presents a real-time optical servo-system, consisting of three image processing systems and an industrial robot, which fully automate this process. A high resolution color progressive scan camera, placed at a suitable position above the roller conveyor, observes the material and detects color markings indicating the presence of a crack. This camera system controls the roller conveyor transporting the material until a marked crack is detected. Diffuse light sources provide homogeneous lighting to ensure reliable detection of the markings. A demosaicing algorithm, RGB to HSL color modeling and thresholding with statistical morphology are used to identify the marked areas. On detecting a crack the material is automatically positioned within the working area of an industrial robot. A collineation is used to generate metric two-dimensional coordinates corresponding to the bounding rectangle of the detected error. At this point two plane-of-light scanners are used to acquire a cross section of the material to the left and the right of the robot's working area. From this, a three-dimensional model for the rod or billet surface is calculated and the two-dimensional coordinates of the color marking are projected onto this surface to generate a patch. The coordinates of this patch are sent to the 6R industrial robot, which then grinds out the defect. A new concept has been implemented which enables the calibration of the three image processing systems and the industrial robot so as to have one common coordinate system. Operational results have shown the full functionality of the system concept in the harsh environment of a steel production facility.

  18. Electromagnetic servoing-a new tracking paradigm.

    PubMed

    Reichl, Tobias; Gardiazabal, José; Navab, Nassir

    2013-08-01

    Electromagnetic (EM) tracking is highly relevant for many computer assisted interventions. This is in particular due to the fact that the scientific community has not yet developed a general solution for tracking of flexible instruments within the human body. Electromagnetic tracking solutions are highly attractive for minimally invasive procedures, since they do not require line of sight. However, a major problem with EM tracking solutions is that they do not provide uniform accuracy throughout the tracking volume and the desired, highest accuracy is often only achieved close to the center of tracking volume. In this paper, we present a solution to the tracking problem, by mounting an EM field generator onto a robot arm. Proposing a new tracking paradigm, we take advantage of the electromagnetic tracking to detect the sensor within a specific sub-volume, with known and optimal accuracy. We then use the more accurate and robust robot positioning for obtaining uniform accuracy throughout the tracking volume. Such an EM servoing methodology guarantees optimal and uniform accuracy, by allowing us to always keep the tracked sensor close to the center of the tracking volume. In this paper, both dynamic accuracy and accuracy distribution within the tracking volume are evaluated using optical tracking as ground truth. In repeated evaluations, the proposed method was able to reduce the overall error from 6.64±7.86 mm to a significantly improved accuracy of 3.83±6.43 mm. In addition, the combined system provides a larger tracking volume, which is only limited by the reach of the robot and not the much smaller tracking volume defined by the magnetic field generator.

  19. System and method for motor speed estimation of an electric motor

    DOEpatents

    Lu, Bin; Yan, Ting; Luebke, Charles John; Sharma, Santosh Kumar

    2012-06-19

    A system and method for a motor management system includes a computer readable storage medium and a processing unit. The processing unit configured to determine a voltage value of a voltage input to an alternating current (AC) motor, determine a frequency value of at least one of a voltage input and a current input to the AC motor, determine a load value from the AC motor, and access a set of motor nameplate data, where the set of motor nameplate data includes a rated power, a rated speed, a rated frequency, and a rated voltage of the AC motor. The processing unit is also configured to estimate a motor speed based on the voltage value, the frequency value, the load value, and the set of nameplate data and also store the motor speed on the computer readable storage medium.

  20. Frequency modulation drive for a piezoelectric motor

    DOEpatents

    Mittas, Anthony

    2001-01-01

    A piezoelectric motor has peak performance at a specific frequency f.sub.1 that may vary over a range of frequencies. A drive system is disclosed for operating such a motor at peak performance without feedback. The drive system consists of the motor and an ac source connected to power the motor, the ac source repeatedly generating a frequency over a range from f.sub.1 -.DELTA.x to f.sub.1 +.DELTA.y.

  1. Dynamics of a Planar Arm Model with Servo-regulated Viscoelastic Muscles in a Microgravity Environment

    NASA Astrophysics Data System (ADS)

    Durden, Jared

    2008-03-01

    We constructed a mechanical arm model consisting of a rigid upper arm and forearm which simulates vertical planar arm motion with two degrees of freedom: shoulder rotation and elbow rotation. Computer controlled servo-motors effect rotation of the elbow and shoulder joints through tensions incited in elastic materials which represent muscles. We predicted and then observed vertical planar arm motion in the laboratory under normal Earth gravity conditions, and on NASAs Weightless Wonder in near zero gravity conditions. Because the arm only has two degrees of freedom we were able to simulate near zero gravity in the laboratory and predict the subsequent motion by operating it in the horizontal plane. We will discuss results of the actual observed motion in these three environments, and compare them to the motion predicted based on the equations of motion. We will also discuss how the project was developed physically, mathematically, and electronically.

  2. Servo control booster system for minimizing following error

    DOEpatents

    Wise, William L.

    1985-01-01

    A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, .DELTA.S.sub.R, on a continuous real-time basis for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error .gtoreq..DELTA.S.sub.R, to produce precise position correction signals. When the command-to-response error is less than .DELTA.S.sub.R, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.

  3. An accurate head-positioning signal for perpendicular recording using a dc-free servo pattern

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Takehiko; Ichihara, Takayuki; Takano, Hisashi

    2002-05-01

    We devised a dc-free servo pattern for perpendicular recording to prevent distortion of the readback wave form from the servo area. This servo pattern remarkably improves the servo sector error rate, and shows the same linearity of position error signals as does that from a conventional pattern. An experimental 2.5 in hard disk drive (HDD) with a trapezoidal-shaped single pole type (SPT) head shows good following performance within a wide range of yaw angle.

  4. Research on inverter test system of synchronous motor using modbus communication

    NASA Astrophysics Data System (ADS)

    Cao, Wenlun; Chen, Bei; He, Yuyao

    2013-03-01

    In this paper, the hardware architecture of the servo system composed by self-made inverter and permanent magnet synchronous motor is introduced as well as its measurement and control system software features. Basing on the Modbus-RTU protocols which contain the CRC data verification between IPC and the inverter, we have built a communication system. The measurement and control software of servo system are realized, which consists of self-made inverter and PMSM. Compared with the servo system which consists of Schindler's ATV31 inverter and SIMO's asynchronous motor, the results are given. The experiment parameters include harmonic content which is contained by phase current and voltage, and also the motor speed. The results show that the measurement and control system are stable and reliable. Both the harmonic content of the Inverter output and the motor speed meet the requirements.

  5. Antenna servo design for tracking low-earth-orbiting satellites

    NASA Astrophysics Data System (ADS)

    Gawronski, W.; Mellstrom, J. A.

    1994-11-01

    The upcoming NASA missions will require tracking of low-orbit satellites. As a consequence, NASA antennas will be required to track satellites at higher rates than for the current deep-space missions. This paper investigates servo design issues for the 34-m beam-waveguide antennas that track low-orbit satellites. This includes upgrading the servo with a feedforward loop, monopulse controller design, and tracking error reduction either through proper choice of elevation pinion location or through application of a notch filter or adjustment of the elevation drive amplifier gain. Finally, improvement of the signal-to-noise ratio through averaging of the oversampled monopulse signal is described.

  6. Motor degradation prediction methods

    SciTech Connect

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-12-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor`s duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures.

  7. Mathematical modeling of bent-axis hydraulic piston motors

    NASA Technical Reports Server (NTRS)

    Bartos, R. D.

    1992-01-01

    Each of the DSN 70-m antennas uses 16 bent-axis hydraulic piston motors as part of the antenna drive system. On each of the two antenna axes, four motors are used to drive the antenna and four motors provide counter torque to remove the backlash in the antenna drive train. This article presents a mathematical model for bent-axis hydraulic piston motors. The model was developed to understand the influence of the hydraulic motors on the performance of the DSN 70-m antennas' servo control system.

  8. Control system for an induction motor with energy recovery

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A control circuit for an induction motor powered system is disclosed in which a power factor controlled servo loop is used to control, via the phase angle of firing of a triac, the power input to the motor, as a function of load placed on the motor by machinery of the powered system. Then, upon application of torque by this machinery to the motor, which tends to overspeed the motor, the firing angle of the triac is automatically set to a fixed, and relatively short, firing angle.

  9. A software design for servo system of siderostats.

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuheng; Sun, Shuqin

    1997-06-01

    A software design for the servo system of two siderostats in the prototype of a stellar interferometer is described. The software is written in the EPROM of an 8098 chip, which includes the commuinication routine between 8098 and the main computer. The routine are for positioning and tracking.

  10. Support for transmission shaft and hydraulic servo drum

    SciTech Connect

    Kobayashi, K.; Sumiya, K.; Taga, Y.; Watanabe, K.

    1987-09-15

    In a support for use in an automatic transmission apparatus of the type having a transmission shaft for transmitting power, an annular hydraulic servo drum and a piston fitted in the hydraulic servo drum for engaging and disengaging a friction engaging means is described, wherein the support has an axially extending tubular supporting portion having an inner peripheral surface for supporting the transmission shaft, an outer peripheral surface for supporting an inner cylindrical portion of the hydraulic servo drum, and working oil passages formed and adapted for supplying and discharging a working oil to and from the hydraulic servo drum. The improvement consists of: a support body made of light material having a first radially extending oil passage leading from an oil pressure controller for supplying and discharging a working oil and communicating with the inner peripheral surface of the tubular supporting portion; an inner sleeve of a heavier material than the support body fitting on the inner peripheral surface of the tubular supporting portion to cover the inner axially extending oil groove thereby forming an oil passage for working oil; and an outer sleeve of a heavier material than the support body fitting on the outer peripheral surface of the tubular supporting portion.

  11. Electrical servo actuator bracket. [fuel control valves on jet engines

    NASA Technical Reports Server (NTRS)

    Sawyer, R. V. (Inventor)

    1981-01-01

    An electrical servo actuator is mounted on a support arm which is allowed to pivot on a bolt through a fixed mounting bracket. The actuator is pivotally connected to the end of the support arm by a bolt which has an extension allowed to pass through a slot in the fixed mounting bracket. An actuator rod extends from the servo actuator to a crank arm which turns a control shaft. A short linear thrust of the rod pivots the crank arm through about 90 for full-on control with the rod contracted into the servo actuator, and full-off control when the rod is extended from the actuator. A spring moves the servo actuator and actuator rod toward the control crank arm once the actuator rod is fully extended in the full-off position. This assures the turning of the control shaft to a full-off position. A stop bolt and slot are provided to limit pivot motion. Once fully extended, the spring pivots the motion.

  12. An ironless armature brushless torque motor

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1973-01-01

    A high torque motor with improved servo mechanism is reported. Armature windings are cast into an epoxy cylinder and armature conductors are integrally cast with an aluminum mounting ring which provides thermal conductance directly into the structure. This configuration eliminates magnetic hysteresis because there is no relative motion between the rotating magnetic field and any stationary iron. The absence of destabilization forces provides a fast electrical response compared with a typical torquer of conventional construction.

  13. A six-degree-of-freedom magnetic levitation fine stage for a high-precision and high-acceleration dual-servo stage

    NASA Astrophysics Data System (ADS)

    Kim, MyeongHyeon; Jeong, Jae-heon; Kim, HyoYoung; Gweon, DaeGab

    2015-10-01

    This paper presents a novel six-degree-of-freedom magnetic levitation fine stage for a dual-servo stage. The proposed fine stage is levitated and actuated, using a voice coil motor actuator with a Halbach magnet array. For a dual-servo stage, fine stage performance is deeply intertwined with coarse stage performance. Because the fine stage is installed over the coarse stage, the overall size of the fine stage can be limited by the moving plate of the coarse stage. Therefore, magnetic flux modeling and optimization are performed to manufacture optimal fine stages. To control the fine stage, actuator kinetics and sensor kinematics are proposed. Homing control is implemented by using linear variable differential transformers, whereas fine control is implemented by capacitance sensors and laser interferometers. Finally, experimental results of in-position stability, moving range, and repeatability are presented.

  14. A New Controller for PMSM Servo Drive Based on the Sliding Mode Approach with Parameter Adaptation

    NASA Astrophysics Data System (ADS)

    Gjini, Orges; Kaneko, Takayuki; Ohsawa, Hiroshi

    A novel controller based on the Sliding Mode (SM) approach is designed for controlling a permanent magnet synchronous motor (PMSM) in a servo drive. After analyzing the classical SM controller, changes are made in the controller design such that its performance is substantially improved. To improve the controller performance in steady state (zero error positioning) an integral block is added to the controller resulting in a new controller configuration, which we call Sliding Mode Integral (SMI) controller. The new controller is tuned based on the results from parameter identification of the motor and the working machine. To cope with model parameter variations, especially unpredictable friction changes, gain scheduling and fuzzy based adaptive techniques are used in the control algorithm. Experiments and simulations are carried out and their results show a high performance control. The new controller offers very good tracking; it is highly robust, reaches the final position very fast and has a large stall torque. Furthermore the application of the SM ensures reduction of the system order by one. For comparison, the new controller's performance is compared with that of a PI controller. From the experimental results it is obvious the superiority of the new proposed controller.

  15. Visual Servoing for a Quadrotor UAV in Target Tracking Applications

    NASA Astrophysics Data System (ADS)

    Popova, Marinela Georgieva

    This research study investigates the design and implementation of position-based and image-based visual servoing techniques for controlling the motion of quadrotor unmanned aerial vehicles (UAVs). The primary applications considered are tracking stationary and moving targets. A novel position-based tracking law is developed and integrated with inner loop proportional-integral-derivative control algorithm. A theoretical proof for the stability of the proposed method is provided and numerical simulations are performed to validate the performance of the closed-loop system. A classical image-based visual servoing technique is also implemented and a modification of the classical method is suggested to reduce the undesirable effects due to the underactuated quadrotor system. Finally, the case when the quadrotor loses sight of the target is investigated and several solutions are proposed to help maintain the view of the target.

  16. Needle targeting under C-arm fluoroscopy servoing

    NASA Astrophysics Data System (ADS)

    Mihaescu, Cristian; Ibanez, Luis; Mocanu, Mihai; Cleary, Kevin R.

    2005-04-01

    This paper describes a method for translational and orientational alignment of a robotic needle driver based on image servoing and x-ray fluoroscopy. The translational process works by segmenting the needle in a frame-grabbed fluoroscopic image and then commanding the robot to automatically move the needle tip to the skin entry point. The orientational alignment is then completed based on five different positions of the needle tip. Previously reported fluoroscopy servoing methods use complex robot-image registration algorithms, fiducial markers, and two or more dissimilar views that included moving the fluoroscope. Our method aligns the needle using one setting of the fluoroscope so that it does not need to be moved during the alignment process. Sample results from both the translational and orientational steps are included.

  17. Inherent limitations of fixed time servo-controlled radiometric calorimetry

    SciTech Connect

    Wetzel, J.R.; Duff, M.F.; Lemming, J.F.

    1987-01-01

    There has been some interest in low precision, short run time calorimetry measurements. This type of calorimetry measurement has been proposed for use when high precision measurements are not required, for example, to screen scrap containers to determine if there is enough material to be measured more accurately of for confirmatory measurements that only require low precision results. The equipment needed to make these measurements is a servo-controlled calorimeter with a sample preequilibration bath. The preequilibration bath temperature is set to the internal temperature of the calorimeter running at a fixed servo-controlled wattage level. The sample power value is determined at a fixed time form the sample loading into the calorimeter. There are some limitations and areas of uncertainties in the use of data obtained by this method. Data collected under controlled conditions demonstrate the limitations. Sample packaging, preequilibration time, and item wattage were chosen as the variables most likely to be encountered in a plant environment.

  18. High Bandwidth Short Stroke Rotary Fast Tool Servo

    SciTech Connect

    Montesanti, R C; Trumper, D L

    2003-08-22

    This paper presents the design and performance of a new rotary fast tool servo (FTS) capable of developing the 40 g's tool tip acceleration required to follow a 5 micron PV sinusoidal surface at 2 kHz with a planned accuracy of 50 nm, and having a full stroke of 50 micron PV at lower frequencies. Tests with de-rated power supplies have demonstrated a closed-loop unity-gain bandwidth of 2 kHz with 20 g's tool acceleration, and we expect to achieve 40 g's with supplies providing {+-} 16 Amp to the Lorentz force actuator. The use of a fast tool servo with a diamond turning machine for producing non-axisymmetric or textured surfaces on a workpiece is well known. Our new rotary FTS was designed to specifically accommodate fabricating prescription textured surfaces on 5 mm diameter spherical target components for High Energy Density Physics experiments on the National Ignition Facility Laser (NIF).

  19. Hydraulic servo for friction coupling element of automatic transmission

    SciTech Connect

    Sumiya, K.; Kano, T.; Kubo, S.; Watanabe, K.

    1987-07-28

    A hydraulic servo is described for a friction coupling element in an automatic transmission including a casing, the hydraulic servo, comprising: an annular drum having a first cylinder, a second cylinder, and a side wall connecting the first and second cylinders all integrally formed together as a single piece by press forming, the first cylinder having splines on its outer cylindrical surface and fixed to the interior of the casing through the splines and the second cylinder having splines on its inner cylindrical surface; a press-formed third cylinder joined to the side wall of the annular drum by a fully encircling weld; a piston fitted between the first cylinder and the third cylinder; and biasing means provided between the third cylinder and the second cylinder for returning the piston.

  20. ac propulsion system for an electric vehicle

    NASA Technical Reports Server (NTRS)

    Geppert, S.

    1980-01-01

    It is pointed out that dc drives will be the logical choice for current production electric vehicles (EV). However, by the mid-80's, there is a good chance that the price and reliability of suitable high-power semiconductors will allow for a competitive ac system. The driving force behind the ac approach is the induction motor, which has specific advantages relative to a dc shunt or series traction motor. These advantages would be an important factor in the case of a vehicle for which low maintenance characteristics are of primary importance. A description of an EV ac propulsion system is provided, taking into account the logic controller, the inverter, the motor, and a two-speed transmission-differential-axle assembly. The main barrier to the employment of the considered propulsion system in EV is not any technical problem, but inverter transistor cost.

  1. Servo-amplifiers for ion current measurement in mass spectrometry

    USGS Publications Warehouse

    Stacey, J.S.; Russell, R.D.; Kollar, F.

    1965-01-01

    A servo-voltmeter can provide a useful alternative to the d.c. amplifier or vibrating reed electrometer for the accurate measurement of mass spectrometer ion currents, and has some advantages which recommend its use in certain applications. A generalized analysis based on servomechanism theory is presented as an aid for understanding the design criteria for this type of device. Two existing systems are described and their operation and performance are examined.

  2. Servo Controlled Variable Pressure Modification to Space Shuttle Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Kouns, H. H.

    1983-01-01

    Engineering drawings show modifications made to the constant pressure control of the model AP27V-7 hydraulic pump to an electrically controlled variable pressure setting compensator. A hanger position indicator was included for continuously monitoring hanger angle. A simplex servo driver was furnished for controlling the pressure setting servovalve. Calibration of the rotary variable displacement transducer is described as well as pump performance and response characteristics.

  3. Huygens HASI servo accelerometer: A review and lessons learned

    NASA Astrophysics Data System (ADS)

    Hathi, B.; Ball, A. J.; Colombatti, G.; Ferri, F.; Leese, M. R.; Towner, M. C.; Withers, P.; Fulchigioni, M.; Zarnecki, J. C.

    2009-10-01

    The servo accelerometer constituted a vital part of the Huygens Atmospheric Structure Instrument (HASI): flown aboard the Huygens probe, it operated successfully during the probe's entry, descent, and landing on Titan, on 14th January 2005. This paper reviews the Servo accelerometer, starting from its development/assembly in the mid-1990s, to monitoring its technical performance through its seven-year long in-flight (or cruise) journey, and finally its performance in measuring acceleration (or deceleration) upon encountering Titan's atmosphere. The aim of this article is to review the design, ground tests, in-flight tests and operational performance of the Huygens servo accelerometer. Techniques used for data analysis and lessons learned that may be useful for accelerometry payloads on future planetary missions are also addressed. The main finding of this review is that the conventional approach of having multiple channels to cover a very broad measurement range: from 10 -6g to the order of 10 g (where g=Earth's surface gravity, 9.8 m/s 2), with on-board software deciding which of the channels to telemeter depending on the magnitude of the measured acceleration, works well. However, improvements in understanding the potential effects of the sensor drifts and ageing on the measurements can be achieved in future missions by monitoring the 'scale factor' - a measure of such sensors' sensitivity, along with the already implemented monitoring of the sensor's offset during the in-flight phase.

  4. Research on Image-Based Fuzzy Visual Servo Forpicking Robot

    NASA Astrophysics Data System (ADS)

    Jian, Song

    An open eggplant picking robot experiment system is developed successfully which includes a arthral manipulator with 4 DOF, a motion controller, a color image processing card, a camera and a PC. The fixed bilateral threshold based histogram is adopted to segment the G-B gray images of eggplant in the growth environment.. To meet the vision requirement of the eggplant picking robot, the object's characters, such as outline, area, center of gravity, enclosing rectangle and the point to cut off, are extracted. We applied fuzzy control to the visual servo of picking robot and selected the fruit image's centre of gravity coordinate as variable for the fuzzy control system to create a fuzzy controller. The output control was modified by the self-adjustment factor and thus a fuzzy control diagram for the precise output control was obtained. The results show that the image-based picking robot fuzzy visual servo control overcomes time variation, nonlinearity and strong coupling of the robot visual servo control and has high response speed and good robustness.

  5. Servo control booster system for minimizing following error

    DOEpatents

    Wise, W.L.

    1979-07-26

    A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, ..delta..S/sub R/, on a continuous real-time basis, for all operational times of consequence and for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error greater than or equal to ..delta..S/sub R/, to produce precise position correction signals. When the command-to-response error is less than ..delta..S/sub R/, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.

  6. Adaptive backstepping slide mode control of pneumatic position servo system

    NASA Astrophysics Data System (ADS)

    Ren, Haipeng; Fan, Juntao

    2016-06-01

    With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potential in many fields. However, most existing control methods with high tracking performance need to know the model information and to use pressure sensor. This limits the application of the pneumatic servo system. An adaptive backstepping slide mode control method is proposed for pneumatic position servo system. The proposed method designs adaptive slide mode controller using backstepping design technique. The controller parameter adaptive law is derived from Lyapunov analysis to guarantee the stability of the system. A theorem is testified to show that the state of closed-loop system is uniformly bounded, and the closed-loop system is stable. The advantages of the proposed method include that system dynamic model parameters are not required for the controller design, uncertain parameters bounds are not need, and the bulk and expensive pressure sensor is not needed as well. Experimental results show that the designed controller can achieve better tracking performance, as compared with some existing methods.

  7. Design and Implementation of the Control System for a 2 kHz Rotary Fast Tool Servo

    SciTech Connect

    Montesanti, R C; Trumper, D L

    2004-03-29

    This paper presents a summary of the performance of our 2 kHz rotary fast tool servo and an overview of its control systems. We also discuss the loop shaping techniques used to design the power amplifier current control loop and the implementation of that controller in an op-amp circuit. The design and development of the control system involved a long list of items including: current compensation; tool position compensation; notch filter design and phase stabilizing with an additional pole for a plant with an undamped resonance; adding viscous damping to the fast tool servo; voltage budget for driving real and reactive loads; dealing with unwanted oscillators; ground loops; digital-to-analog converter glitches; electrical noise from the spindle motor switching power supply; and filtering the spindle encoder signal to generate smooth tool tip trajectories. Eventually, all of these topics will be discussed in detail in a Ph.D. thesis that will include this work. For the purposes of this paper, rather than present a diluted discussion that attempts to touch on all of these topics, we will focus on the first item with sufficient detail for providing insight into the design process.

  8. A discrete time-varying internal model-based approach for high precision tracking of a multi-axis servo gantry.

    PubMed

    Zhang, Zhen; Yan, Peng; Jiang, Huan; Ye, Peiqing

    2014-09-01

    In this paper, we consider the discrete time-varying internal model-based control design for high precision tracking of complicated reference trajectories generated by time-varying systems. Based on a novel parallel time-varying internal model structure, asymptotic tracking conditions for the design of internal model units are developed, and a low order robust time-varying stabilizer is further synthesized. In a discrete time setting, the high precision tracking control architecture is deployed on a Voice Coil Motor (VCM) actuated servo gantry system, where numerical simulations and real time experimental results are provided, achieving the tracking errors around 3.5‰ for frequency-varying signals.

  9. Is the functional stretch response servo controlled or preprogrammed?

    PubMed

    Chan, C W; Kearney, R E

    1982-03-01

    Recent findings in humans and primates suggest that the long latency electromyographic (EMG) responses, evoked by opposing sudden limb displacements, might be mediated via a transcortical pathway. However, it is not clear whether these "late" responses are servo controlled or preprogrammed. We have addressed these questions in two interrelated experimental series. Firstly, the late EMG responses (termed the FSR) evoked in the ankle muscles of 8-12 normal human subjects were mapped as a function of displacement amplitude and velocity. Secondly, the FSR evoked by sustained ramp displacements (lasting 500 msec) were compared with those elicited by transient pulse displacements (lasting 60 msec) having entirely different amplitude and velocity profiles. The findings demonstrated a general lack of a systematic relationship between the characteristics of the initial component of the FSR and displacement parameters, although exceptions were noted in individual subjects. Furthermore, no marked difference was found in either the latency or the rise time of the FSRs evoked by ramp and pulse displacements. The similarity of the FSRs in spite of widely different input patterns is not consistent with the behaviour of a servo response. However, such a finding is in agreement with the concept of a preprogrammed pattern of activity which, once triggered, has to run its full course without the possibility of modification. It is therefore concluded that, at least the initial part of the FSR is generated by the triggered release of a preformulated pattern of intended movement relatively independent of the specific pattern of limb displacement, rather than acting in the manner of a servo mechanism.

  10. Analysis of Dynamic Performances for Servo Drive Hydraulic System

    NASA Astrophysics Data System (ADS)

    Yang, Jianxi; Wang, Liying; Huang, Jian

    Based on the servo drive hydraulic of system, using MATLAB/Simulink software in this paper, the impacts on system dynamic performances are analyzed and simulated of all the parameters (structure parameters J, Dp, and mechanism parameters A1, α, k, V1 CP). According to the relation curve of the main systematic characteristics and dynamic performances obtained from the simulations, it provides advantages for system dynamic performance improvements. The simulation results indicate that dynamic performances can be improved through the reasonable selection of the system structural parameters. Also it laid the theoretical foundation for further study on energy saving of hydraulic injection machine.

  11. Driving Method with Priority of d-axis Voltage for Interior Permanent Magnet Synchronous Motor

    NASA Astrophysics Data System (ADS)

    Takahashi, Kenji; Ohishi, Kiyoshi; Kanmachi, Tosiyuki

    In this paper, a new driving method is proposed for interior permanent magnet synchronous motor (IPMSM) in which d-axis voltage is given priority. When an anti-windup PI current controller that considers q-axis voltage saturation is applied to the IPMSM servo system, the IPMSM servo system prevents the oscillatory q-axis current response. However, in the case of this IPMSM servo system, the d-axis current oscillates because of the voltage saturation. The proposed driving method gives priority to the d-axis voltage in order to avoid the d-axis voltage saturation and prevents the oscillatory d-axis current response. Therefore, the IPMSM servo system can achieve stable responses of both d and q axis currents by using the proposed driving method. Moreover, the proposed driving method is improved to operate in the entire over-modulation region. Because the proposed driving method can increase the fundamental component of inverter output voltage, the IPMSM servo system achieves the quick torque and speed responses despite voltage saturation. The experimental results verify the effectiveness of the proposed servo system.

  12. Motor efficiency management

    SciTech Connect

    Lobodovsky, K.K. , Penn Valley, CA )

    1994-01-01

    During the 102nd Congress, the Markey Bill, H.R. 2451, was introduced. The bill mandated component efficiency standards for such products as lighting, distribution transformers, and electric A.C. motors. This plan was met with opposition by NEMA and other interested groups. They called for a system approach that would recognize the complex nature of the product involved under the plan. The bill passed by the Energy Power Subcommittee on the theory that the elimination of the least efficient component from the market would ensure that consumers would purchase and use the most efficient products possible. Experience indicates that despite heightened awareness and concern with energy efficiency, the electric motor is either completely neglected or decisions are made on the basis of incomplete information. An on-going analysis of motor performance prevents major breakdown. Performance evaluation of a motor should be done as routinely as it is done on an employee. Both the motor and the employee are equally important. Applied motor maintenance will keep the building or plant running smoothly with minimal stress on the system or downtime because of failure. The Motor Performance Management Process (MPMP) is designed to be the Motor Manager's primary tool to evaluate, measure, and most importantly manage electric motors. MPMP focuses on building a stronger relationship between the Motor Manager and the electric motor employed to perform a task. Specifically, it is a logical, systematic, and structured approach to reduce energy waste. Energy waste reduction is fundamental in becoming more efficient in an increasingly competitive market. The implementation of MPMP is more than a good business practice it is an intelligent management resource.

  13. Building large mosaics of confocal edomicroscopic images using visual servoing.

    PubMed

    Rosa, Benoît; Erden, Mustafa Suphi; Vercauteren, Tom; Herman, Benoît; Szewczyk, Jérôme; Morel, Guillaume

    2013-04-01

    Probe-based confocal laser endomicroscopy provides real-time microscopic images of tissues contacted by a small probe that can be inserted in vivo through a minimally invasive access. Mosaicking consists in sweeping the probe in contact with a tissue to be imaged while collecting the video stream, and process the images to assemble them in a large mosaic. While most of the literature in this field has focused on image processing, little attention has been paid so far to the way the probe motion can be controlled. This is a crucial issue since the precision of the probe trajectory control drastically influences the quality of the final mosaic. Robotically controlled motion has the potential of providing enough precision to perform mosaicking. In this paper, we emphasize the difficulties of implementing such an approach. First, probe-tissue contacts generate deformations that prevent from properly controlling the image trajectory. Second, in the context of minimally invasive procedures targeted by our research, robotic devices are likely to exhibit limited quality of the distal probe motion control at the microscopic scale. To cope with these problems visual servoing from real-time endomicroscopic images is proposed in this paper. It is implemented on two different devices (a high-accuracy industrial robot and a prototype minimally invasive device). Experiments on different kinds of environments (printed paper and ex vivo tissues) show that the quality of the visually servoed probe motion is sufficient to build mosaics with minimal distortion in spite of disturbances.

  14. Control-structure interaction in precision pointing servo loops

    NASA Technical Reports Server (NTRS)

    Spanos, John T.

    1989-01-01

    The control-structure interaction problem is addressed via stability analysis of a generic linear servo loop model. With the plant described by the rigid body mode and a single elastic mode, structural flexibility is categorized into one of three types: (1) appendage, (2) in-the-loop minimum phase, and (3) in-the-loop nonminimum phase. Closing the loop with proportional-derivative (PD) control action and introducing sensor roll-off dynamics in the feedback path, stability conditions are obtained. Trade studies are conducted with modal frequency, modal participation, modal damping, loop bandwidth, and sensor bandwidth treated as free parameters. Results indicate that appendage modes are most likely to produce instability if they are near the sensor rolloff, whereas in-the-loop modes are most dangerous near the loop bandwidth. The main goal of this paper is to provide a fundamental understanding of the control-structure interaction problem so that it may benefit the design of complex spacecraft and pointing system servo loops. In this framework, the JPL Pathfinder gimbal pointer is considered as an example.

  15. Consideration of plant behaviour in optimal servo-compensator design

    NASA Astrophysics Data System (ADS)

    Moase, W. H.; Manzie, C.

    2016-07-01

    Where the most prevalent optimal servo-compensator formulations penalise the behaviour of an error system, this paper considers the problem of additionally penalising the actual states and inputs of the plant. Doing so has the advantage of enabling the penalty function to better resemble an economic cost. This is especially true of problems where control effort needs to be sensibly allocated across weakly redundant inputs or where one wishes to use penalties to soft-constrain certain states or inputs. It is shown that, although the resulting cost function grows unbounded as its horizon approaches infinity, it is possible to formulate an equivalent optimisation problem with a bounded cost. The resulting optimisation problem is similar to those in earlier studies but has an additional 'correction term' in the cost function, and a set of equality constraints that arise when there are redundant inputs. A numerical approach to solve the resulting optimisation problem is presented, followed by simulations on a micro-macro positioner that illustrate the benefits of the proposed servo-compensator design approach.

  16. Building large mosaics of confocal edomicroscopic images using visual servoing.

    PubMed

    Rosa, Benoît; Erden, Mustafa Suphi; Vercauteren, Tom; Herman, Benoît; Szewczyk, Jérôme; Morel, Guillaume

    2013-04-01

    Probe-based confocal laser endomicroscopy provides real-time microscopic images of tissues contacted by a small probe that can be inserted in vivo through a minimally invasive access. Mosaicking consists in sweeping the probe in contact with a tissue to be imaged while collecting the video stream, and process the images to assemble them in a large mosaic. While most of the literature in this field has focused on image processing, little attention has been paid so far to the way the probe motion can be controlled. This is a crucial issue since the precision of the probe trajectory control drastically influences the quality of the final mosaic. Robotically controlled motion has the potential of providing enough precision to perform mosaicking. In this paper, we emphasize the difficulties of implementing such an approach. First, probe-tissue contacts generate deformations that prevent from properly controlling the image trajectory. Second, in the context of minimally invasive procedures targeted by our research, robotic devices are likely to exhibit limited quality of the distal probe motion control at the microscopic scale. To cope with these problems visual servoing from real-time endomicroscopic images is proposed in this paper. It is implemented on two different devices (a high-accuracy industrial robot and a prototype minimally invasive device). Experiments on different kinds of environments (printed paper and ex vivo tissues) show that the quality of the visually servoed probe motion is sufficient to build mosaics with minimal distortion in spite of disturbances. PMID:23192481

  17. Visual Servoing: A technology in search of an application

    SciTech Connect

    Feddema, J.T.

    1994-05-01

    Considerable research has been performed on Robotic Visual Servoing (RVS) over the past decade. Using real-time visual feedback, researchers have demonstrated that robotic systems can pick up moving parts, insert bolts, apply sealant, and guide vehicles. With the rapid improvements being made in computing and image processing hardware, one would expect that every robot manufacturer would have a RVS option by the end of the 1990s. So why aren`t the Fanucs, ABBs, Adepts, and Motomans of the world investing heavily in RVS? I would suggest four seasons: cost, complexity, reliability, and lack of demand. Solutions to the first three are approaching the point where RVS could be commercially available; however, the lack of demand is keeping RVS from becoming a reality in the near future. A new set of applications is needed to focus near term RVS development. These must be applications which currently do not have solutions. Once developed and working in one application area, the technology is more likely to quickly spread to other areas. DOE has several applications that are looking for technological solutions, such as agile weapons production, weapons disassembly, decontamination and dismantlement of nuclear facilities, and hazardous waste remediation. This paper will examine a few of these areas and suggest directions for application-driven visual servoing research.

  18. High-Accuracy Positioning of an Industrial Robot Using Image/PSD-Based Hybrid Servo Control

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Xi, Ning; Shen, Yantao

    2011-04-01

    This article presents a new and effective multi-sensor-based control strategy for high-accuracy/precision and high-efficiency automatic robot positioning in the field of industrial robot calibration. The strategy combines both coarsely visual servo and fine position-sensitive detector (PSD) servo control methods. In a large field of view, an image-based visual servo control system is employed to roughly guide the laser spot, which is from a single laser pointer attached to the end-effector of a robot to project to the segmented PSDs with a resolution of better than 0.1 µm. Once the laser spot is projected onto the active area of the PSD surface, the control will automatically be switched to the PSD feedback and servoing for fine positioning. An image/PSD-based servoing system has been presented. Based on the system, the controller design and switch logic of the hybrid servoing are given. The experimental results conducted on an ABB industrial robot IRB1600 verified the effectiveness of the developed visual/PSD hybrid servo controllers, as well as demonstrated that the high accuracy of 30 µm of robot positioning can be approached. The development of the hybrid control method and system has played a major role in achieving high-performance automatic robot calibration.

  19. Piloted Simulator Investigation of Techniques to Achieve Attitude Command Response with Limited Authority Servos

    NASA Technical Reports Server (NTRS)

    Key, David L.; Heffley, Robert K.

    2002-01-01

    The purpose of the study was to develop generic design principles for obtaining attitude command response in moderate to aggressive maneuvers without increasing SCAS series servo authority from the existing +/- 10%. In particular, to develop a scheme that would work on the UH-60 helicopter so that it can be considered for incorporation in future upgrades. The basic math model was a UH-60A version of GENHEL. The simulation facility was the NASA-Ames Vertical Motion Simulator (VMS). Evaluation tasks were Hover, Acceleration-Deceleration, and Sidestep, as defined in ADS-33D-PRF for Degraded Visual Environment (DVE). The DVE was adjusted to provide a Usable Cue Environment (UCE) equal to two. The basic concept investigated was the extent to which the limited attitude command authority achievable by the series servo could be supplemented by a 10%/sec trim servo. The architecture used provided angular rate feedback to only the series servo, shared the attitude feedback between the series and trim servos, and when the series servo approached saturation the attitude feedback was slowly phased out. Results show that modest use of the trim servo does improve pilot ratings, especially in and around hover. This improvement can be achieved with little degradation in response predictability during moderately aggressive maneuvers.

  20. Formulation of radiometric feasibility measures for feature selection and planning in visual servoing.

    PubMed

    Janabi-Sharifi, Farrokh; Ficocelli, M

    2004-04-01

    Feature selection and planning are integral parts of visual servoing systems. Because many irrelevant and nonreliable image features usually exist, higher accuracy and robustness can be expected by selecting and planning good features. Assumption of perfect radiometric conditions is common in visual servoing. The following paper discusses the issue of radiometric constraints for feature selection in the context of visual servoing. Here, radiometric constraints are presented and measures are formulated to select the optimal features (in a radiometric sense) from a set of candidate features. Simulation and experimental results verify the effectiveness of the proposed measures.

  1. Velocity control of servo systems using an integral retarded algorithm.

    PubMed

    Ramírez, Adrián; Garrido, Rubén; Mondié, Sabine

    2015-09-01

    This paper presents a design technique for the delay-based controller called Integral Retarded (IR), and its applications to velocity control of servo systems. Using spectral analysis, the technique yields a tuning strategy for the IR by assigning a triple real dominant root for the closed-loop system. This result ultimately guarantees a desired exponential decay rate σ(d) while achieving the IR tuning as explicit function of σ(d) and system parameters. The intentional introduction of delay allows using noisy velocity measurements without additional filtering. The structure of the controller is also able to avoid velocity measurements by using instead position information. The IR is compared to a classical PI, both tested in a laboratory prototype.

  2. Weighted feature selection criteria for visual servoing of a telerobot

    NASA Technical Reports Server (NTRS)

    Feddema, John T.; Lee, C. S. G.; Mitchell, O. R.

    1989-01-01

    Because of the continually changing environment of a space station, visual feedback is a vital element of a telerobotic system. A real time visual servoing system would allow a telerobot to track and manipulate randomly moving objects. Methodologies for the automatic selection of image features to be used to visually control the relative position between an eye-in-hand telerobot and a known object are devised. A weighted criteria function with both image recognition and control components is used to select the combination of image features which provides the best control. Simulation and experimental results of a PUMA robot arm visually tracking a randomly moving carburetor gasket with a visual update time of 70 milliseconds are discussed.

  3. Fuzzy self-learning control for magnetic servo system

    NASA Technical Reports Server (NTRS)

    Tarn, J. H.; Kuo, L. T.; Juang, K. Y.; Lin, C. E.

    1994-01-01

    It is known that an effective control system is the key condition for successful implementation of high-performance magnetic servo systems. Major issues to design such control systems are nonlinearity; unmodeled dynamics, such as secondary effects for copper resistance, stray fields, and saturation; and that disturbance rejection for the load effect reacts directly on the servo system without transmission elements. One typical approach to design control systems under these conditions is a special type of nonlinear feedback called gain scheduling. It accommodates linear regulators whose parameters are changed as a function of operating conditions in a preprogrammed way. In this paper, an on-line learning fuzzy control strategy is proposed. To inherit the wealth of linear control design, the relations between linear feedback and fuzzy logic controllers have been established. The exercise of engineering axioms of linear control design is thus transformed into tuning of appropriate fuzzy parameters. Furthermore, fuzzy logic control brings the domain of candidate control laws from linear into nonlinear, and brings new prospects into design of the local controllers. On the other hand, a self-learning scheme is utilized to automatically tune the fuzzy rule base. It is based on network learning infrastructure; statistical approximation to assign credit; animal learning method to update the reinforcement map with a fast learning rate; and temporal difference predictive scheme to optimize the control laws. Different from supervised and statistical unsupervised learning schemes, the proposed method learns on-line from past experience and information from the process and forms a rule base of an FLC system from randomly assigned initial control rules.

  4. An Online Observer for Minimization of Pulsating Torque in SMPM Motors.

    PubMed

    Roșca, Lucian; Duguleană, Mihai

    2016-01-01

    A persistent problem of surface mounted permanent magnet (SMPM) motors is the non-uniformity of the developed torque. Either the motor design or the motor control needs to be improved in order to minimize the periodic disturbances. This paper proposes a new control technique for reducing periodic disturbances in permanent magnet (PM) electro-mechanical actuators, by advancing a new observer/estimator paradigm. A recursive estimation algorithm is implemented for online control. The compensating signal is identified and added as feedback to the control signal of the servo motor. Compensation is evaluated for different values of the input signal, to show robustness of the proposed method. PMID:27089182

  5. An Online Observer for Minimization of Pulsating Torque in SMPM Motors

    PubMed Central

    Roșca, Lucian

    2016-01-01

    A persistent problem of surface mounted permanent magnet (SMPM) motors is the non-uniformity of the developed torque. Either the motor design or the motor control needs to be improved in order to minimize the periodic disturbances. This paper proposes a new control technique for reducing periodic disturbances in permanent magnet (PM) electro-mechanical actuators, by advancing a new observer/estimator paradigm. A recursive estimation algorithm is implemented for online control. The compensating signal is identified and added as feedback to the control signal of the servo motor. Compensation is evaluated for different values of the input signal, to show robustness of the proposed method. PMID:27089182

  6. Powerline Coupler for Windmill Motor/Generators

    NASA Technical Reports Server (NTRS)

    Nola, F.

    1985-01-01

    Efficiency at low windspeed increased by firing-angle control. Power coupled from wind-driven induction motor/generator to ac powerline with help from circuit. Circuit reduces power consumed by field windings thereby improving efficiency at low windspeeds. Circuit includes zerocrossing detector, ramp generator and comparator similar to those used to set firing angles for thyristors in power factor motor controllers.

  7. Four quadrant control of induction motors

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1991-01-01

    Induction motors are the nation's workhorse, being the motor of choice in most applications due to their simple rugged construction. It has been estimated that 14 to 27 percent of the country's total electricity use could be saved with adjustable speed drives. Until now, induction motors have not been suited well for variable speed or servo-drives, due to the inherent complexity, size, and inefficiency of their variable speed controls. Work at NASA Lewis Research Center on field oriented control of induction motors using pulse population modulation method holds the promise for the desired drive electronics. The system allows for a variable voltage to frequency ratio which enables the user to operate the motor at maximum efficiency, while having independent control of both the speed and torque of an induction motor in all four quadrants of the speed torque map. Multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of machine. The pulse population technique, results to date, and projections for implementation of this existing new motor control technology are discussed.

  8. An open source digital servo for atomic, molecular, and optical physics experiments

    SciTech Connect

    Leibrandt, D. R. Heidecker, J.

    2015-12-15

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of {sup 27}Al{sup +} in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.

  9. Hydraulic servo for friction coupling element of automatic transmission

    SciTech Connect

    Sumiya, K.; Watanabe, K.; Kubo, S.

    1987-09-01

    A hydraulic servo is described for a friction coupling element in an automatic transmission including a casing, comprising: an annular drum fixed to the automatic transmission casing and having an outer cylinder, as in inner cylinder, a sidewall connecting the outer and inner cylinders, and an intermediate cylinder connected to the sidewall between the outer and inner cylinders to divide the interior of the drum into outer and inner annular spaces; a piston slidably mounted within the outer annular space, between the outer and intermediate cylinders, the piston having a terminal axially extending guide sleeve portion; and return biasing means including: a connecting member having one end fixed to the piston and abutting the guide sleeve portion and the other end located in the inner annular space, between the inner cylinder and the intermediate cylinder; a retainer fixed to the inner cylinder, at a position axially inward of the guide sleeve with respect to the sidewall when the piston is fully retracted, and; return springs interposed within the inner annular space between the other end of the connecting member and the retainer.

  10. Linear quadratic servo control of a reusable rocket engine

    NASA Technical Reports Server (NTRS)

    Musgrave, Jeffrey L.

    1991-01-01

    A design method for a servo compensator is developed in the frequency domain using singular values. The method is applied to a reusable rocket engine. An intelligent control system for reusable rocket engines was proposed which includes a diagnostic system, a control system, and an intelligent coordinator which determines engine control strategies based on the identified failure modes. The method provides a means of generating various linear multivariable controllers capable of meeting performance and robustness specifications and accommodating failure modes identified by the diagnostic system. Command following with set point control is necessary for engine operation. A Kalman filter reconstructs the state while loop transfer recovery recovers the required degree of robustness while maintaining satisfactory rejection of sensor noise from the command error. The approach is applied to the design of a controller for a rocket engine satisfying performance constraints in the frequency domain. Simulation results demonstrate the performance of the linear design on a nonlinear engine model over all power levels during mainstage operation.

  11. Visual servoing of a laser ablation based cochleostomy

    NASA Astrophysics Data System (ADS)

    Kahrs, Lüder A.; Raczkowsky, Jörg; Werner, Martin; Knapp, Felix B.; Mehrwald, Markus; Hering, Peter; Schipper, Jörg; Klenzner, Thomas; Wörn, Heinz

    2008-03-01

    The aim of this study is a defined, visually based and camera controlled bone removal by a navigated CO II laser on the promontory of the inner ear. A precise and minimally traumatic opening procedure of the cochlea for the implantation of a cochlear implant electrode (so-called cochleostomy) is intended. Harming the membrane linings of the inner ear can result in damage of remaining organ functions (e.g. complete deafness or vertigo). A precise tissue removal by a laser-based bone ablation system is investigated. Inside the borehole the pulsed laser beam is guided automatically over the bone by using a two mirror galvanometric scanner. The ablation process is controlled by visual servoing. For the detection of the boundary layers of the inner ear the ablation area is monitored by a color camera. The acquired pictures are analyzed by image processing. The results of this analysis are used to control the process of laser ablation. This publication describes the complete system including image processing algorithms and the concept for the resulting distribution of single laser pulses. The system has been tested on human cochleae in ex-vivo studies. Further developments could lead to safe intraoperative openings of the cochlea by a robot based surgical laser instrument.

  12. ACS: ALMA Common Software

    NASA Astrophysics Data System (ADS)

    Chiozzi, Gianluca; Šekoranja, Matej

    2013-02-01

    ALMA Common Software (ACS) provides a software infrastructure common to all ALMA partners and consists of a documented collection of common patterns and components which implement those patterns. The heart of ACS is based on a distributed Component-Container model, with ACS Components implemented as CORBA objects in any of the supported programming languages. ACS provides common CORBA-based services such as logging, error and alarm management, configuration database and lifecycle management. Although designed for ALMA, ACS can and is being used in other control systems and distributed software projects, since it implements proven design patterns using state of the art, reliable technology. It also allows, through the use of well-known standard constructs and components, that other team members whom are not authors of ACS easily understand the architecture of software modules, making maintenance affordable even on a very large project.

  13. The ac propulsion system for an electric vehicle, phase 1

    NASA Technical Reports Server (NTRS)

    Geppert, S.

    1981-01-01

    A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.

  14. Do turbines with servo-controlled speed improve continuous positive airway pressure generation?

    PubMed

    Lofaso, F; Heyer, L; Leroy, A; Lorino, H; Harf, A; Isabey, D

    1994-11-01

    Nasal continuous positive airway pressure (CPAP) devices with a servo-mechanism to control pressure have recently been developed. We evaluated six such devices and three conventional systems in terms of effectiveness in maintaining constant pressure. Machines were tested with pressure levels of 5, 10 and 15 cmH2O. Dynamic behaviour was evaluated: 1) by calculating the imposed work of breathing during simulated breath generated by a sinusoidal pump; and 2) by following the fall in pressure after a transient flow of 1 l.s-1. Quasi-static behaviour was evaluated by simulating a predetermined air leak. Under dynamic conditions, work of breathing was lowest with one conventional nasal CPAP device and three servo-controlled nasal CPAP devices; whereas, the highest levels of work of breathing were recorded with two servo-controlled nasal CPAP devices. The pressure-time response to a transient flow yielded similar results, with a significant inverse correlation between pressure values observed after 300 ms and imposed work of breathing during simulated breathing (r = -0.91). Under quasi-static conditions, microprocessor servo-controlled devices exhibited the best performance. These results suggest that microprocessor servo-controlled nasal CPAP devices are not always the best systems for maintaining constant airway pressure in dynamic situations. However, they are more effective in ensuring maintenance of the desired pressure in the event of an air leak at the mask. PMID:7875284

  15. Adaptive tool servo diamond turning for enhancing machining efficiency and surface quality of freeform optics.

    PubMed

    Zhu, Zhiwei; To, Suet

    2015-08-10

    Fast tool servo/ slow tool servo (FTS/STS) diamond turning is a very promising technique for the generation of freeform optics. However, the currently adopted constant scheme for azimuth sampling and side-feeding motion possesses no adaptation to surface shape variation, leading to the non-uniform surface quality and low machining efficiency. To overcome this defect, this paper reports on a novel adaptive tool servo (ATS) diamond turning technique which is essentially based on the novel two-degree-of-freedom (2-DOF) FTS/STS. In the ATS, the sampling interval and the side-feeding motion are actively controlled at any cutting point to adapt the machining process to shape variation of the desired surface, making both the sampling induced interpolation error and the side-feeding induced residual tool mark be within the desired tolerances. Characteristic of the required cutting motion suggests that besides the conventional z-axis servo motion, another servo motion along the x-axis synthesizing by the c-axis is mandatory for implementing the ATS. Comparative studies of surface generation of typical micro-structured surfaces in FTS/STS and ATS are thoroughly conducted both theoretically and experimentally. The result demonstrates that the ATS outperforms the FTS/STS with improved surface quality while simultaneously enhanced machining efficiency.

  16. Digital servo implementation: closing loops over VME bus with commercial off-the-shelf processors

    NASA Astrophysics Data System (ADS)

    Ames, Kevin J.

    1997-06-01

    Real-time control of gimbaled sensors has been successfully demonstrated using dedicated specialized analog hardware. The reuse of this hardware or its adaptation to new requirements has been limited. To provide more flexibility and allow greater reuse of servo hardware and software, Hughes has developed a commercial off-the-shelf, digitally- based architecture for controlling, measuring and reporting the gimbaled line-of-sight. Applications with multiple servo loops can be performed using real-time hosts and high speed digital signal processors communicating over the VME bus. In this paper we discuss one application of this architecture for a two-axis integrated electro-optical/infrared sensor imbedded in a system with 12 servo loops. The system requirements for gimbal control and line-of-sight reporting required moderately high bandwidth servo loops. Even so, the design incorporated a standard VME bus. Multiple processors with differing interrupt rates were used to control the differing bandwidth servo loops. The requirements, implementation, and performance of this architecture are covered.

  17. 27. INTERIOR VIEW LOOKING SOUTHWEST IN THE ELECTRICAL MOTOR ROOM. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. INTERIOR VIEW LOOKING SOUTHWEST IN THE ELECTRICAL MOTOR ROOM. FROM LEFT TO RIGHT. DC GENERATOR, AC MOTOR, OLD DC GENERATOR, OPENING FOR THE BELT TO THE CLUTCH ASSEMBLY FOR THE MILL POWER SYSTEM. THE BOARDS THAT ARE ASKEW WERE PROTECTION AROUND THE DRIVE BELT. THE SMALL MOTOR IN THE FOREGROUND IS THE MOTOR THAT MOST RECENTLY POWERED THE MILL'S BELT DRIVE SYSTEM. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA

  18. Reducing the net torque and flow ripple effects of multiple hydraulic piston motor drives

    NASA Technical Reports Server (NTRS)

    Bartos, R. D.

    1992-01-01

    The torque and flow ripple effects which result when multiple hydraulic motors are used to drive a single motion of a mechanical device can significantly affect the way in which the device performs. This article presents a mathematical model describing the torque and flow ripple effects of a bent-axis hydraulic piston motor. The model is used to show how the ripple magnitude can be reduced when multiple motors are used to drive a motion. A discussion of the hydraulic servo system of the 70-m antennas located with the Deep Space Network is included to demonstrate the application of the concepts presented.

  19. A visual servo-based teleoperation robot system for closed diaphyseal fracture reduction.

    PubMed

    Li, Changsheng; Wang, Tianmiao; Hu, Lei; Zhang, Lihai; Du, Hailong; Zhao, Lu; Wang, Lifeng; Tang, Peifu

    2015-09-01

    Common fracture treatments include open reduction and intramedullary nailing technology. However, these methods have disadvantages such as intraoperative X-ray radiation, delayed union or nonunion and postoperative rotation. Robots provide a novel solution to the aforementioned problems while posing new challenges. Against this scientific background, we develop a visual servo-based teleoperation robot system. In this article, we present a robot system, analyze the visual servo-based control system in detail and develop path planning for fracture reduction, inverse kinematics, and output forces of the reduction mechanism. A series of experimental tests is conducted on a bone model and an animal bone. The experimental results demonstrate the feasibility of the robot system. The robot system uses preoperative computed tomography data to realize high precision and perform minimally invasive teleoperation for fracture reduction via the visual servo-based control system while protecting surgeons from radiation.

  20. Simulation of a spatial, servo-hydraulic test facility for space structures

    NASA Technical Reports Server (NTRS)

    Leimbach, K.-D.; Hahn, H.

    1994-01-01

    In this paper different control concepts for servo-hydraulic test facilities are derived using exact linearization techniques. Based on different linear and nonlinear models of the test table and the actuator dynamics several nonlinear controllers of different complexity are derived. The closed loop system performance of the controlled servo-hydraulic test facility is tested in various computer simulations using both, standard test signals and large test signals as system inputs. The simulation results turn out, that in case of standard input signals the test facility controller must include a linear test table mechanics model and a nonlinear servo-hydraulic actuator model. Additional simulations demonstrate the robustness of the control concept selected for standard test signals with respect to variations of plant parameters.

  1. Self-mixing interferometry for rotational speed measurement of servo drives.

    PubMed

    Sun, Hui; Liu, Ji-Gou; Zhang, Quan; Kennel, Ralph

    2016-01-10

    Self-mixing interferometry (SMI) is an efficient technique applied to measure distance, velocity, displacement, and vibration. In this work, a compact and low cost SMI is applied to measure the rotational speed of a servo drive up to 6000 RPM. The application of SMI to rotational speed measurement of servo drives instead of the usage of incremental encoders is proposed. The Doppler frequency is obtained via analysis on the power spectral density, which is estimated by the smoothing periodogram method based on the fast Fourier transformation. The signals are processed in MATLAB and LABVIEW, showing that the SMI can be applied to dynamic rotational speed measurement of servo drives. Results of experiments demonstrate that this system is implementable for rotational speed measurement over the whole range from 3 RPM to 6000 RPM. In addition, the system used to measure rotational speed can also accurately record changes in position without integrating the velocity. PMID:26835757

  2. Robust Hinfinity position control synthesis of an electro-hydraulic servo system.

    PubMed

    Milić, Vladimir; Situm, Zeljko; Essert, Mario

    2010-10-01

    This paper focuses on the use of the techniques based on linear matrix inequalities for robust H(infinity) position control synthesis of an electro-hydraulic servo system. A nonlinear dynamic model of the hydraulic cylindrical actuator with a proportional valve has been developed. For the purpose of the feedback control an uncertain linearized mathematical model of the system has been derived. The structured (parametric) perturbations in the electro-hydraulic coefficients are taken into account. H(infinity) controller extended with an integral action is proposed. To estimate internal states of the electro-hydraulic servo system an observer is designed. Developed control algorithms have been tested experimentally in the laboratory model of an electro-hydraulic servo system. PMID:20655534

  3. A visual servo-based teleoperation robot system for closed diaphyseal fracture reduction.

    PubMed

    Li, Changsheng; Wang, Tianmiao; Hu, Lei; Zhang, Lihai; Du, Hailong; Zhao, Lu; Wang, Lifeng; Tang, Peifu

    2015-09-01

    Common fracture treatments include open reduction and intramedullary nailing technology. However, these methods have disadvantages such as intraoperative X-ray radiation, delayed union or nonunion and postoperative rotation. Robots provide a novel solution to the aforementioned problems while posing new challenges. Against this scientific background, we develop a visual servo-based teleoperation robot system. In this article, we present a robot system, analyze the visual servo-based control system in detail and develop path planning for fracture reduction, inverse kinematics, and output forces of the reduction mechanism. A series of experimental tests is conducted on a bone model and an animal bone. The experimental results demonstrate the feasibility of the robot system. The robot system uses preoperative computed tomography data to realize high precision and perform minimally invasive teleoperation for fracture reduction via the visual servo-based control system while protecting surgeons from radiation. PMID:26199026

  4. Robust Hinfinity position control synthesis of an electro-hydraulic servo system.

    PubMed

    Milić, Vladimir; Situm, Zeljko; Essert, Mario

    2010-10-01

    This paper focuses on the use of the techniques based on linear matrix inequalities for robust H(infinity) position control synthesis of an electro-hydraulic servo system. A nonlinear dynamic model of the hydraulic cylindrical actuator with a proportional valve has been developed. For the purpose of the feedback control an uncertain linearized mathematical model of the system has been derived. The structured (parametric) perturbations in the electro-hydraulic coefficients are taken into account. H(infinity) controller extended with an integral action is proposed. To estimate internal states of the electro-hydraulic servo system an observer is designed. Developed control algorithms have been tested experimentally in the laboratory model of an electro-hydraulic servo system.

  5. Servo-integrated patterned media by hybrid directed self-assembly.

    PubMed

    Xiao, Shuaigang; Yang, Xiaomin; Steiner, Philip; Hsu, Yautzong; Lee, Kim; Wago, Koichi; Kuo, David

    2014-11-25

    A hybrid directed self-assembly approach is developed to fabricate unprecedented servo-integrated bit-patterned media templates, by combining sphere-forming block copolymers with 5 teradot/in.(2) resolution capability, nanoimprint and optical lithography with overlay control. Nanoimprint generates prepatterns with different dimensions in the data field and servo field, respectively, and optical lithography controls the selective self-assembly process in either field. Two distinct directed self-assembly techniques, low-topography graphoepitaxy and high-topography graphoepitaxy, are elegantly integrated to create bit-patterned templates with flexible embedded servo information. Spinstand magnetic test at 1 teradot/in.(2) shows a low bit error rate of 10(-2.43), indicating fully functioning bit-patterned media and great potential of this approach for fabricating future ultra-high-density magnetic storage media.

  6. Optimal Tracking Controller Design for Active Queue Management Routers via LQ-Servo

    NASA Astrophysics Data System (ADS)

    Lee, Kang Min; Yang, Ji Hoon; Suh, Byung Suhl

    2009-01-01

    This paper proposes the LQ-Servo controller for AQM (Active Queue Management) routers. The proposed controller structure is made by taking a traditional servo mechanism based on Linear Quadratic approach and by augmenting a new state variable to the feed forward loop. Since the controller structure is consists of a standard optimal feedback regulator and a feed forward controller, it is able to enhance the usefulness of resources and to reduce unnecessary memory reservations such as RAM (Random Access Memory) or SMA (Shared Memory Area) on ordinary router systems, respectively.

  7. Beam-waveguide antenna servo design issues for tracking low earth-orbiting satellites

    NASA Technical Reports Server (NTRS)

    Gawronski, W. K.; Mellstrom, J. A.

    1993-01-01

    Upcoming NASA missions will require tracking of low-orbit satellites. As a consequence, NASA antennas will be required to track satellites at higher rates than for the current deep space missions. This article investigates servo design issues for the 34-m beam-waveguide antennas that track low-orbit satellites. This includes upgrading the servo with a feedforward loop, using a monopulse controller design, and reducing tracking errors through either proper choice of elevation pinion location, application of a notch filter, or adjustment of the elevation drive amplifier gain. Finally, improvement of the signal-to-noise ratio through averaging of the over-sampled monopulse signal is described.

  8. Beam-waveguide antenna servo design issues for tracking low earth-orbiting satellites

    NASA Astrophysics Data System (ADS)

    Gawronski, W. K.; Mellstrom, J. A.

    1993-11-01

    Upcoming NASA missions will require tracking of low-orbit satellites. As a consequence, NASA antennas will be required to track satellites at higher rates than for the current deep space missions. This article investigates servo design issues for the 34-m beam-waveguide antennas that track low-orbit satellites. This includes upgrading the servo with a feedforward loop, using a monopulse controller design, and reducing tracking errors through either proper choice of elevation pinion location, application of a notch filter, or adjustment of the elevation drive amplifier gain. Finally, improvement of the signal-to-noise ratio through averaging of the over-sampled monopulse signal is described.

  9. Beam-Waveguide Antenna Servo Design Issues for Tracking Low-Earth-Orbiting Satellites

    NASA Astrophysics Data System (ADS)

    Gawronski, W. K.; Mellstrom, J. A.

    1993-07-01

    Upcoming NASA missions will require tracking of low-orbit satellites. As a consequence, NASA antennas will be required to track satellites at higher rates than for the current deep space missions. This article investigates servo design issues for the 34-m beam-waveguide antennas that track low-orbit satellites. This includes upgrading the servo with a feedforward loop, using a monopulse controller design, and treducing tracking errors through either proper choice of elevation pinion location, application of a notch filter, or adjustment of the elevation drive amplifier gain. Finally, improvement of the signal-to-noise ratio through averaging of the oversampled monopulse signal is described.

  10. Analysis of an electrohydraulic aircraft control surface servo and comparison with test results

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1972-01-01

    An analysis of an electrohydraulic aircraft control-surface system is made in which the system is modeled as a lumped, two-mass, spring-coupled system controlled by a servo valve. Both linear and nonlinear models are developed, and the effects of hinge-moment loading are included. Transfer functions of the system and approximate literal factors of the transfer functions for several cases are presented. The damping action of dynamic pressure feedback is analyzed. Comparisons of the model responses with results from tests made on a highly resonant rudder control-surface servo indicate the adequacy of the model. The effects of variations in hinge-moment loading are illustrated.

  11. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  12. Motor Starters

    NASA Astrophysics Data System (ADS)

    1986-01-01

    The power factor controller (PFC) was invented by a NASA engineer. It matches voltage with a motor's actual need by sensing shifts in the relationship between voltage and current flow. With the device, power can be trimmed as much as 65%. Intellinet adopted this technology and designed "soft start" and "load-responsive" control modes to start engines gradually and recycle voltage without reducing motor speed. Other features are lower motor heat and faster fault identification.

  13. A Computer Model for Teaching the Dynamic Behavior of AC Contactors

    ERIC Educational Resources Information Center

    Ruiz, J.-R. R.; Espinosa, A. G.; Romeral, L.

    2010-01-01

    Ac-powered contactors are extensively used in industry in applications such as automatic electrical devices, motor starters, and heaters. In this work, a practical session that allows students to model and simulate the dynamic behavior of ac-powered electromechanical contactors is presented. Simulation is carried out using a rigorous parametric…

  14. AC magnetohydrodynamic microfluidic switch

    SciTech Connect

    Lemoff, A V; Lee, A P

    2000-03-02

    A microfluidic switch has been demonstrated using an AC Magnetohydrodynamic (MHD) pumping mechanism in which the Lorentz force is used to pump an electrolytic solution. By integrating two AC MHD pumps into different arms of a Y-shaped fluidic circuit, flow can be switched between the two arms. This type of switch can be used to produce complex fluidic routing, which may have multiple applications in {micro}TAS.

  15. A linear magnetic motor and generator

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1980-01-01

    In linear magnetic motor and generator suitable for remote and hostile environments, magnetic forces drive reciprocating shaft along its axis. Actuator shaft is located in center of cylindrical body and may be supported by either contacting or noncontacting bearings. When device operates as bidirectional motor, drive coil selectively adds and subtracts magnetic flux to and from flux paths, producing forces that drive actuator along axis. When actuator is driven by external reciprocating engine, device becomes ac generator.

  16. Novel method for driving the ultrasonic motor.

    PubMed

    Kim, Hyeoung woo; Dong, Shuxiang; Laoratanakul, Pitak; Uchino, Kenji; Park, Tae gone

    2002-10-01

    This paper reports a novel driving method for an annular plate-type ultrasonic motor. Instead of the direct current/alternating current (DC/AC) converter type driver using conventional electromagnetic transformer, a compact disc-type piezoelectric transformer is used to obtain high voltage output for driving the ultrasonic motor. The piezoelectric transformer is operated in the radial vibration mode at resonance frequency close to the resonance frequency of the ultrasonic motor. Later, it was found that the piezoelectric transformer could drive the ultrasonic motor, even if their resonance frequencies are not exactly the same by incorporating the matching network in the circuit. The maximum speed of the ultrasonic motor obtained by using this driving method is over 300 rpm. It is believed that the results of this study will have impact on the integration and miniaturization of the ultrasonic motor and its driving circuit.

  17. Novel method for driving the ultrasonic motor.

    PubMed

    Kim, Hyeoung woo; Dong, Shuxiang; Laoratanakul, Pitak; Uchino, Kenji; Park, Tae gone

    2002-10-01

    This paper reports a novel driving method for an annular plate-type ultrasonic motor. Instead of the direct current/alternating current (DC/AC) converter type driver using conventional electromagnetic transformer, a compact disc-type piezoelectric transformer is used to obtain high voltage output for driving the ultrasonic motor. The piezoelectric transformer is operated in the radial vibration mode at resonance frequency close to the resonance frequency of the ultrasonic motor. Later, it was found that the piezoelectric transformer could drive the ultrasonic motor, even if their resonance frequencies are not exactly the same by incorporating the matching network in the circuit. The maximum speed of the ultrasonic motor obtained by using this driving method is over 300 rpm. It is believed that the results of this study will have impact on the integration and miniaturization of the ultrasonic motor and its driving circuit. PMID:12403137

  18. Levitation forces in bearingless permanent magnet motors

    SciTech Connect

    Amrhein, W.; Silber, S.; Nenninger, K.

    1999-09-01

    Bearingless motors combine brushless AC-motors with active magnetic bearings by the integration of two separate winding systems (torque and radial levitation force windings with different pole pairs) in one housing. This paper gives an insight into the influences of the motor design on the levitation force and torque generation. It is shown that especially for machines with small air gaps it can be very important to choose the right design parameters. Increasing the permanent magnet height in order to increase the motor torque can result in a remarkable reduction of radial forces. The interrelationships are discussed on the basis of Maxwell and Lorentz forces acting upon the stator surface. The investigations are presented for a bearingless low cost motor, suited for pump, fan or blower applications. The presented motor needs only four coils for operation.

  19. Isolation of sequences flanking Ac insertion sites by Ac casting.

    PubMed

    Wang, Dafang; Peterson, Thomas

    2013-01-01

    Localizing Ac insertions is a fundamental task in studying Ac-induced mutation and chromosomal rearrangements involving Ac elements. Researchers may sometimes be faced with the situation in which the sequence flanking one side of an Ac/Ds element is known, but the other flank is unknown. Or, a researcher may have a small sequence surrounding the Ac/Ds insertion site and needs to obtain additional flanking genomic sequences. One way to rapidly clone unknown Ac/Ds flanking sequences is via a PCR-based method termed Ac casting. This approach utilizes the somatic transposition activity of Ac during plant development, and provides an efficient means for short-range genome walking. Here we describe the principle of Ac casting, and show how it can be applied to isolate Ac macrotransposon insertion sites.

  20. A Matlab/Simulink-Based Interactive Module for Servo Systems Learning

    ERIC Educational Resources Information Center

    Aliane, N.

    2010-01-01

    This paper presents an interactive module for learning both the fundamental and practical issues of servo systems. This module, developed using Simulink in conjunction with the Matlab graphical user interface (Matlab-GUI) tool, is used to supplement conventional lectures in control engineering and robotics subjects. First, the paper introduces the…

  1. Parametric identification of a servo-hydraulic actuator for real-time hybrid simulation

    NASA Astrophysics Data System (ADS)

    Qian, Yili; Ou, Ge; Maghareh, Amin; Dyke, Shirley J.

    2014-10-01

    In a typical Real-time Hybrid Simulation (RTHS) setup, servo-hydraulic actuators serve as interfaces between the computational and physical substructures. Time delay introduced by actuator dynamics and complex interaction between the actuators and the specimen has detrimental effects on the stability and accuracy of RTHS. Therefore, a good understanding of servo-hydraulic actuator dynamics is a prerequisite for controller design and computational simulation of RTHS. This paper presents an easy-to-use parametric identification procedure for RTHS users to obtain re-useable actuator parameters for a range of payloads. The critical parameters in a linearized servo-hydraulic actuator model are optimally obtained from genetic algorithms (GA) based on experimental data collected from various specimen mass/stiffness combinations loaded to the target actuator. The actuator parameters demonstrate convincing convergence trend in GA. A key feature of this parametric modeling procedure is its re-usability under different testing scenarios, including different specimen mechanical properties and actuator inner-loop control gains. The models match well with experimental results. The benefit of the proposed parametric identification procedure has been demonstrated by (1) designing an H∞ controller with the identified system parameters that significantly improves RTHS performance; and (2) establishing an analysis and computational simulation of a servo-hydraulic system that help researchers interpret system instability and improve design of experiments.

  2. Proof-of-Concept Demonstration Results for Robotic Visual Servo Controllers

    SciTech Connect

    Chawda, P.V.

    2004-09-22

    There is significant motivation to provide robotic systems with improved autonomy as a means to significantly accelerate deactivation and decommissioning operations while also reducing the associated costs, removing human operators from hazardous environments, and reducing the required burden and skill of human operators. To achieve improved autonomy, fundamental research is focused on the challenges of developing visual servo controllers. The challenge in developing these controllers is that a camera provides 2-dimensional image information about the 3-dimensional Euclidean-space through a perspective (range dependent) projection that can be corrupted by uncertainty in the camera calibration matrix. Disturbances in this relationship (i.e., corruption in the sensor information) propagate erroneous information to the feedback controller of the robot, leading to potentially unpredictable task execution. This technical manual describes 3 proof-of-concept demonstrations of visual servo controllers developed from fundamental research aimed at these challenges. Specifically, one section describes the implementation of a cooperative visual servo control scheme with a camera-in-hand and a fixed camera to track a moving target despite uncertainty in the camera calibration and the unknown constant distance from the camera to a target where the camera is mounted on the end-effector of a 6 degrees-of-freedom hydraulic robot manipulator. The next section describes the implementation of 2 homography-based visual servo tracking and regulation controllers for a mobile robot with a calibrated camera despite an unknown time-varying distance from the camera to a target.

  3. Light-controlled resistors provide quadrature signal rejection for high-gain servo systems

    NASA Technical Reports Server (NTRS)

    Mc Cauley, D. D.

    1967-01-01

    Servo amplifier feedback system, in which the phase sensitive detection, low pass filtering, and multiplication functions required for quadrature rejection, are preformed by light-controlled photoresistors, eliminates complex circuitry. System increases gain, improves signal-to-noise ratio, and eliminates the necessity for compensation.

  4. High Bandwidth Rotary Fast Tool Servos and a Hybrid Rotary/Linear Electromagnetic Actuator

    SciTech Connect

    Montesanti, Richard Clement

    2005-09-01

    This thesis describes the development of two high bandwidth short-stroke rotary fast tool servos and the hybrid rotary/linear electromagnetic actuator developed for one of them. Design insights, trade-o® methodologies, and analytical tools are developed for precision mechanical systems, power and signal electronic systems, control systems, normal-stress electromagnetic actuators, and the dynamics of the combined systems.

  5. Field oriented control of induction motors

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Zinger, Don S.; Roth, Mary Ellen

    1990-01-01

    Induction motors have always been known for their simple rugged construction, but until lately were not suitable for variable speed or servo drives due to the inherent complexity of the controls. With the advent of field oriented control (FOC), however, the induction motor has become an attractive option for these types of drive systems. An FOC system which utilizes the pulse population modulation method to synthesize the motor drive frequencies is examined. This system allows for a variable voltage to frequency ratio and enables the user to have independent control of both the speed and torque of an induction motor. A second generation of the control boards were developed and tested with the next point of focus being the minimization of the size and complexity of these controls. Many options were considered with the best approach being the use of a digital signal processor (DSP) due to its inherent ability to quickly evaluate control algorithms. The present test results of the system and the status of the optimization process using a DSP are discussed.

  6. Molecular motors

    NASA Astrophysics Data System (ADS)

    Allemand, Jean François Desbiolles, Pierre

    2015-10-01

    How do we move? More precisely, what are the molecular mechanisms that can explain that our muscles, made of very small components can move at a osopic scale? To answer these questions we must introduce molecular motors. Those motors are proteins, or small protein assemblies that, in our cells, transform chemical energy into mechanical work. Then, like we could do for a oscopic motor, used in a car or in a fan, we are going to study the basic behavior of these molecular machines, present what are their energy sources, calculate their power, their yield. If molecular motors are crucial for our oscopic movements, we are going to see that they are also essential to cellular transport and that considering the activity of some enzymes as molecular motors bring some interesting new insights on their activity.

  7. New method to improve dynamic stiffness of electro-hydraulic servo systems

    NASA Astrophysics Data System (ADS)

    Bai, Yanhong; Quan, Long

    2013-09-01

    Most current researches working on improving stiffness focus on the application of control theories. But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated, so the control action is lagged. Thus dynamic performance against force disturbance and dynamic load stiffness can’t be improved evidently by advanced control algorithms. In this paper, the elementary principle of maintaining piston position unchanged under sudden external force load change by charging additional oil is analyzed. On this basis, the conception of raising dynamic stiffness of electro hydraulic position servo system by flow feedforward compensation is put forward. And a scheme using double servo valves to realize flow feedforward compensation is presented, in which another fast response servo valve is added to the regular electro hydraulic servo system and specially utilized to compensate the compressed oil volume caused by load impact in time. The two valves are arranged in parallel to control the cylinder jointly. Furthermore, the model of flow compensation is derived, by which the product of the amplitude and width of the valve’s pulse command signal can be calculated. And determination rules of the amplitude and width of pulse signal are concluded by analysis and simulations. Using the proposed scheme, simulations and experiments at different positions with different force changes are conducted. The simulation and experimental results show that the system dynamic performance against load force impact is largely improved with decreased maximal dynamic position deviation and shortened settling time. That is, system dynamic load stiffness is evidently raised. This paper proposes a new method which can effectively improve the dynamic stiffness of electro-hydraulic servo systems.

  8. Alternating-Current Motor Drive for Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Rippel, W. E.

    1982-01-01

    New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.

  9. 28. INTERIOR VIEW LOOKING NORTH IN THE ELECTRICAL MOTOR ROOM. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. INTERIOR VIEW LOOKING NORTH IN THE ELECTRICAL MOTOR ROOM. CLOSE UP VIEW OF THE OLD DC GENERATOR, APPARATUS ON THE FLOOR ARE FOR THE OPERATION OF TH DC GENERATOR. AN AC MOTOR IS IN THE BACKGROUND RIGHT. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA

  10. Stepper motor

    NASA Technical Reports Server (NTRS)

    Dekramer, Cornelis

    1994-01-01

    The purpose of this document is to describe the more commonly used permanent magnet stepper motors for spaceflight. It will discuss the mechanical and electrical aspects of the devices, their torque behavior, those parameters which need to be controlled and measured, and test methods to be employed. It will also discuss torque margins, compare these to the existing margin requirements, and determine the applicability of these requirements. Finally it will attempt to generate a set of requirements which will be used in any stepper motor procurement and will fully characterize the stepper motor behavior in a consistent and repeatable fashion.

  11. Tevatron AC dipole system

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is an oscillating dipole magnet which can induce large amplitude oscillations without the emittance growth and decoherence. These properties make it a good tool to measure optics of a hadron synchrotron. The vertical AC dipole for the Tevatron is powered by an inexpensive high power audio amplifier since its operating frequency is approximately 20 kHz. The magnet is incorporated into a parallel resonant system to maximize the current. The use of a vertical pinger magnet which has been installed in the Tevatron made the cost relatively inexpensive. Recently, the initial system was upgraded with a more powerful amplifier and oscillation amplitudes up to 2-3{sigma} were achieved with the 980 GeV proton beam. This paper discusses details of the Tevatron AC dipole system and also shows its test results.

  12. AC-3 audio coder

    NASA Astrophysics Data System (ADS)

    Todd, Craig

    1995-12-01

    AC-3 is a system for coding up to 5.1 channels of audio into a low bit-rate data stream. High quality may be obtained with compression ratios approaching 12-1 for multichannel audio programs. The high compression ratio is achieved by methods which do not increase decoder memory, and thus cost. The methods employed include: the transmission of a high frequency resolution spectral envelope; and a novel forward/backward adaptive bit allocation algorithm. In order to satisfy practical requirements of an emissions coder, the AC-3 syntax includes a number of features useful to broadcasters and consumers. These features include: loudness uniformity between programs; dynamic range control; and broadcaster control of downmix coefficients. The AC-3 coder has been formally selected for inclusion of the U.S. HDTV broadcast standard, and has been informally selected for several additional applications.

  13. Advanced electric motor technology: Flux mapping

    NASA Technical Reports Server (NTRS)

    Doane, George B., III; Campbell, Warren; Brantley, Larry W.; Dean, Garvin

    1992-01-01

    This report contains the assumptions, mathematical models, design methodology, and design points involved with the design of an electromechanical actuator (EMA) suitable for directing the thrust vector of a large MSFC/NASA launch vehicle. Specifically the design of such an actuator for use on the upcoming liquid fueled National Launch System (NLS) is considered culminating in a point design of both the servo system and the electric motor needed. A major thrust of the work is in selecting spur gear and roller screw reduction ratios to achieve simultaneously wide bandwidth, maximum power transfer, and disturbance rejection while meeting specified horsepower requirements at a given stroking speed as well as a specified maximum stall force. An innovative feedback signal is utilized in meeting these diverse objectives.

  14. Variable speed induction motor operation from a 20-kHz power bus

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1989-01-01

    Induction motors are recognized for their simple rugged construction. To date, however, their application to variable speed or servo drives was hampered by limitations on their control. Induction motor drives tend to be complex and to display troublesome low speed characteristics due in part to nonsinusoidal driving voltages. A technique was developed which involves direct synthesis of sinusoidal driving voltages from a high frequency power bus and independent control of frequency and voltages. Separation of frequency and voltage allows independent control of rotor and stator flux, full four quadrant operation, and instantaneous torque control. Recent test results, current status of the technology, and proposed aerospace applications will be discussed.

  15. Variable speed induction motor operation from a 20-kHz power bus

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1989-01-01

    Induction motors are recognized for their simple rugged construction to date, however, their application to variable speed or servo drives has been hampered by limitations on their control. Induction motor drives tend to be complex and to display troublesome low speed characteristics due in part to nonsinusoidal driving voltages. A technique was developed which involves direct synthesis of sinusoidal driving voltages from a high frequency power bus and independent control of frequency and voltages. Separation offrequency and voltage allows independent control of rotor and stator flux, full four-quadrant operation, and instantaneous torque control. Recent test results, current status of the technology, and proposed aerospace applications will be discussed.

  16. Adaptive Motor Resistance Video Game Exercise Apparatus and Method of Use Thereof

    NASA Technical Reports Server (NTRS)

    Reich, Alton (Inventor); Shaw, James (Inventor)

    2015-01-01

    The invention comprises a method and/or an apparatus using computer configured exercise equipment and an electric motor provided physical resistance in conjunction with a game system, such as a video game system, where the exercise system provides real physical resistance to a user interface. Results of user interaction with the user interface are integrated into a video game, such as running on a game console. The resistance system comprises: a subject interface, software control, a controller, an electric servo assist/resist motor, an actuator, and/or a subject sensor. The system provides actual physical interaction with a resistance device as input to the game console and game run thereon.

  17. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOEpatents

    Konrad, Charles E.; Boothe, Richard W.

    1994-01-01

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.

  18. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOEpatents

    Konrad, C.E.; Boothe, R.W.

    1996-01-23

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements. 6 figs.

  19. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOEpatents

    Konrad, Charles E.; Boothe, Richard W.

    1996-01-01

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.

  20. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOEpatents

    Konrad, C.E.; Boothe, R.W.

    1994-02-15

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements. 6 figures.

  1. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  2. Motor torque compensation of an induction electric motor by adjusting a slip command during periods of supposed change in motor temperature

    DOEpatents

    Kelledes, William L.; St. John, Don K.

    1992-01-01

    The present invention maintains constant torque in an inverter driven AC induction motor during variations in rotor temperature. It is known that the torque output of a given AC induction motor is dependent upon rotor temperature. At rotor temperatures higher than the nominal operating condition the rotor impedance increases, reducing the rotor current and motor torque. In a similar fashion, the rotor impedance is reduced resulting in increased rotor current and motor torque when the rotor temperature is lower than the nominal operating condition. The present invention monitors the bus current from the DC supply to the inverter and adjusts the slip frequency of the inverter drive to maintain a constant motor torque. This adjustment is based upon whether predetermined conditions implying increased rotor temperature or decreased rotor temperature exist for longer that a predetermined interval of time.

  3. Chiari malformation and central sleep apnea syndrome: efficacy of treatment with adaptive servo-ventilation*

    PubMed Central

    do Vale, Jorge Marques; Silva, Eloísa; Pereira, Isabel Gil; Marques, Catarina; Sanchez-Serrano, Amparo; Torres, António Simões

    2014-01-01

    The Chiari malformation type I (CM-I) has been associated with sleep-disordered breathing, especially central sleep apnea syndrome. We report the case of a 44-year-old female with CM-I who was referred to our sleep laboratory for suspected sleep apnea. The patient had undergone decompressive surgery 3 years prior. An arterial blood gas analysis showed hypercapnia. Polysomnography showed a respiratory disturbance index of 108 events/h, and all were central apnea events. Treatment with adaptive servo-ventilation was initiated, and central apnea was resolved. This report demonstrates the efficacy of servo-ventilation in the treatment of central sleep apnea syndrome associated with alveolar hypoventilation in a CM-I patient with a history of decompressive surgery. PMID:25410846

  4. Inherent limitations of fixed-time, servo-controlled radiometric calorimetry

    SciTech Connect

    Wetzel, J.R.; Lemming, J.F.; Duff, M.F.

    1987-01-01

    Interest has been shown in using fixed-time, servo-controlled calorimetry to shorten the measurement times for certain samples that require low precision values (3 to 5%). This type of calorimeter measurement could be particularly useful for screening scrap samples to determine whether there is a need for a more accurate measurement or for certain confirmatory measurements for which low precision numbers are sufficient. The equipment required for this type of measurement is a servo-controlled calorimeter and a preconditioning unit. Samples to be measured are placed in the preconditioning unit, which is maintained at the internal temperature of the calorimeter. The power value for the sample is determined at a fixed time after loading into the calorimeter, for example, 30 min. When a calorimeter is operated using a fixed cutoff time, there are additional sources of uncertainty that need to be considered. The major factors affecting the uncertainty of the calorimetry power values are discussed. 2 refs., 4 figs.

  5. Active control of static pressure drop caused by hydraulic servo-actuator engage

    SciTech Connect

    Janlovic, J.

    1994-12-31

    Pressure drop caused by propagation of expansion waves in the source pipeline of fast high cyclic hydraulic actuator produces possible anomalies in its function. To prevent pressure drop it is possible to minimize wave effects by active control of actuator servo-valve throttle leakage. In the paper is presented synthesis of possible discrete active control of hydraulic actuator and its servo-valve for prevention expansion wave pressure drop. Control synthesis is based on static pressure increasing with decreasing of fluid flow velocity, which can be realized by lower throttle leakage. Some of the effects of assumed control are shown on corresponding diagrams of control valve throttle motion, piston displacement and its corresponding linear velocity.

  6. Fault detection for discrete-time switched systems with sensor stuck faults and servo inputs.

    PubMed

    Zhong, Guang-Xin; Yang, Guang-Hong

    2015-09-01

    This paper addresses the fault detection problem of switched systems with servo inputs and sensor stuck faults. The attention is focused on designing a switching law and its associated fault detection filters (FDFs). The proposed switching law uses only the current states of FDFs, which guarantees the residuals are sensitive to the servo inputs with known frequency ranges in faulty cases and robust against them in fault-free case. Thus, the arbitrarily small sensor stuck faults, including outage faults can be detected in finite-frequency domain. The levels of sensitivity and robustness are measured in terms of the finite-frequency H- index and l2-gain. Finally, the switching law and FDFs are obtained by the solution of a convex optimization problem.

  7. Advanced Motors

    SciTech Connect

    Knoth, Edward A; Chelluri, Bhanumathi; Schumaker, Edward J

    2012-12-14

    vProject Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, Motors and Generators for the 21st Century. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to motor fabrication opens up a new dimension in motor design. Feasibility Results We were able to optimize a IPMSM rotor to take advantage of the powder co-filling and DMC compaction processing methods. The minimum low speed torque requirement of 5 N-m can be met through an optimized design with magnet material having a Br capability of 0.2 T. This level of magnetic performance can

  8. A servo controlled gradient loading triaxial model test system for deep-buried cavern

    NASA Astrophysics Data System (ADS)

    Chen, Xu-guang; Zhang, Qiang-yong; Li, Shu-cai

    2015-10-01

    A servo controlled gradient loading model test system is developed to simulate the gradient geostress in deep-buried cavern. This system consists of the gradient loading apparatus, the digital servo control device, and the measurement system. Among them, the gradient loading apparatus is the main component which is used for exerting load onto the model. This loading apparatus is placed inside the counterforce wall/beam and is divided to several different loading zones, with each loading zone independently controlled. This design enables the gradient loading. Hence, the "real" geostress field surrounding the deep-buried cavern can be simulated. The loading or unloading process can be controlled by the human-computer interaction machines, i.e., the digital servo control system. It realizes the automation and visualization of model loading/unloading. In addition, this digital servo could control and regulate hydraulic loading instantaneously, which stabilizes the geostress onto the model over a long term. During the loading procedure, the collision between two adjacent loading platens is also eliminated by developing a guide frame. This collision phenomenon is induced by the volume shrinkage of the model when compressed in true 3D state. In addition, several accurate measurements, including the optical and grating-based method, are adopted to monitor the small deformation of the model. Hence, the distortion of the model could be accurately measured. In order to validate the performance of this innovative model test system, a 3D geomechanical test was conducted on a simulated deep-buried underground reservoir. The result shows that the radial convergence increases rapidly with the release of the stress in the reservoir. Moreover, the deformation increases with the increase of the gas production rate. This observation is consistence with field observation in petroleum engineering. The system is therefore capable of testing deep-buried engineering structures.

  9. A servo controlled gradient loading triaxial model test system for deep-buried cavern

    SciTech Connect

    Chen, Xu-guang; Zhang, Qiang-yong; Li, Shu-cai

    2015-10-15

    A servo controlled gradient loading model test system is developed to simulate the gradient geostress in deep-buried cavern. This system consists of the gradient loading apparatus, the digital servo control device, and the measurement system. Among them, the gradient loading apparatus is the main component which is used for exerting load onto the model. This loading apparatus is placed inside the counterforce wall/beam and is divided to several different loading zones, with each loading zone independently controlled. This design enables the gradient loading. Hence, the “real” geostress field surrounding the deep-buried cavern can be simulated. The loading or unloading process can be controlled by the human-computer interaction machines, i.e., the digital servo control system. It realizes the automation and visualization of model loading/unloading. In addition, this digital servo could control and regulate hydraulic loading instantaneously, which stabilizes the geostress onto the model over a long term. During the loading procedure, the collision between two adjacent loading platens is also eliminated by developing a guide frame. This collision phenomenon is induced by the volume shrinkage of the model when compressed in true 3D state. In addition, several accurate measurements, including the optical and grating-based method, are adopted to monitor the small deformation of the model. Hence, the distortion of the model could be accurately measured. In order to validate the performance of this innovative model test system, a 3D geomechanical test was conducted on a simulated deep-buried underground reservoir. The result shows that the radial convergence increases rapidly with the release of the stress in the reservoir. Moreover, the deformation increases with the increase of the gas production rate. This observation is consistence with field observation in petroleum engineering. The system is therefore capable of testing deep-buried engineering structures.

  10. A new state space model for the NASA/JPL 70-meter antenna servo controls

    NASA Technical Reports Server (NTRS)

    Hill, R. E.

    1987-01-01

    A control axis referenced model of the NASA/JPL 70-m antenna structure is combined with the dynamic equations of servo components to produce a comprehansive state variable (matrix) model of the coupled system. An interactive Fortran program for generating the linear system model and computing its salient parameters is described. Results are produced in a state variable, block diagram, and in factored transfer function forms to facilitate design and analysis by classical as well as modern control methods.

  11. A servo controlled gradient loading triaxial model test system for deep-buried cavern.

    PubMed

    Chen, Xu-guang; Zhang, Qiang-yong; Li, Shu-cai

    2015-10-01

    A servo controlled gradient loading model test system is developed to simulate the gradient geostress in deep-buried cavern. This system consists of the gradient loading apparatus, the digital servo control device, and the measurement system. Among them, the gradient loading apparatus is the main component which is used for exerting load onto the model. This loading apparatus is placed inside the counterforce wall/beam and is divided to several different loading zones, with each loading zone independently controlled. This design enables the gradient loading. Hence, the "real" geostress field surrounding the deep-buried cavern can be simulated. The loading or unloading process can be controlled by the human-computer interaction machines, i.e., the digital servo control system. It realizes the automation and visualization of model loading/unloading. In addition, this digital servo could control and regulate hydraulic loading instantaneously, which stabilizes the geostress onto the model over a long term. During the loading procedure, the collision between two adjacent loading platens is also eliminated by developing a guide frame. This collision phenomenon is induced by the volume shrinkage of the model when compressed in true 3D state. In addition, several accurate measurements, including the optical and grating-based method, are adopted to monitor the small deformation of the model. Hence, the distortion of the model could be accurately measured. In order to validate the performance of this innovative model test system, a 3D geomechanical test was conducted on a simulated deep-buried underground reservoir. The result shows that the radial convergence increases rapidly with the release of the stress in the reservoir. Moreover, the deformation increases with the increase of the gas production rate. This observation is consistence with field observation in petroleum engineering. The system is therefore capable of testing deep-buried engineering structures. PMID

  12. Image-Based Visual Servoing for Robotic Systems: A Nonlinear Lyapunov-Based Control Approach

    SciTech Connect

    Dixon, Warren

    2004-06-01

    There is significant motivation to provide robotic systems with improved autonomy as a means to significantly accelerate deactivation and decommissioning (D&D) operations while also reducing the associated costs, removing human operators from hazardous environments, and reducing the required burden and skill of human operators. To achieve improved autonomy, this project focused on the basic science challenges leading to the development of visual servo controllers. The challenge in developing these controllers is that a camera provides 2-dimensional image information about the 3-dimensional Euclidean-space through a perspective (range dependent) projection that can be corrupted by uncertainty in the camera calibration matrix and by disturbances such as nonlinear radial distortion. Disturbances in this relationship (i.e., corruption in the sensor information) propagate erroneous information to the feedback controller of the robot, leading to potentially unpredictable task execution. This research project focused on the development of a visual servo control methodology that targets compensating for disturbances in the camera model (i.e., camera calibration and the recovery of range information) as a means to achieve predictable response by the robotic system operating in unstructured environments. The fundamental idea is to use nonlinear Lyapunov-based techniques along with photogrammetry methods to overcome the complex control issues and alleviate many of the restrictive assumptions that impact current robotic applications. The outcome of this control methodology is a plug-and-play visual servoing control module that can be utilized in conjunction with current technology such as feature recognition and extraction to enable robotic systems with the capabilities of increased accuracy, autonomy, and robustness, with a larger field of view (and hence a larger workspace). The developed methodology has been reported in numerous peer-reviewed publications and the

  13. Vision servoing of robot systems using piecewise continuous controllers and observers

    NASA Astrophysics Data System (ADS)

    Wang, H. P.; Vasseur, C.; Christov, N.; Koncar, V.

    2012-11-01

    This paper deals with the visual servoing of X-Y robot systems using low cost CCD camera. The proposed approach is based on the theory of piecewise continuous systems which are a particular class of hybrid systems with autonomous switching and controlled impulses. Visual trajectory tracking systems comprising piecewise continuous controllers and observers, are developed. Real-time results are given to illustrate the effectiveness of the proposed visual control system.

  14. Reconfigurable Flight Control Design using a Robust Servo LQR and Radial Basis Function Neural Networks

    NASA Technical Reports Server (NTRS)

    Burken, John J.

    2005-01-01

    This viewgraph presentation reviews the use of a Robust Servo Linear Quadratic Regulator (LQR) and a Radial Basis Function (RBF) Neural Network in reconfigurable flight control designs in adaptation to a aircraft part failure. The method uses a robust LQR servomechanism design with model Reference adaptive control, and RBF neural networks. During the failure the LQR servomechanism behaved well, and using the neural networks improved the tracking.

  15. Introducing AC inductive reactance with a power tool

    NASA Astrophysics Data System (ADS)

    Bryant, Wesley; Baker, Blane

    2016-09-01

    The concept of reactance in AC electrical circuits is often non-intuitive and difficult for students to grasp. In order to address this lack of conceptual understanding, classroom exercises compare the predicted resistance of a power tool, based on electrical specifications, to measured resistance. Once students discover that measured resistance is smaller than expected, they are asked to explain these observations using previously studied principles of magnetic induction. Exercises also introduce the notion of inductive reactance and impedance in AC circuits and, ultimately, determine self-inductance of the motor windings within the power tool.

  16. Autonomous robotic capture of non-cooperative target by adaptive extended Kalman filter based visual servo

    NASA Astrophysics Data System (ADS)

    Dong, Gangqi; Zhu, Zheng H.

    2016-05-01

    This paper presents a real-time, vision-based algorithm for the pose and motion estimation of non-cooperative targets and its application in visual servo robotic manipulator to perform autonomous capture. A hybrid approach of adaptive extended Kalman filter and photogrammetry is developed for the real-time pose and motion estimation of non-cooperative targets. Based on the pose and motion estimates, the desired pose and trajectory of end-effector is defined and the corresponding desired joint angles of the robotic manipulator are derived by inverse kinematics. A close-loop visual servo control scheme is then developed for the robotic manipulator to track, approach and capture the target. Validating experiments are designed and performed on a custom-built six degrees of freedom robotic manipulator with an eye-in-hand configuration. The experimental results demonstrate the feasibility, effectiveness and robustness of the proposed adaptive extended Kalman filter enabled pose and motion estimation and visual servo strategy.

  17. Performance evaluation and optimization of a fast tool servo for single point diamond turning machines

    SciTech Connect

    Miller, A.C. Jr.; Cuttino, J.F.

    1997-08-01

    This paper describes a new, fast tool servo system for fabricating non-rotationally symmetric components using single point diamond turning machines. A prototype, designed for flexible interfacing to typical machine tool controllers, will be described along with performance testing data of tilted flat and off-axis conic sections. Evaluation data show that servo produced surfaces have an rms roughness less than 175 angstroms (2-200 {mu}m spatial filter). Techniques for linearizing the hysteretic effects in the piezoelectric actuator are also discussed. The nonlinear effects due to hysteresis are reduced using a dynamic compensator module in conjunction with a linear controller. The compensator samples the hysteretic voltage/displacement relation in real time and modifies the effective gain accordingly. Simulation results indicate that errors in the performance of the system caused by hysteresis can be compensated and reduced by 90%. Experimental implementation results in 80% reduction in motion error caused by hysteresis, but peak-to- valley errors are limited by side effects from the compensation. The uncompensated servo system demonstrated a peak-to-valley error of less than 0.80 micrometer for an off-axis conic section turned on-axis.

  18. Motor neglect.

    PubMed Central

    Laplane, D; Degos, J D

    1983-01-01

    Motor neglect is characterised by an underutilisation of one side, without defects of strength, reflexes or sensibility. Twenty cases of frontal, parietal and thalamic lesions causing motor neglect, but all without sensory neglect, are reported. It is proposed that the cerebral structures involved in motor neglect are the same as those for sensory neglect and for the preparation of movement. As in sensory neglect, the multiplicity of the structures concerned suggests that this interconnection is necessary to maintain a sufficient level of activity. Predominance of left sided neglect by right sided lesions suggests that the left hemisphere is dominant for deliberate activity; hemispheric dominance could be applied to sensory neglect where conscious awareness would play the role of deliberate activity. PMID:6842219

  19. AC power systems handbook

    SciTech Connect

    Whitaker, J.

    1991-01-01

    Transient disturbances are what headaches are made of. Whatever you call them-spikes, surges, are power bumps-they can take your equipment down and leave you with a complicated and expensive repair job. Protection against transient disturbances is a science that demands attention to detail. This book explains how the power distribution system works, what can go wrong with it, and how to protect a facility against abnormalities. system grounding and shielding are covered in detail. Each major method of transient protection is analyzed and its relative merits discussed. The book provides a complete look at the critical elements of the ac power system. Provides a complete look at the ac power system from generation to consumption. Discusses the mechanisms that produce transient disturbances and how to protect against them. Presents diagrams to facilitate system design. Covers new areas, such as the extent of the transient disturbance problem, transient protection options, and stand-by power systems.

  20. Increased Ac excision (iae): Arabidopsis thaliana mutations affecting Ac transposition.

    PubMed

    Jarvis, P; Belzile, F; Page, T; Dean, C

    1997-05-01

    The maize transposable element Ac is highly active in the heterologous hosts tobacco and tomato, but shows very much reduced levels of activity in Arabidopsis. A mutagenesis experiment was undertaken with the aim of identifying Arabidopsis host factors responsible for the observed low levels of Ac activity. Seed from a line carrying a single copy of the Ac element inserted into the streptomycin phosphotransferase (SPT) reporter fusion, and which displayed typically low levels of Ac activity, were mutagenized using gamma rays. Nineteen mutants displaying high levels of somatic Ac activity, as judged by their highly variegated phenotypes, were isolated after screening the M2 generation on streptomycin-containing medium. The mutations fall into two complementation groups, iae1 and iae2, are unlinked to the SPT::Ac locus and segregate in a Mendelian fashion. The iae1 mutation is recessive and the iae2 mutation is semi-dominant. The iae1 and iae2 mutants show 550- and 70-fold increases, respectively, in the average number of Ac excision sectors per cotyledon. The IAE1 locus maps to chromosome 2, whereas the SPT::Ac reporter maps to chromosome 3. A molecular study of Ac activity in the iae1 mutant confirmed the very high levels of Ac excision predicted using the phenotypic assay, but revealed only low levels of Ac re-insertion. Analyses of germinal transposition in the iae1 mutant demonstrated an average germinal excision frequency of 3% and a frequency of independent Ac re-insertions following germinal excision of 22%. The iae mutants represents a possible means of improving the efficiency of Ac/Ds transposon tagging systems in Arabidopsis, and will enable the dissection of host involvement in Ac transposition and the mechanisms employed for controlling transposable element activity.

  1. A new neural net approach to robot 3D perception and visuo-motor coordination

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan

    1992-01-01

    A novel neural network approach to robot hand-eye coordination is presented. The approach provides a true sense of visual error servoing, redundant arm configuration control for collision avoidance, and invariant visuo-motor learning under gazing control. A 3-D perception network is introduced to represent the robot internal 3-D metric space in which visual error servoing and arm configuration control are performed. The arm kinematic network performs the bidirectional association between 3-D space arm configurations and joint angles, and enforces the legitimate arm configurations. The arm kinematic net is structured by a radial-based competitive and cooperative network with hierarchical self-organizing learning. The main goal of the present work is to demonstrate that the neural net representation of the robot 3-D perception net serves as an important intermediate functional block connecting robot eyes and arms.

  2. Motor learning.

    PubMed

    Wolpert, Daniel M; Flanagan, J Randall

    2010-06-01

    Although learning a motor skill, such as a tennis stroke, feels like a unitary experience, researchers who study motor control and learning break the processes involved into a number of interacting components. These components can be organized into four main groups. First, skilled performance requires the effective and efficient gathering of sensory information, such as deciding where and when to direct one's gaze around the court, and thus an important component of skill acquisition involves learning how best to extract task-relevant information. Second, the performer must learn key features of the task such as the geometry and mechanics of the tennis racket and ball, the properties of the court surface, and how the wind affects the ball's flight. Third, the player needs to set up different classes of control that include predictive and reactive control mechanisms that generate appropriate motor commands to achieve the task goals, as well as compliance control that specifies, for example, the stiffness with which the arm holds the racket. Finally, the successful performer can learn higher-level skills such as anticipating and countering the opponent's strategy and making effective decisions about shot selection. In this Primer we shall consider these components of motor learning using as an example how we learn to play tennis. PMID:20541489

  3. Motor learning.

    PubMed

    Wolpert, Daniel M; Flanagan, J Randall

    2010-06-01

    Although learning a motor skill, such as a tennis stroke, feels like a unitary experience, researchers who study motor control and learning break the processes involved into a number of interacting components. These components can be organized into four main groups. First, skilled performance requires the effective and efficient gathering of sensory information, such as deciding where and when to direct one's gaze around the court, and thus an important component of skill acquisition involves learning how best to extract task-relevant information. Second, the performer must learn key features of the task such as the geometry and mechanics of the tennis racket and ball, the properties of the court surface, and how the wind affects the ball's flight. Third, the player needs to set up different classes of control that include predictive and reactive control mechanisms that generate appropriate motor commands to achieve the task goals, as well as compliance control that specifies, for example, the stiffness with which the arm holds the racket. Finally, the successful performer can learn higher-level skills such as anticipating and countering the opponent's strategy and making effective decisions about shot selection. In this Primer we shall consider these components of motor learning using as an example how we learn to play tennis.

  4. Therma motor

    DOEpatents

    Kandarian, R.

    The disclosure is directed to a thermal motor utilizing two tapered prestressed parallel adjacent cylinders lengthwise disposed about one third in a coolant. Heat is applied to contacting portions of the cylinders outside the coolant to cause them to deform and turn. Heat sources such as industrial waste heat, geothermal hot water, solar radiation, etc. can be used.

  5. A PWM transistor inverter for an ac electric vehicle drive

    NASA Technical Reports Server (NTRS)

    Slicker, J. M.

    1981-01-01

    A prototype system consisting of closely integrated motor, inverter, and transaxle has been built in order to demonstrate the feasibility of a three-phase ac transistorized inverter for electric vehicle applications. The microprocessor-controlled inverter employs monolithic power transistors to drive an oil-cooled, three-phase induction traction motor at a peak output power of 30 kW from a 144 V battery pack. Transistor safe switching requirements are discussed, and a circuit is presented for recovering trapped snubber inductor energy at transistor turn-off.

  6. Local Voltage Support from Distributed Energy Resources to Prevent Air Conditioner Motor Stalling

    SciTech Connect

    Baone, Chaitanya A; Xu, Yan; Kueck, John D

    2010-01-01

    Microgrid voltage collapse often happens when there is a high percentage of low inertia air-conditioning (AC) motors in the power systems. The stalling of the AC motors results in Fault Induced Delayed Voltage Recovery (FIDVR). A hybrid load model including typical building loads, AC motor loads, and other induction motor loads is built to simulate the motoring stalling phenomena. Furthermore, distributed energy resources (DE) with local voltage support capability are utilized to boost the local bus voltage during a fault, and prevent the motor stalling. The simulation results are presented. The analysis of the simulation results show that local voltage support from multiple DEs can effectively and economically solve the microgrid voltage collapse problem.

  7. Phase and Frequency-Dependent Effects of Transcranial Alternating Current Stimulation on Motor Cortical Excitability.

    PubMed

    Nakazono, Hisato; Ogata, Katsuya; Kuroda, Tsuyoshi; Tobimatsu, Shozo

    2016-01-01

    Transcranial alternating current stimulation (tACS) can entrain ongoing brain oscillations and modulate the motor system in a frequency-dependent manner. Recent animal studies have demonstrated that the phase of a sinusoidal current also has an important role in modulation of neuronal activity. However, the phase effects of tACS on the human motor system are largely unknown. Here, we systematically investigated the effects of tACS phase and frequency on the primary motor cortex (M1) by using motor evoked potentials (MEPs) with transcranial magnetic stimulation (TMS). First, we compared the phase effects (90°, 180°, 270° or 360°) of 10 and 20 Hz tACS on MEPs. The 20 Hz tACS significantly increased M1 excitability compared with the 10 Hz tACS at 90° phase only. Second, we studied the 90° phase effect on MEPs at different tACS frequencies (5, 10, 20 or 40 Hz). The 20 vs. 10 Hz difference was again observed, but the 90° phase in 5 and 40 Hz tACS did not influence M1 excitability. Third, the 90° phase effects of 10 and 20 Hz tACS were compared with sham stimulation. The 90° phase of 20 Hz tACS enhanced MEP amplitudes compared with sham stimulation, but there was no significant effect of 10 Hz tACS. Taken together, we assume that the differential 90° phase effects on 20 Hz and 10 Hz tACS can be attributed to the neural synchronization modulated by tACS. Our results further underline that phase and frequency are the important factors in the effects of tACS on M1 excitability.

  8. Phase and Frequency-Dependent Effects of Transcranial Alternating Current Stimulation on Motor Cortical Excitability.

    PubMed

    Nakazono, Hisato; Ogata, Katsuya; Kuroda, Tsuyoshi; Tobimatsu, Shozo

    2016-01-01

    Transcranial alternating current stimulation (tACS) can entrain ongoing brain oscillations and modulate the motor system in a frequency-dependent manner. Recent animal studies have demonstrated that the phase of a sinusoidal current also has an important role in modulation of neuronal activity. However, the phase effects of tACS on the human motor system are largely unknown. Here, we systematically investigated the effects of tACS phase and frequency on the primary motor cortex (M1) by using motor evoked potentials (MEPs) with transcranial magnetic stimulation (TMS). First, we compared the phase effects (90°, 180°, 270° or 360°) of 10 and 20 Hz tACS on MEPs. The 20 Hz tACS significantly increased M1 excitability compared with the 10 Hz tACS at 90° phase only. Second, we studied the 90° phase effect on MEPs at different tACS frequencies (5, 10, 20 or 40 Hz). The 20 vs. 10 Hz difference was again observed, but the 90° phase in 5 and 40 Hz tACS did not influence M1 excitability. Third, the 90° phase effects of 10 and 20 Hz tACS were compared with sham stimulation. The 90° phase of 20 Hz tACS enhanced MEP amplitudes compared with sham stimulation, but there was no significant effect of 10 Hz tACS. Taken together, we assume that the differential 90° phase effects on 20 Hz and 10 Hz tACS can be attributed to the neural synchronization modulated by tACS. Our results further underline that phase and frequency are the important factors in the effects of tACS on M1 excitability. PMID:27607431

  9. Phase and Frequency-Dependent Effects of Transcranial Alternating Current Stimulation on Motor Cortical Excitability

    PubMed Central

    Kuroda, Tsuyoshi; Tobimatsu, Shozo

    2016-01-01

    Transcranial alternating current stimulation (tACS) can entrain ongoing brain oscillations and modulate the motor system in a frequency-dependent manner. Recent animal studies have demonstrated that the phase of a sinusoidal current also has an important role in modulation of neuronal activity. However, the phase effects of tACS on the human motor system are largely unknown. Here, we systematically investigated the effects of tACS phase and frequency on the primary motor cortex (M1) by using motor evoked potentials (MEPs) with transcranial magnetic stimulation (TMS). First, we compared the phase effects (90°, 180°, 270° or 360°) of 10 and 20 Hz tACS on MEPs. The 20 Hz tACS significantly increased M1 excitability compared with the 10 Hz tACS at 90° phase only. Second, we studied the 90° phase effect on MEPs at different tACS frequencies (5, 10, 20 or 40 Hz). The 20 vs. 10 Hz difference was again observed, but the 90° phase in 5 and 40 Hz tACS did not influence M1 excitability. Third, the 90° phase effects of 10 and 20 Hz tACS were compared with sham stimulation. The 90° phase of 20 Hz tACS enhanced MEP amplitudes compared with sham stimulation, but there was no significant effect of 10 Hz tACS. Taken together, we assume that the differential 90° phase effects on 20 Hz and 10 Hz tACS can be attributed to the neural synchronization modulated by tACS. Our results further underline that phase and frequency are the important factors in the effects of tACS on M1 excitability. PMID:27607431

  10. Motor Neuron Diseases

    MedlinePlus

    ... called upper motor neurons ) are transmitted to nerve cells in the brain stem and spinal cord (called lower motor neurons ) and from them to particular muscles. Upper motor neurons direct the lower motor neurons ...

  11. Motor Neuron Diseases

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS NINDS Motor Neuron Diseases Information Page Condensed from Motor Neuron Diseases ... and Information Publicaciones en Español What are Motor Neuron Diseases? The motor neuron diseases (MNDs) are a ...

  12. Numerical simulation and experimental study of heat-fluid-solid coupling of double flapper-nozzle servo valve

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhua; Zhou, Songlin; Lu, Xianghui; Gao, Dianrong

    2015-09-01

    The double flapper-nozzle servo valve is widely used to launch and guide the equipment. Due to the large instantaneous flow rate of servo valve working under specific operating conditions, the temperature of servo valve would reach 120°C and the valve core and valve sleeve deform in a short amount of time. So the control precision of servo valve significantly decreases and the clamping stagnation phenomenon of valve core appears. In order to solve the problem of degraded control accuracy and clamping stagnation of servo valve under large temperature difference circumstance, the numerical simulation of heat-fluid-solid coupling by using finite element method is done. The simulation result shows that zero position leakage of servo valve is basically impacted by oil temperature and change of fit clearance. The clamping stagnation is caused by warpage-deformation and fit clearance reduction of the valve core and valve sleeve. The distribution rules of the temperature and thermal-deformation of shell, valve core and valve sleeve and the pressure, velocity and temperature field of flow channel are also analyzed. Zero position leakage and electromagnet's current when valve core moves in full-stroke are tested using Electro-hydraulic Servo-valve Characteristic Test-bed of an aerospace sciences and technology corporation. The experimental results show that the change law of experimental current at different oil temperatures is roughly identical to simulation current. The current curve of the electromagnet is smooth when oil temperature is below 80°C, but the amplitude of current significantly increases and the hairy appears when oil temperature is above 80°C. The current becomes smooth again after the warped valve core and valve sleeve are reground. It indicates that clamping stagnation is caused by warpage-deformation and fit clearance reduction of valve core and valve sleeve. This paper simulates and tests the heat-fluid-solid coupling of double flapper-nozzle servo

  13. Aero-servo-viscoelasticity theory: Lifting surfaces, plates, velocity transients, flutter, and instability

    NASA Astrophysics Data System (ADS)

    Merrett, Craig G.

    Modern flight vehicles are fabricated from composite materials resulting in flexible structures that behave differently from the more traditional elastic metal structures. Composite materials offer a number of advantages compared to metals, such as improved strength to mass ratio, and intentional material property anisotropy. Flexible aircraft structures date from the Wright brothers' first aircraft with fabric covered wooden frames. The flexibility of the structure was used to warp the lifting surface for flight control, a concept that has reappeared as aircraft morphing. These early structures occasionally exhibited undesirable characteristics during flight such as interactions between the empennage and the aft fuselage, or control problems with the elevators. The research to discover the cause and correction of these undesirable characteristics formed the first foray into the field of aeroelasticity. Aeroelasticity is the intersection and interaction between aerodynamics, elasticity, and inertia or dynamics. Aeroelasticity is well suited for metal aircraft, but requires expansion to improve its applicability to composite vehicles. The first is a change from elasticity to viscoelasticity to more accurately capture the solid mechanics of the composite material. The second change is to include control systems. While the inclusion of control systems in aeroelasticity lead to aero-servo-elasticity, more control possibilities exist for a viscoelastic composite material. As an example, during the lay-up of carbon-epoxy plies, piezoelectric control patches are inserted between different plies to give a variety of control options. The expanded field is called aero-servo-viscoelasticity. The phenomena of interest in aero-servo-viscoelasticity are best classified according to the type of structure considered, either a lifting surface or a panel, and the type of dynamic stability present. For both types of structures, the governing equations are integral

  14. A Higher Bandwidth Servo Design for Magnetic Disk Drives: A Head-positioning Control System with Strain Feedback Control

    NASA Astrophysics Data System (ADS)

    Nakagawa, Shinsuke; Yamaguchi, Takashi

    In magnetic disk drives, mechanical resonance modes prevent a higher bandwidth servo being used for head positioning control. To overcome this limitation and realize more precise head positioning, a strain feedback controller which is added to a conventional head-position feedback loop was developed. The controller of a strain-feedback control system was designed so that the gain and the phase delay of the sensitivity function of the strain-feedback control system were both reduced below the frequency of a primary mechanical resonance. The controller achieves gain suppression by about 10dB at a primary mechanical resonance and phase delay of about zero degrees. It was found that the head-position control system (i.e., the strain feedback plus the conventional head-position feedback loop) increases the servo bandwidth by 17% and improves the positioning accuracy by 18%. It was also confirmed that unlike conventional servo system, the new servo design does not suffer degradation of servo characteristics at high temperature.

  15. Reactor coolant pump testing using motor current signatures analysis

    SciTech Connect

    Burstein, N.; Bellamy, J.

    1996-12-01

    This paper describes reactor coolant pump motor testing carried out at Florida Power Corporation`s Crystal River plant using Framatome Technologies` new EMPATH (Electric Motor Performance Analysis and Trending Hardware) system. EMPATH{trademark} uses an improved form of Motor Current Signature Analysis (MCSA), technology, originally developed at Oak Ridge National Laboratories, for detecting deterioration in the rotors of AC induction motors. Motor Current Signature Analysis (MCSA) is a monitoring tool for motor driven equipment that provides a non-intrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment. The base technology was developed at the Oak Ridge National Laboratory as a means for determining the affects of aging and service wear specifically on motor-operated valves used in nuclear power plant safety systems, but it is applicable to a broad range of electric machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. The motor current variations, resulting from changes in load caused by gears, pulleys, friction, bearings, and other conditions that may change over the life of the motor, are carried by the electrical cables powering the motor and are extracted at any convenient location along the motor lead. These variations modulate the 60 Hz carrier frequency and appear as sidebands in the spectral plot.

  16. The right {mu}P simplifies using induction motors to propel electric cars

    SciTech Connect

    Baum, J.; Berringer, K.

    1994-03-31

    In electric vehicles (EVs), AC induction motors can provide variable speed at low cost. The most common method for controlling induction motors uses a 3-phase AC voltage-source inverter with sine-wave PWM (pulse width modulation). Because the motor`s speed and acceleration depend on amplitude as well as frequency, the inverter must produce sine waves of variable voltage and frequency. The authors describe how a single microcontroller can provide such control functions while generating PWM waveforms in which the modulation is sinusoidal.

  17. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  18. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  19. 3-D analysis of permanent magnet linear synchronous motor with magnet arrangement using equivalent magnetic circuit network method

    SciTech Connect

    Jung, I.S.; Hur, J.; Hyun, D.S.

    1999-09-01

    Permanent magnet linear synchronous motors (PMLSM's) are proposed for many applications ranging from ground transportation to servo system and conveyance system. In this paper, the fields and forces of permanent magnet linear synchronous motor (PMLSM) with segmented or skewed magnet arrangement are analyzed according to length of segment or skew. And, the effects according to the lateral overhang of magnet are investigated. For the analysis, 3-dimensional equivalent magnetic circuit network (3-D EMCN) method is used. The analysis results are compared with the experimental ones and shown a reasonable agreement.

  20. Cine-servo lens technology for 4K broadcast and cinematography

    NASA Astrophysics Data System (ADS)

    Nurishi, Ryuji; Wakazono, Tsuyoshi; Usui, Fumiaki

    2015-09-01

    Central to the rapid evolution of 4K image capture technology in the past few years, deployment of large-format cameras with Super35mm Single Sensors is increasing in TV production for diverse shows such as dramas, documentaries, wildlife, and sports. While large format image capture has been the standard in the cinema world for quite some time, the recent experiences within the broadcast industry have revealed a variety of requirement differences for large format lenses compared to those of the cinema industry. A typical requirement for a broadcast lens is a considerably higher zoom ratio in order to avoid changing lenses in the middle of a live event, which is mostly not the case for traditional cinema productions. Another example is the need for compact size, light weight, and servo operability for a single camera operator shooting in a shoulder-mount ENG style. On the other hand, there are new requirements that are common to both worlds, such as smooth and seamless change in angle of view throughout the long zoom range, which potentially offers new image expression that never existed in the past. This paper will discuss the requirements from the two industries of cinema and broadcast, while at the same time introducing the new technologies and new optical design concepts applied to our latest "CINE-SERVO" lens series which presently consists of two models, CN7x17KAS-S and CN20x50IAS-H. It will further explain how Canon has realized 4K optical performance and fast servo control while simultaneously achieving compact size, light weight and high zoom ratio, by referring to patent-pending technologies such as the optical power layout, lens construction, and glass material combinations.

  1. Early augmented language intervention for children with developmental delays: potential secondary motor outcomes.

    PubMed

    Whitmore, Ani S; Romski, Mary Ann; Sevcik, Rose A

    2014-09-01

    This exploratory study examined the potential secondary outcome of an early augmented language intervention that incorporates speech-generating devices (SGD) on motor skill use for children with developmental delays. The data presented are from a longitudinal study by Romski and colleagues. Toddlers in the augmented language interventions were either required (Augmented Communication-Output; AC-O) or not required (Augmented Communication-Input; AC-I) to use the SGD to produce an augmented word. Three standardized assessments and five event-based coding schemes measured the participants' language abilities and motor skills. Toddlers in the AC-O intervention used more developmentally appropriate motor movements and became more accurate when using the SGD to communicate than toddlers in the AC-I intervention. AAC strategies, interventionist/parent support, motor learning opportunities, and physical feedback may all contribute to this secondary benefit of AAC interventions that use devices. PMID:25109299

  2. Identification of /sup 233/Ac

    SciTech Connect

    Chu, Y.Y.; Zhou, M.L.

    1983-09-01

    We report in this paper identification of the new isotope /sup 233/Ac. Uranium targets were irradiated with 28 GeV protons; after rapid retrieval of the target and separation of actinium from thorium, /sup 233/Ac was allowed to decay into the known /sup 233/Th daughter. Exhaustive chemical purification was employed to permit the identification of /sup 233/Th via its characteristic ..gamma.. radiations. The half-life derived for /sup 233/Ac from several experiments is 2.3 +- 0.3 min. The production cross section for /sup 233/Ac is 100 ..mu..b.

  3. AC and DC power transmission

    SciTech Connect

    Not Available

    1985-01-01

    The technical and economic assessment of AC and DC transmission systems; long distance transmission, cable transmission, system inter-connection, voltage support, reactive compensation, stabilisation of systems; parallel operation of DC links with AC systems; comparison between alternatives for particular schemes. Design and application equipment: design, testing and application of equipment for HVDC, series and shunt static compensated AC schemes, including associated controls. Installations: overall design of stations and conductor arrangements for HVDC, series and shunt static AC schemes including insulation co-ordination. System analysis and modelling.

  4. Contactless automated manipulation of mesoscale objects using opto-fluidic actuation and visual servoing.

    PubMed

    Vela, Emir; Hafez, Moustapha; Régnier, Stéphane

    2014-05-01

    This work describes an automated opto-fluidic system for parallel non-contact manipulation of microcomponents. The strong dynamics of laser-driven thermocapillary flows were used to drag microcomponents at high speeds. High-speed flows allowed to manipulate micro-objects in a parallel manner only using a single laser and a mirror scanner. An automated process was implemented using visual servoing with a high-speed camera in order to achieve accurately parallel manipulation. Automated manipulation of two glass beads of 30 up to 300 μm in diameter moving in parallel at speeds in the range of mm/s was demonstrated.

  5. Analog simulation of flux-summing servo-model, phases 1 and 2

    NASA Technical Reports Server (NTRS)

    Hriber, E. J.

    1984-01-01

    The analog simulation was developed for a closed-loop system having an electrohydraulic flux-summing servo valve and actuator with associated inertial load. One-fourth of the system's total forward gain is carried by each of four channels. The present study successfully applied failure mode management techniques to the problem of channel failure. Digital logic circuitry was developed to maintain the overall forward gain of the system at a constant value, in the presence of channel failure. Finally, the stability of the system was verified, and performance characteristics were determined through the use of frequency response methods.

  6. End-to-End Flow Control Using PI Controller for Servo Control over Networks

    NASA Astrophysics Data System (ADS)

    Yashiro, Daisuke; Kubo, Ryogo; Yakoh, Takahiro; Ohnishi, Kouhei

    This paper presents a novel flow control method using a PI controller for servo control over networks. The UDP is known to be effective for motion control systems over networks such as bilateral teleoperation. However, UDP does not have a mechanism for congestion avoidance. The congestion, which causes large communication delay, jitter, and packet loss, deteriorates the performance and stability of control systems over networks. To avoid this congestion, a novel flow control method, which adjusts a packet-sending period in real time, is proposed. The validity of the proposed method is shown by simulation and experimental results.

  7. Fluoroscopy servoing using translation/rotation decoupling in an A/P view

    NASA Astrophysics Data System (ADS)

    Mocanu, Mihai L.; Patriciu, Alexandru; Stoianovici, Dan S.; Mazilu, Dumitru; Lindisch, David; Corral, Gabriela; Gruionu, Lucian; Cleary, Kevin R.

    2003-05-01

    This paper presents a fluoroscopy servoing algorithm for automatic alignment of a needle using a medical robot during interventional procedures. The goal of this work is to provide physicians with assistance in needle alignment during minimally invasive procedures under fluoroscopy imaging. This may also help reduce radiation exposure for the physician and provide more accurate targeting of internal anatomy. The paper presents the overall concept and describes our implementation along with the initial laboratory results and studies in the interventional suite. The algorithm is based on a single anterior/posterior fluoroscopic image. Future work will be aimed at demonstrating the clinical feasibility of the method.

  8. AeroPropulsoServoElasticity: Dynamic Modeling of the Variable Cycle Propulsion System

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2012-01-01

    This presentation was made at the 2012 Fundamental Aeronautics Program Technical Conference and it covers research work for the Dynamic Modeling of the Variable cycle Propulsion System that was done under the Supersonics Project, in the area of AeroPropulsoServoElasticity. The presentation covers the objective for the propulsion system dynamic modeling work, followed by the work that has been done so far to model the variable Cycle Engine, modeling of the inlet, the nozzle, the modeling that has been done to model the affects of flow distortion, and finally presenting some concluding remarks and future plans.

  9. L1 adaptive control of uncertain gear transmission servo systems with deadzone nonlinearity.

    PubMed

    Zuo, Zongyu; Li, Xiao; Shi, Zhiguang

    2015-09-01

    This paper deals with the adaptive control problem of Gear Transmission Servo (GTS) systems in the presence of unknown deadzone nonlinearity and viscous friction. A global differential homeomorphism based on a novel differentiable deadzone model is proposed first. Since there exist both matched and unmatched state-dependent unknown nonlinearities, a full-state feedback L1 adaptive controller is constructed to achieve uniformly bounded transient response in addition to steady-state performance. Finally, simulation results are included to show the elimination of limit cycles, in addition to demonstrating the main results in this paper. PMID:26250588

  10. Contactless automated manipulation of mesoscale objects using opto-fluidic actuation and visual servoing.

    PubMed

    Vela, Emir; Hafez, Moustapha; Régnier, Stéphane

    2014-05-01

    This work describes an automated opto-fluidic system for parallel non-contact manipulation of microcomponents. The strong dynamics of laser-driven thermocapillary flows were used to drag microcomponents at high speeds. High-speed flows allowed to manipulate micro-objects in a parallel manner only using a single laser and a mirror scanner. An automated process was implemented using visual servoing with a high-speed camera in order to achieve accurately parallel manipulation. Automated manipulation of two glass beads of 30 up to 300 μm in diameter moving in parallel at speeds in the range of mm/s was demonstrated. PMID:24880415

  11. Dynamic models for simulation of the 70-M antenna axis servos

    NASA Technical Reports Server (NTRS)

    Hill, R. E.

    1988-01-01

    Dynamic models for the various functional elements of the 70 m antenna axis servos are described. The model representing the digital position controller, the linear and nonlinear properties of the physical hardware, and the dynamics of the flexible antenna structure are encoded in six major function blocks. The general modular structure of the function blocks facilitates their adaptation to a variety of dynamic simulation studies. Model parameter values were calculated from component specifications and design data. A simulation using the models to predict limit cycle behavior produced results in excellent agreement with field test data from the DSS 14 70-m antenna.

  12. Advanced ac powertrain for electric vehicles

    SciTech Connect

    Slicker, J.M.; Kalns, L.

    1985-01-01

    The design of an ac propulsion system for an electric vehicle includes a three-phase induction motor, transistorized PWM inverter/battery charger, microprocessor-based controller, and two-speed automatic transaxle. This system was built and installed in a Mercury Lynx test bed vehicle as part of a Department of Energy propulsion system development program. An integral part of the inverter is a 4-kw battery charger which utilizes one of the bridge transistors. The overall inverter strategy for this configuration is discussed. The function of the microprocessor-based controller is described. Typical test results of the total vehicle and each of its major components are given, including system efficiencies and test track performance results.

  13. Match explosionproof motors with variable-frequency controllers

    SciTech Connect

    Petro, D.; Basso, D.

    1995-10-01

    The correct application of variable-frequency drive controllers to AC induction motors can be difficult, even for relatively simple applications. When using a variable-frequency controller (inverter), the non-pure sine-wave power output cases additional motor heating, primarily because of harmonics and below-base-speed operation. Add to that a hazardous environment requiring an explosion proof (XP) motor and the selection of a suitable, as well as efficient, motor and variable-frequency controller combination, and selection becomes even more complicated. Hazardous locations are found in a wide range of chemical process industries (CPI) plants, including chemical, petrochemical textile, rubber-making,, agriculture, food-processing, and metalworking facilities. Because standard constant-speed XP motors are not designed of use with variable-frequency controllers in these potentially explosive applications, it is necessary to understand how drive controllers affect motor performance. The multitude of motors and controllers--which can be purchased separately--and the numerous hazardous-application restrictions make it difficult to select the right XP motor/controller combination. The paper discusses how variable frequency affects motors, hazardous environments as found in UL 674 and UL 1836, matching XP motors with variable-frequency controllers, preventing motor overheating, motor and controller packaging, and non-thermostat applications in the CPI.

  14. Characterization and snubbing of a bidirectional MCT in a resonant ac link converter

    NASA Technical Reports Server (NTRS)

    Lee, Tony; Elbuluk, Malik E.; Zinger, Donald S.

    1993-01-01

    The MOS-Controlled Thyristor (MCT) is emerging as a powerful switch that combines the better characteristics of existing power devices. A study of switching stresses on an MCT switch under zero voltage resonant switching is presented. The MCT is used as a bidirectional switch in an ac/ac pulse density modulated inverter for induction motor drive. Current and voltage spikes are observed and analyzed with variations in the timing of the switching. Different snubber circuit configurations are under investigation to minimize the effect of these transients. The results will be extended to study and test the MCT switching in a medium power (5 hp) induction motor drive.

  15. The effect of 10 Hz transcranial alternating current stimulation (tACS) on corticomuscular coherence

    PubMed Central

    Wach, Claudia; Krause, Vanessa; Moliadze, Vera; Paulus, Walter; Schnitzler, Alfons; Pollok, Bettina

    2013-01-01

    Synchronous oscillatory activity at alpha (8–12 Hz), beta (13–30 Hz), and gamma (30–90 Hz) frequencies is assumed to play a key role for motor control. Corticomuscular coherence (CMC) represents an established measure of the pyramidal system's integrity. Transcranial alternating current stimulation (tACS) offers the possibility to modulate ongoing oscillatory activity. Behaviorally, 20 Hz tACS in healthy subjects has been shown to result in movement slowing. However, the neurophysiological changes underlying these effects are not entirely understood yet. The present study aimed at ascertaining the effects of tACS at 10 and 20 Hz in healthy subjects on CMC and local power of the primary sensorimotor cortex. Neuromagnetic activity was recorded during isometric contraction before and at two time points (2–10 min and 30–38 min) after tACS of the left primary motor cortex (M1), using a 306 channel whole head magnetoencephalography (MEG) system. Additionally, electromyography (EMG) of the right extensor digitorum communis (EDC) muscle was measured. TACS was applied at 10 and 20 Hz, respectively, for 10 min at 1 mA. Sham stimulation served as control condition. The data suggest that 10 Hz tACS significantly reduced low gamma band CMC during isometric contraction. This implies that tACS does not necessarily cause effects at stimulation frequency. Rather, the findings suggest cross-frequency interplay between alpha and low gamma band activity modulating functional interaction between motor cortex and muscle. PMID:24009573

  16. Siphon motor

    SciTech Connect

    Bunn, C.H.

    1980-01-01

    A siphon motor comprises the combination of siphon means and generating means for generating electrical energy from a water source located below the generating means and a water discharge at a lower level than the water source. Water rises by siphonic action upward from the water source to a sealed working region maintained under partial vacuum, and descends to the water discharge. The working region contains the generating means. The system has particular utility as a source of power generation in remote locations having a water table within about 30 feet of the ground.

  17. An AC drive system for a battery driven moped

    SciTech Connect

    Nandi, S.; Saha, S.; Sharon, M.; Sundersingh, V.P.

    1995-12-31

    A petrol driven moped is converted to an electric one by replacing the petrol engine by a three phase 1.5 HR, AC squirrel cage induction motor drive system. The motor voltage rating selected is 200 V to keep the DC boost voltage level to a reasonable value.f the power source used is a high energy density, 24 V, 110 Ah, Ni-Zn battery. A modified indirect current controlled step-up chopper as well as a standard push-pull DC-DC boost converter is studied for the boost scheme. A simple three phase quasi-square wave inverter is designed along with suitable protection for driving the motor. Successful trial test of the system has been conducted at the laboratory.

  18. Digital ac monitor

    DOEpatents

    Hart, G.W.; Kern, E.C. Jr.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer. 24 figs.

  19. Digital ac monitor

    DOEpatents

    Hart, George W.; Kern, Jr., Edward C.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer.

  20. Cooling Floor AC Systems

    NASA Astrophysics Data System (ADS)

    Jun, Lu; Hao, Ding; Hong, Zhang; Ce, Gao Dian

    The present HVAC equipments for the residential buildings in the Hot-summer-and-Cold-winter climate region are still at a high energy consuming level. So that the high efficiency HVAC system is an urgently need for achieving the preset government energy saving goal. With its advantage of highly sanitary, highly comfortable and uniform of temperature field, the hot-water resource floor radiation heating system has been widely accepted. This paper has put forward a new way in air-conditioning, which combines the fresh-air supply unit and such floor radiation system for the dehumidification and cooling in summer or heating in winter. By analyze its advantages and limitations, we found that this so called Cooling/ Heating Floor AC System can improve the IAQ of residential building while keep high efficiency quality. We also recommend a methodology for the HVAC system designing, which will ensure the reduction of energy cost of users.

  1. AC propulsion system for an electric vehicle, phase 2

    NASA Technical Reports Server (NTRS)

    Slicker, J. M.

    1983-01-01

    A second-generation prototype ac propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the Contractor's site. The system consisted of a Phase 2, 18.7 kw rated ac induction traction motor, a 192-volt, battery powered, pulse-width-modulated, transistorized inverter packaged for under rear seat installation, a 2-axis, 2-speed, automatically-shifted mechanical transaxle and a microprocessor-based powertrain/vehicle controller. A diagnostics computer to assist tuning and fault finding was fabricated. Dc-to-mechanical-system efficiency varied from 78% to 82% as axle speed/torque ranged from 159 rpm/788 nm to 65 rpm/328 nm. Track test efficiency results suggest that the ac system will be equal or superior to dc systems when driving urban cycles. Additional short-term work is being performed under a third contract phase (AC-3) to raise transaxle efficiency to predicted levels, and to improve starting and shifting characteristics. However, the long-term challenge to the system's viability remains inverter cost. A final report on the Phase 2 system, describing Phase 3 modifications, will be issued at the conclusion of AC-3.

  2. Development of an autonomous biological cell manipulator with single-cell electroporation and visual servoing capabilities.

    PubMed

    Sakaki, Kelly; Dechev, Nikolai; Burke, Robert D; Park, Edward J

    2009-08-01

    Studies of single cells via microscopy and microinjection are a key component in research on gene functions, cancer, stem cells, and reproductive technology. As biomedical experiments become more complex, there is an urgent need to use robotic systems to improve cell manipulation and microinjection processes. Automation of these tasks using machine vision and visual servoing creates significant benefits for biomedical laboratories, including repeatability of experiments, higher throughput, and improved cell viability. This paper presents the development of a new 5-DOF robotic manipulator, designed for manipulating and microinjecting single cells. This biological cell manipulator (BCM) is capable of autonomous scanning of a cell culture followed by autonomous injection of cells using single-cell electroporation (SCE). SCE does not require piercing the cell membrane, thereby keeping the cell membrane fully intact. The BCM features high-precision 3-DOF translational and 2-DOF rotational motion, and a second z-axis allowing top-down placement of a micropipette tip onto the cell membrane for SCE. As a technical demonstration, the autonomous visual servoing and microinjection capabilities of the single-cell manipulator are experimentally shown using sea urchin eggs. PMID:19605307

  3. Development of an autonomous biological cell manipulator with single-cell electroporation and visual servoing capabilities.

    PubMed

    Sakaki, Kelly; Dechev, Nikolai; Burke, Robert D; Park, Edward J

    2009-08-01

    Studies of single cells via microscopy and microinjection are a key component in research on gene functions, cancer, stem cells, and reproductive technology. As biomedical experiments become more complex, there is an urgent need to use robotic systems to improve cell manipulation and microinjection processes. Automation of these tasks using machine vision and visual servoing creates significant benefits for biomedical laboratories, including repeatability of experiments, higher throughput, and improved cell viability. This paper presents the development of a new 5-DOF robotic manipulator, designed for manipulating and microinjecting single cells. This biological cell manipulator (BCM) is capable of autonomous scanning of a cell culture followed by autonomous injection of cells using single-cell electroporation (SCE). SCE does not require piercing the cell membrane, thereby keeping the cell membrane fully intact. The BCM features high-precision 3-DOF translational and 2-DOF rotational motion, and a second z-axis allowing top-down placement of a micropipette tip onto the cell membrane for SCE. As a technical demonstration, the autonomous visual servoing and microinjection capabilities of the single-cell manipulator are experimentally shown using sea urchin eggs.

  4. Robust Image-Based Visual Servo Control of an Uncertain Missile Airframe

    NASA Astrophysics Data System (ADS)

    Aygun, Murat Tunca

    A nonlinear vision-based guidance law is presented for a missile-target scenario in the presence of model uncertainty and unknown target evasive maneuvers. To ease the readability of this thesis, detailed explanations of any relevant mathematical tools are provided, including stability definitions, the procedure of Lyapunov-based stability analysis, sliding mode control fundamentals, basics on visual servo control, and other basic nonlinear control tools. To develop the vision-based guidance law, projective geometric relationships are utilized to combine the image kinematics with the missile dynamics in an integrated visual dynamic system. The guidance law is designed using an image-based visual servo control method in conjunction with a sliding-mode control strategy, which is shown to achieve asymptotic target interception in the presence of the aforementioned uncertainties. A Lyapunov-based stability analysis is presented to prove the theoretical result, and numerical simulation results are provided to demonstrate the performance of the proposed robust controller for both stationary and non-stationary targets.

  5. Multifocal Motor Neuropathy

    MedlinePlus

    ... Diversity Find People About NINDS NINDS Multifocal Motor Neuropathy Information Page Table of Contents (click to jump ... done? Clinical Trials Organizations What is Multifocal Motor Neuropathy? Multifocal motor neuropathy is a progressive muscle disorder ...

  6. ACS CCD Stability Monitor

    NASA Astrophysics Data System (ADS)

    Grogin, Norman

    2012-10-01

    A moderately crowded stellar field in the cluster 47 Tuc {6 arcmin West of the cluster core} is observed every four months with the WFC. The first visit exercises the full suite of broad and narrow band imaging filters and sub-array modes; following visits observe with only the six most popular Cycle 18 filters in full-frame mode. The positions and magnitudes of objects will be used to monitor local and large scale variations in the plate scale and the sensitivity of the detectors and to derive an independent measure of the detector CTE. One exposure in each sub-array mode with the WFC will allow us to verify that photometry obtained in full-frame and in sub-array modes are repeatable to better than 1%. This test is important for the ACS Photometric Cross-Calibration program, which uses sub-array exposures. This program may receive additional orbits to investigate ORIENT-dependent geometric distortion, which motivates the ORIENT and BETWEEN requirement on the first visit.

  7. Application of optimal control theory to the design of the NASA/JPL 70-meter antenna servos

    NASA Technical Reports Server (NTRS)

    Alvarez, L. S.; Nickerson, J.

    1989-01-01

    The application of Linear Quadratic Gaussian (LQG) techniques to the design of the 70-m axis servos is described. Linear quadratic optimal control and Kalman filter theory are reviewed, and model development and verification are discussed. Families of optimal controller and Kalman filter gain vectors were generated by varying weight parameters. Performance specifications were used to select final gain vectors.

  8. Opto-mechanical subsystem of a 10 micrometer wavelength receiver terminal. Waveguide laser local oscillator. Servo system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An engineering model opto-mechanical subsystem for a 10.6-micrometer laser heterodyne receiver is developed, and a CO2 waveguide local oscillator and servo electronics are provided for the receiver. Design goals are presented for the subsystems and overall package design is described. Thermal and mechanical distortion loading tests were performed and the results are included.

  9. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  10. Motor control for a brushless DC motor

    NASA Technical Reports Server (NTRS)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  11. The international Solid Earth Virtual Research Observatory (iSERVO) institute seed project

    NASA Astrophysics Data System (ADS)

    Mora, P.; Donnellan, A.; Fox, G.; Pierce, M.; Matsu'Ura, M.; McLeod, D.; Yin, X.

    2003-12-01

    Numerical simulation models that capture the essential physics and dynamics of the solid earth system provide a critical means to probe the earth's complex system behaviour. The APEC Cooperation for Earthquake Simulation (ACES) was established to develop simulation models for the complete physics of earthquakes and related processes, to foster collaboration between complementary national programs, and to foster development of research infrastructure. Research by ACES participants is summarised in 3 special issues of PAGEOPH (2000, 2002, and in press). Solid earth simulator programs linked via ACES include a new 5 year program to establish a national facility in Australia (Australian Computational Earth Systems Simulator MNRF), USA programs being developed by NASA JPL in collaboration with science centers, and Japan's new Centre of Excellence in predictability of the evolution and variation of the multi-scale earth system. Plans are now commencing to establish the framework for an international institute for computational earth system simulation to maximise benefits of these international efforts. The institute will make extensive use of the World Wide Web, computational Grid technologies, and multi-tiered information architectures to allow simulation models and data to be manipulated by symbolic means in a way not previously possible. A seed iSERVO project is underway to illustrate the approach. It involves development of web based services and portals to enable different numerical simulation models contributed by Australia, Japan and USA to be run using several "standard" crustal fault system models (strike-slip, intraplate, and subduction). The iSERVO Grid is being constructed from Web services enhanced to be consistent with Grid Forum standards. The system uses distributed computing including high performance computers and distributed heterogeneous databases using OGSA interfaces. These are accessed with portals exploiting the new portlet standards. The iSERVO

  12. Dynamic modeling and characteristics analysis of a modal-independent linear ultrasonic motor.

    PubMed

    Li, Xiang; Yao, Zhiyuan; Zhou, Shengli; Lv, Qibao; Liu, Zhen

    2016-12-01

    In this paper, an integrated model is developed to analyze the fundamental characteristics of a modal-independent linear ultrasonic motor with double piezoelectric vibrators. The energy method is used to model the dynamics of the two piezoelectric vibrators. The interface forces are coupled into the dynamic equations of the two vibrators and the moving platform, forming a whole machine model of the motor. The behavior of the force transmission of the motor is analyzed via the resulting model to understand the drive mechanism. In particular, the relative contact length is proposed to describe the intermittent contact characteristic between the stator and the mover, and its role in evaluating motor performance is discussed. The relations between the output speed and various inputs to the motor and the start-stop transients of the motor are analyzed by numerical simulations, which are validated by experiments. Furthermore, the dead-zone behavior is predicted and clarified analytically using the proposed model, which is also observed in experiments. These results are useful for designing servo control scheme for the motor.

  13. Dynamic modeling and characteristics analysis of a modal-independent linear ultrasonic motor.

    PubMed

    Li, Xiang; Yao, Zhiyuan; Zhou, Shengli; Lv, Qibao; Liu, Zhen

    2016-12-01

    In this paper, an integrated model is developed to analyze the fundamental characteristics of a modal-independent linear ultrasonic motor with double piezoelectric vibrators. The energy method is used to model the dynamics of the two piezoelectric vibrators. The interface forces are coupled into the dynamic equations of the two vibrators and the moving platform, forming a whole machine model of the motor. The behavior of the force transmission of the motor is analyzed via the resulting model to understand the drive mechanism. In particular, the relative contact length is proposed to describe the intermittent contact characteristic between the stator and the mover, and its role in evaluating motor performance is discussed. The relations between the output speed and various inputs to the motor and the start-stop transients of the motor are analyzed by numerical simulations, which are validated by experiments. Furthermore, the dead-zone behavior is predicted and clarified analytically using the proposed model, which is also observed in experiments. These results are useful for designing servo control scheme for the motor. PMID:27518427

  14. Propulsion System Dynamic Modeling of the NASA Supersonic Concept Vehicle for AeroPropulsoServoElasticity

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Seiel, Jonathan

    2016-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report

  15. Propulsion System Dynamic Modeling of the NASA Supersonic Concept Vehicle for AeroPropulsoServoElasticity

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Seidel, Jonathan

    2014-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the lowboom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural-aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report.

  16. Predictive IP controller for robust position control of linear servo system.

    PubMed

    Lu, Shaowu; Zhou, Fengxing; Ma, Yajie; Tang, Xiaoqi

    2016-07-01

    Position control is a typical application of linear servo system. In this paper, to reduce the system overshoot, an integral plus proportional (IP) controller is used in the position control implementation. To further improve the control performance, a gain-tuning IP controller based on a generalized predictive control (GPC) law is proposed. Firstly, to represent the dynamics of the position loop, a second-order linear model is used and its model parameters are estimated on-line by using a recursive least squares method. Secondly, based on the GPC law, an optimal control sequence is obtained by using receding horizon, then directly supplies the IP controller with the corresponding control parameters in the real operations. Finally, simulation and experimental results are presented to show the efficiency of proposed scheme.

  17. Research on Intelligent Glue-coating Robot Based on Visual Servo

    NASA Astrophysics Data System (ADS)

    Yang, Zhigang; An, Yi; Sun, Yanbin; Zhang, Jingchun

    At present, Glue-coating machines have some shortages, such as unintelligence, complexity of setting glue path for new parts. In this paper, real-time image capture was achieved by using digital camera technology and image processing technology. The captured image is converted into a character vector. Workpiece model is determined through comparing with the standard library and the similarity. The image of workpiece was vectored through frame extracting and fitting. With NC (Numerical Control) code generation technology, the NC code is automatically generated for sprinkler nozzle walking track. By Appling visual servo and embedding the vision system into feedback loop of the robot, the system achieves high-precision robot control. By extracting the glue line curve from image, thinning glue curve by morphological method, and extracting the frame information, the closure and quality of the glue curve can be detected. Results of test show that the effect is satisfactory and the method is effective.

  18. A switched energy saving position controller for variable-pressure electro-hydraulic servo systems.

    PubMed

    Tivay, Ali; Zareinejad, Mohammad; Rezaei, S Mehdi; Baghestan, Keivan

    2014-07-01

    The electro-hydraulic servo system (EHSS) demonstrates a relatively low level of efficiency compared to other available actuation methods. The objective of this paper is to increase this efficiency by introducing a variable supply pressure into the system and controlling this pressure during the task of position tracking. For this purpose, an EHSS structure with controllable supply pressure is proposed and its dynamic model is derived from the basic laws of physics. A switching control structure is then proposed to control both the supply pressure and the cylinder position at the same time, in a way that reduces the overall energy consumption of the system. The stability of the proposed switching control system is guaranteed by proof, and its performance is verified by experimental testing.

  19. A switched energy saving position controller for variable-pressure electro-hydraulic servo systems.

    PubMed

    Tivay, Ali; Zareinejad, Mohammad; Rezaei, S Mehdi; Baghestan, Keivan

    2014-07-01

    The electro-hydraulic servo system (EHSS) demonstrates a relatively low level of efficiency compared to other available actuation methods. The objective of this paper is to increase this efficiency by introducing a variable supply pressure into the system and controlling this pressure during the task of position tracking. For this purpose, an EHSS structure with controllable supply pressure is proposed and its dynamic model is derived from the basic laws of physics. A switching control structure is then proposed to control both the supply pressure and the cylinder position at the same time, in a way that reduces the overall energy consumption of the system. The stability of the proposed switching control system is guaranteed by proof, and its performance is verified by experimental testing. PMID:24882668

  20. Investigation of creep by use of closed loop servo-hydraulic test system

    NASA Technical Reports Server (NTRS)

    Wu, H. C.; Yao, J. C.

    1981-01-01

    Creep tests were conducted by means of a closed loop servo-controlled materials test system. These tests are different from the conventional creep tests in that the strain history prior to creep may be carefully monitored. Tests were performed for aluminum alloy 6061-0 at 150 C and monitored by a PDP 11/04 minicomputer at a preset constant plastic-strain rate prehistory. The results show that the plastic-strain rate prior to creep plays a significant role in creep behavior. The endochronic theory of viscoplasticity was applied to describe the observed creep curves. The concepts of intrinsic time and strain rate sensitivity function are employed and modified according to the present observation.

  1. Parallel computation of level set method for 500 Hz visual servo control

    NASA Astrophysics Data System (ADS)

    Fei, Xianfeng; Igarashi, Yasunobu; Hashimoto, Koichi

    2008-11-01

    We propose a 2D microorganism tracking system using a parallel level set method and a column parallel vision system (CPV). This system keeps a single microorganism in the middle of the visual field under a microscope by visual servoing an automated stage. We propose a new energy function for the level set method. This function constrains an amount of light intensity inside the detected object contour to control the number of the detected objects. This algorithm is implemented in CPV system and computational time for each frame is 2 [ms], approximately. A tracking experiment for about 25 s is demonstrated. Also we demonstrate a single paramecium can be kept tracking even if other paramecia appear in the visual field and contact with the tracked paramecium.

  2. Direct path planning in image plane and tracking for visual servoing

    NASA Astrophysics Data System (ADS)

    Wang, Junping; Liu, An; Cho, Hyungsuck

    2007-10-01

    The image-based visual servoing would lead to image singularities that might cause control instabilities, and there exit other constraints such as the object should remain in the camera field of view and avoid obstacles. This problem can be solved by coupling path planning and image-based control. The trajectory is planned directly in the image space in our strategy to avoid the 3D estimation of the object, which is required in the motion space based path planning method. In the presented method, the initial path is given using the artificial potential field method without considering the constraints and then genetic algorithm based method is used to check and modify the initial path. This method can achieve satisfactory task while decrease the computation. The proposed method is used to align the micro peg and hole, and the simulation results show that the object can reach its desired position accurately without violation these constrains.

  3. Incremental inverse kinematics based vision servo for autonomous robotic capture of non-cooperative space debris

    NASA Astrophysics Data System (ADS)

    Dong, Gangqi; Zhu, Z. H.

    2016-04-01

    This paper proposed a new incremental inverse kinematics based vision servo approach for robotic manipulators to capture a non-cooperative target autonomously. The target's pose and motion are estimated by a vision system using integrated photogrammetry and EKF algorithm. Based on the estimated pose and motion of the target, the instantaneous desired position of the end-effector is predicted by inverse kinematics and the robotic manipulator is moved incrementally from its current configuration subject to the joint speed limits. This approach effectively eliminates the multiple solutions in the inverse kinematics and increases the robustness of the control algorithm. The proposed approach is validated by a hardware-in-the-loop simulation, where the pose and motion of the non-cooperative target is estimated by a real vision system. The simulation results demonstrate the effectiveness and robustness of the proposed estimation approach for the target and the incremental control strategy for the robotic manipulator.

  4. An open architecture for hybrid force-visual servo control of robotic manipulators in unstructured environments

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Iraj; Janabi-Sharifi, Farrokh

    2005-12-01

    In this paper, a new open architecture for visual servo control tasks is illustrated. A Puma-560 robotic manipulator is used to prove the concept. This design enables doing hybrid forcehisual servo control in an unstructured environment in different modes. Also, it can be controlled through Internet in teleoperation mode using a haptic device. Our proposed structure includes two major parts, hardware and software. In terms of hardware, it consists of a master (host) computer, a slave (target) computer, a Puma 560 manipulator, a CCD camera, a force sensor and a haptic device. There are five DAQ cards, interfacing Puma 560 and a slave computer. An open architecture package is developed using Matlab (R), Simulink (R) and XPC target toolbox. This package has the Hardware-In-the-Loop (HIL) property, i.e., enables one to readily implement different configurations of force, visual or hybrid control in real time. The implementation includes the following stages. First of all, retrofitting of puma was carried out. Then a modular joint controller for Puma 560 was realized using Simulink (R). Force sensor driver and force control implementation were written, using sjknction blocks of Simulink (R). Visual images were captured through Image Acquisition Toolbox of Matlab (R), and processed using Image Processing Toolbox. A haptic device interface was also written in Simulink (R). Thus, this setup could be readily reconfigured and accommodate any other robotic manipulator and/or other sensors without the trouble of the external issues relevant to the control, interface and software, while providing flexibility in components modification.

  5. Application of simple adaptive control to water hydraulic servo cylinder system

    NASA Astrophysics Data System (ADS)

    Ito, Kazuhisa; Yamada, Tsuyoshi; Ikeo, Shigeru; Takahashi, Koji

    2012-09-01

    Although conventional model reference adaptive control (MRAC) achieves good tracking performance for cylinder control, the controller structure is much more complicated and has less robustness to disturbance in real applications. This paper discusses the use of simple adaptive control (SAC) for positioning a water hydraulic servo cylinder system. Compared with MRAC, SAC has a simpler and lower order structure, i.e., higher feasibility. The control performance of SAC is examined and evaluated on a water hydraulic servo cylinder system. With the recent increased concerns over global environmental problems, the water hydraulic technique using pure tap water as a pressure medium has become a new drive source comparable to electric, oil hydraulic, and pneumatic drive systems. This technique is also preferred because of its high power density, high safety against fire hazards in production plants, and easy availability. However, the main problems for precise control in a water hydraulic system are steady state errors and overshoot due to its large friction torque and considerable leakage flow. MRAC has been already applied to compensate for these effects, and better control performances have been obtained. However, there have been no reports on the application of SAC for water hydraulics. To make clear the merits of SAC, the tracking control performance and robustness are discussed based on experimental results. SAC is confirmed to give better tracking performance compared with PI control, and a control precision comparable to MRAC (within 10 μm of the reference position) and higher robustness to parameter change, despite the simple controller. The research results ensure a wider application of simple adaptive control in real mechanical systems.

  6. Progress on advanced dc and ac induction drives for electric vehicles

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1982-01-01

    Progress is reported in the development of complete electric vehicle propulsion systems, and the results of tests on the Road Load Simulator of two such systems representative of advanced dc and ac drive technology are presented. One is the system used in the DOE's ETV-1 integrated test vehicle which consists of a shunt wound dc traction motor under microprocessor control using a transistorized controller. The motor drives the vehicle through a fixed ratio transmission. The second system uses an ac induction motor controlled by transistorized pulse width modulated inverter which drives through a two speed automatically shifted transmission. The inverter and transmission both operate under the control of a microprocessor. The characteristics of these systems are also compared with the propulsion system technology available in vehicles being manufactured at the inception of the DOE program and with an advanced, highly integrated propulsion system upon which technology development was recently initiated.

  7. [Intestinal occlusion and abdominal compartment syndrome (ACS)].

    PubMed

    Stagnitti, Franco

    2009-01-01

    Intestinal occlusion is defined as an independent predictive factor of intra-abdominal hypertension (IAH) which represents an independent predictor of mortality. Baggot in 1951 classified patients operated with intestinal occlusion as being at risk for IAH ("abdominal blow-out"), recommending them for open abdomen surgery proposed by Ogilvie. Abdominal surgery provokes IAH in 44.7% of cases with mortality which, in emergency, triples with respect to elective surgery (21.9% vs 6.8%). In particular, IAH is present in 61.2% of ileus and bowel distension and is responsible for 52% of mortality (54.8% in cases with intra-abdominal infection). These patients present with an increasing intra-abdominal pressure (IAP) which, over 20-25 mmHg, triggers an Abdominal Compartment Syndrome (ACS) with altered functions in some organs arriving at Multiple Organ Dysfunction Syndrome (MODS). The intestine normally covers 58% of abdominal volume but when there is ileus distension, intestinal pneumatosis develops (third space) which can occupy up to 90% of the entire cavity. At this moment, Gastro Intestinal Failure (GIF) can appear, which is a specific independent risk factor of mortality, motor of "Organ Failure". The pathophysiological evolution has many factors in 45% of cases: intestinal pneumatosis is associated with mucosal and serous edema, capillary leakage with an increase in extra-cellular volume and peritoneal fluid collections (fourth space). The successive loss of the mucous barrier permits a bacterial translocation which includes bacteria, toxins, pro-inflammatory factors and oxygen free radicals facilitating the passage from an intra-abdominal to inter-systemic vicious cyrcle. IAH provokes the raising of the diaphragm, and vascular and visceral compressions which induce hypertension in the various spaces with compartmental characteristics. These trigger hypertension in the renal, hepatic, pelvic, thoracic, cardiac, intracranial, orbital and lower extremity areas, giving

  8. Forward and reverse control system for induction motors

    DOEpatents

    Wright, J.T.

    1987-09-15

    A control system for controlling the direction of rotation of a rotor of an induction motor includes an array of five triacs with one of the triacs applying a current of fixed phase to the windings of the rotor and four of the triacs being switchable to apply either hot ac current or return ac current to the stator windings so as to reverse the phase of current in the stator relative to that of the rotor and thereby reverse the direction of rotation of the rotor. Switching current phase in the stator is accomplished by operating the gates of pairs of the triacs so as to connect either hot ac current or return ac current to the input winding of the stator. 1 fig.

  9. Condition monitoring of machinery using motor current signature analysis

    NASA Astrophysics Data System (ADS)

    Kryter, R. C.; Haynes, H. D.

    Motor current signature analysis (MCSA) is a powerful monitoring tool for motor-driven equipment that provides a nonintrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment, including altered conditions in the process downstream of the motor-driven equipment. It was developed at the Oak Ridge National Laboratory as a means for determining the effects of aging and service wear systems, but it is applicable to a broad range of machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. These motor current variations are carried by the electrical cables processes as desired. Motor current signatures, obtained in both time and over time to provide early indication of degradation. Successful applications of MCSA technology (patent applied for) include not only motor-operated valves but also pumps of various designs, blowers, and air conditioning systems. Examples are presented briefly, and speculation regarding the applicability of MCSA to a broader range of equipment monitoring and production line testing is also given.

  10. Condition monitoring of machinery using motor current signature analysis

    SciTech Connect

    Kryter, R.C.; Haynes, H.D.

    1989-01-01

    Motor current signature analysis (MCSA) is a powerful monitoring tool for motor-driven equipment that provides a nonintrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment, including altered conditions in the process ''downstream'' of the motor-driven equipment. It was developed at the Oak Ridge National Laboratory as a means for determining the effects of aging and service wear systems, but it is applicable to a broad range of machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. These motor current variations are carried by the electrical cables processes as desired. Motor current signatures, obtained in both time and over time to provide early indication of degradation. Successful applications of MCSA technology (patent applied for) include not only motor-operated valves but also pumps of various designs, blowers, and air conditioning systems. Examples are presented briefly, and speculation regarding the applicability of MCSA to a broader range of equipment monitoring and production line testing is also given. 1 ref., 13 figs.

  11. On-line tool breakage monitoring of vibration tapping using spindle motor current

    NASA Astrophysics Data System (ADS)

    Li, Guangjun; Lu, Huimin; Liu, Gang

    2008-10-01

    Input current of driving motor has been employed successfully as monitoring the cutting state in manufacturing processes for more than a decade. In vibration tapping, however, the method of on-line monitoring motor electric current has not been reported. In this paper, a tap failure prediction method is proposed to monitor the vibration tapping process using the electrical current signal of the spindle motor. The process of vibration tapping is firstly described. Then the relationship between the torque of vibration tapping and the electric current of motor is investigated by theoretic deducing and experimental measurement. According to those results, a monitoring method of tool's breakage is proposed through monitoring the ratio of the current amplitudes during adjacent vibration tapping periods. Finally, a low frequency vibration tapping system with motor current monitoring is built up using a servo motor B-106B and its driver CR06. The proposed method has been demonstrated with experiment data of vibration tapping in titanic alloys. The result of experiments shows that the method, which can avoid the tool breakage and giving a few error alarms when the threshold of amplitude ratio is 1.2 and there is at least 2 times overrun among 50 adjacent periods, is feasible for tool breakage monitoring in the process of vibration tapping small thread holes.

  12. Linear motor drive system for continuous-path closed-loop position control of an object

    DOEpatents

    Barkman, William E.

    1980-01-01

    A precision numerical controlled servo-positioning system is provided for continuous closed-loop position control of a machine slide or platform driven by a linear-induction motor. The system utilizes filtered velocity feedback to provide system stability required to operate with a system gain of 100 inches/minute/0.001 inch of following error. The filtered velocity feedback signal is derived from the position output signals of a laser interferometer utilized to monitor the movement of the slide. Air-bearing slides mounted to a stable support are utilized to minimize friction and small irregularities in the slideway which would tend to introduce positioning errors. A microprocessor is programmed to read command and feedback information and converts this information into the system following error signal. This error signal is summed with the negative filtered velocity feedback signal at the input of a servo amplifier whose output serves as the drive power signal to the linear motor position control coil.

  13. Directed flux motor

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A directed flux motor described utilizes the directed magnetic flux of at least one magnet through ferrous material to drive different planetary gear sets to achieve capabilities in six actuated shafts that are grouped three to a side of the motor. The flux motor also utilizes an interwoven magnet configuration which reduces the overall size of the motor. The motor allows for simple changes to modify the torque to speed ratio of the gearing contained within the motor as well as simple configurations for any number of output shafts up to six. The changes allow for improved manufacturability and reliability within the design.

  14. Dynamic modeling of the servovalves incorporated in the servo hydraulic system of the 70-meter DSN antennas

    NASA Technical Reports Server (NTRS)

    Bartos, R. D.

    1992-01-01

    As the pointing accuracy and service life requirements of the DSN 70 meter antenna increase, it is necessary to gain a more complete understanding of the servo hydraulic system in order to improve system designs to meet the new requirements. A mathematical model is developed for the servovalve incorporated into the hydraulic system of the 70 meter antenna and uses experimental data to verify the validity of the model and to identify the model parameters.

  15. Analysis of the computed torque drive method and comparison with conventional position servo for a computer-controlled manipulator

    NASA Technical Reports Server (NTRS)

    Markiewicz, B. R.

    1973-01-01

    A manipulator and its control system (modeled after a Stanford design) is being developed as part of an artificial intelligence project. This development includes an analytical study of the control system software. A comparison is presented of the computed torque method and the conventional position servo. No conclusion is made as to the perference of one system over the other, as it is dependent upon the application and the results of a sampled data analysis.

  16. Real-Time Assessment of Autonomic Nerve Activity During Adaptive Servo-Ventilation Support or Waon Therapy.

    PubMed

    Imamura, Teruhiko; Kinugawa, Koichiro; Nitta, Daisuke; Komuro, Issei

    2016-07-27

    Adaptive servo-ventilation support and Waon therapy are recently developed non-pharmacological and noninvasive therapies for patients with heart failure refractory to guideline-directed medical therapy. These therapies decrease both preload and afterload, increase cardiac output, and appear to ameliorate autonomic nerve activity. However, the time course of autonomic nerve activity during these therapies remains unclear. We performed heart rate variability analysis using the MemCalc power spectral density method (MemCalc system; Suwa Trust Co, Tokyo) to assess autonomic nerve activity during adaptive servo-ventilation support and Waon therapy in two different cases and determined the time course of autonomic nerve activity during these therapies. During both therapies, we found a drastic increase in parasympathetic nerve activity and continuous suppression of sympathetic nerve activity. Heart rate variability analysis using the MemCalc method may be promising for the assessment of the efficacy of various treatments, including adaptive servo-ventilation support and Waon therapy, from the viewpoint of autonomic nerve activity. PMID:27385607

  17. Acceleration amplitude-phase regulation for electro-hydraulic servo shaking table based on LMS adaptive filtering algorithm

    NASA Astrophysics Data System (ADS)

    Yao, Jianjun; Di, Duotao; Jiang, Guilin; Gao, Shuang

    2012-10-01

    Electro-hydraulic servo shaking table usually requires good control performance for acceleration replication. The poles of the electro-hydraulic servo shaking table are placed by three-variable control method using pole placement theory. The system frequency band is thus extended and the system stability is also enhanced. The phase delay and amplitude attenuation phenomenon occurs in electro-hydraulic servo shaking table corresponding to an acceleration sinusoidal input. The method for phase delay and amplitude attenuation elimination based on LMS adaptive filtering algorithm is proposed here. The task is accomplished by adjusting the weights using LMS adaptive filtering algorithm when there exits phase delay and amplitude attenuation between the input and its corresponding acceleration response. The reference input is weighted in such a way that it makes the system output track the input efficiently. The weighted input signal is inputted to the control system such that the output phase delay and amplitude attenuation are all cancelled. The above concept is used as a basis for the development of amplitude-phase regulation (APR) algorithm. The method does not need to estimate the system model and has good real-time performance. Experimental results demonstrate the efficiency and validity of the proposed APR control scheme.

  18. Turbofan Volume Dynamics Model for Investigations of Aero-Propulso-Servo-Elastic Effects in a Supersonic Commercial Transport

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Kopasakis, George; Lemon, Kimberly A.

    2010-01-01

    A turbofan simulation has been developed for use in aero-propulso-servo-elastic coupling studies, on supersonic vehicles. A one-dimensional lumped volume approach is used whereby each component (fan, high-pressure compressor, combustor, etc.) is represented as a single volume using characteristic performance maps and conservation equations for continuity, momentum and energy. The simulation is developed in the MATLAB/SIMULINK (The MathWorks, Inc.) environment in order to facilitate controls development, and ease of integration with a future aero-servo-elastic vehicle model being developed at NASA Langley. The complete simulation demonstrated steady state results that closely match a proposed engine suitable for a supersonic business jet at the cruise condition. Preliminary investigation of the transient simulation revealed expected trends for fuel flow disturbances as well as upstream pressure disturbances. A framework for system identification enables development of linear models for controller design. Utilizing this framework, a transfer function modeling an upstream pressure disturbance s impacts on the engine speed is developed as an illustrative case of the system identification. This work will eventually enable an overall vehicle aero-propulso-servo-elastic model

  19. Chronic motor tic disorder

    MedlinePlus

    Chronic vocal tic disorder; Tic - chronic motor tic disorder ... Chronic motor tic disorder is more common than Tourette syndrome . Chronic tics may be forms of Tourette syndrome. Tics usually start ...

  20. Introduction to ultrasonic motors

    SciTech Connect

    Sashida, Toshiiku; Kenjo, Takashi.

    1993-01-01

    The ultrasonic motor, invented in 1980, utilizes the piezoelectric effect in the ultrasonic frequency range to provide the motive force. (In conventional electric motors the motive force is electromagnetic.) The result is a motor with unusually good low-speed high-torque and power-to-weight characteristics. It has already found applications in camera autofocus mechanisms, medical equipment subject to high magnetic fields, and motorized car accessories. Its applications will increase as designers become more familiar with its unique characteristics. This book is the result of a collaboration between the inventor and an expert in conventional electric motors: the result is an introduction to the general theory presented in a way that links it to conventional motor theory. It will be invaluable both to motor designers and to those who design with and use electric motors as an introduction to this important new invention.

  1. Fine motor control

    MedlinePlus

    ... out the child's developmental age. Children develop fine motor skills over time, by practicing and being taught. To have fine motor control, children need: Awareness and planning Coordination Muscle ...

  2. The ac53, ac78, ac101, and ac103 Genes Are Newly Discovered Core Genes in the Family Baculoviridae

    PubMed Central

    Garavaglia, Matías Javier; Miele, Solange Ana Belén; Iserte, Javier Alonso; Belaich, Mariano Nicolás

    2012-01-01

    The family Baculoviridae is a large group of insect viruses containing circular double-stranded DNA genomes of 80 to 180 kbp, which have broad biotechnological applications. A key feature to understand and manipulate them is the recognition of orthology. However, the differences in gene contents and evolutionary distances among the known members of this family make it difficult to assign sequence orthology. In this study, the genome sequences of 58 baculoviruses were analyzed, with the aim to detect previously undescribed core genes because of their remote homology. A routine based on Multi PSI-Blast/tBlastN and Multi HaMStR allowed us to detect 31 of 33 accepted core genes and 4 orthologous sequences in the Baculoviridae which were not described previously. Our results show that the ac53, ac78, ac101 (p40), and ac103 (p48) genes have orthologs in all genomes and should be considered core genes. Accordingly, there are 37 orthologous genes in the family Baculoviridae. PMID:22933288

  3. Semiconductor ac static power switch

    NASA Technical Reports Server (NTRS)

    Vrancik, J.

    1968-01-01

    Semiconductor ac static power switch has long life and high reliability, contains no moving parts, and operates satisfactorily in severe environments, including high vibration and shock conditions. Due to their resistance to shock and vibration, static switches are used where accidental switching caused by mechanical vibration or shock cannot be tolerated.

  4. Molecular motors: nature's nanomachines.

    PubMed

    Tyreman, M J A; Molloy, J E

    2003-12-01

    Molecular motors are protein-based machines that convert chemical potential energy into mechanical work. This paper aims to introduce the non-specialist reader to molecular motors, in particular, acto-myosin, the prototype system for motor protein studies. These motors produce their driving force from changes in chemical potential arising directly from chemical reactions and are responsible for muscle contraction and a variety of other cell motilities.

  5. Smart motor technology

    NASA Technical Reports Server (NTRS)

    Packard, D.; Schmitt, D.

    1984-01-01

    Current spacecraft design relies upon microprocessor control; however, motors usually require extensive additional electronic circuitry to interface with these microprocessor controls. An improved control technique that allows a smart brushless motor to connect directly to a microprocessor control system is described. An actuator with smart motors receives a spacecraft command directly and responds in a closed loop control mode. In fact, two or more smart motors can be controlled for synchronous operation.

  6. Propulsion System Dynamic Modeling for the NASA Supersonic Concept Vehicle: AeroPropulsoServoElasticity

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph; Seidel, Jonathan

    2014-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural-aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report.propulsion system dynamics, the structural dynamics, and aerodynamics.

  7. A Visual Servoing-Based Method for ProCam Systems Calibration

    PubMed Central

    Berry, Francois; Aider, Omar Ait; Mosnier, Jeremie

    2013-01-01

    Projector-camera systems are currently used in a wide field of applications, such as 3D reconstruction and augmented reality, and can provide accurate measurements, depending on the configuration and calibration. Frequently, the calibration task is divided into two steps: camera calibration followed by projector calibration. The latter still poses certain problems that are not easy to solve, such as the difficulty in obtaining a set of 2D–3D points to compute the projection matrix between the projector and the world. Existing methods are either not sufficiently accurate or not flexible. We propose an easy and automatic method to calibrate such systems that consists in projecting a calibration pattern and superimposing it automatically on a known printed pattern. The projected pattern is provided by a virtual camera observing a virtual pattern in an OpenGL model. The projector displays what the virtual camera visualizes. Thus, the projected pattern can be controlled and superimposed on the printed one with the aid of visual servoing. Our experimental results compare favorably with those of other methods considering both usability and accuracy. PMID:24084121

  8. Towards an Aero-Propulso-Servo-Elasticity Analysis of a Commercial Supersonic Transport

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Kopasakis, George; Chwalowski, Pawel; Sanetrik, Mark D.; Carlson, Jan-Renee; Silva, Walt A.; McNamara, Jack

    2016-01-01

    This paper covers the development of an aero-propulso-servo-elastic (APSE) model using computational fluid dynamics (CFD) and linear structural deformations. The APSE model provides the integration of the following two previously developed nonlinear dynamic simulations: a variable cycle turbofan engine and an elastic supersonic commercial transport vehicle. The primary focus of this study is to provide a means to include relevant dynamics of a turbomachinery propulsion system into the aeroelastic studies conducted during a vehicle design, which have historically neglected propulsion effects. A high fidelity CFD tool is used here for the integration platform. The elastic vehicle neglecting the propulsion system serves as a comparison of traditional approaches to the APSE results. An overview of the methodology is presented for integrating the propulsion system and elastic vehicle. Static aeroelastic analysis comparisons between the traditional and developed APSE models for a wing tip detection indicate that the propulsion system impact on the vehicle elastic response could increase the detection by approximately ten percent.

  9. Design and control of a fast tool servo used in noncircular piston turning process

    NASA Astrophysics Data System (ADS)

    Wang, Haifeng; Yang, Shuyan

    2013-03-01

    Noncircular pistons are becoming more and more popular in the automotive industry. The challenge of machining this kind of pistons (e.g., middle-convex and varying ellipse piston (MCVEP)), lies in the rigorous demand of the cutting feed mechanism for large force generation, high stiffness, fast response, long stroke and high accuracy. The conventional processing methods cannot meet the challenge so a new piezoelectric actuator (PEA) based fast tool servo (FTS) mechanism was developed to incorporate additional functions to a general CNC system that will facilitate the execution of MCVEP turning. Since the desired tool trajectories are approximately periodic signals in MCVEP turning, and the repetitive control can achieve asymptotic tracking and disturbance rejection of periodic signals, a plug-in repetitive control is designed to be added on the conventional PID controller. In the experiments, the designed prototype was used to machine a MCVEP for the gasoline engine, which was equipped with the PEA-based FTS system, as well as the plug-in repetitive controller. The machining test validated the effective of the designed noncircular turning system.

  10. A TSR Visual Servoing System Based on a Novel Dynamic Template Matching Method.

    PubMed

    Cai, Jia; Huang, Panfeng; Zhang, Bin; Wang, Dongke

    2015-01-01

    The so-called Tethered Space Robot (TSR) is a novel active space debris removal system. To solve its problem of non-cooperative target recognition during short-distance rendezvous events, this paper presents a framework for a real-time visual servoing system using non-calibrated monocular-CMOS (Complementary Metal Oxide Semiconductor). When a small template is used for matching with a large scene, it always leads to mismatches, so a novel template matching algorithm to solve the problem is presented. Firstly, the novel matching algorithm uses a hollow annulus structure according to a FAST (Features from Accelerated Segment) algorithm and makes the method be rotation-invariant. Furthermore, the accumulative deviation can be decreased by the hollow structure. The matching function is composed of grey and gradient differences between template and object image, which help it reduce the effects of illumination and noises. Then, a dynamic template update strategy is designed to avoid tracking failures brought about by wrong matching or occlusion. Finally, the system synthesizes the least square integrated predictor, realizing tracking online in complex circumstances. The results of ground experiments show that the proposed algorithm can decrease the need for sophisticated computation and improves matching accuracy. PMID:26703609

  11. An energy-saving nonlinear position control strategy for electro-hydraulic servo systems.

    PubMed

    Baghestan, Keivan; Rezaei, Seyed Mehdi; Talebi, Heidar Ali; Zareinejad, Mohammad

    2015-11-01

    The electro-hydraulic servo system (EHSS) demonstrates numerous advantages in size and performance compared to other actuation methods. Oftentimes, its utilization in industrial and machinery settings is limited by its inferior efficiency. In this paper, a nonlinear backstepping control algorithm with an energy-saving approach is proposed for position control in the EHSS. To achieve improved efficiency, two control valves including a proportional directional valve (PDV) and a proportional relief valve (PRV) are used to achieve the control objectives. To design the control algorithm, the state space model equations of the system are transformed to their normal form and the control law through the PDV is designed using a backstepping approach for position tracking. Then, another nonlinear set of laws is derived to achieve energy-saving through the PRV input. This control design method, based on the normal form representation, imposes internal dynamics on the closed-loop system. The stability of the internal dynamics is analyzed in special cases of operation. Experimental results verify that both tracking and energy-saving objectives are satisfied for the closed-loop system.

  12. An energy-saving nonlinear position control strategy for electro-hydraulic servo systems.

    PubMed

    Baghestan, Keivan; Rezaei, Seyed Mehdi; Talebi, Heidar Ali; Zareinejad, Mohammad

    2015-11-01

    The electro-hydraulic servo system (EHSS) demonstrates numerous advantages in size and performance compared to other actuation methods. Oftentimes, its utilization in industrial and machinery settings is limited by its inferior efficiency. In this paper, a nonlinear backstepping control algorithm with an energy-saving approach is proposed for position control in the EHSS. To achieve improved efficiency, two control valves including a proportional directional valve (PDV) and a proportional relief valve (PRV) are used to achieve the control objectives. To design the control algorithm, the state space model equations of the system are transformed to their normal form and the control law through the PDV is designed using a backstepping approach for position tracking. Then, another nonlinear set of laws is derived to achieve energy-saving through the PRV input. This control design method, based on the normal form representation, imposes internal dynamics on the closed-loop system. The stability of the internal dynamics is analyzed in special cases of operation. Experimental results verify that both tracking and energy-saving objectives are satisfied for the closed-loop system. PMID:26520165

  13. Disturbance torque rejection properties of the NASA/JPL 70-meter antenna axis servos

    NASA Technical Reports Server (NTRS)

    Hill, R. E.

    1989-01-01

    Analytic methods for evaluating pointing errors caused by external disturbance torques are developed and applied to determine the effects of representative values of wind and friction torque. The expressions relating pointing errors to disturbance torques are shown to be strongly dependent upon the state estimator parameters, as well as upon the state feedback gain and the flow versus pressure characteristics of the hydraulic system. Under certain conditions, when control is derived from an uncorrected estimate of integral position error, the desired type 2 servo properties are not realized and finite steady-state position errors result. Methods for reducing these errors to negligible proportions through the proper selection of control gain and estimator correction parameters are demonstrated. The steady-state error produced by a disturbance torque is found to be directly proportional to the hydraulic internal leakage. This property can be exploited to provide a convenient method of determining system leakage from field measurements of estimator error, axis rate, and hydraulic differential pressure.

  14. Long-Term Adaptive Servo-Ventilator Treatment Prevents Cardiac Death and Improves Clinical Outcome.

    PubMed

    Imamura, Teruhiko; Kinugawa, Koichiro; Nitta, Daisuke; Komuro, Issei

    2016-01-01

    Adaptive servo-ventilation (ASV) is a recently developed, noninvasive therapeutic tool for the treatment of heart failure (HF). However, the efficacy of ASV therapy in patients with advanced HF remains uncertain, especially as regards its contribution to freedom from cardiac replacement therapy. A total of 85 patients with advanced HF (New York Heart Association [NYHA] class IV 71%, inotrope infusion-dependent 34%) refractory to guideline-directed medical therapy, received ASV therapy, irrespective of sleep-disordered breathing, at our institute between 2008 and 2014. Among these 85 patients, 46 continued ASV therapy for > 1 month (continued group), whereas 39 discontinued the therapy after < 1 month because of intolerance (discontinued group). There were no significant differences in baseline variables between the two groups. Heart rate indicating sympathetic activity, left ventricular (LV) reverse remodeling assessed by LV diastolic diameter, LV ejection fraction, and the grades of mitral and tricuspid regurgitations, HF severity assessed by NYHA class and plasma level of B-type natriuretic peptide, and end-organ dysfunction, improved significantly at 6 months following the initiation of ASV therapy (P < 0.05 for all). All-cause mortality and cardiac death rate were significantly lower during 2-year follow up in the continued group (P < 0.05 for both). In conclusion, ASV is a novel therapeutic tool prior to cardiac replacement therapy in patients with advanced HF and may prolong the period until cardiac replacement therapy becomes necessary. PMID:26742883

  15. Visual servo walking control for humanoids with finite-time convergence and smooth robot velocities

    NASA Astrophysics Data System (ADS)

    Delfin, Josafat; Becerra, Hector M.; Arechavaleta, Gustavo

    2016-07-01

    In this paper, we address the problem of humanoid locomotion guided from information of a monocular camera. The goal of the robot is to reach a desired location defined in terms of a target image, i.e., a positioning task. The proposed approach allows us to introduce a desired time to complete the positioning task, which is advantageous in contrast to the classical exponential convergence. In particular, finite-time convergence is achieved while generating smooth robot velocities and considering the omnidirectional waking capability of the robot. In addition, we propose a hierarchical task-based control scheme, which can simultaneously handle the visual positioning and the obstacle avoidance tasks without affecting the desired time of convergence. The controller is able to activate or inactivate the obstacle avoidance task without generating discontinuous velocity references while the humanoid is walking. Stability of the closed loop for the two task-based control is demonstrated theoretically even during the transitions between the tasks. The proposed approach is generic in the sense that different visual control schemes are supported. We evaluate a homography-based visual servoing for position-based and image-based modalities, as well as for eye-in-hand and eye-to-hand configurations. The experimental evaluation is performed with the humanoid robot NAO.

  16. A TSR Visual Servoing System Based on a Novel Dynamic Template Matching Method †

    PubMed Central

    Cai, Jia; Huang, Panfeng; Zhang, Bin; Wang, Dongke

    2015-01-01

    The so-called Tethered Space Robot (TSR) is a novel active space debris removal system. To solve its problem of non-cooperative target recognition during short-distance rendezvous events, this paper presents a framework for a real-time visual servoing system using non-calibrated monocular-CMOS (Complementary Metal Oxide Semiconductor). When a small template is used for matching with a large scene, it always leads to mismatches, so a novel template matching algorithm to solve the problem is presented. Firstly, the novel matching algorithm uses a hollow annulus structure according to a FAST (Features from Accelerated Segment) algorithm and makes the method be rotation-invariant. Furthermore, the accumulative deviation can be decreased by the hollow structure. The matching function is composed of grey and gradient differences between template and object image, which help it reduce the effects of illumination and noises. Then, a dynamic template update strategy is designed to avoid tracking failures brought about by wrong matching or occlusion. Finally, the system synthesizes the least square integrated predictor, realizing tracking online in complex circumstances. The results of ground experiments show that the proposed algorithm can decrease the need for sophisticated computation and improves matching accuracy. PMID:26703609

  17. Fabrication of continuous diffractive optical elements using a fast tool servo diamond turning process

    NASA Astrophysics Data System (ADS)

    Zhou, Jingbo; Li, Lei; Naples, Neil; Sun, Tao; Yi, Allen Y.

    2013-07-01

    Continuous diffractive optical elements (CDOEs) can be used for laser-beam reshaping, pattern generation and can help reduce large angle scattering. Lithography, the method for the production of binary diffractive surfaces, is not suitable for fabrication of CDOEs. Diamond turning using fast tool servo, on the other hand, is a non-cleanroom method for generating continuous microstructures with high precision and efficiency. In this paper, an algorithm for designing CDOEs is introduced. The moving least-squares (MLS) method is then used to obtain the local fitting equation of the diffractive surface. Based on the MLS fitting equation, the selection of diamond cutting tool geometries (including the tool nose radius, rake angle and clearance angle) is discussed and a tool nose radius compensation algorithm is included. This algorithm is a general method for the diamond turning of complex surfaces that can be represented by a point cloud. Surface measurements and diffractive patterns generated on test samples have shown that continuous diffractive surfaces were successfully machined. In the future, CDOEs can be machined on an optical mold surface for high-volume industrial production using methods such as injection molding.

  18. Evaluation of the Argonne National Laboratory servo-controlled calorimeter system

    SciTech Connect

    Foster, L.A.

    1997-01-01

    The control system of a replacement mode, twin-bridge, water-bath calorimeter originally built by Mound EG&G Applied Technologies was modified by Argonne National Laboratory. The calorimeter was upgraded with a PC-based computer control and data acquisition system. The system was redesigned to operate in a servo-control mode, and a preheater was constructed to allow pre-equilibration of samples. The instrument was sent to the Plutonium Facility at Los Alamos National Laboratory for testing and evaluation of its performance in the field using heat source standards and plutonium process materials. The important parameters for calorimeter operation necessary to satisfy the nuclear materials control and accountability requirements of the Plutonium Facility were evaluated over a period of several months. These parameters include calorimeter stability, measurement precision and accuracy, and average measurement time. The observed measurement precision and accuracy were found to be acceptable for most accountability measurements, although they were slightly larger than the values for calorimeters in routine use at the Plutonium Facility. Average measurement times were significantly shorter than measurement times for identical items in the Plutonium Facility calorimeters. Unexplained shifts in the baseline measurements were observed on numerous occasions. These shifts could lead to substantial measurement errors if they are not very carefully monitored by the operating facility. Detailed results of the experimental evaluation are presented in this report.

  19. State transformation-based dynamic visual servoing for an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Xie, Hui; Lynch, Alan F.

    2016-05-01

    In this paper, we propose a visual servoing control for a quadrotor unmanned aerial vehicle (UAV) which is based on a state transformation technique. The UAV is equipped with a single downwards facing camera, and the motion control objective is the regulation of relative displacement and yaw to a stationary visual target located on the ground. The state transformation is defined by a system of partial differential equations (PDEs) which eliminate roll and pitch rate dependence in the transformed image feature kinematics. A method for computing the general solutions of these PDEs is given, and we show a particular solution reduces to an established virtual camera approach. We treat point and line cases and introduce image moment features defined in the virtual camera image plane. Robustness of the control design is improved by accounting for attitude measurement bias, and uncertainty in thrust gain, mass, and image feature depth. The asymptotic stability of the closed-loop is proven. The method is based on a simple proportional-integral-derivative (PID) structure which can be readily implemented on-board. Experimental results show improved performance relative to previous work.

  20. Nonlinear modeling and predictive functional control of Hammerstein system with application to the turntable servo system

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Wang, Qunjing; Li, Guoli

    2016-05-01

    This article deals with the identification of nonlinear model and Nonlinear Predictive Functional Controller (NPFC) design based on the Hammerstein structure for the turntable servo system. As a mechanism with multi-mass rotational system, nonlinearities significantly influence the system operation, especially when the turntable is in the states of zero-crossing distortion or rapid acceleration/deceleration, etc. The field data from identification experiments are processed by Comprehensive Learning Particle Swarm Optimization (CLPSO). As a result, Hammerstein model can be derived to describe the input-output relationship globally, considering all the linear and nonlinear factors of the turntable system. Cross validation results demonstrate good correspondence between the real equipment and the identified model. In the second part of this manuscript, a nonlinear control strategy based on the genetic algorithm and predictive control is developed. The global nonlinear predictive controller is carried out by two steps: (i) build the linear predictive functional controller with state space equations for the linear subsystem of Hammerstein model, and (ii) optimize the global control variable by minimizing the cost function through genetic algorithm. On the basis of distinguish model for turntable and the effectiveness of NPFC, the good performance of tracking ability is achieved in the simulation results.

  1. A TSR Visual Servoing System Based on a Novel Dynamic Template Matching Method.

    PubMed

    Cai, Jia; Huang, Panfeng; Zhang, Bin; Wang, Dongke

    2015-12-21

    The so-called Tethered Space Robot (TSR) is a novel active space debris removal system. To solve its problem of non-cooperative target recognition during short-distance rendezvous events, this paper presents a framework for a real-time visual servoing system using non-calibrated monocular-CMOS (Complementary Metal Oxide Semiconductor). When a small template is used for matching with a large scene, it always leads to mismatches, so a novel template matching algorithm to solve the problem is presented. Firstly, the novel matching algorithm uses a hollow annulus structure according to a FAST (Features from Accelerated Segment) algorithm and makes the method be rotation-invariant. Furthermore, the accumulative deviation can be decreased by the hollow structure. The matching function is composed of grey and gradient differences between template and object image, which help it reduce the effects of illumination and noises. Then, a dynamic template update strategy is designed to avoid tracking failures brought about by wrong matching or occlusion. Finally, the system synthesizes the least square integrated predictor, realizing tracking online in complex circumstances. The results of ground experiments show that the proposed algorithm can decrease the need for sophisticated computation and improves matching accuracy.

  2. Optimal design of a main driving mechanism for servo punch press based on performance atlases

    NASA Astrophysics Data System (ADS)

    Zhou, Yanhua; Xie, Fugui; Liu, Xinjun

    2013-09-01

    The servomotor drive turret punch press is attracting more attentions and being developed more intensively due to the advantages of high speed, high accuracy, high flexibility, high productivity, low noise, cleaning and energy saving. To effectively improve the performance and lower the cost, it is necessary to develop new mechanisms and establish corresponding optimal design method with uniform performance indices. A new patented main driving mechanism and a new optimal design method are proposed. In the optimal design, the performance indices, i.e., the local motion/force transmission indices ITI, OTI, good transmission workspace good transmission workspace(GTW) and the global transmission indices GTIs are defined. The non-dimensional normalization method is used to get all feasible solutions in dimensional synthesis. Thereafter, the performance atlases, which can present all possible design solutions, are depicted. As a result, the feasible solution of the mechanism with good motion/force transmission performance is obtained. And the solution can be flexibly adjusted by designer according to the practical design requirements. The proposed mechanism is original, and the presented design method provides a feasible solution to the optimal design of the main driving mechanism for servo punch press.

  3. ACS Expands Role In High School Chemistry.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Describes some of the services and programs of special interests to high school chemistry teachers that are being provided by ACS, and meant to make ACS membership more attractive to the teachers. (GA)

  4. ac powertrain for an electric vehicle. Phase 2 and Phase 3 final report

    SciTech Connect

    Slicker, J.M.

    1984-11-01

    This report describes work relating to Phases 2 and 3 development and testing of an ac powertrain for a 25 hp four-passenger electric vehicle. The system, which consists of a two-speed automatic mechanical transaxle, 18.6 kW ac induction traction motor, 33.6 kW inverter and overall logic controller, was installed and evaluated in a converted Mercury Lynx rolling test bed vehicle. An on-board charger and an auxiliary dc-to-dc converter were integrated into the inverter/controller package.

  5. Distribution of AC loss in a HTS magnet for SMES with different operating conditions

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Tang, Y.; Ren, L.; Jiao, F.; Song, M.; Cao, K.; Wang, D.; Wang, L.; Dong, H.

    2013-11-01

    The AC loss induced in superconducting tape may affect the performance of a superconducting device applied to power system, such as transformer, cable, motor and even Superconducting Magnetic Energy Storage (SMES). The operating condition of SMES is changeable due to the need of compensation to the active or reactive power according to the demand of a power grid. In this paper, it is investigated that the distribution of AC loss for a storage magnet on different operating conditions, which is based on finite element method (FEM) and measured properties of BSCCO/Ag tapes. This analytical method can be used to optimize the SMES magnet.

  6. Solid propellant motor

    NASA Technical Reports Server (NTRS)

    Shafer, J. I.; Marsh, H. E., Jr. (Inventor)

    1978-01-01

    A case bonded end burning solid propellant rocket motor is described. A propellant with sufficiently low modulus to avoid chamber buckling on cooling from cure and sufficiently high elongation to sustain the stresses induced without cracking is used. The propellant is zone cured within the motor case at high pressures equal to or approaching the pressure at which the motor will operate during combustion. A solid propellant motor with a burning time long enough that its spacecraft would be limited to a maximum acceleration of less than 1 g is provided by one version of the case bonded end burning solid propellant motor of the invention.

  7. Motor/generator

    DOEpatents

    Hickam, Christopher Dale

    2008-05-13

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  8. Piezoceramic Ultrasonic Motor Technology

    SciTech Connect

    Burden, J.S.

    1999-02-24

    The objective of this project was to team Aerotech and AlliedSignal FM and T (AS) to develop a cost-efficient process for small-batch, high performance PZT motor production. Aerotech would acquire the basic process expertise in motor fabrication, assembly, and testing from AS. Together, Aerotech and AS were to identify appropriate process improvements, focusing on raw material quality, manufacturing processes, and durability assessment. Aerotech would then design and build a motor in consultation with AS. Aerotech engineering observed motor manufacturing in the AS piezo lab and worked side by side with AS personnel to build and test a prototype motor to facilitate learning the technology. Using information from AS and hands-on experience with the AS motor drive system enabled Aerotech to design and build its own laboratory drive system to operate motors. The team compiled information to establish a potential piezo motor users' list, and an intellectual property search was conducted to understand current patent and IP (intellectual property) status of motor design. Work was initiated to identify and develop an American source for piezo motor elements; however, due to manpower restraints created by the resignation of the AS Ph.D. ceramist responsible for these tasks, the project schedule slipped. The project was subsequently terminated before significant activities were accomplished. AS did, however, provide Aerotech with contacts in Japanese industry that are willing and capable of supplying them with special design motor elements.

  9. Motorized support jack

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe

    2001-01-01

    A compact, vacuum compatible motorized jack for supporting heavy loads and adjusting their positions is provided. The motorized jack includes: (a) a housing having a base; (b) a first roller device that provides a first slidable surface and that is secured to the base; (c) a second roller device that provides a second slidable surface and that has an upper surface; (d) a wedge that is slidably positioned between the first roller device and the second roller device so that the wedge is in contact with the first slidable surface and the second slidable surface; (e) a motor; and (d) a drive mechanism that connects the motor and the wedge to cause the motor to controllably move the wedge forwards or backwards. Individual motorized jacks can support and lift of an object at an angle. Two or more motorized jacks can provide tip, tilt and vertical position adjustment capabilities.

  10. Motorized support jack

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe

    2003-05-13

    A compact, vacuum compatible motorized jack for supporting heavy loads and adjusting their positions is provided. The motorized jack includes: (a) a housing having a base; (b) a first roller device that provides a first slidable surface and that is secured to the base; (c) a second roller device that provides a second slidable surface and that has an upper surface; (d) a wedge that is slidably positioned between the first roller device and the second roller device so that the wedge is in contact with the first slidable surface and the second slidable surface; (e) a motor; and (d) a drive mechanism that connects the motor and the wedge to cause the motor to controllably move the wedge forwards or backwards. Individual motorized jacks can support and lift of an object at an angle. Two or more motorized jacks can provide tip, tilt and vertical position adjustment capabilities.

  11. Thin-disc piezoceramic ultrasonic motor. Part II: system construction and control.

    PubMed

    Yen, Chi Yung; Wen, Fuh Liang; Ouyang, Minsun

    2003-08-01

    Design and performance evaluation of an ultrasonic motor was discussed in [Wen et al., Thin-disc piezoelectric ultrasonic motor. Part I: design and performance evaluation, Ultrasonics]. Higher precision position control of piezoceramic ultrasonic motor depends on mechanical design and servo control of a very precise and adequate metrology. This paper proposes the design of a driving circuit and controller to deal with non-linearities behavior in the model of piezoceramic-driving ultrasonic motor. The performance of the driver and the effectiveness of the proposed controller are demonstrated by command inputs of sinusoidal and step signals. For comparison purpose, the ultrasonic motor is controlled using two methods: i.e., proportional-integral-derivative (PID) and sliding-mode control (SMC). It was proven that SMC would compensate automatically for unmodeled behaviors such as piezoceramic non-linearities and mechanical stick-slip phenomena. Furthermore, SMC scheme has been successfully applied to position tracking to demonstrate the excellent robust performance in noise rejection.

  12. Research on PID controller with input shaping algorithm for linear motor

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Dong, Yue; Fan, Wenchao; Fu, Zhenxian

    2015-02-01

    The reticle stage of lithography is a high precision servo motion platform, which requires using macro movement of linear motor and micro movement of voice coil motor to realize an nm-level positioning precision and tracking. In order to increase the control effect and response speed of macro movement linear motor of reticle stage of lithography, the paper presents an efficient control for linear motor. The method use input shaping technique with Proportional Integral Derivative (PID) controller to realize the high position precision in small stetting time. In the paper we firstly build the linear motor mathematical modeling which is end to velocity loop or position loop. so that we mainly focus on the tracking of speed signal. Then a PID controller is introduced in the system, which is high frequency used in industrial control. Finally, as the need of high positioning precision and small stetting time, we apply input shaping algorithm to solve the problem. The simulation of the system is performed by using MATLAB/Simulation. The evaluation of the method is the performance of input tracking capability.

  13. Cyclic motor activity; migrating motor complex: 1985.

    PubMed

    Sarna, S K

    1985-10-01

    Most of the gastrointestinal tract and the biliary tract have a cyclic motor activity. The electric counterpart of this motor activity is called cyclic myoelectric activity. A typical motor cycle in the LES, stomach, and small intestine is composed of a quiescent state, followed by progressively increasing amplitude and frequency of contractions culminating in a state of maximal contractile activity. The colonic motor cycle has only the quiescent and the contractile states. In the small intestine, these motor complexes migrate in an aborad direction, and in the colon in both orad and aborad directions. The mechanisms of initiation and migration of these complexes are best understood in the small intestine. Both the initiation and migration of these complexes seem to be controlled by enteric neural mechanisms. The functions of the enteric mechanisms may be modulated by the central nervous system and by circulating endogenous substances. The mechanisms of initiation of these complexes are not completely understood in the rest of the gastrointestinal tract and in the biliary tract. The physiologic function of these motor complexes that occur only after several hours of fast in the upper gastrointestinal tract of nonruminants may be to clean the digestive tract of residual food, secretions, and cellular debris. This function is aided by a coordinated secretion of enzymes, acid, and bicarbonate. In ruminants, phase III activity is associated with the distal propulsion of ingested food. The function of colonic motor complexes that are not coordinated with the cyclic motor activities of the rest of the gastrointestinal tract may be only to move contents back and forth for optimal absorption. PMID:3896912

  14. Dissociating motor cortex from the motor

    PubMed Central

    Schieber, Marc H

    2011-01-01

    Abstract During closed-loop control of a brain–computer interface, neurons in the primary motor cortex can be intensely active even though the subject may be making no detectable movement or muscle contraction. How can neural activity in the primary motor cortex become dissociated from the movements and muscles of the native limb that it normally controls? Here we examine circumstances in which motor cortex activity is known to dissociate from movement – including mental imagery, visuo-motor dissociation and instructed delay. Many such motor cortex neurons may be related to muscle activity only indirectly. Furthermore, the integration of thousands of synaptic inputs by individual α-motoneurons means that under certain circumstances even cortico-motoneuronal cells, which make monosynaptic connections to α-motoneurons, can become dissociated from muscle activity. The natural ability of motor cortex neurons under voluntarily control to become dissociated from bodily movement may underlie the utility of this cortical area for controlling brain–computer interfaces. PMID:22005673

  15. Simultaneous distribution of AC and DC power

    DOEpatents

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  16. Electrospray mass spectrometry of NeuAc oligomers associated with the C fragment of the tetanus toxin

    SciTech Connect

    Prieto, M C; Whittal, R M; Baldwin, M A; Burlingame, A L; Balhorn, R

    2005-04-03

    The Clostridial neurotoxins, botulinum and tetanus, gain entry into neuronal cells by protein recognition involving cell specific binding sites. The sialic or N-acetylneuraminic acid (NeuAc) residues of gangliosides attached to the surface of motor neurons are the suspected recognition and interaction points with Clostridial neurotoxins, although not necessarily the only ones. We have used electrospray ionization mass spectrometry (ESIMS) to examine formation of complexes between the tetanus toxin C fragment, or targeting domain, and carbohydrates containing NeuAc groups to determine how NeuAc residues contribute to ganglioside binding. ESI-MS was used to rapidly and efficiently measure dissociation constants for a number of related NeuAc-containing carbohydrates and NeuAc oligomers, information that has helped identify the structural features of gangliosides that determine their binding to tetanus toxin. The strength of the interactions between the C fragment and (NeuAc){sub n}, are consistent with the topography of the targeting domain of tetanus toxin and the nature of its carbohydrate binding sites. The results suggest that the targeting domain of tetanus toxin contains two binding sites that can accommodate NeuAc (or a dimer). This study also shows that NeuAc must play an important role in ganglioside binding and molecular recognition, a process critical for normal cell function and one frequently exploited by toxins, bacteria and viruses to facilitate their entrance into cells.

  17. Development of a computer algorithm for the analysis of variable-frequency AC drives: Case studies included

    NASA Technical Reports Server (NTRS)

    Kankam, M. David; Benjamin, Owen

    1991-01-01

    The development of computer software for performance prediction and analysis of voltage-fed, variable-frequency AC drives for space power applications is discussed. The AC drives discussed include the pulse width modulated inverter (PWMI), a six-step inverter and the pulse density modulated inverter (PDMI), each individually connected to a wound-rotor induction motor. Various d-q transformation models of the induction motor are incorporated for user-selection of the most applicable model for the intended purpose. Simulation results of selected AC drives correlate satisfactorily with published results. Future additions to the algorithm are indicated. These improvements should enhance the applicability of the computer program to the design and analysis of space power systems.

  18. Motor Neurons that Multitask

    PubMed Central

    Goulding, Martyn

    2013-01-01

    Animals use a form of sensory feedback termed proprioception to monitor their body position and modify the motor programs that control movement. In this issue of Neuron, Wen et al. (2012) provide evidence that a subset of motor neurons function as proprioceptors in C. elegans, where B-type motor neurons sense body curvature to control the bending movements that drive forward locomotion. PMID:23177952

  19. Study on Dynamical Simulation of Railway Vehicle Bogie Parameters Test-bench Electro-hydraulic Servo System

    NASA Astrophysics Data System (ADS)

    Lan, Zhikun; Su, Jian; Xu, Guan; Cao, Xiaoning

    Dynamical mathematical model was established for accurately positioning, fast response and real-time tracing of electro-hydraulic servo control system in railway vehicle bog ie parameters test system with elastic load. The model could precisely control the output of position and force of the hydraulic cylinders. Induction method was proposed in the paper. Dynamical simulation verified the mathematical model by SIMULINK software. Meanwhile the key factors affecting the dynamical characteristics of the system were discussed in detail. Through the simulation results, high precision is obtained in application and the need of real-time control on the railway vehicle bogie parameters test-bench is realized.

  20. A modern control theory based algorithm for control of the NASA/JPL 70-meter antenna axis servos

    NASA Technical Reports Server (NTRS)

    Hill, R. E.

    1987-01-01

    A digital computer-based state variable controller was designed and applied to the 70-m antenna axis servos. The general equations and structure of the algorithm and provisions for alternate position error feedback modes to accommodate intertarget slew, encoder referenced tracking, and precision tracking modes are descibed. Development of the discrete time domain control model and computation of estimator and control gain parameters based on closed loop pole placement criteria are discussed. The new algorithm was successfully implemented and tested in the 70-m antenna at Deep Space Network station 63 in Spain.

  1. Development of X-Y Servo Pneumatic-Piezoelectric Hybrid Actuators for Position Control with High Response, Large Stroke and Nanometer Accuracy

    PubMed Central

    Chiang, Mao-Hsiung

    2010-01-01

    This study aims to develop a X-Y dual-axial intelligent servo pneumatic-piezoelectric hybrid actuator for position control with high response, large stroke (250 mm, 200 mm) and nanometer accuracy (20 nm). In each axis, the rodless pneumatic actuator serves to position in coarse stroke and the piezoelectric actuator compensates in fine stroke. Thus, the overall control systems of the single axis become a dual-input single-output (DISO) system. Although the rodless pneumatic actuator has relatively larger friction force, it has the advantage of mechanism for multi-axial development. Thus, the X-Y dual-axial positioning system is developed based on the servo pneumatic-piezoelectric hybrid actuator. In addition, the decoupling self-organizing fuzzy sliding mode control is developed as the intelligent control strategies. Finally, the proposed novel intelligent X-Y dual-axial servo pneumatic-piezoelectric hybrid actuators are implemented and verified experimentally. PMID:22319266

  2. Cryogenic Electric Motor Tested

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.

    2004-01-01

    Technology for pollution-free "electric flight" is being evaluated in a number of NASA Glenn Research Center programs. One approach is to drive propulsive fans or propellers with electric motors powered by fuel cells running on hydrogen. For large transport aircraft, conventional electric motors are far too heavy to be feasible. However, since hydrogen fuel would almost surely be carried as liquid, a propulsive electric motor could be cooled to near liquid hydrogen temperature (-423 F) by using the fuel for cooling before it goes to the fuel cells. Motor windings could be either superconducting or high purity normal copper or aluminum. The electrical resistance of pure metals can drop to 1/100th or less of their room-temperature resistance at liquid hydrogen temperature. In either case, super or normal, much higher current density is possible in motor windings. This leads to more compact motors that are projected to produce 20 hp/lb or more in large sizes, in comparison to on the order of 2 hp/lb for large conventional motors. High power density is the major goal. To support cryogenic motor development, we have designed and built in-house a small motor (7-in. outside diameter) for operation in liquid nitrogen.

  3. Hybrid vehicle motor alignment

    DOEpatents

    Levin, Michael Benjamin

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  4. A study of some features of ac and dc electric power systems for a space station

    NASA Technical Reports Server (NTRS)

    Hanania, J. I.

    1983-01-01

    This study analyzes certain selected topics in rival dc and high frequency ac electric power systems for a Space Station. The interaction between the Space Station and the plasma environment is analyzed, leading to a limit on the voltage for the solar array and a potential problem with resonance coupling at high frequencies. Certain problems are pointed out in the concept of a rotary transformer, and further development work is indicated in connection with dc circuit switching, special design of a transmission conductor for the ac system, and electric motors. The question of electric shock hazards, particularly at high frequency, is also explored. and a problem with reduced skin resistance and therefore increased hazard with high frequency ac is pointed out. The study concludes with a comparison of the main advantages and disadvantages of the two rival systems, and it is suggested that the choice between the two should be made after further studies and development work are completed.

  5. Zigzag Connected Autotransformer-Based 24-pulse AC-DC Converter

    NASA Astrophysics Data System (ADS)

    Xiao-qiang, Chen; Hao, Qiu

    2015-02-01

    In this paper, a zigzag connected autotransformer-based 24-pulse AC-DC converter is designed, modeled and simulated to feed direct torque controlled induction motor drives. Winding arrangements and parameters of the autotransformer and interphase reactor are given. Moreover, the design procedure of the autotransformer is modified to make it suitable for retrofit applications. Simulation results indicate that the system is capable of eliminating up to 21st harmonics in the ac mains current. The effect of load variation and load character is also studied to demonstrate the performance and effectiveness of the proposed 24-pulse converters. A set of power quality indices at ac mains and dc side are presented to compare the performance of 6-, 12- and 24-pulse converters.

  6. Small-Signal ac Analysis

    NASA Technical Reports Server (NTRS)

    Jagielski, James M.; Chen, Jess

    1987-01-01

    Program simulates power circuits and systems. Small Signal A.C. Analysis program (SSAC) valuable tool for design and analysis of electrical-power-system circuits. By combining "black box" power-system components operating in specified manner, user characterizes system modeled. Menu-driven program proved simple and cost effective in development and modification of arbitrary power-system configurations. Package includes sample data from Dynamic Explorer satellite family. Results compared favorable to calculations from such general circuit-analysis programs as SPICE. Written in FORTRAN 77.

  7. Development of a radial-torsional vibration hybrid type ultrasonic motor with a hollow and short cylindrical structure.

    PubMed

    Wang, Jian; Guo, Jifeng

    2009-05-01

    A longitudinal-torsional hybrid-type ultrasonic motor has larger torque and lower revolution speed compared with other kinds of ultrasonic motors. It drives devices directly and precisely, so it is adaptable to many fields, especially aeronautics and astronautics, as a servo actuator. Due to the different sound propagation speeds of longitudinal and torsional vibrations in the stator, it is difficult to match resonant frequencies of longitudinal and torsional vibrations. In this paper, a new radial-torsional vibration hybrid-type ultrasonic motor is put forward, which utilizes longitudinal vibration derived from radial vibration by the Poisson effect. The short, hollow cylindrical structure easily makes resonant frequencies of first-order radial and torsional vibrations into degeneracy. First, the new structure of the motor is presented. Second, the principle of matching the resonant frequencies is developed, and the motor geometry is optimized by ANSYS software. Finally, a 60-mm diameter prototype is fabricated, which performs well. The no-load velocity and maximum torque are 25 r/min and 5 N x m, respectively. This kind of motor is small, light, and noiseless.

  8. Electromechanical systems with transient high power response operating from a resonant AC link

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Hansen, Irving G.

    1992-01-01

    The combination of an inherently robust asynchronous (induction) electrical machine with the rapid control of energy provided by a high frequency resonant AC link enables the efficient management of higher power levels with greater versatility. This could have a variety of applications from launch vehicles to all-electric automobiles. These types of systems utilize a machine which is operated by independent control of both the voltage and frequency. This is made possible by using an indirect field-oriented control method which allows instantaneous torque control in all four operating quadrants. Incorporating the AC link allows the converter in these systems to switch at the zero crossing of every half cycle of the AC waveform. This zero loss switching of the link allows rapid energy variations to be achieved without the usual frequency proportional switching loss. Several field-oriented control systems were developed by LeRC and General Dynamics Space Systems Division under contract to NASA. A description of a single motor, electromechanical actuation system is presented. Then, focus is on a conceptual design for an AC electric vehicle. This design incorporates an induction motor/generator together with a flywheel for peak energy storage. System operation and implications along with the associated circuitry are addressed. Such a system would greatly improve all-electric vehicle ranges over the Federal Urban Driving Cycle (FUD).

  9. Input Power Quality Improvement in Switched Reluctance Motor Drive using Minnesota Rectifier

    NASA Astrophysics Data System (ADS)

    Singh, B.; Rajesh, M.

    2013-09-01

    This paper deals with an input power quality improvement in a midpoint converter based switched reluctance motor (SRM) drive at ac mains using Minnesota rectifier. Normally a midpoint converter is used as a power converter for SRM drive. Conventionally three phase ac mains fed bridge rectifier is used as a dc source to feed this power converter which produces high content of harmonics at ac mains with a very low power factor. The proposed Minnesota rectifier with a midpoint converter fed SRM drive improves the power factor at ac mains with low current harmonics. This method provides constant dc link voltage and balanced capacitor voltages of the midpoint converter. The Minnesota rectifier fed SRM drive is modelled and its performance is simulated in Matlab/Simulink environment. The performance of Minnesota rectifier is compared with a conventional bridge topology for SRM drive to demonstrate improved power quality at ac mains.

  10. Adjustable Speed Drive Part-Load Efficiency - Motor Tip Sheet #11

    SciTech Connect

    2008-07-01

    An adjustable speed drive (ASD) is a device that controls the rotational speed of motor-driven equipment. Variable frequency drives (VFDs), the most common type of ASDs, efficiently meet varying process requirements by adjusting the frequency and voltage of the power supplied to an AC motor to enable it to operate over a wide speed range. External sensors monitor flow, liquid levels, or pressure and then transmit a signal to a controller that adjusts the frequency and speed to match process requirements.

  11. Effect of the magnetic material on AC losses in HTS conductors in AC magnetic field carrying AC transport current

    NASA Astrophysics Data System (ADS)

    Wan, Xing-Xing; Huang, Chen-Guang; Yong, Hua-Dong; Zhou, You-He

    2015-11-01

    This paper presents an investigation on the AC losses in several typical superconducting composite conductors using the H-formulation model. A single superconducting strip with ferromagnetic substrate or cores and a stack of coated conductors with ferromagnetic substrates are studied. We consider all the coated conductors carrying AC transport currents and simultaneously exposed to perpendicular AC magnetic fields. The influences of the amplitude, frequency, phase difference and ferromagnetic materials on the AC losses are investigated. The results show that the magnetization losses of single strip and stacked strips have similar characteristics. The ferromagnetic substrate can increase the magnetization loss at low magnetic field, and decrease the loss at high magnetic field. The ferromagnetic substrate can obviously increase the transport loss in stacked strips. The trends of total AC losses of single strip and stacked strips are similar when they are carrying current or exposed to a perpendicular magnetic field. The effect of the frequency on the total AC losses of single strip is related to the amplitude of magnetic field. The AC losses decrease with increasing frequency in low magnetic field region while increase in high magnetic field region. As the phase difference changes, there is a periodic variation for the AC losses. Moreover, when the strip is under only the transport current and magnetic field, the ferromagnetic cores will increase the AC losses for large transport current or field.

  12. Heritability of motor control and motor learning

    PubMed Central

    Missitzi, Julia; Gentner, Reinhard; Misitzi, Angelica; Geladas, Nickos; Politis, Panagiotis; Klissouras, Vassilis; Classen, Joseph

    2013-01-01

    Abstract The aim of this study was to elucidate the relative contribution of genes and environment on individual differences in motor control and acquisition of a force control task, in view of recent association studies showing that several candidate polymorphisms may have an effect on them. Forty‐four healthy female twins performed brisk isometric abductions with their right thumb. Force was recorded by a transducer and fed back to the subject on a computer screen. The task was to place the tracing of the peak force in a force window defined between 30% and 40% of the subject's maximum force, as determined beforehand. The initial level of proficiency was defined as the number of attempts reaching the force window criterion within the first 100 trials. The difference between the number of successful trials within the last and the first 100 trials was taken as a measure of motor learning. For motor control, defined by the initial level of proficiency, the intrapair differences in monozygotic (MZ) and dizygotic (DZ) twins were 6.8 ± 7.8 and 13.8 ± 8.4, and the intrapair correlations 0.77 and 0.39, respectively. Heritability was estimated at 0.68. Likewise for motor learning intrapair differences in the increment of the number of successful trials in MZ and DZ twins were 5.4 ± 5.2 and 12.8 ± 7, and the intrapair correlations 0.58 and 0.19. Heritability reached 0.70. The present findings suggest that heredity accounts for a major part of existing differences in motor control and motor learning, but uncertainty remains which gene polymorphisms may be responsible. PMID:24744865

  13. ac electroosmosis in rectangular microchannels.

    PubMed

    Campisi, Michele; Accoto, Dino; Dario, Paolo

    2005-11-22

    Motivated by the growing interest in ac electroosmosis as a reliable no moving parts strategy to control fluid motion in microfluidic devices for biomedical applications, such as lab-on-a-chip, we study transient and steady-state electrokinetic phenomena (electroosmosis and streaming currents) in infinitely extended rectangular charged microchannels. With the aid of Fourier series and Laplace transforms we provide a general formal solution of the problem, which is used to study the time-dependent response to sudden ac applied voltage differences in case of finite electric double layer. The Debye-Huckel approximation has been adopted to allow for an algebraic solution of the Poisson-Boltzmann problem in Fourier space. We obtain the expressions of flow velocity profiles, flow rates, streaming currents, as well as expressions of the complex hydraulic and electrokinetic conductances. We analyze in detail the dependence of the electrokinetic conductance on the extension of linear dimensions relative to the Debye length, with an eye on finite electric double layer effects. PMID:16351310

  14. Stepping motor controller

    DOEpatents

    Bourret, S.C.; Swansen, J.E.

    1982-07-02

    A stepping motor is microprocessor controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  15. Stepping motor controller

    DOEpatents

    Bourret, Steven C.; Swansen, James E.

    1984-01-01

    A stepping motor is microprocessingly controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  16. A compound control strategy combining velocity compensation with ADRC of electro-hydraulic position servo control system.

    PubMed

    Gao, Bingwei; Shao, Junpeng; Yang, Xiaodong

    2014-11-01

    In order to enhance the anti-jamming ability of electro-hydraulic position servo control system at the same time improve the control precision of the system, a compound control strategy that combines velocity compensation with Active Disturbance Rejection Controller (ADRC) is proposed, and the working principle of the compound control strategy is given. ADRC controller is designed, and the extended state observer is used for observing internal parameters uncertainties and external disturbances, so that the disturbances of the system are suppressed effectively. Velocity compensation controller is designed and the compensation model is derived to further improve the positioning accuracy of the system and to achieve the velocity compensation without disturbance. The compound control strategy is verified by the simulation and experiment respectively, and the simulation and experimental results show that the electro-hydraulic position servo control system with ADRC controller can effectively inhibit the external disturbances, the precise positioning control is realized after introducing the velocity compensation controller, and verify that the compound control strategy is effective. PMID:25085480

  17. Large-scale fabrication of micro-lens array by novel end-fly-cutting-servo diamond machining.

    PubMed

    Zhu, Zhiwei; To, Suet; Zhang, Shaojian

    2015-08-10

    Fast/slow tool servo (FTS/STS) diamond turning is a very promising technique for the generation of micro-lens array (MLA). However, it is still a challenge to process MLA in large scale due to certain inherent limitations of this technique. In the present study, a novel ultra-precision diamond cutting method, as the end-fly-cutting-servo (EFCS) system, is adopted and investigated for large-scale generation of MLA. After a detailed discussion of the characteristic advantages for processing MLA, the optimal toolpath generation strategy for the EFCS is developed with consideration of the geometry and installation pose of the diamond tool. A typical aspheric MLA over a large area is experimentally fabricated, and the resulting form accuracy, surface micro-topography and machining efficiency are critically investigated. The result indicates that the MLA with homogeneous quality over the whole area is obtained. Besides, high machining efficiency, extremely small volume of control points for the toolpath, and optimal usage of system dynamics of the machine tool during the whole cutting can be simultaneously achieved.

  18. Influence analysis of structural parameters and operating parameters on electromagnetic properties of HTS linear induction motor

    NASA Astrophysics Data System (ADS)

    Fang, J.; Sheng, L.; Li, D.; Zhao, J.; Li, Sh.; Qin, W.; Fan, Y.; Zheng, Q. L.; Zhang, W.

    A novel High Temperature Superconductor Linear Induction Motor (HTS LIM) is researched in this paper. Since the critical current and the electromagnetic force of the motor are determined mainly by the primary slot leakage flux, the main magnetic flux and eddy current respectively, in order to research the influence of structural parameters and operating parameters on electromagnetic properties of HTS LIM, the motor was analyzed by 2D transient Finite Element Method (FEM). The properties of the motor, such as the maximum slot leakage flux density, motor thrust, motor vertical force and critical current are analyzed with different structural parameters and operating parameters. In addition, an experimental investigation was carried out on prototype HTS motor. Electrical parameters were deduced from these tests and also compared with the analysis results from FEM. AC losses of one HTS coil in the motor were measured and AC losses of all HTS coils in HTS LIM were estimated. The results in this paper could provide reference for the design and research on the HTS LIM.

  19. Closed-loop motor control using high-speed fiber optics

    NASA Technical Reports Server (NTRS)

    Dawson, Reginald (Inventor); Rodriquiz, Dagobert (Inventor)

    1991-01-01

    A closed-loop control system for controlling the operation of one or more servo motors or other controllable devices is described. The system employs a fiber optics link immune to electromagnetic interference, for transmission of control signals from a controller or controllers at a remote station to the power electronics located in proximity to the motors or other devices at the local station. At the remote station the electrical control signals are time-multiplexed, converted to a formatted serial bit stream, and converted to light signals for transmission over a single fiber of the fiber optics link. At the local station, the received optical signals are reconstructed as electrical control signals for the controlled motors or other devices. At the local station, an encoder sensor linked to the driven device generates encoded feedback signals which provide information as to a condition of the controlled device. The encoded signals are placed in a formatted serial bit stream, multiplexed, and transmitted as optical signals over a second fiber of the fiber optic link which closes the control loop of the closed-loop motor controller. The encoded optical signals received at the remote station are demultiplexed, reconstructed and coupled to the controller(s) as electrical feedback signals.

  20. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly utilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilizes induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  1. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  2. RHIC spin flipper AC dipole controller

    SciTech Connect

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  3. ISRO's solid rocket motors

    NASA Astrophysics Data System (ADS)

    Nagappa, R.; Kurup, M. R.; Muthunayagam, A. E.

    1989-08-01

    Solid rocket motors have been the mainstay of ISRO's sounding rockets and the first generation satellite launch vehicles. For the new launch vehicle under development also, the solid rocket motors contribute significantly to the vehicle's total propulsive power. The rocket motors in use and under development have been developed for a variety of applications and range in size from 30 mm dia employing 450 g of solid propellant—employed for providing a spin to the apogee motors—to the giant 2.8 m dia motor employing nearly 130 tonnes of solid propellant. The initial development, undertaken in 1967 was of small calibre motor of 75 mm dia using a double base charge. The development was essentially to understand the technological elements. Extruded aluminium tubes were used as a rocket motor casing. The fore and aft closures were machined from aluminium rods. The grain was a seven-pointed star with an enlargement of the port at the aft end and was charged into the chamber using a polyester resin system. The nozzle was a metallic heat sink type with graphite throat insert. The motor was ignited with a black powder charge and fired for 2.0 s. Subsequent to this, further developmental activities were undertaken using PVC plastisol based propellants. A class of sounding rockets ranging from 125 to 560 mm calibre were realized. These rocket motors employed improved designs and had delivered lsp ranging from 2060 to 2256 Ns/kg. Case bonding could not be adopted due to the higher cure temperatures of the plastisol propellants but improvements were made in the grain charging techniques and in the design of the igniters and the nozzle. Ablative nozzles based on asbestos phenolic and silica phenolic with graphite inserts were used. For the larger calibre rocket motors, the lsp could be improved by metallic additives. In the early 1970s designs were evolved for larger and more efficient motors. A series of 4 motors for the country's first satellite launch vehicle SLV-3 were

  4. Motor Priming in Neurorehabilitation

    PubMed Central

    Stoykov, Mary Ellen; Madhavan, Sangeetha

    2014-01-01

    Priming is a type of implicit learning wherein a stimulus prompts a change in behavior. Priming has been long studied in the field of psychology. More recently, rehabilitation researchers have studied motor priming as a possible way to facilitate motor learning. For example, priming of the motor cortex is associated with changes in neuroplasticity that are associated with improvements in motor performance. Of the numerous motor priming paradigms under investigation, only a few are practical for the current clinical environment, and the optimal priming modalities for specific clinical presentations are not known. Accordingly, developing an understanding of the various types of motor priming paradigms and their underlying neural mechanisms is an important step for therapists in neurorehabilitation. Most importantly, an understanding of the methods and their underlying mechanisms is essential for optimizing rehabilitation outcomes. The future of neurorehabilitation is likely to include these priming methods, which are delivered prior to or in conjunction with primary neurorehabilitation therapies. In this Special Interest article we discuss those priming paradigms that are supported by the greatest amount of evidence including: (i) stimulation-based priming, (ii) motor imagery and action observation, (iii) sensory priming, (iv) movement-based priming, and (v) pharmacological priming. PMID:25415551

  5. The induction motor

    NASA Astrophysics Data System (ADS)

    Redinz, José Arnaldo

    2015-09-01

    We obtain analytical expressions for the torques and angular speed of an induction motor with a simple geometry, resembling the geometry of the first induction motor investigated by Arago in 1824. The rotor is a conducting disc rotating between the magnetic poles of two off-axis solenoids, displaced in space by 90^\\circ from each other. We apply our results to discuss a theory for the ubiquitous electromechanical watt-hour meter. For comparison of the theoretical result for the angular speed with measurements, we propose a simple experiment in which an induction motor with an aluminum disc rotor is constructed.

  6. Adaptive PIF Control for Permanent Magnet Synchronous Motors Based on GPC

    PubMed Central

    Lu, Shaowu; Tang, Xiaoqi; Song, Bao

    2013-01-01

    To enhance the control performance of permanent magnet synchronous motors (PMSMs), a generalized predictive control (GPC)-based proportional integral feedforward (PIF) controller is proposed for the speed control system. In this new approach, firstly, based on the online identification of controlled model parameters, a simplified GPC law supplies the PIF controller with suitable control parameters according to the uncertainties in the operating conditions. Secondly, the speed reference curve for PMSMs is usually required to be continuous and continuously differentiable according to the general servo system design requirements, so the adaptation of the speed reference is discussed in details in this paper. Hence, the performance of the speed control system using a GPC-based PIF controller is improved for tracking some specified signals. The main motivation of this paper is the extension of GPC law to replace the traditional PI or PIF controllers in industrial applications. The efficacy and usefulness of the proposed controller are verified through experimental results. PMID:23262481

  7. Advanced motor and motor control development

    NASA Astrophysics Data System (ADS)

    Wuertz, Kenneth L.; Beauchamp, Edward D.

    1988-08-01

    The capability of operating a high speed permanent magnet brushless dc motor with electronic controller over a wide load and speed range was demonstrated. A centrifugal pump was used as the loading mechanism and hydraulic fluid was pumped in simulation of an aircraft engine fuel pump requirement. A motor speed of 45,000 rpm was reached and a maximum output of 68.5 hp was demonstrated. The response of the system to step commands for speed change was established. Reduction of size and weight of electronic control was established as a primary future goal. The program system concept with minor rotating machine improvements is viable for high speed drive applications up to 100-hp level.

  8. System and method for motor parameter estimation

    SciTech Connect

    Luhrs, Bin; Yan, Ting

    2014-03-18

    A system and method for determining unknown values of certain motor parameters includes a motor input device connectable to an electric motor having associated therewith values for known motor parameters and an unknown value of at least one motor parameter. The motor input device includes a processing unit that receives a first input from the electric motor comprising values for the known motor parameters for the electric motor and receive a second input comprising motor data on a plurality of reference motors, including values for motor parameters corresponding to the known motor parameters of the electric motor and values for motor parameters corresponding to the at least one unknown motor parameter value of the electric motor. The processor determines the unknown value of the at least one motor parameter from the first input and the second input and determines a motor management strategy for the electric motor based thereon.

  9. Molecular motors: Dynein's gearbox.

    PubMed

    Cross, R A

    2004-05-01

    A new optical trapping study shows that the stepsize of cytoplasmic dynein varies according to the applied force, suggesting that this motor can change gear. Complementary biochemical kinetic work on yeast dynein mutants hints at the allosteric mechanisms involved.

  10. MotorWeek

    ScienceCinema

    None

    2016-07-12

    In 2008, PBS's MotorWeek, television's original automotive magazine, visited Argonne's Transportation Technology R&D Center "to learn what it really takes to make clean power sources a viable reality."

  11. MotorWeek

    SciTech Connect

    2009-01-01

    In 2008, PBS's MotorWeek, television's original automotive magazine, visited Argonne's Transportation Technology R&D Center "to learn what it really takes to make clean power sources a viable reality."

  12. Piezoelectric Rotary Tube Motor

    NASA Technical Reports Server (NTRS)

    Fisher, Charles D.; Badescu, Mircea; Braun, David F.; Culhane, Robert

    2011-01-01

    A custom rotary SQUIGGLE(Registered TradeMark) motor has been developed that sets new benchmarks for small motor size, high position resolution, and high torque without gear reduction. Its capabilities cannot be achieved with conventional electromagnetic motors. It consists of piezoelectric plates mounted on a square flexible tube. The plates are actuated via voltage waveforms 90 out of phase at the resonant frequency of the device to create rotary motion. The motors were incorporated into a two-axis postioner that was designed for fiber-fed spectroscopy for ground-based and space-based projects. The positioner enables large-scale celestial object surveys to take place in a practical amount of time.

  13. High Power Density Motors

    NASA Technical Reports Server (NTRS)

    Kascak, Daniel J.

    2004-01-01

    With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it

  14. Rocket Motor Microphone Investigation

    NASA Technical Reports Server (NTRS)

    Pilkey, Debbie; Herrera, Eric; Gee, Kent L.; Giraud, Jerom H.; Young, Devin J.

    2010-01-01

    At ATK's facility in Utah, large full-scale solid rocket motors are tested. The largest is a five-segment version of the reusable solid rocket motor, which is for use on the Ares I launch vehicle. As a continuous improvement project, ATK and BYU investigated the use of microphones on these static tests, the vibration and temperature to which the instruments are subjected, and in particular the use of vent tubes and the effects these vents have at low frequencies.

  15. Motor Energy Conservation Measures

    SciTech Connect

    Ian Metzger, Jesse Dean

    2010-12-31

    This software requires inputs of simple motor inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: High Efficiency Motor retrofit and Cogged V-belts retrofit. This tool calculates energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  16. Myosin V motor proteins

    PubMed Central

    Vale, Ronald D.

    2003-01-01

    Mammalian myosin V motors transport cargo processively along actin filaments. Recent biophysical and structural studies have led to a detailed understanding of the mechanism of myosin V, making it perhaps the best understood cytoskeletal motor. In addition to describing the mechanism, this review will illustrate how “dynamic” single molecule measurements can synergize with “static” protein structural studies to produce amazingly clear information on the workings of a nanometer-scale machine. PMID:14610051

  17. Functional connectivity underlying postural motor adaptation in people with multiple sclerosis.

    PubMed

    Fling, Brett W; Gera Dutta, Geetanjali; Horak, Fay B

    2015-01-01

    A well-characterized neural network is associated with motor learning, involving several brain regions known to have functional and structural deficits in persons with multiple sclerosis (PwMS). However, it is not known how MS affects postural motor learning or the neural networks involved. The aim of this study was to gain a better understanding of the neural networks underlying adaptation of postural responses within PwMS. Participants stood on a hydraulically driven, servo-controlled platform that translated horizontally forward and backward in a continuous sinusoidal pattern across multiple trials over two consecutive days. Our results show similar postural adaptation between PwMS and age-matched control participants despite overall deficits in postural motor control in PwMS. Moreover, PwMS demonstrated better retention the following day. PwMS had significantly reduced functional connectivity within both the cortico-cerebellar and cortico-striatal motor loops; neural networks that subserve implicit motor learning. In PwMS, greater connectivity strength within the cortico-cerebellar circuit was strongly related to better baseline postural control, but not to postural adaptation as it was in control participants. Further, anti-correlated cortico-striatal connectivity within the right hemisphere was related to improved postural adaptation in both groups. Taken together with previous studies showing a reduced reliance on cerebellar- and proprioceptive-related feedback control in PwMS, we suggest that PwMS may rely on cortico-striatal circuitry to a greater extent than cortico-cerebellar circuitry for the acquisition and retention of motor skills. PMID:26106552

  18. Functional connectivity underlying postural motor adaptation in people with multiple sclerosis

    PubMed Central

    Fling, Brett W.; Gera Dutta, Geetanjali; Horak, Fay B.

    2015-01-01

    A well-characterized neural network is associated with motor learning, involving several brain regions known to have functional and structural deficits in persons with multiple sclerosis (PwMS). However, it is not known how MS affects postural motor learning or the neural networks involved. The aim of this study was to gain a better understanding of the neural networks underlying adaptation of postural responses within PwMS. Participants stood on a hydraulically driven, servo-controlled platform that translated horizontally forward and backward in a continuous sinusoidal pattern across multiple trials over two consecutive days. Our results show similar postural adaptation between PwMS and age-matched control participants despite overall deficits in postural motor control in PwMS. Moreover, PwMS demonstrated better retention the following day. PwMS had significantly reduced functional connectivity within both the cortico-cerebellar and cortico-striatal motor loops; neural networks that subserve implicit motor learning. In PwMS, greater connectivity strength within the cortico-cerebellar circuit was strongly related to better baseline postural control, but not to postural adaptation as it was in control participants. Further, anti-correlated cortico-striatal connectivity within the right hemisphere was related to improved postural adaptation in both groups. Taken together with previous studies showing a reduced reliance on cerebellar- and proprioceptive-related feedback control in PwMS, we suggest that PwMS may rely on cortico-striatal circuitry to a greater extent than cortico-cerebellar circuitry for the acquisition and retention of motor skills. PMID:26106552

  19. Changes in motor unit populations in motor neurone disease.

    PubMed Central

    Carleton, S A; Brown, W F

    1979-01-01

    In motor neurone disease changes in the functional properties of motor units, including the surface voltage, latency, conduction velocity, and response to repetitive stimulation, were investigated. Progression was marked by motor unit loss, increase in the proportion of larger motor unit potentials, and inclusion of motor unit potentials larger than normal in the remaining motor unit population. Even late in the disease, motor unit potentials with a low surface voltage persisted. The relationship between motor unit potentials, surface voltage, and latency, present in control subjects, broke down in motor neurone disease, large motor unit potentials having abnormally long latencies and small motor unit potentials unexpectedly short latencies. Amplitude decrements were more frequent and severe in motor unit potentials at later stages in the disease, particularly in those units with lower surface voltages. In one surviving motor unit potential there was evidence suggestive of functional recovery. The observations point to complex changes in the functional properties of motor units in motor neurone disease. PMID:216781

  20. Cryogenic testing of stepper motors

    NASA Astrophysics Data System (ADS)

    Pompea, S. M.; Bartko, F.; Houck, J. R.

    1982-10-01

    Stepper motors may be used in several subsystems of the planned Shuttle Infrared Telescope Facility. Very high reliability is required in all considered applications. An investigation was, therefore, conducted to study the operational reliability of stepper motors, taking into account tests with a type of stepper motor which had previously performed well in uncooled spectrographic instruments. Two stepper motors were tested, in vacuum, at liquid nitrogen temperature. One motor was lubricated with a vacuum stable grease, while the other used unlubricated bearings. Both motors failed after less than 18,000 revolutions. The failure of the unlubricated motor indicated that motor modifications would have to be made to achieve operation at liquid helium temperature. The motor was modified to compensate for the magnitude of different thermal contractions. It was then found that modified stepper motors can perform reliably at LHe temperature for extended periods.

  1. Adaptive servo-ventilation: How does it fit into the treatment of central sleep apnoea syndrome? Expert opinions.

    PubMed

    Priou, P; d'Ortho, M-P; Damy, T; Davy, J-M; Gagnadoux, F; Gentina, T; Meurice, J-C; Pepin, J-L; Tamisier, R; Philippe, C

    2015-12-01

    The preliminary results of the SERVE-HF study have led to the release of safety information with subsequent contraindication to the use of adaptive servo-ventilation (ASV) for the treatment of central sleep apnoeas in patients with chronic symptomatic systolic heart failure with left ventricular ejection fraction (LVEF) ≤ 45%. The aim of this article is to review these results, and to provide more detailed arguments based on data from the literature advocating the continued use of ASV in different indications, including heart failure with preserved LVEF, complex sleep apnoea syndrome, opioid-induced central sleep apnea syndrome, idiopathic central SAS, and central SAS due to a stroke. Based on these findings, we propose to set up registers dedicated to patients in whom ASV has been stopped and in the context of the next setting up of ASV in these specific indications to ensure patient safety and allow reasoned decisions on the use of ASV. PMID:26611197

  2. Measurement of Work Hardening Behavior of Pure Titanium Sheet Using A Servo-Controlled Tube Bulge Testing Apparatus

    SciTech Connect

    Sumita, Takeshi; Kuwabara, Toshihiko; Hayashida, Yasuhiro

    2011-05-04

    Biaxial stress tests of rolled pure titanium sheet (JIS 1, 0.5 mm thick) have been carried out in order to investigate the anisotropic plastic deformation under biaxial tension. Rolled pure titanium sheet was bent and welded to make tubular specimens. Combined tension-internal pressure was applied to the tubular specimens using the servo-controlled tube bulge testing apparatus developed by one of the authors [Kuwabara, T., Yoshida, K., Narihara, K., Takahashi S., Int. J. Plasticity 21 (1), 101-117 (2002)], so that the strain rate ratio, {epsilon}{sub {phi}}:{epsilon}{theta}, in the axial ({phi}) and circumferential ({theta}) directions of the specimen was controlled to be constant. Contours of plastic work at different levels of plastic strain and stress paths under constant strain rate ratios have been observed in the first quadrant of stress space. It is found that the test material exhibits significant differential work hardening behavior with the increase of plastic work.

  3. Development of an interface for an ultrareliable fault-tolerant control system and an electronic servo-control unit

    NASA Technical Reports Server (NTRS)

    Shaver, Charles; Williamson, Michael

    1986-01-01

    The NASA Ames Research Center sponsors a research program for the investigation of Intelligent Flight Control Actuation systems. The use of artificial intelligence techniques in conjunction with algorithmic techniques for autonomous, decentralized fault management of flight-control actuation systems is explored under this program. The design, development, and operation of the interface for laboratory investigation of this program is documented. The interface, architecturally based on the Intel 8751 microcontroller, is an interrupt-driven system designed to receive a digital message from an ultrareliable fault-tolerant control system (UFTCS). The interface links the UFTCS to an electronic servo-control unit, which controls a set of hydraulic actuators. It was necessary to build a UFTCS emulator (also based on the Intel 8751) to provide signal sources for testing the equipment.

  4. Faulting of rocks in three-dimensional strain fields I. Failure of rocks in polyaxial, servo-control experiments

    USGS Publications Warehouse

    Reches, Z.; Dieterich, J.H.

    1983-01-01

    The dependence of the number of sets of faults and their orientation on the intermediate strain axis is investigated through polyaxial tests, reported here, and theoretical analysis, reported in an accompanying paper. In the experiments, cubic samples of Berea sandstone, Sierra-White and Westerly granites, and Candoro and Solnhofen limestones were loaded on their three pairs of faces by three independent, mutually perpendicular presses at room temperature. Two of the presses were servo-controlled and applied constant displacement rates throughout the experiment. Most samples display three or four sets of faults in orthorhombic symmetry. These faults form in several yielding events that follow a stage of elastic deformation. In many experiments, the maximum and the intermediate compressive stresses interchange orientations during the yielding events, where the corresponding strains are constant. The final stage of most experiments is characterized by slip along the faults. ?? 1983.

  5. Robust H(∞) positional control of 2-DOF robotic arm driven by electro-hydraulic servo system.

    PubMed

    Guo, Qing; Yu, Tian; Jiang, Dan

    2015-11-01

    In this paper an H∞ positional feedback controller is developed to improve the robust performance under structural and parametric uncertainty disturbance in electro-hydraulic servo system (EHSS). The robust control model is described as the linear state-space equation by upper linear fractional transformation. According to the solution of H∞ sub-optimal control problem, the robust controller is designed and simplified to lower order linear model which is easily realized in EHSS. The simulation and experimental results can validate the robustness of this proposed method. The comparison result with PI control shows that the robust controller is suitable for this EHSS under the critical condition where the desired system bandwidth is higher and the external load of the hydraulic actuator is closed to its limited capability. PMID:26478475

  6. A New Type of Motor: Pneumatic Step Motor

    PubMed Central

    Stoianovici, Dan; Patriciu, Alexandru; Petrisor, Doru; Mazilu, Dumitru; Kavoussi, Louis

    2011-01-01

    This paper presents a new type of pneumatic motor, a pneumatic step motor (PneuStep). Directional rotary motion of discrete displacement is achieved by sequentially pressurizing the three ports of the motor. Pulsed pressure waves are generated by a remote pneumatic distributor. The motor assembly includes a motor, gearhead, and incremental position encoder in a compact, central bore construction. A special electronic driver is used to control the new motor with electric stepper indexers and standard motion control cards. The motor accepts open-loop step operation as well as closed-loop control with position feedback from the enclosed sensor. A special control feature is implemented to adapt classic control algorithms to the new motor, and is experimentally validated. The speed performance of the motor degrades with the length of the pneumatic hoses between the distributor and motor. Experimental results are presented to reveal this behavior and set the expectation level. Nevertheless, the stepper achieves easily controllable precise motion unlike other pneumatic motors. The motor was designed to be compatible with magnetic resonance medical imaging equipment, for actuating an image-guided intervention robot, for medical applications. For this reason, the motors were entirely made of nonmagnetic and dielectric materials such as plastics, ceramics, and rubbers. Encoding was performed with fiber optics, so that the motors are electricity free, exclusively using pressure and light. PneuStep is readily applicable to other pneumatic or hydraulic precision-motion applications. PMID:21528106

  7. A New Type of Motor: Pneumatic Step Motor.

    PubMed

    Stoianovici, Dan; Patriciu, Alexandru; Petrisor, Doru; Mazilu, Dumitru; Kavoussi, Louis

    2007-02-01

    This paper presents a new type of pneumatic motor, a pneumatic step motor (PneuStep). Directional rotary motion of discrete displacement is achieved by sequentially pressurizing the three ports of the motor. Pulsed pressure waves are generated by a remote pneumatic distributor. The motor assembly includes a motor, gearhead, and incremental position encoder in a compact, central bore construction. A special electronic driver is used to control the new motor with electric stepper indexers and standard motion control cards. The motor accepts open-loop step operation as well as closed-loop control with position feedback from the enclosed sensor. A special control feature is implemented to adapt classic control algorithms to the new motor, and is experimentally validated. The speed performance of the motor degrades with the length of the pneumatic hoses between the distributor and motor. Experimental results are presented to reveal this behavior and set the expectation level. Nevertheless, the stepper achieves easily controllable precise motion unlike other pneumatic motors. The motor was designed to be compatible with magnetic resonance medical imaging equipment, for actuating an image-guided intervention robot, for medical applications. For this reason, the motors were entirely made of nonmagnetic and dielectric materials such as plastics, ceramics, and rubbers. Encoding was performed with fiber optics, so that the motors are electricity free, exclusively using pressure and light. PneuStep is readily applicable to other pneumatic or hydraulic precision-motion applications. PMID:21528106

  8. Superconductor coil geometry and ac losses

    NASA Technical Reports Server (NTRS)

    Pierce, T. V., Jr.; Zapata, R. N.

    1976-01-01

    An empirical relation is presented which allows simple computation of volume-averaged winding fields from central fields for coils of small rectangular cross sections. This relation suggests that, in certain applications, ac-loss minimization can be accomplished by use of low winding densities, provided that hysteresis losses are independent of winding density. The ac-loss measurements on coils wound of twisted multifilamentary composite superconductors show no significant dependence on ac losses on winding density, thus permitting the use of winding density as an independent design parameter in loss minimization.

  9. Advanced Ultra-High Speed Motor for Drilling

    SciTech Connect

    Impact Technologies LLC; University of Texas at Arlington

    2007-03-31

    ,000 rpm for every 30.48 cm (12 inches) of power section. Operating conditions are 300 voltage AC at the motor leads. Power voltage losses in the cables/wirelines to the motor(s) are expected to be about 10% for 5000 feet carrying 2 amperes. Higher voltages and better insulators can lower these losses and carry more amperes. Cutting elements for such high tip velocities are currently not available, consequently these motors will not be built at this time. However, 7.62 cm (3 inch) OD, low speed, PMSM radial electric motors based on this project design are being built under a 2006 Oklahoma Center for the Advancement of Science and Technology 'proof of concept' grant.

  10. Pneumatic motor powered Thrust Vector Control (TVC) for liquid propelled launch vehicles

    NASA Astrophysics Data System (ADS)

    Malone, Mark C.; Evans, P. S.

    1992-02-01

    Recent studies performed for the Titan 4 launch vehicle indicate significant potential advantages in replacing the current stage 1 and 2 recirculating hydraulic TVC (thrust vector control) system with a PMA (pneumatic mechanical actuation) system. Some of the advantages of a PMA system over the recirculating hydraulic system include reduced part count and weight, reduced maintenance and life-cycle cost, and improved mission reliability. PMA technology, used in aircraft applications since the 1960s, is well suited in launch vehicle TVC applications where an existing pneumatic pressure source is available. A typical pneumatic motor TVC consists of a pneumatic power source, a dual rotor pneumatic motor, a gear box, a ball screw actuator, and the associated closed-loop servo-control elements. One key issue with implementing this mechanical approach is designing a TVC system to withstand large load transient disturbances during liquid engine starting. Hydraulic actuator transient loads have exceeded 60,000 lb(sub f) for a 30,000 lb(sub f) stall design actuator during ground starts of the Titan 3B, Stage 1 engine. A PMA TVC system must also withstand these start transients without imparting excessive reaction loads to the engine nozzle and thrust structure. Work completed to date with Martin Marietta to examine pneumatic motor powered TVC options and technology benefits is presented. The load transient issue is discussed along with potential solutions and the associated trades. General background on PMA technology and experience base is also presented.

  11. A versatile stepping motor controller for systems with many motors

    SciTech Connect

    Feng, S.K.; Siddons, D.P.

    1989-01-01

    A versatile system for controlling beamlines or complex experimental setups is described. The system as currently configured can control up to 32 motors, with all motors capable of full speed operation concurrently. There are 2 limit switch inputs for each motor, and a further input to accept a reference position marker. The motors can be controlled via a front panel keyboard with display, or by a host computer over an IEEE-488 interface. Both methods can be used together if required. There is an emergency stop'' key on the front panel keyboard to stop the motion of all motors without losing track of the motors' position. 3 refs., 4 figs., 1 tab.

  12. Magnetostrictive direct drive motor

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1991-01-01

    Highly magnetostrictive materials such as Tb.3Dy.7Fe2, commercially known as TERFENOL-D, have been used to date in a variety of devices such as high power actuators and linear motors. The larger magnetostriction available in twinned single crystal TERFENOL-D, approx. 2000 ppm at moderate magnetic field strengths, makes possible a new generation of magnetomechanical devices. NASA researchers are studying the potential of this material as the basis for a direct microstepping rotary motor with torque densities on the order of industrial hydraulics and five times greater than that of the most efficient, high power electric motors. Such a motor would be a micro-radian stepper, capable of precision movements and self-braking in the power-off state. Innovative mechanical engineering techniques are juxtaposed on proper magnetic circuit design to reduce losses in structural flexures, inertias, thermal expansions, eddy currents, and magneto-mechanical coupling, thus optimizing motor performance and efficiency. Mathematical models are presented, including magnetic, structural, and both linear and nonlinear dynamic calculations and simulations. In addition, test results on prototypes are presented.

  13. High School Teachers Win ACS Prizes

    NASA Astrophysics Data System (ADS)

    Editorial Staff, Jce

    2009-07-01

    William E. Snyder is the 2009 winner of the ACS Division of Chemical Education Central Region Award for Excellence in High School Teaching; Sally Mitchell is the winner of the 2009 James Bryant Conant Award in High School Chemistry Teaching.

  14. Tevatron optics measurements using an AC dipole

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is a device to study beam optics of hadron synchrotrons. It can produce sustained large amplitude oscillations with virtually no emittance growth. A vertical AC dipole for the Tevatron is recently implemented and a maximum oscillation amplitude of 2{sigma} (4{sigma}) at 980 GeV (150 GeV) is achieved [1]. When such large oscillations are measured with the BPM system of the Tevatron (20 {micro}m resolution), not only linear but even nonlinear optics can be directly measured. This paper shows how to measure {beta} function using an AC dipole and the result is compared to the other measurement. The paper also shows a test to detect optics changes when small changes are made in the Tevatron. Since an AC dipole is nondestructive, it allows frequent measurements of the optics which is necessary for such an test.

  15. The AC-120: The advanced commercial transport

    NASA Technical Reports Server (NTRS)

    Duran, David; Griffin, Ernest; Mendoza, Saul; Nguyen, Son; Pickett, Tim; Noernberg, Clemm

    1993-01-01

    The main objective of this design was to fulfill a need for a new airplane to replace the aging 100 to 150 passenger, 1500 nautical mile range aircraft such as the Douglas DC9 and Boeing 737-100 airplanes. After researching the future aircraft market, conducting extensive trade studies, and analysis on different configurations, the AC-120 Advanced Commercial Transport final design was achieved. The AC-120's main design features include the incorporation of a three lifting surface configuration which is powered by two turboprop engines. The AC-120 is an economically sensitive aircraft which meets the new FM Stage Three noise requirements, and has lower NO(x) emissions than current turbofan powered airplanes. The AC-120 also improves on its contemporaries in passenger comfort, manufacturing, and operating cost.

  16. Micromachine Wedge Stepping Motor

    SciTech Connect

    Allen, J.J.; Schriner, H.K.

    1998-11-04

    A wedge stepping motor, which will index a mechanism, has been designed and fabricated in the surface rnicromachine SUMMiT process. This device has demonstrated the ability to index one gear tooth at a time with speeds up to 205 teeth/see. The wedge stepper motor has the following features, whi:h will be useful in a number of applications. o The ability to precisely position mechanical components. . Simple pulse signals can be used for operation. o Only 2 drive signals are requixed for operation. o Torque and precision capabilities increase with device size . The device to be indexed is restrained at all times by the wedge shaped tooth that is used for actuation. This paper will discuss the theory of operation and desi=m of the wedge stepping motor. The fabrication and testing of I he device will also be presented.

  17. Bent shaft motor

    DOEpatents

    Benavides, Gilbert L.

    1998-01-01

    A nonelectromagnetic motor comprising a base, a bent shaft which is rotable relative to the base wherein the bent shaft comprises a straight portion aligned with a main axis and an offset portion that is offset with respect to the main axis; and a drive means for driving the offset portion of the bent shaft along a generally circular path in a plane perpendicular to the main axis to rotate the bent shaft. The bent shaft and drive means for driving the bent shaft can be selected from piezoelectric, magnetostrictive, rheological and shape memory alloys. The drive means of the nonelectromagnetic motor can additionally comprise a shell which shell surrounds and houses the bent shaft and precesses or gyrates which in turn causes the bent drive shaft to rotate. The nonelectromagnetic motor does not rely on friction for the application of torque upon a rotor.

  18. Bent shaft motor

    DOEpatents

    Benavides, G.L.

    1998-05-05

    A nonelectromagnetic motor comprising a base, a bent shaft which is rotatable relative to the base wherein the bent shaft comprises a straight portion aligned with a main axis and an offset portion that is offset with respect to the main axis; and a drive means for driving the offset portion of the bent shaft along a generally circular path in a plane perpendicular to the main axis to rotate the bent shaft. The bent shaft and drive means for driving the bent shaft can be selected from piezoelectric, magnetostrictive, rheological and shape memory alloys. The drive means of the nonelectromagnetic motor can additionally comprise a shell which shell surrounds and houses the bent shaft and precesses or gyrates which in turn causes the bent drive shaft to rotate. The nonelectromagnetic motor does not rely on friction for the application of torque upon a rotor. 11 figs.

  19. Molecular rotors and motors: recent advances and future challenges.

    PubMed

    Michl, Josef; Sykes, E Charles H

    2009-05-26

    At the "Molecular Rotors and Motors" symposium of the Spring 2009 ACS National Meeting in Salt Lake City (March 22-26), a diverse mix of talks addressed many current issues in the field. Speakers described topics that varied from single-molecule rotors and nanomachines to exquisite synthetic approaches toward building functional materials and mathematical and computational methods aimed at uncovering design opportunities and highlighting the fundamental limitations of molecular motors. While the realization of building useful nanomachines remains far off, a general consensus abounded that investigating biological systems and understanding the implications of the laws of thermodynamics and quantum mechanics for the behavior of nanostructures will help drive important advances in the quest for molecular machinery. Molecular rotors were demonstrated to have practical applications as probes for microviscosity, and many speakers presented experimental studies that indicated that highly directed translation and rotation of individual molecules, as well as interacting dipolar arrays, are just around the corner. While this Nano Focus is not intended to be a comprehensive review of the subject, it will focus on several key advances that were presented at the ACS meeting and highlight future challenges for the field of molecular rotors and motors. PMID:19845364

  20. The functional alterations associated with motor imagery training: a comparison between motor execution and motor imagery of sequential finger tapping

    NASA Astrophysics Data System (ADS)

    Zhang, Hang; Yao, Li; Long, Zhiying

    2011-03-01

    Motor imagery training, as an effective strategy, has been more and more applied to mental disorders rehabilitation and motor skill learning. Studies on the neural mechanism underlying motor imagery have suggested that such effectiveness may be related to the functional congruence between motor execution and motor imagery. However, as compared to the studies on motor imagery, the studies on motor imagery training are much fewer. The functional alterations associated with motor imagery training and the effectiveness of motor imagery training on motor performance improvement still needs further investigation. Using fMRI, we employed a sequential finger tapping paradigm to explore the functional alterations associated with motor imagery training in both motor execution and motor imagery task. We hypothesized through 14 consecutive days motor imagery training, the motor performance could be improved and the functional congruence between motor execution and motor imagery would be sustained form pre-training phase to post-training phase. Our results confirmed the effectiveness of motor imagery training in improving motor performance and demonstrated in both pre and post-training phases, motor imagery and motor execution consistently sustained the congruence in functional neuroanatomy, including SMA (supplementary motor cortex), PMA (premotor area); M1( primary motor cortex) and cerebellum. Moreover, for both execution and imagery tasks, a similar functional alteration was observed in fusiform through motor imagery training. These findings provided an insight into the effectiveness of motor imagery training and suggested its potential therapeutic value in motor rehabilitation.

  1. Motor current signature analysis method for diagnosing motor operated devices

    DOEpatents

    Haynes, Howard D.; Eissenberg, David M.

    1990-01-01

    A motor current noise signature analysis method and apparatus for remotely monitoring the operating characteristics of an electric motor-operated device such as a motor-operated valve. Frequency domain signal analysis techniques are applied to a conditioned motor current signal to distinctly identify various operating parameters of the motor driven device from the motor current signature. The signature may be recorded and compared with subsequent signatures to detect operating abnormalities and degradation of the device. This diagnostic method does not require special equipment to be installed on the motor-operated device, and the current sensing may be performed at remote control locations, e.g., where the motor-operated devices are used in accessible or hostile environments.

  2. Tuning Multiple Motor Travel Via Single Motor Velocity

    PubMed Central

    Xu, Jing; Shu, Zhanyong; King, Stephen J.; Gross, Steven P.

    2012-01-01

    Microtubule-based molecular motors often work in small groups to transport cargos in cells. A key question in understanding transport (and its regulation in vivo) is to identify the sensitivity of multiple-motor-based motion to various single molecule properties. Whereas both single-motor travel distance and microtubule binding rate have been demonstrated to contribute to cargo travel, the role of single-motor velocity is yet to be explored. Here, we recast a previous theoretical study, and make explicit a potential contribution of velocity to cargo travel. We test this possibility experimentally, and demonstrate a strong negative correlation between single-motor velocity and cargo travel for transport driven by two motors. Our study thus discovers a previously unappreciated role of single-motor velocity in regulating multiple-motor transport. PMID:22672518

  3. Adaptive two-degree-of-freedom PI for speed control of permanent magnet synchronous motor based on fractional order GPC.

    PubMed

    Qiao, Wenjun; Tang, Xiaoqi; Zheng, Shiqi; Xie, Yuanlong; Song, Bao

    2016-09-01

    In this paper, an adaptive two-degree-of-freedom (2Dof) proportional-integral (PI) controller is proposed for the speed control of permanent magnet synchronous motor (PMSM). Firstly, an enhanced just-in-time learning technique consisting of two novel searching engines is presented to identify the model of the speed control system in a real-time manner. Secondly, a general formula is given to predict the future speed reference which is unavailable at the interval of two bus-communication cycles. Thirdly, the fractional order generalized predictive control (FOGPC) is introduced to improve the control performance of the servo drive system. Based on the identified model parameters and predicted speed reference, the optimal control law of FOGPC is derived. Finally, the designed 2Dof PI controller is auto-tuned by matching with the optimal control law. Simulations and real-time experimental results on the servo drive system of PMSM are provided to illustrate the effectiveness of the proposed strategy. PMID:27342994

  4. Adaptive two-degree-of-freedom PI for speed control of permanent magnet synchronous motor based on fractional order GPC.

    PubMed

    Qiao, Wenjun; Tang, Xiaoqi; Zheng, Shiqi; Xie, Yuanlong; Song, Bao

    2016-09-01

    In this paper, an adaptive two-degree-of-freedom (2Dof) proportional-integral (PI) controller is proposed for the speed control of permanent magnet synchronous motor (PMSM). Firstly, an enhanced just-in-time learning technique consisting of two novel searching engines is presented to identify the model of the speed control system in a real-time manner. Secondly, a general formula is given to predict the future speed reference which is unavailable at the interval of two bus-communication cycles. Thirdly, the fractional order generalized predictive control (FOGPC) is introduced to improve the control performance of the servo drive system. Based on the identified model parameters and predicted speed reference, the optimal control law of FOGPC is derived. Finally, the designed 2Dof PI controller is auto-tuned by matching with the optimal control law. Simulations and real-time experimental results on the servo drive system of PMSM are provided to illustrate the effectiveness of the proposed strategy.

  5. Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS).

    PubMed

    Witkowski, Matthias; Garcia-Cossio, Eliana; Chander, Bankim S; Braun, Christoph; Birbaumer, Niels; Robinson, Stephen E; Soekadar, Surjo R

    2016-10-15

    Transcranial alternating current stimulation (tACS), a non-invasive and well-tolerated form of electric brain stimulation, can influence perception, memory, as well as motor and cognitive function. While the exact underlying neurophysiological mechanisms are unknown, the effects of tACS are mainly attributed to frequency-specific entrainment of endogenous brain oscillations in brain areas close to the stimulation electrodes, and modulation of spike timing dependent plasticity reflected in gamma band oscillatory responses. tACS-related electromagnetic stimulator artifacts, however, impede investigation of these neurophysiological mechanisms. Here we introduce a novel approach combining amplitude-modulated tACS during whole-head magnetoencephalography (MEG) allowing for artifact-free source reconstruction and precise mapping of entrained brain oscillations underneath the stimulator electrodes. Using this approach, we show that reliable reconstruction of neuromagnetic low- and high-frequency oscillations including high gamma band activity in stimulated cortical areas is feasible opening a new window to unveil the mechanisms underlying the effects of stimulation protocols that entrain brain oscillatory activity.

  6. Precision electronic speed controller for an alternating-current motor

    DOEpatents

    Bolie, V.W.

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. The motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The speed error signal is generated by a novel vernier-logic circuit which is drift-free and highly sensitive to small speed changes. The phase error is also computed by digital logic, with adjustable sensitivity around a 0 mid-scale value. The drift error signal, generated by long-term counting of the phase error, is used to compensate for any slow changes in the average friction drag on the motor. An auxillary drift-byte status sensor prevents any disruptive overflow or underflow of the drift-error counter. An adjustable clocked-delay unit is inserted between the controller and the source of the reference pulse train to permit phase alignment of the rotor to any desired offset angle. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of read-only memories, and a pair of digital-to-analog converters.

  7. Identification of the sensory and motor fascicles in the peripheral nerve: A historical review and recent progress.

    PubMed

    Xianyu, Meng; Zhenggang, Bi; Laijin, Lu

    2016-01-01

    The aim of the study was to critically review the clinical approach to distinguish the sensory and motor nerve fascicles of the peripheral nerve system and to explore potential novel techniques to meet the clinical needs. The principles and shortcomings of the currently used methods for identification of sensory and motor nerve fascicles, including nerve morphology, electrical stimulation, spectroscopy, enzymohistochemistry staining (acetylcholinesterase [AchE], carbonic anhydrase [CA] and choline acetyltransferase [ChAC] histochemistry staining methods), and immunochemical staining were systematically reviewed. The progress in diffusion tensor imaging, proteomic approaches, and quantum dots (QDs) assessment in clinical applications to identify sensory or motor fascicles has been discussed. Traditional methods such as physical and enzymohistochemical methods are not suitable for the precise differentiation of sensory and motor nerve fascicles. Immunohistochemical staining using AchE, CA, and ChAC is promising in differentiation of sensory and motor nerve fascicles. Diffusion tensor imaging can reflect morphological details of nerve fibers. Proteomics can reveal the dynamics of specific proteins discriminating sensory and motor fascicles. QDs, with their size-dependent optical properties, make them the ideal protein markers for identification of the sensory or motor nerves. Diffusion tensor imaging, proteomics and QDs-imaging will facilitate the clinical identification of motor and sensory nerve fascicles, help in improving surgical success rates and assist in postoperative functional recovery. PMID:27625224

  8. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Overcurrent protection for motors and motor branch... motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each motor... motor that is responsive to motor current or to both motor current and temperature may be used. (b)...

  9. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Overcurrent protection for motors and motor branch... motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each motor... motor that is responsive to motor current or to both motor current and temperature may be used. (b)...

  10. Magnetically Coupled Adjustable Speed Motor Drives - Motor Tip Sheet #13

    SciTech Connect

    2008-07-01

    Alternating current electric motors rotate at a nearly constant speed that is determined by motor design and line frequency. Energy savings of 50% or more may be available when fixed speed systems are modified to allow the motor speed to match variable load requirements of a centrifugal fan or pump.

  11. Method for assessing motor insulation on operating motors

    DOEpatents

    Kueck, John D.; Otaduy, Pedro J.

    1997-01-01

    A method for monitoring the condition of electrical-motor-driven devices. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques.

  12. Method for assessing motor insulation on operating motors

    DOEpatents

    Kueck, J.D.; Otaduy, P.J.

    1997-03-18

    A method for monitoring the condition of electrical-motor-driven devices is disclosed. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques. 15 figs.

  13. 78 FR 39345 - ACS Wireless, Inc.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... COMMISSION ACS Wireless, Inc.; Notice of Application AGENCY: Securities and Exchange Commission (``Commission...''). Summary of Application: ACS Wireless, Inc. (``ACS Wireless'') seeks an order under section 3(b)(2) of the..., owning, holding or trading in securities. ACS Wireless is primarily engaged in providing...

  14. 21 CFR 888.1240 - AC-powered dynamometer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered dynamometer. 888.1240 Section 888.1240...) MEDICAL DEVICES ORTHOPEDIC DEVICES Diagnostic Devices § 888.1240 AC-powered dynamometer. (a) Identification. An AC-powered dynamometer is an AC-powered device intended for medical purposes to...

  15. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  16. 21 CFR 886.1630 - AC-powered photostimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered photostimulator. 886.1630 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1630 AC-powered photostimulator. (a) Identification. An AC-powered photostimulator is an AC-powered device intended to provide light stimulus...

  17. 21 CFR 886.1850 - AC-powered slitlamp biomicroscope.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered slitlamp biomicroscope. 886.1850... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1850 AC-powered slitlamp biomicroscope. (a) Identification. An AC-powered slitlamp biomicroscope is an AC-powered device that is...

  18. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  19. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  20. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  1. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  2. Reciprocating Linear Electric Motor

    NASA Technical Reports Server (NTRS)

    Goldowsky, M. P.

    1984-01-01

    Features include structural simplicity and good force/displacement characteristics. Reciprocating motor has simple, rugged construction, relatively low reciprocating weight, improved power delivery, and improved force control. Wear reduced by use of magnetic bearings. Intended to provide drivers for long-lived Stirling-cycle cryogenic refrigerators, concept has less exotic applications, such as fuel pumps.

  3. Perceptual-Motor Dysfunction.

    ERIC Educational Resources Information Center

    Pyfer, Jean L.

    Discussed are theoretical and treatment aspects of perceptual motor dysfunction and rehabilitation in 4- to 12-year-old academically failing children involved in a 3-year investigation at the University of Kansas. The program is said to stress increasing the amount of stimulation received by sensory receptors of the vestibular, reflex, and haptic…

  4. Solid rocket motors

    NASA Technical Reports Server (NTRS)

    Carpenter, Ronn L.

    1993-01-01

    Structural requirements, materials and, especially, processing are critical issues that will pace the introduction of new types of solid rocket motors. Designers must recognize and understand the drivers associated with each of the following considerations: (1) cost; (2) energy density; (3) long term storage with use on demand; (4) reliability; (5) safety of processing and handling; (6) operability; and (7) environmental acceptance.

  5. Thiokol Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Graves, S. R.

    2000-01-01

    This paper presents viewgraphs on thiokol solid rocket motors. The topics include: 1) Communications; 2) Military and government intelligence; 3) Positioning satellites; 4) Remote sensing; 5) Space burial; 6) Science; 7) Space manufacturing; 8) Advertising; 9) Space rescue space debris management; 10) Space tourism; 11) Space settlements; 12) Hazardous waste disposal; 13) Extraterrestrial resources; 14) Fast package delivery; and 15) Space utilities.

  6. Solid rocket motors

    NASA Astrophysics Data System (ADS)

    Carpenter, Ronn L.

    1993-02-01

    Structural requirements, materials and, especially, processing are critical issues that will pace the introduction of new types of solid rocket motors. Designers must recognize and understand the drivers associated with each of the following considerations: (1) cost; (2) energy density; (3) long term storage with use on demand; (4) reliability; (5) safety of processing and handling; (6) operability; and (7) environmental acceptance.

  7. The St. Louis Motor

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2011-01-01

    The St. Louis Motor, invented in 1909, is unique among physics apparatus for being named for a geographical place rather than a physicist. The sturdy little device (Fig. 1) has never been out of production. Any older school or physics department that has not done a catastrophic housecleaning in the last 20 years will certainly have a small flock…

  8. Mechanical solar motor: A concept

    NASA Technical Reports Server (NTRS)

    Hein, L. A.; Myers, W. N.

    1975-01-01

    Motor is proposed to convert radiation from sun directly into mechanical energy. Motor utilizes thermal expansion of liquid, heated by sun, as driving force. Unlike most thermally powered systems, it does not require that liquid be converted into vapor.

  9. Thermal motor positions magnetometer sensors

    NASA Technical Reports Server (NTRS)

    Kerwin, W. J.; Scott, S. G.

    1966-01-01

    Reversing, thermal, motor-driven device positions magnetometer sensors for checking zero offset. The device alternately positions two sensors at fixed positions 90 degrees apart. The thermal motor is fabricated completely of nonmagnetic materials.

  10. AC Electrokinetics of Physiological Fluids for Biomedical Applications.

    PubMed

    Lu, Yi; Liu, Tingting; Lamanda, Ariana C; Sin, Mandy L Y; Gau, Vincent; Liao, Joseph C; Wong, Pak Kin

    2015-12-01

    Alternating current (AC) electrokinetics is a collection of processes for manipulating bulk fluid mass and embedded objects with AC electric fields. The ability of AC electrokinetics to implement the major microfluidic operations, such as pumping, mixing, concentration, and separation, makes it possible to develop integrated systems for clinical diagnostics in nontraditional health care settings. The high conductivity of physiological fluids presents new challenges and opportunities for AC electrokinetics-based diagnostic systems. In this review, AC electrokinetic phenomena in conductive physiological fluids are described followed by a review of the basic microfluidic operations and the recent biomedical applications of AC electrokinetics. The future prospects of AC electrokinetics for clinical diagnostics are presented.

  11. Dynamic Response of Control Servo System Installed in NAES-Equipped SB2C-5 Airplane (BuAer No. 83135)

    NASA Technical Reports Server (NTRS)

    Smaus, Louis H.; Stewart, Elwood C.

    1950-01-01

    Dynamic--response measurements for various conditions of displacement and rate signal input, sensitivity setting, and simulated hinge moment were made of the three control-surface servo systems of an NAES-equipped remote-controlled airplane while on the ground. The basic components of the servo systems are those of the General Electric Company type G-1 autopilot using electrical signal. sources, solenoid-operated valves, and hydraulic pistons. The test procedures and difficulties are discussed, Both frequency and transient-response data, are presented and comparisons are made. The constants describing the servo system, the undamped natural frequency, and the damping ratio, are determined by several methods. The response of the system with the addition of airframe rate signal is calculated. The transfer function of the elevator surface, linkage, and cable system is obtained. The agreement between various methods of measurement and calculation is considered very good. The data are complete enough and in such form that they may be used directly with the frequency-response data of an airplane to predict the stability of the autopilot-airplane combination.

  12. Multiple stage miniature stepping motor

    DOEpatents

    Niven, William A.; Shikany, S. David; Shira, Michael L.

    1981-01-01

    A stepping motor comprising a plurality of stages which may be selectively activated to effect stepping movement of the motor, and which are mounted along a common rotor shaft to achieve considerable reduction in motor size and minimum diameter, whereby sequential activation of the stages results in successive rotor steps with direction being determined by the particular activating sequence followed.

  13. Experiments with a DC Motor

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2010-01-01

    Experiments with an electric motor provide good opportunity to demonstrate some basic laws of electricity and magnetism. The aim of the experiments with a low-power dc motor is to show how the motor approaches its steady rotation and how its torque, mechanical power and efficiency depend on the rotation velocity. The tight relationship between the…

  14. Motor Education: Educational Development Programs.

    ERIC Educational Resources Information Center

    Tansley, A. E.

    This booklet presents educational programs and activities focusing on motor skills for 5- to 9-year-old children and older children with learning problems. The premise of the activities is that the acquisition of motor skills is essential to basic learning. The role of language as a mediator and controller of motor development is emphasized. The…

  15. Motor Vehicle Theft. Special Report.

    ERIC Educational Resources Information Center

    Harlow, Caroline Wolf

    Thirteen years of data from the National Crime Survey were analyzed to examine the characteristics of motor vehicle theft, to identify trends during the past 13 years, and to determine who are most likely to be victims of motor vehicle theft. All motor vehicle thefts reported to the National Crime Survey from 1973 through 1985 were examined.…

  16. Adiabatic response and quantum thermoelectrics for ac-driven quantum systems

    NASA Astrophysics Data System (ADS)

    Ludovico, María Florencia; Battista, Francesca; von Oppen, Felix; Arrachea, Liliana

    2016-02-01

    We generalize the theory of thermoelectrics to include coherent electron systems under adiabatic ac driving, accounting for quantum pumping of charge and heat, as well as for the work exchanged between the electron system and driving potentials. We derive the relevant response coefficients in the adiabatic regime and show that they obey generalized Onsager reciprocity relations. We analyze the consequences of our generalized thermoelectric framework for quantum motors, generators, heat engines, and heat pumps, characterizing them in terms of efficiencies and figures of merit. We illustrate these concepts in a model for a quantum pump.

  17. Deletion of AcMNPV ac146 eliminates the production of budded virus.

    PubMed

    Dickison, Virginia L; Willis, Leslie G; Sokal, Nadia R; Theilmann, David A

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac146 is a highly conserved gene in the Alpha- and Betabaculovirus genera that has an unknown function. Northern blot analysis and transcript mapping showed that ac146 is transcribed at late times post infection as a 1.2 kb mRNA. To determine the role of ac146 in the baculovirus life cycle ac146 knock out viruses were constructed. Transfection and plaque assays showed that all the ac146 deletions produced a single cell phenotype indicating that no infectious budded virus (BV) was produced, however occlusion bodies were formed. The lack of BV production was confirmed by viral titration utilizing both qPCR and TCID₅₀. Analysis of BV and occlusion derived virus (ODV) revealed that AC146 is associated with both forms of the virus and is modified specifically in ODV. This study therefore demonstrates that AC146 is a late virion associated protein and is essential for the viral life cycle.

  18. AC drive system efficiency evaluation. Final report

    SciTech Connect

    Langley, R.

    1998-12-01

    Industrial and commercial facilities are continually searching for ways to reduce costs while increasing revenues. One way of accomplishing this objective is to reduce energy consumption costs. Industrial and commercial facilities, in their heavy reliance on electric motors, are by far the largest consumers of electric power. In fact, electric motors consume more than fifty percent of all generated electric energy. The use of energy efficient motors and electronic adjustable-speed drives (ASDs) can provide industries with a means for reducing energy costs. Taking advantage of available contracts with incentives for energy conservation, industries can justify the costs for retrofitting old inefficient production lines with state-of-the-art, efficient, process equipment. The use of ASDs for improving process control and increasing process efficiency has been well documented. To this point, however, there are no published research reports or technical papers presenting energy efficiency data for ASDs and ASD/motor systems at load conditions other than rated load conditions. The IEC-1800 standard does call for manufacturers to report the ASD or the ASD/motor system efficiency at rated load and base speed conditions. This report presents energy efficiency test data for two 150-hp ASD/motor combinations. Each test was conducted at multiple load torque and speed setpoints, which includes interpretations and discussions of the test results. The report presents test standards, test procedures, and test data that show how the energy efficiencies of ASD/motor system components relate. 51 figs., 13 tabs.

  19. Motor sequence learning and motor adaptation in primary cervical dystonia.

    PubMed

    Katschnig-Winter, Petra; Schwingenschuh, Petra; Davare, Marco; Sadnicka, Anna; Schmidt, Reinhold; Rothwell, John C; Bhatia, Kailash P; Edwards, Mark J

    2014-06-01

    Motor sequence learning and motor adaptation rely on overlapping circuits predominantly involving the basal ganglia and cerebellum. Given the importance of these brain regions to the pathophysiology of primary dystonia, and the previous finding of abnormal motor sequence learning in DYT1 gene carriers, we explored motor sequence learning and motor adaptation in patients with primary cervical dystonia. We recruited 12 patients with cervical dystonia and 11 healthy controls matched for age. Subjects used a joystick to move a cursor from a central starting point to radial targets as fast and accurately as possible. Using this device, we recorded baseline motor performance, motor sequence learning and a visuomotor adaptation task. Patients with cervical dystonia had a significantly higher peak velocity than controls. Baseline performance with random target presentation was otherwise normal. Patients and controls had similar levels of motor sequence learning and motor adaptation. Our patients had significantly higher peak velocity compared to controls, with similar movement times, implying a different performance strategy. The preservation of motor sequence learning in cervical dystonia patients contrasts with the previously observed deficit seen in patients with DYT1 gene mutations, supporting the hypothesis of differing pathophysiology in different forms of primary dystonia. Normal motor adaptation is an interesting finding. With our paradigm we did not find evidence that the previously documented cerebellar abnormalities in cervical dystonia have a behavioral correlate, and thus could be compensatory or reflect "contamination" rather than being directly pathological.

  20. MotorMaster database of three-phase electric motors

    SciTech Connect

    Stickney, B.L.

    1993-12-31

    Selecting the right motor for a new or replacement application used to be a daunting task. Making an intelligent choice involved a search through a stack of motor catalogs for information on efficiency, voltage, speed, horsepower, torque, service factor, power factor, frame type, and cost. The MotorMaster software package, available from the Washington State Energy Office, takes the drudgery out of motor selection by enabling rapid analysis of the most efficient and cost-effective single-speed three-phase induction motors. It has a built-in motor database, easy to use comparison and analysis features, and can calculate utility rebates and simple paybacks. By speeding the selection process and providing comprehensive economic justification for the final equipment choice, software tools like MotorMaster can become an important component of utility DSM programs. And as a bonus, wide use of such software may lead to more systematic and consistent use of energy efficient equipment.

  1. Cyclotron and linac production of Ac-225.

    PubMed

    Melville, Graeme; Allen, Barry J

    2009-04-01

    Radium needles that were once implanted into tumours as a cancer treatment are now obsolete and constitute a radioactive waste problem, as their half-life is 1600 years. The reduction of radium by photonuclear transmutation by bombarding Ra-226 with high-energy photons from a medical linear accelerator (linac) has been investigated. A linac dose of 2800 Gy produced about 2.4 MBq (64 microCi) of Ra-225, which decays to Ac-225 and can then be used for 'Targeted Alpha Therapy' (TAT) of cancer. This result, while consistent with theoretical calculations, is far too low to be of practical use unless much larger quantities of radium are irradiated. The increasing application of Ac-225 for cancer therapy indicates the potential need for its increased production and availability. This paper investigates the possibility of producing of Ac-225 in commercial quantities, which could potentially reduce obsolete radioactive material and displace the need for expensive importation of Ac-225 from the USA and Russia in the years ahead. Scaled up production of Ac-225 could theoretically be achieved by the use of a high current cyclotron or linac. Production specifications are determined for a linac in terms of current, pulse length and frequency, as well as an examination of other factors such as radiation issues and radionuclei separation. Yields are compared with those calculated for the Australian National Cyclotron in Sydney.

  2. Design and synthesis of 225Ac radioimmunopharmaceuticals.

    PubMed

    McDevitt, Michael R; Ma, Dangshe; Simon, Jim; Frank, R Keith; Scheinberg, David A

    2002-12-01

    The alpha-particle-emitting radionuclides 213Bi, 211At, 224Ra are under investigation for the treatment of leukemias, gliomas, and ankylosing spondylitis, respectively. 213Bi and 211At were attached to monoclonal antibodies and used as targeted immunotherapeutic agents while unconjugated 224Ra chloride selectively seeks bone. 225Ac possesses favorable physical properties for radioimmunotherapy (10d half-life and 4 net alpha particles), but has a history of unfavorable radiolabeling chemistry and poor metal-chelate stability. We selected functionalized derivatives of DOTA as the most promising to pursue from out of a group of potential 225Ac chelate compounds. A two-step synthetic process employing either MeO-DOTA-NCS or 2B-DOTA-NCS as the chelating moiety was developed to attach 225Ac to monoclonal antibodies. This method was tested using several different IgG systems. The chelation reaction yield in the first step was 93+/-8% radiochemically pure (n=26). The second step yielded 225Ac-DOTA-IgG constructs that were 95+/-5% radiochemically pure (n=27) and the mean percent immunoreactivity ranged from 25% to 81%, depending on the antibody used. This process has yielded several potential novel targeted 225Ac-labeled immunotherapeutic agents that may now be evaluated in appropriate model systems and ultimately in humans.

  3. Cosmic Shear - with ACS Pure Parallel Observations

    NASA Astrophysics Data System (ADS)

    Ratnatunga, Kavan

    2002-07-01

    The ACS, with greater sensitivity and sky coverage, will extend our ability to measure the weak gravitational lensing of galaxy images caused by the large scale distribution of dark matter. We propose to use the ACS in pure parallel {non- proprietary} mode, following the guidelines of the ACS Default Pure Parallel Program. Using the HST Medium Deep Survey WFPC2 database we have measured cosmic shear at arc-min angular scales. The MDS image parameters, in particular the galaxy orientations and axis ratios, are such that any residual corrections due to errors in the PSF or jitter are much smaller than the measured signal. This situation is in stark contrast with ground-based observations. We have also developed a statistical analysis procedure to derive unbiased estimates of cosmic shear from a large number of fields, each of which has a very small number of galaxies. We have therefore set the stage for measurements with the ACS at fainter apparent magnitudes and smaller, 10 arc-second scales corresponding to larger cosmological distances. We will adapt existing MDS WFPC2 maximum likelihood galaxy image analysis algorithms to work with the ACS. The analysis would also yield an online database similar to that in archive.stsci.edu/mds/

  4. Development of a dynamometer for an integrated-starter-generator (ISG) motor used in electric vehicles

    NASA Astrophysics Data System (ADS)

    Wang, Zai-zhou; Zhang, Cheng-ning; Song, Qiang; Zhang, Chun-xiang

    2008-12-01

    Hybrid-Electric Vehicle (HEV) which combined the electric motor with auxiliary power unit in a car driven is introduced. Characteristic of Hybrid-Electric Vehicle are different from the other vehicle, in the structure of Hybrid-Electric Vehicle, Integrated Starter Generator (ISG) electrical system can achieve high efficient performance of driving and generating electricity simultaneously. These systems adopt the sum torque through engine and generator, the motor connected transmission through engine. According to the requirements of different conditions, the torque of motor and transmission are compound in various forms to achieve optimal driving efficiency.This study developed a dynamometer to measure the relationship between locked torques with temperature rises of an Integrated Starter Generator motor used in electrical vehicles. The dynamometer adopted an AC motor to obtain the relationship between drive and load functions, which developed in this study can perform real-time measurements and storage of measured data obtained from the dynamometer. Experiments for measuring temperature rise of ISG motor were performed at three different conditions, namely 56 Nm locked rotor torques and 18.8A locked rotor current; 57.1Nm constant torque at 1050rpm; constant power with 14.3Nm and 4050rpm, respectively. Based on the theory of temperature rise, the temperature rises of motor are 14K, 33.1K, and 16.01K for the tested cases respectively. Measured results show that the performance of motor system is satisfied with the design.

  5. Big Savings from Smart Motors

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Chesebrough-Pond's operates 32 plants across the nation and in those plants are more than 10,000 electric motors. In an effort to cut down on waste of electrical power used by these motors, Chesebrough organized a Corporate Advanced Technology Group to devise ways of improving productivity and cut manufacturing costs. Chesebrough used NASA's Marshall Space Flight Center's Power Factor Controller technology as a departure point for development of their own computerized motor controller that enables motors to operate at maximum efficiency regardless of the motor's applications or operating condition.

  6. Atrial-caval shunting (ACS) after trauma.

    PubMed

    Kudsk, K A; Sheldon, G F; Lim, R C

    1982-02-01

    Since 1968 the atrial-caval shunt (ACS), along with inflow occlusion at the porta hepatis, has been used at San Francisco General Hospital in 18 trauma patients to control massive hemorrhage from the inferior vena cava, hepatic veins, or liver. Thirteen patients died from irreversible shock. Five patients survived their initial injuries; one of them died 45 days later from the complications of shock and sepsis. No patients survived who sustained blunt trauma and were admitted in cardiac arrest. Only one of ten patients with BP less than 70 mm Hg after resuscitation survived, whereas four of eight with BP greater than 70 mm Hg survived. ACS was used to control caval injuries in seven patients (one survivor), severe hepatic parenchymal fractures in four patients (two survivors), and combined hepatic and caval injuries in seven patients (two survivors). Survivors had an average of 5.75 associated injuries; nonsurvivors had 3.8. No complications of ACS occurred in the surviving patients.

  7. Nonlinear Dynamic Modeling of a Supersonic Commercial Transport Turbo-Machinery Propulsion System for Aero-Propulso-Servo-Elasticity Research

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Kopasakis, George; Carlson, Jan-Renee; Woolwine, Kyle

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic model for a variable cycle turbofan engine, supersonic inlet, and convergent-divergent nozzle that can be integrated with an aeroelastic vehicle model to create an overall Aero-Propulso-Servo-Elastic (APSE) modeling tool. The primary focus of this study is to provide a means to capture relevant thrust dynamics of a full supersonic propulsion system by using relatively simple quasi-one dimensional computational fluid dynamics (CFD) methods that will allow for accurate control algorithm development and capture the key aspects of the thrust to feed into an APSE model. Previously, propulsion system component models have been developed and are used for this study of the fully integrated propulsion system. An overview of the methodology is presented for the modeling of each propulsion component, with a focus on its associated coupling for the overall model. To conduct APSE studies the de- scribed dynamic propulsion system model is integrated into a high fidelity CFD model of the full vehicle capable of conducting aero-elastic studies. Dynamic thrust analysis for the quasi-one dimensional dynamic propulsion system model is presented along with an initial three dimensional flow field model of the engine integrated into a supersonic commercial transport.

  8. Nonlinear Dynamic Modeling of a Supersonic Commercial Transport Turbo-Machinery Propulsion System for Aero-Propulso-Servo-Elasticity Research

    NASA Technical Reports Server (NTRS)

    Connolly, Joe; Carlson, Jan-Renee; Kopasakis, George; Woolwine, Kyle

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic model for a variable cycle turbofan engine, supersonic inlet, and convergent-divergent nozzle that can be integrated with an aeroelastic vehicle model to create an overall Aero-Propulso-Servo-Elastic (APSE) modeling tool. The primary focus of this study is to provide a means to capture relevant thrust dynamics of a full supersonic propulsion system by using relatively simple quasi-one dimensional computational fluid dynamics (CFD) methods that will allow for accurate control algorithm development and capture the key aspects of the thrust to feed into an APSE model. Previously, propulsion system component models have been developed and are used for this study of the fully integrated propulsion system. An overview of the methodology is presented for the modeling of each propulsion component, with a focus on its associated coupling for the overall model. To conduct APSE studies the described dynamic propulsion system model is integrated into a high fidelity CFD model of the full vehicle capable of conducting aero-elastic studies. Dynamic thrust analysis for the quasi-one dimensional dynamic propulsion system model is presented along with an initial three dimensional flow field model of the engine integrated into a supersonic commercial transport.

  9. A surface data generation method of optical micro-structure and analysis system for Fast Tool Servo fabricating

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Dai, Yi-fan; Wan, Fei; Wang, Gui-lin

    2010-10-01

    High-precision optical micro-structured components are now widely used in the field of military and civilian use. Ultraprecision machining with a fast tool servo (FTS) is one of the leading methodologies for fabrication of such surfaces. The first important issue that faced in ultra-precision and high-effectively fabricating is how to properly describe the complex shapes based on the principle of FTS. In order to meet the demands of FTS machining that need for tool high-frequency response, high data throughput and huge memory space, an off-line discrete data points generation method for microstructure surfaces is presented which can avoid on-line shape calculation in fabricating process. A new analysis software package is developed to compute the speed, acceleration and spectrum over the generated data points which helps to analysis the tool tracking characteristics needed in fabricating. Also a new mechanism for FTS machining data transmission based on the huge-capacity storage device is proposed. Experiments show that the off-line surface data generation method and data transfer mechanism can effectively improve FTS fabricating efficiency, the surface analysis software can help to determine the machining ability of tool-holder and to guide and optimize the processing parameters such as spindle speed, feed rate, etc.

  10. A high-frequency first-principle model of a shock absorber and servo-hydraulic tester

    NASA Astrophysics Data System (ADS)

    Czop, Piotr; SŁawik, Damian

    2011-08-01

    The aim of this paper is to present the model of a complete system, consisting of a variable damping shock absorber and a specialized servo-hydraulic tester, used to evaluate the vibration levels produced by a shock absorber. This kind of evaluation is used within the automotive industry to investigate shock absorbers, as an alternative to vehicle-level tests. The purpose of such testing is to quantify a shock absorber's ability to transfer the mid- and high-frequency content of the vibrations passing from the road profile, through the suspension, to the vehicle body. The first-principle non-linear model formulated, derived and validated in this paper allows laboratory test conditions to be reproduced. It also provides an understanding of structural vibrations in regard to the dynamical interactions between the shock absorber, its basic components (e.g. valve systems), mounting elements, and the hydraulic actuator. The model is capable of capturing important dynamical properties over a wide operating range, yet is only moderately complex. The model has proved to be qualitatively suitable and quantitatively accurate based on validation work performed for the entire frequency range of interest, i.e. 0-700 Hz. The application scope of this study covers the engineering need to develop a simulation tool for high-frequency shock absorber design optimization.

  11. Implementation of a Two-Axis Servo-Hydraulic System for Full-Scale Fatigue Testing of Wind Turbine Blades

    SciTech Connect

    Hughes, S. D.; Musial, W. D.; Stensland, T.

    1999-09-09

    Recently, the blade fatigue testing capabilities at NREL were upgraded from single-axis to two-axis loading. To implement this, several practical challenges were addressed, as hardware complexity increased dramatically with two actuators applying the loads at right angles to each other. A custom bellcrank was designed and implemented to minimize the load angle errors and to prevent actuator side loading. The control system was upgraded to accept load and displacement feedback from two actuators. The inherent long strokes uniquely associated with wind turbine blade-tests required substantial real-time corrections for both the control and data systems. A custom data acquisition and control system was developed using a National Instruments LabVIEW platform that interfaces with proprietary servo-hydraulic software developed by MTS Corporation. Before testing, the program is run under quasi-static (slow speed) conditions and iterates to determine the correct operational control parameters for the controller, taking into consideration geometry, test speed, and phase angle errors between the two actuators. Comparisons are made between single-axis and two-axis test loads using actual test load data and load uncertainties are qualitatively described. To date, two fatigue tests have been completed and another is currently ongoing using NREL's two-axis capability.

  12. On-machine measurement of a slow slide servo diamond-machined 3D microstructure with a curved substrate

    NASA Astrophysics Data System (ADS)

    Zhu, Wu-Le; Yang, Shunyao; Ju, Bing-Feng; Jiang, Jiacheng; Sun, Anyu

    2015-07-01

    A scanning tunneling microscope-based multi-axis measuring system is specially developed for the on-machine measurement of three-dimensional (3D) microstructures, to address the quality control difficulty with the traditional off-line measurement process. A typical 3D microstructure of the curved compound eye was diamond-machined by the slow slide servo technique, and then the whole surface was on-machine scanned three-dimensionally based on the tip-tracking strategy by utilizing a spindle, two linear motion stages, and an additional rotary stage. The machined surface profile and its shape deviation were accurately measured on-machine. The distortion of imaged ommatidia on the curved substrate was distinctively evaluated based on the characterized points extracted from the measured surface. Furthermore, the machining errors were investigated in connection with the on-machine measured surface and its characteristic parameters. Through experiments, the proposed measurement system is demonstrated to feature versatile on-machine measurement of 3D microstructures with a curved substrate, which is highly meaningful for quality control in the fabrication field.

  13. Beneficial Effects of Adenylyl Cyclase Type 6 (AC6) Expression Persist Using a Catalytically Inactive AC6 Mutant

    PubMed Central

    Tang, Tong; Lai, Ngai Chin; Miyanohara, Atsushi; Guo, Tracy; Tang, Rouying; Firth, Amy L.; Yuan, Jason X.; Hammond, H. Kirk

    2011-01-01

    Cardiac-directed expression of AC6 has pronounced favorable effects on cardiac function possibly not linked with cAMP production. To determine rigorously whether cAMP generation is required for the beneficial effects of increased AC6 expression, we generated a catalytically inactive AC6 mutant (AC6mut) that has markedly diminished cAMP generating capacity by replacing aspartic acid with alanine at position 426 in the C1 domain (catalytic region) of AC6. Gene transfer of AC6 or AC6mut (adenovirus-mediated) in adult rat cardiac myocytes resulted in similar expression levels and intracellular distribution, but AC6mut expression was associated with marked reduction in cAMP production. Despite marked reduction in cAMP generation, AC6mut influenced intracellular signaling events similarly to that observed after expression of catalytically intact AC6. For example, both AC6 and AC6mut reduced phenylephrine-induced cardiac myocyte hypertrophy and apoptosis (p < 0.001), expression of cardiac ankyrin repeat protein (p < 0.01), and phospholamban (p < 0.05). AC6mut expression, similar to its catalytically intact cohort, was associated with increased Ca2+ transients in cardiac myocytes after isoproterenol stimulation. Many of the biological effects of AC6 expression are replicated by a catalytically inactive AC6 mutant, indicating that the mechanisms for these effects do not require increased cAMP generation. PMID:21127130

  14. Ironless armature torque motor

    NASA Technical Reports Server (NTRS)

    Fisher, R. L.

    1972-01-01

    Four iron-less armature torque motors, four Hall device position sensor assemblies, and two test fixtures were fabricated. The design approach utilized samarium cobalt permanent magnets, a large airgap, and a three-phase winding in a stationary ironless armature. Hall devices were employed to sense rotor position. An ironless armature torque motor having an outer diameter of 4.25 inches was developed to produce a torque constant of 65 ounce-inches per ampere with a resistance of 20.5 ohms. The total weight, including structural elements, was 1.58 pounds. Test results indicated that all specifications were met except for generated voltage waveform. It is recommended that investigations be made concerning the generated voltage waveform to determine if it may be improved.

  15. Advanced Motor Drives Studies

    NASA Technical Reports Server (NTRS)

    Ehsani, M.; Tchamdjou, A.

    1997-01-01

    This report presents an evaluation of advanced motor drive systems as a replacement for the hydrazine fueled APU units. The replacement technology must meet several requirements which are particular to the space applications and the Orbiter in general. Some of these requirements are high efficiency, small size, high power density. In the first part of the study several motors are compared, based on their characteristics and in light of the Orbiter requirements. The best candidate, the brushless DC is chosen because of its particularly good performance with regards to efficiency. Several power electronics drive technologies including the conventional three-phase hard switched and several soft-switched inverters are then presented. In the last part of the study, a soft-switched inverter is analyzed and compared to its conventional hard-switched counterpart. Optimal efficiency is a basic requirement for space applications and the soft-switched technology represents an unavoidable trend for the future.

  16. Magnetostrictive direct drive motors

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1992-01-01

    A new rare earth alloy, Terfenol-D, combines low frequency operation and extremely high energy density with high magnetostriction. Its material properties make it suitable as a drive element for actuators requiring high output torque. The high strains, the high forces and the high controllability of Terfenol alloys provide a powerful and challenging basis for new ways to generate motion in actuators. Two prototypes of motors using Terfenol-D rods were developed at NASA Goddard. The basic principles of operation are provided of the motor along with other relevant details. A conceptual design of a torque limiting safety clutch/brake under development is illustrated. Also, preliminary design drawings of a linear actuator using Terfenol-D is shown.

  17. Understanding social motor coordination.

    PubMed

    Schmidt, R C; Fitzpatrick, Paula; Caron, Robert; Mergeche, Joanna

    2011-10-01

    Recently there has been much interest in social coordination of motor movements, or as it is referred to by some researchers, joint action. This paper reviews the cognitive perspective's common coding/mirror neuron theory of joint action, describes some of its limitations and then presents the behavioral dynamics perspective as an alternative way of understanding social motor coordination. In particular, behavioral dynamics' ability to explain the temporal coordination of interacting individuals is detailed. Two experiments are then described that demonstrate how dynamical processes of synchronization are apparent in the coordination underlying everyday joint actions such as martial art exercises, hand-clapping games, and conversations. The import of this evidence is that emergent dynamic patterns such as synchronization are the behavioral order that any neural substrate supporting joint action (e.g., mirror systems) would have to sustain.

  18. Motor learning by observing.

    PubMed

    Mattar, Andrew A G; Gribble, Paul L

    2005-04-01

    Learning complex motor behaviors like riding a bicycle or swinging a golf club is based on acquiring neural representations of the mechanical requirements of movement (e.g., coordinating muscle forces to control the club). Here we provide evidence that mechanisms matching observation and action facilitate motor learning. Subjects who observed a video depicting another person learning to reach in a novel mechanical environment (imposed by a robot arm) performed better when later tested in the same environment than subjects who observed similar movements but no learning; moreover, subjects who observed learning of a different environment performed worse. We show that this effect is not based on conscious strategies but instead depends on the implicit engagement of neural systems for movement planning and control. PMID:15820701

  19. Prospective errors determine motor learning

    PubMed Central

    Takiyama, Ken; Hirashima, Masaya; Nozaki, Daichi

    2015-01-01

    Diverse features of motor learning have been reported by numerous studies, but no single theoretical framework concurrently accounts for these features. Here, we propose a model for motor learning to explain these features in a unified way by extending a motor primitive framework. The model assumes that the recruitment pattern of motor primitives is determined by the predicted movement error of an upcoming movement (prospective error). To validate this idea, we perform a behavioural experiment to examine the model’s novel prediction: after experiencing an environment in which the movement error is more easily predictable, subsequent motor learning should become faster. The experimental results support our prediction, suggesting that the prospective error might be encoded in the motor primitives. Furthermore, we demonstrate that this model has a strong explanatory power to reproduce a wide variety of motor-learning-related phenomena that have been separately explained by different computational models. PMID:25635628

  20. An Electrostatic Stepper Motor

    NASA Astrophysics Data System (ADS)

    Partington, E. C.; Wong, Edward Chun Kay; Bullough, W. A.

    This paper describes a new concept in pulse controlled motor and precision linear actuator techniques. Piezo translators [PZT] employed to provide reciprocating primary motion are connected to a load via a controllable electrorheological fluid [ERF] clutch to form a programmable speed and step-width drive. Ideal considerations are used to quantify the limiting potential of the drive and details are given of its development and progress.

  1. EPDM rocket motor insulation

    NASA Technical Reports Server (NTRS)

    Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)

    2003-01-01

    A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components and with appropriate adjustment of curing and other additives functionally-required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g. powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf life characteristics.

  2. EPDM rocket motor insulation

    NASA Technical Reports Server (NTRS)

    Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)

    2004-01-01

    A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components, and, with appropriate adjustment of curing and other additives, functionally required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g., powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf-life characteristics.

  3. EPDM rocket motor insulation

    NASA Technical Reports Server (NTRS)

    Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)

    2008-01-01

    A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components, and, with appropriate adjustment of curing and other additives, functionally required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g., powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf-life characteristics.

  4. Hydraulic motor for cars

    SciTech Connect

    Gagnon, D.C.

    1986-09-02

    A hydraulic motor for a car is described comprising, in combination, an automotive vehicle engine for travel self-propulsion, including a block, a plurality of cylinders in the block, a piston slidable in each cylinder, a crankshaft in the block, a piston rod connected between the crankshaft and each of the pistons, a power take-off gear on the crankshaft for the travel self-propulsion, and the engine including a hydraulic means for driving the pistons in the cylinders.

  5. The St. Louis Motor

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2011-10-01

    The St. Louis Motor, invented in 1909, is unique among physics apparatus for being named for a geographical place rather than a physicist. The sturdy little device (Fig. 1) has never been out of production. Any older school or physics department that has not done a catastrophic housecleaning in the last 20 years will certainly have a small flock of them in the back room.

  6. Libert-E Motor

    ERIC Educational Resources Information Center

    Sieloff, Susan F.; Kinnunen, Raymond; Chevarley, Joseph

    2011-01-01

    Kei Yun Wong has big dreams. She has been entrusted with the United States launch of Libert-E Motor, a new line of Chinese-manufactured electric scooters. With only $750,000 of her original budget of $3 million left, she needs to make sure that the launch succeeds, as it represents the initial step in her desire to create the first Chinese global…

  7. Motor Fuel Excise Taxes

    SciTech Connect

    2015-09-01

    A new report from the National Renewable Energy Laboratory (NREL) explores the role of alternative fuels and energy efficient vehicles in motor fuel taxes. Throughout the United States, it is common practice for federal, state, and local governments to tax motor fuels on a per gallon basis to fund construction and maintenance of our transportation infrastructure. In recent years, however, expenses have outpaced revenues creating substantial funding shortfalls that have required supplemental funding sources. While rising infrastructure costs and the decreasing purchasing power of the gas tax are significant factors contributing to the shortfall, the increased use of alternative fuels and more stringent fuel economy standards are also exacerbating revenue shortfalls. The current dynamic places vehicle efficiency and petroleum use reduction polices at direct odds with policies promoting robust transportation infrastructure. Understanding the energy, transportation, and environmental tradeoffs of motor fuel tax policies can be complicated, but recent experiences at the state level are helping policymakers align their energy and environmental priorities with highway funding requirements.

  8. Mechanics of molecular motors

    NASA Astrophysics Data System (ADS)

    Visscher, Koen

    2001-03-01

    Molecular motors convert chemical energy into work by mechanisms that researchers are just starting to uncover. We have studied the coupling of chemistry to mechanics for kinesin, a motor protein that moves in a stepwise fashion along microtubules and is energized by the hydrolysis of ATP. Velocities of individual kinesin molecules at varying ATP concentrations and loads were recorded using a molecular force cl& a feedback-driven optical trap, which maintains constant loads on individual moving motor molecules. These measurements showed that kinesin requires only a single ATP molecule per mechanical step, and revealed the load-dependant biochemical transitions in the kinesin cycle where conformational changes are likely to occur. Modeling of the velocity data showed that kinesin mechanochemistry can be characterized by a mechanism that involves a thermally-activated and load-dependent isomerization directly following ATP binding. The model quantitatively accounts for velocity data over a wide range of loads and ATP concentrations, and indicates that movement may be accomplished through two sequential, non-identical, 4-nm sized substeps.

  9. Dyspraxia, Motor Function and Visual-Motor Integration in Autism

    PubMed Central

    Miller, M.; Chukoskie, L.; Zinni, M.; Townsend, J.; Trauner, D.

    2014-01-01

    This project assessed dyspraxia in high-functioning school aged children with autism with a focus on Ideational Praxis. We examined the association of specific underlying motor function including eye movement with ideational dyspraxia (sequences of skilled movements) as well as the possible role of visual-motor integration in dyspraxia. We found that compared to IQ-, sex- and age-matched typically developing children, the children with autism performed significantly worse on: Ideational and Buccofacial praxis; a broad range of motor tests, including measures of simple motor skill, timing and accuracy of saccadic eye movements and motor coordination; and tests of visual-motor integration. Impairments in individual children with autism were heterogeneous in nature, although when we examined the praxis data as a function of a qualitative measure representing motor timing, we found that children with poor motor timing performed worse on all praxis categories and had slower and less accurate eye movements while those with regular timing performed as well as typical children on those same tasks. Our data provide evidence that both motor function and visual-motor integration contribute to dyspraxia. We suggest that dyspraxia in autism involves cerebellar mechanisms of movement control and the integration of these mechanisms with cortical networks implicated in praxis. PMID:24742861

  10. Driving characteristics of a hexadecagon-shaped ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Cheon, Seong-Kyu; Jeong, Seong-Su; Lee, Byeong-Ha; Park, Tae-Gone; Park, Jong-Kyu

    2016-01-01

    A novel hexadecagon-shaped ultrasonic motor is proposed. The stator is easy to fabricate because of its simple structure. The stator of the hexadecagon ultrasonic motor is composed of an elastic ring and ceramics. The elastic ring has sixteen sides and angles. The eight ceramics are attached on the outer surfaces of the eight sides of the ring. When rotor of the cylindrical shaft is inserted inside the ring stator, the central lines of the sixteen sides of the stator hold the shaft with slight pressures. This slight pressure is the preload of the motor and it can be controlled by the radius and the thickness of the ring. When two AC voltages that have a 90-degree phase difference are applied to the eight ceramics, elliptical displacements of the inner surface of the ring are obtained. These elliptical displacements of the inner surface rotate the shaft rotor through friction. The proposed hexadecagon ultrasonic motor was designed and analyzed by using a finite element analysis (ATILA), depending on the number of piezoelectric ceramics and hexadecagon modes. As a result, the stator was optimally designed by defining the output displacement characteristics, which depend on changes in the chosen parameters.

  11. Kinesin-2 KIF3AC and KIF3AB Can Drive Long-Range Transport along Microtubules

    PubMed Central

    Guzik-Lendrum, Stephanie; Rank, Katherine C.; Bensel, Brandon M.; Taylor, Keenan C.; Rayment, Ivan; Gilbert, Susan P.

    2015-01-01

    Mammalian KIF3AC is classified as a heterotrimeric kinesin-2 that is best known for organelle transport in neurons, yet in vitro studies to characterize its single molecule behavior are lacking. The results presented show that a KIF3AC motor that includes the native helix α7 sequence for coiled-coil formation is highly processive with run lengths of ∼1.23 μm and matching those exhibited by conventional kinesin-1. This result was unexpected because KIF3AC exhibits the canonical kinesin-2 neck-linker sequence that has been reported to be responsible for shorter run lengths observed for another heterotrimeric kinesin-2, KIF3AB. However, KIF3AB with its native neck linker and helix α7 is also highly processive with run lengths of ∼1.62 μm and exceeding those of KIF3AC and kinesin-1. Loop L11, a component of the microtubule-motor interface and implicated in activating ADP release upon microtubule collision, is significantly extended in KIF3C as compared with other kinesins. A KIF3AC encoding a truncation in KIF3C loop L11 (KIF3ACΔL11) exhibited longer run lengths at ∼1.55 μm than wild-type KIF3AC and were more similar to KIF3AB run lengths, suggesting that L11 also contributes to tuning motor processivity. The steady-state ATPase results show that shortening L11 does not alter kcat, consistent with the observation that single molecule velocities are not affected by this truncation. However, shortening loop L11 of KIF3C significantly increases the microtubule affinity of KIF3ACΔL11, revealing another structural and mechanistic property that can modulate processivity. The results presented provide new, to our knowledge, insights to understand structure-function relationships governing processivity and a better understanding of the potential of KIF3AC for long-distance transport in neurons. PMID:26445448

  12. Transient AC voltage related phenomena for HVDC schemes connected to weak AC systems

    SciTech Connect

    Pilotto, L.A.S.; Szechtman, M. ); Hammad, A.E. )

    1992-07-01

    In this paper a didactic explanation of voltage stability associated phenomena at HVDC terminals is presented. Conditions leading to ac voltage collapse problems are identified. A mechanism that excites control-induced voltage oscillations is shown. The voltage stability factor is used for obtaining the maximum power limits of ac/dc systems operating with different control strategies. Correlation to Pd {times} Id curves is given. Solutions for eliminating the risks of voltage collapse and for avoiding control-induced oscillations are discussed. The results are supported by detailed digital simulations of a weak ac/dc system using EMTP.

  13. O-ring sealing verification for the space shuttle redesign solid rocket motor

    NASA Technical Reports Server (NTRS)

    Lach, Cynthia L.

    1989-01-01

    As a part of the redesign of the Space Shuttle Solid Rocket Motor, the field and nozzle-to-case joints were redesigned to minimize the dynamic flexure caused by internal motor pressurization during ignition. The O-ring seals and glands for the joints were designed to accommodate both structural deflections and to promote pressure assistance. A test program was conducted to determine if a fluorocarbon elastomeric O-ring could meet this criteria in the redesigned gland. Resiliency tests were used to investigate the O-ring response to gap motion while static seal tests were used to verify design criteria of pressure assistance for sealing. All tests were conducted in face seal fixtures mounted in servo-hydraulic test machines. The resiliency of the O-ring was found to be extremely sensitive to the effects of temperature. The External Tank/Solid Rocket Booster attach strut loads had a negligible affect on the ability of the O-ring to track the simulated SRB field joint deflection. In the static pressure-assisted seal tests, as long as physical contact was maintained between the O-ring and the gland sealing surface, pressure assistance induced instantaneous sealing.

  14. AcsA-AcsB: The core of the cellulose synthase complex from Gluconacetobacter hansenii ATCC23769.

    PubMed

    McManus, John B; Deng, Ying; Nagachar, Nivedita; Kao, Teh-hui; Tien, Ming

    2016-01-01

    The gram-negative bacterium, Gluconacetobacter hansenii, produces cellulose of exceptionally high crystallinity in comparison to the cellulose of higher plants. This bacterial cellulose is synthesized and extruded into the extracellular medium by the cellulose synthase complex (CSC). The catalytic component of this complex is encoded by the gene AcsAB. However, several other genes are known to encode proteins critical to cellulose synthesis and are likely components of the bacterial CSC. We have purified an active heterodimer AcsA-AcsB from G. hansenii ATCC23769 to homogeneity by two different methods. With the purified protein, we have determined how it is post-translationally processed, forming the active heterodimer AcsA-AcsB. Additionally, we have performed steady-state kinetic studies on the AcsA-AcsB complex. Finally through mutagenesis studies, we have explored the roles of the postulated CSC proteins AcsC, AcsD, and CcpAx. PMID:26672449

  15. AcsA-AcsB: The core of the cellulose synthase complex from Gluconacetobacter hansenii ATCC23769.

    PubMed

    McManus, John B; Deng, Ying; Nagachar, Nivedita; Kao, Teh-hui; Tien, Ming

    2016-01-01

    The gram-negative bacterium, Gluconacetobacter hansenii, produces cellulose of exceptionally high crystallinity in comparison to the cellulose of higher plants. This bacterial cellulose is synthesized and extruded into the extracellular medium by the cellulose synthase complex (CSC). The catalytic component of this complex is encoded by the gene AcsAB. However, several other genes are known to encode proteins critical to cellulose synthesis and are likely components of the bacterial CSC. We have purified an active heterodimer AcsA-AcsB from G. hansenii ATCC23769 to homogeneity by two different methods. With the purified protein, we have determined how it is post-translationally processed, forming the active heterodimer AcsA-AcsB. Additionally, we have performed steady-state kinetic studies on the AcsA-AcsB complex. Finally through mutagenesis studies, we have explored the roles of the postulated CSC proteins AcsC, AcsD, and CcpAx.

  16. Wind motor applications for transportation

    SciTech Connect

    Lysenko, G.P.; Grigoriev, B.V.; Karpin, K.B.

    1996-12-31

    Motion equation for a vehicle equipped with a wind motor allows, taking into account the drag coefficients, to determine the optimal wind drag velocity in the wind motor`s plane, and hence, obtain all the necessary data for the wind wheel blades geometrical parameters definition. This optimal drag velocity significantly differs from the flow drag velocity which determines the maximum wind motor power. Solution of the motion equation with low drag coefficients indicates that the vehicle speed against the wind may be twice as the wind speed. One of possible transportation wind motor applications is its use on various ships. A ship with such a wind motor may be substantially easier to steer, and if certain devices are available, may proceed in autonomous control mode. Besides, it is capable of moving within narrow fairways. The cruise speed of a sailing boat and wind-motored ship were compared provided that the wind velocity direction changes along a harmonic law with regard to the motion direction. Mean dimensionless speed of the wind-motored ship appears to be by 20--25% higher than that of a sailing boat. There was analyzed a possibility of using the wind motors on planet rovers in Mars or Venus atmospheric conditions. A Mars rover power and motor system has been assessed for the power level of 3 kW.

  17. A dry-cooled AC quantum voltmeter

    NASA Astrophysics Data System (ADS)

    Schubert, M.; Starkloff, M.; Peiselt, K.; Anders, S.; Knipper, R.; Lee, J.; Behr, R.; Palafox, L.; Böck, A. C.; Schaidhammer, L.; Fleischmann, P. M.; Meyer, H.-G.

    2016-10-01

    The paper describes a dry-cooled AC quantum voltmeter system operated up to kilohertz frequencies and 7 V rms. A 10 V programmable Josephson voltage standard (PJVS) array was installed on a pulse tube cooler (PTC) driven with a 4 kW air-cooled compressor. The operating margins at 70 GHz frequencies were investigated in detail and found to exceed 1 mA Shapiro step width. A key factor for the successful chip operation was the low on-chip power consumption of 65 mW in total. A thermal interface between PJVS chip and PTC cold stage was used to avoid a significant chip overheating. By installing the cryocooled PJVS array into an AC quantum voltmeter setup, several calibration measurements of dc standards and calibrator ac voltages up to 2 kHz frequencies were carried out to demonstrate the full functionality. The results are discussed and compared to systems with standard liquid helium cooling. For dc voltages, a direct comparison measurement between the dry-cooled AC quantum voltmeter and a liquid-helium based 10 V PJVS shows an agreement better than 1 part in 1010.

  18. AC power generation from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Lobo, Fernanda Leite; Wang, Heming; Forrestal, Casey; Ren, Zhiyong Jason

    2015-11-01

    Microbial fuel cells (MFCs) directly convert biodegradable substrates to electricity and carry good potential for energy-positive wastewater treatment. However, the low and direct current (DC) output from MFC is not usable for general electronics except small sensors, yet commercial DC-AC converters or inverters used in solar systems cannot be directly applied to MFCs. This study presents a new DC-AC converter system for MFCs that can generate alternating voltage in any desired frequency. Results show that AC power can be easily achieved in three different frequencies tested (1, 10, 60 Hz), and no energy storage layer such as capacitors was needed. The DC-AC converter efficiency was higher than 95% when powered by either individual MFCs or simple MFC stacks. Total harmonic distortion (THD) was used to investigate the quality of the energy, and it showed that the energy could be directly usable for linear electronic loads. This study shows that through electrical conversion MFCs can be potentially used in household electronics for decentralized off-grid communities.

  19. Manipulating Flames with AC Electric Fields

    NASA Astrophysics Data System (ADS)

    Bishop, Kyle

    2013-11-01

    Time-oscillating electric fields applied to plasmas present in flames create steady flows of gas capable of shaping, directing, enhancing, or even extinguishing flames. Interestingly, electric winds induced by AC electric fields can be stronger that those due to static fields of comparable magnitude. Furthermore, unlike static fields, the electric force due to AC fields is localized near the surface of the flame. Consequently, the AC response depends only on the local field at the surface of the flame - not on the position of the electrodes used to generate the field. These results suggest that oscillating electric fields can be used to manipulate and control combustion processes at a distance. To characterize and explain these effects, we investigate a simple experimental system comprising a laminar methane-air flame positioned between two parallel-plate electrodes. We quantify both the electric and hydrodynamic response of the flame as a function of frequency and magnitude of the applied field. A theoretical model shows how steady gas flows emerge from the time-averaged electrical force due to the field-induced motion of ions generated within the flame and by their disappearance by recombination. These results provide useful insights into the application of AC fields to direct combustion processes.

  20. Ac-dc converter firing error detection

    SciTech Connect

    Gould, O.L.

    1996-07-15

    Each of the twelve Booster Main Magnet Power Supply modules consist of two three-phase, full-wave rectifier bridges in series to provide a 560 VDC maximum output. The harmonic contents of the twelve-pulse ac-dc converter output are multiples of the 60 Hz ac power input, with a predominant 720 Hz signal greater than 14 dB in magnitude above the closest harmonic components at maximum output. The 720 Hz harmonic is typically greater than 20 dB below the 500 VDC output signal under normal operation. Extracting specific harmonics from the rectifier output signal of a 6, 12, or 24 pulse ac-dc converter allows the detection of SCR firing angle errors or complete misfires. A bandpass filter provides the input signal to a frequency-to-voltage converter. Comparing the output of the frequency-to-voltage converter to a reference voltage level provides an indication of the magnitude of the harmonics in the ac-dc converter output signal.